

CHAPTER 1:
HOW TO USE THE MAC C COMPILER

INTRODUCTION

The Mac C Compiler translates programswritten in the C programming language into
68000 assembly languagefor Apple's Macintosh 68000 Development System (MDS).
The Compiler is fully integratedwith this developmentsystem and runs on eithera
standard Macintosh (128K or 512K bytes) with an externaldrive or hard disk. a Macintosh
XL, or a Usa running MacWorks.

The C languageis defined in The C Programming Language by Brian W. Kernighan
and Dennis M. Ritchie. Major differencesbetween Mac C and standard Kernighan and
RitchieC are defined in AppendixA. The Macintosh 68000 Development System consists
of an Editor.Assembler, Linker, Executive. and Debugger. It is availablefrom Apple and
all parts except the Executive and the Debuggerare requiredby Mac C. For information
on the MDS see the Macintosh 68000 Development System Manual or contact
your local Apple dealer. For assembly languageinformation, refer to Motorola'sM68000
16132-81t Microprocessor Programmer's Reference Manual, fourth editIon,
publishedby Prentice-Hall, Inc. Information on the Macintosh operating system and
run-time library may be obtained from Apple's Inside Macintosh manual.

Some references for the C programming languageare: The C Programming
Language by Brian W. Kernighan and Dennis M. Ritchie. published by Prentice-Hall, Inc.•
and C: A Reference Manual by Samuel P. Harbisonand Guy L. Steele, Jr., published
by Prentice-Hall, Inc.

The remaining sections of this chapter provide a brief overview of the C language,and the
sequenceof steps the user must follow to compile, link. and execute Mac C programs.

OVERVIEWOF THE C LANGUAGE

The C programming language, originally developedat BenTelephone Laboratories. was
designed as a systems implementation language for the UNIX operatingsystem. It is
rapidlybecoming the dominant systems impler:nentation languageover a wide variety of
machinesand systems. .

C is a low-levelprogramming languagein the sense that importantaspects of the
hardware can be directly manipulated from within the language. It also includes features
of higher-level languages. C supports a numberof data types and offers structuredcontrol
flow and a wide variety of operators.

CHAPTER 1: HOW TOUSE THEMACC OOMPILER

1- 2

Data Types

C recognizes several elementary data types: signedand unsigned characters (8 bits),
signed andunsigned short integers (16bits).signed andunsigned long integers (32bits),
pointers (32bits), single-precision floating point numbers (32 bits),double-precision
floating point numbers (64 bits),and extended-precision floating point numbers" (80 bits).
From these elementary datatypes, morecomplex collections can be created: arrays of
objects, eachhavingthe samedata type, andstructures (caned records in some
languages) of objects with arbitrary types. Floating pointtypes areonly implemented in
MacC 2.0.

Thisset of datatypes covers an the hardware-supported data typesof the 68000and offers
mechanisms for extension to morecomplex cases. C provides a facility calledtypede' for
creating newdata types.

Operators

C provides manyoperators to manipulate the elementary data types. Theseoperators are
listed in Table 1-1. C permits extensive manipulation of polnters, l.e., variables that
contain the addresses of operands. In C, the unaryoperators "... and "&" can be combined
with arithmetic operators to reference memory in a directand efficient manner.

Table 1-1. C Operators

Arithmetic Operator.
+ Addition

Subtraction
Multiplication

1 Division
% Modulus

Relational Operator.
> GreaterThan
>a Greater Thanor Equal To
< less Than
<- lese Thanor EqualTo

EqualTo
I. NotEqual To
&& logical AND
II logicalOR

Bitwise Binary Operator.
& Bitwi8e AND
I BitwiseInclusive0
A Btlwts. ExclusiveOR
« left Shift
» RightShift

Unary Operata,.
.. Contentsof Addresa
& Addressof Operand

Arithmetic Negate
logical Negate
One'sComplement

..... Increment
Decrement

(type) Cast (Type Converaion)
eizeof Sizeof Object (bytes)

Aaalgnment Operator.
SimpleAssignment

... Add,then Assign
Subtract. then Assign .*. Multiply, then Assign

1- Divide,then Assign
OJ- Modulus, thenAssign
<<- LeftShift.then Assign
>>- RightShift, then Assign
&. Bitwise AND,then Assign
"- Bitwise Exclusive OR, then Assign
1- BitwiseInclusive OR, then Assign

CHAPTER 1: HOW TOUSEllIE MAC C COMPILER

1 w 3

Functions and Program Organization

The basicorganizational unit of C programs is the function. EveryC program beginsat a
function calledmain. It makes use of both predefined functions and user-defined
functions which fill the same role as subroutines or procedures in other languages.
Functions can be compiled independently and later linkedtogtherfor execution. C
functions can easilybe made both recursive and re-entrant.

All function parameters in C are passed by value, that is, the valueof the parameter is
passed to the function. In most languages, parameters are passedby reference andthe
address of the parameter is passed to the functio,. or procedure. Sincea pointercan be
a parameter value,can by reference is also available in C.

Within functions, control flowstatements specify the order in which computations are to
be done. C hasa number of structured control flowconstructs, including If-else,
else-If, while. do-while, ter, andswitch-case, as well as three varieties of jumps:
continue, break, and goto.

Storage

The C language allowsexplicit control over howvalues are storedand wherethey may
be used. Variables can be specified as localto a function, globalto all functions in a
sourcefile, or grobal to all functions in a program. WhenC programs execute. local
variables are storedon a stack. Global variables are storedin a common data area
allocated by the run time library.

THE MAC C SOFTWARE PACKAGE

The MacC Compilertransforms a C source program into a relocatable objectmodule by
invoking the C compiler whenthen invokes the MDSAssembler, if the compilation is
completed withouterrors.

Writing and Developing Mac C Programs

To write a MacC application on the Macintosh. Macintosh XL, or Lisa running
MacWorks, you mustknowhowto use:

• Macintosh Finder, a built-in application for organizing and managing
documents (seethe Macintosh manual).

• EDIT,the MDSprogram editor.

.1.....-- _

CHAPTER 1: HOWlO USE 1liE MAC C OOMPILER

1· 4

• EDIT. the MDS program editor.

• Mac C, the C compiler.

• LINK, the MDS linker.

An understanding of atl the MDSapplications, however, will aid in program development
and support. Someof these applications and their functions are:

• EXEC,the MDSExecutive, makesit easy to movebetween applications andto
create a batchcontrol file to p~rform multiple compilations.

• ASM..lhe Macintosh Assembler ~, is used to write an assembly language
module to be linkedwith a MacC progral1'!.

• MacsBug, and Termbug, two of seyeral MDSstand-alenedebuggers, simplify
the debugging process.

• MacDBis a morepowerful debuggerwhich aUows symbolsfrom a Mac C
program to be used in symbolicdebugging (MacDB requires two Macintosh
machines·- Macintosh. Macintosh XL. or Usa running MacWorks).

• MacNub, a small debugging utility,must be run on the machine containing the
programto be debugged by MacDB. Whenusing MacDBit is usefulto make
MacNubthe startup program.

• AMakeror ASM can be usedto createvarious"resources·. The ASM
RESOURCE pseudo-op allowsthe inclusion of arbitrary code and data
structuresas resources. AMakerallowsthe creation of linker".AEL· files that
can be includedvia LINK in a MacC program. Alternatively, resources can be
mergedinto an existing program with RMaker.

Installing Mac C

This sectiondescribeshow to install Mac C on a 128Kor 512K byte Macintosh, a
Macintosh XL, or a Lisa runing MacWorks. The installation steps are the same for both
systems. You need Mac C and the Apple Macintosh Development System(MOS) to
complete this sequence.

CHAPTER 1: HOWTOUSETHE MACC COMPILER

1- 5

Installation sequence

1. Makea copy of the disk labeled MacC. Thiswill becomeyour Mac C working
disk. If you haveMacC 1.5. remove the files Install C and Edit for Ramdlsk.

2. Makea copy of your MDS 1 Disk and move the file Install C onto it. If you have
MacC 1.5, Install C is on your MacC disk. If you have Mac.C 2.0, Install C is
on the MacC Auxilliary disk..

3. Runthe application Install C. It will print the message "Installation Complete"
when it has finished.

4. Now move the following filesfromyour MDS 1 copy onto the Mac C working
disk:

ASM The MDSAssembler
LINK The MDS Unker

5. You now havea Mac C working disk which is ready to run. Use this disk in
the internaldisk driveand put yoursource disk in the external diskdrive.

We at Consulairhaveworked hardto provide youwith the best and mostcomplete C
development system available on the Macintosh. We havedecided to sell our product
without copy protection in order to maximize its utilityto you, ourcustomer. Please, if
your friends or co-workers wishto usethe compiler, abide by the license agreement and
ask themto purchase their own copy. We havea discount schedule for mUltiple copy
purchases whichwe will gladlytell you about. We can only maintain our high levelof
qualityand support if you, our customers, support us andour product.

Thanksfor yourcooperation!

Making Backup Copies ofMac C and Mac C Toolkit

Oncethe Mac C working disk disk is ready to go, you maywant to make backup
copiesof it. Any disk copying method can be usedto make a newdisk with all the files
from the MacC disk or MacC Toolkitdisk. You can makebackupcopiesexclusively for
your own use, as stated in the license agreement.

The M~c C Compiler
The MDSAssembler
The MDSEditor
The MOS Executive
The MOS Linker

II ,

CHAPTER 1: HOW TOUSE lHE MAC C COMPILER

1· 6

Running Mac C

Thissection describes the commands that should be usedto invoke the MacC Compiler.
It is assumed the internal drivecontains a Mac C working dltsk withthe following files:

C
ASM
Edit
Exec
Link
System Folder

Thesefiles practically fill a Macintosh disk. so all source filesshouldbe savedon the
external disk drive. If you have a Macintosh XL or a Macintosh 512K. you maywishto
run with a RamDisk. There is a description of howto set this up on page 1-9. There are
three application programs from which MacC can be run: Edit. Exec. and the Finder.
Howto run MacC from eachof these programs is explained below.

From EDIT

1. Select C fromthe Transfermenu.

If the file in the frontmost windowhasthe extension ·.c ", the Transfermenu says
"C FILENAME.C." and that file will be compiled.

OR:

If there is no file witha •.c· extension, or the FIND/SEARCH window is frontmost.
the Transfermenu simplysays"C.II Selecting C fromthe Transfermenu startsup
the MacC Compiler and allows you to selectthe file you want. Eitherselect the
nameof the file and the Compile menu item in the ·standardfile" dialog, or
double click the name of the file you wantand the compilation will begin.

2. If there are no errorsin the compilation. the intermediate file is assembled
automatically and you are left in EXEC. The intermediate file is named
F1LENAME.ASM If errorsare found in the compilation, you will be placed in EDIT
with the sourcefile and errorfile opened. The errorfile is named
FILENAME.CER. Figures 1-1 and 1-2 showvarious error messages on the Mac
screenafter a successful and thenan .unsuccessful compilation.

CHAPTER 1: HOW10USErueMACC OOMPILER

1- 7

From EXEC

1. SelectC fromthe Transfermenu. The MacC compiler will start and allowyou to
select the desiredfile fromthe "standard file"dialog.

2. Eitherselect the name of the file and the Compile menu item in the "standard file"
dialog,or doubleclick the name of the file you wantand the compilation will
begin. If there are no errorsin the compilation, the intermediate file is assembled
automatically and you are left in EXEC. The intermediate file is named
FILENAME.ASM If errorsare found in the compilation, youwill be placedin EDIT
withthe sourcefile and error file opened. The errorfile is named
FILENAME.CER.

From the Rnder

Double click the "Cit icon, to start the MacC Compiler. Then followthe instructions for
running MacC from EXEC.

How To Stop Mac C

To stop MacC duringa compilation, holddownthe Command key whiletyping a period
(.). Thiscombination is detected by MacC at the following points:

•

•

•

At the end of the preprocessor pass.

Whenever an include file is closed.

Whenever an error is encountered.

• At the end.of ,co~pilation.

Thestop command only needsto be issued one time because it is saveduntil the next
pointat which MacC looksfor it. When MacC recognizes the stop command, all files
are closedand control is immediately passed to Exec. ASMis not calledeven if the
compilation is successful, and EDITis notcaned ifthere were syntax errors.

CHAPTER 1: HO'NlOUSE 1HEMAC 0 COMPILER

1· 8

Figure 1·1. Mac C Screen After Successful Compilation

Mac C

••••• Mac C Compiler •••••
ecap.,.i.t 1Q84 b\I CoMulai,. Corporation. All righls~.

Ursion 1.01, s.ri••• t,I.
e...ili.. --'.C

IncI'" tRXDEFS. H
Include NIHDDW.H
Include <QUlacDRN.I.H)
Includlt «tIRCOEJIS.H»
Inct.... EUEHTS.H
Include TEXTEDIT.H

IU~~ 1"AJ&£ ur......Zkr!Otl -
~£.~ 11 CoMrtLeIC. orr,o~

Figure 1-2. Mac C Screen After Compilation with Errors

Mece
- -- ---=--- ~ - --.=::::...::

- - - ---

· ••••• Mac C Compiler •••••

c..plli.. __ pr....._.c

Cl-W'TER1: HOWTOUSE THEMACC CX>MPILER

1- 9

Using 8 Ram Disk

If you have a Macintosh with at least 512 K bytes of memory, you may wish to run
keeping Mac C on a Ram Disk. On a Macintosh withouta harddisk drive, this will free up
about 11OK bytes on your internaldrive. After you createa Ram Disk (usingone of the
commonlyavailable Ram Disk programs) with at least 115KBytes of availablestorage,
Insert a copy of your Mac C working disk into the internaldrive, and movethe file
"C" to the Ram Disk. You may nowdelete it from your working disk copy (be sure to save
it elsewhere firstl)

Use the Resource Editor (which is available from Apple)to modifythe the EDIT transfer
menu. Precede the ·C" transfer menu item by the Ramdisk volume nameand a colon.
Be sure to includeany leadingor trailing blanks in the volume name. You may nowcall
the Ram Disk copy of Mac C from EDIT. To call Mac C on a Ram Disk from an EXECfile,
you must precedethe "C" in the Exec file with the volume nameand a colon. You must
use the EXECshippedwith the Mac C disk. It will not work with the normal MOS EXEC.
Foryour convience, your Mac C Auxilliarydisk (or Mac C disk for version 1.5) containsa
c;:opy of EDIT which has been modified to run Mac C from a Ramdisk volume named
"RamOisk II (note trailing blank).

Mac C Complier Options

This section describesthe Mac C Compileroptionsthat can be changedusing either
menu items or a preprocessor directive in the sourcefile. Some optionspertainto a
particularcompilation and othersare specific to a source file.

Compilation Specilic Options

Options pertaining to a specific compilation of a file are set using the Options item in the
menu bar. As with all standardMacintosh applications. you must select the Cancel item
in the standard file window beforethe menubar can be used. Then. to return to the
standardfile window. selectSelect File from the File menu heading. The options
availableunder the Options menu are:

Warnings Are Errors [Default=on]
Treat any warning messges, such as incompatible pointer type, as errors.

CHAPTER 1: HOWTOUSE THE MAC C COMPILER

1- 10

Source In ASM .[Default = off)
Interljstthe source file in the assembly language intermediate outputfile. The source
statements are written as comments, followed by the generated assembly code. Error
messages also appearin this file. so this option is sometimes useful for finding difficult
syntaxerrors.

Verbose Errors [Default =off]
Thisoptioncauses the Compiler to put moreinformation in error messages, suchas
line numbers and comments for errors in included files.

List Token File [Default = off]
Thisoptioncauses the compilerto generate a text file named "e.L1ST" fromits internal
token file. This file is the C program with all comments removed and all defines
expanded. This is useful for finding errors in complex macros, since it showswhatthe
Compiler is actually compiling. A few lines inserted at the beginning of this file indicate
the settings of certain options.

Program Specific Options

These options control the way a sourcefile is interpreted by MacC t or certain compilation
time parameters which are specificto the source file. Theyare set by incorporating an
Options command in the source file (options set in Include files are considered carried
through to the sourcefile). Any number of options mayappearon the same line,
separated by spaces. The format is as follows:

#Options <option> <option> ...

where <option> ::=<FlagOption> I<Allocation Option>

Flag Options
Flagoptions set and resetCompiler flags and are alwaysa singlealphabetic character
which mayoptionally be preceded by "." (on) or "_" (off). If the sign character is omitted.
the default is on. The flag options are:

A Convert function arguments to type lnt [Default= on]
This flag,which is normally set to on,controls whether or not the Compiler converts
char and short arguments in a function call to type"inttl • Setting this option to off
disablesthisconversion and results in a smallerprogram. Becareful, though, since
this is dangerous.

CHAPTER 1: HOW TOUSE THEMAC CCOMPILER

1 - 11

B List Token File [Default =off]
This is the same flag that is controlled by the List Token File menu option.

E Error Flag [Defautt =off]
This is the same flag that is controlled by the Verbose Errors menu option.

H Source in ASM [Default = off]
This is the same flag that is controlled by the Source In ASM menu-option.

I Integer size [Default = on]
The default is the standard Mac C integer size of 32 bits. Pascal, however, uses l6-bit
integers and the architecture of the 68000 itself suggests a 16-bit integer size. Setting
this flag to off(-I) causes Ints to be compiled as 16-bit quantities. and shorts to be
compiled as 8-bit values. The resulting code is faster and more compact, but it is less
compatible with other 68000 compilers. The "standard" C Library assumes a 32·bit
integer size for all routines including scant and prlntt. Longs or explicit type casts
must be used when calling these routines with 16 bit integers.

N No automatic trap recognition [Default == on]
Turning off this option (-N) suppresses the scanning of Macintosh trap names when
compiling a program. If this option is off, trap names are no longer defined as normal
functions, so they can be used in a program as function or variable names. Macintosh
traps may still be caned. but each name must be preceded by "lit. The name is, in this
context, case insensitive. Otherwise the call is the same. This speeds up compilation,
especially if traps are not being used in a source file, and makes it easy to distinguish
between normal function cans and Macintosh trap calls in a program. .

P Padding Flag [Default =on]
This flag, which is normally set to on. controls whether or not Mac C inserts padding
bytes into structures. These padding bytes force even byte alignment for shorts, longs,
subordinate structures, and structure sizes. If it is turned off. structures will be compiled
precisely as they are declared, so the structure declaration must be written with items
properly lined up on word boundaries.

W Warnings are Errors [Default =off]
This is the same flag that is controlled by the Warnings Are Errors menu option.
except that Its sense Is reversed, i.e. setting this flag (+W) makes warnings only
warnings, and clearing it (-W) makes them errors.

",

~R 1: HOW TOuse THE MAC C COMPILER

1· 12

Allocation options

Allocation options setthe symbol tablesizesusedfor compiling a source file.andthe
indexregister which is used for accessing the Global DataSegment. Thegeneral form of
an allocation option is:

<letter> = <number>.

The Global DataSegment indexregister is set by:

R=cnumber>

<number> is 2. 3,4. or 5 for registers A2. A3. A4,or AS, respectively.
The Global Data Register is AS by defautt. and should only be changed
for special applications suchas deskaccessories. (Thisrequires the
Consulair DeskAccessory Maker.)

Symbol tablesizes are printed on the screen andwritten to compiler error filesat the end
of a compilation. If a compilation causes a symbol table to overflow (thiswill onlyoccuron
a 128Kbyte Macintosh), examining the table size message will reveal which table has
overflowed. The table size message hasthe format -Tabla Used/Allocated", where "TableJl

is Global, Local. Type, Typedef, Struct. Field. or Float and "Used-and "Allocated"
indicate howmanybytes were allocated for the table and howmuch of that spacewas
actually used. The tablewhich overflowed is usually that for which "Usedtl and "Allocated"
are nearly the samesize.

Notethat the size of Global (thesymbol table used for globaland staticnames) may not
be set. Afterall othertablesare allocated, Global is automatically assigned any
remaining storage. This means the Global allocation can be increased or decreased by
altering the allocations for othertables.

D =cnumber>
SetTypedef Symbol allocation (default = 920,size factor. 10).

F=cnumber>
Set Field Symbol allocation (default = 5026, size factor= 5).

L =cnumber>
Set Local Symbol allocation (default =920),size factor= 4).

Q=cnumber>
Set FloatLiteral allocation (defautt =300).size factor= 10).

CHAPTER 1: HOWTOUSEniE MACC COMPILER

1 • 13

S=<number>
Set Struct Symbol allocation (defaurt = 575, size factor = 4).

T =<number>
Set Type Storage allocation (defaurt = 904, size factor =10).

Mac C automatically sizes symbol tables for use with RAM disks. The algorithm for
allocating symbol table space for machines with more than 128K bytes is:

The total free memory beyond that allocated to the symbol tables by the deafault
settings is calculated, and the size of the file buffers is subtracted (about 16K bytes
on the 512K Mac). This extra memory is allocated to the symbol tables in roughly the
following proportions:

Local Storage:
Type Storage
Typedef Storage:
Struct Storage:
Field Storage:
Float Literal Storage:
Global Storage:

4/60
2160
6/60
4/60
10/60
10/60
24/60

The maximum size of any symbol table is limited to 32000 bytes. The 'Options
allocation sets the minimum size in bytes for the indicated symbol table.

RUN-TIME LIBRARY FILES

The minimum run-time library required by a Mac C application is contained in the file
named MacCLIb. It is about 700 bytes in length, and contains the code to do system and
data initialization, bit field operations, and various arithmetic functions. Mac C 2.0 also
requires Floatllb. This minimum library is sufficient to allow a Mac C application access
to all Macintosh Toolbox, Quickdraw, and Operating System ROM routines. To gain
greater functionality. Mac C programs may be linked with other librarys (the "standard" C
library and the "Mac C Toolkit"), which are described in Chapters 3 and 4.

CHAPTER 2:
COMPILER CODE GENERATION

INTRODUCTION

The Mac C Compilertranslatesprograms written in C into 68000assembly language.
Consequently, the characteristic features of C programs--data types, operators, control
flow statements, functions, and storage classes--are mapped into the set of 68000
operators and operands. Whendebugging a C program, it is usuallynecessary to look
at selectedsections of the assembly codethat were produced. since mostdebugging
facilities operate at the assembly language level. This chapterthereforeexplains
variouscode strategies of the MacC Compiler.

REPRESENTATION OF DATA TYPES

The fundamental data types in C are characters, signedand unsigned integersof
several lengths, and floating-point numbers (available in MacC 2.0). Fromthese basic
data types morecomplexcollections can be created: arraysof objects (eachhaving the
samedata type), and structures (called records in some languages) of objectswith
arbitrary types.

The mapping provided by Mac C between C datatypes and 68000data types is as
shownin Table 2-1.

char

unsigned char

ahort Int

~R2: OOMPLEROOOEGENERAnDN
2-2

Table 2·1. Data Types

All 8-bItvaluedefinedby the ASCIIcharader let,
or an S,..,1t signed integerInthe range ·128 to 127.

7 0
lSI I

(NOTE: S • SignBit)

AnSobit unsigned integerin the range0 10255.

7 0
I I

A 16-bitsignedintegerIn the range-32768to +32787.

15
IS!

Q

-I

unalgned ahort Int A 16-bitunsigned integerIn the range0 to +85538.

15 Q

Int A 32-bit signedintegerin the range-2,147.483,848 to
+2.147.483.647.

31
IS!

Q

unalgned Int A 32-bitunsigned integerInthe range0 to +4.294.96lt2S5.

31 o

long Int A 32-bit sign8dInteger in the range·2,147.483.648 to
+2,147,483,647.

31
lSI

o

unelgned long Int A 32,..,it unsigned Integer in the range 0 to +4.294,967,295.

31 Q

CHAPTER 2: COUPLER CODE GENERATION

2-3

Table 2·1. Data Types, continued

comp A 64-bitsigned integer(available with floatingpointonly).

63
lSI

Q

float

double float

extended float

pointer

A32-bit realnumberin the IEEEFloating Pointformat.

3130 23 22 0
ISl "ooDant! sionKjcaodl

A 64-bitrealnumberin the IEEEFloating Pointformat.

6362 5251 0
I $I exponent I sjgnKjcandl

An SO-bit realnumberin the IEEERoaling Pointformat.

7978 8463 Q

I $I exponent I sjgnKjcandl

An unsigned 32-bit intsgerin the range0 to 4.294.967.295

31

AU variables except char will be word-aligned in memory.

REPRESENTATION OF OPERATORS

The C operatorset was given in Table 1-1 in Chapter1. Expressions involving these
operators map efficiently onto the set of operators provided by the 68000.

Table2-2 showsthe same operators as Table 1-1. but shown alongwith each operator
is the corresponding 68000operator that is produced by the compiler.

