





MM m N W W NN NN NN NEMNMN



0 T 98 Pze CQJQ/JCG_ /0

MQAIZ( / 2&5’(0 s 694@*

=




\eu .4

4" DIMENSION
LANGUAGE REFERENCE



4™ DIMENSION LANGUAGE REFERENCE

Written by Will Mayall

Technical assistance from Dave Terry
Copyedited by Silvio Orsino

llustrated by Will Mayall

Layout by Will Mayall

Designed by Patrick Chédal C&C

Publication assistance from Lasselle-Ramsay, Inc.

Copyright © 1989 ACIUS, Inc. and ACI
All rights reserved

SOFTWARE LICENSE AGREEMENT

ACI grants you a non-transferable, non-exclusive license to use this
copy of the program and accompanying materials according to the
following terms:

LICENSE:

You may:

a) use the program on only one computer at a time;

b) make one (1) copy of the program in machine readable form solely
for backup purposes, provided that you reproduce all proprietary
notices on the copy;

c) physically transfer the program from one computer to another,
provided that the program is used on only one computer at a time; and
d) transfer the program onto a hard disk only for use as described
above provided that you can immediately prove ownership of the
original diskettes.

You may not:

a) use the program in a network unless you pay for a separate license
for each terminal or workstation from which the program will be
accessed;

b) modify, translate, reverse engineer, decompile, disassemble, cre-
ate derivative works based on, or copy (except for the backup copy) the
program or accompanying materials;

c) rent, transfer or grant any rights in the program in any form or
accompanying materials to any person without the prior written consent
of ACI which, if given, is subject to the conferee’s consent to the terms
and conditions of this license; or

d) remove any proprietary notices, labels or marks on the program and
accompanying materials.

This license is not a sale. Title and copyrights to the program, accom-
panying materials and any copy made by you remain with ACI.
TERMINATION

Unauthorized copying of the program (alone or merged with other
software) or the accompanying materials, or failure to comply with the
above restrictions will result in automatic termination of this license and
will make available to ACI other legal remedies. Upon termination you
will destroy or return to ACI the program, accompanying materials and
any copies.

LIMITED WARRANTY AND DISCLAIMER

THE PROGRAM AND ACCOMPANYING MATERIALS ARE PRO-
VIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

ACI does not warrant that the functions contained in the program will
meet your requirements or that the operation will be uninterrupted or
error free. The entire risk as to the use, quality, and performance of the
program is with you. Should the program prove defective, you, and not
ACI, assume the entire cost of any necessary repair.

However, ACl warrants the diskettes on which the program is furnished
to be free from defects in materials and workmanship under normal use
for a period of ninety (90) days from the date of delivery to you as
evidenced by a copy of your receipt. The duration of any implied
warranties on the diskettes is limited to the period stated above. ACI's
entire liability and your exclusive remedy as to the diskettes (which is
subject to you returning the diskettes to ACI or an authorized dealer with
a copy of your receipt) will be the replacement of the diskettes or, if ACI
or the dealer is unable to deliver a replacement diskette, the refund of
the purchase price and termination of this Agreement.

SOME STATES DO NOT ALLOW LIMITATIONS ON HOW LONG AN
IMPLIED WARRANTY LASTS SO THE ABOVE LIMITATION MAY
NOT APPLY TO YOU. THIS WARRANTY GIVES YOU SPECIFIC
LEGAL RIGHTS. YOU MAY ALSO HAVE OTHER RIGHTS WHICH
VARY FROM STATE TO STATE.

LIMITATION OF LIABILITY

IN NO EVENT WILL ACI BE LIABLE FOR ANY DAMAGES, INCLUD-
ING LOSS OF DATA, LOST PROFITS, COST OF COVER OR OTHER
SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAM-
AGES ARISING FROM THE USE OF THE PROGRAM OR ACCOM-
PANYING MATERIALS, HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY. THIS LIMITATION WILL APPLY EVEN IF ACIOR
AUTHORIZED DEALER HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE. YOU ACKNOWLEDGE THAT THE LICENSE
FEE REFLECTS THIS ALLOCATION OF RISK. SOME STATES DO
NOT ALLOW LIMITATION OR EXCLUSION OF LIABILITY FOR
INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE
LIMITATION MAY NOT APPLY TO YOU.

GENERAL

This Agreement will be governed by the laws of France. In any dispute
arising out of this Agreement, ACI and you each consent to the
jurisdiction of the courts of France.

Use, duplication or disclosure by the U.S. Government is subject to
restrictions stated in paragraph (c) (1) (i) of the Rights in Technical Data
and Computer Software clause at 252.227-7013.

Licensor: ACl, 5 Rue Beaujon, 75008 Paris, France

This Agreement is the entire agreement between us and supersedes
any other communications with respect to the program and accompa-
nying materials.

If any provision of this Agreement is held to be unenforceable, the
remainder of this agreement shall continue in full force and effect.

If you have any questions, please contact: ACl Customer
Service, (33) 1 42 27 37 25 or write us at the above address.
SIGN AND MAIL THE REGISTRATION CARD TODAY.
Return of the registration card is required to receive any
product updates and notices of new versions or enhance-
ments.

All trade names referenced are the trademark or registered trademark
of their respective holder.

4th DIMENSION, 4D Runtime, 4D, and the abstract 4 logo are trade-
marks of ACIUS, Inc. and ACI.



PART |

Chapter 1

Chapter 2

Chapter 3

CONTENTS .

CONTENTS
FIGURES AND TABLES xviii

PREFACE xxiii

About the Manuals xxv

About This Manual xxv

Part Descriptions  xxvi

Aids to Understanding  xxvi

Visual Conventions Used in This Manual xxvii

THE LANGUAGE 1

INTRODUCTION 3

What Is a Language? 4
Why Use a Language? 4
Taking Control 35
Is It a “Traditional” Computer Language? 6
Procedures—Gateway to the Language 7
Getting Started—Scripts 7
Controlling Layouts—Layout Procedures and File Procedures
Using Global Procedures—They’re Everywhere 11
Developing Your Database 12
Putting It Together—Building Applications 13

COMPONENTS OF THE LANGUAGE 15

Types of Data 16

Operators 18

Expressions 19

Variables 21
Creating Variables 22
Assigning Data to Variables 22
Global and Local Variables 23
Layout Object Variables 24
System Variables 24

USING PROCEDURES 25

Types of Procedures 26
An Example Procedure and Terminology 27
Procedure Control 29

Sequence Structure 29

10

CONTENTS



Vi

Chapter 4

Chapter 5

Chapter 6

Branching Structures 29

The If...Else...End if Structure 30

The Case of...Else...End case Structure 30
Loop Structures 32

The While Loop 32

The Repeat Loop 33

The For Loop 33

LAYOUTS AND SCRIPTS 35

Controlling Layouts 36
Using Scripts 37
Scripts and Data Entry 38
Scripts and Interface Objects 38
Buttons 39
Scrollable Areas and Pop-up Menus 41
Filling the Scrollable Area or Pop-up Menu 41
Responding When the User Selects an Item 42
Changing the Items in the Scrollable Area or Pop-up Menu 43
Thermometers, Rulers, and Dials 43
Graph Areas 44
External Areas 44
Scripts and Reporting 44

THE LAYOUT EXECUTION CYCLE 45

Monitoring the Execution Cycle Phases 47
General Rules for the Execution Cycle 48
The Execution Cycles 48

For Data Entry 48

For Files in Included Layouts 49

For Subfiles in Included Layouts 50

For User Environment List of Records 50

For MODIFY SELECTION and DISPLAY SELECTION 51

For Export Through Layouts 51

For Import Through Layouts 52

For Layout Reports 52

GLOBAL PROCEDURES 53

Master Procedures—Procedures Called From Menus 54
Subroutines—Procedures Called From Procedures 55
Passing Parameters to Subroutines 56
Subroutines as Functions 57
Startup Procedures 58



CONTENTS

Chapter7 DATABASE APPLICATIONS 59

A Custom Menu Example 61

Comparing an Application With the User Environment 64
Further Automating the Application 67

User Environment Menus and Equivalent Commands 69

Chapter8 DEBUGGING 71

The Syntax Error Window 72
The Debugger 73
Evaluating Expressions 75
Stepping and Breakpoints 77

Chapter9 ARRAYS AND POINTERS 79

Arrays 80
Using Arrays 80
Using Two-Dimensional Arrays 81
Displaying Arrays—An Example 82
Using Grouped Scrollable Areas 85
Pointers 87
Using Pointers—An Example 88
Using Pointers to Buttons 89
Using Pointers to Files 90
Using Pointers to Fields 90
Using Pointers to Array Elements 90
Using Pointers to Arrays 91
Using an Array of Pointers 91
Setting a Button Using a Pointer 92
Passing Pointers to Procedures 93
Pointers to Pointers 94

PART Il LANGUAGE DEFINITION 95

Chapter 10 LANGUAGE DEFINITION 97

Identifiers 98
Files 98
Fields 99
Subfiles 99
Subfields 100
Global Variables 100
Local Variables 100
Arrays 101
Layouts 101
Procedures and Functions 102

Vif



viii

PART Il

Chapter 11

External Procedures, Functions, and Areas 102

Sets 102

Summary of Naming Conventions 103

Resolving Naming Conflicts 103
Data Types 104

String 104

Numeric 104

Date 104

Time 105

Boolean 105

Picture 105

Converting Data Types 105
Constants 106

String Constants 106

Numeric Constants 106

Date Constants 107

Time Constants 107
Operators 108

Precedence 108

The Assignment Operator 108

String Operators 109

Numeric Operators 109

Date Operators 110

Time Operators 110

Comparison Operators 111

Logical Operators 114

Picture Operators 115
Controlling Procedure Flow 117

If...Else...End if 117

Case of...Else...End case 118

While...End while 119

Repeat...Until 120

For...End for 121

THE COMMANDS 123

COMMAND DESCRIPTIONS AND PARAMETERS 127

Command Descriptions 128

The Description Heading 129

The Command Syntax 129

The Parameters 129

The Description, Example, and Multi-user Parts 130
Parameters to Commands 131

Specifying Parameters 131

Parameter Types 132



Chapter 12

Chapter 13

CONTENTS

SETTING DEFAULTS 133

Setting the Default File 134
DEFAULT FILE 134

Specifying Layouts 136
INPUT LAYOUT 137
OUTPUT LAYOUT 138

DATA ENTRY AND REPORTING 139

Performing Data Entry and Displaying Records 140
Changing the Current Record During Data Entry 140
ADD RECORD 141
MODIFY RECORD 141
DISPLAY SELECTION 143
MODIFY SELECTION 143
DISPLAY RECORD 146

Managing Layout Pages 146
FIRST PAGE 147
LAST PAGE 147
NEXT PAGE 147
PREVIOUS PAGE 148
GOTO PAGE 148
Layout page 148

Using Data Entry Areas 149
GET HIGHLIGHT 149
HIGHLIGHT TEXT 150
INVERT BACKGROUND 151
GOTO AREA 151
Lastarea 152
Modified 152
REJECT 153

Setting Data Attributes 154
SET FILTER 155
SET CHOICE LIST 155
SET ENTERABLE 156
SET FORMAT 156

Special Layout Management 157
ACCEPT 157
CANCEL 158
REDRAW 158

Printing Reports 159
Activating Break Processing in Layout Reports 160

Using Subtotal For Break Processing 160
Using BREAK LEVEL and ACCUMULATE For Break Processing 161
Comparing the Two Methods 161

CONTENTS ix



REPORT 162

PRINT SELECTION 163

BREAK LEVEL 164

ACCUMULATE 165

Subtotal 166

Printing page 167

PRINT LAYOUT 167

PRINT SETTINGS 168

PAGE SETUP 169

FORM FEED 169

PRINT LABEL 170
Graphing 172

GRAPH 173

GRAPH SETTINGS 175

GRAPH FILE 176
Monitoring the Layout Execution Cycle 178

Before 178

During 179

After 180

In header 181

In break 182

Level 182

In footer 182

Chapter 14 MANAGING DATA 183

Managing Selections 184
ALL RECORDS 184
Records in file 185
Records in selection 185
APPLY TO SELECTION 186
DELETE SELECTION 187
MERGE SELECTION 188
FIRST RECORD 188
LAST RECORD 189
NEXT RECORD 189
PREVIOUS RECORD 190
Before selection 190
End selection 191
Searching 192
SEARCH BY LAYOUT 193
SEARCH 194
Specifying the Search Argument 195
Creating Built Searches 196
Search Examples 197
SEARCH BY FORMULA 200
SEARCH SELECTION 200



Chapter 12

Chapter 13

CONTENTS -

SETTING DEFAULTS 133

Setting the Default File 134
DEFAULT FILE 134

Specifying Layouts 136
INPUT LAYOUT 137
OUTPUT LAYOUT 138

DATA ENTRY AND REPORTING 139

Performing Data Entry and Displaying Records 140
Changing the Current Record During Data Entry 140
ADD RECORD 141
MODIFY RECORD 141
DISPLAY SELECTION 143
MODIFY SELECTION 143
DISPLAY RECORD 146

Managing Layout Pages 146
FIRST PAGE 147
LAST PAGE 147
NEXT PAGE 147
PREVIOUS PAGE 148
GOTO PAGE 148
Layout page 148

Using Data Entry Areas 149
GET HIGHLIGHT 149
HIGHLIGHT TEXT 150
INVERT BACKGROUND 151
GOTO AREA 151
Lastarea 152
Modified 152
REJECT 153

Setting Data Attributes 154
SET FILTER 155
SET CHOICE LIST 155
SET ENTERABLE 156
SET FORMAT 156

Special Layout Management 157
ACCEPT 157
CANCEL 158
REDRAW 158

Printing Reports 159
Activating Break Processing in Layout Reports 160

Using Subtotal For Break Processing 160
Using BREAK LEVEL and ACCUMULATE For Break Processing 161
Comparing the Two Methods 161

CONTENTS ix



REPORT 162

PRINT SELECTION 163

BREAK LEVEL 164

ACCUMULATE 165

Subtotal 166

Printing page 167

PRINT LAYOUT 167

PRINT SETTINGS 168

PAGE SETUP 169

FORM FEED 169

PRINT LABEL 170
Graphing 172

GRAPH 173

GRAPH SETTINGS 175

GRAPH FILE 176
Monitoring the Layout Execution Cycle 178

Before 178

During 179

After 180

In header 181

In break 182

Level 182

In footer 182

Chapter 14 MANAGING DATA 183

Managing Selections 184
ALL RECORDS 184
Records in file 185
Records in selection 185
APPLY TO SELECTION 186
DELETE SELECTION 187
MERGE SELECTION 188
FIRST RECORD 188
LAST RECORD 189
NEXT RECORD 189
PREVIOUS RECORD 190
Before selection 190
End selection 191
Searching 192
SEARCH BY LAYOUT 193
SEARCH 194
Specifying the Search Argument 195
Creating Built Searches 196
Search Examples 197
SEARCH BY FORMULA 200
SEARCH SELECTION 200



CONTENTS .

SEARCH BY INDEX 201

SEARCH SUBRECORDS 203
Sorting 204

SORT BY FORMULA 204

SORT SELECTION 205

SORT FILE 206

SORT SUBSELECTION 207
Managing Records 208

CREATE RECORD 208

DUPLICATE RECORD 209

SAVE RECORD 210

DELETE RECORD 211
Importing and Exporting 212

EXPORT DIF 212

EXPORT SYLK 212

EXPORT TEXT 212

IMPORT DIF 213

IMPORT SYLK 213

IMPORT TEXT 213
Managing File Relations 215

Using Automatic File Relations With Commands 215

Using Commands to Establish File Relations 217

RELATE ONE 218

RELATE MANY 221

CREATE RELATED ONE 223

. SAVE RELATED ONE 224

Managing Old Data 224

Old 224

OLD RELATED ONE 225

SAVE OLD RELATED ONE 225

OLD RELATED MANY 225
Working With Subrecords 226

ADD SUBRECORD 226

MODIFY SUBRECORD 226

CREATE SUBRECORD 227

DELETE SUBRECORD 228

ALL SUBRECORDS 228

Records in subselection 229

APPLY TO SUBSELECTION 229

FIRST SUBRECORD 230

LAST SUBRECORD 230

NEXT SUBRECORD 231

PREVIOUS SUBRECORD 231

Before subselection 231

End subselection 232

Xi



Chapter 15 USER INTERFACE 233

Layout Object Management 234
BUTTON TEXT 234
ENABLE BUTTON 235
DISABLE BUTTON 235
SET COLOR 236
FONT 237
FONT SIZE 237
FONT STYLE 238
Displaying Messages to the User 238
ALERT 239
CONFIRM 240
Request 241
DIALOG 242
MESSAGE 243
GOTO XY 246
ERASE WINDOW 246
MESSAGES ON 246
MESSAGES OFF 246
Managing Windows 247
About Windows 247
The Different Window Types 248
The Modal Window 250
Positioning Windows and Window Borders 250
Scroll Bars, the Size Box, and the Zoom Box 251
Setting Window Titles 252
OPEN WINDOW 253
CLOSE WINDOW 255
Screen height 255
Screen width 255
SET WINDOW TITLE 256
Managing Menus 256
Menu Components 256
Custom Menus 258
MENU BAR 259
CHECK ITEM 259
DISABLE ITEM 260
ENABLE ITEM 260
Menu selected 261
Playing Sound 262
BEEP 262
PLAY 262

Xii



Chapter 16

ADVANCED COMMANDS 263

Using Numbers Associated With Records 264
Record Number Examples 265
Record number 267
GOTO RECORD 268
Selected record number 268
GOTO SELECTED RECORD 268
Sequence number 270
Using the Record Stack 271
PUSH RECORD 271
POP RECORD 272
ONE RECORD SELECT 272
Managing Sets 272
Sets and the Current Selection 273
Set Example 274
The UserSet System Set 275
The LockedSet System Set 276
CREATE EMPTY SET 276
CREATE SET 276
USE SET 277
ADD TO SET 278
CLEAR SET 278
DIFFERENCE 279
INTERSECTION 280
UNION 281
Isinset 282
Records in set 282
SAVE SET 283
LOAD SET 284
Managing Multi-user Databases 285
Locked Records 285
Read-Only and Read-Write States 286
Loading, Modifying, and Unloading Records 287
Loops to Load Unlocked Records 288
Using Commands in a Multi-user Database 289
Locked 290
LOAD RECORD 291
UNLOAD RECORD 291
READ WRITE 292
READ ONLY 292
Semaphore 292
CLEAR SEMAPHORE 293
Using Transactions 294
Transaction Example 294
START TRANSACTION 297
CANCEL TRANSACTION 297
VALIDATE TRANSACTION 297
CONTENTS

Desiaibus® T8

Xiii



Xiv

Chapter 17

Communicating With Documents and the Serial Port
Working With Documents 298
Create document 299
Open document 300
Append document 300
CLOSE DOCUMENT 301
DELETE DOCUMENT 302
SEND PACKET 302
RECEIVE PACKET 304
SET CHANNEL 306
ON SERIAL PORT CALL 309
SET TIMEOUT 310
RECEIVE BUFFER 311
SEND RECORD 311
RECEIVE RECORD 312
SEND VARIABLE 313
RECEIVE VARIABLE 313
USE ASCII MAP 314

Managing Access Privileges 315
EDIT ACCESS 315
CHANGE ACCESS 315
CHANGE PASSWORD 315
Current user 316

Determining the Database Structure 316
Storing the Database Structure in Arrays 316
Count files 318
Count fields 318
Filename 319
Fieldname 319
File 320
Field 321
FIELD ATTRIBUTES 322

Controlling Data Flushing 323
FLUSH BUFFERS 323

FUNCTIONS 325

String Functions 326
Character Reference Symbols 326
Length 327
Substring 327
Position 328
Changestring 328
Insert string 329
Delete string 330
Replace string 330
Lowercase 331

298



Tt BN

Uppercase 331

String 332

Ascii 333

Char 334
Date Functions 335

Current date 335

Date 335

Day number 336

Day of 337

Month of 337

Year of 337
Time Functions 338

Current time 338

Time 338

Time string 339
Mathematical Functions 339

Abs 339

Dec 340

Exp 340

Int 340

Log 341

Num 341

Random 342

Round 343

Trunc 343
Trigonometric Functions 344

Arctan 344

Cos 344

Sin 344

Tan 345
Statistical Functions 345

Using a Field 345

Average 346

Max 346

Min 347

Sum 347

Sum squares 348

Std deviation 348

Variance 348
Logical Functions 349

True 349

False 349

Not 349

XV



Chapter 18

Appendix A

MISCELLANEOUS COMMANDS 351

Working With Variables 352
SAVE VARIABLE 352
LOAD VARIABLE 353
CLEAR VARIABLE 353
Undefined 354
Managing Arrays 354
ARRAY BOOLEAN 355
ARRAY DATE 355
ARRAY STRING 355
ARRAY INTEGER 355
ARRAY LONGINT 355
ARRAY PICTURE 355
ARRAY POINTER 355
ARRAY REAL 355
ARRAY TEXT 355
SORT ARRAY 357
COPY ARRAY 358
INSERT ELEMENT 358
DELETE ELEMENT 359
Find in array 359
Size of array 360
LIST TO ARRAY 360
ARRAY TO LIST 361
SELECTION TO ARRAY 361
ARRAY TO SELECTION 362
Controlling the Execution of Procedures
ABORT 363
QUIT 4D 363
EXECUTE 364
TRACE 365
NO TRACE 365
ON ERR CALL 365
ON EVENT CALL 366
Getting Information About Data Objects
Count parameters 369
Is a variable 369
Get pointer 370
Type 371

APPENDIXES 373

Compatibility With Version 1.0 375

Obsolete and Changed Functionalities

363

369

375



Appendix B

Appendix C

Appendix D

Appendix E

File Relations—Links 375

Variable Indirection 375
Numeric Indirection 376
Alpha Indirection 377

Setting Graph Legends 377

Size of Arrays 377

Matching Parentheses 377

The Flush System Variable 377

Changes in Commands 378

Changed Command Names 378

Obsolete Commands 378

Changed Command Operations 379

Preparing Code For the Compiler 380

General Compiler Rules 380
Commands and Compiler Compatibility 380
Report Break Processing 380
Compiler Directives 381
C_BOOLEAN 381
C_DATE 381
C_INTEGER 381
C_LONGINT 381
C_PICTURE 381
C_POINTER 381
C_REAL 381
C_TEXT 381
C_TIME 381
C_STRING 381

4th DIMENSION System Variables 383

OK 383

Document 383

FldDelimit 384

RecDelimit 384

Error 384

MouseDown, KeyCode, and Modifiers 384

ASCIl Codes 385
4th DIMENSION and Macintosh Error Messages 387
INDEX 393

INDEX TO THE COMMANDS 407

f RRORS 4l CONTENTS

e

XVii



XViii

FIGURES AND TABLES

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 9-1
Figure 9-2
Figure 9-3
Figure 9-4
Figure 9-5
Figure 9-6
Figure 9-7
Figure 9-8
Figure 9-9
Figure 9-10
Figure 10-1
Figure 10-2
Figure 11-1
Figure 11-2
Figure 11-3
Figure 13-1
Figure 13-2
Figure 13-3
Figure 13-4
Figure 13-5
Figure 13-6
Figure 13-7
Figure 13-8
Figure 13-9
Figure 13-10
Figure 13-11
Figure 13-12

Some of the active objects that can have scripts

An example script for a field 9

An example script for a button 9
An example layout procedure 10
An example global procedure 11

8

The object definition area of the Object Definition dialog box

The Object Type pop-up menu 39
The Action pop-up menu for buttons 40
A pop-up menu and a scrollable area 40

Setting the choice in a pop-up menu and scrollable area 43
A report layout containing a variable with a script 44

The Syntax Error window 72
The Debug window 74

Menu of files and fields in the Debug window 76

Menu of built-in commands in the Debugger

76

Check mark on first line in the Debug window 77

The Name array filled with data 81
A two-dimensional array 81

Layout containing a scrollable area and a pop-up menu

The Lists editor with linked lists 83
Choosing from the Regions pop-up menu

84

The result of choosing the West menu item 84

Grouped scrollable areas in the Layout editor

Grouped arrays being used 86
Grouped arrays sorted 86
Five radio buttons 92

Truth table for the AND operator (&) 114

Truth table for the OR operator (I) 114

85

Command description as it appears in this manual 128

A syntax diagram 129
Parameters for a command 129

An input layout displayed by the ADD RECORD command

A typical record listing using the output layout

Text highlighted in a field 149

Text insertion point in a field 150
Highlighting text in a field 150
Positioning the insertion point in a field
The Quick Report editor 162

The LaserWriter Page Setup dialog box
The LaserWriter Print Settings dialog box
The ImageWriter Page Setup dialog box

The ImageWriter Print Settings dialog box

The Label editor 170

151

169
169
169

169

144

82

141

39



Figure 13-13
Figure 13-14
Figure 14-1
Figure 14-2
Figure 14-3
Figure 14-4
Figure 14-5
Figure 14-6
Figure 14-7
Figure 14-8
Figure 14-9
Figure 15-1
Figure 15-2
Figure 15-3
Figure 15-4
Figure 15-5
Figure 15-6
Figure 15-7
Figure 15-8
Figure 15-9
Figure 15-10
Figure 15-11
Figure 15-12
Figure 15-13
Figure 15-14
Figure 15-15
Figure 15-16
Figure 15-17
Figure 15-18
Figure 15-19
Figure 15-20
Figure 15-21
Figure 15-22
Figure 15-23
Figure 15-24

Graph from the example 174

Graph window 176

The Search editor 194

The Search by Index dialog box 202
The Sort dialog box 205

Two related files 216

A selection list for a related file 219

Invoice file related to Customers file with nonautomatic relations
Layout to display related information 220

Three related files 222

Layout that shows related records for two files

Enabled buttons 235

Disabled buttons 235

Alert box 239

Confirmation dialog box 240
Request dialog box 241

Custom search dialog box 243
Default message window 244
Window showing messages 245
Type 0 window 248

Type 0 window with scroll bars 248
Type 1 window 248

Type 2 window 249

Type 2 window with scroll bars 249
Type 3 window 249

Type 3 window with scroll bars 249
Type 4 window 249

Type 4 window with scroll bars 249
Type 8 window 249

Type 8 window with scroll bars 249
Type 16 window 249
Measurements of a window 250

A size box 252

A zoom box 252

Menu components 257

Woassiessise B

Figure 16-1 Selected name in a scrollable area 269

Figure 16-2 The result set of a difference operation 279
Figure 16-3 The result set of an intersection operation 280
Figure 16-4 The result set of a union operation 281

Figure 16-5 An invoice database 292

Figure 16-6 The Enter key associated with a button 295
Figure 16-7 The create-file dialog box 299

Figure 16-8 The open-file dialog box 300

Xix



Table 2-1
Table 7-1
Table 9-1
Table 10-1
Table 10-2
Table 10-3
Table 10-4
Table 10-5
Table 10-6
Table 10-7
Table 10-8
Table 10-9
Table 10-10
Table 10-11
Table 10-12
Table 10-13
Table 10-14
Table 11-1
Table 13-1
Table 14-1
Table 14-2
Table 14-3
Table 14-4
Table 15-1
Table 15-2
Table 15-3
Table 15-4
Table 15-5
Table 15-6
Table 15-7
Table 16-1
Table 16-2
Table 16-3
Table 16-4
Table 16-5
Table 16-6
Table 16-7
Table 16-8
Table 16-9
Table 16-10
Table 16-11
Table 16-12
Table 16-13
Table 16-14
Table 16-15
Table 16-16

Example expressions 20

User environment menus with their equivalent commands

Examples of pointers 87

4th DIMENSION naming conventions

Commands that convert data types 105
String operators
Numeric operators 109
Date operators
Time operators
String comparison operators
Numeric comparison operators 112
Date comparison operators
Time comparison operators

Pointer comparison operators
Logical operators

Picture operators
Examples of picture operators 115
Parameter Types
The eight graph types 172
Search conjunctions 195
Search comparison symbols
Commands that use automatic relations
Commands that load a record 217

Font styles

User environment menu items that display the progress thermometer
Commands that display the progress thermometer

238

109

110
110

114
115

132

Window border sizes 251

Window sizes to open on a 9-inch screen 251
Macintosh screen sizes
Values for the channel parameter
Records and their numbers when first entered 265
Records after being sorted by name 266

Records and their numbers after a record is deleted 266

255

111

112
113
113

196

262

103

216

247

69

Records and their numbers after a new record is added 266

Records and their numbers after a selection and sort 267
Current selection and sets concepts compared 274

Results of a set Difference operation 279

Results of a set Intersection operation 280
Results of a set Union operation 281
Commands that set a file to read-only 286
Commands that load a record 287

Values for the port parameter
Values for the setup parameter
Values for the operation and document parameters
Commands monitored by SET TIMEOUT 310
Field types and their numbers

306
307

322

308

247



Table 17-1
Table 17-2
Table 17-3
Table 17-4
Table 18-1
Table 18-2
Table A-1
Table D-1
Table D-2
Table E-1
Table E-2
Table E-3
Table E-4
Table E-5
Table E-6
Table E-7
Table E-8
Table E-9
Table E-10

CONTENTS .

Format parameters for date strings 332
Format parameters for time strings 333
Chicago font special characters 334

Day numbers 336

Memory used by arrays 356

Data type numbers 371

Changed Command Names 378

Standard ASCII codes 384

Extended Macintosh character set (Times) 386
4th DIMENSION procedure error codes 387
4th DIMENSION stack error code 388

4th DIMENSION user error codes 389

4th DIMENSION /O error codes 389

4th DIMENSION error codes for damaged database 389
Macintosh File Manager error codes 390
Macintosh Printing Manager error codes 390
Macintosh Memory Manager error code 391
Macintosh Resource Manager error codes 391
Macintosh SANE NaN messages 391

CONTENTS

XXi



xXii



PREFACE .




4th DIMENSION is a powerful relational database application and
development tool for Apple’s family of Macintosh computers.

You can use 4th DIMENSION to manage your own data or develop custom
applications for different kinds of database management tasks.

For example you can

m  Create a database structure of files and fields.

Design layouts for entering, modifying, and displaying records.
Search and sort records.

Create reports and labels from information in the databases.

Import and export data between 4th DIMENSION databases and other
applications.

With 4th DIMENSION, you can enhance conventional data management
tasks with these features:

m  The powerful Layout editor that works like a full-featured drawing
program to let you add object-oriented graphics and fonts to your
layouts.

m The capacity to store graphics in database files.
® A password access system to protect sensitive data.

m  Graphing functions that let you generate a variety of business graphs
from your data.

m  The capability to create custom applications from 4th DIMENSION
with your own custom menus, dialog boxes, and buttons.

m A full-featured programming language that lets you incorporate
procedures written in other languages.

4th DIMENSION’s flexibility and power makes it ideal for a complete
range of information management tasks. Novice users can quickly create
databases and begin managing their data. Experienced users without
programming experience can customize their databases with

4th DIMENSION’s development tools. More experienced developers can
use 4th DIMENSION’s powerful programming language to add
sophisticated features and capabilities to their databases, including file
transfer and communications.

When you design a custom database with 4th DIMENSION, all the
components of the Macintosh’s user interface are at your disposal. You
can add menus, dialog boxes, buttons, and windows to enhance your
databases and make users more productive.

XXiv



PREFACE

About the Manuals

The 4th DIMENSION Language Reference is a guide to using the 4th DIMENSION
language. Use this manual to learn how to use the language to customize a database.
You should use it in conjunction with the other volumes in your documentation
package.

The 4th DIMENSION Quick Start and 4th DIMENSION Tutorials lead you through
example lessons where you create and use a 4th DIMENSION database. These
examples provide hands-on experience and help you become familiar with the
concepts and features of 4th DIMENSION.

The 4th DIMENSION Design Reference serves as a reference guide to
4th DIMENSION’s design environment and provides detailed descriptions of
4th DIMENSION operations that you can perform in this environment.

The 4th DIMENSION User Reference provides a description of the environment
where you will use the databases and layouts to enter and manipulate data.

The 4th DIMENSION Utilities Guide provides a guide to the utilities available with
4th DIMENSION, such as 4D Tools, 4D Customizer, and 4D External Mover.

The 4th DIMENSION Glossary and Master Index provides a glossary that defines
terms and an index to all 4th DIMENSION documents.

About This Manual

This manual describes the 4th DIMENSION language. This manual assumes that
you’re familiar with terms such as file, field, and layout. Before you read this
manual, you should

m use the Quick Start and Tutorials volumes to work through the database
examples as needed.

m begin creating your own databases, referring to the Design Reference when you
need to review a procedure or explanation.

® be comfortable with managing your database in the User environment. See the
4th DIMENSION User Reference for more information on the User environment.

PREFACE  xxv



XXVi

Part Descriptions

This manual is divided into three parts:

Part I, “The Language,” introduces you to the 4th DIMENSION language—why
it exists, what it can do, and how to use it. It covers the fundamental components
of the language and introduces the terminology used.

Part I1, “Language Definition,” formally defines the components of the language.
It contains reference information about how to name and refer to variables, files,
and other objects in the language.

Part III, “The Commands,” documents the commands in the language. It gives
the syntax for each command, a description of the command, and examples.
The commands are organized by task. Part III contains discussions of topics,
such as data entry, searching, and printing reports, that are directly relevant to
most databases; and of other advanced topics, like transaction management and
serial communication. You don’t need to read about every command before you
start using the language.

Aids to Understanding

This manual, and the other manuals in your documentation package, uses visual aids
to help you understand the material.

Here are some examples of the visual aids in the manual:

ﬁ Note: Text emphasized like this provides annotations and shortcuts that will help you

become more productive with 4th DIMENSION.

Important: Notes like this alert you to important pieces of information.

Warning: Warnings like this alert you to situations where data might be lost.




Visual Conventions Used in This Manual

PREFACE -

This manual uses a number of visual conventions to identify procedure code
and commands.

Code examples and commands are in a special font.
For example: Piece of Code

In code examples, commands appear in the special font, in bold.
For example: ADD RECORD

Commands that do not return a value are all uppercase.
For example: DEFAULT FILE

Commands that return a value (functions) have an initial capital letter.
For example: Records in file

Global procedures appear in the special font, in italic.
For example: My Proc

External procedures appear in the special font, in bold-italic.
For example: My External

Parameters to commands appear in the normal font in italic.
For example: normal

These conventions are used in the Procedure editor, in the Debugger, and in
printed listings, as well as in this manual.

PREFACE  xxvii



XXViii



PART

THE LANGUAGE







LANGUAGE

INTRODUCTION



INTRODUCTION

This chapter introduces you to the 4th DIMENSION language. It discusses
m  what the language is and what it can do for you
m  how you’ll use procedures

m developing your application

These topics are covered here in general terms—they’re covered in more detail
in later chapters.

What Is a Language?

The 4th DIMENSION language is not very different from the spoken language
we use every day. It is a form of communication used to express ideas, to inform,
and to instruct. Like a spoken language, 4th DIMENSION has its own vocabulary,
grammar, and syntax, and you use it to tell 4th DIMENSION how to manage

your database and data.

You do not need to know everything in the language. In order to speak you do not
need to know the whole English language; in fact, you can have a small vocabulary
and still be quite eloquent. The 4th DIMENSION language is much the same—there
is only a small part of the language that you need to know in order to become
productive, and you can learn the rest as the need arises.

Why Use a Language?

At first it may seem that there is little need for a programming language in

4th DIMENSION. The Design and User environments provide flexible tools that
require no programming to perform a wide variety of data management tasks.

All of the fundamental tasks, such as data entry, searching, sorting, and reporting,
are handled with ease. In fact, many extra capabilities are available, such as

data validation, data entry aids, graphing, and label generation.



LANGUAGE

Then why do we need a language? For several purposes:

m automating repetitive tasks—including data modification, generation of
complex reports, and unattended completion of long series of operations

m controlling the user interface—including window management,
menu management, layout control, and interface object control

m performing sophisticated data management—including transaction processing,
complex data validation, multi-user management, and set operations

m controlling the computer—including serial port communications,
document management, and custom error management

m creating applications—the creation of easy-to-use customized databases that
use the Runtime environment

The language lets you take complete control over the design and operation of
your database. Whereas the User environment gives you powerful “generic” tools,
the language lets you customize your database to whatever degree you require.

Taking Control

The 4th DIMENSION language lets you take complete control of your data in

a manner that is both powerful and elegant. The language is easy enough for

a beginner to start with, and sophisticated enough for an application developer.
It provides smooth transitions from built-in control over the database to a
completely customized database.

The commands in the language provide the User environment editors that you are
already familiar with. For example, when you use the SEARCH command, you are
presented with the Search editor—using this command is almost as easy as choosing
the Search menu item. But the SEARCH command is even more useful. If you want,
you can tell the SEARCH command explicitly what to search for. For example,
SEARCH ([People]Last Name = "Smith") will find all the people named Smith in

your database.

The language is very powerful—one command often replaces hundreds or even
thousands of lines of programming done in traditional computer languages.
With power, surprisingly enough, comes simplicity. Commands have plain
English names: To search, you use the command SEARCH; to add a new record,
you use the command ADD RECORD.

CHAPTER 1: INTRODUCTION 5



The language is designed so that you can easily accomplish the most common tasks.
Adding a record, sorting a file, searching for data, and similar operations are
specified with simple and direct commands. But the language can also control

the serial ports, read disk documents, control sophisticated transaction processing,
and much more.

Even the most sophisticated tasks are specified with relative simplicity. To perform
these tasks without using the 4th DIMENSION language would be unimaginable

for many. Even with the language’s powerful commands, some tasks can be
complex and difficult. A tool by itself does not make a task possible; the task itself
may be challenging and the tool can only ease the process. For example, a word
processor makes writing a book faster and easier, but it will not write the book for
you. Using the 4th DIMENSION language will make the process of managing your
data easier and will allow you to approach sophisticated tasks with confidence.

Is It a “Traditional” Computer Language?

If you are familiar with traditional computer languages, this section may be
of interest. If not, you may want to skip it.

The 4th DIMENSION language is not a traditional computer language. It is one of
the most innovative and flexible languages available on a computer today. The
language has been designed to work the way you do, not the other way around.

To use traditional languages, you must do extensive planning. In fact, planning

is often one of the major steps in development. 4th DIMENSION allows you to start
using the language at any time and in any part of your database. You may start by
adding a script to a layout, then later add a procedure or two. As your database
becomes more sophisticated, you might add a global procedure controlled by a
menu. You can use as little or as much of the language as you want. It is not

“all or nothing,” as is the case with many other databases.

Traditional languages force you to define and pre-declare objects in formal syntactic
terms. In 4th DIMENSION, you simply create the object and use it. 4th DIMENSION

automatically manages the object for you. For example, to use a button, you draw it

on a layout and name it. When the user clicks the button, the language automatically
notifies your procedures.

Traditional languages have been rigid and inflexible, requiring commands to be
entered in very formal and restrictive style. The 4th DIMENSION language breaks
with tradition, and the benefits are yours.



LANGUAGE

Procedures—Gateway to the Language

It is through procedures that you use the 4th DIMENSION language. A procedure

is nothing more than a series of instructions that causes 4th DIMENSION to perform
a task. Each line of instruction in a procedure is called a statement. Each statement
is composed of parts of the language.

Because you have gone through the 4th DIMENSION Tutorials (you did go

through the Tutorials, didn’t you?), you have already written and used scripts

and procedures.

There are four types of procedures you create when using 4th DIMENSION:

m scripts—short procedures used to control layout objects

m layout procedures—procedures that manage the display of a layout

m file procedures—similar to layout procedures, but applied to all layouts in a file
[

global procedures—procedures that are available for use throughout
your database

The next sections introduce each of these procedure types and give you a feel
for how you can use them to automate your database. All of the procedure types
are covered in more depth later in this manual.

Getting Started—Scripts

Any layout object that can perform an action—that is, an active object—can have

a script associated with it. A script monitors and manages the active object, during
both data entry and printing. The script is bound to the active object, staying with

the active object when it is copied and taking control exactly when needed.

Scripts are the primary tools for managing the user interface. The user interface
consists of the methods and conventions by which a computer communicates
with the person operating it. The user interface is the doorway to your database.
The goal is to make the user interface of your database as smooth, simple,

and automated as possible. The user interface should make interaction with the
computer a pleasant process, one that the user enjoys or does not even notice.

CHAPTER 1: INTRODUCTION 7



Figure 1-1 shows you some of the active objects that can have scripts.

Fieilds EnterabIT variable
=———— [ntry forfile =—————"0-
i
File [ Check Box Check box
Scrollable area — ) Redio Button 1
et | ! }— Radi
Fjeldi J ” @ Radio Button 2 Radio buttons
Field2 L—|Smith '
Variable  |John Smith [ Butten | Plain buttons
Pop-up menu —
K : =l
Thermometer Highlight buttons

Figure 1-1
Some of the active objects that can have scripts

All active objects have built-in aids, like range checking and character filters for
data entry areas, and automatic actions for buttons. Always use these aids before
adding scripts. The built-in aids are similar to scripts in that they remain
associated with the active object and are active only when the active object is
being used. You will typically use a combination of built-in aids and scripts to
control the user interface.

There are two basic types of active objects in a layout: active objects for
entering and displaying data, such as fields and enterable variables; and active
objects for control, such as buttons, scrollable areas, and thermometers.

A script associated with an active object used for data entry typically performs

a data management task specific to the field or variable. The script might
perform data validation, data formatting, do calculations, get related information
from other files, and so on. Some of these tasks can, of course, also be
performed with the built-in data entry aids for objects. Use scripts when the task
is more complex than the built-in data entry aids can manage. See the

4th DIMENSION Design Reference for more information on the built-in

data entry aids.



LANGUAGE

Figure 1-2 shows a sample script that changes the field that it is associated with
(Fieldl) to all uppercase characters.

E[[=———=—= Script: Fieldl ===

" Convert to all uppercase
Field1 =Uppercase(Field1)

Figure 1-2
An example script for a field

Scripts are also associated with active objects used for control, such as buttons.
Active objects used for control are essential to navigating within your database:
Buttons allow you to move from record to record, move to different layouts, and
add and delete data. These active objects simplify the use of a database and reduce
the time required to learn it. Buttons also have built-in aids and, as with data entry,
you should use these built-in aids before adding scripts. Scripts give you the ability
to add actions to your controls that are not built-in. For example, Figure 1-3 shows
a script for a button that will display the Search editor when clicked.

[J=—— script: Button =—=——~0F|

" Search for new records
SEARCH([Peaple])

Figure 1-3
An example script for a button

As you become more proficient with scripts, you will find that you can create
libraries of objects with associated scripts. You can copy and paste these objects
and their scripts between layouts, files, and databases. You can even keep them
in the Scrapbook, ready to be used when you need them.

CHAPTER 1: INTRODUCTION 9



10

Controlling Layouts—Layout Procedures
and File Procedures

In the same way that scripts are associated with the active objects in a layout,

a layout procedure is associated with a layout, and a file procedure is associated
with a file. Each layout can have one layout procedure; each file can have one
file procedure.

A layout is a view of your data. Through the use of layouts, you can create
attractive and easy-to-use data entry screens and printed reports. A layout procedure
monitors and manages the use of a layout both for data entry and for printing.
Figure 1-4 shows a sample layout procedure.

A file procedure also manages layouts, but only for data entry and for every layout
in the file. In all other aspects, layout and file procedures are identical.

=0 Layout Proc.: Customer =—=PF]
Case of

: (Before)

Total:=Sum([Invoices]Total) * Total the invoices

: (After)

Total Owed =0wed-Paid * Compute the amount owed |:
End case

Figure 1-4
An example layout procedure

A layout procedure manages a layout at a higher level than do scripts. Scripts
are activated only when the object is used; a layout procedure is activated
when anything in the layout is used. Layout procedures are typically used to
control the interaction between the different objects and the layout as a whole.
Whenever a script is activated, the layout procedure is also activated.

Since layouts are used in so many different ways, it is useful to monitor what

is happening while your layout is in use. You use the layout execution cycle for
this purpose. It tells you what is currently happening with the layout.

The execution cycle is broken into several phases, each phase occurring at
different times in the layout. The execution cycle is described in Chapter 5.



LANGUAGE

Using Global Procedures—They’re Everywhere

Unlike layout procedures and scripts, which are associated with a particular layout
or active object, global procedures are available for use throughout your database.
They are reusable, available for use by any other procedure. If you need to do a task
over and over again, you don’t to have to write identical procedures for each case.

You can call global procedures wherever you need them, from other global

procedures or from scripts and layout procedures. When you call a global procedure,
it acts just as if you had written the whole procedure at the place where you called it.
Global procedures called from other procedures are often referred to as subroutines.

Figure 1-5 shows a global procedure that searches a file and then prints a report.

=E|

=[] = Procedure: Do Report

" Do areport on people.

* Search, sort, and print the records.
DEFAULT FILE([People])  ° Set the default file
SEARCH

SORT SELECTION
PRINT SELECTION

Figure 1-5
An example global procedure

There is one other way to use global procedures: associating them with menu items.
When you associate a global procedure with a menu item, the procedure is executed
when the menu item is chosen. You can think of the menu item as calling the

global procedure. In an application, the procedures that are called from menus

become the master procedures—the procedures that control the overall operation
of the application.

CHAPTER 1: INTRODUCTION 11



Developing Your Database

Development is the process of customizing a database, using the language and
other built-in tools.

The language lives in a world created by your database. By simply creating a
database, you have already taken the first steps to using the language. All of the
parts of your database—the files and fields, the layouts and their objects, and
the menus—are intimately tied to the language. The 4th DIMENSION language
“knows” about all of these parts of your database.

Perhaps your first use of the language is to add a script to a layout object, to
control data entry. Later, you might add a layout procedure to control the display
of your layout. As the database becomes more mature, you add a menu bar with
global procedures to completely customize your database.

As with other aspects of 4th DIMENSION, development is a very flexible process.
There is no formal path to take during development—you can develop in a manner
comfortable to you. There are, of course, some general patterns in the process.
You implement your design in the Design environment. You try out the design in
the User environment and perhaps stay there to use your customized database.
When your database is fully customized, you use it in the Runtime environment.

If you find errors, you go back to the Design environment to fix them.

There are special support tools for development—they are woven into

4th DIMENSION, hidden until you need them. As your use of the language
becomes more sophisticated, you will find that these tools ease the development
process. For instance, the Procedure editors catch typing errors and format your
work; the Interpreter (the engine that runs the language) catches errors in syntax
and shows you where and what they are; and the Debugger lets you monitor the
execution of your procedures to catch errors in design.



LANGUAGE

Putting It Together—Building Applications

You are by now familiar with the general uses of a database—data entry, searching,
sorting, and reporting. You have performed these tasks in the User environment,
using the built-in menus and editors. As you use a database, it becomes obvious that
there are sequences of tasks that are performed over and over again. For example,
in a database of personal contacts, you might search for your business associates,
sort them by last name, and print a specific report, each time information about
them is changed. These tasks may not seem difficult, but they certainly may seem
time-consuming after you have done them 20 times. In addition, if you don’t use
the database for a couple of weeks, you may return to find that the steps used to
generate the report are not so fresh in your mind. When you create procedures,

the steps are chained together, so that choosing a single menu item performs all

the tasks unassisted, and you don’t have to worry about the specific steps any more.

An application takes database automation to its culmination. Applications have
custom menus and perform tasks that are specific to the needs of the person using
your database. An application is composed of all the pieces of your database:

the structure, the layouts, the scripts and procedures, the menus, and the passwords.

An application can be as simple as a single menu that lets you enter people’s names
and print a report, or as complex as an invoicing, inventory, and control system.
There are no limits to the uses of applications. Typically, an application grows
from a database used in the User environment to a database controlled completely
by custom menus.

Developing applications can be as simple or complex as you like.
Chapter 7 describes the processes used to build an application.

CHAPITER 1: INTRODUCTION 13






LANGUAGE

COMPONENTS
OF THE LANGUAGE




COMPONENTS OF THE LANGUAGE

The 4th DIMENSION language is made up of various components that help you
perform tasks and manage your data:

m variables—temporary storage places in memory for data
operators—symbols that perform a calculation between two values
expressions—combinations of other components that result in a value

commands—built-in instructions to 4th DIMENSION to perform an action

procedures—instructions that you write by using all the other parts of
the language '

This chapter discusses variables, operators, and expressions. Chapters 3, 4, 5, and 6
describe the different types of procedures, and Part III describes each command in
the language.

Types of Data

There are many types of data that can be stored in a 4th DIMENSION database.
In the language, the various types of data are referred to as data types.
There are seven data types:

m  String. A series of characters, such as "Hello there". Alpha and Text fields are
of the string data type.

m  Numeric. Numbers, such as 2 or 1,000.67. This data type is also referred to
as number. Integer, Long Integer, and Real fields are of the numeric data type.

m  Date. Calendar dates, such as 1/20/89. Date fields are of the date data type.

m Time. Times, including hours, minutes, and seconds, such as 1:00:00 or
4:35:30 P.M. Time fields are of the time data type.

m  Boolean. Logical values of TRUE or FALSE. Boolean fields are of the Boolean
data type.

m  Picture. Macintosh pictures. Picture fields are of the picture data type.

m Pointer. A special type of data used in advanced programming. There is no
corresponding field type.



LANGUAGE

Notice that in the list of data types, the string and numeric data types are associated
with more than one type of field. When the language is operating on a field of one
of these types, it automatically converts the data to the data type the language
supports. For example, if an integer field is used, its data is automatically treated
as numeric. When data is put into a field, the language automatically converts the
data to the correct type for the field. In other words, you need not worry about
mixing similar field types when using the language; it will manage them for you.

However, it is important, when using the language, that you do not mix different
data types. In the same way that it makes no sense to store “ABC” in a Date field,
it makes no sense to put “ABC” in a variable used for dates. In most cases,

4th DIMENSION is very tolerant and will try to make sense of what you are doing.
For example, if you add a number to a date, 4th DIMENSION will assume that you
want to add that number of days to the date, but if you try to add a string to a date,
4th DIMENSION will tell you that the operation makes no sense.

There are cases where you need to store data as one type and use it as another type.
The language contains a full complement of commands that let you convert from one
data type to another. For example, you may need to create a part number that starts
with a number and ends with characters such as “abc™. In this case, you might write

Part Number := String (Number) + "abc"
where if Number is 17, then Part Number will get the string "17abc".

The data types are formally defined in Part II of this manual.

CHAPTER 2: COMPONENTS OF THE LANGUAGE 17



Operators

When you use the language, it’s rare that you’ll simply want a piece of data. It’s
more likely that you’ll want to do something to or with that data. You do these
calculations with operators. Operators, in general, take two pieces of data and
perform an operation on them that results in a new piece of data. You are already
familiar with many operators. For example, 1 + 2 uses the addition (or plus sign)
operator to add two numbers together, and the result is 3. This table shows some
familiar numeric operators.

Operation
Operator  Performed Example
+ Addition 1 + 2 results in 3.
- Subtraction 3 —2resultsin 1.
* Multiplication 2 * 3 results in 6.
/ Division 6 /2 results in 3.

Numeric operators are just one type of operator available to you. Since

4th DIMENSION supports many different types of data, such as numbers,
text, dates, and pictures, there are operators that perform operations on these
different data types.

The same symbols are often used for different operations, depending on the kind of
data that is operated on. For example, the plus sign (+) performs different operations
with different data, as this table shows.

Operation
Data Type Performed Example
Number Addition 1 + 2 adds the numbers and results in 3.
String Concatenation "Hello " + "there" concatenates (joins together)

the strings and results in "Hello there".

Date and Number Date addition !1/1/1989! + 20 adds 20 days to the date,
January 1, 1989, and results in the date
January 21, 1989.

The operators are formally defined in Chapter 10.



LANGUAGE

Expressions

Simply put, expressions just return a value. In fact, when using the language, you
use expressions all the time and tend to think of them only in terms of the value
they represent. Expressions are also sometimes referred to as formulas.

Expressions are made up of almost all the other parts of the language:
commands, operators, variables, and fields. You use expressions to build
statements (lines of code), which in turn are used to build procedures. The
language uses expressions wherever it needs a piece of data.

Expressions rarely “stand alone.” There are only two places in 4th DIMENSION
where an expression can be used by itself: in the Search by Formula dialog box in
the User environment; and in the Debugger, where the value of expressions can be
checked.

An expression can simply be a constant, such as the number 4 or the string “Hello”.
As the name implies, a constant’s value never changes.

[t is when operators are introduced that expressions start to get interesting. In
preceding sections you have already seen expressions that use operators. For
example, 4 + 2 is an expression that uses the addition operator to add two numbers
together and return the result, 6.

You refer to an expression by the data type it returns. There are seven
expression types:

B siring expression

® numeric expression (also referred to as number)
m date expression

B time expression

® Boolean expression

®  picture expression

® pointer expression

Table 2-1 gives examples of each of the seven types of expressions. The data types
are formally defined in Chapter 10.

CHAPTER 2: COMPONENTS OF THE LANGUAGE 19



Table 2-1
Example expressions

Expression Type Explanation

"Hello" String This is a string constant, the word Hello. Note the use of
double quotation marks to indicate that this is a string
constant.

"Hello " + "there" String Two strings, "Hello " and "there", are added together
(concatenated) with the string concatenation operator
(+). The string "Hello there" is returned.

"Mr. " + Name String Two strings are concatenated: the string "Mr. " and the
current value of the field Name. If the field contains
"Smith", the expression returns "Mr. Smith".

L Uppercase ("smith") String This expression uses “Uppercase,” a command from the
language, to convert the string "smith" to uppercase. It
returns "SMITH".

4 Number  This is a number constant, 4.

4%2 Number  Two numbers, 4 and 2, are multiplied, using the
multiplication operator (*). The result is the number 8.

My Button Number  This is the name of a button. It returns the current value
of the button: 1 if it was clicked, O if not.

11/25/88! Date This is a date constant for the date 1/25/88
(January 25, 1988). Note the use of exclamation marks
to indicate a date constant.

A3 Current date + 30 Date This is a date expression that uses the command
“Current date” to get today’s date. It adds 30 days to
today’s date and returns the new date.

18:05:301 Time This is a time constant that represents 8 hours,
5 minutes, and 30 seconds.
.f. ',3?:{;,]4_ ¢ 12:03:041 + 11:02:03t Time This expression adds two times together and returns the
f time 3:05:07.
True Boolean  This is a command that returns the Boolean value TRUE.
10 # 20 Boolean  This is a logical comparison between two numbers. The
number sign (#) means “is not equal to.” Since 10
“is not equal to” 20, the expression returns TRUE.
"ABC" = "XYZ" Boolean  This is a logical comparison between two strings. They
are not equal, so the expression returns FALSE.
My Picture + 50 Picture This expression takes the picture in My Picture, moves
it 50 pixels to the right, and returns the resulting picture.
»  Oplion »[People]Name Pointer This expression returns a pointer to the field called
RAETY e N [People]Name.
Bk L/‘ File (1) | 2. Pointer This is a command that returns a pointer to the first file.
W Ly

20



LANGUAGE

Variables

Data in 4th DIMENSION is stored in two fundamental ways. Fields store data
permanently on disk; variables store data temporarily in memory. When you set up
your database, you tell 4th DIMENSION the names and types of fields that you want
to use. Variables are much the same—you also give them names and different types.
There are seven variable types, corresponding to each of the data types:

string

numeric

date

time

Boolean

picture

pointer

You can display variables on the screen, enter data into them, and print them in
reports. In these ways they act just like fields, and the same built-in controls are
available when you create them:

m data formats
data validation
character filters

choice lists

enterable or not enterable

Variables can also do some special things:

m control buttons

m control thermometers, rulers, and dials

m control scrollable areas and pop-up menus
]

display results of calculations that don’t need to be saved

CHAPTER 2: COMPONENTS OF THE LANGUAGE 2]



22

Creating Variables

You create variables simply by using them; you do not need to formally define
them as you do with fields. For example, if you want a variable that will hold the
current date plus 30 days, you tell 4th DIMENSION

My Date := Current date + 30

and My Date would be created and hold the date you need. The program line reads,
“My Date gets the current date plus 30 days.” You could now use My Date
wherever you needed to in your database. For example, you might need to store the
date in a field: :

My Field := My Date

By the way, notice in the first line that the words “Current date” are in boldface.
This is because “Current date” is a command from the language. Commands within
procedures are shown in boldface by 4th DIMENSION, and this manual uses the
same convention in its examples. In the rest of the manual, when commands are
mentioned within text they are displayed like this: Current date. See the section,
“Visual Conventions Used in This Manual,” in the Preface of this manual, for
more information on these and other visual conventions.

Assigning Data to Variables

Data can be put into and copied out of variables. Putting data into a variable is called
assigning the data to the variable and is done with the assignment operator (:=).
(The assignment operator is also used to assign data to fields.)

The assignment operator is the primary way both to create a variable and to put
data into it. You put the name of the variable that you want to create on the left side
of the assignment operator. So, for example,

My Number := 3

creates the variable My Number and puts the number 3 into it. If My Number
already exists, then the number 3 is simply put into it.



LANGUAGE

Of course, variables would not be very useful if you could not get data out of them.
Once again, you use the assignment operator. If you needed to put the value of

My Number in a field called Size, you would place My Number on the right side
of the assignment operator:

Size := My Number

In this case, Size would be equal to 3. This example is rather simple, but it illustrates
the fundamental way that data is transferred from one place to another by using the
language.

Important: Be careful not to confuse the assignment operator (:=) with the comparison
operator equal (=). Assignment and comparison are very different operations.
See Chapter 10 for more information on the comparison operators.

__Global and Local Variables

Most variables you create are global variables—variables available throughout

your database. Anywhere global variables are needed, they can be used. There is one
other type of variable: the local variable. A local variable, as its name implies, is
local to a procedure—accessible only within the procedure in which it is created, and
not accessible outside the procedure. Being local only to the procedure is formally
referred to as being local in scope. Conversely, global variables are global in scope.

Why would you want to restrict a variable to work only within one procedure?
There are two reasons:

m to avoid conflicts with the names of other variables

m for temporary use of data

When you are working in a database with many procedures and variables, you often
find that you need to use a variable only within the procedure you are working on.
You create and use such a variable as a local variable, without having to worry about
whether you have already used the same variable name somewhere else.

The name of a local variable always starts with a dollar sign ($). This naming rule
ensures that local variables are always identified with names different from the
names of global variables. For example, $MX Var is the name of a local variable,
and My Var is the name of a different variable, a global variable.

Frequently, in a database, small pieces of information are needed from the user.
The Request command can be used to obtain this information; it displays a dialog
box with a message prompting the user for a response. When the user enters the
response, the command returns the information the user entered. You usually do not
need to keep this information in your procedures for very long. This is a perfect
place to use a local variable.

CHAPTER 2: COMPONENTS OF THE LANGUAGE 23



24

Here is an example:

$Response := Request ("Please enter your ID:") -~
SEARCH ([People]lD = $Response)

This procedure simply asks the user to enter an ID; it puts the response into a local
variable, $Response, and then searches for the ID that the user entered. When this
procedure finishes, the $Response local variable is erased. This is fine, since the
variable is needed only once, and only in this procedure.

Local variables are also used to pass data to and from procedures (parameter

p p p
passing). See the section “Passing Parameters to Subroutines,” in Chapter 6,
for more information on using procedure parameters.

Layout Object Variables

In the Layout editor, the name given to each active object—buttons, check boxes,
scrollable areas, thermometers, and so on—automatically creates a variable with the
same name. For example, if you create a button named My Button, then a variable
named My Button is also created. Note that this variable name is not the label for the
button.

The variables allow you to control and monitor the objects. For example, when a
button is clicked, its variable is set to 1; at all other times, it is 0. The variable
associated with a thermometer or dial lets you read the current setting and change the
setting. For example, if you drag a thermometer to a new setting, the value of the
variable changes to reflect the new setting. Similarly, if your procedure changes the
value of the variable, the thermometer is redrawn to show the new value.

Variables associated with layout objects are discussed in more detail in Chapter 4,
“Layouts and Scripts.”

System Variables

4th DIMENSION maintains a number of variables called system variables.
These variables let you monitor many operations. The system variables are all
global variables, accessible from anywhere in your database.

The most important system variable is the OK system variable. As its name
implies, it essentially tells you if everything is OK. Did the record get saved?
Did the importing operation complete? Did the user click the OK button?
The OK system variable is set to 1 when a task was completed successfully,
and to 0 when it was not.

All of the 4th DIMENSION system variables are discussed in detail in Appendix C.



LANGUAGE

USING PROCEDURES




26

USING PROCEDURES

To make the commands, operators, and other parts of the language work, you
put them in procedures. This chapter describes features common to all types

of procedures. There are several kinds of procedures: layout procedures, file
procedures, and global procedures. Scripts are also procedures of a special type.

A procedure is composed of statements, each statement consisting of one line in
the procedure. A statement performs an action. For example, the following line
is a statement that will add a new record to the [People] file:

ADD RECORD ([People])

A statement may be simple or complex. Although a statement is always one line,
that one line can be as long as needed (up to 32,000 characters, which is
probably enough for most tasks).

A procedure can be written as a flowchart or as a text listing. In either case, the
execution inside procedures is fundamentally the same: line-by-line. It begins at the
first line and works its way down to the last line. Making a procedure work is called
executing or running the procedure.

Types of Procedures

There are five types of procedures in 4th DIMENSION:

m  Scripts. A script is a short procedure associated with an active layout object.
Scripts generally “manage” the object while the layout is displayed or printed.

m Layout procedures. A layout procedure belongs to a layout. It executes each
time the layout is used, that is, when the layout is displayed or printed. You
can use a layout procedure for data and object management, but it is generally
simpler and more efficient to use a script for these purposes.

m  File procedures. A file procedure belongs to a file. It executes when any layout
belonging to the file is used for data entry. A file procedure is used to carry out
data entry management that is common to a// layouts belonging to a file.

In practice, file procedures are rarely used.

m  Global procedures. A global procedure is not directly associated with any
specific part of the database. It is available for use throughout the database. A
global procedure may also act as a function, returning a value when it executes.

m  External procedures. External procedures are procedures that are created outside
of 4th DIMENSION.

All procedures, except external procedures, are created by using 4th DIMENSION.
Scripts, file procedures, and layout procedures are covered in more detail in
Chapters 4 and 5. Global procedures are covered in Chapter 6.



LANGUAGE

An Example Procedure and Terminology

This section examines a procedure in detail in order to establish some of the
terminology, concepts, and common aspects of procedures. Everything presented
in this section is covered in greater detail in other parts of this manual.

All procedures are fundamentally the same—they start at the first line and work
their way through each statement (line of instruction) until they reach the last line.
Here is an example global procedure:

DEFAULT FILE ([People]) LI34 » & ' Set the default file
SEARCH * Display the Search editor
If (Records in selection = 0) 7 . " If no one was found...
ADD RECORD L-14 * Let the user add a new record
End if L% * The end!

First, let’s establish some terminology and features of the language. Each line in
the example is a statement or line of code. Anything that you write by using the
language is loosely referred to as code. Code is executed, or run—this simply
means that 4th DIMENSION performs the task that the code specifies.

We will examine the first line in detail and then move on more quickly.

DEFAULT FILE ([People]) A 134 * Set the default file

The first element in the line, DEFAULT FILE, is a command. A command is part of
the 4th DIMENSION language—it performs a task. In this case, DEFAULT FILE
selects which file will be used (similar to choosing a file in the User environment).
Notice that the command is in bold in the example; this is the way that commands
are displayed by 4th DIMENSION, and the convention is used in all examples.
When a command is referenced in text, it appears like this: DEFAULT FILE.

Also notice that the command’s name is in all uppercase letters. This is the naming
convention used for 4th DIMENSION commands that do not return a value.

DEFAULT FILE ([People]) L1134 * Set the default file

The parentheses specify an argument to the DEFAULT FILE command. An argument
(or parameter) is data that a command needs in order to complete its task. In this
case, [People] is the name of a file. Files are always specified inside square

brackets ([...]). You would say, “The People file is an argument to the DEFAULT FILE
command.”

CHAPTER 3: USING PROCEDURES 27



28

DEFAULT FILE ([People]) Set the default file

Finally, there is a comment at the end of the line. A comment tells you (and anyone
else who might read your code) what is happening in the code. It is indicated by the
reverse apostrophe (*). Anything on a line following the comment mark will be
ignored when the code runs. A comment can be put on a line by itself, but you
should try to put comments to the right of the code, as in the example. Liberally
sprinkle comments throughout your code; it makes it easier for you and others to
read and understand.

The next line contains the SEARCH command:
SEARCH A " Display the Search editor

This command displays the Search editor. After the search is performed, there is a
test to see if any records were found.

If (Records in selection = 0) ; # . '2Z " f no one was found...

The If statement is a control-of-flow statement—a statement that controls the step-by-
step execution of your procedure. The if statement performs a test, and if the test is
TRUE, execution continues with the subsequent line(s). Notice that TRUE is written
in all capital letters, because it refers to a logical or Boolean value. You will see the
two Boolean values, TRUE and FALSE, presented this way throughout this manual.

Records in selection is a function—a command that returns a value. Here,

Records in selection returns the number of records in the current selection. (You
should already know what the current selection is; it is the group of records you are
working on at any one time.) Notice that only the first letter of the function’s name
is capitalized. This is the naming convention used for 4th DIMENSION functions.

If the number of records is equal to O (in other words, if no one’s record was found),
then the following line is executed:

ADD RECORD 14 * Let the user add a new record

The ADD RECORD command displays a layout so that the user can add a new record.
Notice that this line is indented. 4th DIMENSION formats your code automatically
for you; this line is indented to show you that it is dependent on the control-of-flow
statement (If), above.

End if 4 " The end!

The End if statement concludes the If statement’s section of control. Whenever there
is a control-of-flow statement, you need to have a corresponding statement telling
the language where the control stops.

Be sure you feel comfortable with the concepts in this section. If they are all new,
you may want to review them until they are clear to you.



LANGUAGE

Procedure Control

Regardless of the simplicity or complexity of a procedure, you will always use one
or more of three types of programming structures. Programming structures control
whether and in what order statements are executed within a procedure. The three
types of structures are the sequence, the branch, and the loop.

There are statements in the language that control each of these structures. These
statements are introduced in this section and are formally defined in Part II of this
manual.

Sequence Structure

The sequence structure is a simple linear structure. A sequence is simply a series
of statements that 4th DIMENSION executes one after the other, from first to last.
For example,

DEFAULT FILE ([Employees]) 1134
OUTPUT LAYOUT ("Listing") ]
ALL RECORDS & 129
DISPLAY SELECTION

A one-line routine, frequently used for scripts, is the simplest case of a sequence
structure. For example,

Last Name := Uppercase (Last Name)

Branching Structures

A branching structure allows procedures to test a condition and take alternative
paths, depending on the result. The condition is a Boolean expression, an expression
that evaluates to TRUE or FALSE. One branching structure is the If...Else...End if
structure, which directs program flow along one of two paths. The other branching
structure is the Case of...Else...End case structure, which directs program flow to
one of many paths.

CHAPTER 3: USING PROCEDURES ~ 29



30

The If...Else...End if Structure

The If...Else...End if structure lets your procedure choose between two alternative
actions, depending on whether a test (a Boolean expression) is TRUE or FALSE.
When the Boolean expression is TRUE, the statements immediately following the
test are executed. If the Boolean expression is FALSE, the statements following
the Else statement are executed. The Else statement is optional; if you omit Else,
execution continues with the first statement (if any) following the End if.

For example,

CONFIRM ("Press OK to print.") 2 .0 O *Sets OK to 1 or 0

If (OK=1) * Test the Boolean expression
PRINT SELECTION * Executes if TRUE

Else
ALERT ("Printing canceled.") " Executes if FALSE

End if

See the section “Controlling Procedure Flow,” in Chapter 10, for more information
on the If...Else...End if structure.

The Case of...Else...End case Structure

Like the If...Else...End if structure, the Case of...Else...End case structure also lets
your procedure choose between alternative actions. Unlike the If...Else...End if
structure, the Case of...Else...End case structure can test an unlimited number of
Boolean expressions and take action depending on which one is TRUE.

Each Boolean expression is prefaced by a colon (:). This combination (the colon and
the Boolean expression) is called a case. For example, the following line is a case:

: (Number = 1)

Only the statements following the first TRUE case will be executed. If none of the
cases 1s TRUE, none of the statements will be executed. You can include an Else
statement after the last case; then, if all of the cases are FALSE, the statements
following the Else will be executed.



LANGUAGE

This example tests a numeric variable and displays an alert box with a word in it:

Case of I A
: (Number = 1) * Test if the number is 1
ALERT ("One.") - " Ifitis 1 display an alert
: (Number = 2) * Test if the number is 2
ALERT ("Two.") " Ifitis 2 display an alert
: (Number = 3) * Test if the number is 3
ALERT ("Three.") " Ifit is 3 display an alert
Else “Ifitis not 1, 2, or 3 do a special alert
ALERT ("It was not one, two, or three.") g
End case

For comparison, here is the If...Else...End if version of the same procedure:

If (Number = 1) YR * Test if the number is 1
ALERT ("One.") 3 " Ifitis 1 display an alert
Else
If (Number = 2) " Test if the number is 2
ALERT ("Two.") ¥ *If it is 2 display an alert
Else
If (Number = 3) " Test if the number is 3
ALERT ("Three.") " Ifit is 3 display an alert
Else “lfitis not 1, 2, or 3 do a special alert
ALERT("It was not one, two, or three.")
End if
End if
End if

Remember that with a Case of...Else...End case structure, only the first TRUE
case is executed. Even if two or more cases are TRUE, only the statements
following the first TRUE case will be executed.

See the section “Controlling Procedure Flow,” in Chapter 10, for more information
on the Case of...Else...End case structure.

CHAPTER 3: USING PROCEDURES 31



32

Loop Structures

It is very common when writing procedures to find that you need a sequence of
statements to repeat a number of times. To deal with this need, the language
provides three loop structures: For, While, and Repeat. There are two ways that
the loops are controlled: Either they loop until a condition is met, or they loop a
specified number of times. Each loop structure can be used in either way, but
While loops and Repeat loops are more appropriate for repeating until a condition
is met, and For loops are more appropriate for looping a specified number of times.

The While Loop

A While loop executes the statements inside the loop as long as the Boolean
expression is TRUE. It tests the Boolean expression at the beginning of the loop
and does not enter the loop at all if the expression is FALSE.

It is common to initialize the value tested in the Boolean expression immediately
before entering the While loop. Initializing the value means setting it to something
appropriate, usually so that the Boolean expression will be TRUE and the loop
will be entered.

A common task for a While loop is to add records to a database:

CONFIRM ("Add a new record?") y : * Does the user want to add a record?

While (OK = 1) L0 * Loop as long as the user wants to
ADD RECORD g " Add a new record

End while e " The loop always ends with End while

In this example, the OK system variable is set by the CONFIRM command before

the loop is entered. If the user clicks the OK button in the confirmation dialog box,
the OK system variable is set to 1 and the loop is entered. Otherwise, the OK system
variable is set to 0 and the loop is skipped entirely. Once the loop is entered,

the ADD RECORD command keeps the loop going, because it sets the OK system
variable to 1 when the user saves the record. When the user cancels (does not save)
the last record, the OK system variable is set to 0 and the loop stops.

The Boolean expression must be set by something inside the loop or else the loop
will continue forever. The following loop continues forever, because Never Stop
is always TRUE.

Never Stop := True
While (Never Stop)
End while



LANGUAGE

i Note: If you find yourself in a situation like the one just described, where a procedure is
executing uncontrolled, you can use the trace facilities to stop procedure execution and
track down the problem. See Chapter 8 for more information on the trace facilities.

See the section “Controlling Procedure Flow,” in Chapter 10, for more information
on the While...End while loop.

The Repeat Loop

A Repeat loop is similar to a While loop except that it tests the Boolean expression
after the loop rather than before. Thus, it always executes the loop once, whereas if
the Boolean expression is initially FALSE, a While loop does not execute the loop at
all.

The other difference with a Repeat loop is that the loop continues until the Boolean
expression is TRUE. Compare the following example with the example for the While
loop. Notice that the Boolean expression does not need to be initialized—there is no
CONFIRM command to initialize the OK variable. Also notice that the test is the
opposite: OK # 1 (OK is not equal to 1).

Repeat L
ADD RECORD
Until (OK # 1)

In the example, the loop is always executed at least once, and continues as long as
the user keeps accepting the new records (and setting OK to 1).

See “Controlling Procedure Flow,” in Chapter 10, for more information on the
Repeat...Until loop.

The For Loop

The For loop is a loop controlled by a counter. The counter is a numeric variable that
the For loop initializes to a value, and that is then incremented each time the loop is
executed. When the counter passes a specified value, the loop stops. The first value
used by the For statement is the counter variable, and the second and third values are
the starting and terminating values, respectively. Unless specified, the increment is 1.
The following loop starts at 1 and loops 100 times:

For ($i; 1; 100)
End for

CHAPTER 3: USING PROCEDURES 33



34

It is interesting to see how the While loop and Repeat loop would perform the
same action. Here is the equivalent While loop:

$i=1 " Initialize the counter
While ($i <= 100) * Loop 100 times

$i=%i+1 " Need to increment the counter
End while

And here is the equivalent Repeat loop:

$i=1 * Initialize the counter
Repeat Ll

$i=%i+1 * Need to increment the counter
Until ($i > 100) * Loop 100 times

A typical use of the For loop is to move through each record in a selection of
records. Here is the code that does this task:

For ($i; 1; Records in selection) > L/
" Do something with the record here
NEXT RECORD * Move to the next record
End for * Always end a For loop with End for

The loop initializes the counter, $i, to 1, and loops until $i is greater than the
number of records in the selection. Notice that if there is only one record, the loop
still executes once, and that if there are no records, the loop is not executed at all.

