The Macintosh 68(@@ Development System

User's Guide

If you have any comments or suggestions regarding either the
Macintosh 68000 Development System software or this documentation,
please send comments to

Macintosh Development Tools
Apple Computer, Inc.

Mail Stop 2T

20525 Mariani Avenue
Cupertino, CA 95014

Your input is extremely valuable in helping us to provide you with
the best development tools possible.

Table of Contents iii

Table of Contents

Chapter 1 - Introduction

3 About This Chapter

4 Overview

6 File Naming Conventions
7 Editor

8 The Assembler

9 The Linker

19 The Executive

11 A Simple Sample Session
12 The Debuggers

12 MacDB

14 MacsBug

15 The Resource Compiler
16 System Definition Files

Chapter 2 - The Editor

19 About This Chapter

19 Files Required

19 File Naming Conventions
19 Invoking the Editor

2¢ About the Editor

20 Editor Documents

21 Editing

21 Tabs and Alignment

22 Document Format

22 Printing Documents

iv

Macintosh 68000 Development System

Chapter 3 - The Assembler

25
25
25
26
26
26

About This Chapter
Files Required
File Naming Conventions
Invoking the Assembler
Using the Assembler
Assembler Source Files
Selecting Listing Options
Selecting a Source File
Types of Source Files
In Search of Source Files
What the Assembler Produces
Assembler Syntax
Labels
Current Program Location
Instructions
Comments
6800@ Instruction Syntax
Addressing Modes
Variants on 68@@@ Instructions
Code Optimization
Expressions
Numbers
Strings
Symbols
Operations
Precedence
Assembler Directives
Assembly Control Directives
INCLUDE
STRING_FORMAT
IF..ELSE. .ENDIF
MACRO
«MACRO/ .ENDM
END
+«DUMP
Symbol Definition Directives
EQU
SET
REG
.TRAP
Data Allocation Directives
DC
DS
DCB
<ALIGN
Linker Control Directives
XDEF
XREF
RESOURCE
Creating Packed Symbol Files
About Packed Symbol Files

Table of Contents

Chapter 4 — The Linker

49 About This Chapter

49 Files Required

49 File Naming Conventions

49 The Structure of a Macintosh Application
50 Invoking the Linker

50 The Linker Control File

50 Linker Commands

51 Setting the File's Type and Creator
52 Setting the Global Storage Area

52 Specifying the Output File

52 Adding Resources and Data to the Code
Chapter 5 — The Executive

57 About This Chapter

57 Files Required

57 File Naming Conventions

57 Invoking the Executive

57 The Executive Control File

58 Using the Executive

vi Macintosh 68000 Development System

Chapter 6 — The MacDB Debugger

61 About This Chapter

61 Setting Up MacDB

62 Theory of Operation
63 The MacDB Windows

64 Features of MacDB Windows
65 The Close Box

65 The Title Bar

65 The Start Box

65 The Anchor Box

65 The Align Box

66 The Scroll Arrows
66 The Scroll Bar

66 The Scroll Box

66 The Size Box

66 Values in Cells

66 Changing the Value in a Cell
67 Handy Hints

67 MacDB Menus

67 Debug Menu

67 128K/512K Mac

67 Heap Check On/Off
67 Wait

67 Quit

68 Run Menu

68 Trace

68 Proceed

68 Go Till

68 Go To

68 Trace. Into ROM
69 Bkpts Menu

69 Set

69 Clear

69 Clear All

69 Window Menu

69 New

69 Duplicate

70 Symbolic/Hex Address
70 Frozen/Thawed

70 Anchor/No Anchor
70 Title

71 Format Menu

71 Inst

71 Char

71 Word

71 Long

71 Pascal String

72 List

72 Search

72 A-Traps

73 MemBlock

Table of Contents vii

73 Symbols Menu

74 Value

74 Open and Purge
74 About Symbols

Chapter 7 — The MacsBug Debuggers

77 About This Chapter

77 About MacsBug

77 Setting Up MacsBug

78 MacsBug

78 MaxBug

78 TermBugA and TermBugB
78 LisaBug

78 Theory of Operation

79 Invoking MacsBug

80 Syntax of MacsBug Commands
8¢ Numbers

8¢ Text Literals

8¢ Symbols

81 Expressions

81 MacsBug Commands

81 Memory Commands

82 Register Commands

83 Control Commands

84 A-Trap Commands

86 Heap Zone Commands

88 Disassembler Commands
88 Miscellaneous Commands
89 Handy Hints

89 Stopping the Disk Drive
99 Using No-Ops

99 Using MacsBug with the Lisa Workshop

viii Macintosh 68000 Development System

Chapter 8 — The Resource Compiler

93 About This Chapter

93 About RMaker

93 RMaker Input Files

93 Naming the Resource File
94 Appending to an Existing Resource File
94 Adding Resources

95 Defined Resource Types
95 Syntax of RMaker Lines
96 ALRT

96 BNDL

96 CNTL

97 DITL

97 DLOG

98 FREF

98 MENU

98 PROC

98 STR

99 STR#

99 WIND

99 Creating Your Own Types
100 Using RMaker

191 Errors in the Input File

Table of Contents

Appendix A - Sample Program Listing

ix

195 The Window Sample Program
116 The Program's Resource File

Appendix B - System Traps

121 System Traps: Sorted by Name
126 System Traps: Sorted by Number

Appendix C - Error Messages

133 Assembler Error Messagess
135 Linker Error Messages
137 RMaker Error Messages

Appendix D - Quick Reference

141 System Overview

142 File Naming Conventions
143 Assembler Quick Reference
145 Linker Quick Reference
146 Serial Cable Connections
147 MacsBug Quick Reference
Glossary

151 Glossary

Index

159 Index

LT ri

(111 01 T

T TT 1Tl T

n

[T

Tl rrrt I

|

Chapter 1

Introduction

oo oo onnrrnnen

About This Chapter 3

About This Chapter

This chapter introduces you to the Macintosh 68(@@ Development System.
You should be familiar with the use of Macintosh: how to point, click,
and select. If you aren't, read Macintosh, your owner's guide. It
introduces you to the Finder, the application that manages your
documents, and to the basic methods for using a Macintosh application.

You should also be familiar with the assembly language of the Motorola
MC68@@@, the microprocessor used in the Macintosh. If you aren't, read
the M68P@@P 16/32-Bit Microprocessor Programmer's Reference Manual,
supplied with this package. For brevity, this manual will hereafter be
referred to as the 68¢@ Reference Manual. For the same reason, the
MC68@@P microprocessor will be referred to as the 63800@.

Programming the Macintosh in assembly language is not a simple task.
It requires detailed and thorough knowledge of the Macintosh. The
Inside Macintosh manual provides all the technical information
programmers need to create Macintosh applications. In places this
manual assumes you are familiar with certain aspects of the Macintosh.
Please refer to Inside Macintosh when you come across such passages.

To help you launch your Macintosh programming career, this development
system contains an application that displays a menu bar and a window,
and lets you edit within the window. A listing of the program, called
Window, is in an appendix; the source for the program is on disk. The
importance of this program cannot be over-stressed. It shows how to
initialize and use Macintosh ROM routines, how to support desk
accessories from your application, and how to support multiple windows
from an application. Sample desk accessories are also on the disk.

The following Inside Macintosh chapters are particularly helpful:

- Inside Macintosh: A Road Map. This chapter contains a sample
program similar to the Window program but easier to understand
since it is written in Pascal.

- Programming Macintosh Applications in Assembly Language. This
chapter explains the use of the Toolbox and Operating System
routines in the Macintosh. It describes how to pass parameters to
the routines, how to call the routines, how calls to the routines
are dispatched, how the routines return results, and which 680¢¢
registers you can safely use.

- The Structure of a Macintosh Application. This chapter is
especially important for proper interaction between the
application and the Finder.

- The Resource Manager: A Programmer's Guide.

- The Segment Loader: A Programmer's Guide.

4 Macintosh 68000 Development System

Overview

The Macintosh 68@@@ Development System includes two disks, named MDS1
and MDS2. These disks contain a host of useful applications and files.
To acquaint you with the Macintosh 68@@@ Development System, these
files are described below. MDS1 is the disk that should be placed in
the built-in drive when you start up the development system. In
general it contains the main applications provided with the system.

H———— M| =7 ——=
9 items 362K in disk 37K available
. .]
> @
Edit Asm Link Exec RMaker
Packngs MacDB Nubs Empty Folder System Folder 5
[

- Edit is the Editor. It is the application with which you enter
Assembler, Linker, Exec, and RMaker source files.

- Asm is the Assembler. It translates assembly-language source
files into relocatable modules that can be linked together into
one application.

- Link is the Linker. It connects modules produced by the Assembler
together into one application.

- Exec is the Executive. It automates and integrates assembling,
linking, and the adding of resources to your application.

- RMaker is the Resource Compiler. It uses the instructions in a
text file to create a resource file.

— PackSyms is an application that converts a symbol file into a
packed symbol file. The use of packed symbol files saves memory,

time, and disk space.

- MacDB Nubs is a folder. It contains small programs (Nubs) that
should be run on the same Macintosh as the program being debugged.

— System Folder and Empty Folder contain their usual files.

MDS2 contains debuggers, sample programs, and useful system definition

files.

Overview

(————

MIS2 ==—————

6 items

393K in disk

TK available

>

[] (] []

Empty Folder Sample Programs Debuggers
Trap Files Equ Files .D Files @

[

— Debuggers is a folder that contains several Debuggers, providing
various levels of assembly-language debugging tools

— Sample Programs is a folder that contains a sample program, some
sample desk accessories, a sample window definition procedure, and
their associated files. An example given later in this chapter
uses files from this folder.

Trap Files is a folder. The files in this folder assign trap
numbers to trap names. These trap names and numbers are listed in
an appendix. The traps are described in Inside Macintosh.

Equ Files is a folder. The files in this folder assign values to
the constants and absolute memory locations used by the system.
These constants are described in Inside Macintosh, and can help
you avoid using incorrect values in your applications.

'.D Files is a folder that contains packed versions of the files in
the Trap Files and Equ Files folders. These are the files you
will probably use with your application.

Empty Folder is devoid of the usual files.

6 Macintosh 68000 Development System

File Naming Conventions

Many files are used and created by the various applications in the
Macintosh 68@@@ Development System. A file naming convention helps you
and applications identify the creator and contents of otherwise similar
files. Each kind of file has a unique extension -- a period followed
by a few letters —— appended to the main part of its name. Thus,
different yet related files are logically associated because they have
the same base name. For example,

— Curve.Asm is an assembly-language source file.

= Curve.Err is a list of errors generated by the Assembler when it
assembles Curve.Asm.

A 1list of all the file extensions is given in the Quick Reference
appendix.

The development system is able to create three physically different
types of files: application files, text files, and binary files. These
three file types are designated by the following icons:

[, A
0001
10110
olall

Application Text File Binary File

When using the Macintosh, you generally don't need to worry about the
names of volumes. However, when using the Macintosh 68(@@ Development
System you must sometimes specify volume names. For example, Linker
control files list the files to be linked. Files mentioned by file
name only are taken from the volume that contains your Linker control
file. To specify another volume, use the form:

VolumeName : FileName

A colon separates the volume's name from the file's name.

(warning)
The development system uses a space to indicate the end
of a file name and a period to indicate a file's
extension. Avoid using these two characters in volume
names.

The Editor 7

The Editor

The Editor is used for entering text. Documents created by the Editor
are used as assembly-language source files, Linker control files,
Executive control files, and Resource Compiler input files.

The Editor doesn't provide any of the sophisticated text formatting
functions available with programs such as MacWrite. It does, however,
save text as documents of a type known as text-only files. These
documents can be shared with all other programs that use text-only
files or that let you paste text from the clipboard. For example,
documents created by the Editor can be "prettied up" using MacWrite.

Editor document names should be given the following extensions:

- .Asm to indicate the main source file for an assembly

.Files to indicate a file that contains a list of separate
assemblies to be performed

- .Link to indicate a Linker control file
- .Job to indicate an Executive control file
- R to indicate a Resource Compiler source file

The Editor is described in Chapter 2.

O

[

Assembly language
source files

Linker control
files

Edit Executive control
is used to files
create...

Resource Compiler
source files

Window .R

@<

] [

8 Macintosh 68000 Development System

The Assembler

The Assembler translates 68000 assembly-language source documents into
files containing relocatable code and symbol table information. Such
files are given the extension .Rel. .Rel files must be linked before
an executable object file is produced.

If errors occur during assembly, a list of the errors is placed in a
«Err file. If a listing of the file is requested, it's placed in a
.Lst file.
The Assembler has the following special features:
— Instructions can be grouped together into macros. Macros are
invoked by name, and they can be given strings as parameters.

Partial strings may be used within the macro.

= It modifies some instructions so that your program can call, jump
to, or branch to code in other relocatable segments.

- Conditional assembly instructions allow multiple versions of a
program to be generated from a single source.

The Assembler is described in Chapter 3.

[EE=——————————=— fAsm

Relocatable object
000l 000l ;
10110 10110 module with symbol
groll (oron table information
MacTraps.D Window Rel
IC'OC:FC: Listing of assembled
ololl files, if requested

—
ToolEqu.D Asm ‘n"indow.Lst
Y
List of errors

encountered during
Window.Asm Window Err assembly
Traps, Equates, and
source files are given
as input to the Assembler

@<

l)

The Linker 9

The Linker

The Linker combines a number of .Rel files, produced by the Assembler,
into an application file. An application's name has no extension. A

symbol table, which is primarily used by the Debugger, is placed into a
.Map file. If you request a Linker listing, it too is placed into the
.Map file.

The files to be linked together are specified in a Linker control file,
created by the Editor, that has the .Link extension. This file also

controls segmentation and listing of the program.

Errors encountered during linking are automatically written to a .LErr
file.

The Linker is described in Chapter 4.

[lLink

[

Relocatable object -
module with symbol 1011

Executable
table information olal object file
. ication!
Window Rel \indow (an application!)
Linker control b Symbol table

file. Specifies ¥ and listing,

listing on or off . . if requested
genore Window Link Link window Map

=)
=olp

Source file = Iy]
used if listing £ I;1st o]f. elzrors
is requested = rom linking

Window . Asm “Window LErr

] =

=[]

10 Macintosh 68000 Development System

The Executive

The Executive automates assembly, linking, and resource compilation.
Control files, known as .Job files, determine the sequence of
applications to be executed by the Executive.

Each command in an Executive control file specifies not only what
application is to be executed, but also what applications should be

used upon successful and unsuccessful completion of that application.

The Executive is described in Chapter 5.

[[EE=————— EHec

[

_1 Exec.Job specifies
the applications and

y their input files
. Q

e

i—&-

Exec.Job Exec ‘hen done, control

returns to Exec
Choose Execute
Exec.Job from the
Execute Menu

;@«g@.—g

RMaker

P[]

A Simple Sample Session 11

A Simple Sample Session

Here's a typical session with the Editor, Assembler, and Linker. The
named files actually exist in the Sample Program folder; you can try
the example if you wish.

1. Select the Editor; then, from the File menu, open the file
Window.Asm on MDS2. This is the source file for the assembly.

2. To see how errors are handled, enter the line "Syntax Error"; then
save the updated file by choosing Save from the File menu.

3. Assemble the file by choosing ASM MDS2:WINDOW.ASM from the
Transfer menu. Window.Asm is assembled automatically.

4. An error occurs in the assembly, so the Assembler places a list of
errors in the file Window.Err. When the assembly is complete, the
Editor is launched with the Window.Asm and Window.Err documents
open.

5. Select the faulty line and cut it from the document, then transfer
back to the Assembler. This time Window.Asm assembles
successfully, and the resulting relocatable code and symbol table
is placed in Window.Rel. (The file Window.Err is automatically
removed from the disk.)

6. Because the assembly was successful, the Executive is launched.
Transfer to Link. Select and open the file Window.Link, the
Linker control file. The application produced by linking
Window.Rel is called Window. The symbol table file is called
Window.Map.

The following diagram shows the files involved in this process (the
error documents are removed when a successful assembly takes place).

E[[==———— Sample Program
8 items 45K in folder 27K available

>

Window YWindow.Asm Window Link “indow.Job Window.R

Jefute]]

10110 10110
0101l = ololl
Window Rel ‘Window .Map Window .Rsrc

(B[]

l o)

12 Macintosh 68000 Development System

The Debuggers

Two families of debuggers are provided with the Macintosh 68@@¢
Development System. The first, and most powerful, is called MacDB. It
is a two-machine debugger (either Macintosh or Lisa running MacWorks).
The second, called MacsBug, works on a single Macintosh.

MacDB and MacsBug have similar capabilities, but MacDB requires far
less memory (and thus can be used to debug larger applications), it
provides more information at any instant, and it's much easier to use.

These debuggers are briefly described below.

MacDB

MacDB is the two-machine debugger. A small program called a Nub runs
on the same machine as your application, MacDB runs on another machine,
and the two machines are connected by a serial cable. The cable
provided with the Development System is intended for debugging using
two Macintoshes. The chapter on MacDB tells how to use MacDB with a
Lisa.

Several different Nubs are provided with the Development System. These
various Nubs let you connect the machines using the printer port or the
modem port, or allow you to debug your application using MacWorks.
Features of MacDB include
- Multiple memory display windows. Memory can be displayed as
characters, words, long words, strings, or disassembled
symbolically. System traps are displayed symbolically too.
- Symbolic display of addresses. Memory addresses can be displayed
in hexadecimal or as symbols, and you can use these symbols in

expressions (for example, you can set the PC to START).

- One or more register display windows. All registers and memory
locations can be changed easily.

— Multiple breakpoints can be set and cleared.

— Instructions can be executed one at a time.

— Memory search for patterns.

- Special trace and break capability for system trap instructions.
— Display and checking of the heap.

— Display of linked lists.

The Debuggers 13

Here is a typical MacDB display:

[~ Debug Run Bkpts Window ¥format Symbols

= Registers = Examine
I I

@START: JSR $34¢PCO

START+4: JSR $4ECPC)

START+8: JSR $56¢(PC>

START+C: DrawMenuBar

START+E: JSR $86¢(PC)

START+12: JSR $9ECPC)

START+16: MOVE.L $5D4CPC),-(A?>
START+1A: TEldle

START+I1C: SystemTask

START+1E: CLR —(A7> 1R41E
START+20: MOVE #$FFFF,-(A7> 1A41
START+24: PER $2EECPC) ¢ABOU
START+28: GatNextEvent
*#START+2A: MOVE ¢A7>+,D0 1R41E
START+2C: BEQ.S *$-18

START+2E: JSR $9CCPCO

START+32: BEQ.S *$-1E

START+34: RTS

INITMANAGERS : PEA $-4(AS5> 1AGD4 = 0000 4EQE 0 1RG04
INITMANA+4: InitGraf 2000 (5] ity
INITMANA+6: Ini tFont = s :
INITMANA+S: MOVE.L *$FFFF,DO Breakpoints

INITMANA+E: FlushEvents T T
INITMANA+10: Ini tHindow

INITMANA+12: Ini tHenus *START+2A: MO

G
DDDEEJDHS

FFFF 0000
6001 0024
0000 0024
0000 OOFF
0000 FFFF
FFFF FFO3

0001 RG6D4
0000 SAC8
0000 SABG
0001 RE644
0000 557A
0001 RAGD8
0001 AS20
0001 A41E

MacDB is described in Chapter 6.

14 Macintosh 68000 Development System

MacsBug

The MacsBug debuggers are single-Macintosh debuggers. The different
versions are for use on a 128K Macintosh, a 512K Macintosh, a Lisa
running MacWorks, or a Macintosh connected to an external terminal.
Features of MacsBug include

- display and set bytes of memory

- disassemble memory

- display and set registers

- set and clear up to eight breakpoints

- tracing of single or multiple instructions

- selective tracing of system traps

= display and checking of the heap

Here is a typical MacsBug display:

4oDBl2: PC SUBG.H #$1.D7
PC=0040DEB12 5R=00002000

DO=00000000 D1=46YFY4Y24R D2=A000678C D3I=4YEYF4Y2YA
D4=00010000 D5=00000007 DE=0000005C D7=00000004
A0=00015168 A1=20010A/8 A2=0001288A A3=00012804
§H=00006228 AS=00015CAA AE=00015156 A7=000150FY

MacsBug is described in Chapter 7.

The Resource Compiler

15

The Resource Compiler

The Resource Compiler, named RMaker, is a tool that translates a
sequence of resource definitions in a text file into a file that
contains those resources.
Features of RMaker include

- predefined resource types

— definable resource types

— the ability to include specific resources from other files, or
entire resource files

- visible display of the compilation process, with error reporting

Here is a typical RMaker display:

& File Transfer

esource Compile
ource File Window.R | Output File MDS2:window.Rsrc
Data Size: 334

his sample program was written Map Size: 134
Total Size: 468

StaticText
35 20 56 300
just to prove it could be done!

* LWIIND Resource #1 specifies the
* for the window in which editit
* call to GetNewlindow.

Type WIND
1

A éample

50 40 300 450
Uisible NoGoRway
0

0

RMaker is described in Chapter 8.

16 Macintosh 68000 Development System

System Definition Files

Some of the most important tools available to assembly-language
programmers are the system definition files. These files contain the
values and addresses of the definitions available to the programmer.

It's a good idea always to use these definition files and the symbolic
names they contain, since some of these values may be subject to

change.

The system definition files provided with the development system are

directives into development system
directives.

SysEqu.Txt 3 Low-level equates and globals
SysEqu.D ;s Packed version of common ones
SysEquX.D s Packed version of all
ToolEqu.Txt ; Toolbox equates and globals
ToolEqu.D ;3 Packed version of common ones
ToolEquX.D ;3 Packed version of all
QuickEqu.Txt s QuickDraw equates and globals
QuickEqu.D ;s Packed version of common ones
QuickEquX.D ;s Packed version of all
FSEqu.Txt ; File system equates and globals
FSEqu.D s Packed version of all
PackEqu.Txt ; Package equates and globals
PrEqu.Txt ;s Printer equates and globals
SysErr.Txt ;5 System error numbers
SysTraps.Txt ; Low-level traps
ToolTraps.Txt ;s Toolbox traps
QuickTraps.Txt 5 QuickDraw traps
PackMacs.Txt ;s Package macros
SANEMacs.Txt ;s Numerics macros. See Inside Mac,

; Apple Numerics Manual (#@30-$247-A)
MacTraps.D ; Packed version of SysTraps +

;s ToolTraps + QuickTraps
MacDefs.Txt ; Macros translating Lisa-style

5

b

Be sure that the symbols you use in your programs are identical to the
symbols in these files. The .Txt files can be loaded into the Editor
for viewing or printing.

Packed symbol files are explained in the chapter on the Assembler.

Chapter 2

The Editor

Do r Ty e rr o

About This Chapter 19

About This Chapter

This chapter describes the Editor, a general-purpose text editor. In
the context of the Macintosh 68@@@ Development System, its primary uses
are to enter and edit assembly-language programs, Linker control files,
Executive control files, and RMaker input files.

Files Required

If you wish to move the Editor to another disk, you must move the file

named Edit. If you wish to transfer from the Editor to the Assembler,

the Linker, the Executive, or RMaker, those applications must be on the
same disk.

File Naming Conventions

The following types of files are all created in the Editor, and should
be given names with the designated extensions:

«Asm is recommended for assembly-language source programs.

«Files 1is recommended for a file that contains a list of .Asm files to
be assembled.

.Link 1is the extension for Linker control files.

.Job is the extension for Executive control files.

.R is the extension for RMaker input files.

These extensions indicate types of files that are used as inputs to the
Assembler, the Linker, the Executive, and RMaker. Other extensions,

such as .Txt, .Equ, and .D, can be used to classify other files used in
your assemblies.

Invoking the Editor

There are several ways to use the Editor:
- From the Finder, select and open the application named Edit.

- From the Finder, select and open a text file created by the
Editor. You can open up to four files simultaneously by selecting
a group of them (by Shift-clicking them or dragging across
multiple icons) before opening one of them. All files created
using the Editor can be selected, as can listing and error files
generated by the Assembler and Linker.

- Choose Edit from the Transfer option of the Assembler, the Linker,
the Executive, or RMaker.

20 Macintosh 68000 Development System

- Call Edit from an Executive control file, as described in
Chapter 5.

About the Editor

The Editor is a disk-based editor. Thus it's capable of editing
documents much larger than will fit in memory. When a document is
open, you can use the scroll bars to move, both vertically and
horizontally, through the document. The Editor brings new portions of
the document into memory as they're needed.

To create a new document, choose New from the File menu.
There are several ways to open existing documents:

- To open an existing document, choose the uppermost Open command
from the File menu. This opens a standard file selection box from
which you select the file to be opened. All files with type
'TEXT' can be opened from this menu.

- You can also open files (including non-text files) by selecting
the name of the file in an open document, and then choosing the
other Open command from the File menu.

- Finally, you can open a document by typing Command-K followed by
the name of the file to be opened (including volume name if
needed), and pressing Return. This technique is not listed in a
menu, and it gives no visual feedback until the file is opened or
not found.

As many as four such documents can be on the desktop at a time. When
you quit the Editor or transfer to another application, the Editor
gives you a chance to save each document that has been altered.

Editor Documents

Editor documents consist of lines of text that are separated by Return
characters. The Editor has no tools for manipulating or organizing
pages, paragraphs, sentences, or pictures.

When you type long lines of text, characters may be placed past the
right edge of the window. To see these characters, use the horizontal
scroll bar. It is possible to type a line longer than can be seen
using the scroll bar. The text on such lines is not lost, but neither
is it visible. To see the whole line, insert a Return into the middle
of the line, breaking the line into smaller pieces.

If you choose Show Invisibles from the Format menu, the invisible
characters (Space, Tab, and Return) are replaced by visible symbols.
Choose Hide Invisibles to restore normal display.

Editor Documents 21

The Editor displays an entire document in text of a single size and
font. The Monaco font, a monospaced font, is the default. Different
documents on the desktop can have different fonts and font sizes.

Editing

Editing involves inserting text at the insertion point and removing,
moving, copying, or replacing a selection. Any character or sequence
of characters in a document can be selected and edited.

You can replace the selection by typing or pasting. You can remove,
move, or copy the selection using commands from the Edit menu or their
keyboard equivalents. Cut or copied selections can be pasted into
another place in the document, into another window (such as the Find or
Change window), or into another document altogether.

You can find and change text using the Find and Change commands in the
Search menu. These commands search for a specified string starting at
the current insertion point. If the string is found, it's either
selected and displayed or replaced. If not, a box is displayed to
notify you that the string wasn't found. When you choose Find, the
currently selected string is used as the default string to find. You
can close the Find or Change boxes by choosing Hide Find or Hide Change
from the Search menu.