CHAPTER 2: COUPLER COOE GENERAroN

2·-4

Table 2-2. C Operator. and 88000 Operators

Arithmetic BinaryOperatora
+ ADD·

SUB·
MULS·,MUlU-, LSl

I OIVS·. D1VU·, lSR. ASR
% DrvS·, DlVU·,AND

Relational Binary Operatora
> Theseoperator. all havethe
>- samegeneral formal:
< CMPexpression
<- conditional branch

I. wherebaIDsm •
&& BNE.BEQ, BLE, BGE,
II BGT. BLT.

BHI.BHS.
BlO.BLS

BItwI_ Binary Operata,.
& AND
I OR
A EOR
« LSl
» LSR
* Also map into8ubroutine calls

Unary Operator.
• (An)
& LEA. PEA

NEG
NOT

++ ADOO,ADD
SUBO,SUB

Aaalgnment Operatora
MOVE

.... ADD
- SUB*. MULS, MULU, LSL
/. DIVS. DIVO. lSR
%- DIVS, DIVU. AND
<<- LSl
>>- LSR
&. AND
A. EOR
I. OR

REPRESENTATION OF CONTROL FLOW STATEMENTS

C includesthree categories of instructionsfor alteringthe flowof control within the
program: repetitionstatements.conditional branchstatements.and unconditional
branch statements. The three statementsto control repetition are the tor statement, the
while statement,and the do-while statement. The conditionalstatementsare If-else
and switch. An unconditionalbranch is accomplished by using the goto, break, and
continue statements.

The general code generationstrategy for the repetition and conditional branch
statements is a test followed by a conditional jump. The differences in the statements
result in different positions for the test and different targets for the jump. Table 2-3 shows
the skeleton code producedby the control flow statements.

Control Flow Statement

if (expression)
statement1 ;

else
statement2;

while (expression)
statement;

do
statement

while
(expression);

for (expresslon1; expreaeion2;
expl'888lon3)
statement;

goto (label);

break;

continue;

CHAPTER 2: COMPLER CODE GENERAOON

2-5

Table 2-3. Control Flow Statements

Sk.letonCode

CMPexpr888ion
BranchIf falseto LABEL1
ltatement1
BRALABEL2

LABEL1: statement2
LABEL2: (nextstatement)

LABEL1: CMPexpreaaion
Branch if false to LABEL2
statement
BRALABEL1

LABEL2: (nextstatement)

LABEl1: statement
CMPexpression
Branch II trueto LABEl1
(nextstatement)

expression1
LABEl1: CMPexpresaion2

Branchif false LABEL2
statement
expreuion3
Branch to LABEl1

lABEl2:

BRAlABEL

BRALABEL

BRA LABEL

CHAPTER 2: OOMPLER CODE GENERA110N

2·8

Table 2-3. Control Flow Statements (cont'd)

Control Flow Statement

awitch(value)

casev1:
ltatement

casev2:
8'taIement
break;

etc.
default:

statement

Skeleton Cod.

MOVE value,DO
BRALABEl1

LABEl2:
stllement

LABELS:
statement
BRAEXITLABEL

DEFAULnABEL:
statement
BRAEXm.A8El

LABEL1:
CMPM,DO

BEQLABEL1
CMPIY2.DO

BEQLABEL.2
etc.
BRA DEFAUllLABEl

EXIn..ABEL.:

OR(If vafu. are close together, the C&I88 are lOtted and the code Is)
LABEL1:

SUBQ 'Iowerbound,DO
BLO DEFAULnASEL
BEQLABELn1

SU8QJdelta1.00
BEQLABELn2

SUBOJdelta2.DO
BEQLABEln3

BRA OEFAUlTlABEL
EXmABEl:

OR(If the,. are Iota of values doeetogether, thecasesarelOfted and the codeis)
LABEL1:

suea ftMerbound,DO
BLO DEFAULnABEL

CUP Iupperbound,DO
BHI DEFAULll..ABEL •

lSl'1.DO
MOVE LABEU(DO).DO
BRA LABELt(OO)

LABEU:
OC.W LABELn1-LABElt
DC.W LABELn2·LABEU
DC.W LABEI.,n3.LABEU
etc.

EXITLABEL:

CHAPTER 2: COMPILER CODE GENERAOON

2-7

REPRESENTATION OF FUNCTIONS

This section describesthe Mac C Compiler's implementation of function calls. In the
followingdiscussion. the term parameter refersto the variable (enclosed in parentheses)
named in a functiondefinition; the term argumentdenotes an expression that is part of a
function call.

Calling Conventions

Whenever a function is used in a C source program,as, for example,

func (at b, c, ... , h, l, j);

the Compiler produces a standardsequence of assembly language instructions, called
the functioncalling sequence.

The Mac C function call mechanism has been designedto be fast and easily understood
by assembly language routines, and to allow assembly language routinesto be called
without incurring overhead. Registerarguments are saved on the stack by the prologue
code in the function being called. Assembly languageroutines, of course, normallydo
not save the arguments, but simply leave them in registers.

An alternateparameter passingstrategy is employed when a function parameter list
contains one or more parameters which is either a floating point value, or a structure
value whose size is greater than four bytes. In these cases (and when a function is
specifiedas having a variable numberof parameters), the parametersare pushed onto
the stack before the function call in reverseorder of their appearance in the argument
list. Pleasesee AppendixA for details on declaring functionswith a variable numberof
parameters.

Figure 2-1 illustratesthe normal C run-time stack structureduring the calling sequence.
Figure 2·1a shows the stack before a functioncan is made. RegisterA7, the stack
pointer (SP), points to the topmost elementon the stack. RegisterAS is the local frame
pointer. It always pointsto the reference point of the stack frame for the currently
executing function. The stack frame is the area of the stack accessibleduring the called
function'sexecution. Figure2-2 shows the equivalentstack structure for functions using
the alternatecalling sequence.

Co)

.. .
Loo.ls

I!~ .Ito. ='
RHervH
Reser"ed
01. A6
Return

•
t
j

Aft... Pr......

CHAPTER2: COMPLER CODE GENERATIONI

2- 8 I

I

I

I

A' ...

A6 ...

.tI' i

Return

•
t
j

.7.• 7.. ..-__---1

Figure 2-1. Run-nme Stack Format (Normal)

;; .oas •

Resw"••
R.sery"
01. A6
Ret.,..

a

•
0

•

.A6 ...

< ~

I R.tar..
a
It
0

•e
f
9
.~A6"

A6+

A ,-__--1

Co)

After Pr......

Figure 2-2. Run-nme Stack Format (Altemate)

~R2: OOMPLERCOOEGENERAnDN
2-9

The normal function callingsequence begins by pushing the surplus arguments (h. i. j)
from rightto left. ontothe stack. andthen loading the first seven arguments (a, b, c•... ,
g) in registers 00-06. The attemate calling sequence pushes aU arguments onto the
stack at this point,and leaves the register contents undefined. Next,a JSR instruction
pushes the return address ontothe stackandputs the address of the calledfunction in
the Program Counter. Figure 2-1 b illustrates the stackat this stage of the calling
sequence. Notethat A7 now points to the last item pushed onto the stack.

Because the 68000stackgrowstoward lowermemory addresses. the lastargument to
be pushedon the stack will havethe lowest address.

The actual function beingcalled is compiled into a standard form. At the beginning 01 the
compiled code for eachfunction is the prologue.

LINKA6.'-n

MOVEM.lDO/D1/.../A6.-m(AS)

; Allocate spacefor parameters
; and/or locals
; Moveparameters ontostack

The 68000LINK instruction pushes A6 ontothe stack, loadsthe valueof A7 intoAS and
then decrements A7 by an amount specified in the instruction in orderto create spacefor
the caned function's local variables (referto Figure 2-1c).

Whenthe function reaches a return statement or when control reaches the end of the
function, the compilerproduces a function epilogue. Theseinstructions restore the stack
pointerand framepointerto the values they had before the LINKinstruction (Figure
2..1b). and return controlto the cafler. The epilogue code is as follows:

UNlKA6
RTS

A function that eithercontainsonly inlineassembly statements, or doesnot produce any
executable code does not have a standard prologue or epilogue. It is simply endedby:

RTS

return statements withina function body produce the standard epilogue after the values
to be returned are loadedinto the return register. Only the first return statement will
produce an epilogue. Other returns branch to the epilogue emitted by the first.

Functions returning floating pointand structure values (where the size of the structure IS
largerthan four bytes) are handled slightly differently. Before the arguments are pushed
onto the stack for the function call, the address in which to store the resultof the function
is pushed onto the stack. The return statment in the function then uses this location to
storethe resultof the function before returning with the normal epilogue,

~R2:00MPLEROODEGENERAnoN

2-10

Argument Passing

In C, all arguments are passed by value. i.e.• the valueof an argument. ratherthan its
address, is passedto the function. When "call by reference" is required. the ampersand
("&") operatormaybe used with the variable nameto pass its address.

Passed arguments of types char and short are expanded to type Int and arguments of
types float, double, and comp are expanded to type extended. Structures which are
lessthan S bytesin lengthare passed as register values. and largeronesare passed on
the stack. A function nameappearing as an argument is converted to the address of the
named function, and, an array nameis converted to the address of the first elementof the
array.

Register Conventions

Calledassembly language routines mustobserve the following conventions with regard
to registerusage:

1. The contents of registers AS. AS. and A7 must be preserved (saved and then
restored). If a function is to be called fromthe Macintosh ROM (as in the case of a
controldefinition or actionprocedure). registers 03-07 and A2.-A7 mustbe
preserved.

2. The called routine mayaddressonlythose portions of the stackthat are at lower
addreses than the currentstack pointervalue at the time the function is entered.

3. Register DO contains the resultof the function call ifthe resutt is a value; AO
containsthe result if it is a pointer.

REPRESENTATION OF STORAGECLASSES

The C concept of the storage classactuallyinvolves two differentbut relatednotions: the
scopeof a variable I and wherethat variable is stored.

Variables can havetwo possible scopes:

• Available to an functions in the program (global scope).

• Available only withinthe defining function (localscope).

CHAPTER 2: COMPILER CODE GENERATION

2- 11

There are three places wherevariables can be stored:

In a register (up to 7 registervariables are allowedin MacC).

• On the stack. allocated dynamically (automatic storage).

• In the Global Data Segment produced by the compiler.

Combining scope and storage location yields four differentstorage classes for variables:

• Register variables may be storedin registers. Their scope is local.

• Automatic variables are storedon the stack frame. Their scope is
local.

• External variables are stored in the Global Data Segment. Their scope
is global.

• Staticvariables are stored in the GlobalDataSegment. Their scope is
local to the sourcefile (external statics) orprocedure (internal
statics) in whichthey are declared.

STORAGEOF VARIABLES

The MacC strategy for aIJocating storage for variables is fairly simple:

• For externals, storage is allocated in the GlobalData Segment.

• For staticvariables, storage is allocated exactlyas with externals.
but these variables are not declared externalto the linker.

• For automatic variables, storage is allocated on the stack frame when
the function is called. Storage is reclaimed at the return.

VARIABLE ADDRESSING

AU localdata is allocated on the stack,and is referenced by an addressof the form:

~n(A6)

CHAPTER 2: COMPILER CODE GENERATION

2-12

where"n" (a decimalnumber) represents the offsetof the data fromthe stack base, AB.

Globaldata Is allocated In the GlobalDataSegment which is normally pointed to by AS,
and is referenced as:

name(A5)

or as:

name+n{A5)

where name is the C identifierfor the data reference. and +n is the optional offset from
the identifier(if any). For example. the lines:

int l, iarray[10];

i. iarray[5];

wouldproduce:

MOVE.l iarray+20(A5),i(AS)

MacC allowsthe specification of a register otherthan ASas the globaldata base
register to accommodate specialapplications such as desk accessories (when usedwith
the ConsulairDeskAccessory Maker) which maynot usestorage relative to AS. See
Chapter1: The MacC Compiler Options.

STORAGE OF CONSTANTS

Constants, otherthan those usedin initializing globalvariables, are
normally stored in the codesegment. They are storedeitheras explicit
operands of 68000instructions (e.g., MOVea '1 ,DO), or as data afterthe final
executable instrudion produced from a sourcefile. String and floating pointconstants
are of the latter form. This meansthat if the address of a stringconstant is savedand
then the segment whichcontains the string is unloaded, the addresswill no longerbe
that of the desiredstring. Normally, this is not a problem because a segment which is in
the caning chainto anothersegmentmaynot be relocated.

~R2:00MPLERCODEGENERAnoN

2-13

A NOTE ON GLOBAL INITIALIZATION

String constants usedto initialize globalpointervariables are storedin segment 1. The
warning aboutstringconstants in the section, STORAGE OF CONSTANTS, applies to
theseconstants. If segment 1, which contains the string, is unloaded. the address stored
in the global variable will no longerpoint to the string. There is a featurelbug in the
storage of globalstringconstants. If two globalvariables are initialized as pointers to the
same literalstring, the Assembler aUocates a single copy of the string in codesegment 1,
and bothglobalvariables are set to pointto that string. This is doneas a spacesaving
measure, but it has a potentially unpleasant side effectsincechanges to the string will be
reflected through bothpointers.

CHAPTER 3:
THE MAC C RUN-TIME ENVIRONMENT

INTRODUCTION

The term run-time environment refers to the hardware and softwareconfiguration of the
target machine in whicha program will actually execute. For the MacC Compiler, the
run-time environment is the Macintosh, Macintosh XL or Lisawith MacWorks, plus its ROM
software, and one of the Mac C run-time libraries.

Thischapter provides information aboutthe major run-time environment features.
including the MacC-to-Macintosh run-time interface (Macintosh ToolboxTraps), the MacC
run-time libraries. and a way to handlerun-time errorswith signals.

THE MACINTOSH RUN-TIME INTERFACE

The MacC-to- Macintosh run-time intenace is definedby a group of ".htt (included header)
files and the Mac C libraryfunctions and globalvariables. The ".h" files define Mac C and
Macintosh systemvalues and structures. These. along with libraryfunctions, are
discussed in the next section (onthe run-time library) and in the sectionon MacC Traps.

THE MAC C RUN..nME LIBRARIES

The Mac C run-time Ubraries are a conection of functions that provide run-time supportfor
input/output, initialization,' and certain mathematical calculations not provided by the
68000 instruction set. All libraryfunctions assume that the integersize is 32 bits (the
standarddefault in Mac C).

MacC programs must be linked (at Link time) with a MacC run-time library. Sincethe
linkerused on the Macintosh does not allowthe selective linking of routines from a library,
the programmer mustselecta librarycontaining the functions his program requires from
the available Mac C runtime libraries.

The libraries shippedwith MacCare:

The minimum Ubrary
The "standard" C library
The Mac C Toolkit
The "standerd" C libraryand the MacC Toolkit

CHAPTER 3: THE MAC CRUN-TIME ENVIRONMENT

3- 2

All of the MacC libraries usethe label start as the normal entrypoint. Linkcontrol filesfor
applications usingthe normal libraries should specify start as the starting labelfor the
application (just include the Une "Istart" at the beginning of the linkcontrol file).

The MacC Toolkit includes the sources to all libraries. which allows the programmer to
selectively build his own libraries by removing or modifying routines fromthe standard
ones. The only requirement is that the global initialization codebe executed when the
application is started, andthe arithmetic library routines be provided for programs
requiring them. Thesefunctions are normally done in the minimum library file, MacCUb
(Source file MacCUb.ASM).

Usethis as a guidefor selecting the library youwantto use:

• If you are writing a pureMacintosh application or a deskacCessory
(requires the Consulair DeskAccessory Maker) usethe minimum
library (files: MacCUb. Roatlibfor MacC 2.0). This allows full access to the
Macintosh ROM routines.

• If you are using the functions provided in the "standard" C library, e.g.
printf,scant,fopen, fclose. strlen, etc.,usethe "standarer C library
(files:StdUb, StdFilelO, StdlOPrim, Floatlib, Floatconv for MacC 2.0).

• If you needthe increased functionality of the MacC Toolkit, e.g.
asynchronous I/O,serialport 110, string routines, usethe MacC
Toolkit(seechapter4).

• If you need the functionality of both the "standarer C library andthe
MacC Toolkit. then usethemboth (usethe file StdLib in placeof
MacCLib with the MacC Toolkit. Seechapter 4).

To usethe routines in the "Standard" C Ubrary, the stdlo.h header file mustbe included at
the start of a source file. The header files required for MacC Toolkit routines aredescribed
in Chapter 4.

All programs mustcontain asingle function named main, which is the starting location for
the program. Before calling main, MacC initilization code initializes the Macintosh
displayby calling _lnltGraf t _lnltFonts, and_lnIIWlndows. MacC storesthe address
of the Quickdraw globa'sin an external globalnamed QDwhich is defined in MacCLib or
StdLib and maybe usedby yourprogram.

CHAPTER 3: THEMACCRUN-TIME ENVIRONMENT

3-3

Referencing Functions

The first use of a function in a source file determines its type. Anfunctions are of type Int
unless otherwise specified by a function definition or an external function declaration (for
functions defined in other source files or a library). An external declaration is therefore
required for any function which is referencedbefore its definition in a source file (or is
defined in another source file or library) if its type is other than Int. This Is critlcslly
Important when using functions returning pointer values, since they return
their result In register AO.. If they are not declared as a function returning a
pointer, the result will be presumed 10be In register DO, even If the function
callis cast to be of the proper type.

The "standard" C Library

The "standard" C library contains a set of functions which are commonly implemented'to
support 1/0, memory,string. and character operations in C. Since many of the functions
use the display for teletype-likecharacter input and output. Mac C implements a teletype
simulation window for the standard library. This window is created by the initialization
code before the function main is called. It is possible to suppress the creation of the
teletype simulation window by specifiyingaltstart instead of start as the starting label in
the link control file. Of course. you may not use any of the functions requiringthe teletype
simulation window if it does not exist. and unpredictablethings will happen if you do. The
WlndowPtr for the teletype simulation window is kept in the global variable console.
You may use this variable to change the size of it. show or hide it. destroy it, or move it.
Call the global routineSetTTY wheneveryou have changed its size. or when you wish to
activate it. Other windows may be madethe current teletyPesimulation window by using
setnY. You can have multiple teletype simulation windows. but only one may be
currently active. and everythingwritten to stdout will go there (unless stdout has been
changed by your program).

When using the ·standard" C library (inclUding printf), you must include the header file
stdlo.h at the start of your source file, and you may not use the -I (16 bit integers) compiler
option. stdlo.h contains the external declarationsrequired for functions in the "standard"
C library. and definitions for the folowingvalues:

• ERROR

• EOF

• NULL

• MAXLINE

CHAPTERS: nE MAC 0 RUN·n.E ENVIRON~

3·.

ThetypeFILE is alsodefined in sldla.h. Filesshould be typed as FILE *. Internally, the
MacC library identifies themwithshortvalues. There Is nodifference at the library level
between filesopened by the fopen function andthose opened withthe creator open
functions. The FILE • definition is included as an aid to porting programs fromother
environments. Do notassume anything about the values of FILE reference numbers. For
example. using 0 and 1 for console inputandoutput (which works for many UNIXsystems)
will notworkin MacC: Both console inputandoutput are O. Using std'n and8tdout.
however, willwork.

Testllb

The MacC Auxilliary diskcontains a program in the"Demo Folde"" named "Testlib." This
source codemayserve as a useful reference since it contains examples of howthe library
routines arecalled. A listing of the program can be found in Appendix F.

"Testlib" calls and nominally teststhe library functions in various ways. When it asksifyou
want to test a function press, "Return" for yes, "." to return to FINDER. andany other keyfor
no. If you havetrouble withone of the library calls. lookat "Testlib.c· to see howit is used
there.

Testllb.Job and TestUb.L1nk maybe usedas prototypical "job"and"link" files.
respectively: TheTestllb.Job file. when runfrom the Exec. willcompile. fink. and run
Testllb.

Standard C Library Routines: A Summary

The following pagesoffera summary of the "standard" C run-time library routines in which
the name and a briefdescription of eachis given. The routines have beencategorized
into those which operate oncharacters andstrings. standard VOl memory allocation, anda
miscellaneous group. Consult The C Programming Languageby Brian W. Kemighan
and Dennis M. Ritchie or C: A ReferenceManual by Samuel P Harbison andGuyL
Steele. Jr. for moreinformation.

Charact. and String Menlputat'on Routine.

For the routines listedbelow. the argumenl1ypes are:

chale;
char -a. ·s1, ·82;
Intn;
typedefatruetP_Str (char count; chat contents(25S);)P_Str;
Pc-str .p;

RoutIne

char Isupper(c)

char Islower(c)

char isalpha(c)

char isdigit{c)

char isspace(c)

char10upperCc)

char tolower(c)

char *index(s.c) [or strehr]

int Index(8. c) [or strpos]

char *rindeX(8. c) [or strrchr]

int RindexCs, c) [or strrposl

char *strsave(s)

char *strcat(s1. &2)

char *CtoPstrCs)

char ·strncat(a1,s2, n)

int strcmp(s1. a2)

intatrncmp(s1, 12, n)

char *strcpy(11, 82)

char *strncpy(s1, 82. n)

int strlen(s)

int atoi(s)

long atol(s)

extended atof{s)

CHAPTER 3: THE MAC C RUN·TlME ENVIRONMENT

3· 5

Function

Return non-zero if -8- <- C <- -Z-.

Return non-zero if "0"<- C <- '"9*.

Return non-zero if c - SPACE, TAB. NL (LF),CR.or FF.

Returneor uppercasevalueof e If -a* <- c <- "z*,

Return e or lowercasevalueof c if *A-<- c <- "T.

Return0 or pointerto first occurrenceof c in 8.

Return-1or Indexof first occurrenceof c in a.

Return0 or pointerto last occurrence of c in s.

Return·1 or index01 last occurrence of e in s.

Returnsaddress of a copy of S (ules malloc(».

Appends &2onto 81.

Convertss to a Pascal string (P_Str).
this changea a, 80 that It 'e no longer. C string.
Returnss aa Its result.

Cony8f18 p to a C string (char *).
Thischang•• p, eo that It Ie no longera Paacalatrlng.
Returnap as itsresult.

Appends up to n boItes of s2 onto 81.

Compares 81 to 82. Returns0 if equal,-1 if 81 < &2. 1 ih1 » 82.

Likestrcmp,but comparesup to n characters.

Copy str2 to str1. (81 must be largeenough to hold 82.)

Copiesn charactersof &2 to 81. If the ktngthof s2 >- n, then 81
willnot be null terminated. If the lengthof s2< n, then 81 willbe
null padded.

Retums lengthof s.

Returnsnumericconversion of numberIns, radix - 10.

Similarto atei but returnsa longvalue.

Similarto atoi but returnsan extendedvalue.

CHAPTER 3: ntE MAC CRUN·11ME ENVIRONMENT

3· 6

Standard 110 Routln••

Threevariablea definethe standard Inputandoutputanderrorfilel (normally keyboard and tty):

FILE"ltdin;
FILE-"dout;
FILE-stderr;

Theaecan be set to any properly obtained FILE*variable or the resultflOm open or creat.

Thefollowingroutinesusethe argument types:
charc, *a;
char "buffer "name.'Iformat, *dir;
Int n;
short mode,aize,w;
longoffset;
RLE "file;

Routine

Intprintf(format [. arg]...)

int sprlntf(•• format[. arg]...)

int fprlntf(flle. format[. BIg]...)

int acanf(format I.pointer]...)

Intsacanf(s,format(. pointer]...)

Int facanf(file. format[. pointer]...)

int getc(file)

int fgetc(f1le)

ahortgetw(file)

char *gets (a)

Function

Formatted output. Formats andprintsatdout. The find argument Is
a formatspecifier. Returns EOFon error. (SeeKernighan & Ritchie
or Harbison &Steelefor formatdetails.)

Formatted output. Correaponds to printf, but formatsto string"s·
ratherthan standard output. Formatstring Is the secondargument.
Returns EOFon error. (SeeSeeKernighan & Ritchieor Harbison &
Steelefor formatdetails.)

For formatted file 110. otherwise identicalto printfexceptthat
output is writtento "file". Formatstring is the .scond argument.
(SeeKernighan &Ritchieor H8Ibi8on & Steelefor formatdetaits.)

Formatted consoleinput. Readscharacters from Itdio. interprets
them aa:ording to a format. storesresultsin its argumente. Takesa
wing .. a formatspecifier. and set of pointerarguments Indica1ing
whereformatted inputshouldbe stored.(SeeKernighan & Ritchie
or Harb1aon & Steelefor formatdetail••)

Formatted input. Correaponde to ecanfexceptit readsfrom a string
ratherthan atdie.

For formatted file 110, otherwise Identical to scant, exceptthat
II readsfromfile tatherthan Itdio.

Returna nextchar fromfile.or EOFif endof file.
Doe8 NOTecho characters to the TIY windowwhenInputIsfromthe
keyboard.

Returnsnextchar fromfile, or EOFif endof file.

Return. nextword (16bits)from file, ignores endof file.

Readsa stringterminated by RETURN from stdin.

CHAPTER 3: THEMACC RUN·T1ME ENVIRONMENT

3·7

RoutIne Function

char ·fgets (s, count.file) Readup to countbytesfromfile, terminated by '\n", count,or EOF.
Returns0 if EOFat startof react

longgetl(lile)

Intgetchar()

Returnsnext tong (32 bits) fromfile, ignoresendof file.

Returns nextchar from stdin. DoesNOT echocharacters to the TTY
window whenInputis fromthe keyboard.

char putchar(c)

char putc(c,file)

Writeec to stdout, and returns c.