The For loop is faster than the While and Repeat loops because 4th DIMENSION
tests the condition internally for each cycle of the loop and increments the counter.
Therefore, use the For loop whenever possible.

See “Controliing Procedure Flow,” in Chapter 10. for more information on the
For...End for loop.

ﬁ Trivia: In the example loops in this section, you may have noticed that the counters are
represented by a local variable called $i. A local variable is appropriate in this case,
since the variable is used only inside the loop and does not need to be available globally.
The use of the letter i is historic. It originated with an ancient programming language
called Fortran. Fortran used the letter / to indicate an integer numeric variable. It was
very common to use this variable to control loops. The convention has remained in use,
and you will see it used in this manual.




LANGUAGE

LAYOUTS AND SCRIPTS




36

LAYOUTS AND SCRIPTS

Layouts are perhaps the most empowering aspect of 4th DIMENSION. With a
simple unified system of tools, you can create layouts that show your data in
any fashion you desire. Layouts intended for data entry have all of the superb
Macintosh interface at their disposal. Layouts used for printing can create
attractive reports.

4th DIMENSION provides built-in tools that allow you to manage layouts

without using the language. These tools include data validation, data entry filters,
data formatting, range checking, choice lists, default values, and buttons with
associated actions. The language extends the built-in tools to allow you to control
and monitor your layouts to an even greater degree. You don’t need to give up any
of the tools you are already familiar with—in fact, you should take advantage of
those tools as much as you can. The language just extends the power those tools
have already given you.

Three types of procedures are used to manage layouts:
®  scripts

m layout procedures

m file procedures

Scripts are the most common of the procedure types—a layout may have a script
for every active object. Scripts are used for data entry and reporting.

File and layout procedures work in basically the same way, with a few differences.
Both types of procedures are activated when the layout is used. File procedures
are used for data entry only; layout procedures are used for both data entry and
reporting. A file procedure is associated with a particular file and applies to the use
of any layout in the file; a layout procedure is associated with a particular layout.

File procedures are less commonly used than layout procedures. The rest of this
manual refers only to layout procedures; any discussion of layout procedures
used for data entry also applies to file procedures.

Controlling Layouts

The control of layouts is one of the most challenging aspects of customizing a
database. When a global procedure is running, it is in control—the procedure does
only what it was told to, and there are few outside events that can affect it.

When you use layouts, suddenly there is a new source of events that your
procedures must handle—the user.



LANGUAGE

Users like to do things in their own way; they want to click buttons, move from
field to field, change to a different layout page, choose a menu item, and in general
try to confuse your procedures.

In addition, there are special events that come from the use of the layout itself:
When a layout is first displayed, it may need initializing; when a record is accepted,
there is often a need for special processing; when a report is printing, different parts
of the report need custom preparation.

How are all of these events managed? If your procedures had to monitor and respond
to each of the many possible events, your procedures would never get anything
done—they would be tied up just testing events. Fortunately, 4th DIMENSION
manages events for you and informs your procedures-only when it is appropriate.

The management of events is done through two primary means: scripts and the
execution cycle. Scripts are object-oriented event managers—they respond to the
events that happen to layout objects. The execution cycle is the “grand” event
manager. It monitors the major events (and the minor ones) that happen to your
layouts.

The rest of this chapter addresses the use of scripts. Chapter 5 covers the execution
cycle and its effect on both layout procedures and scripts. You should read both
chapters to fully understand how to use the 4th DIMENSION language to manage
layouts.

 Using Scripts

A script is a procedure that is associated with an active object in a layout. Its role
is very specific to that object. A script should be used only to manage its
associated object.

Scripts are executed when:

m performing data entry

m listing records on screen

m printing reports with layouts
]

importing and exporting with layouts
Each active object can have one script, although a script is not mandatory.

During data entry, an active object can be used for entry (such as a field or variable),
or as part of the interface (such as a button, pop-up menu, or thermometer). The
script will be executed each time the object is activated. For example, the script
attached to a button will be executed when the button is clicked; the script attached
to a field will be executed when data is entered or modified.

CHAPITER 4: LAYOUTS AND SCRIPTS 37



38

When records are listed on screen and reports are printed with a layout, an object’s
script is executed as the object is displayed or printed. In these cases, the script
usually affects the format or appearance of the object.

Scripts tend to be short—often only one line. For many databases, scripts may be
the only type of procedure that you need to write. Once a script is attached to an
active object, the object retains the actions specified by the script when it is cut,
copied, or duplicated. Thus, you can build a library of active objects in your
Scrapbook, and paste them into different layouts.

Scripts are executed according to the execution cycle, but in most cases you need
not be aware of the execution cycle in order to use scripts. For more information
on the execution cycle, see Chapter 5.

Scripts and Data Entry

For active objects such as fields and variables, scripts are used for operations
like these:

m validating data as it is entered into the database
m  assigning values to variables

m  manipulating strings, such as concatenating fields or converting from
lowercase to uppercase

m performing arithmetic and date calculations, such as computing totals,
averages, and counts

® managing information in related files

When the data has been changed in a field or variable during data entry, the script
for that field or variable is executed. The script is executed before the file and
layout procedures.

Scripts and Interface Objects

Layouts can contain a wide variety of objects that interface with the user. Many of
these objects can be completely controlled by built-in tools, such as automatic
actions for buttons. Some of the objects are so flexible and can be used in so many
ways that the language is required to monitor and control them. This section
describes the interaction between the objects and the language.

Figure 4-1 shows the panel in the Object Definition dialog box where active objects
are defined. (Refer to the 4th DIMENSION Design Reference for more information
regarding the creation and use of active objects.)



LANGUAGE

The name of the object, as shown in Figure 4-1, is also the name of a variable that
4th DIMENSION creates automatically. The variable is often used to monitor the
status of the object.

Definition
Name: |Saue | Button text:
Type: [ Button | [ok
Accept ]
Figure 4-1

The object definition area of the Object Definition dialog box '

There are 15 different types of objects. Figure 4-2 shows the Object Type pop-up
menu that defines the type of active object.

i Enterable
Mon-enterable
Button
Radio Button
Check Box
PopUp Menu
Scrollable Area
77 Invisible Button
Highlight Button
Radio Picture
Graph
External drea
Thermometer
Ruler
Dial

HO=e(]

JiL EENEEN

Figure 4-2
The Object Type pop-up menu

In all cases, scripts make taking care of the objects an easy task. You can use the
combination of script and object to let the user communicate with your procedures.
The sections that follow discuss how to use scripts with each type of object.

Buttons

The button is an extremely common interface object in layouts. Using scripts with
buttons is very simple—when a button is clicked, its script is executed.

The name of the button is also the name of a variable—the variable is automatically
created and associated with the button. When the button is clicked, the variable is
set to 1. At all other times, the variable’s value is 0. If the button has an automatic
action, the action is performed after the script has executed.

CHAPTER 4: LAYOUTS AND SCRIPTS 39



40

Figure 4-3 shows the automatic actions that are available for buttons.

Take advantage of these actions; they can be used in conjunction with your scripts
to make a flexible and useful user interface.

[P fPHoBPe=za-BOx

No Action
Cancel

Accept

Next Record
Previous Record
First Record
Last Record
Delete Record
Next Page
Previous Page
First Page

i Last Page
Open Included
Delete Included
Add to Included

Figure 4-3
The Action pop-up menu for buttons

This list tells you the six types of buttons and the result of clicking on each of them.
Remember that in all cases the script for the button is executed after the button’s
variable is set.

Button. The button’s variable is set to 1.

Radio button. Radio buttons are usually in a group, where the first letter of each
button’s name is the same. When a radio button is clicked, the button’s variable
is set to | and the button is highlighted. All of the other buttons in the group are
set to 0, and they are not highlighted.

Check box. The check box’s variable is set to 1 if the box is checked, and to O if
the box is unchecked.

Invisible button. The button’s variable is set to 1. (The button does not get
highlighted.)

Highlight button. The button’s variable is set to 1. (The button is highlighted
when clicked.)

Radio picture. Radio pictures are highlight buttons that work like radio buttons.
All of the button names have the same first letter. When a radio picture is
clicked, the picture button’s variable is set to 1 and the button stays highlighted.
All of the other buttons in the group are set to 0, and they are not highlighted.

For information on managing buttons with advanced techniques, see “Using Pointers
to Buttons” and “Setting a Button Using a Pointer,” in Chapter 9.



L3¢

LANGUAGE

Scrollable Areas and Pop-up Menus

These two active objects operate the same way from the language’s point of view.
Both contain a list of items (an array of elements) and both allow the user to pick
one of those items. Pop-up menus and scrollable areas can display four data types:

®  string

® numeric
m date

m time

In addition, scrollable areas have the special capability of displaying pictures.

Because of their flexible nature, these objects require more interaction with the
language than do other objects. There are three things you need to do in order to
use these objects:

m  Fill the scrollable area or pop-up menu with items.
®  Respond when the user selects an item.

® Change the list if needed.

The list of items is an array. The array is specified as the name of the object when
you create the object. (See Figure 4-1.) The array is created with one of the array
commands described in the section “Managing Arrays,” in Chapter 18.

For an example of using pop-up menus and scrollable areas, see “Displaying
Arrays—An Example” and “Using Grouped Scrollable Areas,” in Chapter 9.

Filling the Scrollable Area or Pop-up Menu

The array can be filled in any manner you like. It is often convenient to fill the array
from a list created in the Design environment, or from a selection of records. The
commands to create and fill arrays are described in the section “Managing Arrays,”
in Chapter 18. For example, to fill an array from a list you could use this line:

LIST TO ARRAY ("Pop List"; My Pop)

Filling the array can be done at any time, but is typically done at one of three times:
in a startup procedure (described in Chapter 6); in a_global procedure before the
layout is displayed; or in the Before phase of the execution cycle (described in
Chapter 5). The best time to fill the array depends on how you are using the area:

If the elements never change, do it in the startup procedure; if the elements do not

change for each record, do it in the global procedure; if the elements change for
each record, do it in the Before phase of the layout procedure or script.

CHAPTER 4: LAYOUTS AND SCRIPTS 41



42

Responding When the User Selects an Iltem

When the user chooses a pop-up menu item or selects an item in a scrollable area,
the following events occur:

1. The name of the array is set to the item number (array element) selected.
2. A During phase is executed.

3. The script is run.

The name of the array is set to a positive number representing the item that the

user selected. For example, consider the pop-up menu and scrollable area shown
in Figure 4-4. '

Elernent 1 | Element 1 [p

Elernent 2 Element 2 [ |
Elernent 2 Element 3

Elernent <4
Element 5 [F]

Figure 4-4
A pop-up menu and a scrollable area

If the array that each is displaying is called My Array and the user has selected
the fourth element (as in the figure), the variable, My Array, is set to 4.

If the user clicks in an empty area of a scrollable area, or chooses no menu item,
the array name is set to 0. You may need to test for this special case in order to
perform the correct task or to change a pop-up menu to display an appropriate value.

If you want an item to always be selected, you can save the number of the last
selected item and set it back to that item. For example, the following code sets
the item back to its previous value when the user selects nothing:

Case of
: (Before)
ltem =1 " Initialize the item
My Array =1
: (My Array = 0) " If they select nothing...
My Array := ltem " set the selected item back to previous
Else
Item := My Array - * Otherwise, save the selected item
End case

Use the object’s script to see if an item has been selected. If the script is executing,
it means the object was selected (in the During phase).



LANGUAGE

Changing the Items in the Scrollable Area or Pop-up Menu

When you change the array in any way, 4th DIMENSION automatically recognizes
it and updates the object to reflect the change. Changes you might make include
changing an element in the array, deleting and adding elements, or even deleting
the whole array.

You can use the name of the array to “select” an item. To do this, just set the
name of the array to the item that you want selected. The item will be highlighted
in a scrollable area, or shown as the displayed menu item in a pop-up menu.

You must use the assignment operator to set the name of the array; otherwise,

the change will not be recognized.

Figure 4-5 shows a pop-up menu and a scrollable area with the second
element selected.

[Eterment 2 | [Eletent 1
Element 3
Element 4
Eletnent 5
Figure 4-5

Setting the choice in a pop-up menu and scrollable area

If the pop-up menu and scrollable area shown in Figure 4-5 represent My Array,
then the following line sets the pop-up menu and scrollable area as shown.
Here is the line:

My Array = 2

Thermometers, Rulers, and Dials

Thermometers, rulers, and dials show a numeric value as a percentage of an area.
The variable associated with the object changes to reflect the display, and,
conversely, the display changes to reflect the value of the variable. In other words,
if the user drags on the object, the value of the variable changes, and if the value
of the variable is changed, the object is redrawn to reflect the new value.

The script for the object typically initializes the object in the Before phase. The
During phase is executed each time the user changes the object. (See Chapter 5
for a discussion of the Before phase and the During phase.)

CHAPTER 4: LAYOUTS AND SCRIPTS 43



-

Graph Areas

Graph areas are completely controlled by the GRAPH command. For more
information, see the section, “Graphing,” in Chapter 13.

External Areas

External areas are areas controlled by procedures created in languages other than
4th DIMENSION’s. There are no limits to what an external area can do; when it is
selected, it takes complete control and manages all events until it returns control to
4th DIMENSION. When it returns control to 4th DIMENSION, a single During phase
is generated. (See Chapter 5 for a discussion of the During phase.)

For more information on the creation and use of external areas and external
procedures, contact ACIUS or ACI.

Scripts and Reporting

Desige Muaal

j/-lé/ oast

be

s
™
o

44

Sor ét?f{
(v ( Ca ( & e
-‘;51(" & tal J

Scripts associated with fields and variables will be executed when the layout
containing them is printed. The script will execute only when the object’s layout area
is printed, and then only if the “Only if modified” check box is unchecked.

For example, given the layout in Figure 4-6, notice the variable named vTotal in
the B{Break area. ¢y

S[[==———— layout: Salary Report

N Salary Report -‘:3”
rx1|Dept First Last Start Date Salary [

OlA GH1
E==[Dept] [First | [Last |[Etart Date  ][Salary I T 0

O ' Department Total: 3 -

= R

=|EH

A

LA

Figure 4-6
A report layout containing a variable with a script

The script associated with this variable will be printed at a level {}break. In this
layout, the script for vTotal is

vTotal := Subtotal (Salary)

This script assigns the subtotal for the salary field to the variable.

L 160



LANGUAGE

- THE LAYOUT
EXECUTION CYCLE



46

THE LAYOUT EXECUTION CYCLE

Layout procedures and scripts are executed according to the layout execution cycle.
The execution cycle determines when your procedures are executed. It is an aid

to your procedures: It tells them what is happening to the layout. The execution cycle
starts when something happens to a layout. Here are the execution cycle phases for

a layout being used for data entry:

m Before phase—The layout is about to be displayed.

m  During phase—Something in the layout just changed.

m  After phase—The user accepted the record.

As you can see, each part of the execution cycle is referred to as a phase.
The procedures of your layouts are executed at each phase. The phases called
Before, During, and After are the most important ones, and you will probably
use them the most.

There are also execution cycle phases for printing:

m In Header phase—The page header is about to be printed.

Before phase—A record is about to be printed.

During phase—A record is being printed.

In Break phase—A break area is about to be printed.

In Footer phase—The page footer is about to be printed.

The execution cycle affects all procedures associated with layouts. Although
the execution cycle is integral to the use of layouts, in many cases it can

be ignored—it is there only when you need it. By using the phases of the
execution cycle, you can control when various types of data and object
management take place.

When you are building simple databases that use scripts for object management,

you may not need to be aware of the execution cycle and its phases. Typically, a
script does not test for the phase of the execution cycle, because it is simply executed
whenever the object with which it is associated is activated. In many cases, this rule
ensures that scripts execute at the appropriate time. However, you can explicitly test
for the phase of the execution cycle in a script, if you need to restrict data processing
to a particular phase.



LANGUAGE

Monitoring the Execution Cycle Phases

Each phase of the execution cycle has a function in the language. Each function
returns TRUE when its phase is executing, and the functions of the other
execution cycle phases return FALSE at that time.

This list shows the name of each function, with a short description of the phase it is
associated with. As with all built-in functions and commands, the functions are more
completely described in the section “Monitoring the Layout Execution Cycle,”

in Chapter 13. ?(,('7‘@ (7%

m Before—A Before phase occurs for each record before the layout is displayed
or printed.

m  During—A During phase occurs during data entry each time data has been
changed or an active object is used. The During phase occurs during printing
each time the Detail area of a layout is printed.

m  After—An After phase occurs only for data entry, after a record has
been accepted.

m Before and During—This special phase occurs when records are listed on-screen.

®  In header—An In Header phase occurs when a layout Header area is about to
be printed or displayed on-screen. One header is printed for each page and
multiple headers may be printed for each break level. You can test for the
first header, with the Before selection function. You can test what break level
is printing, with the Level function.

m  In break—An In Break phase occurs during break processing, when a layout
break area is about to be printed. You can test what break level is printing,
with the Level function.

® In footer—An In Footer phase occurs when a layout footer area is about to be
printed. One footer is printed for each page. You can test for the last footer,
with the End selection function.

Procedures typically use a Case of structure to test for the phases of the
execution cycle. For example, here is a typical structure for a layout procedure
used for data entry:

Case of
:(Before)
* Do initialization here
:(During)
" Monitor the data entry process here
:(After)
* Do any “clean-up” required when a record is accepted
End case

CHAPTER 5: THE LAYOUT EXECUTION CYCLE 47



48

General Rules for the Execution Cycle

Here are some general rules concerning the execution cycle:

For each phase of the execution cycle, the procedures that exist are executed
in the following order:

1. The script(s) are executed.
2. The file procedure is executed (only for data entry).
3. The layout procedure is executed.

In the Before and After phases, all scripts are executed, except scripts that are
designated as “Only if modified.”

The scripts for objects used for data entry are executed in the data entry order.

The scripts for objects not used for data entry are executed in an undefined order.
Your scripts should not rely on the order in which they are executed.

During data entry, only the script for the activated object is executed. For
example, when a field is modified, only that field’s script will be executed.

When records are being printed or displayed on-screen, only the scripts of the
objects being printed or displayed are executed, and then only if the script is not
designated as “Only if modified.” For example, a variable in a header will have
its script executed only when the header is displayed (the In Header phase).

The Execution Cycles

The following sections describe the execution cycle for each of the different uses
of a layout.

For Data Entry

When a user is entering data into a layout, there are three phases of the execution

cycle:

m Before—Before the layout is displayed.

® During—During data entry each time data has been changed or an active object
is used.

m  After—After the record has been accepted.

The Before phase occurs before the layout is displayed. It is used, for example,
to test whether the record is a new record or an existing record. (A layout may
be used both for adding new records or modifying existing records.) The
Before phase is also used to initialize variables, display default values in fields,
or assign a sequence number to the record.



LANGUAGE

The During phase occurs when the user does something to the layout. Some of the
user actions that can cause a During phase are

changing data in a field or variable and leaving the field or variable
clicking a button
manipulating a thermometer, ruler, or dial

choosing an item from a menu

selecting an item from a scrollable area

|

[

u

5

m choosing an item from a pop-up menu
u

m pressing an assigned key combination
|

clicking an external area

The During phase is typically used for tasks such as data validation, formatting
entered data, managing data in related files, monitoring and responding to the
selection of controls, and other tasks specific to layout objects.

The After phase takes place after the user has accepted a record. It will not happen
if the user cancels the record.

For Files in Included Layouts

When 4th DIMENSION is displaying a list of records in an included layout, there are
three phases of the execution cycle:

m Before—When a new record is added to the included file.

m  During—For each record that is displayed. A During phase occurs when the
records are first displayed, and during modification of the records. A parent
record During phase is executed after the included layout’s During phase.

m  After—For each record that is changed and accepted.

For each phase of the execution cycle, the scripts, the file procedure, and the
layout procedure are executed.

CHAPTER 5: THE LAYOUT EXECUTION CYCLE 49



50

For Subfiles in Included Layouts

When 4th DIMENSION is displaying a list of subrecords in an included layout,
there are three phases of the execution cycle:

m Before—For each subrecord, before the Before phase of the parent layout, and
when a new subrecord is added.

® During—For each subrecord that is displayed. A During phase occurs when
each subrecord is first displayed, and during modification of a subrecord.
A parent record During phase is executed after the included layout’s
During phase.

m After—For each subrecord before the parent record’s After phase.
There is no After phase when a full-page layout for a subrecord is accepted.

For each phase of the execution cycle, the scripts, the file procedure, and the
layout procedure are executed.

For User Environment List of Records

When 4th DIMENSION displays the list of records on screen in the output layout,
there are four phases of the execution cycle:

m In Header—Before the Header area is displayed. This phase can be used to
generate a title or summary information for the records.

m Before and During—Before and During are TRUE simultaneously. This phase
occurs once for each record that is displayed.

®  During—Occurs only when a field in a record is modified while in the
“Enter in List” mode.

m  After—Occurs only when a record has been modified and accepted while in
the “Enter in List” mode.

For each phase of the execution cycle, the layout procedure is executed. For each
layout area, such as the Header and Detail areas, only the scripts for layout objects
in that area are executed, and then only if the “Only if modified” check box

is unchecked.



LANGUAGE

For MODIFY SELECTION and DISPLAY SELECTION

When 4th DIMENSION displays the list of records in the output layout for

MODIFY SELECTION or DISPLAY SELECTION, there are four phases of the execution
cycle for the output layout. If a record is double-clicked, the input layout procedure
for that record is executed according to the rules for data entry. The phases of the
execution cycle are:

m Before—Occurs once, before any records are displayed.

m In Header—Occurs once, before the header area is displayed. This phase can
be used to generate a title or summary information for the records.

m Before and During—Before and During are TRUE simultaneously. This phase
occurs once for each record that is displayed.

m During—Before is FALSE and During is TRUE when a menu is selected,
a button is clicked, or a record is double-clicked.

For each phase of the execution cycle, the layout procedure is executed. For each
layout area, such as the header and detail areas, only the scripts for layout objects
in that area are executed, and then only if the “Only if modified” check box

is unchecked.

For Export Through Layouts

When you are exporting records through a layout, there is one phase of the
execution cycle for each record:

m Before—Before each record is exported.

The scripts, the file procedure, and the layout procedure are executed for the
execution cycle.

You can use this execution cycle to perform processing on the data before it is
exported; for example, concatenating fields or padding data for fixed-length fields.

CHAPTER 5: THE LAYOUT EXECUTION-CYCLE 51



52

For Import Through Layouts

When you are importing records through a layout, there is one phase of the
execution cycle for each record:

m  After—After the record is imported and before the record is saved.

The scripts, the file procedure, and the layout procedure are executed for the
execution cycle.

You can use this execution cycle to perform processing on the data before it is saved;
for example, stripping spaces from fixed-length data.

For Layout Reports

When you are printing a report, there are five phases of the execution cycle:

m In Header—A layout Header area or break Header area is about to be printed.
There is one header for each page printed. There may be many break headers.
You can test which break header is printing with the Level function. You can
test for the first header with the Before selection function.

m  Before—Occurs once for each record. The layout Detail area is about to
be printed.

m During—Following each Before phase.

m In Break—During break processing when a layout Break area is about to
be printed. You can test what break level is printing with the Level function.

m In Footer—A layout Footer area is about to be printed. There is one footer for
each page printed. You can test for the last footer with the End selection function.

Layout procedures are executed for each execution cycle. When a layout area is
printed, only the scripts for layout objects in the area are executed, and then only
if the “Only if modified” check box is unchecked. For example, if a variable was
placed in the Header area of a report, its script would be executed only when
each header was printed.

Whenever possible, it’s recommended that you use scripts to control processing
of your reports. By simply placing the objects in the various print areas of a layout,
you ensure that their scripts will be executed at the appropriate times.



LANGUAGE

GLOBAL PROCEDURES




GLOBAL PROCEDURES

Global procedures are aptly named. Whereas a layout procedure or script is
intimately associated with a specific layout or object, a global procedure is
available anywhere—it is not specifically associated with anything. A global
procedure can have one of two very different roles:

m  master procedure—acting as a traffic cop for your customized database

® subroutine—acting as a servant to other procedures

A master procedure is a global procedure called from a custom menu. It acts as
a traffic cop, directing the flow of your application. The master procedure

takes control, branching where needed, presenting layouts, generating reports,
and otherwise managing your database.

The other type of global procedure can be thought of as a servant—being asked
to perform tasks by other procedures. This type of procedure is called a subroutine.

The sections that follow describe each of these types of global procedures.
This chapter also covers startup procedures.

Master Procedures—Procedures Called From Menus

A master procedure is called from a custom menu item. You assign the procedure

to the menu item by using the Menu editor. (See the 4th DIMENSION Design
Reference for more information on the Menu editor.) When the menu item is chosen,
the procedure executes. This process is one of the major aspects of customizing a
database. By creating custom menus with master procedures that perform specific
actions, you personalize your database.

Custom menu items can cause one or more activities to take place. For example,
a menu item for entering records might call a procedure that does two tasks:
displaying the appropriate input layout, and calling the ADD RECORD command
until the user cancels the data entry activity.

Automating sequences of activities is a very powerful capability of the
programming language. Using custom menus, you can automate sequences of
tasks that would be carried out manually in the User environment. With custom
menus, you provide more guidance to the users of the database.

Chapter 7 gives examples of using master procedures called from menus.



LANGUAGE

Subroutines—Procedures Called From Procedures

When you create a global procedure, it becomes part of the language for the
database in which you create it. You can then call the global procedure just like
you can call 4th DIMENSION’s built-in commands. A global procedure used in
this way is called a subroutine.

There are four reasons to use subroutines:

m to reduce the amount of repetitious coding you must do

® to clarify your procedures

® to ease changes to your procedures

m (o modularize your code

For example, let’s say you have a database of customers. As you customize the
database, you find that there are some tasks that you perform repeatedly. One of

those tasks might be to find a customer and modify their record. The code to do
this task might look like this:

DEFAULT FILE ([Customers]) * Set the default file

SEARCH BY LAYOUT ("Find Cust") * Search for a customer
INPUT LAYOUT ("Input Cust") * Select the input layout
MODIFY RECORD " Modify the customer’s record

If you do not use subroutines, you will have to write the code each time you want
to modify a customer’s record. If there are ten places in your custom database
where you need to do this task, you will have to write the code ten times. If you
use subroutines, you will only have to write it once. This is the first advantage

of subroutines: to reduce the amount of coding you must do.

If the code above was a procedure called Modify Cust, you would execute it simply
by using the name of the procedure in another procedure. For example, to modify a
customer’s record and then print the record, you would write this procedure:

Modify Cust
PRINT SELECTION ([Customers])

This capability can dramatically simplify your procedures. In the example, you do
not need to know how the Modify Cust procedure works, just what it does. This is the
second reason for using subroutines: to clarify your procedures.

If you find that you need to change the method you use to find customers in the
example database, you will need to change only one procedure, not ten. This is the
next reason to use subroutines: to ease changes to your procedures.

CHAPTER 6: GLOBAL PROCEDURES 55



56

Using subroutines, you modularize your code. This simply means breaking up
your code into modules (subroutines), each of which performs a logical task.
Consider the following code from a checking account database:

Find Cleared * Find the cleared checks
Reconcile * Reconcile the account
Check Report * Print a checkbook report

Even for someone who doesn’t know the database, it is quite clear what this code
does. It is not necessary to examine each subroutine. Each subroutine might be
many lines long and perform some complex operations, but here it is only important
that it performs its task. '

It is recommended that you break up your code into logical tasks, or modules,
whenever possible. If you find that a procedure is more than about 20 lines long,
you should consider breaking it into modules. This is the last reason for using
subroutines: to modularize your code.

Passing Parameters to Subroutines

You'll often find that you need to pass data to your subroutines. This is easily done
with parameters. Parameters (or arguments) are pieces of data that a subroutine
needs in order to perform its task. The terms parameter and argument are used
interchangeably throughout this manual.

Parameters are also passed to built-in 4th DIMENSION commands. In this example,
the string "Hello" is an argument to the ALERT command:

ALERT ("Hello")

Parameters are passed to subroutines the same way. For example, if a procedure
called My Proc accepted three parameters, a call to the subroutine might look like
this:

My Proc (This; That; The Other)
The parameters are separated by semicolons.

In the subroutine, the value of each parameter is automatically copied into
sequentially numbered local variables: $1, $2, $3, and so on. The numbering
of the local variables represents the order of the parameters. The local variables
are not the actual parameters; they simply contain the values of the parameters.
Since they are local variables, they are available only within the subroutine,
and are cleared at the end of the subroutine.



LANGUAGE

Changing the value of a local variable does not change the value of the parameter.
For example, the following subroutine, called Cat, concatenates two strings
and displays the result in an alert box.

$1:=8%1+8$2 4 * Concatenate the two strings
ALERT ($1) * Display the new string

Notice that $1 is changed by the first statement. The following lines pass
two parameters to Cat.

My Var := "You may "
Cat (My Var; "ask yourself")

These lines display a dialog box with the words “You may ask yourself” in it.
The local variable, $1, receives the string "You may ". It changes $1 to the
string "You may ask yourself", but does not change the variable My Var.

ﬁ Note: You can refer to parameters within a subroutine by using curly braces.
For example, ${i} refers to the same parameter as $1 if i contains 1.

Subroutines as Functions

Data can be returned from subroutines. A subroutine that returns a value is called
a function. Commands that return a value are also called functions.

For example, the following line is a statement that uses the built-in function, Length,
to return the length of a string. The statement puts the value returned by Length in a
variable called My Length. Here is the statement:

My Length := Length ("How did | get here?")

Any subroutine can return a value. The value to be returned is put into the local
variable $0. For example, the following function, called Up4, returns a string with

the first four characters of the string passed to it in uppercase:
$0 := Uppercase (Substring ($1; 1; 4)) + Substring ($1; 5)

If you execute the next line, the string "ONCE in a lifetime" is put into the variable
Byrne. Here is the line that uses the Up4 function:

Byrne := Up4 ("once in a lifetime")

CHAPTER 6: GLOBAL PROCEDURES 57



58

Startup Procedures

You can specify that a global procedure be executed when you open a database.
If you name a global procedure Startup, it will be executed when the database is
opened.

Using the Password Access editor, you can assign different startup procedures
to each user. The user startup procedure specified for a user is executed after the
procedure named Startup.



Y elYel= —

DATABASE APPLICATIONS

59



DATABASE APPLICATIONS

An application is a database designed to fulfill a specific need. An application has a
user interface designed specifically to ease the use of the application. The tasks that
an application performs are limited to those appropriate for the application.

4th DIMENSION makes the creation of applications smoother and more accessible
than does traditional programming.

4th DIMENSION can be used to create applications such as

®E an invoice system

®m an inventory control system

® an accounting system

m a payroll system

m a personnel system

m a customer tracking system

It is possible that a single application could even contain all of these systems.
Applications like these are traditional uses of databases. In addition, the tools

in 4th DIMENSION allow you to create innovative applications, such as

m a document tracking system

m a graphic image management system

a catalog publishing application

a serial device control and monitoring system

an electronic mail system (E-mail)

a multi-user scheduling system

An application typically starts as a database used in the User environment.

The database “evolves” into an application as it is customized. What differentiates
an application is that the processes required to manage the database are hidden from
the user. Database processing is automated, and users use menus to perform specific
tasks.

When you use a database in the User environment, you must know the steps to be taken
in order to achieve a result. In an application, those steps are automated—described by
using the 4th DIMENSION language. By creating an application, you expend a little bit
more effort up front so that you can save a lot of effort in the long run.

The sections that follow give examples showing how the language can automate the
use of a database.



A Custom Menu Example

LANGUAGE

Custom menus are the primary interface in an application. Creating custom menus
is very simple—you connect procedures to each menu item by using the Menu editor.
Custom menus make a database easier to learn and use.

This section gives a very simple example of a custom menu and what happens when the
user chooses a menu item. Although the example is simple, it should be apparent that the
database is easier to use and learn. Instead of the “generic” tools and menu items in the
User environment, the user sees only things that are appropriate to his or her needs.

In the example, the left column is what the user sees. The right column explains what is
going on behind the scenes, and the design work that made it happen.

The User’s Perspective

The user chooses a custom menu item called
New to add a new person to the database.

Behind the Scenes

The menu bar was created in the Design
environment, using the Menu editor.

& File Edit NN Companies

4th DIMENSION ©

©1985-1989 ACI, ACIUS Inc

E[[==——=—=—= Menubar #1 EEEI
Menus Items Procedures
| File K3 New [ > |New Person <
: People Modify Mod Person
| Companies Report People Report
= & o
X Keyboard: E] [JBold
[ Line [ 1talic
[ Enabled [] underline
[] Outline
Password : |All Groués D Shadow
oy

The menu item, New, has a global procedure
named New Person associated with it.

This procedure was created in the Design
environment, using the Procedure editor.

EC) Procedure: New Person ==——=[1g|
ADD RECORD([People])

The New Person procedure executes:

ADD RECORD ([People])

CHAPIER 7: DATABASE APPLICATIONS 61



62

_Saued ‘é c{)s/c w[/i/vgr/wya ('/)75?

The input layout for the People file

is displayed.
[ & File Edit People Companies |
"t stom EE |
i
People
First Name |
Last Name [
-y Company |
Address |
oy |
Cancel State I
ZIP
1]
] B
The user enters the person’s first name
and tabs to the next field.
| ®% File Edit People Companies ]
=————— (ustom EEE
: 1
Enter | People ]
: l First Name |John
Last Name ||
pome— Company |
. 1 ; Address |
o
Cancel Stats |
ZIP
54
K [
The user enters the person’s last name
and tabs to the next field.
[ & File Edit People Companies ]
[E==——"—— custom HI]
fer People
: First Name |John
Last Name  [Smith
Company |
Address
o
sete |
ZIP
o]
«l [C{e

The ADD RECORD command acts just
like the New Record menu item in the
User environment. It displays the input
layout to the user, so that he or she can

add a new record.

There is no script for the First Name field,

so nothing executes.

There is a script for the Last Name field.
This script was created in the Design
environment, using the Procedure editor.

S[I=———= Script: Last Name

=)

T

Last Mame =Uppercase(Last Mame)

The script executes:

Last Name := Uppercase (Last Name)

This line converts the Last Name field

to uppercase characters.




The user sees that the last name has
been converted to uppercase.

& File Edit People Companies
E——————— Qi
I
=

o) Poople
& . First Neme |John
Last Name  |SMITH

Company |

I Address |
(oeete)| | ot
State L

zIP L
o]
] =

The user finishes entering the record and
clicks the Enter button.

& File Edit People Companies
= (sloin=—"———

(e 5
People
. First Neme |John
= Last Name  |SMITH
R Company |Acme Corp
I Address |123 Easy St
City |[sometown
State |california
ZIP 95070
o]
K] l

The user is returned to the menu bar.

& File Edit People Companies

4t DIMENSION®

©1985-1989 ACI, ACIUS Inc.

LANGUAGE

The ADD RECORD command saves the
new record and returns to the New Person
procedure.

EO Procedure: New Person ==—=z|
ADD RECORD([People])

Since there are no more statements to
execute, the New Person procedure
stops executing, and control returns to
the menu bar.

CHAPTER 7: DATABASE APPLICATIONS 63




Saved K

Comparing an Application With the User Environment

Let’s compare the way a task is performed in the User environment and the way the
same task is performed by using the language. The task is a common one: to find a
group of records, sort them, and print a report.

The first comparison uses the built-in editors of 4th DIMENSION in both the User
environment and the language. In this case, the language partially automates the process.
The column on the left shows the actions that the user takes in the User environment.
The column on the right shows the same tasks being performed in an application.

Notice that although both methods perform the same task, the steps on the right are
automated by using the language.

Using a Database in the Using an Application With the
User Environment Built-in Editors
The user chooses Search Editor from The user chooses a custom menu item
the Select menu. that starts a procedure.
! People
Show All %6 i
Show Subset 3H

Report 3R

{

a dito i |
Search by Layout... ¥L }
Search and Modify... |
Search by Formula...

Even at this point, using an application is
: easier for the users. They did not need to

Sort Selection... ®T . .

sort File... know that searching is the first step, and

the menu item, Report, is very specific to

their needs.

?‘?5?'4
A procedure called My-Report is attached to
the menu item. It looks like this:

SEARCH ([People])

| SORT SELECTION ([People])

| OUTPUT LAYOUT ([People]; "Report")
PRINT SELECTION ([People])

The first line is executed:

‘ SEARCH ([People])




The Search editor is displayed.

LANGUAGE

The Search editor is displayed.

Search Editor

Js.equal to Acme
coantims

Company

- | |[is equal to

First Name is not equal to O And

Last Name ] is greater than

Company is greater than or squal to O or

Address is less than

City E is less than or equal to O Except

State | |contains
[Value Jacme

[ Search in selection

[ Save... 1 [ Load... J Cancel 0K j

Search Editor

Company

s equatto Aome
Cainbégins

- +]| [isequaito
First Name 3| [is not equal to O And

Last Name [] |is grester than

Company is greater than or equal to Qor

Address is less than

City ! is less than or equal to O Except

State L] [contains
[value JAcme ]

[ Search in selection

[ Save... 1 [

L‘.md'" ] [

Cancel ] [ 0K ]

The user enters the search criteria and
clicks OK. The search is performed.

The user chooses Sort Selection from
the Select menu.

Show Al ¥®6
Show Subset #H

Search Editor... ®S
Search by Layout... 3L
Search and Modify...
Search by Formula...

Sort Selection...

Sort File...

The Sort dialog box is displayed.

The user enters the search criteria and
clicks OK. The search is performed.

The second line of the My Report procedure
is executed:

SORT SELECTION ([People])

Notice that the user did not need to know
that sorting was the next step.

The Sort dialog box is displayed.

Sort Peaple...
- +|Last Name :
First Name 1]
Last Name | "
e First Name ®
Address
City
State
zIP
o]
[lidit Hyfmum] l:ﬂdd Fnrmula} [[((&inix{] [ Cancel | [ Sort ]

Sort People...

-
First Name
Last Name
Company
Address
City

State

3

:

Last Nsme

[ ]|First Name

]

Livxtzi Formuin Add Formula [Eieiale} ( Cancel ] [ Sort

)

The user enters the sort criteria and
clicks Sort. The sort is performed.

The user enters the sort criteria and
clicks Sort. The sort is performed.

CHAPTER 7: DATABASE APPLICATIONS 65




The user chooses Print from the File menu.

New Database...
Open Database...

Import Data...
Export Data...

Choose File/Layout...

®F

Page Setup...

' Quit

%

The “Choose print layout” dialog box

is displayed.

Choose print layout

In 7y
out m
Custorn

with Gnih

(<5

i

Users need to know which layout to choose.

They choose the layout and press Return.

The printer dialog boxes are displayed.

LaserlWriter Page Setup

__ok_]

Paper: @ US Letter (O A4 Letter O Tabloid

OusLegal (O BS Letter
Reduce or % Printer Effects:
Enlarge: Font 2
Ori tion [X] Text Smoothing? M
Graphics Smoothing?
@ Faster Bitmap Printing?
Laserlliriter “North Wing” ‘ﬁl

Cnpies:@

[] Preview on screen

Pages: @ Al O From: ‘:l To: :]

Cover Page: @ No O First Page ( Last Page

Paper Source: @ Paper Cassette () Manual Feed

The user chooses the settings, and the

report is printed.

66

The third line of the My Report procedure
is executed:

OUTPUT LAYOUT ([People]; "Report")

Once again, the user did not need to
know what to do next. The path was
already defined.

The final line of the My Report procedure
is executed:

PRINT SELECTION ([People])

The printer dialog boxes are displayed.

Laserlriter Page Setup ]
Paper: @ US Letter (O R4 Letter (O Tabloid ——
QUS Legal (O BS Letter
Reduce or Printer Effects: Options
Enlarge: % = Font itution? [:]
ientation X Test Smoothing? (et )

X Graphics Smoothing?
[ Faster Bitmap Printing?

Laserllriter “North Wing”
topies:@ Pages:@ Al OFrom:[  |To:[ |
Cover Page: @ No O First Page O Last Page

Paper Source: @ Paper Cassette (O Manual Feed
[]Preview on screen

T

The user chooses the settings, and the
report is printed.



LANGUAGE

Further Automating the Application

The same commands that were used in the preceding comparison can be used to

further automate the database.

In the next comparison, the application from the previous example that uses the built-in
editors is in the left column. The right column shows the language completely automating
the process. Notice that the user only needs to know to select the Report menu item in
order to generate the report. Also notice how the same commands are used to more
completely describe the actions that need to be taken.

Using an Application With the
Built-in Editors

The user chooses a custom menu item
that starts a procedure.

People

Report 3R

?M?IGL
A procedure called My-Report is attached
to the menu item. It looks like this:

SEARCH ([People])

SORT SELECTION ([People])
OUTPUT LAYOUT ([People]; "Report")
PRINT SELECTION ([People])

The first line is executed:
SEARCH ([People])

The Search editor is displayed.

Search Editor

Company  i5.equal 1o home
Conbaung

« +] [isequalto
First Name T3 |is not equal to [] O And
Last Hame [] |isoreater than
Company is greater than or equal to Oor
Address E is Tess than
City i Tess than or equal to O Except
State contains >
Value Tacme |
[] search in selection
[ save.. | [ Load.. | Cancel 0K

Using an Application With
Complete Automation

The user chooses a custom menu item
that starts a procedure.

People

Report ¥R

E"ap/-".
A procedure called My Report2is attached
to the menu item. It looks like this:

SEARCH ([People]; [People]Company = "Acme")
SORT SELECTION ([People]; " Aeme®*
[People]Last Name; > ; 1,
[People]First Name; >) t C’.«;qt«:‘ns "G\?'v;
OUTPUT LAYOUT ([People]; "Report") L @ Ol Catd KK,
PRINT SELECTION ([People]; *)

The first line is executed:

@
SEARCH ([People]; [People]Company = "Acmg‘")
C&‘ﬂ E&l' 3
The Search editor is not displayed. !
Instead, the search is specified and
performed by the SEARCH command.
The user does not need to do anything.

CHAPTER 7: DATABASE APPLICATIONS 47



~ The user enters the search criteria, clicks OK,
and the search is performed.

The second line of the My Report procedure
is executed:

SORT SELECTION ([People])

The Sort dialog box is displayed.

Sort People...

€ *||Last Name
First Name =

Last Name
Company
Address
City.

State

2P

|| |First Neme

%

[R!n Hmmms] [ Add Furmula] L{mleie] [ Cancel ] ( Sort ]

The user enters the sort criteria, clicks Sort,
and the sort is performed.

The final lines of the My Report procedure
are executed:

OUTPUT LAYOUT ([People]; "Report")
PRINT SELECTION ([People])

The printer dialog boxes are displayed.

LaserlUriter Page Setup
Paper: @ US Letter O A4 Letter O Tabloid
QuUsLegal (OBSLetter
Reduce or e; Printer Effects:
Enlarge: Font Substitution?
Orientation & Text Smoothing?
'l N [ Graphics Smoothing?

_‘inﬂ Faster Bitmap Printing?
Laserlriter “North Wing” ||
Enpies:@ Pages: @ All O From: I:] To: \:]

Cancel
Cover Page: @ No O First Page O Last Page
Paper Source: @ Paper Cassette (O Manual Feed
[J Preview on screen

The user chooses the settings, and the
report is printed.

The second line of the My Report2
procedure is executed:

SORT SELECTION ([People];
[People]Last Name; > ;
[People]First Name; >)

The Sort dialog box is not displayed, and the
sort is immediately performed. Once again,
no user actions are required.

The final lines of the My Report2 procedure
are executed:

OUTPUT LAYOUT ([People]; "Report")
PRINT SELECTION ([People]: *)

The printer dialog boxes are nor displayed.
The PRINT SELECTION command accepts
an optional asterisk (*) parameter that
instructs the command to use the print
settings that were in effect when the
report layout was created. The report

is printed.



LANGUAGE

User Environment Menus and Equivalent Commands

As you’ve seen in the examples, there are commands in the language that perform the
same actions as the User environment menu items. These commands provide an easy
means of customizing a database.

Each of the menu items either performs an action or presents an editor or dialog box.
Using the commands, the editors and actions can be “strung together” into a custom
sequence, allowing repetitive tasks to be automated. The commands can also be used

to actually specify the action, such as searching, without presenting the editor and

without any user intervention.

Table 7-1 lists User environment menu items and the corresponding commands, and

gives an example of each command in use.

Example

Table 7-1
User environment menus with their equivalent commands
Menu ltem ..., COmmand
Fa4 N S
Apply Formula 16 APPLY TO SELECTION

Choose File/Layout s3¢DEFAULT FILE
i33 INPUT LAYOUT
i3 OUTPUT LAYOUT

Edit ASCII Map  3:4 USE ASCII MAP

Export 4ia EXPORT TEXT
Graph i#¢ GRAPH FILE
Import 2i3 IMPORT TEXT
Labels /7 PRINT LABEL
Modify Record i41MODIFY RECORD
New Record /4¢ ADD RECORD
Print /¢35 PRINT SELECTION

Quick Report /62 REPORT
Search by Formula :1¢SEARCH BY FORMULA

Search by Layout 43 SEARCH BY LAYOUT
Search Editor /94 SEARCH
Show All 184 ALL RECORDS

/43 MODIFY SELECTION
Sort File 206 SORT FILE

Sort Selection 205 SORT SELECTION

APPLY TO SELECTION ([People]; Format Name)
DEFAULT FILE ([People])

INPUT LAYOUT ([People]; "In")

OUTPUT LAYOUT ([People]; "Out")

USE ASCII MAP ("Map Name")

EXPORT TEXT ([People]; ")

GRAPH FILE ([People])

IMPORT TEXT ([People]; ")

PRINT LABEL ([People]; ™)

MODIFY RECORD ([People])

ADD RECORD ([People])

PRINT SELECTION ([People])

REPORT ([People]; ™)

SEARCH BY FORMULA ([People]Age = 20)
SEARCH BY LAYOUT ([People]; "Find")
SEARCH ([People])

ALL RECORDS ([People])

MODIFY SELECTION ([People])

SORT FILE ([People])

SORT SELECTION ([People])

CHAPTER 7: DATABASE APPLICATIONS 69



70



LANGUAGE

DEBUGGING




72

DEBUGGING

When developing your procedures, it is important that you find and fix errors in
your procedures.

Different types of errors are possible when you are using the language. There are
three types of errors you can make:

m A typing error—This type of error is caught by the Procedure editor and
marked with bullets (¢). See the 4th DIMENSION Design Reference for
more information on the Procedure editors.

m A syntax error—This type of error is caught when you execute the procedure.
The Syntax Error window is displayed when a syntax error occurs.

m An error in design or logic—This is generally the most difficult type of error
to find. You use the Debugger to track down the error.

This chapter describes the tools that you use to track down syntax errors and
errors in design or logic: the Syntax Error window and the Debugger.

The Syntax Error Window

Highlighed error

The Syntax Error window is displayed when procedure execution is halted.
Procedure execution can be halted for either of two reasons:

m 4th DIMENSION halts execution because there is a syntax error that
prevents further procedure execution.

m  You generate a user interrupt by holding down the Option key down and
clicking the mouse (Option-clicking) while a procedure is executing.

The Syntax Error window is shown in Figure 8-1.

his operation is not compatible with the two arguments.

[ Trace | [ cContinue | [ Edit |

Figure 8-1
The Syntax Error window




LANGUAGE

The upper text area of the Syntax Error window displays a message describing
the error. The lower text area shows the line that was executing when the error
occurred, and highlights the area where the error occurred.

The buttons at the bottom of the window give you four options:

m Abort—All procedure execution is halted, and you return to where you were
before you started procedure execution. If you are in a layout execution phase,
the phase is stopped and you return to the layout. If the procedure was executed
because of a menu choice, you return to the menu.

m Trace—You enter Trace mode, and the Trace window is displayed. See the
next section for information on tracing. '

m Continue—Execution continues. The line with the error may be partially
executed, depending on where the error was. Continue with caution—the error
may prevent your procedure from continuing properly.

m Edit—All procedure execution is halted. 4th DIMENSION changes to the
Design environment, and the procedure where the error occurred is opened
in the Procedure editor, allowing you to correct the error.

ﬁ Note: The Syntax Error window will not be displayed if an error-handling procedure
has been installed with the ON ERR CALL command. For information on this
command, see “Controlling the Execution of Procedures,” in Chapter 18.

The Debugger

When an error has occurred, or when you need to monitor the execution of your
procedures, you can use the Debugger. The term debug comes from the term bug.
A bug in a procedure is a mistake that you want to eliminate. A debugger helps
you find the bug by allowing you to slowly step through your procedures and
examine procedure information. This process of stepping through procedures

is called rracing.

You can display the Debug window and trace procedures in one of two ways:

m clicking Trace in the Syntax Error window

m using the TRACE command described in Chapter 18 ?(Ua, 3¢s

ﬁ Note: If there is a password system, only the Designer (that is, the user with the
top-level password) may trace procedures.

CHAPIER 8: DEBUGGING 73



Procedure
shown here

Expressions
evaluated here ——

11

74

The Debug window is shown in Figure 8-2. It may be moved and resized.

Debug ==

W * Procedure with syntax error L
01d Var :="abe" |
® |Mid Var =123
Mew Yar :=01d Yar+Mid Var

k]|

01d Yar : abc

Mid Mar 123

Mew Yar © Undefined
Length(Old Var) : 32
122#456 : 56088

f—

([ Abort | [(NoTrace] [ step || [ view | [ Edit | 5

Figure 8-2
The Debug window

The buttons at the bottom of the Debug window give you five options:

m  Abort—All procedure execution is halted, and you return to where you were
before you started procedure execution. If you are in a layout execution phase,
the phase is stopped and you return to the layout. If the procedure was executed
because of a menu choice, you return to the menu.

m No Trace—Tracing is halted, and normal procedure execution resumes.

m Step—The current procedure line is executed, and the Debugger steps to the
next line.

m View—The Debug window is hidden so that you may view what is behind it.

m Edit—All procedure execution is halted. 4th DIMENSION changes to the
Design environment, and the procedure last displayed in the Debug window
is opened in the Procedure editor.

The upper text area of the Debug window shows the currently executing procedure.
If the procedure is longer than will fit in the text area, you may scroll to view other
parts of the procedure. The lower text area is described in the next section.



LANGUAGE

Evaluating Expressions

The lower text area of the Debug window is used to evaluate expressions. Any type
of expression can be evaluated, including fields, variables, pointers, calculations,
built-in functions, your functions, and anything else that returns a value. In the
Debug window shown in Figure 8-2 you can see several of these items: two
variables; an undefined variable; the result of a built-in function; and a calculation.

There are several things you can do in the expression evaluation area:

®m  You can resize the expression evaluation area by holding down the Option key
and dragging the line that separates the procedure from the expression evaluation
area. :

® You enter an expression by clicking in the area. A text insertion point appears.

m After you enter an expression, you evaluate the expression by clicking in the
procedure listing area.

m If you hold down the Option key and click at the insertion point, a pop-up menu
of your files and fields appears (see Figure 8-3). If you have a complex structure,
the menu may take a couple of seconds to display. When you choose one of the
fields, its name is placed in the expression evaluation area.

m If you hold down the Command key and click at the insertion point, a pop-up
menu of the built-in commands appears (see Figure 8-4). This menu is large, and
may take a couple of seconds to display. When you choose one of the
commands, its name is placed in the expression evaluation area.

CHAPTER 8: DEBUGGING 75



Figure 8-3 shows an example of a menu of files and fields displayed by
holding down the Option key and clicking.

Debug %I
Repeat K
Execl :=Request("Execute " Exec) |
If (OK=1)
Exec:=Execl
EXECUTE(Exec)
¥ End if
Until (OK=0)
o]
[ Abort ] [NoTrace | [ view | [ Edit | 5

Figure 8-3
Menu of files and fields in the Debug window

Figure 8-4 shows the menu of built-in commands displayed by holding down the
Command key and clicking.

Debug %I

If (Undefined(Exec))
Exec:=""
End if
Repeat
Execl =Request("Execute " Exec)
If (OK=1)
Exec :=Execi
EXECUTE(Exec)
v End if

LOAD RECORD
SAVE RECORD
DELETE RECORD
DELETE SELECTION

E CREATE RECORD
Relations b | APPLY TO SELECTION
Fecords in fils
g:f::ﬂ;nd sort : PUSH RECORD
Sets p| FOP RECORD
[H oo el i T
Structure Access ] [E
Subrecords p| Record number
- Sequence number
Figure 8-4

Menu of built-in commands in the Debugger



Check mark
on next line to
be executed

Breakpoint

Stepping and Breakpoints

LANGUAGE

In the Debug window, a check mark in the left margin next to the procedure
marks the next line that will be executed. In the Debug window in Figure 8-5,
the first line has not been executed; the check mark next to it indicates that it

will be executed next.

Debug

v * Procedure with syntax error
01d Yar :="abc"

| ® [Mid Var =123

Mew Yar :=01d Var+Mid Yar

<A

01d Yar @ abe

Mid Var : 123

New Var : Undefined
Length(0ld Yar) : 2
123#%456 : 56088

((Abort | [No Trace) [(view | [ Edit | -

Figure 8-5
Check mark on first line in the Debug window

When you click the Step button (or press Return or Enter), the line is executed and
the check mark moves to the next line. Any expressions in the expression evaluation

area are updated at this time.

If the line being executed calls another procedure, the Debugger will trace the called
procedure. You can optionally execute the called procedure without tracing it, by

holding down the Shift key when you click the Step button.

CHAPTER 8: DEBUGGING

77



78

You can set a breakpoint in the same margin as the check mark. A breakpoint marks
a point at which to halt procedure execution. Here are the rules for breakpoints:

A breakpoint is indicated by a bullet (¢). Figure 8-5 shows a breakpoint next to
the third procedure line.

You set a breakpoint by moving the pointer to the left of the line on which
you want to halt. The pointer turns into a bullet. When you click, the
breakpoint is set.

You clear a breakpoint by clicking on it again.

If you have set a breakpoint, you can click No Trace, and the procedure will
execute normally. It will halt procedure execution and display the Debugger
when the breakpoint is reached.

You can set multiple breakpoints.

All breakpoints are cleared either when procedure execution is halted and
control returns to the menu bar, or when a layout execution phase completes.



LANGUAGE

ARRAYS AND POINTERS




80

ARRAYS AND POINTERS

This chapter covers two topics, arrays and pointers. Both of these topics are
more advanced in nature than other topics covered in Part I of this manual.

Arrays

Arrays are used to efficiently store, access, and manage a group of related data.
An array can be thought of as a list of numbered variables. Each item in the array
is called an e/ement of the array.

Arrays can be created for each of the variable data types. All elements in an array
are of the same data type. An array is generally of a fixed size, but there are
commands to let you resize an array.

Since arrays reside in memory, operations on them are fast. You can copy, sort,
search, and otherwise manipulate arrays very quickly. Also, since arrays reside

in memory, you should use discretion when creating large arrays to avoid running
out of memory. In particular, be careful when using the commands that move
records into arrays, since if there are many records, large arrays will be created.

The commands used to create and manage arrays are described in Chapter 18 of
this manual.

Using Arrays

You create an array with one of the commands described in the section
“Managing Arrays,” in Chapter 18 of this manual. The following line creates
an array that can store text:

ARRAY TEXT (Name; 7)

You reference the elements in an array by using curly braces ({...}). A number
is used within the braces. The following lines put seven names into the array
called Name:

Name{1} := "John"
Name{2} := "Jane"
Name(3} := "Sam"
Name{4} := "Sarah"
Name{5} := "Richard"
Name{6} := "Howard"
Name{7} := "Susan"”

Figure 9-1 shows the result of these lines.



LANGUAGE

There are commands that can more efficiently move data into arrays, such
as SELECTION TO ARRAY and LIST TO ARRAY.

Name
Name{1} John
Name{2} Jane
Name(3} Sam
Name{4} Sarah
Name{5} Richard
Name{6} Howard
Name{7} Susan
Figure 9-1

The Name array filled with data

When you refer to an array element, it acts just like a variable. For example,

the following line puts the string "Sam" into the variable My Name:

My Name := Name{3}

Using Two-Dimensional Arrays

Two-dimensional arrays can be created with the array commands. For example.
the following line creates three arrays, each with seven elements:

ARRAY TEXT (Names; 3; 7)

/

Figure 9-2 shows the arrays with data in them.

Name{1}{1}
Name{1}2}
Name{1}3}
Name{1}{4}
Name{1}{5}
Name{1}{6}
Name{1}7}

Figure 9-2

Name{1}

John
Jane

Sam

Sarah WA
| Richard

Howard

Susan

A two-dimensional array

Name{2}{1
Name{2}{2
Name{2}{3

Name{2}{5
Name{2}{6
Name{2}{7

Name{2}

Jim

}

}

}
Name{2}{4} |

}

}

}

Elizabeth

Name{3}{1}
Name{3}{2}
Name(3}{3}
Name{3}{4}
Name{3}{5}
Name(3}{6}
Name{3}{7}

Name{3}

Brown

Smith

Young

Hayter

Gonzales |
Kirby |

CHAPTER 9: ARRAYS AND POINTERS




82

You reference the elements of a two-dimensional array with two sets of curly braces.
For example, to reference the seventh element in the second array, you would write

Name{2}{7}
Using the data in Figure 9-2, this line would return the string "Mary".

It is important to understand that each element of Name is an array. For example,
Name{3} refers to the third array—in this case, the one that contains the last names.

One “dimension” of a two-dimensional array can be treated like any other array.

For example, to copy the third Name array into another array, Pop Up, you’d use
this command: '

COPY ARRAY (Name({3}; Pop Up)

Displaying Arrays—An Example

Arrays are displayed in layouts using pop-up menus and scrollable areas. The
following example shows how to fill arrays from lists and manage them when they
are displayed. In the example, a pop-up menu allows the user to choose a region
of the country. After the user has chosen a region, a scrollable area displays the
states in the region, and allows the user to select one of the states.

There are two arrays displayed in this example. One array is called Regions, and is
displayed as a pop-up menu. It is filled from a list containing the names of regions of
the United States. The other array, States, is displayed as a scrollable area. It is filled
with the states for each region. There is also a variable called vState, which displays
the state which is selected. Figure 9-3 shows the layout that displays the arrays.

SHl| Layout: States =
zn States

OJiAl

Ot

H— Regions
=|EH

=e | BEee———_1

= it

Figure 9-3

Layout containing a scrollable area (States) and a pop-up menu (Regions)

The Regions array is created in the startup procedure, since it never changes.

PsSY¥



LANGUAGE

The following line creates the Regions array and copies a list called Regions into

the array.

LIST TO ARRAY ("Regions"; Regions; Links)

The line also creates an array called Links that contains the names of all the linked

lists. Each of the items in the Regions list is linked to another list. Figure 9-4 shows
the Lists editor and the linked lists. The linked lists are indicated by the small name
that follows each of the items.

=[] Lists HE
Lists... Items...
Regions i+ [Fast East i
West Central Central
East Midwest Midwest
Midwest est west
Central
o 2
=
Figure 9-4

The Lists editor with linked lists

The Regions array and the States array both have scripts. The script for the Regions
array copies the states for a selected region into the States array. The script is set to
always execute (“Only if modified” is unchecked). Here is the script for the Regions

array.

If (Before | (Regions = 0))

Regions := 1
End if

LIST TO ARRAY (Links{Regions}; States)

* If before display or user chose no item
* Choose the first item of pop-up menu

* Get list of states for the selected region

In the script, the If test simply ensures that a pop-up menu item is always chosen.

When the user chooses an item from the Regions pop-up menu, the Regions variable

is set to the number of the item. In the last line of the script, the Regions variable is
used to reference the name of the list that is stored in the Links array. For example, if
the fourth menu item was chosen, then Regions would be set to 4. Figure 9-5 shows

the fourth menu item being chosen.

CHAPTER 9: ARRAYS AND POINTERS 83



84

Alaska

X East
H”?D"? Central
California Midwest
Colorado West
Hawaii
Idaho
|
Figure 9-5

Choosing from the Regions pop-up menu

The Links array contains the word West as the fourth element. Thus, in this case,
the following expression returns West:

Links {Regions}

Because of this, the line

LIST TO ARRAY (Links{Regions}; States)
is equivalent to

LIST TO ARRAY ("West"; States)

and the list named West is copied into the States array. Figure 9-6 shows the
result of choosing the fourth menu item.

Alaska
Arizona

Colorado
Hawaii
Idaho

California I

Figure 9-6
The result of choosing the West meriu item

Finally, the script for the States array displays a selected state in the vState variable.
If no item in the scrollable area is selected, then vState is set to the empty string.
(This is because the zero element of an array contains a null value for that array
type.) If an item is selected, vState is set to the name of the state that is selected.
Here is the script for the States scrollable area:

vState := States{States} " Display the selected state

In Figure 9-6, the third item in the States scrollable area was selected. This sets
the variable called States to 3. Using this number to reference an element in the
States array returns the word California, which is assigned to the vState variable
for display.



LANGUAGE

Using Grouped Scrollable Areas

You can group scrollable areas for display in a layout. When they are grouped,
they act as if they are one scrollable area. Each scrollable area can have its own
font and style.

Figure 9-7 shows three scrollable areas grouped together.

T
[]

Layout: Grouped Arrays §'95|
<

14
]ﬂ#
2

Ead

[ |

el i |t H m D O
@10

Figure 9-7
Grouped scrollable areas in the Layout editor

Here are some tips on creating a grouped scrollable area:

m Use the same font size for each area.

Make each area the same height.

Align the top of each area with the tops of the other areas.

Make sure the areas are “touching” each other, but do not overlap.

Move the area that is on the right to the front. The front most area will get
the scroll bar.

m To make the areas work as one, select all the areas and then choose the
Group menu item from the Object menu.

®  Around the group, draw a border that is 1 pixel larger than the group. (As a
shortcut, select the group and press Command-1.) Move the right-hand
border left 1 pixel for a clean presentation.

The following line fills the three arrays displayed in Figure 9-7. It uses the data in
the fields of the [People] file and the [Departments] file. The [Departments] file can
be used because it is related to the [People] file. Here is the line:

SELECTION TO ARRAY ([People]Last; AreaA; [People]Title; AreaB; [Departments]Name; AreaC)

Figure 9-8 shows the resulting display.

CHAPTER 9: ARRAYS AND POINTERS ~ 85



86

Booker Sales Person Sales
‘Warnock Director Administration
Ericksaon b OGO

Finch Sales Person Sales
Coggshall Technician Engineering
Salomon Sales Person Sales
Hurlow Assembler Maintenance
Figure 9-8

Grouped arrays being used

Notice that only a single scroll bar is displayed. It is always on the front-most
scrollable area, and controls the scrolling of all three arrays as if they were one.

When the user clicks a line, all three areas highlight simultaneously. The variable
associated with each scrollable area is set to the number of the line that the user
clicks. Only the script for the area that is clicked executes. For example, if the user
clicked the name Finch in Figure 9-8, AreaA, AreaB, and AreaC would all be set to
4, but only the script for AreaA would execute.

If you set one of the variables for a scrollable area, the other variables will
automatically be set to the same value, and the respective line in the scrollable area
will highlight.

The arrays can be sorted with the following line:
SORT ARRAY (AreaB; AreaA; AreaC; >)

Figure 9-9 shows the result of the sort.

Hurlow Assembler Maintenance
Erickson Clerk Accounting
Warnock Director Administration
Solomaon Sales Person

Krause Sales Person Sales
Booker Sales Person Sales
Finch Sales Person Sales
Figure 9-9

Grouped arrays sorted

Notice that the arrays were sorted based on the first argument to the SORT ARRAY
command. See the section “Managing Arrays,” in Chapter 18, for information on this
and other array commands. L3¥S4



LANGUAGE

Pointers

Using pointers is an advanced method of referring to data. You should thoroughly
understand the concepts presented carlie‘:fi{_'*z-lgaﬁ—l before you use pointers.
ERE

When you use the language, you access various objects by name—in particular,
files, fields, variables, and arrays. To use one of these, you simply use its name.
It is often useful to refer to and access these things without knowing their names.
This is what pointers let you do.

The concept behind pointers is not that uncommon in everyday life. You often
refer to something without knowing its exact identity. For example, you might
say to a friend, “Let’s go for a ride in your car” instead of “Let’s go for a ride
in the car with license plate 123ABD.” In this case, you are referencing the car
with license plate 123ABD by using the phrase “your car.” The phrase “car with
license plate 123ABD” is like the name of an object, and using the phrase

“your car” is like using a pointer to reference the object.

Being able to refer to something without knowing its exact identity is very useful.
In fact, your friend could get a new car, and the phrase “your car” would still be
accurate—it would still be a car and you could still take a ride in it. Pointers work
the same way. For example, a pointer could at one time refer to a numeric field
called Age, and later refer to a numeric variable called Old Age. In both cases,
the pointer is referencing numeric data that could be used in a calculation.

You can use pointers to reference files, fields, variables, arrays, and array elements.
Table 9-1 gives an example of each type.

Table 9-1

Examples of pointers

Data Type To Reference To Use To Assign

File My File := »[File] DEFAULT FILE (My File») n/a

Field My Field := »[File]Field =~ ALERT (My Field») My Field» := "John"
Variable My Var := »Variable ALERT (My Var») My Var» := "John"

Array My Arr := »Array COPY ARRAY (My Arr»; B) COPY ARRAY (B; My Arr»)
Array element My Elem := »Array{1} ALERT (My Elem ») My Elem » :="John"

CHAPTER 9: ARRAYS AND POINTERS 87



Using Pointers—An Example

It is easiest to explain the use of pointers by using an example. This example
shows how to access a variable through a pointer. We start by creating a variable:

My Var := "Hello"

My Var is now a variable containing the string "Hello". We can create a pointer
to My Var:

My Pointer := »My Var

The » symbol says “get the pointer to.” (Press Option-| to write the » symbol.)
In this case, it gets the pointer that references or “points to” My Var. This pointer
is assigned to My Pointer with the assignment operator.

My Pointer is now a variable that contains a pointer to My Var. My Pointer does not
contain "Hello", the value in My Var, but you can use My Pointer to get the value
contained in My Var. The following expression returns the value in My Var:

My Pointer»

In this case, it returns the string "Hello". The » symbol, when it follows a pointer,
references the object pointed to.

It is important to understand that you can use a pointer followed by the » symbol
anywhere that you could have used the object that the pointer points to. This means
that you could use the expression My Pointer» anywhere that you could use the
original variable My Var.

4

e

For example, the following line displays an alert box with the word Hello in it:
ALERT (My Pointer»)

You can also use My Pointer to change the data in My Var. For%xample, the
following statement stores the string "Goodbye" in the variable My Var:

My Pointer» := "Goodbye"

If you examine the two uses of the expression My Pointer» above, you will see that
it acts just as if you had used My Var instead. To summarize: The following two
lines perform the same action—both print an alert box containing the current value
in the variable My Var.

ALERT (My Pointer»)
ALERT (My Var)



, l N

LANGUAGE

The following two lines perform the same action: Both assign the string
"Goodbye" to My Var.

My Pointer» := "Goodbye"
My Var := "Goodbye"

Using Pointers to Buttons

This section describes how to use a pointer to reference a button. A button is
(from the language’s point of view) nothing more than a variable. Although
the examples in this section use pointers to reference buttons, the concepts
presented apply to the use of all types of pointers.

Let’s say that you have a number of buttons in your layouts that need to be enabled
or disabled. Each button has a different condition associated with it that is TRUE or
FALSE. The condition says whether to disable or enable the button. You could use
a test like this one, each time you need to enable or disable the button:

If (Condition) * If the condition is TRUE...
ENABLE BUTTON (My Button) " enable the button

Else " Otherwise...
DISABLE BUTTON (My Button) * disable the button

End if

You would need to use a similar test for every button you set, with only the name
of the button changing. To be more efficient, you could use a pointer to reference
each button and then use a subroutine for the test itself.

You must use pointers if you use a subroutine, because you cannot refer to the
button’s variables in any other way. For example, here is a subroutine called
Set Button, which references a button with a pointer:

* $1 — Boolean. If TRUE, enable the button. If FALSE, disable the button.
* $2 — Pointer to a button.

If ($1) * If the condition is TRUE...
ENABLE BUTTON ($2») " enable the button

Else * Otherwise...
DISABLE BUTTON ($2») * disable the button

End if

You can call the Set Button subroutine as follows:

Set Button (Test1; »Button1)
Set Button (Test2; »Button2)

CHAPTER 9: ARRAYS AND POINTERS

89



Q0

Using Pointers to Files

Anywhere that the language expects to see a file, you can use a pointer to reference
the file. A pointer to a file is primarily used as the first argument to a command that
operates on a file.

You create a pointer to a file by using a line like this:

FilePtr := »[File1]

You can also get a pointer to a file by using the File command. For example,
FilePtr := File (1)

See the section “Determining the Database Structure,” in Chapter 16, for more
information on the File command. You can use the referenced file in commands,
like this:

DEFAULT FILE (FilePtr»)

Using Pointers to Fields

Anywhere that the language expects to see a field, you can use a pointer to reference
the field.

You create a pointer to a field by using a line like this:
FieldPtr := »[File1]Field2

You can also get a pointer to a field by using the Field command. For example,

Foll FilePtr := Field (1; 2)

See the section “Determining the Database Structure,” in Chapter 16, for more
information on the Field command. You can use the referenced field in commands,
like this:

SET FONT (FieldPtr»; "Geneva")

Using Pointers to Array Elements

You can create a pointer to an array element. For example, the following lines create
an array, and assign a pointer to the first array element to a variable called ElemPtr:

ARRAY REAL (Arr; 10) * Create an array
ElemPtr := »Arr{1} * Create a pointer to the array element

You could use the pointer to assign a value to the element, like this:

ElemPtr» := 8



LANGUAGE

Using Pointers to Arrays

You can create a pointer to an array. For example, the following lines create
an array, and assign a pointer to the array to a variable called ArrPtr:

ARRAY REAL (Arr; 10) * Create an array
ArrPtr := »Arr * Create a pointer to the array

It is important to understand that the pointer points to the array; it does not point
to an element of the array. For example, you might use the pointer from the
preceding lines like this:

SORT ARRAY (ArrPtr»; >) * Sort the array

If you need to refer to the fourth element in the array by using the pointer, you
do this:

ArrPtr»{4} := 84
This method is different from using an array of pointers. See the next section for

a discussion of this technique.

Using an Array of Pointers

It is often useful to have an array of pointers that reference a group of related objects.

One example of such a group of objects is a grid of variables in a layout. Each
variable in the grid is sequentially numbered, for example: Varl, Var2,..., Varl0.
You often need to reference these variables indirectly with a number. If you create
an array of pointers, and initialize the pointers to point to each variable, you can
then easily reference the variables. For example, to create an array and initialize
each element, you could use the following lines:

ARRAY POINTER (Vars; 10) * Create an array to hold 10 pointers

For ($i; 1; 10) " Loop once for each variable
Vars{$i} := Get pointer ("Var" + String ($i)) - " Initialize the array element

End for ¢

The Get pointer function returns a pointer to the named object.

To reference any of the variables, you use the array elements. For example, to fill
the variables with the next ten dates (assuming they are variables of the date type),
you could use the following lines:

For ($i; 1; 10) / * Loop once for each variable
Vars{$i}» := Current date + $i — 1 * Assign the dates
End for

CHAPTER 9: ARRAYS AND POINTERS 91



92

Setting a Button Using a Pointer

If you have a series of related radio buttons in a layout, you often need to set
them quickly. It is inefficient to directly reference each one of them by name.
Figure 9-10 shows five radio buttons named Button1, Button2,..., Button5.

() Buttoni
(O Button2
{ Button3
{7 Button4
() Button5

Figure 9-10
Five radio buttons

In a series of radio buttons, only one radio button is on. The number of the radio
button that is on can be stored in a numeric field. For example, if the field called
Setting contains 3, then Button3 is set to 1. In your layout procedure, you could
use the following code to set the button:

If (Before)
Case of * Test Setting which is a field
: (Setting = 1) * If Setting is TRUE...
Button1 =1 * turn on the radio button, and so on
: (Setting = 2)
Button2 = 1
: (Setting = 3)
Button3 := 1
: (Setting = 4)
Button4 := 1
: (Setting = 5)
Button5 := 1
End case
End if

For each radio button, a separate case must be tested. This could be a very long
procedure if you have many radio buttons in your layout. Fortunately, you can
use pointers to solve this problem.



