MacC
anad
MacC
Toolkit

A
Programmers
Consulair Corp G UIde

CHAPTER 1:
HOW TO USE THE MAC C COMPILER

INTRODUCTION

The Mac C Compiler translates programs written in the C programming language into
68000 assembly language for Apple's Macintosh 68000 Development System (MDS).
The Compiler is fully integrated with this development system and runs on either a
standard Macintosh (128K or 512K bytes) with an external drive or hard disk, a Macintosh
XL, or a Lisa running MacWorks.

The C language is defined in The C Programming Language by Brian W. Kernighan

and Dennis M. Ritchie. Major differences between Mac C and standard Kernighan and
Ritchie C are defined in Appendix A. The Macintosh 68000 Development System consists
of an Editor, Assembler, Linker, Executive, and Dsbugger. it is available from Apple and
all parts except the Executive and the Debugger are required by Mac C. For information
on the MDS see the Macintosh 68000 Development System Manual or contact

your local Apple dealer. For assembly fanguage information, refer to Motorola's M68000
16/32-Bit Microprocessor Programmer's Reference Manual, fourth edition,

published by Prentice-Hall, Inc. Information on the Macintosh operating system and
run-time library may be obtained from Apple's Inside Macintosh manual.

Some references for the C programming language are: The C Programming

Language by Brian W. Kernighan and Dennis M. Ritchie, published by Prentice-Hall, inc.,
and C: A Reference Manual by Samuel P. Harbison and Guy L. Steele, Jr., published

by Prentice-Hall, inc.

The remaining sections of this chapter provide a brief overview of the C language, and the
sequence of steps the user must follow to compile, link, and execute Mac C programs.

OVERVIEW OF THE C LANGUAGE

The C programming language, originally developed at Bell Telephone Laboratories, was
designed as a systems implementation language for the UNIX operating system. It is
rapidly becoming the dominant systems implementation language over a wide variety of
machines and systems. ‘

C is a low-level programming language in the sense that important aspects of the
hardware can be directly manipulated from within the language. It also includes features
of higher-level languages. C supports a number of data types and offers structured control
flow and a wide variety of operators.

CHAPTER 1: HOW TO USE THE MAC C COMPILER
1-2

Data Types

C recognizes several elementary data types: signed and unsigned characters (8 bits),
signed and unsigned short integers (16 bits), signed and unsigned long integers (32 bits),
pointers (32 bits), single-precision floating point numbers (32 bits), double-precision
floating point numbers (64 bits), and extended-precision floating point numbers* (80 bits).
From these elementary data types, more complex collections can be created: arrays of
objects, each having the same data type, and structures (called records in some
languages) of objects with arbitrary types. Floating point types are only implemented in
Mac C 2.0.

This set of data types covers all the hardware-supported data types of the 68000 and offers
mechanisms for extension to more complex cases. C provides a facility called typedef for
creating new data types.

Operators

C provides many operators to manipulate the elementary data types. These operators are
listed in Table 1-1. C permits extensive manipulation of pointers, i.e., variables that
contain the addresses of operands. In C, the unary operators "*" and "&" can be combined
with arithmetic operators to reference memory in a direct and efficient manner.

Table 1-1. C Operators

Arlthmetlc Operators Unary Operators
+ Addition ¢ Contents of Address
Subftraction & Address of Operand

* Muttiptication - Arithmetic Nagate

{ Division | Logical Negate

% Modulus ~ Ona's Complement
+~+ Increment

Relational Operators - Decrement

> Greater Than {type) Cast (Type Conversion)

>= Greater Than or Equal To gizeof Size of Object (bytes)

< Less Than

<= Less Than or Equal To

== Equal To Assignment Operators

I= Not Equal To - Simple Assignment

&& Logical AND - Add, then Assign

I Logical OR - Subtract, then Assign -
‘- Multiply, then Assign

Bitwise Binary Operators fu Divide, then Assign

& Bitwise AND Yo Modulus, then Assign

| Bitwise Inclusive O <<= Left Shift, then Assign

A Bitwise Exclusive OR S>m Right Shift, then Assign

<< Left Shift &m Bitwise AND, then Assign

>> Right Shift Am Bitwise Exclusive OR, then Assign
fm Bitwise Inclusive OR, then Assign

CHAPTER 1: HOW TO USE THE MAC C COMPILER
1-3

Functions and Program Organization

The basic organizational unit of C programs is the function. Every C program begins at a
function called main. It makes use of both predefined functions and user-defined
functions which fill the same role as subroutines or procedures in other fanguages.
Functions can be compiled independently and later linked togther for execution. C
functions can easily be made both recursive and re-entrant.

All function parameters in C are passed by value, that is, the value of the parameter is
passed to the function. In most languages, parameters are passed by reference and the
address of the parameter is passed to the function or procedure. Since a pointer can be
a parameter value, call by reference is also available in C.

Within functions, control flow statements specify the order in which computations are to
be done. C has a number of structured control flow constructs, including if-else,
else-if, while, do-while, for, and switch-case, as well as three varieties of jumps:
continue, break, and goto.

Storage

The C language allows explicit control over how values are stored and where they may
be used. Variables can be specified as local to a function, global to all functions in a
source file, or global to all functions in a program. When C programs execute, local
variables are stored on a stack. Global variables are stored in a common data area
allocated by the run time library.

THE MAC C SOFTWARE PACKAGE

The Mac C Compiler transforms a C source program into a relocatable object module by
invoking the C compiler when then invokes the MDS Assembiler, if the compilation is
completed without errors.

Writing and Developing Mac C Programs

To write a Mac C application on the Macintosh, Macintosh XL, or Lisa running
MacWorks, you must know how to use:

» Macintosh Finder, a built-in application for organizing and managing
documents (see the Macintosh manual).

» EDIT, the MDS program editor.

CHAPTER 1: HOW TO USE THE MAC C COMPILER
1-4

» EDIT, the MDS program editor.
+ Mac C, the C compiler.
» LINK, the MDS linker.

An understanding of all the MDS applications, however, will aid in program development
and support. Some of these applications and their functions are:

« EXEC, the MDS Executive, makes it easy to move between applications and to
create a batch control file to perform multiple compilations.

« ASM, the Macintosh Assembler, is used to write an assembly language
module to be linked with a Mac C program.

» MacsBug, and Termbug, two of several MDS stand-alone debuggers, simplify
the debugging process.

. » MacDB is a more powerful debugger which allows symbols from a Mac C
program to be used in symbolic debugging (MacDB requires two Macintosh
machines -- Macintosh, Macintosh XL, or Lisa running MacWorks).

« MacNub, a small dsbugging utility, must be run on the machine containing the
program to be debugged by MacDB. When using MacDB it is useful to make
MacNub the startup program. ‘

* RMaker or ASM can be used to create various "resources”. The ASM
RESOURCE pseudo-op allows the inclusion of arbitrary code and data
structures as resources. RMaker allows the creation of linker ".REL" files that
can be included via LINK in a Mac C program. Alternatively, resources can be
merged into an existing program with RMaker.

Iinstalling Mac C

This section describes how to install Mac C on a 128K or 512K byte Macintosh, a
Macintosh XL, or a Lisa runing MacWorks. The installation steps are the same for both
systems. You need Mac¢ C and the Apple Macintosh Development System (MDS) to
complete this sequence.

CHAPTER 1: HOW TO USE THE MAC C COMPILER
1-5

Installation Sequence

1. Make a copy of the disk labeled Mac C. This will become your Mac C working
disk. If you have Mac C 1.5, remove the files Install C and Edit for Ramdisk.

2. Make a copy of your MDS 1 Disk and move the file Install C onto it. If you have
Mac C 1.5, Install C is on your Mac C disk. if you have Mac C 2.0, Install C is
on the Mac C Auxilliary disk. .

3. Run the application Install C. It will print the message "Installation Complete”
when it has finished.

4. Now move the following files from your MDS 1 copy onto the Mac C working
disk:

ASM The MDS Assembler
LINK The MDS Linker

5. You now have a Mac C working disk which is ready to run. Use this disk in
the internal disk drive and put your source disk in the external disk drive.

We at Consulair have worked hard to provide you with the best and most complete C
development system available on the Macintosh. We have decided to sell our product
without copy protection in order to maximize its utility to you, our customer. Please, if
your friends or co-workers wish to use the compiler, abide by the license agreement and
ask them to purchase their own copy. We have a discount schedule for multiple copy
purchases which we will gladly tell you about. We can only maintain our high level of
quality and support if you, our customers, support us and our product.

Thanks for your cooperation!

Making Backup Coples of Mac C and Mac C Toolkit

Once the Mac C working disk disk is ready to go, you may want to make backup
copies of it. Any disk copying method can be used to make a new disk with all the files
from the Mac C disk or Mac C Toolkit disk. You can make backup copies exclusively for
your own use, as stated in the license agreement.

CHAPTER 1: HOW TO USE THE MAC C COMPILER
1-6

Running Mac C

This section describes the commands that should be used to invoke the Mac C Compiler.
It is assumed the internal drive contains a Mac C working disk with the following files:

C The Mac C Compiler
ASM The MDS Assembler
Edit The MDS Editor
Exec The MDS Executive
Link The MDS Linker

System Folder

These files practically fill a Macintosh disk, so all source files should be saved on the
external disk drive. If you have a Macintosh XL or a Macintosh §12K, you may wish to
run with a RamDisk. There is a description of how to set this up on page 1-8. There are
three application programs from which Mac C can be run: Edit, Exec, and the Finder.
How to run Mac C from each of these programs is explained below.

From EDIT

1.

Select C from the Transfer menu.

If the file in the frontmost window has the extension ".c *, the Transfer menu says
"C FILENAME.C,"” and that file will be compiled.

OR:

If there is no file with a ".c" extension, or the FIND/SEARCH window is frontmost,
the Transfer menu simply says "C." Selecting C from the Transfer menu staris up
the Mac C Compiler and allows you to select the file you want. Either select the
name of the file and the Compile menu item in the "standard file" dialog, or
double click the name of the file you want and the compilation will begin.

If there are no errors in the compilation, the intermediate file is assembled
automatically and you are left in EXEC. The intermediate file is named
FILENAME.ASM If errors are found in the compilation, you will be placed in EDIT
with the source file and error file opened. The error file is named
FILENAME.CER. Figures 1-1 and 1-2 show various error messages on the Mac
screen after a successful and then an unsuccessful compilation.

CHAPTER 1: HOW TO USE THE MAC C COMPILER
1-7

From EXEC

1. Select C from the Transfer menu. The Mac C compiler will start and allow you to
select the desired file from the "standard file" dialog.

2. Either select the name of the file and the Compile menu item in the "standard file"
dialog, or double click the name of the file you want and the compilation will
begin. If there are no errors in the compilation, the intermediate file is assembled
automatically and you are left in EXEC. The intermediate file is named
FILENAME.ASM If errors are found in the compilation, you will be placed in EDIT
with the source file and error file opened. The error file is named
FILENAME.CER.

From the Finder
Double click the "C” icon, to start the Mac C Compiler. Then follow the instructions for
running Mac C from EXEC.

How To Stop Mac C

To stop Mac C during a compilation, hold down the Command key while typing a period
(.)- This combination is detected by Mac C at the following points:

* Atthe end of the preprocessor pass.

» Whenever an include file is closed.

» Whenever an error is encountered.

« At t!;e end of compilation.
The stop command only needs fo be issued one time because it is saved until the next
point at which Mac C looks for it. When Mac C recognizes the stop command, all files

are closed and control is immediately passed to Exec. ASM is not called even if the
compilation is successful, and EDIT is not called if there were syntax errors.

CHAPTER 1: HOW TO USE THE MAC C COMPILER
1-8

Figure 1-1. Mac C Screen After Successful Compllation

I Mac C B

#8888 Mae C Compilep £ 2 2 2 2

Copyright 1084 by Comsuiair Corporation. Al rights reserved.
Varsion 1.01, Serial *11169

Coepiling Neclheno.C

include NACCDEFS.H INTERNAL TABLE UTILIZATION -

Inciude HINDOW.H
Include (QUICKDRRM.H) SGE CROPTER 1, COMPILER OFTIONS

Inciude ((MACDEFS.H))
Inciude EVENTS .M
Iinclude TEXTEDIT.H

H

[o‘aoumn 432/2720 Local Z606/000 Typa S44/904 Typade! 5547920
Struct 352/573 Field 3624/6325

Figure 1-2. Mac C Screen After Compilation with Errors

NS Moc ¢ T

- sauus Mac C Compiler ###s#

Copyright 1964 Consul Corporati All rights reservad.
' By Io:“; 0, s«%::n'lllbﬂ »

Compltling daso progrem.C

: :i'.p?i MG S LINENUMBER IN S0UELE FILE.
: for (‘;' ,,w IQC",OH)" -,g/
Fhaad m“"’ﬂ .{" (Line %20, Biock th=1)

MISSINE . iN LINE AZovE. e REVIDVSLY. O ,
i p;f WARNING ONLY B :
L= (2/130+ 110 1212002 1
;#5% larning -— Undef ined Ua*twlc { »=s (L ne 828, Block Depth = |

*
s
’
»

CHAPTER 1: HOW TO USE THE MAC C COMPILER
-9

Using a Ram Disk

If you have a Macintosh with at least 512 K bytes of memory, you may wish to run
keeping Mac C on a Ram Disk. On a Macintosh without a hard disk drive, this will free up
about 110K bytes on your internal drive. After you create a Ram Disk (using one of the
commonly available Ram Disk programs) with at least 115K Bytes of available storage,
insert a copy of your Mac C working disk into the internal drive, and move the file

"C" to the Ram Disk. You may now delste it from your working disk copy (be sure to save
it elsewhere first!)

Use the Resource Editor (which is available from Apple) to modify the the EDIT transfer
menu. Precede the "C" transfer menu item by the Ram disk volume name and a colon.
Be sure to include any leading or trailing blanks in the volume name. You may now call
the Ram Disk copy of Mac C from EDIT. To call Mac C on a Ram Disk from an EXEC file,
you must precede the "C" in the Exec file with the volume name and a colon. You must
use the EXEC shipped with the Mac C disk. It will not work with the normal MDS EXEC.
For your convience, your Mac C Auxilliary disk (or Mac C disk for version 1.5) contains a
copy of EDIT which has been modified to run Mac C from a Ram disk volume named
"RamDisk " (note trailing blank).

Mac C Complier Options

This section describes the Mac C Compiler options that can be changed using either
menu items or a preprocessor directive in the source file. Some options pertain to a
particular compilation and others are specific to a source file.

_Compllaﬂon Specific Options

Options pertaining to a specific compilation of a file are set using the Options item in the
menu bar. As with all standard Macintosh applications, you must select the Cancel item
in the standard file window before the menu bar can be used. Then, to retum to the
standard file window, select Select File from the Flle menu heading. The options
available under the Options menu are: '

Warnings Are Errors [Default = on]
Treat any warning messges, such as incompatible pointer type, as errors.

CHAPTER 1: HOW TO USE THE MAC C COMPILER
1-10

Source in ASM J[Default = off]

Interlist the source file in the assembly language intermediate output file. The source
statements are written as comments, followed by the generated assembly code. Error
messages also appear in this file, so this option is sometimes useful for finding difficult
syntax errors.

Verbose Errors [Default = off]
This option causes the Compiler to put more information in error messages, such as
line numbers and commants for errors in included files.

List Token File [Default = off]

This option causes the compiler to generate a text file named "C.LIST" from its internal
token file. This file is the C program with all comments removed and all defines
expanded. This is useful for finding errors in complex macros, since it shows what the
Compiler is actually compiling. A few lines inserted at the beginning of this file indicate
the settings of certain options.

Program Specitfic Options

These options control the way a sourcs file is interpreted by Mac C, or certain compilation
time parameters which are specific to the source file. They are set by incorporating an
Options command in the source file (options set in include files are considered carried
through to the source file). Any number of options may appear on the same line,
separated by spaces. The format is as follows:

#Options <option> <option> . . .
where <option> ::= <Flag Option> | <Allocation Option>

Flag Options

Flag options set and reset Compiler flags and are always a single alphabetic character
which may optionally be preceded by "+" (on) or "-" (off). If the sign character is omitted,
the default is on. The flag options are:

A Convert function arguments to type int [Default = on]

This flag, which is normally set to on, controls whether or not the Compiler converts
char and short arguments in a function call to type "int". Setting this option to off
disables this conversion and results in a smaller program. Be careful, though, since
this is dangerous.

a

1- 11

B List Token File [Default = off]
This is the same flag that is controlled by the List Token Flle menu option.

E ErmorFlag [Default = off]
This is the same flag that is controlled by the Verbose Errors menu option.

H Source in ASM [Default = off]
This is the same flag that is controlled by the Source in ASM menu-option.

I Integer size [Default = on]

The default is the standard Mac C integer size of 32 bits. Pascal, however, uses 16-bit
integers and the architecture of the 68000 itself suggests a 16-bit integer size. Setting
this flag to off(-I) causes ints to be compiled as 16-bit quantities, and shorts to be
compiled as 8-bit values. The resulting code is faster and more compact, but it is less
compatible with other 68000 compilers. The "standard" C Library assumes a 32-bit
integer size for all routines including scanf and printf. Longs or explicit type casts
must be used when calling these routines with 16 bit integers.

N No automatic trap recognition ’ [Default = on]

Turning off this option (-N) suppresses the scanning of Macintosh trap names when
compiling a program. If this option is off, trap names are no longer defined as normal
functions, so they can be used in a program as function or variable names. Magcintosh
traps may still be called, but each name must be preceded by "#". The name is, in this
context, case insensitive. Otherwise the call is the same. This speeds up compilation,
especially if traps are not baing used in a source file, and makes it easy to distinguish
between normal function calls and Macintosh trap calls in a program. '

P Padding Flag [Default = on}

This flag, which is normally set to on, controls whether or not Mac C inserts padding
bytes into structures. These padding bytes force even byte alignment for shorts, longs,
subordinate structures, and structure sizes. If it is turned off, structures will be compiled
precisely as they are declared, so the structure declaration must be written with items
properly lined up on word boundaries.

W Warnings are Errors . [Default = off]

This is the same flag that is controlled by the Warnings Are Errors menu option,
except that its sense Is reversed, i.e. setting this flag (+W) makes warnings only
warnings, and clearing it (-W) makes them errors.

CHAPTER 1: HOW TO USE THE MAC C COMPILER
1-12

Allocation options

Allocation options set the symbol table sizes used for compiling a source file, and the
index register which is used for accessing the Global Data Segment. The general form of
an allocation option is:

<letter> = <number>.
The Global Data Segment index register is set by:
R = <number>

<numbers> is 2, 3, 4, or § for registers A2, A3, A4, or A5, respectively.
The Global Data Register is AS by default, and should only be changed
for special applications such as desk accessories. (This requires the
Consulair Desk Accessory Maker.)

Symbol table sizes are printed on the screen and written to compiler error files at the end
of a compilation. If a compilation causes a symbol table to overflow (this will only occur on
a 128K byte Macintosh), examining the table size message will reveal which table has
overflowed. The table size message has the format "Table Used/Allocated", where "Table"
is Global, Local, Type, Typedef, Struct, Fleld, or Float and "Used" and "Allocated”
indicate how many bytes were allocated for the table and how much of that space was
actually used. The table which overflowed is usually that for which "Used” and "Allocated"
are nearly the same size.

Note that the size of Global (the symbol table used for global and static names) may not
be set. After all other tables are allocated, Global is automatically assigned any
remaining storage. This means the Global auocatlon can be increased or decreased by
altering the allocations for other tables.

D = <number>
Set Typedef Symbol aliogation (default = 920, size factor = 10).

F = <number>
Set Field Symbol allocation (default = 5026, size factor = 5).

L = <number>
Set Local Symbol allocation (default = 920), size factor = 4).

Q = <number>
Set Float Literal allocation (default = 300), size factor = 10).

CHAPTER 1: HOW TO USE THE MAC C COMPILER
1-13

S = <number>
Set Struct Symbol allocation (default = 575, size factor = 4).

T = <number>
Set Type Storage allocation (default = 904, size factor = 10).

Mac C automatically sizes symbol tables for use with RAM disks. The algorithm for
allocating symbol table space for machines with more than 128K bytes is:

The total free memory beyond that allocated to the symbol tables by the deafauit
settings is calculated, and the size of the file buffers is subtracted (about 16K bytes
on the 512K Mac). This extra memory is allocated to the symbol tables in roughly the
following proportions:

Local Storage: 4/60
Type Storage 2/60
Typedef Storage: 6/60
Struct Storage: 4/60
Field Storage: 10/60
Float Literal Storage: 10/60
Global Storage: 24/60

The maximum size of any symbol table is limited to 32000 bytes. The #Options
allocation sets the minimum size in bytes for the indicated symbol table.

RUN-TIME LIBRARY FILES

The minimum run-time library required by a Mac C application is contained in the file
named MacCLIib. It is about 700 bytes in length, and contains the code to do system and
data initialization, bit field operations, and various arithmetic functions. Mac C 2.0 also
requires Floatlib. This minimum library is sufficient to allow a Mac C application access
to all Macintosh Toolbox, Quickdraw, and Operating System ROM routines. To gain
greater functionality, Mac C programs may be linked with other librarys (the "standard” C
library and the "Mac C Toolkit"}, which are described in Chapters 3 and 4.

CHAPTER 2:
COMPILER CODE GENERATION

INTRODUCTION

The Mac C Compiler translates programs written in C into 68000 assembly language.
Consequently, the characteristic features of C programs--data types, operators, control
flow statements, functions, and storage classes--are mapped into the set of 68000
operators and operands. When debugging a C program, it is usually necessary to look
at selected sections of the assembly code that were produced, since most debugging
facilities operate at the assembly language level. This chapter therefore explains
various code strategies of the Mac C Compiler.

REPRESENTATION OF DATA TYPES

The fundamental data types in C are characters, signed and unsigned integers of
several lengths, and floating-point numbers (available in Mac C 2.0). From these basic
data types more complex collections can be created: arrays of objects (each having the
same data type), and structures (called records in some languages) of objects with
arbitrary types.

The mapping provided by Mac C between C data types and 68000 data types is as
shown in Table 2-1.

CHAPTER 2: COMPILER CODE GENERATION
2-2

Table 2-1. Data Types

char An 8-bit value definad by the ASCll character set,
or an 8-blt gignad integer in the range -128 to 127.

y A
1< T —

(NOTE: S = Sign Bit)

unsigned char An 8-bit unsigned integer in the range G to 255.
y A
I

short Int A 16-bit signed integer in the range -32768 to +32767.
b - I— |
-1 I— |

unsigned short Int A 16-bit unsigned integer In the range 0 to +85536.
5 9
I

int A 32-bit signed integer in the range -2,147,483,848 1o
+2,147,483,647.
3]
=1 |

unsigned int A 32-bit unsigned integer in the range 0 io +4,204,96%295.
31 [+}
j]

long Int A 32-bit signed integer in the range -2,147,483,848 to
+2,147,483,647.
at Q
5i |

unsigned long Int A 32-bit unsigned integer in the range 0 to +4,294,967,265.

Y [
L |

CHAPTER 2: COMPILER CODE GENERATION
2-3

Table 2-1. Data Types, continued

comp A 64-bit signed integer (available with floating point only).
£3 -0
18] J

float A 32-bit real number in the IEEE Fioating Point format.
3130 2322 ']
S| ianficand]

double float A 64-bit real number in the IEEE Floating Point format.
6362 5251 0
s exponent L_significand

extendad float An 80-bit real number in the IEEE Floating Point format.
7978 £463]
LSl exponent | signiticand]

pointer An unsigned 32-bit integer in the range 0 to 4,294,967,295
K< b]

l |

All variables except char will be word-aligned in memory.

