
KeyKit − Musical Fun with Windows, Tasks, and Objects

Tutorial for Version 6.5a

Tim Thompson
AT&T

San Jose, California
tjt@nosuch.com

Intr oduction

Ke yKit is a programming language and graphical interface for manipulating and generating music. This tutorial
covers the basics of using its multi-window graphic interface, which is completely implemented by a user-accessible
library of code written in the KeyKit language. A detailed language reference manual is contained in another docu-
ment, but you don’t hav e to read it right away since the graphic interface is complete enough to use without having
to understand the underlying language. User-extensibility is a primary motivation behind the system, however, so if
you become an active user, you should at least peruse some of the code in the user-defined library to see if you might
be interested in adding features of your own to the system.

Ke yKit is supported on a variety of computers. You should obtain installation instructions when you receive the
Ke yKit executables. The most widely accessible version runs under Windows 95 and Windows NT, so some details
in this tutorial will be tailored to that version. In general, though, the user interface acts identically on all systems,
including the behavior of pop-up menus and window manipulation.

An Initial T est

Start KeyKit (for example, under Windows, double-click the keykit icon in the Program Manager). A large white
window should appear, and after a few seconds you should see a box at the bottom containing akey> prompt. This
box is the Console, and contains an interpreter that will read and execute KeyKit statements. Typeprint(44) and
it should print44 followed by anotherkey> prompt. Type and you should hear that 5-note phrase played on your
MIDI output device. Press a few notes on your MIDI input device, and then type
print(sizeof(Recorded)). You should see some number other than 0, and if you play more notes and type
the same statement, the number should increase. You’ve now verified that MIDI input and output are working.

The default behaviour of KeyKit is to echo all MIDI input directly to MIDI output. This is appropriate when you
have your keyboard controller plugged directly into the MIDI input of your PC, and your MIDI output directly
drives your synths (or your soundcard). If you have your MIDI routing set up so that your controller is already send-
ing its output to your synths, then your synths will be getting two copies of each note (which may not be immedi-
ately obvious except for a slight chorus effect in the sound). To disable KeyKit’s echoing of MIDI input, you should
executeMerge=0 , by typing it in the Console window. You can make this change permanent by modifying the
c:\key\liblocal\prerc.k file.

The Merge variable demonstrates the way in which many of the lower-level features (ones built into the language
itself, rather than built out of the language in the user-defined library) are controlled by the values of special vari-
ables. The complete list of these variables can be found in thekeyvar(5) manual page.

Menu Operation

Click the left mouse button anywhere in the background of the KeyKit display (i.e. anywhere except over the Con-
sole window). A pop-up menu, called themain menu from now on, should appear and remain visible after you



− 2 −

release the mouse button. TheMove item in this menu is used to move windows. Click the left mouse button on
Move. The menu will disappear and the mouse cursor should change to a cross, indicating that you are expected to
now point to and drag a window. Click and hold the left mouse button down anywhere in the Console window (the
box at the bottom). Drag the mouse, and the window will be moved.

Bring up the main menu again. The skinny horizontal strip at the top of the menu is a handle that can be used to
move the menu. Press and hold the mouse button in this strip, and drag the menu around. The X in the upper-right
corner of the menu can be used to erase the menu when you no longer need it. Note that if you just pop-up the main
menu and select an item (likeMove ), the pop-up menu will go away immediately. If, instead, you first drag the
menu around, the menu will be considered more permanent (posted), and will not disappear when you invoke an
item. Hence the need for the X in the corner to erase it after it has been posted.

Menu items that have a−> in their names are nested sub-menus. When these items are selected, a sub-menu will be
displayed, and it can be used (and moved) just like the main menu. As with the main menu, if you move a sub-menu
it becomes posted and will not be erased until you explicitly remove it. This feature is intended to be used alot -
pulling off commonly used sub-menus and placing them on the screen (in locations of your own choosing) makes
them easy to invoke.

Take a look at theTools2−>sub-menu. Drag it away from the main menu so that it becomes posted. The left side
of the menu shows a scroll bar, which you can use to scroll through all the items in the menu. (The width of the
scroll bar can be controlled, if it is too small or large, by changing the Menuscrollwidth variable.)

