THINK C
Symantec C++,

The Professional’s Choice

Compiler Guide

*

Documentation

Development

Quality Assurance

Technical Support

Project Management

Product Management

Credits

David Allcott, Bob Foster, Bonnie Hill, Jeff Mattson, Jeanne Munson,
Susan Rona, and Cambridge Publications

Patrick Beard, Walter Bright, Thomas Emerson, Bob Foster,
Greg Howe, Michael Kahl, Darrell LeBlanc, John Micco, Pat Nelson,
Daniel Podwall, and Phil Shapiro

Celso Barriga, Constantine Hantzopoulos, Kevin Irlen, Yuen Li, and
Christopher Prinos

Celso Barriga, Colen Garoutte-Carson, Rick Hartmann, and
Scott Shurr

David Allcott, Constantine Hantzopoulos, and David Neal
Steve Levine and Peggy Liu

Copyright © 1989, 1993, 1994 Symantec Corporation.
All Rights Reserved. Printed in U.S.A.

Symantec Corporation Symantec C++, THINK C, THINK Reference, and

10201 Torre Avenue THINK Pascal are trademarks of Symantec Cor-

Cupertino, CA 95014 poration. Other brands and their products are

408/253-9600 trademarks of their respective holders and
should be noted as such.

The Compiler Guide is copyrighted and all rights are reserved. Information in
this document is subject to change without notice and does not represent a
commitment on the part of Symantec Corporation. The software described in
this document is furnished under a license agreement. The document may
not, in whole or in part, be copied, photocopied, reproduced, translated, or
reduced to any electronic medium or machine-readable form without prior
consent, in writing, from Symantec Corporation. The Compiler Guide con-
tains samples of names and addresses to illustrate features and capabilities of
THINK and Symantec C++. Any similarities to names and addresses of actual
individuals is purely coincidental.

SYMANTEC CORPORATION MAKES NO WARRANTIES, EITHER EXPRESS
OR IMPLIED, REGARDING THE ENCLOSED COMPUTER SOFTWARE PACK-
AGE, ITS MERCHANTABILITY, OR ITS FITNESS FOR ANY PARTICULAR
PURPOSE. THE EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED
BY SOME STATES. THE ABOVE EXCLUSION MAY NOT APPLY TO YOU.
THIS WARRANTY PROVIDES YOU WITH SPECIFIC LEGAL RIGHTS. THERE
MAY BE OTHER RIGHTS THAT YOU MAY HAVE WHICH VARY FROM
STATE TO STATE.

Contents .

1 Welcome . o1
If You Are New to the THINK Envwonment . .3
If You Are Learning C++. .o .3
What Is Symantec C++ .3

What you need4
Which System/Finder? . .4
What Your Package Contains . . 5
What's in This Manual . 5
Conventions Used in This Manual . 6
What You Should Know. 7
Learning C++ . .7

2 Tutorid: HelloWorld++9
Creating the Project1
Creating the Source File.14
Compiling the Source File16
Did You Getan Error?16
Adding the Libraries17
Running the Project21
Creating the Application.22
Whereto GoNext.23

3 Tutorid: Vector.25
About the Vector Project.27
Debugging Inline Functions28
Using and Debugging Templates.32

Instantiating templates . . . I
Templates and debugging information33
Debugging simple templates.35
Using template instantiation files37
Debugging with instantiation files39
What to Do Next . . . e |
Create wrapping subscrlpts e X &
Add new methods to myDate42
Write a new sort function.43
Create a new class and sort it43
Change the vecMax() function into a member function . . .43
Create a template functon43

Compiler Guide iii

iv

Contents

Compiler Guide

4 Using the Symantec C++ Compiler .

Compiling Source Files .o
Compiling files not in the prOJect
Compiling files already in the project
Checking files without compiling.
Fixing errors in source files.
Error reporting .
Precompiled Headers .
Customizing the MacHeaders++ file .
Creating your own precompiled header
Symantec C++ Reports. . .o
Viewing the preprocessor output
Disassembling your code
Generating a link map
pascal keyword.

Symantec C++ THINK Inspector

Quick Start.
Features.
Menus .
File menu.
Edit menu
Classes menu
Inspect menu .
Font and size menus .
Inspector Window .

Language Reference.

How Symantec C++ Implements C++
Identifier length and capitalization .
How Symantec C++ Looks for Header Files.
Once-only headers Co
Shielded folders
Project-specific folders
Using aliases.
Using the trees .
Don't put project folders in the THINK PI’OJECt I\/Ianager tree
Avoid duplicate file names in trees .
Using Register Variables . .

Alignment . .
The new | handler .
internal limits

Integer Representation .
Short integers
Long integers
Floating-Point Representaﬂon
Removing Symantec C++ Extensions .
Strict ANSI conformance.
Relaxed ANSI conformance.

45
47

47
47
48
48
48
50
51
52
52
53
53
55

57

59
59
60
60
60
60
60
61
62

65

67
67
67
67
68
68
68
69
69
69
69
70
70
71
72
72
72
72
73
73

Predefined Macros. .
_SC__, THINK_ CPLUS .o e
maci nt osh, MJ68000, m:68000, 68k .
nc 68881 . Co
__cplusplus
__LINE__
__FILE _
__DATE__
TIME . .
__FPCE_, FPCE [EEE
__FAR CODE__ . .
FAR_DATA .
__ M _GLOBALS _
#pragma Directives
pragma SC align .
pragma SC template.
pragma SC template_access .
pragma SC once . .
pragma SC parameter .
#pragma SC message .
#pragma SC noreturn(functlon name) .
#pragma SC trace on .
#pragma SC trace off
Using Pascal Object Classes .
Pascal object extensions to Symantec C+t
Using the Macintosh Handle Pointer Type
The __machdl pointer .
Dereferencing a handle
Storage allocation
Portability . .
Placing C++ classes i in handle memory
Debugging programs that use handles
The Inherited Keyword . .
Inline Function Definitions .

Compiler Options Reference .

The Options Menu
Language settings
Compiler settings.
Code optimization
Debugging .
Warning messages
Prefix. .

Compiler Guide

104
106
110

Contents

A Porting Code

Porting from MPW C++
Include file search path .
Structures as arguments .
enum prototyping .

Function prototypes and'varargs functions

Pascal and handle objects .
Structure definition
Static member functions .
const violations.
Data definitions in precomplled headers
Instantiating abstract base classes.
Calling C++ Functions . .
C++ arguments .
C++ return values . .
Calling Pascal Functions .
Pascal callback routines . .
Calling Pascal routines |nd|rectly
Pascal arguments . .o
Pascal return values

B ARM Conformance.

Lexical Conventions
§2.3 Identifiers . . .
§2.5.2 Character Constants .
§2.5.4 String Literals
Basic Concepts . . .
§3.4 Start and Termination .
§3.6.1 Fundamental Types .
Standard Conversions . .o
§4.1 Integral Promotions .
§4.2 Integral Conversions
84.3 Float and Double .
§4.4 Floating and Integral
85.0 Expressions . .
§5.2.4 Class Member Access
§5.3.2 Sizeof . .
§5.3.3 New
§5.4 Explicit Type Conversion .
§5.6 Multiplicative Operators
§5.7 Additive Operators .
§85.8 Shift Operators
Declarations . .
§7.1.6 Type Specmers .
§7.2 Enumeration Declarations.
§7.3 Asm Declarations
§7.4 Linkage Specmcatlons
Classes
§0.2 Class Members
§9.6 Bit-Fields

Vi Compiler Guide

111

. 113
. 113
. 113
. 113
. 113
. 114
. 114
. 114
. 115
. 115
. 115
. 115
. 115
. 117
. 118
. 118
. 119
. 120
. 122

. 123

. 125
. 125
. 125
. 125
. 126
. 126
. 126
. 131
. 131
. 131
. 132
. 132
. 132
. 133
. 133
. 133
. 133
. 134
. 134
. 134
. 135
. 135
. 135
. 135
. 135
. 136
. 136
. 136

Index

Special Member Functions . .
§12.2 Temporary Objects .
Preprocessing . .
§16.4 File Inclusion . .
§16.5 Conditional Compllatlon
§16.8 Pragmas . . . -
§16.10 Predefined Names .