Writesc to file. and returns c.

int ungetc(c. lile} Puts c back onto file (onecharactermaximum).

charfputc(c,file)

int puls(s}

Int fputs(s, file)

short putw(w.file)

longpull(I, file)

Writesatr to aldie.and returnsc.

Writeeatr to file, andreturns8.

Writesc to file, andreturnss.

Writesw to file (highbyte, low byte) and returns w.

WritesI to file (4 bytes,highorderto loworder). and returns1.

intcreat(name. mode) Createa a disk file identified by "name". Sets the size to 0, and
opensit for writing. Modeis Qx400 • read, 0X2000. write,
Ox7. Ox70 - readlwrite.

int open(name, mode) Opensthe file identified by "name"according to mode:
0: read
1: write
2: readlwrite
Retums-1 if file cannotbe opened.

read
write (sets endof file to
position 0)
append (setsendof file to
currentEOF)

a:

Opensthe file identified by "name"according to first character
of string"dir":

r:
w:

FilE 1open(name.dir)

int close(fUe)

int 'close(file)

int fflush(lile)

Flushes buffersandclosesindicatedfile. ReturnsEOFon error.

Sameas close.

Flushesbuffersto disk. Returns EOFon error.

int unlink(name} Deletesfile identified by "name"from disk. returnsEOFon error.

int read(file. buffer, n) Readsup to n bytesfromfile intobuffer.Returns actualnumberof
bytesread (0 meansEOF).

Routine

Int fread(buffer, size, n, file)

int wrlte(fil., buffer, n)

int fwrite (buffer. size, n, file)

longleeek(file.off8•• mode)

Int"eek(file, offaet. mode)

longtell(file)

Int ftell(flle)

Intfeof(file)

MemoryAllocation Routln.

CHAPTER3: nfE MAC CRUN-TIME ENVR>NMENT

3- 8

Fuctlon

Readsup10-n- lema, eadl -size- bytealong, intobuffer.
Returnsnumberof Items,..el.

Likeread.but writesInstead.

Lke fread,but writeainstead.

PoUiona file fIOCOrding to mode:
0: "Offset" byteafrom start of file.
1: -offset" byteafrom currentpoaition.
2: "Offset"bytesfrom end of file.
Relumsresultingpositionas byteoffset fromfile start.

Same88 lseek.

Returnscurrentbytepositionof file 88 offset fromfUe start.

Sameas tell.

Returna non-zero If file is at EOF. Forkeyboard or serialports,
returnsnon-zero unleesthere Iea characterin the inputbuffer.

The memory alkx:ation routines U88 the ~lntoah memory manager. All allocated are...e non-rek:lCatable. andbeginon
evenadd,..... Atea are forced to be en evennumberof bytealong. (SeeIneldeMacintosh for detailson howthe
memorym...r worb.)

The followingroutlnea usetheaedeclarations:
Intslze, n;
char-ptr;
long-.. ·b. value;

Routine

char ·malloc(slze)

ehar·calloc(n.size)

void 'ree(par)

MltIC8llaneouaRoutInes

Routine

voidswap(a,b)

void exlt(varue)

void_8xit(vaIue)

function

Allocatee alzebytesof memory, andretumspointer10first byle.
Relurna 0 on failure.

Allocates n* size bytesof memory, set. itto 0, and returnspointer
to first byte. Retums0 on 'aUure.

Rele.es space allocated by mallocor calloe.

function

Exchangea the contentsof the long locations addressed by a andb.

CIo.es all files and returnsto finder (value is ignored).

Returnsto finder (valueIs ignored).

CHAPTER 3: THE MACC RUN-TIME ENVIRONMENT

3- 9

MAC C TOOLBOX TRAPS

Traps are used by applications on the Macintosh to make calls on the operating system.
Quickdraw, and Toolbox and various manager routines. The code for these routines is
normally stored in the ROM. and all ROM routines are accessed through traps. The
Macintosh traps are defined in the Inside Macintosh manual, which should be
consulted for a full description of trap fundions.

Mac C allows Macintosh traps to be called just like normal C functions. Arguments are
passed in the order indicated by the Pascal procedure definitions in Inside Macintosh.
Mac C automatically emits the proper parameter loading and trap instruction (no "glue"
routines" are used), and subsequently returns the result. In order to determine the proper
argument types for any given trap, you should refer to the Pascal definition of the function
in Inside Macintosh. and the PascaVC argument correspondence defined in Appendix
C of this manual. While Mac C cannot check the actual type of all arguments passed to
Macintosh traps, it does check the number of arguments, and type converts arithmetic
values to the precision required by the trap.

Macintosh trap routines require strings to be in Pascal format (which is a count followed by
text) rather than C format (text terminated by 0). C strings must be changed to Pascal
format before being passed as arguments to Macintosh traps. Two Mac C library functions
facilitate this conversion: CtoPstr and PtoCstr. These perform an in-place conversion of
C-to-Pascal and vice versa. They are declared in stdio.h. and defined in MacCLIb and
StdLlb (the source files containing the adual code are MacCLib.ASM and
StdCLib.ASM).

If stdlo.h is not being included in the source file. PtoCStr and CtoPStr must be declared
in your source file before use:

extern char ·PtoCStr();
extern P_Str eCtoPstrO;

whereP_Str Isdefinedas:
typedef struct {char count; char contents{255];) P_Str;

Care should be taken when using the PtoCstr and CloPStr fundions. They perform an
in-place conversion of the string, and If they ars called with the address ofB
constant string. that constant Is permamently converted. It is a good idea to
follow any call to CloPstr with a call to PtoCStr unless permanent conversion is desired.
Mac C Toolkit users may want to use the routine tempMacStr instead of CtoPstr, since it
does not change the original string.

Mac C does not use "glue" routines to convert strings for those traps which use them (there
are about 20) because it would be inconsistent with Mac C philosophy to have such

CHAPTER 3: THE MAO 0 RUN-T1ME ENVIRONMENT

3·10

hidden routines,and becausethis kind of automaticconversion cannot be perpetuated
uniformlythrough all calls. results. packages. and future routines. A "glue" routinethat
performsstring conversioncan always be written by the programmer.

The low level 110 routinesdescribed in the operatingsystem section of Inside Macintosh
are generally not implemented in favor of their IItparameter Block"equivalents, which are
identicalexcept that they accept a second argument which is a booleangoverning
whether the call is to be executedsynchronously (zero) or asynchronously (non-zero).
The name of a "ParameterBlock" routine is the same as the corresponding trap name
preceded by "PS". e.g. Open becomes PBOpen, close becomesPBClose. and so on.
To use the ParameterBlock routines. the file pbDefs.h must be includedat the start of
your source file.

Inside Macintosh describessome routines which are not traps, but are instead "Pascal
Only" proceduresor "packages." These routines are not supporteddirectly by Mac C. In
manycases. there are direct trap calls which providethe same function. In some cases,
they require"glue" routines. which are easy to write in Mac C (see AppendiX C). Many
such "glue" routinesare included in a collection of Mac C Examplesavailable from
ConsulairCorporation.

MACINTOSH HEADER FILES

Most systemvalues and structuresare defined in the collection of It.h" files. These files are
groupedaccording to the Inside Macintosh divisionsfor traps (e.g., qulckdraw.h,
font.h). Includethe header file for the functionsyou want in your source file and it will in
turn includeany header files which it dependson.

Unlessthe system in use is a Lisa with MacWorks, a Macintosh XL. or a 512 K Macintosh.
not all of the ".h" files will fit in the symbol table space available for a compilation.
Normarry. this is not a problembecauseyou need to inlcudeonly those files actually
required by the source file. If space is a limitation, it is safe to create ".h" files containing
only those definitions requiredby the source program. or you can changethe symboltable
allocation (See The Mac C CompilerOptions.Chapter 1).

Appendix E provides, in alphabetical order by trap name, the correct name and spelling,
argument type, function result, and trap number for each Macintosh trap used by MacC. A
trap that returns a result is indicatedby preceding the trap name with the result's type.

All traps that return pointersare typed as "'char *". The appropriate ".hlt file will cast this
functionto its proper Macintosh type.

Argumenttypes are designated as char (8 bits). short (16 bits), Point (the addressof a
Macintosh Point), or Long. Long arguments are either 32-bit integersor pointers.as

CHAPTER 3: THEMACC RUN-TIME ENVIRONMENT

3 - 11

required by the particulartrap.
SomeMacintosh traps accepttheir arguments in registers insteadof on the stack. The
registervalues DO. AO. and A1 designate the formalargument order for those traps (e.g.•
BlockMove). These arguments are untyped. and the program must determine whether
they are appropriate values. With BlockMove (Inside Macintosh). for example, the first
argument is (AO = sourcePtr), the next is (A1 =destPtr), and the last is (DO =nbytes). A call
would look like this:

short result;
char "source, *dest;
int bytes;
result=BlockMove(source, oest, nbytes);

SIGNALS

MacC implements three routines as an aid to handling run-time srrors in an application or
program: CatchSlgnel, Signal, and LocalSlgnal.

In a recursive language, it is normal to nestprocedure cans many levelsdeep. Since
functions oftenbuild contexts whichmust be destroyed before exiting,global processing of
errorconditions is difficult, if not impossible. Programs are frequently constructed so that
each function returns an error status in orderto solve this problem. This may interfere with
the logic of the program. making it cumbersome and moredifficultto understand.
especially where multiple errorconditions mayexist.

MacC uses the concept of a signal to handle errorsand increase a program's simplicity
and robustness. This concept worksas follows: any procedure can call the function
CatchSlgnal. This function. which takes no arguments, saves the program context,and
returnsa value of O. The calling function maythen call anotherfunction, which maycall
anotherfunction. which calls another, and so on. If any function calls the SIgnal function
(which takes a single non-zero argument), control is immediately transferred to the location
and contextof the last CatchSlgnal call executed in a function belowthe currentone in
the ca11ing sequence. At this point. the program behaves as thoughthe original call on
CetchSlgnal returned the argument passed to Signal as its result.

Here is an example:

PO
{
char-ptr;
char -error;
ptr. malIoc(100);
I (error. CalchSignalO)

(
printf('\rError Reported: %8-, error);
free(ptr);
return;
}

p1(ptr);
}
p1(ptr)

char -1*;
{
p2Q;
}

p2{)
{
• (enon::ondition) SignalrSome Enorj;

}

Whenfunctionp first calls catchSlgnal. a valueof 0 is retumed. and the
'rue- blockof the conditional is not executed. When.and if. p2 calls
Signal, the stack is cut back andcontrol is transferred so that it is just
as ifthe originalcan to CatchSlgnal in function p retumed a pointerto the string "Some
Error". In this case, p prints the error and returns. A moregeneral form of p would not
ratum (whichdestroysthe signal),but wouldpass the signalon downthe stack:

pO
(
char -1*;
char -error;
ptr. malIoc(100);
I (error. C8tctaSlgnaJ())

(
free(ptr);
Signal(enor); r Letthe procedure(s) whichcalled m. know -,
)

p1(pb');
)

CHAPTER 3: THE MAC C RUN·TIME ENVIRONMENT

3- 13

The function LocalSlgnal works just likeSignal, exceptthat it is
"Caught" by an activeCatchSlgnal in the samefunction. Suppose, in the earlier
example, that p2 opened a file which needed closing afteran error. LocalSlgnal could
be usedto address that problem:

p2()
{
FILE "file;
file-NUll;
If (error - CatchSignaJ())

{
if (file1- NULL) fclose(file);
SignaJ{error); r Letthe procedure(s) whichcalledme know·/
}

If (errorcondiUon) LocaISignaJ("Some Error");

There is one restriction in the useof thesefunctions: onlyone CatchSlgnal maybe
active in each instantiation of a function. There may, however, be multiple calls to
CatchSlgnal. The last CatchSlgnal call actually executed in a function at run time is
the activeCatchSlgnal for that function, regardless of its lexical scope.

CHAPTER 4:
THE MAC C TOOLKIT

INTRODUCTION

The MacC Toolkit is a collection of routines and techniques that can form the foundation
for almostany application. These routines can be used in their present form, or modified
for a particularprogram. While the Toolkit sometimes lacksthe strict cohesiveness and
uniformitycharacteristic of a library it contains powerful routines that do morethan provide
the functionstypical of a library. There is a utilitarianrationale to the Toolkit functions.
Routines which don't helpare generally missing, and manyof the routines ignoresome of
the less used features of the Macintosh.

Don'texpect to use all of the Toolkit routines. Manyof the routines will not not be
applicable to your programs, but are documented for the sake of completeness. The
namesof the routines you are most likelyto use are underlined. The Toolkit is meantto be
responsive to the job at hand. Use it by extracting those routines which seem useful.
Change the ones whichdon't suit the needsof a particularapplication. Eliminate those
whichare unnecessary.

The Mac C Toolkit package contains. in addition to the sourceand binary files for the Mac
C Toolkit routines, the sourcefiles for the "standard'" C library,and a program (festUb.c)
for testing the "'standard" C library.

The "standard"C librarysourcefiles are:

StdLib.c (includes: StdCLib.Asm (includes: InilGlobals.Asm, Math.Asm) StdMem.Asm StdStr.Asm)

StdFilelO.c (includes: MacCDefs.h StdFileDefa.h)

StdiOPrim.C (Includes: MacCDefs.h StdFileOefs.h StdITY.Asm StdSIO.Asm StdMac.Asm)

The "standard" C library is actuallybuilt upona variation of the Toolkit. Programs can be
linkedand run using the "standard" C libraryfunctionsby simply StdLlb with the Toolkit
files placeof the library files StdfllelO and StdlOprlm. The file descriptorsused within
the "standard"C libraryare the same as those in the high-fevell/O systemof the ToolKit,
and the "standard"C libraryand high-level 1/0 routines may be employed interchangeably.
For example.the Toolkit routine TKopen, which allowsmultiplebuffers to be set up for a
disk file. can be used insteadof the ·standard"C Libraryfunctionsopen or fopen. Note,
however. that the parameters and their meanings are different. After the file is opened.
prlntf or any other "standard"C Library routine can be used.The file can be closed with
TKclose. close or fclose.

CHAPTER 4: THEMACC TOOLKIT

4- 2

THETOOLKITI/O SYSTEM

MacC ToolkitVO andfile operations aredonethrough a set of common routines that
provide a high-level VO system. This is similarin nature to the 1/0system usedin the
"standardll C Ubrary. In fact. the 1/0system in the ·standard" C library is simply a
paraphrasing of the Toolkit 1/0system.

The file system mustbe initialized by calling Initio onceat the startof a program (unless
Stdllb hasbeenlinked). Filesare assigned smallnumbers when opened, andall 1/0 is
performed using thesenumbers to identify the files. The reserved file number Ito" (defined
as tty in MacCdefs.h) is set up by Initio and represents a bidirectional channel for
reading characters fromthe keyboard andwriting themto the activeteletype simulation
window.

Once a file hasbeenopened, the high-level 1/0 routines work uniformly for all devices
(taking into account device-specific characteristics). This means, for example. that by
changing an opencall. output can be redirected froma file to the teletype simulation
window.

There is a complete set of routines for performing generic file operations in the high-level
1/0system. A low-level VO system implements routines for doing disk file 1/0,serial port
1/0, teletype simulation. etc. OCcasionally, these lew-level routines mustbe accessed
directly. When this is the case care must be exercised or Ihe high-level VO
system may be undermined. Forexample. the high-level VO system maintains a
single character buffer for each open file, which will sometimes contain the nextcharacter
to be read fromthe file. If the high-level VO routines are bypassed, it is possible to missa
character, or to get a character outof sequence the nexttimethe high-level input routine is
called.

MAC C TOOLKITFILES

The MacC ToolkitSource files are:

Header Files

MacCDefs.h
MacClODefs.h
MacCMemDefs.h

Source Code Files

MacCMem.c
MacCFilelO.c
MacClOPrim.c (Donot link if MacCMinlOPrim is linked)

MacCMinlOPrim.c
MacCIO.c
MacClOSupp
MacCUtil.c
MacCStrings.c
MacCStringUtiI.e
MacCUb.Asm
MacCTTYSim.Asm
MacCSIOUb.ASM

MAC C TOOLKIT ROUTINES

CHAPTER 4: THEMACCTOOLKIT

4-3

(Do not link if MacCIOPrim is linked)

(Do not link if StdUb is linked)

The remainder of this chapter is dividedinto sections which functionally groupthe MacC
Toolkit routines intocategories:

High-level 1/0
String Processing
Miscellaneous
Memory Management
TeletypeSimulation
Serial 1/0and Keyboard Input
Disk File Management and VO

Routines are listed alphabetically by namewithin each section. Each Toolkit routine is
described in a standard format: the first linecontains the actualnameof the routine in bold,
an expanded version of this name, andthe name of the sourcefile containing the definition
of the routine enclosed by brackets. The mostcommonly used routines are underlined.
The next linescontainthe C declaration syntaxfor the routine. Finally, the arguments and
function for each routine are brieflydescribed. For moredetailedinformation aboutan
individual routine, refer to the sourcecode.

INDEX TO MAC C TOOLKIT

8ectlona

Diek va 4-33
HighLevel110 4-7
LowLWYWtOO 4·29
Memory Management +21
Mlacellaneous Routines +23
Serial 110 andKeyboard Input 4-31
String Pl'OC888lng 4-18
Teletype Simulation 4-29

Routln••

allocate 4·27
apchr 4-18
apIong 4-18
apnum 4-19
apetr 4-19

BeckupTTY 4-29
bytelength 4-8
Bounda 4-23

call1OError 4-34
cIearbyIes 4-23
ClearTrY +29
ClaneStrfng 4-19
claaeall 4-8
c:ompal'88tr 4-19
CDncatString 4-20
copptring 4·20
CleateTrY +30
crf 4-8

delat.ite 4-34

echo 4·9
eat 4·9
eoflile 4-35
equalstr 4-20
EventReady 4-31

fllelength 4-35
fllbytea 4-24
findchar 4-20
findfile 4-35
FlushKey 4-31
FonLlnfo 4-30

GetFileType 4-37
gelmem 4·27
getmernz 4-27

a-tAPTER 4: THEMAC C100LKfT

4·4

QiAPTER4: THE MAC CTOOLKIT

4- 5

inblock 4~9

inchr 4-9
inEvent 4--32
initallocate 4-28
In/lfileio 4-35
lnilio 4-10
inilmem 4-28
InitSIO 4--32
inKey 4-30
inlong 4-10
inrange 4-24
inSIC 4--32
Irrwd 4-10
10Ca1l 4-37
l08rror 4-10

KeyReady 4-33

LBounds 4-24
LO 4-21
letterdigit 4-24-
length 4-21
IInblock 4·11
Line_Height 4-30
L1nrange 4-24
LMAX 4-25
lMIN 4-25
Iookch 4-11
loutblock 4~11

loutdec 4-11
Ioutnum 4-12

MACbytelo 4-38
MACgeteof 4-38
MAC8eteof 4-38
MacString 4-21
MAX 4-25
MIN 4-25
MemAvail 4-28
movebytea 4-25

OSdose 4-38
OScreate 4-39
OSdelete 4-39
OSfind 4-39
OSflush 4-39
OSopen 4-40
OSreset 4-40
outblock 4-12
outch 4-12
outdec 4-12
outh8xbyte 4-13
outhexlong 4-13
outhexword 4-13
outlong 4-13
outnum 4-14

outatr
0UIWd

readbytepoe
readchar
readline
r8l8tarea
retrnem

aetbytepoa
88leof
aetfi1epoaJtion
SetF1IeSlgnature
SetFUeType
aetlOError
eetIowercure
SetTTY
eetuppercue
SIOReady
atrtolong
atrtonum
Swaplong

tempOStr
tempUacStr
TKdoae
TKopen
truncateflle
TTYctw
TTYPort

UBounde
uc
1Iinchr
UUAX
UMIN
U..rWorda

waft
WIIecher

4-14
4-14

4-14
4-35
4-15
4-28
4-29

4-15
4-15
4-36
4-40
4-40
4-38
4-21
4-30
.4-21
4-33
4-22
4-22
4-28

4-22
.4-22
4-18
4-18
4-38
4-31
4-31

4-28
4-23
.4-17
4-28
4-28
4....1

4-28
4-37

numchannels:

CHAPTER 4: TI-lE MACCTOOLKIT

4· 7

THE HIGH-LEVELI/O SYSTEM

The source files for the high-level I/Osystemare MacCMinlOPrlm.c, MacCIOPrlm.c
and MacCFlIelo.c. The headerfile MacCDefs.h contains the following global
definitionsused in this section:

The maximum numberof files that can be open at one
time. If this is changed, recompile MacCIOPrlm.c
andlor MacCMinlOPrim. Use rnaxflles in
MacCIOdefs.h to changethe maximum numberof open
disk files (and recompile MacCIO.c).

Devicetypes (passed to TKopen):

serlaldevlce: Serial I/O Port A or B.

dlskdevlce: A disk file.

110 Modes

The I/O modespassed to TKopen are:

read= 1
write = 2
read/write = 3

read, write, and read/write are not definedin MacCDefs.h because the names are
commonly used in programs. They may be definedby the programmer. To perform
normal readsand writes from from a file it mustbe openedaccording to the appropriate
mode. The resource fork of a fUe maybe readas normaldata (bypassing the Resource
Manager) by opening the file and addingthe value resource_fork (defined in
MacCDefs.h) to the mode in the call to TKopen.

110 Devices

Disk files are always identifiedby their names. A volume name must be includedwhen a
file resides on other than the currentdefaultvolume. Constants are definedfor other
devices:

sloAout:

sloAln:

sloBout:

sloBln:

SerialPort A output

Serial PortA input

SerialPort Boutput

Serial Port B input

aiAPTER 4: notE MAC 0 TCXX.KIT

4·8

The High Level 110 Routines

The files MacCIOprlm.c and MacCMinlOprlm.c contain mostof the high-level 110
routines. Thesetwo files are identical. exceptthat MacCMinlOprlm.c hasteletypeand
serial I/O routines stripped out to save space. A program maybe loaded with one or the
other, but not both. MacCFllelO.c contains high-level routines for file positioning and
block 110.

bytel.ngth - byte length

longbytelength(file)
short file;

This routine returns the numberof bytesin the file.

cloae8n - closeaU flies [MacCloPrim.c]

void closeal1()

This routine closesall openflies.

.ctlI - carriage return/line feed

voidcrlf(file)

[MaceFilelo.c]

[MacIOPrim.c]

This routine writesa carriage return (and line feed if necessary). to starta new lineon
the designated file.

echo .. echo

char echo(fil9, c)
short file;
char c:

[MacIOPrim.c]

aiAP1ER 4: THE MAC C TOOlKIT

4~ 9

This routine writes the character to the output file as a guaranteed printable
character. Characters are masked to seven bits. Characters in the range 0 to Ox1 F
have "@" added to their value, and are printed preceded by the character """. The
value 1, for example, prints as ""Aft.

Am . end of file

char eof(file)
short file;

[MacIOPrim.c]

For disk files, eof returns true if the file is positioned at its end. For serial 110 files and
tty, eot returns true if there are no characters waiting. Non-blocking input can be
implemented by the following:

if (Ieof(input)) r then there is a character waiting .,
c = inchr(input);

Inblock - input bytes [MacFileIO.c]

void inblock(file, buffer, count)
short file, count;
char ·buffer;

This routine reads count bytes from the file to the buffer, where count is a short
integer.

~ • input character [MacCIOPrim.c]

char inchr(file)
short file;

This routine reads the next character from the input and advances the file position
one byte. If the file is tty and the global variable echoflag (type char) is true.the
charcter is echoed to the active teletype window. Note the comments under lookch
about end of file.

.lnI.tIA - initialize VO [MacCIOPrim.c]

aiAPTER 4: THE MACC TOOU<rr

4· 10

void initio(windowname)
char ·windowname;

This routine shouldbe calledonceat the beginning of a program. It mustbe called
after Inllmem. If wlndowname is non-zero, it is assumed to be the address of the
title for a teletype window. Thiscauses the teletype simulation package to be
initialized, and a teletype window to beopened with the designated title. The
WindowPtr for the teletype window is stored in the global pointervariable console.

Inlong - input long word

longinlong(file)
short file;

[MacCIOPrim.c]

This routine reads the next long wordfromthe inputandadvances the file position
four bytes. Byte alignment of the'file is insignificant. Notethe comments under
lookch aboutendof file.

J.nwd - inputword

shortinwd(file)
short file;

[MacCIOPrim.c]

This routine readsthe nextwordfrom the inputandadvances the file position two
bytes. Bytealignment of the file is insignificant. Notethe comments underlookch
aboutendof file.

loerror - 1/0error

short ioerror(file)
short file;

[MacCIOPrim.c]

Forserialdevices, this routine returns the errorstatusof the port (thecumulative error
word, byte 28 of the parameter block). Briefly, the errorwarnings are:

88
812
813
814

(Softoverrun) Bufferoverflow
Parity error
Hardoverrun
Framing error

[MacCFileIO.c]

CHAPTER 4: THEMACCTOOLKIT

4- 11

If this procedure is declared as char * t it returns the address of the 1/0 Parameter
Blockfromthe statuscalf. (Seethe section on the Serial Driverin the Inside
Macintosh manual for more information.)