The Resizeitem in the main menu lets you resize a window. Since menus are windows like any other window in
Ke yKit, you can resize them. InvokeResizefrom the main menu, and point to the Tools menu that you’ve posted.
The mouse cursor should then change to a "sweep" icon, and you can sweep (click and drag) the area you want the
menu to occupy. In this way, you can make the menu as large or as small as you want. Try resizing the Console
window for practice.

There is a special feature (that you may have already accidentally discovered) available for convenience when you
are sweeping the area for resizing a window. If the area you sweep is extremely small (e.g. if you just click and
release without dragging at all), KeyKit will make the window as large as possible without overlapping another win-
dow. This technique also works when you are sweeping the area for a new window.

Even more useful than pulling off sub-menus, pull-off buttons are a fairly unique feature of the KeyKit user inter-
face. Bring up the main menu and then theMisc−> menu. TheAllNotesOff item in this menu will send an all-
notes-off MIDI message, which is useful when you have hanging notes (for whatever reason). Press the mouse but-
ton down in theAllNotesOff item, but don’t release it. Drag the mouse button off the right edge of the menu, and
keep dragging it right until it is an inch or two off the right edge. At some point, you will see an outline of a button
appear, and you can drag this outline wherever you want to. Releasing the mouse button will reveal that you have
just pulled theAllNotesOff item out of the menu and made it a separate button. This button is a window like any
other, and can be moved and resized.

The pull-off button feature is meant to be used alot. Any time you traverse a hierarchical menu and are about to
invoke an item, at the instant you invoke it you can make the decision - do you want to invoke the item only once, or
will you be invoking it multiple times in the near future? If you will need it more than once, you merely drag it out
of the menu (no matter how deeply nested the menu) and place the button in a convenient place on the screen. That
operation then becomes a one-click operation from then on. The button can be deleted when it no longer serves a
purpose, using the Delete item in the main menu that is used to delete any window.

Tools

The items in theTools menus allow you to create new windows containing tools. After invoking an item from a



− 3 −

Tools menu, the mouse cursor will change to the sweep icon, showing that you are then expected to sweep the area
for the tool. As mentioned above, if you merely click the mouse rather than sweep any area, the tool window will be
made as large as possible without overlapping any other windows. If you accidentally create a too-large tool, just
useResizein the main menu to resize it.

Select theMouse Matrix tool. Sweep out an area (approximately square), and the result will contain a grid. Click
and drag the mouse button within the grid, and you should hear a series of chords played via MIDI output.

Helpful information about individual tools can be obtained by looking at thetools reference document. In addition
to being available in hardcopy form (see thedoc directory for various formats such as Postscript), it is available on-
line. On a Windows system, it is available as a standard Help document. You can access it and several other docu-
ments by pulling down the Windows menu (the one containing the "-") in the upper-left corner of the KeyKit win-
dow. You can also access the tools documentation by pressing F1 while the mouse is over the tool on which you
want information. Doing this, you will be taken directly to the page describing that tool. You can also invoke the
Window->Help item (in the KeyKit menus) and explicitly point to the window on which you want help. It may be a
good idea to tear off thisHelp item and place it on the screen, so you can request help on a tool at any time, and so
you are reminded that the help is available.

Now, back to experimenting with tools. Select theVolume tool. Sweep out an area (tall and thin), and you’ll find a
slider. When you drag the mouse in this slider, it will send volume messages on all 16 channels. Ignore the buttons
at the bottom of the slider, for the moment. Move the Volume slider, then go back and make some more music with
Mouse Matrix - you should be able to control the volume of the output, assuming your synth pays attention to the
controller messages that the Volume slider sends.

Select theTempo item. Sweep out an area (tall and thin), and you’ll find a slider. When you drag the mouse in this
slider, it will control the current tempo of whatever music is being played back (which we’ll be doing in a moment).

As you can probably tell by now, using KeyKit often results in a rather chaotic-looking screen, since everything you
do results in a separate window that is manually placed and resized. There is a way to arrange windows more neatly.
First, find theMisc->Windows->Arrange menu. Pull off this menu so that you can repeatedly invoke its items.
The Horizontal item in this menu allows you to select several windows and have them arranged horizontally in a
specified area. The two sliders (Volume and Tempo) are a good candidate for this rearrangement. Invoke theHori-
zontal item, and then click the mouse once in each of the windows you want to select (in this case, Volume and
Tempo). To indicate that you have selected the last window, click the mouse a second time in the last window. The
mouse cursor will now change to the sweep icon, and you should sweep out the area in which you want the windows
to be arranged.