Symantec C++ Errors.

Recognizing Compiler Error Messages .
Error Message Types . .
Lexical errors .
Preprocessor errors .
Syntax errors .
Warnings
Fatal errors.
Internal errors.
Symantec C++ Compiler Error Messages

Compiler Guide

137

137

vii

Contents

viii Compiler Guide

Welcome
1

\Mlcome to Symantec C++ for Macintosh. This manual describes the
Symantec C++ translator and Symantec’s implementation of the C++
language. The Symantec C++ for Macintosh package includes the
Symantec C++ compiler and libraries as well as the entire THINK C
development environment.

Contents

If You Are New to the THINK Environment .
If You Are Learning C++.
What Is Symantec C++
What you need .
Which System/Finder? .
What Your Package Contains .
What's in This Manual .
Conventions Used in This Manual
What You Should Know.
Learning C++ .

~N~No oo~ DdwWwowWww

Compiler Guide 1

1 Welcome

2 Compiler Guide

If You Are New to the THINK Environment

2
If You Are New to the THINK Environment

The User’s Guide describes how to use the powerful THINK
development environment. To learn how to run simple programs
with the THINK Project Manager, read “Overview” in the User’s
Guide. The User’s Guide also contains some simple tutorials in C.
You should also look at the two tutorials on C++ in this guide
entitled “Hello World++” (Chapter 2) and “Vector” (Chapter 3).
Reading the “Overview” chapter from the User’s Guide and working
through these tutorials in this guide is the best way to get started
with Symantec C++.

If You Are Learning C++

Read the “Hello World++” tutorial, Chapter 2, and the “Vector”
tutorial, Chapter 3, to learn how to run simple programs using
Symantec C++. If you're learning C++ from a book written for UNIX
or MS-DOS computers, you'll want to use THINK Reference (in the
Online Documentation folder) to look at the:

« “Standard Libraries Intro” in the Standard Libraries
Reference database

= “Console Package Intro” in the Standard Libraries
Reference database

« “Introduction to Streams” in the 10Streams Reference
database

What Is Symantec C++

Symantec C++ is a unique development environment for the
Macintosh. It features a very fast C++ compiler, an ANSI-conformant
C compiler, powerful optimizers, a resource compiler, an extremely
fast linker, an integrated debugger, an object inspector, a text editor,
an auto-make facility, an object-oriented GUI builder, and a project
organizer that holds the pieces together. Because the editor, the
compilers, and the linker are components of the same application,
Symantec C++ knows when edited source files need to be
recompiled. If you edit a header file, the auto-make facility
recompiles the source files that depend on it for declarations.

With Symantec C++ you can build Macintosh applications, desk
accessories, device drivers, and any kind of code resource. The
standard C libraries include the functions specified in the ANSI C

Compiler Guide 3

4

1

Welcome

Compiler Guide

standard, as well as some additional UNIX operating system
functions. The C++ libraries include 10Streams, a flexible extensible
class library for doing input and output, and Complex, a library that
lets you do mathematic operations with complex numbers.

You can run your program from Symantec C++ as you work on it.
Your program runs exactly as if you had opened it from the Finder,
not under a simulated environment. Your program runs in its own
partition while the THINK Project Manager remains active, so you
can examine and edit your source files as you watch your program
run.

The Symantec C++ development environment includes a source-
level debugger that lets you debug your code exactly as you wrote it;
there’s no need to translate assembly language back into source
code. The debugger lets you set breakpoints, step through your
code, debug objects, examine variables, and change their values
while your program is running. And because the debugger works
along with Symantec C++, you can edit your source files while
you're debugging. In addition, the object inspector lets you browse
heap-based objects within your program.

What you need

Symantec C++ requires a hard drive and at least 8 megabytes (8MB)
of RAM. Large projects require more memory. Symantec C++ uses
temporary memory when it is available and runs in real or virtual
memory in both 24- and 32-bit modes.

You can run Symantec C++ on the Macintosh LC, the Macintosh SE
series, the Macintosh Il series, the Performa series, Powerbooks,
Centris, and Quadras. You can also run Symantec C++ on the
Power PC under emulation or in emulation mode.

The complete Symantec C++ system takes up about 17MB on your
disk, not including your own files. The actual size of your system
may be smaller, depending on the kinds of programs you work on.
You can customize your installation to use less disk space.

Which System/Finder?
Use the latest System and Finder provided by Apple. Symantec C++
requires System 6 using the Multifinder or System 7.

What Your Package Contains

What Your Package Contains

Your Symantec C++ package consists of seven high-density floppy

diskettes, this manual, the THINK C User’s Guide, and the Visual
Architect and THINK Class Library User’s Guide.

What'’s in This Manual

The chapters in this manual are: “Tutorial: Hello World++,” “Tutorial:
Vector,” “Using the Symantec C++ Compiler,” “Symantec C++ THINK

Inspector,” “Language Reference,” “Compiler Options Reference,”

and the appendixes “Porting Code,” “ARM Conformance,” and

“Symantec C++ Errors.” Each chapter begins with an introduction

that describes what'’s in the chapter.

Welcome

Tutorial: Hello World++

Tutorial: Vector

Using the Symantec
C++ Compiler

Symantec C++ THINK
Inspector

Language Reference

Compiler Options
Reference

This is the section you're reading.
It describes the Compiler Guide.

This basic tutorial shows you how
to put together an application with
Symantec C++.

This is a tutorial on Symantec C++.

This chapter describes how
Symantec C++ compiles your
source files. It also tells you how to
change language settings, compile
code for the 68881/2 coprocessors,
and use the global optimizer.

This chapter describes the
operation of the Symantec C++
THINK Inspector.

This chapter describes in detail
aspects of the Symantec C++
implementation that are not part of
the C++ language definition.

This chapter describes special
features and extensions in
Symantec C++. It discusses special
object types, pragmas, and

Compiler Guide

*

5

6

1

Welcome

Compiler Guide

Porting Code

ARM Conformance

Symantec C++
Errors

Macintosh-specific extensions to
the C++ language.

This appendix describes how to
port code from THINK C and MPW
C++ to Symantec C++. It also
contains hints on how to port from
other C++ implementations.

Different compilers implement the
language in slightly different ways.
This appendix discusses
implementation-specific issues by
referring to The Annotated C++
Reference Manual by Margaret Ellis
and Bjarne Stroustrup, published
by Addison-Wesley, Reading,
Massachusetts, 1990; and The C++
Programming Language, Second
Edition by Bjarne Stroustrup,
published by Addison-Wesley,
Reading, Massachusetts, 1992.

This appendix describes
error messages generated by
Symantec C++.

Conventions Used in This Manual

The names of menus, commands, and dialog boxes are in boldface.

Names of files, code fragments, resource names, function names,
folders, and variables appear int ypew i ter face.

All numbers are decimal. Hexadecimal numbers are written in C

notation: Ox3EFA.

Library and window names appear with the first letter capitalized.

Metanames are italicized.

In this manual, the term “Toolbox routine” means any routine
described in Inside Macintosh.

What You Should Know

2
What You Should Know

This manual assumes you already know, or are at least learning, how
to program in C++. If you're just getting started in C++, Symantec
C++ is a great platform.

If you're planning to write Macintosh applications, you should be
familiar with the Macintosh Toolbox as described in THINK
Reference or in Inside Macintosh, the official reference that describes
the more than one thousand Macintosh Toolbox routines. The
Toolbox is the set of operating system and user interface routines
that make a Macintosh a Macintosh. THINK Reference is an
invaluable tool for learning about the Macintosh Toolbox and the
libraries provided by Symantec C++. It's beyond the scope of this
manual to show you how the different parts of the Toolbox work
together. The “Welcome” chapter of the User’s Guide contains a list
of a number of books that describe how to program the Macintosh
as well as a list of reference works.