REPRESENTATION OF OPERATORS

The C operator set was given in Table 1-1 in Chapter 1. Expressions involving these
operators map efficiently onto the set of operators provided by the 68000.

Table 2-2 shows the same operators as Table 1-1, but shown along with each operator
is the corresponding 68000 operator that is produced by the compiler.

CHAPTER 2. COMPILER CODE GENERATION

2-4

Table 2-2. C Operators and 68000 Operators

Arithmetic Binary Operators Unary Operators
+ ADD* * (An)
- sup* & LEA, PEA
* MULS", MULU*, LSL - NEG
/ DIVS*, DIVU, LSR, ASR ~ NOT
% DIVS*, DIVU®, AND -+ ADDQ, ADD
- SUBQ, SUB

Relational Binary Oparators Assignment Operators
> These operators all have the - MOVE
>= same general format: - ADD
< CMP expression - SUB
<= conditional branch ‘m MULS, MULU, LSL
- /= DiVS, DIVU, LSR
lm where branch = Yom DIVS, DIVU, AND
a& BNE, BEQ, BLE, BGE, <<m LSL
[BGT, BLT, Som LSR

BHI, BHS, 8 AND

BLO, BLS Aw EOR

I= OoR

Bitwise Binary Operators
& AND
| OR
A EOR
<< LSL
>> LSR
* Also map into subroutine calls

REPRESENTATION OF CONTROL FLOW STATEMENTS

C includes three categories of instructions for altering the flow of control within the
program: repetition statements, conditional branch statements, and unconditional
branch statements. The three statements to control repetition are the for statement, the
while statement, and the do-while statement. The conditional statements are If-eise
and switch. An unconditional branch is accomplished by using the goto, break, and
continue statements.

The general code generation strategy for the repetition and conditional branch
statements is a test followed by a conditional jump. The differences in the statements
result in different positions for the test and difterent targets for the jump. Table 2-3 shows
the skeleton code produced by the control flow statements.

Table 2-3. Control Flow Statements

Control Flow Statement

if (expression)
statementd;
else
statement2;

Skeleton Code

CMP expression
Branch if false to LABEL1
statement1
BRA LABEL2
LABEL1: statement2
LABEL2: (next statement)

while (expression)

LABEL1: CMP expression

CHAPTER 2: COMPILER CODE GENERATION

2-5

statement; Branch if false to LABEL2
statement
BRA LABEL1
LABEL2: (next statement)
do LABELY: statement
statement CMP expression
while Branch ¥ true to LABEL1
{exprassion); (next statement)
for {expressiont; expression2; expression
expression3) LABEL1: CMP expression2
statement; Branch if false LABEL2
slatement
expression3
Branch to LABEL1
LABEL2:
goto (label); BRA LABEL
break; BRA LABEL
continue; BRA LABEL

. CHAPTER 2: COMPILER CODE GENERATION
2-6

Table 2-3. Control Flow Statements (cont'd)

Control Flow Statement Skeleton Cods

switch(value) MOVE value,DO
BRA LABEL1
case vi: LABEL2:
statsment statement
case v2: LABEL3:
statement statement
break; BRA EXITLABEL
ete.
default: DEFAULTLABEL:
statement statement
BRA EXITLABEL
LABEL1:
CMP #v1,00
BEQLABEL1
CMP #v2,D0
BEQLABEL2

aic.
BRA DEFAULTLABEL
EXITLABEL:

OR (lf values are close together, the casses are sorted and the code is)
LABEL1:
SUBQ #lowerbound, DO
BLO DEFAULTLABEL
BEQ LABELn1
SUBQ #deltat1 DO
BEQ LABELn2
SUBQ #delta2,D0
BEQ LABELn3
BRA DEFAULTLABEL
EXITLABEL:

OR (H there are lots of values closs together, the cases are sorted and the code is)
LABEL1:
SUBQ #owerbound,DO
BLO DEFAULTLABEL
CMP #upperbound,DO
BHI DEFAULTLABEL .
LSL#1,00
MOVE LABEL1{D0),DO
BRA LABEL1(DO)

LABELL:
DC.W LABELn1-LABELt
DC.W LABELn2-LABEL!
DC.W LABELn3-LABELt
etc.

EXITLABEL:

CHAPTER 2: COMPILER CODE GENERATION
2-7

REPRESENTATION OF FUNCTIONS

This section describes the Mac C Compiler's implementation of function calls. In the
following discussion, the term parameter refers to the variable (enclosed in parentheses)
named in a function definition; the term argument denotes an expression that is part of a
function call.

Calling Conventions
Whenever a function is used in a C source program, as, for example,
func (a,b,c,...,h,i,})

the Compiler produces a standard sequence of assembly language instructions, called
the function calling sequence.

The Mac C function call mechanism has been designed to be fast and easily understood
by assembly language routines, and to allow assembly language routines to be called
without incurring overhead. Register arguments are saved on the stack by the prologue
code in the function being called. Assembly language routines, of course, normally do
not save the arguments, but simply leave them in registers.

An alternate parameter passing strategy is employed when a function parameter list
contains one or more parameters which is either a floating point value, or a structure
value whose size is greater than four bytes. In these cases (and when a function is
specified as having a variable number of parameters), the parameters are pushed onto
the stack before the function call in reverse order of their appearance in the argument
list. Please see Appendix A for details on declaring functions with a variable number of
parameters.

Figure 2-1 illustrates the normal C run-time stack structure during the calling sequence.
Figure 2-1a shows the stack before a function call is made. Register A7, the stack
pointer (SP), points to the topmost element on the stack. Register A6 is the local frame
pointer. It always points to the reference point of the stack frame for the currently
executing function. The stack frame is the area of the stack accessible during the called
function's execution. Figure 2-2 shows the equivalent stack structure for functions using
the alternate calling sequence.

0

A7

Aé>

(a)
Before Call

CHAPTERZ; OOMPI.EROODEGEPERAWN(
2-8 |

e L e L
rd ir £
A7 | Return A? -»l Locals | (
h 'r ateg ? (
i Reserved
3 Reserved (
AG | 0 A6 {
Return |
h |
A6 3 (
j i
|
) (O] {
After Cell After Prologue i

Figure 2-1. Run-Time Stack Format (Normal)

I

4 £

AT

Ab6>

()
Befere Call

rd 4 ° 4 4]:0 f‘
A7 5 Return A1) e ¥ (
3 \
b Reserved | ‘
: Reserved '
M A6 = | 014 A6 |
; th:n
A6 h » (
P —————
c |
‘ |
) (e) (
After Call After Prelogue r

Figure 2-2. Run-Time Stack Format (Alternate)

CHAPTER 2: COMPILER CODE GENERATION
2-9

The normal function calling sequence begins by pushing the surplus arguments (h, i, j)
from right to left, onto the stack, and then loading the first seven arguments (a, b, c, . . .,
@) in registers DO-D6. The alternate calling sequence pushes all arguments onto the
stack at this point, and leaves the register contents undefined. Next, a JSR instruction
pushes the retum address onto the stack and puts the address of the called function in
the Program Counter. Figure 2-1b illustrates the stack at this stage of the calling
sequence. Note that A7 now points to the last item pushed onto the stack.

Because the 68000 stack grows toward lower memory addresses, the last argument to
be pushed on the stack will have the lowest address.

The actual function being called is compiled into a standard form. At the beginning of the
compiled code for each function is the prologue.

LINK A6 #-n ; Allocate space for parameters
; and/or locals
MOVEM.L DO/D1/.../A6,-m{AB) ; Move parameters onto stack

The 68000 LINK instruction pushes A6 onto the stack, loads the value of A7 into A6 and
then decrements A7 by an amount specified in the instruction in order to create space for
the called function's local variables (refer to Figure 2-1c¢).

When the function reaches a return statement or when control reaches the end of the
function, the compiler produces a function epilogue. These instructions restore the stack
pointer and frame pointer to the values they had before the LINK instruction (Figure
2-1b). and return control to the caller. The epilogue code is as follows:

UNLK A6
RTS

A function that either contains only inline assembly statements, or does not produce any
executable code does not have a standard prologuse or epilogue. It is simply ended by:

RTS

return statements within a function body produce the standard epilogue after the values
to be returned are loaded into the return register. Only the first return statement will
produce an epilogue. Other returns branch to the epilogue emitted by the first.

Functions returning floating point and structure values (where the size of the structure is
larger than four bytes) are handled slightly differently . Before the arguments are pushed
onto the stack for the function call, the address in which to store the result of the function
is pushed onto the stack. The return statment in the function then uses this location to
store the result of the function before returning with the normal epilogue.

[}

CHAPTER 2: COMPILER CODE GENERATION
2-10

Argument Passing

In C, all arguments are passed by value, i.e., the value of an argument, rather than its
address, is passed to the function. When "call by reference” is required, the ampersand
("&") operator may be used with the variable name to pass its address.

Passed arguments of types char and short are expanded to type int and arguments of
types float, double, and comp are expanded to type extended. Structures which are
less than 5 bytes in length are passed as register values, and larger ones are passed on
the stack. A function name appearing as an argument is converted to the address of the
named function, and, an array name is converted to the address of the first element of the
array.

Register Conventions

Called assembly language routines must observe the following conventions with regard
to register usage:

1. The contents of registers A5, A6, and A7 must be preserved (saved and then
restored). If a function is to be called from the Macintosh ROM (as in the case of a
control definition or action procedure), registers D3-D7 and A2-A7 must be
preserved.

2. The called routine may address only those portions of the stack that are at lower
addreses than the current stack pointer value at the time the function is entered.

3. Register DO contains the result of the function call if the result is a value; A0
contains the result if it is a pointer.
REPRESENTATION OF STORAGE CLASSES

The C concept of the storage class actually involves two different but related notions: the
scope of a variable, and where that variable is stored.

Variables can have two possible scopes:
+ Available to all functions in the program (global scops).

+ Available only within the defining function (local scope).

CHAPTER 2: COMPILER CODE GENERATION
2-1N

There are three places where variables can be stored:
+ In aregister (up to 7 register variables are allowed in Mac C).
» On the stack, allocated dynamically (automatic storage).
* Inthe Global Data Segment produced by the compiler.
Combining scope and storage location yields four difterent storage classes for variables:
» Register variables may be stored in registers. Their scope is local.

* Automatic variables are stored on the stack frame. Their scope is
local.

+ External variables are stored in the Global Data Segment. Their scope
is global.

« Static variables are stored in the Global Data Segment. Their scope is

local to the source file (external statics) or procedure (internal
statics) in which they are declared.

STORAGE OF VARIABLES
The Mac C strategy for allocating storage for variables is fairly simple:
» For externals, storage is allocated in the Global Data Segment.

» For static variables, storage is allocated exactly as with externals,
but these variables are not declared external to the linker.

» For automatic variables, storage is allocated on the stack frame when
the function is called. Storage is reclaimed at the return.
VARIABLE ADDRESSING
All local data is allocated on the stack, and is referenced by an address of the form:

-n(A8)

CHAPTER 2: COMPILER CODE GENERATION
‘2-12
where "n" (a decimal number) represents the offset of the data from the stack base, A6.

Global data is allocated in the Global Data Segment which is normally pointed to by AS,
and is referenced as:

name(AS5)
or as:
name+n(A5)

where name is the C identifier for the data reference, and +n is the optional offset from
the identifier (if any). For example, the lines:

inti, iarray[10];
i - iarray(5];
would produce:

MOVE.L iarray+20(A5},i(A5)

Mac C allows the specification of a register other than A5 as the global data base
register to accommodate special applications such as desk accessories (when used with
the Consulair Desk Accessory Maker) which may not use storage relative to A5. See
Chapter 1: The Mac C Conipiler Options.

STORAGE OF CONSTANTS

Constants, other than those used in initializing global variables, are

normally stored in the code segment. They are stored either as explicit

operands of 68000 instructions (e.g., MOVEQ #1,D0), or as data after the final
executable instruction produced from a source file. String and floating point constants
are of the latter form. This means that if the address of a string constant is saved and
then the segment which contains the string is unloaded, the address will no longer be
that of the desired string. Normally, this is not a problem because a segment which is in
the calling chain to another segment may not be relocated.

CHAPTER 2: COMPILER CODE GENERATION
2-13

A NOTE ON GLOBAL INITIALIZATION

String constants used to initialize global pointer variables are stored in segment 1. The
warning about string constants in the section, STORAGE OF CONSTANTS, applies to
these constants. If segment 1, which contains the string, is unioaded, the address stored
in the global variable will no longer point to the string. There is a feature/bug in the
storage of global string constants. If two global variables are initialized as pointers to the
same literal string, the Assembler allocates a single copy of the string in code segment 1,
and both global variables are set to point to that string. This is done as a space saving
measure, but it has a potentially unpleasant side effect since changes to the string will be
reflected through both pointers.

CHAPTER 3:
THE MAC C RUN-TIME ENVIRONMENT

INTRODUCTION

The term run-time environment refers to the hardware and software configuration of the
target machine in which a program will actually execute. For the Mac C Compiler, the
run-time environment is the Macintosh, Macintosh XL or Lisa with MacWorks, plus its ROM
software, and one of the Mac C run-time libraries.

This chapter provides information about the major run-time environment features,
including the Mac C-to-Macintosh run-time interface (Macintosh Toolbox Traps), the Mac C
run-time libraries, and a way to handle run-time errors with signals.

THE MACINTOSH RUN-TIME INTERFACE

The Mac C-to- Macintosh run-time interface is defined by a group of ".h" (included header)
files and the Mac C library functions and global variables. The ".h" files define Mac C and
Macintosh system values and structures. These, along with library functions, are
discussed in the next section (on the run-time library) and in the section on Mac C Traps.

THE MAC C RUN-TIME LIBRARIES

The Mac C run-time Libraries are a collection of functions that provide run-time support for
input/output, initialization, and certain mathematical calculations not provided by the
68000 instruction set. All library functions assume that the integer size is 32 bits (the
standard default in Mac C).

Mac C programs must be linked (at Link time) with a Mac C run-time library. Since the
linker used on the Macintosh does not allow the selective linking of routines from a library,
the programmer must select a library containing the functions his program requires from
the available Mac C runtime libraries.

The libraries shipped with Mac C are:

The minimum Library

The "standard" C library

The Mac C Toolkit

The "standard” C library and the Mac C Toolkit

CHAPTER 3: THE MAC C RUN-TIME ENVIRONMENT
3-2

All of the Mac C libraries use the label start as the normal entry point. Link control files for
applications using the normal libraries should specify start as the starting label for the
application (just include the line "Istart™ at the beginning of the link control file).

The Mac C Toolkit includes the sources to all libraries, which aliows the programmer to
selectively build his own libraries by removing or modifying routines from the standard
ones. The only requirement is that the global initialization code be executed when the
application is started, and the arithmetic library routines be provided for programs
requiring them. These functions are normally done in the minimum library file, MacCLib
(Source file MacCLib.ASM).

Use this as a guide for selecting the library you want to use:

« If you are writing a pure Macintosh application or a desk actessory
(requires the Consulair Desk Accessory Maker) use the minimum
library (files: MacCLib, Floatlib for Mac C 2.0). This allows full access to the
Macintosh ROM routines.

+ If you are using the functions provided in the "standard” C library, e.g.
printf, scanf, fopen, fclose, strien, etc., use the "standard™ C library
(files: StdLib, StdFilelO, StdlOPrim, Fioatlib, Floatconv for Mac C 2.0).

+ If you need the increased functionality of the Mac C Toolkit, e.g.
asynchronous /O, serial port I/O, string routines, use the Mac C
Toolkit (see chapter 4).

« If you need the functionality of both the "standard” C library and the
Mac C Toolkit, then use them both (use the file StdLib in place of
MacCLib with the Mac C Toolkit. See chapter 4).

To use the routines in the “standard* C Library, the stdio.h header file must be included at
the start of a source file. The header files required for Mac C Toolkit routines are described
in Chapter 4.

All programs must contain a single function named malin, which is the starting location for
the program. Before calling main, Mac C initilization code initializes the Macintosh
display by calling _InitGrat , _InitFonts, and _InitWindows. Mac C stores the address
of the Quickdraw globals in an external global named QD which is defined in MacCLib or
StdLib and may be used by your program.

CHAPTER 3: THE MAC C RUN-TIME ENVIRONMENT
3-3

Referencing Functions

The first use of a function in a source file determines its type. All functions are of type Int
unless otherwise specified by a function definition or an external function declaration (for
functions defined in other source files or a library). An external declaration is therefore
required for any function which is referenced before its definition in a sourcs file (or is
defined in another source file or library) if its type is other than int. This Is critically
important when using functions returning pointer values, since they return

their result in register AO. If they are not declared as a functlon returning a
pointer, the resuit will be presumed to be in register DO, even If the function

call Is cast to be of the proper type.

The "standard” C Library

The "standard" C library contains a set of functions which are commonly implemented to
support /0, memory, string, and character operations in C. Since many of the functions
use the display for teletype-like character input and output, Mac C implements a teletype
simulation window for the standard library. This window is created by the initialization
code before the function maln is called. It is possible to suppress the creation of the
teletype simulation window by specifiying altstart instead of start as the starting label in
the link control file. Of course, you may not use any of the functions requiring the teletype
simulation window if it does not exist, and unpredictable things will happen if you do. The
WindowPtr for the teletype simulation window is kept in the global variable console.
You may use this variable to change the size of it, show or hide it, destroy it, or move it.
Call the global routine SetTTY whenever you have changed its size, or when you wish to
activate it. Other windows may be made the current teletype simulation window by using
SetTTY. You can have multiple teletype simulation windows, but only one may be
currently active, and everything written to stdout will go there (unless stdout has been
changed by your program).

When using the "standard" C library (including printf), you must include the header file
stdlo.h at the start of your source file, and you may not use the -l (16 bit integers) compiler
option. stdlo.h contains the external declarations required for functions in the "standard"
C library, and definitions for the folowing values:

ERROR
« EOF

L d

NULL

MAXLINE

CHAPTER 3: THE MAG G RUN-TIME ENVIRONMENT
3-4

The type FILE is also defined in stdio.h. Files should be typed as FILE *. Internally, the
Mac C library identifies them with short values. There is no difference at the library level
betwaen files openead by the fopen function and those opened with the creat or open
functions. The FILE * definition is included as an aid to porting programs from other
environments. Do not assume anything about the values of FILE reference numbers. For
example, using 0 and 1 for console input and output (which works for many UNIX systems)
will not work in Mac C: Both console input and output are 0. Using stdin and stdout,
however, will work.

Testlib

The Mac C Auxilliary disk contains a program in the "Demo Folder” named "Testlib." This
source code may serve as a useful reference since it contains examples of how the library
routines are called. A listing of the program can be found in Appendix F.

"Testlib" calls and nominally tests the library functions in various ways. When it asks if you
want to test a function press, "Retumn” for yes, "." to return to FINDER, and any other key for
no. Hf you havs trouble with one of the library calls, look at "Testlib.c" to see how it is used
there.

Testlib.Job and Testiib.Link may be used as prototypical *job" and "link" files,
respectively. The Testlib.Job file, when run from the Exec, will compile, link, and run
Testlib.

Standard C Library Routines: A Summary

The following pages offer a summary of the "standard” C run-time library routines in which
the name and a brief description of each is given. The routines have been categorized
into those which operate on characters and strings, standard IVO, memory allocation, and a
miscelianeous group. Consult The C Programming Language by Brian W. Kemighan
and Dennis M. Ritchie or C: A Reference Manual by Samuel P Harbison and Guy L.
Stesle, Jr. for more information.

Character and String Manipulation Routines
For the routines listed below, the argument types are:

charc;

char s, °s1, *s2;

int n;

typedef struct P_Str {char count; char contents{255);} P_Str;
P<-Str *p;

Routine

char isupper(c)

char islower(c)

char isalpha(c)

char isdigit(c)

char isgpace(c)

char toupper(c)

char tolower(c)

char “index(s, c) [or strchr]
int Index(s, c) [or strpos]
char "rindex(s, ¢} [or strrchr]
int Rindex(s, ¢) [or strrpos)
char “strsave(s)

char *strcai(s1, s2)

char *CtoPstr(s)

P_Str *PioCsir(p)

char "strncat(s1, 82, n)
int stremp(s1, 82)

int strnemp(s1, s2, n)
char “strepy(s1, 82)

char “strncpy(s1, 82, n)

int strlen(s)
int atoi(s)
long atol(s)

extended atof(s)

CHAPTER 3: THE MAC C RUN-TIME ENVIRONMENT
3-5

Function

Return non-zero if "A” <= ¢ <= "Z",

Return non-zero if 8" <= ¢ <= "2",

Return non-zero if “a” <= ¢ <= "Z" or "A” <= C <= 7",

Return non-zero if 0" <= ¢ <= "9",

Ratum non-zero if ¢ « SPACE, TAB, NL (LF), CR, or FF.
Retumn ¢ or upper case value of ¢ if "a" <= ¢ <= *2",

Retum ¢ or lower case value of ¢ it "A" <= c <= "Z".

Raturn 0 or pointer to first occurrence of ¢ in s.

Return -1 or index of first occurrence of c in s.

Return 0 or pointer to last occurrence of cin .

Return -1 or index of last occurrence of cin s.

Returns address of a copy of s (uses malloc{)).

Appends s2 onto s1.

Converts s to a Pascal string (P_Str).

This changes s, so that It Is no longer a C string.

Returns s as its resutt.

Converts p to a C string (char *).

This changes p, so that It Is no longer a Pascal string.
Returns p as its result.

Appends up 1o n bytes of 2 onto s1.

Compares s1to 82. Returns 0 if equal, -1 if 81 <82, 1 ¥ 81 > 82.
Like stremp, but compares up to n characters.

Copy str2 to sirl. (s1 must be large enough to hold s2.)
Copies n characters of s2 to s1. if the length of 82 >= n, then s1
will not be null terminated. if the length of 32< n, then 81 will be
null padded.

Returns length of s.

Returns numeric conversion of number in s, radix = 10.

Similar to atoi but returns a long value.

Similar fo atoi but returns an extended value.

Standard 'O Routines

CHAPTER 3: THE MAC C RUN-TIME ENVIRONMENT
3-8

Three variables define the standard input and output and error files { normally keyboard and tty):

FILE *stdin;
FILE "stdout;
FILE *stderr;

These can be set to any properly abtained FILE *variable or the result from open or creat.

The following routines use the argument typas:

charc, ‘s;

char *buffer *“name, *format, *dir;

int n;

short mode, size, w;
long offset;

FILE *file;

Routine
int printi{format [, arg]...)

int aprinti(s, format {, arg)...)

int fprintf(file, format [, arg)...)

int scanf(format {, pointer]...)

Int sscanf(s, format [, pointer]...)

int fecanf(file, format [, pointer]...)

int getc(file)

int fgetctfile)

short getw(file)

char *gets (s)

Function

Formatted output. Formats and prints stdout. Tha first argument is
a format specifier. Returns EOF on error. (See Kernighan & Ritchie
or Harbison & Steels for format details.)

Formatted output. Corresponds to printf, but formats to string “s®
rather than standard outpit. Format string is the second argument.
Retumns EOF on emror. (See See Kemighan & Ritchle or Harbison &
Stesle for format details.)

For formatted file /O, otherwise identical to printf except that
output is written to “file”. Format string is the second argument.
(See Kemighan & Ritchie or Harbison & Stesle for format details.)

Formatted console inpul. Reads characters from stdio, interprets
them according to a format, stores results in ite arguments. Takes a
string as a format specifier, and set of pointer arguments indicating
where formatted input should be stored. (Ses Kerighan & Ritchie
or Harblson & Steele for format details.)

Formatted input. Corresponds to scant except it reads from a string
rather than stdio.

For formatted file VO, otherwise identical to scanf, except that
it reads from file tather than stdio.

Retums next char from file, or EOF if end of file.

Does NOT scho characters to the TTY window when input is from the
keyboard.