Before we start playing any real music, a metronome would be useful. In theMisc menu, you’ll find aToggle Met.
Selecting it will turn on a metronome, which by default is MIDI note 40 on channel 10 - a snare drum according to
the General MIDI standard. You can change the note used for the metronome by changing theMet variable. For
example, executing the statementMet=’p41c8’ in the Console window would set the Metronome to MIDI note
41 on channel 8. The default value ofMet is set in the keyrc function, which is defined in
c:\key\lib\bootutil.k. If you want to permanently change the value of Met, you should edit the file
c:\key\liblocal\postrc.k and set it there. Thepostrc function gets executed afterkeyrc, so it will over-
ride the default.

You will probably want to toggle the metronome on and off fairly often, so theToggle Met item is definitely some-
thing that you’ll want to pull off and make into a button. If you don’t know how to do that by now, this is a good
time to learn. Pulling off a menu and pulling off a button are not the same thing - read the section above onMenu
Operation for more details.

The Riff tool is the simplest way of playing a Standard MIDI File. SelectRiff tool, and sweep its window. The



− 4 −

More button is an example of a menu button embedded in a tool - when you press it, a drop-down menu will appear.
This menu works like any other menu, which means you can pull the entire menu off, and you can pull off the indi-
vidual items as buttons. Select theLoad from File item from this menu, and a standard Windows dialog box for
finding and selecting a file will appear. You will find some sample music files in thec:\key\music directory -
selectbachinv1.mid. The Riff tool will show the music in piano-roll form. Click the mouse anywhere in the
piano-roll window, and it will begin playing. Click the mouse again and it will stop.

Start the music playing, and then use theTempo tool to adjust the speed. Note that you can do anything at the same
time as the music is playing, including bringing up another tool. The only time that the operation of KeyKit is inter-
rupted is when you bring up the Windows file selection dialog box (a problem that may be fixed someday, if it
proves to annoying). Other than that one exception, the operation of all tools in KeyKit is continuous and simultane-
ous - a critically important feature that is made easy by the fact that the KeyKit language is multi-tasking.

Ke yKit has support for object-oriented programming, and the implementation of the tools takes advantage of this.
Most of the object-oriented aspects are hidden in the user interface implementation, but theBang tool is one exam-
ple that reveals object-orientation at the user level. TheBang tool allows you to send an arbitrary message to any
number of tools. First, create aBang tool. Make sure you have aRiff tool elsewhere on the screen. Now, click and
hold the mouse down within theAdd button of theBang tool, and drag the mouse away - you should see a line
stretching with it. Drag the line’s endpoint so that it lies anywhere within theRiff tool, and release the mouse but-
ton. You’ve now attached theBang tool to theRiff tool - to check, click the mouse on theAdd button, and the
Bang tool will show it’s current connections (in this case, the one you just made). You can make any number of
connections from theBang tool to other tools. Now, press theBang button in the upper-right of theBang tool. This
will send a "bang" message to all the attached tools. TheRiff tool responds by starting to play its music. If you
send another "bang" message, the music will stop. TheMore menu of theBang tool allows you to change the type
of message sent. More interestingly, theBang tool can monitor MIDI input, and when it sees a particular MIDI
note, trigger the sending of the message.

Pages

Once you have filled the display with tools, you can either start deleting them (with theDelete item in the main
menu), or you can move to a newpage. Each page is like a virtual screen, with its own set of tools. Each page also
maintains its screen size (i.e. the size of the Windows window containing it). You can maintain as many pages as
you like, and can save each to a file for later restoration. The conventional suffix for a page file is A file contains all
of the information on the page, including any of the musical data contained in tools such as theRiff tool. A file is
readable ASCII data. In fact, it merely contains KeyKit code that will reconstruct the page. Hence it is portable
between different machines and machine architectures. It is also editable, which may come in handy if bugs or
changes in KeyKit prevent it from being successfully loaded.