LANGUAGE

You can use the command Get pointer to return a pointer to a radio button (or any
button). The following example uses such a pointer to reference the radio button
that needs to be set. Here is the improved code:

If (Before) i
$P := Get pointer ("Button" + String (Setting)) " Get the pointer to the radio button
$P» =1 " Turn on the radio button

End if

The number of the set radio button needs to be stored in the field called Setting.
This is done by a one-line script for each radio button. For example, here is the
script for Button3:

Setting := 3

Passing Pointers to Procedures

You can pass a pointer as a parameter to a procedure. Inside the procedure, you
can modify the object referenced by the pointer.

For example, the following procedure, Take Two, takes two parameters which
are pointers. It changes the object that the first parameter references to uppercase
characters, and the object that the second parameter references to lowercase
characters. Here is the procedure:

* $1 — Pointer to a string. Change this to uppercase.
* $2 — Pointer to a string. Change this to lowercase.
$1» := Uppercase ($1»)
$2» = Lowercase ($2»)

Notice that the procedure does not return a value.

The following line uses the Take Two procedure to change a field to uppercase
characters and a variable to lowercase characters:

Take Two (»[My File]My Field; »My Var)

If the field, [My File]My Field, contained the string "jones", it would be changed
to the string "JONES". If the variable, My Var, contained the string "HELLO", it
would be changed to the string "hello".

In the Take Two procedure (and. in fact, whenever you use pointers). it is important
that the data type of the object being referenced is correct. In the example just given.
the pointers must point to an object that contains a string.

CHAPTER 9: ARRAYS AND POINTERS 93



94

Pointers to Pointers

Pointers can reference other pointers. Consider this example:

My Var := "Hello"

Point One := »My Var
Point Two := »Point One
ALERT ((Point Two»)»)

It displays an alert box with the word Hello in it. To begin with, the example
illustrates the complexities inherent in the use of pointers. You must be very
aware of where and to what a pointer is pointing.

Here is an explanation of each line of the example. -

My Var := "Hello"

This line simply puts the string "Hello" into the variable My Var.
Point One := »My Var

Point One now contains a pointer to My Var.

Point Two:= »Point One

Point Two (a new variable) contains a pointer to Point One, which in turn points
to My Var (tricky, huh?).

Point Two»» := "Goodbye"

Now it gets really interesting. Point Two» references the contents of Point One,
which in turn references My Var. Point Two»» references the contents of the
location referenced by the pointer in Point One. Therefore Point Two»» simply
references the contents of My Var. So in this case, My Var is assigned "Goodbye".

ALERT ((Point Two»)»)

Finally, we can access the contents of My Var with the above statement. Here,
(Point Two»)» gets the contents of My Var. Notice that this statement uses a
slightly different syntax from that used to put information into My Var. This line
puts "Hello" into My Var:

Point Two»» :="Hello"
This line gets "Hello" from My Var and puts it into New Var:

New Var := (Point Two»)»



LANGUAGE DEFINITION




96




DEFINITION

LANGUAGE DEFINITION



98

LANGUAGE DEFINITION

This part of the manual formally defines the components that make up the
4th DIMENSION language. It covers

m identifiers

m data types

®m constants

m  operators

m controlling procedure flow
Identifiers

This section describes the conventions for naming various objects in the
4th DIMENSION language. The names for all objects follow these rules:

A name must begin with an alphabetic character.

Thereafter, the name can include alphabetic characters, numeric characters,
the space character, and the underscore character.

Periods, slashes, and colons are not allowed.
Characters reserved for use as operators, such as * and +, are not allowed.
4th DIMENSION will clip any trailing spaces.

Files

You denote a file by placing its name between brackets. A filename can contain up

to 15 characters.

Filenames ~ Filenames in Code

[Orders] DEFAULT FILE ([Orders])

[Clients] INPUT LAYOUT ([Clients]; "Entry")
[Letters] ADD RECORD ([Letters])



DEFINITION

Fields

You denote a field by first specifying the file to which the field belongs.
The field’s name immediately follows the filename. A field name can contain
up to 15 characters.

Field Names Field Names in Code

[Orders]Total [Orders]Total := Sum ([Line]Amount)
[Clients]Name SEARCH ([Clients]; [Clients]Name = "Smith")
[Letters]Text Capitalize ([Letters]Text)

If you are specifying a field in a file procedure, layout procedure or script of the file,
you do not need to specify the filename.

Field Names Field Names in Code

Total Total := Sum ([Line]Amount)

Name SEARCH ([Clients]; Name = "Smith")
Text Capitalize (Text)

Subfiles

You denote a subfile by first specifying the file to which the subfile belongs. The file
is the parent file for the subfile. The subfile’s name immediately follows the
filename. A subfile name can contain up to 15 characters.

Subfile Names Subfile Names in Code

[People]Children ALL SUBRECORDS ([People]Children)
[Clients]Phones ADD SUBRECORD ([Clients]Phones; "Add One")
[Letters]Keywords NEXT SUBRECORD ([Letters]Keywords)

A subfile is treated as a type of field; it therefore follows the same rules as a field
when used in a layout. If you are specifying a subfile in a file procedure, layout
procedure, or script of the parent file, you do not need to specify the parent filename.

Subfile Names Subfile Names in Code

Children ALL SUBRECORDS (Children)

Phones ADD SUBRECORD (Phones; "Add One")
Keywords NEXT SUBRECORD (Keywords)

CHAPTER 10: LANGUAGE DEFINITION 99



100

Subfields

You denote a subfield in the same way as a field. You denote the subfield by first

specifying the subfile to which the subfield belongs. The subfield’s name follows,
and is separated from the subfile name by an apostrophe ('). A subfield name can

contain up to 15 characters.

Subfield Names Subfield Names in Code

[People]Child'Name [People]Child'Name := Uppercase ([People]Child'Name)
[Clients]Phones'Number [Clients]Phones'Number := "408 555-1212"
[Letters]Keywords'Word Capitalize ([Letters]Keywords'Word)

If you are specifying a subfield in a subfile procedure, layout procedure, or script of
the subfile, you do not need to specity the subfile name.

Subfield Names Subfield Names in Code
Name Name := Uppercase (Name)
Number Number := "408 555-1212"
Word Capitalize (Word)
Global Variables

You denote a variable by using its name. A global variable name can contain up
to 11 characters.

Global Variable Names Global Variable Names in Code

Grand Total Grand Total := Sum ([Account]Amount)
Button1 If (Button1 = 1) L
My Var My Var := "Constant String”

Local Variables

You denote a local variable with a dollar sign ($) followed by its name.
A local variable name can contain up to 11 characters, not including the $.

Local Variable Namesr » Local Variable Namesiip Code
$i For ($i; 1; 100)

$Temp Var If ($Temp Var = "No")

$My String $My String := "Hello there"



DEFINITION

Arrays

You denote an array by using its name. An array name can contain up
to 11 characters.

Array Names Array Names in Code

Items ARRAY TEXT (ltems; 20)
Keyword SORT ARRAY (Keyword; >)
Files COPY ARRAY (Files; Scrollable)

You reference an element of an array by using the curly braces ({...}).
The element referenced is denoted by a numeric expression.-

Array Elements Array Elements in Code

Items{$i} Items{$i} := [People]Name
Keyword{3} If (Keyword{3} = "Stop")
Files{$Name} My File := Files{$Name}

You reference an element of a two-dimensional array by using the curly braces
({...}). The element referenced is denoted by two numeric expressions in two
sets of curly braces.

Array Elements Array Elements in Code
Item{$i}{$j} ltem{$i}{$j} := [People]Name
Keyword{3}{2} If (Keyword{3}{2} = "Stop")
Files{$Name1}{$Name2} My Field := Files{$Name1}{$Name2}
Layouts

You denote a layout by using a string expression that represents its name.
A layout name can contain up to 15 characters.

Layout Names Layout Names in Code

"Input" INPUT LAYOUT ([People]; "Input")

"Output” OUTPUT LAYOUT ([People]; "Output")
"Note box" + String ($i) DIALOG ([Storage]; "Note box" + String ($i))

CHAPTER 10: LANGUAGE DEFINITION 101



102

Procedures and Functions

You denote a procedure or function by using its name. A procedure name can
contain up to 15 characters.

Procedure Names Procedure Names in Code

New Client If (New Client)

Delete Dups Delete Dups

Capitalize APPLY TO SELECTION (Capitalize)

Procedures and functions can accept parameters (arguments). The parameters are
passed to the procedure or function in parentheses, following the procedure or
function. Each parameter is separated from the next by a semicolon.

P_rgggdure Names Parameters Passed to Procedures

Drop Spaces [People]Name := Drop Spaces ([People]Name)
Creator Creator (1; 5; Nice)

Dump Clone := Dump ("is"; "the"; "it")

The parameters are available within the called procedure or function as
consecutively numbered local variables: $1, $2,..., $n.

A function returns a value. Inside the function, the local variable $0 contains the
value to be returned.

External Procedures, Functions, and Areas

You denote an external procedure, function, or area by using its name.
An external procedure name can contain up to 15 characters.

External Procedure Names 7 External Procedures in Code

4D Word 4D Word

Mini Connect Mini Connect

Parse Words [People]Name := Parse Words ([People]Name)
Sets

You denote a set by using a string expression that represents its name. A set name
can contain up to 80 characters.

Set Names Sets in Code

"Records to be deleted" USE SET ("Records to be deleted")
"Customer Orders" CREATE SET ("Customer Orders")
"Selection"+ String ($i) Records in set ("Selection"+ String ($i))



DEFINITION

Summary of Naming Conventions

Table 10-1 summarizes 4th DIMENSION naming conventions.

Table 10-1

4th DIMENSION naming conventions

Type Length Example
File 15 [File1]

Field 15 [File1]Field1
Subfile 15 [File1]Subfile
Subfield 15 [File1]Subfile'Subfield
Global variable 11 Variable
Local variable 11 $Local
Layout 15 "Layout"
Array 11 Array
Procedure 15 Procedure
External procedure 15 External
Set 80 "Set"

Resolving Naming Conflicts

If a particular object has the same name as another object of a different type
(for example, if a field is named Person and a variable is also named Person),
4th DIMENSION uses a priority system to identify the object. It is up to you to
ensure that you use unique names for the parts of your database.

4th DIMENSION identifies names used in procedures in the following order:
Fields

Commands

Procedures

External procedures

LA

Variables

For example, 4th DIMENSION has a built-in function called Date. If you
named a procedure Date, 4th DIMENSION would recognize it as the built-in
function Date, and not as your procedure. This would prevent you from
calling your procedure.

CHAPTER 10: LANGUAGE DEFINITION 103



#

(1 -
7775(;}/1/0&

Data Types

A variable or expression can be one of seven data types:

string

numeric (number)
date

time

Boolean

picture

pointer

The first six data types are described in this section. Pointers are described in
Chapter 9, in Part I of this manual.

~

String

® A string expression is abbreviated string in the manuals.

m A string is composed of characters.

s Each character can be any of the 256 ASCII characters supported by the
Macintosh, although only some of the characters can be displayed.
See Appendix D for a table containing the Macintosh ASCII characters.

®m A string may contain from 0 to 32,000 characters.

m  Strings are also referred to as text.

m Strings are converted automatically to the field types Alpha and Text.

Numeric

® A numeric expression is abbreviated number in the manuals.

m A number is any number with up to 19 significant digits.

m The value can be between +1e1022 and —1e1022.

m  Numbers are stored internally as Macintosh extended reals.

m  Numbers are converted automatically to the field types Integer,
Long Integer, and Real.

Date
A date expression is abbreviated date in the manuals. " & /00
A date can be in the range of 1/1/100 to 12/31/32,767. I/ “VJZJ, 3 ZLF

f(\“,,* liciow / }Ah /:

PO /MM Yy -

104

A date is ordered month/day/year. /1M / DD/ C‘/QG 8
If a year is given as two digits, it is assumed to be in the 1900’s.



DEFINITION

Time

® A time expression is abbreviated fime in the manuals.

® A time can be in the range of 00:00:00 to 596,000:00:00.

® A time is ordered hour:minute:second.

m Times are in 24-hour format.

® A time value can be treated as a number with no conversion. The number
returned from a time is the number of seconds that time represents.

Boolean

m A Boolean expression is abbreviated Boolean in the manuals.
® A Boolean expression can be either TRUE or FALSE.

Picture

m A picture expression is abbreviated picture in the manuals.

m A picture can be any Macintosh picture of type PICT or PICT 2. In general,
these types include any picture that can be put on the Clipboard.

Converting Data Types

The language contains functions to convert between data types where such
conversions will be meaningful. Table 10-2 lists the data types, the types to
convert to, and the commands used.

Table 10-2
Commands that convert data types

, Convert | Convert | Convert Convert

' Datatype toString |to Number toDate  to Time

!’ String | : Num Date C Time |
Number | String ‘
Date 1 String [ | .
Time String | | 1

| Boolean ‘ ~ Num 1

Note: Time values can be treated as numbers with no conversion.

CHAPITER 10: LANGUAGE DEFINITION 105



106

Constants

A constant is an expression that has a fixed value. Constants can be of
four data types:

m  string

® numeric
m date

m time

String Constants

A string constant is enclosed in double, straight quotation marks ("...").
Here are some examples of string constants,

"Add Records"
"No records found."
"Invoice"

An empty string is specified by two quotation marks with nothing
between them ("").

Numeric Constants

A numeric constant is written as a real number.
Here are some examples of numeric constants,

27
123.76
.0076

Negative numbers are specified with the negation symbol (—). For example:

=27
-123.76
-.0076

Numbers can be specified with scientific notation, using an e, followed
optionally by the negation symbol for a negative exponent, and completed
with the exponent. For example,

2.7el
1.2376e+2
7.6e-3



DEFINITION

Date Constants

A date constant is enclosed in exclamation marks (!...!).

A date is ordered month/day/year, with a slash (/) setting off each part.
;s f//t,y ol 45 dey fatontt | veqr
Here are some‘examples of date constants,

11/1/76!
14/4/04!
112/25/89!

An empty date is specified by !00/00/00!.

A two-digit year is assumed to be in the 1900’s.

Time Constants

A time constant is enclosed in time symbols (...T). (Press Option-t to get the time
symbols.)

A time is ordered hour:minute:second, with a colon (:) setting off each part.
Times are specified in 24-hour format.

If the minute or second is omitted, it is assumed to be zero. For example, 17 is equal to
T1:001 which is equal to 701:00:00%.

Here are some examples of time constants,

+01:00:00t
101:01:001
+13:01:59%

CHAPTER 10: LANGUAGE DEFINITION 107



Operators

Operators are symbols used to specify operations to be performed between
expressions. Operators perform calculations on numbers, dates, and times.
They perform string operations, Boolean operations on logical expressions,
and specialized operations on pictures. Operators combine simple expressions
to generate new expressions.

Precedence

The order in which an expression is evaluated is called precedence. 4th
DIMENSION has a strict left-to-right precedence. For example,

3+4*5

returns 35 because the expression is evaluated as 3 + 4, giving 7, which is then
multiplied by 5, with the result 35.

Parentheses can be used to override the left-to-right precedence. For example,
3+ (4+*5)

returns 23 because the expression (4 * 5) is evaluated first, because of the
parentheses. The result is 20, which is then added to 3 for the final result of 23.

Parentheses can be nested inside other sets of parentheses. Be sure that each
left parenthesis has a matching right parenthesis.

You must take care to ensure proper evaluation of expressions. Lack of or
incorrect use of parentheses can cause either unexpected results or invalid
expressions.

The Assignment Operator

The assignment operator (:=) copies the value of the expression to the right of
the assignment operator into the variable or field to the left of the operator.

For example, the following line places the value 4 (the number of characters in
the word Acme) into the variable named MyVar. MyVar is then typed as
numeric.

MyVar := Length ("Acme")



DEFINITION

String Operators

Table 10-3 shows the string operators. An expression that uses a string operator
returns a string.

Table 10-3

String operators

Operation Symbol Syntax Returns Example
Concatenation + string + string string "abc" + "def" > "abcdef"
Repetition * string * number  string "ab" * 3 > "ababab"

Numeric Operators

Table 10-4 shows the numeric operators. An expression that uses a numeric
operator returns a number.

The modulo operator (%) divides the first number by the second number and
returns a whole number remainder. Here are some examples.

10 % 2 returns 0 because 10 is evenly divided by 2.
10 % 3 returns 1 because the remainder is 1.

10.5 % 2 returns 0 because the remainder is not a whole number.

Table 10-4

Numeric operators

Operation Symbol Syntax Returns Example
Addition - number + number number 2+3 > 5
Subtraction - number — number number 3-2 > 1
Multiplication * number * number number 5%*2 > 10
Division / number / number number 5/2 > 25
Longint division \ number \number number 5\2 > 2
Modulo % number % number number 5% 2 > 1
Exponentiation N number A number number 243 > 8

CHAPTER 10: LANGUAGE DEFINITION 109



110

Date Operators

Table 10-5 shows the date operators. An expression that uses a date operator returns
a date or a number, depending on the operation. All date operations will result in an
accurate date, taking into account the change between years and leap years.

Table 10-5
Date operators

Operation Symbol Syntax Returns Example

Date difference - date — date number !1/20/90! — 11/1/90! > 19 (days)
Day addition 4 date + number date 11/20/90! + 9 > 11/29/90!

Day subtraction - date — number date © 11/20/90! -9 - 11/11/90!

Time Operators

Table 10-6 shows the time operators. An expression that uses a time operator returns
a time or a number, depending on the operation.

Table 10-6

Time operators

Operation Symbol Syntax Returns Example

Addition o time + time time 102:03:041 + 101:02:031 > 103:05:07F
Subtraction - time — time time 102:03:041 — 101:02:031 > 101:01:011
Addition + time + number number 102:03:041 + 65 > 7449

Subtraction - time — number number 102:03:041 — 65 > 7319
Multiplication * time * number number 102:03:041 * 2 > 14768

Division / time / number number 102:03:04t1/2 > 3692

Longint division \ time \ number number 102:03:041\2 > 3692

Modulo % time % number number 102:03:041 %2 > 0



DEFINITION I

Comparison Operators

Table 10-7 though Table 10-11 show the comparison operators as they apply to
string, numeric, date, time, and pointer expressions. An expression that uses a
comparison operator returns a Boolean value, either TRUE or FALSE.

Here are some notes on string comparisons:
m Strings are compared on a character-by-character basis.

m  When strings are compared, the case of the characters is ignored; thus, "a"="A"
returns TRUE. To test if the case of two characters is different, compare their
ASCII codes. For example, the following statement returns FALSE:

Ascii ("A") = Ascii ("a")

m The wildcard character (@) can be used in any string comparison. It will match
any number of characters. So, for example, the following expression is TRUE:
"abcefghij" = "abc@"

The wildcard must be used in the comparing expression (the expression on the
right side). The following expression is FALSE:

"abc@" = "abcefghij"

Table 10-7

String comparison operators

Operation Symbol Syntax Returns Example

Equality = string = string Boolean "abc"="abc" - TRUE
"abc" = "abd" >~ FALSE

Inequality # string # string Boolean "abc" # "abd" >~ TRUE
"abc" # "abc" >~ FALSE

Greater than > string > string Boolean "abd">"abc" ~ TRUE
"abc" > "abc" > FALSE

Less than < string < string Boolean "abc" < "abd" -~ TRUE

"abc" < "abc" > FALSE
Greater than
or equal to >= string >= string Boolean "abd" >="abc" - TRUE
"abc" >= "abd" > FALSE

\

Less than
or equal to <= string <= string Boolean "abc" <="abd" -~ TRUE
"abd" <= "abc" > FALSE

CHAPTER 10: LANGUAGE DEFINITION 111



Table 10-8

Numeric comparison operators

Operation Symbol Syntax Returns Example
Equality = number = number Boolean 10=10 ~ TRUE
10=11 > FALSE
Inequality # number # number Boolean 10#11 ~ TRUE
10#10 >~ FALSE
Greater than > number > number Boolean 11>10 - TRUE
10> 11 > FALSE
Less than < number < number Boolean 10<11 > TRUE
 11<10 > FALSE
Greater than
or equal to >= number >= number Boolean 11 >=10 -~ TRUE
10 >= 11 >~ FALSE
Less than
or equal to <= number <= number Boolean 10<=11 >~ TRUE
11 <=10 >~ FALSE
Table 10-9
Date comparison operators
Operation Symbol Syntax Returns Example
Equality = date = date Boolean 11/1/89! = 11/1/89! ~ TRUE
11/20/89! = 11/1/89! -~ FALSE
Inequality # date # date Boolean 11/20/89! # 11/1/89! ~ TRUE
11/1/89! # 11/1/89! -~ FALSE
Greater than > date > date Boolean 11/20/89! > 11/1/89! ~ TRUE
11/1/89! > 11/1/89! > FALSE
Less than < date < date Boolean !1/1/89! < 11/20/89! ~ TRUE
11/1/89! < 11/1/89! >~ FALSE
Greater than
or equal to >= date >= date Boolean 11/20/89! >= 11/1/89! -~ TRUE
11/1/89! >= 11/20/89! ~ FALSE
Less than
or equal to <= date <= date Boolean 11/1/89! <= 11/20/89! >~ TRUE

11/20/89! <= 11/1/89! >~ FALSE



DEFINITION

Table 10-10

Time comparison operators

Operation Symbol Syntax Returns Example

Equality — time = time Boolean 101:02:03t1 = 101:02:03+ >~ TRUE
101:02:031 = 101:02:041 >~ FALSE

Inequality # time # time Boolean 101:02:03t # 101:02:041 ~ TRUE
101:02:031 # 101:02:031 ~ FALSE

Greater than > time > time Boolean 101:02:041 > 101:02:031 >~ TRUE
101:02:03t1 > 101:02:031 >~ FALSE

Less than < time < time Boolean 101:02:031 < 101:02:041 ~ TRUE

101:02:031 < 101:02:031 > FALSE
Greater than '
or equal to >= time >= time Boolean 101:02:03t1 >= 101:02:031 >~ TRUE
101:02:031 >= 101:02:041 > FALSE

Less than

or equal to <= time <= time Boolean 101:02:03t1 <= 101:02:031 >~ TRUE
101:02:041 <= 101:02:031 >~ FALSE

Table 10-11

Pointer comparison operators

Operation Symbol Syntax Returns Example

Equality = pointer = pointer  Boolean (»Object) = (»Object) > TRUE

(

(»Object1) = (»Object2) > FALSE
Inequality # pointer # pointer  Boolean (»Object1) # (»Object2) >~ TRUE

(»Object) # (»Object) > FALSE

CHAPTER 10: LANGUAGE DEFINITION 113



Logical Operators

4th DIMENSION supports two logical operators: conjunction (AND) and disjunction (OR).
Both of these operators work on Boolean expressions. A logical AND returns TRUE if both
expressions are TRUE. A logical OR returns TRUE if at least one of the expressions is TRUE.
See Table 10-12.

'A"—"B' | (15 #3) > TRUE
| (15 = 3) > FALSE

Table 10-12
Logical operators
Operation Symbol Syniéx Returns 7Examp|e
Conjunction (AND) & Boolean & Boolean Boolean ~("A"="A") & (15#3) >~ TRUE
- ("A"="B") & (15#3) > FALSE
("A" ="B") & (15 = 3) » FALSE
Disjunction (OR) | Boolean | Boolean Boolean ("A"="A")|(15#3) -~ TRUE
( )
("A )

="B"

Figure 10-1 shows the truth table for the AND logical operator. The truth table shows the two
possible values for either argument to the operator, and the result in each case.

Exprl  Expr2  Exprl & Expr2

TRUE | TRUE TRUE
TRUE | FALSE FALSE
FALSE ' TRUE FALSE

FALSE ; FALSE FALSE

Figure 10-1
Truth table for the AND operator (&)

Figure 10-2 shows the truth table for the OR logical operator.

Exprl  Expr2  Exprl | Expr2

TRUE |TRUE | TRUE

TRUE | FALSE .~ TRUE
FALSE | TRUE | TRUE

|

FALSE | FALSE | FALSE

Figure 10-2
Truth table for the OR operator (|)

114



DEFINITION

Picture Operators

Table 10-13 summarizes 4th DIMENSION’s picture operators. Table 10-14 shows
examples of each of the picture operators. The results are shown for both the Truncated
and On Background formats.

Table 10-13

Picture operators

Operation Symbol Syntax Action

Horizontal concatenation +  pictl + pict2 Move pict2 to the right of pictl

Vertical concatenation / pictl / pict2 Move pict2 to the bottom of pictl
Exclusive superimposition &  pictl & pict2 Perform exclusive OR on pictl and pict2
Inclusive superimposition | pictl | pict2 Put pictl on top of pict2

Horizontal move +  picture + number Move picture horizontally number pixels
Vertical move / picture / number  Move picture vertically number pixels
Resize * picture * number Resize picture by number percent
Horizontal scaling *+  picture ¥+ number Resize picture horizontally by number percent
Vertical scaling */  picture ¥/ number Resize picture vertically by number percent
Table 10-14

Examples of picture operators

Operation Example Picture(s) On Background Truncated

Horizontal concatenation  Pict1 + Pict2 I -

Vertical concatenation Pict1 / Pict2 I ‘

Exclusive superimposition Pict1 & Pict2 I .

Inclusive superimposition Pict1 | Pict2 I &

TR F D
s A 21 Sl

CHAPTER 10: LANGUAGE DEFINITION 115



116

Table 10-14 (continued)
Examples of picture operators

Truncated

Operation Example Picture(s) On Background

Horizontal move right Pict! + 5 y % A

Horizontal move left Pict1 + (-5) y 9 y %

Vertical move down Pict1 /5 y % VN y 9
r_ 9

Vertical move up Pict1 / (-5) A y 9

Resize larger Pict * 2 y % A ‘
(& |

Resize smaller Pict * .5 y % -~

Horizontal scale larger Pict *+ 2 y - P -

Horizontal scale smaller  Pict *+ .5 y 9 A

Vertical scale larger Pict */ 2 y % A
U

Vertical scale smaller Pict */ .5 y - g




Controlling Procec

This section describes statements that control the flow of program execution,
including conditional execution and looping statements. See Chapter 11 for a
description of the format used to present these statements.

If...Else...End if

If (Boolean)

statement(s)
Else
statement(s)
End if
Parameter Type Description
Boolean Boolean Test expression

If...Else...End if is used to control procedure execution based on the result of a test.
If Boolean is TRUE, the next statement(s) are executed until the Else or End if is reached.

The Else and the statement(s) following it are optional. If an Else is included,
the statement(s) following it are executed only if Boolean is FALSE.

The End if indicates the end of the If test.

If statements can be nested within If statements, as long as the close of an inner If
statement does not appear after the close of an outer If statement. All If statements
must begin and end within a given routine. (You cannot distribute parts of an If
statement over two or more routines.)

F The following example is not realistic, but is used only for illustration. The first line

presents the user with a confirmation box. If the user clicks the OK button, then the
OK system variable is set to 1 and the ALERT following the If statement is executed.
If the user clicks the Cancel button, the OK system variable is set to 0 and the ALERT
following the Else statement is executed.

CONFIRM ("Press OK or Cancel.") ; * Get a response
If (OK =1) * If the user pressed OK
ALERT ("You pressed OK.") " The (OK = 1) was TRUE
Else * The user pressed Cancel
* This Else is optional
ALERT ("You pressed Cancel.") * The (OK = 1) was FALSE
End if * Always need an End if

CHAPTER 10: LANGUAGE DEFINITION 777



DEFINITION

Controlling Procedure Flow

This section describes stater Al
including conditional execu
description of the format us

If...Else...End if

If (Boolean) Test 1 Test
Statement(s)

Else . : f
statement(s) (f ach Cext ''mus € De ;./ 08 CA

End if

X % /, [ |
Parameter Type IN ‘bZ »’}-L ) I tuncCiow.
Boolean Boolean

If...Else...End if is used to cor (e o R ¥ N .
If Boolean is TRUE, the nex KR arises o él‘ eraise

ed.
The Else and the statement(s
the statement(s) following it

The End if indicates the end of the If test.

If statements can be nested within If statements, as long as the close of an inner If
statement does not appear after the close of an outer If statement. All If statements
must begin and end within a given routine. (You cannot distribute parts of an If
statement over two or more routines.)

¥ The following example is not realistic, but is used only for illustration. The first line
presents the user with a confirmation box. If the user clicks the OK button, then the
OK system variable is set to 1 and the ALERT following the If statement is executed.
If the user clicks the Cancel button, the OK system variable is set to 0 and the ALERT
following the Else statement is executed.

CONFIRM ("Press OK or Cancel.") é * Get a response
If (OK =1) * If the user pressed OK
ALERT ("You pressed OK.") " The (OK = 1) was TRUE
Else * The user pressed Cancel
* This Else is optional
ALERT ("You pressed Cancel.") * The (OK = 1) was FALSE
End if * Always need an End if

CHAPTER 10: LANGUAGE DEFINITION 117



Case of...Else...End case

Case of
: (case)
statement(s)
: (case)
statement(s)
Else
statement(s)
End case
Parameter Type Description
case Boolean Test expression

Case of evaluates a series of cases. Case of executes the statement(s) belonging to the
first and only the first TRUE case it encounters, even if a subsequent case is TRUE.
Procedure execution continues with the statement following End case.

An Else can be included as the last test before the End case. The statement(s)
following Else are executed only if all the cases are FALSE.

S} The following example is a common way to test for the execution phases of a
layout procedure, using Case of...End case to test for each phase.

Case of :
: (Before) " Before the layout is displayed
If (Entry date = 100/00/00!) " If itis a new record...
Entry date := Current date ." Set the current date
End if
: (During) ; " When the user does something
Case of * This ‘nested’ Case of will test user actions
: (Modified (Field1)) " If the field was modified...
Do Stuff
: (Modified (Field2))
Do Other Stuff
End case * End the nested case
: (After) v " When the user accepts the record
Post Tran " Global to post the transaction
End case

118



DEFINITION

While...End while

While (Boolean)

statement(s)
End while
Parameter Type Description
Boolean Boolean Test expression

While...End while is a loop that executes the statement(s) as long as Boolean is TRUE.
The value of Boolean is tested each time though the loop and is typically set by the
statement(s), otherwise, the loop will continue forever.

You can nest While statements within While statements, as long as the close of an
inner While statement does not appear after the close of an outer While statement.

While loops and Repeat loops are very similar. While loops test the value of
Boolean at the beginning of the loop, and Repeat loops test the value at the end.
Use a While loop if the loop should never be executed (not even once) if Boolean
is FALSE.

Because Boolean must be tested for every cycle of the loop, While loops are
necessarily slower than For loops.

/" The following example lets the user add records to a database. First it presents a

confirmation dialog box, asking the user if they want to add records. If the user
clicks the OK button, the OK system variable is set to 1 and the While loop is
entered. From then on, the loop is executed each time the user accepts a new record,
since accepting a record also sets the OK system variable to 1. If the user cancels

a record, the OK system variable is set to 0 and the loop ends.

CONFIRM ("Do you want to add new records?") * Ask the user

While (OK = 1) ¥ i * Loop while OK = 1
ADD RECORD

End while

CHAPTER 10: LANGUAGE DEFINITION 119



120

Repeat...Until L3

Repeat
statement(s)
Until (Boolean)

Parameter Type Description
Boolean Boolean Test expression

Repeat is a loop that executes the statement(s) until Boolean is FALSE. The value
of Boolean is tested each time through the loop and is typically set by the
statement(s), otherwise, the loop will continue forever.

Repeat differs from While in that it always executes the loop once, whereas

if Boolean is FALSE, While does not execute the loop at all. Use a Repeat loop
when you are depending on one of the statements executed to affect the value
of Boolean.

Because Boolean must be tested for every cycle of the loop, Repeat loops are
necessarily slower than For loops.

1/ The following example lets the user add records to a database. The loop is

executed each time the user accepts a new record, since accepting a record sets
the OK system variable to 1. If the user cancels a record, the OK system variable
is set to 0 and the loop ends.

Repeat
ADD RECORD
Until (OK = 0) Loop until OK = 0



DEFINITION

For...End for .
For (counter; start value; end value; {increment})
statement(s)
End for
Parameter Type Description
counter Variable (num) Variable to use as counter
start value Number Value with which to start counter
end value Number Value of counter to end loop
increment Number Increment amount

For...End for is a loop structure that executes statement(s) a specified number

of times. The counter parameter is used to control the loop, and its value is often
used by the statements inside the loop. The counter is initialized to start value and
is incremented after each execution of the loop, by the optional increment.

If increment is not specified, counter is incremented by 1. The loop ends

when counter is greater than end value.

If increment is specified, and it is a negative number, the counter is decremented
instead of incremented. In this case, the loop will end when counter is less than
end value.

The counter must be a numeric global or local variable. It cannot be an element of
an array. The start value, end value, and increment parameters do not need to be
whole numbers.

The counter may be modified by statements within the loop.
A For loop is faster than other types of loops.

* The following example simply loops from 1 to 100, displaying the current value of
the counter $i in a message.

For ($i; 1; 100) " Loop 100 times
Message (String ($i)) f ‘ - " Display the counter
End for

* The following example loops from 1 to 100, using an increment of .5. Again, the
counter is displayed in a message.

For ($i; 1; 100; .5) * Loop 200 times
Message (String ($i)) * Display the counter
End for

CHAPTER 10: LANGUAGE DEFINITION 121



122



I

PART

THE COMMANDS




124



COMMANDS
PART lll - The Commands

Part III of this manual describes the commands in the 4th DIMENSION language.
Part I1I is divided into eight chapters:

Chapter 11—Command Descriptions and Parameters

This chapter describes the format of command descriptions in Part III.

Chapter 12—Setting Defaults

This chapter defines the commands that are used to set the default file
and layouts. ‘

Chapter 13—Data Entry and Reporting

This chapter defines the commands that are used for data entry and creating
reports. These commands present information to the user both on screen and
when printing.

Chapter 14—Managing Data

This chapter defines commands that manage data. Data management includes
searching, sorting, importing, exporting, and working with subrecords.

Chapter 15—User Interface

This chapter defines commands used to manage the user interface. The
user interface includes messages, windows, menus, and sound.

Chapter 16—Advanced Commands

This chapter defines commands for advanced database design. Advanced design
includes managing sets, multi-user databases, transactions, documents, serial
communication, and passwords.

Chapter 17—Functions

This chapter defines all math, string, date, and time functions.

Chapter 18—Miscellaneous Commands

This chapter defines commands for working with variables, managing arrays,
controlling the execution of procedures, and getting information about
data objects.

125



126



COMMANDS

COMMAND DESCRIPTIONS
AND PARAMETERS




128

COMMAND DESCRIPTIONS AND PARAMETERS

This chapter explains the format used to describe commands in Part III. It also describes
the rules you must follow when specifying parameters to commands.

Command Descriptions

Each command description has five parts: “Description Heading”; “Command Syntax™;
“Parameters” (if any); “Description”; and “Example.” A command description may also
have a multi-user description. Figure 11-1 shows the descrlptlon of a command as it
appears in this manual.

Description Heading —————— Length

Command Syntax ————————Length (siring) ~ Number

Parameter Type Description
Parameters ——[: string String String whose length to return

l Length is used to find the length of sing. Length returns the number of characters
that are in the string.

Description

’Q‘ The following example illustrates the use of Length. The results are assigned to the
variable Result. The comments describe what Result is set to.

Example

Result := Length ("Topaz") " Result gets 5
Result := Length ("Citizen") " Result gets 7

Description Heading ——————— Substring

Command Syntax =t Substring (source; first char; {number of chars}) - String
Parameter Type Description
P source String String from which to get substring
arameters first char Number Position of first character
number of chars Number Number of characters to get

Substring returns the portion of source defined by first char and number of chars.
The first char parameter points to the first character in the string to return, and
number of chars specifies how many characters to return.

D escripti on If the sum of first char and number of chars exceeds 32,767, the results are undefined.

If first char plus number of chars is greater than the number of characters in the string,
or if number of chars is not specified, Substring returns the last character(s) in the string,
starting with the character specified by first char. If first char is greater than the number

. of characters in the string, Substring returns an empty string ("").

'v The following example illustrates the use of Substring. The results are assigned to
the variable Result. The comments describe what Result is set to.

Example
p Result ;= Substring ("08/04/62"; 4; 2) " Result gets "04"
Result := Substring ("Emergency"”; 1; 6) * Result gets "Emerge"
Result := Substring (var; 2) * Result gets all characters except the first
CHAPTER 17: FUNCTIONS 327
Figure 11-1

Command description as it appears in this manual



COMMANDS

The Description Heading

The description heading gives the name of the command name that is described. Similar
commands are grouped under one heading. In this case, each command name is given.

The Command Syntax

The command syntax specifies all the possible forms for each command in the
description. At the beginning of each command description, each form of the
command is shown in a syntax diagram. The name of each command is followed
by the command’s parameters. If the command is a function, the parameters are
followed by an arrow and then the data type of the value that the command returns.
Figure 11-2 shows an example of a syntax diagram.

Command Parameters Optional Returns a

Name Parameter Value Data Type
| | | |_ Returned

Substring (source; first char; {number of chars}) - String

Figure 11-2
A syntax diagram

The Parameters

A parameter is data passed to a command. Parameters are specified with descriptive
names printed in italic.

Below the syntax diagram, each parameter is listed in a parameter table, with its type
and a short description. If more than one command is described and the parameters to
each command are the same, there is only one parameter table. If more than one
command is described and the parameters to each command are different, there is a
parameter table following each command’s syntax diagram. If a command has more
than one form, there is a parameter table following each syntax diagram for the
command. Figure 11-3 shows how the parameters are described for a command.

Substring (source; first char; {number of chars}) - String

Parameter Type Description
source String String from which to get substring
first char Number Position of first character
number of chars Number Number of characters to get
Figure 11-3

Parameters for a command

CHAPTER 11: COMMAND DESCRIPTIONS AND PARAMETERS 129



130

If a parameter is optional, the parameter name is enclosed in curly braces
({...}) in the command syntax diagram. (See number of chars in Figure 11-3.)

If a parameter can be repeated (always optionally), the parameter is followed by
an ellipsis (...). The ellipsis is then followed by the parameter name and a
number indicating the number of times the parameter can be repeated. If a
parameter can be repeated an unlimited number of times, the number is N. For
example,

SAVE VARIABLE (document; variablel {;...; variableN})

The Description, Example, and Multi-user Parts

There are three parts which describe how to use the command: the description;
the example; and the multi-user description.

The description immediately follows the parameters.

/' The example is indicated with a marker like the one on this paragraph, and

follows the description. Most commands have an example. Some commands
have more than one example. If there is more than one example, each example
is separately indicated with a marker.

9 Some commands have special information regarding their use in a multi-user

environment. A multi-user description is indicated with a marker like the one
on this paragraph. A multi-user description follows the example.



COMMANDS | Il

Parameters to Commands

This section gives information about passing parameters to commands.

Specifying Parameters

When you specify parameters to commands, there are a number of rules you must
follow. Here is the list of rules:

m Parameters are surrounded by parentheses. For example, if [My File] is a
parameter to ADD RECORD, it is specified this way:

ADD RECORD ([My File])

m If a command has more than one parameter, the parameters are separated by
semicolons. This includes parameters that repeat. For example, if [My File] and
"Layout In" are parameters to INPUT LAYOUT, they are separated like this:

INPUT LAYOUT ([My File]; "Layout In")

m If an optional parameter is omitted, then any associated semicolon is also
omitted. For example, the second parameter for the Request function is
optional. Request without the second parameter is written like this:

Request (String1)
With the second parameter, the two parameters are separated by a semicolon,
and it is written like this:
Request (String1; String2)

m If there are no parameters, the parentheses are omitted. This is true both for
commands that never take parameters and for commands where the

parameters are optional. For example, ADD RECORD with a file parameter is
written this way:

ADD RECORD ([File]) Li

If the file parameter is omitted, the parentheses are also omitted, and the
command is written this way:

ADD RECORD

CHAPTER 11: COMMAND DESCRIPTIONS AND PARAMETERS 131



132

Parameter Types

Each parameter that is passed to a command has a specific type. Table 11-1 lists

the parameter types. It also gives examples, if appropriate, of each type as a

constant, an expression, and as a returned value from a command.

Table 11-1
Parameter Types

Example of Example of Example of
Symbol Description a Constant an Expression a Command
Array Array n/a ArrayName n/a
Boolean Boolean expression  n/a X<y ’ True
Date Date expression 112/25/89! 112/25/89! + 365 Current date
Docref Document reference n/a Var Open document (")
Field Field n/a [File1]Field2 Field (1; 2)»
File File n/a [File1] File (1)»
Number Numeric expression 1.5 Var + 10.5 Num ("123.1")
Picture Picture expression n/a PictureName + 5 n/a
Pointer Pointer expression n/a »Name Get pointer ("Name")
Statement  Logical line of code  Var =10 n/a n/a
String String expression "Hello" Var + "abc" String (123)
Subfield Subfield n/a [File1]Subfile'Subfield n/a
Subfile Subfile n/a [File1]Subfile n/a
Time Time expression 112:05:301 112:05:301 + 101:00:001  Current time
Variable Variable n/a VarName

Last object»



COMMANDS

SETTING DEFAULTS




134

SETTING DEFAULTS

The commands in this chapter set the default file and layouts that will be used by
other commands. Using these commands is equivalent to selecting files and
layouts in the User environment.

Setting the Default File

DEFAULT FILE

Many commands in the language require you to specify a file. You can specify the
file as the first parameter to the command—or you can set a default file with the
DEFAULT FILE command. The examples in this manual alternate between using a
default file and specifying the file in the commands.

DEFAULTFILE | (0

DEFAULT FILE (file)
Parameter Type Description
file File File to set as the default

DEFAULT FILE sets file as the default file.

There is no default file until the DEFAULT FILE command is executed. After a
default file has been set, any command that omits the file parameter will operate on
the default file. For example, consider this command:

INPUT LAYOUT ([File]; "layout")
If the default file is first set to [File], the same command could be written this way:
INPUT LAYOUT ("layout")

Setting a default file has two uses. The first is to simplify and clarify procedures.
Consider this example:

SEARCH ([Customers]; [Customers]Name = "Acme")
INPUT LAYOUT ([Customers]; "Add recs")
MODIFY RECORD ([Customers])

Specifying the default file results in a clearer procedure:

DEFAULT FILE ([Customers])
SEARCH ([Customers]Name = "Acme")
INPUT LAYOUT ("Add recs")

MODIFY RECORD



COMMANDS

The other reason for setting the default file is to create code that is not file specific.
Doing this allows the same code to operate on different files. For example, if you
needed a procedure to search, sort, and report on two files, you could write it

this way:

SEARCH ([File1])
SORT ([File1])
REPORT ([File1]; ")
SEARCH ([File2])
SORT ([File2))
REPORT ([File2]; ")

The same routine could be written as a global procedure called DoReport:

SEARCH
SORT
REPORT (")

The procedure would then be called by the following code:

DEFAULT FILE ([File1])
DoReport
DEFAULT FILE ([File2])
DoReport

You can also use pointers to files to write code that is not file specific. For more
information on this technique, see the section “Determining the Database Structure,”
in Chapter 16.

DEFAULT FILE does not allow the omission of filenames when referring to fields.
For example,

[My File]My Field := "A string"
could not be written as

DEFAULT FILE ([My File])
My Field := "A string"

simply because a default file had been set. However, you can omit the filename
when referring to fields in the file procedure, layout procedures, and scripts that
belong to the file.

In 4th DIMENSION., all files are “open™ and ready for use. DEFAULT FILE does not
“open™ a file. set a current file. or prepare the file for input or output. DEFAULT FILE is
simply a convenience during programming. to reduce the amount of typing and make
the code easier to read.

CHAPITER 12: SETTING DEFAULTS 135



136

' The following example first shows code without the use of DEFAULT FILE. The

example then shows the same code with the use of DEFAULT FILE. The code is a loop
commonly used to add new records to a database. The commands INPUT LAYOUT and
ADD RECORD both need a file as the first parameter.

INPUT LAYOUT ([Customers]; "Add Recs")

Repeat
ADD RECORD ([Customers])
Until (OK = 0)

Specifying the default file results in this code:

DEFAULT FILE ([Customers])
INPUT LAYOUT ("Add Recs")

Repeat
ADD RECORD
Until (OK = 0)

Specifying Layouts

INPUT LAYOUT OUTPUT LAYOUT

This section describes the commands used for specifying the input and output layout.
Layouts are used extensively in 4th DIMENSION. They are used for data enfry,
reporting, importing, exporting, and creating a user interface.

Input layouts are associated with commands that display only one record at a time,
generally for data entry. Output layouts are associated with commands that display
multiple records, usually in a list style, either on screen or to a printer.

The INPUT LAYOUT and OUTPUT LAYOUT commands specify which layouts will be
used for each file. Each file has a current input layout and a current output layout—
they are used by any command that requires a layout but does not specify one. The
layouts are designated in the Design environment by the letter / or O in the list of
layouts. The layouts specified in the Design environment will be used if you do not
specify different ones with INPUT LAYOUT or OUTPUT LAYOUT.

Both INPUT LAYOUT and OUTPUT LAYOUT simply designate which layouts to use;
they do not actually display the layouts.



COMMANDS § Il

INPUT LAYOUT

INPUT LAYOUT ({file}; layout)

Parameter Type Description
file File File for which to set the input layout
layout String Layout name

INPUT LAYOUT sets the current input layout for file to layout. Each file has its own
input layout. The layout must belong to file. (For information on creating layouts, see
the 4th DIMENSION Design Reference.) INPUT LAYOUT does not display the layout; it
just designates which layout is displayed or used by another command.

The default input layout is defined in the Design environment and is identified by the
letter / next to the layout name in the list of layouts. The default layout is used if
INPUT LAYOUT does not specify an input layout.

Input layouts are displayed by a number of commands. These commands are
generally used to allow the user to enter new data or modify old data.

The following commands all immediately display an input layout:

ADD RECORD DIALOG MODIFY RECORD
ADD SUBRECORD DISPLAY RECORD MODIFY SUBRECORD

Each of the following commands displays a list of records, using the output layout.
Each command then allows the user to double-click on a record, which displays the
input layout.

DISPLAY SELECTION MODIFY SELECTION

An input layout is also displayed if the user double-clicks in an included layout. In
this case, you must set the input layout in the Design environment, by assigning the
input layout (full-page layout) when creating the included area.

The input layout is also used by the following import commands:

IMPORT DIF IMPORT SYLK IMPORT TEXT

¥ The following example shows a typical use of INPUT LAYOUT. Note that although the

INPUT LAYOUT command appears immediately before the input layout is used, this is
not required, and in fact the command may be executed in a completely different
procedure.

DEFAULT FILE ([Companies]) " Set the default file
INPUT LAYOUT ("New Comp") " Select the layout for new companies
ADD RECORD " Add a new company

CHAPTER 12: SETTING DEFAULTS 137



138

OUTPUT LAYOUT

OUTPUT LAYOUT ({file}; layout)

Parameter Type Description
file File File for which to set the output layout
layout String Layout name

OUTPUT LAYOUT sets the current output layout for file to layout. Each file has its own
output layout. The layout must belong to file. (For information on creating layouts, see
the 4th DIMENSION Design Reference.) OUTPUT LAYOUT does not display the layout; it
just designates which layout is printed, displayed, or used by another command.

The default output layout is defined in the Design environment and is identified by the
letter O next to the layout name in the list of layouts. The default layout is used if
OUTPUT LAYOUT does not specify an output layout.

Output layouts are used by three groups of commands. One group displays a list of
records on screen, another group generates reports, and the third group exports data.

Each of the following commands displays a list of records, using an output layout:
DISPLAY SELECTION MODIFY SELECTION

An output layout can also be displayed in an included layout. In this case, you must set
the output layout in the Design environment, by assigning the output layout (multi-line
layout) when creating the included area.

You use the output layout when creating reports with the following commands:
PRINT LABEL PRINT SELECTION
Each of the following export commands also uses the output layout:

EXPORT DIF EXPORT SYLK EXPORT TEXT

F The following example shows a typical use of OUTPUT LAYOUT. Note that although the

OUTPUT LAYOUT command appears in the example immediately before the output layout
is used, this is not required, and in fact the command may be executed in a completely
different procedure.

INPUT LAYOUT ([Parts]; "Parts In") * Select the input layout
OUTPUT LAYOUT ([Parts]; "Parts List") * Select the output layout
MODIFY SELECTION ([Parts]) * This command uses both layouts



COMMANDS

REPORTING




140

DATA ENTRY AND REPORTING

You’ll use the commands in this chapter often when creating a custom database. They
allow the user to enter data and display it on screen, and to print reports. These
commands revolve around layouts. A layout is the primary tool used for entering data
and printing reports.

Performing Data Entry and Displaying Records

ADD RECORD DISPLAY SELECTION DISPLAY RECORD
MODIFY RECORD MODIFY SELECTION

The commands in this section display records on-screen, both for data entry and for
viewing in a list.

Data entry is one of the fundamental roles of a database. Data entry is the process by
which a user enters data into the database. The first two commands in this section are
the most common commands used for data entry. They act just like the New Record

and Modify Record menu items in the User environment.

During data entry, input layouts are used to enter information. Input layouts can have
multiple pages, with each page displaying different data, or the same data in different
ways. For more information on input layouts, see the 4th DIMENSION Design
Reference.

Records in 4th DIMENSION are commonly displayed in a list, using the current output
layout. An example is the list of records displayed in the User environment. The list of
records allows the user to scroll through the records, examining and selecting them as
desired. The two selection commands are used to display the records in this list style.

The other command in this section, DISPLAY RECORD, is used to display a single
record. This command uses the input layout to display the record.

Changing the Current Record During Data Entry

The following discussion is of interest to experienced 4th DIMENSION developers.

When a record is displayed for data entry with either the ADD RECORD, MODIFY
RECORD, or MODIFY SELECTION command, the displayed record is the current record.
If you change to a different current record using a command (such as NEXT RECORD),
you must first execute the SAVE RECORD command if you need to save any changes
that were made to the displayed record. Note that pressing a Next Record button, or any
other automatic action button, saves the record automatically, and you therefore do not
need to use the SAVE RECORD command.



COMMANDS

Changing to a new current record with a command does not execute a new Before
phase for the layout. Moving to a new record with an automatic button does execute a
new Before phase.

ADD RECORD y
MODIFY RECORD

ADD RECORD ({file}; {*})
MODIFY RECORD ({file}; {*})

Parameter Type Description :
file File File to use for data entry
* Hide scroll bars and size box

ADD RECORD lets the user add a new record to the database. ADD RECORD creates a
new record for file, makes the new record the current record, and displays the current
input layout. After the user has accepted the new record, the new record is the only
record in the current selection.

Figure 13-1 shows a typical layout displayed for data entry.

= (siimM=F—————— EI
&
People

; First |
Lst |
g : Compang l
Phone |

1

[

Figure 13-1
An input layout displayed by the ADD RECORD command

The layout is displayed, with either command, in the frontmost window. The window
has scroll bars and a size box. Specifying the optional asterisk causes the window to
be drawn without scroll bars or a size box.

CHAPTER 13: DATA ENTRY AND REPORTING 141



142

ADD RECORD displays the layout only until the user accepts or cancels the record.
You must execute the command once for each record the user enters.

MODIFY RECORD lets the user modify a record in the input layout. MODIFY RECORD
gets the current record of file from disk and displays the record in the current input
layout. If there is no current record, then MODIFY RECORD does nothing.

MODIFY RECORD does not affect the current selection.

If the layout contains buttons for moving within the selection of records,
MODIFY RECORD lets the user use them to modify records and move to other records.

With either command, the record is saved (accepted) if the user clicks an Accept
button or presses the Enter key, or if the ACCEPT command is executed. Accepting
the record sets the OK system variable to 1.

The record is not saved (canceled) if the user clicks a Cancel button or presses the
“cancel” key combination (Command-.), or if the CANCEL command is executed.
Canceling sets the OK system variable to 0. Even when canceled, the record remains
in memory and can be saved if SAVE RECORD is executed before the current record
pointer is changed. The OK system variable is set only after the record is accepted
or canceled.

If you are using MODIFY RECORD and the user does not change any of the data in the
record, the record is not considered modified, and accepting the record does not cause
it to be saved again. Actions like changing variables, checking check boxes, and
selecting radio buttons do not qualify as modifications; only changing data in a field
causes the record to be saved.

The layout procedure execution cycle is started if a layout procedure exists for the
layout. Scripts that exist for the layout may also be executed, depending on the user’s
actions. For more information on the execution cycle, see Chapter 5 in Part I,

and “Monitoring the Layout Execution Cycle” in Chapter 13.

F The following example is a loop commonly used to add new records to a database.

INPUT LAYOUT ([Customers]; "Cust In") " Set the input layout for [Customers] file
Repeat " Loop until the user cancels

ADD RECORD ([Customers]) * Add a new record to the [Customers] file
Until (OK = 0) * Until the user cancels and OK = 0



COMMANDS

9 The following example searches the database for a customer. Depending on the
results of the search, one of two things may happen. If no customer is found, then the
user is allowed to add a new customer with ADD RECORD. If one or more customers
are found, the user is presented with each customer’s record for modification.
with MODIFY RECORD.

DEFAULT FILE ([Customers]) * Set the default file
INPUT LAYOUT ("Input1") * Set the input layout
OUTPUT LAYOUT ("Output1") * Set the output layout
vNo := Request ("Enter customer number") " Get the customer number
SEARCH ([Customers]CustNo = Num (vNo)) * Search for the customer record
If (Records in selection = 0) " If no customer is found...
ADD RECORD " add a new customer
Else
MODIFY RECORD * Allow the user to modify the record
End case

WW ADD RECORD will perform as described in a multi-user database, except when the new
record is accepted. When the new record is accepted, and the After phase is executed,
the entire database becomes locked for all other users. Since the database is locked, the
other users cannot save any records until the After phase is done. For this reason, it is
important that the After phase code of the layout procedure and the scripts be as short
as possible.

ﬁﬁﬂ? MODIFY RECORD will not modify a record that is locked. Instead, MODIFY RECORD
will display a dialog box informing the user that the record is in use. For more
information on using MODIFY RECORD in a multi-user database, see ‘“Managing Multi-
user Databases,” in Chapter 16.

DISPLAY SELECTION
MODIFY SELECTION )

DISPLAY SELECTION ({file}; {*})
MODIFY SELECTION ({file}; {*})

Parameter Type Description
file File File to display
* Use output layout for one record
and hide scroll bars in the input layout

DISPLAY SELECTION and MODIFY SELECTION display the current selection of file,
using the current output layout. The records are displayed in a scrollable list similar to
the User environment’s output list. If the user double-clicks a record, the record is
displayed in the current input layout. The list is displayed in the frontmost window.

Figure 13-2 shows an output layout displayed by the DISPLAY SELECTION or
MODIFY SELECTION command.

CHAPTER 13: DATA ENTRY AND REPORTING 143



144

Employees: 24 of 24

Last Name First Name Start Date Salary Title
Adler Frank 4/7/89 $101,585 |Engineer
Ambler Winifred 11/30/87 $91,586 [Engineer
Anderson Nathan 10/19/80 $28,770 [Salesperson
Andrews Michael 4/19/85 $35,364 [Designer
Ballard John 1/28/85 $82,868 [Engineer
Bentley Alice 376779 $29,250 |Engineer
Campbell Arnold 5/13/89 $12,286 [Salesperson
Donaldson Bill 11/3/83 $71,586 |Salesperson
Frankheimer George 7/23/89 $122,870|Salesperson
Franklin Marsha 5/3/84 $71,986 |Salesperson
Johnson Jasper 7711783 $41,986 [Engineer
Johnson Tom 3/15/79 $29,250 |Designer
Jones Samuel 11711782 $32,186 |Salesperson
Newton Kendall 6/25/89 $119,870|Salesperson
Ranklin Anthony 6/8/84 $73,086 |Designer
K] [
Figure 13-2

A typical record listing using the output layout

After DISPLAY SELECTION or MODIFY SELECTION is executed, there may not be a
current record. Use a command such as FIRST RECORD or LAST RECORD to select one.

MODIFY SELECTION allows the user to modify a record when in the input layout;
DISPLAY SELECTION does not allow the user to modify a record when in the input layout.

If the selection contains only one record and the optional asterisk is not used, the record
appears in the input layout instead of the output layout. If the asterisk is specified, a one-
record selection is displayed, using the output layout. If the asterisk is specified and the
user displays the record in the input layout, the scroll bars will be hidden.

A button labeled Done is automatically included at the bottom of the list. Clicking this
button exits the command. Custom buttons may be used instead; you can put the buttons
in the Footer area of the output layout. You can use an Accept or Cancel button to exit.

The user can scroll through the selection and click a record to select the record. If the
user clicks a different record, the first record is deselected and the second record is
selected. A user can select a group of contiguous records, by clicking the first record and
Shift-clicking the last record. To select records that are not adjacent, the user can
Command-click each desired record.

After DISPLAY SELECTION or MODIFY SELECTION is executed, the records that the user
selected are returned in a set named UserSet. There is only one UserSet for the entire
database. The set is associated with the last DISPLAY SELECTION or MODIFY SELECTION
command. For more information on the UserSet, see “Managing Sets,” in Chapter 16.



COMMANDS

If a layout procedure or script exists, the Before phase is executed before the layout is
displayed, then the In Header phase is executed, and then the Before and During
phases are executed simultaneously, once for each record that is displayed. If the user
clicks a button, chooses a menu, or double-clicks a record, a During phase for the
output layout procedure is executed. ;

~ The following example selects all the records in the [People] file. It then uses the
DISPLAY SELECTION command to display the records, and allows the user to select the
records that he or she would like to print. Finally, it selects the records with the USE
SET command, and prints them with PRINT SELECTION.

DEFAULT FILE ([People]) * Set the default file

ALL RECORDS * Select all records

DISPLAY SELECTION (*) " Display the records

USE SET ("UserSet") * Use only the records that the user picked
PRINT SELECTION * Print the records that the user picked

F The following example shows all of the tests needed to completely monitor the

execution cycle of a DISPLAY SELECTION or MODIFY SELECTION command. This
procedure is the output layout procedure for the displayed layout. The tests must be
executed in the order shown.

Note that the last test for During allows you to check the record that the user just
double-clicked. To make this test work properly, you must use custom buttons in the
Footer area. Otherwise, the default Done button will generate a During phase, and
clicking it will only be trapped by the test for the During phase.

In the statements after the test for the During phase, you could change the input layout
depending on the information in the record.

Case of :
: (Before & During)
" Each record is being displayed
: (Before)
" The output list has not yet been displayed
: (In header)
* The header is being displayed
: (Button = 1)
* A button was selected.
* You must do this test for each of the buttons in the Footer area.
: (Menu selected # 0)
" A menu was selected
: (During)
* A record was double-clicked.
" You may change the input layout here.
* You may also cancel the command, and the double-clicked record will be current.
End case

CHAPTER 13: DATA ENTRY AND REPORTING 145



146

ﬁﬁf MODIFY SELECTION will not modify a record that is locked. Instead, it will display a

dialog box informing the user that the record is in use. When displaying records in the
list, MODIFY SELECTION automatically sets the file to read-only, to prevent records
from being locked for other users. For more information on using MODIFY SELECTION
in a multi-user database, see “Managing Multi-User Databases,” in Chapter 16.

DISPLAY RECORD

DISPLAY RECORD ({file})

Parameter Type Description
file File File from which to display the record

DISPLAY RECORD displays the current record of file, using the current input layout.
The record is displayed only until an event redraws the window. Such an event might
be the execution of an ADD RECORD command, returning to an input layout, or
returning to the menu bar. DISPLAY RECORD does nothing if there is no current record.

DISPLAY RECORD is often used to display custom progress messages. It can also be
used to generate a free-running slide show.

If a layout procedure or script exists, the Before phase is executed.

F The following example displays a series of records as a slide show. (The records

contain pictures.)

DEFAULT FILE ([Demo]) * Set the default file
ALL RECORDS * Select all of the records
INPUT LAYOUT ("Display") * Set the layout to use for display
For ($i; 1; Records in selection) * Loop through all of the records
DISPLAY RECORD " Display a record
* Pause display for 3 seconds.
$Now := Current time * Get the current time
While (Abs (Current time — $Now) < 3) * Loop for about 3 seconds
End while
NEXT RECORD " Move to the next record
End for

Managing Layout Pages

FIRST PAGE NEXT PAGE GOTO PAGE
LAST PAGE PREVIOUS PAGE Layout page

The commands in this section allow you to display different layout pages. There are
automatic actions for buttons which perform the same tasks as the FIRST PAGE,

LAST PAGE, NEXT PAGE, and PREVIOUS PAGE commands. Whenever appropriate, use
the automatic actions button instead of these commands.



COMMANDS

Page commands can be used only in an input layout. Output layouts use only the
first page. A layout always has at least one page, the first page.

It’s important to realize that regardless of the number of pages a layout has, only
one layout procedure exists for each layout. You can use the Layout page command
to find out which page is being displayed.

FIRST PAGE

FIRST PAGE

FIRST PAGE changes the currently displayed layout page to the first layout page.
If a layout is not being displayed, or the first layout page.is already displayed,
FIRST PAGE does nothing.

{F The following example is a one-line procedure called from a menu item. It displays
the first layout page.

FIRST PAGE

LAST PAGE

LAST PAGE

LAST PAGE changes the currently displayed layout page to the last layout page.
If a layout is not being displayed, or the last layout page is already displayed,
LAST PAGE does nothing.

7 The following example is a one-line procedure called from a menu item. It displays
the last layout page.

LAST PAGE

NEXT PAGE

NEXT PAGE

NEXT PAGE changes the currently displayed layout page to the next layout page.
If a layout is not being displayed, or the last layout page is being displayed,
NEXT PAGE does nothing.

1/ The following example is a one-line procedure called from a menu item. It displays
the layout page that follows the one currently displayed.

NEXT PAGE

CHAPTER 13: DATA ENTRY AND REPORTING 147



148

PREVIOUS PAGE

PREVIOUS PAGE

PREVIOUS PAGE changes the currently displayed layout page to the preceding layout
page. If a layout is not being displayed, or the first layout page is being displayed,
PREVIOUS PAGE does nothing.

7 The following example is a one-line procedure called from a menu item. It displays the

layout page preceding the one currently displayed.

PREVIOUS PAGE

GOTO PAGE

GOTO PAGE (page number)

Parameter Type Description

page number Number Layout page to display

GOTO PAGE changes the currently displayed layout page to the layout page specified
by page number. If a layout is not being displayed, GOTO PAGE does nothing. If
page number is greater than the number of pages, the last page is displayed.

If page number is less than the number of pages, the first page is displayed. You can
use GOTO PAGE in a script for a button to take the user to a specific page.

-~ The following example is a script for a button. It displays a specific page, page 3.

GOTO PAGE (3)

Layout page

Layout page > Number

Layout page returns the number of the currently displayed layout page. Since there is only
one procedure for the entire layout, this function can be used in input layout procedures
to tell which page is currently being displayed.

;' The following example is a portion of an input layout procedure. It tests for the layout

page and calls a global procedure appropriate for that page.

Case of <
: (Layout page = 1)
Page 1stuff
: (Layout page = 2)
PageZstuff
: (Layout page = 3)
Page3stuff
End case



COMMANDS

Using Data Entry Areas

GET HIGHLIGHT GOTO AREA REJECT
HIGHLIGHT TEXT Last area
INVERT BACKGROUND Modified

The commands in this section affect layout areas used for data entry: fields and variables.
These commands work only when a layout is being used for data entry. They allow you
to get highlighted text from a data entry area, to highlight text in a data entry area, to
move to a specific data entry area, and to test whether a field has been modified.

GET HIGHLIGHT Nibe Radqe 329
GET HIGHLIGHT (text object; first; last)
Parameter Type Description
text object Field Text object argument

or variable
first Variable First position of highlight
last Variable Last position of highlight

GET HIGHLIGHT is used to find out what text is currently highlighted. The text may be
highlighted by the user or by the HIGHLIGHT TEXT command.

The variable first is assigned the position of the first highlighted character. The variable
last is assigned the position of the last highlighted character plus one. If first and last are
equal, the user has not selected any text and the insertion point is before the character
specified by the first variable.

F The following example gets the highlight positions from a field called Comment. The
GET HIGHLIGHT command sets two variables, vFirst and vLast. If Comment is
highlighted, as in Figure 13-3, then vFirst is set to 9 and vLast is set to 13.

GET HIGHLIGHT (Comments; vFirst; vLast) * Get the highlight from comments

This is =48

Figure 13-3
Text highlighted in a field

CHAPTER 13: DATA ENTRY AND REPORTING 149



7 The following example is the same as the first example except that the field does not
have any highlighted text, as in Figure 13-4. In this case, vFirst is set to 11 and vLast is
setto 11.

GET HIGHLIGHT (Comments; vFirst; vLast) * Get the highlight from comments

| This is tekt in a text field. |

Figure 13-4
Text insertion point in a field

F The following example shows how the highlighted text can be extracted with the
Substring function.

GET HIGHLIGHT (Comments; vFirst; vLast) * Get the highlight from comments
" Get the highlighted text using Substring and put it into My Text
MyText := Substring (Comments; vFirst; vLast — vFirst)

HIGHLIGHT TEXT

HIGHLIGHT TEXT (text object; first; last)

Parameter Type Description

text object Field Text object to highlight
or variable

Sirst Number First position of highlight

last Number Last position of highlight

HIGHLIGHT TEXT highlights a section of the text in text object. HIGHLIGHT TEXT will go
to text object if the cursor is not in text object.

First is the first character position to be highlighted, and /ast is the last character plus one
to be highlighted. If first and last are the same, the insertion point is positioned before
the character specified by first, and no characters are highlighted.

If last is greater than the number of characters in text object, then all characters between
first and the end of the text are highlighted.

¥ The following example highlights text in a field called Comments, shown in Figure 13-5.
HIGHLIGHT TEXT(Comments; 9; 13) " Highlight the text

|Tm's is

T in a text field. |

Figure 13-5
Highlighting text in a field

150



COMMANDS

/' The following example positions the insertion point in a field called Comments, shown

in Figure 13-6.

HIGHLIGHT TEXT(Comments; 11; 11) " Position the insertion point

|Th1‘s is text in a text field.

Figure 13-6
Positioning the insertion point in a field

INVERT BACKGROUND

INVERT BACKGROUND (text variable)

Parameter Type Description
text variable Variable Text variable to invert

INVERT BACKGROUND is used to invert text variable in the layout. INVERT BACKGROUND
works only for the currently displayed or printed layout and record. You can use INVERT
BACKGROUND when displaying on screen or printing to an ImageWriter printer. The
LaserWriter printer will not print an inverted background. '

The following example is a script for a variable in an output layout. The script tests the
value of a field. If the field is positive, the script does nothing. If the field is negative, the
script inverts the display of the variable in the layout.

vAmount := [Accounts]Amount " Put the value of the field in the variable
If (vAmount < 0) " If it is a negative amount...
INVERT BACKGROUND (vAmount) " invert the background
End if
GOTO AREA

a

GOTO AREA (data entry area)

Parameter Type Description
data entry area  Field Field or variable to go to
or variable

GOTO AREA is used to move the insertion point to data entry area in an input layout. It is
equivalent to the user’s clicking on or tabbing into the field or variable.

The following example is a script for a button. The button is labeled Change ID. When
clicked. it first displays the layout page where the ID field can be changed. and then
moves to the ID field.

GOTO PAGE (2) " Move to the page with the ID field
GOTO AREA (ID) * Move to the ID field

CHAPTER 13: DATA ENTRY AND REPORTING 151



152

Last area

Last area > Pointer

Last area returns a pointer to the last or current enterable area, in other words, the
object that the cursor is in or just left. You can use Last area to perform an action on a
layout area without having to know which object is currently selected. Be sure to test
that the object is the correct data type, using Type, before performing an action on it.

F The following example is a script for a button. The script changes the data in the

current object to uppercase. The object must be a text or string data type (type O or 2).

$p := Last area  Save the pointer to the last area
If (Type ($p») = 0) | (Type($p») = 2)) *Ifitis a string or text area

$p» = Uppercase ($p») " Change the area to uppercase
End if
Modified

Modified (field) - Boolean

Parameter Type Description
field Field Field to test

Modified returns TRUE if the user has modified field during data entry. A field is
considered modified when the user changes the data in the field and leaves the field,
by pressing Tab or by clicking another field or a button, or in another area (like a
scrollable or external area).

It is usually easier to perform operations in scripts than to use Modified in layout
procedures. Since a script is executed when a field is modified, the use of a script is
equivalent to using Modified in a layout procedure.

Note that tabbing out of a field does not set Modified to TRUE. The field must have
been changed for Modified to be TRUE.

1 The following example tests if either the Quantity field or the Price field has changed.

If either has, then the total is recalculated. Note that the same thing could be
accomplished by using the second line as the script for the Quantity field and the
Price field.

If ((Modified (Quantity) | (Modified (Price)) * If the user changed either field
Total := Quantity * Price " Recalculate. This line could be a script.
End if



COMMANDS

REJECT

REJECT

REJECT (data entry area)

Parameter Type Description

data entry area  Field Data entry area to reject
or variable

This command is rarely used. You should use the built-in data validation tools before
using this command.

REJECT has two forms. The first form has no parameters. It rejects the entire data entry
and does not accept the record. The second form rejects only the data entry area.

The first form of REJECT is used to prevent the user from accepting a record that is not
complete. You can achieve the same result without using REJECT by associating the
Enter key with a No Action button and using the ACCEPT and CANCEL commands to
accept or cancel the record. It is recommended that you use this second technique and
do not use the first form of REJECT.

If you use the first form, you execute REJECT to prevent the user from accepting a
record, usually because the record is not complete or has inaccurate entries. If the user
tries to accept the record, executing REJECT prevents the record from being accepted
and the record remains displayed in the layout. The user generally must continue with
data entry until the record is acceptable.

The best place to put this form of REJECT is in the script of an Accept button
associated with the Enter key. This way, validation occurs only when the record is
accepted, and the user cannot bypass the validation by pressing the Enter key.

The second form of REJECT is executed with the dara entrv area parameter. The
cursor stays in the data entry area. This form of REJECT forces the user to enter a
correct value. This form of the command must be used immediately following a
modification to the data entry area. You can test for modification by using the function
Modified. You can also use REJECT in the script for the data entry area.

REJECT works only in the During phase of an input layout procedure. You must put
either form of the REJECT command in the layout procedure or script for the layout
that is being modified. If you are using REJECT for an included layout. put it in the

included layout’s procedure or script.

You can use HIGHLIGHT TEXT to select the data that is being rejected.

CHAPTER 13: DATA ENTRY AND REPORTING 153



154

% The following example shows the first form of REJECT being used in an Accept

button script. The Enter key is set as an equivalent for the button. This means that
even if the user presses the Enter key to accept the record, the button’s script will be
executed. The record is of a bank transaction. If the transaction is a check, then there
must be a check number. If there is not a check number, the validation is rejected.

Case of
: ((Trans = "Check") & (Number = "")) " If it is a check with no number...
ALERT ("Please fill in the check number.") * Alert the user
REJECT " Reject the entry
GO TO FIELD (Number) " Go to the check number field
End case

The following example is part of a script for a Salary field. The script tests whether
the Salary field is less than $10,000 and rejects the field if it is. You could perform the
same operation by specifying a minimum value for the field in the Layout editor.

If (Salary<10000)
ALERT ("Salary must be greater than $10,000")
REJECT (Salary)

End if

Setting Data Attributes

SET FILTER SET ENTERABLE
SET CHOICE LIST SET FORMAT

The commands in this section set data entry attributes for input layouts. These
commands perform the same actions as the equivalent areas in the Field dialog box or
the Object Definition dialog box in the Layout editor. These commands can be used
only on text, numeric, date, or time data entry areas. They are effective only while the
layout is displayed on screen. As soon as a new record or layout is displayed, the
default settings take effect.

SET FORMAT is an exception, since it can also be used in output layouts, both for
printing and for display on the screen.

For more information on setting these attributes, see the 4th DIMENSION
Design Reference. P a4e 141



COMMANDS § I

SET FILTER

SET FILTER (text object,; filter)

Parameter Type Description

text object Field Field or variable for which to set character filter
or variable

Silter String Character filter to use

SET FILTER changes the character filter for the text object displayed in the current
layout to filter. Using this command is equivalent to entering a character filter for a
field or variable in the Layout editor.

F The following example sets the character filter for a postal code field. If the address
is in the U.S., the filter is set to ZIP codes. Otherwise, it is set to allow for any entry.

If (Country = "US")
" Set the filter to a ZIP code format
SET FILTER (Post Code; "&9##i###")
Else
" Set the filter to accept alpha and numeric and uppercase the alpha
SET FILTER (Post Code; "~@")
End if

SET CHOICE LIST

F The following example sets a choice list for a shipping field. If the shipping is

SET CHOICE LIST (text object; list)

Parameter Type Description

text object Field Field or variable to set
or variable

list String Name of the list to use

SET CHOICE LIST sets the choice list for the text object displayed in the current
layout to /ist. It is equivalent to selecting a choice list for a field or variable in the
Layout editor. The list is displayed during data entry when the user selects the text
area.

overnight, then the choice list is set to shippers who can ship overnight. Otherwise,
it is set to the standard shippers.