Tabs and Alignment

The Editor has several features that help organize programs visually.
Tab stops allow you to align columns of text at regular intervals
across the page; the Set Tabs command in the Format menu lets you set
the distance between tab stops.

The Auto Indent command in the Format menu lets you turn Auto Indent on
and off. If Auto Indent is on, the insertion point is automatically
lined up with the leftmost edge of the previous line each time you
press Return. To back the cursor up to the left edge of the screen,
use the Backspace key. If Auto Indent is off, the insertion point is
placed at the left margin.

The Align command in the Edit menu aligns the left margins of all the
lines in a selected block of text. The Move Left and Move Right
commands, also in the Edit menu, move all the lines in a selected block
of text one space left or right. If a proportional font is selected,
the width of one space is usually quite small. The easiest way to move
a block of text several spaces is to press the keyboard equivalent
several times in succession.

22 Macintosh 68000 Development System

Document Format

Text created by the Editor is saved as a document file. A document
file is a text—only file that can be used by other applications that
use text-only files. For example, the Text Only option of MacWrite
(see Save As in the MacWrite manual) creates text-only files that can
be used by the Editor.

A text-only file is a stream of ASCII characters. It contains Tab
characters and Return characters, but no other formatting information.

Printing Documents

There are two ways to print documents:

- From the Editor, choose the Print command in the File menu. This
prints the current document and returns to the Editor.

= From the Finder, select the documents you wish to print, then
choose Print from the File menu. This prints the selected files
and returns to the Finder.

Printing from the Editor uses the current printing format. To set the
printing format, choose Printing Format in the Editor's File menu.
After choosing this command, you are presented with a dialog box that
lets you specify the size of paper you are using. Printing from the
Finder displays the Printing Format box before the first document is
printed. The settings you choose hold for all subsequent documents.

A second dialog box, displayed for each document printed, lets you
choose the print quality (High, Standard, or Draft), which pages to
print, how many copies to print, and whether the paper is continuous or
separate sheets.

These two boxes are standard printing dialog boxes, and are discussed
in some detail in the other manuals (for example, MacWrite).

Chapter 3

The Assembler

150 1 T T I O A B I O A O A A

About This Chapter 25

About This Chapter

This chapter describes the Macintosh Assembler. The Assembler
translates one or more text files into files that contain relocatable
code and symbol table information. Once all the portions of a program
have been assembled, they can be linked together into an application.
Even an application generated from a single source file must be linked
before it becomes an executable application.

The first part of this chapter describes the Assembler and how to use
it. The second part of the chapter tells the syntax of statements
accepted by the Assembler. The next part of the chapter is a reference
for commands to the Assembler.

This chapter doesn't give extensive examples. An appendix contains a
program listing that contains a variety of Assembler statements. Refer
to this listing for examples of usage.

Files Required

If you wish to move the Assembler to a different disk, you must move
the file Asm to that disk. If you wish to transfer from the Assembler
to other applications, those applications must also be on the disk.

File Naming Conventions

Files used by the Assembler can be divided into two groups: those used
as input to the Assembler, and those produced by the Assembler. The
first two file extensions designate Assembler control files. .D files,
described below, are also Assembler input files.

«Asm is the recommended extension for assembly-language source
programs. Text files of any name can be assembled.

.Files is the extension for a file that contains a list of .Asm files
to be separately assembled.

The next file extension identifies files created by the PackSyms
application.

.D is the recommended extension for symbol files. They may
be text files containing lists of equates, or packed symbol
files; the assembler knows how to handle both. Refer to the
section on packed symbol files at the end of this chapter.

The final four file extensions are given by the Assembler to the files
it creates.

-Rel is the extension automatically assigned to every relocatable
module generated by the Assembler.

26 Macintosh 68000 Development System

.Lst designates listing files produced by the Assembler.

+Err designates a file that contains the errors encountered during
assembly of a program.

«Sym designates a file of symbol table information. Refer to the
«DUMP directive, below.

Invoking the Assembler

There are several ways to invoke the Assembler:
- From the Finder, select from one to four files then open the
application named Asm. The selected files are automatically
assembled, then control returns to the Finder.

— Choose Asm from the Transfer menu of another application.

- Call Asm from an Executive control file, as described in
Chapter 5.

Using the Assembler

The following sections contain an overview of the operation and
features of the Assembler. They're intended to provide enough
information that you can use the Assembler menus easily once you've
read this chapter.

Assembler Source Files

Assembler source files are text-only files, as created by the Editor.
They should be named with the extension .Asm. A source file that
contains a list of .Asm files to be separately assembled should be
named with the extension .Files.

A text-only source file consists of a series of lines of text,
separated by Return characters. These lines may be blank lines,
comment lines, assembly-language instructions, or instructions that
control the Assembler (assembler directives). The exact format of
source file lines is described in later sections.

Using the Assembler 27

Selecting Listing Options

There are two ways to select listing options for your program: by
choosing commands in the Options menu, or by placing printing control
directives into your source file. The printing control directives,
described later in this chapter, override commands given from the
Options menu.

Before you actually assemble your program, you should select the type
of program listing you want, if any. From the Options menu, you can
choose No Listing, List to File, or List to Display.

In the listings generated by the Assembler, addresses that aren't
resolved until linking are displayed as lowercase x's. Certain
instructions are marked by capital letters enclosed in parentheses.
The following letters are used:

P PC relative instruction

R Relocatable instruction

X Instruction will be modified if it crosses a
segment boundary. The opcode displayed in the listing
is not necessarily the final opcode.

This menu also contains two options that let you choose what will be
placed in the .Rel file produced by the Assembler. If Normal Output is
chosen, the minimum amount of information is written to the .Rel file.
If Verbose Output is chosen, information is written to the .Rel file
that allows a Linker listing to be generated. If Verbose Output is
turned on, the .Rel file is larger, the assembly takes longer, and
linking takes longer.

Selecting a Source File

If the Assembler is selected from the Editor's Transfer menu while a
document having the extension .Asm is the current window, that document
is automatically assembled. When you do this, No Listing and Normal
Output are always selected.

Otherwise, choose Select File from the File menu; then select the
source file from the dialog box. If the list of possible source files
is disturbingly long, you can select Filter by Time in the File menu.
When Filter by Time is on, only files that have been modified since
last assembled are displayed in the dialog box.

As the assembly proceeds, the name of the current source file is
displayed in a box on the screen. Included files are displayed in
parentheses; the number of parentheses indicates the level of nesting.
Long file names may not fit entirely into the box.

28 Macintosh 68000 Development System

Types of Source Files

There are two types of files that can be assembled: .Asm files and
.Files files. .Asm files contain lines of source and the names of
other files to be included into that assembly. When you assemble a
«Asm file, one .Rel file is produced. Here's a typical .Asm file:

E(IE=————— MDS2:MyProgram.Asm E——I
; File MyProgram.Asm KM
XDEF Start ; reference for Linker
INCLUDE MacTraps.D ; use System Traps

INCLUDE MyEquates.D ; use my Equates

Start ; Start of code for Linker

; This is where the main body of code goes.

.Files files contain names of separate assemblies to be performed.

When you assemble a .Files file, multiple .Rel files are produced. For
example, if you change a value in a .D file that's used by three
different library modules, you can reassemble all three modules using a
file such as the following:

[[==——— MDS2:Library.Files

; File Library.Files

Lib1.Asm ; Lib1.Asm ---> Lib1.Rel
Lib2.Asm ; Lib2.Asm -—-> Lib2.Rel
Lib3.Asm ; Lib3.Asm ---> Lib3.Rel

In Search of Source Files

The Assembler has a set of rules that determine where it looks for
files to be assembled. These rules make use of the initial volume (the
volume from which the Assembler was run) and the default volume (the
volume that contains the file being assembled). They are as follows:

— If the file name doesn't include a volume name, the Assembler
tries to open the file first on the default volume, and then on
the initial volume. If the file is not found, an error is
reported.

- If the file name includes a volume name, the Assembler tries to
open the file first on the specified volume, next on the default
volume, and finally on the initial volume. If the file is not
found, an error is reported.

Using the Assembler 29

- In the two steps above, if the file name has no extension, the
Assembler tries to open filename.Asm before searching the next
volume.

What the Assembler Produces

The assembled product is placed in a .Rel file. This file contains
relocatable code and symbol table information and must be linked by the
Linker before an executable application is produced.

If List to File is chosen from the Options menu, an assembled listing
is placed in a .Lst file. 1If List to Display is chosen, the assembled
listing is instead displayed on the screen. To temporarily stop the
listing, hold down the Command key while you type an S. The cursor
blinks while listing is suspended. To resume the listing, type
Command-S again.

To stop the assembly permanently, click on the Stop button or hold down
the Command key and type a period (.).

Errors encountered during assembly are written to a .Err file.
Assembler errors are explained in an appendix.

Assembler Syntax

An Assembler source file consists of a series of lines of text, as
entered in the Editor. These lines may be blank lines, comment lines,
or instruction lines.

Instruction lines contain some or all of the following: 1label,
instruction (assembly-language or assembler directive), and comment
fields. The following are valid instruction lines:

MDS2:Sample Instructions

Label MOVE #0,D0 ; Comments are nice.
Lone_label
Indented_too: BSR Label ; Indented labels have colons.
AND D1,D2 ; Not all lines have labels. ..
DC.B ‘Hel lo®
21 RTS ; Some have local labels
24 BSR 21 ; which may even be indented!

The Assembler does not distinguish between uppercase and lowercase,
except within strings.

30 Macintosh 68000 Development System

Labels

If a label does not begin in column 1, it must be followed by a colon.
The first character in a label must be a letter, a period (.), or an
underscore (_). Subsequent characters must be letters, numbers,
periods, underscores, or dollar signs ($). Labels that are the same as
directives or instructions are not allowed.

The Assembler also supports local labels. A local label consists of an
"at" symbol (@) followed by a decimal digit. If a local label is
indented, it must be followed by a colon.

The scope of a local label extends, in both directions, to the nearest
non-local label. Any single local label can be used repeatedly within
a file, but not within the scope of another instance of the same local
label.

Current Program Location

The current program location is indicated by an asterisk (*). For
example:

BlkLen EQU BlkEnd-* ; Get length of following block

Instructions

An instruction can be a 68@¢@ instruction, an assembler directive, or a
macro instruction. 68(@@ instructions are described in the 680@@
Reference Manual. Assembler directives and macro instructions are
explained below. If the instruction requires an operand, at least one
space or tab separates the instruction and the operand.

Comments

Except when it appears within a string (see below), a semicolon marks
the beginning of a comment. The semicolon and the remainder of the
line are ignored by the Assembler. In addition, any line with an
asterisk (*) in column 1 is treated as a comment.

68009 Instruction Syntax

The 68@@@ instructions and addressing modes are described in the 680@@
Reference Manual. The processor registers are named as follows:

D@..D7 Data Registers @ through 7
AQ..A7 Address Registers @ through 7
A7 or SP Stack Pointer

SR Status Register

CCR Condition Code Register

Assembler Syntax 31

PC Program Counter

A group of address and data registers, used by the MOVEM command, is
represented like this:

Syntax Means
D@-D1/A3 D@, D1, and A3

D2-D4/A1-A2/D7 D2, D3, D4, Al, A2, and D7

Any combination of individual data and address registers and ranges of
data and address registers can be used, in any order.

Addressing Modes

The syntax of the addressing modes is shown below. The notation An
refers to address register Af through A7; Dn refers to data register D@
through D7. Expressions, designated in the examples as Expr, are
explained in the next section.

Syntax Addressing mode

An or Dn Register Direct

(An) Register Indirect

(An)+ Postincrement Register Indirect

-(An) Predecrement Register Indirect
Expr(An) Register Indirect with Offset
Expr(An,An) Indexed Register Indirect with Offset
Expr(An,Dn) Indexed Register Indirect with Offset
Expr Absolute or Relative

Expr(PC) Relative with Offset

Expr(PC,An) Relative with Index and Offset
Expr(PC,Dn) Relative with Index and Offset
Expr(Dn) Relative with Index and Offset (see comment)
#Expr Immediate

Expr(Dn) is actually assembled as
Expr-PC (PC,Dn)

Both the sources and destinations of 68@@@ instructions use these
addressing modes. The 68000 Reference Manual describes which
addressing modes can be used with each instruction. Expr(Dn) can be
used wherever Expr(PC,Dn) is allowed.

32 Macintosh 68000 Development System

Variants on 68@@@ Instructions

Many 680@@ instructions can be performed on operands of different
sizes: byte, word, and long word. The 68@@@ Reference Manual lists
the mnemonics for the 68@@@ instructions. To specify the length of the
instruction, add the following extensions to the mnemonics:

.B Operands are one byte long
oW Operands are one word long (2 bytes)
.L Operands are long words (4 bytes)
For example: MOVE.L Test,A(; Move long word to Af

If you don't use a size extension, a default size is used (depending on
the instruction). .B, .W, and .L are also used by the data allocation
assembler directives described later in the chapter.

Branch instructions have two forms: short and long. By default, the
Assembler uses the long form. To specify a short branch, use the form:

Bce.S Short branch

Jump instructions have two forms: word and long word. By default, the
Assembler uses the word form. To specify a long jump, use the form:

JMP.L Long jump
Broad jumps are not allowed.
You can also specify the length of the index register in the indexed
addressing modes. By default, the low word of the register is used as
an index. For example, to specify the length in relative with index

mode, use one of the following forms:

Expr(PC,Dn.W)
Expr(PC,Dn.L)

Note: The lengths that are allowed with particular instructions varies
from instruction to instruction.

Code Optimization

Some code alteration or optimization is performed by the Assembler.
ADD and SUB are changed to ADDQ and SUBQ, respectively, if the source
operands are immediate (#) and within the range 1-8.

The following table shows how the Assembler resolves jumps and branches
to labels in the same segment and to labels in another segment.

Assembler Syntax 33

Instruction Same segment Different segment
JMP Label JMP offset(PC) JMP offset(A5)

JSR Label JSR offset(PC) JSR offset(A5)

BRA Label JMP offset(PC) JMP offset(AS5)

BRA.S Label BRA.S offset(PC) error

BSR Label JSR offset(PC) JSR offset(A5)

BSR.S Label BSR.S offset(PC) error

Bce Label Bcc offset(PC) error

Bcc.S Label Bec.S offset(PC) error

When the destination is in another segment, the operation is performed
as a positive offest to A5 (the location of the destination's jump
table entry).

Expressions

Addressing modes and assembler directives often use arithmetic and
logical expressions. Numbers and strings, and symbols that represent
numbers, strings, and relocatable addresses, can all be used in
expressions.

Expressions are evaluated as 32-bit signed integers.

Numbers

Four types of numbers can be used in expressions: hexadecimal,
decimal, octal, and binary. Here are examples:

$3FQ Hexadecimal numbers are preceded by a $

2001 Decimal numbers are the default

~765 Octal numbers are preceded by a *

%211919011 Binary numbers are preceded by a %
Strings

A string is one or more ASCII characters enclosed in single quotes. To
put a single quote in a string, use two consecutive single quotes. The
exact format of a string that is allocated in memory is defined by the
STRING_FORMAT directive. Refer to the STRING_FORMAT section for more
details. Here are some sample strings:

'HELLO'
'don''t"'

34 Macintosh 68000 Development System

Symbols

A symbol is a name for a string, number, relocatable address, or macro.
Strings and numbers are assigned to symbols by EQU and SET directives.
Symbols are relocatable if they are created as labels, or if equated or
set to labels. Macro symbols are set by macro definition statements.

The first character in a symbol must be a letter (A-Z, a-z), a period
(.), or an underscore (_). Subsequent characters may be letters,

numbers (P-9), periods, underscores, and dollar signs ($).

All characters in a symbol are significant.

Operations

An operation is an action taken on one or more values. There are
arithmetic, shift, and logical operations. They are:

Type ’ Operation Operator Comment
Arithmetic Addition <+
Subtraction —
Multiplication *
Division / Integer result
Negation =
Shift Shift Right > Zeros shifted in
Shift Left K Zeros shifted in
Logical And &
Or !

Only addition and subtraction can be used on relocatable values.

Precedence
Multiple operators within an expression are evaluated in this order:
1. Operations within parentheses (innermost first)
2. Negation
3. Shift operations
4. Logical operations
5. Multiplication and division
6. Addition and subtraction

Operators of the same precedence in an expression are evaluated from
left to right.

Assembler Directives 35

Assembler Directives

The following directives are described in this section:
Assembly Control Directives
INCLUDE Include source file

STRING_FORMAT Set string format
IF..ELSE..ENDIF Conditional assembly

MACRO Define a macro

«MACRO Define a Lisa-style macro
END End of source

«DUMP Create a .Sym file

Symbol Definition Directives

EQU Assign a permanent value to a name
SET Assign a temporary value to a name
REG Assign a register list to a name
. TRAP Assign a name to a trap number

Data Allocation Directives

DC Define constant

DS Define storage

DCB Define constant block

-ALIGN Align to word or long word boundary

Linker Control Directives

XDEF Defined externally
XREF Referenced externally
RESOURCE Begin resource type definition

Printing Control Directives

.NoList Turn off listing

.ListToFile Turn on listing to file

.ListToDisp Turn on listing to the display

.Verbose Write information for Linker listing
.NoVerbose Turn off information for Linker listing

The printing control directives are self-explanatory. Refer to the
Selecting Listing Options section, earlier in the chapter, for more
details on normal and verbose assembly.

In the descriptions below, the terms label, value, expression, and
comment are used as defined earlier in the chapter. [Optional fields
are enclosed in square brackets.]

36 Macintosh 68000 Development System

Assembly Control Directives

INCLUDE - Include Source File

Format: [1abell] INCLUDE Filename [comment]

INCLUDE is used to combine multiple source files in a single assembly.
INCLUDE causes Filename or Filename.Asm to be used as the source file
instead of the current file. When END is encountered in the file,
assembly returns to the file in which the INCLUDE was used. Filename
may contain a volume name. Here is a sample file that uses INCLUDE:

S[I=—— MDS2:MyProgramAism=———|

; File MyProgram.Asm

XDEF Start ; reference for Linker
INCLUDE MacTraps.D ; use System Traps
INCLUDE MyEquates.D ; use my Equates

Start ; Start of code for Linker

; This is where the main body of code goes.

END , End of code for Assembler

h¥
Q<A

INCLUDE directives can be nested up to five levels deep. When an
assembly is taking place, the name of the current input file is
displayed. 1Included files are displayed in parentheses; the number of
parentheses reflects the number of levels of nesting.

STRING FORMAT - Set String Format

Format: [label] STRING_FORMAT value

This directive determines the format of the strings that the Assembler
generates.

Strings used as arguments to PEA or LEA instructions are allocated just
after the code. If STRING .FORMAT is not used in the program, these
strings are preceded by a length byte. Otherwise, bit @ of the last
STRING_FORMAT in the program determines the format of these strings.
Use these values:

) Text followed by a @ byte
1 Text preceded by a length byte

STRING_FORMAT
STRING_FORMAT

Strings used as arguments to DC.B, DC, DC.W, and DC.L are allocated at
the point at which they are defined. By default, they are written
without trailing @ bytes or leading length bytes. Bit 1 of

STRING FORMAT is used to determine the format of these strings. Use
these values:

Assembler Directives 37

STRING_FORMAT
STRING_FORMAT

) Text with no length or trailing @ byte
2 Text preceded by a length byte

With the DC.B directive, no padding of strings ever takes place. With
the DC (word), DC.W, and DC.L directives, zeros are placed before the
string to align the string to the nearest word boundary and at the end
to fill to the nearest word or long word boundary.

The format of both types of strings is set by each STRING_FORMAT
statement used. For example, the statement

STRING_FORMAT = 3

causes all strings to be preceded by a length byte. Here are some
examples of the use of strings. The first two do not cause special
string memory to be allocated; the next two do.

MOVE #'JUNK',D@ ; Move ASCII 'JUNK' into D@
SUB #'A'-'a',D@ ; Use '"A'-'a' as a comnstant
PEA 'NewString' s Push address of 'NewString'

; 'NewString' placed at end of code;
3 form determined by STRING_FORMAT
3 Place string data in code
H using current STRING FORMAT

DC.L 'Try Again'

IF..ELSE..ENDIF - Conditional Assembly

Format: [1abel] IF condition [comment]
[ELSE comment]
ENDIF [comment]

IF..ELSE..ENDIF are used to include or exclude sections of code at
assembly time based on the value of a condition.

IF specifies to the Assembler that the subsequent block of code should
be assembled if and only if the condition following IF is true. The
block of code is terminated by an ELSE (if there is one), or an ENDIF.
If ELSE is used, it specifies to the Assembler that the subsequent
block of code should be assembled if and only if the condition
following IF is false. An ELSE block is terminated ENDIF.

A condition is true if it evaluates to a nonzero value; otherwise it is
false. Two types of conditions can be used: expressions or the
relationship between two expressions. Expressions cannot be
relocatable. Non-string expressions can be compared using >, <, >=,
<=, =, and <>. Strings can be tested for equality using = and <>.

38 Macintosh 68000 Development System

Conditionals can be nested.

MACRO - Macintosh-Style Macros

When your source is assembled, each macro call is replaced by the text
(usually a list of instructions) defined as that macro. The parameters
used in the macro call are placed, character—-for-character, at
designated positions in the list of instructions. All characters
except Return and comma (,) can be passed to a macro in the parameter
list.

Macros can be nested up to eight levels deep.
Here is the format of a Macintosh-style macro definition:

Format: MACRO name [argument(s)] =
macro body

A macro definition is delimited by the MACRO directive and a vertical
bar (I). It consists of a macro name, an optional list of arguments,
followed by "=", and a macro body that makes use of those arguments.

The macro body is simply text. This text is exactly like normal source
text, but with one exception: Arguments, which are to be replaced by
parameters specified in the macro call, are enclosed in braces ({}).

Each argument has a unique symbol within the macro. Multiple arguments
are separated by commas, with no intervening spaces.

For example:

MACRO MODS RI,R2 =
DIVS {R1}, {R2}
SWAP {rR2}

The macro MODS has two arguments, Rl and R2. It can be called, for
example, with the macro call:

MODS D1,D2

When the program is assembled, this call causes the following
instructions to be placed in the code:

DIVS D1,D2
SWAP D2

Macro calls are not necessarily entire instructions; they can be used
anywhere. The following example shows a macro that is used as part of

an instruction:

MACRO SegRef LabelName = {LabelName}(AS5)|

Assembler Directives 39

SegRef can be used like this:

LEA SegRef Label,A§
It causes the following instruction to be placed in the code:

LEA Label(AS5),Ad
It is possible for a macro to use just part of a string received as an
argument. A partial argument is designated by following the argument's
name with |N:M where N is the position in the string of the first
character to be used (§ is the first position), and M is the number of
characters to use. For example, if you define

MACRO LAST2 STR = DC.B '{STR|2:2}']|
Then using the macro

LAST2 ABCD

is equivalent to using the instruction

DC.B 'cD'

.MACRO .ENDM - Lisa-Style Macros

Format: .MACRO name [argument(s)] [comment]
macro body
.ENDM [comment]

A Lisa-style macro is delimited by the .MACRO and .ENDM directives. It
consists of a macro name and a macro body that contains optional
arguments. When the Assembler encounters the macro name, it
substitutes the macro body for the macro name in the assembly text.
Wherever an argument, %n, occurs in the macro body (n is a digit from 1
through 9), the text of the nth parameter is substituted. Null strings
are substituted for omitted parameters.

Here is a sample Lisa-style macro:
.MACRO Help
MOVE %1,D@ ; get first parameter
ADD D@, %2 ; and add it to second parameter
.ENDM
When this macro is called by the instruction

Help Me,Rhonda

The following text is assembled:

40 Macintosh 68000 Development System

MOVE Me,D§
ADD D@ ,Rhonda

END - End of Source

Format : ' [1abel] END

The end of a source file may optionally be indicated by an END
directive. When END is used, all subsequent lines in the file are
ignored by the Assembler. If END is omitted, the physical end of file
indicates the end of a source file.

-DUMP - Make .Sym File

Format: [1abel] -DUMP Filename

The .DUMP directive instructs the Assembler to create a symbol table
(.Sym) file and to place it in the file named Filename.Sym. .Sym files
are used by PackSyms to create packed symbol files, as explained at the
end of the chapter.

Symbol Definition Directives

EQU - Assign Permanent Value

Format : symbol EQU expression [comments]
This directive assigns an expression to the specified symbol. The
symbol cannot be redefined later in the program. The expression can be
any valid operand in any addressing mode. It may contain undefined
symbols, register references, and so on. For example,

LookTable2 EQU Table2(A@)
is a legal form, as long as LookTable is always used in the proper
context. The expression can't contain more than one undefined
identifier. For example, although

A EQU B
is a valid statement,

A EQU B-C

is not.

Assembler Directives 41

SET — Assign Temporary Value

Format: symbol SET expression [comments]
Like EQU, this directive assigns a value to the specified symbol.

However, the symbol can later be redefined by other SET directives.
The expression is the same as an expression used with EQU, above.

REG - Assign Register List

Format: symbol REG register list [comments]

This directive assigns a register list to the specified symbol. The
register list represented by the symbol can then be used in the MOVEM
command. The syntax of a register list is defined in the Assembler
Syntax section of this chapter.

«TRAP — Assign Name to Trap Number

Format: [1abel] .TRAP name S Axxx

This directive assigns a name to the specified trap number so that the
name can be subsequently used as a 68@@@ instruction. The name must be
a valid symbol, and the trap number must have a corresponding entry in
the trap dispatch table. This directive is primarily used in the
system trap files.

Data Allocation Directives

All .Rel files created by the Assembler have two parts: the code area
and the data area. Everything in a source file that produces a value
is placed into the code area. Code areas are then loaded into the
proper code segment by the Linker. Data areas defined by DS directives
are combined into a global block. This block is located by the Linker
downward from -$1@@(A5).

This a good way to create permanent storage for handles.
The starting address of the global block can be set using the /GLOBAL

Linker directive.

DC - Define Constant

Format : [1abel] DC.B value(s) [comment]
[1abel] DC value(s) [comment]
[1label] DC.W value(s) [comment]

[1label] DC.L value(s) [comment]

42 Macintosh 68000 Development System

The DC directives place data in the code area of the program. These
four forms of the DC directive generate data that is byte aligned
(DC.B), word aligned (DC or DC.W), and long word aiigned (DC.L).

A value is an expression that evaluates to the data to be stored.
Multiple values are separated by commas.

With the DC.B directive, no padding of strings ever takes place. With
the DC (word), DC.W, and DC.L directives, zeros are placed before the
string to align the string on a word boundary and at the end to fill to
the nearest word or long word boundary. The format of the string is
determined by the STRING_FORMAT directive.