Returns next char from file, or EOF if end of file.

Returns next word (16 bits) from file, ignores end of file.

Reads a string terminated by RETURN from stdin.

Routine

char *igets (s, count, file)

long getl{file)
int getchar()

char putchar(c)
char putc(c, file)
int ungetc(c, file)
char fputc(c, file)
int puts(s)

int fputs(s, file)
short putw(w, file)
long putl(l, tile)

int creat{name, moda)

int open{name, mode)

FILE “fopen{name, dir)

int close(file)
int fclose(file)
int fflush(file)

CHAPTER 3: THE MAC C RUN-TIME ENVIRONMENT

Function

Read up to count byles from file, terminated by "\n", count, or EOF.

Returns 0 if EOF at start of read.

Returns next long {32 bits) from file, ignores end of file.

Returns next char from sidin. Does NOT acho characters 10 the TTY

window when input is from the keyboard.

Writes ¢ to stdout, and returns c.

Writes ¢ o file, and retums c.

Puts ¢ back onto file (one character maximum).

Wirites str to stdio, and returns c.

Writes str to file, and returns s.

Wirites ¢ to file, and returns s.

Wirites w to file (high byte, low byte) and returns w.

Writes | to file (4 bytes, high order to low order), and retums 1.
Creates a disk file identified by "name". Sets the size to 0, and
opens it for writing. Mode is 0x400 = read, 0x2000 = write,
Ox7, Ox70 = read/write.

Opens tha file identified by "name” according to mode:

0: read
1: write
2: read/write

Retums -1 i file cannot be opened.

Opens the file identified by "name” according to first character
of string “dir":
r

read

wr write (sets end of file fo
position 0)

a: append (sets end of file to
current EOF)

Flushes buffers and cioses indicated file. Returns EOF on error,
Same as close.

Flushes buffers fo disk. Returns EOF on error.

int unlink(name) Delstes file identified by "name” from disk. returns EOF on error.

int read(file, buffer, n) Reads up 1o n bytes from file into buffer. Returns actual number of

bytes read (0 maans EOF).

CHAPTER 3: THE MAC C RUN-TIME ENVIRONMENT

3-8
Routine Fuction
int fread(buffer, size, n, file) Reads up to "n" kems, each "size" bytes long, into buffer.
Returns number of tems read.

int write(file, buffer, n) Like read, but writes instead.
int fwrite (buffer, size, n, file) Lie fread, but writes instead.
long iseek(file, offset, mode) Positions file according to mode:

0: “Offset" bytes from start of file.

1: "Offset” bytes from currentposition.

2: "Offset” bytes from end of file.

Returns resulting position as byte offset from file start.
int {seek(file, offset, mode) Same as Issak.
long tell(file) Returns current byte position of file as offset from file start.
int fisli{tile) Same as tell.
int feof(file) Returns non-zero If file is at EOF. For keyboard or serial ports,

returns non-zero unless there is a character in the input buffer.

Memory Aliocation Aoutines

The memory allocation routines use the Macintosh memory manager. Al allocated areas are non-relocatable, and begin on
even addreases. Areas are forced to be an even number of bytes long. (See inside Macintosh for details on how the
memory manager works.)

The following routines use these declarations:

int size, n;
char *ptr;
long *a, *b, value;
Routine Funetion
char *malloc(size) Allocates size bytes of memory, and returns polinter to first byte.
Returns 0 on failure.
char “calloc(n, size) Allocates n* size bytes of memory, sets it o 0, and returns pointer
to first byte. Retumns 0 on fallure.
void free{ptr) Releasas space allocated by malioc or calloc.

Miacellansous Routines

Routine Function
void swap(a, b) Exchanges the contents of the long locations addressed by a and b.
vold exit(value) Closes all filas and returns to finder (value is ignored).

void _exit(value) Returns to finder (value is ignored).

CHAPTER 3: THE MAC C RUN-TIME ENVIRONMENT
3-9

MAC C TOOLBOX TRAPS

Traps are used by applications on the Macintosh to make calls on the operating system,
Quickdraw, and Toolbox and various manager routines. The code for these routines is
normally stored in the ROM, and all ROM routines are accessed through traps. The
Macintosh traps are defined in the Inside Macintosh manual, which should be
consulted for a full description of trap functions.

Mac C allows Macintosh traps to be called just like normal C functions. Arguments are
passed in the order indicated by the Pascal procedure definitions in Inside Macintosh.
Mac C automatically emits the proper parameter loading and trap instruction (no "glue™
routines” are used), and subsequently returns the result. In order to determine the proper
argument types for any given trap, you should refer to the Pascal definition of the function
in Inside Macintosh, and the Pascal/C argument correspondence defined in Appendix

C of this manual. While Mac C cannot check the actual type of all arguments passed to
Macintosh traps, it does check the number of arguments, and type converts arithmetic
values to the precision required by the trap.

Macintosh trap routines require strings to be in Pascal format (which is a count followed by
text) rather than C format (text terminated by 0). C strings must be changed to Pascal
format before being passed as arguments to Macintosh traps. Two Mac C library functions
facilitate this conversion: CtoPstr and PtoCstr. These perform an in-place conversion of
C-to-Pascal and vice versa. They are daclared in stdio.h, and defined in MacCLIb and
StdLib (the source files containing the actual code are MacCLib.ASM and

StdCLib.ASM).

If stdlo.h is not being included in the sourcs file, PtoCStr and CtoPStr must be declared
in your source file before use:

extern char *PtoCStr();
extern P_Str *CtoPstr();

where P_Str is defined as:
typedef struct {char count; char contents[255);} P_Str;

Care should be taken when using the PtoCstr and CtoPStr functions. They perform an
in-place conversion of the string, and if they are called with the address of a

constant string, that constant Iis permamently converted. lt is a good idea to

follow any call to CtoPstr with a call to PtoCStr unless permanent conversion is desired.
Mac C Toolkit users may want to use the routine tempMacStr instead of CtoPstr, since it
does not change the original string.

Mac C does not use "glue" routines to convert strings for those traps which use them (there
are about 20) because it would be inconsistent with Mac C philosophy to have such

CHAPTER 3: THE MAC C RUN-TIME ENVIRONMENT
3-10

hidden routines, and because this kind of automatic conversion cannot be perpetuated
uniformly through all calls, results, packages, and future routines. A "glue” routine that
performs string conversion can always be written by the programmer.

The low level I/O routines described in the operating system section of Inside Macintosh
are generally not implemented in favor of their "Parameter Block™ equivalents, which are
identical except that they accept a second argument which is a boolean governing
whether the call is to be executed synchronously (zero) or asynchronously (non-zero).
The name of a "Parameter Block" routine is the same as the corresponding trap name
preceded by "PB", e.g. Open becomes PBOpen, close becomes PBClose, and so on.
To use the Parameter Block routines, the file pbDefs.h must be included at the start of
your source file.

Inside Macintosh describes some routines which are not traps, but are instead "Pascal
Only" procedures or "packages.” These routines are not supported directly by Mac C. In
many cases, there are direct trap calls which provide the same function. In some cases,
they require "glue” routines, which are sasy to write in Mac C (see Appendix C). Many
such "glue” routines are included in a collection of Mac C Examples available from
Consulair Corporation.

MACINTOSH HEADER FILES

Most system values and structures are defined in the collection of ".h" files. These files are
grouped according to the Inside Macintosh divisions for traps (e.g., quickdraw.h,

font.h). Include the header file for the functions you want in your source file and it will in
turn include any header files which it depends on.

Unless the system in use is a Lisa with MacWorks, a Macintosh XL, or a 512 K Macintosh,
not all of the ".h" files will fit in the symbol table space available for a compilation.
Normally, this is not a problem because you need to inicude only those files actually
required by the source file. If space is a limitation, it is safe to create ".h" files containing
only those definitions required by the source program, or you can change the symbol table
allocation (See The Mac C Compiler Options, Chapter 1).

Appendix E provides, in alphabetical order by trap name, the correct name and spelling,
argument type, function result, and trap number for each Macintosh trap used by Mac C. A
trap that returns a result is indicated by preceding the trap name with the result's type.

All traps that return pointers are typed as "char *". The appropriate ".h" file will cast this
function to its proper Macintosh type.

Argument types are designated as char (8 bits), short (16 bits), Point (the address of a
Macintosh Point), or Long. Long arguments are either 32-bit integers or pointers, as

CHAPTER 3: THE MAC C RUN-TIME ENVIRONMENT
3- 11

required by the particular trap.

Some Macintosh traps accept their arguments in registers instead of on the stack. The
register values DO, A0, and A1 designate the formal argument order for those traps (e.g.,
BlockMove). These arguments are untyped, and the program must determine whether

they are appropriate values. With BlockMove (Inside Macintosh), for example, the first
argument is (AO = sourcePtr), the next is (A1 = destPtr), and the last is (DO = nbytes). A call
would look like this:

short result;

char *source, *dest;

int bytes;

result = BlockMove(source, dest, nbytes);

SIGNALS

Mac C implements three routines as an aid to handling run-time errors in an application or
program: CatchSignal, Signal, and LocalSignal.

In a recursive languagse, it is normal to nest procedure calls many levels deep. Since
functions often build contexts which must be destroyed before exiting, global processing of
error conditions is difficult, if not impossible. Programs are frequently constructed so that
each function returns an error status in order to solve this problem. This may interfere with
the logic of the program, making it cumbersome and more difficult to understand,
especially where multiple error conditions may exist.

Mac C uses the concept of a signal to handle errors and increase a program's simplicity
and robustness. This concept works as follows: any procedure can call the function
CatchSignal. This function, which takes no arguments, saves the program context, and
returns a value of 0. The calling function may then call another function, which may call
another function, which calls another, and so on. If any function calls the Signal function
(which takes a single non-zero argument), control is immediately transterred to the location
and context of the last CatchSignal call executed in a function below the current one in
the calling sequence. At this point, the program behaves as though the original call on
CatchSignal returned the argument passed to Signal as its result.

CHAPTER 3: THE MAC C RUN-TIME ENVIRONMENT
3-12

Here is an example:

0

char *ptr;

char “error;

pir « malloc{100);

¥ (error « CatchSignai())
{

printf("wError Reported: %s", error);

frea(ptr);
retum;

9{20
¥ (errorcondition) Signal(*Some Ermor™);
}

When function p first calls CatchSignal, a value of 0 is returned, and the

"true” block of the conditional is not executed. When, and if, p2 calls

Signal, the stack is cut back and control is transferred so that it is just

as if the original call to CatchSignal in function p retumed a pointer to the string "Some
Error”. In this case, p prints the error and returns. A more general form of p would not
return (which destroys the signal), but would pass the signal on down the stack:

g
char “pir;
char “eror;

pir = malloc{100);
i {error -{CMSbnal())

fres(ptr);
Signal{error); /* Let the procedure(s) which called me know */

pi(pt);
)

CHAPTER 3: THE MAC C RUN-TIME ENVIRONMENT
3-13

The function LocalSignal works just like Signal, except that it is

"Caught” by an active CatchSignal in the same function. Suppose, in the earlier
example, that p2 opened a file which needed closing after an error. LocalSignal could
be used to address that problem:

p20)

{

FILE file;

file = NULL;

¥ (efror = CatchSignal())

if (file 1= NULL) fclose(file);
Signal(error); /* Let the procedure(s) which called me know */
)

file = fopen("SomeFile", "r);

Ii {errorcandition) LocalSignal(*Some Ermor”);

There is one restriction in the use of these functions: only one CatchSignal may be
active in each instantiation of a function. There may, however, be multiple calls to
CatchSignal. The last CatchSignal call actually exscuted in a function at run time is
the active CatchSlignal for that function, regardless of its lexical scape.

CHAPTER 4:
THE MAC C TOOLKIT

INTRODUCTION

The Mac C Toolkit is a collection of routines and techniques that can form the foundation
for almost any application. These routines can be used in their present form, or modified
for a particular program. While the Toolkit sometimes lacks the strict cohesiveness and
uniformity characteristic of a library it contains powerful routines that do more than provide
the functions typical of a library. There is a utilitarian rationale to the Toolkit functions.
Routines which don't help are generally missing, and many of the routines ignore some of
the less used features of the Macintosh.

Don't expect to use all of the Toolkit routines. Many of the routines will not not be
applicable to your programs, but are documented for the sake of completeness. The
names of the routines you are most likely to use are underlined. The Toolkit is meant to be
responsive to the job at hand. Use it by extracting those routines which seem useful.
Change the ones which don't suit the needs of a particular application. Eliminate those
which are unnecessary.

The Mac C Toolkit package contains, in addition to the source and binary files for the Mac
C Toolkit routines, the source files for the "standard” C library, and a program (TestLib.c)
for testing the "standard” C library.

The "standard" C library source files are:

StdLib.¢ (includes: S1dCLib.Asm (includes: InitGlobals.Asm, Math.Asm) StdMem.Asm StdStr.Asm)
StdFilelO.c (includes: MacCDefs.h StdFiteDefs.h)
StdIOPrim.C (includes: MacCDefs.h StdFileDefs.h SIITTY.Asm StdSIO.Asm StdMac.Asm)

The "standard”™ C library is actually built upon a variation of the Toolkit. Programs can be
linked and run using the "standard" C library functions by simply StdLib with the Toolkit
files place of the library files StdfilelO and StdlOprim. The file descriptors used within
the "standard” C library are the same as those in the high-level I/O system of the ToolKit,
and the "standard” C library and high-level I/O routines may be employed interchangeably.
For example, the Toolkit routine TKopen, which allows multiple buffers to be set up for a
disk file, can be used instead of the "standard" C Library functions open or fopen. Note,
however, that the parameters and their meanings are different. After the file is opened,
printf or any other "standard" C Library routine can be used. The file can be closed with
TKclose, close or fclose.

CHAPTER 4: THE MAC G TOOLKIT
4-2

THE TOOLKIT I/O SYSTEM

Mac C Toolkit I/O and file operations are done through a set of common routines that
provide a high-leve! I/O system. This is similar in nature to the I/O system used in the
"standard® C Library. In fact, the I/O system in the "standard" C library is simply a
paraphrasing of the Toolkit I/O system.

The file system must be initialized by calling Initio once at the start of a program (unless
Stdlib has been linked). Files are assigned small numbers when opened, and all /O is
performed using these numbers to identify the files. The reserved file number "0" (defined
as tty in MacCdefs.h) is set up by initio and represents a bidirectional channel for
reading characters from the keyboard and writing them to the active teletype simulation
window.

Once a file has been opened, the high-level I/O routines work uniformly for all devices
(taking into account device-specific characteristics). This means, for example, that by
changing an open call, output can be redirected from a file to the teletype simulation
window.

There is a complete set of routines for performing generic file operations in the high-leve!
I/O system. A low-level /O system implements routines for doing disk file I/0, serial port
/0, teletype simulation, etc. Occasionally, these lew-level routines must be accessed
directly. When this is the case care must be exercised or the high-level I/O

system may be undermined. For example, the high-level VO system maintains a

single character buffer for each open file, which will sometimes contain the next character
to be read from the file. If the high-level VO routines are bypassed, it is possible to miss a
character, or to get a character out of sequence the next time the high-level input routine is
called.

MAC C TOOLKIT FILES
The Mac C Toolkit Source files are:
Header Files
MacCDefs.h
MacCIODefs.h
MacCMembDefs.h

Source Code Files

MacCMem.c
MacCFilelO.c
MacCIOPrim.c (Do not link if MacCMinlOPrim is linked)

CHAPTER 4: THE MAC C TOOLKIT
4-3

MacCMinlOPrim.c (Do not link if MacCIOPrim is linked)
MacCl1O.c

MacCIOSupp

MacCUtil.c

MacCStrings.c

MacCStringUtil.c

MacCLib.Asm (Do not link if StdLib is linked)
MacCTTYSim.Asm :
MacCSIOLib.ASM

MAC C TOOLKIT ROUTINES

The remainder of this chapter is divided into sections which functionally group the Mac C
Toolkit routines into categories:

High-level I/0

String Processing
Miscellaneous

Memory Management
Teletype Simulation

Serial /0 and Keyboard Input
Disk File Management and /O

Routines are listed alphabetically by name within each section. Each Toolkit routine is
described in a standard format: the first line contains the actual name of the routine in bold,
an expanded version of this name, and the name of the source file containing the definition
of the routine enclosed by brackets. The most commonly used routines are underlined.
The next lines contain the C declaration syntax for the routine. Finally, the arguments and
function for each routine are briefly described. For more detailed information about an
individual routine, refer to the source code.

INDEX TO MAC C TOOLKIT

Sections

Routines

Disk 1O

High Level 11O

Low Lwwwl VO

Memory Management
Miscellaneous Routines
Serial VO and Keyboard Input
String Processing

Teletype Simulation

deletefile

echo

eof

eoffile
equalstr
EventReady

filelength
fillbytes
findchar
findfile
FlushKey
Font_Info

GetFileType
getmem
getmemz

4-7

4-29
4-27
4-23
4.31
4-18
4-29

4-27
4-18
4-18
4-19
4-19

4.20

4.24
4-20
4.35
4-31

437
4-27
427

CHAPTER 4: THE MAC C TOOLKIT
4-4

inblock
inchr
inEvent
initallocate
inifileio
Initio
initmem
In#tSIO
inKey
inlong
inrange
inSIKO
inwd
1OCall
Oerror

KeyReady

LBounds
Lc
letterdigit
length
{inblock
Line_Height
Linrange
LMAX
LMIN
lookeh
loutblock
loutdec
loutnum

MACbytelo
MACgeteot
MACseteof
MacString
MAX

MIN
MemaAvail
movebytes

OSciose
OScreate
OSdelete
OSsfind
OSftlush
OSopen
OSreset
outblock
outch
outdec
outhexbyte
outhexiong
outhexword
outlong
outnum

4-10
4-24

4-10
4-37

CHAPTER 4: THE MAC C TOOLKIT
4-5

-CHAPTER 4: THE MAC C TOOLKIT

4-8
outstr 4-14
outwd 414
readbytepos 4-14
readchar 4-35
readiine , 4-15
resetarea 4-28
retmem 4-29
setbytepos 4-15
seteot 4-15
setfileposition 4-36
SetFileSignature 4-40
SetFllaType 4-40
sstiOEmor 4-38
setiowercasre 421
SaTTY 4-30
sstuppsrcase 4-21
SICReady 4-33
striolong 4-22
strtonum 4-22
Swaptong 4-28
tempCStr 4-22
tempMacSir 4.22
TKclose 4-18
TKopen 4-18
truncatefiie 4-38
TTYChar 43
TTYPort 43
UBounds 428
uc 4-23
uinchr 417
UMAX 4-28
UMIN 4-26
UserWords 4-41
walt 4-26

CHAPTER 4: THE MAC C TOOLKIT
4-7
THE HIGH-LEVEL VO SYSTEM
The sourcae files for the high-level /O system are MacCMinlOPrim.c, MacCIOPrim.c
and MacCFilelo.c. The header file MacCDefs.h contains the following global
definitions used in this section:
numchannels: The maximum number of files that can be open at one
time. If this is changed, recompile MacCIOPrim.c
and/or MacCMinlOPrim. Use maxfiles in
MacClOdefs.h to change the maximum number of open
disk files (and recompile MacClO.c).
Device types (passed to TKopen):
serlaldevice: Serial VO Port A or B.

diskdevice: A disk file.

VO Modes

The /O modes passed to TKopen are:

read = 1
write = 2
read/write = 3

read, write, and read/write are not defined in MacCDefs.h because the names are
commonly used in programs. They may be defined by the programmer. To perform
normal reads and writes from from a file it must be opened according to the appropriate
mode. The resource fork of a file may be read as normal data (bypassing the Resource
Manager) by opening the file and adding the value resource_fork (defined in
MacCDefs.h) to the mode in the call to TKopen.

/O Devices

Disk files are always identified by their names. A volume name must be included when a
file resides on other than the current default volume. Constants are defined for other
devices:

CHAPTER 4: THE MAC C TOOLKIT

4-8
sloAout: Serial Port A output
sloAin: Serial Port A input
sloBout: Serial Port B output
sioBin: Serial Port B input
The High Level VO Routines

The files MacClOprim.c and MacCMinIOprim.c contain most of the high-level 110
routines. These two files are identical, except that MacCMinlOprim.c has teletype and
serial VO routines stripped out to save space. A program may be loaded with one or the
other, but not both. MacCFillelO.c contains high-level routines for file positioning and
block VO.

bvtelength - byte length [MacCFilsio.c]

long bytelength(file)
short file;

This routine returns the number of bytes in the file.

closeall - close all files [MacCloPrim.c]
void closeall()

This routine closes all open files.

crlf - carriage return/line feed [MaciOPrim.c]
void crif(file) |

This routine writes a carriage return (and line feed if necessary), to start a new line on
the designated file.

CHAPTER 4: THE MAC C TOOLKIT
4-9

echo - echo [MaclOPrim.c]

char echo(file, c)
short file;
charc;

This routine writes the character to the output file as a guaranteed printable
character. Characters are masked to seven bits. Characters in the range 0 to Ox1F
have "@" added to their value, and are printed preceded by the character "A". The
value 1, for example, prints as "*A".

eof - end of file [MaclOPrim.c]

char eof{file)
short file;

For disk files, eof returns true if the file is positioned at its end. For serial /O files and
tty, eof returns true i there are no characters waiting. Non-blocking input can be
implemented by the following:

if (leof(input)) /* then there is a character waiting */
¢ = inchr(input);

Inblock - inputbytes [MackFilelO.c]

void inblock(file, buffer, count)
short file, count;
char *buffer;

This routine reads count bytes from the file to the buffer, where count is a short
integer.

Inchr - input character [MacCIOPrim.c]

char inchr(file)
shor file;

This routine reads the next character from the input and advances the file position
one byte. If the file is tty and the global variable echoflag (type char) is true, the
charcter is echoed to the active teletype window. Note the comments under lookch
about end of file.

CHAPTER 4: THE MAC C TOOLKIT
4-10

Initio - initialize VO [MacCIOPrim.c]

void initio(windowname)
char *windowname;

This routine should be called once at the beginning of a program. It must be called
after initmem. If windowname is non-zero, it is assumed to be the address of the
title for a teletype window. This causes the teletype simulation package to be
initialized, and a teletype window to be opened with the designated title. The
WindowPtr for the teletype window is storaed in the global pointer variable console.

Inlong - input iong word [MacCIOPrim.c]

long inlong(file)
short file;

This routine reads the next long word from the input and advances the file position
four bytes. Byte alignment of the file is insignificant. Note the comments under
lookch about end of file.

Inwd - input word [MacCIOPrim.c]

short inwd(file)
short file;

This routine reads the next word from the input and advances the file position two
bytes. Byte alignment of the file Is insignificant. Note the comments under lookch
about end of file.

loerror - 1/0 error [MacCIOPrim.c]

short ioerror(file)
short file;

For serial devices, this routine returns the error status of the port (the cumulative error
word, byte 28 of the parameter block). Briefly, the error warnings are:

B8 (Soft overrun) Buffer overflow
B12 Parity error
B13 Hard overrun

B14 Framing error

CHAPTER 4: THE MAC C TOOLKIT
4- 1

If this procedure is declared as char *, it returns the address of the I/O Parameter
Block from the status call. (See the section on the Serial Driver in the Inside
Maclntosh manual for more information.)

linblock - long input block [MacCFilelO.c]

void linblock(file, buffer, count)
short file;
char *buffer;
long count;

This routine reads count bytes from the file to the buffer, where count is a long
integer.

lookech - look at character [MaclOPrim.c]

char lookchffile)
short file;

This routine reads the next character from the input, but does not flush it. Successive
calls to lookch always return the same charcter until it is read by an input routine, or
the file position is changed. If a file is at

the end of file, the character OxFF is retumed. This is not the same as the standard
C/UNIX convention of returning an Int value from gete, which is -1 at end of file. Use
the separate function eof to determine if a file is at its end.

loutblock - long output block [MacCFilelO.c]
void loutblock(file, buffer, count)
short file;
char *buffer;
long count;

This routine writes count characters from the buffer to file, where count is a long.

loutdec - output long decimal [MacCIlOPrim.c]

void loutdec(file, value)
short file;
long value;

CHAPTER 4: THE MAC C TOOLKIT
4- 12

This routine formats value into a signed decimal number, and writes it to the
designated file.