If (Overnight)

SET CHOICE LIST (Shipper; "Fast Shippers")
Else

SET CHOICE LIST (Shipper; "Normal Shippers")
End if

CHAPTER 13: DATA ENTRY AND REPORTING 155



SET ENTERABLE

SET ENTERABLE (text object; TRUE or FALSE)

Parameter Type Description
text object Field Field or variable to set
or variable
TRUE or FALSE Boolean TRUE for enterable; FALSE for nonenterable

SET ENTERABLE sets the text object displayed in the current layout to be either enterable
or not. Using this command is equivalent to selecting enterable or nonenterable for a
field or variable in the Layout editor.

When the text object is enterable (TRUE), the user can move the cursor into the area and
enter data. When the text object is nonenterable (FALSE), the user cannot move the
cursor into the area and cannot enter data.

Y The following example sets a shipping field, depending on the weight of the shipment. If
the shipment is 1 ounce or less, then the shipper is set to US Mail and the field is set to
be nonenterable. Otherwise, the field is set to be enterable.

If (Weight <= 1)

Shipper := "US Mail"

SET ENTERABLE (Shipper; False)
Else

SET ENTERABLE (Shipper; True)
End if

SET FORMAT

SET FORMAT (text object; format)

Parameter Type Description

text object Field Field or variable to set
or variable

format String Format to use

SET FORMAT changes the display format for the fext object displayed in the current
layout to format. Using this command is equivalent to entering a format for a field or
variable in the Layout editor.

SET FORMAT can be used for both input layouts and output layouts.

156



COMMANDS | i

{F The following example changes the format for a ZIP code field, depending on the length
of the ZIP code.

If (Length (ZIP) = 9)

SET FORMAT (ZIP; "#####—####")
Else

SET FORMAT (ZIP; "#####")
End if

Special Layout Management

ACCEPT CANCEL REDRAW

The commands in this section allow you to close layouts and redraw portions of a layout.

ACCEPT

ACCEPT

ACCEPT is used in input layout procedures to accept a new or modified record or

subrecord. ACCEPT may also be used to close a layout displayed with the DIALOG

command. It performs the same action as a user’s pressing the Enter key. The current

phase of execution is first completed. One more During phase is executed, and then an ~ L/#¢
After phase, except in dialogs where there is no After phase. Li¥D

ACCEPT is commonly executed as a result of a menu item being chosen.
ACCEPT is also commonly used in the script of a “No Action” button.

After the layout is accepted, the OK system variable is setto 1. == £ 383

ACCEPT cannot be queued up. In other words, executing two ACCEPT commands in a
row would have the same effect as executing one.

' The following example is a one-line procedure called from a procedure associated with a
layout menu item. It accepts the current data entry.

ACCEPT

CHAPTER 13: DATA ENTRY AND REPORTING 157



CANCEL

CANCEL

CANCEL cancels the current input or output layout. CANCEL is equivalent to the
user’s pressing the “cancel” key combination (usually Command-.) or pressing a
Cancel button. In the input layout, CANCEL cancels the record or dialog and exits the
layout. In an output layout that is being displayed with a MODIFY SELECTION or
DISPLAY SELECTION command, CANCEL cancels the command.

CANCEL is commonly executed as a result of a menu item being chosen.

CANCEL is also commonly used in the script of a “No Action” button. When used
during data entry, the script can still save the record with the SAVE RECORD
command. After the record is saved, using CANCEL avoids executing the After phase. £ /80

After the layout is canceled, the OK system variable is set to 0. = A3¥3

CANCEL cannot be queued up. In other words, executing two CANCEL commands in a
row would have the same effect as executing one.

' The following example is a one-line procedure called from a procedure associated
with a layout menu item. It cancels the current data entry.

CANCEL

REDRAW

REDRAW (included file)

Parameter Type Description
included file File Area to redraw

or subfile

When you use a procedure to change the value of a field or subfield displayed in an
included layout, you must execute REDRAW to ensure that the layout is updated.

158



COMMANDS

Printing Reports

REPORT Subtotal PAGE SETUP
PRINT SELECTION Printing page FORM FEED
BREAK LEVEL PRINT LAYOUT PRINT LABEL
ACCUMULATE PRINT SETTINGS

Printing reports is often the most important job of a database. The commands in
this section allow you to use 4th DIMENSION’s flexible reporting capabilities.

You can use the commands PRINT SELECTION, PRINT LAYOUT, and PRINT
LABEL to generate reports with layouts created in the Design environment.
You can use the REPORT and PRINT LABEL commands to.generate reports
without using layouts.

A report printed with a layout can have almost any kind of design. The report
can include graphics, and the elements making up the report can be arranged in
any manner. A report printed with a layout also executes the associated layout
procedure, which gives tremendous processing capabilities.

Reports generated with the Quick Report and Label editors are usually simpler
in design. The user can design a report from scratch by using these editors. The
report designs can be stored on disk. These reports do not use layouts and
therefore do not execute layout procedures.

The three primary reporting commands, REPORT, PRINT SELECTION, and
PRINT LAYOUT, have varying degrees of flexibility. Generally, the more flexible
a command is, the more you as a designer need to do to generate a report.

REPORT is the simplest report generator. It uses the same Quick Report editor
that you use in the User environment. The user interface is a simple point, click,
and drag interface. The style of a report is a row and column format that can
include headers, footers, different fonts and styles, formatting, formulas, breaks,
totals, calculations, and multi-column variable-length text. The report can be
printed to a high-speed serial device. The report can also be converted to a
graph.

PRINT SELECTION is the most commonly used printing command. It uses an
output layout. The layout can be of any design. The command allows headers,
footers, different fonts and styles, formatting, formulas, breaks, totals, and
calculations. Simple reports can be generated without layout procedures, but
most reports will include a layout procedure and scripts to process the report.

CHAPTER 13: DATA ENTRY AND REPORTING 159



PRINT LAYOUT is the most flexible of all the printing commands and also the most
demanding for the designer. It allows you to mix different layouts on the same page
and to include form feeds at any time during the report. PRINT LAYOUT is used only
for the most complex printing jobs.

PRINT LABEL can print labels with a layout, providing a high degree of flexibility,
or it can use the Label editor as provided in the User environment, letting the user
design the label as needed. Since it can print records side-by-side, this command
can also be used to generate unusual reports.

All of the print commands print the current selection. It is common to sort the
selection before printing. .

When a user prints a report, he or she may elect to print it on the screen. During
printing, 4th DIMENSION displays the current page being printed and the status of
the print job. If the user “prints” to the screen, he or she may print the current page
by clicking the Print button.

The user may cancel printing by clicking the Stop Printing button. If the user cancels
printing either by clicking this button or by canceling a printer dialog box, the OK
system variable is set to 0. If the printing is successful, the OK system variable is set to 1.

Activating Break Processing in Layout Reports

(@
Break processing for layout reports can be activated in two ways. The first uses the

function Subtotal. The setond uses the commands BREAK LEVEL and ACCUMULATE.
Both methods can achieve the same results but have different advantages.

Using Subtotal For Break Processing (@)

' Tepmt

,“_‘_‘\’_’_’;L,VF To turn on break processing with the Subtotal function, the function must appear in the
Dey esq4 P jg 104 layout procedure or a script for the layout. Before printing the report, 4th DIMENSION

scans the layout procedure and scripts for the Subtotal function. If it finds it, break
processing is activated.

The Subtotal function does not need to be executed for it to turn on break processing.
For example, it could be in a script of an object that is below the Footer line and
therefore would never be printed or executed. In fact, if the Subtotal function is not
executed, the argument to the function does not need to be valid. For example, the
following line would turn on break processing:

x := Subtotal (x)

When Subtotal is used to activate break processing, you must sort on one more level
than you break on. For example, if you wanted two levels of breaks in your report,
you would sort on three levels.

160



Wb

COMMANDS § Il

Using BREAK LEVEL and ACCUMULATE For Break Processing (+)

You can also use the commands BREAK LEVEL and ACCUMULATE to turn on break
processing. In this case, you must execute both of these commands before printing
a layout report. The Subtotal function is not required when using this method.

When this method is used, you do not need to sort on one extra level. You must,
of course, sort on at least as many levels as you need to break on.

Comparing the Two Methods

The primary advantage to using Subtotal to initiate break processing is that you do
not need to execute a procedure prior to printing the report. This is especially
useful in the User environment. The process to print the report in the User
environment is typically like this:

Select the records to be printed.

Sort the records, sorting on one extra level.

Choose Print from the File menu. 4th DIMENSION scans the layout procedure and
scripts, finds the Subtotal function, turns on break processing, and prints the report.
There are two disadvantages to using Subtotal to trigger break processing:

® You cannot use Subtotal to activate break processing in compiled procedures.
B You must sort on one extra level. If you have many records this may be time

consuming.

Using BREAK LEVEL and ACCUMULATE to activate break processing is the
recommended method when using procedures to generate layout reports. The
process to print a report using this method is typically like this:

Select the records to be printed.

Sort the records. Sort on at least the same number of levels as breaks.
Execute BREAK LEVEL and ACCUMULATE.

Print the report.

You must use BREAK LEVEL and ACCUMULATE to activate break processing in
compiled procedures.

CHAPTER 13: DATA ENTRY AND REPORTING 161



(/74

Pige 11¢

. / L4 ¥
REPORT / [ . Quick 'Regmzé User_Jude ChE
REPORT ({file}; document; {*}) Nie D19
Parameter Type Description
file File File to print
document String Quick report document
* Hide printer setup dialog boxes

REPORT prints a report for file, using the Quick Report editor shown in Figure 13-7.

Reports... < Report with frame

=

First

Last
Cornpany
Horne Addr
Work Addr
Home Phone
Work Phone
Phone 3

Saort
<<hdd Sortrr

200

=

[ sum [ sserags [ »in
U] s O ¢eunt
[ cancel | [ 0K | [dauts solumn widin

Figure 13-7
The Quick Report editor

The document parameter is a report document that was created with the

Quick Report editor and saved on disk. You save a report document by choosing
Save or “Save as” from the File menu in the Quick Report editor. The document
stores the specifications of the report, not the records to be printed. If an empty
string (") is specified for document, REPORT displays an open-file dialog box and
the user can select the report to print. After a report is selected, the printer setup
dialog boxes are displayed, unless the * parameter is specified. If this parameter is
specified, the printer dialog boxes are not displayed. The report is then printed.

162



COMMANDS

If the document parameter specifies a document which does not exist, the Quick Report
editor is displayed. The Quick Report editor allows users to create their own reports.
When the Quick Report editor is displayed, the menu bar displays the same five menus
that manage the editor in the User environment: File, Edit, Font, Style, and Other.

The user has complete control over the editor. See the 4th DIMENSION User Reference
for details on creating reports with the Quick Report editor.

“ The following example lets the user search the database, and then allows the user to
specify the Quick Report document with which to print the report.

SEARCH ([People]) * Search for records
REPORT ([People]; ") " Let the user generate a report

PRINT SELECTION

PRINT SELECTION ({file}; {*})

Parameter Type Description
file File File to print
* Suppress the printer dialog boxes

PRINT SELECTION prints the current selection of file. The records are printed with
the current output layout. PRINT SELECTION performs the same action as the Print
menu item in the User environment.

By default, PRINT SELECTION displays the printer dialog boxes before printing. You
can suppress these dialog boxes by using the optional asterisk parameter. If the user
cancels either of the printer dialog boxes, the command is canceled and the report is
not printed. Using the optional asterisk causes the report to be printed with the page
setup that was in effect when the layout was created, or with the page setup set by the
PAGE SETUP command.

During printing, the output layout procedure and the layout’s scripts are executed:
the Header phase when printing a header, the Before and During phases when
printing each record, the Break phase when printing the Break area, and the Footer
phase when printing a footer.

You can check whether PRINT SELECTION is printing the first header, by testing
Before selection in the Header phase. You can also check for the last footer, by testing
End selection in the Footer phase.

To print a sorted selection with subtotals, using PRINT SELECTION, you must first
sort the selection. Then, in each Break area of the report, include a variable with a
script that assigns the subtotal to the variable. You can also use statistical and
arithmetic functions like Sum and Average to assign values to variables.

CHAPTER 13: DATA ENTRY AND REPORTING 163



i The following example selects all the records in the [People] file. It then uses the
DISPLAY SELECTION command to display the records and allow the user to select the
records that he or she would like to print. Finally, it uses the selected records with the
USE SET command, and prints them with PRINT SELECTION.

DEFAULT FILE ([People]) " Set the default file

ALL RECORDS * Select all records

DISPLAY SELECTION (*) " Display the records

USE SET ("UserSet") y * Use only the records that the user picked
PRINT SELECTION * Print the records that the user picked

BREAK LEVEL

BREAK LEVEL (level; {page break})

Parameter Type Description
level Number Number of break levels
{page break} Number Break level for which to do a page break

BREAK LEVEL specifies the number of break levels in a report.

There are two methods used to turn on break processing for layout reports.
See “Activating Break Processing,” earlier in this section, for information on the
two methods. tage /4o

You must execute BREAK LEVEL and ACCUMULATE before every layout report for
which you want to do break processing—they activate break processing for a
layout report.

The level is the level to which you want to perform break processing. You must
have sorted the records with at least that many levels. If you have sorted more levels,
those levels will be printed as sorted, but will not be processed for breaks.

Each break level that is generated will print the corresponding Break areas and
Header areas in the layout. There should be /evel Break areas in the layout. If there
are more Break areas, they will be ignored and will not be printed.

The second (optional) argument, page break, is used to cause page breaks during
printing.

164



COMMANDS | I

Q The following example prints a report with two break levels. The selection is sorted
on four levels, but the BREAK LEVEL command specifies to break on only two levels.
One field is accumulated with the ACCUMULATE command.

DEFAULT FILE ([People]) * Set the default file

* Sort on four levels

SORT SELECTION ([People]Dept; >; [People]Title; >; [People]Last; >; [People]First; >)
* Turn on break processing to 2 levels (Dept and Title)

BREAK LEVEL (2)

ACCUMULATE ([People]Salary) " Accumulate the salaries
OUTPUT LAYOUT ("Dept salary") * Select the report layout
PRINT SELECTION * Print the report
ACCUMULATE

ACCUMULATE (datal {;...; dataN})

Parameter Type Description
data Field Numeric field or variable to accumulate
or variable

ACCUMULATE specifies the field(s) or variable(s) to be accumulated during a
layout report.

There are two methods used to turn on break processing for layout reports.
See “Activating Break Processing in Layout Reports,” earlier in this section,
for information on the two methods. 4ge /o

You must execute BREAK LEVEL and ACCUMULATE before every layout report for
which you want to do break processing—they activate break processing for a layout
report.

Use ACCUMULATE when you want to include subtotals for numeric fields or variables
in a layout report. ACCUMULATE tells 4th DIMENSION to store subtotals for each of
the data arguments. The subtotals are accumulated for each break level specified
with the BREAK LEVEL command.

Execute ACCUMULATE before printing the report with PRINT SELECTION or before
choosing the Print menu item in the User environment. Use the Subtotal function in
the layout procedure or a script, to return the subtotal of one of the data arguments.

' See the example for the BREAK LEVEL command, earlier in this section.

CHAPTER 13: DATA ENTRY AND REPORTING 145



166

Subtotal

Subtotal (data; {page break}) - Number

Parameter Type Description

data Field Numeric field or variable to return subtotal
or variable

page break Number Break level for which to cause a page break

Subtotal returns the subtotal for data for the current or last break level. Subtotal
works only when a sorted selection is being printed with PRINT SELECTION or
when printing using the Print menu item in the User environment. The data
parameter must be of type real, integer, or long integer.. Assign the result of the
Subtotal function to a variable placed in the Break area of the print layout.

There are two methods used to turn on break processing for layout reports.
See “Activating Break Processing,” earlier in this section, for information on
the two methods.

Subtotal initiates break processing when BREAK LEVEL and ACCUMULATE have
not been executed. In this case, you must put Subtotal in the layout procedure or
a script for the layout. 4th DIMENSION scans the layout procedure and scripts
before printing and if Subtotal is present, break processing will be initiated.

If BREAK LEVEL and ACCUMULATE have not been executed, the second
(optional) argument to Subtotal is used to cause page breaks during printing. If
break level is 0, Subtotal does not issue a page break. If break level equals 1,
Subtotal issues a page break for each level 1 break. If break level equals 2,
Subtotal issues a page break for each level 1 and level 2 break, and so on.

If BREAK LEVEL and ACCUMULATE have not been executed and you want to
have breaks on n sort levels, you must sort the current selection on n + 1 levels.
This lets you sort on a last field, so that the field doesn’t create unwanted
breaks. If you want the last sort field to generate a break, sort the field twice.

1/ The following example is a one-line script in a Break area of a layout (B0, the

area above the BO marker). The variable vSalary is placed in the Break area.
The variable is assigned the subtotal of the Salary field for this break level.

vSalary := Subtotal (Salary)



COMMANDS § Il

Printing page

Printing page > Number

Printing page returns the printing page number. It can be used only when you are
printing with PRINT SELECTION or from the Print menu in the User environment.

F The following example changes the position of the page numbers on a report, so

that the report can be reproduced in a double-sided format. The layout for the report
has two variables that display page numbers. A variable in the lower-left corner
(Left) will print the even page numbers. A variable in the lower-right corner (Right)
will print the odd page numbers. The example tests for even pages and then clears
and sets the appropriate variables.

If ((Printing page % 2) = 0) " If the Modulo is 0 it is an even page
Left := String (Printing page) * Set the left page number
Right := ™" * Clear the right page number
Else * Otherwise it is an odd page
Right := String (Printing page) * Set the right page number
Left := ™ * Clear the left page number
End if

PRINT LAYOUT

PRINT LAYOUT ({file}; layout)

Parameter Type Description
file File File to print
layout String Layout to print

PRINT LAYOUT should be used only by experienced 4th DIMENSION
database designers.

PRINT LAYOUT simply prints /ayout with the current values of fields and variables.
It prints only the Detail area (the area between the Header line and the Detail line)
of the layout. It is usually used to print very complex reports that require complete
control over the process of printing. PRINT LAYOUT does not do any record
processing, break processing, form feeds, headers, or footers. These operations are
the responsibility of the designer.

Since PRINT LAYOUT doesn’t issue a form feed after printing the layout, it is easy to
combine different layouts on the same page. Thus, PRINT LAYOUT is perfect for
complex printing tasks that involve different files and different layouts. To force a
form feed between layouts, use the FORM FEED command.

CHAPTER 13: DATA ENTRY AND REPORTING 167



168

The printer dialog boxes do not appear when you use PRINT LAYOUT. The report

does not use the print settings that were assigned in the Design environment when the
layout was created. If you want the printer dialog boxes to appear, you must include the
PRINT SETTINGS command before any series of PRINT LAYOUT commands.

PRINT LAYOUT builds each printed page in memory. Each page is printed when the
page in memory is full. To ensure the printing of the last page after any use of
PRINT LAYOUT, you must conclude with the FORM FEED command. Otherwise, the last

page stays in memory and is not printed.

Included layouts are not printed with PRINT LAYOUT.

PRINT LAYOUT executes only the Before and During phases of the layout procedure.

F The following example simulates a simple PRINT SELECTION command. There is no

break processing. The report is for a checkbook register. The report uses one of two
different layouts, depending on whether the record is for a check or a deposit.

DEFAULT FILE ([Register])
SEARCH
SORT
PRINT SETTINGS
For ($i; 1; Records in selection)
If ([Register]Type = "Check")
PRINT LAYOUT ("Check Out")
Else
PRINT LAYOUT ("Deposit Out")
End if
NEXT RECORD
End for
FORM FEED

PRINT SETTINGS

* Set the default file

* Allow the user to select the records

" Allow the user to sort the records

" Allow the user to set up the printer

* Loop through all the selected records
" Ifit is a check...

* print the check layout

" Else it must be a deposit so...

" print the deposit layout

" Move to the next record

" Print the last page

PRINT SETTINGS

PRINT SETTINGS displays the printer dialog boxes. First it displays the Page Setup dialog
box. Then it displays the Print Settings dialog box. If the user clicks OK in both dialog
boxes. the OK system variable is set to 1. Otherwise, the OK system variable is set to 0.
You should include PRINT SETTINGS or PAGE SETUP before any group of PRINT LAYOUT
commands. PRINT SETTINGS has no effect on PRINT SELECTION or PRINT LABEL.

The Print Settings dialog box contains a check box, “Preview on screen,” that allows the
user to specify to print to the screen.

Figure 13-8 through Figure 13-11 show the Page Setup and Print Settings dialog boxes
tor the LaserWriter and ImageWriter printers.



COMMANDS { I

LaserlWriter Page Setup LaserlWriter “North Wing”
P T @Us t A i e ies:| > 8 . S—
aper: e t:;:lr 8 s; t::::: O Tabloid Coeaeat] znmes;@ o ga:]-es.‘? an gim‘“J:’ o[ | (Cancer )
Red P t Effects: m over Page: 0 irs age as’ age
Ezlal:gz:ar % B:I:n:: Suhe:ti:ulinn? - Paper Source: ® Paper Cassette (O Manual Feed
Orientation [ Text Smoothing? [JPreview on screen
ey D [ Graphics Smoothing?
@ [X Faster Bitmap Printing?
Figure 13-8 Figure 13-9
The LaserWriter Page Setup dialog box The LaserWriter Print Settings dialog box
Imagellriter m Imagellriter ﬁ 0K I
Paper: @ US Letter O A4 Letter Quality: O Best @® Faster QO Draft
823{;:?::; paper O International Fanfold E::iee,:"ge: ®an O From: :] To: D
Dvenlu(ion SREciatERiEcts: B;‘,’,"{g’;f;:ﬂm Paper Feed: @ nulnn’mtic (O Hand Feed
[JNo Gaps Between Pages [ Preview on screen
Figure 13-10 Figure 13-11
The ImageWriter Page Setup dialog box The ImageWriter Print Settings dialog box

 See the PRINT LAYOUT example, earlier in this section.

PAGE SETUP

PAGE SETUP ({file}; layout)

Parameter Type Description
file File File containing layout
layout String Layout to use for page setup

PAGE SETUP sets the page setup for the printer to that stored with layout. The page
setup is stored with the layout when the layout is created in the Design environment.
PAGE SETUP can be used before PRINT LAYOUT and PRINT SELECTION.

’X}: The following example sets the page setup to that stored with the Sideways layout.

PAGE SETUP ([Global]; "Sideways")

FORM FEED

FORM FEED

FORM FEED prints the data that has been sent to the printer and ejects the page.

FORM FEED is used with PRINT LAYOUT to. force page breaks and to print the last page.
Don’t use FORM FEED with the PRINT SELECTION command. Instead, use Subtotal or
BREAK LEVEL with the optional parameter to generate page breaks.

J See the PRINT LAYOUT example, earlier in this section.

CHAPTER 13: DATA ENTRY AND REPORTING 149



170

PRINT LABEL

PRINT LABEL ({file}; {*})

Parameter Type Description
file File File to print
* Suppress the printer dialog boxes

PRINT LABEL ({file}; label document)

Parameter Type Description
file File File to print .
label document  String Name of disk label document

PRINT LABEL has two forms.

The first form prints the current selection of file as labels, using the current output layout.
You cannot print subfiles in a label. See the 4th DIMENSION Design Reference for details
on creating layouts for labels.

When using the first form, PRINT LABEL displays the printer dialog boxes before printing.
You can suppress these dialog boxes by using the optional asterisk parameter. If the user
clicks Cancel in either of the printer dialog boxes, the command is canceled and the
labels are not printed. During printing, 4th DIMENSION executes the output layout
procedure and the scripts: A Before and During phase occurs when printing each record.

The second form of the command prints labels by using the Label editor. Figure 13-12
shows the Label editor.

Last Name " _

First Name 1 New Line

Start Date - =

Salari Add to Line
[ Clear Last |

| Use
- = Layout 5
Labels across: dmun: Load... |
Save...
Top margin: 72

Print to...
l Print... l

[ Cancel J

Bottom margin: |72

Left margin: 10

T

Right margin:

@ Pizels (o Cm O Inches

Figure 13-12
The Label editor



COMMANDS § Il

If you use the second form of the command, then the labels are printed with the
label setup that is defined in label document. If label document is an empty string
(""), PRINT LABEL will present an open-file dialog box so that the user may specify
the file to use for the label setup. If label document is the name of a document
which does not exist, the Label editor is displayed and the user can define the label

setup.

See the 4th DIMENSION User Reference for details on creating labels with the Label
editor.

/' The following example illustrates the use of the first form of PRINT LABEL. It uses a

/' The following example illustrates the use of the second form of PRINT LABEL.

layout, Label Out, to print the labels. The example uses two procedures. The first is
a global procedure that sets the correct output layout and then prints labels.

" Global procedure

vCR := Char (13) " Assign the carriage return character
DEFAULT FILE ([Addresses]) * Set the default file

ALL RECORDS * Select all records

OUTPUT LAYOUT ("Label Out") * Select the output layout

PRINT LABEL * Print the labels

OUTPUT LAYOUT ("Output1”) * Restore default output layout

The second procedure is the layout procedure for the Label Out layout. The layout
contains one variable that is used to hold the concatenated fields. If the second
address field (Addr2) is blank, it is removed by the procedure. (Note that this task is
performed automatically with the Label editor.) The layout procedure does the label
creation for each record.

" Layout procedure for the Label Out layout

" vLabel is the variable in the layout

" Concatenate names and first address

vLabel := Name1 +"" + Name2 + vCR + Addri + vCR

If (Addr2 #"") * If the line is not blank...

vLabel := vLabel + Addr2 + vCR " concatenate Addr2 into vLabel
End if
vlLabel := vLabel + City +"," + St + " " + ZipCode * Finally add the rest of the address

It prints labels using the Label editor setup described in the document called
Three Up.

PRINT LABEL ([Addresses]; "Three Up")

CHAPTER 13: DATA ENTRY AND REPORTING 171



172

Graphing

GRAPH GRAPH SETTINGS GRAPH FILE

Graphs can be generated in two different ways. Data can be graphed from records
(GRAPH FILE) or graphed from subfield or array information (GRAPH). GRAPH FILE
uses data from the fields in records to create the graph. It displays the graph in its own
window. GRAPH uses information in arrays or subfields, and draws the graph in a
Graph area that appears in a layout or dialog box.

The two commands can draw the same eight types of graphs. Table 13-1 shows the
graph types and the number associated with each type.

Table 13-1

The eight graph types

Graph Type Number Graph Style
Column 1

Proportional column 2

Stacked column 3

Line 4

Area 5

Scatter 6

Pie 7

Picture 8

Pictures



COMMANDS

GRAPH

GRAPH (graph name; graph number; x labels; y elementsl {;...; y elements8})

Parameter Type Description
graph name Variable Name of the layout Graph area
graph number ~ Number Graph type number
x labels Array Labels for the x-axis
or subfield
y elements Array Data to graph (up to eight allowed)
or subfield

GRAPH draws a graph for a Graph area in a layout. The data can come from
either arrays or subfields.

The graph name parameter is the name of the Graph area that displays the graph.
The Graph area is created in the Layout editor, using the graph object type. The
graph name is the name entered for the variable name. For information on
creating a Graph area, see the 4th DIMENSION Design Reference.

The graph number parameter defines the type of graph that will be drawn. It must
be a number from 1 to 8. The graph types are listed in Table 13-1, earlier in this
section. After a graph has been drawn, you can change the type by changing
graph number and executing the GRAPH command again.

The x labels parameter defines the labels that will be used to label the x-axis (the
bottom of the graph). This data can be of string, date, time, or numeric type.
There should be the same number of subrecords or array elements in x labels as
there are subrecords or array elements in each of the y elements.

The data specified by y elements is the data to graph. The data must be numeric.
Up to eight data sets can be graphed, each set off by a semicolon. Pie charts
graph only the first y elements.

CHAPTER 13: DATA ENTRY AND REPORTING 173



9 The following example shows how to use variables to create a graph. The code
would be inserted in a layout procedure or script. It is not intended to be
realistic, since the data is constant. Figure 13-13 shows the resulting graph.

ARRAY STRING (4; X; 2) * Create an array for the x-axis
X{1} :="1980" * X Label #1

X{2} :="1981" * X Label #2

ARRAY REAL (A; 2) * Create an array for the y-axis
A{1} :=30 " Insert some data

A{2} =40

ARRAY REAL (B; 2) * Create an array for the y-axis
B{1} := 50 " Insert some data

B{2} := 80

" Set the legends for the graph
GRAPH SETTINGS (vGraph; 0; 0; 0; 0; False; False; True; "Store 1"; "Store 2")

GRAPH (vGraph; 1; X; A; B) * Draw the graph
100
75
S0 / [ Storet
a5 . / Store2
0
1980
Figure 13-13

Graph from the example

' The following example graphs the sales in dollars for sales people in a subfile.
The subfile has three fields: Name, Last Year Tot, and This Year Tot. The graph
will show the sales for each of the sales people for the last two years.

GRAPH (Sales Graph; 1; Sales'Name; Sales'Last Year Tot; Sales'This Year Tot)

174



COMMANDS

GRAPH SETTINGS (g; xmin; xmax; ymin; ymax; xprop; xgrid; ygrid, titlel {;...; title8})

GRAPH SETTINGS

Parameter Type Description

g Variable Name of the Graph area

xmin Number Minimum x-axis value for proportional graph
or date (line or scatter plot only)
or time

xmax Number Maximum x-axis value for proportional graph
or date (line or scatter plot only)
or time :

ymin Number Minimum y-axis value,

ymax Number Maximum y-axis value

xprop Boolean TRUE for proportional x-axis;

FALSE for normal x-axis
(line or scatter plot only)
xgrid Boolean TRUE for x-axis grid;
FALSE for no x-axis grid
(only if xprop is TRUE)

ygrid Boolean TRUE for y-axis grid;
FALSE for no y-axis grid
title String Title(s) for graph legend(s)

GRAPH SETTINGS changes the graph settings for the graph g. The graph must
have already been displayed with the GRAPH command.

These settings are ignored for a pie chart.

The parameters xmin, xmax, ymin, and ymax all set the minimum and maximum
values for their respective axes of the graph. If the value of any pair of these
parameters is a null value (0, 700:00:007, or !00/00/00!, depending on the data type),
the default graph values will be used.

The xprop parameter turns on proportional plotting for line graphs (type 4) and
scatter graphs (type 6). When TRUE, it will plot each point on the x-axis according
to the point’s value, and then only if the values are numeric, time, or date.

The xgrid and ygrid parameters display or hide grid lines. A grid for the x-axis will
be displayed only when the plot is a proportional scatter or line graph.

The title parameter(s) label the legend.

Q See the GRAPH example, earlier in this section.

CHAPTER 13: DATA ENTRY AND REPORTING 175



GRAPH FILE
GRAPH FILE ({file})

Parameter Type Description
file File File to graph

GRAPH FILE ({file}; graph number; x field; y fieldl {;...; y field8})

Parameter Type Description

file File File to graph

graph number ~ Number Graph type number

x field Field Labels for the x-axis

y field Field Fields to graph (up to eight allowed)

GRAPH FILE has two forms. The first form displays the Graph window and allows the
user to select the fields to be graphed. The second form specifies the fields to be graphed
and does not display the Graph window. GRAPH FILE graphs data from a file’s fields.
Only data from the current selection is graphed.

Using the first form is equivalent to choosing Graph from the Quick menu in the User
environment. Figure 13-14 shows the Graph window, which allows the user to define the
graph.

Pictures
Dept K-his Y-hxis

Mumber K (MNone)
MNarmne | (Mone)
Budc:;et (Mone)
Debit (Mone)

(None)

gy [ Cancel J [ Graph J

Figure 13-14

Graph window

The second form of the command graphs the fields that are specified for file.

176



F The following example illustrates the use of the first form of GRAPH FILE. It presents

COMMANDS

The graph number defines the type of graph that will be drawn. It must be a number
from 1 to 8. The graph types are listed in Table 13-1, earlier in this section. After a graph
has been drawn, the user can change the type by choosing from the Graph menu.

The x field defines the labels that will be used to label the x-axis (the bottom of
the graph). The field type can be Alpha, Integer, Long integer, Real, or Date.

The y field is the data to graph. The field type must be Integer, Long integer, or Real.
Up to eight y fields can be graphed, each set off by a semicolon.

In either form, GRAPH FILE replaces the current menu bar with five menus: File, Edit,
Picture, Graph, and Settings. The user can print the currently displayed graph by
choosing Print from the File menu. The user can copy the graph from the screen to the
Clipboard by using the Edit menu. The Picture menu lets the user change the pictures
used in the picture type of graph. The Graph menu allows the user to change the graph
type. The Settings menu allows the user to change axis settings.

If the user clicks on a legend for a graph, a dialog box appears. The dialog box allows
the user to change the patterns and colors for the data series. The colors are displayed
only on a color monitor.

GRAPH FILE graphs only the first 100 columns of a graph. It sums matching x-axis
values. For example, if you were graphing all sales per region, the sales for each region
would automatically be summed. If you graph data where the x-axis labels are
duplicated, the user can choose the Scale menu item to display the Graph Settings dialog
box. In the Graph Settings dialog box, the user can deselect the “Group on X-axis” check
box to turn off the x-axis grouping.

You can also use the Quick Report editor to generate graphs from field data, by using
the “Print to” menu. See the 4th DIMENSION User Reference for more information
on graphing.

the Graph window and allows users to select the fields they would like to graph.
The code first does a search and a sort to select and arrange the records in the order
in which the user would like them graphed.

SEARCH ([People]) " Search the [People] file
SORT SELECTION ([People]) * Sort the [People] file
GRAPH FILE([People]) * Graph data in the [People] file

The following example illustrates the use of the second form of GRAPH FILE. It first
searches and sorts the [People] file. It then graphs the salaries of the people.

SEARCH ([People]; [People]Title = "Manager") * Search the [People] file for managers
SORT SELECTION ([People]; [People]Salary; >) * Sort the managers by salary

" Graph the salaries of the managers

GRAPH FILE([People]; 1; [People]Last; [People]Salary)

CHAPTER 13: DATA ENTRY AND REPORTING 177



178

Monitoring the Layout Execution Cycle

Before In header Level
During In break
After In footer

The commands in this section are used to determine what phase of the layout execution
cycle is executing. It is recommended that whenever possible, you use scripts instead of
testing for the execution cycle in a layout procedure.

See Chapter 5 in Part I of this manual for more information on the execution cycle.

woal 4T

Before

Before > Boolean

Before returns TRUE in a layout procedure before the layout is displayed on screen or
printed. The Before phase is usually used to initialize variables and fields before the
layout is displayed.

If an input layout contains an included layout, a Before phase is first generated for each
included record or subrecord that is displayed. Then the Before phase is generated for
the parent record. A Before phase is then generated for any record that is scrolled into
view by the user. A Before phase is also generated for any new record or subrecord in
an included layout, whether in the multi-line layout or the full-page layout.

When you are printing with PRINT SELECTION or from the Print menu in the User
environment, a Before phase is generated before a record is printed. The Before phase
for each record or subrecord in an included layout is generated after the parent record’s
Before phase. This is the opposite order from that of data entry. This order allows a
selection of records or subrecords for the included layout to be made in the Before phase
of the parent record.

When you are displaying a selection on screen with DISPLAY SELECTION or MODIFY
SELECTION, or in the User environment, Before and During are TRUE simultaneously
as each record is displayed.

1 The following example sorts a selection of subrecords before the layout is displayed.

Case of
: (Before)
" Sort the children into ascending order
SORT SUBSELECTION ([Parents]Children; [Parents]Children'First name; >)

End case



COMMANDS

During

During - Boolean

During returns TRUE in an input layout procedure when any modification is made to
an object (field, variable, button, or other active area) and when the layout is
accepted. The During phase for input layouts is usually used for data validation,
calculations, and updating fields and variables during data entry.

A During phase for an input layout procedure is generated under the following
conditions:

® when the user modifies a field or variable and moves from the field or variable
m  when the user clicks any button or check box

m  when the user clicks in an external object
u

when the user chooses from a custom menu, but not from the Apple or Edit
menu (except when a user pastes a picture into a field)

when the user makes a selection from a scrollable area

® within an included record or subrecord, only when the user enters data for that
particular record or subrecord

m within an included record or subrecord, when the record or subrecord must be
redrawn
m  when the user accepts the layout

m when the user cancels the layout

During returns TRUE in an output layout procedure when each record is being printed
with PRINT SELECTION or from the User environment Print menu.

During returns TRUE in an output layout procedure when a layout is displayed in a list
on the screen with DISPLAY SELECTION or MODIFY SELECTION, or in the User
environment. In this case, Before and During are TRUE simultaneously. During also
returns TRUE in an output laybut procedure when the user has double-clicked a
record.

" The following example shows all of the tests needed to completely monitor the
execution cycle of a DISPLAY SELECTION or MODIFY SELECTION command. This
procedure is the output layout procedure for the displayed layout. You must use
custom buttons in the Break area for this to work, since the default Done button will
only generate a During phase.

CHAPTER 13: DATA ENTRY AND REPORTING 179



180

The tests must be executed in the order shown. Note that the last test for During allows
you to check the record that the user just double-clicked. At this time, you could change
the input layout depending on the information in the record.

Case of
: (Before & During) * Each record is being displayed
: (Before) * The output list has not yet been displayed
: (In header) * The header is being displayed
: (Button = 1) * A button was selected

* You must do this test for each of the
" buttons in the Footer area.

: (Menu selected # 0) * A menu was selected

: (During) * A record was double-clicked
* You may change the input layout here. ‘
* You may also cancel the command, and
* the double-clicked record will be current.

End case

After

After > Boolean

After returns TRUE in an input layout procedure when a new or modified record has
been accepted. If there is an included file or included subfile, an After phase is first
generated for each record of the included file or subfile.

An After phase is generated only when ADD RECORD, MODIFY RECORD, or

MODIFY SELECTION is executed, and then only if a record is accepted. An After phase
is also generated if a record is accepted in the User environment. It is not generated
for DIALOG or output layout procedures.

If an existing record is not modified and the user accepts the record, the record is
not rewritten to disk and an After phase is not generated. In such a situation, you can

force an After phase by reassigning a field to itself in the Before or During phases,

therefore setting it as modified.

ﬂ] The following example shows the After phase being used to assign the date that the

record is modified to a field.

Case of
_ : (Before)

_ :(During)
: (After) * If the record is being saved...

Last Modified := Current Date * save the date of this modification
End case



COMMANDS

In header ;

In header > Boolean

In header returns TRUE in an output layout procedure when a Header area is about to
be printed.

The Header area of a layout is the area above the Header marker (marked with an H)
and below the top of the layout. The header is printed at the top of each page of a
report. There can also be Header area for each break level.

You can determine the beginning of a report by using Before selection. Before selection
returns TRUE when the first header is about to be printed.

In header also returns TRUE in an output layout procedure when a Header area is
displayed on screen.

1/ The following example is a template for a layout procedure. It shows each of the

possible reporting phases being tested.

Caseof .
: (In header)
Case of
: (Before selection)
* Code for the first header goes here
: (Level = 1)
" Code for a break header level 1 goes here
" There would be further tests for more break levels if required

End case
: (During)
" Code for each record goes here
: (In break)
Case of
: (Level = 0)
* Code for a break level 0 goes here
! (Level = 1)

* Code for a break level 1 goes here
" There would be further tests for more break levels if required
End case
: (In footer)
If (End selection)
" Code for the last footer goes here
Else
" Code for a footer goes here
End if
End case

CHAPTER 13: DATA ENTRY AND REPORTING 181



182

In break J _* ‘

In break - Boolean

In break returns TRUE in an output layout procedure when a Break area is about
to be printed.

In break returns TRUE for each break, that is, when a break level changes.

There are two methods used to turn on break processing for layout reports. See the
section “Activating Break Processing,” earlier in this chapter, for information on
the two methods. Liéo

See the example for In header, earlier in this section.

Level

Level - Number

Level is used to determine the current break or header level. It returns the
level number during an In Break or In Header phase of the execution cycle.

Level 0 is the last level to be printed and is appropriate for printing a grand total.
Level returns 1 when 4th DIMENSION prints a break on the first sorted field, 2 when
4th DIMENSION prints a break on the second sorted field, and so on.

See the example for In header, earlier in this section.

In footer

In footer > Boolean

In footer returns TRUE in an output layout procedure when a Footer area is about
to be printed.

The Footer area of a layout is above the Footer marker (marked with an F) and
below the Break marker (marked with a B). The footer is printed at the bottom of
each page of a report.

You can determine the end of a report by using End selection. End selection returns
TRUE when the last footer is about to be printed.

T/ See the example for In header, earlier in this section.



COMMANDS

MANAGING DAITA




MANAGING DATA

The commands in this chapter help you manage data. They do not display the data—for
that purpose, use the commands in Chapter 13, “Data Entry and Reporting.”

Managing Selections

ALL RECORDS DELETE SELECTION NEXT RECORD
Records in file MERGE SELECTION PREVIOUS RECORD
Records in selection FIRST RECORD Before selection
APPLY TO SELECTION LAST RECORD End selection

These commands help you manage the current selection.

Many of the commands perform an operation on the selection, such as deleting the
selection, modifying the selection, or moving within the selection. It is important that
you first create the correct selection—generally with the commands described in the
section “Searching,” in this chapter, and “Managing Sets,” in Chapter 16.

ALL RECORDS

ALL RECORDS ({file})
Parameter Type Description
file File File for which to select all records

ALL RECORDS selects all the records of file as the current selection. ALL RECORDS
makes the first record the current record and loads the record from disk. ALL RECORDS
returns the records to the default record order.

Q The following example displays all the records in the database.

DEFAULT FILE ([People]) * Set a default file
ALL RECORDS * Select all the records in the file
DISPLAY SELECTION " Display the records in the output layout

184



COMMANDS § Il

Records in file

Records in file ({file}) > Number

Parameter Type Description
file File File for which to return number of records

Records in file returns the total number of records in file. Records in selection returns the
number of records in the current selection only.

The following example displays an alert that shows the number of records in a file.
Notice that the number returned by Records in file is converted to a string.

ALERT ("There are " + String (Records in file ([People])) + " records in the file.")

The following example is a very typical loop that passes through all of the records in
a file. Note that this loop performs the same action as APPLY TO SELECTION.

ALL RECORDS ([People]) * Select all the records

For ($i; 1; Records in file ([People])) " Will loop once for each record in the file
Do Something * Do something that affects the record
SAVE RECORD * Save the modified record
NEXT RECORD ([People]) * Move to the next record

End for

Records in selection

Records in selection ({file}) > Number

Parameter Type Description
file File File for which to return number of records

Records in selection returns the number of records in the current selection of file.
Records in file returns the total number of records in the file.

“ The following example shows a loop technique commonly used to move through all
the records in a selection. The same action can also be accomplished with the
APPLY TO SELECTION command.

DEFAULT FILE ([People]) * Set the default file
FIRST RECORD * Start at the first record in the selection
For ($i; 1; Records in selection) * Loop once for each record
Do Something * Do something with the record
NEXT RECORD * Move to the next record
End for

CHAPTER 14: MANAGING DATA 185



186

APPLY TO SELECTION

!

APPLY TO SELECTION ({file}; statement)

Parameter Type Description
file File File for which to apply statement
statement Statement One line of code or a global procedure

APPLY TO SELECTION applies statement to each record in the current selection of file.
The statement can be a statement or a global procedure. If statement modifies a record of
file, the modified record is saved. If statement does not modify a record, the record is not
saved. If the current selection is empty, APPLY TO SELECTION has no effect. The
statement can contain a field from a related file if the relation is automatic.

APPLY TO SELECTION can be used to gather information from the selection of records
(for example, a total), or to modify a selection (for example, changing the first letter of a
field to uppercase).

The progress thermometer is displayed while APPLY TO SELECTION is executing. The
MESSAGES OFF command turns off the progress thermometer. If the progress
thermometer is displayed, the user can cancel the operation. If the user cancels, the OK
system variable is set to 0. Otherwise, the OK system variable is set to 1.

“ The following example capitalizes all the names in the file. It uses character reference

symbols (the < and > characters) to access the first character of the field. For more
information on character referencing, see “String Functions,” in Chapter 17.

APPLY TO SELECTION ([People]; [People]Name<1> := Uppercase ([People]Name<1>))

ﬂmf If a record is locked during the execution of APPLY TO SELECTION and that record is

modified, the record will not be saved. Any locked records are put in a set called
LockedSet. After APPLY TO SELECTION has executed, test the LockedSet to see if any
records were locked. The following loop will execute until all the records have been
modified:

Repeat " Repeat if there are any locked records
APPLY TO SELECTION ([People]; [People]Name<1> :=
Uppercase ([People]Name<12>))
USE SET ("LockedSet") * Select only the records that were locked
Until (Records in set ("LockedSet") = 0) * Done when there are no locked records



COMMANDS } Il

DELETE SELECTION

DELETE SELECTION ({file})

Parameter Type Description
file File File from which to delete the current selection

DELETE SELECTION deletes the current selection of records from file. If the current
selection is empty, DELETE SELECTION has no effect. After the records are deleted, the
current selection is empty.

Warning: Deleting a selection of records is a permanent operation, and cannot normally be
undone. You can use a transaction if you may need to reverse the deletion. For more
information on transactions, see “Using Transactions,” in Chapter 16.

{F The following example displays all the records in the database and allows the user to
select which ones to delete. The example has two sections. The first is a global procedure
to display the records. The second is a script for a button labeled Delete. Here is the first

section:

DEFAULT FILE ([People]) * Set the default file

ALL RECORDS * Select all records

OUTPUT LAYOUT ("Listing") * Set the layout to list the records
DISPLAY SELECTION " Display all the records

Here is the script for the Delete button, which appears in the Footer area of the output
layout. The script uses the records the user selected (the UserSet) to delete the selection.
(Note that if the user selected no records, DELETE SELECTION has no effect.) Finally,
all records are again selected.

* Confirm that the user really wants to delete the records
CONFIRM ("You selected " + String (Records in set ("UserSet")) + " people to delete."
+ Char (13) + "Click OK to delete them.")

If (OK=1)
USE SET ("UserSet") " Use the records that the user chose
DELETE SELECTION " Delete the selection of records

End if

ALL RECORDS * Select all records

ﬁ}Mﬁ If a record is locked during the execution of DELETE SELECTION, that record is not
deleted. Any locked records are represented in a set called LockedSet. After
DELETE SELECTION has executed, you can test the LockedSet to see if any records were
locked. The following loop will execute until all the records have been deleted:

Repeat " Repeat if there are any locked records
DELETE SELECTION
USE SET ("LockedSet") * Select only the records that were locked
Until (Records in set ("LockedSet") = 0) " Done when there are no locked records

CHAPITER 14: MANAGING DATA 187



188

MERGE SELECTION

MERGE SELECTION ({file}; {document type})

Parameter Type Description
file File File to merge
document type  String Macintosh document type (4 characters)

MERGE SELECTION allows you to merge data with an external document. The
document is usually for a word processor, to perform mail merge. Mail merge
inserts data from each record into a new copy of the document, thereby generating
“customized” documents. MERGE SELECTION requires that a “merge module” be
installed. Contact ACIUS or ACI for information on word processors that have
merge modules.

FIRST RECORD

FIRST RECORD ({file})

Parameter Type Description
file File File in which to move to the first record

FIRST RECORD makes the first record of the current selection of file the current
record, and loads the record from disk. All search, selection, and sorting commands
also set the current record to the first record. If the current selection is empty,
FIRST RECORD has no effect.

If this command is used during data entry, it acts differently from a “First Record”
automatic button action. It will not execute a new Before phase, and the record must
be saved with SAVE RECORD.

F The following example shows a loop technique commonly used to move through all

the records in a selection. You can accomplish the same action by using the
APPLY TO SELECTION command.

DEFAULT FILE ([People]) * Set the default file

FIRST RECORD * Start at the first record in the selection
For ($i; 1; Records in selection) * Loop once for each record

Do Something " Do something with the record

NEXT RECORD " Move to the next record
End for



'COMMANDS |} Il

LAST RECORD

LAST RECORD ({file})

Parameter Type Description
file File File in which to move to the last record

LAST RECORD makes the last record of the current selection of file the current record,
and loads the record from disk. If the current selection is empty, LAST RECORD has no
effect.

If this command is used during data entry, it acts differently from a “Last Record”
automatic button action. It will not execute a new Before phase, and the record must
be saved with SAVE RECORD.

F The procedure in the following example moves through all the records in a file from the
end to the beginning. It displays each record, pausing for three seconds between records.

DEFAULT FILE ([People]) * Set the default file
OUTPUT LAYOUT ("Pictures") * Set the output layout
ALL RECORDS * Select all records to display
LAST RECORD " Move to the end of the file
For ($i; 1; Records in file) " Loop once for each record
DISPLAY RECORD " Display the record
$T := Current time + 3 " Initialize for a timing loop
While (Current time < $T) * Delay for about 3 seconds
End while
PREVIOUS RECORD " Move to the previous record
End for

NEXT RECORD

NEXT RECORD ({file})

Parameter Type Description
file File File in which to move to the next record

NEXT RECORD makes the next record of the current selection of file the current record,
and loads the record from disk. If the current selection is empty, or Before selection or
End selection is TRUE, NEXT RECORD has no effect.

If NEXT RECORD moves the current record pointer past the end of the current selection,
End selection returns TRUE, and there is no current record. If End selection returns TRUE,
use FIRST RECORD, LAST RECORD, or GOTO SELECTED RECORD to move the current
record pointer back into the current selection.

CHAPTER 14: MANAGING DATA 180



190

If this command is used during data entry, it acts differently from a “Next Record”
automatic button action. It will not execute a new Before phase, and the record
must be saved with SAVE RECORD.

See the FIRST RECORD example, earlier in this section.

PREVIOUS RECORD

PREVIOUS RECORD ({file})

Parameter Type Description
file File File in which to move to the previous record

PREVIOUS RECORD makes the previous record of the current selection of file the
current record, and loads the record from disk. If the current selection is empty, or
Before selection or End selection is TRUE, PREVIOUS RECORD has no effect.

If PREVIOUS RECORD moves the current record pointer before the current
selection, Before selection returns TRUE, and there is no current record. If
Before selection returns TRUE, use FIRST RECORD, LAST RECORD, or
GOTO SELECTED RECORD to move the current record pointer back into the
current selection.

If this command is used during data entry, it acts differently from a
“Previous Record” automatic button action. It will not execute a new Before phase,
and the record must be saved with SAVE RECORD.

See the LAST RECORD example, earlier in this section.

Before selection

Before selection ({file}) > Boolean

Parameter Type Description
file File File for which to test if before selection

Before selection returns TRUE when the current record pointer is before the current
selection of file. Before selection is commonly used to check whether

PREVIOUS RECORD has moved the current record pointer before the first record.
If the current selection is empty, Before selection returns TRUE.

Before selection also returns TRUE in the first header when a report is being printed
with PRINT SELECTION or from the Print menu. You can use the following
statement to test for the first header, and print a special header for the first page:

If (In header & Before selection)



COMMANDS

:Q: The procedure in the following example is used during the printing of a report. It sets
a variable, vTitle, to print in the Header area on the first page.

If (In header & Before selection ([Finances])) " If the first page of a report, set the title.
vTitle := "Corporate Report 1988" * Set the title for the first page

Else
vTitle := ™ * Clear the title for all other pages

End if

End selection

End selection ({file}) > Boolean

Parameter Type Description
file File File for which to test if after selection

End selection returns TRUE when the current record pointer is after the end of the
current selection of file. End selection is commonly used to check whether

NEXT RECORD has moved the current record pointer past the last record. If the
current selection is empty, End selection returns TRUE.

To move the current record pointer back into the selection, use LAST RECORD,
FIRST RECORD, or GOTO SELECTED RECORD. PREVIOUS RECORD does not move
the pointer back into the selection.

End selection also returns TRUE in the last footer when a report is being printed with
PRINT SELECTION or from the Print menu. You can use the following statement to
test for the last footer, and print a special footer for the first page:

If (In footer & End selection)

{F The procedure in the following example is used during the printing of a report. It sets
a variable, vFooter, to print in the Footer area on the last page.

If (In footer & End selection ([Finances])) " If the last page of a report, set the footer
vFooter := "©1988 Acme Corp." * Set the footer for the last page

Else
vFooter ;=" * Clear the footer for all other pages

End if

CHAPTER 14: MANAGING DATA 191



192

Searching

SEARCH BY LAYOUT SEARCH BY FORMULA SEARCH BY INDEX
SEARCH SEARCH SELECTION SEARCH SUBRECORDS

The 4th DIMENSION language contains a number of commands you can use to
search for records. They all perform the same basic role—searching through the
records of a file, looking for records that match a set of criteria—but each does the
task in a different way. When each command has finished executing, it creates a
selection of the records that were found.

Searches may be simple or complex. You can search for a single record, such as
employee ID number 57. You can search for a selection of records, such as all
companies in New York.

A search for records in a file can use a field from a related file if the relation is
automatic. See the 4th DIMENSION Design Reference for information on defining
file relations.

Searches that use indexes are generally the fastest. This is especially true when the
number of records to search through is large.

It is recommended that you use the SEARCH command whenever possible. The
SEARCH command uses the same search techniques as does the Search editor in the
User environment. These searches are optimized, using indexes first and then doing
a sequential search if needed.

SEARCH BY FORMULA and SEARCH SELECTION are extremely powerful and
flexible search commands. They are not restricted to a specific search syntax as are
SEARCH and SEARCH BY INDEX. You can use them to do sophisticated searches,
such as a search for a substring within a field, or a search based on a calculation.
The searches performed by these commands are always sequential searches and
therefore slower than an indexed search.

SEARCH SUBRECORDS searches within one record’s subrecords. It finds a selection
of subrecords, not a selection of records. If you use one of the other search
commands to search on a subfield, it will find a selection of records, not a selection
of subrecords.

A progress thermometer is displayed while a search is performed. Use

MESSAGES OFF to turn off the thermometer. The user can stop the search by
clicking either the Stop button in the thermometer or the Cancel button in a search
window. After a search, you can test the OK system variable to see if the search
was completed. The OK system variable is set to 1 if the search was completed, and
to 0 if it wasn’t. If you want to display records found by a search command, use
DISPLAY SELECTION or MODIFY SELECTION.



COMMANDS

SEARCH BY LAYOUT

SEARCH BY LAYOUT ({file}; {layout})

Parameter Type Description
file File File for which to return selection of records
layout String Search layout

SEARCH BY LAYOUT performs the same action as does the Search by Layout menu item
in the User environment. SEARCH BY LAYOUT searches file for the data that the user
enters into layout. The layout must be a layout that belongs to file. If layout is not
specified, the current input layout will be used. The layout must contain the fields that
the user is searching for. The search is an intelligent search; indexed fields are
automatically used to optimize the search.

If the user clicks an Accept button or presses the Enter key, the OK system variable is
set to 1 and the search is performed. If the user clicks a Cancel button or presses the
“cancel” key combination, the OK system variable is set to 0 and the search is canceled.

See the 4th DIMENSION User Reference for information on using the Search by Layout
menu item in the User environment.

X/ The procedure in the following example displays the layout named My Search to the

user. If the user accepts the layout and performs the search (that is, if the OK system
variable is set to 1), the records are displayed.

SEARCH BY LAYOUT ([People]; "My Search") " Display the layout and perform the search

If (OK =1) * If the user performed the search...
DISPLAY SELECTION ([People]) " display the records

End if

CHAPTER 14: MANAGING DATA 193



SEARCH | ~ L

SEARCH ({file})

Parameter Type Description
file File File for which to return selection of records

SEARCH ({file}; search argument; {*})

Parameter Type Description

file File File for which to return selection of records
search argument Search argument

i Continue search flag

SEARCH has two forms. Both forms return a selection of records for file. If any
indexed fields are specified, the search is optimized: Indexed searches are performed
first, resulting in a search that takes the least amount of time possible.

The first form presents the Search editor for file. It allows the user to build a search
argument within the editor and perform the search.

Figure 14-1 shows the Search editor.

Search Editor

- ERaenE

[

b -+ is equal to

Last Name LS| [is not equal to Q fing

First Name | |is greater than

Start Date is greater than or equal to O ]

Salary is less than .

Title || |is less than or equal to O LHDORY
Kb [contains

[value | |

[J Search in selection

[ save.. ] [ load.. | [ cancel | | 0K ]

Figure 14-1
The Search editor

If a SEARCH command for fi/e has been previously executed with the optional *
parameter. then the Search editor is not presented: instead. the search is performed.

194



COMMANDS { I

The second form of the SEARCH command performs an intelligent search, using
search argument, and returns a selection of records for file.

Complex searches can be “built.” You build a search by executing multiple SEARCH
commands. You specify a built search by including the optional * parameter at the
end of each SEARCH command. The search arguments are then joined together by a
conjunction. Built searches are defined later in this command description.

Specifying the Search Argument
The search argument uses the format
{conjunction} {;} field {;} comparator {;} value

The conjunction is used optionally to join the SEARCH to a previously
executed SEARCH.

The conjunctions available are the same as those in the User environment
Search editor. They are shown in Table 14-1.

Table 14-1

Search conjunctions
Conjunction Symbol
AND &
OR I
Except #

The conjunction is a constant. It cannot be a string.

The conjunction is not used if the SEARCH is the first SEARCH command in a built
search, or if there is only one SEARCH command executed to perform the search.

The field is the field to search. The field may belong to another file if it is related by
an automatic relation to file.

The comparator is the comparison that is made between field and value.

The comparator is one of the symbols shown in Table 14-2.

CHAPTER 14: MANAGING DATA 105



196

Table 14-2
Search comparison symbols

Comparison Symbol
Equal to =
Not equal to #
Less than <
Greater than >
Less than or equal to L=
Greater than or equal to >=

The comparator can be a constant or a string. If it is a constant, semicolons may
optionally surround the comparator. If it is a string, semicolons must surround the
comparator.

The value is the data against which field will be compared. The value can be any
expression that evaluates to the same data type as field, or it may be a string. If it is a
string, it will automatically be converted to the correct data type.

The value is evaluated once, at the beginning of the search. The value is not evaluated
for each record.

To search for a string contained in a string (a contains search), use the wildcard symbol
B e
(@) in value.

Creating Built Searches

You can delay the execution of a search by using a series of SEARCH commands, with
the asterisk (*) as the last parameter for each command. This method allows you to build
a search with multiple search arguments. To perform the built search, you execute
SEARCH without the * parameter. You can also perform the built search by just
specifying SEARCH without any parameters.

Here are the rules for built searches:

The first search argument must not contain a conjunction.
Each successive search argument must begin with a conjunction.
The first search and every other search, except the last, must use the * parameter.

To perform the search, do not specify the * parameter in the last SEARCH command.
Alternatively, you may execute the SEARCH command without any parameters (the
first form of the command).

Each file maintains its own built search. This means that you can create multiple
built searches simultaneously, one for each file. You must use the file parameter or
set the default file to specify which file to use.



COMMANDS | il

Search Examples

\F The following command finds the records for all the people named Smith. Remember

that 4th DIMENSION is not case sensitive. The Last Name field is indexed. The SEARCH
command automatically uses the index for a fast search.

SEARCH ([Pecple]; [People]Last Name = "smith") * Find every person named Smith

F The following example finds the records for all the people named John Smith. The Last

Name field is indexed. The First Name field is not indexed. When the search is
performed, it quickly does an indexed search and reduces the selection of records to
those for pecple named Smith. The search for records with John in the First Name field
is then performed sequentially.

Notice that the first SEARCH command includes an asterisk (*) as the last parameter.
Including the * prevents the search from happening immediately. The second SEARCH is
“built” onto the first with the AND conjunction (&). This causes the search to find the
records for all the people whose last name is Smith “and” whose first name is John. The
second SEARCH causes the search to be performed, because there is no asterisk (*)
parameter.

SEARCH ([People]; [People]Last Name = "smith"; *) " Find every person named Smith...
SEARCH ([People]; &; [People]First Name = "john") ~ with a first name of John

~ The following search example finds the records for people named Smith or Jones. The
Last Name field is indexed. The SEARCH command uses the Last Name index for both
searches. The second SEARCH is built onto the first with the OR conjunction ( | ). This
causes the search to find the records for all the people whose last name is Smith “or”
whose last name is Jones. Note that the search arguments use strings for the comparators.

SEARCH ([People]; [People]Last Name; "="; "smith"; *) * Find every person named Smith...
SEARCH ([People]; | [People]Last Name; "="; "jones") * or Jones

F The following example finds the records for people who do not have a company name. It

does this by finding entries with empty fields (the empty string).

SEARCH ([People]; [People]Company = ") * Find every person with no company

F The following example finds the record for every person whose last name is Smith and

who works for a company based in New York. The second search uses a field from
another file. This search can be done because the [People] file is related to the
[Company] file.

SEARCH ([People]; [People]Last Name = "smith"; *) " Find every person named Smith...
SEARCH ([People]; & [Company]State = "NY") * who works for a company based in NY

CHAPTER 14: MANAGING DATA 197



198

F The following example finds the record for every person whose name falls between A

(included) and M (included).
SEARCH ([People]; [People]Name < "n") * Find every person from A to M

F The following example finds the records for all the people living in the San Francisco or

Los Angeles areas (ZIP codes beginning with 94 or 90).

SEARCH ([People]; [People]ZIP Code = "94@"; *) " Find every person in the SF...
SEARCH ([People]; | [People]ZIP Code = "90@") * or Los Angeles areas

F The following example searches an indexed subfield. The search returns a selection of

parent records (records for the [People] file). It does not return a selection of subrecords.
The result of the search would be the selection of records for all the people who have a
child named Sabra.

SEARCH ([People]; [People]Children'Name = "Sabra")  Find people with child named Sabra

F The following example finds the record that matches the invoice number entered in the

request dialog box.

vFind := Request ("Find invoice number:") * Get an invoice number from the user
If (OK =1) * If the user pressed OK...

SEARCH ([Invoice]; [Invoice]Number = vFind) * find the invoice number that matches vFind
End if

F The following example finds the records for the invoices entered in 1988. It does this by

finding all records that are after 12/31/87 and before 1/1/89. Note that the second search
uses a string to represent the date. The SEARCH command automatically converts a string
to the correct data type (in this case, a date).

SEARCH ([Invoice]; [Invoice]in Date > 112/31/87!; *) " Find invoices after 12/31/87...
SEARCH ([Invoice]; & [Invoice]ln Date < "1/1/89") " and before 1/1/89

“ The following example finds the record for each employee whose salary is between

$10,000 and $50,000. The search includes the employees who make $10,000, but
excludes those who make $50,000.

DEFAULT FILE ([Employee]) " Set the default file
SEARCH ([Employee]Salary >= 10000; *) * Find employees who make between...
SEARCH (& [Employee]Salary < 50000) * $10,000 and $50,000



a3

COMMANDS

The following example finds the records for the employees in the marketing department
who have salaries over $20,000. The Salary field is searched first because it is indexed.
Notice that the second search uses a field from another file. It can do this because the
[Dept]Name field is related to the [Employee] file with an automatic relation. Although
the [Dept]Name field is indexed, this is not an indexed search because the relation must
be performed sequentially for each record in the [Employee] file.

* Find employees with salaries over $20,000 who are in the marketing department.
SEARCH ([Employee]; [Employee]Salary > 20000; *)
SEARCH ([Employee]; & [Dept]Name = "marketing”)

The following example finds the records for a group of employees. The employees are
found by means of the employee ID. The ID is entered by the user into a request dialog
box. For each entry that the user makes, one SEARCH is executed. The first SEARCH is
not in the While loop because it does not need the OR conjunction. The SEARCH inside
the While loop uses the OR conjunction to join the searches together. When the user
presses the Cancel button in the request dialog box, the While loop terminates and the
search is executed.

DEFAULT FILE ([Employee]) * Set the default file

vFind := Request ("Employee [D:") * Get the first employee ID

If (OK =1) K * If the user did not press Cancel...
SEARCH ([Employee]lD = vFind; *) " execute the first SEARCH command

End if

" Loop until the user presses the Cancel button

While (OK = 1)
vFind := Request ("Employee ID:") * Get another employee ID
If (OK = 1) " If the user did not press Cancel...

SEARCH ( | [Employee]ID = vFind; *) * execute another SEARCH command

End if

End while

SEARCH * Perform the search

The following example searches for information that was entered into the variable Var.
The search could have many different results, depending on the value of Var. For
example:

m If Var equals "Copyright@", the file selection contains all laws with texts beginning
with Copyright.

m If Var equals "@Copyright@", the file selection contains all laws-with texts
containing at least one occurrence of Copyright.

m If Var equals "@Copyright", the file selection contains all laws with texts ending
with Copyright.

SEARCH ([Laws]; [Laws]Text = Var) * Find all laws that “match” the Var variable

CHAPTER 14: MANAGING DATA

199



200

SEARCH BY FORMULA / ¢7 U
SEARCH SELECTION

SEARCH BY FORMULA ({file}; {search formula})
SEARCH SELECTION ({file}; {search formula})

Parameter Type Description
file File File for which to return selection of records
search formula Boolean Search formula

SEARCH BY FORMULA and SEARCH SELECTION create a new selection of records
for file. SEARCH BY FORMULA and SEARCH SELECTION work exactly the same
way, except that SEARCH BY FORMULA searches every record in the file and
SEARCH SELECTION searches only the records in the current selection.

Both commands apply search formula to each record in the file or selection. The
search formula is a Boolean expression that must evaluate to either TRUE or
FALSE. If search formula evaluates as TRUE, the record is included in the new
selection.

The search formula may be simple, perhaps comparing a field to a value; or it may
be complex, perhaps performing a calculation or even evaluating information in a
related file. The search formula can be a 4th DIMENSION function, or a function or
expression you have created. You can use wildcards in search formula when
working with Alpha fields or text.

When the search is complete, the first record of the new selection is loaded from
disk and made the current record.

These commands always perform a sequential search, not an indexed search.
SEARCH BY FORMULA and SEARCH SELECTION are slower than SEARCH and
SEARCH BY INDEX when used on indexed fields. The search time is proportional to
the number of records in the file or selection.

Note that the first three examples perform the same searches as the first three
examples for SEARCH. The difference is that they are always sequential searches,
and therefore slower than the optimized searches performed by SEARCH. They are
also searches performed only within the current selection, since they use

SEARCH SELECTION.

The following example finds the records in the current selection for the people who
are named Smith. Remember that 4th DIMENSION is not case sensitive. The Last
Name field is indexed, but the index is ignored since this is a sequential search.

* Find the people named Smith
SEARCH SELECTION ([People]; [People]Last Name = "smith")



COMMANDS

7 The following example finds the records in the current selection for the people who

are named John Smith. Note the use of parentheses to control the evaluation of the
Boolean expression.

* Find the people named John Smith
SEARCH SELECTION ([People]; ([People]First Name = "john")
& ([People]Last Name = "smith"))

/" The following example finds the records in the current selection for the people who

are named Smith or Jones.

* Find the people named Smith or Jones
SEARCH SELECTION ([People]; ([People]Last Name = "smith")
| ((People]Last Name = "jones"))

¥ The following example finds the records for all invoices that were entered in

December of any year. It does this by applying the Month of function to each record.
This search could not be performed any other way without creating a separate field
for the month.

* Find the invoices entered in December
SEARCH BY FORMULA ([Invoice]; Month of ([Invoice]Entered) = 12)

“ The following example finds records for all the people who have names with more
than ten characters.

* Find the people with names longer than ten characters
DEFAULT FILE ([People]) * Set the default file
SEARCH BY FORMULA (Length ([People]Name) > 10)

SEARCH BY INDEX

SEARCH BY INDEX ({search argumentl} {;...; search argumentN})

Parameter Type Description
search argument Search argument

SEARCH BY INDEX works only on indexed fields. It searches on all records in the file
(not just the current selection) that match search argument. Although SEARCH gives
you greater flexibility, SEARCH BY INDEX is more efficient when you are searching
for fields that fall between two values. In all other cases, you should use SEARCH.

If you do not give an argument, SEARCH BY INDEX displays the same dialog box
(shown in Figure 14-2) as Search and Modify in the User environment. The dialog
box will be displayed for the current default file. You must have set a default file for
it to be displayed. This dialog box allows the user to specify the search arguments. If
the user accepts the dialog box and performs the search, the OK system variable is set
to 1. Otherwise, it is set to 0.

CHAPTER 14: MANAGING DATA 201



202

Employees

(Lﬂst Name “ )

[%*';'(w';ea;@ §>zz§;§::-] [N{a;cé 5*»:;g;e] [ Cancel } [ 0K J

Figure 14-2
The Search by Index dialog box

SEARCH BY INDEX does not need a filename as a parameter. It uses the file prefix
from the field to determine what file to search on. Unlike SEARCH, it cannot
search on fields from another file.

When the search is complete, SEARCH BY INDEX loads the first record of the new
current selection from disk and makes it the current record.

The search argument parameter recognizes only two operators: the Equal
operator (=) and the Between operator (£). The Equal operator tests for the
equality of string, numeric, time, or date values. The Between operator tests for
string, numeric, time, or date values that equal or fall between its parameters.
(To display the * character, press the Option-+ keys.)

The search argument parameter is constructed in the following manner:
field = value

or

field * valuel; value2

There can be multiple search argument parameters, each one set off by a
semicolon. 4th DIMENSION automatically performs an AND operation on these
search arguments.

The wildcard character (@) works only with string expressions. You can use the
wildcard character only at the end of a string expression.



COMMANDS

:{}" The following example finds the record for every person whose first name starts
with J and whose last name is Smith.

SEARCH BY INDEX ([People]First Name = "J@"; [People]Last Name = "Smith")

{F The following example finds all records for invoices with a date of sale falling
between January 1, 1985 (included) and the current date (included).

SEARCH BY INDEX ([Invoices]Date of sale * !1/1/1985!; Current date)

¥ The following example finds all records for invoices with a part number falling
between 5003 (included) and 5009 (included).

SEARCH BY INDEX ([Parts]Number + "5003"; "5009")

SEARCH SUBRECORDS

SEARCH SUBRECORDS (subfile; search formula)

Parameter Type Description
subfile Subfile Subfile to search
search formula Boolean Search formula

SEARCH SUBRECORDS searches subfile and creates a new subselection. This is the
only command that searches subrecords and returns a selection of subrecords.

The search formula is applied to each subrecord in subfile. If the formula evaluates
as TRUE, the subrecord is added to the new subselection. When the search is
complete, SEARCH SUBRECORDS makes the first subrecord the current subrecord
of subfile.

Remember that SEARCH SUBRECORDS searches only the subrecords of the
currently selected parent record, and not all the subrecords associated with the
several records of the parent file. SEARCH SUBRECORDS does not change the
current parent record.

Typically, search formula tests a subfield against a variable or a constant, using a
relational operator. The search formula can contain multiple tests that are joined
by AND conjunctions (&) or OR conjunctions ( | ). The search formula can also be
or contain a function. The wildcard character (@) works in string arguments.

If neither a current record nor a higher-level subrecord exists,
SEARCH SUBRECORDS has no effect.

/' The following example finds all subrecords containing phone numbers in the 408
area code.

SEARCH SUBRECORDS ([Addresses]Phone; [Addresses]Phone'Number = "408@")

CHAPTER 14: MANAGING DATA 203



204

Sorting

SORT BY FORMULA SORT FILE
SORT SELECTION SORT SUBSELECTION

Sorting is among the most common of database operations. The commands in this
section are often used before a selection of records is displayed or printed. They can
be used to sort the records in ascending order, for example from A to Z, or in
descending order, for example from Z to A. All of the sort commands can sort on
more than one level. SORT BY FORMULA can sort on calculated information.

SORT BY FORMULA

SORT BY FORMULA (file; expressionl; {directionl} {;...; expressionN; {directionN}})

Parameter Type Description
file File File to sort
expression String Expression on which to sort
or number
or date
or time
or Boolean
direction >or< > to sort ascending; < to sort descending

SORT BY FORMULA sorts the current selection of file according to expression.
You can sort on multiple expressions within one statement.

Note that you must specify file. You cannot use a default file.

SORT BY FORMULA sorts the current selection into ascending or descending order.
The direction parameter specifies whether to sort the records of file in ascending or
descending order. If direction is the “greater than” symbol (>), the sort is ascending.
If direction is the “less than” symbol (<), the sort is descending. If direction is not
specified, the sort is ascending.

Once the sort is completed, the first record of the sorted selection is loaded from disk
and is the current record.

During a sort operation, the progress thermometer is displayed, unless you have
previously called MESSAGES OFF. After a sort operation, you can test to see whether
the sort operation was completed, by checking the OK system variable. The OK system
variable is set to 1 if the sort was completed, and to O if it wasn’t. If the user clicks the
Cancel button in the standard sort window, or the Stop button in the standard progress
window, the OK system variable is set to 0.



COMMANDS | I

{F The following example sorts the records of the [People] file into descending
order based on the length of each person’s last name. The record for the person
with the longest last name will be first in the current selection.

SORT BY FORMULA ([People]; Length ([People]Last Name); >)

SORT SELECTION

SORT SELECTION ({file})

Parameter Type Description
file File File to sort

SORT SELECTION ({file}; fieldl; {directionl} {;...; fieldN; {directionN}})

Parameter Type Description

file File File to sort

field Field Field on which to sort

direction >or < > to sort ascending; < to sort descending

SORT SELECTION has two forms.