Learning C++

As the popularity of C++ grows, more and more introductory-level
books appear on the shelves. Most books assume that you already
know how to program in another language. Some books spend time
telling you how to use components of a development environment:
an editor, a linker, a make facility. These things are handled very
differently in Symantec C++, so when you choose a book, choose
one that doesn’t dwell on these aspects of programming.

If you're learning C++ from a book, or if you're using Symantec C++
to do course work, be sure to do the “Vector” tutorial (Chapter 3). It
shows you how to set up to write and run C++ programs that use the
standard C and C++ libraries.

The standard references for the C++ programming language are The
Annotated C++ Reference Manual by Margaret Ellis and Bjarne
Stroustrup (Addison-Wesley, 1990) and The C++ Programming
Language, Second Edition by Bjarne Stroustrup (Addison-Wesley,
1992). These books assume that you're already an experienced
programmer. The C++ Programming Language includes a ten-
chapter tutorial introduction to C++.

When the ANSI/ISO C++ standard becomes a draft, Symantec will
compare this implementation to that standard.

Compiler Guide 7

8

1

Welcome

Compiler Guide

Other books for learning C++ include:

Learn C++ on the Macintosh by Dave Mark (Addison-Wesley, 1993)
is for beginning C++ programmers. It was written specifically for use
with Symantec C++.

The C++ Primer, 2nd Edition by Stanley Lippman (Addison-Wesley,
1992) is a solid, easy-to-read introduction to C++. It does not assume
knowledge of C, but does assume knowledge of some modern
block-structured language.

Object-Oriented Programming in C++ by Ira Pohl (Benjamin/
Cummings Publishing, 1993) teaches both C++ and object-oriented
programming techniques.

The C++ Answer Book by Tony L. Hansen (Addison-Wesley, 1990)
contains useful examples, questions, and answers. Although it was
written as a companion book to the first edition of The C++
Programming Language, it is still current and informative.

C++ for C Programmers by Ira Pohl (Benjamin/Cummings
Publishing, 1989) is for experienced C programmers who want to
learn C++. It introduces the C++ features that C programmers can put
into immediate practice.

The 10Streams Handbook by Steve Teale (Addison-Wesley, 1993) is a
comprehensive, detailed explanation of the standard input and
output library used in C++. Teale shows programmers how to use
I0Streams, provides reference material for the 10Streams classes,
illustrates how to provide input-output facilities for user-defined
types and how to extend the 10Streams system. This book will help
programmers, both novice or experienced, to expand and
manipulate 10Streams, and to make more sophisticated use of
facilities in their own programs.

To stay on the cutting edge of object-oriented technology and C++
programming, you may want to subscribe to the following
magazines:

The C++ Report: The International Newsletter for C++ Programmers,
JPAM SIGS Publication Group, 310 Madison Ave., Suite 503, New
York, New York 10017.

The Journal of Object-Oriented Programming, JPAM SIGS Publication
Group, 310 Madison Ave., Suite 503, New York, New York 10017.

Tutorial: Hello World++
2

-I-he purpose of the “Hello World++” tutorial is not to teach you to
write a fancy program, but to show you how to build an application
in Symantec C++ for Macintosh. The program writes the words
“hello world” in a window on the screen.

Before You Begin

Be sure to follow the instructions in the User’s Guide, Chapter 2,
“Installation,” to install Symantec C++ for Macintosh on your disk.

What You Should Know

You should know how to use the standard file dialog boxes to move
around between different folders. If you don't, read the user’s
manual that came with your Macintosh.

Contents

Creating the Project11
Creating the Source File.14
Compiling the Source File16
Did You Get an Error?16
Adding the Libraries17
Running the Project21
Creating the Application.22
Whereto GoNext.23

Compiler Guide 9

. 2 Tutorial: Hello World++

10 Compiler Guide

Creating the Project .

Creating the Project

First you need to launch the THINK Project Manager. To do this,
open the folder containing the THINK Project Manager and double-
click the THINK Project Manager icon.

A dialog box asks you to open a project.

|E\J Symantec C++ for Macin... ¥ |

& (Project Models) = Sabre
o Aliases _
[0 AppleScripts Bl

0 Mac #includes Desktop

[0 Mac Libraries

[0 oops Libraries

OO Projects

[0 Standard Libraries
7 THINK Class Library New

Cancel

i

Figure 2-1 Opening a project

Since you're creating a new project, click the New button. You'll see
another dialog box that lets you select from various types of projects.
Since the purpose of this tutorial is to demonstrate how to build a
simple project from scratch, select Empty Project from the list and
click the Create button. Normally you would use one of the built-in
project models when creating new projects, or a custom project
model of your own design.

Compiler Guide 11

2 Tutorial: Hello World++

Now a dialog box asks you to hame your new project and choose
where it will be stored on disk. Move back to your Devel opnent
folder, name the project Hel | o++, and click Save.

|= Development v | = Sabre
3 Online Documentation 3 ¥ ipnt
[Scripting :
O Symantec C++ for Macintosh Desktop
O TCL Demos
O3 Utilities
O Visual Architect I [——
Name new project:
|HE""H1 | l Save l

Figure 2-2 Naming your new project

Warning

You can give your project a different name, or store
it somewhere other than in the Devel opnent
folder, but remember that your dialog boxes won't
match the figures in this chapter.

Note

Generally, you won't store projects in the THINK
tree (the folder in which THINK Project Manager
and its subfolders reside). In particular, despite its
name, you should not store projects in the

Pr oj ect s folder. This folder is for storing aliases
to frequently used projects that you want to appear
in the Switch to Project submenu.

12 Compiler Guide

Creating the Project

*

THINK Project Manager creates a new folder named Hel | o++ f,
and inside it a new project document named Hel | o++. 1. Then
THINK Project Manager displays a new, empty project window:

Hello++.m EI

Name Code
Totals 0 |4
ik
|

Figure 2-3 The project window for a
new, empty project document

The Name column shows the names of the source files and libraries
in your project. The Code column displays their sizes in bytes.

Compiler Guide 13

2 Tutorial: Hello World++

Creating the Source File

Now you're ready to create your source file. Choose New from the
File menu to bring up an empty, untitled editing window.

S eee——0—=0—————— untitled ==icFF"c0F"r——"r———""115

<]

Figure 2-4 Untitled window

Type the following program into the editor window (you don’'t need
to type in the comments if you're in a hurry):

14 Compiler Guide

Creating the Source File

*

* % k% %

hel l o.cp

The hello world program for Symantec C++ for
Maci nt osh

/
*
*
*
*

*
*****/

#i ncl ude <i ostream h>
voi d main()

cout << "hello world!'\n";

}

The THINK Project Manager text editor works like most other text
editors on the Macintosh. You can drag to select a range of text or
double-click to select words. You can also triple-click to select an
entire line. If you have a keyboard with arrow keys, you can use
them to move around your file.

The text editor does not wrap text when you type past the right edge
of the window. Use the horizontal scroll bar at the bottom of the
window to view any text that goes beyond the right edge.

After you type the program, choose Save As from the File menu to
save it. You get a dialog box like the one below. Name the file name
hel | 0. cp and click Save.

5] Hello++ § vI
WE — Sabre
=
Save file as: Save
hello.cp | Eancelj

Figure 2-5 Save As dialog box

You can edit any text file with the THINK Project Manager editor, not
just those ending in . cp.

Compiler Guide 15

16

2 Tutorial: Hello World++

Compiler Guide

Warning
Make sure the name of your file is hel | 0. cp, not

hel | 0. c. By default, THINK Project Manager uses
the C++ translator to compile .cp and .cpp files, but
uses the C translator to compile .c files. The
program you just typed will not compile as a C
program.