Joutnum - output number [MacCIOPrim.c]

void loutnum(file, value, radix)
short file;
long value;
short radix;

This routine formats value into a number in base radix, and writes it to the
designated file. If radix < 0, then value is formatted as a signed number where the
radix = Abs(radix).

outblock - output block [MacCFilelO.c]

void outblock(file, bufter, count)
short file;
char *buffer,;
short count;

This routine writes count number of bytes from the buffer to the file, where count is a
short.

outch - output character [MacCIOPrim.c]

char outch(file, value)
short file;
char value;

This routine writes value to the output file as a single binary byte. It returns value
as its result. Note that the arguments are in the reverse order of those in putc. Use a
macro to switch them if necessary.

outdec - output decimal [MacCIOPrim.c]

void outdec(file, value)

short file, value;
This routine formats value into a signed decimal number, and writes it to the
designated file.

CHAPTER 4: THE MAC C TOOLKIT
4-13

outhexbyte - output hex byte [MacCIOPrim.c]
void outhexbyte(file, value)
short file;
char value;

This routine writes value as two ASCII hexadecimal digits onto file.

outhexlong - output hex long [MacCIOPrim.c}
void outhexlong(file, value)
short file;
long value;

This routine writes value as eight ASCIl hexadecimal digits onto file.

outhexword - output hex word [MacCIOPrim.c]

void outhaxword(file, value)
short file;
short value;

This routine writes value as four ASCIl hexadecimal digits onto file.

outiong - outputlong [MacCIOPrim.c]

long outlong(file, value)
short file;
long value;

This writes value to the output file as four binary bytes. It returns value as a result.
Note that the arguments are in the reverse order of those in putl. Use a macro to
switch them if necessary.

CHAPTER 4: THE MAC C TOOLKIT
4-14

outnum - output number [MacCIOPrim.c]

void outnum(file, value, radix)
short file;
short value;
short radix;

This routine formats value into a number in base radix, and writes it to the
designated file. If radix < 0, then value is formatted as a signed number where:
radix = Abs(radix).

outstr - output string [MacCIOPrim.c}
void outstr(file, str)
short file;
char *str;
This routine writes the C string str to file. Note that the arguments are in the reverse
order of those in puts. Use a macro to switch them if necessary.
outwd - outputword [MacCIOPrim.c]
short outwd(file, value)
short file;
short value;
This writes value to the output file as two binary bytes. Returns value as its result.

Note that the arguments are in the reverse order of those in putw. Use a macro to
switch them it necessary.

readbytepos - read byte position [MacCFilelO.c]

long readbytepos(file)
short file;

This routine returns the current byte position of file relative to its start. The first
position is 0.

CHAPTER 4. THE MAC C TOOLKIT
4- 15

readline - read line [MacCIOPrim.c]

char *readline(file, butfer, size)
short file;
char *buffer;
short size;

This routine reads data from the file until a newline character or EOF is encountered,
and stores it, terminated by a NULL, into the buffer. If file is tty, then the characters
are echoed to the TTY window as they are read, and backspace causes the previous
character to be erased and not saved in the buffer. size is the maximum number of
characters which may be stored in the buffer, although more than this may be read
from file. Excess characters are discarded.

setbytepos - set byte position [MacCIOPrim.c}

setbytepos(file, position)
short file;
long position;

This routine sets the position of the file so that the next byte read will be position
number of bytes from the start of the file. The position of the first byte in a file is 0. If
position is past the end of file, the file position will be set to the end of file if it is
opened for read access only. If the file is open for write access or read/write access,
the file position will be extended to position.

seteof - setendof file [MacCIOPrim.c]

short seteof(file)
short file;

This routine sets the end of file position for file to the current position. Only disk files
open for write or read/write can use this routine. It returns file as its result.
seteof can be used with open to initialize an existing file:

#idefine write 2
file = seteof(open(diskdavice, "filename"®, write));

CHAPTER 4: THE MAC C TOOLKIT
4-16

JIKclose - close a file [MacCIOPrim.c]

short TKclose(file)
short file;

This routine closes the designated file and fiushes its buffers to disk if necessary.
The file number is invalid after a close. TKclose always returns 0.

IKQI&h - openafile [MacCIOPrim.c]

short TKopen(deviceType, name, mods)
char deviceType;
char *name;
long mode;

This is the generic open routine. It returns a small positive number (the file number) if
it succeeds, and a 0 if it fails. Use the file number as an argument to all other
high-level /O calls.

A file's characteristics are set up at open time. Since devices vary in their
characteristic definition, the exact interpretation of the paramaters name and mode
depend on deviceType.

When the device is a disk (deviceType = diskdevice), name is a pointertoa C
string which is the file name. The file name must include the volume name if the file
is not on the default volume.

If mode is in the range 0 to 255, it is an access mode as follows:

1 = read
2 = write
3 = read/write

Add the constant resource_fork to the access mode to open the resource fork of a
file rather than the data fork. If mode is not in the range 0 to 255, it is assumed to be
the address of the structure:
struct

char filler{3);

char mode; /*access mode*/

long buffersizeA; /*number of bytes in bufter A*/

long buffersizeB; I"number of bytes in buffer B*/

CHAPTER 4: THE MAC C TOOLKIT
4-17

This causes the disk file to be opened with two buffers whose sizes are specified by
buffesrsizeA and buffersizeB. If buffersizeB is 0, the file is opened with a single
buffer. To be efficient, buffer sizes should be multiples of 512. If two buffers are
specified, disk 1/O to and from the file uses the asynchronous VO option of the
Macintosh, which allows simultaneous processing and I/O.

When the device is a serial port (deviceType = serlaldevice), name is a constant
defining the SIO port to be opened (sloAln, SioAout, etc.) It is important to always
open a serial port in the output direction, since that is when the Macintosh operating
system initializes it. You need open it in the input direction only if you wish to input
data from it. Do not close a serial port once it has been opened. Use the
PBControl trap to change the baud rate after it has been opened (the Toolkit routine
InitSIO gives an example of how to do this.)

The lower 16 bits of mode are the Macintosh SIO configuration word (defined in the
Serial Driver Section of the Inside Macintosh manual). This word allows the baud
rate, number of stop bits, parity, and number of data bits to be set. A port is initially
opened with XON/XOFF disabled, CTS disabled, and with all errors reported. Use
the PBControl trap to change this setting (again, initSIO can be used as an
example.)

A serial port cannot be opened for different baud rates on input and output. The
configuration used to open a port is valid until it is changed. If mode =0, the
configuration is assumed to be 0xCCOA (9600 baud, 8 data bits, 2 stop bits, no

parity).
It you have a hard disk, be carefull it may use a serial port, so do not
open it.

uinchr - upper case input character [MacCIOPrim.c]

char uinchr(file)
short file;

This routine is just like inchr, except that if the character read is lower case, Inchr
forces the character to be upper case. Note the comments under lookch about end
of file.

CHAPTER 4: THE MAC C TOOLKIT
4-18

String Routines

All of these routines opsrate on C strings except where noted. They make

use of a global variable named temp_str, which is used as a holding

area for temporary strings. Temporary strings are allocated by some

of these routines. A temporary string exists only until the next

routine requiring use of temp_str is called. The program is responsible for saving copies
of temporary strings.

Storage for strings is allocated by calling getmem. The caller of the string routine is

responsible for deallocating string storage by calling retmem when he is finished using
them.

Pascal strings are described in this documentation by:
typedef struct {char count; char contents[255);} P_Str;
Most of these routines are written in assembly languge (for speed), so a large overhead is
not incurred by using them.
apchr - append character [MacCStrings.c]
char apchr(str, ¢)
char *str;

char¢;

This routine appends ¢ followed by a NULL to the end of str. It returns ¢ as its result.

aplong - append formatted long [MacCStrings.c]

void aplong(str, number, radix)
char *str;

short radix;

long number;

This routine converts long integers into ASCIl text and appeands it to str. if radix <0,
then a signed conversion is performed, and the radix is -radix. A radix of 16
produces a hexadecimal number.

CHAPTER 4: THE MAC C TOOLKIT
4-19

apnum - append formatted short [MacCStrings.c]

void apnum(str, number, radix)
char *str;
short radix;
short number;

This routine converts 16-bit short integers into ASCII text, and appends it to str. If
radix < 0, then a signed conversion is done, and the radix is -radix. A radix of 16
results in a hexadecimal number.

apstr - append string [MacCStrings.c]

char *apstr(str, str1)
char *str, *str1;

This routine appends the string addressed by str1 followed by a NULL onto the the
end of string str. The str parameter is retumed.

CloneString - Make a copy of a string [MacCStringUtil.c]
char *CloneString(str)
char *str;

This routine makes a copy of str, and returns its address. CloneString calls
getmem to allocate space for the copy, so retmem should be used to release this
space after the caller is through with the resuit.

comparestr - compare string [MacCStrings.c}

char comparestr(str1, str2)
char *strt, *str2;

This routine compares the string addressed by str1 to the string addressed by str2
according to their sort sequence. comparestr returns a non-zero result if str1 < str2.
It str1 is shorter than str2 and they are equal up to the length of str2, it returns a
non-zero result. Otherwise it returns a result of zero.

CHAPTER 4; THE MAC C TOOLKIT
4-20

ConcatString - concatenate string [MacCStringUtil.c)

char *ConcatString(strt, str2)
char *str1, *str2;

This routine allocates memory for a new string, and fills it with the contents of str1
followed by the contents of str2 (and terminated with

a NULL). The address of the new string is returned. Since ConcatString calis
getmem to allocate space for the copy, retmem should be used to release this space
after the caller is through with the result.

copvstring - copy string [MacCStrings.c]

char *copystring(str1, str2)
char *str1, *str2;

This routine copies the string addressed by str1 to the area pointed to by str2
(including the terminating NULL). The area addressed by 8tr2 must have been
previously allocated (be sure it is large enough to hold str1). The parameter str2 is
returned.

equalstr - equal string [MacCStrings.c]

char equalstr(str1, str2)
char *stri, *str2;

This routine compares the string addressed by str1 to the string addressed by
str2,and returns a non-zero result if the contents are identical. Otherwise it returns
zero.

findchar - find character [MacCStrings.c]
short findchar(str, c)
char *str;

charc;

This routine returns the index+1 of the first occurrence of ¢ in str. [f ¢ is not found, 0 is
returnsd.

CHAPTER 4: THE MAC C TOOLKIT

4-21
LC - lower case [MacCStrings.c]
char LC(c)
char c;
If ¢ is an upper case character, this routine returns its lower case counterpart.
Otherwise, ¢ is returned.
length - length [MacCStrings.c]
int length(str)
char "str;
This routine returns the number of bytes in str preceding the first NULL byte.
MacString - convert a C string to a Pascal String [MacCStringUtil.c]

P_Str *MacString(str)
char *str

This routine allocates space for a string and converts str into it in Pascal string format.
This is useful for calling Macintosh system routines which require Pascal format strings

as arguments. It calls getmem to obtain storage, and expects the programmer to
deallocate it with retmem. Its result is the address of the converted string.

setlowercase - set string lower case [MacCStrings.c]

char *setlowercase(str)
char *str;

This routine converts upper case characters in str to lower case. It returns str.

setuppercase - set string upper case [MacCStrings.c]

char “setuppercase(str)
char “str;

This routine converts lower case characters in str to upper case. It returns str.

CHAPTER 4: THE MAC C TOOLKIT
4-22

strtolong - string to long [MacCStrings.c]

long strtolong(str, radix)
char *str;
short radix;

This routine converts the ASCII number in str into a long binary value and returns this
value as its result. Legal radices are 2 through 10, and 16

(for hexadecimal values). Conversion stops at the first non-numeric character for the
given radix. Overflow is lost.

strtonum - strto number [MacCStrings.c]

short strtonum(str, radix)
char *str;
shon radix;

Identical to strtolong, except that the result is a 16 bit short value.

tempCStr - Convert Pascal string to C string [MacCStringUtil.c]

char “tempCStr(MacStr)
P_str * MacStr;

This routine converts MacStr into C string format. This is useful for converting results
from Macintosh system calls into C string format. It uses temporary storage, sc do not
deallocate the memory when you are through. To save the string, make a copy of it
(using CloneString). This routine returns the address of the temporary string as its
result.

tempMacStr - Convert C string to Pascal string [MacCStringUtil.c]

P_Str *tempMacStr{str)
char *str;

This routine allocates space for a string and converts str into it in Pascal string format.
This is useful for calling Macintosh system routines which take Pascal strings as
arguments. Do not deallocate the memory when you are through with str. The system
will do that on the next call to a routine that uses a temporary string. Use MacString if

CHAPTER 4: THE MAC C TOOLKIT
4-23

you want a string which can be saved. This routine returns the address of the
temporary string as its result.

UC - convert character to upper case [MacCStrings.c]

char UC(c)
charc;

If ¢ is a lower case character, this routine returns its upper case counterpart.
Otherwise, it returns ¢ as its result.
Miscellaneous System Routines

This section contains miscellaneous routines.

Bounds - bound a value [MacCUtil.c]

short Bounds(value, lower, upper)
short value, lower, upper;

If lower <= value <= upper then value is returned. Otherwise Bounds returns lower

if value < lower, or upper if value > upper, i.e., it returns MIN(upper, MAX(value,
lower)).

clearbytes - clear memory [MacCUtil.c]
clearbytes(address, nbytes)
char *address;
short nbytes;

This routine sets the value of nbytes of memory to 0 starting at address.

CHAPTER 4: THE MAC C TOOLKIT
4-24

fillbytes - fill memory with vaiue [MacCUtil.c]
fillbytes(value, address, nbytes)
char *address;
short nbytes;
char value;

This routine sets the value of nbytes of memory to value starting at address.

Inrange - testin range [MacCUtil.c]

char inrange(value, lower, upper)
short value, lower, upper;

This routine retums non-zero if lower <= value <= upper. It returns zero otherwise.

LBounds - bound a value [MacCUtil.c]

long LBounds(value, lower, upper)
long value, lower, upper;

If lower <=value <= upper, this routine returns value. Otherwiss, it returns lower if
value < lower, or upper if value > upper. in other words, it retums LMIN(upper,
LMAX(value, lower)).

letterdigit - test for letter or digit [MacCUtil.c)

char letterdigit(c)
charc;

This routine retums non-zero if ¢ is an alphabetic character or a digit.

Inr - testin range [MacCUtil.c]

char Linrange(value, lower, upper)
long value, lower, upper;

This routine returns non-zero if lower <= value <= upper; it returns zero otherwise.

CHAPTER 4: THE MAC C TOOLKIT
4-25

LMAX - long maximum [MacCUtil.c]

long LMAX(v1, v2)
long v1, v2;

This routine retumns the signed arithmetic maximum of v1 and v2.

LMIN - long minimum [MacCUTtil.c]

long LMIN(v1, v2)
long vi, v2;

This routine retums the signed arithmetic minimum of v1 and v2.

MAX - short maximum [MacCUtil.c]

short MAX(v1, v2)
short v1, v2;

This routine returns the signed arithmetic maximum of v1 and v2.

MIN - short minimum [MacCUtil.c]

short MIN(v1, v2)
short v1, v2;

This routine returns the signed arithmetic minimum of v1 and v2.

movebytes - move bytes [MacCUtil.c]

movebytes(nbytes, dest, source)
short nbytes;
char *dest, *source;

This routine moves nbytes from source to dest using the BlockMove trap. If
source or dest is 0, it does nothing.

CHAPTER 4: THE MAC C TOOLKIT
4-28

SwaplLong - swap long values [MacCutil.c)

Swapl.ong(ptrA, ptrB)
long “ptrA, *ptrB;

Exchanges the long values addressed by ptrA and ptrB.

UBounds - bound an unsigned value [MacCUtil.c]

unsigned long UBounds(value, lower, upper)
unsigned long value, lower, upper;

If lower <= value <= upper, then UBounds returns value. Otherwise, it returns
lower if value < lower, or upper if value > upper. In other words, it returns
UMIN(upper, UMAX(value, lower))

UMAX - unsigned maximum [MacCUtil.c]

unsigned iong UMAX(v1, v2)
unsigned long v1, v2;

This routine returns the unsigned arithmetic maximum of v1 and v2.

UMIN - unsigned minimum [MacCuUtil.c]

unsigned long UMIN(v1, v2)
unsigned long v1, v2;

This routine returns the unsigned arithmetic minimum of v1 and v2.

wait - wait fortime [MacCUtil.c]

wait(ms)
int ms;

This routine waits ms milliseconds and returns. Accuracy depends on the tick rate
(1/60 second).

CHAPTER 4: THE MAC C TOOLKIT
4-27

Memory Management Routines

In general, these routines use the Macintosh memory manager to allocate memory.
Memory is always allocated as non-relocatable blocks that begin on word boundaries, are
an even number of bytes in length, and are less than 32,768 bytes long. These blocks are
referenced by the address of the first byte.

The memory management routines act as a level of insulation between the user and the
Macintosh memory manager. This buffering provides transportability and the option of
using a more sophisticated or alternate allocator. The allocate routines (allocate,
Initallocate, and resetarea) are particularly space efficient in that they can allocate
memory with no overhead bytes (although all such allocated areas must be returned at the
same time or in the reverse order of allocation). This capability is useful for structures such
as symbol tables which have the characteristic of growing monotonically and then being
eliminated as a single entity.

allocate - allocate region [MacCMem.c]
char *allocate(area, Size);
struct AREA “area;
short Size;
This routine allocates a region Size bytes long from area using a simplaton
allocator. area must have previously been obtained by a call on initallocate.

getmem - get memory [MacCMem.c]

char *getmem(size)
short size;

This routine allocates the indicated number of bytes of memory and returns a pointer
to the first byte. It calls Signal with the string
"Out of Memory"” if it can't accommodate a request.

getmemgz - get memory [MacCMem.c]

char *getmemz(size)
short size;

CHAPTER 4: THE MAC C TOOLKIT
4- 28

This routine is identical to getmem, except that it sets the allocated memory to 0
before returning.
Initallocate - initialize for allocate [MacCMem.c]

struct AREA *initallocate(Size)
short Size;

This routine allocates a block of memory using getmem and prepares it for use by
the simpleton allocator allocate. The structure AREA is declared in the file
MacCmemdefs.h. The total space allocated to the area for allocate to use is
Size bytes (forced to be even, i.e., (size+1)&-2).

Initmem - initalize memory [MacCMem.c]
void initmem()
This routine initializes getmem, and sets up the Macintosh application heap so that
there is a null GrowZone Procedure. The application heap limit is set to 8K bytes
below the current top of stack. Call this once at the start of a program.

MemAvall - maximum available memory block [MacCMem.c]
long MemAvail()
Just like the Macintosh trap MaxMem, except that this one returns either the largest
block available or the space left to grow, whichever is greater.

resetareq - reset area [MacCMem.c]

void resetarea(area)
struct AREA *area;

This routine returns all allocated space from area, and prepares it for future
allocate calls.

CHAPTER 4: THE MAC C TOOLKIT
4-29

retmem - free memory ' [MacCMem.c]

char *retmem(memory)
char *memory;

This routine returns the area addressed by memory (which must have been
previously allocated by getmem) to the free list. If the pointer memory is equal to 0,
retmem does nothing. retmem always returns a result of 0.

THE LOW LEVEL I/O SYSTEM

Teletype Simulation

Any window can be a teletype simulation window. The CreateTTY function, or the
NewWindow or GetNewWindow traps can be used to create such a window. Only one
teletype window can be active at one time, and any output directed to tty (file 0) appears in
that window. The SetTTY routine can be used to change windows. Characters are
displayed in the current font, style, etc., of the active teletype simulation window. The next
character will be displayed at the pen position of the window's port.

BackupTTY - backspace character [MacCTTY.Asm]

void BackupTTY(c)
charc;

This routine backs up the character position and erases ¢, which is normally the last
character displayed.
ClearTTY - clear teletype window [MacCTTY.Asm]

void ClearTTY(window)
WindowPtr window;

This routine erases the entire contents of window and places the pen at the upper
left hand corner of the window.

CHAPTER 4: THE MAC C TOOLKIT
4- 30

CreateTTY - create teletype window [MacCTTY.Asm]
WindowPtr CreateTTY(x, y, width, height, title, goawayFlag)
short x, y;
short width, height;
char *title;
char goawayFlag;
This routine creates a window and sets it up as the active teletype window. xandy
locate the upper left hand corner, title is a P-Str, and goawayFlag is the window
goawayflag. width and helght are the width and height of the window in screen
dots.
Font_Info - font information [MacCTTY.Asm]
Fontinfo Font_Info()
This routine returns the address of the Fontinfo record for the current font of the
current port. The Fontinfo structure is defined in Ingside Macintosh, and in the

header file font.h. The result of this function is saved in temporary storage. Do not
dispose of it. Copy the structure if you wish to save it.

Line_Helght - line height [MacCTTY.Asm]
short Line_Height()
This routine returns the line height in screen dots for the current teletype window.
This is the sum of the leading, ascent, and descent.

SetTTY - setTTY [MacCTTY.Asm]

void SetTTY({window)
WindowPtr window;

This routine makes window the active teletype simulation window. Characters are
displayed from the current pen position.

CHAPTER 4: THE MAC C TOOLKIT

4. 31
JTYChar - display character in teletype window [MacCTTY.Asm]
void TTYChar(c)
charc;
This routine displays ¢ as the next character in the active teletype window.
TTYPort - teletype window pointer [MacCTTY.Asm]
WindowPtr TTYPort;
This global variable contains the WindowPitr for the active teletype window.
Serial IO and Keyboard Input
The low-level IO routines mentioned here take a CONSOLE or SIO device as
an argument. This is not the device used for normal Toolkit I/O; rather,
it is an internal Toolkit value. To call these routines directly, use the value saved in
channelvec]file], where file is the parameter returned by TKopen, and the type of
channelvec is Int. Do not use these routines for disk l/O.
EventReady - event ready [MacCSIOLib.Asm]
char EventReady(mask)
short mask;
This routine returns non-zero if there is an event of the type specified by mask
waiting in the event queue. mask is the event mask as described in Inside
Macintosh.
FlushKey - flush key [MacCSIOLib.Asm]
void FlushKey()

This routine flushes all keydown and autokey events from the event queue.

CHAPTER 4: THE MAC C TOOLKIT

4- 32
inEvent - input Event [MacCSIOLib.Asm]
EventRecord *inEvent(mask, Event)
short mask;
EventRecord “Event;

This routine reads the next event of the type specified by mask into Event, and
romoves it from the event queue. If there are no such events in the event queue, the
routine waits for one. Its result is Event.

IntSIO - initalize SIO port [MacCSIOLib.Asm)

void InitSIO(device, configuration)
short device, configuration;

This routine initializes the SIO port. If configuration is 0, the port is initialized as
follows: 2 stop bits, 8 data bits, no parity, 9600 baud. Otherwise, configuration is
passed to the Macintosh operating system as the configuration parameter to a
PBControl trap (see the Serial Driver section in Inside Macintosh). InitSIO is
normally called by TKopen. If you have a hard disk, be careful! It may use

a serlal port, so do not Initiallze it.

inKey - input key event [MacCSIOLib.Asmj}
char inKey()

This routine reads the next keydown or autokey event from the event queue, and
returns its character value. The Command key is treated as a control shift, producing

characters in the range 0 through Ox1F. If the keyboard event queue is empty, InKey
waits for a key event.

inSIO - input SIO character [MacCSIOLib.Asm]

char inSIO(devics)
short device,

This routine reads a single character from device (CONSOLE or an SIO port) and
returns it. Do not use this directly and expect the Toolkit /O Routines to
work with the same device.