DS - Define Storage

Format: [label] DS.B length [comment]
[1abel] DS length [comment]
[1abel] DS.W length [comment]
[1label] DS.L length [comment]

The DS directive 1s used to reserve memory locations. The length is an
expression specifying the number of bytes, words, or long words to be
reserved. The expression may not contain values that are not yet
defined.

These memory locations are always located relative to A5. When you
reference a label defined using DS, you must explicitly reference A5.

For example:

DS.L MenuHandle ; reserve handle space
MOVE.L (SP)+,MenuHandle(A5) ; get handle from stack

Word alignment is enforced for DS (word), DS.W, and DS.L. Labels
always refer to the first address in the defined area after alignment.

DCB - Define Constant Block

Format : [1abel] DCB.B length,value [comment]
[1abel] DCB length,value [comment]
[1labell DCB.W length,value [comment]
[1abel] DCB.L length,value [comment]

The DCB directive is used to reserve blocks of memory, at the current
position in the program, that are to be initialized to a certain value.
Length specifies the number of bytes (DCB.B), words (DCB or DCB.W), or
long words (DCB.L) in the block. The expression specifying the length
may not contain forward references. Value specifies the initial value
of the storage units in the block; it may contain forward references.

Word alignment is enforced for DCB, DCB.W, and DCB.L. Labels always
refer to the first address in the defined area after alignment.

Assembler Directives 43

«ALIGN — Align to Word or Long Word Boundary

Format : [label] LALIGN value [comment]

This directive causes the proper number of bytes to be reserved such
that the next statement is aligned on a byte, word, or long word.

The value is an expression that determines the alignment, as shown
below:

value = 1 Align to byte boundary (No-op)
value = 2 Align to word boundary
value = 4 Align to long word boundary

Linker Control Directives

The XDEF and XREF directives should be used to specify all routines
that are either used or defined externally. These directives allow
independently assembled modules to share routines with one another.

XDEF - External Definition

Format : XDEF symbol(s) [comment]

XDEF tells the Assembler that the specified symbols, defined in the
current module, are used externally. The Assembler then generates
information that can be used by the Linker to share these symbols with
other code modules. Modules that wish to use the symbol must use XREF
to gain access to it. Multiple symbols are separated by commas.

The label used as the starting label in a linker control file must
always be referenced using XDEF.

Only addresses that are referenced by XDEF are placed in the .Map file.

Thus you should use XDEF for each routine or label that you wish to be
symbolically displayed by MacDB.

XREF - External Reference

Format: XREF symbol(s) [comment]

XREF tells the Assembler that the specified symbols, used in the
current module, are defined in other modules. A code module must use
XDEF for each routine or label used by other modules. The Assembler
then generates information that can be used by the Linker to connect
the real symbols to the module. Multiple symbols are separated by
commas «

If you use XREF with a symbol that is also defined within the module,
the Assembler gives you a warning and allows the XREF.

44 Macintosh 68000 Development System

RESOURCE - Begin Resource Type Definition

Format : RESOURCE type ID [name [attr]]

The RESOURCE directive is explained in full detail in the chapter on
the Linker. This directive should not be used in the main portion of
your application; it should only be used in files that are linked after
the /RESOURCES Linker directive.

The type is an expression that should evaluate to a four-character
string. It can be one of the standard resource types or a new type
that you are defining. The resource ID is a nonrelocatable integer
expression. The specified integer must be unique within the specified
type. The optional name is a string that must be unique within that
resource type. The attr field is a nonrelocatable integer that is used
to specify the value of the resource's attribute byte.

Note that the parameters are not separated by commas.

Creating Packed Symbol Files

The PackSyms program lets you compress the symbols used by your program
into a packed form. This packed symbol file can then be used as input
to the Assembler. Using packed symbol files saves disk space and
memory space, and makes assembly faster.

The first step in generating a packed symbol file is to use the .DUMP
assembler directive to place the application's symbols in a .Sym file.
Here is a sample file that creates a .Sym file:

MDS2:MyEquates.Asm

; File MyEquates.Asm

I NCLUDE SysEqu.D ; You can INCLUDE packed files
INCLUDE ToolEqu.D ; as well as text files to create
INCLUDE MyEquates. Txt ; one big packed symbol file.
.DUMP MyEquates ; Mow dump to MyEquates.Sym.

END ; End of source.

When assembled, this file generates the file MyEquates.Sym. .Sym files
are text files that can be edited using the Editor.

Once you have created a .Sym file, you are ready to run PackSyms. Its
menu bar contains three menus: Transfer, File, and Options. First
choose the display option you want from the Options menu. Next, choose
Select Input from the File menu, and choose the .Sym file to be added
to the packed symbol file. Repeat this step for each .Sym file to be
added. When all desired .Sym files have been added, choose Select

Creating Packed Symbol Files 45

Output from the File menu, and enter the name of the file to contain
the packed symbol information. This file should have the extension .D.

The new .D file can then be used in an Assembler input file. For
example:

[[=——— MDS2:MyApplication.Asm

; Flle MyApplication.Asm

INCLUDE MyEquates.D ; get packed symbols
INCLUDE Modulel.Asm ; and code

INCLUDE Module2.Asm

END ; end of assembly

About Packed Symbol Files

The Assembler identifies packed symbol files by type and not by
extension. For example, you can use a text file name MyEquates.D
during program development and replace it with a packed symbol file
when the symbols stop changing. This replacement is entirely
transparent to the .Asm file, it speeds up assembly, and it frees up
disk space.

T T A A e A e A O A e I O A O R A O R O B O R O R O I A R O N R

Chapter 4

The Linker

AN AN O oOnNOoNanNnOnnNnNnonnrania

About This Chapter 49

About This Chapter

This chapter describes the Linker, the program that takes .Rel files
produced by the Assembler and connects them into an application.

The first part of this chapter describes the Linker. The rest of the
chapter describes the commands accepted by the Linker.

Files Required

If you wish to move the Linker to a different disk, you must move the
file named Link. If you wish to transfer from the Linker to the
Editor, the Assembler, the Executive, or RMaker, those applications
must also be on the disk.

File Naming Conventions

.Link is the required extension for Linker control files. Linker
control files are text-only files, as created by the Editor.

«Map is the symbol table file, used primarily by MacDB. If
a Linker listing was requested, it is also in this file.

.LErr indicates a file that contains the errors encountered during
the linking process.

The executable object file (an application) formed by the Linker has no
extension.

The Structure of a Macintosh Application

This section contains information from the Inside Macintosh chapter
with the same name. Please refer to that chapter for more details.

Macintosh files have two forks: a resource fork and a data fork. The
resource fork contains a number of resources; the data fork may contain
anything. The simplest application created by the Linker has two
resources in the resource fork, and nothing in the data fork. The
first resource is the 'CODE' resource with ID $. By definition, this
resource contains the jump table and information about the
application's use of parameter and global space. The second resource
is the 'CODE' resource with ID 1. It contains the application's first
code segment.

More complicated applications can be created using Linker commands,
described below. With these commands, you can add code segments and
other resources to the resource fork of the file, or you can place
information in the data fork of the file. You can also set the
directory information that specifies the file's type and creator.

50 Macintosh 68000 Development System

Invoking the Linker

There are several ways to invoke the Linker:
- From the Finder, select and open the application named Link.
- Choose Link from the Transfer option of another application.

- Call Link from an Executive control file, as described in
Chapter 5.

The Linker Control File

The Linker is controlled by a Linker control file with the .Link
extension. This file specifies the names of the files to be linked
together, how the program should be segmented, listing options, and
various parameters of the .Map file.

Each command in a Linker control file must be on a separate line.
Blank lines in the file are ignored.

Linker Commands

The following sections describe the commands that can be used in Linker
control files.

filename.Rel The next file to link is the file named filename.Rel.
filename The next file to link is the file named filename.Rel.
!label Make label the starting location for the program

(may only be used once). If label is omitted, the
program is assumed to begin with location @ of the
first file. You must use XDEF to make label
external.

< Start a new segment.

[Turn on code listing to .Map file.

| Turn off code listing to .Map file.

(Turn on listing of local labels to .Map file.

) Turn off listing of local labels to .Map file.

5 End of Linker control file.

/Verbose Turn on verbose linker output. This option turns

on listing of linked code.

Linker Commands 51

/NoVerbose Turn off verbose linker output.

/UndefOK Give warnings only for undefined symbols.
/NoUnde £ Give fatal errors for undefined symbols.

/Type Set type and creator bytes in file directory.
/Bundle Set bundle bit in file directory.

/Globals value Set the start of the global space to value(A5).

/Output filename Specify the name of the output file.
/Resources Begin resource portion of application.

/Data Begin data portion of application.

Setting the File's Type and Creator

Each file's directory contains eight bytes that specify the file's type
('APPL', 'TEXT', and so on) and creator ('MPNT', 'EDIT', and so on),
and a bit that specifies to the Finder that the file uses the Bundle
resource (type 'BNDL') described in Inside Macintosh. An application
must have the type 'APPL' if it is to be launched by the Finder when
you open it. An application's creator bytes should be the signature
for that application. The creator bytes for a file that isn't an
application should be the signature of the application to be launched
when you open that file.

For example, the Editor has the type 'APPL' and the creator 'EDIT', and
documents created by the Editor have the type 'TEXT' and the creator
'EDIT'. When you open the Editor or a document created by the Editor,
the Editor is launched.

(By the Way)
Application signature bytes, and type bytes for other
files, must be assigned (or approved) by Apple Technical
Support.

To use the /Type command, follow the command by two four-byte strings,
as in

/TYPE 'APPL' 'MYAP'

If the creator string is omitted, it is set to $#. If this command is
not used, the type is set to "APPL'. When an error occurs during
linking, the file is given the creator 'BADF'. This prevents it from
being launched by the Finder. Type strings are case sensitive.

To set the bundle bit in the file's directory entry, place the /Bundle
command in your Linker source.

52 Macintosh 68000 Development System

Setting the Global Storage Area

Data storage allocated by the DS assembler directive is normally placed
downward from -$10@(A5). QuickDraw globals are placed in the area
immediately below A5. The /Globals directive lets you change the
address of the global storage area. For example, to place data at
-$20@(A5) instead, use the directive:

/Globals -$2¢¢

The value used to specify the address must be negative.

Specifying the Output File

The /Output directive specifies to the Linker the name of the file in
which it places its output. This file can be an application file, a
resource file, or some other type of file. Note that /Output specifies
the name of a single output file, regardless of its position in the
Linker control file.

An example of a Linker control file is given below. A more complex
example 1is given later in the chapter.

S[[==———— MDS2:NewProgram.Link

; File MewProgram.Link

IStart ; starting location of the application
f0utput TestProgram ; output file is TestProgram

[; listing on (assemble w/verbose on)
MyProgram ; first file is MyProgram.Rel

Parser ; second file is Parser.Rel

Dispatcher ; third file is Dispatcher.Rel

$; done linking.

Adding Resources and Data to the Code

The Linker provides directives that allow you to add resources to the
resource fork and to place data in the data fork of the file.
Alternately, you can use the Resource Compiler to generate the resource
portion of your application, as explained in the chapter on RMaker.

The code, resource, and data portions of an application must be given
to the Linker separately, and in that order. The beginning of the
resource portion is indicated by the /Resources directive, and the

Adding Resources and Data to the Code 53

beginning of the data portion is indicated by the /Data directive.
Here is a sample Linker control file that uses these directives to
place some resources after the code in the resource fork of the file
and to place data in the data fork of the file:

E[==—— MD$2:Big.Link
; File Big.Link

1Start ; starting location of the application
] ; listing off
CodeModulel ; code modules are |inked first

CodeModul e2
< ; this module is a separate segment
CodeModule3

/Resources ; resource modules are |inked next
RsrcModulel
RsrcModule2

/Data ; data modules are |inked last
DataModulel
$

; done linking

All files linked by the Linker must be .Rel files, as generated by the
Assembler or RMaker. Resource .Rel files have a strictly defined
format; data .Rel files can contain anything.

Each resource in an Assembler source file should be initiated with the
RESOURCE assembler directive. The parameters are the resource type,
the resource ID, an optional resource name, and an optional attribute
byte. For example, to begin a menu resource with an ID of 4 and no
name, use the directive

RESOURCE 'MENU' 4

It's a good idea to use a '.ALIGN 2' directive before the resource to
avoid undesired padding bytes at the beginning of the resource.

External symbols may not be defined in files linked following the
/Resources directive. /Resources should be followed by the data
contained in the resource. In the case of certain resources, such as
'DRVR' resources, the data in the resource is actually code.

An effective way to define resources is to create a macro for each
resource type. For example:

54 Macintosh 68000 Development System

MACRO DEFINEMENU NAME, ID,FLAGS =

<ALIGN 2

RESOURCE 'MENU' {ID}

DC.W {1Dp} ;Menu ID

DC.W S@ sMenu width

DC.W $@ ;Menu height

DC.L S0 sMenu definition procedure
DC.L {FLAGS} s;Enable flags

DC.B {NAME}

MACRO MENUITEM TEXT,ICON,KEY =

DC.B {TEXT}

DC.B {IcoN}

DC.B {KEY}

DC.B $@ ;Marking character
DC.B $0 ;Style

Then, when defining a menu, you could use calls such as the following:
DEFINEMENU 'Transfer', Launch_Menu ID+Edit_ ID, $FFFFFFED

MENUITEM 'Edit', @,0
MENUITEM '-', ?,0
MENUITEM 'Asm', 9,0
MENUITEM 'Link', ¢,0
MENUITEM '-', 0,0
MENUITEM 'Exec'’, @,0

DC.B @ send of items

Refer to Inside Macintosh for the formats of the different types of
resources.

Chapter 5

The Executive

oo o e e r et o

About This Chapter 57

About This Chapter

This chapter describes the Executive, an application that accepts a
text file as input, and uses the commands in the text file to launch
other applications.

Files Required

If you wish to move the Executive to a different disk, you must move
the file named Exec. If you wish to transfer from the Executive to the
Linker, the Editor, the Assembler, or RMaker, those applications must
also be on the disk.

File Naming Conventions

.Job is the required extension for Executive control files. Only
files with this extension can be selected using the Open Job
File option in Exec's File menu.

Invoking the Executive

There are several ways to invoke the Executive:
- From the Finder, choose and open the application named Exec.
- Choose Exec from the Transfer menu of another application.

- Call Exec from an Executive control file.

The Executive Control File

The Executive is controlled by an Executive control file with the .Job
extension. This file specifies the names of applications to be run and
what to do when the applications finish.

An Executive control file consists of a sequence of lines; each line
invokes an application. A line consists of four fields: the
application to be called, a string to be passed to the application as
input (usually a filename), the application to be called if the
original application is successfully completed (usually Exec), and the
application to be called if an error occurs in the original
application. Each field must be separated from the next by exactly one
Tab character.

58 Macintosh 68000 Development System

Here is a sample Executive control file:

Asm Foo.Files Exec Edit
Link Foo.Link Exec Edit

It assembles the files specified in Foo.Files, and, if successful,
links the files specified in Foo.Link. If either the assembly or the
linking fails, the Editor is invoked, and the Exec terminates, but can
be restarted or continued from the Execute menu.

Using the Executive

When you are using the Executive, all applications must be on the
startup volume, which must not be write-protected. In addition, the
volume containing the .Job file is established as the default volume
for files used by the application. Use volume names for files that
aren't on the same volume as the .Job file.

The default name for the Exec file is Exec.Job; it must be on the
startup volume. To use Exec.Job, choose the command Execute Exec.Job
from the Execute menu.

If you give your Exec file another name, you can place it on other
volumes. Exec files must always have the extension .Job. To use a
.Job file, select it using the Open Job File command in the File menu.

If an error occurs while an Exec file is running, a temporary file is
left on the disk. This file allows you to resume the Executive,
presumably after correcting the error. If you choose Resume from the
Execute menu, the Exec file starts at the line following the one in
which the error occurred. If you choose Resume and Re-do Last, the
Exec file starts at the line in which the error occurred.

You can stop an Exec file by typing a period while holding down the
Command key.

Chapter 6

The MacDB Debugger

rrrrrrrrrrrrrrr ey ey e ey rr e e rrrrry rr ey ey vl rlor

About This Chapter 61

About This Chapter

This chapter describes MacDB, an application that helps you debug
Macintosh applications. MacDB provides sophisticated debugging
capabilities at the machine-language level. Its features include
- Multiple memory display windows. Memory can be displayed in
multiple windows as characters, words, long words or strings, or
it can be disassembled symbolically. System traps are displayed
symbolically too.
— Versatile memory address display. Addresses can be displayed in
hexadecimal or as symbols, and you can use these symbols in
expressions (for example, you can set the PC to START).

— One or more register display windows. All registers and memory
locations can be changed easily.

- Multiple breakpoints can be set and cleared.

— Instructions can be executed one at a time.

- Memory search for patterns.

- Special trace and break capability for system trap instructions.
- Display and checking of the heap.

- Display of linked lists.

Setting Up MacDB

The use of MacDB requires two Macintoshes (or a Lisa running MacWorks
and a Macintosh) that are connected together: The target machine runs
the program to be debugged, and the debug machine runs MacDB.

If you are using two Macintoshes, connect the two machines together
using the cable supplied with the Development System. The debug
machine must be connected at port B, the printer port. The target
Macintosh can be connected at either port.

If you are connecting a Macintosh to a Lisa, use a Macintosh
ImageWriter cable. The debug machine must be connected at port B, the
printer port. If the target machine is the Lisa, it too must be
connected at port B. The cable connections required by the Macintosh
and the Lisa are shown in an appendix.

Next, run one of the Nub applications on the target machine. Use
MacNub A if the target Macintosh is connected by port A, and MacNub B
if it is connected by port B. Use WorksNub if the program to be
debugged is running on a Lisa under MacWorks.

62 Macintosh 68000 Development System

Running a Nub installs and initializes a small program in the system
heap of the target machine. Now run the application to be debugged.

On the debug machine, run the MacDB application.

It is helpful to actually run MacDB while you read the following
sections. If you have two machines, you can try out MacDB by running
the Window sample program application on the target machine.

One useful technique is to make the Nub the target machine's startup
application using the Set Startup command in the Finder's Special menu.
This guarantees that the Nub is already there just in case your
application bombs.

Theory of Operation

MacNub is a small program that runs in the system heap of the target
machine. When run, it places itself in the system heap, puts pointers
to itself in most of the hardware exception vectors in $@@@@ through
$@@FF, then returns control to the Finder. It then remains dormant
until one of "its" exceptions occurs. Here is the list of exceptions
to which MacNub responds:

Exception number Assignment

2 Bus Error

3 Address Error

4 Illegal Instruction
5 Zero Divide

6 CHK Instruction

7 TRAPV Instruction

8 Privilege Violation
9

Trace
10 Line 1¢1¢ Emulator
11 ' Line 1111 Emulator
24 Spurious Interrupts
28 Level 4 Interrupts
29 Level 5 Interrupts
3¢ Level 6 Interrupts
31 Level 7 Interrupts
46 Trap $E (breakpoints)

680@@ exception processing is described in the 68@@@ Reference Manual.
The simplest way to generate an exception on the target machine is to
press the interrupt button (the rear button on the programmer's
switch). Another good technique is to place the line

DC.W $FFQ1 ;generate a line $F exception

at the beginning of your program, or wherever you want MacDB to first
get control. (Actually any value $FP@P@ through $FFFF can be used.)

Theory of Operation 63

When one of these exception events occurs in the target machine, the
Nub gets control and sends an interrupt to the debug machine. The
debug machine (if running MacDB) displays a box that lets you select
whether to Debug or Proceed.

If you select Proceed, the target machine continues execution at the
current value of the PC. If the PC points to an instruction that
caused an exception (such as the $FF@l used above), the exception will
happen again. You must manually advance the PC before selecting
Proceed.

If you choose Debug, MacDB requests from the target machine all the
information necessary to update its windows. Normal operation of the
target machine is suspended until you choose Proceed from the Run menu.

The MacDB Windows

Here is a typical MacDB display, and a brief description of the default
contents of each of the windows.

Run Bkpts Window F¥ormal Symbsis

Registers Examine
T g &7 T+

m@ t*M2> 14 1E: 0000 0000
ooockaonRs : 0000 00RS
FFF 0000 : FFFF 0000
6001 0024 : 6001 0024
0000 0024 : 0000 0024
: 0000 OOFF

@START: JSR $34¢PCO
START+4: JSR $4ECPC)
START+8: JSR $56¢PC)
START+C: DrawMenuBar
START+E: JSR $86¢PC)
START+12: JSR $9ECPC)
START+16: : 0000 FFFF
START+1A: TEldle : FFFF FFO3
START+1C: SystemTask : 0000 S33A
START+1E: CLR -¢A?> 1R41E : 0001 ASD4
START+20: MOVE #$FFFF,-CA?> 1A4 1E] : 0000 533R
START+24: PEA $2EECPC)
START+28: GetNextEvent
*START+2A: MOVE (A?)>+,00
START+2C: BEQ.S *$-18
START+2E: JSR $9CCPC)
START+32: BEQ.S *$-1E
START+34: RTS
INITMANAGERS: PEA $-4¢AS)
INITMANA+4: Ini tGraf
INITMANA+6: Ini tFont
INITMANA+8: MOVE.L #$FFFF,DO Breakpoints
INITMANA+E: FlushEvents T T
INITHANA+10: Ini tWindow
INITHANA+12: Ini tMenus *START+2A: MO

[T I T I TR

- The PC window displays memory starting at the current value of the
program counter (PC). The value of the PC is indicated by the
"at" symbol (@) to the left of the first address displayed.
Addresses at which breaks have been set are marked by asterisks
(*). By default, memory in the PC window is displayed as
disassembled instructions. In this example, a .Map file has been
loaded to provide symbolic display of addresses. The program
counter is set to START, and a break is set at START+2A.

— The Registers window displays the values of the registers.
Although not visible in this example, the previous value of a
changed register is displayed in brackets ([]) to the right of the

64 Macintosh 68000 Development System

current value.

changed.

In the example, the D@ "cell" is selected to be

Cells are described below.

- The upper Examine window displays the contents of the stack in
long word format.
This is indicated by the anchor symbol and the seven in the upper
right of the window. The '7>' to the left of the first address in
this window shows that address register 7 points to this address.

- The
The
A5.

- The
are

START+2A.

The display of this window is "anchored" to A7.

lower Examine window is not anchored to a specific register.
window happens to contain the addresses contained in A@ and

Breakpoints window displays the addresses at which breakpoints
In the example, there is a breakpoint set at address

sete.

Features of MacDB Windows

MacDB windows behave much like most Macintosh windows; however, they
have a few unique features.

Close Box

Start Box

— Anchor Box

Examine == Title Bar

Align Box

=
7 | (L]
7>19760: FFFF FFFF [
19764: 0000 OOAC [
19768: 0000 000D
1976C: 0000 FFFF
19770: 0000 OO0
19774: 0000 4D80
19778: 0000 SF3C
1977C: 0000 4D80
19780: 0040 975C
19784: 0001 977E
19788: 0000 0000 [

—— Scroll Arrow

Scroll Bar

Scroll Box

—— Scroll Arrow

—— Size Box

The active window in a Macintosh application is the window with the
highlighted title bar.
active window at a time; however, unlike most others, it is not

As with other applications, there is only one

The MacDB Windows 65

necessary to select a window before selecting something within the
window: A single click activates the window and performs an action.
For example, if you click on a scroll arrow in an inactive window, the
window becomes active and scrolls.

The Close Box

The close box is used to remove a window from the screen. The original
PC, Registers, and Breakpoints windows cannot be closed. Duplicates of
windows, made with the Duplicate command in the Window menu, can all be
closed.

The Title Bar

The title bar is used to drag the window around on the screen. To
change a window's title, use the Title command in the Window menu.

The Start Box

The start box, the grey region below the title, is used to set the
address of the first location displayed in the window. For example, if
you click on the value shown for the PC in the Registers window and
then click on the start box of an Examine window, the window is updated
to display memory starting at the current value of the PC. The
selecting of values within windows is discussed below in the section on
cells.

The Anchor Box

The anchor box, to the right of the start box, displays the number of
the register, if any, to which that window is anchored. For example,
the upper Examine window is by default anchored to A7, indicated by the
anchor and the 7 in the anchor box. Whenever this window is updated,
the address contained in A7 is the first address displayed. Note that
the 7 could mean A7 or D7.

Anchors are set and cleared using the Anchor and No Anchor commands in
the Window menu. They cannot be set for Register or Breakpoints
windows.

The Align Box

It is not always possible for MacDB to determine whether memory data,
such as disassembled instructions, should be aligned on word or long
word boundaries. When you click the align box, just above the upper
scroll arrow, the starting address of the window decreases by one word.

66 Macintosh 68000 Development System

The Scroll Arrows

The scroll arrows work in the usual manner. Clicking a scroll arrow
causes the window to scroll one line in the indicated direction.
Scrolling continues until the mouse button is released.

The Scroll Bar

Clicking the scroll bar, either above or below the scroll box, causes
the next windowful of memory addresses to be displayed. Clicking
repeatedly on the scroll bar is considerably faster than scrolling line
by line, and you still see every address in the displayed range.

The Scroll Box

The scroll box works in the usual manner. Because there are many
memory addresses, it is a very good tool for moving quickly through
memory, but a fairly poor one for finding a specific address.

The Size Box

The size box works in the usual manner. It is used for increasing or
decreasing the size of the window either horizontally or vertically.

Values in Cells

Most of the things that appear within windows are addresses or values.
As such they are useful as input to various MacDB calls described
below. All addresses and values can be selected by clicking on them.
When a cell is selected, it is inverted on the screen. Only one cell
can be selected at a time.

Changing the Value in a Cell

To change the value in a register or memory cell in the target machine,
just select the value to be changed and then enter a new value or
expression. A box appears to let you cancel or accept the new value.

Expressions can contain hexadecimal values, the operators + — * /, and
symbols that are currently defined (as explained below). Hexadecimal
values must be preceded by $ if they might be confused with symbols.
The operators * and / are of equal and higher precedence than the
operators + and -, which are also of equal precedence.

Most address cells can be selected, but not changed. The first address
cell in a window can be changed.

Handy Hints 67

Handy Hints

You'll find while debugging that the disk drive does not stop spinning.
If you execute an infinite loop, the system will realize that the disk
isn't in use, and it will turn the drive off. Try entering and running
the instruction $6@FE (BRA *-2). Return control to MacDB by pressing
the interrupt button on the programmer's switch.

Another useful technique is to no—-op out undesirable instructions. The
opcode for a no-op is $4E71.

MacDB Menus

Debug Menu

128K/512K Mac

This message tells you the amount of RAM in the target (the other)
machine.