Compiling the Source File

Now you're ready to compile your source file. Choose Compile
from the Source menu. THINK Project Manager displays a dialog
box that shows how many lines have been compiled.

When THINK Project Manager compiles a source file, it adds its
name and size to the project window. Your project window should
now look like this:

[ID=—— Hello++.n —=
Name Code
= Segment 2 18 |{+
heTlo.cp 14 |
Totals 18
3

Q]

Figure 2-6 Project window

THINK Project Manager keeps the object code for your source files
in the project document.

Did You Get an Error?

If you made a mistake typing the program, THINK Project Manager
displays an error message in a window called Compile Errors. The
message may say synt ax error. In this small program, about the
only syntax error you can make is forgetting a quotation mark, a
parenthesis, or a semicolon.

Adding the Libraries .

Double-click the error message to find the source of the error.
THINK Project Manager selects the line with the error. Correct the
error and look over your program to make sure everything else is
correct. Then choose Compile from the Source menu.

The following error message indicates that THINK Project Manager
wasn't able to find the include file i ost r eam h.

E[N&E=—————— Compile Errors ==——————"10]

ile "hell:
rror NG

s Line 8

to open input file 'ioztream.h'

1]

@<

Figure 2-7 Sample Compile Errors window

The THINK Project Manager can't find the include files if the

St andard Li brari es folder isn't in the Synant ec C++ for
Maci nt osh folder, or if you've moved the application from its
installed location. If you have moved the THINK Project Manager
application, move it back to the Symant ec C++ for Maci nt osh
folder and start over. Quit THINK Project Manager and move the
Hel | o++ f folder to the Trash. Then look in the User’s Guide,
Chapter 2, “Installation,” to make sure you installed Symantec C++
for Macintosh correctly. Once you're sure everything is OK, start
from the beginning of this chapter.

Warning
Drag the Hel | o++ f folder into the Trash only if

you're starting over. If you didn’t get the “Unable to
open input file” error message, proceed.

Adding the Libraries

If you tried to run your program now, you’d get link errors because
the project doesn’t know where the << operator, the cout stream
variable, and other essential functions are defined.

Compiler Guide 17

2 Tutorial: Hello World++

Next, you need to add three libraries to the project. The CPlusLib
library is required for all C++ projects that produce applications. The
ANSI++ library is required only for non-Macintosh applications. The
I0Streams library defines the << operator and the cout stream
variable and all the standard streams library routines. To add the
libraries, choose Add Files from the Source menu. You'll see a
dialog box like the one in Figure 2-8.

|ﬁ Standard Libraries TI
O ANSI — Sabre
OO ANSI++881
D ANSI-A4
o e e
Deskt
D ANSI—small esxlon
O ANSI—small++ Done
O atof.cp
O C headers | Cancel]
CPtust, ¥
CPlusLib
105treams Add Al
o BNy

Figure 2-8 Standard libraries

The top list is used to display the source files and libraries in the
folder you're currently in. The bottom list shows the files THINK
Project Manager will add to your project when you click Done. The
Add and Add All buttons move files into the bottom list. The Remove
button removes files from the bottom list.

Open the folder called St andard Li brari es, in the Symant ec
C++ for Maci nt osh folder. This folder contains all the libraries
for ANSI and Unix compatibility, including the ANSI++, CPlusLib,
and 10Streams libraries. Select ANSI ++ and click the Add button.
The file moves to the bottom list. Repeat this procedure for the
CPlusLib and 10Streams libraries. Make sure that the dialog looks
like the one in Figure 2-8, then click the Done button.

18 Compiler Guide

Adding the Libraries .

THINK Project Manager adds the libraries ANSI++, CPlusLib, and
I0Streams to the project window. Your project window should look
like this:

== Hello++.n =——|
Name Code

— Segment 2 18 |{F

NS+ of]
CPlusLib u}
hella.cp 14

I05treamns=

Totals 18

k

=]

Figure 2-9 Project window

Now that the libraries have been added to the project, you must
move some of them into different segments. Select ANSI ++ and drag
it below the gray line. Segment 3 is created containing the ANSI++
library. Create another segment for the 10Streams library. Your
project now contains three segments.

Compiler Guide 19

2 Tutorial: Hello World++

The project window should look like this:

Hello++. N V=
Name Code
-~ Segment 2 18 |4¢
CPuzLib ol |
hello.cp 14
= Seqment 3 4
AMS++ u]
=~ Seqment 4 4
105 treams m
Totals 26
]
|

Figure 2-10 Creating project segments

The object size for each of the libraries is zero, because the THINK
Project Manager doesn’t load a library’s code until you need it. As a
result, you can add several libraries without waiting for them to load.

THINK Project Manager loads a library automatically when you run
the project. Another way to load a library is to click its name in the
project window and then choose Load Library from the Source

menu. For this example, let THINK Project Manager load it for you.

20 Compiler Guide

Running the Project

*

Note
Each segment in a project must contain less than
32K of object code. When loaded, the ANSI++ and
I0Streams libraries take up close to 32 kilobytes
(32KB) each, which is why you must put them in
separate segments. If you try to run a project that is
not segmented properly, the THINK Project
Manager, by default, asks if you want it to auto-
segment your project. You can have the THINK
Project Manager automatically segment your
projects by setting this option in the Preferences
page of the THINK Project Manager options
dialog. In this tutorial, however, you learn how to
segment the project manually.

Running the Project

Everything is now set to run the project. The source file is in the
project window along with the libraries you'll be using. Choose Run
from the Project menu.

The THINK Project Manager notices that the libraries need to be
loaded, so it opens a dialog box asking if you want to bring the
project up to date:

f Bring the project up to date?
Don’t Update l Update I

Figure 2-11 Update dialog box

Click the Update button. The THINK Project Manager goes to disk to
load the code for the CPlusLib, ANSI++, and IOStreams libraries. A
little time may be needed to load the libraries; but once they're
loaded into the project, THINK Project Manager doesn’t need to load
them again.

Any time you choose to run your project and the THINK Project
Manager notices you've made changes (added libraries or source

Compiler Guide 21

22

2 Tutorial: Hello World++

files, or edited source files), it asks if you want to update the project.
If you say yes, it compiles the new or changed files and loads the
new libraries. Because this program uses the 10Streams library,
everything sent to cout goes to a console window. A console
window is a Macintosh window that behaves like a simple display
terminal, the kind of terminal that many MS-DOS and Unix
computers use. You'll see the hel | o wor | d! string at the bottom
of this window.

press zreturn: to exit = =1

hello world!

Compiler Guide

Figure 2-12 Console window

To exit the program, press Return or choose Quit from the File
menu.

Creating the Application

As you develop a large application, you make changes to your
source files. Each time you run your project, THINK Project Manager
will recompile only those files that have changed. When you're
ready to turn your project into a stand-alone double-clickable
application, choose Build Application from the Project menu.

Where to Go Next .

A dialog box asks you to name your application. Name it

hel | o++ appl . Leave the Smart Link check box checked. This
option tells THINK Project Manager to make your application as
small as possible. Be sure to move to the Hel | o++ f folder before
clicking Save.

|=l Hello++ § ¥ |
) Hpdner i — Sabre

0 hplisoen
Desktop

<

Wi

Save application as: Sawe

|hello++ appl | [cancel
E<] Smart Link

Figure 2-13 Build Application dialog box

THINK Project Manager puts up a dialog box telling you it's linking
your application. When it's finished, the application is in the folder
you chose.

To run your application, bring up the window with the folder your
application is in. Double-click your application and watch it run.

Where to Go Next

The tutorial in the next chapter is a more elaborate example of
building an application with Symantec C++ for Macintosh. It
describes how THINK Project Manager reports errors when you
compile and link, and it shows you some advanced features of the
THINK Project Manager editor.