CHAPTER 4: THE MAC C TOOLKIT
4-33

KeyReady - key ready [MacCSIOLib.Asm]
char KeyReady()

This routine returns non-zero if there is a character in the input buffer for the
keyboard.

SIOReady - SIO ready [MacCSIOLib.Asm]

char SIOReady(device)
short device;

This routine returns non-zero if there is a character in the input buffer for device,
where device may be the CONSOLE or an SIO port.

Disk VO Routines

These routines form the basis of the Mac C Toolkit disk I/O system. They interface to the
Macintosh I/O system at the block file I/O level, maintaining their own file position and
end-of-file information for open files. They allow either synchronous or asynchronous
(muttiply buffered) 1/0, and provide a complete set of primitives for reading, writing, and
positioning files. Particular care has been taken to make them efficient at the character /O
level so that applications can directly call the I/O routines without a serious loss of
efficiency. These routines are used for alt VO done in the Mac C Compiler. Most of
these routines are not useful for normal /0. Use the high-level I/O routines

instead.

Files at this level are identified by a File information Block (FIB). This structure (which is
declared in MacClOdefs.h) contains all the information that is known about an open file,
and is passed as an argument to most of the routines.

The high-level /O system (which uses TKopen, TKclose, inchr, outch, etc.) saves the
address of the FIB in channelvec, which is in turn indexed by the file number used in the
high-level I/0 routines.

A File Control Block (FCB) data structure (which is actually a Macintosh I/O Parameter
Block) contains the information required by the Macintosh operating system about the file.
It is used as a parameter to many low-level routines. The address of the FCB for a file is
stored in its FIB.

CHAPTER 4: THE MAC C TOOLKIT
4-34

The strings manipulated in these routines are all C strings unless otherwise noted.
Conversion is performed by the routines as required for the Macintosh operating system
calls.

I/O system errors are normally handled by calling Signal or by failing the operation.
Failed operations return an invalid value andr store an error code in the global variable
lastlOError. This is satisfactory for many applications, but not for all. For these latter
cases the FIB contains a field named IOErrorLoc. If the address of a function is stored in
this field (by calling setlOError), that function will be called when a serious error (such as
diskette write protected or full) is encountered that cannot be handled by Toolkit routines.
The function is called with arguments as though it were declared:

{OError(fib, result)
struct FIB *fib;
short result;

result is the result code from the Macintosh file system trap. Returning from the IOError
function causes the error to be ignored by the I/0 system.
calllOError - call VO error [MacClO.c}
void calllOError(fib, errorcode)
struct FIB *fib;
shont errorcode;
This routine calls the error function tor fib if there is one. errorcode contains the
Macintosh trap resutt code. '

deletefile - delete file [MacCIO.c]

short deletefile(filename)
char *filename

This function deletes the named file from the disk if it exists and is not open.
Otherwise, deletefile does nothing. Returns the resuilt from the Macintosh Delete
trap as its result (zero if everything was OK).

CHAPTER 4: THE MAC C TOOLKIT
4- 35

eofflle - test end of file [MacClO.c]

char eoffile(fib)
struct FIB *fib;

eoffile returns non-zero if the designated file is positioned at the end.

filelength - file length [MacClO.c]

long filelength(fib)
struct FIB *fib;

This routine returns the length in bytes of the designated file.

findflle - find file [MacClO.c]

char findfile(filename)
char *filename

This routine returns non-zero if the named file exists on disk.

initfilelo - initialize file VO [MacCIO.c)
void initfileio()

This routine is called by initio to initialize the disk file system.

readchar - read character [MacClO.c]

char readchar(fib)
struct FIB *fib;

This routine reads and returns the next character from the designated file. If the file is
at the end, or if it is not open for read access, the value 0xFF is returned.

CHAPTER 4: THE MAC C TOOLKIT
4-38

setfileposition - set file position [MacClO.c]

long setfileposition(fib, pos)

struct FIB “fib;

long pos;
This routine sets the byte position of the designated file to pos. The first position in
the file is 0. If pos is past the current end of file, the position is set to end of file for
read only access files, and the file is extended to pos for write access or read/write
access files.

setlOError - set /O Error A [MacCliO.c]
setlOError(fib, errorproc)
struct FIB *fib;
int ("errorproc)();

This routine makes errorproc the function called when serious /O errors occur on
the file designated by fib.

Define errorproc as:
errorproc(fib, result)
struct FIB *fib;
short result; / resutt is the error code returned by the Macintosh file system.
Call setlOError with the name of the errorproc:
setlOError(fib, errorproc);

This supercedes any previous calls to setlOError for fib.

truncatefile - truncate file [MacClO.c]

struct FIB *truncatefile(fib)
struct FIB *fib;

If the designated file is open for write or read/write access, its end of file pointer is set
equal to the current position. Otherwise this routine does nothing. It returns fib as its
result.

CHAPTER 4: THE MAC C TOOLKIT
4-37

writechar - write chracter [MacCiO.c]

char writechar(fib, c)
struct FIB *fib;
charc;

This routine writes ¢ onto the file designated by fib if it is open for write or read/write
access. If the file is at end of file, it is extended to accommodate the character. !f the
file is not opened for write or read/write access, this routine does nothing and a byte
with a value of OxFF is returned as the result. Otherwise ¢ is returned.

Routines Which Directly Call Macintosh VO Traps

GetFlleType - get file type [MacC10Supp.c]

char GetFileType(filename, typePtr)
char *filename;
long *typePtr;

This routine returns the file type (TEXT, 'APPL', etc.) of the file identified by
filename in the long addressed by typePtr. it returns non-zero as its result if the
file exists, and zero otherwise.

ioCall - /O Call [MacClOSupp.c]

short I0Cali(trap, parmBlock)
short trap;
char *parmBlock;

This routine performs a generic call to the Macintosh I/0 system. The number of the
trap to be called is passed as trap, and parmBlock is a pointer to the I/O parameter
block to be passed to the trap in A0. 10Call normally returns the result of the trap as
its result. It stores any Macintosh error code in the global variable lastlOError. If an
asynchronous trap results in an "Unmounted volume” /O error, IOCall retries the
trap as a synchronous call. If the retry fails, it calls Signal with the string "Could Not
Re-Mount Volume”.

CHAPTER 4: THE MAC C TOOLKIT
4-38

MACbytelo - Mac byte /0 [MacCiOSupp.c]

long MACbyteio(inst, fcb, addr, position, nbytes)
short inst;
struct FCB *fcb;
char *addr;
long position;
short nbytes;

This routine performs a read or write operation on the indicated file, and.returns the
actual number of bytes written or read. Inst contains the value of either a read or
write trap and is passed directly to 10Call.

MACgeteof - get EOF [MacClOSupp.c]

long MACgeteof(fcb)
struct FCB *fcb;

This routine returns either the logical end of file for the indicated file, or zero if the file
doesn't exist or if there is an error.
MACseteof - set EOF [MacClOSupp.c]
short MACseteof(fcb, position)
struct FCB *fcb;
long position;
This routine sets the logical end of file of the indicated file to position. It returns the
result code from the Macintosh SetEOF trap as its resuit.
OSclose - closs file [MacCIlOSupp.c]

short OSclose(fcb)
struct FCB *fcb;

This rodﬁne closes the indicated file. It returns the result code from the Macintosh
Close trap as its result.

CHAPTER 4: THE MAC C TOOLKIT

4- 39
OScreate - O.S. create file [MacCIOSupp.c]
char OScreate(filename)
char *filename;
This routine creates a file in the directory with the name in filename. It retumns
non-zero if the operation is successful, zero if it is not.
OSdelete - O.S. delete file [MacClOSupp.c]

char OSdelete(filename)
char *filename;

This routine deletes the file named by filename from the directory. It returns 0 if the
operation is successful, an error code from the Macintosh /O system if it is not.
OSfind - O.S. find file [MacCIOSupp.c]

char OSfind(filename)
char *filename;

This routine returns a non-zero result if the file named by filename exists in the
directory. It returns faise otherwise.
OSfiush - O.S. flush [MacCIOSupp.c]

short OSflush(fcb)
struct FCB *{cb;

This routine ensures that all file buffers of the indicated file are flushed to disk. (It
should not be necessary to call OSflush, since the file system does so at the
appropriate times.) It returns the result code from the Macintosh FlushFile trap.

CHAPTER 4: THE MAC C TOOLKIT
4-40

OSopen - O.S. open file [MacCIlOSupp.c}

short OSopen(fcb, filename, access, resourceflag)
struct FCB *fcb;
char *filename;
short access;
char resourceflag;

This routine opens the file indicated by fllename (a C string) in the mode indicated
by access (0 = read/write if allowed, 1 = read only,

2 = write only, 3 = read/write). If resourceflag is non-zero, the resource fork of the
file is opened instead of the data fork. The result of the Macintosh Open trap (zero =
operation is successful, non-zero = error code) is returned.

OSreset - O.S. reset [MacCIOSupp.c]
short OSreset()

This routine ensures that all file buffers and directories are flushed to disk on any
mounted volumes. Call this before leaving a program (unless you call the "standard”
C library routine exit or _exit). Note that this routine does not close files. The
high-level /O System function closeall can be used to close any open files.
OSreset returns the result code from the Macintosh FlushVol trap as its result.

SetFileSignature - set file signature [MacClOSupp.c]
void SetFileSignature(filename, Signature)
char *filename;

long Signature;

This routine sets the creator of the file named by filename to Signature.

SetFileType - file type [MacCIOSupp.c]
void SetFileType(filename, Type)
char *filename;
long Type;

This routine sets the type of the file named by filename to Type.

CHAPTER 4: THE MAC C TOOLKIT
4- 41

UserWords - get user words [MacCIlOSupp.c]

char *UserWords(filename, I[OParmBlock)
char *filename;
char *IOParmBlock;

Given name pointer filename and the address of an /O Parameter Block in
IO0ParmBlock, this routine fills in the VO Parameter Block by calling GetFileinfo,
and returns the address of the userwords field within the /O Parameter block as its
result. The area pointed to by IOParmBlock must be at least 80 bytes long.
UserWords returns 0 if the file does not exist.

CHAPTER 5:
FLOATING POINT

INTRODUCTION

The floating point package used by Mac C is based on the IEEE floating point package
implemented in the Standard Apple Numerics Environment (SANE). It is a sophisticated
and highly accurate package using 80 bit operands. In the Mac C implementation, which
conforms to an Apple specification for a C implementation of SANE, the normal C floating
point data types float and double are augmented by two new data types, extended,
which is a full precision 80 bit floating point value, and comp, which is a 64 bit integer
type implemented by the SANE package. This chapter discusses the features of the Mac
C implementation of SANE whera they differ from (or are extensions to) the standard C
floating point implementation. Programs written according to the Kernighan and
Ritchie description of floating point will run, unmodified, in the Mac C

floating point Implementation. You should be familiar with the section of Inside
Macintosh which discusses floating point and SANE. A special thanks is due to the
Numerics group at Apple Computers, Inc., for their assistance and guidance in
implementing the SANE C Numerics.

FLOATING POINT TYPES

Four data types are encompassed by the Mac C floating point implementation: float (32
bits), double (64 bits), comp (64 bits), and extended (80 bits). All floating point
computations are done in extended precision. The best performance will be obtained
by using extended precision operands, since any other type will require conversion
before use.

NaNs AND INF

The IEEE floating point standard defines two special quantities, NANs and INF. INF
stands for infinity, and can be signed (i.e. +INF, -INF). NaN stands for "Not a Number".
This is normally the result of an operation which yields an undefined result, e.g. sqrt (-1).
NaNs have a value associated with them, which identify their origin. The defined NaN
codes and their origins are:

NaN Origin

NaN(1) Invalid Square Root
NaN(2) Invalid Addition
NaN(4) Invalid Division

NaN(8) Invalid Multiplication

CHAPTER 5: FLOATING POINT

5-2
NaN Origin
NaN(9) Invalid Remainder
NaN(17) Conversion of invalid ASCII String
NaN(20) Conversion of comp NaN to extended
NaN(21) Attempt to create NaN(0)
NaN(33) Invalid Argument to sin, cos, or tan
NaN(34) Invalid Argument to atan
NaN(36) Invalid Argument to log function
NaN(37) Invalid Argument to exp function
NaN(36) Invalid Argument to financial function

CONSTANTS

Floating point constants are converted to binary at compile-time. Integer constants which
are greater than the maximum long integer value are read as floating integers for use as
comp values. The maximum integer is now 9,223,372,036,854,775,807. Constant
expressions, including negated numbers, are evaluated at run-time. INF and NaNs
cannot be input as constants (since they would be interpreted by the compiler as
identifiers and function calls). The floating point library functions nan{) and Inf{)

produce these special values. Integer constants may be used in floating point
exprassions, and they may be assigned to floating point values. This is not always
efficient, since they will normally be compiled as integer constants, and then converted at
run-tima to their floating point forms.

VARIABLE INITIALIZATION

Floating point variables may be initialized when defined just like integer variables,
except that static and external variables may only be initialized to floating constants.
Expressions are illegal, and so are integer constants. Automatic floating point variables
may be initialized to anything.

OPERAND CLASSES

Any floating point operand (whether extended, float, double, or comp) belongs to

one of the following classes: Signalling NaN, quiet NaN, infinite, zero, normalized, or
denormalized. Floating point library routines allow the user to determine the class of a
floating point operand. See Inside Macintosh for a precise explanation of the meaning of
the classes.

CHAPTER 5: FLOATING POINT
5-3

OPERATORS

Floating point operands are valid with the operators in table 5.1. All of the operators
retain their customary meanings except that the relational operators have an extra twist.
Given two values, A and B, we normally can say that either A> B, A < B, or A=B. Since
we have introduced floating point values, NaNs, which do not represent numbers, we
have another possibility. If either A or B is a NaN, we say that A and B are unordered.
All unordered comparisons are false except for not equal. This means, for example,
that if the relation A < B is false, it is not necessarily true that A >= B. A and B may be
unordered.

Table 5-1. C Floating Point Operators

Arithmaetic Operators Unary Operators

+ Addition & Address of Operand

- Subtraction - Arithmetic Negate

* Multiplication + Increment

/ Division - Decrement

% Modulus (type) Cast (Type Conversion)

sizeof Size of Object (bytes)

Relational Operators Assignment Operators

> Greater Than - Simple Assignment
>« QGreater Than or Equal To e Add, then Assign

< Less Than - Subtract, then Assign
<= Less Than or Equal To ‘= Multiply, then Assign
== [Equal To fom Divide, then Assign
= Not Equal To Yo Modulus, then Assign

THE ENVIRONMENT

Although this is discussed in detail in Inside Macintosh, a brief description is appropriate
here. Three things are addressed by the environment: Rounding control, exception
reporting, and halts. The sane library routines getenvironment and setenvironment
are generic routines for controlling the environment.

Rounding direction can be set as being to nearest (the default), upward, downward, or
toward zero. Rounding precision is normally set for extended operands, but can be set
for float or double operands if required by an algorithm. The sane library routines for
controlling rounding are setround and getround, getprecision, and setprecision.

CHAPTER 5: FLOATING POINT
5-4

An exception occurs when an anomolous condition arises in a computation, and it sets
an exception flag. Reported exceptions are invalid (invalid operand(s)), underflow,
overflow, divide by zero, and inexact (indicating rounding error). Exceptions are sensed
and controlled by the sane library routines testexception and setexception.

There is a capability to treat an exception like a software interrupt, and cause an
"exception” handling function to be called when the exception occurs. This is called a
halt, and is controlled by the sane library routines testhalt, sethalt, gethaltvector,
and sethaltvector.)

Scanf

In order to allow the input of the new types and values, the syntax of floating point values
acceptable to scant has been changed to allow NaNs and INF:

<infinity> = INF

<NaN> 2= NaN (<Empty> | '(’ <digits> ')")

<digits> <= <Empty> | ('0']'1"|'2'3"'4'|'S'1'6'7"|'8'|'9") <digits>
Both "NaN" and "INF" are case insensitive, and the NaN number is decimal.

New size specifiers (m and n) have been added to the format string to allow the input of
types comp and extended. To summarize floating input:

Format Specifier Type of argument
-] float
t float
g float
le double
If double
lg double
ne extended
nf extended
ng extended
me comp
mf . comp

mg comp

CHAPTER 5: FLOATING POINT
5-5

Printf

Corresponding to the scanf changes, INF and NaN values are written as "NaN(d)",
where d is a decimal number between 1 and 255, and "INF". Exponents in the

e, E, g, or G formats may be up to four digits wide, and will always be printed as at least
two digits (with a leading 0 added if necessary). See C: A Reference Manual, by
Harbison and Steele for a precise specification of printf and scanf.

THE FLOATING POINT LIBRARY

The floating point library is grouped into four sections. The first section contains the
numeric functions which do standard sorts of things with floating numbers (sin, cos, exp,
etc.) The second section contains functions which return specific values, perform
miscellaneous operations on floating point numbers, or obtain information about floating
point numbers. The third section contains routines for interrogating and controlling the
floating point environment, and the fourth section contains formatting and conversion
functions. Remember that in C, all floating function arguments are forced to extended.
Library functions whose operations or results are obvious are not documented beyond
their calling sequences and/or result types. Arguments named x or y are taken to be
type extended, those named I are Int, and those named n are short.

All types and constants for the floating point library are defined in the file "sane.h", which
you should include in any source file using the floating point library. The code for the
library is in the file "sanelib.c”, so your link control file should contain "sanelib” as an
entry.

Floating Point Numeric Functions

Name Declaration Maaning

ANNUITY: extended annuity(x, y) (1 - (1 x)M{y)x.

X = periodic rate.

y = number of periods.
ATAN: extended atan(x) : arctangent.
COMPOUND: extended compound(x, y) {T+x)*y.

x = petiodic rate.

y = number of periods.

COS: extended cos(x)

EXP:
EXP1:
EXP2:
 EXP21:

FABS:

LOG:
LOG1:
LOG2:
LOG21:
LOGB:

POWER:
RANDOMX:
REMAINDER:

SIN:

TAN:
SCALB:

Declaration

extended exp(x)
extended exp1(x)
extended exp2(x)
extended axp21(x)

extended fabs(x)
extended ipower(x, n)

extended log(x)
extended iog1(x)
extended log2(x)
extended log21(x)
extended logb(x)

extended lpower(x, y)
extanded randomx(seed) extended “seed;

axtanded remainder(x, y, quo) short *quo;

extended sin(x)
extended sqit(x)
axtended tan(x)

extended scalb(n, x)

CHAPTER 5: FLOATING POINT
5-6

Meaning

exponential base-e.
exponantial base-s (x)-1.
exponentlal base-2.

exponential base-2(x)-1.

absolute value.

xAn.

log base-e.

log base-e (1+x).

log base-2.

log base-2(14+x).

binary exponent of normalized x.

xty
gets random value; updates seed.

retum x % y; “quo is assigned
the low order 7 bits of the
quatient as a signed value,
i.8. -127 <= *quo <= 127.

Name

CLASSCOMP:

CLASSDOUBLE:

CLASSEXTENDED:

CLASSFLOAT:

COPYSIGN
INF

NAN
NEXTCOMP

NEXTDOUBLE

NEXTEXTENDED

NEXTFLOAT

Pl
RELATION

RINT:
SIGNNUM
TINT:

Miscellaneous Functions

Declaration

numclass classcomp(c) comp c;
numclass classdouble(d) double d;
numclass classextended(x);
numclass classfloat(f) fioat f;

extended copysign(x, y)
extended inf()
extended nan(v) unsigned char v;

extended nextcomp(x, y)
extended nextdouble(x, y)
extended nextextended(x, y)
extended nextfioat(x, y)

extended pi()

relop relation(x, y)

extended rint(x}
int signnum(x)

extended tint(x)

CHAPTER 5: FLOATING

Meaning
abs(result) is class of c.
result <0ifc <.

abs(result) is class of d.
result <0ifd < 0.

abs(result) is class of x.
result <0iftx <O.

abs(result) is class of f .
result <0 iff <0.

returns y with sign of x.
returns INF.
retums NaN(v).

retums next value after x in the
direction of y, comp precision.

retums next value after x in the
direction of y , double precision.

retums next value after x in the
direction of y, extended precision.

retums next value after x in the
direction of y, float precision.

returns value of pi.

returns 0 if x > y, 1 if x<y,
2 if x=y, 3 if unordered.

rounds x to integral value.
returns O f X >= 40., 1 if X <= -0.

truncates x to integral value.

POINT

§-7

Environment Control
Name
GETENVIRONMENT
GETHALTVECTOR
GETPRECISION

GETROUND
PROCENTRY

PROCEXIT

SETENVIRONMENT

SETEXCEPTION

SETHALT

SETHALTVECTOR
SETPRECISION
SETROUND
TESTHALT

TESTEXCEPTION

Declaration

vold getenvironment(e) environment *e;
hahvector gethaltvector()

roundpre getprecision()

rounddir getround()

vold procentry(e) environment ‘e;

void procexit(e) environment e;

void setenvironment(e) environment e;
void setexception(e,n) exception e;
void gethalt(e,n) exception e;

void sethaltvector(h) haltvector h;
void setprecision(p); roundpre p;
void setround(r); rounddir r;

int testhalt(e) exception e;

int testexception{e) exception e;

Formatting and Conversion

CHAPTER 5: FLOATING POINT
5.8

Meaning

“e = snvironment.
retum halt vector.
return rounding precision.
return rounding direction.

*6 = anvironment
environment = IEEE default.

temp = exceptions;
environment = e;
signal exceptions in temp.

snvironment = o,
set flags indicated in mask e If

n = 0, reset if n=0.
May cause halt,

_enable halts indicated in mask e

it n l= 0, disable i n=0.
Set halt vector to h.

set rounding precision to p.
set rounding direction to r.

retum 1 if any halt indicated
by mask e is snabled, O if not.

return 1 if any flag indicated
by mask e is enabled, 0 if not.

Formatting and conversion of floating point values are normally done using printf and
scanf. There may be instances, however, where it is necessary for a program to do its
own formatting and conversion. The Mac C floating point library provides the necessary
low level routines for doing this. Using them requires a thorough understanding of the
DECIMAL RECORD format as described in Inside Macintosh.

A floating point decimal number may be represented as an ASCII string, a binary value,
or as a value encoded as a mixture of binary and ASCII values known as a DECIMAL
RECORD, or decimal for short. The format of a decimal is defined in "sane.h". In the

CHAPTER 5: FLOATING POINT
5-9

SANE package, ASCII strings are always converted to decimal format, and vice versa.
Only decimal format operands can be converted to and from the binary format.
Conversion from binary to decimal is controlled by a format record called a decimal
format or decform. Binary values may be converted to decimal records with num2dec,
and decimal records to binary with dec2num. decimal records may be converted to
and from string formats with dec2str and str2dec. These routines are in the file
floatconv, so you must include it in your link control file if you use these.

DEC2NUM

NUM2DEC

DEC2STR

STR2DEC

Declaration

extended dec2num(d) decimal *d;

void num2dec(f,x,d) decform *f; decimal *d;

void dec2str{f.d,s) decform *f; decimal *d; char *s;

Meaning

convert the decimal record at
d 1o binary and retum value.

Convert x to decimal record
and store into *d.

Convert number in decimal
record *d into an ASCII
steing in *s.

void str2dec(s,inx,d,valid) char *s;short *inx, *valid; decimal *d;

Converts ASCII string at
§[*inx] into decimal record
*d. *inx is updated to point
past last character used from
8. ‘valid is non-0 if a null
byte terminated the string.