Heap Check On/Off

Select this command if you wish the validity of the heap to be checked
after each command executed by MacDB. If the command is selected, and
errors are found in the heap, the range of addresses containing the
fault is displayed in a box.

Wait
Wait instructs MacDB to wait for an interrupt from the target

Macintosh. Execution of the target program does not resume if it was
previously halted (see the Proceed command, below).

Quit

Quit leaves MacDB and restarts the Finder.

68 Macintosh 68000 Development System

Run Menu

Trace

Trace causes MacDB to execute the instruction that is currently
indicated by the PC. Once the instruction has completed, control
returns to MacDB and all the windows are updated.

System traps are treated as a single instruction. If you wish to trace
the execution of a system trap, use the Trace Into ROM instructionm,
described below.

Proceed

Proceed causes execution of the program to resume where it was
interrupted. This normally allows the program to continue as though it
had not been interrupted. If the PC still points to the instruction
that caused the exception, you must manually advance the PC.

Normal execution cannot be resumed if the interrupt was caused by a Bus
Error or an Address Error.

Go Till

Go Till places a temporary. breakpoint at the indicated address.
Execution continues until this breakpoint is encountered or some other
exception occurs. At this point the temporary breakpoint is removed.
You cannot place temporary breakpoints in ROM.

Go To

Go To causes execution to begin at the specified address. Control
returns to MacDB when a breakpoint or some other exception occurs.

Trace Into ROM

The Trace Into ROM command is usually dimmed. When the PC indicates a

system trap, Trace Into ROM is enabled. If you choose Trace Into ROM,

MacDB dispatches the call and returns with the PC pointing to the first
instruction in the ROM routine. You can then use the Trace command to

execute the instructions in the ROM routine.

MacDB Menus 69

Bkpts Menu

When you set a breakpoint, MacDB saves the instruction at the
breakpoint address and replaces it with a TRAP #S$E instruction. When
this address is executed, the exception caused by the TRAP instruction
gives control to the Nub, which then calls MacDB. The instruction that
was originally at that address is not executed.

Because breakpoints are implemented by altering memory locations, they
cannot be set in ROM. No warning is given if you try to set a
breakpoint in ROM.

The presence of a breakpoint is indicated in two ways: Its address is
displayed in the Breakpoints window, and any occurrence of an address
that contains a breakpoint, in any window, is marked by an asterisk.
If the PC is at an address that contains a breakpoint, the PC symbol
(@) is displayed instead.

Set

This command sets a breakpoint at the indicated address. The address
is added to the Breakpoints window, and all references to that address
in other windows are marked with an asterisk.

Clear

This command removes the breakpoint at the indicated address, if there
is one. The address is removed from the Breakpoints window, and all
references to that address in other windows are unmarked.

Clear All

This command clears all currently defined breakpoints.

Window Menu

New

New creates a new Examine window and places it on the screen. It is
useful if you want to look at several parts of memory at the same time.

Duplicate

This command makes a copy of the active window. All settings of the
original window are duplicated. A duplicate window always has a close
box.

70 Macintosh 68000 Development System

This feature is particularly useful if you want to freeze a copy of a
window for comparison with another (see Frozen/Thawed, below).

Symbolic/Hex Address

These two commands determine the format of the addresses displayed in
the active window. Symbolic addresses can only be displayed if one or
more .Map files have been opened (see the Open command in the Symbols
menu). In this mode, addresses are displayed as offsets from the
nearest defined label.

When Hex Address is selected, all addresses are displayed in
Hexadecimal.

This command does not affect the symbolic display of system traps.

Frozen/Thawed

This command allows the active window to be "frozen" for future
reference and comparison with unfrozen windows. A frozen window has a
thick black line as its left border.

Although a frozen window may be moved about on the screen, and the data

in the target machine may change, the contents of its window will not
change until it is thawed (or closed).

Anchor/No Anchor

The Anchor command lets you "anchor" the addresses displayed in a
window to one of the registers. The first address displayed in an
anchored window is the contents of the register to which it is
anchored. The register to which a window is anchored is denoted by an
anchor symbol followed by a register number in the window's anchor box
(see preceding figure).

A window may be anchored to any register displayed in the Registers
window with the exception of SR.
Title

This command allows you to change a window's title.

MacDB Menus 71

Format Menu

The Format menu allows you to select the format of the information
displayed in the active window. You can select the format of each
window except the Registers window.

Inst

This command causes the data in the active window to be displayed as
machine-language instructions. Useful effective addresses are
displayed to the right of the instructions. If a .Map file has been
loaded, effective addresses are displayed symbolically.

MacDB cannot always tell if instructions should be disassembled
starting on a word or long word boundary. If you click on the align
box, just above the upper scroll arrow, the starting address of the
window is decreased by two.

Char

This command causes the data in the active window to be displayed as
hexadecimal bytes. The ASCII character corresponding to each byte is
displayed in brackets to the right of the value. If the value's ASCII
character is not printable, a period is displayed.

Word

This command causes the data in the active window to be displayed as a
sequence of hexadecimal words. To the right of each word is its ASCII
representation. If a byte is not a printable ASCII character, a period
is displayed.

Long

This command causes the data in the active window to be displayed as a
sequence of long words. To the right of each long word is its ASCII
representation. If a byte is not a printable ASCII character, a period
is displayed. If the long word is the address of a defined symbol, the
symbol is displayed to the right of the ASCII representation.

Pascal String

This command causes the data in the active window to be displayed as a
sequence of Pascal strings (a length byte followed by a string). The
first byte in the window is assumed to be a length byte. Subsequent
characters are displayed until that many characters have been
displayed, or until an invalid character is found. The next byte is
then assumed to be a length byte.

72 Macintosh 68000 Development System

List

This command attempts to display the active window as a linked list.
The first line in the window reads

Offset = nnnn nnnn

nnnn nnnn is the offset into the record where the link to the next
record is found. To change the offset, just select the current offset
value and type in a new value.

The starting address of the window is the first byte of the first
record. As many consecutive bytes of the record as will fit across the
window are displayed. The offset is then added to the address of that
line, and the contents of the calculated address is the starting
address of the second record, which is displayed on the next line in
the window. Records are displayed until the window is full, or until
an invalid pointer is found.

If all the records do not fit in the window, you can scroll downward to
see subsequent records. You cannot scroll upward in the window. To
move upward, you can reselect the starting address for the window.

Search

Search allows you to search memory for occurrences of a specified
pattern within a specified range of memory addresses. When you choose
the command, you are allowed to set the start address of the search,
the end address of the search, a mask value, and a value.

Each address in the memory range is logically ANDed with the mask and
then compared with the specified value. If they match, then that
address and its contents are displayed.

If all the matching patterns do not fit within the window, you can
scroll downward to see subsequent occurrences of the pattern. You
cannot scroll upward in a Search window. To move upwards, you can
enter a new start address, or you can select an address elsewhere on
the screen, and then click in the start box, just below the window's
title.

You can use the mask to set the size of the pattern you are looking
for. To search for a specific byte, set the mask to $FF. To search
for a specific word, set the mask to $FFFF. To search for a long word,
set the mask to $FFFFFFFF.

A-Traps

This command lets you monitor the execution of system traps in the
target application. Four lines appear at the top of the window. These
let you set the range of traps to be monitored, whether a break should

MacDB Menus 73

occur when a trap in the range is encountered, and whether the trap
monitor feature is currently active.

Trap numbers are in the range $APP@ through SAFFF. Set first to
indicate the lowest trap number to be monitored. Set last to indicate
the highest trap number to be monitored. If first is equal to last,
just that single trap is monitored. If you wish a break to occur when
a trap in the specified range is encountered, set the Break option to
True (by clicking on False). The setting of the auto-pop bit in the
monitored traps is ignored.

If you wish to temporarily disable the monitoring of traps, set Enable
to False by clicking on True.

Once all your settings are correct, choose Proceed in the Run menu.
This allows the target program to execute, but all traps in the desired
range are displayed within the window. If the Break option is set to
true, then control returns to MacDB when each trap in the range is
encountered (before it is executed).

Note that you can have multiple windows each monitoring a different
range of trap instructioms.

Clicking Debug interrupts the target machine at the next trap.

MemBlock

This display format allows you to examine memory blocks within a heap
zone. When you choose this command, the starting address of the window
is automatically set to the first memory block in the current heap zone
(immediately following the zone header).

Each line in the window displays an eight-byte memory block header,
enclosed in square brackets, followed by as much of the memory block as
will fit across the window. In the case of nonrelocatable blocks, the
memory block immediately follows the header in memory. In the case of
relocatable blocks, the second long word in the header is a pointer to
the block's master pointer. Such pointers are preceded by asterisks.

Subsequent lines in the window display the headers for subsequent
memory blocks. You can scroll up and down through heap zones.

Symbols Menu

This menu is used to assign symbols to memory addresses and to clear
such assignments. Symbols are stored in .Map files.

74 Macintosh 68000 Development System

Value

Value lets you discover a symbol's value or a value's symbol. Either
select an address in memory or a symbol before choosing the command, or
be prepared to enter an address or symbol after choosing this command.
It will display the symbol and its value.

If there is no .Map file loaded, or the specified address is outside of
the program space, the value is displayed in hexadecimal.

Open and Purge

These commands let you control the display of symbols in MacDB.

Each window (except Registers) can have a set of symbols assigned to
it. When you first Open a .Map file, the symbols in the .Map file are
assigned to all windows. These windows are treated as a group; opening
a .Map file for any of them assigns new symbols to all of them.

Purge clears the symbols assigned to the selected window and removes
that window from the group. If you Open a .Map file with a purged
window selected, the symbols are assigned to that window; it does not
affect the symbols in other windows.

MacDB is able to keep track of the symbols used by multiple segments,
but they are bound to the segments that are in memory when the .Map
file was opened. You must open the .Map file again if the loaded
segments change.

About Symbols

When you start up MacDB, only trap symbols are displayed.

When you open a .Map file, the symbols in the .Map file are read into
memory. Only symbols that were referenced using the XDEF directive are
placed into a .Map file.

If you want to use equates that are not addresses, you must use a trick
to get them into a form that MacDB recognizes. Each entry in a .Sym
file looks like this:

LABEL $08 S$xxxxxxxx
and each entry in a .Map file looks like this:

LABEL= s :XXXXXXXX
in which s is the segment number, and xxxxxxxx is the value. Thus if
you change all instances of the string ' $@8 $' in a .Sym file to

'= @:', and save it as a .Map file, the file can be opened and used by
MacDB.

Chapter 7

The MacsBug Debuggers

About This Chapter 77

About This Chapter

This chapter describes the MacsBug family of debuggers.

The first part of the chapter describes the various versions of MacsBug
and how they work. The next part of the chapter describes the syntax
of commands accepted by MacsBug. The end of the chapter describes the
commands themselves.

About MacsBug

MacsBug is a line-oriented single-Macintosh debugger. It shares memory
with the application being debugged, thus MacsBug may not fit in memory
with very large applicatioms.

The features of MacsBug include

- The ability to display and set memory and registers.

The ability to disassemble memory.

- Stepping and tracing through both RAM and ROM.

Monitoring of system traps.
- Display and checking of the system and application heaps.
MacsBug gets control when certain 68@@@ exceptions occur. You can then

examine memory, trace through the application, or set up break
conditions and execute the application until those conditions occur.

Setting Up MacsBug

MacsBug is not selected like a normal application. If there is a file
named MacsBug on the startup disk when the system is turned on or
restarted, MacsBug is installed into the system, and the message
"MacsBug installed" is displayed right below "Welcome to Macintosh".
The startup application is then launched as usual. To use a particular
version of MacsBug, place it on a startup disk and name it MacsBug.

MacsBug is placed in memory just below the main screen buffer. The
amount of memory required by MacsBug depends on the version in use.

Five versions of MacsBug are included in the Macintosh 683¢@
Development System. They are described below.

78 Macintosh 68000 Development System

MacsBug

This version of MacsBug runs on a 128K Macintosh. When invoked, it
saves part of the screen and provides ten lines of debugging display.
When exited, it restores the screen.

MacsBug uses about 18K of memory. It will not run under MacWorks.

MaxBug

This version of MacsBug should be used on 512K Macintoshes. When
invoked, it saves almost the entire screen and provides a 4@-line
display. When exited, it restores the screen. This version of MacsBug
displays trap names instead of trap numbers. :

MaxBug uses about 4@K of memory. It will not run under MacWorks.

TermBugA and TermBugB

These versions of MacsBug send display information to an external
terminal rather than to the Macintosh screen. TermBugA should be used
if the terminal is connected to the modem port, and TermBugB should be
used if the terminal is connected to the printer port.

Communication over the serial ports is at 96@@ baud, 8 data bits, 2
stop bits, no parity bits, using the XOn/XOff protocol.

TermBugA and TermBugB use about 12K of memory. They will not run under
MacWorks.

LisaBug

LisaBug is functionally equivalent to MaxBug. You should use it when
you are using a Lisa running MacWorks. LisaBug will not run on a
Macintosh.

Theory of Operation

When installed, MacsBug puts pointers to itself in many of the hardware
exception vectors in addresses $P@@@ through S@P@FF. It then remains
dormant until one of "its" exceptions occurs. Here is the list of
exceptions to which MacsBug responds:

Exception number Assignment

Bus Error

Address Error
Illegal Instruction
Zero Divide

bW

Theory of Operation 79

6 CHK Instruction

7 TRAPV Instruction

9 Trace

10 Line 1010 Emulator

11 Line 1111 Emulator

28 Level 4 Interrupts (not with LisaBug)
29 Level 5 Interrupts (not with LisaBug)
30 Level 6 Interrupts (not with LisaBug)
31 Level 7 Interrupts

47 Trap $F Instruction

680@@ exception processing is described in the 68@(@ Reference Manual.

Invoking MacsBug

The simplest way to generate an exception is to press the interrupt
button (the rear button on the programmer's switch). When you are
using LisaBug, press '-' on the numeric keypad.

Another way to generate an exception is to add a line such as
DC.W SFF@1 ; generate a line 1111 exception

at the point in your program where you want MacsBug to first get
control. (Actually any value S$FP@@ through $FFFF can be used.)

Another good technique is to place the system trap
_Debugger ; invoke system trap $A9FF

into your program at the point where you want MacsBug to get control.
This trap is defined in the file ToolTraps.Txt (and MacTraps.D).

In addition, you can invoke system trap $ABFF. This trap is designed
for use with the Lisa Workshop development system; it's explained at
the end of the chapter.

When MacsBug gets control, it disassembles the instruction indicated by
the PC and displays the contents of the registers. If the exception
was caused by an $Fxxx, $A9FF, or SABFF instruction, MacsBug displays
the message 'USERBRK', advances the PC to the next instruction, and
then disassembles the instruction and displays the registers.

It then displays the greater-than symbol (>) as a prompt, indicating
that it is ready to accept a command.

MacsBug, MaxBug, and LisaBug replace part of the screen with the
debugging display. To see the application screen while the debugger is
active, press the tilde/opening quote key in the upper left of the
keyboard. To restore the debugger's display, press any character key.

80 Macintosh 68000 Development System

Syntax of MacsBug Commands

Commands consist of one or two command characters followed by a list of
zero or more parameters (depending on the command). Parameters can be
numbers, text literals, symbols, or simple expressions.

Numbers

Numbers can be entered in decimal or hexadecimal notation. Decimal
numbers are preceded by an ampersand (&) and hexadecimal numbers are
optionally preceded by a dollar sign ($). Numbers may be signed (+ or
-); if they are, the sign should precede the notation symbol. Here are
some numbers in several different formats. The formats shown are the
same as those displayed by the Convert command (described below).

Number Unsigned Hex Signed Hex Decimal
$FF $PPOPBPFF $OPPPPPFF &255
~-$FF SFFFFFF@1 -SP00PPPFF -&255
&100 $PPP0BP64 $PPP0PP64 &109
+1¢ $PP00pR10 $0PPPP010 &16

Text Literals

A text literal is a one- to four—character ASCII string bracketed by
single quotes ('). If a string is longer than four characters, only
the first four characters are used. When used by MacsBug, text

literals are right justified in a long word. Here are some examples:

String Stored as

Al $00000041

'Fred' $46726564

'1234" $31323334
Symbols

Symbols are generally used to represent the registers. The symbols are

RA@ through RA7 Address registers A@ through A7
RD@ through RD7 Data registers D@ through D7

PC Program counter

. Last address referenced ("Dot")

TP Current QuickDraw port (thePort)

Syntax of MacsBug Commands 81

Expressions

Expressions are formed by operators acting on numbers, text literals,
and symbols. The operators are

+ addition (infix), assertion (prefix)
= subtraction (infix), negation (prefix)
@ indirection (prefix)

The indirection operator uses the long integer at the location pointed
to by the operand. Here are some valid expressions:

RA7+4

1A7¢¢-@10C

TP+&24

-RA@J+RAL-"'FRED '+@Q4C50

MacsBug Commands

MacsBug commands can be divided into six groups: memory, register,
control, A-Trap, heap zone, disassembly, and other miscellaneous
commands .

A Return character repeats the last command, unless specified otherwise
in the descriptions below.

Parameters are represented by descriptive words and abbreviations such

as '"ADDRESS', 'NUMBER', and 'EXPR'. All parameters can be entered as
expressions.

Memory Commands

DM ADDRESS NUMBER (Display Memory)

Displays NUMBER bytes of memory starting at ADDRESS.

NUMBER is rounded up to the nearest 16 bytes. If NUMBER is omitted, 16
bytes are displayed. If ADDRESS and NUMBER are omitted, the next 16
bytes are displayed.

Subsequent presses of the Return key display the next NUMBER bytes.

The dot symbol is set to ADDRESS.

If NUMBER is set to certain four character strings, memory is instead
symbolically displayed as a data structure that begins at ADDRESS. The

strings and the data structures they represent are

'I0PB' Input/Output Parameter Block for File I/0
'WIND' Window Record

82 Macintosh 68000 Development System

'TERC' TextEdit Record

Refer to Inside Macintosh for a description of these data structures.

You can prematurely terminate a DM command by pressing the Backspace
key. '

SM ADDRESS EXPR1 .. EXPRN (Set Memory)

Places the specified values, EXPRl through EXPRN, into memory starting
at ADDRESS. The size of each value depends on the "width" of each
expression.

The width of a decimal or hexadecimal value is the smallest number of
bytes that holds the specified value (four-byte maximum). Text
literals are from one to four bytes long; extra characters are ignored.
Indirect values are always four bytes long. The width of an expression
is equal to the width of the widest of its operands.

The dot symbol is set to ADDRESS.

Register Commands

Dn EXPR (Data Register)

Displays or sets data register n. If EXPR is omitted, the register is
displayed. Otherwise, the register is set to EXPR.

An EXPR (Address Register)

Displays or sets ADDRESS register n. If EXPR is omitted, the register
is displayed. Otherwise, the register is set to EXPR.

PC EXPR (Program Counter)

Displays or sets the program counter. If EXPR is omitted, the program
counter is displayed. Otherwise, the PC is set to EXPR.

SR EXPR (Status Register)

Displays or sets the status register. If EXPR is omitted, the status
register is displayed. Otherwise the status register is set.

TD (Total Display)

Displays all registerse.

MacsBug Commands 83

Control Commands

BR ADDRESS COUNT (Break)

Sets a breakpoint at ADDRESS. COUNT is the number of times that the
breakpoint should be executed before breaking. If COUNT is omitted,
the program is stopped the first time the breakpoint is hit. If
ADDRESS is omitted, all breakpoints and current counts are displayed.

A maximum of 8 different breakpoints can be set.

CL ADDRESS (Clear)

Clears the breakpoint at ADDRESS. If ADDRESS is omitted, all
breakpoints are cleared.

G ADDRESS (Go)

Executes instructions starting at ADDRESS. If ADDRESS is omitted,
execution begins at the address indicated by the program counter.
Control does not return to MacsBug until an exception occurs.

GT ADDRESS (Go Till)

Sets a one—time breakpoint at ADDRESS, then executes instructions
starting at ADDRESS. This breakpoint is automatically cleared after it
is hit.

T (Trace)

Traces through one instruction. Traps are treated as single
instructions.

S NUMBER (Step)

Steps through NUMBER instructions. If NUMBER is omitted, just ome
instruction is executed. Traps are not considered to be single
instructions.

SS ADDRESS1 ADDRESS2 (Step Spy)

Calculates a checksum for the specified memory range, then does a Go.
It then checks the checksum before each instruction is executed, and

breaks into MacsBug if the checksum doesn't match. If ADDRESS1 and
ADDRESS2 are omitted, this feature is turned off.

84 Macintosh 68000 Development System

ST ADDRESS (Step Till)

Steps through instructions until ADDRESS is encountered. Unlike Go
Till, this command does not set a breakpoint. Thus it can be used to
step through, and stop in, ROM.

MR NUMBER (Magic Return)

When debugging, you generally trace through a program one instruction
at a time. MR lets you trace through to the end of a routine instead.

When you use MR, it replaces the return address that is NUMBER bytes
down in the stack with an address within MacsBug; then it does a Go
(described above). The RTS that would have used that address returns
to MacsBug instead of the caller. MacsBug restores the original return
address, and then executes the RTS as if called by the Trace command.
The prompt is then displayed, ready to trace the instruction after RTS.

The usual way to use this routine i1s to trace until just after a JSR
(return address @ bytes down in the stack), and then do an MR (@ is the
default NUMBER). The rest of the routine is executed, and control
returns to MacsBug.

This command isn't repeated when you press Return; a Trace command is
executed instead.

RB (Reboot)

Reboots the system.

ES (Exit to Shell)

Invokes the trap ExitToShell, which causes the startup application to

be launched.

A-Trap Commands

The A-Trap commands are used to monitor "1(1¢ emulator" traps. These
commands use up to six parameters (TRAP1, TRAP2, ADDRESS1, ADDRESS2,
D1, and D2) that specify which traps and other conditions should be
monitored. If no parameters are given, all traps are monitored.

TRAP1 and TRAP2 specify the range of the traps. Operating System traps
are in the range @ through 255; Toolbox traps are between 255 and 511.
If only TRAPl is specified, the command is invoked for trap TRAPl. If
TRAP1 and TRAP2 are specified, the command is invoked for all traps in
the range TRAP1 through TRAP2. ADDRESS1 and ADDRESS2 specify the range
of calling addresses within which traps should be monitored. Finally,

MacsBug Commands 85

D1l and D2 specify the values of data register within which traps
should be monitored.

These commands set up conditions for the monitoring of traps. You
generally use the Go command immediately after a trap command to await
the use of a specified trap. When a trap in the indicated range is
encountered appropriate information is displayed. Displayed trap
numbers are given in full word format (Axxx).

Unlike break commands, only one A-Trap command is active at a time.

AB TRAP1 TRAP2 ADDRESS1 ADDRESS2 D1 D2 (A-Trap Break)

Causes a break when the condition specified by the parameters is
satisfied.

AT TRAP1 TRAP2 ADDRESS1 ADDRESS2 D1 D2 (A-Trap Trace)

Traces and displays each A-Trap, but doesn't break, when the condition
specified by the parameters is satisfied.

This command continues to display A-Traps until you press the interrupt
button.

AH TRAP1 TRAP2 ADDRESS1 ADDRESS2 D1 D2 (A-Trap Heap zone check)

TRAP1 must be greater than $2E. This command does an HC command just
before executing each trap in the specified range. It displays the
first two memory blocks that might contain errors.

HS TRAP1 TRAP2 (Heap Scramble)

Scrambles the heap zone, by moving relocatable blocks, when certain
traps in the specified range are encountered. It always scrambles the
heap zone as a result of NewPtr, NewHandle, and ReallocHandle calls.
It scrambles the heap zone as a result of SetHandleSize and SetPtrSize
if the new length is greater than the current length.

This command is fastest if you set trapl to $18 and trap2 to $2D.

The heap zone is not scrambled as a result of traps other than those
named above.

AS ADDRESS1 ADDRESS2 (A-Trap Spy)

Calculates a checksum for the specified memory range, and then checks

it before each trap. Breaks into MacsBug if the checksum doesn't
match.

86 Macintosh 68000 Development System

AX (A-Trap Clear)

Clears all A-Trap commands.

Heap Zone Commands

The heap zone commands act upon the current heap zone. When MacsBug is
started up, the current heap zone is the application heap zone. You
can toggle the current heap zone between the application heap zone and
the system heap zone using the HX command.

Several commands cause MacsBug to scramble the heap zone. When MacsBug
scrambles the heap zone, it rearranges all the relocatable blocks.

This is useful for finding illegally used pointers to relocatable data
structures.

HX (Heap Exchange)

Toggles the current heap zone between the system heap zone and the
application heap zone.

HC (Heap Check)

Checks the consistency of the current heap zone. If an inconsistency
is found, two blocks are displayed. The first appears correct, but
might have a bad length; the second is definitely garbled.

HD MASK (Heap Dump)

MASK is optional. Whether or not MASK is used, it displays each block
in the current heap zone in the following form:

BlockAddr Type Size [Flags MP_location] [*] [RefNum ID Type]

The blockAddr points to the start of the memory block. The type is F
for a free block, P for a pointer, and H for a handle to a relocatable
block. The size is the physical size of the block, including the
contents, the header, and any unused bytes at the end of the block.

For handles (type H), Flags (the high nibble of the master pointer) and
the master pointer location are given. Flags are: 1locked (bit 3),
purgeable (bit 2), resource (bit 1), and unused (bit @#). The asterisk
marks any immobile object (nonrelocatable blocks and locked relocatable
blocks).

For resource file blocks, three additional fields are displayed: the
resource's reference number, ID number, and type.

If MASK is omitted, the dump is followed by a summary of the heap
zone's blocks. It begins with the six characters 'HLP PF', which

MacsBug Commands 87

represent the six values that follow them. These values are
H - number of relocatable blocks in the heap zone (handles)
L - number of relocatable blocks that are Locked

P - number of Purgeable blocks in the heap zone

I

SPACE, in bytes, occupied by purgeable blocks

P - number of nonrelocatable blocks in the heap zone (pointers)

F - total amount of Free space in the heap zone

Here is a sample summary:

HLP PF (@84 0004 0032 PPE@79E @017 PPBBB3B4L

Note that block counts are single words, and values representing space
in bytes are long word quantities.

If MASK is used, the summary line displays the block counts of specific
types of blocks. Possible values for MASK are:

'H' Relocatable blocks (handles)

Hpt Nonrelocatable blocks (pointers)
'F' Free blocks

'R! Resource blocks

'xxxx' Resource blocks of type 'xxxx'

If MASK is used, the heap summary takes this form:

CNT ### <# of blocks of MASK type> <# bytes in those blocks>
You can prematurely terminate an HD command by pressing the Backspace
key.
HP MASK (Heap Print)
If you are using TermBugA or TermBugB, this command can be used to dump
the heap zone to the other serial port. Communication is done at 96¢@
baud, 8 data bits, 2 stop bits, and no parity bits, using the XOn/XOff
protocol.