Unblock -long inputblock

void linblock(file. buffer, count)
short file;
char *buffer;
longcount;

This routine reads count bytesfromthe file to the buffer. wherecount is a long
integer.

lookch - look at character

char lookch(file)
short file;

[MacIOPrim.c]

This routine reads the nextcharacter from the input. but does not flushit. Successive
cans to lookch always return the samecharcter until it is readby an input routine, or
the file position is changed. If a file is at
the end of file. the character OxFF is returned. This is not the sameas the standard
C/UNIXconvention of returning an, Int value from getc. which ls -t at end of file. Use
the separate function eot to determine if a file is at its end.

loutblock - longoutputblock

void loutblock(file. buffer, count)
short file;
char *buffer;
long count;

[MacCFileIO.c]

This routine writescount characters fromthe bufferto file. wherecount is a long.

loutdec - output longdecimal

void loutdec(file. value)
short file;
longvalue;

[MacCIOPrim.c]

This routine formats value into a signed decimal number. and writesit to the
designated file.

loutnum - outputnumber

void Ioutnum(file, value, radix)
short file;
longvalue;
short radix;

[MacCIOPrim.c]

This routine formats value intoa number in baseradix. and writesit to the
designated file. If radix < 0. thenvalue is fonnatted as a signed number where the
radix = Abs(radix).

QutblQck - outputblock [MacCFileIO.c]

void outblock(file. buffer, count)
short file;
char ·buffer;
shortcount;

This routine writescount number of bytes fromthe bufferto the file. where count is a
short.

ALI1Gb. - outputcharacter

charoutch(fils. value)
short file;
charvalue;

[MacCIOPrim.c]

This routine writesvalue to the output fUe as a singlebinarybyte. It returns value
as its result. Notethat the arguments are in the reverse orderof thosein pute. Usea
macro to switchthem if necessary.

outdec • outputdecimal [MacCIOPrim.c]

void outdec(flle. value)
short file. varue;

This routine formats value into a signed decimal number. and writes it to the
designated file.

outhexbyte • output hex byte

void outhexbyte(file, value)
short file;
char value;

QtAPTER 4: 'THE MAC CTOOlKIT

4- 13

[MacCIOPrim.c]

[MacCIOPrim.c]

This routine writes value as two ASCII hexadecimal digits onto file.

outhexlong - output hex long

void outhexlong(file, value)
short file;
long value:

This routine writes value as eight ASCII hexadecimal digits onto file.

outhexword - output hex word

void outhexword(file, value)
short file;
short value;

[MacCIOPrim.c]

This routine writes value as four ASCII hexadecimal digits onto file.

oullono - output long [MacCIOPrim.cl

long outlong(file, value)
short file;
long value;

This writes value to the output file as four binary bytes. It returns value as a result.
Note that the arguments are in the reverse order of those in putl. Use a macro to
switch them if necessary.

outnum • outputnumber

voidoutnum(file. value. radix)
short file;
shortvalue;
short radix;

aiAPTER 4: THE MAC CTOOLKrr

4- 14

[MacCIOPrim.c]

This routine formats value intoa number in base radix. and writes it to the
designated file. If radix < O. then value is formatted as a signed number where:
radix. Abs(radix).

mmm: . outputstring [MacCIOPrim.c)

void outstr(file. str)
short file;
char-str;

This routine writes the C string str to file. Note that the arguments are in the reverse
orderof thosein puts. Usea macro to switch them ifnecessary.

mdrld • output word [MacCIOPrim.c]

shortoutwd(file. value)
short file;
shortvalue;

Thiswrites value to the output file astwo binary bytes. Returns value as its result.
Note that the arguments are in the reverse orderof those in putw. Usea macro to
switch themif necessary.

rl.dbytlpOI - read byteposition

long readbytepos(file)
shortfile;

[MacCFilelO.c]

This routine returns the current byteposition of tile relative to Itsstart.The first
position is O.

resdllne - read line [MacCIOPrim.c]

CHAPTER 4: THEMAC CTOOLKIT

4- 15

char *readline(file, buffer, size)
short file;
char *buffer;
short size;

This routine reads datafromthe file until a newline character or EOFis encountered,
and stores it. terminated by a NULL, intothe buffer. If file is tty, then the characters
are echoed to the TTY window as they are read, and backspace causesthe previous
character to be erased and notsavedin the buffer. size is the maximum number of
characters which maybe storedin the buffer, although morethan this maybe read
from file. Excess characters are discarded.

setbytepos - set byteposition

setbytepos(file, position)
short file;
long position;

[MacCIOPrim.c]

This routine sets the position of the file so that the nextbyte readwiU be position
numberof bytesfrom the start of the file. Theposition of the first byte in a file is O. If
position is past the end of file, the file position will be set to the end of file if it is
opened for read access only. If the file is openfor writeaccessor readlwrite access.
the file position will be extended to position.

seteof - set end of file [MacCIOPrim.c]

shortseteof(file)
short file;

This routine sets the endof file position for file to the currentposition. Onlydisk files
openfor write or readlwrite can use this routine. It returns file as its result.

seteof can be usedwith opento initialize an existing file:

#define write2
file == seteof(open(diskdevice, ·filename",write»;

TKclOM - close a file

shortTKclose(file)
short file;

[MacCIOPrim.cl

QoIAPTER4: THEMAC CTOOlKfT

4-16

This routine closesthe designated file and flushes its buffersto disk if necessary.
The file number is invalid aftera close. TKclose always returns O.

TKOpen - opena file [MacCIOPrim.c]

shortTKopen(deviceType, name. mode)
chardeviceType;
char·name;
long mode;

This is the genericopenroutine. It returns a s"mall positive number (the file number) if
it succeeds, anda 0 if it fails. Usethe file number as an argument to all other
high-level 1/0 calls.

A fUels characteristics areset up at open time. Since devices vary in their
characteristic definition, the exact interpretation of the paramaters name andmode
depend ondevlceType.

Whenthe deviceis a disk (devlceType =dlskdevlce), name is a pointer to a C
stringwhichis the file name. The file name mustinclude the volume name jf the file
is not on the defaultvolume.

If mode is in the range 0 to 255, it is an access modeas follows:

1 lIZ read
2 =write
3 = readlwrite

Addthe constant resource_fork to the access mode to openthe resource forkof a
file ratherthan the data fork. If mode is not in the range 0 to 255, it is assumed to be
the address of the structure:

atruct{
char filler[3];
dlar mode; f.x:eea mode'"
long bufferaizeA: fnumber of bytea InbufferA'"
long buffereizeB; rnumber of bytes In bufferB'"

aiAPTER 4: tHE MACC TOOlKIT

4- 17

This causesthe disk file to be opened with two bufferswhose sizes are specified by
buffesrslzeA and buffersizeB. If bufferslzeB is O. the file is openedwith a single
buffer. To be efficient. buffersizesshouldbe multiples of 512. If two buffersare
specified, disk VO to and fromthe file usesthe asynchronous VO option of the
Macintosh. which allows simultaneous processing and VO.

Whenthe device is a serialport (deviceType = aerlaldevlce). name is a constant
defining the SIO port to be opened (sloAln, SIoAout, etc.) It is important to always
open a serial port in the outputdirection. sincethat is whenthe Macintosh operating
system initializes it. You need open it in the inputdirection only ifyou wish to input
data from it. Do not closs a serial port once It has been opened. Use the
PBControl trap to change the baud rateafter it has beenopened(theToolkit routine
InitSIO gives an example of howto do this.)
The lower16 bits of mode are the Macintosh SIOconfiguration word (defined in the
Serial DriverSection of the Inside Macintosh manual). This word allowsthe baud
rate. numberof stop bits. parity. and numberof data bits to be set. Aport is initially
openedwith XON/XOFF disabled, CTSdisabled. and with all errorsreported. Use
the PBControJ trap to change this setting (again. InltSIO can be usedas an
example.)

A serial port cannotbe opened for differentbaud rateson input and output. The
configuration used to open a port is valid until it is changed. If mode= 0, the
configuration is assumed to be OxCCOA (9600 baud.8 data bits, 2 stop bits. no
parity).

Ifyou have a hard disk, be careful! It may use a serial port, so do not
open It.

ulnchr • uppercase inputcharacter

char uinchr(file)
short file;

[MacCIOPrim.c]

This routine is just like lnchr, except that ifthe character read is lowercase. Inchr
forcesthe characterto be uppercase. Note the comments under lookch aboutend
of file.

CHAPTER 4: lliE MAC CTOOLKIT

4- 18

String Routines

All of these routines operate on C stringsexceptwherenoted. They make
useof a globalvariable named temp_st" whichis usedas a holding
areafor temporary strings. Temporary strings are allocated by some
of these routines. A temporary stringexistsonlyuntil the next
routine requiring use of temp_str is called. The program is responsible for saving copies
of temporary strings.

Storage for stringsis allocated by callinggetmem. The callerof the string routine is
responsible for deaUoeating stringstorage by calling, relmam whenhe is finished using
them.

Pascal strings are described in this documentation by:

typedef struet {charcount; charcontents(255);} P_Str;

Mostof these routines arewritten in assembly languge (forspeed). so a largeoverhead is
not incurred by using them.

apchr - append character

char apchr(str, c)
char·str;
char e:

[MacCStrings.c]

This routine appends c followed by a NULL to the end of atr. It returns c as its result.

'Dlong - append formatted long

void aplong(str, number, radix)
char *81r;
short radix;
long number;

[MacCStrings.c]

This routine converts long integers into ASCII text andappends it to str. If radiX < 0.
then a signedconversion is performed, and the radix is -radix. A radix of 16
produces a hexadecimal number.

apnum - append formatted short

void apnum(str, number, radix)
char ·str;
short radix;
short number;

CHAPlER4: THEMACCTOOLKIT

4- 19

[MacCStrings.cl

This routine converts 16-bitshort integers intoASCII text, and appends it to str. If
radix < 0, then a signed conversion is done,andthe radix is -radix. A radix of 16
results in a hexadecimal number.

I.RIlt - append string

char ·apstr(str, str1)
char ·str, ·str1;

[MacCStrings.c]

This routine appends the stringaddressed by str1 followed by a NULL onto the the
end of stringstr. The su parameter is returned.

ClonlStrlng - Make a copy of a string

char ·CloneString(str)
char *str;

[MacCStringUtil.c]

This routine makes a copyof str, and returns its address. CloneStrlng cans
getmem to allocate space for the copy,so retmem shouldbe usedto release this
spaceafterthe caller is through with the result.

comP8restr - compare string

charcomparestr{str1, strz)
char *str1, 'str2;

[MacCStrings.c)

This routine compares the string addressed by str1 to the stringaddressed by str2
according to theirsort sequence. comparestr returns a non-zero result ifstr1 < str2.
If str1 is shorterthan str2 andthey are equal up to the length of str2, it returns a
non-zero result. Otherwise it returns a result of zero.

CQncatStrlng .. concatenate string

char ·ConcatString(str1, str2)
char *str1, ·str2;

aiAP1ER 4: THE MAC C TOOI..KIT

4· 20

(MacCStringUtil.c]

This routineallocatesmemory for a new string.and fills it with the contentsof str1
followedby the contentsof str2 (andterminated with
a NULL). The addressof the newstring is returned. SinceConcatStrtng calls
getmem to allocatespacefor the copy, retmem shouldbe used to release this space
after the caller is throughwith the result.

cODystrlog .. copy string

char *copystring(str1, st(2)
char *str1, *str2;

[MacCStrings.c]

This routinecopies the stringaddressed by 81r1 to the area pointed to by str2
(including the terminating NULL). The areaaddressed by str2 must havebeen
previously allocated(besure it is largeenough to holdstr1). The parameterstr2 is
returned.

egualstr • equalstring

char equalstr(str1, st(2)
char "strt, ·str2;

[MacCStrings.c]

This routinecomparesthe stringaddressed by str1 to the string addressed by
str2.and returnsa non-zero result ifthe contentsare identical. Otherwise it returns
zero.

flndebar ..find character

short findchar(str, c)
char ·str;
charc:

[MacCStrings.c]

This routine returns the index-1 of the first oCcurrence of c in str. If c is not found. 0 is
returned.

.Lk - lower case

char LC(c)
charc;

a-tAPTER4: lHE MACCTOOLKIT

4- 21

[MacCStrings.c]

If c is an upper case character, this routine returns its lowercase counterpart.
Otherwise,c is returned.

length - length

int length(str)
char *str;

[MacCStrings.c]

This routine returnsthe numberof bytes In str preceding the first NULL byte.

MacStrlng - convert a C string to a Pascal String

P_Str *MacString(str)
char *str

[MacCStringUtil.c]

This routine allocates space for a string and convertsstr into it in Pascal string format.
This is useful for calling Macintosh system routineswhich require Pascal format strings
as arguments. It calls getmem to obtainstorage,and expectsthe programmerto
deallocate'it with retmem. Its result is the addressof the converted string.

sltlowercaH - set string lower case

char *setlowercase(str)
char *str;

[MacCStrings.c]

This routineconverts upper case characters in str to lowercase. It returnsstr.

setuppercase - set string uppercase

char *setuppercase(str)
char ·str;

[MacCStrings.c]

This routineconverts lower case characters in str to upper case. It returnsstr.

Itrtolong • stringto long

longstrtolong(str, radix)
char·str;
short radix;

CHAPTER 4: THE MAC CTOOLKrr

4- 22

[MacCStrings.c]

This routine converts the ASCII number in str into a long binaryvalueand returns this
valueas its result. Legalradices are 2 through 10, and 16
(for hexadecimal values). Conversion stopsat the first non-numeric character for the
given radix. Overflow Is lost.

strlanum - strto number

shortstrtonum(str, radix)
char ·str;
short radix;

[MacCStrings.c]

Identical to strtolong, exceptthat the result is a 16 bit short value.

tempCStr - ConvertPascal stringto C string

char "'tempCStr(MaCStr)
P_str ,. MacStr;

[MacCStringUtil.c]

This routine converts MacStr intoC string format. This is usefulfor converting results
from Macintosh system calls into C stringformat. It usestemporary storage. so do not
deallocate the memory whenyou are through. To savethe string,make a copyof it
(using CloneStrlng). This routine returns the address of the temporary string as its
result.

tempMacStr - ConvertC stringto Pascal string

P_Str *tempMacStr{str)
char ·str;

[MacCStringUtiJ.c]

This routine allocates space for a string andconverts str into it in Pascal stringformat.
This is useful for calling Macintosh system routines which take Pascal strings as
arguments. Do not deallocate the memory whenyou are through with str. The system
will do that on the nextcall to a routine that usesa temporary string. Use MacStrlng if

a-tAPTER4: THEMACCTOOLKIT

4· 23

you wanta stringwhich can be saved. This routine returns the address of the
temporary stringas its result.

1lC. - convert character to uppercase

char UC(c)
chare;

[MacCStrings.c]

If c is a lowercasecharacter, this routine returns its uppercasecounterpart.
OthelWise, it returns c as its result.

Miscellaneous System Routines

Thissection contains miscellaneous routines.

Bounds • bound a value

short Bounds(value. lower. upper}
shortvalue. lower, upper;

[MacCUtil.c]

If lower <= value <= upper thenvalue is returned. Otherwise Bounds returns lower
ifvalue < lower, or upper if value> upper, l.e., it returns MIN(upper, MAX(value,
lower».

clearbytes • clear memory [MacCUtil.c]

clearbytes(adclress, nbytes)
char *address;
short nbytes;

This routine sets the value of nbytes of memory to 0 starting at address.

flllbytes • 1i11 memory with value

fillbytes(value. address. nbytes)
char *address;
short nbytes;
char value;

CHAPTER 4: 1liE MAC CTOOLKIT

4· 24

[MacCUtil.c]

This routine sets the valueof nbytes of memory to value starting at address.

IDraDg. • test in range

char inrange(value, lower. upper)
shortvalue, lower, upper;

[MacCUtil.c]

This routine returns non-zero if lower <- value <- upper. It retums zerootherwise.

LBoUDds - bounda value

longLBounds(value, lower, upper)
longvalue. lower, upper;

[MacCUtil.c]

If lower <=value <= upper, this routine returns value. Otherwise, it returns lower if
value < lower, or upper if value> upper. In otherwords. it returns lMIN(upper.
lMAX{value. lower».

letterdlglt - test for letterordigit

char letterdigit(c)
charc;

[MacCUtil.c)

This routine returns non-zero if c is an alphabetic character or a digit.

Llnrange - test in range

char Linrange(value. lower, upper)
longvalue. lower, upper;

[MacCUtil.c]

This routine retumsnon-zero if lower <= value <= upper; it retumszerootherwise.

.L.MAX • long maximum

long LMAX(v1, v2)
long vt, v2;

CHAPTER4: THE MAC CTOOLKrT

4- 25

[MacCUtiI.C]

This routinereturnsthe signed arithmeticmaximum of v1 and v2.

.LMIH • long minimum

long LMIN(v1, v2)
long vt, v2;

[MacCUtil.c]

This routine returnsthe signed arithmeticminimum of v1 and v2.

.MAX • short maximum

short MAX(v1, v2)
short vt, v2;

[MacCUtil.c]

This routinereturnsthe signed arithmeticmaximum of v1 and v2.

M.Ltl - short minimum

short MIN(v1. v2)
short v1 , v2;

[MacCUtil.c]

This routine returnsthe signed arithmetic minimum of v1 and v2.

rnovebytes - move bytes

movebytes(nbytes, dest, source)
short nbytes;
char *dest, *source;

[MacCUtil.c]

This routine movesnbytes from source to desl using the BlockMove trap. If
source or desl is 0, it does nothing.

SwapLong - swap longvalues

Swaplong(ptrA, ptrB)
long·ptrA, ·ptrB;

Exchanges the longvalues addressed by ptrA and ptrS.

UBounds - bound an unsigned value

unsigned long UBounds(value, lower. upper)
unsigned long value, lower, upper;

a-tAPTER4: THE MAC 0 TOOLKrr

4- 26

(MacCUtil.e]

[MacCUtiI.e]

If lower <= value <= upper. thenUBounds returns value. Otherwise, it returns
lower ifvalue < lower. or upper ifvalue> upper. In otherwords, it returns
UMIN(upper, UMAX(value, lower»

.UMAX • unsigned maximum [MacCUtiI.c]

unsigned long UMAX(v1 t v2)
unsigned longv1, v2;

This routine returns the unsigned arithmetic maximum of v1 and v2.

JJ.f4IH - unsigned minimum

unsigned long UMIN(v1 t v2)
unsigned longvt, v2;

[MacCUtiI.e]

This routine returns the unsigned arithmetic minimum of v1 and v2.

will - wait for time [MacCUtil.e]

wait(ms)
int rns;

This routine waits ms milliseconds andreturns. Accuracy depends on the tick rate
(1/60 second).

CHAPTER 4: THEMAC C TOOLKIT

4- 27

Memory Management Routines

In general, these routinesuse the Macintosh memory managerto allocate memory.
Memoryis always allocatedas non-relocatable blocks that begin on word boundaries, are
an even numberof bytes in length, and are less than 32,768 bytes long. These blocksare
referenced by the address of the first byte.

The memory management routinesact as a level of insulationbetweenthe user and the
Macintoshmemorymanager. This buffering providestransportability and the option of
using a more sophisticated or alternateallocator. The allocate routines (allocate,
Inltallocate, and resetarea) are particularly space efficient in that they can anocate
memorywith no overheadbytes (although all such allocatedareas must be returned at the
same time or in the reverse order of allocation). This capability is useful for structuressuch
as symbol tables which havethe characteristic of growing monotonically and then being
eliminatedas a single entity.

allocate· allocate region

char *allocate(area, Size):
struct AREA ·area;
short Size;

(MacCMem.c]

This routine allocatesa region Size bytes long from area using a simpleton
allocator. area must have previouslybeen obtainedby a call on Inltallocate.

getmem - get memory

char *getmem(size)
short size;

[MacCMem.c]

This routine allocatesthe indicatednumberof bytes of memoryand returns a pointer
to the first byte. It calls Signal with the string
"Qut of Memory" if it can't accommodate a request.

getmemz - get memory

char *getmemz(size)
short size;

[MacCMem.c]

a-tAPTER 4: THE MAC CTOOLKIT

4· 28

This routine is identicalto getmem, exceptthat it sets the allocatedmemoryto 0
before returning.

Inltallocate - initialize for allocate

struetAREA *initaliocate(Size)
short Size;

[MacCMem.c]

This routineallocatesa block of memoryuslng getmem and preparesit for use by
the simpletonallocatorallocate. The structure AREA is declared in the file
MecCmemdets.h. The total space allocatedto the area for allocate to use is
Size bytes (forced to be even. i.e" (size+1)&-2).

Inltmom - initalize memory [MacCMem.c]

void initmem()

This routine initializes g.lmem, and sets up the Macintosh application heap so that
there is a null GrowZone Procedure. The application heap limit is set to 8K bytes
belowthe current top of stack. Call this once at the start of a program.

MemAval1 - maximumavailablememoryblock

long MemAvaiiO

[MacCMem.c]

Just like the Macintosh trap MaxMem, except that this one returnseither the largest
block available or the space left to grow', whicheveris greater.

res'ta,ea - reset area

void resetarea(area)
struetAREA *area;

[MacCMem.c]

This routine returnsaU allocatedspace from area. and preparesit for future
allocate calls.

retmem - free memory

char *retmem(memory)
char ·memory;

CHAPTER 4: THEMACCTOOLKrr

4- 29

[MacCMem.c]

This routine returns the area addressed by memory (which must havebeen
previously anocated by getmem) to the free list. If the pointermemory is equal to 0.
relntem does nothing. retmem alwaysreturns a result of O.

THE LOW LEVEL I/O SYSTEM

Teletype Simulation

Any windowcan be a teletypesimulation window. The CreateTIY function, or the
NewWlndow or GetNewWlndow traps can be usedto createsuch a window. Onlyone
teletypewindowcan be activeat one time. and any outputdirectedto tty (file 0) appears in
that window. The SetTTY routine can be usedto change windows. Characters are
displayed in the current font, style. etc.• of the activeteletypesimulation window. The next
characterwillbe displayed at the pen positionof the window's port.

BackupTTY - backspace character

void BackupTTY(c)
charc;

[MacCTIY.Asm]

This routine backs up the characterposition and erasesc. which is normally the last
characterdisplayed.

ClearTIY - clear teletypewindow

void ClearTTY(window)
WindowPtr Window;

[MacCTTY.Asm]

This routine erasesthe entirecontents of window and placesthe pen at the upper
left handcornerof the window.

~ 4: THEUACCTOOLKIT

4- 30

Cre8teUV ..createteletypewindow

WindowPtr CreateITY(x, y, width, height, title, goawayFlag)

shortx, y;
shortwidth, height;
char ·title;
char goawayFlag;

[MacCnv.Asm]

This routine creates a window and sets it up as the active teletype window. x andy
locate the upper left handcorner, title is a P-Str, and goawayFlag is the window
goawayflag. width andheight are the widthand heightof the windowin screen
dots.

Font_Info - font information

FontinfoFont_lnfoO

[MacCTIY.Asrn]

This routine returns the address of the Fontinfo record for the current font of the
currentport. The Fontinfo structure is defined in Inside Macintosh, and in the
headerfile tont.h. The resultof this function is savedin temporary storage. Do not
dispose of it. Copythe structure if you wishto save it.

Line_Height • line height

short Line_HeightO

[MacCTIY.Asm]

This routine returns the line height in screen dots for the currentteletype window.
This is the sumof the leading. ascent, andde~nt.

8etUV - set TTY [MacCTIY.Asm]

void SetITY{window)
WindowPtr window;

This routine makeswindow the activeteletype simulation window. Characters are
displayed fromthe currentpen position.

ITYCbar - display character in teletype window

voidnvChar(c)
ehar c:

atAPTER 4: niE MAC CTOOLKIT

4- 31

[MacCTTY.Asrn]

This routine displays c as the nextcharacter in the activeteletype window.

ITYPort - teletype window pointer

WindowPtr TTYPort;

[MacCTTY.Asrn]

This globalvariable contains the WindowPtr for the activeteletype window.

serial 110 and Keyboard Input

The 10w-levslllOroutines mentioned heretake a CONSOLE or SIOdeviceas
an argument. This is not the device usedfor normal Toolkit I/O; rather.
it is an internalToolkitvalue. To call these routines directly, usethe valuesavedin
channelvec[flle], wherefile is the parameter returned by TKopen, andthe type of
channelvec is Int. 00 not use these routines for disk I/O.

EventReady • event ready

char EventReady(mask)
shortmask;

[MacCSIOLib.Asm]

This routine returns non-zero if there is an event of the type specified by mask
waiting Inthe eventqueue. mask is the eventmaskas described in Inside
Macintosh.

FlushKey - flush key

void FlushKey()

[MacCSfOLib.Asm]

This routine flushes all keydown and sutokey eventsfromthe eventqueue.