The first form displays the Sort dialog box (Figure 14-3) from the
User environment, and lets the user specify the sort.

Sort Employees...
bl 2| [Last Name
Last Name K
Earst An " ||First Name
Start Date
Salary
Title
|
(tait Formuta | [RAad Formula | [#eiete | [ Cancel | [ Sort |

Figure 14-3
The Sort dialog box

CHAPTER 14: MANAGING DATA 205



206

The second form sorts the current selection of file according to the parameters.
If file is not specified, SORT SELECTION sorts the current selection of the file
containing fieldl. You can sort based on multiple fields within one statement.
Once the sort is completed, the first record of the sorted selection is loaded from
disk and is the current record.

The direction parameter specifies whether to sort field in ascending or descending
order. If direction is the “greater than” symbol (>), the sort is ascending.

If direction is the “less than” symbol (<), the sort is descending. If direction is
not specified, the sort is ascending.

If only one field is specified and it is indexed, the index is used for the sort. If the
field is not indexed or if there is more than one field, the sort is performed
sequentially.

Automatic many-to-one related fields can be used to sort on. The related fields
can be specified for all but the first field.

During a sort operation, the progress thermometer is displayed, unless you have
previously called MESSAGES OFF. After a sort operation, you can test to see
whether the sort operation was completed, by checking the OK system variable.
The OK system variable is set to 1 if the sort was completed, and to O if it wasn’t.
If the user clicks the Cancel button in the standard sort window, or the Stop
button in the standard progress window, the OK system variable is set to 0.

F The following example displays the Sort dialog box for the file [Addresses].

SORT SELECTION ([Addresses])

F The following example sorts the current selection of [Addresses] into ascending

order, first by ZIP code, and then by last name.

SORT SELECTION ([Addresses]; [Addresses]ZIP; >; [Addresses]Last Name; >)

SORT FILE [/ §7

SORT FILE (file; fieldl; {directionl} {;...; fieldN; {directionN}})
Parameter Type Description

file File File to sort

field Field Field on which to sort

direction >or< > to sort ascending; < to sort descending

SORT FILE performs the same action as SORT SELECTION, except that the file is
sorted permanently. See the description of SORT SELECTION, earlier in this
section, for more information on the command syntax.

#  Note that you must specify file. You cannot use a default file.

e



COMMANDS | Il

When a file is sorted permanently, the records will be displayed and printed in
the new order, unless they are again sorted.

SORT FILE must perform three operations to complete its task:
1. The file is sorted.

2. The new sorted order is saved.

3. All indexes for the file are rebuilt.

Since this command restructures the data file and may be time consuming,
this command is executed infrequently.

v The following example sorts the [Addresses] file permanently into ascending order,
first by ZIP code, and then by last name.

SORT FILE ([Addresses]; [Addresses]ZIP; >; [Addresses]Last Name; >)

WW SORT FILE performs no action when a database is being used in a multi-user
environment.

SORT SUBSELECTION

SORT SUBSELECTION (subfile; subfieldl; {directionl} {;...; subfieldN; {directionN}})

Parameter Type Description

subfile Subfile Subfile to sort

subfield Subfield Subfield on which to sort

direction >or< > to sort ascending; < to sort descending

SORT SUBSELECTION sorts the current subselection of subfile. It sorts only the
subselection of the current parent record.

The direction parameter specifies whether to sort subfield in ascending or descending
order. If direction is the “greater than” symbol (>), the sort is ascending. If direction is
the “less than” symbol (<), the sort is descending.

You can specify more than one level of sort, by including more subfields and sort
symbols.

Once the sort is completed, the first subrecord of the sorted subselection is the current
subrecord. Sorting subrecords is a dynamic process. Subrecords are never saved in
their sorted order. If neither a current record nor a higher-level subrecord exists,
SORT SUBSELECTION has no effect.

? The following example sorts the [Stats]Sales subfile into ascending order based on the
Sales'Bucks subfield.

SORT SUBSELECTION ([Stats]Sales; [Stats]Sales'Bucks; >)

CHAPTER 14: MANAGING DATA 207



Managing Records

CREATE RECORD SAVE RECORD
DUPLICATE RECORD DELETE RECORD

The commands in this section allow you to manage records, creating and adding
new ones, and modifying, duplicating, and deleting existing ones. The
management of records is one of the most fundamental purposes of a database.

These commands are for managing data without user intervention—they do not
display the data or layouts.

CREATE RECORD

CREATE RECORD ({file})

Parameter Type Description
file File File for which to create a new record

CREATE RECORD creates a new empty record for file, but does not display the new
record. Use ADD RECORD to create a new record and display it for data entry.
CREATE RECORD is used instead of ADD RECORD when the data for the record is
assigned with the language. The new record becomes the current record and the
current selection (a one-record current selection).

If you execute CREATE RECORD during data entry, a new empty record is created
and displayed. If the user then accepts the new record, another new record will be
created. This will continue until the user cancels a record.

The record exists in memory only until a SAVE RECORD command is executed
for the file. If the current record is changed (for example, by a search) before the
record is saved, the new record is lost. You may push the new record before

it is saved. For information on pushing records and the record stack, see

“Using the Record Stack,” in Chapter 16.

LA7/

208



COMMANDS

' The following example archives records that are over 30 days old. The example
does this task by creating new records in an archive file. When the archiving is
finished, the records that were archived are deleted from the [Accounts] file.

DEFAULT FILE ([Accounts]) * Set the default file

SEARCH ([Accounts]Entered < (Current date — 30)) " Find records more than 30 days old

For (3i; 1; Records in selection) * Loop once for each record to archive
CREATE RECORD ([Archive]) * Create a new archive record
[Archive]Number := [Account]Number * Copy the fields to the archive record

[Archive]Entered := [Account]Entered
[Archive]Amount := [Account]Amount

SAVE RECORD ([Archive]) * Save the archive record

NEXT RECORD * Move to the next account record
End for '
DELETE SELECTION * Delete the account records

DUPLICATE RECORD

DUPLICATE RECORD ({file})

Parameter Type Description
file File File for which to duplicate the current record

DUPLICATE RECORD creates a new record for file that is a duplicate of the current
record. The new record becomes the current record. If there is no current record,
then DUPLICATE RECORD does nothing. You must use SAVE RECORD to save the
new record.

DUPLICATE RECORD can be executed during data entry. This allows you to create a
“clone” of the currently displayed record. Don’t forget that you must first execute
SAVE RECORD if you want to save any changes made to the original record. You
must also execute SAVE RECORD to save the new record.

{F The following example is a button script for a button without an automatic action.
It saves the currently displayed record, duplicates the record, and then saves the
duplicate record.

SAVE RECORD ([People]) * Save the current record
DUPLICATE RECORD ([People]) * Create a “clone”
SAVE RECORD ([People]) * Save the new record

CHAPTER 14: MANAGING DATA 209



210

MM

SAVE RECORD

SAVE RECORD ({file})

Parameter Type Description
file File File for which to save the current record

SAVE RECORD saves the current record of file. If the record contains any subrecords,
they are saved with the record. If there is no current record, then SAVE RECORD is
ignored.

You use SAVE RECORD to save a record that you created or modified with code. A
record that has been modified by the user in a layout usually does not need to be
saved with SAVE RECORD. A record that has been modified by the user in a layout,
but has been canceled, can still be saved with SAVE RECORD.

Here are some cases where SAVE RECORD would be required:

m to save a new record created with CREATE RECORD or DUPLICATE RECORD

®m to save data from RECEIVE RECORD

m to save a record modified by a procedure

n

to save new or modified subrecord data following an ADD SUBRECORD,
CREATE SUBRECORD, or MODIFY SUBRECORD command

to save a record during a transaction

during data entry to save the displayed record before using a command that
changes to a new current record

m during data entry to save the new current record after using a command that
changed to the new current record

“ The following example is part of a procedure that is reading records from a

document or from the serial port. The code segment receives a record and then,
if it is received properly, saves it.

RECEIVE RECORD ([Customers]) * Receive record from disk or serial port

If (OK=1) * If the record is received properly...
SAVE RECORD ([Customers]) " save it

End if

‘]]rﬂr SAVE RECORD will not save a locked record. When using this command in a multi-

user environment, you must first be sure that the record is unlocked. You should test
if the record is locked at the time that it is loaded. If the record is locked, the
command is ignored, the record is not saved, and no error is returned. See the
section “Managing Multi-user Databases,” in Chapter 16, for more information on
locked records.



COMMANDS

DELETE RECORD

DELETE RECORD ({file})

Parameter Type Description
file File File for which to delete the current record

DELETE RECORD deletes the current record of file. If there is no current record,
DELETE RECORD has no effect. In a layout, you can create a Delete Record button
instead of using this command.

After the record is deleted, the current selection for file is empty. This means that
you cannot use DELETE RECORD to go through a selection of records, deleting the
ones you select. Instead, you can create a set of the selected records, and use
DELETE SELECTION to delete the records.

", Warning: Deleting records is a permanent operation and cannot be undone.

' The following example deletes an employee record. The example asks the user what
employee to delete, searches for the employee’s record, and then deletes it.

vFind := Request ("Employee ID to delete:") " Get an employee ID to search for
If (OK =1) * If the user did not cancel...
SEARCH ([Employee]; [Employee]ID = vFind) * find the employee
DELETE RECORD ([Employee]) " Delete the employee
End if

ﬁﬁﬁ DELETE RECORD will not delete a locked record. When using this command in a
multi-user environment, you must first be sure that the record is unlocked. If the
record is locked, the command is ignored, the record is not deleted, and no error is
returned. See the section “Managing Multi-user Databases,” in Chapter 16, for more
information on locked records.

CHAPTER 14: MANAGING DATA 211



212

Importing and Exporting

EXPORT DIF EXPORT TEXT IMPORT SYLK
EXPORT SYLK IMPORT DIF IMPORT TEXT

The commands in this section import and export data. Both operations are done
through a layout.

EXPORT DIF
EXPORT SYLK
EXPORT TEXT

EXPORT DIF ({file}; document)
EXPORT SYLK ({file}; document)
EXPORT TEXT ({file}; document)

Parameter Type Description
file File File from which to export
document String Macintosh document to write

The export commands write data from the records of the current selection of file to
disk. The data is written to document, a Macintosh text document.

The export operation is performed through the current output layout. The export
operation writes fields and variables based on the entry order of the output layout.
Included layouts are ignored. The layout procedure is executed once for each
record that is exported. Both the Before and During phases are TRUE.

The document parameter can name a new or existing Macintosh document. If
document is given the same name as an existing document, the existing document is
overwritten. The document can include a path that includes volume and folder
names. See the section, “*Communicating With Documents and the Serial Port,”

in Chapter 16. for information on document paths.

A progress thermometer is displayed during export. The user can cancel the
operation by clicking a button labeled Stop. If the export is successful, the OK
system variable is set to 1: otherwise, it is set to 0. The thermometer can be hidden
with the MESSAGES OFF command.

The export operation uses the current ASCII map. The ASCII map can be
used to convert the data for use by other machines or programs. See the
4th DIMENSION User Reference for more information on the ASCII map.



COMMANDS

For EXPORT TEXT, the default field delimiter is the tab character (ASCII 9). The
default record delimiter is the carriage return character (ASCII 13). You can change
these defaults by assigning values to the two delimiter system variables, FldDelimit
and RecDelimit. The user can change the defaults by specifying them in the Export
dialog box. See Appendix D for a table of the Macintosh ASCII codes.

Important: Because text fields can contain carriage returns, be careful when using a
carriage return as a delimiter if you are exporting text fields.

F The following example exports data to a text document. The procedure first sets the
output layout so that the data will be exported through the correct layout. It then
changes the delimiter system variables.

DEFAULT FILE ([People]) * Set the default file

OUTPUT LAYOUT ("Exporter") " Set the layout for export

FidDelimit := 27 i;/ " Set field delimiter to Escape character
RecDelimit := 10 /3 * Set record delimiter to Line Feed
EXPORT TEXT ("My People") " Export to the My People document
IMPORT DIF

IMPORT SYLK

IMPORT TEXT

IMPORT DIF ({file}; document)
IMPORT SYLK ({file}; document)
IMPORT TEXT ({file}; document)

Parameter Type Description
file File File into which to import
document String Macintosh document to import from

The import commands read data from document, a Macintosh text document, into file.

The import operation is performed through the current input layout. The import
operation reads fields and variables based on the entry order of the input layout.
Included layouts are ignored. If the number of fields or variables in the layout does
not match the number of fields being imported, the extras are ignored. The layout
procedure is executed once for each record that is imported. The After phase is TRUE.

The document parameter can include a path that includes volume and folder names.
See the section, “Communicating With Documents and the Serial Port,” in
Chapter 16, for information on document paths.

CHAPTER 14: MANAGING DATA 213



214

A progress thermometer is displayed during import. The user can cancel the operation
by clicking a button labeled Stop. If the import is successful, the OK system variable
is set to 1; otherwise, it is set to 0. The thermometer can be hidden with the
MESSAGES OFF command.

The import operation uses the current ASCII map. The ASCII map can be used to
convert the data from other machines or programs. See the 4th DIMENSION User
Reference for more information on the ASCII map.

For IMPORT TEXT, the default field delimiter is the tab character (ASCII 9). The default
record delimiter is the carriage return character (ASCII 13). You can change these
defaults by assigning values to the two delimiter system variables, FldDelimit and
RecDelimit. The user can change the defaults by specifying them in the Import dialog
box. See Appendix D for a table of the Macintosh ASCII codes.

Important: Because text fields can contain carriage returns, be careful when using a
carriage return as a delimiter if you are importing text fields.

F The following example imports data from a text document. The procedure first sets

the input layout so that the data will be imported through the correct layout. It then
changes the delimiter system variables.

DEFAULT FILE ([People]) * Set the default file

INPUT LAYOUT ("Importer") * Set the layout for import

FldDelimit := 27 9 * Set field delimiter to Escape character
RecDelimit := 10 /3 * Set record delimiter to Line Feed
IMPORT TEXT ("My People") * Import from the My People document

ﬁmif When importing through a layout, keep any layout procedure as short as possible,

since the After phase will lock the database for all other users as each record is saved.



COMMANDS

Managing File Relations

RELATE ONE CREATE RELATED ONE
RELATE MANY SAVE RELATED ONE

The commands in this section, in particular RELATE ONE and RELATE MANY,
establish and manage the relations between files, for both automatic and
nonautomatic relations. See the 4th DIMENSION Design Reference for information
on creating relations between files. D¢

Using Automatic File Relations With Commands

Two files can be related with automatic file relations. In general, when an
automatic file relation is established it loads or selects the related records in a
related file. Many operations cause the relation to be established.

These operations include

m data entry

m listing records on the screen in output listings
® reporting
u

operations on a selection of records, such as searches, sorts, and applying a
formula

To optimize performance, 4th DIMENSION establishes automatic relations only
when data from the related records needs to be used. For each of the operations
just listed, if a record with an automatic relation is loaded from disk, the related
record or records from the related file are selected. If a relation selects only one
record of a related file, that record is loaded from disk. If a relation selects more
than one record of a related file, a new current selection of records is created for
that file, and the first record in the current selection is loaded from disk.

CHAPTER 14: MANAGING DATA 215



216

For example, using the file structure in Figure 14-4, if a record for the [People]
file is loaded and displayed for data entry, the related record from the
[Companies] file is selected and is loaded. Similarly, if a record for

the [Companies] file is loaded and displayed for data entry, the related

records from the [People] file are selected and the first record is loaded.

H Name A
Address T
State #

[First
Last A
Company

Figure 14-4
Two related files

In Figure 14-4, the [People] file is referred to as the many file, and the
[Companies] file is referred to as the one file. To remember this, think,

“There are many people related to one company.” Similarly, the Company field
in the [People] file is referred to as the many field, and the Name field in the
[Companies] file is referred to as the one field.

The commands listed in Table 14-3 use automatic relations to load the related
records during the operation of the command. All of the commands will
establish a many-to-cne relation automatically. Only the commands with Yes in
the column titled Many Established will automatically establish a one-to-many
relation.

Table 14-3

Commands that use automatic relations

Command Many Established Command Many Established
ADD RECORD e« Yes PRINT LABEL No
ADD SUBRECORD No PRINT SELECTION e Yes
APPLY TO SELECTION No REPORT No
DISPLAY SELECTION No SEARCH BY FORMULA ¢ Yes
EXPORT DIF No SEARCH SELECTION e Yes
EXPORT SYLK No SEARCH e Yes
EXPORT TEXT No SELECTION TO ARRAY  No
MODIFY RECORD e Yes SORT BY FORMULA No
MODIFY SELECTION ¢ Yes (in data entry)  SORT SELECTION No

MODIFY SUBRECORD No



COMMANDS

Using Commands to Establish File Relations

Automatic relations don’t mean that the related record or records for a file will be
selected simply because a command loads a record. After using a command that
loads a record, you must explicitly select the related record(s) by using RELATE
ONE or RELATE MANY, if you need to access the related data.

Some of the commands listed in Table 14-3 (such as the search commands) load a
current record after the completion of the task. In this case, the final record that is
loaded does not automatically select the record(s) related to it. Again, you must
explicitly select the related record(s) by using RELATE ONE or RELATE MANY, if
you need to access the related data.

The commands listed in Table 14-4 load a current record. They do not
automatically select the related record(s).

Table 14-4

Commands that load a record

Command Command Command

ALL RECORDS NEXT RECORD SEARCH SELECTION
CREATE RECORD ONE RECORD SELECT SORT BY INDEX
FIRST RECORD PREVIOUS RECORD SORT FILE

GOTO RECORD SEARCH SORT SELECTION
GOTO SELECTED RECORD SEARCH BY FORMULA USE SET

LAST RECORD SEARCH BY INDEX

LOAD RECORD SEARCH BY LAYOUT

CHAPTER 14: MANAGING DATA 217



f o~ hi
/

RELATE ONE

RELATE ONE ({ﬁle})

Parameter Type Description
file File File for which to establish all automatic relations

RELATE ONE (field, {choigeﬁeld})

Parameter Type Description
field Field Many field
choice field Field Choice field from the one file

RELATE ONE has two forms.

~ The first form of the command establishes all automatic many-to-one relations for file.
This means that for each field in file that has an automatic many-to-one relation, the
command will select the related record in each related file.

The second form of RELATE ONE selects the record related to field. The relation does
not need to be automatic. RELATE ONE loads the related record into memory, making
it the current record and current selection for its file.

The optional choice field can be specified only if field is an Alpha field. The
choice field must be a field in the related file. The choice field must be an Alpha field
or of a numeric data type.

If choice field is specified and more than one record is found in the related file, 2s3
RELATE ONE displays a selection list of records that match the value in field. In the
list, the left column displays related field values, and the right column displays
choice field values.

More than one record might be found if field ends with the wildcard character (@).
If there is only one match, the relation is to that match, and the list does not appear.

Figure 14-5 shows a record being entered and a selection list displayed in front of
the record.

218



COMMANDS | Il

Entry for People

& D s4
People |
—JE[J&=———= selection
First il
Last lMag all ACMEZ2 NY
ACME3 WA
Company ACMEQ ACME4 FL
Address
State

o

@l |

Figure 14-5
A selection list for a related file

)
5

In Figure 14-5, the following command caused the selection list to appear:
RELATE ONE ([People]Name; [Company]State)

The user entered “ACME@” to see a list of all companies whose names begin
with ACME, along with each company’s state.

Specifying choice field is the same as specifying a Wildcard Choice when
establishing the file relation. See the 4th DIMENSION Design Reference for
information on specifying a Wildcard Choice.

RELATE ONE works with relations to subfiles, but you must have a relation to
the parent file and to the subfile’s related field in order for the relation to be
properly established. When using a relation to a subrecord, you must first use
RELATE ONE to load the related record into memory, then use a second
RELATE ONE command for the subfile.

CHAPTER 14: MANAGING DATA 510



'?" In the following example, the [Invoice] file is related to the [Customers] file
with two nonautomatic relations. See Figure 14-6 for the file structure.

Invoice
Mumber L
Date D
Bill to A
Ship to A

Figure 14-6
Invoice file related to Customers file with nonautomatic relations

One relation is from “[Invoice]Bill to” to [Customers]ID, and the other
relation is from “[Invoice]Ship to” to [Customers]ID. Figure 14-7 shows
the [Invoice] file layout that displays the [Invoice] file’s “bill to” and
“ship to” information.

11T}
L]

Layout: Invoice Info E"E}EI
[ <

-

Invoice Info

Address [vAddresst———
e ———— ]
[Stter | (et |

[T Shipte  [Bhip to ]
Address

r37
OA
]! Nurnber
E -_— Date
Bill to [Bin to ]
=|EH

Figure 14-7
Layout to display related information

Since both relations are to the same file, [Customers], the information they
get must be displayed in variables. If the [Customers] fields were displayed
instead, only the data from the second relation would be displayed.

220



COMMANDS § i

The following two procedures are the scripts for the “[Invoice]Bill to” and
“[Invoice]Ship to” fields. Here is the script for the “[Invoice]Bill to” field:

RELATE ONE (Bill to; [Customers]Address)
vAddress1 := [Customers]Address

vCity1 := [Customers]City

vState1 := [Customers]State

vZIP1 := [Customers]ZIP

Here is the script for the “[Invoice]Ship to” field:

RELATE ONE (Ship to; [Customers]Address)
vAddress2 := [Customers]Address

vCity2 := [Customers]City

vState2 := [Customers]State

vZIP2 := [Customers]ZIP

RELATE MANY

RELATE MANY ({file})

Parameter Type Description
file File File to establish all one-to-many relations

RELATE MANY (field)

Parameter Type Description
field Field One field

RELATE MANY has two forms.

/*" The first form establishes all automatic one-to-many relations for file. It changes

the current selection for each file that has an automatic gne-to-many relation to
file. The new current selections reflect the current value for each related field in
the related file (the One file).

The second form establishes the one-to-many relation for field. It changes the
current selection for only those files that have relations with field. This means
that the related records in the selecting file become the current selection for that
file.

CHAPTER 14: MANAGING DATA 227



222

J In the following example, three files are related with automatic relations. The file

structure is shown in Figure 14-8.

Companies Parts

= Mame Al Supplier

First
Last &
Company

State & Description
Qty in Stock

A

Address T Part Mo #
&

L

Figure 14-8
Three related files

Both the [People] file and the [Parts] file have a many-to-one relation to the
[Companies] file. This also means that the [Companies] file has a one-to-many
relation to both the [People] file and the [Parts] file. Figure 14-9 shows a layout
for the [Companies] file that will display related records from both the

[People] file and the [Parts] file.

JIIII]
[

=————— layout: People & Parts =—"———

E
1
1%

Companies
rx0
OLA! i
OO Mame [tame ] [S0
E = Address |Address |
State [Etate ] -
=1|EH L
[People] _100

[l I
r150
[ 3

[Parts] 200

Bl

Figure 14-9
Layout that shows related records for two files

When the People & Parts layout in Figure 14-9 is displayed, the related records
for both the [People] file and the [Parts] file are loaded. The related records are
not loaded if a record for the [Companies] file is selected with code. In this case,
you must use the RELATE MANY command.



COMMANDS } 1l

For example, the following procedure moves through each record of the
[Companies] file. For each company, an alert box is displayed. The alert box
shows the number of people in the company (the number of related [People]
records), and the number of parts they supply (the number of related [Parts]
records). (In the example, the argument to the ALERT command is printed on
multiple lines for clarity.) Note that the RELATE MANY command is needed,
even though the relations are automatic.

ALL RECORDS ([Companies]) " Select all records in the file

SORT SELECTION ([Companies]; [Companies]Name) * Sort in alphabetical order

For ($i; 1; Records in file ((Companies]) * Loop once for each record
RELATE MANY ([Companies]Name) " Select the related records

ALERT ("Company: " + [Companies]Name + Char (13) +
"People in company: " +
String (Records in selection ([People])) + Char (13) +
"Number of parts they supply: " +
String (Records in selection ([Parts])))
NEXT RECORD ([Companies]) " Move to the next record
End for

CREATE RELATED ONE

CREATE RELATED ONE (field)

Parameter Type Description
field Field Many field

CREATE RELATED ONE performs two actions. If a related record does not exist
for field (that is, if a match is not found for the current value of field), CREATE
RELATED ONE creates a new related record. If a related record exists, CREATE
RELATED ONE acts just like RELATE ONE and loads the related record into
memory. To save the new or modified record, execute SAVE RELATED ONE.

CREATE RELATED ONE acts differently from CREATE RECORD in two ways. First,
the input layout procedure for the current input layout is executed, and second, the
blank record is saved even if SAVE RELATED ONE is not executed.

CHAPTER 14: MANAGING DATA 223



224

SAVE RELATED ONE

SAVE RELATED ONE (field)

Parameter Type Description
field Field Many field

SAVE RELATED ONE saves the record related to field. You must execute

a SAVE RELATED ONE command to save any record created with

CREATE RELATED ONE, or when you want to save modifications to a record loaded
with RELATE ONE. SAVE RELATED ONE does not apply to subfiles, because saving
the parent record automatically saves the subrecords.

‘W’ﬂﬁ SAVE RELATED ONE will not save a locked record. When using this command in a

multi-user environment, you must first be sure that the record is unlocked. If the
record is locked, the command is ignored, the record is not saved, and no error is
returned. See the section “Managing Multi-user Databases,” in Chapter 16, for more
information on locked records.

Managing Old Data

Old SAVE OLD RELATED ONE
OLD RELATED ONE OLD RELATED MANY

When a record is loaded, 4th DIMENSION makes a copy of the loaded record. When
the record is modified, the changes are made to the copy. The copy is not written to
disk until the record is accepted or saved. Until the copy is saved, you can use the

commands in this section to access the old data (data from before the modification).

Oid

Old (field)y ~ String, number, date, or time

Parameter Type Description
field Field Field for which to return old value

For the current record, Old returns the value field held before field was modified. In
other words, it returns the value of the field as it is stored on disk. Old works on the
field whether the field has been modified by a procedure or by the user.

If a record is new, Old returns an empty value for the field. For example, if the record
is new and the field is an Alpha field, Old returns an empty string. If the field is a
numeric field, Old returns zero (0). If the field is a date field, Old returns !00/00/00!

Old may not be applied to Text or Picture fields. It may be applied to all other field
types, including subfields, but has no meaning when applied to a complete subfile.



COMMANDS { Il

OLD RELATED ONE

OLD RELATED ONE (field)

Parameter Type Description
field Field Many field

OLD RELATED ONE operates the same way as RELATE ONE does, except that
OLD RELATED ONE uses the old value of field to establish the relation.

OLD RELATED ONE loads the record previously related to the current record. The
fields in that record can then be accessed. If you want to modify this old related
record and save it, you must execute SAVE OLD RELATED ONE.

SAVE OLD RELATED ONE

SAVE OLD RELATED ONE (field)

Parameter Type Description
field Field Many field

SAVE OLD RELATED ONE operates the same way as SAVE RELATED ONE does,
but uses the old relation to the field, to save the old related record. Before you
use SAVE OLD RELATED ONE, you must load the record with OLD RELATED ONE.
Use SAVE OLD RELATED ONE when you want to save modifications to a record
loaded with OLD RELATED ONE.

ﬁﬁﬁ SAVE OLD RELATED ONE will not save a locked record. When using this
command in a multi-user environment, you must first be sure that the record is
unlocked. If the record is locked, the command is ignored, the record is not
saved, and no error is returned. See the section “Managing Multi-user
Databases,” in Chapter 16, for more information on locked records.

OLD RELATED MANY

OLD RELATED MANY (field)

Parameter Type Description
field Field One field

OLD RELATED MANY establishes the one-to-many relation for field, based on the
value of field before it was modified (the saved value). The related records in the
related file are loaded into the selection for that file.

CHAPTER 14: MANAGING DATA 225



Working With Subrecords

ADD SUBRECORD Records in subselection PREVIOUS SUBRECORD
MODIFY SUBRECORD APPLY TO SUBSELECTION Before subselection
CREATE SUBRECORD FIRST SUBRECORD End subselection

DELETE SUBRECORD LAST SUBRECORD

ALL SUBRECORDS NEXT SUBRECORD

The commands in this section allow you to perform tasks with subrecords similar to
those you perform with records—you can add and modify subrecords, apply a
formula, and delete subrecords.

You can also move within a selection of subrecords with the commands FIRST
SUBRECORD, LAST SUBRECORD, NEXT SUBRECORD, and PREVIOUS SUBRECORD.
It is important that you create the correct subselection before using these commands.
If there are no records in the current subselection, the commands do nothing.

When a layout is displayed, the movement commands all have equivalent actions
that can be assigned to buttons without any programming.

ADD SUBRECORD
MODIFY SUBRECORD

ADD SUBRECORD (subfile; layout; {*})
MODIFY SUBRECORD (subfile; layout; {*})

Parameter Type Description

subfile Subfile Subfile to use for data entry
layout String Layout to display

%k

Hide scroll bars and size box

ADD SUBRECORD lets the user add a new subrecord to subfile, using layout.

ADD SUBRECORD creates a new subrecord in memory, makes it the current
subrecord, and displays layout. There must be a current record for the parent file.
If a current record does not exist, ADD SUBRECORD has no effect. The layout must
belong to subfile.

MODIFY SUBRECORD acts exactly like ADD SUBRECORD, except that
MODIFY SUBRECORD displays the current subrecord for modification. If there is
not a current subrecord, then MODIFY SUBRECORD does nothing.

226



COMMANDS | Il

The subrecord is kept in memory (accepted) if the user clicks an Accept button or
presses the Enter key, or if the ACCEPT command is executed. Accepting the subrecord
sets the OK system variable to 1. The new subrecord is not saved to disk until the
parent record is saved.

The subrecord is not saved if the user clicks a Cancel button or presses the “cancel”
key combination (Command-.), or if the CANCEL command is executed. Canceling
sets the OK system variable to 0.

Subrecords are always added to the current parent record. If a subfile is within a subfile,
make sure that the proper parent record (subrecord) is first selected.

The layout is displayed in the window with scroll bars and a size box. Specifying the
optional asterisk (*) causes the window to be drawn without scroll bars or a size box.

The layout procedure execution cycle is started if a layout procedure exists for /ayout.
Scripts that exist for layout may also be executed, depending on the user’s actions. For
more information on the execution cycle, see the Chapter 5 in Part I of this manual.

F The following example is part of a global procedure. It adds a subrecord for a new child

to an employee’s record. The data for the children is stored in a subfile named
[Employees]Children. Notice that the [Employees] record must be saved in order for the
new subrecord to be saved.

ADD SUBRECORD ([Employees]Children; "Add Child")

If (OK =1) * If the user accepted the record...
SAVE RECORD ([Employees]) " save the employee’s record
End if

CREATE SUBRECORD

CREATE SUBRECORD (subfile)

Parameter Type Description
subfile Subfile Subfile for which to create a new subrecord

CREATE SUBRECORD creates a new subrecord for subfile and makes the new subrecord
the current subrecord. The new subrecord is saved only when the parent record is saved.
The parent record may be saved by a command such as SAVE RECORD or by the user’s
accepting the record. If there is no current record, CREATE SUBRECORD has no effect.
To add a new subrecord through a subrecord input layout, use ADD SUBRECORD.

You can create many subrecords without having to save each one individually.
All changes to a subfile (additions, modifications, and deletions) are saved only
when the parent record is saved.

CHAPTER 14: MANAGING DATA 227



228

' The following example is a button script. When the script is executed (that is, when

the button is pressed), it creates new subrecords for children. The Repeat loop lets the
user add children until he or she clicks Cancel. The layout displays the children in an
included layout, but will not allow direct data entry into the subfile because the
enterable option has been turned off.

Repeat " Repeat until the user clicks Cancel
vChild := Request("Name (cancel when done):") * Get the child’s name
If (OK =1) * If the user clicked OK...
CREATE SUBRECORD(Children) " add a new subrecord for a child
Children'Name := vChild * Assign the child’s name to the subfield
End if
Until (OK = 0)

DELETE SUBRECORD

DELETE SUBRECORD (subfile)

Parameter Type Description
subfile Subfile Subfile from which to delete the current subrecord

DELETE SUBRECORD deletes the current subrecord of subfile. If there is no current
subrecord, DELETE SUBRECORD has no effect. After the subrecord is deleted, the
current subselection for subfile is empty. As a result, DELETE SUBRECORD can’t be
used to scan through a subselection and delete selected subrecords.

The deletion of subrecords is not permanent until the parent record is saved.
Deleting a parent record automatically deletes all its subrecords.

To delete a subselection, first select the subrecords to delete, and then use
APPLY TO SUBSELECTION. For example, the following line will delete the
current subrecords for [File]Subfile:

APPLY TO SUBSELECTION ([File]Subfile; DELETE SUBRECORD ([File]Subfile))

ALL SUBRECORDS

ALL SUBRECORDS (subfile)

Parameter Type Description
subfile Subfile Subfile in which to select all subrecords

ALL SUBRECORDS makes all the subrecords of subfile the current subselection. If a
current parent record does not exist, ALL SUBRECORDS has no effect. When a parent
record is first loaded, the subselection contains all subrecords. A subselection may not
contain all subrecords after ADD SUBRECORD, SEARCH SUBRECORDS, or

DELETE SUBRECORD is executed.



COMMANDS § I

J The following example selects all subrecords, to be sure they are included in the sum.

ALL SUBRECORDS ([Stats]Sales)
Total Sales := Sum ([Stats]Sales'Dollars)

Records in subselection

Records in subselection (subfile) > Number

Parameter Type Description
subfile Subfile Subfile for which to count number of subrecords

Records in subselection returns the number of subrecords in the current subselection of

subfile. Records in subselection applies only to subrecords in the current record. It is the
subrecord equivalent of Records in selection. The result is undefined if no parent record
exists.

{/ The following example selects all subrecords, then displays the number of children for
the parent record.

ALL SUBRECORDS ([People]Children) * Select all children, then display how many
ALERT ("Number of children: " + String (Records in subselection ([People]Children)))

APPLY TO SUBSELECTION

APPLY TO SUBSELECTION (subfile; statement)

Parameter Type Description
subfile Subfile Subfile to which to apply the formula
statement Statement One line of code or a global procedure

APPLY TO SUBSELECTION applies statement to each subrecord in the current subselection
of subfile. The statement may be a statement or a global procedure. If statement modifies
a subrecord, the modified subrecord is written to disk only when the parent record is
written. If the subselection is empty, APPLY TO SUBSELECTION has no effect.

APPLY TO SUBSELECTION can be used to gather information from the subselection or
to modify the subselection.

Since subrecords reside in memory, APPLY TO SUBSELECTION is faster than
APPLY TO SELECTION.

' The following example calculates the total sale price for each invoice line from the
number of units, and the unit price.

ALL SUBRECORDS ([Invoice]Line) " Select all subrecords
APPLY TO SUBSELECTION ([Invoice]Line;
[Invoice]Line'Total := [Invoice]Line'Price * [Invoice]Line'Units)

CHAPTER 14: MANAGING DATA 229



230

FIRST SUBRECORD

FIRST SUBRECORD (subfile)

Parameter Type Description
subfile Subfile Subfile in which to move to the first subrecord

FIRST SUBRECORD makes the first subrecord of the current subselection of subfile

the current subrecord. All search. selection, and sort commands also set the current
subrecord to the first subrecord. If the current subselection is empty, FIRST SUBRECORD
has no effect.

F The following example concatenates the first and last names of children stored in a

subfile. It copies the names into an array, called Names.

* Create an array to hold the names
ARRAY TEXT (Names; Records in subselection ([People]Children))
FIRST SUBRECORD ([People]Children) * Start at the first subrecord
" Loop once for each child
For ($i; 1; Records in subselection ([People]Children))
Names{$i} := [People]Children'First + " " + [People]Children'Last
NEXT SUBRECORD ([People]Children)
End for

LAST SUBRECORD

LAST SUBRECORD (subfile)

Parameter Type Description
subfile Subfile Subfile in which to move to the last subrecord

LAST SUBRECORD makes the last subrecord of the current subselection of subfile the
current subrecord. If the current subselection is empty, LAST SUBRECORD has no effect.

F The following example concatenates the first and last names of children stored in a

subfile. It copies the names into an array, called Names. It is the same as the example
for FIRST SUBRECORD except that it moves through the subrecords from last to first.

* Create an array to hold the names
ARRAY TEXT (Names; Records in subselection ([People]Children))
LAST SUBRECORD ([People]Children) * Start at the last subrecord
* Loop once for each child
For ($i; 1; Records in subselection ([People]Children))
Names{$i} := [People]Children'First + " " + [People]Children‘Last
PREVIOUS SUBRECORD ([People]Children)
End for



COMMANDS | I

NEXT SUBRECORD

NEXT SUBRECORD (subfile)

Parameter Type Description
subfile Subfile Subfile in which to move to the next subrecord

NEXT SUBRECORD moves the current subrecord pointer to the next subrecord in the
current subselection of subfile. If NEXT SUBRECORD moves the pointer past the last
subrecord, End subselection returns TRUE, and there is no current subrecord. If

End subselection returns TRUE, use FIRST SUBRECORD or LAST SUBRECORD to move
the pointer back into the current subselection. If the current subselection is empty, or
Before subselection returns TRUE, NEXT SUBRECORD has no effect.

1Y See the example for FIRST SUBRECORD, earlier in this section.

PREVIOUS SUBRECORD

PREVIOUS SUBRECORD (subfile)

Parameter Type Description
subfile Subfile Subfile in which to move to the previous subrecord

PREVIOUS SUBRECORD moves the current subrecord pointer to the previous

subrecord in the current subselection of subfile. If PREVIOUS SUBRECORD moves

the pointer before the first subrecord, Before subselection returns TRUE, and there is no
current subrecord. If Before subselection returns TRUE, use FIRST SUBRECORD or

LAST SUBRECORD to move the pointer back into the current subselection. If the current
subselection is empty, or End subselection returns TRUE, PREVIOUS SUBRECORD has
no effect.

See the example for LAST SUBRECORD, earlier in this section.

Before subselection

Before subselection (subfile) -~ Boolean

Parameter Type Description
subfile Subfile Subfile for which to test if pointer is before selection

Before subselection returns TRUE when the current subrecord pointer is before
the first subrecord of subfile. Before subselection is used to check whether
PREVIOUS SUBRECORD has moved the pointer before the first subrecord. If the
current subselection is empty, Before subselection returns TRUE.

CHAPTER 14: MANAGING DATA 23]



' The following example is a script for a button. When the button is clicked, the pointer
moves to the previous subrecord. If the pointer is before the first subrecord, it moves
to the last subrecord.

PREVIOUS SUBRECORD ([People]Children) " Move to the previous subrecord

If (Before subselection ([People]Children) * If we have gone too far...
LAST SUBRECORD ([People]Children) * move to the last subrecord

End if

End subselection

End subselection (subfile) > Boolean

Parameter Type Description
subfile Subfile Subfile for which to test if pointer is after selection

End subselection returns TRUE when the current subrecord pointer is after the end
of the current subselection of subfile. End subselection is used to check whether
NEXT SUBRECORD has moved the pointer after the last subrecord. If the current
subselection is empty. End subselection returns TRUE.

The following example is a script for a button. When the button is clicked, the pointer
moves to the next subrecord. If the pointer is after the last subrecord, it moves to the
first subrecord.

=

NEXT SUBRECORD ([People]Children) " Move to the next subrecord
If (End subselection ([People]Children) " If we have gone too far...

FIRST SUBRECORD ([People]Children) " move to the first subrecord
End if

232



COMMANDS




234

USER INTERFACE

The commands in this chapter manage the user interface. They primarily affect what the
user will see on the screen.

Layout Object Management

BUTTON TEXT FONT SET COLOR
ENABLE BUTTON FONT SIZE
DISABLE BUTTON FONT STYLE

The commands in this section affect the way that layout objects appear. Layout objects
include fields, variables, buttons, check boxes, radio buttons, scrollable areas, pop-up
menus, thermometers, rulers, and dials.

The changes that these commands make to a layout are effective only for the layout that
is currently being displayed or printed. The layout reverts to its default display, when a
new layout or a new record is displayed. These commands should be used in layout
procedures or scripts.

The font, font size, and font style in an input layout can be changed for fields, variables,
buttons, check boxes, radio buttons, scrollable areas, and pop-up menus. Fonts for fields
and variables can be changed in both input and output layouts.

BUTTON TEXT

BUTTON TEXT (button; button text)

Parameter Type Description
button Variable Layout button variable
button text String Text to display in the button

BUTTON TEXT changes the text inside button to button text. BUTTON TEXT affects only
buttons that display text: plain buttons, check boxes, and radio buttons. The new button
text is used only for the currently displayed layout. The text must be set each time the
layout is displayed. The button area must be large enough to accommodate the text; if it
is not, the text is truncated.

7 See the ENABLE BUTTON example, next in this section.



COMMANDS

ENABLE BUTTON
DISABLE BUTTON

ENABLE BUTTON (button)
DISABLE BUTTON (button)

Parameter Type Description
button Variable Layout button variable

These commands control whether a button is active or not. Buttons include plain buttons,
invisible buttons, highlight buttons, check boxes, and radio buttons. Do not use these
commands on buttons that are controlled by automatic actions except for the Delete
Record action. '

ENABLE BUTTON enables button, a button that was previously disabled with
DISABLE BUTTON. Figure 15-1 shows enabled buttons: a check box, two radio buttons,
and a plain button.

DISABLE BUTTON disables (dims) button. You use DISABLE BUTTON to prevent a button
from being used. A button should be disabled when the action that it causes would be
inappropriate. Figure 15-2 shows disabled buttons: a check box, two radio buttons, and a
plain button.

Married Marviad

@ Male

) Female

Figure 15-1 Figure 15-2
Enabled buttons Disabled buttons

Buttons are by default enabled. A button can be disabled only with DISABLE BUTTON or
by 4th DIMENSION when using automatic button actions. A button is disabled only
while the layout is displayed; it must be disabled each time the layout is displayed.

I




236

' The following example searches a file and enables or disables a button labeled Delete,

depending on the results of the search.

DEFAULT FILE ([People]) * Set the default file
SEARCH BY INDEX ([People]Name = vName) * Search for people to delete
Case of
: (Records in selection = 0) " No people found
BUTTON TEXT (bDelete; "Can’t Delete")
DISABLE BUTTON (bDelete)
: (Records in selection = 1) * One person found

BUTTON TEXT (bDelete; "Delete Person")
ENABLE BUTTON (bDelete)
: (Records in selection > 1) * Many people found
BUTTON TEXT (bDelete; "Delete People")
ENABLE BUTTON (bDelete)
End case

SET COLOR

SET COLOR (object; color)

Parameter Type Description

object Field Object for which to set color
or variable

color Number Color of object

SET COLOR sets the foreground and background colors for object.

The color parameter specifies both the foreground and background colors. The color is
calculated as follows:

Color := — (Foreground + (256 * Background))

The color is always a negative number. For example, if the foreground color is to be 20
and the background color is to be 10, then color is — (20 + (256 * 10)) or —2580.

Each color, foreground and background, is represented by a number between 0 and 255.
The color that is displayed is dependent on the colors in the current color palette.

The following example sets the color for a button named My Button. The color is set to
the values of the two variables named Foreground and Background.

SET COLOR (My Button; — (Foreground + (256 * Background))) * Set the My Button color



COMMANDS | Il

FONT

FONT (object; font name)

Parameter Type Description

object Field Object for which to set font
or variable

font name String Name of the font

FONT changes the font in which object is displayed to font name. The font name is the
Macintosh name of the font. The effect of FONT is the same as that of selecting an object
in the Layout editor and choosing a font from the Font menu.

¥ The following example sets the font for a button named My Button. The font is set to the
Geneva font, a system font.

FONT (My Button; "Geneva") * Set the My Button font

FONT SIZE

FONT SIZE (object; size)

Parameter Type Description

object Field Object for which to set font size
or variable

size Number Size of the font

FONT SIZE sets the font size for object. The size is any integer between 1 and 127. The
effect of FONT SIZE is the same as that of selecting an object in the Layout editor and
choosing a font size from the Font menu. If the exact font size doesn’t exist, characters
are scaled. If the size is 0, the font size reverts to the size originally defined in the layout.

The area for the object, as defined in the layout, must be large enough to display the data
in the new size; otherwise, the text may be truncated or not displayed at all.

J The following example sets the font size for a button named My Button. The font size is

set to 14.

FONT SIZE (My Button; 14) Set the My Button font size



238

FONT STYLE

FONT STYLE (object; style number)

Parameter Type Description

object Field Object for which to change font style
or variable

style number Number Style of the font

FONT STYLE sets the font style for object. The effect of FONT STYLE is the same as that
of selecting an object in the Layout editor and choosing a font style from the Font menu.
The style number is a Macintosh font style code. By adding codes together, you can
created combined styles.

The numeric codes for FONT STYLE are presented in Table 15-1.

Table 15-1

Font styles

Style Number Style Number
Plain 0 Outline 8
Bold 1 Shadow 16
Italic 2 Condensed 32
Underline 4 Extended 64

~ The following example sets the font style for a button named My Button. The font style

is set to bold italic.

FONT STYLE (My Button; 3) * Set the My Button font style

Displaying Messages to the User

ALERT DIALOG ERASE WINDOW
CONFIRM MESSAGE MESSAGES ON
Request GOTO XY MESSAGES OFF

The commands in this section let you display messages to the user. Messages include
standard Macintosh dialog boxes. such as alerts, and custom messages, such as the
message window and progress thermometers.

There are three standard Macintosh dialog boxes: alerts, confirmation dialog boxes, and
requests. All three types should be used only when the user must be informed of
something important. These dialog boxes are modal, meaning that the user must dismiss
the dialog box by clicking a button or pressing Enter before he or she can continue.



COMMANDS | Il

ALERT should be used simply to inform the user. CONFIRM should be used to inform the
user and obtain confirmation before performing an action. Request should be used when
text information is also required from the user.

ALERT

ALERT (message)

Parameter Type Description

message String Message to display in the alert

ALERT displays a “Note” type alert box. The alert displays message and contains an OK
button. The alert box can display up to 255 characters, depending on the widths of
characters.

Alerts are used to provide information (such as an error message) to the user without
requiring any information to be returned. They are also useful during development, for
displaying status information (such as variable values) to the designer.

{f The following example displays an alert showing information about a company. Notice
that the string that is displayed contains carriage returns, which cause the string to wrap
to the next line.

CR := Char (13)

ALERT ("Company: " + [Companies]Name + CR +
"People in company: " + String (Records in selection ([People])) + CR +
"Number of parts they supply: " + String (Records in selection ([Parts])))

Figure 15-3 shows the alert box that is displayed.

!ﬁ Company: ACMEI
People in company: 2

Number of parts they supply: 2

Figure 15-3
Alert box

CHAPTER 15: USER INTERFACE 239



240

CONFIRM

CONFIRM (message)

Parameter Type Description
message String Message to display in the confirmation dialog box

CONFIRM displays a “Caution” type dialog box with message and two buttons: OK and
Cancel. The OK button is the default button. The user can click the OK button or press
Enter to accept the dialog box, setting the OK system variable to 1. The user can click
the Cancel button to cancel the dialog box, setting the OK system variable to 0. The
dialog box can display up to 80 characters.

F The following example displays a confirmation dialog box asking the user to confirm

an operation. The If test uses alerts to show how the OK variable is set.

CONFIRM ("Complete the operation?")
If (OK = 1)

ALERT ("The user pressed the OK button.")
Else

ALERT ("The user pressed the Cancel button.")
End if

Figure 15-4 shows the confirmation dialog box that is displayed.

0 Complete the operation?

Figure 15-4
Confirmation dialog box



COMMANDS § I

Request

Request (message; {default response}) > String

Parameter Type Description
message String Message to display in the request dialog box
default response String Default data entered in the text area

Request displays a dialog box with a prompt, message; a text input area with an optional
default value specified by default response; and two buttons (OK and Cancel). The user
can click the OK button or press Enter to accept the dialog box, setting the OK system
variable to 1. The user can click the Cancel button to cancel the dialog box, setting the
OK system variable to 0.

The user can enter text into the text input area. If the user clicks OK, Request returns the
text. If the user clicks cancel, Request returns an empty string ("").

If the response should be a numeric or a date value, convert the string returned by
Request to the proper type with the Num or Date function.

A request dialog box can display about 30 characters, depending on the width of the
characters. Any message that is too long is truncated.

If you need to get several pieces of information from the user, design a layout and
present it with DIALOG, rather than presenting a succession of Request dialog boxes.

7 The following example displays the request dialog box shown in Figure 15-5. The
information that the user enters is stored in the vReturn variable. The example then
displays one of two different alert boxes, depending on which button the user clicked.

vReturn := Request ("Enter the information:"; "Default")
If (OK=1)
ALERT ("You entered " + vReturn + " and you pressed the OK button.")
Else
ALERT ("You pressed the Cancel button.")
End if

Figure 15-5 shows the request dialog box that is displayed.

Enter the information:

efault J
|| 0K | Cancel

Figure 15-5
Request dialog box

CHAPTER 15: USER INTERFACE 241



242

DIALOG

DIALOG ({file}; layout)

Parameter Type Description
file File File containing the layout
layout String Layout to display as dialog

DIALOG presents /ayout to the user. This command is often used to get information
from the user through variables, or to present information to the user.

Any fields that are displayed with DIALOG are the fields from the current record of file
and are nonenterable. DIALOG does not automatically save a record as does ADD RECORD
or MODIFY RECORD. If any fields must be saved, use SAVE RECORD to save the record.

It is normal to display the layout inside a type 1 window (a modal window), created
with the OPEN WINDOW command. (See the section “Managing Windows,” later in this
chapter, for more information on window types.)

DIALOG is used instead of ALERT, CONFIRM, or Request when the information that must
be presented or gathered is more complex than those commands can manage.

Unlike ADD RECORD or MODIFY RECORD, DIALOG does not use the current input layout,
since the command specifies the layout. Also, the default button panel is not used if
buttons are omitted. Instead, two buttons, OK and Cancel, are automatically created.
Adding any custom buttons removes the OK and Cancel buttons.

Clicking an Accept button or pressing the “accept” key (usually the Enter key) sets the
OK system variable to 1. Clicking a Cancel button or pressing the “cancel” key
combination (usually Command-.) sets the OK system variable to 0. The OK system
variable is not set until the dialog is closed.

If a layout procedure exists, the Before and During phases are executed. If any scripts
exist, they are executed when appropriate.

F The following example shows the use of DIALOG to specify search criteria. Note that

this example duplicates the functionality of the SEARCH BY LAYOUT command.
A custom layout is displayed so that the user can enter the search criteria. The buttons
that are displayed are the default buttons.

DEFAULT FILE ([Company]) * Set the default file

OPEN WINDOW (10; 40; 370; 220; 1) " Open a modal window

DIALOG ("Search Layout") " Display the search dialog

CLOSE WINDOW * Always close the window

If (OK = 1) * If the user accepted the dialog...
SEARCH ([Company]Name = vName; *) * search for the company in...
SEARCH (& [Company]State = vState) * the specified state

End if



COMMANDS

Figure 15-6 shows the resulting custom dialog box.

Search for Company

Name |Acme

State |NY

[ 0K ] L Cancel ]

Figure 15-6
Custom search dialog box

MESSAGE

MESSAGE (message)

Parameter Type Description
message String Message to display

MESSAGE displays message on the screen in a special message window. The message is
temporary and is erased as soon as a layout is displayed or the procedure stops
executing. If another MESSAGE is executed, the old message is erased.

MESSAGE is usually used to inform the user of some activity.

If a window is opened with OPEN WINDOW, the open window behaves like a terminal.
The message text is displayed in 9-point Monaco. The Monaco font is monospaced (uses
fixed-width characters) and can therefore be used to accurately position messages in the
window.

Successive messages do not erase previous messages when displayed in a window
opened with OPEN WINDOW. Instead, they are concatenated onto existing messages. If a
message is wider than the window, 4th DIMENSION automatically performs text wrap. If
you want to control line breaks, concatenate carriage returns into your message by using
Char (13). If the message has more lines than the window, 4th DIMENSION automatically
scrolls the message.

You can use ERASE WINDOW and GOTO XY to position messages in an open window. A
character from a new message overwrites and erases a character already displayed in the
same position. The window does not display a cursor.

CHAPTER 15: USER INTERFACE 243



244

{ The following example displays the default message window.

MESSAGE ("The current status is OK")

Figure 15-7 shows the resulting message window.

| The current status is OK

Figure 15-7
Default message window

¥ The following example shows how messages appear in an open window. The

example also shows how an open window can be used as a dumb terminal,
displaying characters that are typed at the keyboard or even received through the
serial port.

The procedure begins by opening the window. The first message appears at the
upper-left corner of the window. Then the message position is changed, using the
GOTO XY command, and a message is printed. The next line is too long and wraps
around to the subsequent line. Note that the text is not broken between words. The
final message has a carriage return in it, demonstrating how a carriage return moves
the cursor to the beginning of the next line.

Finally, an event procedure is installed. It is a simple one-line procedure that echoes
anything that is typed on the keyboard. (For more information on event procedures,
see “ON EVENT CALL,” in the section “Controlling the Execution of Procedures,” in
Chapter 18.) After the event procedure is installed, a While loop is entered. The
While loop continues until the user presses the Q key. If the user presses the E key,
the If test within the While loop erases the window.

The last line in the window was typed from the keyboard and written to the window
by the event procedure.

If text reaches the bottom of the window, the window automatically scrolls up, so
that any text that is on the first line is lost.

" Open a custom window

OPEN WINDOW (10; 45; 500; 330; 0; "My Window")
" Display the first message

MESSAGE ("This is at position 0,0 in the window.")

* Position the cursor

GOTO XY (30; 5)

MESSAGE ("This is at position 30,5 in the window.")



COMMANDS

GOTO XY (50; 10)

MESSAGE ("This message is too long and wraps on to the next line.")

GOTO XY (0; 15)

MESSAGE ("This message has a" + Char (13) + "carriage return in it (Char (13))")
GOTO XY (0; 20)

KeyCode =0 * Preset the KeyCode system variable
ON EVENT CALL ("Key Proc")
While (Char (KeyCode) # "q") " Loop until "q" is pressed
If (KeyCode = Ascii ("E")) " If the user pressed "E"...
ERASE WINDOW * Erase the window
KeyCode =0 " Reset the KeyCode system variable
End if
End while _
ON EVENT CALL (") " Remove the event procedure
CLOSE WINDOW * Close the custom window

The following one-line procedure is Key Proc, the event procedure installed by
ON EVENT CALL in the procedure just given. The procedure simply echoes to the
screen whatever is typed at the keyboard.

MESSAGE (Char (KeyCode))

Figure 15-8 shows the result of the example.

My Window EEEEEEEEEEEEEEééEééEEEEEEEEEEEéEéEl

his is at position 0,0 in the window.

This is at position 30,5 in the window.

This message is too long and wr
aps oh to the next |ine.

This message has a
carriage return in it (Char(13)2

This is typed from the kegboard.

Figure 15-8
Window showing messages

CHAPTER 15: USER INTERFACE 245



246

GOTO XY

GOTO XY (x; y)

Parameter Type Description
b s Number x (horizontal) position of cursor
y Number y (vertical) position of cursor

GOTO XY positions the cursor (an invisible cursor) in a window opened by
OPEN WINDOW. GOTO XY works only when a layout is not being displayed.

The upper-left corner is position 0,0. The cursor is automatically placed at 0,0 when a
window is opened, and after ERASE WINDOW is executed.

After GOTO XY positions the cursor, MESSAGE can be used to print characters in the
window. You can use OPEN WINDOW, GOTO XY, and MESSAGE to emulate a character-
based terminal. OPEN WINDOW opens the window on screen that displays the text;
GOTO XY positions the cursor so that the text is written in the correct position; and
MESSAGE writes the data at the cursor position.

GOTO XY positions the cursor properly because the Monaco font is used in the custom
window. The Monaco font is monospaced, meaning that all of its characters are the
same width.

¥ See the second MESSAGE example, earlier in this section.

ERASE WINDOW

ERASE WINDOW

ERASE WINDOW clears the contents of the window created by OPEN WINDOW and
moves the cursor to the upper-left corner of the window, the GOTO XY (0; 0) position.
Don’t confuse ERASE WINDOW, which clears the contents of a window, with

CLOSE WINDOW, which removes the window from the screen.

See the second MESSAGE example, earlier in this section.

MESSAGES ON
MESSAGES OFF

MESSAGES ON
MESSAGES OFF

MESSAGES ON and MESSAGES OFF turn on and off the progress thermometers that
4th DIMENSION displays while executing time-consuming processes. By default,
messages are on. Table 15-2 shows User environment menu items that display the
progress thermometer.



COMMANDS

Table 15-2

User environment menu items that display the progress thermometer

Menu ltems Menu ltems Menu ltems
Apply Formula Report Sort Selection
Export Data Search by Layout Sort File
Graph Search by Formula

Import Data Search Editor

Table 15-3 shows commands that display the progress thermometer.

Table 15-3

Commands that display the progress thermometer A

Commands Commands Commands

APPLY TO SELECTION IMPORT DIF SEARCH

EXPORT DIF IMPORT SYLK SORT BY FORMULA
EXPORT SYLK IMPORT TEXT SORT FILE

EXPORT TEXT SEARCH BY LAYOUT SORT SELECTION
GRAPH FILE SEARCH BY FORMULA

REPORT SEARCH SELECTION

' The following example turns off the progress thermometer before doing a sort,

and then turns it back on after completing the sort.

MESSAGES OFF
SORT SELECTION ([Addresses]; [Addresses]ZIP; >; [Addresses]Name2; >)
MESSAGES ON

Managing Windows

OPEN WINDOW Screen height SET WINDOW TITLE
CLOSE WINDOW Screen width

The commands in this section let you manage windows. Managing windows
includes opening and closing custom windows, determining the screen size, and
changing a window’s title.

About Windows

Windows are used to display information to the user. There are three main uses:
to enter data, to display data, and to inform the user.

There is always at least one window open. This window is a standard window
with a title bar and a size box. Scroll bars are added when needed, to let the user
scroll to hidden areas.

CHAPTER 15: USER INTERFACE 247



In the User environment, this window displays either the record list (output layout) or the
data entry screen (input layout). In the Runtime environment, this window displays a
splash screen (a custom graphic). The splash screen is immediately erased and replaced
with data by commands that display layouts. When the commands finish executing, the
splash screen is again displayed.

Custom windows can be opened with the OPEN WINDOW command. The custom
windows can be any Macintosh style of window. Any data that is displayed will be
displayed in these new windows. The custom windows will remain open only until
control returns to the splash screen menu bar. Custom windows should be closed with
the CLOSE WINDOW command when no longer needed.

Some commands open their own windows. Commands such as GRAPH FILE, REPORT,
and PRINT LABEL open a window that becomes the frontmost window.

The Different Window Types

There are five basic types of windows. There are a number of variations on these types,
including zoom boxes, scroll bars, and size boxes. It is the designer’s responsibility to
ensure that the window is appropriate for the type of information that is displayed in it.

Figures 15-9 through 15-20 below show each of the five window types, both without
scroll bars and with scroll bars as appropriate.

Window Title Eie"—"—— ==—= Entry for Filel E——_l

Figure 15-9 Figure 15-10
Type 0 window Type 0 window with scroll bars
Figure 15-11

Type 1 window

248



COMMANDS { I

Figure 15-12 Figure 15-13
Type 2 window Type 2 window with scroll bars

Figure 15-14 Figure 15-15
Type 3 window . Type 3 window with scroll bars
= Window Title S=ic"—"ro—co ==—=— Entry for Filel E]

Figure 15-16 Figure 15-17
Type 4 window Type 4 window with scroll bars
Window Title —ce—=0F]| =———— [Entry for Filel %]

Figure 15-18 Figure 15-19
Type 8 window Type 8 window with scroll bars

Window Title

Figure 15-20
Type 16 window

T,

CHAPI

ER 15: USER INTERFACE 249



The Modal Window

Window type 1 is a modal window. A modal window does not allow the the user to
choose commands from the menus. A modal window should be used only when it is
required that the user immediately finish an action before proceeding.

Positioning Windows and Window Borders

Every Macintosh screen has a menu bar at the top. Normally, the menu bar is 20 pixels
high. You must take the menu bar into account when positioning a window.

Every window has a border around it. You must also take the border into account when
specifying the size of a window.

Figure 15-21 shows a type 4 window. The measurements of the window are shown.

Top Border

(20 Pixels) [_ =——— Iindow Title =———|
280
L2 140
Botiom Border —
(2 Pixels) : 283 P
Left Border Right Border
(1 Pixel) (2 Pixels)

Figure 15-21
Measurements of a window

The inside area of the window, 280 pixels by 140 pixels, is the area specified for the
window size. Notice that the total area of the window is larger than the area specified.
This is true of all window types.

Table 15-4 lists the sizes of the window borders for all window types.

250



COMMANDS | Il

Table 15-4
Window border sizes

Type Top Left Bottom Right

0 20 1 2 2
1 8 8 8 8
2 1 1 1 1
3 1 1 3 3
4 20 1 2 2
8 20 1 2 2
16 20 1 2 2

Table 15-5 lists the dimensions of a full-size window of each type, on a 9-inch
Macintosh screen (for example, the Macintosh SE screen).

Table 15-5
Window sizes to open on a 9-inch screen

Type Top Left Bottom Right
0 40 2 340 510

1 29 9 333 503
2 22 2 340 510
3 22 2 338 508
4 40 2 340 510
8 40 2 340 510
16 40 2 340 510

Scroll Bars, the Size Box, and the Zoom Box

Scroll bars in a window allow the user to scroll to parts of the window that are not
displayed. Scroll bars use 16 pixels of the usable area at the right side and bottom of a
window.

Scroll bars are controlled by the command that is displaying in the window, not by the
window type. The two commands that display record lists—DISPLAY SELECTION and
MODIFY SELECTION—both add scroll bars to the window. The commands that allow data
entry—ADD RECORD, MODIFY RECORD, ADD SUBRECORD, and MODIFY SUBRECORD—
all let you control whether scroll bars are displayed, by using an optional parameter, the
asterisk (*). The DIALOG command never displays scroll bars.

You should never put anything that displays scroll bars in a type 1 or type 16 window.

m
)

CHAPTER 15: USER INTERFAC

I



252

Windows can be resized by means of a size box in the lower-right corner of the
window. (See Figure 15-22.) Only a type O or a type 8 window can be resized. The
size box is displayed only if scroll bars are also displayed. Dialog boxes never
display scroll bars or a size box.

Figure 15-22
A size box

Even when the size box is not displayed, a type 0 or type 8 window can still be
resized.

A zoom box is a small box at the right side of a window’s title bar. (See

Figure 15-23.) Clicking the zoom box zooms the window to full-screen size.
Clicking the zoom box again zooms the window back to its previous size. A zoom
box appears only in a window of type 8.

Figure 15-23
A zoom box

Setting Window Titles

Window types 0, 4, 8, and 16 allow a title to be displayed at the top of the window.
The window title can be changed with the SET WINDOW TITLE command. Windows
that do not allow a window title simply ignore the SET WINDOW TITLE command.

Commands that display information in the window set the window title to
something appropriate for the command. For example, ADD RECORD changes the
title to “Entry for File,” where File is the name of the file to which a record is
being added. You can change the default window title, by executing

SET WINDOW TITLE in the layout procedure.



COMMANDS | I

OPEN WINDOW

OPEN WINDOW (left; top; right, bottom; {type}; {window title})

Parameter Type Description

left Number Pixels from left side of screen to left edge
top Number Pixels from top of screen to top edge

right Number Pixels from left side of screen to right edge
bottom Number Pixels from top of screen to bottom edge
type Number Window type

window title String Title of window

OPEN WINDOW opens a new window with the dimensions given by the first four
parameters:

m left is the distance in pixels from the left edge of the screen to the left
internal edge of the window.

m ‘op is the distance in pixels from the top of the screen to the top internal
edge of the window. The top of the menu bar is the top pixel.

m right is the distance in pixels from the left edge of the screen to the right
internal edge of the window.

m  bottom is the distance in pixels from the top of the screen to the bottom
internal edge of the window.

The type parameter is optional. It represents the type of window you want to
display, and corresponds to the seven windows shown in Figures 15-9 through
15-20 earlier in this section.

The title parameter is the optional title for the window.

If the last two parameters are omitted, OPEN WINDOW draws a type 1 window
(a modal window).

If more than one window is open, the last window opened is the active
(frontmost) window. Only information within the active window can be
modified. Any other windows can be viewed. When the user types, the active
window will always come to the front.

Layouts are displayed inside an open window. Text from the MESSAGE
command also appears in the window.

To make your windows independent of display size, you can use Screen height
and Screen width to calculate the upper-left and lower-right corners of the
window. See the example for an illustration of this technique.

CHAPITER 15: USER INTERFACE 253



' The following example demonstrates the use of OPEN WINDOW. The example
prompts the user for the window height and width. It then uses that information to
create a centered window. The first code segment is a global procedure that calls
the second procedure. Here is the first procedure.

Repeat
$Height := Num (Request ("Height (click cancel if done):"))
If (OK=1)
$Width := Num (Request ("Width:"))
$Type := Num (Request ("Window type:"))

If (OK =0) * If the user did not enter a window type...
Center Window ($Height; $Width) * center the window with two parameters
Else
$Title := Request ("Window title:"))
If (OK =0) * If the user did not enter a window title...
Center Window ($Height; $Width; $Type)  ~ center the window with three parameters
Else * Otherwise, use all the parameters
Center Window ($Height; $Width; $Type; $Title)
End if
End if
$Stop := Current time + 10 " Pause for 10 seconds
While (Current time < $Stop)
End while
CLOSE WINDOW * Close the window
End if
Until ($Height = 0) " Loop until user cancels the height request

The following code is the procedure, Center Window, that opens a centered window. It is
called by the first procedure. Notice that it can accept two, three, or four parameters.

* Global procedure: Center Window
* $1 — Window width

* $2 — Window height

* $3 — Window type (optional)

* $4 — Window title (optional)

$sw := Screen width / 2 " Find center of screen (width)

$sh := Screen height/2 + 10 * Find center of screen — menu bar (height)
$ww :=$1/2 * Half of requested window width
$wh:=%$2/2 " Half of requested window height

Case of

: (Count parameters = 2)
OPEN WINDOW ($sw — $ww; $sh — $wh; $sw + $ww; $sh + $wh)
: (Count parameters = 3)
OPEN WINDOW ($sw — $ww; $sh — $wh; $sw + $ww; $sh + $wh; $3)
: (Count parameters = 4)
OPEN WINDOW ($sw — $ww; $sh — $wh; $sw + $ww; $sh + $wh; $3; $4)
End case

254



COMMANDS { Il

CLOSE WINDOW

CLOSE WINDOW

CLOSE WINDOW closes the window opened by an OPEN WINDOW command.

CLOSE WINDOW has no effect if a custom window isn’t open; it does not close the
standard window. CLOSE WINDOW also has no effect if called while a layout is active
in the window. You must call CLOSE WINDOW when you are done using a window
opened by OPEN WINDOW.

:@: The following example opens a window and adds new records with the ADD RECORD
command. When the records have been added, the window 1is closed with
CLOSE WINDOW.

OPEN WINDOW (5; 40; 250; 300; 0; "New Employee")

Repeat " Loop until the user cancels
ADD RECORD ([Employees]) " Add a new employee record

Until (OK = 0)

CLOSE WINDOW * Close the custom window

Screen height
Screen width

Screen height > Number
Screen width > Number

Screen height and Screen width return the height and width of the screen, in pixels.
These commands can be used to determine the type of Macintosh screen in use.
They will work with any type of screen.

If there are multiple display devices attached to the Macintosh, these commands
return the size of the screen where the menu bar is displayed.

Table 15-6 lists the standard Macintosh screen sizes in pixels.

Table 15-6

Macintosh screen sizes

Macintosh Height Width
Macintosh Plus 342 512
Macintosh SE 342 512

Macintosh II (standard monitors) 480 640

J See the OPEN WINDOW example, earlier in this section.

CHAPTER 15: USER INTERFACE 255



256

SET WINDOW TITLE

SET WINDOW TITLE (title)

Parameter Type Description
title String Window title

SET WINDOW TITLE changes the title of the current window to that specified by title.
The current window may be the 4th DIMENSION standard window or the custom
window, opened with OPEN WINDOW. The custom title remains in the window until
you change it with another SET WINDOW TITLE command. If you create a custom
window with a title bar, you can specify the title in the OPEN WINDOW command.
You can also change it with SET WINDOW TITLE.

Titles in the User environment can be set with SET WINDOW TITLE, but remember that
4th DIMENSION automatically changes the title of its window when you choose from
User environment menus. For example, when you select a menu item like New
Record in the Entry menu, 4th DIMENSION sets the title to “Entry for File.”

F The following example sets the window title to whatever the user enters into the

Request box.

* Set the title to the Request
SET WINDOW TITLE (Request ("Window title:"; "Custom Title"))

Managing Menus

MENU BAR DISABLE ITEM Menu selected
CHECK ITEM ENABLE ITEM

The commands in this section allow you to switch to different menu bars, check menu
items, and enable and disable menu items.

Menu Components

The bar at the top of the screen is called the menu bar. Each name on the bar
represents a menu. When you pull down the menu, you see the menu’s items. Figure
15-24 shows these components.



COMMANDS § Il

I T Menus
| | |
® File Edit B0

3—— Menu ltems
[tem 3

Menu Bar

fisahied ffem | ———— Disabled Menu ltem
Dividing Line
B K — Command-key Equivalent

Figure 15-24
Menu components

You create menu bars in the Design environment’s Menu-editor. Menu bars are
identified by number, rather than by name. The first menu bar is Menu Bar #1. It is

also the default menu bar. If you wish to open an application with a menu bar other than
Menu Bar #1, you must force it with the MENU BAR command in a startup procedure.

Each menu item can have one global procedure attached to it. This procedure is called
a master procedure. You associate a procedure with a menu item by typing the name
of a global procedure in the Procedures column of the Menu editor window. The user
executes the procedure by choosing the menu item to which the procedure belongs.

If you don’t assign a procedure to a menu item, choosing that menu item causes

4th DIMENSION to quit the menu system. If the user is using the 4th DIMENSION
Runtime version, this means quitting to the Finder.

Using the Menu editor, you can create a provisional menu system before you write
the global procedures that will activate the menu items. There is no requirement that
procedures exist when you work in the Menu editor. However, your menu items will
not carry out their intended purposes until you associate the appropriate procedures
with each menu item.

Every menu bar comes pre-equipped with three menus—the Apple, Edit, and File
menus. The Apple menu contains “About 4th DIMENSION” and any desk accessories
currently installed in the System file. The Edit menu contains the standard editing
commands. The Apple and Edit menus cannot be modified. The file menu has only

one menu item—~Quit. Notice that Quit has no procedure associated with it. That’s how
it causes 4th DIMENSION to quit the Runtime environment. You can rename the File
menu, add menu items to it, or keep it as is. If it is renamed, it will no longer appear to
the left of the Edit menu. It is recommended that you always keep Quit as the last item
in the File menu.

Like menu bars, menus are numbered. Because they cannot be modified, the Apple and
Edit menus are not included in the count. Instead, File is menu 1. Thereafter, menus are
numbered sequentially from left to right (2, 3, 4, and so on). Menu numbering is
important when you are working with the Menu selected function.

CHAPTER 15: USER INTERFACE 257



258

The items within each menu are numbered sequentially from the top of the
menu to the bottom. The topmost item is item 1.

Custom Menus

Using custom menus, you can create applications that look to the user as if you
built them “from scratch.” 4th DIMENSION contains a complete menu
construction Kit. You can use it to create menus and Command-key
combinations with which the user can choose menu items without using the
mouse. You can password-protect menu items, associate menu bars with
layouts, and enable, disable, and check items by means of procedures.

There are two types of menu bars: splash screen menu bars and layout menu
bars.

The splash screen menu bar is used when a splash screen is displayed in the
Runtime environment. Choosing an item from one of the menus in this menu
bar executes the procedure that is attached to the menu item.

A layout menu bar is displayed when a layout is displayed. You associate a
menu bar with a layout by using the “Menu Bar” menu item from the Layout
menu in the Layout editor. The menus on a layout menu bar are appended to the
current menu bar when the layout is displayed. The menus are appended for
input layouts in both the User and Runtime environments and also for output
layouts in the Runtime environment. Menu items in a layout menu bar always
execute any procedures that are attached to them.

Layout menu bars are specified by a menu bar number. If the number of the
displayed splash screen menu bar is the same as the number of the appended
layout menu bar, the layout menu bar is not appended.

If you specify a negative number for a layout menu bar, 4th DIMENSION

uses the absolute value of the menu bar. For example, if you specify -3 as the
menu bar, Menu Bar 3 is used. When a layout menu bar has been specified
with a negative number, the menu items for all the menus in the menu bar
(splash screen and layout) will execute the procedures that are attached to them.
This is the recommended method of associating a menu bar that will be used in
the Runtime environment.

If you do not specify a negative number for a layout menu bar, choosing a menu
item from a splash screen menu will not execute its procedure; instead, the
layout procedure will be executed and you can use Menu selected to test for the
selected menu. This is more difficult than using a negative number for the
layout menu bar, and should generally not be used in the Runtime environment.