HT MASK (Heap Total)

Displays just the summary line from a heap zone dump. MASK works just
as it does with the HD command.

88 Macintosh 68000 Development System

Disassembler Commands

ID ADDRESS (Instruction Disassemble)

Disassembles one line at ADDRESS. 1If ADDRESS is omitted, the next
logical location is disassembled. This sets the dot symbol to the
ADDRESS.)

If it is Pascal code that was compiled with the {$D+} option on, and
symbols have been turned on with the PX command, each address is
automatically displayed as a routine name plus an offset.

IL ADDRESS NUMBER (Instruction List)
Disassembles NUMBER lines starting at ADDRESS. If NUMBER is omitted, a
screenful of lines is disassembled. If both NUMBER and ADDRESS are
omitted, a screenful of lines is disassembled starting at the next
logical location. This command sets the dot symbol to the ADDRESS.

If it is Pascal code that was compiled with the {$D+} option on, and
symbols have been turned on with the PX command, each address is
automatically displayed as a routine name plus an offset.

You can prematurely terminate an IL command by pressing the Backspace
key.

PX (Symbol Toggle)

Toggles whether or not symbols are displayed. By default, symbols are

off. This affects the IL, ID, and WH commands.

Miscellaneous Commands

F ADDRESS COUNT DATA MASK (Find)

Searches COUNT bytes from ADDRESS, looking for DATA after masking the
target with MASK. As soon as a match is found, the ADDRESS and value
are displayed, and the dot symbol is set to that ADDRESS. To search
the next COUNT bytes, simply press Return.

The size of the target (and default MASK) is determined by the width of
DATA, and can only be 1, 2, or 4 bytes. Default MASK has all bits on.
WH EXPR (Where)

Displays the number, address, and with MaxBug, the name, of the trap
specified by EXPR.

MacsBug Commands 89

If EXPR is a name or is less than 512, it displays information for that
trap. If EXPR is greater than or equal to 512, the trap whose code is
closest to address EXPR is displayed. This is useful for finding out
what trap was executing when an error occurred.

CS ADDRESS1 ADDRESS2 (Checksum)

Checksums the bytes in the range ADDRESS1 through ADDRESS2 and saves
that value. If ADDRESS2 is omitted, it checksums 16 bytes, starting at
ADDRESS1. TIf ADDRESS1 and ADDRESS2 are both omitted, it calculates the
checksum for the last range specified, saves that value, and compares
it to the previous checksum for that range. If the checksum hasn't
changed, it prints 'CHKSUM T'; otherwise it prints 'CHKSUM F'.

CV EXPR (Convert)

Displays EXPR as unsigned hexadecimal, signed hexadecimal, signed
decimal, and text.

RX (Register Exchange)

Toggles the display mode so that the registers are or are not dumped
during a trace command. The disassembly of the PC instruction is not
affected.

Handy Hints

Stopping the Disk Drive

When you are using the debugger, the disk drives don't stop spinning as
they usually do. You can get a disk drive to stop by doing the
following:

1. Enter DM PC and remember the first word that is displayed.

2. Enter SM PC 6QFE, the instruction BRA *-2, which is an infinite
loop. ’

3. Enter G and wait for the drive to stop spinning.
4. When the drive stops spinning, press the interrupt button.

5. Put the old word back into memory.

90 Macintosh 68000 Development System

Using No-ops

If you want to no-op out an instruction, replace the instruction with
the number $4E71, the no—op opcode.

Using MacsBug with the Lisa Workshop

If you are using the Lisa Workshop development system, you can invoke
MacsBug by declaring and calling the following procedure:

PROCEDURE MacsBug; INLINE $A9FF;

This procedure drops into MacsBug and displays the message 'USERBRK'.
It then does a normal exception entry into MacsBug.

If you want to display debugging information, declare and call this
procedure:

PROCEDURE MacsBugPrint (str: str255); INLINE $ABFF;

When the $ABFF trap is encountered, MacsBug assumes that the top of the
user's stack has a pointer to a Pascal string. It prints out the
string, displays the message 'USERBRK', and does a normal exception
entry into MacsBug.

The Lisa Workshop Pascal compiler has an option that lets you
symbolically display the names of routines and functions in MacsBug.

If you compile your program using the {$D+} option, procedure names are
automatically placed in the code at the end of each procedure or
function. If you want to use the symbols, you should use PX to turn on
symbolic display.

Chapter 8

The Resource Compiler

]

|

— 1

]

[

[l

Il

[l

R

About This Chapter 93

About This Chapter

This chapter describes RMaker, an application that is used to produce
resource files and to integrate resources into applications.

The first part of this chapter describes RMaker. The next part of the
chapter describes how to create an RMaker input file using predefined
resource types and user—defined resource types. The final part of the
chapter tells how to use RMaker to create a new resource file from the
input file.

About RMaker

RMaker is the Macintosh 68@@@ Development System's Resource Compiler.
It is very similar to the RMaker program in the Lisa Workshop, but some
changes have been made to the syntax. Be careful if you are converting
resource files from one system to the other.

RMaker takes a text file as input and produces a resource file. The
text file contains an entry for each resource, as described below.
These entries can specify all information necessary to define the
resources, or they can cause existing resources to be read from other
files.

For example, during program development, you'll typically use separate
application and resource files. Once the application is finished, you
should combine these files. Simply use the INCLUDE statement to read
in the application created by the Linker. It is already stored as
resources of type 'CODE'.

RMaker Input Files

An RMaker input file is a text file that may be created using the
Editor. By convention, RMaker input files have the extension .R.

RMaker ignores all comment lines and blank lines (except in some cases
a blank line may be required). It also ignores leading and embedded
spaces (except in lines defined to be strings). Comment lines begin
with an asterisk. To put comments at the end of other RMaker lines,
precede the comment with two consecutive semicolons (;;).

Naming the Resource File

The first nonblank and noncomment line of the input file specifies the
name of the resource file to be created. If the filename has the
extension .Rel, a file is generated that can be linked using the Linker
(see the section on resources in Chapter 4). If the file is to be an
application, it should have no extension. If not, the file will be a
resource file and should have the extension .Rsrc. The line following
the resource's filename should either specify the file type and creator

94 Macintosh 68000 Development System

bytes for the Finder or be blank. For example, the two lines

NewResFile.Rsrc
PNTGMPNT

specify the file named NewResFile.Rsrc as the output file, and the
bytes 'PNTGMPNT' as the type and creator bytes. These bytes tell the
Finder that the file is a painting file, created by MacPaint. (The
Finder will try to launch MacPaint if you select and open this file!)
More typically, these two lines will look like this:

MyApplication
APPLMYAP

This designates the file MyApplication as the output file. The file is
an application (type 'APPL') of type 'MYAP'.

If you do not specify a value for these bytes, they are set to @.

Appending to an Existing Resource File

If you wish to add the resources defined in your input file to those in
an existing resource file, simply precede the filename with an
exclamation point. For example

!01dResFile.Rsrc

tells RMaker to add the new resources to the file OldResFile.Rsrc.

Adding Resources

The rest of the resource file consists of INCLUDE statements and "Type
statements".

INCLUDE statements are used to read in entire resource files. An
INCLUDE statement looks like this:

INCLUDE filename
Type statements consist of the word "Type" followed by the resource
type and, below that, one or more resource definitions. The resource

type must be capitalized to match a predefined resource type.

The following statement creates three resources of type 'STR '.

RMaker Input Files 95

TYPE STR
,1

This is a string
2

Gnirts a si siht
,3

Hits is a grints

It is not necessary for all resources of a given type to be declared
together; however, all resources of a type must have unique resource
IDs. If you specify a resource ID that is already in use, the new
resource replaces the old one.

A resource looks like this:

[resource name] ,resource ID [(resource attribute byte)]
type-specific data

The square brackets indicate that the resource name and resource
attribute byte are optional. Don't place these brackets in your input
file. The comma before the resource ID is mandatory. The default
attribute byte is . Here are some sample resource definitions:

TYPE STR

NewStr ,4 (32)

This resource has a name and an attribute byte!!
5
b

This one has only a resource ID.

MyNewStr,6

This has a name and a resource ID.

The type-specific data is different for each resource type. As you
have probably guessed, the type-specific data for a 'STR ' resource is
simply a string. The next section describes the type-specific data for
the resource types defined by RMaker.

Defined Resource Types

RMaker has 12 defined resource types: 'ALRT', 'BNDL', 'CNTL', 'DITL',
'DLOG', 'FREF', 'GNRL', 'MENU', 'PROC', 'STR ', 'STR#', and 'WIND'.

The format of the type-specific data for each type is shown by example,
below. The type 'GNRL' is used to define your own resource types. It
is explained later.

Syntax of RMaker Lines

There are just a few general rules that apply to lines read by RMaker.

- Leading and embedded blanks are ignored, except when necessary to
separate multiple numbers on a line, or when they are part of a
string.

96 Macintosh 68000 Development System

— Numbers are decimal, unless specified otherwise.

- RMaker is sensitive to line breaks. Thus if a type description,
below, shows four values on a single line, you must put four
values on a single line.

Two special symbols can be used in resource definitions: the
continuation symbol (++) and the enter ASCII symbol (\).

++ goes at the end of a line that is continued on the next line.

\ precedes two hexadecimal digits. That ASCII character is
entered into the resource definition.

Look at the description of the 'STR ' type for examples of these
special symbols. As previously mentioned, blank lines are ignored. To
enter a blank line that isn't ignored, use \28.

You will notice that some of the resources are listed as templates,
while others are not. A template is a list of parameters used to build
a Toolbox object; it is not the object itself.

ALRT Alert Template
TYPE ALRT
,128 ;3 resource ID
5¢ 50 25¢ 25¢ ;3 top left bottom right
1 ;3 resource ID of item list
7FFF 33 stages word in hexadecimal
BNDL Application Bundle
TYPE BNDL
,128 ;3 resource ID
MPNT @ ;3 bundle owner
ICN# ;3 resource type
@ 128 1 129 33 local ID @ maps to resource ID 128; 1 to 129
FREF ;3 resource type
¢ 128 1 129 33 local ID @ maps to resource ID 128; 1 to 129

Note: the number of mappings from local ID to resource ID is variable.
Simply include multiple mappings on a single line.

CNTL Control Template
TYPE CNTL
,130 ;3 resource ID
Stop 53 title
244 4P 260 8¢ ;3 top left bottom right
Invisible ;3 see note

) ;3 ProcID (control definition ID)

¢
p1o

Note:

.o
LRl

.o
LR

Controls can be defined to be Visible or Invisible.

Defined Resource Types 97

RefCon (reference value)
minimum maximum value

Only the

first character (V or I) is significant.

DITL Dialog or Alert Item List
TYPE DITL
,129 ;3 resource ID
5 53 5 items in list
staticText 53 static text dialog item (see note)
20 20 32 109 53 top left bottom right
Whoopie ;3 message
editText ; editable text dialog item (see note)

20 120 32 200
Default message

radioButton
4 40 60 150
Hello

checkBox Disabled
75 40 95 150
GoodBye

button

75 16@ 95 2¢¢

Hi!
Note:

to be enabled.

Five types of dialog items are defined:
text, Radio Buttons, Check Boxes, and Buttons.
Otherwise you may specify Disabled.

top left bottom right

; message

; radio button dialog item (see note)

top left bottom right
message

disabled dialog item (see note)

33 top left bottom right
; message

; button dialog item (see note)

top left bottom right
message

Static text, Editable
These items are assumed
Only the first

character of an item definition word is significant (S,E,R,C,B,D).

DLOG Dialog Template
TYPE DLOG
»3 ;3 resource ID

This is a dialog box.

100 100 199 250
Visible GoAway
¢

@

129

Note:

A dialog box can be Visible or Invisible.
determine whether or not the dialog box has a close box.

; message

top left bottom right

box status (see note)

procID (dialog definition ID)
refCon (reference value)

ID of item list ('DITL', above)

GoAway and NoGoAway
Only the

first characters (V,I,G,N) are significant.

resource ID
file type, local ID of icomn

98 Macintosh 68000 Development System
FREF File Reference
TYPE FREF
,128 -
APPL @ HH
,129

TEST 127 myFile

Note:

MENU Menu

TYPE MENU
53

Transfer

Edit

Asm

Link

(-

Exec

We we We we We we we we
We we We we we we We we

PROC Procedure

TYPE PROC
,128 3
MyProcedure 5

This type is used to create resources that contain code.
first code segment from an application file
1), strips the first four bytes off of
Loader), and saves it as a resource of type
defining code types such as 'DRVR', 'WDEF',
given below in the section on creating your

ID =

STR String

TYPE STR
,1
This is a string

e we we
we weo e

,23
This is a string ++
that shows the line ++
continuation characters.

»25 (32) H
I've got attributes! H

resource ID
file type, local ID of icon, filename

If there is no filename, it can be omitted.

resource ID

menu title

item 1

item 2

item 3

item 4 (draw a line)

item 5

MUST be followed by a blank line!!

resource ID
filename

It reads the
(the 'CODE' resource with
it (used by the Segment
'PROC'. It is useful for
and 'PACK'. An example is
own resource types.

'STR ' (space required)
resource ID
and a string

resource ID
and a long string

resource ID, optional attribute byte
and a string

Defined Resource Types 99

,27 33 resource ID
Testing, \31, \32, \33 ;; 'Testing, 1, 2, 3' the hard way

STR# A Number of Strings

TYPE STR#

1 ;3 resource ID

4 53 number of strings
This is string one 53 and the stringse...
And string two

Third string

Bench warmer

WIND Window Template

TYPE WIND

,128
Wonder Window
40 8¢ 120 300
Invisible GoAway
)
)

; title

; top left bottom right

; window status (see note)

; ProcID (window definition ID)
;s RefCon (reference value)

we We we we we

Note: A Window can be Visible or Invisible; GoAway and NoGoAway
determine whether or not the window has a close box. Only the first
character of each option (V,I1I,G,N) is significant.

Creating Your Own Types

There are two ways to create your own resource types. The first is to
equate a new type to an existing type. For example, you can create a
resource of type 'DRVR' like this:

TYPE DRVR = PROC 33 type 'DRVR' is just like 'PROC'
,17 (32) ;3 resource ID, attribute byte
MyDriver 33 filename

The file MyDriver should be a single-segment application, as created by
the Linker. Recall that the 'PROC' type reads in the resource of type
'CODE' with ID = 1; then it strips off the header bytes.

The other way to create your own type is to equate the new type to
'GNRL' and then to specify the precise format of the resource. A set
of element type designators lets you define the type of each element
that is to be placed in the resource.

Here are the element type designators:

+P Pascal string
.S String without length byte

100 Macintosh 68000 Development System

oI Decimal integer

.L Decimal long integer

-H Hexadecimal

-R Read resource from file. .R is followed by:

filename type ID

For example, to define a resource of type 'CHRG' consisting of the
integer 57 followed by the Pascal string 'Finance charges', you could
use the following type assignment:

TYPE CHRG = GNRL ;; define type 'CHRG'
,200 ;3 resource ID

.1 53 a decimal integer

57

P ;3 a Pascal string

Finance charges

A more practical example: An application that has its own icon must
define an icon list and reference it using 'FREF' (described above).
Such an icon list can be defined as follows:

TYPE ICN# = GNRL
,128

H
0001 0002 90p3 BPgL

@@7D GP7E GG7F PP8H ;3 for 128 words total

; icon list for an application
; resource ID

; enter 2 icons in hexadecimal
; each is 32 bits by 32 bits

The .R type designator is used to include an existing resource as part
of a new resource type. For example, to read an existing 'FONT'
resource into a new resource of type 'FONT', use the following resource
definition:

TYPE FONT = GNRL
,268

R

System FONT 268

define a new type

resource ID

read from the System file

the 'FONT' resource with ID=268

Ve we e we
e we we we

Using RMaker

Once you have created the input file to RMaker, the hard work is dome.
Simply select and open the application RMaker. The standard file
selection window is automatically opened. Select the file you want to
compile, and off it goes.

By default, the standard file selection window displays all the text
files on the disk. If you want to display only the .R files, Cancel
the selection window, choose .R Filter from the File menu, then choose
Compile from the File menu to redisplay the file selection window.

Using RMaker 101

& File Transfer

Resource Compiler

Dutput File MDS2:Window.Rsrc
Data Size: 334

Map Size: 134

taticText Total Size: 468

5 20 56 300
ust to prove it could be done!

WIND Resource #1 specifies the
for the window in which editir
call to GetNewWindow.

ype WIND
1

éample
0 40 300 450
isible NoGoRway

When RMaker is compiling a file, the name of the source file is
displayed in the upper left of the window, and the name of the output
file is displayed in the upper right. As the file is compiled, the
current size of the resource data, the size of the resource map, and
the total size are tracked on the right half of the screen. 1In
addition, as each line is compiled, it is displayed on the screen.

If there are no errors in the RMaker input file, a resource file with
the specified name is created.

Errors in the Input File

If an error occurs, the line containing the error is the last line on
the screen. RMaker then displays a box with an error message in it.

RMaker errors are listed in an appendix.

T

[

[

[

[

1T

1T

[

[

Appendix A

Sample Program Listing

1T .,l rrorrrrrr ey e e et et ey e e

The Window Sample Program 105

The Window Sample Program

D

e Ne ve NN

File Window.Asm

Macintosh 68000 Development System —— Programming Example

This application displays a window within which you can enter and edit
text. Program control is through three menus: the Apple menu, the File
menu, and the Edit menu.

The Apple menu has the standard desk accessories and an About feature.
The File menu lets you quit the application.

The Edit menu lets you cut, copy, paste, and clear the text in the window
or in the desk accessories. Undo is provided for desk accesories only.
Command key equivalents for undo, cut, copy, and paste are provided.
Cutting and pasting between the application and the desk accessories is
not supported. This requires use of the Scrap Manager.

This program requires the use of a resource file called "Window.Rsrc"
Window.Rsrc is created from "Window.R" using RMaker

; INCLUDES
Include MacTraps.D ; Use System and ToolBox traps
Include ToolEqu.D ; Use ToolBox equates

7

;

;
;
7

Use of Registers
Operating System and Toolbox calls always preserve D3-D7, and A2-A4.
Register use: A5-A7 are reserved by the system

D1-D3, AO-Al are unused
DO is used as a temp

ModifyReg EQU D4 ; D4 holds modifier bits from GetNextEvent
MenuReg EQU D5 ; D5 holds menu ID from MenuSelect, MenuKey
MenultemReg EQU D6 ; D6 holds item ID from MenuSelect, MenuKey
AppleHReg EQU D7 ; D7 holds the handle to the Apple Menu
TextHReg EQU A2 ; A2 is a handle to the TextEdit record
WindowPReg EQU A3 ; A3 is a pointer to the editing window
EditHReg EQU A4 ; A4 is a handle to the Edit menu

’

’
7

EQUATES

These are equates associated with the resources
for the Window example.

AppleMenu EQU il ; First item in MENU resource
1 ;

FileMenu EQU

EditMenu EQU

AboutDialog EQU
ButtonItem EQU
ASample EQU

’

AboutItem EQU First item in Apple menu

Second item in MENU resource
First item in File menu

~ese

QuitItem EQU

Third item in MENU resource
Items in Edit menu
(Item 2 is a line)

UndoItem EQU
CutItem EQU
CopyItem EQU
PasteItem EQU
ClearItem EQU

e Ne s

About dialog is DLOG resource #1
First item in DITL used by DLOG #1
Sample Window is WIND resource #1

RPRPRP oo wRPrw BN

e Se e

These are modifier bits returned by the GetNextEvent call.

activeBit EQU 0 ; Bit position of de/activate in Modify
cmdKey EQU 8 ; Bit position of command key in Modify
shiftKey EQU 9 ; Bit position of shift key in Modify

106

;

Macintosh 68000 Development System

XDEFs ——

XDEF all labels that are to be symbolically displayed by debugger.

XDEF Start
XDEF InitManagers
XDEF OpenResFile
XDEF SetupMenu
XDEF SetupWindow
XDEF SetupTextEdit
XDEF Activate
XDEF Deactivate
XDEF Update
XDEF KeyDown
XDEF MouseDown
XDEF SystemEvent
XDEF Content
XDEF Drag
XDEF InMenu
XDEF About
; Main Program
Start
BSR InitManagers ; Initialize managers
BSR OpenResFile ; Open the resource file
BSR SetupMenu ; Build menus, draw menu bar
BSR SetupWindow ; Draw Editing Window
BSR SetupTextEdit ; Initialize TextEdit
EventLoop ; MAIN PROGRAM LOOP
SystemTask ; Update Desk Accessories
5 PROCEDURE TEIdle (hTE:TEHandle);
MOVE.L TextHReg, — (SP) ; Get handle to text record
_TEIdle ; blink cursor etc.
; FUNCTION GetNextEvent (eventMask: INTEGER;
: VAR theEvent: EventRecord) : BOOLEAN
CLR - (SP) ; Clear space for result
MOVE #SOFFF, — (SP) ; Allow 12 low events
PEA EventRecord ; Place to return results
GetNextEvent ; Look for an event
MOVE (SP) +,D0 ; Get result code
BEQ EventLoop ; No event... Keep waiting
BSR HandleEvent ; Go handle event
BEQ EventLoop ; Not Quit, keep going
RTS ; Quit, exit to Finder

e Ne e

;

Note: When an event handler finishes, it returns the Z flag set. If
Quit was selected, it returns with the Z flag clear. An RTS is
guaranteed to close all files and launch the Finder.

InitManagers

PEA
_InitGraf
InitFonts

_FlushEvents

InitWindows
TInitMenus
CTLR.L - (SP)
_InitDialogs

TEInit
“InitCursor
RTS

InitManagers

-4 (AS) ; Quickdraw’s global area
; Init Quickdraw
; Init Font Manager
#$0000FFFF, DO ; Flush all events

Init Window Manager

Init Menu Manager

No restart procedure
Init Dialog Manager

Init Text Edit

Turn on arrow cursor

e Se N SeNe s

The Window Sample Program 107

OpenResFile

OpenResFile

e NeNe N Ne N

For development, we are keeping the resources in a separate file. The
application can be sped up by adding the resources to the application’s
file, which makes the OpenResFile call unneccessary. Note: normally the
explicit mention of MDS2 is considered bad style; the resource file
should be on the same volume as the program. However, it must be done
like this or Transfer looks on the wrong volume.

; FUNCTION OpenResFile (fileName: str255) : INTEGER;
CLR P Space for refNum

PEA ‘MDS2:Window.Rsrc’ ; Name of resource file
OpenResFile ; Open it
MOVE (SP) +, DO ; Discard refNum
RTS
; ———— SetupMenu
SetupMenu

e Ne e se e

;

’

;

The names of all the menus and the commands in the menus are stored in the
resource file. The way you build a menu for an application is by reading
each menu in from the resource file and then inserting it into the current
menu bar. Desk accessories are read from the system resource file and
added to the Apple menu.

Apple Menu Set Up.
; FUNCTION GetMenu (menu ID:INTEGER): MenuHandle;

CLR.L - (SP) ; Space for menu handle
MOVE #AppleMenu, - (SP) ; Apple menu resource ID

GetRMenu ; Get menu handle :
MOVE.L (SP) ,AppleHReg ; Save for later comparison
MOVE.L (SP) ,— (SP) ; Copy handle for AddResMenu
; PROCEDURE InsertMenu (menu:MenuHandle; beforeID: INTEGER);

- (SP) ; Append to menu

_InsertMenu ; Which is currently empty

Add Desk Accessories Into Apple menu (Apple menu handle already on stack)

; PROCEDURE AddResMenu (menu: MenuHandle; theType: ResType);
MOVE.L #'DRVR’, - (SP) ; Load all drivers
_AddResMenu ; And add to Apple menu

File Menu Set Up

; FUNCTION GetMenu (menu ID:INTEGER): MenuHandle;

CLR.L - (SP ; Space for menu handle
MOVE #FileMenu, — (SP) ; File Menu Resource ID
_GetRMenu ; Get File menu handle

; PROCEDURE InsertMenu (menu:MenuHandle; beforeID: INTEGER);
CLR

-(SP) ; Append to list
_InsertMenu ; After Apple menu
Edit Menu Set Up

; FUNCTION GetMenu (menu ID:INTEGER): MenuHandle;
CLR.L - (SP ;

. S ; Space for menu handle
MOVE #EditMenu, - (SP) ; Edit menu resource ID
GetRMenu ; Get handle to menu
MOVE. L (SP) ,EditHReg ; Save for later

! Leave on stack for Insert

; PROCEDURE InsertMenu (menu:MenuHandle; beforeID: INTEGER);
CLR D) ; Append to list
_InsertMenu ; After File menu
RDrawMenuBar ; Display the menu bar

TS

108 Macintosh 68000 Development System

3 SetupWindow
SetupWindow

The window parameters are stored in our resource file. Read them from
the file and draw the window, then set the port to that window. Note that
the window parameters could just as easily have been set using the call
NewWindow, which doesn’t use the resource file.

e Ne e N

; FUNCTION GetNewWindow (windowID: INTEGER; wStorage: Ptr;
: behind: WindowPtr) : WindowPtr;

CLR.L - (SP) ; Space for window pointer
MOVE #ASample, - (SP) ; Resource ID for window
PEA WindowStorage (AS5) ; Storage for window

MOVE.L #-1,-(SP) ; Make it the top window
GetNewWindow ; Draw the window

MOVE.L (SP) ,WindowPReg ; Save for later

; PROCEDURE SetPort (gp: GrafPort)
SetPort
RTS

Pointer still on stack
Make it the current port

~e e

s SetupTextEdit
SetupTextEdit
Create a new text record for TextEdit, and define the window within which

it will be displayed. Note that if the window boundaries are changed in
the resource file, DestRect and ViewRect will have to be changed too.

Neve s

; PROCEDURE TENew (destRect,viewRect: Rect): TEHandle;
C.

ILR.L -(SP) ; Space for text handle
PEA DestRect ; DestRect Rectangle
PEA ViewRect ; ViewRect Rectangle

TENew ; New Text Record
MOVE.L (SP) +, TextHReg ; Save text handle
RTS

; Event Handling Routines
HandleEvent
Use the event number as an index into the Event table. These 12 events

; are all the things that could spontaneously happen while the program is
; in the main loop.