(nEvent - input Event

EventRecord *inEvent(mask, Event)
short mask;
EventRecord *Event;

QiAPTER4: THE MAC CTOOLKIT

4· 32

[MacCSIOUb.Asm]

This routinereads the next eventof the type specified by mask into Event, and
removes it from the eventqueue. If there areno such events in the eventqueue,the
routine waftsfor one. Its resutt is Event.

Inlt910 • initalize SIO port

void InitSIO(devica. configuration)
short device,configuration;

[MacCSIOUb.Asm]

This routine initializes the SIO port. If configuration is 0, the port is initialized as
follows: 2 stop bits, 8 data bits, no parity. 9600 baud. Otherwise, configuration is
passed to the Macintosh operating systemas the configuration parameter to a
PBControl trap (see the SerialDriversection in Inside Macintosh). InltSIO is
normallycaned by TKopen. "you hBvea hard disk, be carefull It may USIJ

a serlB' port, so do not Initialize II.

InKey - input key event

char inKey()

[MacCSIOUb.Asm]

This routine reads the next keydown or Bulokey eventfromthe event queue,and
returns its charactervalue. The Command key is treatedas a controlshift, producing
characters in the range0 through Ox1 F. If the keyboard eventqueue is empty,InKey
waits for a key event.

In910 - input SIO character

char inSIO(device)
short device;

[MacCSIOUb.Asm]

This routine readsa singlecharacterfromdevice (CONSOLE or an SIO port) and
returnsit. Do not use this directly and expect the Toolkit va Rout/nes to
work with the SBms device.

KeyReady - key ready

char KeyReadyO

OV\PTER4: THEMAC CTOOlKIT

4- 33

[MacCSIOUb.Asm]

This routine returns non-zero if there is a character in the input bufferfor the
keyboard.

SIOReedy - SIO ready

char SIOReady(device)
shortdevice;

[MacCSIOUb.Asm]

This routine returns non-zero if there is a character in the inputbuffer for device,
wheredevice maybe the CONSOLE or an SIOport.

Disk I/O Routines

These routines formthe basisof the Mac C Toolkit disk 110 system. They interface to the
Macintosh 110 system at the blockfile 110 level,maintaining their own file position and
end-of-file information for openfiles. Theyanow eithersynchronous or asynchronous
(multiply buffered) I/O,and provide a complete set of primitives for reading, writing. and
positioning files. Particular care hasbeentakento makethemefficientat the character I/O
levelso that applications can directly can the 110 routines without a serious lossof
efficiency. These routines are used for all 110 done in the MacC Compiler. Most of
these routines are not useful for normal 110. Usethe high-level 110 routines
instead.

Filesat this levelare identified by a File information Block(FIB). This structure (which is
declared in MacCIOdefs.h)contains all the information that is known aboutan openfile,
and is passedas an argument to mostof the routines.

The high-level I/O system (which usesTKopen, TKclose, Inchr, outch, etc.)savesthe
address of the FIB in channelvec, which is in turn indexed bythe file number used in the
high-level I/O routines.

A File Control Block (FCB)datastructure (which is actually a Macintosh 110 Parameter
Block) contains the information required by the Macintosh operating system aboutthe file.
It is usedas a parameter to many low-level routines. The address of the FeB for a file is
stored in its FIB.

CHAPTER 4: THE MAC CTOOU<IT

4- 34

The strings manipulated in these routines are all C stringsunlessotherwise noted.
Conversion is performed by the routines as required for the Macintosh operating system
calls.

1/0systemerrors are normally handledby callingSignal or by failing the operation.
Failedoperations returnan invalidvalue andr store an error code in the globalvariable
lastlOError. This is satisfactory for manyapplications. but not for all. For these latter
casesthe FIB containsa field named IOErrorLoc. If the addressof a function is stored in
this field (by calling setIOError), that function will be called whena serious error (suchas
diskettewrite protectedor fuU) is encountered that cannot be handledby Toolkit routines.
The function is called with argumentsas though it were declared:

10Error(fib. result)
structFIB'fib;
short result;

result is the result code from the Macintosh file systemtrap. Returning from the IOError
functioncausesthe error to be ignoredby the I/O system.

call1OError - call VO error

void calIlOError(fib, errorcode)
struct FIB 'fib;
short errorcode;

[MaceIO.c]

This routine calls the error function for fib if there is one. .rrorcode containsthe
Macintosh trap resultcode. .

deleleflle - delete file

short deletefile(filename)
char ·filename

[MacCIO.c]

This functiondeletesthe namedfile from the disk if it exists and is not open.
Otherwise. deleteflle does nothing. Returns the result from the Macintosh Delete
trap as its result (zero ifeverything was OK).

80ffll8 .. test end of file

char eoffile(fib)
struct FIB·fib;

CHAPTER4: THEMAC CTOOlKIT

4- 35

[MacCIO.c]

eoffll. returnsnon-zero if the designated file is positioned at the end.

fllelength • file length

long filelength(fib)
struct FIB*fib;

This routine returnsthe length in bytesof the designated file.

[MacCIO.c]

flndllie .. find file [MacCIO.c]

char findfile(filename)
char *filename

This routine returnsnon-zero if the named file existson disk.

Inltfllelo - initializefile I/O

void initfileio()

This routine is called by Initio to initialize the disk file system.

readchar - readcharacter

char readchar(flb)
struet FIB*fib;

[MacCIO.c]

[MacCIO.c]

This routine readsand returns the nextcharacterfrom the designated file. If the fife is
at the end. or if it is not open for readaccess. the value OxFF is returned.

[MaceIO.c]setflleposltlon • set file position

longsetfileposition(fib, pes)
struct FIB *fib;
long pos;

This routinesets the byte positionof the designated file to POs. The first position in
the file is o. If pos is past the currentend of file, the position is set to end of file for
readonly accessfiles, and the file is extended to pos for write accessor readlwrite
accessfiles.

setlPError - set VO Error

setIOError(fib, errorproc)
struct FIB ·fib;
int (·errorproc)0;

[MacCIO.c]

This routinemakeserrorproc the function called when serious VO errors occur on
the file designatedby fib.

Defineerrorproc as:

errorproc(fib, result)
struetFIB *fib;
short result; /I reautt is the errorcodereturned by the Macin1D8h filesystem.

Call setlOError with the nameof the errorproc:

setlOError(fib, errorproc);

This supercedes any previouscalls to setlOError for fib.

truncateflle - truncate file

struet FIB ·truncatefile(fib)
struet FIB *fib;

[MaceIO.c]

If the designatedfile is open for write or readlwrite access, its end of file pointer is set
equal to the current position. Otherwise this routine does nothing. It returns fib as its
result.

wrltechar - writechracter

char writechar(fib, c)
structFIB i1rfib;
charc;

CHAPTER 4: THEMACC TOOlKIT

4- 37

[MacCIO.c]

[MacCIOSupp.c]

This routine writes c onto the file designated by fib if it is openfor writeor read/write
access. If the file is at end of file, it is extended to accommodate the character. If the
file is net opened for writeor readlwrite access, this routine does nothing and a byte
with a value of OxFF is returned as the result. Otherwise c is returned.

Routines Which Directly Can Macintosh I/O Traps

GetFlleType • get file type

char GetFileType(filename, typePtr)
char *filename;
long *typePtr;

This routine returns the file type ('TExr, 'APPl" etc.) of the file identified by
filename in the long addressed by tYPePtr. It returns non-zero as its result ifthe
file exists, and zero otherwise.

10CaU - I/OCall [MacCIOSupp.c]

short 10Call(trap, parmBlock)
short trap;
char *parmBlock;

This routine performs a genericcall to the Macintosh 1/0system. The numberof the
trap to be called is Passed as trap, andparmBlock is a pointerto the 110 parameter
blockto be passed to the trap in AO. 10Cail normally returns the resultof the trap as
its result. It storesany Macintosh errorcode in the globalvariable lastlOError. If an
asynchronous trap results in an "Unmounted volume" VO error,10Caii retries the
trap as a synchronous call. If the retryfails, it calls Signal with the string"CouldNot
Re-Mount Volume".

MACbyteio - Macbyte 1/0

longMACbyteio(inst. feb. addr, position, nbytes)
short inst;
strud FeB *fcb;
char*addr;
long position;
shortnbytes:

[MacCIOSupp.C]

This routine performs a read or writeoperation on the indicated file. and..retums the
actual number of byteswritten or react lnst contains the value of eithera read or
writetrap and is passed directly to IOcali.

MACg.teof - get EOF

longMACgeteof(fcb)
struet FeB *fcb;

[MacCIOSupp.C]

This routine returns eitherthe logical endof file for the indicated file, or zero ifthe file
doesn'texistor ifthere is an error.

MACseteof - set EOF [MacCIOSupp.c]

shortMACseteof(fcb. position)
struct FCB *fcb;
longposition;

This routine sets the logical endof file of the indicated file to position. It returns the
result codefromthe Macintosh 8etEOF trap as its result.

OSelo•• - closefile

shortOSClose(fcb)
strud FCB *fcb:

[MacCIOSupp.c]

This routine closesthe indicated file. It retums the resultcodefromthe Macintosh
Close trap as Its result.

OScreate - O.S.createfile

char OScreate(filename)
char -filename;

CHAPTER 4: THE MAC CTOOlKIT

4- 39

[MacCIOSupp.c]

This routine creates a file in the directory withthe namein filename. It returns
non-zero if the operation is successful. zero if it is not.

OSdelete .. O.S.deletefile

char OSdeJete(filename)
char ·filename;

[MacCIOSupp.c]

This routine deretes the 11le named by filename fromthe directory. It returns 0 if the
operation is successful, an errorcode fromthe Macintosh VO system if it is not.

OSflnd - O.S. find file

char OSfind(filename)
char ·filename;

[MacCIOSupp.c]

This routine returns a non-zero result ifthe file named by filename exists in the
directory. It returns falseotherwise.

OSflush .. O.S. flush

short OSflush(fcb)
struct FeB *fcb;

[MacCIOSupp.cJ

This routine ensures that all file buffers of the indicated file are flushed to disk. (It
should not be necessary to call OSflush. sincethe file system doesso at the
appropriate times.) It returns the result code from the Macintosh FlushFlle trap.

OSopen • O.S. openfile

OIAPTER 4: ntE MAC CTOOlJ(fT

4- 40

[MacCIOSupp.c)

short OSopen(fcb. filename. access. resourceflag)
struetFCB·fcb;
char ·filename;
short access;
char resourceflag;

This routine opensthe file indicated by filename (a C string) in the modeindicated
by access (0 =- readlwrite if allowed, 1 =readonly.
2 II: write only, 3 =readlwrite). If ,esourceflag is non-zero, the resource fork of the
file is openedinsteadof the data fork. The resultof the Macintosh Open trap (zero =
operation is successful, non-zero = errorcode) is returned.

OSreset - O.S. reset

short OSreset()

[MacCIOSupp.c]

[MacCIOSupp.c]

[MacCIOSupp.c]

This routineensuresthat all file buffersanddirectoriesare flushed to disk on any
mounted volumes. call this before leaving a program (unless you can the ·standard"
C library routine exit or _,xlt). Notethat this routine does notclose files. The
high-level VO Systemfunction closeall can be usedto close any openfiles.
OS,.,I returns the resultcode from the Macintosh FlushVol trap as its result.

S8tFlIe$lgnatyre - set filesignature

void SetFileSignature(filename, Signature)
char ·filename;
long Signature;

This routine sets the creatorof the file namedby filename to Signature.

SotElltType - file type

void SetFileType(filename. Type)
char -filename;
long Type;

This routine sets the type of the file namedby filename to Type.

UserWords - get userwords

char ·UserWords(filename. 10ParmBlock)
char ·filename;
char1tIOParmBlock;

CHAPTER4: THE MAC CTOOLKrr

4- 41

[MacCIOSupp.c)

Given name pointerfilename andthe address of an I/O Parameter Blockin
IOParrnBlock, this routine fills in the VO Parameter Blockby calling GetFllelnfo.
and returns the address of the userwords field within the I/O Parameter blockas its
result. The area pointed to by IOParmBlock mustbe at least 80 bytes long.
UserWords returns 0 ifthe file doesnotexist.

CHAPTER 5:
FLOATING POINT

INTRODUCTION

The floating point package used by Mac C is based on the IEEE floating point package
implemented in the Standard Apple Numerics Environment (SANE). It is a sophisticated
and highly accurate package using 80 bit operands. In the Mac C implementation, which
conforms to an Apple specification for a C implementation of SANE, the normal C floating
point data types float and double are augmented by two new data types, extended,
which is a full precision 80 bit floating point value, and comp, which is a 64 bit integer
type implemented by the SANE package. This chapter discusses the features of the Mac
C implementation of SANE where they differ from (or are extensions to) the standard C
floating point implementation. Programs written according to the Kernighan and
Ritchie description of floating point will run, unmodified, In ths Mac C
floating point Implementation. You should be familiar with the section of Inside
Macintosh which discusses floating point and SANE. A special thanks is due to the
Numerics group at Apple Computers. Inc.• for their assistance and guidance in
implementing the SANE C Numerics.

FLOATING POINT TVPES

Four data types are encompassed by the Mac C floating point implementation: float (32
bits), double (64 bits), comp (64 bits). and extended (80 bits). All floating point
computations are done in extended precision. The best performance will be obtained
by using extended precision operands. since any other type will require conversion
before use.

NaNs AND INF

The IEEE floating point standard defines two special quantities, NANs and INF. INF
stands for infinity, and can be signed (i.e. +INF, -INF). NaN stands for "Not a Number".
This is normally the result of an operation which yields an undefined result, e.g. sqrt (-1).
NaNs have a value associated with them, which identify their origin. The defined NaN
codes and their origins are:

NaN

NaN(1)
NaN(2)
NaN(4)
NaN(8)

Origin

Invalid Square Root
Invalid Addition
Invalid Division
Invalid Multiplication

CONSTANTS

NaN

NaN(9)
NaN(17)
NaN(20)
NaN(21)
NaN(33)
NaN(34)
NaN(36)
NaN(37)
NaN(36)

CHAPTER 5: FLOATING POINT

5-2

Origin

Invalid Remainder
Conversion of invalid ASCII String
Conversion of comp NaNto extended
Attempt to create NaN(O)
Invalid Argument to sin, cos, or tan
Invalid Argument to atan
Invalid Argument to log function
Invalid Argument to exp function
Invalid Argument to financial function

Floating pointconstants areconverted to binary at compile-time. Integerconstants which
aregreaterthan the maximum longintegervalueare read as floating integers for useas
comp values. The maximum integeris now9.223,372,036,854,775,807. Constant
expressions, including negated numbers. are evaluated at run-time. INF and HaNs
cannotbe inputas constants (since theywould be interpreted by the compileras
identifiers and function calls). The floating point libraryfunctions nanO and InfO
produce thesespecial values. Integerconstants maybe used in floating point
expressions. and they may be assigned to floating pointvalues. This is not always
efficient, sincethey will normally be compiled as integerconstants, and thenconverted at
run-time to their floating pointforms.

VARIABLE INmALIZAnON

Floating pointvariables maybe initialized whendefined just like integervariables,
except that staticand external variables mayonlybe initialized to floating constants.
Expressions are illegal,andso are integerconstants. Automatic floating pointvariables
maybe initialized to anything.

OPERAND CLASSES

Any floating pointoperand (whether extended. float, double, or comp) belongs to
oneof the following classes: Signalling NaN,quietNaN,infinite, zero, normalized, or
denormalized. Floating point libraryroutines allowthe userto determine the class of a
floating pointoperand. See Inside Macintosh for a precise explanation of the meaning of
the classes.

CHAPTER 5: FLOATING POINT

5-3

OPERATORS

Floating point operands are valid with the operators in table 5.1. All of the operators
retain their customary meanings except that the relational operators have an extra twist.
Given two values, A and B, we normally can say that either A> B, A < B, or A =B. Since
we have introduced 110ating point values, NaNs, which do not represent numbers, we
have another possibility. If either A or B is a NaN, we say that A and B are unordered.
AU unordered comparisons are false except for not equal. This means, for example.
that ifthe relation A< B is false, it is not necessarily true that A >= B. Aand B may be
unordered.

Table 5-1. C Floating Point Operators

..-

Arithmetic Operator.
+ Addition

Subtraction
Multiplication

I Division
% Modulus

Relational Operator.
> GreaterThan
>- GreaterThanor EqualTo
< LessThan
<- less Thanor EqualTo

EqualTo
I- NotEqualTo

THE ENVIRONMENT

Unary Operator.
& Addressof Operand

Arithmetic Negate
++ Ina-ement

Decrement
(type) Cast (Type Conversion)
sizeof Size of Object (bytes)

Aaalgnment Operator.
SimpleAssignment
Add. then Assign
SUbtract, then Assign
Multiply,then Assign
Divide.then Assign
Modulus, then Assign

Although this is discussed in detail in Inside Macintosh, a brief description is appropriate
here. Three things are addressed by the environment: Rounding control, exception
reporting, and halts. The sane library routines getenvlronment and setenvlronment
are generic routines for controlling the environment.

Rounding direction can be set as being to nearest (the default), upward, downward, or
toward zero. Rounding precision is normally set for extended operands, but can be set
for float or double operands if required by an algorithm. The sane library routines for
controlling rounding are setround and getround, getpreclsion, and setprecision.

CHAPTER S: FLOADIG POINT

5·4

An exception occurswhenan anomolous condition arises in a computation, and it sets
an exception flag. Reported exceptions are invalid (invalid operand(s», under1low.
over1low. divideby zero.and inexact(indicating rounding error). Exceptions are sensed
andcontrolled by the sane libraryroutines testexceptlon and..texceptlon.

There is a capability to treat an exception like a software interrupt, and causean
"exception" handling function to be calledwhenthe exception occurs. This Iscalleda
halt,and is controlled by the sane libraryroutines lesthalt, sethelt. gethaltvector,
andsethaltveetor.

Scanf

In orderto allowthe inputof the newtypes and values, the syntaxof floating point values
acceptable to scant hasbeenchanged to allowNaNsand INF:

<infinity>
<NaN>
<digits>

::.INF
::= NaN «Empty> I t('<digits>T)
::. <Empty> , CO'I'1'1'21"3"'4"'Stl's'I'7'1'811'g') <digits>

BothIINaN" and "INP are case insensitive. and the NaN numberis decimal.

Newsize specifiers (m and n) havebeenaddedto the formatstringto allowthe inputof
types comp and extended. To summarize floating input:

Format Specifier

e
f
g
Ie
If
Ig
ne
nf
ng
me
mf
mg

Type of argument

float
float
float
double
double
double
extended
extended
extended
camp
comp
comp

CHAPTER 5: FLOATING POINT

5-5

Prlntf

Corresponding to the scanfchanges, INF and NaN values are written as "NaN(d)",
whered is a decimalnumberbetween 1 and 255, and "INF". Exponents in the
e, E, gf or G formats maybe up to four digitswide,and wilt always be printed as at least

two digits (with a leading 0 added if necessary). See C: A Reference Manual, by
Harbison and Steele for a precise specification of prlntf and scanf.

THE FLOATING POINT LIBRARY

The floating point libraryis grouped into four sections. The first section containsthe
numeric functions whichdo standard sorts of thingswith floating numbers (sin, cos, exp,
etc.) The second sectioncontains functions which return specificvalues, perform
miscellaneous operations on floating pointnumbers, or obtain information aboutfloating
pointnumbers. The third section contains routines for interrogating and controlling the
floating pointenvironment, and the fourth section contains formatting and conversion
functions. Remember that in C, all floating function arguments are forced to extended.
Libraryfunctions whose operations or results are obvious are not documented beyond
their callingsequences and/or resulttypes. Arguments named x or yare taken to be
type extended, those named Iare Int,and those named n are short.

All types and constants for the floating point libraryare defined in the file "sane.h", which
you should Include in any sourcefile usingthe floating point library. The code for the
library is in the file "sanefib.c", so your linkcontrol file shouldcontain "sanelibll as an
entry.

Floating Point Numeric Functions

cos: extended c:as(x)

Name

ANNUITY:

AlAN:

COMPOUND:

Declaration

extended annuity(x. y)

extended atan(x)

extended c:ampound(x. y)

Meaning

(1 - (1+X)A(-y»)/x.
x • periodicrate.
y • number of perlod8.

ardangent.

(1+x)"y.
x • periodic rate.
y • number of periods.

Declaration

CHAPTER 5: FLOATING POINT

5-6

....nlng

EXP: extendedexp(x) exponentialbu&-e.

EXP1: extendedexp1 (x) exponentlaJ bue. (x)-1.

EXP2: extended exp2(x) exponentialbaae-2.

EXP21: extendedexp21 (x) exponential_e-2(x)-1.

FABS: extendedfabe(x) absolutevalue.

IPOWER: extended~r(x, n) xAn.

LOG: extendedIog(x) log baae••

LOG1: extended1Dg1 (x) log bue-e (1+x).

L0G2: extended1og2(x) log base-2.

l0G21: extended 1og21(x) log base-2(1+x).

lOGS: extended 10gb(x) binary exponentof normalizedx.

POWER: extendedIpower(x.y) x"Y

RANDOM)(: extendedrandomx(.eed) extended -seed; geta randomvalue; updates seed.

REMAINDER: extendedremainder(x, y. QUO) short -quo; rerum x % y; -quo is assigned
the loworder 7 bits of the
quotient AI a signedvatue,
i.e. -121 <)Ie *quo <- 127.

SIN: extendedain(x)

SQRT: extendedeqrt(x)

TAN: extendedtan(x)

SCAlS: extendedecalb(n.x) x- 2"n.

Miscellaneous Functions

CHAPTER 5: FLOATING POINT

5-7

Nama

CLASSCOMP:

CLASSDOUBLE:

Declaration

numclassclasscomp(c) oompe:

numclassclassdouble(d) double d;

Meaning

abs(result) is class of c.
resuU < 0 if c < o.

abs(result) is class of d.
result< 0 if d < O.

CLASSEXTENDED: n~mclass classextended(x);

CLASSFLOAT: numclassclassfloat(f)float f;

COPVSIGN extendedc:opysign(x, V)

INF extended infO

NAN extendednan(v)unsignedchar v;

NEXTCOMP extended nextCDmp(x, V)

NEXTDOUBLE extended nextdouble(x, y)

NEXTEXTENOED extended nextextended(x, y)

NEXTFLOAT extended nextfloat(x, y)

PI extended piO

RELATION relop ralation(x, y)

RINT: extendedrint(x)

SIGNNUM int signnum(x)

TINT: extendedtint(x)

abs(result) is class of x.
result< 0 if x< o.

abs(result) is class of f •
result< 0 if f < O.

returnsy with sign of x.

retumslNF.

returnsNaN(v).

returnsnext value after x in the
directionof yI oomp precision.

returns next value after x in the
directionof V, double precision.

returns next value after x in the
directionof VI extendedprecision.

returns next value after x in the
directionof VI float precision.

returnsvalue of pi.

returns0 if x> V, 1 if x<y,
2 ff x-y, 3 if unordered.

roundsx to integral value.

returns0 if x >_ +0., 1 if x <- -0.

truncates x to integralvalue.

CHAPTER S: FLOATING POINT

5·8

Environment Control

"me DeclarMlon

GETENV1RONMENT voidgetenvlronment(e) environment *.j

GETHAllVECTOR haftvector gethatlvectorO

GETPRECISION roundpre getprecialonO

GElRJUND rounddlr getroundO

PROCENTRY voidprccentry(e) environment ·s;

PROCEXIT void pt'OC8xit(e) environment e;

SETENVIRONMENT voidaetenvlronment(e) environment e;

SETEXCEPTION voidsetexception(e,n) exception a;

SETHAl.T void .atheft(e.n) axception 8;

SEntALTVECTOR voidsethaltveetor(h) haJtvector h;

SETPRECISION voidaetpreciaion(p); roundprePi

SETROUND voidaetround(r); rounddi,r;

TESTHALT Int t88thatt(e) exception e;

TESTEXCEPT10N Int te8texC8ption(e) exception e;

*e. environment.

return haltvector.

returnrounding precision.

return rounding direction.

·e • environment
environment. IEEEdefault.

temp. exceptions;
environment. e;
signalexceptions intemp.

environment. e.

set flagsIndicated Inmaske If
n I. O. resetif n-o.
May causehalt.

enablehalts indicated in maska
If n I. O. disable If n.O.

Set haltvectorto h.

set rounding precision to p.

set rounding direction to t.

return1 if anyhalt indicated
by maske Isenabled. 0 if not.

return 1 Ifanyflag indicated
by maske is enabled. 0 If not.

Formatting and Conversion

Formatting and conversion of floating pointvalues are normally doneusingprlntf and
scanf. Theremaybe instances, however. where it is necessary for a program to do its
own formatting and conversion. The MacC floating point libraryprovides the necessary
low level routines for doingthis. Using them requires a thorough understanding of the
DECIMAL RECORD format as described in Inside Macintosh.