Compiler Guide 23

. 2 Tutorial: Hello World++

24 Compiler Guide

Tutorial: Vector .
3

\Actor shows you how to use some unique features of Symantec C++.
Vector is a small application that uses templates to implement
vectors and a sorting function.

Before You Begin

Be sure that you've installed Symantec C++ correctly. The Vector
tutorial should be in the Vect or f folder in the Denps folder in
your Devel opnent folder.

What You Should Know

Before you try this tutorial, you should know how to use the THINK
Project Manager and the THINK Debugger. If you're not familiar with
them, work through the tutorials in the User’s Guide.

This tutorial shows you how to use templates with Symantec C++,
but it does not teach you about templates in general. To learn about
templates, see The Annotated C++ Reference Manual by Margaret
Ellis and Bjarne Stroustrup and The C++ Programming Language,
Second Edition by Bjarne Stroustrup.

Contents

About the Vector Project.27

Debugging Inline Functions28

Using and Debugging Templates.32
Instantiating templates . . . N ¥
Templates and debugging information33
Debugging simple templates34
Using template instantiation files37
Debugging with instantiation files39

What to Do Next
Create wrapping subscrlpts e
Add new methodsto myDate42

Compiler Guide 25

26

3 Tutorial: Vector

Compiler Guide

Write a new sort function

Create anewclassand sortit
Change the vecMax() function into a member function
Create a template function . Coe e

43

43
43

About the Vector Project

L 4
About the Vector Project

The Vector project is an application that uses inline functions and
templates to give you an idea of how they work in Symantec C++. It
uses templates to implement a vector (array) class of any type, finds
the maximum value in a vector, and sorts any kind of vector. The
Vector application displays its output, including the results of two
inline functions, on the console.

Before you proceed with this tutorial, run the Vector project without
the debugger to familiarize yourself with the way the vector works.
Make sure that the Use Debugger option in the Project menu is not
checked, and choose Run from the Project menu.

press «return: to edit E=—————HE

inlineMax: 16838, 5738 16838
nextletter(P): 0

wecHax{wi s 83
Unsorted: 15 49 83 &7 5 61 A

Sorted: 5 6 15 49 B1 A7 83
wecfaxiucd: X

Unsorted: B ¥ AR D R F AR
Sorted: A AR BE O P R X
vecHoxiufl: 8.8

Unsorted: 0.7 0.4 6.6 5.1 1.2 8.8 2.3
Sorted: 0.4 0.7 1.2 2.35.16.68.8

wvecHaxfudy: G,/29/89
Unsorted: 473186 6/29,/89 11/5/11 11,/7/24 1214733 1021687 713720
Sorted: TS TA3520 11/7,/24 12/14/593 10021067 4/31/806 6/20/80

Figure 3-1 Running the Vector application

In this tutorial, you run the Vector application several times. After it
runs, notice that the title of the window changes from “console” to
“press «return» to exit.” To exit the Vector application, press Return,
or choose Quit from the File menu when the console window is
active. If the source-level debugger is active, you can also choose
ExitToShell from the Debug menu.

The Always save session option in the Debugging page of the
THINK Project Manager options dialog is turned off in this
project. Since you'll be running the project several times, it is more
convenient if you don’t have breakpoints left over from previous
runs.

Compiler Guide 27

3 Tutorial: Vector

This option is on in the
Vector project.

28

Compiler Guide

Most of the procedures in this tutorial start from the file mai n. cp,
SO you may want to look at that title before you continue.

Debugging Inline Functions

To cut down on the overhead of function calls for small functions,
C++ provides inline functions. Instead of generating code for a
function call, Symantec C++ generates the code for the function
where the function call would otherwise appear. In C++ there are
two ways to declare inline functions. One way, for global functions,
is to use the i nl i ne specifier. The second way is to provide the
definition (not just a declaration) for a member function in a class
declaration.

In the Vector application, the function i nl i neMax() in the file
mai n. cp and the function next Lett er () in the file next . h are
global inline functions. In the template class vect or in the file
vect or . h, the constructor, destructor, and member function

si ze() are inline functions because the definitions are provided in
the class declaration.

Although inline functions behave syntactically like normal functions,
you can’t debug them because the compiler doesn’t generate a
function call for them. That means that you can'’t set a breakpoint in
an inline function and that you can’t step into an inline function.

To debug inline functions, turn on the Use function calls for inlines
option in the Debugging page of the THINK Project Manager
options dialog. When this option is on, Symantec C++ generates
normal function calls for inline functions.

Keep in mind that the inline specifier is a hint to the compiler that it
should try to generate the code directly instead of creating a
function. Just as not every variable declared r egi st er necessarily
ends up in a register, a function declared i nl i ne may not actually
be an inline function.

Debugging Inline Functions

L 4
Here are examples of debugging inline functions.

If the function is in a source file, set a breakpoint in the inline
function as you would for any other function. Choose Run from the
Project menu. When the debugger windows appear, scroll up until
you see the i nl i neMax() function. You can set a breakpoint in it
the way you usually do.

cohst int wvectorSize ;
inline int inlineMaxcint =, int g2

& return = 4y P ox o y;
B

template <class T: T wvecHaxd{wector<Tr& wl

G int n = w.sizedl;

» main

Figure 3-2 Setting a breakpoint in inlineMax()

Compiler Guide 29

3 Tutorial: Vector

If the inline function is in a header file, use the pop-up menu from
the Source window to open it. To set a breakpoint in the function
next Letter (), hold down the Option key as you click the Source
window’s title bar, and choose next.h from the pop-up menu.

main.cp

|

main.cp

const int wectorSize 105tream.h
inline int inlineMax<int =, in
i myDate.h
* return = g ? w1 u;
E
template <class T: T wecHMaxd{wvector<T:& wl
i
o int n = w.=sizetl;
» main

Figure 3-3 Opening a header file in the Source window

30 Compiler Guide

Debugging Inline Functions

*

The header file appears in the Source window. You can now set a
breakpoint in the next Let t er () function.

inline char nextletterdchar <3
3‘ if {oc=="'z"2
return 'a’;
G if do=="2"2
4 return "AY;
T return c+i;
LI
» main

Figure 3-4 Setting a breakpoint in nextLetter()

If the Use function calls for inlines option is off, you don’t see any
breakpoint diamonds next to the i nl i neMax() function, and the
next . h file isn’'t available in the pop-up menu because it doesn’t
generate any code.

main.cp

const int wectorSize = 7; ITI!_.I[IEItE.h

inline int inlineMaxdint =, int g2

return x » 4 T o® 1 ouy;

template <class Tr T wecHMaxiwector<TrE wl

G int n = w.=sizell;

» main

Figure 3-5 Use function calls for inlines option turned off

Compiler Guide 31

The filei nst ance. cp,

3 Tutorial: Vector

which is located in the

same folder as the Vector
project, contains the code
from this section so you can

experiment with it.

32

Compiler Guide

Using and Debugging Templates

The template mechanism in C++ lets you define container classes
and generic functions without giving up type checking. The Vector
project provides examples of both a container class (the vector class)
and a generic function (the sorting routine).

As the names imply, template functions and template classes are not
actual functions and classes. Rather, they are schematics for building
real functions and classes for types that you specify. Because
templates behave differently from normal functions and classes, you
need to understand how Symantec C++ compiles and generates
debugging information for them.

This section introduces some useful techniques for using and
debugging templates in Symantec C++.

Instantiating templates
Keep in mind that the compiler never generates code for template
definitions. Consider this trivial function template:

tenpl ate<class T> T sq(T v)
{

}

Symantec C++ compiles the template, but it doesn’'t generate code
for it. To generate code, you need to instantiate the function. There
are two ways to do this: Use the template, or a #pr agma directive.

return v * v;

This is how you instantiate a template function by use:
voi d byUse()

{

int i =5;
float f = 3.14;

i
f

sq(i);

sq(f);

}

In this example, the compiler instantiates two versions of the

function sq() . One version takes an i nt argument and the other
takes a f | oat argument.