APPENDIX A:
DIFFERENCES BETWEEN MAC C
AND STANDARD C
INTRODUCTION
Mac C differs in several ways from standard C as defined in The C Programming

Language, by Brian W. Kernighan and Dennis M. Ritchie. These differences, explained
in the following text, fall into three categories: extensions, interpretations, and restrictions.

EXTENSIONS

These extensions represent enhancements of the Kernighan and Ritchie C.
1. All characters of an identifier are significant.
2. All field names are local in scope to the structure in which they are declared. Mac

C enforces strict member specification rules on the structure memory reference
operators ". " and "->."

3. Inline assembly code may be bracketed by #asm and #endasm lines.
4 Type and field checking is carried out through all levels of
~ indirection.

5. All basic types (char, short, int, long) may be unsigned.

6. Character literals may be from one to four characters in length.

7. The '# character may appear in any column, so long as it is preceded only by
white space.

8. The character pair "//" outside of strings causes the remainder of the line to be a
comment. ‘

9. Automatic (local) declarations may appear anywhere before they are are first

used. They do not need to appear immediately after the "{."

APPENDIX A: DIFFERENCES BETWEEN MAC C AND STANDARD C
A-2

10. The address of a procedure p() may be taken either with the C
standard:
ptr=p;
or, alternatively:
ptr = &p;

11. The floating point implemented in Mac C 2.0 is based on the Apple IEEE/SANE
Numerics package, and features 80 bit precision with the added data types ext and
comp. Arguments and intermediate results are 80 bit values.

12. The C extensions: structure assignment, passing structures by value, and functions
returning structures are implemented in Mac C.

13. The C extension of enumerated types is implemented. The Mac C implementation
is based on the "pointer model" suggested in C: A Reference Manual by
Harbison and Steele.

14, Bitfields may be specified as unsigned char, unsigned short, unsigned int,
or unsigned long. The basic type identifies the "unit" size in which the bit field is
to be imbedded. Address alignment will be done before the first bitfield of a group
according to the basic type, and storage will be allocated for bitfields in multiples of
the the basic type size. Bits are numbered from the MSB (0) to the LSB (n), which
is the opposite of hardware numbering. Bit fields may not be initialized.

15. Type vold is allowed.

INTERPRETATIONS

These interpretations represent implementation spacifics.

1.

char and short values are only converted to integers when necessary., e.g. , given:

char ¢1,62,c3;
c1 =c2+¢3;

¢2 and ¢3 are NOT converted to Int before the addition.

APPENDIX A: DIFFERENCES BETWEEN MAC C AND STANDARD C
A-3

The programmer may select a 16- or 32-bit integer size. 32 bits is standard.
The >> operator shifts 0 into the high order bits.
Case sensitivity is not carried outside of the source file.

\n' is interpreted as a return, since linefeed is not recognized as a newline character
on the Macintosh.

Mac C uses the MDS Assembler to process its output, and the Assembler has cerain
reserved words which cannot be used as labels (Register names and instruction
mnemonics). These words (such as SP, ST, SF, MOVE, etc.) cannot be used as
global or static variable or function names in your C program. You can use them as
local names, structure and field names, and typedefs.

There are some differences in identifier scope:

a. The scope of structures is always from the point of definition to the end of the
source file, even if the declaration is in a function.

b. Local variables may not be redefined in a subordinate block, i.e.
P()
{inti;
{inti;
}
}

is illegal.

¢. The scope of labels is logically the procedure in which they are declared, but
this is not checked by Mac C.

APPENDIX A: DFFERENCES BETWEEN MAC C AND STANDARD C
A-4

An important Note.

C allows a variable number of arguments to be passed to a function as a non-portable
construct. Mac C adds a feature to the C language to specify that a function is to be called
with a variable number of arguments. This serves as both an implementation and a
documentation aid (it flags the use of a non-portable feature.) To specify a variable
number of arguments, the last element in the function argument list must be "...", and
external declarations of the function should simply include the three dots between the () in
the declaration. "printf", for example, is defined as:

int printf{format, args, ...)
and declared external as:

extern int printf{(...);

APPENDIX B:
USING ASSEMBLY:-CODE WITH MAC C

INTRODUCTION

Since Mac C is, in fact, a translator from C to Assembler, using assembly code with a Mac
C program is easy and convenient. There are two ways to use assembly code with Mac C:
the first is inline, and the second is via linked files. Both methods are explained in this
appendix. For information about the Macintosh Assembler and its use, consult the
Macintosh 68000 Development System Manual.

inline Assembly Code

The most convenient way to use assembly code is inline. Mac C recognizes the
commands #asm and #endasm, as delimiting an assembly code routine, and passes
any text between them to the intermediate output (assembly code) file on a line-by-line
basis. The #asm and #endasm commands must appear on separate lines at the
beginning and end of the inline assembly code as the following example illustrates:

swap(pirA, pirB)

long “ptrA, “ptrB;

{

r
long temp;
temp = *ptrA;
*ptrA = *ptiB;
*ptrB = temp;

“t

#asm
MOVE.L D0,A0) PirA
MOVE.L D1,A1 prB
MOVE.L (A0},D2
MOVE.L (A1),(A0)
MOVE.L D2,(A1)

#endasm

k

When the compiler encounters such inline assembly procedures, it does not generate the
normal procedure prologue and epiloguse. This allows fast and compact routines to be
imdedded on a procedurs-by-procedure basis in a program.

To use the inline assembly feature effectively, both the Mac C procedure call conventions,
and the way Mac C references global and local storage must be understood. See Chapter
2: Compiler Code Generation for more information.

APPENDIX B: USING ASSEMBLY CODE WITH MACC
B-2

Because the assembly code labels have not been declared to Mac C for typing and scope
purposes, they must be declared as normal external variables in the C sourcs file. This
does not apply to routines such as swap in the above example, since the routine is
actually defined as a C function.

Some assembly code labels are not referenced in the C source code file in which they are
declared, but are referenced in another source file. In this case, an assembly XDEF
directive must be provided.

Linking Assembly Files

Linking a Mac C program with assembly files is easy to do. Simply include the name of the
assembly file in the Linker control file. Be sure that global variables are properly declared,
and that you understand how Mac C calls functions and references variable names. Note
that registers A5, A6, and A7 must be preserved. The first seven arguments to a function
are passed in registers D0-D6, and function results are returned in register DO for values
and A0 for pointers.

APPENDIX C:
CALLING PASCAL PROCEDURES
FROM MAC C

INTRODUCTION

Combining C and Pascal procedures (for instance, library routines) may be very desirable.
Mac C allows procedures generated by Apple Lisa Pascal to be called from Mac C by
writing a short "glue” routine. For example, for the following Pascal procedure:

FUNCTION PascalFunc(boolParm: BOOLEAN; intParm: INTEGER,
longParm: Longint; structParm: SomeStruct; VAR varParm: INTEGER):
INTEGER;

a glue routine could be written:

short CPascaiFunct(boolParm, intParm, longParm, structParmm, varParm)

char boolParm; 7 BOOLEANSs are bytes */
short intParm; /* INTEGERS are short (16 bits) */
long longParm;
char *structParm; /* any pointer will do */
short *varParm; /* VARs are pointers */
{
#asm
CLR -{8P) ; SPACE FOR 18-BIT RESULT
MOVEB DO-(SP) ; boolParm
MOVE D1,4{SP) ; intParm

MOVEL D2,-(SP) ; longParm
MOVE.L D3,-(SP) ; structParm
MOVE.L D4,-(SP) ; VAR varParm
JSR PascalFunc

MOVE (SP)+,DO ; INTEGER RESULT
#endasm

|3

Executing this routine enables the Pascal function to be referenced from a C program
where desired. The example illustrates the basic characteristics of the Pascal calling
conventions for Mac C, which include the following:

APPENDIX C: CALLING PASCAL PROCEDURES FROMMAC C
c-2

» Types BOOLEAN and CHAR are 8 bits.

+ Type INTEGER is 16 bits.

* Types LONG INT, VAR references, and pointers are 32 bits.
+ Al parameters are passed on the stack. |

« Space for the result must be allocated on the stack before
the first parameter.

» The result is left on the stack.
+ Pascal procedures preserve registers D3-D7 and A3-A7.

It is important to note that Pascal does not always pass the address of a structure when the
structure is passed as an argument. In particular, if the total size of the structure is <= 32
bits, it passes the VALUE and not the address.

Pascal uses Bit 0 of a char value for Boolean values. Be sure the value you pass has this
bit set for true.

If a function or procedure with more than seven arguments is called, the arguments must
be obtained from the stack. This can be accomplished either by saving a pointer to the top
of the stack on procedure entry, or by calculating the offset of the desired parameter from
the current top of the stack. Saving the stack pointer is simpler.and much less likely to
cause bugs.

APPENDIX C: CALLING PASCAL PROCEDURES FROM MAC C
c-3

The following illustrates this calling convention:

SFPGetFile{where, prompt, fileFiiter, numTypes, typeLlat, digHook, reply, digiD, fiterProc)

Point *where;
P_Str “prompt,
int (*fileFiiter)();
short numTypes;
SFTypelist “typelist;
int {*digHook)();
SFReply “reply;
short digiD;
int (*filaFilter)();
{
#asm
ARG8
ARG9
MOVE.L
MOVE.L

MOVE.L
MOVE.L
MOVE.L
MOVEW
MOVE.L
MOVE L
MOVE.L
MOVEW
MOVEL
MOVEW
DC.W $ASEA
#ondasm

I

EQU 4
EQU 8
SP,A1
DO,A0

(A0).-(SP)
D1,-{SP)
D2,-(SP)
D3,-(SP)
D4,-(SP)
D5,-{SP)
D6,-{SP)
ARG8+2(A1),-(SP)
ARGO(A1),-(SP)
#4,-{SP)

; _Pack3

; Save original SP

; dersferencs point since structure size
; Is smaller than 33 bits, and PASCAL
; expects the value and not the address
; where

; prompt

; fileFilter

; numTypes

; typeList

; digHook

; reply

; digiD

» filterProc

; Select SFPGetFlle

APPENDIX D
ERROR MESSAGES

This appendix documents compiler error messages. Assembler and linker errors
messages can be found in the Macintosh 68000 Development System Manual.
Run-time error reporting is the responsibility of the user program or the Macintosh
operating system.

The compiler error messages are listed alphabetically, with the actual message indicated
in bold, and an explanation (unless it is obvious) underneath.

ADDRESS LOAD ON ILLEGAL NODE TYPE
This is an internal system error.

ALREADY DEFINED
An identifier was encountered which had been previously defined in a similar context.

BREAK OUT OF CONTEXT
A break was encountered outside of a switch statement or a loop.

CODE GEN ERROR
This is a system error.

CONTINUE OUT OF CONTEXT
A continue statement was encountered outside of a loop.

COULD NOT OPEN FILE <FILENAME>
The Compiler was unable to open the indicated file.

DISK FULL
DISK IO ERROR
DISKETTE WRITE PROTECTED

DIRECT LOAD ON ILLEGAL NODE TYPE
This is an internal system error.

DIVIDE BY 0
An attempt was made to divide by zero in a literal expression.

DUPLICATE CASE CONSTANT
The same case constant was used twice in a switch statement.

APPENDIX D: ERROR MESSAGES
D-2

DUPLICATE DEFAULT IN SWITCH |
Two or more defauit cases exist in the switch list.

DUPLICATE LABEL
A label was declared twice.

DUPLICATE MACRO DEFINITION
A macro was defined twice.

EXPRESSION TOO COMPLEX
The number of operators in a given expression has exceeded the limit. To eliminate this
problem, break the expression into smaller units, using temps if necessary.

EXTRA OPERAND
An expression with an extra operand was encountered.

FILE LOCKED
One of Mac C's output files cannot be opened.

FILE NAME TOO LONG
A file name longer than 252 characters was declared.

FILE OPEN ERROR

FUNCTION TYPE DOES NOT MATCH PREVIOUS DECL OR USE

A function that has been referenced or declared is later defined, and the definition type
does not match the original type of the reference or declaration. The default for undefined
tunctions is type int.

ILLEGAL ARGUMENT CONVERSION
An attempt was made to pass an illegal value to a procedure.

ILLEGAL ARGUMENT NAME
An argument had an illegal name.

ILLEGAL ARRRAY TYPE
An attempt was made to have an array of functions.

ILLEGAL BOOLEAN EXPRESSION
The compiler failed in an attempt to tum a relational expression into a value. This should
never happen.

APPENDIX D: ERROR MESSAGES
D-3

ILLEGAL CASE CONSTANT
A value that is not a constant has been used as part of a case label.

ILLEGAL CONSTANT EXPRESSION
A non-constant expression was encountered where a constant expression was required.

ILLEGAL C$$ TOKEN
This is a system error.

ILLEGAL DECLARATION

ILLEGAL FORMAL ARGUMENT TYPE
An attempt was made to pass an structure or an array as formal argument.

ILLEGAL FORMAL IN MACRO CALL
An illegal formal parameter was encountered in a macro call.

ILLEGAL FUNCTION CALL
The compiler encountered what appeared to be a function call, but the function name was
illegal.

ILLEGAL FUNCTION DECLARATION
A function was encountered in an illegal context (e.g., in the argument list for a procedurs).

ILLEGAL FUNCTION TYPE
A function has been declared with the type array or function.

ILLEGAL INDEX
Either an illegal value was used an an index (i.e., a pointer cannot be used as an index
value), or an expression that was not a type pointer was followed by an index expression.

ILLEGAL INITIALIZATION
A user tried to initialized an automatic variable that was either an array or a structure.

ILLEGAL INC/DEC
A "++" or "--" construct was encountered in an illegal context.

ILLEGAL INT CONVERSION
An attempt was made to convert an argument te an illegal form. This attempt could either
be implied by the conversion rules of an expression, or in explicit type casting.

ILLEGAL LABEL
A label was used with the wrong syntax.

APPENDIX D: ERROR MESSAGES
D-4

ILLEGAL LEFT HAND SIDE

An expression used as the destination of an assignment did not have a legal assignment
value, or an attempt was made to take the address (either by context or explicitly with the &
operator) of an illegal valuse.

ILLEGAL LONG CONVERSION
An attempt was made to convert an argument to an illegal form. This attempt could either
be implied by the conversion rules of an expression, or in explicit type casting.

ILLEGAL MACRO DEFINITION
A syntax error was made in a macro definition.

ILLEGAL MACRO NAME
A macro was defined with an illegal format nams.

ILLEGAL MEM OP NODES
A system error was encountered when parsing an expression of the form <ident> <op> =
<exp>.

ILLEGAL NAME FOLLOWS #
Either an illegal preprocessor directive was encountered, or a trap name under the
#NoTraps option was improperly spelled.

ILLEGAL NUMBER ,
A number with an illegal format was encountered (e.g., the digit "8" or "9" in an octal
number). .

ILLEGAL OPTION
An illegal character or syntax was found after # options.

ILLEGAL OPERATOR OR TYPE ERROR
The system has encountered an error of an unknown type in an expression.

ILLEGAL POINTER OPERATOR OR COMBINATION
Pointers were used in an illegal context (e.g., attempting to multiply a pointer by a number).

ILLEGAL PREPROCESSOR LINE

ILLEGAL RIGHT HAND SIDE .
The right hand side of an assignment was made in an illegal fashion.

ILLEGAL SIZE OF ARG
Sizeof operator was used but was not followed by a legal operand for sizeof.

APPENDIX D: ERROR MESSAGES
D-§

ILLEGAL STATEMENT
An input statement could not be parsed by the Compiler into a legal statement.

ILLEGAL STRUCTURE ELEMENT
An illegal element, e.g., a function, was encountered in a structure body.

ILLEGAL STRUCTURE REF
Either a structure reference was attempted to an entity that was not a structure, or the
reference was of the wrong type (e.g., a "." rather than a "-->" reference was used).

ILLEGAL SYMBOL FOLLOWS #
A # has been followed by an unknown identifier.

ILLEGAL SYMBOL NAME
The Compiler expected the name of a symbol but encountered something else.

INCLUDE ERROR
An unspecified problem was encountered when trying to include a file.

INCOMPATIBLE POINTER ASSIGNMENT
An attempt to assign or operate on a pointer of one type by a pointer of another type has
been made. (Pointers should be type cast so they are of the same type.)

INCOMPATIBLE POINTERS

Two pointers of different types were used in an expression, or an attempt to assign or
operate on a pointer of one type by the pointer of the second type was made, and failed.
Pointers should be type cast so they are of the same type.

INCOMPATIBLE TYPES IN A:B

A statement of the form test? A:B was written in which the types of the first and second
values were incompatible. This might happen if pointers of different types were used. Use
the type cast operator to create pointers of the same type.

O MEMORY ERROR
This is a direct error from the Macintosh I/O system.

LINE TOO LONG

MACRO TOO LONG
A text required to store a macro was more than 500 characters in length.

MISSING ":"
In an expression of the form value:value, the ":" was missing.

APPENDIX D: ERROR MESSAGES
D-8

MISSING)" :
The program compiled, but when the compilation completed, the block count was not
equal to zero. This indicates the number of right and left braces did not match.

MISSING "c"
The word "missing” foliowed by character indicates a syntax error.

MISSING FORMAL IN MACRO CALL

Either the syntax of the call indicated that a formal argument should be present or the
definition of a macro required a formal argument. The argument, however, was not passed
in the call.

MISSING FORMAL IN MACRO DEFINITION OR CALL

Either the syntax of the call indicated that a formal argument should be present or the
definition of a macro required a formal argument. The argument, however, was not passed
in the call.

MISSING LABEL
A GOTO was encountared that was not followed by a label.

MISSING OPERAND

The expression parser expected an operand but did not encounter one. This error
message is normally issued only after an expression has been scanned and an
anticipated operate and has not been found.

MISSING PROCEDURE BODY
A procedure without a body was encountered. Typically, this error is caused by putting a
semi-colon after the argument list in a procedure declaration.

MISSING STRUCTURE BODY _
A structure declaration was encountered without a structure body being defined.

MISSING "while"
A do clause appeared that was lacking a while clause.

MISSING)" IN MACRO CALL
A macro call was made and the number of left and right parentheses do not match.

NEGATIVE ARRAY SIZE
A negative value was encountered as an array size in a declaration.

NO CASES IN SWITCH
A switch without any case labels was encountered.

APPENDIX D: ERROR MESSAGES
D-7

NUMBER EXPECTED

NUMBER TOO LONG
A number longer than 252 characters was encountered.

OUT OF MEMORY
This message should only be encountered if an attempt is made to run Mac C with
MacsBug or TermBug installed.

OUT OF REGISTERS

The Compiler attempted to evaluate an expression but could not find enough free
registers. While this is unlikely to occur, the expression in question may be s:mplnﬁed
using temps if necessary.

OUT OF SPACE
This message indicates one of the Compiler's internal tables is full. This condition is
normally reported by a more specific message, i.e., Symbol Table Full.

POINTER REQUIRED
A pointer was required where a non-pointer value was used.

POSSIBLE TYPE CAST ERROR
A pointer is cast to a short; that is, a 32-bit pointer is cast to a 16-bit value.

PUSH FZN REG
This is a system error. If it occurs, try to simplify the expression using temps.

STACK UNDERFLOW
This is a system error.

STRING TOO LONG

Either a single string was longer than 252 characters, or a collection of strings in an
oxpression exceeded the available string storage. To eliminate this problem, break up the
expression and store one string into a temp in another expression.

SYSTEM REGISTER ERROR (INTERNAL)
This is a system error.

SYMBOL TABLE FULL

This error indicates that one of the symbol tables has overflowed. The sizes of the internal
symbol tables for the compilation are printed at the end of compilation, so it is possible to
tell which table has overflowed by examining these values. Each table size can be set
individually. (See Chapter 1 for compiler option details.)

APPENDIX D: ERROR MESSAGES
D-8

SYMBOL TOO LONG ,
The symbol encountered was longer than 252 characters.

TOO MANY ARGUMENTS
A procedure was called with more than 50 arguments.

TOO MANY CASES

More than 100 cases in a switch statement were encountered. To eliminate this problem,
break the switch statement up, nesting a second switch statement into the default of the
first.

TOO MANY FORMALS IN MACRO
A macro was encountered with more than nine formal arguments.

TOO MANY LEVELS OF MACRO NESTING
Macros were nested more than 100 levels.

TOO MANY NESTED FILES
Includes were nested more than eight levels.

TOO MANY PROCEDURE ARGUMENTS
More than 50 arguments were found in a procedure declaration.

TYPE MISMATCH
An exprassion was evaluated that had two types in it that did not match.

TYPE SIZE LOOP (SYSTEM ERROR)
This is a system error.

TYPE STORAGE FULL

The type storage table has overfiowed. The size of the type storage tabls for the
compilation is printed at the end of the compilation. (See Chapter 1 for setting compiler
options.)

TYPED ARG NOT DECLARED
An identifier was listed in the type list of a procedure declaration but the identifier did not
appear in the argument list.

UNDEFINED VARIABLE
An identifier that had not been previously declared was encountered in an expression.

UNKNOWN /O ERROR
This is a direct error from the Macintosh /O system.

APPENDIX D: ERROR MESSAGES
D-9

UNMATCHED “)"
A right parenthesis has been encountered without a previous left parenthesis.

VOLUME LOCKED
This is a direct error from the Macintosh I/O system.

WRONG NUMBER OF ARGS IN MAC TRAP CALL
A call was made to the Macintosh system trap with the wrong number of arguments.

WRONG OR MISSING FIELD
Either a structure was referenced with a field that does not belong to that structure, or a
structure was referenced without a field where a field is required.

#N OPTION ILLEGAL AFTER TRAPS LOADED
The #N option was used too late in the source file. This option must be encountered
before the first structure or identifier declaration.