SelectPage->New.You will see a blank screen. Add some tools to the screen. Now, usePage->Switch->Page 1to
return to your first page. LikewisePage->Switch->Page 2will go back to your second page. You can use
Page->Label to change the name of a page, which will affect the name you see in thePage->Switchmenu.
Page->Write lets you write the current page to a file, andPage->Readlets you read a page file.

The most convenient way to use pages isPage->Snapshot.When you select this, the current page will be written to
a file whose name is of the formsnap#.kp,where# is an integer. Each time you do aSnapshot,the integer will be
incremented so that a new file is generated. So, if you’re working on some music, and want to periodically save
your effort, just pull off theSnapshotitem and make it button, and just press that button every time you want to save
your work.

The Windows installation of keykit should "assocatiate" the file suffix with the KeyKit executable. That way you
can just double-click on a in the File Manager and KeyKit will automatically be invoked and read that file.



− 5 −

Group Tool

The Group tool is very much like a standard multi-track sequencer. It allows flexible editing of music, and is the
most important (and largest) tool provided in the user interface of KeyKit.

Create aGroup tool. Use theFile menu button in its upper-left corner, and invokeRead->Standard MIDI File
Using the dialog box that appears, selectc:\key\music\prelude.mid. You should see a piano-roll repre-
sentation of that file. You should also see a box with some probably-unreadable text, at the beginning of the piano-
roll display. That is a Tempo message - other Standard MIDI File messages (such as Timesig) are displayed simi-
larly.

The Group tool maintains a set of tracks. The merged contents of all tracks is always displayed in the track named
Merged. Using theView menu button, selectTracks->All. You will then see the Merged track along with the 3
individual tracks that are contained in theprelude.mid file. At the upper-left corner of each track (including the
merged track) is a menu button, and the menu it reveals will be called thetrack menu. The items in a track menu
apply only to the corresponding track. For example, theUnshow item in the track menu will cause that track to be
removed from the display (though it still exists, and its music will still be shown in the Merged track. The
Showonly item will cause only that track to be display (in addition to the Merged track, which is always shown. If
you want to go back to seeing only the Merged track, selectShowonly in the track menu for the Merged track.

The text within the track menu buttons are the track names. You can change a track name by using theLabel item in
the track menu.

Within each track window, the 2 mouse buttons (left and right) are used for a variety of operations. Instead of being
fixed, the meaning of each mouse button can be changed, and in practice you should expect to change their mean-
ings often. The meanings of the mouse buttons are assigned with the 3 menu buttons in the upper-right corner of the
Group tool. Each mouse button actually has three meanings - one when the shift key is pressed, one when the con-
trol key is pressed, and one when no keys are pressed. The keys that can modify the mouse button meanings are
called "modifiers". The leftmost of the 3 menu buttons in the upper right corner of the Group tool controls the
"modifier" that currently applies to the other two menu buttons - the modifier value can beNormal, Shift, or Con-
trol. When the modifier is set toShift, then the other two menu buttons will control the meanings of the left and
right mouse buttons when the Shift key is pressed. Likewise, when the modifier is set toControl, then the other two
menu buttons control the meanings of the mouse buttons when the Control key is pressed. And when the modifier is
set toNormal, then the other two menu buttons control the meanings of the mouse buttons when no key is pressed.
The label of each button reveals the current meaning of that mouse button (for the current modifier setting). To
change the operation of a button, you select the operation you want from the corresponding mouse button menu, and
from then on that mouse button (combined with the appropriate modifier) will perform that operation.

The default operation for the left mouse button, when a Group tool is first created, isAud Sweep(whereAud is
short forAudition ). This means that when you press and drag the left mouse button within a track window, you
will be sweeping out the audition area. Try it, making sure that the mouse is within a track window when you start
sweeping. While you sweep, you will see vertical bars that indicate the audition area. When you release, there is no
visible indication of the current audition area (though someday there probably should be). The default operation for
the right mouse button isAud Play - to play the current audition area. So, if you use the left mouse button to sweep
some part of the music, and then press the right mouse button, you should hear that music played via MIDI output,
and you should see the notes flash as they play. To stop the playback, press the right mouse button again. This
shows thatAud Play is a toggle - it starts and stops playback.