Using and Debugging Templates

L 4
This is how you use the #pr agma directive:

#pragma tenplate sq(int)
#pragma tenpl ate sq(fl oat)

These two directives instantiate the i nt and f | oat versions of the
function sq() .

Instantiation is similar for class templates. The only difference is the
syntax of the #pr agma directive:

/!l instantiate an
// int version of
!/ tVector

#pragma tenpl ate tVector<int>

This tutorial shows you two ways to use templates. The first, called
simple templates, is a straightforward instantiation by use. The
second employs instantiation files and the template pragma to
instantiate specific versions of template functions.

A simple template is a template that you include through a header
file or that you write in your code. The advantage of simple
templates is that you don’t have to create special files for each
instance of a template function. The disadvantage is that you cannot
debug every instance of a template function or class.

Instantiation files use a more elaborate header file and source file
arrangement. This produces one file in the project for each instance
of a template function or class, all of which you can debug.

Templates and debugging information

To understand the difference between simple templates and
instantiation files, it helps to know how the Symantec C++ compiler
generates debugging information for template functions and member
functions.

For source files, Symantec C++ generates debugging information for

each function or member function for which source code is
available. This works well for normal functions and member

Compiler Guide 33

34

3 Tutorial: Vector

Compiler Guide

functions, since there is always a one-to-one correspondence
between the source code and the object code, even for overloaded
functions. Consider these two functions:

int max(int a, int b)

return a >b ? a: b;

}

char max(char a, char b)

return a >b ? a: b;

}

The Symantec C++ compiler generates object code and debugging
information for the function max(i nt, i nt) and for the function
max(char, char).

Now consider this template function:

tenplate<class T> T tMax(T a, T b)

return a >b ? a: b;

void foo(int i, int j, char x, char vy)
{

int n;

char c;

n=tMx(i, j)

c = tMax(x, Yy);

}

The Symantec C++ compiler doesn’t generate object code or
debugging information for the template itself. It generates code only
when the function is instantiated. In the example above, Symantec
C++ generates object code for the functions t Max(i nt, i nt) and
t Max(char, char) . Since there is source code available, the
compiler also generates debugging information. But since the
debugger requires a one-to-one correspondence between source
code and object code, the debugging information applies to only
one instance of the t Max() function. Unfortunately, you cannot tell
which instance has debugging information. If you set a breakpoint in
t Max (), you might stop in t Max(char, char) orin
tMax(int,int).

Using and Debugging Templates

You can use the
Disassemble command in
the Source menu to
examine the code that
Symantec C++ generates for
each version.

*

Debugging simple templates

In the Vector application, the template function vecMax () in the file
mai n. cp uses the simple template approach. This is how
vecMax() appears in nai n. cp:

tenpl ate <class T> T vecMax(vector<T>& v)

int n =v.size();
T max = v[O0];
for (int i =1; i <n; i++)

if (v[i] > max)
max = v[i];

return nax;

The function takes a vector of a particular type T as an argument and
returns the largest element in the vector. This function works for any
type for which the greater-than operator is defined.

In the function mai n() , there are four calls to vecMax() for the
built-in types i nt, char, and f | oat, and the user-defined type
myDat e. The appearance of each call to vecMax() creates a new
instance of the function. When you compile the file mai n. cp,
Symantec C++ generates code for four different versions of
vecMax() . As explained above, the compiler generates debugging
information for only one of those instances.

To see what that looks like, make sure that the Use Debugger option
is on, and choose Run from the Project menu.

Compiler Guide 35

3 Tutorial: Vector

Scroll toward the beginning of the file mai n. cp and set a
breakpoint in the template function vecMax() like this:

template <class T: T wvecHaxd{wector<Tr& wl
ke int n = w.=sizedl;
be T max = widl;
+* for Cint i = 1; i <« n; i++2
<h if twlil *» mawxd
ke max = wlil;
G return max;
» main

Figure 3-6 Setting a breakpoint in vecMax()

Now click the Go button and notice where execution stops:

main.cp |

template <class T: T wvecHaxd{wector<T:E& wl

int n = w.=sizedl;
T max = wl0];

» for Cimt 0 = 1; i ¢ n; i++2
if twlil » max?
max = wlil;

G L GG

return mox;

» vecMax{vector <int>&) |(::|

Figure 3-7 Breaking inside vecMax()

36 Compiler Guide

Using and Debugging Templates

*

From the current function display at the bottom of the Source
window, you can see that the debugger stopped execution at the
vecMax(vect or <i nt >&) instance of the template function. Click
the Go button again, and notice that the program does not stop this
time.

Note
The current version of Symantec C++ generates
debugging information for the first instantiation of a
template function. However, you should not rely on
this behavior; it may change in the future.

As you can tell from the output in the console window, even though
Symantec C++ generated debugging information for only one
instance of the vecMax () function, it did generate code for the
other three versions.

If you are writing an uncomplicated template function such as
vecMax (), there is nothing wrong with using the simple template
technique. For such functions it's unlikely that you need the source-
level debugger at all. But if you are writing a more complex template
function or a template class, you may need to be able to debug
every instance or a particular instance of the template. To do this,
you need to use the instantiation file technique.

Using template instantiation files

The template instantiation file technique forces the Symantec C++
compiler to generate debugging information for each instance of a
template function or class. The Vector application uses this technique
for the vect or class and for the sel ecti on() function, which
implements a selection sort.

First, create a file for the template class declaration or the template
function declaration. In the Vector project, the vect or class
declaration is in the file vect or . h. Include this file in any other
source file that needs the declaration of your template class. The
sel ecti on() template function declaration is in the file

sel ecti on. h. Include this file in any source file that calls for the
template function to provide a function prototype for

sel ection().

Compiler Guide 37

38

3 Tutorial: Vector

Compiler Guide

Next, create an implementation file for the definitions of the
template member functions and the template function. By
convention, the name of this file is the name of the class or function.
For the vect or class, the implementation file is the file

vect or. cp. It contains the definitions of all the template functions
that are not defined as inline functions. For the sel ecti on()
function, the implementation file is the file sel ecti on. cp. Do not
add this file to the project.

Finally, create an instantiation file for each instance of the template
class or template function. By convention, the name of this file
follows the same format as #pr agnma t enpl at e directive. The
instantiation file for the i nt version of the vect or class is named
vect or <i nt >. cp. The instantiation file for the f | oat version of
the sel ecti on() function is named sel ecti on(fl oat). cp.
The contents of the instantiation file look like this:

#i ncl ude "vector.cp"
#pragma tenpl ate_access public
#pragma tenpl ate vector <char>

The #i ncl ude statement brings in the implementation file. The
#pragma tenpl at e_access publ i c directive ensures that the
scope of the instantiation of the class and its member functions is
public. If you leave out this directive, the scope is static, and the
class and its member functions are available to other files in the
project. As you read earlier, the directive #pragnma t enpl at e
vect or <char > asks the Symantec C++ compiler to instantiate a
char version of the vect or class.

The instantiation file for template functions looks the same. The only
difference is the function syntax for #pr agnma t enpl at e:

#i ncl ude "sel ection. cp"
#pragma tenpl ate_access public
#pragma tenpl ate sel ection(vector<fl oat>)

Add the instantiation file to the project.

Note
The other files in the project must be compiled with
the #pragma tenpl ate_access extern for
this technique to work.

Using and Debugging Templates

*

As you can see in the Vector project, there are four instantiation files
for the vect or class and four instantiation files for the Vector class’s
f ri end function.

Debugging with instantiation files

When you use the template instantiation file technique, Symantec
C++ generates object code for only one instance of the template.
When the debugging option is on, it generates debugging
information only for that instance, so the debugger is able to
maintain a one-to-one relationship between object code and source
code.

Since the instantiation file in the project doesn’t contain code, use
the pop-up menu from the debugger’s Source window to reach the
implementation file that the instantiation file includes.