APPENDIX E:

THE MACINTOSH TRAPS
Function
Type Trap Name and Argument Trap L.D.
short AddDrive(D0, A0}, DO = Result (short) AO4E
AddPi{Point, Long) AS7E
AddReference(Long, short, Long) ASAC
AddResMenu{Long, Long) AS4D
AddResource(Long, Long, short, Long) ASAB
short Alert(short, Long) Ag85
short AngleFromSlope(Long) ABC4
’ AppendMenu(Long, Long) A933
BackColor(Long) A863
BackPat(Long) A87C
BeginUpdate(Long) A922
int BitAnd(Long, Long) Ags8
BitClr{Long, Long) ABSF
in BitNot(Long) AB5A
int BitOr{Long, Long) A58
BitSet(Long, Long) ABSE
int BitShift(Long, short) A8SC
char BitTst{Long, Long) AS5D
int BitXor{Long, Long} A859
short BlockMove(AD, A1, DO), DO = Result (short) AO2E
BringToFront({Long) A920
char Button() A974
CalcMenuSize(Long) Av48
CalcVis(Long) AS08
CalVisBehind(Long, Long) ASOA
short CautionAlert(short, Long) Aggs
Chain{A0) ASF3
ChangedResData(Long) ASAA
short CharWidth(short) AggD
Checkltem({Long, short, char) Ag45
char ChackUpdate(L.ong) A9t
ClearMenuBar() A934
ClipAbove(Long) A908B
ClipRact{Long) AS78B
CloseDeskAcc(short) A9B7
ClossDialog(Long) A982
ClosePicturs() ABF4
ClosePoly() ABCC
ClosePort{Long) AS7D
ClosaResFile(short) A99A
CloseRgn{Long) ABDB
CloseWindow{Long) A92D

APPENDIX E: THE MACINTOSH TRAPS
E-2

Function
Type : Trap Name and Argument Trap 1.D.
ColorBit(short} ABé4
int CompactMem({D0), DO = Result (int) AD4C
CopyBits(Long, Long, Long, Long, short, Long) ABEC
CopyRgniLong, Long) ASDC
CouldAlert(short) A389
: CouldDialog(short) A979
short CountMitems(Long) ABS50
gshot - CountResources(Long) AS9C
short CountTypes() A99E
. CreateResFila(Long) A9B1
short CurResFile() A994
int Date2Secs(A0), DO = Fesu (int} ASC7
int Delay(A0), DO = Resuilt (int) AD3B
DeleteMenu{short) A938
shont Dequeue{A0, A1), DO = Result {short) ASSE
DetachResource(Long) A992
char DialogSelect(Long, Long, Long) A980
DitfRgn({Long, Long, Long) ASES
Disableitem(Long, short) AS3A
short DisposHandie(A0), DO = Result (short) A023
DisposeControl{Long) A955
DisposeDialog(Long) A983
DisposeMenu({Long) A932
DigposeRgn(Long) A8DB
DisposeWindow{Long) A914
short DisposPir(A0), DO « Result (short) AOIF
DragControl{Long, Point, Long, Long, short) A967
int DragGrayRgn{Long, Point, Long, Long, short, Long) A90S
int DragTheRgn(Long, Point, Long, Long, short, Long) A926
DragWindow(Long, Point, Long) A925
DrawChar({short) A883
DrawControls{Long) AD8o
DrawDialog(Long) A981
DrawGrowicon(Long) A904
DrawMenuBar() A937
DrawNew(Long, char) ASOF
DrawPicture(Long, Long) ABF8
DrawString(Long) A884
DrawText(Long, short, short) AB885
short EmptyHandle(A0), DO « Result (short) AO02B
char EmptyRect(Long) ABAE
char EmptyRgn(Long) ABE2
Enableitern({Long, short) A939
EndUpdate{Long) : A923
char*® Enqueue(AQ, A1), AO = Result (char *) A9GF
char EqualPt(Point, Point) A881
char EquaiRect(Long, Long) ABAG
char EqualRgn(Long, Long) ABE3
ghort EqualString(A0, A1, DO), DO = Result (short) A03C
ErassArc{Long, short, short) AsCO

EraseOval{Long) ASBS

APPENDIX E: THE MACINTOSH TRAPS
E-3

Function
Type Trap Name and Argument Trap 1.D.
ErasePoly(Long) A8C8
EraseRect(Long) ABA3
EraseRgn(Long) ABD4
EraseRoundRect{Long, shon, short) AsB2
ErrorSound(Long) A98C
char EventAvail(short, Long) AS7
ExitToShell() ASF4
FillArc{Long, short, short, Long) A8C2
FillOval(Long, Long) ASBB
FillPoly(Long, Long) ASCA
FillRect(Long, Long) ABAS
FillRgn(Long, Long) A8D6
FillRoundRect{Long, short, short, Long) A8B4
ghort FindControl(Point, Long, Long} A96C
short FindWindow(Point, Long) Ag2C
] FixMul(Long, Long) AB68
int FixRatio(shon, short) A869
short FixRound{Long) AB6C
FlashMenuBar(short) A%4C
FlushEvents(D0}) A032
ForeColor(Long) Ase2
FrameArc{Long, short, short) ASBE
FrameOval(Long) ASB7
FramePoly(Long) ABC8
FrameReci(Long) ABA1
FrameRgn(Long) ASD2
FrameRoundRect{Long, short, shoit) A8BO
FreeAlert(shorf) ABSA
FreeDialog(short) A97A
int FreeMsm{(), DO = Rasul (int) AD1IC
char* FrontWindow() A924
GetAppParms(Long, Long, Long) A9FS
GetClip{Long) AS7A
int GetCRefCon(long) AS5A
GetCTitie{Long, Long) A9SE
char* GetCtlAction(Long) A9BA
short GetCtiMax(Long) A962
short GetCtiMin(Long) A961
short GetCiiValue(Long) A860
char* GetCursor(short) A9B9
GetDhitem(Long, short, Long, Long, Long) A98D
GetFNum(Long, Long) AS00
GetFontinfo(Long) As8B
GetFontName(short, Long) ASFF
int GetHandleSize(A0), DO = Rasult (int) A025
char * Geticon(short) A9BB
char* GetindResource(Long, short) : A99D
GetindType(Long, short) ASQF
Getltem(Long, shon, Long) : A946
Getltemicon(Long, short, Long) AQ3F

GetlitemMark(Long, short, Long) A943

APPENDIX E: THE MACINTOSH TRAPS

E-4
Function
Type Trap Name and Argument Trap 1.D.
GetltemnStyle(Long, shont, Long) AS841
GetlText(Long, Long) A890
GetKeys(Long) . Ag78
char* GetMenu(short) ASBF
char* GetManuBar() A83B
cher* GetMHandle{short) T A949
GetMouas(Long) A872
char * GetNamedResourca(Long, Long) ABA1
char * GetNewControl(shont, Long) ASBE
char*® GetNewDialog(shon, Long, Long)- As7C
char * GetNewMBar(short) ASCO
char * GetNewWindow(short, Long, Long) ASBD
char . GetNextEvent(ghort, Long) A970
short GetOSEvent(DO, A0), DO = Result (short) A031
char* GetPattern(short) A%B8
GetPen(Long) AS9A
GetPenState(Long) A898
char * GetPicture(short) AIBC
char GetPixel(short, short) A865
GetPort(Long) AB74
int GetPtrSize(AD), DO = Result (int) A021
short GetResAtirs(Long) A9A8
short GetResFileAttrs(short) A9F6
. GetResinfo(Long, Long, Long, Long) AQAB
char* GetResource{Long, short) ASAC
int GetScrap(l.ong, Long, Long)] ASFD
char* GetString(short) A9BA
char* GetTrapAddress{D0), AD = Result (char *) A146
char* GetWindowPic{Long) AO2F
GetWMgrPort({Long) A910
int GetWRslCon(Long) A917
GetWTitle(Long, Long) A919
char * GetZone(), AD = Result (char *) A11A
GiobalTolocal(Long) A871
GrafDevice(short) A872
int GrowWindow(Long, Point, Long) A92B
short HandAndHand(A0, A1), DO = Result (Short) A834
char * HandleZons(AO), A0 = Result (char®) A128
char * HandToHand(AO), A0 = Result (cher *} ASE1
HidsControl({Long) Ags8
HideCursor() A8S52
HidePen() A896
HideWindow(Long) Agté
HiliteControl{Long, short) AssD
HiliteMenu(short) Ag38
HilteWindow{Long, char) A91C
short Hiword(Long) A86A
char* HLock{A0), A0 = Result {char *) A029
short HNoPurge(A0), DO = Result (short) AO4A
shont HomeResFile{Long) A9A4

short HPurge(A0), DO « Result (short) A048

APPENDIX E: THE MACINTOSH TRAPS

E-5
Function
Type Trap Name and Argument Trap 1.D.
short HUnlock(A0), DO « Result (short) AG2A
char * infoScrap() ASF9
shont initApplZone(), DO = Result (short) Ap2C
InitCursor() A850
InitDialogs(Long) A978
InitFoms() ’ ASFE
InitGraf(Long) ABGE
InitMenus() A830
InitAlIPacks() ASES
{initPack(short) ASES
InitPort{Long) AS6D
InitQueue() AO16
short InitResources() A9S5
short InitUtil(), DO = Rasult (short) AD3F
IniiWindows() Ag12
short InitZone(A0), DO = Result (short) Aoi9
IinsertMenu(Long, short) A835
InsertResMenu(Long, Long, short) A851
insetRect(Long, short, short) ABAS
InsetRgn(Long, shon, short) ABE1
short InstallDriver(A0, DO), DO = Resutt (short) A03D
invalRect({Long) : A28
invalRgn(Long) A927
invertArc{Long, short, short) AsC1
InvertOval(Long) ASBA
InvertPoly{Long} ABCS
InvertRect(Long) A8BA4
InvertRgn(Long) AsDS
InvertRoundRect(Long, shor, short) A8B3
char isDialogEvent(Long) A97F
KillControls(Long) Ag56
KiflPicture(Long) ABF5
KillPoly(Long) ABCD
Launch(AQ) ASF2
Line(shon, short) . A892
LineTo{short, short) A891
LoadResourca(Long) ABA2
int LoadScrap() A9FB
LoadSeg(short) A9FO0
LocalToGlobal(Long) AB70
LongMul(Leng, Long, Long) A887
shon LoWord(Long) ABseB
MapPoly(Long, Long, Long) ASFC
MapPt(Long, Long, Long) ASF9
MapRect(Long, Long, Long) ASFA
MapRgn(Long, Long, Long) ASFB
int MaxMem(), DO = Result (inf) A0iD
char* MemLeft(), AO = Result (char *) A11D
int MenuKey(short) A93E
int MenuSalect({Point) AS3D

ModalDialog(Long, Long) A991

APPENDIX E: THE MACINTOSH TRAPS
E- 8

Function
Type Trap Name and Argument Trap L.D.
MoreMasters() A036
Move(short, short) AB94
MoveControl(Long, short, short) A959
MovePortTo(short, short) A877
MoveTo(shon, short) A893
MoveWindow(Long, shon, short, char) A918
Int Munger(Long, Long, Long, Long, Long, Long) ASEO
char* NewControl(Long, Long, Long, char, short, short,
short, shott, Long) A954
char * NewDialog(Long, Long, Long, char, short, Long,
char, Long, Long) AS7D
char* NewHandle(D0), AO = Resutt (char *) A122
char * NewMenu(short, Long) A931
char * NewPtr(DO), A0 = Result (char *) AlE
char ¢ NewRgn() ASD8
char * NewString(Long) A908
_char* NewWindow(Long, Long, Long, char, short, Long,
char, Long) - A913
short NoteAlert(short, Long) A987
ObscureCursor() A858
OffsetPoly(Long, short, short) ASCE
OffsetRect(Long, short, short) ASAB
OffsetRgn(Long, short, short) ASEO
short OpenDeskAcc(Long) A9B6
char* OpenPicture({Long) ABF3
char® OpenPoly() ASCB
OpenPort(Long) AS6F
short OpenResFila(Long) A997
OpenRgn() ASDA
short OSEventAvail(D0, A0), DO = Result (short) A030
Pack2() ASE9
Pack3() ASEA
Packd() ' ASEB
PackS() A9EC
Packé() ASED
Pack7() ASEE
PackBits(Long, Long, short) ASCF
PalintArc(Long, short, short) ASBF
PaintBehind(Long, Long) . A90D
PaintOne(Long, Long) A90C
PaimtOval({Long) A8B8
PaintPoly(Long) ABC7
PaintRect(Long) ABA2
PaintRgn(Long) ASD3
PaintRoundRect(Long, short, short) A8B1
ParamText(Long, Long, Long, Long) A98B
PenMode(short) A89C
PenNomak) A8SE
PenPat(Long) A890
PenSize(short, short) A89B

PicComment(short, short, Long) ABF2

APPENDIX E: THE MACINTOSH TRAPS
E-7

Function
Type Trap Name and Argument Trap L.D.
int PinRect(Long, Point) A9E
Ploticon{Long, Long) AS4B
PortSize(shon, short) A876
shont PostEvent{A0, D0), DO « Result (short) AO2F
Pt2Rect(Paint, Point, Long) ASAC
char PtinRect(Point, Long) ASAD
char PtinRegn(Point, Long) ABES
short PtrAndHand(AQ, A1, DO), DO = Result {short) ASEF
char* PrToHand(A0, DO), AO = Result {(char *) A9SE3
short PuToXHand(AQ, A1, DO), DO = Resuit (short) A9E2
char * PirZone{AQ), A0 = Result {char *) A148
PtToAngie(Long, Point, Long) ABSC3
char * PurgeMem{D0), AG = Result (char *) A14D
int PutScrap(Long, Long, Long) A9FE
short Random() ABg1
rDrvrinstall() AD4F
short ReadDateTime(A0), DO = Rasult (short) A039
char RealFont(short, short) AS02
short ReallocHandle(A0, DO), DO = Result (short) A027
char * RecoverHandle(A0), A0 = Result (char *) A128
char RectinRgn{Long, Long) ASE9
ReciRgn(Long, Long) ASDF
ReleaseResource(Long) A9A3
ghort RemoveDriver(D0), DO = Rasult (short) AO3E
short ResError() ASAF
char* ResrvMem(DO}), A0 = Result (char *) A140
RmveReference(Long) ASAE
RmveResource(Long) ASAD
RsrcZonelnit() AS98
SaveOld{Long) A90E
ScalePt(Long, Long, Long) ASF8
ScrollRect{Long, short, short, Long) ASEF
short Sece2Date(D0, A0), DO = Result (short) ASC8
char SectRect(Long, Long, Long) ABAA
SectRgn(Long, Long, Long) ASE4
SelectWindow(Long) A9iF
SellText(Long, shont, shont, short) AS7E
SendBehind(Long, Long) A821
short SetApplBass(A0), DO = Result (short) A8S57
short SetAppiLimit(A0), DO = Result (short) A02D
SetClip(Long) A879
SetCRefCon({Long, Long) A95B
SetCTitle{Long, Long) A9SF
SetCtlAction{Long, Long) AS6B
SetCtiMax(Long, short) A965
SetCtiMin{Long, short) AgB4
SetCilValue{Long, short) A963
SetCursor(Long) A851
short SetDateTime(D0), DO = Result (short) AO3A
SetDitem(Long, short, short, Lang, Long) ASSE
SetEmptyRgn(Long) ABDD

APPENDIX E: THE MACINTOSH TRAPS

E-8
Function
Type Trap Name and Argument Trap L.D.
SetFontLock{char) AS03
short SetGrowZone(A0), DO = Result (short) A04B
short SetHandleSize{A0, D), DO = Result (short) AD24
Sethtem(Long, short, Long) Ao47
Setltemicon(Long, short, short) AS840
SathtomMark(Long, short, short) Ag44
SetltemStyle{Long, shon, short) A842
SetiText(Long, Long) A98F
SatManuBar(Long) A93C
SetMenuFlash{Long, short) AS4A
SetOrigin(short, short) AB78
SetPenState(lL.ong) A899
SetPort(Long) A873
SetPortBits(Long) A875
SetPt{Long, short, short) A880
short SetPtrSize(A0, D0), DO = Result (short) A020
SetRect(Long, shon, short, shont, short) ASA7
SetRectRgn(Long, short, short, short, short) ASDE
SetResAltrs(Long, short) ASA7
SetResFileAttrs(short, short) ASF7
SetResinfo(Long, short, Long) A9AY
SetResl.oad(char) A998
SetResPurge(char) A993
SetStdProcs(Long) ABSEA
SetString(Long, Long) As07
SetTrapAddress(D0, A0) A047
SetWindowPic(Long, Long) A92E
SetWRelCon(Long, Long) Ao18
SetWTitle{Long, Long) AS1A
short SetZone{A0), DO = Result (short) ADiB
ShisldCursor(Long, short, short} AgsS
ShowControl({Long) Ag57
ShowCursor() A853
ShowHide{Long, char) Ado8
ShowPen() A897
ShowWindow(Long) A915
SizeControl(Long, short, short) A95C
int SizeResource({Long) ASAS
SizeWindow{Long, short, short, char) A91D
int SlopeFromAngle(short} ABBC
SpaceExtra(short) ASSE
StdArc{Long, Long, short, short) ASBD
StdBits(Long, Long, Long, short, Long) ABEB
StdComment(short, short, Long) ASF1
StdGetPic(Long, short) ASEE
StdlLine(Point) A880
StdOval(Long, Long) ABB6
StdPoly(Long, Long) ABCS
StdPutPic{Long, short) ASFO
StdRect(Long, Long) ABAO
StdRgn(Long, Long) ABD1

APPENDIX E: THE MACINTOSH TRAPS

E-9
Function
Type Trap Name and Argument Trap L.D.
StdRRect({Long, Long, short, short) ABAF
short StdTxMeas(short, Long, Long, Long, Long) ASED
StdText(short, Long, Point, Point) ‘ A882
char StillDown() A973
short StopAlert{shont, Long) A986
short StringWidth(Long) A88C
StuffHex(Long, Long) A886
SubPt{Point, Long) ASTF
char * SwapFont(Long) A901
SysBeep(short) AsCa
SysError(D0) A9Co
SystamClick(Long, Long) ASB3
char SystemEdit(short) ASC2
char SystemEvent{Long) A9B2
SystemMenu(Long) ADBS
SystemTask() ASB4
TEActivate(Long) AsDs
TECaiText{Long) A9DO
TEClick(Point, char, Long) AsD4
TECopy(Long) AsDs
TECut{Long) ASD6
TEDeactivate(Long) AsD9
TEDsleta(Long) A9D7
TEDisposs({Long) : A9CD
char* TEGetText(Long) AsSCB
TEldie{Long) . ASDA
TElnit() ASCC
TElnsert(Long, Long, Long) ASDE
TEKey(short, Long) ASDC
char * TENew(Long, Long) ASD2
TEPaste{Long) : A9DB
TEScroll{short, short, Long) ASDD
TESetJust(shont, Long) ASDF
TESetSslact(Long, Long, Long) A9D1
TESetText(Long, Long, Long) A9CF
short TestControl{Long, Point) A966
TEUpdate(Long, Long) A9D3
TextBox(Long, Long, Long, short) ASCE
TextFace(short) Asgs
TextFont(short) AB87
TextMode(shorit) A889
TextSize(short) ASBA
shont TextWidth(Long, ehort, short) A888
int TickCount() A975
short TrackControl(Long, Point, Long) A968
char TrackGoAway(Long, Point) A9IE
UnionRect(Long, Long, Long) ABAB
UnlonRgn(Long, Long, Long) ABES
shont UniquelD(Long) AsC1
int UnloadScrap() ASFA

UnioadSeg(Long) ASF1

APPENDIX E: THE MACINTOSH TRAPS

E- 10

Function

Type Trap Name and Argument Trap L.D.
UnPackBits(Long, Long, short) A8SDO
UpdateResFlle(short) AS98

char* UprString(AO, DO), AD = Result (char *) AB54
UseResFile{short) A998
ValidRect(Long) A92A
ValidRgn(Long) A929

shont Vinstali(A0), DO = Result (short) A033

short VRemove(A0), DO = Result (short) A034

char WaltMousaUp() AS77

short WriteParam(AD, DO), DO = Result (short) A038
WriteResourca{long) ASBO
XOrRgn(Long, Long, Long) ASE7

int ZeroScrap{) ASFC

APPENDIX F:
SAMPLE PROGRAMS

INTRODUCTION
This appendix lists the sources for two test programs. Testlib.c and MacDemo.c.
Testlib.c calls and tests the library functions in various ways. It is described in Chapter 3:

The Mac C Run-Time Environment. MacDemo.c illustrates various Macintosh features.

Both these programs are referenced in the warranty. Consulair Corp warrants that Mac
C will compile the programs listed in this appendix.

/ '/
r “/
r Wi
r testlib.c *
r *
r Mac C Library Test Program. ¢/
r */
r Copyright (C) 1984 Consulair Corporation. i
r All Rights Ressrved *f
r */
r !
r *
/ /
F* declarations */

#include “stdio.h"

#define CR W’
/* Code */

#define testlibC{routine) testct(routine, “routine™); //
char pause(str)
{

charc;
if (str)

puts("\\rTest \™);
puts(str);

}w's(‘\' %%
H{ ({c=getchar() ==)

unlink(“testLibFile”);
exit(0);

}’
if {str) printf("%s\r*, (c == \r')? "Yas":"No");

APPENDIX F: SAMPLE PROGRAMS
F-2

olge printf("\r");
return{c);

testcf(routine, routinename)
char (*routine)();
char ‘routinename;
{
charc;
unsigned short |, j;

if (pause(routinenams) l= \r') return;

printf(\r %)

for (i = 0; | < 16; i+=1) primf(® %62x", i);
printf(\r);

for (im 0;i < 16; i+w1)
{
printf("\r %2x: *, i);
for (j m 0;§ < 16; j+m1)
printf(* %2x", (*routine)(i*16+j));

)
if (pause(0) l= Ar) return;

printi("r - %)
for (i w 0; | < 16; i+=1) printf("%%4x", i);
printf("r");
for (i=0; 1 < 16; i+m1)
{
printf(™r %2x: *, i);
for(j=0;j<16; jrm1)
¢ = (*routine){i*16+j);
printf(® %", {(c <)? ((c == 0}? ") {¢ > Ox7M)? "c));
}
}
printf(\r);
}
testStr(routine, routinename, pstri, pstr2, count)
char *(*routine)();
char “routinename;
char *pstr1, *pstr2;
int count;
char “result;
if (pause(routinename) I= \r') return(0);
printCount{count);
printStr(pstr1);
primtStr(pstr2);

i {(routine == 0) return (1);
result = (*routine)(pstri, pstr2, count);
printi(™ Rslt; %s", result);

printCount{count)
int count;

{

APPENDIX F: SAMPLE PROGRAMS
F-3

if (count > 0) printf{"\r Count: %d", count);

printStr(str)
char "str;

{
it (str) printf(™\r Str: %s", str);

main()
{
intc,
char line]MAXLINE]
charcl;
short s;
int i, x;
FILE file;

puts("This is the Test Program\rit will echo characters:);
while ((c = getchar(}) {= "¢") putchar(c);
putchar(\r');

testlibC(isupper) char isupper(c) -- return non-zero if ‘A’ <= ¢ <= Z
testlibC(islower) char islower(c) -- return non-zero it ‘a’' <= c <= ‘2’
testlibC{isalpha) char isalpha(c) - retum non-zero if ‘a’ <=C <= ‘2'of 'A’' <= Cc <= 7'
testlibC(isdigit) char isdigit(c) - return non-zero if ‘0’ <= Cc <= '9’

testlibC(isspace) char isspace(c) - return non-zero if c = SPACE, TAB, or NL (LF)
testlibC(toupper) char toupper(c) ~ return c or upper case value of ¢
testlibC(tolower) char tolower(c) - return c or upper case value of ¢

/ char *index(s, ¢) — return O or pointer to first occurrenceof cin's
/f int Index(s, ¢) - retum -1 or index of first occurrence of c in s
/! char *rindex(s, c) -- return 0 or pointer to last occurrence of cin s

// int Rindex(s, ¢) - retum -1 or index of last occurrence of cin s

char sir;
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefgh;]k!mnopqrstuvwxyZO123456789'
ﬂ(teslStr(o “index", str, 0, 0))

{
printf("\r base addr = %x", str);
printi("r A = %X, & = %X, 9 = %X, . = %X",
index(str, 'A’),
index(str, 'a"),
index(str, ‘9",
index(str, ."));

if (testStr(0, "Index", str, 0, 0))
{
printf(\r A=%d, aw=%d, 9= %d, . = %d",

Index(str, ‘A",
Index(str, ‘a’),

APPENDIX F: SAMPLE PROGRAMS
F-4

Index(str, '8"),
Index(str, *."));

i (tostStr(0, “rindex", str, 0, 0))

{
printf("\r base addr = %x", sir);
printf("\r Z w %X, 8 = %X, 9 = %X, . = %X",
rindex(str, 'Z7),
rindex(str, 'a),
rindex(str, '9",
rindex({str, *."));

if (testStr(0, "Rindex”, str, 0, 0))

{

printf(r Z = %d, a=%d, 8 = %d, . = %d",
Rindex(str, Z),
Rindex(str, ‘a"),
Rindex(str, '9"),
Rindex(str, .%));

)

)

// char “strsave(s) — returns address of a copy of s (uses malioc())

{

char *str;

str = "ABCDEFGHNKLMNOPQRSTUVWXYZabedefghijkimnopgrstuvwxyz”;
tastStr(strsave, "strsave”, str, 0, 0);

}

// char *strcat(s1, §2) - appends &2 onto 81

{

char *str1, "str2;

str1 « "ABCDEFGHUKLMNOPQRSTUVWXYZabcdefghijkimnopgrstuvwxyz0123456789%;
8tr2 = “abedefghijkimnoparstuvwxyz0123456789%;

8tr1{26] = 0;

testStr(strcat, “strcat®, otr1, str2, 0);

8tr1[26] = 0;

testStr(strneat, "strncat®, stri, str2, 26);

}

/I char *stremp(s1, 82) -- compares s1 10 s2.