Now, try changing the meaning of the left mouse button. Use the middle menu button (of the 3 menu buttons in the
upper right corner of the Group tool) and selectPick->Sweep. From then on, the left mouse button will sweep out
the currentPick. The term Pick refers to the selected notes of the music that will be affected whenever an Edit oper-
ation is used. Try using the left mouse button to sweep an area of the music. After you sweep, you should see the



− 6 −

notes in that area turn red. The notes of the current Pick are always drawn in red.

TheView->In menu item lets you zoom in to get a closer look at the music. After you select this item, the mouse
cursor will change to a left-right arrow, meaning that you are then expected to sweep out an area within one of the
tracks. Do this. You should see the display redrawn with that area of the track filling the display. Note that
View->In changes the meaning of the left mouse button only temporarily - it then reverts to the normal operation
(that you have specified).View->Out will return to viewing the entire piece of music.

Zoom in on part of the music, so that you can easily see individual notes. Pick a few notes (i.e. make sure the left
mouse button is set toPick->Sweep,and then sweep the notes). Now, selectEdit->Delete,and the notes in the cur-
rent Pick will be removed. Do it again - pick some more notes and delete them. Now, selectEdit->Undo. You will
see your last deletion undone. SelectEdit->Undo again, and you will see your first deletion undone, so your music
is back to its original state. TheUndo operation can undo the last 32 editing operations, by default, and you can eas-
ily increase this number, subject to memory limitations.

TheEdit->Undo item is one of the most common menu items to pull off and make into a real button. It’s important
to realize that when you do this, thatUndo button will only affect the Group tool from which you pulled it - it will
not affect any other Group tools that are on the screen. This is true of any of the buttons that you pull from menus in
any giv en tool. There is currently no visible or other indication of the relationship between pulled-off buttons and
the tools they control, so it’s obviously a good idea to position the buttons in ways that make it obvious as to which
tool they belong.

More Tools

Below are descriptions for the rest of the current set of tools - the descriptions aren’t comprehensive, but should give
you a sense of what each tool does and how it is used. These descriptions are meant to be used while you experi-
ment with the interface - they may be a bit cryptic if you don’t hav e the tool in front of you to play with.

TheBang tool is a way of sending arbitrary messages (also known as "methods" in the underlying implementation)
to selected other tools. You use theAdd button to add connections, stretching a line to the tool to which you want to
send a message. A typical message might be "bang" or "on" or "stop". For example, sending a "bang" message to a
Riff tool will begin playing the phrase in the riff tool. TheBang tool can be manually controlled by pressing its
Bang button, but it can also be told to monitor MIDI input for a selected note, and will trigger the sending of the
message. TheMore->Load Recordedmenu item establishes the MIDI note that will trigger it, and theOn button
of the Bang tool is used to turn on the monitoring of MIDI input for this note.

TheBlocks tool is most typically used for piecing together drum patterns. It introduces the concept of a file (stand-
ing for KeyKit Collection ), which contains a set of named phrases. In the case of a drum pattern collection, each
phrase is a complete drum pattern. The phrases need not be of the same length. You can use theMore->Read Col-
lection menu item to read a file. As an example, the filedrums1.kc file is included in the standardlib directory
of KeyKit - it contains a set of drum patterns that use the General MIDI standard for drum notes (on channel 10).
After reading this collection, the menu buttons above each block of theBlocks tool will reveal, when you press
them, the list of patterns. Select one of the patterns, and it will appear in the corresponding block. The default num-
ber of blocks is 4, but this label is actually a menu button that lets you control the total number of blocks. Clicking
the mouse in any giv en block will start playing that block, and continue through to the last block on the right end. If
you want the blocks to loop, you can turn onLoop, which is a toggle button. To stop playback, just press the mouse
button again in any block.

TheBouncetool is a strange toy I built in an hour, making effective use of the object oriented implementation of the
Ke yKit user interface. Basically, it is 4 copies of theRiff tool surrounding a box. When you pressOn, a bouncing
line will appear in the box. Each time the line hits a border of the box, theRiff on that side of the box will begin
playing. When the line hits the same border again, theRiff will stop (if it’s still playing). The fourRiff tools within



− 7 −

Bounceoperate identically to the standardRiff tool (because theyare the standardRiff tool). It is best to fill the 4
phrases with either single chords or drum notes, to get started. The slider controls the speed of the bouncing line.