Here’s how to set a breakpoint in the char version of the
sel ection() function.

Choose Run from the Project menu to run the Vector application.
Click the project window to make it active, or choose Vector.ttfrom
the debugger's Windows menu.

Click the file name sel ecti on(char) . cp in the Project window,
and choose Debug from the Source menu. The file appears in the
debugger’s Source window.

selection(char).c

#include "selection.cp i
#pragma template_qeocess public
#pragma template selectiontuwector<char: 2

» main

<]

Figure 3-8 Instantiation file in the Source window

Compiler Guide 39

3 Tutorial: Vector

To see the code in the included implementation file

sel ecti on. cp, hold down the Option key as you click the Source
window’s title bar. Choose the implementation file from the pop-up
menu.

selectionichar).cp
selection(charl.cp [5

selection.cp (LT
R T

#pragma template sel en:.t 1an{vec tor<char: 2

<]

» main

Figure 3-9 Choosing the implementation file

The debugger’s Source window now shows the source code in the
implementation file. Set a breakpoint in the function sel ecti on().

selection.cp

template<class Tr woid selectionivector<T>E& wl

breakpoint int i, j, min, n;

\ T t;

n=w.sizedl;

T T

for (i =0; i <« n; i++) {
min = i;
for Cj = i+1; j < n; j++2
» main =]

Figure 3-10 Setting a breakpoint in the implementation file

40 Compiler Guide

What to Do Next

*

Click the Source window’s Go button. Note that execution does not
stop in the i nt version of sel ecti on() . It stops only for the
char version of sel ecti on():

=IE|

selection.cp

int i, j, min, n;
T t;
B n=u.sizell;
Ed for i =0; i < n; i++) o
T min = i;
G for j = i+1; j < n; j++2
& if twljl « wiminla

» selection(rector <cchar>&) |<::I B

Figure 3-11 Stopping in the char version of selection()

You can use the same steps to set breakpoints for other instantiations
of sel ecti on() orto set breakpoints in the vect or class member
functions for specific types.

What to Do Next

This tutorial showed you some basic techniques for working with
inline functions and templates in Symantec C++. If you're just
learning C++, you might find the Vector program useful for trying
out different things.

Create wrapping subscripts

The vector class shows how to write a subscript operator. Rewrite it
so that the subscripts wrap around when they’re out of range. For
example, if the vector object f 00 contains ten items, the in-range
subscript references are f oo[0] to f oo[9] . If you use any out-of-
range subscript, like f oo[10] , the current subscript operator always
returns the first element in the vector, f oo[0] . But if the subscript
operator wrapped, it would return f oo[0] for f oo[10], foo[1]
for f oo[11], f oo[2] for foo[12], and so on.

Compiler Guide 41

42

3 Tutorial: Vector

Add new methods to myDate

Compiler Guide

A >> operator that reads in a date from the console or a
file. First, write the function to read dates written such as
05/ 04/ 95. Then, extend it to read dates written such as
Apr. 28, 1996. Declare the function this way:

friend ostream& operator>>
(ostrean& s, const nyDate& d);

A > operator that returns whether one date is later than
another. For example, June 30, 1995 is later than
December 13, 1994. Declare the function this way:

friend int operator>
(const nyDate& d1, const nyDate& d2);

A + operator that adds a number of days to a date and
returns a new date. For example, 21 days + December 12,
1994 = January 2, 1995. You have to write two functions:
one that takes the date first and the number of days
second, and another that takes the number of days first
and the date second. These functions need to take into
account leap years and the number of days in each
month. Declare one of the functions this way:

friend nyDate operator+
(const nyDat e& dat e,
const inté& days);

A - operator that subtracts one date from another and
returns a number of days. For example, March 15, 1995 -
January 25, 1995 = 49 days, and July 6, 1995 - August 10,
1995 = - 35 days. This function needs to take into account
leap years and the number of days in each month.
Declare the function this way:

friend int operator-

(const nyDate& dl1, const nyDate& d2);

What to Do Next

*

Write a new sort function

Use the sel ecti on() function in the file sel ecti on.cp as a
starting point for a different kind of sort. You can find sorting
algorithms in many computer science textbooks and tutorials.

Create a new class and sort it
Write your own class; for example classes for strings, times, or
people’s addresses; create a vector from it and sort it.

Change the vecMax() function into a member function

Make the vecMax () function a member function of vector.
Remember, the new member function won't take a vector object as
an argument. Instead, call the function like this:

i = nyVector. max();

Create a template function

The code that prints out the vector maximum, the unsorted vector,
and the sorted vector is repeated four times in mai n() . Write a
template function that does its work.

Compiler Guide 43

3 Tutorial: Vector

44 Compiler Guide

Using the Symantec

C++ Compiller ,
4

Different compilers implement C differently, even if they conform to
the ANSI standard. Similarly, C++ compilers can differ in the way
they implement C++. This chapter explains how to use the unique
features of Symantec C++, including how to compile source files,
how to use precompiled headers, and how to set options that affect
the way Symantec C++ compiles your source files. This chapter also
lightly touches on how Symantec C++ complies with the Draft ANSI
standard for the C++ language.

Contents

Compiling Source Files . . . e
Compiling files not in the prOJect T ¥
Compiling files already in the project47
Checking files without compiling47
Fixing errors in source files48
Errorreporting48

Precompiled Headers.48
Customizing the MacHeaders++file50
Creating your own precompiled header51

Symantec C++ Reports . . . N Y
Viewing the preprocessor output Y
Disassembling yourcodeb3
Generatingalinkmap53
pascal keywordb5

Compiler Guide 45

4 Using the Symantec C++ Compiler

46 Compiler Guide

Compiling Source Files .

Compiling Source Files

Unlike traditional compilers, Symantec C++ doesn’t generate
separate object files from your source files. Instead, Symantec C++
puts all the object code into the project document. Although you can
compile files manually, most of the time you use the auto-make
facility to compile your files.

Note
Source files are your program files. Object code is
the machine language that the Symantec C++
compiler generates from your source files.

Compiling files not in the project

You can add a source file to your project and compile it in one step.
First, create your source file with the Symantec C++ editor. Save your
file in the same folder as the project document. Make sure that the
file name ends in . cp or . cpp. By default, Symantec C++ only
compiles files that end in . cp or . cpp.

Note
You can change the file extensions that the THINK
Project Manager uses to choose translators.

Next, choose Compile from the Source menu. A dialog box shows
you how many lines Symantec C++ has compiled. If there are no
errors in the source file, Symantec C++ adds the file and its object
code to the project.

Compiling files already in the project

If you want to compile a file that is already in the project, click its
name in the project window and choose Compile from the Source
menu. Once a file is in the project, you don’t need to open it to
compile it.

Checking files without compiling

You may want to check that your source file will compile without
actually compiling it. First, save the file (using the extension . cp or
. cpp). Next, choose Check Syntax from the Source menu. The
compiler checks the syntax of the contents of the frontmost Editor

Compiler Guide 47

48

4 Using the Symantec C++ Compiler

Compiler Guide

window without generating code or adding the file to the Project
window. If it’s in the project, you don’t need to open it to check
syntax.

Fixing errors in source files

When Symantec C++ detects an error in your source file, it opens the
Compile Errors window. If there is more than one error, Symantec
C++ reacts according to the settings you chose in the Options
dialog. One setting you can choose is to have all errors listed in the
Compile Errors window. If you double-click an error in this window,
the source file that contains the error opens in an Editor window
with the line that contains the error highlighted.

Error reporting

The Error reporting radio button cluster in the Debugging page of
the Symantec C++ Options dialog lets you choose how Symantec
C++ reports compiler errors to you. The choices are Stop at first
error, Report the first few errors, and Report all errors in a file. See
“Debugging” in Chapter 7 for more information on error reporting.