/ returns 0 if equal, -1 if 81 <82, 1if 81> 82,
// char *strnemp(s1, 82, n) - like strcmp, but compares up to n characters

char "str{, *str2;
str1 = "ABCDEFGHUKLMNOPQRSTUVWXYZ™,
sir2 « "ABCDEFGHMkimnopqrstuvwxyz®;
¥ (testStr(0, "strcmp®, stri, str2, 0))
{

printf{™\r result = %d\r", stremp(stri, str2));
printStr{str1); printStr(str1);
printf("v result = %d\", stremp(str1, str1));

APPENDIX F: SAMPLE PROGRAMS
F-§

printSir(str2); printStr(str1);
printi("\r result = %d\r", stremp(str2, str1));

if (testStr{0, "stmcemp”, stri, str2, 1))

printf(™\r result = %d\r*, strncmp{str1, str2, 1));
printCount(10); printStr(str1); printStr(str2);
printf(“\r result = %d\r®, strncmp(stri, str2, 10));
printCount(11); printStr(str1); printStr(str2);
printf("\r result « %d\r*, stremp(str1, str2, 11));
printCount(1100); printStr(str1); printStr(str2);
printf("\r result = %d\r", stremp(str1, str2, 1100));

}

// char *strcpy(s1, s2) - copy str2 to sirt.

{

/ char *strncpy(s1, 82, n) - copies n characters of s2 to s1.
1 f length 82 < n, then 81 will be null padded.

char *str1, "str2; '

str1 = calloc(100, 1);

str2 « "ABCDEFGHUKLMNOPQRSTUVWXYZ™,
testStr(stropy, "strepy”, siri, str2, 0);

free(stri);
str1 = calloc(100, 1);
if (testStr(strncpy, “strncpy”, sirl, str2, 1))

frae(stri);

str1 = calloc(100, 1),

printf("r Count = 0%); printStr(str1); printStr(str2);
printf("\r result = %s\r", strncpy(sir1, str2, 0));

free(str1);

str1 = calloc({100, 1);

printCount(1); printStr(str1); printStr(str2);
printf("\r result = %s8\r®, strncpy(stri, str2, 1));

free(str1);

str1 = calioc(100, 1);

printCount(10); printStr(str1); printStr(str2);
printf("\r result = %s", strncpy(str, str2, 10));

free(str1);

11 char *strien(s) -- returns length of s
{
char *str;
str = "ABCDEFGHWKLMNOPQRSTUVWXYZ";
it (testStr(0, "strien”, str, 0, 0))

APPENDIX F: SAMPLE PROGRAMS
F-8

{

printf("\r result = %d\r*, strien(str));

printf("\r strien of EMPTY string = %d", strien(™);
printi("r strlen of NULL string = %d", strien(0));

kb

// CtoPstr and PtoCstr
H (pause(*String Conversion™) == CR)
{

char *Cetr;
atruct P_Str
{
char count;
char contents[255];
} *Pstr;

Cstr = "ABCDEFG";

printt("vrC String = %s", Calr);

Pstr = (struct P_Str *)CloPstr(Cetr);

printl("\rP String = *);

for (i = 0; | < Pstr->count; ++1) putchar(Pstr->contents]i]);
printt("rC String = %8", Cstr = PloCstr(Pstr));

¥

// int atoi(str) — returna numeric conversion of number in str, radix « 10.
1/ long atol(str) -- like atoi but returns long

{
char *stri, "str2;
K{(pause(‘atot") == CR)

8str1 = "0";
printt("\rvratoi®);
printf("r 0 = %d", atoi("0%));
printf("r 1 = %d°, atol(*17));
printi(’yr 10 = %d", atoi(*107));
printf("\r 10000 = %d", atoi{"10000");
printi(™y 1000000 = %d", atoi("1000000%);
}
}

// scanf(format [, pointer}...) ~ formatted input (ses Kemighan and Ritchis)
// sscani(s, format [, pointer]...) -~ formatted input (see Kernighan and Ritchie)
// tscant(file, format [, pointer}...) — formatted input (see Kemighan and Ritchie)

char *str;

if (pause("scanf”) == CR)
{
puts("y enter \"56789 0123 45a72\": 7);

fw0;x = 0; linef0] = 0, c1 = 0; 8 = 0;

scan{(™62d%31d% d%2s%c%2h", &, &x, line, &c1, &s);
puts(™\r should print: *);

puts(\"T= 56, x =789, str= 45C = 8, 8 = 72\™);

APPENDIX F: SAMPLE PROGRAMS
F-7

printi(r »
printt("i = %d, X = %ld, 8ir = %8, C = %c, 8 = %UV", |, X, line, ¢1, 8);

puts("rsscanf test:);
8ir = "S6789 0123 45a72%,

[=0;x=0;line[0]=0;c1 =0;8=0;
sacanf(str, "%62d%3d%°d%28%c%2h", &I, &x, line, &1, &s);
printf(" i = %d, X = %d, 8ir = %8, ¢ = %C, 8 = %UV", i, X, line, ¢1, 8);

puts(Mriecanf test: ©);

file = creat{"testLibFile®, 7);
fputs(str, file);

close(file);

file = fopen(testLibFile”, *r");

im0;x=0;line{0] = 0;clw0;5u0;
tacani(file, “%2d%3d% d%28%c%2h", &i, &x, line, &c1, &s);
printf(” im %d, X = %d, 8ir = %8, ¢ = %c, 8 = %uVr", i, X, line, c1, 8);
close(file);
)

}

1/ sprintf(s, format [, arg)...) -- formatted output {(see Kernighan and Ritchie)

{
char stfMAXLINE+1);
if (pause("Sprintl”) == CR)

i-ss;x-789;1:1 - 'a';s- 72;
strepy(line,“45");
sprintf(str,”i = %d, X = %d, 8tr = %8, 1 = %, 8 = %uU", i, X, line, c1, 8);
printf("™r result: %s", str);
}
}

1 fprinti{file, format {, arg]...} -- formatted output {(see Kernighan and Ritchie)
{
(pause("fprintf™) == CR)

{

jwb56;xm789; ¢l »'a';s=72;

strepy(line,"457);

file = creat("testLibFile", 7);

forinth(file,"i = %d, X = %4, str = %5, c1 = %c, 8 « %U™, |, X, line, ¢1, 8);
closeffile);

file = fopen(“testLibFile”, "r");

printf("s result: *);

while ((c = gstc(file)) > 0) putchar(c);

close(file); :

1/ int getw(file) - returns next word from file, ignores end-of-file.
if (pause("getw”) == CR) (

APPENDIX F;: SAMPLE PROGRAMS
F-8

file = open{MestLibFile®, 2);

putw(0, tile); putw(1, file); putw(2, file); putw(3, file);
putw(500, file); putw(501, file); putw(502, file); putw(503, file);
Iseek(file, 0, 0);

printf("This should print: 0, 1, 2, 3, 500, 501, 602, 503\r™);
printi(" %

printi(® %d.”, getw(file));

printf(® %d,", getw(file));

printi(" %d,", getw(file));

printf(” %d,”, getw(file));

printi(” %d,”, getw(fiie));

printf(" %d,”, getw(ile));

printi(® %d,", getw(file));

printi(* %d,", getw(tile});

closeffile);

}

7/ Int geti(file) — returns next word from file, ignoras end-of-file.
if (pauae("getl”) == CR)

{

file = open(estLibFile”, 2);

putl(0, file); puti(1, file); puti(2, file); put(3, file);

putl(500, file); putl(501, file); puti(100502, tile); putl(500503, file);
iseek(file, 0, 0);

printf("This should print: 0, 1, 2, 3, 500, 501, 100502, 500503\™);
prini(* Y%

prnti(® %d,", getifile));

printf(* %4,", geti(fils));

printi(* %d,", geti(file));

printi(" %d.,, getitfile));

printi(* %d,”, geti(file});

printf(* %d,", getl(fila));

printi(" %d,", geti(file));

prnti(” %d.", getl(file));

cloge(file);

}

#tint fgets(fite).

if (pause(“fgets”) == CR)
{

char strfMAXLINE+1};

file = open(“testLibFile", 2);

fputs("Jack and Jill went up the hill\rTo fetch a pail of water”, file);
seek(file, 0, 0);

printf("This should print: Jack and Jill went up the hilv*™);
printf(" %

printi{* %s", fgets(str, 100, file));

printf("srThis should print: To fetch a pailv™);

printf(" %

printi(" %s", fgets(str, 16, file));

primf("\rFile is %sat End of Flie", feof(file)? *:"Not *);
printf("rThis should print: of water\r*);

printi(* %

APPENDIX F: SAMPLE PROGRAMS
"F-9

printf(" %s", fgets(str, 18, file));

printt("\rFile is %sat End of File”, feoi(file)? *":"Not *);
printf("\rext call on fgets = %x", fgets(str, 16, file));
closef(file);

}

/ int ungetc(c, file) -- puts ¢ back onto file {one character maximum),
if (pause("ungetc”) == CR})
{

file = open(“estLibFile", 2);

write(file, "ABCDEFG", 7);

seteof(file);

lseek(file, 0, 0);

printf(*This should print: ABCDEFGVY™);
printf(* %

¢ = getcfile);

do

{

ungetc(c, file);

printt("%1c", getc(file));

} while ((c = getc(file)) = EOF);
close(file);
}

// unlink{name) -- deletes file identified by ‘name' from disk UNLESS IT |S OPEN.
if {(pause(“unlink") == CR)

{

unlink{“testLibFile");

file = opan(TtestLibFile™, 0);
if (fils >= 0)

{
printf(" - Failed\r™);
close(file);

}
elge printf(" — OK\");
}

/! long read(file, buffer, n) - reads up to n bytes from file into buffer.
if (pause(“read/write™ == CR)

char *str;

int count;

str = calloc(100, 1);

file = open(“testLibFile®, 2);
write(file, "ABCDEFG", 7);
seteof(file);

Isesk(file, 0, 0);

printi(*This should print: 7: ABCDEFG\r*);
printi(* %

printf("“%d", read(file, str, 100));
printf(": %s", str);

printf("\r\riread, fwrite\r™);

printf(*This should print: 3: ABCDEF\™);

peintf(* %

count = fread(str, 2, 4, file);
stricount*2] = 0;
printf(*%d°®, count);

printf("; %a\r", atr);
seteof(lile);

lseak(file, 0, 0);

twrite"TABCDEFGH?", 2, 4, fils);

Iseak(file, 0, 0);

printi("This should print: 4: ABCDEFGHVY");

printi(”]

printi(*%d", fread(str, 2, 8, fils));
printf("; 9%e", str); -
close(file);

}

// long Iseek(flle, offset, mods) ~ positions file according to mode:
i (pause(“seek/ell”) m= CR)
{

char *str;
file = open(MtestLibFile®, 2);
twrite"ABCDEFGH", 2, 4, file);
setecfi(file);
iseak(file, 0, 0);
printf("This should print: 8, 0, 4, 4v");
prnti(; ‘
lseek(file, 0, 2);
printt{™%d", teli(file));
iseek(fils, 0, 0);
printf(®, %d", tell(file));
Iseek(file, 4, 1);
printf(®, %d*, teli(fils));
isesk(file, 0, 2);
lseek(file, 4, 1);
printf(*, %d", telifile));
closeffile);
}

// swap(a, b) -- exchanges the contents of the long locations addressed by a and b.
i (pause("swap”) == CR)

{

char *ptra, “ptrb;

ptra = (char *}&ptrb;

pirb = (char *)&ptra;

printt("Pointers are: %X, %xX\r", pira, pirb);
swap(&ptra, &ptrb); :
printf("Swapped Pointers are: %x, %x", ptra, ptrb);
}

1 (pause("printi") ww CR)

APPENDIX F: SAMPLE PROGRAMS

{
printi("rThe following line pairs should match:");
printf{"\r11 101");

X = -344"5-6; printf("\r%d *, x);
X = 34+4%5-6; printt("%d *, x);
X m -3*4%-6/5; printf("%d ", x);
X = (746)%5/2; prietf("%d", x};

prinf("\Ar12 3 4 5 6 000000780000000 9");

printf(\r% 1d%2d%3d%4d%5d%6d %07d%-08d %-8d",1,

printf("Ar:hello, world:");
printf{™\r:%10s:", “hello, world");

printf("\rr(Strike a key for morse)”);
pause(0);

printf("\Ar:helio, world:");
printf("\r%-10s:", "hello, world");

printf{("\Ar:hello, world:");
printf{M\r:%20s:", “hello, world");

printt("\Ar:hello, world:");
printf("\r:%-20s:", “hello, world"};

printi(\nr: hello, wor:");
printf("\r:%620.10s:", “hello, world™);

printi("\\r:hello, wor B H
printf{(*"\r:%-20.10s:", "hello, world™);

printf("Ar:hello, wor:™);
printf{"\r:%.10s:", “hello, world");

}

printt("nAr"**End of Test***\r(Strike a key to stop)”);

pause(0);
unlink(“testLibFile");
exit(0);

F- 11

2,3,45,6,7,8,9,10);

MacDsmo.c Wi

*!

Copyright 1984 Consulair Corporation */
All Rights Resarved i

TETETEY Y R R R Y

/‘

This Is a general Macintosh demonstration program. It opens two windows, puts up menus, dispatches on events,
uses Text Edit, and handles desk accessorias. Windows can be grown, moved, and closed. It is intended to
demontrate the flavor of Mac C in the Macintosh environment.

The program has a single conditional compilation flag; If you allow UseWithStdLib to be defined, you must load

MacDemo with the Standard Library (or StdLib and the Mac C Toolkit). ¥ you don't define it, you only need to load

*MacCLIb" with MacDemo. This small version (usa the link fils smallDemo.link) doesn't print a TTY message out.
Vi

#define UseWithStdLib
/* Declarations */

#include "MacCDets.h"
#itdef UseWithStdLib

#include "Stdio.h"
#else

extern struct P_Str *CtoPstr{);

int strlen{str) char *str;

{int i=0; while (atrfi++]); retum I-13}

#endif
#include “Window.h® b
finclude "Events.h”
#include "TextEdit.h"
#include "Menu.h®

I Declared Here */
MenuHandle DeskMenu;
MenuHandle EditMenu;
MenuHandie Menu;
#define Dask_ID 200
#define Edit_{D 201
#define Menu_ID 202

Rect screenRect = {0, 0, 384, 512};

Rect windowRectA = {50, 50, 200, 400};
Rect windowRectB = {80, 60, 210, 410};
WindowPtr openWindow();

#define False O

#define True OxFF

APPENDIX F: SAMPLE PROGRAMS
F-13
L

/* Declared Elsewhere */

#ifdef UseWithStdLib
axtern WindowPir console; /* Std Lib TTY Window */
#ondif

£ Code */
Init()

{
InitDialogs(0);
TEInit();
InitMenus();

I* Desk Accessory menu */
DeskManu = NewMenu(Desk_ID,CtoPstr("024%);
AddResMenu(DeskMenu, 'DRVAY);
InsertMenu{DeskMenu, 0);

I* Edit menu */
EditMenu = NewMenu(Edit_ID, CtoPstr("Edit"));
AppendMenu(EditMenu,
CioPstr(*Undo;(-;Cut/X;Copy/CPaste/V:Clear"));
InsertMenu({EditMenu, 0);
Disableitem(EditMenu, 0);

7 "Menu® menu */
Menu = NewMenu(Menu_iD, CtoPstr("Menu™));

U,
CtoPstr("ltem 1;(Dimmaed kem 2;kem 3;(-;item 5/5;Quiv.*));
insertMenu(Menu, 0);

DrawMenuBar();
}
main()
char ¢, *str;
short windowcode;
long menuResult;
EventRecord event;
TEHandle hTE;
WindowPtr mouseWindow, window, windowA, windowB;
if (CetchSignal()) ExitToSheli();
hnit();
#itdef UseWithStdLib
printf("a\r Mac C Demo\rCopyright Consulair Corporation 1984\rAll Rights Reserved\ir®);

printi("\rThis is a simple demonstration program with two windows.\r");
printf("rWhen you strike a key, this TTY window will be arased, and");

APPENDIX F: SAMPLE PROGRAMS
F- 14

printf("wTwo windows will be displayed. Typed text will go into the front™);
printt("rone, and you can switch between the two with & mouse click.”);
printi{(*\rSelect Quit from the menu or hit a command period to stop.”);

getchar();
DisposeWindow(console);

#endif

windowB =
openWindow(&windowRectB, "Demo Window B,
“rMac C Demo\\251 Consulair Corporation 1984\r All Rights Reserved\ruThis Is Window B);

windowA =
openWindow(&windowRectA, "Demo Window A",
"“wMac C Demo\\251 Consulair Corporation 1984\r All Rights Reserved\\rThis is Window A");

hTE = 0;

InitCursor();

FlushEvents(-1);

SelectWindow(windowA); /* Generate an activate event for window A */

while (True)
{

SystemTask();
(hTE) TEidle(hTE);

i (GetNextEvent(averyEvent, &event))

switch (event.what)
{

case autoKey:
case keyDown:
{
C = svent.message;
if ((event.modifiers & cmdKey))
DoMenu(MenuKey(c));
eise TEKey(c, hTE);
break;
}

case moussDown:
windowcode = FindWindow(&event.where, &mouseWindow);

(FromWindow() = mouseWindow)
if (mouseWindow b 0)

{
SelectWindow(mouseWindow);
break;

}

¥ ((window I= 0) && (window == movuseWindow))

APPENDIX F: SAMPLE PROGRAMS
F- 15

{
i (mouseWindow 1= 0)

{
SetPort{mouseWindow);
switch { windowcode)

case inContent:

{
GlobalToLocal{&event.where);
TEClick(&event.where,
(event.modifiers & shiftKey)? True:False, hTE);
break;
}
case inDrag:

{
DragWindow(mousseWindow, &event.where, &screenRect);
break;
}
case inGrow:

{

long growResul;

shont ven, horiz;

QIDWRSSUR -

GrowWindow(mouseWindow, &event.where, &screenRect);

horiz = growResult;

veit = HiWord(growResult);

SizeWindow(mouseWindow, horiz, vert, True);
EraseRect{&mouseWindow->portRect);
InvalRect{&mouseWindow->portRect);
SzeTE(mouseWindow);

DrawGrowicon(mouseWindow);

break;

s

case inGoAway:
{
i (TrackGoAway{window, &event.where))

{

TEDispose(hTE);

hTE = 0;
DisposeWindow(window);
window = 0;

}

{
switch (windowcode)

case inMenuBar:

{

DoMenu(MenuSelect{&event.where));
break;

APPENDIX F: SAMPLE PROGRAMS
F- 16

}
case InSysWindow:

{
SystemClick(&event, mouseWindow);
break;

}
case InDrag:

{
DragWindow(mouseWindow, &event.where, &screenRect);
break;

}
case inGoAway:

case updateEvt:

{
TEHandle temp_hTE;
WindowPtr tempWindow;

SetPort{tampWindow = (WindowPtrjevent.message);
BeginUpdate(tempWindow);

temp_hTE = (TEHandle)GetWRelCon(tempWindow);
TEUpdate{&tempWindow->portRect, temp_hTE);
DrawGrowlcon{tempWindow);
EndUpdate(tempWindow);

break;

}

case activateEwt:

{
TEHandle temp_hTE;
WindowPtr tsmpWindow;

SetPort(tempWindow = (WindowPtrjevent.message};
temp_hTE = (TEHandle)GetWRalCon(tempWindow);
if {(event.modifiers & activeFlag))

{
window = tempWindow;
TEActivate(hTE « temp_hTE)

}
eise TEDeactivate(temp_hTE);
DrawGrowlcon({tempWindow);
break;
}
}
}

DoMenu(menuresult)
long menuresult;

{
short menulD, kemNumber;

menulD = HWord(menuresult);
HemNumber = menuresult;

switch (menulD }
{
case Menu_ID:
{
switch (kemNumber)

{

case 1: break; ritem1°*/

case 2: break; I* tem 2%/

case 3: break; I'tem3*/

case 5: break; I"item5*/

case 6: /* item 8 is quit */
Signal("All Done");

break;
}
case Desk_ID:

{

struct P_Str AccessoryName;

Getltam(DeskMenu, temNumber, &AccessoryName);
OpenDeskAcc{&AccessoryName);
Enablaltem(EditMenu, 0);

DrawMenuBar();

break;

case Edit_ID:

{
SystemEdit(temNumber-1);
break;

)

)
HiliteMenu(0);
}

Rect *TERect{window, rect)
WindowPtr window,;
Rect “rect;

{

BlockMove(&window->portRect, redt, sizeof(Rect));

rect->right -« 18; /* Make room for scroll bar */

rect->bottom -= 16; I* Make room for scroll bar */
}

TEHandle openTE(window)
WindowPtr window;

{
Rect destRect, viewRact;

APPENDIX F: SAMPLE PROGRAMS
F- 17

APPENDIX F: SAMPLE PROGRAMS
F-18

TEHandle hTE;

TERect(window, &viewRect);

TERect(window, &destRect);

destRect.left += 4; /* indent a bit */
retum TENew(&destRect, &viewRect);

}

WindowPir openWindow(rect, title, str)
Rect “rect;
char *title, *str;

{

WindowPtr window;

TEHandle hTE;

window = NewWindow(0, rect, CtoPetr(title), True, 0, -1, True, 0);
SetPori{window);

hTE = openTE(window);
SetWRefCon(window, hTE);
TESetText(str, strlen{str), hTE);
TEUpdate(&(*hTE)->viewRect, hTE);
retum window;

}

size TE(window)
WindowPtr window;
{
Rect rect;
TEHandle hTE;

hTE = (TEHandle)GetWRetCon({window);

TERect(window, &rect);

BlockMove(&rect, &(*hTE)->viewRact, sizeof(Rect));
rectloft +m 4; F* indent a bit */
BlockMove(&rect, &(*hTE)->destRect, sizeof(Rect));
TECalText(hTE);

}

o |
'E' .

7

William S. Duvall has been
programming in the com-
puter business for 20
years. He has written at
least one of almost
everything! In 1976, he
founded Consulair Corp.
after working and
consulting for many
companies including SR
International, Xerox PARC,
and Apple Computer. Con-
sulair's first commercial
products are Mac C and
Mac C Toolkit.

i 1 [\ (NP (I I

& |

Bill's loves other than pro-
gramming include his wife,
Ann (Vice President of
Consulair). his three
children, bicycle riding,
restoring old English
sports cars, hiking and

flying.

k]
Vel bmts

|

Y [N

f

Consulair Corp 140 Campo Drive, Portola Valley, CA 94025

- . 3

Mac C is a tradermark of Consulair Corp

	FrontCover
	Chapter1ocr
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13

	Chapter2ocr
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13

	Chapter3ocr
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13

	Chapter4ocr
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41

	Chapter5ocr
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09

	AppendixAocr
	a1
	a2
	a3
	a4

	AppendixBocr
	b1
	b2

	AppendixCocr
	c1
	c2
	c3

	AppendixDocr
	d1
	d2
	d3
	d4
	d5
	d6
	d7
	d8
	d9

	AppendixEocr
	e01
	e02
	e03
	e04
	e05
	e06
	e07
	e08
	e09
	e10

	AppendixFocr
	f01
	f02
	f03
	f04
	f05
	f06
	f07
	f08
	f09
	f10
	f11
	f12
	f13
	f14
	f15
	f16
	f17
	f18

	backCover