MOVE Modify, ModifyReg ; More useful in a reg

MOVE What, DO ‘ ; Get event number

ADD DO,DO ; *2 for table index

MOVE EventTable (D0O) ,DO ; Point to routine offset

JMP EventTable (DO) ; and jump to it
EventTable

DC.W NextEvent-EventTable ; Null Event (Not used)

DC.W MouseDown-EventTable ; Mouse Down

DC.W NextEvent-EventTable ; Mouse Up (Not used)

DC.W KeyDown-EventTable ; Key Down

DC.W NextEvent-EventTable ; Key Up (Not used)

DC.W KeyDown-EventTable ; Auto Key

DC.W Update-EventTable ; Update

DC.W NextEvent-EventTable ; Disk (Not used)

DC.W Activate-EventTable ; Activate

DC.W NextEvent-EventTable ; Abort (Not used)

DC.W NextEvent-EventTable ; Network (Not used)

DC.W NextEvent-EventTable ; I/0 Driver (Not used)

The Window Sample Program

3 —-——— Event Actions
Activate
An activate event is posted by the system when a window needs to be

activated or deactivated. The information that indicates which window
needs to be updated was returned by the NextEvent call.

CMP.L Message, WindowPReg ; Was it our window?
BNE NextEvent ; No, get next event
BTST #ActiveBit,ModifyReg ; Activate?

BEQ Deactivate ; No, go do Deactivate

Se N seNe N

bars, we would do ShowControl and HideControl here too.

; PROCEDURE TEActivate (hTE: TEHandle);

MOVE.L TextHReg, — (SP) ; Move Text Handle To Stack
_TEActivate ; Activate Text
; PROCEDURE DisablelItem (menu:MenuHandle; item:INTEGER) ;
MOVE.L EditHReg, — (SP) ; Get handle to the menu
MOVE #UndolItem, — (SP) ; Enable 1lst item (undo)
_DisableItem

SetOurPort ; used by InAppleMenu

; PROCEDURE SetPort (gp: GraphPort) ; Set the port to us, since

MOVE.L WindowPReg, — (SP) ; an accessory might have
_SetPort ; changed it.
NextEvent

Say that it’s not Quit

MOVEQ #0,DO
RTS return to EventLoop

~e e

Deactivate

’
’

accessories (which must be active instead of us).

; PROCEDURE TEDeActivate (hTE: TEHandle)

MOVE.L TextHReg, - (SP) ; Get Text Handle

_TeDeActivate ; Un Activate Text

; PROCEDURE EnableItem (menu:MenuHandle; item:INTEGER);
MOVE.L EditHReg, - (SP) ; Get handle to the menu

MOVE #UndoItem, — (SP) ; Enable 1lst item (undo)
EnableItem

BRA NextEvent ; Go get next event

Update

; The window needs to be redrawn. Erase the window and then call TextEdit

to redraw it.

; PROCEDURE BeginUpdate (theWindow: WindowPtr);
MOVE.L WindowPReg, — (SP) ; Get pointer to window
_BeginUpDate ; Begin the update

; EraseRect (rUpdate: Rect);
PEA ViewRect ; Erase visible area
_EraseRect

To activate our window, activate TextEdit, and disable Undo since we don’t
support it. Then set our window as the port since an accessory may have

changed it. This activate event was generated by SelectWindow as a result
of a click in the content region of our window. If the window had scroll

To deactivate our window, turn off TextEdit, and Enable undo for the desk

109

110 Macintosh 68000 Development System

; TEUpdate (rUpdate: Rect; hTE: TEHandle) ;
PEA ViewRect ; Get visible area
MOVE.L TextHReg, — (SP) ; and handle to text

_TEUpdate then update the window
; PROCEDURE EndUpdate (theWindow: WindowPtr);

MOVE.L WindowPReg, — (SP) ; Get pointer to window
EndUpdate ; and end the update

BRA NextEvent ; Go get next event

KeyDown

; A key was pressed. First check to see if it was a command key. If so,
; go do it. Otherwise pass the key to TextEdit.

BTST #CmdKey, ModifyReg ; Is command key down?

BNE CommandDown ; If so, handle command key

; PROCEDURE TEKey (key: CHAR; hTE: TEHandle);

MOVE Messaget2, — (SP) ; Get character

MOVE.L TextHReg, — (SP) ; and text record

TEKey ; Give char to TextEdit

BRA NextEvent ; Go get next event
CommandDown

The command key was down. Call MenuKey to find out if it was the command
key equivalent for a menu command, pass the menu and item numbers to Choices.

;
;

; FUNCTION MenuKey (ch:CHAR): LonglInt;

CLR.L - (SP) Space for Menu and Item
MOVE Message+2, - (SP) ; Get character

MenuKey ; See if it’s a command
MOVE (SP) +, MenuReg ; Save Menu

MOVE (SP) +, MenuItemReg ; and Menu Item

BRA Choices ; Go dispatch command

; Mouse Down Events And Their Actions
MouseDown

; If the mouse button was pressed, we must determine where the click
; occurred before we can do anything. Call FindWindow to determine
; where the click was; dispatch the event according to the result.

; FUNCTION FindWindow (thePt: Point;
; VAR whichWindow: WindowPtr): INTEGER;

CLR - (SP) ; Space for result
MOVE.L Point, - (SP) ; Get mouse coordinates
PEA WWindow ; Event Window
FindWindow ; Who's got the click?
MOVE (SP) +, DO ; Get region number
ADD DO, DO ; *2 for index into table
MOVE WindowTable (DO), DO ; Point to routine offset
JMP WindowTable (DO) ; Jump to routine
WindowTable
DC.W NextEvent-WindowTable ; In Desk (Not used)
DC.W InMenu-WindowTable ; In Menu Bar
DC.W SystemEvent-WindowTable ; System Window
DC.W Content-WindowTable ; In Content
DC.W Drag-WindowTable ; In Drag
DC.W NextEvent-WindowTable ; In Grow (Not used)
DC.W NextEvent-WindowTable ; In Go Away (Not used)

The Window Sample Program 111

SystemEvent

; The mouse button was pressed in a system window. SystemClick calls the
; appropriate desk accessory to handle the event.

; PROCEDURE SystemClick (theEvent: EventRecord;

y theWindow: WindowPtr);
EA EventRecord ; Get event record
MOVE.L WWindow, — (SP) ; and window pointer
SystemClick ; Let the system do it
BRA NextEvent ; Go get next event
Content

The click was in the content area of a window. If our window was in
front, then call Quickdraw to get local coordinates, then pass the
coordinates to TextEdit. We also determine whether the shift key was
pressed so TextEdit can do shift-clicking. If our window wasn’t in
front, move it to the front, but don’t process click.

Ne Ne e ve Ne

CLR.L -(SP) ; clear room for result
FrontWindow ; get FrontWindow

MOVE. L (SP) +, DO ; Is front window pointer
CMP.L WindowPReg, DO ; same as our pointer?
BEQ.S @1 ; Yes, call TextEdit

; We weren’t active, select our window. This causes an activate event.

; PROCEDURE SelectWindow (theWindow: WindowPtr);
MOVE.L

. WWindow, — (SP) ; Window Pointer To Stack
SelectWindow ; Select Window
NextEvent ; and get next event

@1

; We were active, pass the click (with shift) to TextEdit.
; PROCEDURE GlobalToLocal (VAR pt:Point);
PEA

Point ; Mouse Point
_GlobalToLocal ; Global To Local
; PROCEDURE TEClick (pt: Point; extend: BOOLEAN; hTE: TEHandle);
MOVE.L Point, - (SP) ; Mouse Point (GTL)
BTST #shiftKey, ModifyReg ; Is shift key down?
SNE DO ; True if shift down

; Note: We want the boolean in the high byte, so use MOVE.B. The 68000
; pushes an extra, unused byte on the stack for us.

MOVE.B DO, - (SP)

MOVE.L TextHReg, — (SP) ; Identify Text
TEClick ; TEClick

BRA NextEvent ; Go get next event

Drag
; The click was in the drag bar of the window. Draggit.

; DragWindow (theWindow:WindowPtr; startPt: Point; boundsRect: Rect);
MO! :

VE.L WWindow, — (SP) ; Pass window pointer
MOVE.L Point, - (SP) ; mouse coordinates
PEA Bounds ; and boundaries

DragWindow ; Drag Window
BRA NextEvent ; Go get next event

112 Macintosh 68000 Development System

InMenu

; The click was in the menu bar. Determine which menu was selected, then
; call the appropriate routine.

; FUNCTION MenuSelect (startPt:Point) : LongInt;

CLR.L - (SP) ; Get Space For Menu Choice
MOVE.L Point, - (SP) ; Mouse At Time Of Event
_MenuSelect ; Menu Select

MOVE (SP) +, MenuReg ; Save Menu

MOVE (SP) +, MenuItemReg ; and Menu Item

On entry to Choices, the resource ID of the Menu is saved in the low
word of a register, and the resource ID of the Menultem in another.

The routine MenuKey, used when a command key is pressed, returns the same
info.

e NeNeNe

Choices ; Called by command key too

CMP #AppleMenu, MenuReg ; Is It In Apple Menu?

BEQ InAppleMenu ; Go do Apple Menu

CMP #FileMenu, MenuReg ; Is It In File Menu?

BEQ InFileMenu ; Go do File Menu

CMP #EditMenu, MenuReg ; Is It In Edit Menu?

BEQ InEditMenu ; Go do Edit Menu
ChoiceReturn

BSR UnHiliteMenu ; Unhighlight the menu bar

BRA NextEvent ; Go get next event
InFileMenu

; If it was in the File menu, just check for Quit since that’s all there is.

CMP #QuitItem, MenultemReg Is It Quit?

BNE.S ChoiceReturn ; No, Go get next event
BSR UnHiliteMenu ; Unhighlight the menu bar
MOVE #-1,D0 ; say 1t was Quit
RTS

InEditMenu

First, call SystemEdit. If a desk accessory is active that uses the Edit
menu (such as the Notepad) this lets it use our menu.

Decide whether it was cut, copy, paste, or clear. Ignore Undo since we
didn’t implement it.

Seve NeNe

BSR SystemEdit ; Desk accessory active?
BNE.S ChoiceReturn ; Yes, SystemEdit handled it
CMP #CutItem,MenultemReg ; Is It Cut?

BEQ Cut ; Yes, go handle it

CMP #CopyIltem,MenultemReg ; Is it Copy?

BEQ Copy ; Yes, go handle it

CMP #Pasteltem,MenultemReg; Is it Paste?

BEQ Paste ; Yes, go handle it

CMP #ClearItem,MenultemReg; Is it Clear?

BEQ Clear ; Yes, go handle it
BRA.S ChoiceReturn ; Go get next event

InAppleMenu

; It was in the Apple menu.
H

desk accessory.

The Window Sample Program

If it wasn’t About, then it must have been a

If so, open the desk accessory.

CMP #AboutItem,MenultemReg; Is It About?
BEQ About ; If So Goto About...
; PROCEDURE GetItem (menu: MenuHandle; item: INTEGER;
; VAR itemString: Str255);
MOVE.L AppleHReg, — (SP) ; Look in Apple Menu
MOVE MenultemReg, — (SP) ; What Item Number?
PEA DeskName ; Get Item Name
_GetItem ; Get Item
; FUNCTION OpenDeskAcc (theAcc: Str255) : INTEGER;
CLR -(SP) ; Space For Opening Result
PEA DeskName ; Open Desk Acc
OpenDeskAcc ; Open It
MOVE (sp)+,DO0 ; Pop result
GoSetOurPort
BSR SetOurPort ; Set port to us
BRA.S ChoiceReturn ; Unhilite menu and return

~e

Cut

Copy

Paste

Clear

SystemEdit does undo, cut, copy, paste, and clear for desk accessories.

; PROCEDURE
MOVE.L
TECut
BRA.S

; PROCEDURE
MOVE.

TECopy
BRA.S

; PROCEDURE
MOVE.L
TEPaste

BRA.S

; PROCEDURE

MOVE.L
TEDelete

BRA.S

Text Editing Routines
; CUT
TECut (hTE: TEHandle);
TextHReg, - (SP) ; Identify Text
Cut it and copy it
Go get next event

COPY

~o N

ChoiceReturn

~

TECopy (hTE: TEHandle);
TextHReg, - (SP) Identify Text
Copy text to clipboard

; Go get next event

~e Ne

ChoiceReturn
; PASTE

TEPaste (hTE: TEHandle)
TextHReg, — (SP)

~

Identify Text
Paste
Go get next event

o NeNe

ChoiceReturn

TEDelete (hTE: TEHandle);
TextHReg, — (SP) ; Point to text
; Clear without copying

ChoiceReturn Go get next event

; It returns False (BEQ) if the active window doesn’t belong to a
; desk accessory.

SystemEdit

; FUNCTION
CLR

MOVE
SUBQ

SysEdit
MOVE.B
RTS

SystemEdit (editCmd:INTEGER): BOOLEAN;
- (SP) ; Space for result
MenultemReg, - (SP) Get item in Edit menu

#1, (SP) SystemEdit is off by 1
Do It
(SP)+,D0 Pop result

R

BEQ if NOT handled

113

114 Macintosh 68000 Development System

UnhiliteMenu

; PROCEDURE HiLiteMenu (menuID: INTEGER) ;

CLR - (SP) ; All Menus
HiLiteMenu ; UnHilite Them All
RTS
; Misc Routines

About

; Call GetNewDialog to read the dialog box parameters from the resource file
; and display the box. Set the port to the box, then wait for the proper
; click or keypress. Finally, close the dialog box and set the pointer to us.

; FUNCTION GetNewDialog (dialogID: INTEGER; dStorage: Ptr;
5 behind: WindowPtr) : DialogPtr

CLR.L - (SP) ; Space For dialog pointer

MOVE #AboutDialog, — (SP) ; Identify dialog rsrc #

PEA DStorage ; Storage area

MOVE.L #-1,-(SP) ; Dialog goes on top
GetNewDialog ; Display dialog box

MOVE.L (SP) , - (SP) ; Copy handle for Close

; PROCEDURE SetPort (gp: GrafPort) ; Handle already on stack

e N

_SetPort Make dialog box the port
; PROCEDURE TEDeActivate (hTE: TEHandle)
MOVE. TextHReg, — (SP) ; Identify Text
_TEDeActivate ; Deactivate Text

WaitOK
; PROCEDURE ModalDialog (filterProc: ProcPtr;
n VAR itemHit: INTEGER);
CLR.L - (SP) ; Clear space For handle
PEA ItemHit ; Storage for item hit
_ModalDialog ; Wait for a response
MOVE ItemHit, DO ; Look to see what was hit
CMP #ButtonItem, DO ; was it OK?
BNE WaitOK ; No, wait for OK

; PROCEDURE CloseDialog (theDialog
CloseDialog
“BRA

DialogPtr);
Handle already on stack
Set port to us and return

~e e

GoSetOurPort

The Window Sample Program

2 Data Starts Here

EventRecord ; NextEvent’s Record
What: DC 0 ; Event number

Message: DC.L 0 ; Additional information
When: DC.L 0 ; Time event was posted
Point: DC.L 0 ; Mouse coordinates
Modify: DC 0 ; State of keys and button
WWindow: DC.L 0 ; Find Window’s Result
DStorage DCB.W DWindLen, 0 ; Storage For Dialog
DeskName DCB.W 16,0 ; Desk Accessory’s Name
Bounds DC 28 4,308,508 ; Drag Window’s Bounds
ViewRect DC S 4 245 105 ; Text Record’s View Rect
DestRect DC 5 4,245,405 ; Text Record’s Dest Rect
ItemHit DC ; Item clicked in dialog
; Nonrelocatable Storage

; Variables declared using DS are placed in a global space relative to
; A5. When these variables are referenced, A5 must be explicitly mentioned.

WindowStorage DS.W WindowSize ; Storage for Window

End

116 Macintosh 68000 Development System

The Program's Resource File

*
: This is the resource file for the example program called "Window"

MDS2:Window.Rsrc

*
* MENU Resource #1 specifies the menus used by the Window program.

* For proper support of the Desk accessories, the Apple menu

* should be first, and the Edit menu should be third. The first 5 items
* in the Edit menu should be identical to those used below. This makes
* it possible for the desk accessories to share the Edit menu with your
* application.

*

Typf MENU

\14

About This Example...

(_

72

File
Quit

3
Edit
(Undo/2

Cut/X
Copy/C
Paste/V
Clear

* Dialog Resource #1 specifies properties of the About box. It points
* to Dialog Item List (DITL) Resource #1 as containing its items.

Type DLOG

’

100 100 190 400
Visible NoGoAway
1

0
1

* Dialog Item List Resource #1 specifies the items in the About box.

* By convention, the first item in an item list is the OK button.

* If there is a cancel button, it should be second. This makes it

* easier to interpret the item number returned by the call to ModalDialog.

Type DITL

’

Button
60 230 80 290
OK

StaticText
15 20 36 300
This sample program was written

StaticText
35 20 56 300
just to prove it could be done!

The Program's Resource File 117

* WIND Resource #1 specifies the title, coordinates, and other status
* for the window in which editing takes place. It is displayed by a
* call to GetNewWindow.

Type WIND

A éample

50 40 300 450
Visible NoGoAway
0

0

T A O B I A A I A I O O B O A A R O A R T R O A I O A R N R A N I O A AR AR

Appendix B

System Traps

e rrrnrrrerrrr ey rrrr e e e e et ry rr ml

System Traps: Sorted by Name 121

System Traps: Sorted by Name

Here is an alphabetically sorted list of the Toolbox and Operating
System traps and their trap numbers in hexadecimal.

Make sure the names you use are the same as the names given here. Trap
names that differ when used from Pascal are marked by an asterisk.

AddDrive SAQLE ClosePort $A87D
AddPt SA87E CloseResFile SA99A
AddReference $SA9AC CloseRgn $A8DB
AddResMenu $A94D CloseWindow $A92D
AddResource SA9AB CmpString SA@3C *
Alert $A985 ColorBit $A864
Allocate SAP1Y * CompactMem SAQ4C
AngleFromSlope $A8C4 Control SApPL *
AppendMenu $A933 CopyBits $A8EC
BackColor $A863 CopyRgn $A8DC
BackPat $A87C CouldAlert $A989
BeginUpdate $A922 CouldDialog $A979
BitAnd $A858 CountMItems $A950
BitClr SA85F CountResources $A99C
BitNot $A85A CountTypes $A99E
BitOr SA85B Create SAQP8 *
BitSet SA85E CreateResFile $A9B1
BitShift $A85C CurResFile $A994
BitTst SA85D Date2Secs $A9C7
BitXOr $A859 Delay $SA@3B
BlockMove SAP2E Delete SAQ@9 *
BringToFront $A920 DeleteMenu $A936
Button $A974 DeltaPoint SA94F
CalcMenuSize $A948 Dequeue $A96E
CalcVBehind SA9PA * DetachResource $A992
CalcVis $A909 DialogSelect $A980
CautionAlert $A988 . DiffRgn SA8E6
Chain $SA9F3 DisableItem SA93A
ChangedResData SA9AA DisposControl $A955 *
CharWidth $SA88D DisposDialog $A983 *
CheckItem $A945 DisposeMenu $A932
CheckUpdate $A911 DisposHandle SA@23
ClearMenuBar $A934 DisposPtr SAQLF
ClipAbove $A90B DisposRgn $A8D9 *
ClipRect $A87B DisposWindow $A914 *
Close SAPP1 * DragControl $A967
CloseDeskAcc $SA9B7 DragGrayRgn $A9P5
CloseDialog $A982 DragTheRgn $A926
ClosePgon $A8CC * DragWindow $A925

ClosePicture $A8F4 DrawChar $A883

122 Macintosh 68000 Development System

DrawControls
DrawDialog
DrawGrowIcon
DrawMenuBar
DrawNew
DrawPicture
DrawString
DrawText
DrvrInstall
DrvrRemove
Eject
EmptyHandle
EmptyRect
EmptyRgn
EnableItem
EndUpdate
Enqueue
EqualPt
EqualRect
EqualRgn
EraseArc
EraseOval
ErasePoly
EraseRect
EraseRgn
EraseRoundRect
ErrorSound
EventAvail
ExitToShell
FillArc
FillOval
FillPoly
FillRect
FillRgn
FillRoundRect
FindControl
FindWindow
FixMul
FixRatio
FixRound
FlashMenuBar
FlushEvents
FlushFile
FlushVol
FMSwapFont
ForeColor
FrameArc
FrameOval
FramePoly
FrameRect
FrameRgn
FrameRoundRect

$A969
$A981
$A9PL
$A937
SA9QF
$A8F6
$A884
$A885
$A@3D
SAP3E
$AP17
$AP2B
$A8AE
$ABE2
$A939
$A923
$A96F
$A881
$ABA6
$A8E3
$A8CYH
$A8B9
$A8C8
$A8A3
$A8D4
$A8B2
$A98C
$A971
$A9F4
$A8C2
SA8BB
$A8CA
$ABA5
$A8D6
$A8B4
$A96C
$A92C
$A868
$A869
$A86C
$A94C
$AP32
$AB4S
$AP13
$A901
$A862
SA8BE
$A8B7
$A8C6
$A8AL
$A8D2
$A8BY

*

FreeAlert
FreeDialog
FreeMem
FrontWindow
GetAppParms
GetClip
GetCRefCon
GetCTitle
GetCtlAction
GetCtlValue
GetCursor
GetDItem
GetEOF
GetFileInfo
GetFName
Get FNum
GetFontInfo
GetFPos
GetHandleSize
GetIcon
GetIndResource
GetIndType
GetItem
GetIText
GetItmIcon
GetItmMark
GetItmStyle
GetKeys
GetMaxCtl
GetMenuBar
GetMHandle
GetMinCtl
GetMouse

GetNamedResource

GetNewControl
GetNewDialog
GetNewMBar
GetNewWindow
GetNextEvent
GetOSEvent
GetPattern
GetPen
GetPenState
GetPicture
GetPixel
GetPort
GetPtrSize
GetResAttrs
GetResFileAttrs
GetResInfo
GetResource
GetRMenu

$A98A
$SA97A
$AglC
$A924
$A9F5
$A87A
$A95A
$A95E
$A96A
$A960
$A9B9
$A98D
$SAPLL *
$AQ@C
$SA8FF *
$A90P
$A88B
$AP18 *
$AP25
$A9BB
$A99D
$A99F
$A946
$A99¢
$A93F *
SA943 *
$A941 *
$A976
$A962 *
$A93B
$A949
$A961 *
$A972
$A9A1
$A9BE
$A97C
$A9CH
$A9BD
$A97¢
$A@31
$A9B8
$A89A
$A898
$A9BC
$A865
$A874
$AQ21
$A9A6
$A9F6
$A9A8
SAIAP
$SA9BF *

*

GetScrap
GetString
GetTrapAddress
GetVol
GetVolInfo
GetWindowPic
GetWMgrPort
GetWRefCon
GetWTitle
GetZone
GlobalToLocal
GrafDevice
GrowWindow
Hand AndHand
HandleZone
HandToHand
HideControl
HideCursor
HidePen
HideWindow
HiliteControl
HiliteMenu
HiliteWindow
HiWord

HLock
HNoPurge
HomeResFile
HPurge
HUnlock
InfoScrap
InitAllPacks
InitApplZone
InitCursor
InitDialogs
InitFonts
InitGraf
InitMenus
InitPack
InitPort
InitQueue
InitResources
InitUtil
InitWindows
InitZone
InsertMenu
InsertResMenu
InsetRect
InsetRgn
InvalRect
InvalRgn
InverRect
InverRgn

$A9FD
$A9BA
$AQ4L6

SAPLL *
$APPT7 *

$A92F
$A910
$A917
$A919
SAP1A
$A871
$A872
$A92B
$A9E4
$AP26
$A9E1
$A958
$A852
$A896
$A916
$A95D
$A938
$A91C
$AB6A
$AP29
SAPLA
$A9AL
$APLY
SAP2A
$A9F9
$A9E6
$ApP2C
$A850
$A97B
$A8FE
$AB6E
$A930
$A9E5
$A86D
$AP16
$A995
$SAP3F
$A912
$AP19
$A935
$A951
$ABA9
$A8E1
$A928
$A927
$ABAL *
$A8D5 *

System Traps: Sorted by Name

InverRoundRect
InvertArc
InvertOval
InvertPoly
IsDialogEvent
KillControls
KillIo
KillPicture
KillPoly
Launch

Line

LineTo
LoadResource
LoadSeg
LocalToGlobal
LodeScrap
LongMul
LoWord
MapPoly
MapPt
MapRect
MapRgn
MaxMem
MenuKey
MenuSelect
ModalDialog
MoreMasters
MountVol
Move
MoveControl
MovePortTo
MoveTo
MoveWindow
Munger
NewControl
NewDialog
NewHandle
NewMenu
NewPtr
NewRgn
NewString
NewWindow
NoteAlert
ObscureCursor
Offline
OffsetPoly
OffsetRect
OfsetRgn
Open
OpenDeskAcc
OpenPicture
OpenPoly

$A8B3 *
$A8C1
$A8BA
$SA8C9
$A97F
$A956
$AQP6 *
$A8F5
$A8CD
$A9F2
$A892
$A891
$A9A2
$A9FQ
SA870
SA9FB *
$SA867
$A86B
$A8FC
$A8F9
SA8FA
SA8FB
$AP1D
$SA93E
$A93D
$A991
$A@36
SAPPF *
$A894
$A959
$A877
$A893
SA91B
SA9EQ
$A954
$A97D
$AP22
$A931
SAQLE
$A8D8
$A906
$A913
$A987
$A856
SAP35 *
$A8CE
SA8A8
SASEQ *
$AQQP *
$A9B6
$A8F3
SA8CB

123

124 Macintosh 68000 Development System

OpenPort
OpenResFile
OpenRF
OpenRgn
OSEventAvail
Pack@

Packl

Pack2

Pack3

Packé

Pack5

Pack6

Pack7
PackBits
PaintArc
PaintBehind
PaintOne
PaintOval
PaintPoly
PaintRect
PaintRgn

PaintRoundRect

ParamText
PenMode
PenNormal
PenPat
PenSize
PicComment
PinRect
PlotIcon
PortSize
PostEvent
Pt2Rect
PtInRect
PtInRgn
PtrAndHand
PtrToHand
PtrToXHand
PtrZone
PtToAngle
PurgeMem
PutScrap
Random
RDrvrInstall
Read
ReadDateTime
RealFont
ReallocHandle
RecoverHandle
RectInRgn
RectRgn

ReleaseResource

$A86F
$A997
SAPPA *
$A8SDA
$AP30
$A9E7
$A9E8
$A9E9
$A9FA
$A9EB
$A9EC
$A9ED
$A9EE
$A8CF
$A8BF
$A90D
$A9@C
$A8B8
$A8C7
$A8A2
$A8D3
$A8B1
$A98B
$A89C
$A89E
$A89D
$A89B
$A8F2
$A94E
$A94B
$A876
SAP2F
$A8AC
SA8AD
$A8ES8
$A9EF
$A9E3
$A9E2
$AP4L8
$A8C3
$AP4D
$A9FE
$A861
SAGLF
$AGP2 *
$A@39
$A902
$AQ27
$A@28
$A8E9
$A8DF
$A9A3