TheChord Palette is a way of playing chords - make sure you make its window large enough so that the labels are
completely displayed rather than being truncated. Clicking the mouse in the cells of the matrix will play the corre-
sponding chords. The chords are also (by default) put into the current value ofSnarf. So, you can press a chord
here and the go to some other tool to make use of it - for example, by using theMore->Load from Snarf menu item
in aRiff tool.

TheComment tool is merely a way of placing labels on the screen. After placing it, click the mouse on it - you will
be given an opportunity to change its text. Very crude.

The Consoletool allows you to have additional console areas in which you can type KeyKit statements and have
them interpreted. When you have multiple consoles, error messages (and the output of print() statements, which you
might embed in KeyKit code for debugging purposes) will appear in whichever console is "current". Clicking the
left mouse button in a console window will make it the "current" one.

TheEcho tool is used to echo MIDI input. Sliders control the echo time, transposition, volume decay, and number
of echoes. The echos do not occur by default, though - you need to press theOn button (which is a toggle) in order
to activate the tool. You can have multipleEcho tools running simultaneously (as with any tool), which can be a lot
more fun than a single echo.

The GM Prog Map tool lets you transmit Program Change commands on all 16 channels. You select patches
according to the General MIDI standard. Each label is actually a menu button that reveals the patch list. When you
make a change, the corresponding program change message is transmitted via MIDI output.

The GM Control tool lets you transmit controller messages such as Volume, Expressions, and Pan on all 16 chan-
nel. It also includes some of the General MIDI standardized controller values such as Reverb and Chorus depth.

TheKboom tool is a drum pattern editor that has taken on a life of its own - it has a lot of features that are a lot of
fun to play with. The steps of the drum pattern are not restricted to drum notes - they can be arbitrary notes or even
phrases. Use theRead Drumkit menu item to read thelib\drums.kbm file - it is an ASCII file that specifies a
drum kit. You can interactively select the drums for each row in theKboom tool, by using the labels which are
menu buttons. Click the mouse within the cells of the grid in order to toggle the drums on and off at each step of
the pattern. Instead of having each step be just on and off, you can useMore->Toggle Mode->Gradual to turn on a
mode in which each cell can be filled in gradually. If a cell is filled in 25% of the way, then that "hit" of the drum
will only occur 25% (randomly) of the time. This can add variety to a pattern. Another way of adding variety is to
create a secondKboom tool with a different number of steps, and playing the two patterns at the same time. You
can also use theRec Note/Chorditem in the menu buttons on each drum row to grab the last-recorded MIDI input,
which is then assigned as the sound for that row. This can all be done while the drum pattern is playing.

TheMarkov Maker tool lets you create music with markov-chain techniques. Use theOrig button to read in some
piece of music. Then use the nested menus underOrig->Set Sim to initialize the Markov model of the music. You
can experiment with the values, but for good initial results, tryWin 1b/2 andInc 1b/4. TheWin value is the "win-
dow" that is swept across the phrase, and theInc value is the increment by which the window is moved across the
phrase. (See the source code inlib/setsim.k for more details.) Now, use theSim->Make Sim-> menu to
select the size of the "similar" phrase that you want to generate. Pressing the mouse button inside either phrase win-
dow will start (and stop) its playing. You can useSim->Snarf to grab the generated phrase and then (for example)
read it it into aGroup tool for further editing. TheMarkov Maker tool is perhaps the easiest thing to impress peo-
ple with. As an example, usemusic/prelude.mid as the music, andWin 1b/2 andInc 1b/4 as the values, and
generate a fairly long piece. It’s surprising how interesting the results are.



− 8 −

TheParameterstool lets you set various global parameters. For example, theSweepquantandDragquant param-
eters control the quantization of sweeping and dragging within theGroup tool.

More Inf ormation

Thedocdirectory contains:

tutorial This tutorial.

tools A reference manual for the individual tools in the user interface.

language A reference manual for the KeyKit language.

hacking Information on modifying and adding tools in the KeyKit user interface.

keyvar Manual page for the built-in variables whose values can be modified to control KeyKit’s
operation.