A floating pointdecimal number may be represented as an ASCIIstring, a binaryvalue,
or as a valueencoded as a mixture of binary and ASCII valuesknown as a DECIMAL
RECORD, or decimal for short. The format of a decimal is defined in "sane.h". In the

CHAPTER 5: FLOATiNG POINT

5-9

SANE package. ASCII stringsare always converted to decimal format, and vice versa.
Onlydecimal formatoperands can be converted to and fromthe binaryformat.
Conversion from binaryto decimal is controlled by a formatrecord calleda decimal
formator decform. Binaryvalues maybe converted to decimal records with num2dec,
anddecimal records to binarywithdec2num. decimal records may be converted to
and from string formats with dec2str and str2dec. These routines are in the file
floatconv, so you must include it in your linkcontrol file if you use these.

Name

DEC2NUM

NUU20EC

DEC2SlR

Declaration

extended dec2num(d) decimal·d;

void nUm2dec(f,x,d) declorm*f; decimalllod;

voiddec2str(f,d••) decform·f; decimal·d: char·s:

Meaning

mnvert the decimal remrd at
d 10 binaryand return value.

Convertx to decimalrecord
andstore Into*d.

Convertnumberin decimal
record·d Intoan ASCII
string in ·s.

STR2DEC void str2dec(s,inx.d,valkf) char *a;short lIoinx, *valid;decimal*d;
Converts ASCIIstringat
s(*inx] intodecimal record
·d. *inx is updated 10 point
past last characterusedfrom
s. ·valld is non-o if a null
byteterminated the string.

APPENDIX A:
DIFFERENCES BETWEEN MAC C

AND STANDARD C

INTRODUCTION

Mac C differs in several ways from standard C as defined in The C Programming
Language. by Brian W. Kernighan and Dennis M. Ritchie. These differences. explained
in the following text, faU into three categories: extensions. interpretations, and restrictions.

EXTENSIONS

These extensions represent enhancements of the Kernighan and Ritchie C.

1. All characters of an identifier are significant.

2. All field names are local in scope to the structure in which they are declared. Mac
C enforces strict member specification rules on the structu re memory reference
operators ". ..and "->,"

3. Inline assembly code may be bracketed by #8sm and #endasm lines,

4 Type and field checking is carried out through aU levels of
indirection.

5. All basic types (char, shaft. Int. long) may be unsigned.

6. Character literals may be from one to four characters in length,

7. The '#t character may appear in any column. so long as it is preceded only by
white space.

8. The character pair "Ir outside of strings causes the remainder of the line to be a
comment.

9. Automatic (local) declarations may appear anywhere before they are are first
used. They do not need to appear immediately after the "{."

APPENDIX A: DIFFERENCES BETWEEN MACCAND STANDARD C

A-2

10. The addressof a procedure pO maybe taken either with the C
standard:

ptr = p;

0', alternatively:

ptr = &p;

11. The floating point implemented in Mac C 2.0 is basedon the Apple IEEElSANE
Numerics package, and features 80 bit precision with the addeddata types ext and
comp. A.rguments and intermediate results are 80 bit values.

12. The C extensions: structure assignment, passing structures by value, and functions
returning structures are implemented in Mac C.

13. The C extension of enumerated types is implemented. The Mac C implementation
is based on the "pointermodel"suggested in C: A Reference Manual by
Harbison and Steele.

14. Bitfields maybe specified as unsigned char, unsigned short, unsIgned Int,
or unsigned long. The basic type identifies the ·unit" size in whichthe bit field is
to be imbedded. Address alignment will be done beforethe first bitfieldof a group
according to the basic type, and storage will be allocated for bitfieldsin multiples of
the the basic type size. Bits are numbered from the MSB (0) to the LSB Cn), which
is the opposite of hardware numbering. Bit fields may notbe initialized.

15. Type void is allowed.

INTERPRETATIONS

These interpretations represent implementation specifics.

1. char and short valuesare only converted to integerswhen necessary., e.g. ,given:

char c1,c2,c3;
c1 • c2+C3;

c2 andc3 are NOT converted to Int beforethe addition.

APPENDIX A: DIFFERENCES BElWEENMACCAND STANDARD C

A-3

2. The programmer may select a 16- or 32-bit integer size. 32 bits is standard.

3. The » operator shifts 0 into the high order bits.

4. Case sensitivity is not carried outside of the source file.

5. '\n' is interpreted as a return, since lineteed is not recognized as a newline character
on the Macintosh.

6. Mac C uses the MOS Assembler to process its output, and the Assembler has certain
reserved words which cannot be used as labels (Register names and instruction
mnemonics). These words (such as SP, ST, SF, MOVE, etc.) cannot be used as
global or static variable or function names in your C program. You can use them as
local names, structure and field names, and typedefs.

7. There are some differences in identifier scope:

a. The scope of structures is always from the point of definition to the end of the
source file, even if the declaration is in a function.

b. Local variables may not be redefined in a subordinate block, Le.

pO
{int i;

{int i;
}

}

is illegal.

c. The scope of labels is logically the procedure in which they are declared, but
this is not checked by Mac C.

APPENDIX k DIFFERENCES BETWEEN MACCAND STANDARD C

A-4

An Important Note.

C allows a variable number of arguments to be passed to a function as a non-portable
construct. Mac C adds a feature to the C language to specify that a function is to be called
with a variable number of arguments. This serves as both an implementation and a
documentation aid (it flags the use of a non-portable feature.) To specify a variable
number of arguments, the last element in the function argument list must be It.... , and
external declarations of the function should simply include the three dots between the () in
the declaration. "prlntf" I for example, is defined as:

int printf(fonnat. args, ...)

and declared external as:

extern int printf(...);

APPENDIX B:
USING ASSEMBLY· CODE WITH MAC C

INTRODUCTION

SinceMacC is, in fact, a translator from C to Assembler, usingassembly code witha Mac
C program is easy and convenient, Thereare two waysto use assembly codewith MacC:
the first is inline,and the second is via linkedfiles. Both methods are explained in this
appendix. For information aboutthe Macintosh Assembler and its use, consultthe
Macintosh 68000 Development System Manual.

Inllne Assembly Code

The mostconvenient way to use assembly code is inline. MacC recognizes the
commands 185m andIendasm, as delimiting an assembly code routine, and passes
anytext between them to the intermediate output (assembly code) file on a line-by-line
basis. The188m and#enda8m commands mustappearon separate linesat the
beginning and end of the inlineassembly code as the following example illustrates:

sw&p(ptrA.ptrS)
long ·plrA. ·ptr8;
{
r

longtemp;
temp- ·ptrA;
·ptrA • "ptrB;
·ptrS - temp;..,

#asm
MOVE.L DO,AO ; ptrA
MOVE.L D1,A1 ; ptr B
MOVE.L (AO).D2
MOVE.L (A1).CAO)
MOVE.L 02.(A1)

#endaam
};

When the compilerencounters such inlineassembly procedures, it does not generate the
normal procedure prologue and epilogue. This allows fast and compact routines to be
imdedded on a procedure-by-procedure basis in a program.

To use the Inline assembly feature effectively, both the MacC procedure call conventions,
and the way MacC references globaland localstorage must be understood. See Chapter
2: CompilerCode Generation for more information.

APPENDIX B: USING ASSEMBLY CODE WITH MAC C

B-2

Because the assembly code labelshavenot beendeclared to MacC for typing and scope
purposes, they mustbe declared as normal external variables In the C source file. This
doesnot applyto routines suchas swap in the above example, sincethe routine is
actually defined as a C function.

Some assembly code labels are not referenced in the C source codefile in which theyare
declared, but are referenced in anothersource file. In this case.an assembly XDEF
directive mustbe provided.

Linking Assembly Flies

Linking a MacC program with assembly files is easyto do. Simply include the name of the
assembly file in the Unkercontrol fUe. Be surethat globalvariables are property declared,
andthat you understand howMacC calls functions and references variable names. Note
that registers AS, A6. and A7 mustbe preserved. The first sevenarguments to a function
are passed in registers 00...06, and fundion results are returned in register DO for values
andAO for pointers.

; INTEGER RESULT

r any pointerwill do .,
r VARs arepointers·'

; SPACE FOR16-BrrRESUlT
;boolParm
; intParm
; IongParm
;struetParm
; VAA varParm

APPENDIXC:
CALLING 'PASCAL PROCEDURES

FROMMACC

INTRODUCTION

Combining C and Pascal procedures (for instance, library routines) maybe very desirable.
MacC allowsprocedures generated by Apple Usa Pascal to be caned from MacC by
writing a short tIIglue" routine. Forexample, for the folJowing Pascal procedure:

FUNCTION PascaiFunc(boolParm: BOOLEAN; intParm: INTEGER;
longParm: longlnt; structParm: SomeStruct; VARvarParm: INTEGER):
INTEGER;

a glue routine couldbe written:

shortCPascaIFunet(booIParm, intParm. IongParm. structParm, varParm)
charboolParm; r BOOlEANs arebytes.,
short IntParm; r INTEGERS areshort (16 bits)·/
long IongParm;
char ·struetParm;
short ·varParm;
(

'asm
ClR -(SP)
MOVE.B DO,-(SP)
MOVE D1,-(SP)
MOVE.l 02,-(SP)
MOVE.l D3,-(SP)
MOVE.l D4,-(SP)
JSR PascalFunc
MOVE(SP)+,OO
.endasm '
);

Executing this routine enables the Pascal function to be referenced from a C program
where desired. The example illustrates the basiccharacteristics of the Pascal calling
conventions for MacC, which include the following:

APPENDIX C: CAU.ING PASCAlPROCEDURES FROM MAC C

0-2

• Types BOOLEAN and CHAR are 8 bits.

• Type INTEGER is 16 bits.

• TypesLONG INT,VARreferences. and pointers are 32 bits.

• All parameters are passed on the stack.

• Space for the result mustbe allocated on the stackbefore
the first parameter.

• The result is left on the stack.

• Pascal procedures preserve registers 03-07 and A3-A7.

It is important to notethat Pascal does notalways passthe address of a structure when the
structure is passed as an argument. In particular. ifthe total size of the structure is <= 32
bits, it passes the VALUE and not the address.

Pascal usesBit 0 of a charvaluefor Boolean values. Besurethe valueyou passhasthis
bit set for true.

If a function or procedure with more than seven arguments Is called, the arguments must
be obtained fromthestack. Thiscan be accomplished eitherby saving a pointerto the top
of the stackon procedure entry, or by calculating the offsetof the desiredparameter from
the current top of the stack. Saving the stackpointeris simpler.and much less likelyto
cause bugs.

APPENDIX c: CAI.LINO PASCAL PROCEDURES FROM MACC

C-3

The following illustrates this calling convention:

SFPGetFiIe(where, prompt. lileRlter, numTypes. typeUat.dlgHook. reply, dlgID.fllterProc)

PoInt *where;
P_Str *pmmp;
Int(·filefllter)Oi
short numTypee;
SFTypeList *typeUat;
Int(*dIgHook)O;
SFRepIy .rep~;

shortdlgIO;
Int(*flIeFiher)O;
{
'-m

ARG8
ARGt
MOVE.L
MOVE.L

UOYE.L
UOVE.L
MOYE.L
MOVE.W
MOVE.L
UOVE.L
MOVE.L
MOVE.W
UOVE.L
MOVE.W

DC.W $A9EA
Iendaam
}:

EQU 4
EQU 8
SP,A1
DO.AO

(AO).-(SP)
D1.-(SP)
D2.-(SP)
D3.-(SP)
[)4.-(SP)
05.-(SP)
D6.-(SP)
ARG8+2(A1).-(SP)
ARG9(A1).-(SP)
...-(SP)

: SaveoriginalSP
; dereference point Iince 8truelure aize
i"..... than33 bltI. and PASCAL
: expecI8 the value and not the addreu
;wh«e
;prompl
; '1leFilar
;numTypea
; typeUst
;dlgHook
;,reply
;diglD
; filterProc
i SelectSFPGetFlle

APPENDIXD
ERROR MESSAGES

This appendix documents compiler error messages. Assembler and linkererrors
messages can be found in the Macintosh 88000Development System Manual.
Run-time error reporting is the responsibility of the userprogram or the Macintosh
operating system.

The compiler errormessages are listedalphabetically, with the actualmessage indicated
in bold,andan explanation (unless it is obvious) underneath.

ADDRESS LOAD ON ILLEGAL NODE TYPE
This is an internal system error.

ALREADY DEFINED
An identifier was encountered which hadbeen previously defined in a similarcontext.

BREAK OUT OF CONTEXT
A breakwas encountered outside of a switch statement or a loop.

CODE GEN ERROR
This is a system error.

CONTINUE OUT OF CONTEXT
A continue statement was encountered outside of a loop.

COULD NOT OPEN FILE <FILENAME>
The Compiler was unable to openthe indicated file.

DISK FULL

DISK I/O ERROR

DISKETTE WRITE PROTECTED

DIRECT LOAD ON ILLEGAL NODE TYPE
This is an internal system error.

DIVIDE BYO
An attempt was madeto divideby zero in a literal expression.

DUPLICATE CASE CONSTANT
Thesamecaseconstant was usedtwice in a switch statement.

APPENDIX D: ERROR MESSAGES

0·2

DUPLICATE DEFAULTIN SWITCH
Two or more defaultcases exist in the switch list.

DUPLICATE LABEL
A labelwas declared twice.

DUPLICATE MACRODEFINlnON
A macro was defined twice.

EXPRESSION TOOCOMPLEX
The numberof operators in a given expression hasexceeded the limit. To eliminate this
problem, breakthe expression into smaller units, usingtemps ifnecessary.

EXTRA OPERAND
An expression withan extraoperand was encountered.

FILE LOCKED
Oneof Mace·s outputfilescannotbe opened.

FILE NAMETOO LONG
A file name longerthan 252characters wasdeclared.

FILEOPEN ERROR

FUNcnON TYPEDOES NOTMATCH PREVIOUS DECLOR USE
A function that hasbeen referenced or declared is laterdefined, andthe definition type
doesnot match the original type of the reference or'declaration. Thedefaultfor undefined
functions is type' into

ILLEGAL ARGUMENT CONVERSION
An attempt was made to passan illegal valueto a procedure.

ILLEGAL ARGUMENT NAME
An argument hadan illegal name.

ILLEGAL ARRRAYTYPE
An attempt was made to havean arrayof functions.

ILLEGAL BOOLEAN EXPRESSION
Thecompiler failed in an attempt to tum a relational expression intoa value. This should
neverhappen.

APPENDIX D: ERROR MESSAGES

D~3

ILLEGAL CASE CONSTANT
A value that is not a constant has been used as part of a case label.

ILLEGAL CONSTANT EXPRESSION
A non-constant expression was encountered where a constant expression was required.

ILLEGAL CSSTOKEN
This is a system error.

ILLEGAL DECLARATION

ILLEGAL FORMAL ARGUMENT TYPE
An attempt was made to pass an structure or an array as formal argument.

ILLEGAL FORMAL IN MACRO CALL
An illegal formal parameter was encountered in a macro call.

ILLEGAL FUNCTION CALL
The compiler encountered what appeared to be a function call, but the function name was
illegal.

ILLEGAL FUNCTION DECLARATION
A function was encountered in an illegal context (e.g., in the argument list for a procedure).

ILLEGAL FUNCTION TYPE
A function has been declared with the type array or function.

ILLEGAL INDEX
Either an illegal value was used an an index (i.e., a pointer cannot be used as an index
value), or an expression that was not a type pointer was followed by an index expression.

ILLEGAL INITIALIZATION
A user tried to initialized an automatic variable that was either an array or a structure.

ILLEGAL INC/DEC
A "++"or "__" construct was encountered in an illegal context.

ILLEGAL INT CONVERSION
An attempt was made to convert an argument tQ an illegal form. This attempt could either
be implied by the conversion rules of an expression, or in explicit type casting.

ILLEGAL LABEL
A label was used with the wrong syntax.

APPENDIX D: ERROR MESSAGES

0-4

ILLEGAL LEFT HAND SIDE
An expression used as the destination of an assignment did not have a legal assignment
value. or an attemptwas madeto take the address (eitherby contextor explicitly with the &
operator) of an illegal value.

ILLEGAL LONG CONVERSION
An attemptwas madeto convertan argument to an illegal form. This attemptcould either
be implied by the conversion rulesof an expression. or in explicittype casting.

ILLEGAL MACRO DEFINITION
A syntax errorwas made in a macrodefinition.

ILLEGAL MACRO NAME
A macrowas definedwith an illegal format name.

ILLEGAL MEM OP NODES
A systemerror was encountered when parsing an expression of the form <ident> -eops =
<8Xp>.

ILLEGAL NAME FOLLOWS'
Eitheran illegal preprocessor directivewas encountered. or a trap nameunderthe
#NoTraps optionwas improperlyspelled.

ILLEGAL NUMBER ,
A numberwith an illegal formatwas encountered (e.g., the digit "8" or "g" in an octal
number).

ILLEGAL OPTION
An illegalcharacteror syntax was foundafter # options.

ILLEGAL OPERATOR OR TYPE ERROR
The system has encountered an error of an unknown type in an expression.

ILLEGAL POINTER OPERATOR OR COMBINATION
Pointers were used in an illegalcontext (e.g.• attempting to multiply a pointerby a number).

ILLEGAL PREPROCESSOR LINE

ILLEGAL RIGHT HAND SIDE
The right handside of an assignment was madein an illegal fashion.

ILLEGAL SIZE OF ARG
Sizeofoperatorwas used but was not followed by a legaloperand for sizeof.

APPENDIX D: ERROR MESSAGES

D·S

ILLEGAL STATEMENT
An input statement could not be parsed by the Compiler into a legalstatement.

ILLEGAL STRUCTURE ELEMENT
An illegal element, e.g., a function, was encountered in a structure body.

ILLEGAL STRUCTURE REF
Eithera structure reference was attempted to an entity that was not a structure. or the
reference was of the wrong type (e.g.• a fl•• ratherthan a f1__>" reference was used).

ILLEGAL SYMBOL FOLLOWS #
A # has been followed by an unknown identifier.

ILLEGAL SYMBOL NAME
The Compilerexpected the name of a symbolbut encountered something else.

INCLUDE ERROR
An unspecified problem was encountered whentrying to include a file.

INCOMPATIBLE POINTER ASSIGNMENT
An attemptto assign or operate on a pointerof one type by a pointerof anothertype has
been made. (Pointers should be type cast so they are of the sametype.)

INCOMPATIBLE POINTERS
Two pointers of differenttypes were used in an expression. or an attemptto assign or
operate on a pointerof one type by the pointerof the second type was made, and failed.
Pointers should be type cast so they are of the sametype.

INCOMPATIBLE TYPES IN A:B
A statement of the form test? A:B was written in which the types of the first and second
valueswere incompatible. This mighthappen if pointers of differenttypes were used. Use
the type cast operatorto create pointers of the sametype.

I/O MEMORY ERROR
This is a dired error fromthe Macintosh I/O system.

LINE TOO LONG

MACRO TOO LONG
A text required to store a macrowas morethan 500characters in length.

MISSING ":"
In an expression of the form valuevalue, the ":. was missing.

APPENDIX 0: ERROR MESSAGES

0·6

MISSING ")"
The program compiled, but when the compilation completed, the blockcount was not
equalto zero. This indicates the numberof rightand left braces did not match.

MISSING "e"
The word "missing" followedby characterindicates a syntax error.

MISSING FORMAL IN MACRO CALL
Eitherthe syntaxof the call indicated that a formalargument shouldbe presentor the
definition of a macro required a formalargument. The argument. however, was not passed
in the call.

MISSING FORMAL IN MACRO DEFINITION OR CALL
Eitherthe syntaxof the call Indicated that a formalargument shouldbe presentor the
definition of a macro required a formal argument. The argument. however, was n01 passed
in the call.

MISSING LABEL
A GOTOwas encountered that was not followed by a label.

MISSING OPERAND
The expression parserexpected an operand but did notencounterone. This error
message is normally issuedonly afteran expression has beenscannedand an
anticipated operateand has not been found.

MISSING PROCEDURE BODY
A procedure withouta body was encountered. Typically. this error is caused by putting a
seml-colon after the argument list in a procedure declaration.

MISSING STRUCTURE BODY
A structure declaration was encountered withoutastructure bodybeingdefined.

MISSING "while"
A do clause appeared that was lacking a whileclause.

MISSING tI)" IN MACRO CALL
A macrocall was madeandthe numberof left and rightparentheses do not match.

NEGATIVE ARRAY SIZE
A negative value was encountered as an array size in a declaration.

NO CASES IN SWITCH
A switchwithoutany case labelswas encountered.

APPENDIX 0: ERROR MESSAGES

0-1

NUMBER EXPECTED

NUMBERTOO LONG
A number longerthan 252 characters was encountered.

OUT OF MEMORY
This message shouldonrybe encountered ifan attemptis madeto run MacC with
MacsBug or TermBug installed.

OUTOF REGISTERS
The Compilerattempted to evaluate an expression but could not find enough free
registers. While this is unlikelyto occur, the expression in question may be simplified.
usingtemps if necessary.

OUT OF SPACE
This message indicates one of the Compiler's internal tables is full. This condition is
normally reported by a morespecificmessage, i.e., Symbol Table Full.

POINTER REQUIRED
A pointer was required wherea non-pointer valuewas used.

POSSIBLETYPE CAST ERROR
A pointer is cast to a short; that is, a 32-bit pointeris cast to a l6-bit value.

PUSH FZN REG
This is a systemerror. If it occurs. try to simplifythe expression usingtemps.

STACK UNDERFLOW
This is a systemerror.

STRING TOO LONG
Eithera single stringwas longerthan 252characters, or a collection of strings in an
expression exceeded the available stringstorage. To eliminate this problem, break up the
expression and storeone string into a temp in anotherexpression.

SYSTEM REGISTER ERROR (INTERNAL)
This is a systemerror.

SYMBOL TABLE FULL
This error indicates that one of the symboltables has overflowed. The sizes of the internal
symboltables for the compilation are printed at the end of compilation, so it is possible to
tell whichtable has overflowed by examining these values. Eachtable size can be set
indiVidually. (SeeChapter1 for compileroption details.)

APPENDIX D: ERROR MESSAGES

D-8

SYMBOL TOO LONG .
The symbol encountered was longerthan 252characters.

TOO MANY ARGUMENTS
A procedure was calledwith more than 50 arguments.

TOO MANY CASES
More than 100cases in a switch statement were encountered. To eliminate this problem.
breakthe switch statement up. nesting a second switch statement intothe defaultof the
first.

TOO MANY FORMALS IN MACRO
A macro was encountered with more than nineformal arguments.

TOO MANY LEVELS OF MACRO NESnNG
Macros were nested more than 100 levels.

TOO MANY NESTED FILES
Includes werenested more than eight levels.

TOO MANY PROCEDUREARGUMENTS
More than 50 arguments werefound in a procedure declaration.

TYPE MISMATCH
An expression was evaluated that hadtwotypes in it that did not match.

TYPE SIZE LOOP (SYSTEM ERROR)
This is a system error.

TYPE STORAGE FULL
The typestorage table hasoverflowed. The size of the type storage table for the
compilation is printed at the end of the compilation. (SeeChapter 1 for setting compiler
options.)

TYPED ARG NOT DECLARED
An identifier was listedin the type list of a procedure declaration butthe identifier did not
appearin the argument list.

UNDEFINEDVARIABLE
An identifier that hadnot beenpreviously declared wasencountered in an expression.

UNKNOWNI/O ERROR
This is a directerrorfromthe Macintosh I/Osystem.

APPENDIX 0: ERROR MESSAGES

0-9

UNMATCHED ")"
A right parenthesis has beenencountered withouta previous left parenthesis.

VOLUME LOCKED
This is a directerror from the Macintosh 1/0system.

WRONG NUMBER OF ARGS IN MAC TRAP CALL
A call was madeto the Macintosh system trap with the wrong numberof arguments.

WRONG OR MISSING FIELD
Eithera structure was referenced with a field that does notbelong to that structure, or a
structure was referenced withouta field where a field is required.

IN OPTION ILLEGAL AFTER TRAPS LOADED
TheIN optionwas usedtoo late in the sourcefile. This optionmustbe encountered
beforethe first structure or identifierdeclaration.

APPENDIX E:
THE MACINTOSH TRAPS

FunctIon
Type Trap Name and Argument Trap 1.0.

short AddOrive(OO, AO), DO • Result(short) A04E
AddPt(Point, long) A87E
AddReference{tong, short, long) A9AC
AddResMenu(Long, Long) A940
AddReaource(long. tong, short, Long) A9AB

short A1ert(shon. Long) A9SS
short AngieFromSIope(long) A8C4

AppendMenu(long. long) A933
BackCotor(long) A863
BackPat(Long) AS7C
BeginUpdate(long) A922

int BitAnd(Long, Long) A858
BitClr(long, long) A85F

int BitNot(long) A85A
int BitOr(tong, Long) A85B

BitSet(long, Long) A85E
Int BitShift(long, short) ASSC
char BitTst(Long, Long) A8S0
int BitXor(Long. Long) A859
short BlockMove{AO, A1. DO), DO - Result(short) A02E

BringToFront(Long) A920
char ButtonO A974

CalcMenuSize(Long) A948
calcVis(Long) A909
CalVisBehind(Long. long) A90A

short CautJonAJert(short, Long) A988
Chain(AO) A9F3
ChangedResData(Long) A9AA

short CharWldth(short) AS8D
Checkltem(long, short,char) A945

char CheckUpdate(Long) A911
ClearMenuBar() A934
ClipAbove(Long) A90B
ClipRed(Long) A878
Close088kAoc(short) A9B7
C1oseDialog(Long) A982
CIosePidureO , AeF4
ClosePoly() A8CC
CIoeePort(Long) Ae7D
CloseResFile(short) A99A
CloaeRgn(long) MOB
CIo8eWindow(Long) A92D

APPENDIX E: lliE MACINTOSH TRAPS

E·2

Function

Type Trap Name and Argument Trap I.D..