COMMANDS § Il

MENU BAR

MENU BAR (menu bar number)

Parameter Type Description
menu bar number Number Number of the menu bar

MENU BAR replaces the current menu bar with the menu bar specified by menu bar
number. All menu items revert to the way they were defined in the Menu editor
(either enabled or disabled). All menu items are displayed without check marks.

It is common to define multiple menus that are identical except that different menu
items are enabled or disabled. MENU BAR is then used to switch between the
menus, to enable and disable the menu items. Using this trick is often simpler than
using ENABLE ITEM and DISABLE ITEM.

When a user enters the Runtime environment, the first menu bar is displayed
(Menu Bar #1). You can change this menu bar, when opening a database, in the
global startup procedure (Startup), or in the startup procedure for an individual
password.

- The following example changes the current menu bar to Menu Bar #3.

MENU BAR (3)

CHECK ITEM

CHECK ITEM (menu; menu item; mark)

Parameter Type Description

menu Number Menu number
menu item Number Menu item number
mark String Mark character

CHECK ITEM is used to clear or put a check mark next to the menu item specified
by menu and menu item. By default, all menu items are unchecked. The mark
parameter should be either a check mark (ASCII 18) or a space. A space erases the
mark on the specified menu item. All marks are erased when a MENU BAR
command is executed. MENU BAR can be used to return all menu items to their
default, unchecked state.

The Edit and Apple menus are built in and are not a part of the menu count. The
File menu is generally menu number 1.

CHAPTER 15: USER INTERFACE 259



260

v The following example checks or unchecks a menu item. The example checks the

menu item if the variable Check It is true; otherwise, it unchecks the menu item.

If (Check It) " If Check It is true...
CHECK ITEM (2; 1; Char (18)) * Check the menu item
Else
CHECKITEM (2; 1;" ") * Uncheck the menu item
End if

DISABLE ITEM
ENABLE ITEM

DISABLE ITEM (menu; menu item)
ENABLE ITEM (menu; menu item)

Parameter Type Description
menu Number Menu number
menu item Number Menu item number

DISABLE ITEM disables (dims) the menu item specified by menu and menu item.
If menu item is 0, then the entire menu is disabled.

ENABLE ITEM enables the menu item specified by menu and menu item. If
menu item is 0, menu items are returned to the state defined in the Menu editor.

A menu item is enabled or disabled only until the menu bar is updated with a
MENU BAR command. MENU BAR can be used to return all items to their default
state.

As a general rule, if you find yourself disabling a particular item a lot, set it as
disabled in the Menu editor. If you need to enable or disable several menu items at
the same time, you may find that it is more efficient to switch menu bars instead.

The Edit and Apple menus are built in and are not a part of the menu count. The
File menu is menu number 1, and the first menu to the right of the Edit menu is
menu 2.

* The following example assumes that the fourth menu item in the second menu (not

counting the Edit menu) is to delete records. The menu item should be enabled
only when there are records to delete. The example enables or disables the menu
item appropriately.

If (Records in selection ([People]) # 0) " If people were found...
ENABLE ITEM (2; 4) " Enable the delete menu item

Else * Otherwise, if no people were found...
DISABLE ITEM (2; 4) " Disable the delete menu item

End if



COMMANDS § Il

Menu selected

Menu selected > Number

Menu selected is used only when input layouts or output layouts are displayed.
It detects which menu item has been chosen from a menu.

Whenever possible, it is recommended that you use procedures associated with
menu items in an associated menu bar instead of using Menu selected. Associated
menu bars are easier to manage, since it is not necessary to test for their selection.

Menu selected returns the Macintosh menu-selected number, a long integer.
Menu selected returns O if no menu item was selected.

To find the menu number, divide Menu selected by 65,536 and convert the result to
an integer. To find the menu item number, calculate the modulo of Menu selected
with the modulus 65,536. Use the following formulas to calculate the menu
number and menu item number:

Menu := Menu selected \ 65536
Menu ltem := Menu selected % 65536

The Edit and Apple menus are built in and aren’t part of the menu count. The File
menu is menu number 1, and the first menu to the right of the Edit menu is menu 2.

1/ The following example uses Menu selected to supply the menu and item arguments

to CHECK ITEM.

Case of
: (During)

' : (Menu selected # 0)

CHECK ITEM (Menu selected \ 65536 ; Menu selected % 65536; Char (18))
End case

CHAPTER 15: USER INTERFACE 261



262

Playing Sound

BEEP PLAY

The commands in this section make sounds through the Macintosh speaker.

BEEP

BEEP

BEEP causes the Macintosh to generate a beep. The Macintosh may emit a sound
other than a beep, depending on how the user has set the Control Panel for sound.

F The following example causes a beep (or other sound).

BEEP

PLAY

PLAY (sound name; {channel})

Parameter Type Description
sound name String Sound name
channel Number Synthesizer channel

PLAY plays the sound resource named by sound name.

The channel parameter specifies the Macintosh synthesizer channel. If channel is
not specified, the channel is for simple digitized sounds and is synchronous.
Synchronous means that all processing stops until the sound has finished. If channel
is 1, the channel is for simple digitized sounds and is asynchronous. Asynchronous
means that processing does not stop and the sound plays in the background. Table
15-7 lists the possible values for channel.

Table 15-7 .
Values for the channel parameter

Channel Type Channel

Note Synthesizer

Wave Table Synthesizer
Sampled Sound Synthesizer
MIDI Synthesizer In

MIDI Synthesizer Out 9

~N D L =

F The following example is in a startup procedure. It welcomes the user with a sound

called Welcome Sound.

PLAY ("Welcome Sound") * Play the Welcome Sound



COMMANDS

ADVANCED COMMANDS



264

ADVANCED COMMANDS

This chapter defines commands for advanced database design. Advanced design
includes using record numbers and managing sets, multi-user databases,
transactions, documents, serial communication, and passwords.

Using Numbers Associated With Records

Record number Selected record number Sequence number
GOTO RECORD GOTO SELECTED RECORD

The commands in this section allow you to manage records by referencing them
directly with numbers. These numbers are associated with each record in a file or
selection.

There are three numbers that are associated with a record:

® the record number

m the selected record number

m the sequence number

The record number is the absolute record number for a record. The record number
is automatically assigned to each new record and remains constant for the record

until the record is deleted or the file is permanently sorted. Record numbers are
reused if records are deleted.

The selected record number is the position of the record in the current selection.
The selected record number is completely dependent on the current selection. If
the selection is changed or sorted, the selected record number may change.

The sequence number is a unique nonrepeating number that may be assigned to a
record. The sequence number is not automatically stored with each record. It starts
at 1 and is incremented for each new record that is saved.



COMMANDS § I

Record Number Examples

The tables that follow illustrate the numbers that are associated with records. Here is a
description of each table:

m  Each line represents information about a record.

m  The order of the lines is the order in which the records would be displayed in an
output list.

m The Data column is the data from a field in each record. It contains a person’s
name.

m The Record Number column is the record’s absolute record number. This is the
number returned by the Record number function.

m The Selected Record Number column is the record’s position in the current
selection. This is the number returned by the Selected record number function.

m  The Sequence Number column is the record’s unique sequence number. This is
the number returned by the Sequence number function when the record was
created. It is stored in a field.

Table 16-1 shows the records after they are entered. The records are not sorted. The
default order for the records is by record number. The records are in the default order
after any command changes the current selection without sorting it; for example, after
the Show All menu item is chosen in the User environment, or after the ALL RECORDS
command is executed. The record number starts at 0. The selected record number and
the sequence number start at 1. The sequence number is stored with each record in a
field.

Table 16-1
Records and their numbers when first entered

Record Selected Record Sequence

Data Number Number Number
Tess 0 1 1
Terri 1 2 2
Sabra 2 3 3
Sam 3 4 4
Lisa 4 5 5

CHAPTER 16: ADVANCED COMMANDS 265



266

Table 16-2 shows the same records sorted by name. The same record number remains
associated with each record. The selected record number reflects the record’s new
position in the sorted selection. The sequence number never changes, since it was
assigned when each record was created and is stored in the record.

Table 16-2
Records after being sorted by name

Record Selected Record Sequence

Data Number Number Number
Sabra 2 1 3
Lisa 4 2 5
Sam 3 3 4
Terri 1 4 2
Tess 0 5 |

Table 16-3 shows the records after Sam is deleted. Only the selected record numbers
have changed. Remember that the selected record numbers are the order in which the
records are displayed.

Table 16-3
Records and their numbers after a record is deleted

Record Selected Record Sequence

Data Number Number Number
Tess 0 1 1
Terri 1 2 2
Sabra 2 3 3
Lisa 4 4 5

Table 16-4 shows the records after a new record has been added for Liz. A new
record is added to the end of the current selection until the list is redisplayed with a
command such as Show All in the User environment. Notice that Sam’s record
number is reused for the new record. Also notice that the sequence number continues
to increment.

Table 16-4
Records and their numbers after a new record is added

Record Selected Record Sequence

Data Number Number Number
Tess 0 1 1
Terri 1 2 2
Sabra 2 3 3
Lisa 4 4 5
Liz 3 5 6



COMMANDS | il

Table 16-5 shows the records after three records were selected and then sorted. Only
the selected record number associated with each record changes.

Table 16-5
Records and their numbers after a selection and sort

Record Selected Record Sequence

Data Number Number Number
Sabra 2 1 3
Liz 3 2 6
Terri | 3 2

ﬁmf Use special care when using these numbers in multi-user.databases. The record
number should generally not be used, since another user may delete the record and
then save a new record in its place. See the section “Managing Multi-user
Databases,” later in this chapter, for more information.

Record number

Record number ({file}) - Number

Parameter Type Description
file File File for which to return the current record number

Record number returns the absolute record number for the current record of file. If
there is no current record, such as when the record pointer is before or after the
current selection, Record number returns —1. If the record is a new record that has not
been saved, Record number returns —3.

“Qﬁ The following example saves the current record number and then does a search to
see if any other records have the same data.

$Rec Num := Record number ([People]) * Get the record number
SEARCH ([People]; [People]Last = [People]Last) * Anyone else with the last name?
" Display an alert with the number of people with the same last name

ALERT ("There are " + String (Records in selection ([People]) + " with that name.")
GOTO RECORD ([People]; $Rec Num) * Go back to the same record

CHAPTER 16: ADVANCED COMMANDS 267



268

GOTO RECORD

GOTO RECORD ({file}; record)

Parameter Type Description
file File File in which to go to the record
record Number Number returned by Record number

GOTO RECORD loads and selects the specified record of file. The record parameter is the
number returned by the Record number function. It is not the same number as the one
returned by the Selected record number function. After executing this command, the record
is the only record in the selection.

¥ See the example for Record number, earlier in this section.

Selected record number

Selected record number ({file}) > Number

Parameter Type Description
file File File for which to return the selected record number

Selected record number returns the position of the current record within the current
selection of file. The selected record number is not the same number as the number
returned by Record number. (Record number returns the absolute record number in the file.)

If there is no current record, such as when the record pointer is before or after the current
selection, Selected record number returns —1. If the record is a new record that has not
been saved, Selected record number returns —3.

* The following example saves the current selected record number.

Cur Rec Num := Selected record number ([People]) ~ Get the selected record number

GOTO SELECTED RECORD

GOTO SELECTED RECORD ({file}; record)

Parameter Type Description
file File File in which to go to the selected record
record Number Position of record in the selection

GOTO SELECTED RECORD moves to the specified record in the current selection of file
and makes that record the current record. The current selection does not change. The
record parameter is not the same as the number returned by Record number; it represents
the record’s position in the current selection. The record’s position is dependent on how
the selection is made and whether the selection is sorted.



COMMANDS

If there are no records in the current selection, or the number is not in the selection,
then GOTO SELECTED RECORD does nothing.

F The following example loads data from fields in a selection of records into an array,

called Names. An array of integers, called RecNum, is filled with numbers that will
represent the selected record numbers. Both arrays are then sorted. The resulting
arrays can be used to reference the records in the selection.

* Copy the names into an array

SELECTION TO ARRAY ([People]Last Name; Names)
* Create an array for the selected record numbers
ARRAY INTEGER (RecNum; Size of array (Names))

For ($i; 1; Size of array (Names)) * Fill the array with numbers
RecNum({$i} = $i ‘

End for

SORT ARRAY (Names; RecNum; >) * Sort both arrays

If the array, Names, is displayed in a scrollable area, the user can click one of the
items. When the user clicks an item, the name of the array is set to the number of that
item. For example, in Figure 16-1, the third item is selected, and therefore Names is
set to 3.

Armatrong Q

Goodemuii

Iayall
Smith |
L

Figure 16-1
Selected name in a scrollable area

The value in Names can be used to load the associated record in the selection. The
value in Names is used to access an element in the RecNum array. The value in the
RecNum element is the selected record number of the record corresponding to the
item clicked in the scrollable area. The next procedure is the script for the Names
scrollable area. It uses GOTO SELECTED RECORD to load the record for the name that
the user clicked.

GOTO SELECTED RECORD (RecNum{Names})

I

CHAPTER 16: ADVANCED COMMANDS 269



270

Sequence number

Sequence number ({file}) > Number

Parameter Type Description
file File File for which to return the sequence number

Sequence number returns the next sequence number for file. The sequence number is
the same number assigned by using the #N symbol as the default value for a field in a
layout. (See the 4th DIMENSION Design Reference for information on assigning
default values.) The sequence number is unique for each file. It is a nonrepeating
number that is incremented for each new record added to the file. The numbering
starts at 1. The number will not be lost when you delete records. The sequence
number is incremented when a new record is saved, whether the number is used

or not.

There are four primary reasons for using Sequence number instead of the #N symbol:
m Records were created by using procedures instead of layouts.

m The number needs to start at a number other than 1.

m The number needs an increment greater than 1.
"

The sequence number is part of a code, for example a part number code.

To store the sequence number by means of a procedure, create a long integer field in
the file and assign the sequence number to the field.

If the sequence number needs to start at a number other than 1, simply add the
difference to Sequence number. For example, if the sequence number needed to start
at 1000, you would use the following statement to assign the number:

Seq Field := Sequence number ([File]) + 999

The following example is part of a layout procedure. It tests to see if this is a new
record (if the invoice number is an empty string). If it is a new record, the example
procedure assigns an invoice number. The invoice number is formed from two pieces
of information: the sequence number, and the operator’s ID, which was entered when
the database was opened. The sequence number is formatted as a 5-character string.

If (Invoice No ="") * If this is a new part number...
* Create a new invoice number.
* The invoice number is a string that ends with Operator ID.
Invoice No := String (Sequence number; "00000") + Operator ID

End if 4

€



COMMANDS § Il

ﬁﬁf In a multi-user database, the sequence number is updated each time a user saves a new
record. When a new record is saved, other users cannot save a new record while the
After phase is active. To use Sequence number in a multi-user database, you must assign
the sequence number in the After phase. This ensures that the sequence number is
unique and is not being used by another user.

If you need to assign the sequence number to a new record created by means of a
procedure in a multi-user database, you need to use START TRANSACTION to ensure that
no one else is saving a record at the same time.

Using the Record Stack

PUSH RECORD POP RECORD 'ONE RECORD SELECT

The commands in this section allow you to put records (push them) onto the record
stack, and to remove them (pop them) from the stack.

Each file has its own record stack. 4th DIMENSION maintains the record stacks for you.
Each record stack is a last-in-first-out (LIFO) stack. Stack capacity is limited by
memory.

PUSH RECORD and POP RECORD should be used with discretion. Each record that is
pushed uses part of free memory. Pushing too many records can cause an out-of-
memory condition.

4th DIMENSION clears the stack of any unpopped records when you return to the menu
at the end of the execution of your procedure.

PUSH RECORD and POP RECORD are useful when you want to examine records in the
same file during data entry. To do this, you push the record, search and examine records
in the file (copy fields into variables, for example), and finally pop the record to restore
the record.

PUSH RECORD

PUSH RECORD ({file})

Parameter © Type Description
file File File from which to push record

PUSH RECORD pushes the current record of file (and its subrecords, if any) onto the
file’s record stack. PUSH RECORD may be executed before a record is saved.

{F The following example pushes the record for the customer onto the record stack.

PUSH RECORD ([Customer]) * Push the customer’s record onto the stack

CHAPTER 16: ADVANCED COMMANDS 271



272

POP RECORD

POP RECORD ({file})

Parameter Type Description
file File File for which to pop record

POP RECORD pops a record (and its subrecords, if any) belonging to file from the
file’s record stack, and makes the record the current record.

If you push a record, change the selection so as not to include the pushed record, and
then pop the record, the current record is not in the current selection. If you want to
designate the popped record as the current selection, use ONE RECORD SELECT.

If you use any commands that move the record pointer before saving the record, you
will lose the copy in memory.

* The following example pops the record for the customer off the record stack.

POP RECORD ([Customer]) * Pop the customer’s record off the stack
ONE RECORD SELECT ([Customer]) * Make sure the record is in the selection

ONE RECORD SELECT

ONE RECORD SELECT ({file})

Parameter Type Description
file File File for which to select record

ONE RECORD SELECT reduces the current selection of file to the current record. If no
current record exists, ONE RECORD SELECT has no effect.

~ See the POP RECORD example, earlier in this section.

Managing Sets

CREATE EMPTY SET CLEAR SET Is in set
CREATE SET DIFFERENCE Records in set
USE SET INTERSECTION SAVE SET
ADD TO SET UNION LOAD SET

Sets offer you a powerful, swift means for manipulating record selections. Besides
the ability to create sets, relate them to the current selection, and store, load, and
clear sets, 4th DIMENSION offers three standard set operations:

m Intersection
® Union
m Difference



COMMANDS

Sets and the Current Selection

A set is a compact representation of a selection of records. The idea of sets is closely
bound to the idea of the current selection.

Sets are generally used for the following purposes:

m to work with more than one selection

m to save and later restore a selection

m to access the selection a user made on screen (the UserSet)
|

to perform a logical operation between selections

The current selection is a list or table that points to each record that is currently
selected. The list exists in memory. Only the records that are currently selected are
in the list. A selection doesn’t actually contain the records, but only a list of pointers
to the records. Each pointer to a record takes 32 bits (4 bytes) in memory. When you
work on a file, you always work with the records in the current selection. When a
selection is sorted, only the list of pointers is rearranged. There is only one current
selection for each file.

Like a current selection, a set represents a selection of records. A set does this by
using a very compact representation for each record. Each record is represented by
1 bit (% of a byte). Operations using sets are very fast, because computers can
perform operations on bits very quickly. A set contains 1 bit for every record in the
file, whether the record is included in the set or not.

The size of a set, in bytes, is always equal to the total number of records in the file
divided by 8. For example, if you create a set for a file containing 10,000 records,
the set takes up 1250 bytes, which is about 1.2K in RAM. Sets are very economical
in terms of RAM and disk space.

There can be many sets for each file; in fact, sets can be saved to disk separately
from the database. A set is never directly used to access records. The current
selection must first be changed to reflect the set.

A set is never in a sorted order—the records are simply indicated as belonging to
the set or not.

A set “remembers” which record was the current record at the time the set was
created.

Table 16-6 compares the concepts of the current selection and of sets.

Il

CHAPTER 16: ADVANCED COMMANDS 273



Table 16-6
Current selection and sets concepts compared

Comparison Current Selection Sets

Number per file 1 0 to many

Sortable Yes No

Can be saved on disk No Yes

RAM per record 32 bits (4 bytes) 1 bit (% of a byte)

Combinable No Yes

Contains current record Yes Yes, as of the time the set was created

When you create a set, it belongs to the file from which you created it. The set
operations can be performed only between sets belonging to the same file.

Important: Sets are independent from the data. This means that after changes are made to
a file, a set may no longer be accurate. There are many operations that can cause a set to
be inaccurate. If you created a set of all the people from New York, and then changed the
data in one of those records to “New Jersey,” the set would not change, since the set is
simply a representation of a selection of records. Deleting records and then adding new
records can also include records in a set that were not originally included. Sets can be
guaranteed to be accurate only as long as the data in the corresponding selection has not
been changed.

Set Example

The example below deletes duplicate records from a file. The file contains information
about people. A For loop moves through all the records, comparing the current record to
the previous record. If the first name and the last name are the same, then the record is
added to a set. At the end of the loop, the set is made the current selection and the
current selection is deleted.

DEFAULT FILE ([People]) * Set the default file
CREATE EMPTY SET ("Duplicates") * Create an empty set for duplicate records
ALL RECORDS * Select all records

* Sort the records by ZIP, address, and name so
* that the duplicates will be next to each other
SORT SELECTION ([Addresses]ZIP; >; [Addresses]Address; >; [Addresses]Name; >)

$Name := [People]Name * Initialize variables that hold the
$Address := [People]Address * fields from the previous record

$ZIP := [People]ZIP

NEXT RECORD " Go to second record to compare to first

274



COMMANDS { I

For ($i; 2; Records in file) " Loop through all records starting at #2
* If the name, address, and ZIP are the same as the
" previous record then it is a duplicate record.
If (([People]Name = $Name) & ([People]Address = $Address) & ([People]ZIP = $ZIP))

ADD TO SET ("Duplicates") " Add current record (the duplicate) to set
Else
$Name := [People]Name * Save this record’s name, address, and ZIP
$Address := [People]Address * for comparison with the next record
$ZIP := [People]ZIP
End if
NEXT RECORD " Move to the next record
End for
USE SET ("Duplicates”) * Use the duplicate records that were found
DELETE SELECTION * Delete the duplicate records
CLEAR SET ("Duplicates”) * Remove the set from memory

As an alternative to immediately deleting the records at the end of the procedure, you
could display them on screen or print them, so that a more detailed comparison could be
made.

The UserSet System Set

4th DIMENSION maintains a system set named UserSet. UserSet automatically stores

the most recent selection of records selected on screen by the user. Thus, you can

display a group of records with MODIFY SELECTION or DISPLAY SELECTION, ask the

user to select from among them, and turn the results of that selection into a set that you )
name, or into a selection. There is only one UserSet for a database. Each file does not u .s.z&iet
have its own UserSet. UserSet becomes “owned” by a file when a selection of records is

displayed for the file. The following procedure illustrates how you can display records,

allow the user to select some, and then use UserSet to display the selected records.

" Display all records and allow user to select any number of them.
* Then display this selection by using UserSet to change the current selection.

DEFAULT FILE ([People]) * Set the default file

OUTPUT LAYOUT ("Display") " Set the output layout

ALL RECORDS * Select all the people

ALERT ("Press Command and Click to select the people required.")

DISPLAY SELECTION " Display the people

USE SET ("UserSet") " Use the people that were selected
ALERT ("You chose the following people.")

DISPLAY SELECTION " Display the selected people

CHAPTER 16: ADVANCED COMMANDS 275



The LockedSet System Set

The APPLY TO SELECTION and DELETE SELECTION commands create a set named

LockedSet when used in a multi-user environment. LockedSet indicates which records

were locked during the operation of the command. For more information, see the
section “Managing Multi-user Databases,” later in this chapter, and the sections on the
APPLY TO SELECTION and DELETE SELECTION commands, in Chapter 14.

CREATE EMPTY SET

CREATE EMPTY SET ({file}; set)

Parameter Type Description
file File File for which to create an empty set
set String Name of the new empty set

CREATE EMPTY SET creates a new empty set, set, for file. You can add to this set with
the ADD TO SET command. If a set with the same name already exists, the existing set
is cleared by the new set.

~ The following example creates a new set and then “merges” the UserSet with it (with

the UNION command), so that the UserSet can be saved.

CREATE EMPTY SET ([People]; "Save Set") * Create a new set
UNION ("UserSet"; "Save Set"; "Save Set") " Merge the two sets together
CREATE SET

276

CREATE SET ({file}; set)

Parameter Type Description
file File File for which to create a set from the selection
set String Name of the new set

CREATE SET creates a new set, set, for file, and places the current selection in set. The
current record pointer for the file is saved with sez. If set is used with USE SET, the
current selection and current record are restored. As with all sets, there is no sorted
order, and when set is used the default order is used. If a set already exists with the
same name, the existing set is cleared by the new set.

~ The following example creates a set after doing a search so that the set can be saved to

disk.

SEARCH ([People]) * Let the user do a search
CREATE SET ([People]; "Save Set") * Create a new set

SAVE SET ("Save Set"; "My Search") " Save the set on disk



COMMANDS § I

USE SET

USE SET (ser)

Parameter Type Description
set String Name of the set to use

USE SET makes the records in sef the current selection for the file to which the set
belongs.

When you create a set, the current record is “remembered” by the set. USE SET
retrieves the position of this record and makes the record the new current record. If you
delete this record before you execute USE SET, 4th DIMENSION selects the first record
in the set as the current record. Also, if you form a set that does not contain the position
of the current record, USE SET selects the first record in the set as the current record.
The set commands INTERSECTION, UNION, DIFFERENCE, and ADD TO SET reset the
current record.

Caution: Remember that a set is a representation of a selection of records at the moment
that the set is created. If the records that the set represents change, the set may no longer
be accurate. Therefore, a set saved to disk should normally represent a group of records
that does not change frequently. A number of things can make a set invalid: modifying a
record of the set, deleting a record of the set, or changing the criteria that determined a set.

7' The following example uses LOAD SET to load a set of the Acme locations in

New York. It then uses USE SET to make the loaded set the current selection.

" Load the set into memory

LOAD SET ([Companies]; "NY Acme"; "NY Acme Set")

USE SET ("NY Acme") " Change the current selection to NY Acme
CLEAR SET ("NY Acme") * Clear the set from memory

CHAPTER 16: ADVANCED COMMANDS 277



278

ADD TO SET

ADD TO SET ({file}; set)

Parameter Type Description
file File File from which to add current record
set String Name of the set to which to add the record

ADD TO SET adds the current record of file to set. The set must already exist; if it does
not, an error occurs. If a current record does not exist for file, ADD TO SET has no effect.

The following example adds the currently displayed record to a set. The first section of
code is a global procedure that displays a selection. The procedure creates a new set,
displays the records, and then creates a current selection from the records that the user
selected.

DEFAULT FILE ([Invoices]) * Set the default file to Invoices
CREATE EMPTY SET ("Selected") * Create a new set for the file

MODIFY SELECTION * Display the records

USE SET ("Selected") " Use the records that the user selected

The next section of code is a script for a button in the input layout. It simply adds the
current record (the record that the user is viewing) to the existing set. When the user is
done viewing the records, the records in the set are the ones that the user selected.

ADD TO SET ("Selected") ' Add the current record to the set

CLEAR SET

CLEAR SET (ser)

Parameter Type Description
set String Name of the set to clear from memory

CLEAR SET clears ser from memory and frees the memory used by ser. CLEAR SET does
not affect files, selections, or records. To save a set before clearing it, use the SAVE SET
command. Since sets use memory, it is good practice to clear sets when they are no
longer needed.

7 The following example creates a set, saves it to disk, and then clears the set.

DEFAULT FILE ([People]) * Set the default file
SEARCH " Let the user do a search
CREATE SET ("Save Set") " Create a new set

SAVE SET ("Save Set"; "My Search") * Save the set on disk
CLEAR SET ("Save Set") * Clear the set from memory



COMMANDS

DIFFERENCE

DIFFERENCE (setl; set2; result set)

Parameter Type Description

setl String Original set
set2 String Set to “exclude”
result set String Resulting set

DIFFERENCE: compares set/ and set2 and excludes all records that are in set2 from the
result set. In other words, a record is included in the result set only if it is in set/, but not
in set2. Table 16-7 shows all possible results of a set Difference operation.

Table 16-7
Results of a set Difference operation

Set1 Set2 Result Set

Yes No  Yes
Yes Yes No
No Yes No
No No No

Figure 16-2 shows the result of a Difference operation graphically. The shaded area is
the result set.

Figure 16-2
The result set of a Difference operation

The result set is created by DIFFERENCE. The result set replaces any set that already
exists with the same name, including sez/ and ser2. Both setl and set2 must be from the
same file. The result set belongs to the same file as set! and sez2.

CHAPTER 16: ADVANCED COMMANDS 279



v The following example excludes the records that a user selects from a displayed
selection. The records are displayed on screen with the following line:

DISPLAY SELECTION ([Customers]) " Display the customers in a list

At the bottom of the list of records is a button with a script. The script excludes the
records that the user has selected (the UserSet), and displays the new set.

CREATE SET ([Customers]; "Current") " Create a set of the current selection
DIFFERENCE ("Current";"UserSet";"Current") * Exclude records that the user selected
USE SET ("Current") . " Use the new set

CLEAR SET ("Current") * Clear the set

INTERSECTION

INTERSECTION (setl; set2; result set)

Parameter Type Description
setl String First set

set2 String Second set
result set String Resulting set

INTERSECTION compares set/ and set2 and selects only the records that are in both set/
and ser2. Table 16-8 shows all possible results of a set Intersection operation.

Table 16-8
Results of a set Intersection operation

Set1 Set2 Result Set

Yes No No
Yes Yes Yes
No Yes No
No No No

Figure 16-3 shows the result of an Intersection operation graphically. The shaded area is
the result set.

Figure 16-3
The result set of an Intersection operation

280



COMMANDS

The result set is created by INTERSECTION. The result set replaces any set that already
exists with the same name, including sef/ and set2. Both set/ and set2 must be from the
same file. The result set belongs to the same file as set/ and sez2.

/' The following example finds the customers that are served by two sales representatives,
Joe and Abby. Each sales representative has a set that represents his or her customers.
The customers that are in both sets are represented by both Joe and Abby.

INTERSECTION ("Joe"; "Abby"; "Both") * Put the customers in both sets in Both
USE SET ("Both") " Use the set

CLEAR SET ("Both") * Clear this set but save the others
DISPLAY SELECTION ([Customers]) " Display the customers served by both
UNION

UNION (setl; set2; result set)

Parameter Type Description
setl String First set

set2 String Second set
result set String Resulting set

UNION creates a set that contains all records from set/ and set2. Table 16-9 shows all
possible results of a set Union operation.

Table 16-9
Results of a set Union operation

Set1 Set2 Result Set

Yes No Yes
Yes Yes Yes
No Yes Yes
No No No

Figure 16-4 shows the result of a Union operation graphically. The shaded area is the
result set.

Sett

Set2

Figure 16-4
The result set of a Union operation

I

CHAPTER 16: ADVANCED COMMANDS 281



282

The result set is created by UNION. The result set replaces any set that already exists
with the same name, including sez/ and set2. Both set/ and set2 must be from the
same file. The result set belongs to the same file as set/ and set2.

F The following example adds records to a set of best customers. The records are

displayed on screen with the first line. After the records are displayed, a set of the best
customers is loaded from disk, and any records that the user selected (the UserSet) are
added to the set. Finally, the new set is saved to disk.

DEFAULT FILE ([Customers]) * Set the default file

ALL RECORDS * Select all the customers
DISPLAY SELECTION " Display all the customers in a list
LOAD SET ("Best"; "Saved Best") * Load the set of best customers
UNION ("Best"; "UserSet"; "Best") " Add any selected to the set
SAVE SET ("Best"; "Saved Best") * Save the set of best customers
Is in set

Is in set (sef) - Boolean

Parameter Type Description
set String Set to test

Is in set tests whether the current record for the file that set belongs to is in set. Is in set
returns TRUE if the current record of the file is in set, and returns FALSE if the current
record of the file is not in set.

F The following example is a button script. It tests to see whether the record currently

displayed is in the set of best customers.

If (Is in set ("Best")) " Check if it is a good customer
ALERT ("They are one of our best customers.")

Else
ALERT ("They are not one of our best customers.")

End if

Records in set

Records in set (sef) > Number

Parameter Type Description
set String Set to test

Records in set returns the number of records in set. If set does not exist, or if there are
no records in set, Records in set returns 0.



COMMANDS { I

 The following example displays an alert saying what percentage of the customers are
rated as the best.

* First calculate the percentage

$Percent := (Records in set ("Best") / Records in file ((Customers])) * 100
" Display an alert with the percentage

ALERT (String ($Percent; "##0%") + " of our customers are the best.")

SAVE SET

SAVE SET (set; document)

Parameter Type Description .
set String Name of the set to save
document String Name of the disk file to which to save

SAVE SET saves set to document, a document on disk.

The document need not have the same name as the set. If you supply an empty string
for document, a create-file dialog box appears, so that the user can enter the name of
the file. You can load a saved set with the LOAD SET command.

If the user clicks Cancel in the create-file dialog box, or there is an error during the
save operation, the OK system variable is set to 0. Otherwise, it is set to 1.

SAVE SET is often used to save to disk the results of a time-consuming search.

Caution: Remember that a set is a representation of a selection of records at the moment
that the set is created. If the records that the set represents change, the set may no longer
be accurate. Therefore, a set saved to disk should normally represent a group of records
that does not change frequently. A number of things can make a set invalid: modifying a
record of the set, deleting a record of the set, or changing the criteria that determined a set.

/' The following example uses SAVE SET to save the result of a sequential search.
The search is for all of the Acme locations in New York. The resulting set is
saved to a user-specified set.

DEFAULT FILE ([Companies]) * Set the default file

SEARCH ([Companies]Name = "Acme@"; *) * First part of the search...
SEARCH (& [Companies]State = "NY") " second part of the search
CREATE SET ([Companies]; "NY Acme") * Makes the current selection a set
SAVE SET ("NY Acme"; ") " Saves to a user-named set
CLEAR SET ("NY Acme") * Clear the set from memory

ﬂm[lr Using SAVE SET in a multi-user database is discouraged, since the data that the set
represents may be changed by other users, therefore making the set invalid.

CHAPITER 16: ADVANCED COMMANDS 283



284

LOAD SET

LOAD SET ({file}; set; document)

Parameter Type Description

file File File to which the set belongs
set String Set to be created in memory
document String Document holding the set

LOAD SET loads from document a set that was saved with the SAVE SET command.

The set that is stored in document must be from file. The set created in memory is
overwritten if it already exists.

The document parameter is the name of the Macintosh document that contains the set.
The document need not have the same name as the set. If you supply an empty string
for document, an open-file dialog box appears, so that the user can choose the set to
load.

If the user clicks Cancel in the open-file dialog box, or there is an error during the load
operation, the OK system variable is set to 0. Otherwise, it is set to 1.

Caution: Remember that a set is a representation of a selection of records at the moment
that the set is created. If the records that the set represents change, the set may no longer
be accurate. Therefore, a set loaded from disk should normally represent a group of
records that does not change frequently. A number of things can make a set invalid:
modifying a record of the set, deleting a record of the set, or changing the criteria that
determined a set.

The following example uses LOAD SET to load a set of the Acme locations in
New York.

* Load the set into memory

LOAD SET ([Companies]; "NY Acme"; "NY Acme Set")

USE SET ("NY Acme") * Change the current selection to NY Acme
CLEAR SET ("NY Acme") * Clear the set from memory

ﬁmir Using LOAD SET in a multi-user database is discouraged, since the data that the set

represents may be changed by other users, therefore making the set invalid.



COMMANDS |} Il

Managing Multi-user Databases

Locked READ WRITE Semaphore
LOAD RECORD READ ONLY CLEAR SEMAPHORE
UNLOAD RECORD

4th DIMENSION automatically manages simple multi-user databases by allowing
only one user at a time to modify a record. There are three primary reasons for
using the multi-user commands in this section:

m  You are modifying records by using the language.
®  You want to use a custom user interface for multi-user operations.
®  You need to optimize network activities.

The multi-user commands are specific to multi-user operations. These
commands have no effect in a single-user database.

There are three important concepts to be aware of when using commands in a
multi-user database:

m Each file is in either a read-only or a read-write state.

m Records become locked or unlocked when they are loaded.

m A locked record cannot be modified.

In the sections that follow, the person performing an operation on the multi-user

database is the /ocal user. Other people using the database are referred to as the
other users. The discussion is from the perspective of the local user.

Locked Records

A locked record cannot be modified by the local user. A locked record can be
loaded, but cannot be modified. A record is locked when one of the other users
has successfully loaded the record for modification. Only the user who is
modifying the record sees that record as unlocked. All other users see the record
as locked, and therefore unavailable for modification.

A file must be in a read-write state for a record to be loaded unlocked.

CHAPTER 16: ADVANCED COMMANDS 285



286

Read-Only and Read-Write States

Each file in a database is in either a read-write or a read-only state for each user of
the database. Read-only means that records for the file can be loaded but not
modified. In other words, they are always locked and unmodifiable for the local
user. Read-write means that records for the file can be loaded and modified if no
other user has locked the record first.

A file is set to read-write with the command READ WRITE. Read-write is the default
state for all files when a database is opened. When a file is read-write and a record is
loaded, the record will become unlocked if no other user has locked the record first.
If the record is locked by another user, the record is loaded, but it is locked, and the
local user is not able to save modifications. A file must be set to read-write and the
record loaded for it to become unlocked and thus modifiable.

A file is set to read-only with the command READ ONLY. When a file is read-only
and a record is loaded, the record is always locked. In other words, the record can
be displayed, printed, and otherwise used, but it cannot be modified.

Each user has his or her own local state (read-only or read-write) for each file in the
database. The current record for each file is loaded according to the current state.
When you use the commands READ WRITE or READ ONLY to change to a different
state, only the records that are subsequently loaded are affected.

4th DIMENSION automatically sets a file to read-only for commands that do not
require write access to records. Table 16-10 lists the commands that set a file to
read-only.

Table 16-10

Commands that set a file to read-only

Command Command Command
DISPLAY SELECTION GRAPH FILE PRINT LABELS
EXPORT DIF MERGE SELECTION PRINT SELECTION
EXPORT SYLK SELECTION TO ARRAY REPORT

EXPORT TEXT

MODIFY SELECTION (except when a record is double-clicked)

Before executing any of the commands in Table 16-10, 4th DIMENSION saves the
current state (read-only or read-write) for the file. After the command has executed,
the state is restored. If you need to modify records during the operation performed
by any of these commands, you can use 4D Customizer to override this feature. See
the section “4D Customizer” in the 4th DIMENSION Utilities Guide for more
information on setting this feature.



COMMANDS

Loading, Modifying, and Unloading Records

Before the local user can modify a record, the file must be in the read-write state,
and the record must be loaded and unlocked.

The commands in Table 16-11 load a record.

Table 16-11
Commands that load a record

Command Command Command

ALL RECORDS MODIFY RECORD SEARCH

APPLY TO SELECTION NEXT RECORD SEARCH BY FORMULA
CREATE LINKED ONE OLD RELATED MANY SEARCH BY INDEX
CREATE RECORD OLD RELATED ONE SEARCH BY LAYOUT
FIRST RECORD ONE RECORD SELECT SEARCH SELECTION
GOTO RECORD PREVIOUS RECORD SORT BY INDEX
GOTO SELECTED RECORD RELATE MANY SORT FILE

LAST RECORD RELATE ONE SORT SELECTION
LOAD RECORD USE SET

Any of the commands in Table 16-11 loads the current record (if there is one) and
sets the record as locked or unlocked. The record is loaded according to the current
state of its file (read-only or read-write).

A record may also be loaded for a related file by any of the commands that cause an
automatic relation to be established. See the section “Managing File Relations,” in
Chapter 14, for a list of these commands.

If a file is in the read-only state, then a record that is loaded from that file is locked.
A locked record cannot be saved or deleted. Read-only is the preferred state, since it
allows other users to load, modify, and then save the record.

If a file is in the read-write state, then a record that is loaded from that file is
unlocked only if no other users have locked the record first. An unlocked record
can be saved. A file should be put into the read-write state only immediately before
a record needs to be loaded, modified, and then saved.

You use the Locked command to test whether a record is locked by another user.
If a record is locked (Locked is TRUE), load the record with the LOAD RECORD
command and again test whether the record is locked. This sequence must be
continued until the record is unlocked (Locked is FALSE), if the record is to be
modified.

A record must be released (and therefore unlocked for the other users) with
UNLOAD RECORD. If a record is not unloaded, it will remain locked for all other
users until a different current record is selected.

CHAPITER 16: ADVANCED COMMANDS 287



288

Loops to Load Unlocked Records

The following example shows the simplest loop with which to load an unlocked record.

READ WRITE * Set the file's state to read-write
Repeat * Loop until the record is unlocked
LOAD RECORD * Load the record and set the locked status

Until (Not (Locked))
" Do something to the record here
READ ONLY * Set the file’s state to read-only

The loop continues indefinitely until the record is unlocked.

A'l'oop like this is used only if the record is unlikely to be locked by anyone else, since
the user would have to wait for the loop to terminate. Thus, it is unlikely that the loop
would be used as is unless the record could only be modified by means of a procedure.

The following procedure uses the loop to load an unlocked record and modify the record:

DEFAULT FILE (Inventory]) * Set the default file
READ WRITE
Repeat " Loop until the record is unlocked
LOAD RECORD " Load the record and set the locked status
Until (Not (Locked))
[Inventory]Part Qty := [Inventory]Part Qty — 1 " Modify the record
SAVE RECORD * Save the record
UNLOAD RECORD " Unload the record so others can modify it
READ ONLY

The MODIFY RECORD command automatically notifies the user if a record is locked, and
prevents the record from being modified. The following example avoids the automatic
notification by first testing the record with the Locked command. If the record is locked,
the code allows the user to cancel.

The example first installs an event-trapping procedure so that the While loop can be
terminated. It then loads the current record for the default file and tests whether the
record is locked by another user. If the record is locked, a message is displayed and the
loop continues: If the record is unlocked, then the If code is executed and the user can
modify the record. After the record is modified, it is unloaded so that other users can
modify it.

Loop :=True * Initialize the loop variable

READ WRITE * Set the file’s state to read-write

LOAD RECORD " Load the record and set the locked status
ON EVENT CALL ("Trap") " Install the event-trapping procedure



COMMANDS

While (Loop & Locked) " Loop while the record is locked
MESSAGE ("The record is locked by another user. Press Q to cancel.")
LOAD RECORD " Load the record and set the locked status
End while
ON EVENT CALL (") " Remove event trapping
If (Not (Locked)) " If the record is unlocked...
MODIFY RECORD " let the user modify the record
UNLOAD RECORD * Unload the record so others can modify it
End if
READ ONLY " Set the file’s state to read-only

The following is the Trap procedure installed by the ON EVENT CALL command. The
Trap procedure simply sets Loop to FALSE when the user presses the Q key. When
Loop is set to FALSE, the loop ends, the record is not unlocked, and MODIFY RECORD is
not executed.

If (Char (KeyCode) = "q")
Loop := False
End if

Using Commands in a Multi-user Database

A number of commands in the language perform specific actions when they encounter a

record that is locked. They behave normally if they do not encounter a locked record.

Here is a list of those commands, showing the actions of each when it encounters a

locked record. For more information on each of the commands, see its description in

Part III.

m MODIFY RECORD—This command displays a dialog box stating that the record is in
use. The record is not displayed and therefore the user cannot modify the record.

® MODIFY SELECTION—This command behaves normally except when the user

double-clicks a record to modify it. MODIFY SELECTION then acts like MODIFY
RECORD and displays a dialog box stating that the record is in use.

m  APPLY TO SELECTION—This command loads a locked record, but does not modify
it. APPLY TO SELECTION can be used to read information from the file without
special care. If the command encounters a locked record, the locked record is put
into a system set called LockedSet.

m DELETE SELECTION—This command does not delete any locked records. It skips
the locked records. If it encounters a locked record, the locked record is put into a
system set called LockedSet.

m DELETE RECORD—This command is ignored if the record is locked. No error is
returned. You must test that the record is unlocked before executing this command.

CHAPTER 16: ADVANCED COMMANDS 289



290

m SAVE RECORD—This command is ignored if the record is locked. No error is
returned. You must test that the record is unlocked before executing this command.

®  ARRAY TO SELECTION—This command does not save any records that are locked.

The GOTO RECORD command and the set commands need special attention if they are
used in a multi-user database:

m GOTO RECORD—Records in a multi-user database may be deleted and added by
other users. Therefore the record numbers may change. Use caution when directly
referencing a record by number in a multi-user database.

m Set Commands—Special care needs to be taken with sets since the information that
the set was based on may be changed by another user.

Locked

Locked ({file}) > Boolean

Parameter Type Description
file File File to check for record locked

Locked tests whether the current record of file is locked.

If Locked returns TRUE, then the record is locked by another user and cannot be saved.
In this case, use LOAD RECORD to load the record until Locked returns FALSE.

If Locked returns FALSE, then the record is unlocked, meaning that the record is locked
for all other users. The local user (and only the local user) can modify and save the
record. A file must be in a read-write state for Locked to return FALSE.

If another user has deleted the record you loaded, Locked returns FALSE and an empty
record is in memory. This prevents an infinite loop from occurring if you are trying to
load a deleted record.

Use this function to find out whether the record is locked; then take appropriate action—
such as giving the user a choice of waiting for the record to be free or skipping the
operation.

During transaction processing, LOAD RECORD and Locked are often used to test records.
If a record is locked, it is common to cancel the transaction.

Qﬁ See the examples in “Loops to Load Unlocked Records,” earlier in this section.



COMMANDS § Il

LOAD RECORD

LOAD RECORD ({file})

Parameter Type Description
file File File from which to load record

LOAD RECORD loads the current record of file. The status of the record can then be
tested with the Locked command. If there is no current record, LOAD RECORD has no
effect.

UNLOAD RECORD is used to release (unlock) the record for other users.

:{7 See the examples in “Loops to Load Unlocked Records,” earlier in this section.

UNLOAD RECORD

UNLOAD RECORD ({file})

Parameter Type Description
file File File for which to unload record

UNLOAD RECORD unloads the current record of file. If the record is unlocked for the
local user (locked for the other users), UNLOAD RECORD unlocks the record for the
other users.

Although UNLOAD RECORD unloads the record from memory, it remains the current
record.

When another record is made the current record, the previous current record is
automatically unloaded and therefore unlocked for other users.

Always execute this command when you are done modifying a record and want to make
it available to other users, yet retain the record as your current record.

T See the examples in “Loops to Load Unlocked Records,” earlier in this section.

CHAPTER 16: ADVANCED COMMANDS 291



292

READ WRITE

READ WRITE ({file})

Parameter Type Description
file File File for which to set multi-user state

READ WRITE changes the state of file to read-write. When a record is loaded, it is
unlocked if no other user has locked the record. This command does not change the
status of the currently loaded record, only that of subsequently loaded records.

The default state for all files is read-write.

Use READ WRITE when you must modify a record and save the changes. Also use
READ WRITE when you must lock a record for other users, even if you are not
making any changes.

F See the examples in “Loops to Load Unlocked Records,” earlier in this section.

READ ONLY

READ ONLY ({file})

Parameter Type Description

file File File for which to set multi-user state

READ ONLY changes the state of file to read-only. All subsequent records that are
loaded are locked, and the user cannot save any changes made to them.

Use READ ONLY when the loaded record does not need to be unlocked—in other
words, when you do not need to modify the record.

“ See the examples in “Loops to Load Unlocked Records,” earlier in this section.

Semaphore

Semaphore (semaphore) > Boolean

Parameter Type Description
semaphore String Semaphore to set

A semaphore is a simple message between workstations (each user’s computer) in a
multi-user database. A semaphore simply exists or does not exist. The procedures
that each user is running can test for the existence of a semaphore. By creating and
testing semaphores, procedures can communicate between workstations.



COMMANDS | il

Semaphore is a function that returns TRUE if semaphore exists. If semaphore does not
exist, Semaphore creates the semaphore and returns FALSE. Only one user at a time
can create a semaphore.

Semaphores are not needed for multi-user operation. This command performs no
action but to set the semaphore. Semaphores are simply a messaging mechanism
between workstations in a multi-user environment.

Semaphores are stored in the Flags file. If a semaphore is accidently left set, you can
clear it and all other semaphores by throwing away the Flags file while no one is
using the database.

The semaphore names “1” through “64” are for internal use by 4th DIMENSION, and
should not be used as semaphores.

" The following example checks a semaphore. In the example, the semaphore is set
when someone wants to prevent any access to a specific file. Note that this does not
lock the file; the procedures that use the semaphore simply recognize its meaning.

" Did someone set a semaphore called File Lock?
If (Semaphore ("File Lock"))
ALERT ("Someone has prevented access to that file.")

Else
Do Access * The semaphore is set. Do something.
CLEAR SEMAPHORE ("File Lock") * Clear the semaphore for other users
End if

CLEAR SEMAPHORE

CLEAR SEMAPHORE (semaphore)

Parameter Type Description
semaphore String Semaphore to clear

CLEAR SEMAPHORE erases semaphore.

The semaphore names 1" through “64™ are for internal use by 4th DIMENSION, and
should not be cleared.

Y See the example for Semaphore. earlier in this section.

CHAPTER 16: ADVANCED COMMANDS 293



294

Using Transactions

START TRANSACTION CANCEL TRANSACTION VALIDATE TRANSACTION

Transactions are a series of related data modifications that are made to a database.
A transaction is not saved permanently to a database until the transaction is
validated. If a transaction is not completed, either because it is canceled or because
of some outside event, the modifications are not saved.

A transaction is started with the command START TRANSACTION. The database
immediately becomes locked to all other users in a multi-user database. There can
be only one transaction at a time. For this reason, it is critical that all transactions
be as short as possible, and that there be no user intervention.

If a transaction is in process, transactions started on all other workstations will wait
until the current transaction is complete. The pending transactions are started
randomly; the transactions are not queued in order.

During a transaction, all changes to the data of a database are stored locally in a
temporary buffer. If the transaction is accepted with ACCEPT TRANSACTION,
the changes are saved permanently. If the transaction is canceled with

CANCEL TRANSACTION, the changes are not saved.

Transaction Example

The example in this section is based on the database structure shown in

Figure 16-5. The database is a simple invoicing system. The invoice lines are
stored in a subfile called [Invoice]Lines, and the inventory is stored in a file called
[Parts].

Invoices

Invoice No &

Lines x

Customer A

Bill to A

Ship to A Lines B
Part No Af HPart No A
Quantity 1 § Quantity L
Total R Cost R
----------------------------- : Description A

Figure 16-5

An invoice database

The user enters the invoice and invoice lines. During data entry, the inventory is
checked, and the user is alerted if an item is out of stock.



COMMANDS § Il

When the user is done, he or she clicks a button to save the invoice. The
example procedure is the script for that button. The button has no action. The
Enter key is associated with the button. This ensures that the script is executed
even if the user presses the Enter key to accept the record. Figure 16-6 shows
the Enter key being associated with the button.

Associated Key...
Key: [Enter ]
8B 4 EA
Modifiers: [] [ [0 (O [ _Clear : b
[ Eanceﬁ L 0K | G
Figure 16-6

The Enter key associated with a button

Although the inventory has been checked during data entry, it is possible that
another user has saved an invoice that depleted inventory. If the inventory is not
sufficient, a transaction allows all the changes that are made to the database to
be canceled.

The script starts a transaction. It then reduces the number of parts in inventory
by the number of parts ordered in the invoice line. If there are not enough parts
in inventory, or the record is locked, the transaction is canceled and the user is
alerted. Otherwise, the invoice record is saved and the transaction is validated.

CHAPTER 16: ADVANCED COMMANDS 295



It is important that the invoice record is saved as part of the transaction, since if there
is an error (such as a power failure or a disk error) while the transaction is in progress,
the complete transaction, including the record, will be canceled.

Trans Error :=0 * Use this to check the type of error

ALL SUBRECORDS ([Invoices]Lines) * Select all the invoice lines

ON ERR CALL ("Cancel Trans") * This traps errors such as disk full

START TRANSACTION * Start transaction before any data changes

" Loop once for each record and only as long as there are no errors
While (Not (End subselection ([Invoices]Lines)) & (Trans Error = 0))

RELATE ONE ([Invoices]Lines'Part No) * Get the part record & remove the quantity
[Parts]Quantity := [Parts]Quantity — [Invoices]Lines'Quantity
Case of * Check for errors
: ([Parts]Quantity < 0)
Trans Error := 10000 * Use error codes that 4D does not use

: (Locked ([Parts]))
Trans Error := 10001

Else * No errors and enough in stock...
SAVE RECORD ([Parts]) * s0 save the record and...
NEXT SUBRECORD ([Invoices]Lines) * go to the next invoice line
End case
End while
If (Trans Error = 0) * This next step could cause an error...
SAVE RECORD([Invoices]) " and must be part of the transaction
End if
If (Trans Error = 0) * Finally, if there were no errors...
VALIDATE TRANSACTION * save everything
Else * Otherwise, cancel the transaction
CANCEL TRANSACTION
End if
Case of
: (Trans Error = 0) * There were no errors so...
CANCEL " leave data entry
: (Trans Error = 10000) * There was an error, so tell the user

ALERT ("Part no: " + [Invoices]Lines'Part No + Char (13) + "is out of stock.")
: (Trans Error = 10001)
ALERT ("Part no: " + [Invoices]Lines'Part No + Char(13) + "is in use.")

Else * For all other errors
ALERT ("Error #" + String (Trans Error) + " occurred.")
End case
ON ERR CALL (") " Reset error trapping

296



COMMANDS § I

The example procedure installs Cancel Trans as an ON ERR CALL procedure in
the third line. The Cancel Trans procedure traps any unexpected errors and sets
the Trans Error variable, therefore canceling the transaction if an error occurs.
The following line is the complete Cancel Trans procedure:

Trans Error := Error

It is important to note that the example is for use when entering a new invoice.
If an invoice needed to be modified, the Old command would be used to update
the inventory.

START TRANSACTION ex ERq

START TRANSACTION

START TRANSACTION starts a transaction. All changes to the database will be
stored temporarily until the transaction is accepted (validated) or canceled.

/' See the example earlier in this section.

ﬁﬁ[ﬁ Only one user at a time can have a transaction active. If another user has started
a transaction, this command will continue checking until the other user’s
transaction has completed. It will then start the transaction.

CANCEL TRANSACTION

CANCEL TRANSACTION

CANCEL TRANSACTION cancels the transaction that was started with
START TRANSACTION. CANCEL TRANSACTION returns the data in the database
to the condition it was in before the start of the transaction.

DQZ See the example earlier in this section.

VALIDATE TRANSACTION

VALIDATE TRANSACTION

VALIDATE TRANSACTION accepts the transaction that was started with
START TRANSACTION. VALIDATE TRANSACTION saves the changes to the
database that occurred during the transaction.

/' See the example earlier in this section.

CHAPTER 16: ADVANCED COMMANDS 297



Communicating With Documents and the Serial Port

Create document SEND PACKET RECEIVE BUFFER
Open document RECEIVE PACKET SEND RECORD
Append document SET CHANNEL RECEIVE RECORD
CLOSE DOCUMENT ON SERIAL PORT CALL SEND VARIABLE
DELETE DOCUMENT SET TIMEOUT RECEIVE VARIABLE
USE ASCII MAP

The commands in this section allow you to send and receive data to and from
both documents and the serial port. Two commands in particular are used for
communications: SEND PACKET and RECEIVE PACKET. These commands send
data as packets. A packet is just a piece of data, generally a string of characters.

Working With Documents VA

The document commands create, open, close, and delete Macintosh documents
(disk files). Documents can be read from and written to using the commands
RECEIVE PACKET and SEND PACKET. The documents may be used to store
database information, such as variables, sets, and copies of records. The
documents may also have been created with another application.

You can open multiple documents with the document commands. The number of
open documents is limited only by the Macintosh file system. However, you
should close all documents that do not need to be open, to avoid having too many
Macintosh files open at the same time.

The document commands use document names. A document name can contain a
path—the description of the location of a document in a directory. A path to a
document is constructed as follows:

For example, to access a document named Sales Table, contained in a folder
named Sales Folder, in a folder named Business, saved on a disk (a volume)
named Office, the path would be

Office:Business:Sales Folder:Sales Table.

If a document is specified without a path, it is assumed to be in the folder that
contains the database data file.

—
4th DIMENSION maintains a system variable called Document. The Document
system variable contains the name of and path to the document that was last
accessed.

298



Wobe on loose shee€ COMMANDS

Docref
Commands that open a document return a document reference. You use the
document reference to access the document. You should never modify the document
reference. When a document command returns a document reference, save it in a
variable and use the variable to refer to the document.

You can use a local variable to store the document reference, but be careful. If the
procedure ends and you have not closed the document, you will not be able to,
because the local variable will have been cleared.

Create document

Create document (document; {type}) > Docref

Parameter Type Description
document String Document name
type String Document type (4 characters)

Create document creates a new document with the name document, and returns a
document reference to the document. If document already exists on the disk, it is
overwritten. The document is opened for writing.

If document is an empty string ("), a Macintosh create-file dialog box is presented,
and the user may specify a new document name. See Figure 16-7.

3 My Folder

0 Botumenl Kr = My Disk
O Bacument 2

Eipnt

Drive

<

i

New Documentd I Cancel

Figure 16-7
The create-file dialog box

A document type may be specified with type, a 4-character string. The most common
document type is TEXT. If a document type is not specified, then a TEXT-type
document is created.

If the user creates a document, the OK system variable is set to 1 and the Document
system variable is set to the name of the opened document. Otherwise, the OK
system variable is set to 0.

CHAPTER 16: ADVANCED COMMANDS 299



A3 0Ly 487?

Abort | o biews
i
Decrel Pige A9 |
L
P
£e | siep  § 0 Himw Edit

. 5 . 4
C(u’(;(,un e & ?4;(Z'L A a o



300

{F The following example creates and opens a new document called Note, writes the

string "Hello" into it, and closes the document.

Doc := Create document ("Note") * Create a new document called Note
SEND PACKET (Doc; "Hello") * Write one word into the document
CLOSE DOCUMENT (Doc) * Close the document

Open document
Append document

Doc Ref Rage 299
Open document (document; {type}) > Docref

Append document (document; {type}) > Docref

Parameter Type Description
document String Document name
type String Document type (4 characters)

Open document opens document, an existing Macintosh document, for reading or
writing. Data written to the document is written at the beginning of the document and
overwrites any existing data.

Append document opens document, an existing Macintosh document, for writing.
Data written to the document is appended to the end of the document.

nn

With both commands, if document is an empty string (""), a Macintosh open-file dialog
box is presented, and the user may specify the document name. See Figure 16-8.

3 My Folder
S My Disk
0 Document 2
o]

Figure 16-8
The open-file dialog box

If you use an empty string for document (that is, if the open-file dialog box is presented
to the user), you may specify the document type with type, a 4-character string. The
open-file dialog box then displays only files of that type. The most common document
type is TEXT. If you do not specify fype, documents of all types can be opened.



COMMANDS § Il

If the user opens a document, the OK system variable is set to 1 and the Document
system variable is set to the name of the opened document. Otherwise, the OK system
variable is set to 0.

F The following example opens an existing document called Note, writes the string
"Goodbye" into it, and closes the document. If the document already contained the
string "Hello", the string would be overwritten.

Doc := Open document ("Note") " Open a document called Note ¥
SEND PACKET (Doc; "Goodbye") * Write one word into the document
CLOSE DOCUMENT (Doc) * Close the document

The following example opens an existing document called Note, appends the string
" and so long" and a carriage return onto the end of the document, and closes the
document. If the document already contained the string "Goodbye", the document
would now contain the string "Goodbye and so long", followed by a carriage return.

Doc := Append document ("Note") * Create a new document called Note .«
SEND PACKET (Doc; " and so long" + Char (13)) * Append a string onto the document
CLOSE DOCUMENT (Doc) * Close the document

CLOSE DOCUMENT

- '?"4, < 479
CLOSE DOCUMENT (document ref) v

Parameter Type Description
document ref Docref Document reference

CLOSE DOCUMENT closes the document specified by document ref.

Closing a document is the only way to ensure that the data written to a file is saved.
You must close all documents to ensure that they are properly saved.

“ The following example lets the user create a new document, writes the string "Hello"
into it, and closes the document.
? - Mf I'Q

Doc := Create document (") * Create a new document called Note ¥

SEND PACKET (Doc; "Hello") * Write one word into the document
CLOSE DOCUMENT (Doc) * Close the document
?)
».-Dca; c,:.J.’n NS \DCC‘Wsr\én S Ref'el Qucle
-‘:Pcc rcf

CHAPTER 16: ADVANCED COMMANDS 301



302

DELETE DOCUMENT

DELETE DOCUMENT (document)

Parameter Type Description
document String Document to delete

DELETE DOCUMENT deletes document. Deleting a document sets the OK system
variable to 1. If DELETE DOCUMENT can’t delete the document, the OK system
variable is set to 0. DELETE DOCUMENT does not work on open documents.

DELETE DOCUMENT doesn’t accept an empty string argument for document. If an
empty string is used, the open-file dialog box is not displayed and an error is
generated.

% Warning: DELETE DOCUMENT can delete any file on a disk. This includes
documents created with other applications as weli as the applications themselves.
DELETE DOCUMENT should be used with extreme caution. Deleting a document
is a permanent operation and cannot be undone.

The following example deletes the document named Note.

DELETE DOCUMENT ("Note") Delete the document

SEND PACKET

SEND PACKET ({document ref}; packet)

Parameter Type Description
document ref Docref Document reference
packet String Packet to send

SEND PACKET sends packet to the serial port or to a document. If document ref is

specified, the packet is written to the Macintosh document referenced by document ref.

If document ref is not specified, the packet is written to the serial port or document
previously opened by the SET CHANNEL command.

Before you use SEND PACKET, you must open a serial port with SET CHANNEL, or a
document with one of the document commands.

When writing to a document, the first SEND PACKET begins writing at the beginning of

the document unless the document was opened with Append document. Until the
document is closed, each subsequent packet is appended to any previously sent
packets.



COMMANDS

Important: SEND PACKET writes Macintosh ASCII data. Macintosh ASCII uses 8 bits.
Standard ASCII uses only the lower 7 bits. Many devices do not use the 8th bit in the
same way as does the Macintosh. Such devices include computers that use PC-DOS or
MS-DOS, and the ImageWriter printer. If the string to be sent contains data that uses
the 8th bit, be sure to create an ASCII map to translate the ASCII characters, and
execute USE ASCII MAP before using SEND PACKET.

F The following example writes data from fields to a document. It writes the fields as
fixed-length fields. Fixed-length fields are always of a specific length. If a field is
shorter than the specified length, the field is padded with spaces. (That is, spaces are
added to make up the specified length.) Although the use of fixed-length fields is an
inefficient method of storing data, some computer systems and applications still use

them.

DEFAULT FILE ([People]) * Set the default file

Doc := Create document (") " Create a TEXT document

If (OK=1) * If the user opened a new document
For ($i; 1; Records in selection) " Loop once for each record

* Send a packet. Create the packet from
*a string of 15 spaces and the first name field.
SEND PACKET (Doc; Change string (" ", [People]First; 1))
* Send a second packet. Create the packet from
* a string of 15 spaces and the first name field.
* This could be in the first SEND PACKET,
" but is separated for clarity.
SEND PACKET (Doc; Change string (" "; [People]Last; 1))
NEXT RECORD
End for
* Send a Control-z (SUB) which is used
" as an end-of-file marker for some computers.
SEND PACKET (Doc; Char (26))
CLOSE DOCUMENT (Doc) * Close the document
End if

CHAPTER 16: ADVANCED COMMANDS 303



304

RECEIVE PACKET

RECEIVE PACKET ({document ref}; receive var; number of char)

Parameter Type Description

document ref Docref Document reference

receive var Variable Variable to receive data
number of char Number Number of characters to receive

RECEIVE PACKET ({document ref}; receive var; stop char)

Parameter Type Description

document ref Docref Document reference

receive var Variable Variable to receive data

stop char String Character at which to stop receiving

RECEIVE PACKET has two forms.

The first form specifies the number of characters (number of char) to receive.
RECEIVE PACKET transfers the number of characters specified into receive var.

The second form reads data until a specified character (stop char) is read.
RECEIVE PACKET transfers characters into receive var until it encounters the first
stop char. RECEIVE PACKET skips the stop char and does not return it in receive var.

With either form, RECEIVE PACKET reads data from the serial port or a document.
Before using RECEIVE PACKET, you must open a serial port or document with
SET CHANNEL, or open a document with one of the document commands. If
document ref is specified, the data is read from a Macintosh document. If
document ref is not specified, the data is read from the serial port or document
opened by the SET CHANNEL command.

When reading a document, RECEIVE PACKET begins reading at the beginning of the
document. The reading of each subsequent packet begins at the character following
the last character read.

The OK system variable will be set to 1 if the packet is received without error.

When attempting to read past the end of a file, RECEIVE PACKET will return with the
data read up to that point. The Error system variable will be set to 0 if this or any
other error occurs.

If RECEIVE PACKET is reading from a serial port, the user can interrupt

RECEIVE PACKET by pressing Option-Space unless an ON ERR CALL procedure has
been installed. RECEIVE PACKET can also be interrupted by the SET TIMEOUT
command. In either case, the OK system variable is set to O if the RECEIVE PACKET
command is canceled.



Get Twenty.
RECEIVE PACKET (Get Twenty; 20)

COMMANDS § Il

{f The following example reads 20 characters from the serial port into the variable

“ The following example reads data from the document referenced by the variable My Doc
into the variable vData. It reads until it encounters a carriage return (Char (1 3)).

RECEIVE PACKET (My Doc; vData; Char (13))

~ The following example reads data from a document into fields. The data is stored as
fixed-length fields. The procedure calls a subroutine to strip any trailing spaces (spaces
at the end of the string). The subroutine follows the procedure.

DEFAULT FILE ([People])
Doc := Open document ("";"TEXT")
If (OK = 1)
While (OK = 1)
RECEIVE PACKET (Doc; $Var1; 15)
RECEIVE PACKET (Doc; $Var2; 15)
If (OK =1)
CREATE RECORD
[People]First := Strip ($Var1)
[People]Last := Strip ($Var2)
SAVE RECORD
End if
End while
CLOSE DOCUMENT (Doc)
End if

* Set the default file

* Open a TEXT document

* If the document was opened...

* Loop until no more data

" Read 15 characters

* Do the same as above for the second field
* If we are not at the end of the document...
* Create a new record

* Save the first name

* Save the last name

* Save the record

* Close the document

The spaces at the end of the data are stripped by the following subroutine, called Strip:

For ($i; Length ($1); 1; -1)
If ($1<$i>#"")
$i == —Si
End if
End for
$0 := Delete string ($1; —$i; Length ($1))

* Loop from end of string to beginning
" If it is not a space...
" Force the loop to end

" Delete the spaces

CHAPTER 16: ADVANCED COMMANDS 305




SET CHANNEL

SET CHANNEL (port; setup)

Parameter Type Description
port Number Port to use
setup Number Port setup

SET CHANNEL (operation; {document})

Parameter Type Description
operation Number File operation code
document String Document on which to perform operation

The SET CHANNEL command has two forms. The first form opens a serial port.
The second form opens a document. You can open only one serial port or one
document at a time with this command.

i'w The first form of the SET CHANNEL command opens a serial port, setting the

' protocol and other port information. Data can be sent with SEND PACKET,
SEND RECORD, or SEND VARIABLE, and received with RECEIVE BUFFER,
RECEIVE PACKET, RECEIVE RECORD, or RECEIVE VARIABLE.

SET CHANNEL opens one serial port. The serial port is the one used by
ON SERIAL PORT CALL and all subsequent serial operations.

The first parameter, port, selects the port and the protocol. You determine the
value for port by adding together the port and protocol as listed in Table 16-12.
For example, to use XON/XOFF with the modem port, you would add 1 + 20 = 21.
You would then use 21 as the value of the port parameter.

Table 16-12
Values for the port parameter
Object Port Setting
Port 0 Printer
| Modem

Protocol 0 None

20 XON/XOFF

30 DTR

306



COMMANDS § 1l

)" The second parameter, setup, sets the speed, number of data bits, number of

stop bits, and parity. You determine the value for sefup by adding together
the speed, data bits, stop bits, and parity as listed in Table 16-13. For

example, to set 1200 baud, 8 data bits, 1 stop bit, and no parity, you would
add 94 + 3072 + 16384 + 8192 = 27742. You would then use 27742 as the

value of the setup parameter.

Table 16-13
Values for the setup parameter

Control Setup Setting
Speed 380 300
(in baud) 189 600
94 1200

62 1800

46 2400

30 3600

22 4800

14 7200

10 9600

4 19200

0 57000

Data bits 0 5
1024 6

2048 7

3072 8

Stop bits 16384 1
-32768 1.5

-16384 2

Parity 8192 None
4096 Odd

12288 Even

CHAPTER 16: ADVANCED COMMANDS 307



308

The second form of the SET CHANNEL command allows you to create, open, and
close a document. Unlike the document commands, it can open only one
document at a time. The document can be read from or written to.

The first parameter, operation, specifies the operation to be performed on the
document specified with document. Table 16-14 lists the values of operation and
the resulting operation with different values for document. The first column lists
the allowed values for the operation parameter. The second column lists the
allowed values for the document parameter. The third column lists the resulting
operation. For example, to display an open-file dialog box to open a text file, you
would use the following line:

SET CHANNEL (13; ™)

Table 16-14

Values for the operation and document parameters

Operation  Document Result ‘

10 String Opens the document specified by String. If the

document doesn’t exist, the document is opened
and created.

10 "" (empty string)  Displays the open-file dialog box to open a file.
All file types are displayed.

11 none Closes an open file.

12 "" (empty string)  Displays the create-file dialog box to create a
new file.

13 "" (empty string)  Displays the open-file dialog box to open a file.

Only text file types are displayed.

All of the operations in Table 16-14 set the Document system variable if
appropriate. They also set the OK system variable to 1 if the operation was
successful. Otherwise, the OK system variable is set to 0.

You should use the document commands for all normal document operations.
You should use SET CHANNEL for documents only when you need to use one of
these commands: SEND RECORD, RECEIVE RECORD, SEND VARIABLE, or
RECEIVE VARIABLE. The document commands do not operate with these
commands.

F The following example opens a printer port connected to an ImageWriter IL.

SET CHANNEL (0; 10 + 3072 + 16384 + 8192) * Printer port, ImageWriter

See the example for SEND RECORD, later in this section, for an example of the
second form of SET CHANNEL.



COMMANDS |} Il

ON SERIAL PORT CALL

ON SERIAL PORT CALL (serial procedure)

Parameter Type Description
serial procedure String Procedure to call

ON SERIAL PORT CALL installs serial procedure as an interrupt procedure for
managing serial port events. The interrupt procedure is automatically called by
4th DIMENSION when a character enters the serial port buffer. Giving an empty
string for serial procedure turns off serial port event handling.

4th DIMENSION suspends the operation that is running when port activity occurs,
and does not return to the operation until it has executed the interrupt procedure.
4th DIMENSION will call the interrupt procedure in the User or Runtime
environment any time a character enters the serial port.

4th DIMENSION automatically calls the interrupt procedure when the serial port
buffer contains one or more characters. If you decide to do nothing with the buffer
contents, don’t forget to clear the buffer contents by calling RECEIVE BUFFER. If
you don’t clear the buffer, 4th DIMENSION calls your installed procedure again.

F The following line installs an interrupt procedure called Interruption:
ON SERIAL PORT CALL ("Interruption")

The Interruption procedure takes whatever is in the serial buffer and concatenates it
onto a variable called Got It. The variable, Got It, can then be read later by other
parts of the application. Here is the Interruption procedure:

RECEIVE BUFFER (v) * Read the serial port buffer
Gotlt:=Got It + v * Save the data

The following line removes the interrupt procedure:

ON SERIAL PORT CALL (")

CHAPTER 16: ADVANCED COMMANDS 309



310

SET TIMEOUT

SET TIMEOUT (seconds)
Parameter Type Description
seconds Number Seconds until the timeout

SET TIMEOUT specifies how much time a serial port command has in which to
complete. If the serial port command does not complete within the specified time,
seconds, the serial port command is canceled, and the OK system variable is set to
0. Note that the time is the total time allowed for the command to execute, not the
time between characters received.

To cancel a previous setting and stop monitoring serial port communication, use a
setting of O for seconds.

Table 16-15 lists the commands that are monitored.

Table 16-15

Commands monitored by SET TIMEOUT
Command Command
RECEIVE PACKET SEND PACKET
RECEIVE RECORD SEND RECORD
RECEIVE VARIABLE SEND VARIABLE

The following example sets the serial port to receive data. It then sets a timeout.
The data is read with RECEIVE PACKET. If the data is not received in time, an error
occurs.

* Set for: Modem; 9600 baud; 8 data bits; 1 stop bit
SET CHANNEL (1; 10 + 8192 + 3072 + 16384)

SET TIMEOUT (10) * Set the timeout for 10 seconds
RECEIVE PACKET (v; Char (13)) * Read until a carriage return
If (OK =0) K L3 * If there was an error...
Alert ("Error receiving data.") * tell the user
Else * Otherwise...
[People]Name = v * save the data
End if



COMMANDS § Il

RECEIVE BUFFER

RECEIVE BUFFER (receive var)

Parameter Type Description
receive var Variable Variable to receive data

RECEIVE BUFFER reads the serial port that was previously initialized with

SET CHANNEL. The serial port has a buffer that fills with characters until a command
reads from the buffer. RECEIVE BUFFER puts the characters in the buffer into
receive var and clears the buffer. If there are no characters in the buffer, then
receive var will contain nothing.