Rename
ResError
ResrvMem
RmveReference
RmveResource
RsrcZonelnit
RstFilLock
SaveOld
ScalePt
ScrollRect
Secs2Date
SectRect
SectRgn
SelectWindow
SelIText
SendBehind
SetAppBase
SetApplLimit
SetClip
SetCRefCon
SetCTitle
SetCtlAction
SetCt1lValue
SetCursor
SetDateTime
SetDItem
SetEmptyRgn
Se t EOF
SetFileInfo
SetFilLock
SetFilType
SetFontLock
SetFPos
SetGrowZone
SetHandleSize
SetItem
SetIText
SetItmIcon
SetItmMark
SetItmStyle
SetMaxCtl
SetMenuBar
SetMFlash
SetMinCtl
SetOrigin
SetPBits
SetPenState
SetPort
SetPt
SetPtrSize
SetRecRgn
SetRect

$SAQ@B
$SA9AF
$ABLQ
SA9AE
$A9AD
$A996
$ABL2
$AIPE
$A8F8
$ASEF
$A9C6
$ABAA
$ASE4
$A91F
$A97E
$A921
$A857
$A@2D
$A879
$A95B
$A95F
$A96B
$A963
$A851
SAG3A
$A98E
$A8DD
$AP12
$APPD
$AG41
$AP43
$A903
SAPLL
$AG4B
$AP24
$A947
$A98F
$A940
$A944
$A942
$A965
$A93C
$A94A
$A964
$A878
$A875
$A899
$A873
$A880
$AQ20
$A8DE
$A8A7

* % % ¥

*

* % % ¥

*

SetResAttrs
SetResFileAttrs
SetResInfo
SetResLoad
SetResPurge
SetStdProcs
SetString
SetTrapAddress
SetVol
SetWindowPic
SetWRefCon
SetWTitle
SetZone
ShieldCursor
ShowControl
ShowCursor
ShowHide
ShowPen
ShowWindow
SizeControl
SizeResource
SizeWindow
SlopeFromAngle
SpaceExtra
Status
StdArc
StdBits
StdComment
StdGetPic
StdLine
Stdoval
StdPoly
StdPutPic
StdRect
StdRgn
StdRRect
StdText
StdTxMeas
StillDown
StopAlert
StringWidth
StuffHex
SubPt
SysBeep
SysEdit
SysError
SystemClick
SystemEvent
SystemMenu
SystemTask

$A9A7
$A9F7
$A9A9
$A99B
$A993
$ASEA
$SA9(7
SAPLT
$AQ15
$A92E
$A918
SA91A
$AQ1B
$A855
$A957
$A853
$A908
$A897
$A915
$A95C
$A9A5
$A91D
$A8BC
$SA88E
$AP@S
$A8BD
$SASEB
$A8F1
$A8EE
$A890
$A8B6
$A8C5
SA8FQ
SA8AQ
$A8D1
SASAF
$A882
SA8ED
$A973
$A986
$A88C
$A866
$SA8TF
$A9C8
$A9C2
$A9CH9
$A9B3
$A9B2
$A9B5
SA9IB4

System Traps:

TEActivate $A9D8
TECalText $A9DP
TEClick $A9D4
TECopy $A9D5
TECut $SA9ID6
TEDeactivate $A9D9
TEDelete $A9D7
TEDispose $A9CD
TEGetText $A9CB
TEIdle SA9DA
TEInit $A9CC
TEInsert $A9DE
TEKey $A9DC
TENew $A9D2
TEPaste $AIDB
TEScroll $A9DD
TESetJust SA9DF
TESetSelect $A9D1
TESetText SA9CF
TestControl $A966
TEUpdate $A9D3
TextBox $A9CE
TextFace $A888
TextFont $A887
TextMode $A889
TextSize $A88A
TextWidth $A886
TickCount $A975
TrackControl $A968
TrackGoAway $A91E
UnionRect $SA8AB
UnionRgn $A8E5
UniqueID $A9C1
UnloadSeg $A9F1
UnlodeScrap SA9FA *
Unmount Vol SAPPE *
UnpackBits $SA8D@
UpdateResFile $A999
UprString $A854
UseResFile $A998
ValidRect $SA92A
ValidRgn $A929
Vinstall $AP33
VRemove SAP34
WaitMouseUp $A977
Write SAQ@3 *
WriteParam SAP38
WriteResource SA9BQ
XOrRgn $ABE7
ZeroScrap $A9FC

Sorted by Name

125

126 Macintosh 68000 Development System

System Traps: Sorted by Number

Here is an alphabetically sorted list of the Toolbox and Operating
System traps, and their trap numbers in hexadecimal.

Make sure the names you use are the same as the names given here. Trap
names that differ when used from Pascal are marked by an asterisk.

$AGGQ Open * $AP28 RecoverHandle
$APP1 Close * $AP29 HLock
$APP2 Read * SAP2A HUnlock
$AQO3 Write * SA@2B EmptyHandle
SAPPL Control * $A@2C InitApplZone
giggg Status : $A32D SetApplLimit
Ki11I0 SAP2E BlockMove
SAPQR7 GetVolInfo * SAP2F PostEvent
SAJP8 Create SAP30Q OSEventAvail
SAPB9 Delete SA@31 GetOSEvent
g:ggg OpenRF : $AP32 FlushEvents
Rename SAQ33 VInstall
SAg@C GetFileInfo * SAP34 VRemove
SAPGD SetFileInfo * $AG35 Offline *
SAPOE UnmountVol * $AP36 MoreMasters
SAQQF MountVol * SAP38 WriteParam
SAP1Q Allocate * $APB39 ReadDateTime
3231 ; getEOF : SAP3A SetDateTime
et EOF SAP3B Delay
$AQ13 FlushVol % $AQ3C CmpString *
$AB14 GetVol * $AP3D DrvrInstall *
$AQ15 SetVol ® SAQ3E DrvrRemove *
$AQ16 I?itQueue SAP3F InitUtil
SAQ17 Eject * $SAG4LD ResrvMem
SAP18 GetFPos = SAG41 SetFilLock *
$AP19 InitZone SAQL2 RstFillock *
SAP1A GetZomne $AP43 SetFilType *
SAP1B SetZone SAQLL SetFPos *
$Ad1C FreeMem $AP4L5 FlushFile *
$SAPLD MaxMem $AP46 GetTrapAddress
gﬁgii g:thrPt SAP4LT SetTrapAddress
sposPtr AP4B PtrZone
SAP20 SetPtrSize ZAg49 HPurge
$AP21 GetPtrSize SAGLA HNoPurge
$AP22 NewHandle $AQ4B SetGrowZone
$A@23 DisposHandle $AP4C CompactMem
SAP24 SetHandleSize $AG4D PurgeMen
$AP25 GetHandleSize SAPLE AddDrive
$AP26 HandleZone SAPLF RDrvrInstall

$AQ27 ReallocHandle $A850 InitCursor

$A851
$A852
$A853
$A854
$A855
$A856
$A857
$A858
$A859
$SA85A
$A85B
$A85C
$A85D
$A85E
SA85F
$A861
$A862
$A863
$A864
$A865
$A866
$A867
$A868
$A869
$A86A
$A86B
$A86C
$A86D
$A86E
$A86F
$A87¢
$A871
$A872
$A873
$A874
$A875
$A876
$A877
$A878
$A879
$SA87A
$A87B
$A87C
$A87D
SA87E
SA87F
$A880
$A881
$A882
$A883
$A884
$A885

SetCursor
HideCursor
ShowCursor
UprString
ShieldCursor
ObscureCursor
SetAppBase
BitAnd
BitXOr
BitNot
BitOr
BitShift
BitTst
BitSet
BitClr
Random
ForeColor
BackColor
ColorBit
GetPixel
StuffHex
LongMul
FixMul
FixRatio
HiWord
LoWord
FixRound
InitPort
InitGraf
OpenPort
LocalToGlobal
GlobalToLocal
GrafDevice
SetPort
GetPort
SetPBits
PortSize
MovePortTo
SetOrigin
SetClip
GetClip
ClipRect
BackPat
ClosePort
AddPt
SubPt
SetPt
EqualPt
StdText
DrawChar
DrawString
DrawText

System Traps: Sorted by Number

$A886
$A887
$A888
$A889
$A88A
$A88B
$A88C
$A88D
$A88E
$A89¢
$A891
$A892
$A893
$A894
$A896
SA897
$A898
$A899
$A89A
$A89B
$A89C
$A89D
$A89E
$SABAQ
$A8AL
SA8A2
$A8A3
$A8AL
SABAS
$SABA6
$A8A7
$A8A8
$A8A9
SA8AA
SA8AB
$ABAC
$SA8AD
$SA8AE
$ABAF
SA8BQ
$A8B1
$A8B2
$A8B3
SA8B4
$A8B6
$A8B7
$A8B8
$A8B9
$A8BA
$A8BB
$A8BC
$A8BD

TextWidth
TextFont
TextFace
TextMode
TextSize
GetFontInfo
StringWidth
CharWidth
SpaceExtra
StdLine

LineTo

Line

MoveTo

Move

HidePen
ShowPen
GetPenState
SetPenState
GetPen

PenSize
PenMode

PenPat
PenNormal
StdRect
FrameRect
PaintRect
EraseRect
InverRect *
FillRect
EqualRect
SetRect
OffsetRect
InsetRect
SectRect
UnionRect
Pt2Rect
PtInRect
EmptyRect
StdRRect
FrameRoundRect
PaintRoundRect
EraseRoundRect
InverRoundRect *
FillRoundRect
StdOval
FrameOval
PaintOval
EraseOval
InvertOval
FillOval
SlopeFromAngle
StdArc

127

128

$A8BE
$A8BF
$A8CQ
$A8C1
$A8C2
$A8C3
$SA8C4
$A8CS
$A8C6
$A8C7
$A8C8
$A8C9
$A8CA
$A8CB
$A8CC
$A8CD
$A8CE
$A8CF
SA8D@
$A8D1
$A8D2
$A8D3
$A8D4
$A8DS
$A8D6
$A8D8
$A8D9
$A8DA
$A8SDB
$A8DC
$A8DD
$A8DE
SA8DF
$SASEQ
$A8E1
$A8E2
$A8E3
SA8E4
$A8ES5
$A8E6
$SA8E7
$A8E8
$A8E9
$ASEA
$A8EB
$A8EC
$A8ED
$A8EE
$A8EF
SASFQ
$A8F1
$A8F2

Macintosh 68000 Development System

FrameArc
PaintArc
EraseArc
InvertArc
FillArc
PtToAngle
AngleFromSlope
StdPoly
FramePoly
PaintPoly
ErasePoly
InvertPoly
FillPoly
OpenPoly
ClosePgon
KillPoly
OffsetPoly
PackBits
UnpackBits
StdRgn
FrameRgn
PaintRgn
EraseRgn
InverRgn
FillRgn
NewRgn
DisposRgn
OpenRgn
CloseRgn
CopyRgn
SetEmptyRgn
SetRecRgn
RectRgn
OfsetRgn
InsetRgn
EmptyRgn
EqualRgn
SectRgn
UnionRgn
DiffRgn
XOrRgn
PtInRgn
RectInRgn
SetStdProcs
StdBits
CopyBits
StdTxMeas
StdGetPic
ScrollRect
StdPutPic
StdComment
PicComment

$A8F3
$A8F4
$A8F5
$A8F6
$A8F8
$A8F9
$A8FA
$ASFB
$A8FC
$ASFE
$A8FF
$A90Q
$A9P1
$A9¢2
$A903
SA9Q4
$A905
$A906
$A9P7
$A908
$A909
SA9QA
SA9(B
$A90C
SA9PD
SA9QE
SA9QF
$A910
$A911
$A912
$A913
$A914
$A915
$A916
$A917
$A918
$A919
$A91A
$A91B
$A91C
SA91D
$SA91E
$A91F
$A920
$A921
$A922
$A923
$A924
$A925
$A926
$A927
$A928

OpenPicture
ClosePicture
KillPicture
DrawPicture
ScalePt
MapPt
MapRect
MapRgn
MapPoly
InitFonts
GetFName

Ge t FNum
FMSwapFont
RealFont
SetFontLock
DrawGrowIcon
DragGrayRgn
NewString
SetString
ShowHide
CalcVis
CalcVBehind
ClipAbove
PaintOne
PaintBehind
SaveOld
DrawNew
GetWMgrPort
CheckUpdate
InitWindows
NewWindow
DisposWindow
ShowWindow
HideWindow
GetWRefCon
SetWRefCon
GetWTitle
SetWTitle
MoveWindow
HiliteWindow
SizeWindow
TrackGoAway
SelectWindow
BringToFront
SendBehind
BeginUpdate
EndUpdate
FrontWindow
DragWindow
DragTheRgn
InvalRgn
InvalRect

$A929
$A92A
$A92B
$A92C
$A92D
$A92E
$A92F
$A939
$A931
$A932
$A933
$A934
$A935
$A936
$A937
$A938
$A939
$A93A
$A93B
$A93C
$A93D
$A93E
SA93F
$A940
$A941
$A942
$A943
$A944
$A945
$A946
$A947
$A948
$A949
$SA94A
$SA94B
$A94C
$A94D
$SA9LE
$A94F
$A950
$A951
$A954
$A955
$A956
$A957
$A958
$A959
$A95A
$A95B
$A95C
$A95D
$A95E

ValidRgn
ValidRect
GrowWindow
FindWindow
CloseWindow
SetWindowPic
GetWindowPic
InitMenus
NewMenu
DisposeMenu
AppendMenu
ClearMenuBar
InsertMenu
DeleteMenu
DrawMenuBar
HiliteMenu
EnableItem
DisableItem
GetMenuBar
SetMenuBar
MenuSelect
MenuKey
GetItmIcon
SetItmIcon
GetItmStyle
SetItmStyle
GetItmMark
SetItmMark
CheckItem
GetItem
SetItem
CalcMenuSize
GetMHandle
SetMFlash
PlotIcon
FlashMenuBar
AddResMenu
PinRect
DeltaPoint
CountMItems
InsertResMenu
NewControl
DisposControl
KillControls
ShowControl
HideControl
MoveControl
GetCRefCon
SetCRefCon
SizeControl
HiliteControl
GetCTitle

* % F ¥ F *

System Traps: Sorted by Number

$A95F
$A960
$A961
$A962
$A963
$A964
$A965
$A966
$A967
$A968
$A969
$A96A
$A96B
$A96C
$A96E
$SA96F
$A979
$A971
$A972
$A973
$A974
$A975
$A976
$A977
$A979
$SA97A
$A97B
$A97C
$A97D
SA97E
$SA97F
$A98¢
$A981
$A982
$A983
$A985
$A986
$A987
$A988
$A989
$A98A
$A98B
$A98C
$A98D
$A98E
$A98F
$A999
$A991
$A992
$A993
$A994
$A995

SetCTitle
GetCtlValue
GetMinCtl
GetMaxCtl
SetCtlValue
SetMinCtl *
SetMaxCtl
TestControl
DragControl
TrackControl
DrawControls
GetCtlAction
SetCtlAction
FindControl
Dequeue
Enqueue
GetNextEvent
EventAvail
GetMouse
StillDown
Button
TickCount
GetKeys
WaitMouseUp
CouldDialog
FreeDialog
InitDialogs
GetNewDialog
NewDialog
SelIText
IsDialogEvent
DialogSelect
DrawDialog
CloseDialog
DisposDialog
Alert
StopAlert
NoteAlert
CautionAlert
CouldAlert
FreeAlert
ParamText
ErrorSound
GetDItem
SetDItem
SetIText
GetIText
ModalDialog
DetachResource
SetResPurge
CurResFile
InitResources

* *

*

129

130

$A996
$A997
$A998
$A999
$A99A
$A99B
$A99C
$A99D
SA99E
$A99F
$A9AQ
$A9A1
SA9A2
$A9A3
$SA9AL
$A9AS5
$A9A6
$A9A7
$A9A8
$A9A9
$SA9AA
$A9AB
$A9AC
$A9AD
$SA9AE
$SA9AF
$A9BY
$A9B1
$A9B2
$A9B3
$A9B4
$A9B5
$A9B6
$A9B7
$A9B8
$A9B9
$A9BA
$A9BB
$A9BC
$A9BD
$A9BE
$A9BF
$A9C(
$A9C1
$A9C2
$A9C6
$A9C7
$A9C8
$A9C9
$A9CB
$A9CC

RsrcZonelInit
OpenResFile
UseResFile
UpdateResFile
CloseResFile
SetResLoad
CountResources
GetIndResource
CountTypes
GetInd Type
GetResource
GetNamedResource
LoadResource
ReleaseResource
HomeResFile
SizeResource
GetResAttrs
SetResAttrs
GetResInfo
SetResInfo
ChangedResData
AddResource
AddReference
RmveResource
RmveReference
ResError
WriteResource
CreateResFile
SystemEvent
SystemClick
SystemTask
SystemMenu
OpenDeskAcc
CloseDeskAcc
GetPattern
GetCursor
GetString
GetIcon
GetPicture
GetNewWindow
GetNewControl
GetRMenu *
GetNewMBar
UniqueID

SysEdit *

Secs2Date
Date2Secs
SysBeep
SysError
TEGetText
TEInit

Macintosh 68000 Development System

$A9CD
$A9CE
$A9CF
$A9DY
$A9D1
$A9D2
$A9D3
$A9DL
$A9D5
$A9D6
$A9D7
$A9D8
$A9D9
$A9DA
$A9DB
$A9DC
$A9DD
$A9DE
$SA9DF
SA9EQ
$A9EL
$A9E2
$A9E3
$A9E4
$A9E5
$A9E6
$A9E7
$A9ES
$A9E9
$A9EA
$A9EB
$A9EC
$A9ED
$A9EE
SA9EF
$A9FQ
$A9F1
$A9F2
$A9F3
SA9F4
$A9F5
$A9F6
$A9F7
$A9F9
$A9FA
SA9FB
$A9FC
$A9FD
$A9FE
$SA9FF

TEDispose
TextBox
TESetText
TECalText
TESetSelect
TENew
TEUpdate
TEClick
TECopy
TECut
TEDelete
TEActivate
TEDeactivate
TEIdle
TEPaste
TEKey
TEScroll
TEInsert
TESetJust
Munger

Hand ToHand
PtrToXHand
PtrToHand
HandAndHand
InitPack
InitAllPacks
Packy

Packl

Pack?2

Pack3

Pack4

Pack5

Packb

Pack7
PtrAndHand
LoadSeg
UnloadSeg
Launch
Chain
ExitToShell
GetAppParms
GetResFileAttrs
SetResFileAttrs
InfoScrap
UnlodeScrap
LodeScrap
ZeroScrap
GetScrap
PutScrap
Debugger

Appendix C

Error Messages

e re e e e e ey ee ey ey ey ey e r o

Assembler Error Messages 133

Assembler Error Messages

Here is a list of the error messages that can be displayed by the
Assembler. A brief description accompanies the messages that are not
entirely self-explanatory.

Absolute expression required

Character literal size error: Character literals must be from 1 to 4
characters long.

Could not open

Could not open error file:

Could not open file:

Could not open file name list file: Could not open a .Files file.

Disk full

Disk I/0 error

Disk write-protected

ELSE out of context: Only occurs in an IF statement.

Expression must be constant

Fatal assembly error:

File name too long: The symbol is longer than 252 characters.

File open error

Illegal .ALIGN value

Illegal .DUMP file name

Illegal expression follows #: For example, #D@.

Illegal expression operand in EA: The operand used in the effective
address field is illegal.

Illegal formal not declared

Illegal INCLUDE file name

Illegal index size: For example, 274(A0,D@).

Illegal indexing: For example 23(D@,Dl1).

Illegal line: The Assembler could not recognize the line as anything.
Often caused by missing semicolon on comment line.

Illegal number: For example, an octal number with an 8 in it.

Illegal opcode name

Illegal opcode size tag: One of the extensions .B, .W, or .L was not
used in the proper context.

Illegal operand

Illegal operand/operator combination: This is a general error message.
Caused, for example, by MOVE.L D@,34(PC).

Illegal operator

Illegal or missing operand(s) for instruction: For example, PEA Df.

Illegal register list

Illegal relocation in expression

Illegal RESOURCE directive

Illegal string comparison: Only occurs in an IF statement.

Illegal symbol type:

Illegal trap definition

I/0 memory error

Macro definition error

Macro too long

Missing <char>

Missing ENDIF: Only occurs in an IF statement.

Missing formal in macro

134 Macintosh 68000 Development System

Missing formal in macro definition or call

Missing macro definition body

Missing operand

Missing operator

Missing string literal

Multiply defined label: The specified label was previously declared.

Multiply defined symbol

{Name> redefined

Not enough room for...: Occurs when loading packed symbols.

Number expected: This message comes from a macro definition.

Number too long: The symbol is longer than 252 characters.

Out of memory: Probably symbol table full or MacsBug installed.

Partial field error in macro formal

PC relative address out of range: This is usually caused by a short PC
relative reference backward to a label that is too far away.

Register list expected

Size mismatch for operator/operands: The size of the operand does not
match the size of the operator (plus .B, .W, or .L).

Stopped by user: Either the Stop button was clicked or Command-period
was pressed.

String overflow: The symbol is longer than 252 characters.

String too long: The symbol is longer than 252 characters.

Symbol too long: The symbol is longer than 252 characters.

Too many formals in macro

Too many levels of macro nesting

Too many nested files

Undefined label:

Unknown cause: This is a serious error of unknown origin. Assembly
is abandoned when it occurs.

Unknown directive: Didn't recognize the directive.

Unknown I/0 error

Unmatched ELSE or ENDIF: Only occurs in an IF statement.

Value out of range: This is usually caused by a short PC relative
reference backward to a label that is too far away.

Volume locked

Warning: .S operand out of range: .W assumed: This is a warning
only.

XREF symbol defined: This message is a warning only.

Linker Error Messages 135

Linker Error Messages

Here is a list of the error messages that can be displayed by the
Linker.

Code segments cannot follow resources

Could not create resource

Could not open file:

Could not open .Rel file:

Could not open resource file

Could not open temp file

Disk full

Disk I/0 error

Disk write-—protected]

Duplicate Ident (System Error)
Duplicate symbol

Error in control file: Unknown type or error message
Errors in linking

Extra characters on line

File locked

File name too long: The symbol is longer than 252 characters.
File open error

Illegal / command

Illegal input token (System Error)
Illegal number

Illegal .Rel file name

Illegal starting label

Illegal symbol Ident (System Error)
Invalid or missing .Rel file

I/0 memory error

JTSize does not match global size (System Error)
JTISize does not match symbol count (System Error)
Link errors

Linker error ...

Missing Ident (System Error)
Multiply defined symbol:

Not enough memory to create resource:

Number too long: The symbol is longer than 252 characters.
Out of memory

RESOURCE directive in file before /RESOURCES

Segments cannot follow resources

Source file open fail:

Stack overflow (System Error)
Stack underflow (System Error)
Start label not found:

Start label undefined

String overflow

Symbol too long: The symbol is longer than 252 characters.
Symbol not found:

Unknown arith opcode = (System Error)
Unknown cause

Unknown I/0 error

Unknown opcode = (System Error)

136 Macintosh 68000 Development System

Undefined external:

Volume locked

Value or offset out of range:
Expected a value between xx and yy.
Actual value was zz.

RMaker Error Messages 137

RMaker Error Messages

Here is a list of the error messages that can be displayed by RMaker.
A brief description accompanies the messages that are not entirely
self-explanatory.

An Input/Output error has occurred

Bad attributes parameter

Bad bundle definition

Bad format number

Bad format resource designator in GNRL type: This is any error in
a user—defined resource type.

Bad ID Number

Bad item type

Bad object definition: This can happen if the specified file is of the
wrong type.

Bad type or item declaration

Can't add to the file —- disk protected or full?

Can't create the output file

Can't load INCLUDE file

Can't open the output file

Out of memory

Syntax error in source file

Unknown type: The specified resource type is not defined.

[

M rrrrrirrrrro e et rr e i

oy rrrrrrrr et ry et i

Appendix D

Quick Reference

Ao OnNOnNONOOfnNnRonOoNnNnoOnNOnRnon
‘
ﬁ

Assembler Quick Reference 143

Assembler Quick Reference

Registers: D@..D7 Data Registers @ through 7

AP..A7 Address Registers @ through 7

A7 or SP Stack Pointer

SR Status Register

CCR Condition Code Register

PC Program Counter

For MOVEM: '-' for register range; '/' for list. Example: Al-A4/D@/D6

Syntax Addressing mode
An or Dn Register Direct
(An) Register Indirect
(An)+ Postincrement Register Indirect
-(An) Predecrement Register Indirect
Expr(An) Register Indirect with Offset
Expr(An,An) Indexed Register Indirect with Offset
Expr(An,Dn) Indexed Register Indirect with Offset
Expr Absolute or Relative
Expr(PC) Relative with Offset
Expr(PC,An) Relative with Index and Offset
Expr(PC,Dn) Relative with Index and Offset
Expr(Dn) Relative with Index and Offset
#Expr Immediate
.B Operands are one byte long
W Operands are one word long (2 bytes)
.L Operands are long words (4 bytes)
Bece.S Short branch (long is default)
JMP.W Short jump (long is default)

Numbers: Decimal is default; $ for hex; ~ for octal; % for binary.

Strings: Enclosed in single quotes. Use two single quotes in a row to
put a single quote in a string.

Symbols: Start with 'A'-'Z', 'a'-'z', '.', ' !

Followed by 'A’-'Z', 'a'—'z', l¢l_l91’ l." '$l’] l.

Operators:

Arithmetic Addition
Subtraction
Multiplication
Division
Negation

Shift Shift Right
Shift Left

Logical And
Or

I+

Integer result

Zeros shifted in
Zeros shifted in

—-R ANV | N %

144

Precedence: 1.

Macintosh 68000 Development System

Negation

Operations within parentheses (innermost first)

3. Shift operations

Logical operations

5. Multiplication and division

Assembler Directives:

INCLUDE filename

STRING_FORMAT value
General Strings: value = @
value = 1
DC.x Strings: value = @
value = 2
value = 3

IF condition...ELSE...ENDIF

MACRO name P1,P2,...Pn =
XXXX {P1}, {P2}
TYYY {Pn}

END

+«DUMP

EQU expression

SET expression

REG register list

.TRAP name S$Axxx

DC.B value(s)

DC value(s)

DC.W value(s)

DC.L value(s)

DS.B length

DS length

DS.W length

DS.L length

DCB.B length,value

DCB length,value

DCB.W length,value

DCB.L 1length,value

<ALIGN wvalue

XDEF symbol(s)

XREF symbol(s)

RESOURCE type ID [name [attr]]

.NoList

.ListToFile

.ListToDisp

.Verbose

.NoVerbose

Addition and subtraction

Include source file

Set string format

Text followed by a @ byte
Text preceded by a count byte
Write strings literally

Text preceded by a count byte
Specifies 1 and 2

Conditional assembly

Mac-style macro definitionms.
Arguments are symbols, defined
after name.