ColorBil(short) M64
Int CompICtMem(DO). DO. Result (Int) A04C

CopyBlts(long, long. Long,Long,short,Long) ASEC
CopyRgn(Long. long) ASDC
CouIdAJerl(ehort) A989
CouldDialog(short) A970

short CountMltems(long) A9S0
short CountResoul'C88(Long) A99C
short CountTypesO A99E

CreateResFile(long) A9B1
short CurResFiIe() A994
int Oate2Seca(AO). 00 • ResultPnt) A9C7
int Delay(AO). 00 • Result(int) A03B

DeleteMenu(ahort) A938
short Oequeue(AO. A1),00 • Result(short) A98E

DetachReeaurce{long) A992
char OialogSelect(Long, long, Long) A980

DIffRgn(lDng. long. Long) ME8
D~e~(long••hort) A93A

shott DisposHanclle(AO). DO • Result(short) A023
DlapoaeControl(LDng) A955
OiaposeDlalog(long) A983
DisposeMenu(long) A932
DispoeeRgn(long) ASOO
DispoaeWlndow(tong) A914

short DisposPtr(AO). DO • Result(short) A01F
DragControl(long,Point. long. Long.short) A967

int DragGrayRgn(long. Point, Long.long. ahott.Long) A90S
Int DragTheRgn(Long. Point, long. Long.short.Long) A928

DragWtndow(long. Point.Long) A925
DrawChar(short) M83
DrawControla(Long) M8D
DrawDi8Jog(Long) A981
DrawGrowlccn(long) A904
DrawMenuBarO A937
DrawNew(Long. char) A90F
DrawPlcture(long,Long) ASR
DrawStrlng(long) A884
DrawText(long. short,short) A885

short EmptyHandle(AO). DO • Result(short) A02B
char EmplyRed(long) MAE
char EmplyRgn(long) ASE2

Enableltem(long. short) A939
EndUpdate(long) A923

char· Enqueue(AO, A1). AO • Result(char*) A98F
char EqualPt(Point. Point) A881
ell. EquaIRect(Long. long} MAS
ch8l' EqualRgn(LOng. Long) ASE3
short EqualString(AO. A1. 00). DO. Result(short) AD3C

Er~long,ahort,8hort) ASCO
EraseOval(long) ABB9

APPENDIX E: lHE MACINTOSH TRAPS

E·3

Function

Type Trap Name andArgument Trap J..D.

ErasePoly(long) MC8
EraseRect(long} A8A3
ElaseRgn(long) ASD4
EraseRoundRed(long, short, short} AS82
ErrorSound(long} A9ac

char EventAvail(short, Long) A971
ExitToShellO AeF4
RllArc(long, short,short. long) ASC2
FillOvaJ(long, long} ASBB
FilIPoly(long,long) ASCA
FiIIRect(long, long) MAS
FiURgn(long, long) ASD6
FillRoundRed(long,short.short, long) ASB4

short FindContlOl(Point, long. long) A96C
.hort FindWindow(Polnt, long) Ae2C
Int FIXUul(long, long) M68
int FixRatio(shon, shon) Aa69
short FbcRound(long) A88C

FlashUenuB81(short) A94C
FlushEvents(DO) A032
ForeColor(long} A862
FrameAre(long. short,short) ABBE
FrameQval(long) AaB7
FramePoly(long) ASC6
FrameRed(long) A8A1
FrameRgn(long) ASD2
FrameRoundRect(long, short.short) ASBO
FreeAJert(short) A98A
FreeOialog(short) A97A

int FreeUernO, 00 - Result (int) AD1C
char- FlOnlWindoWO A924

GetAppParms(long, long, long) A9F5
GetClip(long) AS7A

int GetCRefCon(long) A95A
GetCTdle(long, long) A95E

char- OetCtIAction(Long) A96A
short GetCtJUa.x(long) A962
short GetOUMln(long) A961
short GetCtIValue(long) A960
char'· GetCursor(short) A9B9

GetDltem(long, short, long, long. long) A9SD
GetFNum(long, long) A900
GetFontlnfo(long) ASSB
GetFoniName(short, long) ASFF

int GetHandleSize(AO), DO - Result(int) A025
char· Getlcon(short) A9BB
char- GatlndResource(long, short) A99D

GetlndType(long,short) A99F
Oatltem(long, short, long) A946
Getltemlcon(long.short, long) A93F
GetttemMark(long, short,long) A943

APPENDIX E: THEMACINTOSH TRAPS

E·4

Function

Type Trap Name and Argument Trap I.D.

GltltemStyIe(Long.'hort. Long) A941
GetIText(Lang. Long) A990
Get~(Long) A978

char" GetMenu(short) ABBF
char" GetManuBarO A93B
char· GetMHandle{short) AMO

GetMouu{Long) A072
char" GetNamedR880urce(Long, Long) A9A1
char" GetNewControl(ahort. Long) A9BE
char • GetNewDialag(shor1, Long.Long)' AB7e
char " GetNewMBar(short) MOO
char .. GetNewWlndow(short, Long, Long) ABBO
char GelNextEvent(ahort, Long) A970
ehart GetOSEvent(DO, AO), DO • Result(short) A031
char" GetPattern(ahort) A988

o.Pen(Long) AS9A
GetPenState(Long) Moe

char" GetPicture(ahort) ABBe
ell.,. GetPbcel(short. ahort) M85

GetPort(long) M74
Int GetPtrSlze(AO). DO • Result (int) A021
ahort GltRe8Attra(Long) A9A8
short GetReaFileAttI8(short) A9F8

GetRealnfo(Long. Long.long. Long) A9AS
char" GetRe80urce(Long. ahort) A9AO
int GetScrap(Long. Long.Long) A9FD
char" GetString(short) A9BA
char" GetTrapAddress(DO), AD. Result(char") A146
char" GetWindowPIc(long) A92F

GetWMgrPort(long) A910
int GetWRefCon(Long) A917

Getwrltle(Long. Long) A919
char" GetZone(), AD• Result(char.) A11A

GlobafToL.ocal(Long} A871
GralDevice(ahort) A872

Int GrowWindow(l.ong. Point,long) A92B
short HandAndHand(AO, A1). DO • Result(Short) A934
char· HendleZone(AO), AO • Re8uh (char") A126
char .. HandToHand(AD). AD. Result(char") A9E1

HkleControl(Long) A958
HkleCureor() A852
HldePenO A896
HIdeWindow(Long) A916
HilieControl(Long,short) A9SD
HillteMenu(short) Am
HIlIteWindow(Long. char) A91C

ahort HiWord(Long) A8eA
char" HLoc:k(AO). AD• Result(char.) A029
shart HNoPurge(AO). DO • Result (short) A04A
short HomeResFle(Long) ADM
short HPurge(AO). DO • Resub (short) A049

APPENDIX E: lHE MACINTOSH TRAPS

E-5

Function

Type Trap Name and Argument Trap I.D.

short HUnlock.(AO). 00 • Result (short) A02A
char" InfoSCrapO MF9
short InitApplZone(), DO. Result(short) NJ2C

InitCuraorO A850
InitDialogs(Long) A97B
InitFontsO .A8FE
InitGraf(Long) AS6E
InitMenusO A930
InitAlIPacks() A9ES
InilPack(short) AgES
InitPort(Long) AS6D
InilQueue(} A016

short InitResourcea() A995
short InitUtiiO. 00 • Result(short) A03F

InitWindowsO A912
short InitZone(AO), 00 - Result(short) A019

InsertMenu(Long. short) A93S
InsertResUenu(Long. Long,short) A951
lnsetRect(long.short,short) ASA9
InsetRgn(Long. short.short) ASE1

short InatallDrtver(AO, DO). 00 • Result(short) A030
InvaIRect(long) A928
InvaIRgn(Long) A927
Inve~Long.short,short) ASC1
InvertOval(Long) ASBA
InvertPoty(Long) A8C9
InvertRect(Long} ASA4
InvertRgn(Long) ASOS
InvertRoundRect(Long. short.short) ASB3

char JaDIaIogEvent(Long) M7F
KlilControls(Long) A956
KiIIPidure(Long) ASF5
KIUPoly(Long) A8CD
Launda(AO) MF2
Une(short. short) AS92
LineTo{short. short) A891
loadResource(Long) A9A2

int LoadSCrap() MFB
loadSeg(short) MFO
localToGlobaJ(Long) A870
longMul(Long,Long. Long) A867

short loWord(Long) A8B8
MapPoJy(Long. Long, Long) A8FC
MapPt(long, Long, Long) A8F9
MapRect(Long. Long,Long) MFA
MapRgn(Long. Long,long) A8FB

int MaxMemO, DO - Result (int) A01D
ehar" MemLeftO. AO • Result(char*) A11D
int MenuKey(short) A93E
int UenuSelect(Point) A93D

ModalDiaJog(Long, Long) A991

APPENDIX E: THEMACINTOSH TRAPS

E·· 8

Function

Type Trap Name and Argument Trap 1.0.

MoreMutersO A038
Move(ahort, short) AS94
MoveCantrol(lang, short.shart) A959
MovePortTa(shart, short) ASn
MoveTo(shol1, Ahart) AS93
Move~ndow(Lang,shart,lhort,char) A91B

Int Munger(Long, Lang,Long,Lang,Lang,Lang) A9EO
char- NewControl(Lang, Long, Lang,char, lhort. short.

lhort. ahart, Long) A954
char • NewOlaJag(lang, Lang,Lang,char, short,Long,

char, Long,Lang) A970
char * NewHandle(OO), AO - R8autt (char*) A122
char· NewMenu(ahart, Lang) A931
char· NewPtr(DO), AO - Result (char.) A11E
char· NewRgnO AS08
char * NewStrlng(Long) A908
char· NewWlndaw(Lang. Lang,Lang,char,ahart, Lang,

char. Lang) A913
short NoteAlenCahort, Long) A987

ObscureCul'8OrO A858
cms~~(Long,ahort.ahart) ASCE
cm8~(Long,8hort,short) ABA8
~n(Lang,8hort,8hort) ASEO

ahort OpenOeskAcc(Lang) A9B6
char * OpenPictureCLong) ABF3
char * OpenPoIyO A8CB

OpenPort(Long) A86F
short OpenResFIIe(long) A997

OpenRgn() A80A
short OSEventAvail(DO, AO), 00 - Result(short) A030

Pack20 ME9
Psck30 A9EA
P8Ck40 A9EB
Pack50 A9Ee
PackSO ASED
Pack70 A9EE
P~ftsCLong,Lang,ehart) A8CF
PalntArc(Lang, ahort, ehort) A8BF
PalntBehind(Long, Long) A900
PalntOn_(Lang, Long) A90C
PaintOval(Long) ABBa
PaintPoly(Lang) ABC7
PalntRect(Long) ABA2.
PalntRgn(lang) ASOO
PalntRoundRect(Long, short,ahort) ABB1
ParamText(Lang, Long,Long,Long) A98B
PenMode(short) A89C
PenNorrna~) A89E
PenPat(Long) A890
PenSlze(short, short) A89B
PtcCamment(ahort, short, Long) ASF2

APPENDIX E: llIE MACINTOSH TRAPS

E-7

Function

Type TrapName and Argument Trap1.0.

int PinRect(Long. Point) A94E
Plotlcon(Long, Long) A94B
PortSize(short, short} A876

short P08tEvent(AO, DO), DO • Result(short) A02F
Pt2Aect(Polnt, Point, Long} ABAC

char PtlnRect(Point. Long) ABNJ
char PtlnRegn(point, Long) ASES
short PtrAndHand(AO, A1, DO), DO - Result(short) A9EF
char * PtrToHand(AO. 00), AO • Result(char*) A9E3
short PtrToXHand(AO. A1. DO}, DO. Result(sholt) A9E2
char * PtrZone(AO), AO • Result(char*) A148

PtToAngle(Long, Point.Long} ABC:!
char * PurgeMem(OO), AO • Result (char*) A140
Int PutScrap(Long, Long,Long) A9FE
short RandomO A861

rOrvrlnstallO AD4F
short AeadDaieTime(AO). 00. Result(short) A039
char RealFont(short, short) A902
short ReallocHandle{AO. DO), 00 - Result(short) A027
char * RecoverHandle(AO). AO • Result (char*) A128
char RectlnRgn(Long, Long) ASE9

Rec:tRgn(Long. Long) ASDF
ReleaseResource(Long) A9A3

short RemoveDriver(DO), DO • Result(short) A03E
short ResError(} A9AF
char • ResM.4em(OO), AO • Result(char*) A140

RmveReference(Long) A9AE.
RmveResource(Long) ASAD
RsrcZonelnit() A996
SaveOld(Long) A90E
SealePt(Long, long. Long) MF8
ScrollRect(long, short.short,Long) ASEF

short Secs20ate(DO, AO). 00 • Result(sholt) A9C8
char SectiRect{Long, long. Long) A8AA

SedAgn(long, Long,Long) A8E4
SelectWindow(Long) A91F
SellText(Long, short,short,short) A97E
SendBehind(Long. long) A921

short s.tAppIBase{AO), DO • Result (short) ASS7
short SetAppILimit(AO), 00 - Result(short) A02D

SetClip(Long) A879
SetCRefCon(Long, Long) A95B
SetCTltle(Long. Long) A95F
SetCtIAction(long, Long) A96B
SetOtIMax(long,short) A965
<CtIMin(Long,short) A964
SetOtIValue(Long, short) A963
SetCufSor(LDng) A851

short SetDateTime(DO). DO • Result(short) A03A
SetDhem(Long, short.short,Long,Long) A98E
SetEmptyRgn(long) ABOD

APPENDIX E: 1liE MAC1NTOSH TRAPS

E-9

Function

Type Trap Name and Argument Trap I.D.

SetFontlDck(char) A903
short SetGrowlDne(AO). DO. Result(short) A04B
short SetHandIeSIze(AO. DO), DO • Result(short) A024

Set1lem(Long. ahort. LDng) A947
Setllemlcon(Long. 8hort.ahort) A940
SetllemMark(long, short.ahort) A944
SetllemStyle(Long, ahort. 8hort) A942
SetIText(long, Long) A98F
SetMenuBar(Long) A93C
SetMenuF1ash(Long. short) A94A
SetOrigin(ahort. ahort) AB78
SetPenState(Long) AS99
SetPort(Long) AS73
SetPortBits(long) A875
SetPt(LDng. short.ahort) ASSO

8hort SetPtrSize(AO. DO). 00 • Result(short) A020
SetRec:t(Long, 8hort.short.ahort. short) ABA7
SetRec:tRgn(Long, ahort.ahort, ahort.ahort) MOE
SetResAttrs(Long. ahort) A9A7
SetReaFileAltra(lhort, short) A9F7
SetRealnfo(long.ahort.Long) MA9
SetReaL.oad(char) A998
SetReal'urge(char) A993
SetStdPraca(Long) ASEA
SetStrlng(long. Long) A907
SetTrapAddreaa(OO. AO) A047
SetWindowPic(long.Long) mE
SetWRefCon(Long. Long) A918
SetWTItIe(Long. long) A91A

ahort SetZone(AO). 00 • Result(short) A01B
ShieldCutaor(Long, ahort. ahort) A85S
ShowControl(Long) A957
ShowCursor() A853
ShowHide(long.char) A908
ShowPenO AS97
ShowWlrldow(long) M15
SizeControl(LDng. short.ahort) A95C

Int SizeReaource(long) A9AS
SlzeWindow(Long, short. short.char) A91D

int SIopeFromAngle(ahort) ABac
SpaceExtra(ahort) A88E
St~Long.LDng.ahort.short) ABBD
Std81ta(long, Long, Long,ahort.Long) ABEB
StdOomment(ahort. short.Long) ASF1
StdGetPic(Long. short) ASEE
StdUne(Polnt) A890
StdOval(Long. Long) ABBe
StdPoty(Long. Long) ABCS
StdPutPIc(Long. ahort) ASFa
StdRec:t(long. Long) MAO
StdRgn(Long. Long) AS01

APPENDIX E: lliE MACINTOSH TRAPS

E·9

Function

Type Trap Name and Argument Trap I.D.

StdRRect(Long. Long,short,short} ABAF
short StdTxMeaa(short. Long.Long. Long, Long) ABED

StdText(shott. Long,Point.Point) A882
char StillOownO A973
short StopAlerl(short, Long) A986
short StringWIdth(Long) Mac

StuffHex(Long. Long) A886
SubPt(Point, Long) A87F

char • SwapFont(Long) A901
SysBeep(short) A9C8
SysError(DO) A9C9
SystemClick(Long. Long) A9B3

char SystemEdlt(short) A9C2
char SystemEvent(long) A9B2

SystemMenu(Long) A9B5
SystemTaskO A9B4
TEActivate(Long) A9D8
TECarrext(Long) A900
TECIick(Point. char. Long) A9D4
TECopy(Long) A9D5
TECut(Long) A9D6
TEDeactivate(Long) A9D9
TEDelete(lAng) A907
TEOispose(Long) A9CO

char A TEGetText(long) A9CB
TEldle(long) A90A
TElnit(} A9CC
TElnsert(Long. long, Long) A90E
TEKey(short. lAng) A90C

char A TENew(Long. long) A900
TEPaste(lAng) A90B
TEScrolJ(ahort, short. Long) MOO
TESetJu8t(short. lAng) A90F
TESetSelect(long.Long.Long) A9D1
TESelT.xt(Long. long, Long) A9CF

short TeetContral(long, Point) A988
TEUpdate(long,Long) A9D3
TextBox(long. Long, long. short) A9CE
TextFace(short) A888
TextFont(short) A887
T.xtMode(short) MSO
T.xtSize(short) MeA

short T~khh(long,8hort.short) AB88
int TickCountO A97S
short TrackControl(long.Point,Long} A9BS
char TrackGoAway(Long, Point) A91E

UnlonRect(long, long, Long) A8AB
UnlonRgn(Long, long, Long) ASE5

short UniquelD(long) A9C1
int UnIoadScrap() A9FA

UnloadSeg(long) A9F1

APPENDIX E: THE MACINTOSH TRAPS

E- 10

Function

Type Trap Name and Argument Trap 1.0.

UnPackBIta(Long. long, short) MOO
UpdateReaFUe(ahort) A999

char- UprStrlng(AO. DO). NJ• Reault (char.) A854
UaeReaFUe(ahort) AS98
ValdRed(long) A92A
ValIdRgn(long) A929

short Vlnatall(AO). DO. Result(short) A033
short VRemove(AO). DO. Result(short) A034
char WaitMouaeUPO A971
short W....Param(AO. 00), DO • Result(short) A038

WriteR8IOUfC8(Long) A9BO
XOrRgn(Long, long, Long) ASE1

IN ZeroSctap() A9FC

APPENDIX F:
SAMPLE PROGRAMS

INTRODucnON

This appendix fists the sourcesfor two test programs. Testlib.cand MacDemo.c.
Testlib.ccalls and tests the libraryfundions in variousways. It is described in Chapter3:
The MacC Run-TIme Environment. MacDemo.c illustrates variousMacintosh features.

Boththese programs are referenced in the warranty. Consulair Corp warrants that Mac
C will compilethe programs listedin this appendix.

" ,

r····································..·..···•··········. */

r
r
r
r
r
r
r
r
r
r
r

testlib.c

MacC UbraryTestProgram.

Copyright (C) 1984 Consulair Corporation.
AllRights Reserved

r declarations .,

#include·stdio.h-

lIdefineCRV

r Code *,
#definetestlibC(routine} testcf(routlne, -routinej; 1/

char pauae(s1r)
{
charc;
If (str)
{
puts("'\t\rTest ,Wj;
puls(8tr};
puts("_?W);
};

If «e-getcharO)-- '.')
{
unlink("testUbFilej;
exit(O);
};

if (atr)printf(w%s\r", (c•• V)? -Yes-:-NoW);

APPENDIX F: SAMPLE PROGRAMS

F-2

elS8printf("\r");
return{c);
}

testcf{routine, routinename)
char rroutine){);
char "routinename;
{
charc;
unsigned short i, j:

if (pau88{routinename) I. V) rslurn;
printf('" It);
for (1.0; 1< 16; i+.1) prinlfC" %2x".0;
prlntf(V);
for (1.0; i < 16: i+-1)

(
prlntf("\r 0/02)(: ., i);
for (j .0; j < 16; j+-1)

prlntf(" %2x", {"routine)(i"16+j});
}

if (pau88(O)I. V) return;
printf("\r\r j;
for (i. 0; I< 16; i+.1) printf("%4x", i);

printf(V);
for (i. 0; I< 16; i+-1)

{
printf("\r %2x: ., i};
for(j. 0; j < 16; i+-1)
{
c. ("routine){i*16+i);
prlntf(" %c", «c <' ')1 «c - 0)1 '::"'): (c> Ox7'f)? '*':c»;
}

}
printf('V'):
}

testStrCroutine. routinename, pstr1, pstr2, count)
char "("routine)();
char*routinename;
char ·patr1, *pstr2;
intecunt;
{
char ·result;
if (pause(routinename) I. 'V') returneD):
printCount(count);
prlntStr(pstr1);
printStr(pstr2};
if (routine - 0) return(1);
result. rroutine)(pstr1. pstr2. count);
printf("\r Rslt:%8", result);
}

printCaunt{c:ount)
intecunt;
{

APPENDIX F: SAMPLE PROGRAMS

F-3

if (count> 0) printf(-V Count: %d., count);
):

print5tr(str)
char ·6tr;
{
if (str) prlntf("\r 5tr: o/oS·, str);
);

main()
{
intc;
char line(MAXlINE]
char c1;
shorts;
int i, x;
FILE file:

puts("This is the Test Program\rltwill echo characters: j;
while «c - getchar(» 1- '\r') putchar(c};
putchar(V);

testlibC(isupper)char isupper(c)- returnnon-zero if 'A' <- C <- rz:
testllbC(islower}char islower(c) - return non-zeroif 'a' <- c oe:. 'z'
testlibC(iaalpha) char isalpha(c)- return non·zero if 'a' oe:. c <- 'I' or 'A' oe:. c <- rz:
testlibC(isdigit)char isdigit(c) - return non-zero if '0' <- C <- '9'
testlibC(isspace)char isspace(c)- return non·zero if c - SPACE, TAB, or Nl (LF)
testlibC(toupper)char toupper(c) - returnc or upper casevalue of c
testlibC(tolawer) char tolower(c) - returnc or uppercase value of c

/I char ·index(s, c} - return 0 or pointer to first occurrenceof c In s
II int Index(s,c) - return -1 or tndexof first occurrenceof c In s
/I char ·rindex(s. c) •• return 0 or pointer to last occurrence of c in 8

/lInt Rlndex(s, c) - return -1 or index of last occurrenceof c in 8

{
char ·6tr;
str - "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyZ0123456789";
if (testStr(O, "index", str, 0, 0»
(
printf("\r baseaddr - %x",8tr);
printf(-V A - %X, a - %X, 9 - %x, . - %x",

index(str, 'A'),
Index(str, 'a1,
Index(str, '91.
index(str, '.1);

)

If (testStr(O, "Index·, etr, O. 0»
{
printf("'\r A - %d, a - %d, 9 - %d, . - %dOl,

Index(str, 'A1,
Index(str, 'a'),

APPENDIX F: SAMPLE PROGRAMS

F·4

Index(str, 'g'),
Index(etr, ','»:

)

If (testStr(O, "rindex",811, 0, 0»
{
printf(-vo baseaddr • %x",str);
printf(-vo Z. %X, a. %X, 9 • %X, •• %x",

rindex(str, 'Z'},
rindexCstr, 'a'),
rindex(str, '9'),
rindex(str, '.'»;

}

if (teatStr(O, "Rindex",str, 0, 0»
{
printfC'r Z. %d, a. %cI, 9. %do .• %d",

Rlndex(slr. '2'),
Rindex(str. 'a'),
Rindex(str, '9").
Rindex(str, ',j);

)
}

/I char *strsave{s) - returns addressof a copyof 8 (useemailocO)
{
char "811;
str - "ABCDEFGHUKLMNOPORSTUVWXYZabcdefghijldmnopqrstuvwxyz";
testStr(strsBve, "strsave", 811. O. 0);
}

/I char "&treat(s1. 12) - appends 12onto11
{
chal "str1. "stI'2;
str1 • "ABCDEFGHUKLMNOPORSTUVWXYZabcdefghijldmnopqrsluvwxyz0123456789·;
etr2• "abcdefghijklmnopqrstuvwxyz0123456789";
str1[26] • 0;
teetStr(atrcat. ".rcatt, Itr1, str2.0);
Itr1 [28J • 0;
testStr(&trncat, "stmear, etr1,str2,26);
}

II char "strcmp(s1, 82) •• oompares .1 to52.