The Macintosh serial port buffer is 64 characters in size. This means that the buffer
can hold 64 characters before it overflows. When it is full and new characters are
received, the new characters replace the oldest characters. The old characters are lost;
therefore it is essential that the buffer is read quickly when new characters are
received.

RECEIVE BUFFER is often used in a procedure installed by ON SERIAL PORT CALL.
When the procedure installed by ON SERIAL PORT CALL is called, RECEIVE BUFFER
is used to read whatever is in the serial port buffer.

RECEIVE BUFFER is different from RECEIVE PACKET in that it takes whatever is in the
buffer and then immediately returns. RECEIVE PACKET, on the other hand, waits until
either it finds a specific character or a certain number of characters are in the buffer.

¥ See the example for ON SERIAL PORT CALL, earlier in this section.

SEND RECORD

SEND RECORD ({file})

Parameter Type Description
file File File from which to send the current record

SEND RECORD sends the current record of file to the serial port or document opened
by the SET CHANNEL command. The record is sent with a special internal format that
can be read only by RECEIVE RECORD. If no current record exists, SEND RECORD has
no effect.

The complete record is sent. This means that all subrecords and pictures that are
associated with the record are also sent.

Caution: When records are being sent and received, the sending file's structure and the
receiving file’s structure must be the same. This means the files must have same number
of fields, type of fields, and order of fields.

CHAPTER 16: ADVANCED COMMANDS 311



312

SET CHANNEL (10; "Archive”)
ALL RECORDS ([My File])

For ($i ; 1; Records in file ([My File]))

SEND RECORD ([My File])
NEXT RECORD ([My File])
End for
SET CHANNEL (11)

RECEIVE RECORD

' The following example sends all the records in a file.

" Open a file

* Select all the records

* Loop through each record
* Send the record

* Move to the next record

* Close the file

RECEIVE RECORD ({file})

Parameter Type
file File

Description
File into which to receive the record

RECEIVE RECORD receives a record into file from the serial port or document
opened by the SET CHANNEL command. The record must be sent with

SEND RECORD. Before you execute RECEIVE RECORD, you must create a new
record for file with the CREATE RECORD command. If the record is received
correctly, you must then use SAVE RECORD to save the new record.

The complete record is received. This means that all subrecords and pictures that
were sent with the record are also received.

During the execution of RECEIVE RECORD, the user can interrupt by pressing
Option-Space unless an ON ERR CALL procedure has been installed. To check for
interrupts, you can test the OK system variable. The OK system variable is set to 1
if the record is received. Otherwise, the OK system variable is set to 0.

Caution: When records are being sent and received, the sending file’s structure and
the receiving file’s structure must be the same. This means the files must have the
same number of fields, type of fields, and order of fields.

7 The following example receives all the records in a document.

SET CHANNEL (10; "Archive") * Open a file

CREATE RECORD ([My File]) * Create a new record

RECEIVE RECORD ([My File]) " Receive the record

While (OK = 1) . , : " Receive the records
SAVE RECORD ([My File]) * Save the last received record
CREATE RECORD ([My File]) * Create a new record
RECEIVE RECORD ([My File]) " Receive the record

End while

SET CHANNEL (11) * Close the file



COMMANDS

SEND VARIABLE

SEND VARIABLE (variable)

Parameter Type Description
variable Variable Variable to send

SEND VARIABLE sends variable to the document or serial port previously opened by
SET CHANNEL. The variable is sent with a special internal format that can be read
only by RECEIVE VARIABLE. SEND VARIABLE sends the complete variable (including
its type and value). Don’t confuse SEND VARIABLE with SAVE VARIABLE.

/' The following example sends a variable to the serial port.

SET CHANNEL (1; 10 + 8192 + 3072 + 16384)
SEND VARIABLE (My Variable)

RECEIVE VARIABLE

RECEIVE VARIABLE (variable)

Parameter Type Description
variable Variable Variable into which to receive

RECEIVE VARIABLE receives variable, a variable sent by SEND VARIABLE, from the
document or serial port previously opened by SET CHANNEL. The variable will be
created with the correct type. If the variable already exists, it will be overwritten.

During the execution of RECEIVE VARIABLE, the user can interrupt by pressing
Option-Space unless an ON ERR CALL procedure has been installed. To check for
interrupts, you can test the OK system variable. The OK system variable is set to 1 if
the record is received. Otherwise, the OK system variable is set to 0.

' The following example receives a variable from the serial port.

SET CHANNEL (1; 10 + 8192 + 3072 + 16384)
SET TIMEOUT (20) * To force an interrupt if there is an error
RECEIVE VARIABLE (My Variable)

CHAPTER 16: ADVANCED COMMANDS 313



314

USE ASCII MAP

USE ASCIlI MAP (mapname; 1/0)

Parameter Type Description
mapname String Document name of the map to use
110 Number 1 for Output map; 2 for Input map

USE ASCII MAP (*; 1/0)

Parameter Type Description
* Use to reset to default ASCII map
110 Number 1 for Output map; 2 for Input map

USE ASCII MAP has two forms. The first form loads the ASCII map named mapname
from disk and uses that ASCII map. If //0 is 1, the map is loaded as the output map.
If 1/O is 2, the map is loaded as the input map.

The ASCII map must have been previously created with the ASCII map dialog box in
the User environment. Once an ASCII map is loaded, 4th DIMENSION uses the map
during transfer of data between the database and a document or a serial port. Transfer
operations include the import and export of text (ASCII), DIF, and SYLK files. An
ASCII map also works on data transferred with SEND PACKET, RECEIVE PACKET, and
RECEIVE BUFFER. It has no effect on transfers of data done with SEND RECORD,
SEND VARIABLE, RECEIVE RECORD, and RECEIVE VARIABLE.

If you give an empty string for mapname, USE ASCII MAP displays a standard open-file
dialog box so that the user can specify an ASCII map document. Whenever you
execute USE ASCII MAP, the OK system variable is set to 1 if the map is successfully
loaded, and to 0 if it is not.

The second form of USE ASCII MAP, with the asterisk (*) parameter instead of
mapname, restores the default ASCII map. If 7/0 is 1, the map is reset for output.
If 1/0 is 2, the map is reset for input. The default ASCII map has no translation
between characters.

F The following example loads a special ASCII map from disk. It then exports data.

Finally, the default ASCII map is restored.

USE ASCII MAP ("My Chars"; 1) " Load and use an alternative ASCIl map
EXPORT TEXT ([My File]; "My Text") * Export data through the map
USE ASCII MAP (*; 1) " Restore the default map



COMMANDS { I

Managing Access Privileges

EDIT ACCESS CHANGE PASSWORD
CHANGE ACCESS Current user

The commands in this section let you change passwords and change access privileges
for the database. See Chapter 8 in the 4th DIMENSION Design Reference for more
information on the password access system.

EDIT ACCESS

EDIT ACCESS

EDIT ACCESS allows the user to edit the password system. The Password Access
editor from the Design environment is used to edit the access.

Groups can be edited by the Designer and the Administrator, and by group owners.
The Designer and the Administrator can edit any group. Group owners can edit only
the groups they own. Users can be put into and removed from the groups.

The Designer and Administrator can add new users as well as assign them to groups.
' The following example displays the Password Access editor to the user.

EDIT ACCESS

CHANGE ACCESS

CHANGE ACCESS allows the user to change to a different access level without
leaving the database. The same password dialog box that the user entered the
database through is presented and the user can enter as a different user. If the user
clicks Cancel, the user enters as the Guest.

' The following example displays the password dialog box to the user.

CHANGE ACCESS

CHANGE PASSWORD

CHANGE PASSWORD (password)

Parameter Type Description
password String New password

CHANGE PASSWORD changes the password of the current user. This command
replaces the current password with the new password, password.

7/ See the example for Current user, next.

CHAPTER 16: ADVANCED COMMANDS 315



316

Current user

Current user > String

Current user returns the user name of the current user. If the user enters as the Guest,
Current user returns an empty string.

The following example allows the user to change his or her password. It first presents
the password dialog with the CHANGE ACCESS command. This forces the user to
select his or her user name and enter the password. If the user enters as other than a
guest, a request dialog allows them to change the password.

CHANGE ACCESS * Present user with the password dialog
If the user cancelled or entered as Guest, the current user ="
If (Current user # ")

$pw1 := Request ("New password:") * Ask for the new password

If (OK = 1) ' * If the user clicked OK
$pw2 := Request ("Enter password again:") * Confirm the new password
If (OK =1) & ($pw1 = $pw2)) * If user clicked OK & validated password

CHANGE PASSWORD ($pw1) * Set the new password

End if

End if

End if

Determining the Database Structure

Count files Filename File
Count fields Fieldname Field
FIELD ATTRIBUTES

The commands in this section return a complete description of the structure of a
database. They return the number of files and number of fields in each file, the names
of the files and fields, and the field types and attributes.

Determining the database structure is extremely useful when you are developing and
using modules of procedures and layouts that can be copied into different databases.
The ability to read the database structure allows you to develop and use portable code.

Storing the Database Structure in Arrays

It is often very useful to have the filenames and field names in arrays. Arrays allow
you to quickly access the names without having to read each one individually. Using
arrays, you can immediately change a scrollable area to display the current file’s
fields, by simply copying the field array to the displayed array.



COMMANDS § -l

The following code shows you how to create the arrays:

" The string below is used to hold 1 character for each possible field type
$TList := "ARTPD B*IL H"
" The array, Files, will contain the names of the files
ARRAY STRING (15; Files; Count files)
* The 2-dimensional array, Fields, will contain the names of the fields for all files
* It begins with zero elements for each file
ARRAY STRING (15; Fields; Count files; 0)
" The 2-dimensional array, Types, will contain the types of the fields
ARRAY STRING (1; Types; Count files; 0)
For ($i; 1; Count files) " Loop for each file
Files{$i} := Filename ($i) " Get the filenames
" Resize the the arrays to the number of fields in the file
ARRAY STRING (15; Fields{$i}; Count fields ($i))
ARRAY STRING (1; Types{$i}; Count fields ($i))

For ($j; 1; Count fields ($i)) " Loop for each field
Fields{$i}{$j} := Fieldname ($i; $j) * Get the field name
FIELD ATTRIBUTES ($i; $j; $x; $y; $2) * Get the field attributes
Types{$i}{$j} := $TList<dx + 1> " Save only the field type

End for

End for

Using this code, you could immediately refer to the name of any file or field. For
example, the second filename is returned by this expression:

Files {2}
And the name of the third field of the second file is returned by this expression:
Fields {2}{3}

You can refer to files and fields through reference numbers. Thus, you can create code
that is portable, and refer to the structure of a database without knowing the file and
field names. Be careful to check that you are operating on the correct field type before
performing an operation on the field. For example, if you are performing a search,
restrict the field types to those other than Subfile and Picture.

You can reference files and fields through pointers. You use the File and Field
commands to access the pointers. For example, if Customers was field number 2 in
file number 1. you could assign a new value to the field with the following statement:

Field (1; 2)» := "Acme, Co."

File and field pointers are transient and may not be the same each time the database is
opened. Conversely. assuming the database structure has not changed, file numbers
and field numbers do stay the same.

CHAPTER 16: ADVANCED COMMANDS 317



Count files

Count files > Number

Count files returns the number of files in the database. Files are numbered in
the order in which they are created.

i The following example sets the NumFiles variable to the number of files in
the database.

NumFiles := Count files

Count fields

Count fields (file number) > Number

Parameter Type Description
file number Number File number

Count fields (file pointer) > Number

Parameter Type Description
file pointer Pointer Pointer to a file

Count fields has two forms.

Count fields returns the number of fields in the file specified by file number or
file pointer. Fields are numbered in the order in which they are created.

/' The following example sets the NumFields variable to the number of fields in
the third file.

NumPFields := Count fields (3)

1/ The following example sets the NumFields variable to the number of fields in
the file named [Filel].

NumpFields := Count fields (»[File1])

318



COMMANDS

Filename

Filename (file number) > String

Parameter Type Description
file number Number File number

Filename (file pointer) > String

Parameter Type Description
file pointer Pointer Pointer to a file

Filename has two forms.
Filename returns the name of the file that corresponds to file number or file pointer.

¥ The following example sets the first element of the array, FileArray, to the name
of the first file.

FileArray{1} := Filename (1)

F The following example sets the first element of the array, FileArray, to the name

of file, [MyFile]. This is useful because if you change the name of [MyFile], the
new name will be returned.

FileArray{1} := Filename (»[MyFile])

Fieldname

Fieldname (file number; field number) > String

Parameter Type Description
file number Number File number
field number Number Field number

Fieldname (field pointer) - String

Parameter Type Description
Jield pointer Pointer Pointer to a field

Fieldname has two forms.

Fieldname returns the name of the field that corresponds to file number and
field number, or to field pointer.

~ The following example sets the second element of the array, FieldArray{1}, to the
name of the second field in the first file.

FieldArray{1}2} := Fieldname (1; 2)

CHAPTER 16: ADVANCED COMMANDS 319



320

F The following example sets the second element of the array, FieldArray{1}, to the

name of the field, [MyFile]MyField. This is useful because if you change the name
of [MyFile]MyField, the new name will be returned.

FieldArray{1}{2} := Fieldname (»[MyFile]MyField)

File

File (file number) - Pointer

Parameter Type Description
file number Number File number

File (file pointer) > Number

Parameter Type Description
file pointer Pointer Pointer to a file

File (field pointer) > Number

Parameter Type Description
field pointer Pointer Pointer to a field

File has three different forms.
If passed file number, File returns a pointer to the file.
If passed file pointer, File returns the file number of the file.

If passed field pointer, File returns the file number of the field. This form is used
with the second form of Field to get the file number and field number of a field by
using only a field pointer.

F The following example sets the FilePtr variable to a pointer to the third file.

FilePtr := File (3)

Passing FilePtr to the second form of File returns the number 3. For example, the
following line sets FileNum to 3:

FileNum := File (FilePtr)

¥ The following example sets the FileNum variable to the file number of [File3].

FileNum := File (»[Filed])

~ The following example sets the FileNum variable to the file number of the file to

which the field named [File3]Fieldl belongs.

FileNum := File (»[File3]Field1)



commanos |

Field

Field (file number; field number) -~ Pointer

Parameter Type Description
file number Number File number
field number Number Field number

Field (field pointer) > Number

Parameter Type Description
field pointer Pointer Pointer to a field

Field has two different forms.
If passed file number and field number, Field returns a pointer to the field.
If passed field pointer, Field returns the field number of the field.

F The following example sets the FieldPtr variable to a pointer to the second field
in the third file.

FieldPtr := Field (3; 2)

Using the second form of the Field command on FieldPtr returns the number 2.
For example, the following line sets FieldNum to 2:

FieldNum := Field (FieldPtr)

“ The following example sets the FieldNum variable to the field number of
[File3]Field2.

FieldNum := Field (»[File3]Field2)

CHAPTER 16: ADVANCED COMMANDS 321



322

FIELD ATTRIBUTES

FIELD ATTRIBUTES (file number; field number; type; {length}; {index})

Parameter Type Description
file number Number File number
field number Number Field number
type Variable Field type
(number data type)
length Variable Alpha field length
(number data type)
index Variable FALSE if not indexed; TRUE if indexed

(Boolean data type) :

FIELD ATTRIBUTES (field pointer; type; {length}; {index})

Parameter Type Description
field pointer Pointer Pointer to a field
type Variable Field type
(number data type)
length Variable Alpha field length
(number data type)
index Variable FALSE if not indexed; TRUE if indexed

(Boolean data type)
FIELD ATTRIBUTES has two different forms.

FIELD ATTRIBUTES assigns to the variables type, length, and index information about
the field specified by file number and field number, or field pointer.

The type parameter is set to a numeric value for one of the ten field types shown in
Table 16-16.

Table 16-16
Field types and their numbers

Field Type = Number

Alpha
Real
Text
Picture
Date
Boolean
Subfile
Integer
Longint
Time

— 0 0NN P W= O

[



COMMANDS

Information returned in length is meaningful only for Alpha fields. It is set to the
defined length of the field.

Information returned in index is meaningful only for Alpha, Integer, Long Integer,
Real, Date, Time, and Boolean fields. It is set to FALSE if there is no index for the
field, and TRUE if there is an index for the field.

¥ The following example sets the variables vType, vLength, and viIndex to the
attributes for the third field of the first file.

FIELD ATTRIBUTES (1; 3; vType; vLength; vindex)

¥ The following example sets the variables vType, vLength and vIndex to the
attributes for the field named [File3]Field2.

FIELD ATTRIBUTES (»[File3]Field2; vType; vLength; vindex)

Controlling Data Flushing

FLUSH BUFFERS

The command in this section flushes the data buffers.

FLUSH BUFFERS

FLUSH BUFFERS

Executing FLUSH BUFFERS immediately saves the data buffers to disk. All changes
that have been made to the database are stored on disk. This command is ignored in
multi-user environments since data is not cached while in a multi-user environment.
The preference setting in the Design environment that specifies how often to save is
normally used to control buffer flushing.

CHAPTER 16: ADVANCED COMMANDS 323



324



COMMANDS




FUNCTIONS

The functions in this chapter perform date, time, string, and numeric operations.

String Functions

Length Insert string Uppercase
Substring Delete string String
Position Replace string Ascii
Change string Lowercase Char

This section describes functions that work on strings. It also describes the character
reference symbols. None of the string functions alters the string expressions used as
parameters.

Character Reference Symbols

4 String < position 2 > String (1 character)

Parameter Type Description
String String String whose character to return
position Number Position of character to return

The character reference symbols (<...2) are used to refer to a single character within
string. The position of the character, position, is specified between the character
reference symbols.

The character at position is returned.

If the character reference symbols appear on the left side of the assignment operator, a
character is assigned to the referenced position in the string. For example, the following
line sets the first character of Name to uppercase:

Name<1> := Uppercase (Name<12>)

If you refer to characters that are beyond the length of the string, the results are
undefined.

{ The following lines show the use of the character reference symbols.

Result := "abcd"<3> " Result gets "c"
Result := Last Name<1> " Result gets first character in Last Name
Result := City<$i> * Result gets the $i'th character in City

326



COMMANDS

{F The following subroutine is a function that capitalizes the first letter of each word in
a string and returns the resulting string.

$0 = $1 * Copy the string to the returned value
$0<1> := Uppercase ($0<1>) * Always capitalize the first letter
For ($i; 1; Length ($0) — 1) * Loop for all characters except the first
If ($0<8i> < "a") | ($0<Bi> > "z") * If the character is not a letter...
$0<$i+1> := Uppercase ($0<$i + 1>) * Uppercase the next letter
End if
End for
Length

Length (string) > Number

Parameter Type Description
string String String whose length to return

Length is used to find the length of string. Length returns the number of characters
that are in the string.

 The following example illustrates the use of Length. The results are assigned to the
variable Result. The comments describe what Result is set to.

Result := Length ("Topaz") " Result gets 5
Result := Length ("Citizen") " Result gets 7
Substring

Substring (source; first char; {number of chars}) > String

Parameter Type Description

source String String from which to get substring
first char Number Position of first character

number of chars Number Number of characters to get

Substring returns the portion of source defined by first char and number of chars.
The first char parameter points to the first character in the string to return, and
number of chars specifies how many characters to return.

If the sum of first char and number of chars exceeds 32,767, the results are
undefined.

If first char plus number of chars is greater than the number of characters in the
string, or if number of chars is not specified, Substring returns the last character(s) in
the string, starting with the character specified by first char. If first char is greater
than the number of characters in the string, Substring returns an empty string ("").

CHAPTER 17: FUNCTIONS 327



328

' The following example illustrates the use of Substring. The results are assigned to the

variable Result. The comments describe what Result is set to.

Result := Substring ("08/04/62"; 4; 2) " Result gets "04"

Result := Substring ("Emergency"; 1; 6) " Result gets "Emerge”

Result := Substring (var; 2) " Result gets all characters except the first
Position

Position (find; string) > Number

Parameter Type Description
find String String to find
string String String in which to search

Position returns the position of the first occurrence of find in string.

If Position fails to find the string find, it returns a zero (0). If Position finds an occurrence
of find, it returns the position of the first character of the occurrence in string. If you ask
for the position of an empty string within an empty string, Position returns one (1).

The following example illustrates the use of Position. The results are assigned to the
variable Result. The comments describe what Result is set to.

Result := Position ("Il"; "Willow") " Result gets 3
Result := Position (var1; var2) * Returns the first occurrence of var1 in var2
Change string

Change string (source; what; where) > String

Parameter Type Description

source String Original string

what String New characters

where Number Where to start the changes

Change string changes a group of characters in source and returns the resulting string.
Change string overlays source, with the characters in what, at the character described
by where.

"n

If what is an empty string ("), Change string returns source unchanged. Change string
always returns a string of the same length as source.

Change string is different from Insert string in that it overwrites characters instead of
inserting them.



COMMANDS

Y The following example illustrates the use of Change string. The results are
assigned to the variable Result. The comments describe what Result is set to.

Result := Change string ("Macintosh SE"; "II"; 11)  * Result gets "Macintosh II"
Result := Change string ("Acme"; "CME"; 2) " Result gets "ACME"
Result := Change string ("November";"Dec"; 1) " Result gets "December”

Insert string

Insert string (source; what; where) > String

Parameter Type Description

source String String into which to insert
what String String to insert

where Number Where to insert

Insert string inserts a string into source and returns the resulting string.
Insert string inserts the string what before the character described by where.

"

If what is an empty string (""), Insert string returns source unchanged.

If where is greater than the length of source, then what is appended to source.
If where is less than zero (0), then what is inserted in front of source.

Insert string is different from Change string in that it inserts characters instead of
overwriting them.

T The following example illustrates the use of Insert string. The results are
assigned to the variable Result. The comments describe what Result is set to.

Result := Insert string ("The tree"; " green"; 4) " Result gets "The green tree"
Result := Insert string ("Shut"; "o"; 3) * Result gets "Shout"
Result := Insert string ("Indention”; "ta"; 6) " Result gets "Indentation"”

CHAPTER 17: FUNCTIONS ~ 329



330

Delete string

Delete string (source; where; number of chars) > String

Parameter Type Description

source String String from which to delete
where Number First character to delete
number of chars Number Number of characters to delete

Delete string deletes number of chars from source, starting at where, and returns the
resulting string. Delete string does not modify source.

Delete string returns the same string as source in a number of cases:

m if source is an empty string |

m if where is zero (0) or less than zero

m if where is greater than the length of source

m if number of chars is zero (0)

If where plus number of chars is equal to or greater than the length of source, the
characters are deleted to the end of source.

If number of chars is negative, the characters that would have been deleted are inserted.

The following example illustrates the use of Delete string. The results are assigned to the
variable Result. The comments describe what Result is set to.

Result := Delete string ("Lamborghini"; 6; 5) " Result gets "Lambo”
Result := Delete string (var; 3; 32000) * Result gets the first two characters of var
Result := Delete string ("Indentation”; 6; 2) " Result gets "Indention”

Replace string

Replace string (source; old string; new string; {how many}) - String

Parameter Type Description

source String Original string

old string String Character(s) to replace
new string String String to replace with

how many Number How many times to replace

Replace string replaces every occurrence of old string in source with new string.

"

If new string is an empty string ("'"), Replace string deletes each occurrence of

old string in source.



COMMANDS | i

If how many is specified, Replace string will replace only the number of occurrences of
old string specified, starting at the first character of source.

If old string is an empty string, Replace string returns an empty string.

ﬂ} The following example illustrates the use of Replace string. The results are assigned to
the variable Result. The comments describe what Result is set to.

Result := Replace string ("Willow"; " II"; "d") " Result gets "Widow"

Result := Replace string ("Shout"; "o "; ") * Result gets "Shut"

Result := Replace string (var; Char (9);",") " Replaces all tabs in var with commas
Lowercase

Lowercase (string) > String

Parameter Type Description
string String String to convert to lowercase

Lowercase takes string and returns the string with all alphabetic characters in
lowercase. The original string is not affected. Lowercase affects only the characters
A through Z.

' The following example is a function called Caps, which capitalizes the first character
of the string passed to it. For example, Name := Caps ("john") would set Name = "John".
The example uses the character reference symbols, < and 2.

" Function: Caps (string)
$0 := Lowercase ($1)
$0<1> := Uppercase ($1<1>)

Uppercase

Uppercase (string) - String

Parameter Type Description
string String String to convert to uppercase

Uppercase takes string and returns the string with all alphabetic characters in
uppercase. The original string is not affected. Uppercase affects only the characters
a through z.

T See the example for Lowercase, earlier in this section.

CHAPTER 17: FUNCTIONS 331



332

String

. String (number; {format}) - String

Parameter Type Description
number Number Number to convert to string
format String Format to use for conversion

String (date; {format}) - String

Parameter Type Description
date Date Date to convert to string
format Number Format: 1,2, 3,0r4

String (time; {format}) -~ String

Parameter Type Description
time Time Time to convert to string
format Number Format: 1,2,3,4,0r 5

String has three forms. Each form takes data that is not a string and returns the
data as a string.

The first form of String returns number as a string, optionally formatting number
with format. The format is the same as that used to format numbers in layouts.
See the 4th DIMENSION Design Reference for more information on formatting
numbers.

The second form of String returns date as a string, using the MM/DD/YY format.
If format is specified, the date is formatted according to the formats shown in
Table 17-1.

Table 17-1

Format parameters for date strings

Format Name Example

1 Short 1/16/89

2 Abbreviated Mon, Jan 16, 1989

3 Long Monday, January 16, 1989
4 Short 2 01/16/1989

The third form of String returns time as a string, using the HH:MM:SS format. If
format is specified, the time is formatted according to the formats shown in
Table 17-2.



COMMANDS § Il

Table 17-2

Format parameters for time strings

Format Name Example

1 HH:MM:SS 01:02:03

2 HH:MM 01:02

3 hour min sec 1 hour 2 minutes 3 seconds
4 hour min 1 hour 2 minutes

5 H:MM AM/PM 1:02 AM

F The following example returns a number, vNum, converted to a string and formatted
with a dollar-style format.

Result := String (VNum; "$### ##0.00")
F The following example displays an alert box with the current date.

ALERT ("Today’s date is " + String (Current date))

F The following example displays an alert box with the current time in AM/PM format.

ALERT ("The time is " + String (Current time; 5))

Ascii

Ascii (character) - Number

Parameter Type Description
character String Character to return as an ASCII code

Ascii returns the Macintosh ASCII code of character.

If there is more than one character in the string, Ascii returns only the code for the
first character.

The Char function is the counterpart of Ascii, returning the character that an ASCII
code represents. See Appendix D for the Macintosh ASCII codes.

Because uppercase and lowercase characters are treated as equal, you can use Ascii to
test for case. For example, this line returns FALSE:

(Ascii ("A") = Ascii ("a"))

This line, however, returns TRUE:

("A" ="a")

F The following example returns the ASCII value of the first character of the string, A.

GetAsc := Ascii ("ABC") " GetAsc gets 65

CHAPTER 17: FUNCTIONS 333



Char

Char (ASCII code) —~ String (1 character)

Parameter Type Description
ASCII code Number ASCII code from 0 to 255

Char returns the character that ASCII code represents.

Char is commonly used to add to a procedure characters that cannot be entered from
the keyboard. Table 17-3 lists some of those characters. (The characters for codes

16-20 exist only in the Chicago font.)

Table 17-3
Chicago font special characters

Code Control Key ASCII Character

9 Tab TAB
13 Return CR
16 p W
17 q #®
18 r W
19 S *
20 t ®

J The following example uses Char to assign the carriage return character to a variable.
The example then sets the default file and displays an alert. The carriage return is used
in the alert to display a second line of information.

CR := Char (13) * Set CR to the carriage return character
DEFAULT FILE ([Employees]) * Set the default file
ALERT ("Employees: " + String (Records in file) + CR + "Press OK to continue.")

334



COMMANDS § Il

Date Functions

Current date Day number Month of
Date Day of Year of

This section describes date functions.

Current date

Currentdate > Date
Current date returns the current date as kept by the Macintosh system clock.
¥ The following example displays an alert box with the current date in it.

ALERT ("The date is " + String (Current date))

Date

Date (date string) - Date

Parameter Type Description
date string String String representing the date to be returned

Date evaluates date string and returns a date.

The date string parameter must follow the normal rules for the format of a date.
The date must be in the order MM/DD/YY (month, day, year). The month and day
may be one or two digits. The year may be two or four digits. If the year is two
digits, then Date adds /9 to the beginning of the year. The following characters
are valid date separators: slash (/), space, period (.), and hyphen (-).

If date string is invalid, the date returned is undefined. Date does not evaluate an
alphabetic date like “Jan 1, 1990.”

“ The following example prompts the user for a date, using a request box. The
string the user enters is converted to a date and stored in the ReqDate variable.

RegDate := Date (Request ("Enter date"; String (Current date)))

CHAPTER 17: FUNCTIONS 335



Day number

Day number (date) - Number

Parameter Type Description
date Date Date for which to return the day number

Day number returns a number representing the weekday on which date falls. Table 17-4
lists the day numbers. Day number returns 1 for null dates.

Table 17-4
Day numbers

Day Number

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

NN R W -

 The following example is a function that returns the current day as a string.

$Day := Day number (Current date) * $Day gets the current day number
Case of
: ($Day = 1)
$0 := "Sunday"
: ($Day = 2)
$0 := "Monday"
: ($Day = 3)
$0 := "Tuesday"
: ($Day = 4)
$0 := "Wednesday"
: ($Day = 5)
$0 := "Thursday"
: ($Day = 6)
$0 := "Friday"
: ($Day = 7)
$0 := "Saturday"
End case

336



COMMANDS

Day of

Day of (date) - Number

Parameter Type Description

date Date Date for which to return the day

Day of returns the day of the month of date.

* The following example illustrates the use of Day of. The results are assigned to the
variable Result. The comments describe what Result is set to.

Result := Day of (!112/25/88!) " Result gets 25
Result := Day of (Current date) " Result gets the day of the current date
Month of

Month of (date) > Number

Parameter Type Description
date Date Date for which to return the month

Month of returns a number indicating the month of date.

F The following example illustrates the use of Month of. The results are assigned to the
variable Result. The comments describe what Result is set to.

Result := Month of (112/25/88!) " Result gets 12
Result := Month of (Current date) " Result gets the month of the current date
Year of

Year of (date) —» Number

Parameter Type Description
date Date Date for which to return the year

Year of returns a number indicating the year of date.

The following example illustrates the use of Year of. The results are assigned to the
variable Result. The comments describe what Result is set to.

Result := Year of (112/25/88!) " Result gets 1988
Result := Year of (Current date) " Result gets the year of the current date

CHAPTER 17: FUNCTIONS 337



Time Functions

Current time Time Time string

This section describes time functions. Times can be treated like a number when
performing calculations. You can use the following statements to calculate the
hours, minutes, and seconds of a time:

Hours := Time Var \ 3600 * Returns the number of hours
Minutes := Time Var \ 60 % 60 * Returns the number of minutes
Seconds := Time Var % 60 * Returns the number of seconds

Current time

Current time - Time

Current time returns the current time from the Macintosh system clock. The current
time is always between 700:00:00F and 23:59:597, inclusive. String can be used to
convert the time into a string.

’X?: The following example shows a method you can use to time the length of an
operation. In the example, LongOperation is a global procedure that needs to be

timed.

It Took := Current time * Save the start time
LongOperation " Perform the operation to be timed
It Took := Current time — It Took * Calculate how long it took

Alert ("The operation took " + String (It Took; 4)) " Display how long it took

Time

Time (time string) > Time

Parameter Type Description
time string String Time for which to return number of seconds

Time returns the time specified by time string. The time string parameter must
follow the HH:MM :SS format and be in 24-hour time.

T The following example displays an alert box with the message,
“1:00 P.M. = 13 hours 0 minute.”

ALERT ("1:00 P.M. = " + String (Time (*13:00:00"); 4))

338



COMMANDS

Time string

Time string (seconds) > String

Parameter Type Description
seconds Number Seconds from midnight

Time string takes seconds, the number of seconds since midnight, and returns the
time as a string in 24-hour format. The string is in the HH:MM:SS format.

If you go beyond the number of seconds in a day (86,400), Time string continues to
add hours, minutes, and seconds. For example, Time string (86401) returns 24:00:01.

String is different from Time. The String command formats a number as a number
and the Time command formats it as a time.

F The following example displays an alert box with the message,

“46800 seconds is 13:00:00.”
ALERT ("46800 seconds is " + Time string (46800))

Mathematical Functions

Abs Int Random
Dec Log Round
Exp Num Trunc

This section describes the standard math functions. Each of these functions returns
a numeric value.

Note: 4th DIMENSION uses SANE (the Standard Apple Numeric Environment) for all
calculations and with all numeric functions. The accuracy of numeric operations and
functions is therefore dependent on SANE. SANE packages are available from
vendors other than Apple Computer, Inc. Different SANE packages are also used for
different hardware configurations. The use of different SANE packages may cause
slightly different results for the same operations.

Abs

Abs (number) - Number

Parameter Type Description
number Number Number of which to return the absolute value

Abs returns the absolute (unsigned, positive) value of number.

If number is negative, it is returned as positive. If number is positive, it is
unchanged.

CHAPTER 17: FUNCTIONS 339



340

{ The following example returns the absolute value of —10.3, which is 10.3.

vVector := Abs (-10.3) * vVector gets 10.3

Dec

Dec (number) - Number

Parameter Type Description
number Number Number of which to return the decimal part

Dec returns the decimal (fractional) part of number. The value returned is always
positive or zero.

J The following example takes a monetary value expressed as a real number, and

extracts the dollar part and cents part. If Amount were 7.31, then Dollars would be
set to 7 and Cents would be set to 31.

Dollars := Int (Amount) " Get the dollars

Cents := Dec (Amount) * 100 * Get the fractional part
Exp

Exp (number) - Number

Parameter Type Description

number Number Number to evaluate

Exp raises the natural log base (e = 2.71828182845904524) by the power of number.
Exp is the inverse function of Log.

* The following example assigns the exponential of 2 to v. (The log of v is 2.)

v = Exp (2)

Int

Int (number) > Number

Parameter Type Description
number Number Number of which to return the integer portion

Int returns the integer portion of number without rounding. Int truncates a negative
number toward zero.



COMMANDS § Il

{F The following example illustrates how Int works for both a positive and a negative
number. Note that the decimal portion of the number is removed.

x = Int (123.4) " x gets 123

y :=Int (-123.4) "y gets —123

Log

Log (number) - Number

Parameter Type Description

number Number Number of which to return the log

Log returns the natural (Napierian) log of number. Log is the inverse function of Exp.
A natural log has a base of 2.71828182845904524 (e), and a common log has a base
of 10.

To convert to common log (log10), multiply the log by 0.434294481903251828.

To convert a common log to a natural log, multiply the common log by
2.30258509279404568.

Q The following example assigns the natural log of 2 to LogE, and then converts this
number to the common log of 2.

LogE := Log (2)
Log10 := LogE * 0.434294481903251828

Num

Num (string) - Number

Parameter Type Description
string String String to be converted to a number

Num (Boolean) - Number (0 or 1)

Parameter Type Description
Boolean Boolean Boolean value to be converted to O or 1

The Num function has two forms.
The first form of Num converts string into a numeric value.

If string consists only of one or more alphabetic characters, Num returns a zero.

If string includes alphabetic characters mixed in with numeric characters, Num
ignores the alphabetic characters. Thus, Num transforms the string "alb2c3" into the
number 123.

CHAPTER 17: FUNCTIONS 341



There are three reserved characters that Num treats specially. They are the period (.),
the hyphen (-), and e (or E). They are interpreted as numeric format characters.

The period is interpreted as a decimal place and must appear embedded in a
numeric string.

The hyphen causes the number or an exponent to be negative. The hyphen must appear
before any numeric characters or after the e for an exponent. If a hyphen is embedded in
a numeric string, all numbers to the right are ignored, so Num ("123-456") returns 123.

The e or E causes any numeric characters to its right to be interpreted as an exponent.
The e must be embedded in a numeric string. Thus, Num ("123e-2") returns 1.23.

The second form of Num evaluates Boolean and returns O or 1. If Boolean is FALSE,
Num returns 0. If Boolean is TRUE, Num returns 1.

' The following example illustrates how Num works when passed a numeric argument.
Each line assigns a number to the Result variable. The comments describe the results.

Result := Num ("ABCD") " Result gets 0
Result := Num ("A1B2C3") " Result gets 123
Result ;= Num ("123") " Result gets 123
Result := Num ("123.4") " Result gets 123.4
Result := Num ("-123") " Result gets —123
Result := Num ("-123e2") " Result gets —12300

4 In the following example, Num of the customer debits returns either 0 or 1. Using the
asterisk (*) as a string repetition operator, the customer comment is then stored in a
field called [Client]Risk.

* If client owes less than 1000, a good risk.
* If client owes more than 1000, a bad risk.
[Client]Risk := ("Good" * Num ([Client]Debt < 1000)) + ("Bad" * Num ([Client]Debt >= 1000))

Random

Random > Number

Random returns a random integer value between 0 and 32,767 (inclusive).
To define a range of integers, use this formula:

Random % (End — Start + 1) + Start

Start is the first number in the range, and End the last.

7 The following example assigns a random integer between 10 and 30 to the
Result variable.

Result := Random % 21 + 10
342



COMMANDS { I

Round

Round (number; places) > Number

Parameter Type Description
number Number Number to be rounded
places Number Number of decimal places to round to

Round returns number rounded to the number of decimal places given by places.

If places is posiﬁve, number is rounded to places decimal places. If places is negative,
number is rounded on the left of the decimal point.

If the digit following places is'5 though 9, Round rounds toward positive infinity for a
positive number, and toward negative infinity for a negative number. If the digit
following places is 0 through 4, Round rounds toward zero.

F The following example illustrates how Round works with different arguments. Each
line assigns a number to the Result variable. The comments describe the results.

Result := Round (16.857; 2) " Result gets 16.86
Result := Round (32345.67; -3) * Result gets 32000
Result := Round (29.8725; 3) " Result gets 29.873
Result := Round (—1.5; 0) * Result gets —2
Trunc

Trunc (number; places) > Number

Parameter Type Description
number Number Number to truncate
places Number Decimal places to truncate to

Trunc returns number with its decimal part truncated by the number of decimals
specified by places. Trunc always truncates toward negative infinity.

If places is positive, number is truncated to places decimal places. If places is
negative, number is truncated on the left of the decimal point.

F The following example illustrates how Trunc works with different arguments. Each line
assigns a number to the Result variable. The comments describe the results.

Result := Trunc (216.897; 1) " Result gets 216.8
Result := Trunc (216.897; —1) " Result gets 210
Result := Trunc (-216.897; 1) * Result gets —216.9
Result := Trunc (-216.897; —1) * Result gets —220

CHAPTER 17: FUNCTIONS 343



Trigonometric Functions

Arctan Sin
Cos Tan

This section describes the trigonometric functions. The functions all operate on
radians. One degree equals 0.0174532925199432958 radians.

Note: 4th DIMENSION uses SANE (the Standard Apple Numeric Environment) for all
calculations and with all numeric functions. The accuracy of numeric operations and
functions is therefore dependent on SANE. SANE packages are available from
vendors other than Apple Computer, Inc. Different SANE packages are also used for
different hardware configurations. The use of different SANE packages may cause
slightly different results for the same operations.

Arctan

Arctan (number) - Number

Parameter Type Description
number Number Tangent to be returned in radians

Arctan returns the arctangent in radians of number, where number is a tangent.

Cos

Cos (number) > Number

Parameter Type Description
number Number Number, in radians, of which to return the cosine

Cos returns the cosine of number, where number is expressed in radians.

Sin

Sin (number) > Number

Parameter Type Description
number Number Number, in radians, of which to return the sine

Sin returns the sine of number, where number is expressed in radians.

344



COMMANDS § Il

Tan

Tan (number) ~ Number

Parameter Type Description
number Number Number, in radians, for which to return the tangent

Tan returns the tangent of number, where number is given in radians.

Statistical Functions

Average Sum Std deviation
Max Sum squares Variance
Min

These functions perform calculations on a series of values. The values for the
Average, Max, Min, and Sum functions can be fields from a selection of records, or they
can be subrecords. The values for the Sum squares, Std deviation, and Variance
functions can be fields when used in a report, or they can be subrecords.

These functions work on numeric data only. Each of these functions returns a
numeric value.

Using a Field

When Average, Max, Min, or Sum is used on a field, it must load each record in the
current selection to calculate the result. If there are many records, this process may
take some time.

When these functions are used in a report, they behave differently than at other times.
This is because the report itself must load each record. Use these functions in a layout
procedure or script when you are printing with the PRINT SELECTION command or
when you are printing in the User environment by choosing the Print menu item from
the File menu.

When you use these functions in a report, the values that are returned are meaningful
only in a footer or break and at break level 0. This means that they are meaningful
only at the end of a report. after all the records have been processed. You typically
use the functions in a script for a nonenterable area that is included in the BO Break
area. The script assigns the value returned to the variable associated with the area.

CHAPTER 17: FUNCTIONS 345



346

Average

Average (series) > Number

Parameter Type Description
series Field Data for which to return the average
or subfield

Average returns the arithmetic mean (average) of series.

“ The following example sets a variable that is in the BO Break area of an output

layout. The line of code is the script for the variable. The script is not executed until
the level O break.

vAverage := Average ([Employees] Sales)

“ The following example finds the average age of an employee’s children from

subfile data.
vAvg Age := Average ([Employees]Children'Age)

Max

Max (series) > Number

Parameter Type Description
series Field Data for which to return the maximum value
or subfield

Max returns the maximum value in series.

F The following example is a script for a variable, vMax, placed in the break 0 portion

of the layout. The variable is printed at the end of the report. The script assigns the
maximum value of the field to the variable, which is then printed in the last break of
the report.

vMax := Max ([People]Age)

“ The following example finds the maximum sales of an employee, and displays the

result in an alert box. The sales amounts are stored in a subfield,
[Employees]Sales'Dollars.

Alert ("The maximum sale was " + String (Max ([Employees]Sales'Dollars)))



COMMANDS

Min

Min (series) > Number

Parameter Type Description
series Field Data for which to return the minimum value
or subfield

Min returns the minimum value in series.

F The following example is a script for a variable, vMin, placed in the break 0 portion

of the layout. The variable is printed at the end of the report. The script assigns the
minimum value of the field to the variable, which is then printed in the last break of
the report. :

vMin := Min ([People]Age)

F The following example finds the minimum sales of an employee, and displays the

result in an alert box. The sales amounts are stored in a subfield,
[Employees]Sales'Dollars.

Alert ("The minimum sale was " + String (Min ([Employees]Sales'Dollars)))

Sum

Sum (series) > Number

Parameter Type Description
series Field Data for which to return the sum
or subfield

Sum returns the sum (total of all values) for series.

7 The following example is a script for a variable, vTotal, placed in a layout. The

script assigns the sum of all the lines in an invoice to the variable. The invoice lines
are stored in a subfile called [Invoice]Lines.

vTotal := Sum ([Invoice]Lines'Line Total)

CHAPTER 17: FUNCTIONS 347



348

Sum squares

Sum squares (series) - Number

Parameter Type Description
series Subfield Data for which to return the sum of squares
or field

Sum squares returns the sum of squares of series. You can only use a field with this
function when printing a report.

The following example is a script for a variable called Squares. The script assigns
the sum of squares for a data series to Squares.

Squares := Sum squares ([File]Data'Series)

Std deviation

Std deviation (series) > Number

Parameter Type Description
series Subfield Data for which to return the standard deviation
or field

Std deviation returns the standard deviation of series. You can only use a field with
this function when printing a report.

F The following example is a script for a variable called Deviate. The script assigns

the standard deviation for a data series to Deviate.

Deviate := Std deviation ([File]Data'Series)

Variance

Variance (series) > Number

Parameter Type Description
series Subfield Data for which to return the variance
or field

Variance returns the variance for series. You can only use a field with this function
when printing a report.

F The following example is a script for a variable called Var. The script assigns the

sum of squares for a data series to Var.

Var := Variance ([File]Data'Series)



COMMANDS

Logical Functions

True False Not

This section describes logical functions.

True

True > Boolean (TRUE)
True returns the Boolean value TRUE.
¥ The following example sets the variable, My Var, to TRUE.

My Var := True

False

False - Boolean (FALSE)
False returns the Boolean value FALSE.
= The following example sets the variable, My Var, to FALSE.

My Var := False

Not

Not (Boolean) - Boolean

Parameter Type Description
Boolean Boolean Boolean value to negate

The Not function returns the negation of Boolean, changing a TRUE to FALSE or a
FALSE to TRUE.

¥ The following example first assigns TRUE to a variable. The example then changes
the variable’s value to FALSE, and then back to TRUE.

Result:= True " Result is set to TRUE
Result:= Not (Result) " Result is set to FALSE
Result:= Not (Result) " Result is set to TRUE

Il

CHAPTER 17: FUNCTIONS 349



350



COMMANDS

MISCELLANEOUS COMMANDS




362

MISCELLANEOUS COMMANDS

The commands described in this chapter allow you to work with variables, arrays,
and parameters. They also allow you to control the execution of procedures for
special purposes such as debugging.

Working With Variables

SAVE VARIABLE CLEAR VARIABLE
LOAD VARIABLE Undefined

This section describes commands that manage variables.

SAVE VARIABLE

SAVE VARIABLE (document; variablel {;...; variableN})

Parameter Type Description
document String Document to which to save the variables
variable Variable Variable to save

SAVE VARIABLE saves variable to document, a disk document.

The variables do not need to be of the same type (text, numeric, date, time, Boolean,
or picture).

The document need not have the same name as the variable. If you supply an empty
string ("") for document, a standard create-file dialog box appears, so that the user
can choose the document to create.

The OK system variable is set to 1 if the variable is saved properly, and to 0 if it
is not.

When you write variables to documents with SAVE VARIABLE, 4th DIMENSION uses
an internal data format. You can retrieve the variables only with the LOAD VARIABLE
command. Don’t use RECEIVE VARIABLE or RECEIVE PACKET to read a document
created by SAVE VARIABLE.

The following example saves three variables to a file called Disk File.

SAVE VARIABLE ( "Disk File"; My String; My Number; My Picture)



COMMANDS

LOAD VARIABLE

LOAD VARIABLE (document; variablel {;...; variableN})

Parameter Type Description
document String Document containing the variables
variable Variable Variable into which to load

LOAD VARIABLE loads variable from document, a document that was created
with the SAVE VARIABLE command.

The variable is created, or overwritten if it already exists.

The document need not have the same name as the variable. If you supply an
empty string ("") for document, a standard open-file dialog box appears, so that
the user can choose the document to open.

The OK system variable is set to 1 if the variable is loaded properly, and to O if it
is not.

F The following example loads three variables from a document named Disk File.

LOAD VARIABLE ( "Disk File"; My String; My Number; My Picture)

CLEAR VARIABLE

CLEAR VARIABLE (variable)

Parameter Type Description
variable Variable Variable to clear

CLEAR VARIABLE erases variable from memory. CLEAR VARIABLE sets the
variable to undefined.

CLEAR VARIABLE is used primarily for clearing large variables, such as pictures,
from memory.

Local variables, that is, variables preceded with a dollar sign ($), cannot be
cleared with CLEAR VARIABLE. They are automatically cleared when the
procedure they are in completes execution.

- The following example clears the variable My Var.

CLEAR VARIABLE (My Var) * Clear My Var

CHAPTER 18: MISCELLANEOUS COMMANDS 353



354

Undefined

Undefined (variable) > Boolean

Parameter Type Description
variable Variable Variable to test

Undefined returns TRUE if variable has not been defined, and FALSE if variable
has been defined. A variable is defined if a value has been assigned to it. A
variable is undefined if it has not had a value assigned to it, or it has been cleared
with CLEAR VARIABLE.

F The following example tests whether the variable Exec is undefined. If it is

undefined, the variable is created.

If (Undefined (Exec))

Exec :=""
End if
Managing Arrays
ARRAY BOOLEAN ARRAY REAL Size of array
ARRAY DATE ARRAY TEXT LIST TO ARRAY
ARRAY STRING SORT ARRAY ARRAY TO LIST
ARRAY INTEGER COPY ARRAY SELECTION TO ARRAY
ARRAY LONGINT INSERT ELEMENT ARRAY TO SELECTION
ARRAY PICTURE DELETE ELEMENT
ARRAY POINTER Find in array

The commands in this section manage arrays. They allow you to create arrays,
sort arrays, find elements within arrays, move data to and from files, and perform
other operations. Arrays are commonly displayed as scrollable areas and pop-up
menus.



COMMANDS

ARRAY BOOLEAN

ARRAY DATE

ARRAY STRING

ARRAY INTEGER

ARRAY LONGINT

ARRAY PICTURE

ARRAY POINTER

ARRAY REAL |

ARRAY TEXT | 8O -

ARRAY BOOLEAN (array name; sizel; {size2})
ARRAY DATE (array name; sizel; {size2})
ARRAY INTEGER (array name; sizel; {size2})
ARRAY LONGINT (array name; sizel; {size2})
ARRAY PICTURE (array name; sizel; {size2})
ARRAY POINTER (array name; sizel; {size2})
ARRAY REAL (array name; sizel; {size2})

~ ARRAY TEXT (array name; sizel; {size2})

Parameter Type Description
array name Array Name of the new array
sizel Number Number of elements in the array,
or number of arrays if size2 is specified
size2 Number Number of elements in a 2-dimensional array

ARRAY STRING (string length; array name; sizel; {size2})

Parameter Type Description
string length Number Length of strings
array name Array Name of the new array
sizel Number Number of elements in the array,
or number of arrays if size2 is specified
size2 Number Number of elements in a 2-dimensional array

All of the array commands create an array of elements in memory.
The array name parameter is the name of the new array.
The sizel parameter is the number of elements in the array.

The size2 parameter is optional; it creates a two-dimensional array. In this case, sizel
specifies the number of arrays and size2 specifies the number of elements in each array.

CHAPTER 18: MISCELLANEOUS COMMANDS 355



356

Each array in a two-dimensional array can be treated like an element. This means that
you can insert and delete entire arrays in a two-dimensional array with the other
commands in this section.

The string length parameter is specified only for string arrays. It specifies the number
of characters that each array element in a string array can contain. Operations
performed on a string array are faster than operations performed on a text array.

Table 18-1 shows the formulas used to calculate the amount of memory used for each
array type.

Table 18-1
Memory used by arrays

Array Type Formula For Determining Memory Usage in Bytes

Boolean 8 + (Number of elements / 8)

Date 8 + (Number of elements * 6)

String 8 + (Number of elements * Length defined for the elements)
Integer 8 + (Number of elements * 2)

Long Integer 8 + (Number of elements * 4)

Picture 8 + (Number of elements * 4) + Sum of the size of each picture
Pointer 8 + (Number of elements * 16)

Real 8 + (Number of elements * 10)

Text 8 + (Number of elements * 4) + Sum of the size of each text element

When an array is first created, its elements are empty values: 0 for numeric arrays;
""" for string and text arrays; !00/00/00! for date arrays; and FALSE for Boolean arrays.

You refer to the elements by using the indirection braces. For example, My Array{2}
refers to the second element in My Array. You can not refer to an element simply by
appending a number to the array name.

You refer to elements in a two-dimensional array by two sets of indirection braces.
For example, My Array{3}{5} refers to the fifth element in the third array.

The commands in this section are also used to resize existing arrays. If you use one of
these commands on an existing array, the command will add or delete elements.

For example, if there are four elements in a Text array called Mine, the following line
would remove two elements:

ARRAY TEXT (Mine; 2)

The two elements would be erased from the array. The following line would add four
elements without disturbing the existing elements:

ARRAY TEXT (Mine; 6)



COMMANDS § Il

The following line would delete all elements (except the 0 element) but leave the
array defined:

ARRAY TEXT (Mine; 0)

An element O (array name{0}) is always created for an array, and is set to a null
value of the array type. Use Size of array to find the size of the array.

/' The following example creates a string array and moves information from a subfile
into the array.

ALL SUBRECORDS ([People]Children)
ARRAY STRING (15; Names; Records in subselection ([People]ChnIdren))
For ($i; 1; Size of array (Names))
Names{$|} := [People]Children'Name
NEXT SUBRECORD ([People]Children)
End for

SORT ARRAY

SORT ARRAY (arrayl {;...; arrayN}; {direction})

Parameter Type Description
array Array Array to sort
direction > or < > to sort ascending; < to sort descending

SORT ARRAY sorts one or more arrays into ascending or descending order. The type
of array can be any type except pointer or picture.

The direction parameter specifies whether to sort array in ascending or descending
order. If direction is the “greater than” symbol (>), the sort is ascending. If direction
is the “less than” symbol (<), the sort is descending. If direction is not specified, then
the sort is ascending.

If more than one array is specified, the arrays are sorted following the sort order of
the first array; they are not sorted independently. This feature is especially useful
with grouped arrays.

“ The following example creates three arrays and then sorts them by name without
having to sort the records the arrays are based on.

ALL RECORDS ([People])
SELECTION TO ARRAY ([People]Name; N; [People]Company; C; [Company]Address; A)
SORT ARRAY (C; N; A; >)

CHAPTER 18: MISCELLANEOUS COMMANDS 357



358

COPY ARRAY

COPY ARRAY (from; to)

Parameter Type Description
from Array Array from which to copy
to Array Array to which to copy

COPY ARRAY is used to duplicate an existing array. It creates the array to with the exact
contents, size, and type of the array from. If the array o already exists, it is replaced
with the newly created one.

F The following example fills an array named C. It then c.re‘ates a new array, named D,

the same size as C and with the same contents.

ALL RECORDS ([People]) * Select all records in People
SELECTION TO ARRAY ([People]Company; C) * Move the company field data into array C
COPY ARRAY (C; D) * Copy the array C to the array D

INSERT ELEMENT

INSERT ELEMENT (array; where; {num of elements})

Parameter Type Description

array Array Name of the array

where Number Where to insert the element(s)
num of elements Number Number of elements to insert

INSERT ELEMENT inserts one or more array elements into array. The new element(s)
are inserted “above” the element specified by where, and initialized to the empty value
for the array type. All elements beyond where are moved “down” by num of elements.

If where is greater than the size of the array, the elements are added to the end of the
array.

The num of elements parameter is the number of elements to insert. If num of elements
is not specified, then one element is inserted. The size of the array grows dynamically
by num of elements.

~ The following example inserts five new elements, starting at element 10.

INSERT ELEMENT (List; 10; 5)



COMMANDS

DELETE ELEMENT

DELETE ELEMENT (array; where; {num of elements})

Parameter Type Description

array Array Array to delete elements from
where Number Element to begin delete from

num of elements Number Number of elements to delete

DELETE ELEMENT deletes one or more elements from array. The elements are deleted
starting at the element specified by where.

The num of elements parameter is the number of elements to delete. If num of elements
is not specified, then one element is deleted. The size of the array shrinks dynamically
by num of elements.

F The following example deletes three elements, starting at element 5.

DELETE ELEMENT (List; 5; 3)

Find in array

Find in array (array; value; {start}) > Number

Parameter Type Description
array Array Array to search
value String Value to search for
or number
or date
or Boolean
start Number Element at which to start search

Find in array returns the number of the first element in array that matches value. Please
note that Find in array is a function and not a command.

Find in array works for text, string, numeric, date, and Boolean arrays. The array and
value must be of the same type.

If no match is found, Find in array returns —1.

If start is specified, the command starts searching at the element number specified by
start.

CHAPTER 18: MISCELLANEOUS COMMANDS 359



360

i In the following example an array named C is created from a selection of records. The
GOTO SELECTED RECORD command uses Find in array to determine which record has
"Acme" in the Company field, and then makes that record the current record.

ALL RECORDS ([People]) * Select all records in People
SELECTION TO ARRAY ([People]Company; C) " Move the company field data into array C
GOTO SELECTED RECORD ([People]; Find in array (C; "Acme"))

Size of array

Size of array (array) > Number

Parameter Type Description .
array Array Array of which to return the size

Size of array returns the number of elements in array. If array is a two-dimensional
array, Size of array returns the number of arrays.

'V The following example returns the size of the array My Array.

vSize := Size of array (My Array) * vSize gets the size of My Array

LIST TO ARRAY &

LIST TO ARRAY (list; array; {linked array})

Parameter Type Description

list String List from which to copy

array Array Array to which to copy the list
linked array Array Array to which to copy the linked list

LIST TO ARRAY creates array from list. It copies the data from /ist into array. The
array is overwritten if it already exists. The created array is always a text array unless -3¢
you have previously defined the array as string.

The array, linked array, is filled with the names of any linked lists. If an element of the
list has a linked list, the name of the linked list is put into the array element with the
same number as the list element. If there is no linked list, then the element is the
empty string. The linked array is the same size as /ist. You can use the names in the
linked array to access the linked lists.

'V The following example copies the items of a list called Regions into an array called
aRegions. The names of the linked lists are copied into an array called Links.

LIST TO ARRAY ("Regions"; aRegions; Links)



COMMANDS | Il

ARRAY TO LIST

ARRAY TO LIST (array; list; {linked array})

Parameter Type Description

array Array Array to copy to the list

list String List to which to copy the array
linked array Array Names of linked lists

ARRAY TO LIST copies array to list. If list does not exist, it is created.

The array, linked array, is used to link lists to each element in array. If an element
of the linked array is not the empty string, then the name in the element is used to

link a list to the corresponding item in the list. If that item is not a valid list name,

then the link is not established.

/' The following example copies an array called aRegions into a list called Regions.
An array called Links is used to specify the linked lists.

ARRAY TO LIST (aRegions; "Regions"; Links)

ﬂmr\* You cannot modify a list while working in a multi-user environment.

SELECTION TO ARRAY

SELECTION TO ARRAY (fieldl; arrayl {;...; fieldN; arrayN})

Parameter Type Description
field Field Field to use for data
array Array Array to receive the field data

SELECTION TO ARRAY creates one or more arrays and copies data from the field or
fields of the current selection into the array or arrays. The current selection of the
file specified by the first field is used. A field from another file can be included if an
automatic relation exists between the files. The size of the array(s) is equal to the
number of records in the selection.

The new arrays are typed according to the field type. An exception is if a Text field
is copied into a string array. In this case, the array will remain a string array.
Another exception is Time fields, which are put into Long Integer arrays.

Important: SELECTION TO ARRAY can create large arrays, depending on the size of
the selection. Since arrays reside in memory, you must be sure there is enough
memory to hold the array.

CHAPTER 18: MISCELLANEOUS COMMANDS 361



362

Yf In the following example, the [People] file has an automatic relation to the

[Company] file. The three arrays F, C, and A are sized according to the number of
records selected in the [People] file, and will contain information from both files.

SELECTION TO ARRAY ([People]First; F; [People]Company; C; [Company]Address; A)

ARRAY TO SELECTION

ARRAY TO SELECTION (arrayl; fieldl {;...; arrayN; fieldN})

Parameter Type Description
array Array Array to copy to the selection
field Field Field to receive the array data

ARRAY TO SELECTION copies one or more arrays into a selection of records. All
fields listed must belong to the same file.

If a selection already exists, the elements of the array are put into the records,
based on the order of the array and the order of the records. If there are more
elements than there are records, then new records are created. The records,
whether they are new or existing, are automatically saved.

If the arrays are of different sizes, the first array is used to determine how many
elements to copy. Any additional arrays are also moved into the field that follows
each array name.

This command is the complement of SELECTION TO ARRAY. The
ARRAY TO SELECTION command does not allow fields from related files even
when an automatic relation exists.

™,  Warning: ARRAY TO SELECTION overwrites information in existing records, and so
should be used with caution.

¥ In the following example, the two arrays F and C put data into the [People] file.

The F array is put in the First field, and the C array is put in the Company field.
ARRAY TO SELECTION (F; [People]First; C; [People]Company)

Wﬁiﬁ If any records are locked, they are skipped.



COMMANDS

Controlling the Execution of Procedures

ABORT TRACE ON ERR CALL
QUIT 4D NO TRACE ON EVENT CALL
EXECUTE

The commands in this section let you stop the execution of procedures, monitor
procedure execution, and manage errors and events.

ABORT

ABORT

ABORT stops procedure execution. Using ABORT is equivalent to clicking the
Abort button in the Syntax Error window or in the Debugger.

ABORT is rarely used, and should normally not be used in a finished database
application. ABORT is usually used during development to handle unexpected
erTors.

ABORT must be executed in a procedure installed by ON ERR CALL. The
ON ERR CALL procedure should handle the error and then execute ABORT to
return control to the menus.

If a layout is being displayed, ABORT stops procedure execution and returns
control to the layout. However, if the layout is in the After phase, ABORT stops
execution of the layout procedure, leaves the layout, and saves the record.
ABORT does not affect the OK system variable; it simply stops execution of the
layout procedure.

If a layout is not being displayed, ABORT stops procedure execution and returns
control to the menus.

Use ABORT with discretion. It may be more appropriate to return to the procedure
in which the error occurred. For example, if the error is in reading a file with
RECEIVE PACKET, it may be necessary to return and close the open file.

QUIT 4D

QUIT 4D

QUIT 4D quits 4th DIMENSION and returns to the Finder. If the user is performing
data entry, the record will be canceled and not saved. QUIT 4D may be used at any
time.

CHAPTER 18: MISCELLANEOUS COMMANDS 363



364

EXECUTE

EXECUTE (statement)

Parameter Type Description
Statement String Code to be executed

EXECUTE executes statement as a line of code. The statement string must be one line.
If statement is an empty string, EXECUTE does nothing.

The rule of thumb is that if the statement can be executed as a one-line global
procedure, then it will execute properly. EXECUTE should be used sparingly, as it
slows down execution speed.

The statement can include

m global procedures

m commands

m  assignments
[

global variables

The statement cannot contain control of flow statements.

~ The following example is a procedure that executes any statement entered. The

procedure aborts at the end so that it can be executed within the Debugger without
generating an error.

$Command :="" * Initialize the command string
Repeat
$Command := Request ("Execute:"; $Command) ° Get statement from the user
If (OK=1) . * If the user clicked OK
EXECUTE ($Command) " Execute the command
End if
Until (OK =0) * Until the user clicks Cancel
ABORT



COMMANDS

TRACE )
NO TRACE Fr oy

TRACE 75
NO TRACE

You use TRACE and NO TRACE during development of a database to trace
procedures.

The TRACE command turns on the 4th DIMENSION Debugger. The Debug window
is displayed before the next line of code is executed, and continues to be displayed
for each line of code that is executed. You can also turn on the Debugger by holding
down the Option key and the mouse button while code is executing.

NO TRACE turns off the Debugger engaged by TRACE, by an error, or by the user.
Using NO TRACE has the same effect as clicking the No Trace button in the
Debugger.

ON ERR CALL

ON ERR CALL (error procedure)

Parameter Type Description
error procedure String Error procedure to be called

ON ERR CALL installs the procedure named by error procedure as the procedure for
managing errors. If error procedure is an empty string, error handling returns to
4th DIMENSION. After installation, 4th DIMENSION calls the procedure named by
error procedure when an error occurs.

You can identify errors by reading the Error system variable. The error-handling
procedure should normally present an error message to the user. 4th DIMENSION
error codes are listed in Appendix E. Errors may also be generated by the Macintosh;
some of the most common ones are listed in Appendix E.

The ABORT command may be used to terminate processing. If you don’t call ABORT
in the installed procedure, 4th DIMENSION returns to the interrupted procedure.

If an error occurs in the procedure that is installed with ON ERR CALL,

4th DIMENSION takes over error handling. Therefore, you should make sure that the
installed error-handling procedure cannot generate an error. Also, you cannot use
ON ERR CALL inside the error-handling procedure.

ON ERR CALL is commonly used in the startup procedure for a custom database to
manage error handling for that database application. ON ERR CALL may also be
placed at the beginning of a procedure to handle errors specific to that procedure.

CHAPTER 18: MISCELLANEOUS COMMANDS 365



366

When an ON ERR CALL procedure is installed, it is not possible to trace a
procedure by using Option-click. This is because Option-click generates an
error code that immediately activates the ON ERR CALL procedure.

F The following example shows the installation of the error-handling procedure.

ON ERR CALL ("DoError")

The procedure below is the DoError procedure, installed by the example
command. The procedure displays a confirmation dialog box, which displays
the error. If the user clicks the OK button, the procedure executes ABORT,
which stops all procedure execution.

" DoError; called by ON ERR CALL
CONFIRM ("Error #" + String (Error) + ". Do you want to stop?")
If (OK = 1)
ABORT * End procedure, return to menus
End if

ON EVENT CALL

ON EVENT CALL (event procedure)

Parameter Type Description
event procedure String Event procedure to be called

ON EVENT CALL installs the procedure named by event procedure as the
procedure for managing events. If event procedure is an empty string, event
handling returns to 4th DIMENSION. After installation, 4th DIMENSION calls
the procedure named by event procedure when an event occurs. An event can
be either a mouse click or a keystroke.

A procedure must be executing for an event to be recognized. This means that
ON EVENT CALL is usually appropriate only for procedures that are executing
for more than a few seconds. Since layout procedures are executed only during
an execution phase (Before, During, After, and so on), it is usually
inappropriate to install an ON EVENT CALL procedure when displaying a layout.



COMMANDS

In the event-handling procedure, you can read three system variables—
MouseDown, KeyCode, and Modifiers.

The MouseDown system variable is set to 1 if the event is the user’s clicking the
mouse button, and to 0 if it is not.

The KeyCode system variable is set to the ASCII code for a keystroke.
Appendix D lists the ASCII codes for the Macintosh.

The Modifier system variable contains the Macintosh keyboard modifier value.
The Modifier system variable indicates whether any of the following modifier
keys were down when the event occurred: Command, Shift, Caps Lock, Option,
or Control. The modifier keys do not generate an event on their own; a key or
the mouse button must also be pressed.

The following code evaluates the Modifier system variable and sets five
variables (Command, Shift, Caps Lock, Option, and Control) to 1 if the key is
pressed, and to O if it is not.

$M := Modifiers \ 256 * $M can be any variable name
Command := $M %2

$M = gM\ 2

Shift := $M % 2

$M =M\ 2

CapslLock := $M % 2

$M = $M\ 2

Option := $M % 2

$M :=$M\ 2

Control := $M % 2

Important: The system variables, MouseDown, KeyCode, and Modifiers, contain
significant values only within an ON EVENT CALL procedure.

ON EVENT CALL is rarely used. It is normally used before a section of code that
must monitor all events, and then cleared by an empty string argument
immediately following that section. At the end of the installed procedure,
control returns to the interrupted procedure.

CHAPTER 18: MISCELLANEOUS COMMANDS 367



368

% In the following example, the Infinite Loop procedure installs the Event procedure to

trap events. Infinite Loop then enters an infinite loop. It can exit the loop only when the
Event procedure changes the value of the Loop variable. After the procedure has
exited the loop, the empty string is used to reset ON EVENT CALL.

" Global procedure: Infinite loop

ON EVENT CALL ("Event") * Install the Event procedure

Loop = True " Loop is set by Event procedure
While (Loop) * Loop forever (until Event sets Loop)
End while

ON EVENT CALL (") " Reset ON EVENT CALL

The following procedure is the Event procedure installed by the procedure just given.
It creates a string variable, $Text, that describes the event. The procedure then
displays an alert describing the event. If the user presses the Q key, the global
variable Loop is set to FALSE, and the Infinite Loop procedure terminates.

* Global procedure: Event

$Text :="" * $Text contains a string describing the event
Case of * Either the mouse or a key was pressed
: (MouseDown = 1) * The mouse was pressed
$Text := "The Mouse was pressed"”
: (KeyCode # 0) * A key was pressed
$Text := "KeyCode =" + String (KeyCode)
End case

" The following code tests which modifiers were pressed

* and changes the $Text string appropriately.

$Text := $Text + Char (13) + "Modifiers "

$M := Modifiers \ 256

$Text := $Text + (": Command" * ($M % 2))

$M = $M\ 2

$Text := $Text + (": Shift" * (M % 2))

$M =M\ 2

$Text := $Text + (": CapsLock" * ($M % 2))

$M =M\ 2

$Text := $Text + (": Option" * ($M % 2))

$M = M\ 2

$Text := $Text + (": Control" * ($M % 2))

ALERT ($Text) * Display the event information

If (Char (KeyCode) = "q") * If the user pressed Q then reset Loop
Loop := False

End if



COMMANDS

Getting Information About Data Objects

Count parameters Get pointer
Is a variable Type

The functions in this section return information about data objects.

Count parameters

Count parameters > Number

Count parameters returns the number of parameters passed to a procedure.
Count parameters is meaningful only in a global procedure that has been called
by another procedure (a subroutine). In all other cases Count parameters
returns 0.

* The following example is a function that returns a string. The string is the
concatenation of whatever strings are passed to it.

$0:="" * Initialize the return value to null
For ($i; 1; Count parameters) " Loop for each parameter

$0 := $0 + ${$i} * Concatenate the parameters
End for
Is a variable

Is a variable (parameter) > Boolean

Parameter Type Description
parameter Pointer Data object to test

This function is usually used to test whether a parameter that was passed to a
procedure was a variable. Is a variable returns TRUE if parameter is a pointer to
a variable. Is a variable returns FALSE if parameter is a pointer to a field.

CHAPTER 18: MISCELLANEOUS COMMANDS 369



370

{ The following example is a function named Sumit that returns a sum of an array or a

field. If the parameter is a field, it uses the Sum function. If the parameter is an array,
it calculates the sum. Notice that it uses the Type function to check that the parameter
is the correct data type.

$0:=0 * Initialize the total

If (Is a variable ($1)) * The parameter is a variable
" Is it a numeric array?
If (Type ($1») = 14) | (Type ($1») = 15) | (Type ($1») = 16))

For ($i; 1; Size of array ($1»)) " Loop once for each element in the array
$0 := $0 + $1»{$i} * Add each element to the sum
End for
End if
Else * Do this for fields

" Is it a numeric field?
If (Type ($1») = 1) | (Type ($1») = 8) | (Type ($1») = 9))
$0 := Sum ($1») * Sum the field
End if
End if

If you had a numeric field called [People]Salary, you could sum it using the
following line:

. Sumlt (»[People]Salary)

If you had a numeric array called Line Totals, you could sum it using the
following line:

Sumlt (»Line Totals)

Get pointer

Get pointer (name) - Pointer

Parameter Type Description
name String Name of a variable

Get pointer returns a pointer to name. The name is the name of a variable. The variable
does not need to exist before Get pointer is executed.

The following example sets a series of variables named CB1, CB2,..., CB20 to 1.

For ($i; 1; 20)
$p := Get pointer ("CB" + String ($i)) * Get a pointer to the next variable
$p» =1 * Set the variaple

End for



Type

COMMANDS

a3
"

Type (parameter) - Number
Parameter Type Description
parameter Field Data object for which to return the type

or variable

Type returns the data type of parameter. Type is usually used to test whether a
parameter is the correct data type. Table 18-2 lists the numbers returned for the
data types.

Table 18-2

Data type numbers

Data Type Number Data Type Number
String 0 Real array 14
Real 1 Integer array 15
Text 2 Long integer array 16
Picture 3 Date array 17
Date 4 Text array 18
Undefined 5 Picture array 19
Boolean 6 Pointer array 20
Subfile 7 String array 21
Integer 8 Boolean array 22
Long integer 9 Pointer 23
Time 11 Freee 4

The following example is a script for a button. The script changes the data in the
current object to uppercase. The object must be a text or string data type (type 0
or2).

$p := Last object * Save the pointer to the last area
If (Type ($p») = 0) | (Type($p») = 2)) *If it is a string or text area

$p» := Uppercase ($p») ' Change the area to uppercase
End if

See the example for the Is a variable function, earlier in this section, for another
example that uses the Type function.

CHAPTER 18: MISCELLANEOUS COMMANDS

371



372



APPENDIXES




374



APPENDIX A

APPENDIX A: Compatibility With Version 1.0

This appendix describes compatibility issues to consider when updating procedures
created in version 1.0 of 4th DIMENSION.

Obsolete and Changed Functionalities

This section describes how version 2.0 differs from version 1.0 in the use of the
language.

File Relations—Links

In version 1.0, relations between files were managed by links. Links used record
pointers stored with each record to maintain file relations. Version 2.0 does not store
record pointers to maintain file relations. All version 1.0 commands used for linking
have been renamed to reflect the new functionality in file relations.

Version 2.0 supports “dynamic” file relations. This means that a relation is dependent
only on the data that is stored in a record. The relation is not dependent on record
pointers (links). Thus it is possible to perform such advanced operations as searching
and sorting based on data in another file. 4th DIMENSION can also update and
maintain dynamic relations more quickly.

In version 1.0, the use of the second argument to LOAD LINKED RECORD was
sometimes used to link the same data to two different records. This practice was
discouraged, since rebuilding the file would lose the link. The use of the second
argument to select identical data is not supported in version 2.0. You must use unique
data (a key field) to establish relations in version 2.0.

Variable Indirection

The two methods of variable indirection used in version 1.0, alpha indirection and
numeric indirection, are not supported by the Compiler and will not be supported in
future versions of 4th DIMENSION. Databases that are converted from version 1.0 will
support these methods, but it is recommended that you use pointers.