End of program
Dump symbols to .Sym file
Set permanent constant
Set temporary constant
Define register list
Assign a name to trap number $Axxx
Define Constant
values are separated by commas

Define Storage

Define Constant Block

value = 2 for word alignment
value = 4 for long word alignment
Symbol used externally

Symbol defined externally

Begin resource definition

Turn off listing

Turn on listing to file

Turn on listing to display

Turn on verbose listing which is
needed for Linker listing

Turn off verbose listing

Linker Quick Reference 145

Linker Quick Reference

filename The next file to link is the file named filename.Rel
!label Make label the starting location for the program
< Start a new segment

[Turn on code listing to .Map file

1 Turn off code listing to .Map file

(Turn off listing of local labels to .Map file

) Turn on listing of local labels to .Map file
/Verbose Turn on verbose linker output

/NoVerbose Turn off verbose linker output

/UndefOK Give warning only for undefined symbols

/NoUndef Give fatal errors for undefined symbols

/Type Set type and creator bytes for file

/Globals Set offset from A5 of start of global space
/Output Specify name of output file

/Resources Code section done; begin resource section

/Data Resource section done; begin data section

$ End of Linker control file

146 Macintosh 68000 Development System

Serial Cable Connections

These two diagrams illustrate the connections necessary to use MacDB
with two Macintoshes or with a Macintosh and a Lisa. These allow you
to build your own cables for use with the Debugger.

Macintosh to Macintosh Serial Cable

Mac Serial Port Mac Serial Port
DB-9 DB-9
No connect 1 1 No connect
No connect |2 2 Mo connect
Ground |3 | p———3F Ground
TRD+ |4 4 TRD+
THD- |5 S THD-

Mo Connect |6 6 No Connect
Handshake |7 7 Handshake
R¥D+ |8 8| RXD+
RXD- |9 9 RXD-

Macintosh to Lisa Serial Cable

Mac Serial Port Lisa Serial Port
DB-9 DB-25
Ground |1 1 Ground
No connect |2 2| TXD
Ground (3 3 RXD
THD+ |4
THD- |5
Mo Connect |6 .
Clock 7 7 Ground
R¥D+ |8 ;
RXD- |9

MacsBug Quick Reference 147

MacsBug Quick Reference

Number
Text:
Symbol

Operators:

DM A N

SM A El..En

853F¥F
=

BR AC
CL A
G A
GT A
SN
SS Al

ST A
MR N

RB
ES

S

S:

A2

$ means hex; & means decimal. Maximum size is long word
One to four characters enclosed in single quotes.
RAQ..RA7,RD@..RD7,PC,SP,TP,'."' (dot=current address)

+ (addition), — (subtraction, negation), @ (indirection)

Memory Commands
Display N bytes of memory starting at address A
If N = 'IOPB','WIND','TERC', displays data structure
Set memory values El through En starting at address A

Register Commands
Set data register n to E. If E is omitted, display n
Set address register n to E. If E is omitted, display n
Set the PC to value E. If E is omitted, display the PC
Set the SR to value E. 1If E is omitted, display the SR
Display all the registers

Control Commands
Set breakpoint at address A. Do C times before breaking.
C is optional
Clear breakpoint at address A. If A omitted, clear all
Execute application starting at A. If no A, at current PC
Set one-time breakpoint at address A, start at current PC
Trace one instr. Traps treated as single instructions
Step through N instructions. If N is omitted, one
instruction is executed. Traps not single instructions
Remember checksum for address range; step through
instructions, validating checksum before each one; break
into MacsBug if checksum changes
Step through instructions to address A. A can be in ROM
Execute instructions until return address N bytes down in
stack is used. If N is omitted, return address on top of
stack is used
Reboot Macintosh
Exit to the shell; launch startup application

A-Trap Commands

Take effect if a trap in the range Tl through T2 is called from address
range Al through A2, and D@ has a value between Dl and D2. For omitted
parameters, full range (all traps, all addresses, all D@ values) used.
These commands set up conditions that are monitored when Go is used.

AB T1
AT T1
AH T1
HS T1

AS Al

AX

T2 Al A2 D1 D2 Break on specified A-traps
T2 Al A2 D1 D2 Trace program and display specified A-traps
T2 Al A2 D1 D2 Check the heap on specified traps

T2

A2

Scramble heap and check it on specified traps
Usually T1=$18 and T2=$2D for optimal speed
Remember checksum for address range; validate it
before traps

Clear all A-Trap commands

148 Macintosh 68000 Development System

HC
HD MASK

Heap Commands
Toggle between system heap and application heap

Check the consistency of current heap

Dump each heap block, followed by heap summary line

Block = BlockAddr Type Size [Flags MP_location] [*] [RefNum ID Typel

Type (of block): F = free, P = pointer, H = handle

Size:

physical size = headertcontents+spare bytes

Flags nibble: Bit 3 = Locked; Bit 2 = Purgeable;

MP Location:

*

Bit 1 = Resource; Bit @ = unused
the location of the Master Pointer
indicates non-relocatable or locked blocks

RefNum ID Type: given for resource blocks only

If no MASK:

Summary = HLP PF #Reloc blocks, #Locked reloc blocks, #Purgeable blocks,

If MASK

Purgeable space, Non-reloc blocks, Free Space

'H' (handle), 'P' (pointer), 'F' (free blocks),

'R' (relocatable), or 'xxxx' (resource type 'xxxx') then

Summary
HP MASK
HT MASK
ID A

IL AN

PX

FACDM
WH X

CS Al A2
Cv X

RX

SM PC 6(FE
SM PC 4E71

CNT ### <# of blocks of MASK type> <# bytes in those blocks>

Dump heap to other port (TermBugA or TermBugB only)
Display heap dump summary line (See HD)

Disassembler Commands
Disassemble one line at address A
Disassemble N lines starting at address A

Toggles symbolic display (Pascal option only)

Miscellaneous Commands
Search C bytes from address A, looking for data D after
masking the target with M. Display first occurrence
X<512: display address of trap X
X>511: display trap nearest address X
Checksum specified range. If no A2, 16 bytes. If no Al
or A2, checksum and compare with last. Print result.
Display X as unsigned hex, signed hex, signed decimal
and text
Toggle register display during trace

Handy Hints
Enter instruction BRA *-2 to stop disk spinning
Enter no—-op at current PC location

Glossary

L

o

L

.

Glossary 151

Glossary

The terms in this glossary are defined in the context of the Macintosh
680@0@ Development System. All references to the Assembler, Editor,
Linker, RMaker, or PackSyms refer to applications in the development
system. Things that are true of the Editor, Assembler, or Linker in
this package are not necessarily true of other editors, assemblers, or
linkers.

application: A tool to manipulate information. Macintosh 68(@@
Development System applications include the Editor, Assembler, Linker,
Executive, Resource Compiler, and PackSyms.

application heap: A portion of memory available to the application
program for its own memory allocation.

argument: In a macro definition, a placeholder for values that are
supplied when the macro is actually used. Values are passed to the
macro as a list of parameters; they replace, character—-for—character,
the arguments that represent them.

assembler: An application that translates an assembly-language program
(understandable by humans) into a form that is useful to a computer.
The Assembler creates modules that can then be connected together, by
the Linker, to form an application.

assembly-language program: Lines of text containing instructions
written by a human, translated by an assembler, and carried out by a
computer. These instructions generally include instructions to the
microprocessor, instructions to the assembler, and comments to humans.

A-trap: An instruction beginning with a hexadecimal $A which, when
executed by the MC68B@@, causes an exception. The Macintosh recognizes
this exception as a call to one of its Operating System or Toolbox
routines and uses it to determine which routine was reqested. Also
called a system trap, or simply a trap.

block: An area of contiguous memory within a heap zone.

breakpoint: An instruction in an application that causes the immediate
halting of the application. Using a debugger, you can place a
breakpoint in an application; when the program halts, you can use the
debugger to examine the state of the program.

bundle: A resource that maps local IDs of resources to their actual
resource IDs; used to provide mappings for file references and icon
lists needed by the Finder.

cell: 1In MacDB, an address or value that can be selected, and
sometimes changed.

152 Macintosh 68000 Development System

conditional assembly: The act of assembling a program that has
conditions placed in it that determine whether or not specified blocks
of source should generate code. In the Assembler the IF, ELSE, and
ENDIF directives are used to perform conditional assembly.

data fork: The part of a file that contains data accessed via the File
Manager.

debugger: An application that aids analysis of ailing applications.
Debuggers generally provide a way to stop an application, to examine
the computer's memory and registers, and to control the operation of
the application.

directive: An instruction within a file that is interpreted as a
command to the Assembler or the Linker.

document: Whatever you create with Macintosh applications—--information
you enter, modify, view, or save.

Editor: An application that lets you enter, modify, view, or save
text, or some other form of information. The Editor is a disk-based
text editor that lets you create documents larger than will fit into
Mmemory .

exception: An error or abnormal condition detected by the processor in
the course of program execution. System traps are exceptions. Refer
to the 68@PP Reference Manual for more details.

Executive: The Executive is an application that lets you control the
use of other applications. If you repeatedly assemble, link, and add
resources to the same files, you can use the Executive to automate the
process.

expression: A collection of symbols (numbers, labels, mathematical
operators...) that is arranged according to a set of rules (syntax).
The symbols are evaluated according to that set of rules to produce a
result.

extension: In the development system, a period followed by one or more
letters that is added to a filename to help identify the type of
information in the file.

frozen: A state in which the contents of a MacDB window cannot change.
By default, MacDB windows are changeable (thawed).

global space: An application's global space is a fixed block of memory
that is located relative to A5. It contains all the program storage
declared using the DS directive. Because it never moves, it is ideal
storage for data shared between segments.

heap: An area of memory in which space is dynamically allocated and
released on demand, using the Memory Manager.

Glossary 153

jump table: A table that contains one entry for each routine that is
used by more than one segment. It is a channel of communication
between relocatable segments, and even allows segments to be removed
from memory until called by the active segment.

linker: 1In the development system, an application that connects .Rel
files (produced by the Assembler) together into an application.

machine language: The language that the microprocessor itself
understands. The Assembler and Linker together translate an
assembly-language program that you can understand into a
machine-language program that the Macintosh can understand.

macro instruction: Consists of a name and a list of parameters. When
assembled, the macro call is replaced by the list of instructions it
represents, and the parameters are placed into that list of
instructions, as appropriate. Just as subroutines are a way of
generalizing similar pieces of code, macros are a way of generalizing
similar pieces of text.

MacWorks: A program that runs on a Lisa computer and that allows the
Lisa to run Macintosh software.

modem port: On a Macintosh, the port that has the modem icon above it.
Also known as port A.

Nub: 1In the context of the development system, a program you should
run on the Macintosh on which you wish to debug your program. MacDB,
running on another Macintosh, can then examine your program by
communicating with the nub over a serial cable.

operand: A quantity upon which an operation is performed. In the
expression A + B, the operands are A and B, and + is the operator. In
the assembly-language instruction MOVE D@,Dl, the operands are D@ and
Dl.

operator: A character or characters that represent an operation to be
performed. Operators perform operations upon operands.

packed symbol file: A file that equates values to symbols. Like a text
file composed of EQU statements, but in a much more compact form. To
create a packed symbol file, run PackSyms on a .Sym file.

parameter: In a macro call, a text-string that is to be placed
literally into the list of instructions that the macro represents.
Each parameter replaces all instances of the argument that is a
placeholder for it.

Pascal string: A Pascal string starts on a word boundary. It consists
of a byte containing the length of the string followed by bytes
containing the ASCII codes of the characters in the string.

precedence: 1In an expression, the order in which operations are
performed. For example, in expressions used in the Assembler,

154 Macintosh 68000 Development System

multiplication is performed before addition (with the exception that
operations in parentheses are performed first).

printer port: On a Macintosh, the port that has the printer icon above
it. Also referred to as port B. The machine that runs the MacDB
debugger must always be connected to the other machine by this port.

program counter: The register in the 6800 that points to the memory
address that contains the assembly—language instruction that is
currently being executed.

port A: On a Macintosh, the port that has the modem icon above it.

port B: On a Macintosh, the port that has the printer icon above it.
The machine that runs the MacDB debugger must always be connected to
the other machine by this port.

register: A structure within a microprocessor that holds information,
that can be rapidly and flexibly changed or moved. The 68@@@ has data
registers for general data manipulation, address registers that point
to memory locations, and other registers crucial to the operation of
the microprocessor. See also: program counter and stack pointer.

relocatable: Moveable. The Assembler and Linker produce code segments
that work regardless of their position in memory. The Segment Loader
moves segments of code relative to one other by updating the jump table
that allows communication between segments. Together, these features
create relocatable applications.

resource: Data or code stored in a resource file and managed by the
Resource Manager. Predefined resource formats, such as menus or fonts,
make possible the easy integration of complex data structures into an
application.

Resource Compiler: An application that forms resources from a set of
definitions, and places them into a resource file. The RMaker
application is the Resource Compiler; however, the Linker is also able
to create resources.

resource fork: The part of a file that contains the resources used by
an application (such as menus, fonts, and icons) and also the
application code itself; usually accessed via the Resource Manager.

RMaker: See Resource Compiler.
segment: One of several parts into which the code of an application
may be divided. Not all segments need to be in memory at the same

time.

source file: A file that contains information used as input to an
application.

stack: An area of memory in which space is allocated and released in
LIFO (last-in-first—out) order, used primarily for routine parameters,

Glossary 155

return addresses, local variables, and temporary storage.

stack pointer (SP): A register that contains the memory address that
is currently the top of the stack. In the 68@@@, address register 7
(A7) is used as the stack pointer.

symbol table: Data that represents the symbols (variables, constants,
labels, and routine names) used by a program. The symbol table is
created by the Assembler and used by the Linker.

system definition file: A file defining global constants, variables,
or system traps. The development system is shipped with a set of
equates files and traps files that contain necessary system
definitions.

system heap: A portion of memory reserved for use by the Macintosh
system software.

text-only file: A file consisting of a stream of ASCII characters that
contains no special formatting information.

thawed: Describes a MacDB window that can be changed. A MacDB window
that cannot be changed is said to be frozen.

trace: To examine, one instruction at a time, the execution of a
program. The MacDB Trace command executes the machine-language
instruction indicated by the program counter, then it updates its
windows.

trap: See A-trap.

Index

Index

159

Index

. (dot) 80 branch instructions 32

@ 69 breakpoint 69

! command 50 Breakpoints window 64

< command 50

[command 50 C

] command 50 cells 66

(command 50 Change command 21

) command 50 changing text 21

* command 69 Char command 71

$ command 50 Clear All command 69
Clear command 69

A close box 65

address 31 code optimization 32

aligning 42
addressing modes 31
alert
item 97
template 96
«ALIGN directive 43
align box 65, 71
aligning
addresses 42
columns 21
anchor box 65
Anchor command 65, 70
appending to resource file 94
application bundle 96
arguments, macro 38
.Asm 19, 25
file 1list 25
files 28
Assembler 8, 25
directives 35
errors 8, 133
file naming conventions 25
invoking 26
macros 8
output files 29
source files 26, 28
syntax 29
assembly-language source programs 25
asterisk (*) 30, 69
A-Trap command(s) 72-73, 86
attribute byte 44
Auto Indent command 21
auto-pop bit 73

B

B extension 32
binary notation 33
Bkpts menu 69
block header 73

columns, aligning 21
Command-S 29
comments

Assembler 30

RMaker 93
Compile command 100
Control

commands 83

template 96
copying text 21
creator bytes 51, 93-94
current program location 30
cutting text 21

D
.D file 25, 45
/Data command 51, 53
data fork 49, 52
data registers 31
data storage 52
DC directive 41
DCB directive 42
debug machine 61
Debug menu 67
Debugger See MacDB; MacsBug
decimal notation 33
default

font 20

volume 28
defined resource types 95
dialog resource 97
directives

Assembler 35

Linker 43

printing control 27, 35
Disassembler commands 88
disk-based editor 20
disk drive, stopping 67, 89

160 Macintosh 68000 Development System

document
opening 20
printing 22
DS directive 42
.DUMP directive 40, 44
Duplicate command 69

E
editing 21
Editor 7, 19
document names 7
documents 7, 20
file naming conventions 19
invoking 19
+EJECT directive 35
ELSE directive 37
END directive 40
ENDIF directive 37
.ENDM directive 39
EQU directive 40
equates 16
Err file 26, 29
errors
Assembler 8, 133
Executive 58
Linker 9, 135
RMaker 137
Examine window 64
exceptions 62, 63, 78, 79
Execute command 58
Executive 10, 57
control file 57
default name 58
errors 58
file naming conventions 57
invoking 57
syntax 57-58
using 58
expressions 33
MacsBug 81

F

file
name 28
naming conventions 6
opening from Editor 20
selecting from Assembler 27
setting creator 51, 93-94
setting type 51, 93-94

file reference 98

file system equates 16

.Files 19, 25

.Files files 28

Filter by Time command 27
Find command 21
finding text 21
512K Mac command 67
font
default 20
monospaced 20
proportional 21
Format menu 71
Frozen command 70

G

global equates 16

global storage 41, 49, 52
/Globals command 51, 52
Go Till command 68

Go To command 68

H
Heap Check Off command 67
Heap Check On command 67
heap zone 71

commands 86
Hex Address command 70
hexadecimal notation 33

I
IF directive 37
INCLUDE directive 36, 94
indenting text 21
initial volume 28
Inside Macintosh 3
Inst command 71
instruction 30

lines, Assembler 29

syntax, Assembler 30
interrupt button 79
invoking

Assembler 26

Editor 19

Executive 57

Linker 50

MacDB 61

MacsBug 77, 79

RMaker 100

J

.Job 19, 57

.Job files 10, 58
jump instructions 32
jumb table 49

K

Index 161

L MDS1 disk 4
.L extension 32 MDS2 disk 5
labels 30, 42 MemBlock command 73
.LErr 49 Memory commands 81
.Link 19, 49 memory storage 42
linked list 72 menu(s) 98
Linker 9, 49 defining 54
commands 50 MacDB 67
control directives 43 miscellaneous MacsBug commands 88
control file 50, 52 modes, addressing 31
errors 9, 135 monospaced font 20
file naming conventions 49 Move Left command 21
invoking 50 Move Right command 21
sample control file 53 MOVEM command 31
Lisa Workshop 90, 93
LisaBug 78 N
list of .Asm files 25 naming
List command 72 Assembler files 25
List to Display command 27, 29 Editor files 19
List to File command 27, 29 Executive files 57
listing, Assembler 27 files 6
.ListToDisp directive 35 Linker files 49
.ListToFile directive 35 resource files 93
local label 30 New command 69
Long command 71 new document 20
lowercase letters 29 No Anchor command 65, 70
.Lst file 26, 29 No Listing command 27
.NoList directive 35
M non-string expression 37
M68000 16/32-Bit Microprocessor no-op 67, 90
Programmer's Reference Manual 3 Normal Output command 27
MacDB 12-13, 61 /NoUndef command 51
menus 67 .NoVerbose directive 35
windows 63 /NoVerbose command 51
Macintosh, the owner's guide 3 Nub 12, 61-62, 63
Macintosh 68000 Development System numbers 33
disks 4 MacsBug 80
MacNub 62
.MACRO directive 39 V]
MACRO 38 octal notation 33
macros 38 128K Mac command 67
Lisa-style 39 Open command 20
for numerics 16 Open Job File command 58
for packages 16 opening
MacsBug 12, 14, 77-78 document 20
commands 81 files 20
invoking 79 operations 34
setting up 77 operators, MacsBug 81
syntax 80 /Output command 51, 52
versions 77 output file 52
MacWorks 61, 78
.Map file 9, 49, 73, 74 P
master pointer 73, 86 package equates 16

MaxBug 78 package macros 16

162 Macintosh 68000 Development System

packed symbol files 44, 45
PackSyms 44
Pascal String command 71
PC window 63
precedence 34
Print command 22
printer equates 16
printing
control directives 27, 35
dialog box 22
document 22
procedure 98
Proceed command 63, 68
program, sample 103
proportional font 21
Purge command 74

Q
QuickDraw equates 16
QuickDraw traps 16

R
.R file 19, 25, 93, 100
.R Filter command 100
REG directive 41
Register commands 82
Registers window 63
.Rel file 8, 9, 29, 41, 53, 93
removing text 21
replacing text 21
Resource Compiler See RMaker
RESOURCE directive 44, 53
resource files 93

adding to 94

naming 93
types 95
resource fork 49, 52

resources 49, 95
defining 53
types of 99
/Resources command 51, 52, 53
Resume command 58
Resume and Re-do Last command 58
RMaker 15, 93
creating types 99
errors 137
input file 93
syntax 95-96
using 100
replacing 21
.Rsrc files 93
Run menu 68

S
sample
Linker control file 53
program 103
session 11
Sample Programs folder 11
scope 30
scroll
arrows 66
bars 20, 66
box 66
Search command 72
searching for source files 28
Select File command 27
selecting
listing options 27
source files 27
SET directive 41
Set command 69
Set Startup command 62
Set Tabs command 21
setting
file's creator 51, 93-94
file's type 51, 93-94
setting up
MacsBug 77
Debugger 61
signature bytes 51, 93-94
size box 66
size extension 32
source files
Assembler 26, 28
Editor 7, 20
Executive 57
Linker 50, 52
RMaker 93
start box 65
stopping
assembly 29
disk drive 89
listing 29
STRING_FORMAT 36
strings 33, 36-37, 98
.Sym file 26, 40, 44, 74
symbol table 9
Symbolic Address command 70
symbols 34, 74
MacsBug 80
Symbols menu 73
syntax
Assembler 29
Executive 57-58
MacsBug 80
RMaker 95-96

system definition files 16
system error numbers 16
system traps 72, 84

T

tab stops 21

target machine 61
template 96

TermBugA 78

TermBugB 78

text literals, MacsBug 80
text-only files 7, 22, 26
Thawed command 70

title bar 65

Title command 70

Toolbox equates 16
Toolbox traps 16

TP 80

Trace command 68

Trace Into ROM command 68
.TRAP directive 41

traps 16, 72-73, 84

type bytes 51, 93-94
/Type command 51

typing text 20

U
/UndefOK command 51
uppercase letters 29

Index

v
Value command 74
.Verbose directive 35
/Verbose command 50
Verbose Output command 27
volume

default 28

names 6, 28

W
+W extension 32
Wait command 67
Window menu 69
window(s)
Breakpoints 64
Examine 64
MacDB 63
PC 63
Registers 64
template 99
word alignment 42
Word command 71
WorksNub 61

X
XDEF directive 43
XREF directive 43
Y

A

163

- Macintosh. 68000 Development System
User’s Manual

& File Edit Search Format Font Size . :

tooltraps b
_TRAP _SystemMenu $A9BS | L' o9t
. TRAP _OpenDeskAce $A9B6 2
. TRAP _CloseDeskRAcc $A9IBT L S
. TRAP _GetPattern $A9BS AT
.TRAP _GetCursor $A9BO ;
. TRAP _GetString $R9BA
.TRAP Gatloon f:=(a|=]=]
.TrAP [E[[&==——————~——— Desk Eraser
:22 7 PROCEDURE EraseDesk(r: Rect J;

Erase the given rect with the current desk pattern

2’

EraseDesk
L IMK ARG, #0 ; Null stack frame
SUBQ #4 SP ; room for the pattern
MOVE #DeskPat|D,-C(5P> ; std. pattern id
_GetPattern
MOVE.L <SP)+,R0 ; get the pattern handle
MOVE.L B8¢AG>,—(SP> ; pass the rectangle
MOUE.L C(AO>,-CSP) ; push the pattern

¥ <4 o ot N TR T o SR A AT e PRy TN e = = 4 % = B TR

142 Macintosh 68000 Development System

File Naming Conventions

Name Created by Contents

Name . Asm Edit Assembler source file

Name.Files Edit List of separate assemblies to be performed

Name .Rel Asm Relocatable module with symbol table information
Name.Lst Asm Assembler listing

Name .Err Asm Assembly errors

Name . Sym Asm Symbol table file, generated by .DUMP directive
Name .D PackSyms Symbol table, used as input to Asm; packed version

generated by running PackSyms on .Sym files

Name .Link Edit Files to link; Linker listing on/off; where to
begin segments, resources, data

Name Link Application

Name .LErr Link Errors that occurred during linking

Name .Map Link Symbol table for MacDB and Linker listing
Name . Job Edit Executive control program; specifies names of

applications to be run and files to be passed as
input to applications

Name .R Edit RMaker input file; contains resource definitions
Name.Rsrc RMaker RMaker output file

System Overview 141

System Overview

5 Resource Compiles a
Compiler —’ - text file into
a resource
Both.R RMaker file
000 Resource
; A b1 . Optional symbol laue file for ‘t.he
SSeMOY loool &£ file used to make application
lnguage Jonsl 4— Lo & packed symbol Both Rsr
source file [0'21 files (D files)
First.Asm Both D PackSyms Both.Sym TESAU e
PackSyms packs .Sym
files into .D files for Relocatable MacsBug
b Assembly faster assembly oool] object module Mon-symbaolic,
language el w/symbol table Executable one-Macintosh
source file information phjent f1.le - debugger
: = Both Rel (an Application!)
econd. Asm Both
SN
- = Listing of
Edit - = assembled files @
o N Spemf.les : = if requested @ ‘
The Editor is .Asm files to be | Both Lst Link MacDB
used to create... separatelly N oL Symbol table
assemble
Both Files —b Asm n and listing Symbolic
The: hessmiblar b List of (if requested) two-Macintosh
generates... assembly Both Map Used by MacDB debugger
[Linker errors
control Both .Err
file
Both.Link List of
a errors
Esoio frrom linking
= Exefut]we b controls the Both.LErr
gﬁ: re S assembly and

Executive linking process
Both.Job

2l
e e e e e e S e e e e e e s e R S De e

«llillulallllllllllllllllli{

This book's binding lets it lie
flat while you're working
with your Macintosh. When
you're using the book, keep
the wraparound endflap
tucked inside the back cover.
To make it easy to spot the title
when the book’s on a shelf,
fold the flap inside the front
coverand set the book on the
shelf with the title visible.

il

[0

TS

VAVAVAS 3y

Apple

y M

[

Computer, inc.

030-1077-A