1/returns 0 If equal, -1 if 81 < 82,1 "s1 > 82.
/I char *8IIncmp(81, 82,n) - like strcmp, but compares up to n charadars
{
char "str1, *8Ir2;
atr1 • "ABCOEFGHUKLMNOPORSTUVWXVZ";
11r2 • "ABCOEFGHUklmnopqrstuvwxyz";
If (testStr(O, "8trcmp·, str1,atr2, 0»
{
printf(-vo result. %d\r", strcmp(atr1, st(2»;
printStr(str1):printStr(str1);

printf(-vo result. %d\r",strcmp(str1,str1»;

APPENDIX F: SAMPLE PROGRAMS

F-5

printStr(str2); printStr(str1);
printf("\r result - %d\r". atrcmp(str2. atr1»;

}

if (te8t5tr(0. "stmcmp", strt, $tr2, 1»
{
printf("\r result - %d\r", strncmp(str1, 8tr2, 1»;
printCount(1 0); printStr{str1); printStr(str2};

printf{"\r result - %d\r".strncmp{str1, 8tr2, 10»;
printCount(11); printStr(str1); printStr(str2);

printf("\r result. %d\r", strcmp(str 1, 8tr2, 11»;
printCount(1100); printStr(str1); printStr(str2);

printf("\r result. %d\r", strcmp(str 1, 8tr2. 1100));
}

}

1/char *strcpy(s1, s2) - copy str2 to strl.

{
II char ·8trn~Y(81,82, n) - copies n characters of 62 to st.
II if length a2 < n, then 81 will be null padded.
char "atr1, "8tr2;
atr1 - calloc(100. 1);
str2 • "ABCDEFGHIJKLMNOPORSTUVWXYZ";
testStr(strcpy, "strcpy·, slrl, 8tr2, 0);

free{atr1);
atr1 • caJloc{100, 1);
if (teatStr(st~y, "8trncpy", slr1, 8tr2, 1»

{
frea{str1);
slrl - callac(l 00, 1);
printf("\r Count. 0"); printStr(str1); printStr(str2);

printf("\r result. %8\r., strncpy(str1, str2. 0»;

treeCstr1};
8trl • calloc(100, 1);
printCount(1); printStr(str1); printStr(str2);

printf("\r result. %8v", strncpy(strl, str2, 1));

free(strl);
str1 • calloc{100, 1);
printCount(l 0); printStr(slrl); prlntStr(str2);

printf("\r result. 0/08", strncpy(str1, str2, 10»;
};

frea(str1);
}

/I char ·strlen(s) -- returns length of s
{
char ·str;
str. "ABCDEFGHIJKLMNOPORSTUVWXVZ";
if (tastStr(O. "strlan", str, 0, O)}

APPENDIX F: SAMPLE PROGRAMS

F-8

(
printfC"rre.ult • %d\r",etrlen(Itr»;
prlntff'\r atrlen of EMPTY airing• %d~. Itrlen(j);
prlntf('\r ItrIen ofNUU etrIng • %d". ""en(O»;
);

}

/I CtoPetr andPtoCatr
If (pauu,Strlng Oonveraloni - OR)
{
char-Catr;
atruct P_Str
{
char count;
charcontema[2S5];
} *Pstr;

C81r. -ABCDEFG";
prfntf("'\rC String. %8-, eetr);
Patr • (atruet P_Str *)CtoPetr(Cetr);
prlntfC"rP StrIng • i;
for (i - 0; I < Pstr-:>CQunt; ++1) putchar(Pstr->oontent8{ij);
printf('\rC String. %8*, Cstr • PtoCstr(P8tr»;
};

/lInt atol(atr) - returnsnumeric conve1'8ion ofnumber in str, radix • 10.
/I long 8tOl(atr) -like .,1 but return. long
{
daar-str1. -atr2;
If (pauee,aIoIi - CA)
{
atr1 • "0";
printf('\r\ratoi;;
printfC"r O. %ct*, atoif'Oi):
printff'r 1 • %ct-,atoi,1 i);
printf{"\r 10 • %d*,atoi,10j);
print1('\r 10000. %d*,atoI,100001)i
prIntf("\r 1000000. %d-, 8101(*10000001);
}

}

l/8C8nf(formlt [. pointer}...) - formatted Input(seeKemlghan andRitchie)
/I aacanf(s, formatI.pointer]) - formatted Input(ae. Kernighan and Ritchie)
/I fecanf(flle. formlt [. polnterl) - formafted Input (S88 Kemlghan and Ritchie)
{
daar*st,;
if (paulerlCanfj - CR)
(
putI('\r enter *58789 0123 45872*: 1;

I. 0;x • 0; line[O] • 0; e1 • 0; 8 • 0;
acanf("%2d%3Id"-d%2a%c%2h*, &1. ax, line,&el. &8);
puta("'\r should print i;
puIa('\' • 58, x • 789, atr• 45 e.....72\i;

APPENDIX F: SAMPLE PROGRAMS

F-?

prWfC'r j;
printfri • %d, lC • %!d, Itr • %a, c. %C, 8 • %u\t', I,)c, line,c1, .);

pular'vucanf test: j;
str. "56789012345&72";

I. 0; x • 0; line[O] • 0; c1 - 0; a - 0;
aacanf(atr, "%2d%3d%·d%2a%c%2h", &1, &X, line, &c1, as);
printfr i. %d. lC- %d. atr. %8, c. %c, s • %u\r", i, x. line, ct, 8);

pula("\rfscanf test: j;
file. aeal("testlibFile·. 7);
fputs(str, file);
cloae(file);
file. fopen("testLibFile", "rj;

i • 0; x• 0; line{O] • 0; c1 • 0; 8 • 0;
facanf(fite, "%2d%3d%*d%2s%c%2h",&i, &X.line, &c1, as);
printfr i. %d , X• %d, 8tr. %a, c. %C,8 • %u\r", I, x, Une, et, I);

cIo8e(file};
)

}

I/sprintf(s. format [, arg)...) -- formatted output (8eeKernighan and Ritchie)
{
charatr(MAXlINE+1];
if (pauserSprintfj - CR)
{
i .56; x - 789; c1 • 'a'; & - 72;
strepy(line:45':
sprinlf(str,' - %d, x • %d, atr. %a, c1 • %Co. • %u·, i, x, line,et, .);
prlnlf("\r result: %s", atr);
}

}

II fprinlf(file, format(, arg]...) •• formatted output (see Kernighan and Ritchie)
{
if(paUle(1printf") - CA)
{
1.56;)C • 789; c1 • 'a'; 8 • 72;
strcpy(llne:4S':
file. aeatrtestLibFile", 7):
{printf(file'-i. %d, x. %d, atr. %8. c1 - %C.8. %u·, I, x,line, et.e):
cIo8e(file):
file. fopen("testLlbFUe", "r';
prinlf(" result: ");
while «c. getc(file)) > 0) putchar(c);
cIo8e(file);
)

}

1/int getw(file) -- returns next word from file, Ignoresend-of-file.
if (pause("getw") - CA)

{

APPENDIX F: SAMPLE PROGRAMS

F-8

file. open(,.tLibFile-. 2);
putw(O, file); putw(1,file); putw(2, file); putw{3.file);
putw(SOO. file); putw(501, file); putw(502, file); putw(503, file);
lseek(file, 0, 0);
printf("Th1a ahouldprint:0, 1, 2, 3, 500,501, 502,503\r,:
printfr ,;
prlntf(-%d,-, getw(flle»;
printf(-%d:, getw(file»;
prln1f(- %d'-, getw(file»;
prln1f(- %d,-,getw(file»;
prIntfr %d,-,getw(fne»;
prIntfC" %d,., getw(file»;
printf("%<f:, getw(fUe»;
prlntf("%d:, getw(fUe»;
cIoae(file);
}

IIlnt getl(fll8)- returna nextword from file, ignorea end-of.file.
if (pauae('"getl, - CA)

(
file. openf\eatLbFile". 2);
putt(O, "ie); putl(1. file); putl(2.file); putl(3,file);
putl(SOO, file); putl(501, file);putl(10OS02, file); putl(500503, file};
IIaek{fUe, 0, 0):
prlntf("Thil shouldprint: 0, 1, 2, 3, SOO, 501, 100502, 500503Vj;
prinUr ,;
printfr %d.", getl{file»;
printf("%d:. getl(file»;
printf("%d:, getl(flle»;
printf("%d,",getl(flle)):
prtntf(-%<I,., getl(file»;
printfC" %d:, getl(fil8»:
printfC" %d,",getl(lil8»;
prlntf(·%d,", getl(flle»;
cIoee(file);
}

/I int fgets(flle).

If (pauserrgets, •• CR)
(
charatrtMAXlINE+1];
file. open(-aestl.bFile", 2);
fpute("Jack andJill wentup the hill\rTofetch a pallof wal..... file);
Iaeek(fjle, O. 0);
printf("Thia ahouldprint:Jack andJill wentup the hill',.·);
printfr i;
prln1f(" %a",1oets(str, 100, file»;
printf("\rThis shouldprint:To fetch 8 pail\r"):
printfr ,;
prlntf(-%a-, fgstsCstr. 16, fil.»;
printf("\rFlte is %eat Endof File", feof(file)? -:-Not ,;
printf("\rThia shouldprint: of wateN':
printfr ,;

APPENDIXF: SAMPLE PROGRAMS

, F- 9

printW %s", fgets(str, 16, file»;
printf('\rFile is %sat Endof File", feof(fUe)? "":"NottI);
printf("\mextcall on fgets - %x", fgets(str, 16, file»;
close(file);
}

1/ int ungetc(c,file) •• puts c backontofile (onecharactermaximum).
if (pause("ungetej -- CR)
(
file • open("testLibFile", 2);
write(file. "ABCDEFG", 7);
seteof(file);
Iseek(file, 0, 0);
printf("This shouldprint: ABCDEFG\rj;
~(" j;
c - getc{file);
do
{
ungetc(c,file);
printf("%1c",getc(flle»;
} while«c - getc(file» I- EOF);

close(file);
}

II unlink(name) .. deletesfile identifiedby 'name'fromdisk UNLESS IT ISOPEN.

if (pause("unlink") _ CR)
{
unlink("testlibFile");
file - open{"testLibFile". 0);
if (file>- 0)
(
printfr -- Failed\r");
close(file);
}

else printW - OK\rj;
}

II long read(file.buffer, n) - readsup to n bytesfrom file intobuffer.

if (pauae("readlwritej-- CR)
{
char "atr;
intcount;
str. calloc(100, 1};
file,. open("testLibFile", 2);
write(file, "ABCDEFG". 7);
seteof(file);
Iseek(file, 0, 0);
printf("This shouldprint: 7: ABCDEFG\r");
printf(" j;
printf("o/od", read(file.str, 100»;
printf(":%s". str);

APPENDIX F: SAMPLE PROGRAMS

F·10

prlntf(-v\rf,e8d. fwrle\r1;
free(Itr);
au. caltoc(100,1);
leeek(flie. O. 0):
prlntf("Thllahould print:3: ABCOEFV'):
prtnttr ji
count. f,eed(II', 2. 4. file):
atr[count'"2] • OJ
prlntff·%d-, count);
prlntf(·; %a\re, atr):
aeteof(fll.) :

leeek(flle, O. 0);
fwrllerABCOEFGH·, 2,4, file):
tHek(flle. 0, 0);
prlntf("Thia ahouldprint:4: ABCDEFGH\r'");prIntf, j:
printf(~·,fread(str, 2. 8, file»:
prIntf(e: %a". atr);
cIoae(flle);
}

II longl8eek(flle.offaet. mode) - poaltlof'18 fileaccording to mode:

if (pauee(·...kltellj •• CR)
(
char·atr:
file - open\,estLbFile·. 2);
fwrlte'ABCDEFGH". 2, 4.file):
"'8OI(flle);
".k(file. 0.0);
printf("'Thia ahouldprint:8. O. 4, 4\rj;
printf(" j;
•••k(f1Ie. 0.2);

prIntf("%d", tell(flle»;
Iaeek(file, O.0);
prlntf(-.%d", tell('II.»;

....k(flle.4.1):
printf(". %de, 'en(file»:

lseek(file, 0, 2);
Iaeek(file. -4. 1);
prlntf(", %d", tell(l1l8»;

cloae(file);
}

"lwapeS, b) •• exchangea the contents of the long locations addr8888d by a and b.
if (pause("awap1 - CR)

(
char *ptra, ·ptrb;
plra • (char ")&plrbi
ptrb • (char ·)&ptra;
printf('"PoInt8f8 are: %X,%x\r'". ptra,ptrb)i
swap(&ptra. &ptrb);
prlntf("Swapped Pointersare: %X. %x". ptrs. ptrb);
}

printf("\r%d ". x):
printf("%d ", x);
printf("%d ". x);
printf("%d", x);

if (pauserprintfj -- CR)
{
printi("\rThe following line pairs should match:");
printi{"\r11 1 0 1"):
x - -3+4*5-6;
x-3+4%5-6;
x - -3*4%-615;
x - (7+6)%512;

APPENDIX F: SAMPLE PROGRAMS

F-11

printf("\r\r1 2 3 4 5 6 000000780000000 9");
printf("\r%1d%2d%3d%4d%5d%6d %07d%.()8d %-9d", 1, 2.3.4.5,6,7,8,9,10);

printf("\t\r:heUo, world:");
printf{"\r:%1Os:", "hello. worldj;

printf("\r\r{Slrike a key for more)");

pause(O);

printf("\t\r:hello, world:"):
printf{"\r:%-1 Os:". "hello, world");

printf{"\t\r:hello, world:");
printf("\r:%20s:", "hello, world");

printf("\r\r:hello, world :");
printf("\r:%-20s:". "hello, world");

printf("\r\r: hello, war:");
printf("\r:%20.10s:", "hello, world"};

printf("\r\r:hello, wor :");
printf("\r:%-20.10s:", "hello, wond");

printf("\r\r:hello, wor:");
printf("\r:%.10s:", "hello, world");

printf("\r\,.nEnd of Test***\r(Strke a key to stop)");
paus.{O);
unlinkrtestUbFile");
exit(O);
}

r·······..··········..·_································....•.,r
r
r
r
r
r
r
r

MacDerno.c

r···········....··•··..·....········..····•·•..··············...,
r
This Isa generalMacintosh demonstration program. It openstwowindowa, puts up menu., dispatches on events,
U888 Text Edit,andhandlesdeskaocessorie8. Windowa can be grown,moved,and dOled. It is intended to
demontrate the flavorof MacC Inthe Macintosh environment.

The ptOgram hasa singleconditional compilation flag; If you allowU..WIthStdUb to be defined,you must load
MacDemo withthe Standard Lbrary (or StdLb andthe MaeC Tooldt). If you don' defineit. you only needto load
"MacClIb· with MacDemo. Thlaamallversion (088 the linkfile emaJIDemo.llnk) doesn' printa TTY message out..,
#defineU.eWIthStdLb

r Declarations .,

.Include ltMacCDefa.h"
fidef U..WdhStdUb
.include "Stdlo.h·

#else
extem struct P_Str ·OtoPstrO;
int strlen(str)char ·su;
{Int1.0;while (8tr{i++]); retum1-1:}

#endif
Ilnclude "Window.h"
linc:lude"Events.h"
#include -rextEdlLh"
"nelude "Menu.h"

r Declared Here./

UenuHandIe DeakMenu:
UenuHandle EditUenu;
MenuHandle Menu;

Ittefine Desk.-ID 200
tdefJne Edit_ID 201
#define Menu_ID 202

Rect 8Cr88nRec:t • {O, 0,384, S12};
Rec:t wlndowRectA
Red wlndowRedB

WindowPtr openWlndowO;

tldefine Faile 0
#d8f'118 TrueOXFF

• {SO, SO, 200, 400};
• {SO, 60,210, 410};

APPENDIX F: SAMPLE PROGRAMS

F-13..
r Declared Elsewhere .,

.def UaeWdhStdLib
extem W1ndowPir console; r Stdl.h TTYWindow .,

lendl

r Code */

InltO
{
InitDialogs(O);
TElnitO:
InitMenu8();

r Desk Acce880rymenu./
DeskManu - NewMenu(OeslCfD.CtoPstr('\0241);
AddResMenu(OeekMenu, 'CRVA');
lneertMenu(OeekMenu, 0);

r Edit menu*,
EdltMenu • NewMenu(EdILID. CtoPatr("Edlr);
AppendMenu(EditMenu.

CtoPstrrundo;(-;CutlX;Cq:IyJC;PasteIV;Clearj);
InuItMenu(EditMenu, 0);
Dleableitem(EdltMenu, 0);

r "Menu· menu .,
Menu • NewMenu(Menu_lD, CtoP8tr("Menu1);
AppendMenu(Menu,

CtoPatr(-ftam 1;(DlmmedItem2;ltam 3;(-;ftemSJ5;Qultl.1);
IneertMenu(Menu, 0);

DrawMenuBarO:
)

mainO
(
char Co *etr;
short windowc:ode:
long menuResuIt;

EventRecord event:
TEHandle hTE;
WlndowPtr mDuseWindow. window. windowA, windowS;

if (CatchSignalO) ExltToShell();

Init();

fidef UaeWlthStdl.))

prlntf("\I\r MacC Demo\rCop'fright Consulair Corporation 1984vAIt RightsReserved\r\r");
printf('\rThisis a simpledemonstration pmgram withtwo windowa.\r");
printf("'\rWhen youatrb a key, this TIY window will be eraaed, 'and1:

APPENDIX F: SAMPLE PROGRAMS

F-14

printf("\rTwo windows will be dtsplayed. Typed 1ext will go into the front,;
prlntf(-unne. and youcanswitchbetween 1he twowith a mouse click.,;
printf("\lSe1ec:t Quitfrom the menu or hita mmmandperiod to stop.");

getchar();
DiapoaeWindow(mnsole):

lendif

windowS.
openWindow(&windowRectB. "Demo Window &-.

"\!'Mac C Demo\l\251 ConaulaJr Corporatloti 1084\rAll RightsRe&erved\t\rThIa 18 Window B,;

windcMA.
openWlndow(&wlndowRect.A. "Demo Window A",

"\rMacC Demo\l\251 Conaulair Corporation 1984\rAll Rights Reserved\l\rThis is Window A,;

hTE. 0;
InitCursor();
FluahEventa(-1);
SelectWlndow(windowA); r Generate an activate eventfor window A II'
whlla(True)
(
SyatemTaakO;
If (hTE) TEIdIe(hTE);

If (GetNextEvent(everyEvent, &event»
{
switch(eventwhat)
{
cue autoKey:
c.e keyDown:
(
c • eventmeaaage;
if«event.modifiers & cmdKey»

OoMenu(MenuKey(c»;
..TEKey(c. hTE);

break;
}

case moueeDown:
(
wlndCM'COde. RndWindow(&8V8nt.where. &mouseWindow);

• (FrontWindowO I. mouaeWndow)
If (mouseWindow I- 0)

{
SelectWlndow(mouseWindow);
break;
}

, «(wi'Idow I. 0) && (window - mouseWlndow»

APPENDIX F: SAMPLE PROGRAMS

F· 15

{
If (moue.WIndow I. Q)
{
SetPort(mouseWindow);
8WIch(windowcode)
{
case inContent:
{
Glob8JToLocaI(&event.where);
TEClick(&event.where,

(event.modifiers & shiftKey)?True:FaJae, hTE);
break;
}

case inDrag:
{
DragWindow(mouseWindow. &event.where, &acreenRect);
break;
}

case inGrow:
{
longgrowReeul;
ehortvert. horiz;
growResult-

GrowWindow(rnou.eWindow. &event.where. &sc:reenRed);
horiz• grovtResuIt;
veri - HiWord(growResult);
SIzeWindow(mouaeWindaN. horiz. vert.True);
EraseRect(&mouseWmdow->portRect);
InvalRect(&mouseWmdow->PQrtRect);
StzeTE(MOueeWindow);
DrawGmwlcon(mouBeWindow);
break;
}

case InGoAway:
{
• (frackGoAway(window. &event.where»

(
TEDispo68(hTE);
hTE-Q;
DispoaeWindow(wlndow);
window. 0;
}

break;
}

}
}

}
else

{
awttch (wlndowcode)
{
caeeinMenuBar:
(

DoMenu(MenuSelect(&svent.where»;
break;

APPENDIX F: SAMPLE PROGRAMS

F·16

}
caselnSyaWlndow:
(
SyatemCIIck(&event. mouaeWindow);
break;
}

cuelnDrag:
(
DragWindow(mouaeWindow, &event.where. &screenRect);
break;
}

C888lnGoAway:
(
break;
}

)
}

break;
)

cue updateEvt:
(
TEHandIe temp_hTE;
WIftdowPlr tempWIndow;

SetPort(tempWindow • (WindowPtr)evenlmeaaage);
8egInUpdate(tempWmdow);
temp_hTE • (TEHandIe)GetWRefCon(tempWlndow);
TEUpdate(&tempWlndow->PQrtRect. temp_hTE);
DI1I'IIlI'GrowIcon(tempWlndaw);
EndUpdate(tempWlndow);
tnllk;
)

caae ctlvateEvt:
{
TEHandIe temp_hTE;
W1ndowPtr tempWindow;

SetPort(tempWlndow.(WindowPtr)event.message);
temp_hTE • (TEHandIe)GetWRefCon(tempWlndow);
if «event.modlflers & adiYeFIag»

(
window. tempWlndow;
TEAdhIate(hTE • temp_hTE)
}

.... TEDuctlvate(temp_hTE);
DrawGrowlcon(tempWlndow);
break;
}

}
)

}
}

DoMenu(menureeult)
long menureeu1t;
{
short menulO, ltemNumber;

menulO• HlWord(menureeult};
ltemNumber. menureeult;

APPENDIX F: SAMPLE PROGRAMS

F- 17

switch(menulO)
(
caseMenu_I):

{
switch(ltemNumber)
{
case 1: break;
case 2: break;
case S:break;
cue 5: break;
cu86:
SlgnairAl1 Done';

}
break;
}

case Desk 10:
(-
struct P_SIr Acc8880ryName;
Qetltem(OeskMenu,lIemNumber. &Acce880ryName);
OpenDe&kAcc(&.AccessoryName);
Enabieltem(EditMenu. 0);
OrawMenuBar();
break;
}

cas. EdiLIO:
(
SystemEdil(itemNumber·1);
break;
}

}
HlllteMenu(O);
}

r item1·'
r item2*'
r lIemS*'
r itemS·'
r Item8 is quit *'

Reel *TERect(wlndow. reet)
WindowPtr window;
Red-red;
(
Bloc:kUove(&window-:>portReet, reet.sizeof(Rect»;
redoo>right .. 18; r Make roomfor scroll bar *,
rect->bottom -16; r Make room for scroll bar-'
}

TEHandle openTE{window)
WindawPtr window;
{
Red de.Rect. viewRed;

--)

TEHendle hTE;

TERec:t(window, &vIewRect);
TERec:t(window. &destRect):
destRecUeft +- 4;
return TENew(&deatRect. &viewRect);
}

r Indent a bit./

APPENDIX F: SAMPLE PROGRAMS

F·18

WlndowPtr openWindow(r8Ct, title, Itr)
Rect ·reet;
char *litle, -all';
(
WindowPtr windOW;
TEHandie hTE;
window- NewWindow(O. reet. CtoPatr(title). True.O. -1,True,0);
SetPol1(wlndow);
hTE• openTE(window);
SItWRefOon(window, hTE);
TESetText(atr, atrlen(str), hTE);
TEUpdaIe(&rhTE)->vt&wRec:t, hTE);
l'8turn window;
}

sizsTE(window)
W1ndowPtr window;
{
Reel rect;
TEHand1e h1E;

hTE• (TEHandle)GetWRefCon(window);
TERec:t(window. &red);
BIockMove(&rect, &rhTE)->viewRec::t. alzeo1(Rect»;
,ecllett +- 4; rlndent a bit-'
BIcx:kMove(&rect, &C*hTE)->destRect, aizeofCRect»;
TEcarrext(hTE);
}

	FrontCover
	Chapter1ocr
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13

	Chapter2ocr
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13

	Chapter3ocr
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13

	Chapter4ocr
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41

	Chapter5ocr
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09

	AppendixAocr
	a1
	a2
	a3
	a4

	AppendixBocr
	b1
	b2

	AppendixCocr
	c1
	c2
	c3

	AppendixDocr
	d1
	d2
	d3
	d4
	d5
	d6
	d7
	d8
	d9

	AppendixEocr
	e01
	e02
	e03
	e04
	e05
	e06
	e07
	e08
	e09
	e10

	AppendixFocr
	f01
	f02
	f03
	f04
	f05
	f06
	f07
	f08
	f09
	f10
	f11
	f12
	f13
	f14
	f15
	f16
	f17
	f18

	backCover