Pointers and true arrays are used to support the tasks that these methods performed.
The use of pointers and arrays gives you more power and flexibility in the
management of variables. See Chapter 9, “Arrays and Pointers,” for more information
on these topics.

APPENDIX A: COMPATIBILITY WITH VERSION 1.0 375



376

Numeric Indirection

Version 1.0 allowed the programmer to reference variables by using a number
inside curly braces ({...}). This method of indirection was commonly used to
reference variable tables (pseudo-arrays; for example, v1, v2,..., vN).

In version 2.0, you should use the array commands to create true arrays.

For example, in version 1.0, you might have used a loop like this to create a
pseudo-array containing numbers:

$i=1

While ($i < 11)
My Array{$i} :=0
$i=8i+1

End while

In version 2.0, you simply write a line like this:
ARRAY REAL (My Array; 10)

The indirection method used in version 1.0 was also commonly used to reference
a group of radio buttons or check boxes. You should now use the Get pointer
command to indirectly reference radio buttons and check boxes. For example,

in version 1.0, if you had a group of check boxes with variables named

CB1, CB2,...,CB10, you might have used a loop like this one using variable
indirection:

$i=1
While ($i < 11)
If (CB{$i} = 1) " If the check box is checked
" Do something here
End if
$i=8i+1
End while

In version 2.0, you use a loop like this:

For ($i; 1; 10)
If (Get pointer ("CB" + String ($i))» = 1) * If the check box is checked
" Do something here
End if
End for



APPENDIX

Although version 2.0 supports variable indirection using the section
symbol (§) in converted databases, its use is discouraged. It is recommended
that you use pointers and the Get pointer function instead of this method.

Alpha Indirection

For example, you could refer to a variable like this:

§("My Var") := 10

This line puts 10 into the variable named My Var.

Using the Get pointer function and a pointer, you would write this:
$p = Get pointer ("My Var") |

$p» =10

Setting Graph Legends

Version 1.0 used the name of a variable table (a pseudo-array; for example,
vl, v2,..., vN) to label a graph legend. This method is no longer supported.
Use the GRAPH SETTINGS command to set the graph legends.

Size of Arrays

In version 2.0, you cannot refer to the size of the array by examining
element 0 as you could in version 1.0. Use the command Size of array for
this purpose.

Matching Parentheses

If you inadvertently left off matching parentheses, version 1.0 did not alert
you. Version 2.0 will now catch this problem and generate a syntax error.

The Flush System Variable

4th DIMENSION version 2.0 uses optimized data caching, making the Flush
system variable obsolete. This variable is not supported in version 2.0.

APPENDIX A: COMPATIBILITY WITH VERSION 1.0 377



378

Changes in Commands

This section describes how commands in version 2.0 differ from those in version 1.0.

Changed Command Names

Table A-1 shows the old and new names of commands. It is important to note that
procedures in databases converted from version 1.0 are automatically updated to use the

new names.

Table A-1
Changed Command Names

Old Name

New Name

CREATE LINKED RECORD
Current password

GET HIGHLIGHTED TEXT
GO TO FIELD

GO TO XY

LOAD LINKED RECORD
LOAD OLD LINKED RECORD
SAVE LINKED RECORD
SAVE OLD LINKED RECORD
SEARCH

Squares sum

Obsolete Commands

CREATE RELATED ONE
Current user

GET HIGHLIGHT

GOTO AREA

GOTO XY

RELATE ONE

OLD RELATED ONE
SAVE RELATED ONE
SAVE OLD RELATED ONE
SEARCH BY FORMULA
Sum squares

This section describes commands that are obsolete. They remain in the language for
compatibility with version 1.0. These commands may not be supported in future versions
of 4th DIMENSION. Although they still execute properly, you should change any
procedures that use these commands to use the new features of version 2.0.

® ACTIVATE LINK—You should use RELATE ONE instead of ACTIVATE LINK.

m Mod—You should use the Modulo operator (%), which performs the same operation
as and executes faster than the Mod function.

m SORT BY INDEX—You should use SORT SELECTION instead of SORT BY INDEX.



APPENDIX A

Changed Command Operations

This section describes commands whose operations have changed.

BEEP—The Macintosh system no longer supports a beep length.

CLEAR VARIABLE—In version 2.0, this command takes a variable name as the
argument, instead of a string. For compatibility, you can use a string, but this

usage is discouraged and is not supported by the Compiler. It may not be supported
by future versions of 4th DIMENSION.

Current password (now Current user)—In version 1.0, this function returned the current
password. In version 2.0, this function returns the the current user name.

Current time and Time—In version 2.0, these functions.return a time. If you display
the data on screen, the data will be formatted as a time.

FONT—Apple Computer, Inc. recommends using only a font name to refer to a font.
The FONT command still supports the use of a number to refer to a font, but this
method is discouraged and may not be supported in future versions.

GET HIGHLIGHTED TEXT (now GET HIGHLIGHT)—In version 1.0, this command used Pe 5@
the first parameter to get the highlight from the specified object. In version 2.0, 149
GET HIGHLIGHT always gets the highlighted area from the last object and ignores the
first parameter.

GO TO FIELD (now GOTO AREA)—In version 2.0, this command goes to variables

as well as fields.

HIGHLIGHT TEXT—In version 2.0, this command goes to the object as well as
highlighting it.

In header—In version 2.0, this function returns TRUE in break headers in addition

to returning TRUE in page headers.

Level—In version 2.0, this function returns the level in a break header and in breaks.
ON SERIAL PORT CALL—In version 2.0, the installed procedure is called any time
there is serial port activity. In version 1.0, a procedure had to be running for the
procedure to be called.

OPEN WINDOW—In version 2.0, this command opens multiple windows. If you call
OPEN WINDOW without CLOSE WINDOW in your databases, multiple windows will
be opened.

REDRAW—In version 2.0, this command is not needed after a sort of data in an
included layout.

SEND RECORD and RECEIVE RECORD—Records saved by using these commands
are not compatible between version 1.0 and version 2.0.

String—In version 2.0, this function formats string, date, and time.

USE ASCIl MAP—In version 2.0, this command requires a second argument to
specify whether the map is to be used for input or output.

APPENDIX A: COMPATIBILITY WITH VERSION 1.0 379



380

APPENDIX B: Preparing Code For the Compiler

This appendix gives you information that is useful in preparing your procedures for
compilation.

General Compiler Rules

Variable indirection is not allowed. You cannot use alpha indirection, with the
section symbol (§), to indirectly reference variables. Nor can you use numeric
indirection, with the curly braces ({...}), for this purpose.

You can’t change the data type of a global variable or array.

You can’t change a one-dimensional array to a two-dimensional array, or change
a two-dimensional array to a one-dimensional array.

You can’t change the length of string variables or elements in string arrays.

You should specify the data type of a variable by using the Compiler directives
where the data type is ambiguous.

Wherever possible, use variables of a long integer data type for maximum
performance. This rule applies especially to any variable used as a counter.

To clear a variable (initialize it to null), use CLEAR VARIABLE with the name of
the variable. Do not use a string to represent the name of the variable in the
CLEAR VARIABLE command.

The Undefined function will always return FALSE. Variables are always defined.

Commands and Compiler Compatibility

LOAD VARIABLE—The variables must be of the same type as those loaded from
disk.

CLEAR VARIABLE—This command sets the variable to a null value but does not
set it to undefined. Variables can never be undefined in compiled code. This
command is used to clear large variables, such as pictures, from memory.
TRACE, NO TRACE—These commands have no effect in compiled procedures.

Undefined—Since variables are always “defined” in compiled code, Undefined
always returns FALSE when used in compiled procedures.

Report Break Processing

The Subtotal function will not initiate break processing in compiled procedures. You
must use the BREAK LEVEL command to initiate break processing, and use the
ACCUMULATE command to specify what to accumulate for subtotals.



APPENDIX n

Compiler Directives

The commands in this section are used to declare the variables used by your
procedures. If you will be compiling your procedures, you should declare all
variables by using these commands. These commands do not need to appear in
an executed procedure. For example, you could put them in a procedure called
Compiler that is never executed.

C_BOOLEAN
C_DATE
C_INTEGER
C_LONGINT
C_PICTURE
C_POINTER
C_REAL
C_TEXT
C_TIME

C STRING  exliza

D
)

C_BOOLEAN (variablel {;...; variableN})
C_DATE (variablel {,...; variableN})
C_INTEGER (variablel {,...; variableN})
C_LONGINT (variablel {;...; variableN})
C_PICTURE (variablel {;...; variableN})
C_POINTER (variablel {;...; variableN})
C_REAL (variablel {;...; variableN})
C_TEXT (variablel {;...; variableN})
C_TIME (variablel {;..., variableN})

Parameter Type Description
variable Variable Name of variable(s) to pre-declare

C_STRING (size; variablel {;...; variableN})

Parameter Type Description
size Number Size of the string
variable Variable Name of variable(s) to pre-declare

These commands have no effect on the normal operation of 4th DIMENSION.
They affect only compiled procedures.

APPENDIX B: PREPARING CODE FOR THE COMPILER 381



382

These commands pre-declare variables and cast the variables as a specified data
type. Pre-declaring variables resolves ambiguities concerning a variable’s data
type. If a variable is not pre-declared with one of these commands, the Compiler
will attempt to determine a variable’s data type. The data type of a variable used in
a layout is often difficult for the Compiler to determine. Therefore it is especially
important that you use these commands to pre-declare a variable used in a layout.

C_BOOLEAN casts each specified variable as a Boolean variable.
C_DATE casts each specified variable as a date variable.
C_INTEGER casts each specified variable as an integer variable.
C_LONGINT casts each specified variable as a long integer variable.

C_PICTURE casts each specified variable as a picture variable. You can
perform picture operations only on variables that have been declared as
pictures.

C_POINTER casts each specified variable as a pointer variable.
C_REAL casts each specified variable as a real variable.
C_TEXT casts each specified variable as a text variable.
C_TIME casts each specified variable as a time variable.

C_STRING casts each specified variable as a string variable. The size parameter
specifies the length of the string the variable can contain. A string variable is
faster in use than a text variable.

Numeric operations on long integer and integer variables are usually much faster
than operations on the default numeric type (extended).



APPENDIX

APPENDIX C: 4th DIMENSION System Variables

This appendix summarizes the 4th DIMENSION system variables.

OK

The OK system variable is the most commonly used of all system variables. In
general, it is set to 1 after an operation has completed successfully, and it is set to 0 if
an operation does not complete successfully. The following commands set the OK

system variable.

ADD RECORD

ADD SUBRECORD
Append document
APPLY TO SELECTION
APPLY TO
SUBSELECTION
ARRAY TO LIST
ARRAY TO SELECTION
CLOSE DOCUMENT
CONFIRM

CREATE EMPTY SET
Create document
DELETE DOCUMENT
DIALOG

DISPLAY SELECTION
EXPORT DIF

EXPORT SYLK
EXPORT TEXT

Document

IMPORT DIF
IMPORT SYLK
IMPORT TEXT

LOAD SET

LOAD VARIABLE
MERGE SELECTION
MODIFY RECORD
MODIFY SELECTION
MODIFY SUBRECORD
Open document
PRINT LABEL

PRINT SETTINGS
RECEIVE PACKET
RECEIVE RECORD
RECEIVE VARIABLE
REPORT

Request

SAVE SET

SAVE VARIABLE
SEARCH

SEARCH BY FORMULA
SEARCH BY INDEX
SEARCH BY LAYOUT
SEARCH SELECTION
SEND PACKET

SEND RECORD

SEND VARIABLE

SET CHANNEL

SORT BY FORMULA
SORT FILE

SORT SELECTION
USE ASCII MAP

USE SETTINGS
VALIDATE TRANSACTION

P VRl

The Document system variable contains the name of the Macintosh disk file that

was last opened or created with one of the following commands.

Append document
Create document
EXPORT DIF
EXPORT SYLK
EXPORT TEXT
IMPORT DIF

IMPORT SYLK
IMPORT TEXT
LOAD SET

LOAD VARIABLE
MERGE SELECTION
Open document

PRINT LABEL
REPORT

SAVE SET
SAVE VARIABLE
SET CHANNEL
USE ASCII MAP

APPENDIX C: 4TH DIMENSION SYSTEM VARIABLES 383



384

FildDelimit

The FldDelimit system variable contains the ASCII code of the character to use as
the field delimiter when importing or exporting text. By default, this value is 9, the
ASCII code for the tab character. Change the value to set a new field delimiter.

RecDelimit

The RecDelimit system variable contains the ASCII code of the character to use as
the record delimiter when importing or exporting text. By default, this value is 13,
the ASCII code for the carriage return character. Change the value to set a new
record delimiter.

Error

The Error system variable is valid only in a procedure installed by ON ERR CALL.
This variable contains the code for the error. Appendix E lists 4th DIMENSION
and Macintosh error codes.

MduseDown, KeyCode, and Modifiers

These system variables are valid only in a procedure installed by ON EVENT CALL.

The MouseDown system variable is set to 1 if the mouse button was pressed.
Otherwise, it is set to 0.

The KeyCode system variable contains the ASCII code of the key that was
pressed.

The Modifiers system variable contains the Macintosh keyboard modifier codes.
See the description of the ON EVENT CALL command for more information on the
Modifiers system variable.



APPENDIX

APPENDIX D: ASCII Codes

This appendix consists of two tables. Table D-1 presents the standard ASCII codes.
Table D-2 presents the extended Macintosh character set for the Times font.

Table D-1
Standard ASCII codes
Char Dec Oct Hex | Char Dec Oct Hex | Char Dec Oct Hex | Char Dec Oct Hex
NUL 0o 0 0 | ép “ 32 40 20 @ 64 100 40 ¢ 96 140 60
SOH 1 1 1 ! 33 41 21 A 65 101 41 a 97 141 61
STX 2 2 2 & 34 42 22 B 66 102 42 b 98 142 62
ETX 3 3 3 # 35 43 23 C 67 103 43 c 99 143 63
EOT 4 4 4 $ 36 44 24 D 68 104 44 d 100 144 64
ENQ 5 5 5 % 37 45 25 E 69 105 45 e 101 145 65
ACK 6 6 6 & 38 46 26 F 70 106 46 f 102 146 66
BEL 7 7 7 ¢ 39 47 27 G 71 107 47 g 103 147 67
BS 8 10 8 ( 40 50 28 H 72 110 48 h 104 150 68
HT 9 11 9 ) 41 51 29 1 73 111 49 i 105 151 69
LF 10 12 A * 42 52 2A J 74 112 4A j 106 152 6A
VT 11 13 B - 43 53 2B K 75 113 4B k 107 153 6B
FF 12 14 C s 44 54 2C | 76 114 4C 1 108 154 6C
CR 13 15 D - 45 55 2D M 77 115 4D m 109 155 6D
SO 14 16 E . 46 56 2E N 78 116 4E n 110 156 6E
SI 15 17 F / 47 57 2F (0] 79 117 4F 0 111 157 6F
DLE 16 20 10 0 48 60 30 P 80 120 50 P 112 160 70
DCI 7 21 11 1 49 61 31 Q 81 121 51 q 113 161 71
DC2 18 22 12 2 50 62 32 R 82 122 52 r 114 162 72
DC3 19 23 13 3 51 63 33 S 83 123 53 S 115 163 73
DC4 20 24 14 4 52 64 34 T 84 124 54 t 116 164 74
NAK 21 25 15 5 53 65 35 U 85 125 55 u 117 165 75
| SYN 22 26 16 6 54 66 36 \Y% 86 126 56 | v 118 166 76 4
| ETB 23 27 17 7 55 67 37 w 87 127 57 | w 119 167 77 |
CAN 24 30 18 8 56 70 38 X 88 130 58 | «x 120 170 78
EM 25 31 19 9 57 71 39 Y 89 131 59 y 121 171 79 |
SUB 26 32 1A 2 58 72 3A Z 90 132 5A 7 122 172 7A
- ESC 27 33 1B s 59 73 3B [ 91 133 5B { 123 173 7B
| FS 28 34 1C < 60 74 3C \ 92 134 5C I 124 174 7C
| Gs 29 35 1D = 61 75 3D ] 93 135 5D | |} 125 175 7D
RS 30 36 1E > 62 76 3E @A 94 136 SE ~ 126 176 7E
UsS 31 37 1IF ? 63 77 3F l _ 95 137 5F | DEL 127 177 7F

APPENDIX D: ASCIl CODES 385



386

Table D-2

Extended Macintosh character set (Times)

Oct Hex ‘Char Dec

/

S Char Dec Oct Hex | Char Dec Oct Hex Char Dec Oct Hex |
A 128 200 80 160 240 A0 ¢ 192 300 CO 224 340 EO
A 129 201 81 ° 161 241 Al ‘ i 193 301 Cl 225 341 El
C 130 202 82 ¢ 162242 A2 | o 194 302 C2 , 226 342 E2
E 131203 8 | £ 163243 A3 Y 195303 C3 . 227 343 E3 |
N 132 204 84 § 164 244 A4 f 196 304 C4 | %o 228 344 E4 |
O 133205 85 o 165 245 A5 ‘ = 197 305 C5 A 229 345 E5
U 134 206 86 166 246 A6 A 198 306 C6 E 230 346 E6
a 135207 87 B 167 247 A7 | « 199 307 C7 A 231347 E7 |
a 136 210 88 ® 168250 A8 | » 200 310 C8 E 232 350 E8
a 137 211 89 © 169 251 A9 | 201 311- C9 E 233 351 E9
i 138 212 8A | ™ 170 252 AA 202 312 CA I 234 352 EA
a 139 213 8B © 171 253 AB A 203 313 CB I 235353 EB
4 140 214 8C 172 254 AC ‘ A 204 314 CC I 236 354 EC
¢ 141 215 8D # 173 255 AD | O 205 315 CD I 237 355 ED
¢ 142216 8E | £ 174 256 AE = (& 206 316 CE O 238 356 EE
& 143 217 S8F @ 175257 AF | @ 207 317 CF O 239 357 EF
& 144 220 90 w 176 260 BO | — 208 320 DO 240 360 FO
& 145 221 91 + 177261 Bl | — 209 321 DI | O 241361 Fl
i 146 222 92 < 178 262 B2 “ 210322 D2 | U 242362 E2
i 147 223 93 > 179 263 B3 » 211 323 D3 ‘ U 243 363 F3 |
i 148 224 94 Y 180 264 B4 ¢ 212324 D4 | U 244 364 F4 |
i 149 225 95 u 181 265 BS > 213325 D5 | 1 245365 F5
Cf 150 226 96 d 182 266 B6 = 214 326 D6 \ " 246 366 F6
| 6 151227 97 Y 183 267 B7 0 215327 D7 | - 247 367 F7
[ 5 152230 98 I[1 184 270 BS y 216 330 DS - 248 370 F8
f 6 153 231 99 n 185 271 B9 Y 217 331 D9 v 249 371 F9 |
& 154 232 9A | 186 272 BA / 218 332 DA 250 372 FA
o 155 233 9B : 187 273 BB o 219 333 DB ‘ ° 251 373 FB
a4 156 234 9C °© 188 274 BC < 220 334 DC . 252 374 FC
| b 157 235 9D Q 189 275 BD > 221 335 DD “ 253 375 FD
|G 158 236 9E @ 190 276 BE i 222336 DE | . 254 376 FE
i 159 237 9F ¢ 191 277 BF fi. 223 337 DF 1 ¥ 255377 FF




APPENDIX

APPENDIX E: 4th DIMENSION and Macintosh
Error Messages

This appendix lists the error codes that may occur during the use of 4th DIMENSION.
Error codes generated by the Macintosh and returned by 4th DIMENSION are also listed.

You can trap the error codes by using the ON ERR CALL command. If you use this
command, the Error system variable contains the error code.

Table E-1 lists codes returned primarily because of syntax errors in procedures. These
are errors in the design of a procedure.

Table E-1
4th DIMENSION procedure error codes
Code Reason
1 “(” expected.
2 Field expected.
3 The command may be executed only on a field in a subfile.
ES Parameters in the list must all be of the same type.
5 There is no file to apply the command to.
6 The command may only be executed on a field of type: ‘Subfile’.
7 A numeric argument was expected.
8 An alphanumeric argument was expected.
9 The result of a conditional test was expected.
10 The command can’t be applied to this field type.
11 The command can’t be applied between two conditional tests.
12 The command can’t be applied between two numeric arguments.
13 The command can’t be applied between two alphanumeric arguments.
14 The command can’t applied between two date arguments.
15 The operation is not compatible with the two arguments.

16 The field has no relation.

17 A file was expected.

18 Field types are incompatible.
19 The field is not indexed.

20 An “=" was expected.

21 The procedure does not exist.

22 The fields must belong to the same file or subfile for a sort or graph.
23 “<” or “>” expected.

24 “,” expected.

25 There are too many fields for a sort.

26 The field type must be alpha, date, or numeric.

27 The field must be prefixed by its file’s name.

APPENDIX E: 4TH DIMENSION AND MACINTOSH ERROR MESSAGES 387



Table E-1 (continued)
4th DIMENSION procedure error codes

Code Reason
28 The field type must be numeric.
29 The value must be 1 or 0.
30 A variable was expected.
31 There is no menu bar with this number.
32 A date was expected.
33 Unimplemented command or function.
35 The sets are from different files.
36 The filename is bad.
37 “:=" expected.
39 The set does not exist.
40 This is a function, not a procedure.
41 A variable or field belonging to a subfile was expected.
42 The record can’t be pushed onto the stack.
43 The function can’t be found.
44 The procedure can’t be found.
45 Field or variable expected.
46 A numeric or alphanumeric argument was expected.
47 The field type must be alpha.
48 Syntax error.
49 This operator can’t be used here.
50 These operators can’t be used together.
51 Unimplemented module.
54 Argument types are incompatible.
55 A Boolean argument was expected.
56 Field, variable, or file expected.
57 An operator was expected.
58 “)” expected.
59 This kind of argument was not expected here.

Table E-2 lists the code returned if there are too many procedure calls or too
many records pushed on the stack.

Table E-2
4th DIMENSION stack error code

Code Reason

—-9996 The stack is full.

388



APPENDIX

Table E-3 lists codes returned because the user has caused an interruption or
accessed something to which he or she does not have password privileges.

Table E-3
4th DIMENSION user error codes
Code Reason
1006 Program interrupted by user. User pressed Option-click.

-9991 Privilege error.
-9992 Wrong password.
-9994 Serial interruption generated by the user.

Table E-4 lists codes returned because of problems in input or output. This
includes errors in serial communications and errors when accessing the disk.

Table E-4
4th DIMENSION 1/O error codes
Code Reason
52 Serial port timeout.
-9990 Serial port timeout.
-9994 Serial communication interrupted by user. User pressed Option-space.
-9995 The limit of the demonstration version has been reached.
-9997 The maximum number of records has been reached.
-9998 The index key already exists. The entry is not unique.
-9999 Not enough space on disk to save the record.

Table E-5 lists codes returned because of problems due to damage detected in the
database. These are serious errors. The user should be alerted to back up the
database and repair it by using 4D Tools.

Table E-5
4th DIMENSION error codes for damaged database

Code Reason

53 Index out of range.

-9989 Invalid structure.

-9993 Damaged menu bar.
—-10000 Invalid data address.
—-10001 Invalid index structure.
-10002 Invalid record structure.
—10003 Record # is out of range.
—10004 Index block # is out of range.

APPENDIX E: 4TH DIMENSION AND MACINTOSH ERROR MESSAGES 389



390

Table E-6 lists codes returned by the Macintosh File Manager. These codes can
be returned when you are using the document commands.

Table E-6
Macintosh File Manager error codes
Code Reason

-33 File directory full.
-34 All allocation blocks on the volume are full.
=35 Specified volume doesn’t exist.
-36 I/O error.
=37 Bad filename or volume name.
-38 File not open.
-39 Logical end-of-file reached during read operation.
—40 Attempt to position before start of file.
—42 Too many files open.
-43 File not found.
—44 Volume is locked by a hardware setting.
—45 File is locked.
—46 Volume is locked by a software flag.
—47 File is busy.
—48 File with specified name and version number already exists.
—49 File already open.
=53 Volume not on line.
=54 Attempt to open locked file for writing.
-61 Read/write permission doesn’t allow writing.

Table E-7 lists codes returned by the Macintosh Printing Manager. These codes
can be returned during printing.

Table E-7
Macintosh Printing Manager error codes
Code Reason
-1 Problem saving file to be printed.
-17 Module cannot be implemented.
-27 Problem opening or closing connection with printer.
-128 Printing interrupted by the user.
-4100 Printer connection has been interrupted.
-4101 Printer busy or not connected.
-8150 A LaserWriter is not selected.
-8151 The printer has been initialized with a different driver version.



APPENDIX

Table E-8 lists the code returned by the Macintosh Memory Manager. This code
could be returned if you are running low on memory during printing.

Table E-8
Macintosh Memory Manager error code
Code Reason
—-108 Not enough room in heap zone.

Table E-9 lists the codes returned by the Macintosh Resource Manager. These
codes could be returned if you try to load a 'SND ' resource that does not exist.

Table E-9

Macintosh Resource Manager error codes
éode Reason
-192 Resource not found.
—-193 Resource file not found.

Table E-10 lists the NaN codes returned by the Macintosh. NaN stands for
“Not a Number.” It is a Standard Apple Numeric Environment (SANE)
representation and appears when an operation produces a result that is beyond
SANE’s scope.

Table E-10
Macintosh SANE NaN messages

NaN code Reason

1 Invalid square root.

2 Invalid addition.

4 Invalid division.

8 Invalid multiplication.
9 Invalid remainder.

17 Converting an invalid ASCII string.
20 Converting a Comp type number to floating-point.
21 Creating a NaN with a zero code.
33 Invalid argument to a trig function.
34 Invalid argument to an inverse trig function.
36 Invalid argument to a log function.
37 Invalid argument to an xi or xy function.
38 Invalid argument to a financial function.
255 Uninitialized storage.

APPENDIX E: 4TH DIMENSION AND MACINTOSH ERROR MESSAGES 391



392



INDEX




S04

!
~

394



Index

Cast of Characters

# (search conjunction) 195, 196
$ (dollar sign) 23
% (modulo operator) 109
& (ampersand)
AND operator 114
exclusive superimposition 115
search conjunction 195, 196
* (asterisk)
with PRINT SELECTION 68
as repetition operator 109
for scroll bar display 251
as multiplication operator 18,
109
as resize operator 115
search parameter 196
*+ (horizontal scaling) 115
*/ (vertical scaling) 115
+ (plus sign)
addition operator 18, 109
concatenation operator 18, 109
horizontal concatenation 115
horizontal move 115
/ (division operator) 18, 109
:= (assignment operator) 22-23,
108
: (colon), in Case structure 30-31
; (semicolon), with parameters 56
<= (less than or equal to) 111-113
<= (search comparator) 196
< (less than operator) 111-113
< (search comparator) 196
= (equality operator) 111-113
= (search comparator) 196
# (inequality operator) 111-113
# (search comparator) 196
>= (greater than or equal to)
111-113
>= (search comparator) 196
> (greater than operator) 111-113
> (search comparator) 196
A (exponentiation operator) 109

b

D Lo Opbien Shife |
(e Ceds 0, e |

(:fi.‘« Rac ez

< > 22 -33% 00 INDEX
50 $?  Fuacbion T
! Li&bm,ln' Valee )

\ (longint division operator) 109
{} (curly braces)
in arrays 101
in subroutines 57
versions 1.0 vs. 2.0 376
| (exclusive superimposition) 115
[ (OR operator) 114
* (reverse apostrophe) as comment
mark 28
| (search conjunction) 195, 196
- (subtraction operator) 18, 109
/ (vertical concatenation) 115
/ (vertical move) 115

A

Abort button
in Debug window 74
in Syntax Error window 73
ABORT command 363
Abs function 339-340
ACCEPT command 157
access privileges, managing
315-316
ACCUMULATE command 161, 165
Action pop-up menu, for buttons
40
active objects
scripts and 37, 38—44
as variables 24
addition operator (+) 18, 109
ADD RECORD command 69,
141-143
in custom menu 61-62
procedure example, using 28
in Repeat loop 33, 120
in While loop 32, 119
ADD SUBRECORD command
226-227
ADD TO SET command 278
After function 180
After phase 47
in data entry 48
for importing records 52
in included layout 49, 50
in output layout 50

O e

Alert box 94,239
with branching structures 30,
31

ALERT command 87, 94, 239
in If...Else...End if structure 119
parameter passing, with 56-57

ALL RECORDS command 69, 184

ALL SUBRECORDS command
228-229

Alpha Indirection 377

ampersand (&)
AND operator 114
exclusive superimposition 115
search conjunction 195, 196

Append document function
300-301

Apple menu 257

applications 60-68
building 13
with complete automation
67-68
User environment vs. 64—66

APPLY TO SELECTION command
69, 186

APPLY TO SUBSELECTION
command 229

Arctan function 344

area graphs 172

arguments, 27. See also parameters

arithmetic operators 18

ARRAY BOOLEAN command
355-357

ARRAY DATE command 355-357

array elements 80
naming 100
pointers to 87, 90

ARRAY STRING command
355-357

ARRAY INTEGER command
355-357

ARRAY LONGINT command
355-357

array names 101

ARRAY PICTURE command
355-357

INDEX 396



396

ARRAY POINTER command 91,
355-357
ARRAY REAL command 90-91,
355-357, 376
arrays 41, 80-86
changing elements in 43
creating 80
defined 80
elements of 80
grouped 85-86
managing 354-362
naming 101
pointers to 87,91
storing database structure in
316-317
versions 1.0 vs. 2.0 376, 377
ARRAY TEXT command 80, 81,
355-357
ARRAY TO LIST command 361
ARRAY TO SELECTION command
362
ASCII codes 385-386
in system variables 384
ASCII data, Macintosh vs. PC 303
Ascii function 333
ASCII map 303,314
assignment operator (:=) 22-23,
108
asterisk (*)
with PRINT SELECTION 68
as repetition operator 109
for scroll bar display 251
as multiplication operator 18,
109
as resize operator 115
search parameter 196
Average function 345, 346

B

BEEP command 262

Before and During phase 47
DISPLAY SELECTION and 51
MODIFY SELECTION and 51
in output layout 50

Before function 178

Before phase 46, 47
in data entry 48
DISPLAY SELECTION and 51
for exporting records 51
in included layouts 49, 50
for layout reports 52
MODIFY SELECTION and 51
Before selection function 190-191
Before subselection function
231-232
Boolean data type 16, 105
Boolean expressions 19, 20
in branching structure 29, 30,
31
in While loops 32-33
Boolean values, in procedures 28
Boolean variables 21
branching structures 29-31
BREAK LEVEL command 161,
164-165
breakpoint 78
break processing 160-161, 380
buffer, receiving data from 311
buttons 3940
pointers to 89
script example for 9
setting with pointers 92-93
variables and 24
BUTTON TEXT command 234

Cc

Cancel button, for stopping search
192

CANCEL command 158

canceling printing 160

CANCEL TRANSACTION command
297

carriage returns, text export or
import and 213, 214

Case...End Case structure, in setting
buttons 92

Case of...Else...End case structure
29, 30-31, 118
with arrays 42

Case of...End case structure, in
execution cycle 47

C_BOOLEAN 381, 382

C_DATE 381, 382

C_STRING 381, 382

CHANGE ACCESS command 315

CHANGE PASSWORD command
315-316

Change string function 328-329

channel, setting 306-308

character filters, variables and 21

character reference symbols
326-327 < 2

Char function 334

Check box 40

CHECK ITEM command 259-260

check mark, in Debug window
77-78

choice lists, variables and 21

“Choose print layout” dialog box
66

C_INTEGER 381, 382

CLEAR SEMAPHORE command
293

CLEAR SET command 278

CLEAR VARIABLE command
353-354

C_LONGINT 381, 382

CLOSE DOCUMENT command
301

CLOSE WINDOW command 255

code 27
modularizing 56
object identifiers in 98-103
preparing for compiler 380-382

colon (:), in case structure 30-31

color, setting 236

column graphs 172

Command key, in Debug window
75,76

command parameters 129-132

commands 27
ABORT 363
ACCEPT 157
ACCUMULATE 161, 165
ADD RECORD 61-63, 69, 119,
120, 141-143
ADD SUBRECORD 226-227



ADD TO SET 278

ALERT 119, 239

ALL RECORDS 69, 184

ALL SUBRECORDS 228-229
APPLY TO SELECTION 69,
186

APPLY TO SUBSELECTION
229

arguments to 27

ARRAY BOOLEAN 355-357
ARRAY DATE 355-357
ARRAY STRING 355-357
ARRAY INTEGER 355-357
ARRAY LONGINT 355-357
ARRAY PICTURE 355-357
ARRAY POINTER 91, 355-357
ARRAY REAL 90-91, 355-357
ARRAY TEXT 80, 81, 355-357
ARRAY TO LIST 361

ARRAY TO SELECTION 362
BEEP 262

BREAK LEVEL 161, 164-165
BUTTON TEXT 234
CANCEL 158

CANCEL TRANSACTION 297
CHANGE ACCESS 315
CHANGE PASSWORD
315-316

CHECK ITEM 259-260
CLEAR SEMAPHORE 293
CLEAR SET 278

CLEAR VARIABLE 353-354
CLOSE DOCUMENT 301
CLOSE WINDOW 255
CONFIRM 240

COPY ARRAY 87, 358
CREATE EMPTY SET 276
CREATE RECORD 208-209
CREATE RELATED ONE 223
CREATE SET 276

CREATE SUBRECORD
227-228

DEFAULT FILE 69, 87, 90,
134-136

DELETE DOCUMENT 302
DELETE ELEMENT 359

DELETE RECORD 211
DELETE SELECTION 187
DELETE SUBRECORD 228
descriptions of 128-129
DIALOG 242
DIFFERENCE 279-280
DISABLE BUTTON 89,
235-236

DISABLE ITEM 260
DISPLAY RECORD 146
DISPLAY SELECTION
143-146

DUPLICATE RECORD 209
EDIT ACCESS 315
ENABLE BUTTON 89, 235-236
ENABLE ITEM 260

ERASE WINDOW 246
EXECUTE 364

EXPORT DIF 212-213
EXPORT SYLK 212-213
EXPORT TEXT 69, 212-213
FIELD ATTRIBUTES 322-323
FIRST PAGE 147

FIRST RECORD 188
FIRST SUBRECORD 230
FLUSH BUFFERS 323
FONT 237

FONT SIZE 237

FONT STYLE 238

FORM FEED 169

GET HIGHLIGHT 149-150
GOTO AREA 151

GOTO RECORD 268
GOTO SELECTED RECORD
268-269

GOTO XY 246

GRAPH 173-174

GRAPH FILE 69, 176-177
GRAPH SETTINGS 175
HIGHLIGHT TEXT 150-151
IMPORT DIF 213-214
IMPORT SYLK 213-214
IMPORT TEXT 69, 213-214
INPUT LAYOUT 69, 137
INSERT ELEMENT 358
INTERSECTION 280-281

INDEX

INVERT BACKGROUND 151
LAST PAGE 147

LAST RECORD 189

LAST SUBRECORD 230
LIST TO ARRAY 81, 83-84,
360

LOAD RECORD 291

LOAD SET 284

LOAD VARIABLE 353
MENU BAR 259

MERGE SELECTION 188
MESSAGE 243-245
MESSAGES OFF 246-247
MESSAGES ON 246-247
MODIFY RECORD 69,
141-143

MODIFY SELECTION 69,
143-146

MODIFY SUBRECORD
226227

in multi-user databases
289-290

NEXT PAGE 147

NEXT RECORD 189-190
NEXT SUBRECORD 231
NO TRACE 365

OLD RELATED MANY 225
OLD RELATED ONE 225
ONE RECORD SELECT 272
ON ERR CALL 73, 365-366
ON EVENT CALL 366-368
ON SERIAL PORT CALL 309
OPEN WINDOW 253-254
OUTPUT LAYOUT 64, 66, 67,
68, 69, 138

PAGE SETUP 169

PLAY 262

POP RECORD 272
PREVIOUS PAGE 148
PREVIOUS RECORD 190
PREVIOUS SUBRECORD 231
PRINT LABEL 69, 159, 160,
170-171

PRINT LAYOUT 159, 160,
167-168

INDEX 397



398

PRINT SELECTION 66, 67, 68,
69, 159, 163-164

PRINT SETTINGS 168-169
PUSH RECORD 271

QUIT 4D 363

READ ONLY 292

READ WRITE 292

RECEIVE BUFFER 311
RECEIVE PACKET 304-305
RECEIVE RECORD 312
RECEIVE VARIABLE 313
REDRAW 158

REJECT 153-154

RELATE MANY 221-223
RELATE ONE 218-221
REPORT 69, 159, 162-163
role of 27

SAVE OLD RELATED ONE 225
SAVE RECORD 210

SAVE RELATED ONE 224
SAVE SET 283

SAVE VARIABLE 352
SEARCH 5, 64-65, 67, 69, 192,
194-199

SEARCH BY FORMULA 69,
192, 200-201

SEARCH BY INDEX 192,
201-203

SEARCH BY LAYOUT 69, 193
SEARCH SELECTION 192,
200-201

SEARCH SUBRECORDS 192,
203

SELECTION TO ARRAY 81,
85-86, 361-362

SEND PACKET 302-303
SEND RECORD 311-312
SEND VARIABLE 313

SET CHANNEL 306-308

SET CHOICE LIST 155

SET COLOR 236

SET ENTERABLE 156

SET FILTER 155

SET FONT 90

SET FORMAT 156-157

SET TIMEOUT 310

SET WINDOW TITLE 256
SORT ARRAY 86, 91, 357
SORT BY FORMULA 204-205
SORT FILE 69, 206207
SORT SELECTION 64, 65, 67,
68, 69, 205-206
SORT SUBSELECTION 207
START TRANSACTION 297
SUBTOTAL 166
TRACE 73, 365
UNION 281-282
UNLOAD RECORD 291
USE ASCII MAP 69, 314
User environment menus vs. 69
USE SET 277
VALIDATE TRANSACTION 297
versions 1.0 vs. 2.0 378-379
command syntax 129
comments 28
comparators, in search 195, 196
comparison operators 111-113
compiler, preparing code for
380-382
compiler directives 381-382
concatenation operator (+) 18, 109
Confirmation dialog box 240
CONFIRM command 240
in While loop 32
conjunction (AND) operator (&)
114
conjunctions, in search 195, 196
constants 106—107
as expressions 19
Continue button, in Syntax Error
window 73
control buttons, variables, and 21
control-of-flow statements 28
control scrollable areas, variables
and 21
control thermometers, rulers, and
dials, variables and 21
COPY ARRAY command 87, 358
Cos function 344
counters, 33
in For loops 121
Count fields function 318

Count files function 318
Count parameters function 369
C_PICTURE 381, 382
C_POINTER 381, 382
C_REAL 381, 382
Create document function 299-300
CREATE EMPTY SET command
276
create-file dialog box 299
CREATE RECORD command
208-209
CREATE RELATED ONE command
223
CREATE SET command 276
CREATE SUBRECORD command
227-228
C_TEXT 381, 382
C_TIME 381, 382
curly braces ({ })
as array reference 101
in subroutines 57
versions 1.0 vs. 2.0 376
Current date function 335
Current user function 316
current record, changing during data
entry 140-141
Current time function 338
custom menus 61-63, 258
equivalent commands 69
for master procedure 54
User environment vs. 64—66
Custom search dialog box 243
custom windows 248

D

data addition operator 18

data attributes, setting 154—157

database applications. See
applications

databases
building applications for 13
structure commands 316-323

data buffers, flushing 323

data constants 107



data entry
commands for 140-158
execution cycles in 46, 48—49
scripts and 38
data entry areas, using 149-154
data exporting 212-213
data formats, variables and 21
data importing 213-214
data management 184-191
for old data 224-225
data objects, getting information on
369-371
data types 16-17, 104-105
See also specific types
converting 105
in expressions 19
data validation, variables and 21
date comparison operators 112
date data type 16, 104
date expression 19, 20
Date function 335
date functions 335-337
date operators 110
date variables 21
Day of function 337
Day number function 336
Debugger 72, 73-78
development role of 12
expressions in 19
debugging 72-78
Debug window 73, 74
Dec function 340
DEFAULT FILE command 90, 69,
87, 134-136
procedure example using 27-28
Default message window 244
defaults
for exporting text 213
setting 134138
DELETE DOCUMENT command
302
DELETE ELEMENT command 359
DELETE RECORD command 211
DELETE SELECTION command
187

Delete string function 330
DELETE SUBRECORD command
228
Design environment
arrays and 41
development role of 12
layout specifications in 136
Menu editor 61-62
Procedure editor 62—63
design errors 72
development 12
DIALOG commands 242
dials 43
variables and 24
DIFFERENCE commands 279-280
DISABLE BUTTON command
235-236, 89
DISABLE ITEM command 260
Disjunction (OR) operator 114
DISPLAY RECORD command 146
DISPLAY SELECTION command
143-146
execution cycle 51
division operator (/) 18, 109
document reference 299
documents
exporting or importing with
212-214
opening 306-308
working with 298-302
Document system variable 298,
383
dollar sign ($) 23
DUPLICATE RECORD command
209
During function 179-180
During phase 46, 47
in data entry 48
DISPLAY SELECTION and 51
external areas and 44
in included layout 49, 50
for layout reports 52
MODIFY SELECTION and 51
in output layout 50

INDEX

E

EDIT ACCESS command 315
Edit button
in Debug window 74
in Syntax Error window 73
Edit menu, 257
File menu 257
Else statements 30-31. See also
If...Else..End if structure; Case
of...Else...End case structure
ENABLE BUTTON command 89,
235-236
ENABLE ITEM command 260
End if statements 28, 30-31-
procedure example using 28
End selection function 191
End for statement 33, 34
End subselection function 232
end value, in For loop 121
End while statement 32, 34
enterable or not enterable, variables
and 21
equality operator (=) 111-113
ERASE WINDOW command 246
error messages 387-391
error procedure 365-366
errors, types of 72
Error system variable 384
event procedure 366-368
Except (#), in searching 195, 196
exclusive superimposition (&) 115
EXECUTE command 364
execution cycle 10, 37, 46-52
commands controlling 363-367
general rules 48
monitoring 178-182
scripts and 38
testing 118
Exp function 340
exponentiation operator (*) 109
EXPORT DIF command 212-213
EXPORT SYLK command 212-213
EXPORT TEXT command 69,
212-213

INDEX 399



400

expressions 19-20
constants 106-107
data types 104-105
evaluating 75-76
expression types 19
external areas 44
external procedures 26, 26, 44
object identifiers with 102

F

False function 349
FIELD ATTRIBUTES command
322-323
Field function 321, 90
Fieldname function 319-320
field names 99
fields
pointers to 87, 90, 90
script example for 9
subfiles as 99
field type, data types and 17
File function 90, 320
Filename function 319
filenames 98
file procedures 7, 10, 26, 26, 36
file relations 215-224
files
pointers to 87, 90
read-only/write-only 286, 292
specifying layouts for 136-138
FIRST PAGE command 147
FIRST RECORD command 188
FIRST SUBRECORD command
230
FldDelimit system variable 384
FLUSH BUFFERS command 323
Flush system variable, versions 1.0
vs. 2.0 377
FONT command 237
FONT SIZE command 237
FONT STYLE command 238
For loop 33-34, 121
with array pointer 91
FORM FEED command 169
formulas. See expressions

4th DIMENSION language
components of 16-24
traditional language vs. 6
4th DIMENSION version 1.0
375-379
function names 102
functions 326-349
Abs 339-340
After 180

Append document 300-301

Arctan 344

Ascii 333

Average 345, 346

Before 178

Before selection 190-191

Before subselection 231-232

Change string 328-329
Char 334

Cos 344

Count fields 318
Count files 318

Count parameters 369
Create document 299-300
Current date 335
Current user 316
Current time 338

date 335-337

Date 335

Day number 336

Day of 337

Dec 340

defined 57

Delete string 330
During 179-180

End selection 191
End subselection 232
Exp 340

False 349

Field 90, 321
Fieldname 319-320
File 90, 320

Filename 319

Get pointer 93, 370

In break 182

In footer 182

In header 181

Insert string 329

Int 340-341

Isin set 282

Is a variable 369-370
Last area 152

Layout page 148

Length 57, 327

Level 182

Locked 290

Log 341

logical 349

Lowercase 331
mathematical 339-343
Max 345, 346

Menu selected 261

Min 345, 347

Modified 152

Month of 337

Not 349

Num 341-342

object identifiers with 102
Old 224

Open document 300-301
Position 328

Printing page 167

in procedures 28
Random 342

Record number 267
Records in file 185
Records in selection 185
Records in set 282-283
Records in subselection 229
Replace string 330-331
Request 241

Round 343

Screen height 255
Screen width 255
Selected record number 268
Semaphore 292-293
Sequence number 270-271
Sin 344

Size of array 360
statistical 345-348

Std deviation 348

string 326-334

String 332-333



subroutines as 57
Substring 327-328
Subtotal 160, 166
Sum 345, 347
Sum squares 348
Tan 345

time 338-339
Time 338

Time string 339
trigonometric 344-345
True 349

Trunc 343

Type 371
Undefined 354
Up4 57
Uppercase 331
Variance 348
Year of 337

G

GET HIGHLIGHT command
149-150
Get pointer function 93, 370
global procedures 7, 11, 26, 54-58
See also subroutines
arrays in 41
example of 27
global variables 23
naming 100
system variables and 24
GOTO AREA command 151
GOTO RECORD command 268
GOTO SELECTED RECORD
command 268-269
GOTO XY command 246
graph areas 44
GRAPH command 173-174
GRAPH FILE command 69,
176177
graphing 172-177
graph legends, versions 1.0 vs. 2.0
377
GRAPH SETTINGS command 175
greater than or equal to (>=)
111-113
greater than operator (>) 111-113

H

Header phase 46

Highlight button 40

HIGHLIGHT TEXT command
150-151

horizontal concatenation (+) 115

horizontal move (+) 115

horizontal scaling (*+) 115

identifiers 98—103
If...Else...End if structure 29, 30,
117 '
with pointers 89
If...End if structure
with arrays 83
in setting buttons 92-93
If statement 28
procedure example using 28
ImageWriter 168—169
IMPORT DIF command 213-214
IMPORT SYLK command 213-214
IMPORT TEXT command 69,
213-214
In break function 182
In Break phase 46, 47
for layout reports 52
included layouts, execution cycle
49-50
inclusive superimposition (1), 115
increments, in For loops 121
inequality operator, 111-113
In footer function 182
In Footer phase 46, 47
for layout reports 52
In header function 181
In Header phase 47
DISPLAY SELECTION and 51
for layout reports 52
MODIFY SELECTION and 51
in output layout 50
INPUT LAYOUT command 69, 137
input layouts, setting data attributes
for 154-157
INSERT ELEMENT command 358

INDEX -

Insert string function 329

interface objects, scripts and 38—44

Interpreter, development role of 12

interrupt procedures, for serial port
309

INTERSECTION command
280-281

Int function 340-341

INVERT BACKGROUND command
151

Invisible button 40

invoice database, transaction
example 294-297

Is in set function 282

Is a variable function 369-370

K
KeyCode system variable 367, 384

L

Label editor 170-171

language definition 98-121

LaserWriter 168—-169

Last area function 152

LAST PAGE command 147

LAST RECORD command 189

LAST SUBRECORD command 230

layout areas, using 149-154

Layout editor, grouped arrays in
85-86

layout execution cycle. See
execution cycle

layout management commands
157-158

layout menu bars 258

layout names 101

layout objects
managing 234-238
scripts and 7, 8

layout object variables 24

Layout page function 148

layout pages, managing 146-148

layout procedures 7, 10, 26, 36-37
arrays in 41

layout reports, execution cycle 52

INDEX 401



402

layouts 10, 36
default 136-138
exporting records through 51
importing records through 52
included, execution cycles for
49-50
special management commands
157-158
Length function 327
in subroutine 57
less than (<) 111-113
less than or equal to (<=) 111-113
Level function 182
line of code 27
line graphs 172
Lists editor 63
LIST TO ARRAY command 41, 81,
83-84, 360
LOAD RECORD command 291
LOAD SET command 284
LOAD VARIABLE command 353
local variables 22-23
in loops 34
naming 100
Locked function 290
locked records 285, 287
LockedSet system set 276
Log function 341
logical or Boolean values 16, 28
logical functions 349
logical operators 114
logic errors 72
longint division operator (\) 109
loops, for loading unlocked records
288-289
loop structures 32-34
Lowercase function 331

M

Macintosh ASCII data 303
Macintosh error messages 390-391
master procedures 11, 54, 257
mathematical functions 339-343
Max function 345, 346

MENU BAR command 259

menu bars, creating 257

Menu editor
for custom menus 61-63
for master procedure 54
menu items
commands vs. 69
global procedures and 11
menus
components of 256-258
managing 256-261
master procedures called from
54
Menu selected function 261
MERGE SELECTION command
188
MESSAGE command 243-245
messages
commands for displaying
238-247
Semaphore function 292-293
MESSAGES OFF command 192,
246247
MESSAGES ON command
246-247
Min function 345, 347
modal window 250
modem transmission. See serial port
Modified function 152
Modifiers system variable 384, 367
MODIFY RECORD command 69,
141-143
MODIFY SELECTION command
69, 143-146
execution cycle 51
MODIFY SUBRECORD command
226-227
modularizing code 56
modulo operator (%) 109
Month of function 337
MouseDown system variable 367,
384
MS-DOS ASCII data 303
multiplication operator (¥) 18, 109
multi-user databases
managing 285-293
Sequence number in 271

multi-user environment
LockedSet system in 276
managing access in 315-316

N

naming conflicts 103

naming conventions 98-103

networks. See multi-user databases;
multi-user environment

NEXT PAGE command 147

NEXT RECORD command
189-190

NEXT SUBRECORD command
231

Not function 349

No Trace button, in Debug window
74

NO TRACE command 365

numbered records 264-270

numeric comparison operators 112

numeric constants 106

numeric data type 16, 104

numeric expression 19, 20

Numeric Indirection 376

numeric operators 18, 109

numeric variables 21
counters 33

Num function 341-342

o

Object Definition dialog box 39

object identifiers 98-103
conventions summarized 103
naming conflicts 103

Object Type pop-up menu 39

OK system variable 24, 383

Old function 224

OLD RELATED MANY command
225

OLD RELATED ONE command
225

ONE RECORD SELECT command
272

ON ERR CALL command 73,
365-366
procedure 297



ON EVENT CALL command
366-368

ON SERIAL PORT CALL command
309

Open document function 300-301

open-file dialog box 300

OPEN WINDOW command
253-254

operators 18, 108-116
with expressions 19
precedence with 108

Option key
in Debug window 75, 76
for user interrupt 72

OR (I), in searching 195, 196

OR operator (1) 114

OUTPUT LAYOUT command 69,
138
in application 64, 66, 67, 68

P
packet

defined 298

sending and receiving 302-305
page commands 146-148

PAGE SETUP command 169 ¥

parameter passing 56-57
to commands 131
counting 369
identifiers in 102
local variables and 24
with pointers 93
parameters (arguments)
for commands 129-132
defined 27
testing data type of 371
types of 132
parentheses, versions 1.0 vs. 2.0
377
Password Access editor 58
passwords, managing 315-316
password system, tracing and 73
PC-DOS ASCII data 303
phase 46
picture data type 16, 105
picture expressions 19, 20

picture graphs 172
picture operators 115-116
picture variables 21
pie graphs 172
PLAY command 262
plus sign (+)
addition operator 18, 109
concatenation operator 18, 109
horizontal concatenation 115
horizontal move 115
pointer comparison operators 113
pointer data type 16
pointer expressions 19, 20
pointers 87-94
examples using 80, 88—-89
getting to a variable 370
passing to procedures 93
to pointers 94
setting buttons using 92-93
pointer variables 21
POP RECORD command 272
pop-up menus 39, 4143
arrays as 82
variables and 21
Position function 328
precedence 108
PREVIOUS PAGE command 148
PREVIOUS RECORD command
190
PREVIOUS SUBRECORD
command 231
printer dialog boxes 66, 68,
168-169
Print from File menu 66
Printing page function 167
printing reports 159-171
canceling 160
to screen 160
PRINT LABEL command 69, 159,
160, 170-171
PRINT LAYOUT command 159,
160, 167-168
PRINT SELECTION command 69,
159, 163-164
in application 66, 67, 68

INDEX .

PRINT SETTINGS command
168-169
Procedure editor 62-63
development role of 12
typing error caught by 72
procedure names 102
procedure parameters, local
variables and 24
procedures 7, 26-34.
See also scripts called from
procedures
See subroutines
controlling flow of 117-121,
363-367
control structures 29-34
errors in 72-78
executing or running 26
ON ERR CALL 297
passing pointers to 93
startup 58
terminology used in 27-28
types of, 7, 26. See also specific
ypes
proportional column graphs 172
PUSH RECORD command 271

Q

Quick Report editor 162
QUIT 4D command 363

R

Radio buttons 40
setting with pointers 92-93
Radio picture 40
Random function 342
READ ONLY command 292
read-only states 286
READ WRITE command 292
RecDelimit system variable 384
RECEIVE BUFFER command 311
RECEIVE PACKET command
304-305
RECEIVE RECORD command 312
RECEIVE VARIABLE command
313
Record number function 267

INDEX 403



404

records
changing during data entry
140-146
incomplete 153-154
locked 285, 287
managing 208-211
multi-user database
management 285-293
numbered 264-270
sending or receiving 311-312
sets of 272-284
Records in file function 185
Records in selection function 185
Records in set function 282-283
Records in subselection function
229
record stack, using 271-272
REDRAW command 158
REJECT command 153-154
RELATE MANY command 221-223
RELATE ONE command 218-221
relating files 215-224
versions 1.0 vs. 2.0 375
Repeat loop 33, 34, 120
repetition operator (*) 109
Replace string function 330-331
REPORT command 69, 159,
162-163
reports
printing 159-171
scripts and 44
Request dialog box 241
Request function 241
local variables and, 23-24
resize operator (¥) 115
reverse apostrophe (*), as comment
mark 28
Round function 343
rulers 43

S

SANE (Standard Apple Numeric
Environment) 339
NaN messages 391

SAVE OLD RELATED ONE
command 225

SAVE RECORD command 210
SAVE RELATED ONE command
224
SAVE SET command 283
SAVE VARIABLE command 352
scatter graphs 172
screen, printing report to 160
Screen height function 255
Screen width function 255
scripts 7-9, 36, 37
data entry and 38
execution cycle and 46
layout procedures vs. 10
as procedures 26, 26
reports and 44
using 37-38
scrollable areas 41-43
arrays as 82
grouped 85-86
scroll bars 251
search argument, specifying 195
SEARCH BY FORMULA command
69, 192, 200-201
SEARCH BY INDEX command
192, 201-203
SEARCH BY LAYOUT command
69, 193
SEARCH command 5, 69, 192,
194-199
in application 64-65, 67
procedure example using 28
search comparison symbols 196
search comparator (<) 196
search conjunction (#) 195, 196
Search editor 65, 67
Search by Formula dialog box,
expressions in 19

- Search by Index dialog box 202

searching 192-203

SEARCH SELECTION command
192, 200-201

SEARCH SUBRECORDS command
192, 203

Selected record number function
268

SELECTION TO ARRAY command
81, 85-86, 361-362

Semaphore function 292-293

semicolon (;), with parameters 56

SEND PACKET command 302-303

SEND RECORD command
311-312

SEND VARIABLE command 313

Sequence number function
270-271

sequence structure 29

serial port, communication with
298, 302-314

SET CHANNEL command 306-308

SET CHOICE LIST command 155

SET COLOR command 236

SET ENTERABLE command 156

SET FILTER command 155

SET FONT command 90

SET FORMAT command 156-157

sets of records 102, 272-284

SET TIMEOUT command 310

SET WINDOW TITLE command
256

Sin function 344

Size of array function 360

size box 252

SORT ARRAY command 86, 91,
357

SORT BY FORMULA command
204-205

Sort dialog box 65, 68, 205

SORT FILE command 69, 206-207

sorting 204-207

SORT SELECTION command 69,
205-206
in application 64, 65, 67, 68

SORT SUBSELECTION command
207

sound, commands for 262

stacked column graphs 172

START TRANSACTION command
297

startup procedure 257
arrays in 41

startup procedures 58



start value, in For loop 121
statements 7
sequence structure 29
statistical functions 345-348
Std deviation function 348
Step button, in Debug window 74,
77
stepping 77
Stop button, for stopping search
192
Stop Printing button 160
string comparison operators 111
string constants 106
string data type 16, 104
string expressions 19, 20
String function 332-333
string functions 326-334
string operators 18, 109
string variables 21
structure commands 316-323
subfield names 100
subfiles
execution cycle 49
naming 99
subrecords, managing 226-232
subroutines 11, 54, 55-57
as functions 57
passing parameters to 56-57
Substring function 327-328
Subtotal function 160, 166
subtraction operator (-) 18, 109
Sum function 345, 347
Sum squares function 348
support tools 12
syntax errors 72
Syntax Error window 72-73
system variables 24, 383-384
ON EVENT CALL and 367

T
Tan function 345
text document
exporting to 212-213
importing from 213-214

thermometer, 43
in searching 192
variables and 24
time comparison operators 113
time constants 107
time data type 16, 105
time expression 19, 20
time functions 338-339
time operators 107
Time string function 339
time variables 21
Trace button, in Syntax Error
window 73
TRACE command 73, 365
tracing 73-78
endless loop 33
transactions 294-297
transmitting data 302-314
trigonometric functions 344-345
True function 349
Trunc function 343
truth tables 114
Type function 371
typing errors 72

U
Undefined function 354
UNION command 281-282
UNLOAD RECORD command 291
Until statement, in Repeat loop 33,
34
Up4 function 57
uppercase, script for changing to 9
Uppercase function 331
USE ASCII MAP command 69, 314
User environment
application vs. 64-66
menu items vs. commands 69
role of 12, 13, 60
window in 248
user interface, scripts and 7
user interface commands 234-262
user interrupt 72
UserSet system set 275
USE SET command 277

INDEX

\'}

VALIDATE TRANSACTION
command 297
variable indirection, versions 1.0 vs.
2.0 375
variables 21-24
See also global variables; local
variables
assigning data to 22-23
buttons and 39
creating 22
data types 104-105
managing 352-354
naming 100
pointers to 87, 88—89
sending or receiving 313
testing for 369-3700
Variance function 348
vertical concatenation (/) 115
vertical move (/) 115
vertical scaling (*/) 115
View button, in Debug window 74

w
While loop 32-33, 34, 119
windows
erasing 246
managing 247-256
message 244-246
types of 248-249
window titles, setting 252, 256
write-only states 286
ild card @ 196
Y

Year of function 337

Y4

zoom box 252

INDEX 405



$Z[ Pago 57

406



Index to the Commands

A

ABORT 363

Abs (number) > Number 339

ACCEPT 157

ACCUMULATE (datal {; ...; dataN}) 165

ADD RECORD ({file}; {*}) 141

ADD SUBRECORD (subfile; layout; {*}) 226

ADD TO SET ({file}; set) 278 ‘

After > Boolean 180

ALERT (message) 239

ALL RECORDS ({file}) 184

ALL SUBRECORDS (subfile) 228

Append document (document; {type}) > Docref 300
APPLY TO SELECTION ({file}; statement) 186

APPLY TO SUBSELECTION (subfile; statement) 229
Arctan (number) > Number 344

ARRAY BOOLEAN (array name; sizel; {size2}) 355
ARRAY DATE (array name; sizel; {size2}) 355
ARRAY INTEGER (array name; sizel; {size2}) 355
ARRAY LONGINT (array name; sizel; {size2}) 355
ARRAY PICTURE (array name; sizel; {size2}) 355
ARRAY POINTER (array name; sizel; {size2}) 355
ARRAY REAL (array name; sizel; {size2}) 355
ARRAY STRING (string length; array name; sizel; {size2}) 355
ARRAY TEXT (array name; sizel; {size2}) 355
ARRAY TO LIST (array; list; {linked array}) 361
ARRAY TO SELECTION (arrayl; fieldl {;...; arrayN; fieldN}) 362
Ascii (character) > Number 333

Average (series) > Number 346

B

BEEP 262

Before > Boolean 178

Before selection ({file}) > Boolean 190
Before subselection (subfile) > Boolean 231
BREAK LEVEL (level; {page break}) 164
BUTTON TEXT (button; button text) 234

INDEX TO THE COMMANDS

407



C

C_BOOLEAN (variablel {;...; variableN}) 380
C_DATE (variablel {;...; variableN}) 38¢
C_INTEGER (variablel {;...; variableN}) 381
C_LONGINT (variablel {;...; variableN}) 381
C_PICTURE (variablel {;...; variableN}) 381
C_POINTER (variablel {;...; variableN}) 381
C_REAL (variablel {;...; variableN}) 381
C_STRING (size; variablel {;...; variableN}) 38
C_TEXT (variablel {;...; variableN}) 381
C_TIME (variablel {;...; variableN}) 381 -
CANCEL 158

CANCEL TRANSACTION 297

Case of...: (case)...Else...End case 118
CHANGE ACCESS 315

CHANGE PASSWORD (password) 315
Change string (source; what; where) > String 328
Char (ASCII code) > String (1 character) 334
CHECK ITEM (menu; menu item; mark) 259
CLEAR SEMAPHORE (semaphore) 293
CLEAR SET (ser) 278

CLEAR VARIABLE (variable) 353

CLOSE DOCUMENT (document ref) 301
CLOSE WINDOW 255

CONFIRM (message) 240

COPY ARRAY (from; to) 358

Cos (number) > Number 344

Count fields (file number) > Number 318
Count fields (file pointer) > Number 318
Count files > Number 318

Count parameters > Number 369

Create document (document; {type}) > Docref 299
CREATE EMPTY SET ({file}; set) 276
CREATE RECORD ({file}) 208

CREATE RELATED ONE (field) 223

CREATE SET ({file}; set) 276

CREATE SUBRECORD (subfile) 227

Current date > Date 335

Currenttime > Time 338

Currentuser > String 316

408



D

Date (date string) > Date 335

Day number (date) > Number 336

Day of (date) > Number 337

Dec (number) > Number 340

DEFAULT FILE (file) 134

DELETE DOCUMENT (document) 302

DELETE ELEMENT (array; where; {num of elements}) 359
DELETE RECORD ({file}) 211

DELETE SELECTION ({file}) 187

Delete string (source; where; number of chars): > String 330
DELETE SUBRECORD (subfile) 228 '
DIALOG ({file}; layout) 242

DIFFERENCE (setl; set2; result set) 279

DISABLE BUTTON (button) 235

DISABLE ITEM (menu; menu item) 260

DISPLAY RECORD ({file}) 146

DISPLAY SELECTION ({file}; {*}) 143

DUPLICATE RECORD ({file}) 209

During > Boolean 179

E

EDIT ACCESS 315

ENABLE BUTTON (button) 235
ENABLE ITEM (menu; menu item) 260
End selection ({file}) = Boolean 191
End subselection (subfile) > Boolean 232
ERASE WINDOW 246

EXECUTE (statement) 364

Exp (numbery > Number 340
EXPORT DIF ({file}; document) 212
EXPORT SYLK ({file}; document) 212
EXPORT TEXT ({file}; document) 212

F
False > Boolean (FALSE) 349

Field (field pointer) > Number 321

Field (file number; field number) - Pointer 321

FIELD ATTRIBUTES (field pointer; type; {length}; {index}) 322

FIELD ATTRIBUTES (file number; field number; type; {length}; {index}) 322
Fieldname (field pointer) > String 319

Fieldname (file number; field number) > String 319

INDEX TO THE COMMANDS 409



File (field pointer) > Number 320

File (file number) - Pointer 320

File (file pointer) > Number 320

Filename (file number) > String 319

Filename (file pointer) > String 319

Find in array (array; value; {start}) > Number 359
FIRST PAGE 147

FIRST RECORD ({file}) 188

FIRST SUBRECORD (subfile) 230

FLUSH BUFFERS 323

FONT (object; font name) 237

FONT SIZE (object; size) 237

FONT STYLE (object; style number) 238

For (counter; start value; end value; {increment})...End for 121
FORM FEED 169

G

GET HIGHLIGHT (text object; first; last) 149

Get pointer (name) > Pointer 370

GOTO AREA (data entry area) 151

GOTO PAGE (page number) 148

GOTO RECORD ({file}; record) 268

GOTO SELECTED RECORD ({file}; record) 268

GOTO XY (x;y) 246

GRAPH (graph name; graph number; x labels; y elementsl {;...; y elements8}) 173
GRAPH FILE ({file}) 176

GRAPH FILE ({file}; graph number; x field, y fieldl {;...; y field8}) 176

GRAPH SETTINGS (g; xmin; xmax; ymin; ymax; xprop; xgrid, ygrid, titlel {;...; title8}) 175

H
HIGHLIGHT TEXT (text object; first; last) 150

If (Boolean)...Else...End if 117

IMPORT DIF ({file}; document) 213

IMPORT SYLK ({file}; document) 213

IMPORT TEXT ({file}; document) 213

Inbreak > Boolean 182

In footer > Boolean 182

In header > Boolean 181

INPUT LAYOUT ({file}; layout) 137

INSERT ELEMENT (array; where; {num of elements}) 358

410



Insert string (source; what; where) > String 329
Int (number) > Number 340

INTERSECTION (setl; set2; result set) 280
INVERT BACKGROUND (text variable) 151

Is a variable (parameter) > Boolean 369

Isin set (set) > Boolean 282

L

Lastarea > Pointer 152

LAST PAGE 147

LAST RECORD ({file}) 189

LAST SUBRECORD (subfile) 230

Layout page > Number 148

Length (string) > Number 327

Level - Number 182

LIST TO ARRAY (list; array; {linked array}) 360
LOAD RECORD ({file}) 291

LOAD SET ({file}; set; document) 284

LOAD VARIABLE (document; variablel {;...; variableN}) 353
Locked ({file}) > Boolean 290

Log (number) > Number 341

Lowercase (string) > String 331

M

Max (series) > Number 346

MENU BAR (menu bar number) 259

Menu selected > Number 261

MERGE SELECTION ({file}; {document type}) 188
MESSAGE (message) 243

MESSAGES OFF 246

MESSAGES ON 246

Min (series) > Number 347

Modified (field) > Boolean 152

MODIFY RECORD ({file}; {*}) 141

MODIFY SELECTION ({file}; {*}) 143

MODIFY SUBRECORD (subfile; layout; {*}) 226
Month of (date) > Number 337

N

NEXT PAGE 147
NEXT RECORD ({file}) 189
NEXT SUBRECORD (subfile) 231

INDEX TO THE COMMANDS 411



NO TRACE 365

Not (Boolean) > Boolean 349

Num (Boolean) > Number (O or 1) 341
Num (string) > Number 341

(o)

Old (field)y > String, number, date, or time 224

OLD RELATED MANY (field) 225

OLD RELATED ONE (field) 225

ONE RECORD SELECT ({file}) 272

ON ERR CALL (error procedure) 365

ON EVENT CALL (event procedure) 366

ON SERIAL PORT CALL (serial procedure) 309

Open document (document; {type}) > Docref 300

OPEN WINDOW (left; top; right; bottom; {type}; {window title}) 253
OUTPUT LAYOUT ({file}; layout) 138

P

PAGE SETUP ({file}; layout) 169
PLAY (sound name; {channel}) 262
POP RECORD ({file}) 272

Position (find; string) > Number 328
PREVIOUS PAGE 148

PREVIOUS RECORD ({file}) 190
PREVIOUS SUBRECORD (subfile) 231
PRINT LABEL ({file}; {*}) 170

PRINT LABEL ({file}; {label document}) 170
PRINT LAYOUT ({file}; layout) 167
PRINT SELECTION ({file}; {*}) 163
PRINT SETTINGS 168

Printing page > Number 167

PUSH RECORD ({file}) 271

Q
QUIT 4D 363

R

Random > Number 342

READ ONLY ({file}) 292

READ WRITE ({file}) 292

RECEIVE BUFFER (receive var) 311

RECEIVE PACKET ({document ref}; receive var; number of char) 304

412



RECEIVE PACKET ({document ref}; receive var; stop char) 304
RECEIVE RECORD ({file}) 312

RECEIVE VARIABLE (variable) 313

Record number ({file}) > Number 267

Records in file ({file}) > Number 185

Records in selection ({file}) > Number 185

Records in set (set) > Number 282

Records in subselection (subfile) > Number 229

REDRAW (included file) 158

REJECT 153

REJECT (data entry area) 153

RELATE MANY (field) 221

RELATE MANY ({file}) 221

RELATE ONE (field; {choice field}) 218

RELATE ONE ({file}) 218

Repeat...Until (Boolean) 120

Replace string (source; old string; new string; {how many}) > String 330
REPORT ({file}; document; {*}) 162

Request (message; {default response}) > String 241

Round (number; places) > Number 343

S

SAVE OLD RELATED ONE (field) 225

SAVE RECORD ({file}) 210

SAVE RELATED ONE (field) 224

SAVE SET (set; document) 283

SAVE VARIABLE (document; variablel {;...; variableN}) 352
Screen height > Number 255

Screen width > Number 255

SEARCH ({file}) 194

SEARCH ({file}; search argument; {*}) 194

SEARCH BY FORMULA ({file}; {search formula}) 200

SEARCH BY INDEX ({search argumentl} {;...; search argumentN}) 201
SEARCH BY LAYOUT ({file}; {layout}) 193

SEARCH SELECTION ({file}; {search formula}) 200

SEARCH SUBRECORDS (subfile; search formula) 203

Selected record number ({file}) > Number 268

SELECTION TO ARRAY (fieldl; arrayl {;...; fieldN; arrayN}) 361
Semaphore (semaphore) > Boolean 292

SEND PACKET ({document ref}; packet) 302

SEND RECORD ({file}) 311

SEND VARIABLE (variable) 313

INDEX TO THE COMMANDS 413



Sequence number ({file}) > Number 270

SET CHANNEL (operation; {document}) 306

SET CHANNEL (port; settings) 306

SET CHOICE LIST (text object; list) 155

SET COLOR (object; color) 236

SET ENTERABLE (text object; TRUE or FALSE) 156

SET FILTER (text object; filter) 155

SET FORMAT (text object; format) 156

SET TIMEOUT (seconds) 310

SET WINDOW TITLE (title) 256

Sin (number) > Number 344

Size of array (array) > Number 360

SORT ARRAY (arrayl {;...; arrayN}; {direction}) 357

SORT BY FORMULA (file; expressionl; {directionl} {;...; expressionN; {directionN}}) 204
SORT FILE (file; fieldl; {directionl} {;...; fieldN; {directionN}}) 206

SORT SELECTION ({file}) 205

SORT SELECTION ({file}; fieldl; {directionl} {;...; fieldN; {directionN}}) 205
SORT SUBSELECTION (subfile; subfieldl; {directionl} {;...; subfieldN; {directionN}}) 207
START TRANSACTION 297

Std deviation (series) > Number 348

String (date; {format}) > String 332

String (number; {format}) > String 332

String (time; {format}) > String 332

Substring (source; first char; {number of chars}) > String 327

Subtotal (data) > Number 166

Sum (series) > Number 347

Sum squares (series) > Number 348

T

Tan (number) > Number 345

Time (time string) > Time 338

Time string (seconds) > String 339
TRACE 365

True > Boolean (TRUE) 349

Trunc (number; places) > Number 343
Type (parameter) > Number 371

U

Undefined (variable) > Boolean 354
UNION (setl; set2; result set) 281
UNLOAD RECORD ({file}) 291
Uppercase (string) > String 331

414



USE ASCII MAP (*; 1/0) 314
USE ASCII MAP (mapname; 1/10) 314
USE SET (ser) 277

V

VALIDATE TRANSACTION 297
Variance (series) > Number 348

w
While (Boolean)...End while 119

Y
Year of (date) > Number 337

INDEX TO THE COMMANDS 415



Frpors |
;Qé'f' é_l_ﬁ_lj:l (\a‘mwtq & -
(?'gucl‘;%‘ This sooms - he @ edlles: /ﬂp/v‘ atses dhow 2™
\ ‘ 4"'9,';, Pocsinelr
z S ¢ T 2dlet C Lkt VLZ‘L" N
paés;:(e , /e /v fw/a.

L((c(.’ O&L US;A/A @p Tﬁn[ s ﬂl) j mo).b” 72)(6 r/'//c_
% r 8
Hoon (Sasics Dabe Dungge) P Freeel [

N’f‘r _SQ?\;ALI.J‘ ?ﬂ/ﬂﬁﬁa ‘é' 7 | | NLz/Af 1401, ﬁu(’! 26("
ton! (bppect — \ AeCed 2n [z
?%Vl . P4 - J-?f?/;a(‘;;fpfue//),k(j

\

T

—

e .

. ,i‘»\‘w e e - B
9 ﬁ[&.,z DL ( 0?6»/)404 Béib? 'f over wsed | /e apcuoc(/“‘.‘( 2
L Dpew )A(J"\ '\f’ /C—' Mumhed of Come's

/’ / lJr/[ Y Rhﬁ«}u{)‘ -’( 4/’/!'//(‘((;4)” "f//;)/,(déflﬂ

' " Caashs

: —————

——

416