Note
If you are using the auto-make facility, the compiler
will not stop after an error, nor will it stop after any
errors in the source file.

Precompiled Headers

Symantec C++ lets you precompile header (#i ncl ude) files.
Precompiled headers may contain only declarations and
preprocessor symbols. Since precompiled headers are in a format
Symantec C++ can use readily, they load significantly faster than do
text header files.

Another benefit of precompiled headers is that they make the
debugging information stored with the project, or in separate XSYM
files, much smaller.

MacHeader s++ is a precompiled header containing the most
common declarations you use for writing Macintosh programs. It can
be found in the Mac #i ncl udes folder. If you include
<MacHeader s++> in the project prefix for Symantec C++, Symantec
C++ automatically includes MacHeader s++ in the files in your
project. As a result, you never have to explicitly include common

Precompiled Headers

*

header files like Qui ckDr aw. h. (It doesn’t hurt if you do—the

#pr agma once directive prevents header files from being included
more than once.) To edit the project prefix, see “Creating your own
precompiled header” later in this chapter.

Note
The project prefix for Symantec C++ contains the
line #i ncl ude <MacHeader s++> by default.

The MacHeader s++ file contains these files:

AEObj ects. h AEPackObj ect . h
AERegi stry. h BDC. h
Controls. h Desk. h

Devi ces. h Di al ogs. h
Disklnit.h Errors. h
Events. h Files.h

Fonts. h Gestal t Equ. h
Lists.h Menory. h
Menus. h Notification.h
CSEvents. h CSutils.h
Packages. h PrintTraps. h
Qui ckDraw. h Resources. h
Scrap. h Script.h
SeglLoad. h StandardFil e. h
TextEdit.h Tinmer.h

Tool Utils.h Types. h

W ndows. h pascal . h

Compiler Guide 49

50

4 Using the Symantec C++ Compiler

Compiler Guide

These files aren’t used as often, so they’re not included in
MacHeader s++. You can include them yourself, or make a custom
version of MacHeader s++, as described below.

ADSP. h
Aliases. h

Bal | oons. h
Connections. h
CRMSer i al Devi ces. h
Dat abaseAccess. h
Di sks. h

ENET. h
FileTransfers. h
Fi nder. h

Fol ders. h

Hyper XCmd. h
Language. h

Pal ettes. h
PictUil.h
PPCTool Box. h
QDOF f Screen. h
ROVDef s. h
SCSl . h

Shut Down. h
Sound. h

Start.h
Terminal s. h
Traps. h

Vi deo. h

Al FF. h

Appl eTal k. h
CommResour ces. h
Connecti onTool s. h
CTBUtilities.h
DeskBus. h
Editions. h
EPPC. h

Fil eTransferTool s. h
Fi xMat h. h

G af3D. h

I cons. h

MDl.h

Pi cker. h
Power . h
Printing.h
Retrace. h
SANE. h

Serial.h
Slots. h

Soundl nput . h
SysEqu. h
Term nal Tool s. h
Val ues. h

Usually, you use the built-in MacHeader s++. You can, however,
change the default MacHeader s++ file or make your own

precompiled headers.

Customizing the MacHeaders++ file

You might find that in the kinds of programs you write, you
frequently refer to a header file that is not already in
MacHeader s++. Or, MacHeader s++ might include some files you
never use. You can customize the MacHeader s++ file to suit the
kinds of programs you write, in the following way:

Precompiled Headers

*

1. Find the file Mac #i ncl udes. cpp inthe
Mac #i ncl udes folder. Duplicate it and give it a new
name, such as My #i ncl udes. cpp. Open the duplicate
with the editor.

2. Search for the files you want to add or remove. The
#i ncl ude statements are enclosed in conditional
compilation directives. To add a file, change the #if 0
directive to #i f 1. To remove a file, change the #i f 1
directive to #i f 0. Some files can't be used together. For
more information, see below.

3. Choose Precompile from the Source menu. After
Symantec C++ precompiles the file, save it as
MacHeader s++. (Precompiled files don’t go into the
project.) The best place for MacHeader s++ is in the
Mac #i ncl udes folder, but you can save it anywhere in
the THINK Project Manager tree.

The auto-make facility marks the files in the current project for
recompilation if you change MacHeader s++. To let other projects
know that MacHeader s++ has changed, use the Make command in
the Source menu. Click the Use Disk button to mark all the files
affected, and then click the Make button to recompile them.

When you add and remove files from MacHeader s++, keep this
dependency in mind: You cannot #i ncl ude both LoMem h and
SysEqu. h.

Creating your own precompiled header
If you want to use your own precompiled header, follow these steps:

1. Create a file containing the desired series of #i ncl ude
statements and symbol definitions.

2. Verify that the current project’'s compiler settings are the
ones you want to use in building your precompiled
header.

3. Choose the Precompile command from the Source
menu. When Symantec C++ is through precompiling, it
asks you to name the file.

Compiler Guide 51

52

4 Using the Symantec C++ Compiler

Compiler Guide

You use a precompiled header the same way you use any other
header file. Use the #i ncl ude statement to load your precompiled
header into your source file. The #i ncl ude statement must be the
first noncomment line of your source file. You can use only one
precompiled header per source file. If you #i ncl ude
<MacHeader s++> in the project prefix, you can’t explicitly include
any other precompiled header. (A prefix isn’t used when
precompiling.)

If you don't #i ncl ude any precompiled headers in the project
prefix, you can use several different precompiled headers for
different parts of your program. You can still explicitly include
MacHeader s++ if you want to use it in certain files.

Note
You can use only one precompiled header per
source file.

You can use your custom-precompiled headers for your own files.
You can #i ncl ude them explicitly in your source files as long as
you don't #i ncl ude <MacHeader s++> in your prefix. Judicious
use of precompiled headers can significantly reduce compilation
time and debugger table size.

Symantec C++ Reports

Symantec C++ lets you look at your source code and finished
applications in three different ways. You can see the preprocessor
output of a source file, the assembly code a source file produces,
and a link map of a finished application.

Viewing the preprocessor output

If you think you have a bug in one of your macros, use the
Preprocess command in the Source menu. It runs the code in the
frontmost window through the Symantec C++ preprocessor and
displays the result in a new window. The preprocessor expands your
macros, includes the contents of your #i ncl ude files, and evaluates
your #i f or #i f def statements. You can save and print the
contents of this window as you would any other file.

Symantec C++ Reports

L 4
Note
The preprocessing directives that control
conditional compilation are included in the output.
This allows you to debug file-inclusion errors as
well as macros.
Note

Source in precompiled headers is not included
inline in the preprocessed output.

Disassembling your code

Looking at the assembly code that the compiler produces helps you
debug your code and assess its efficiency. The Disassemble
command in the Source menu disassembles the code in the
frontmost window and displays the result in a new window. You can
save and print the contents of this window as you would any other
file.

Note
You can’t disassemble a file that you can’t compile.

Generating a link map

Symantec C++ can write a link map for your application. The link
map lists your project’s segments, including one for global data. For
each function (or global variable) in a segment, the map lists its
name, its position in the segment, and the file it is defined in. To
generate a link map, turn on the Generate link map option in the
THINK Project Manager’s Preferences dialog box.

Symantec C++ creates the link map only when you use the Build
Applications command. The name of the map is the name of the
project with . map appended. For example, the link map for the
Bullseye.tt project is Bul | seye. 1@ map. The THINK Project
Manager places the link map in the project folder and erases any
other link map in the folder.

Compiler Guide 53

54

4

Using the Symantec C++ Compiler

Compiler Guide

This is an excerpt from the global data section of a link map:

Segnent " %d obal Dat a" si ze=$000190

wi dt hMenu -$000108(A5)fi |l e="bul | Menus. cp"
edi t Menu -$000104(A5)

fileMenu -$000100(A5)

appl eMenu - $0000FC(A5)

wi hdowBounds - $0000F8(A5) fi |l e="bul | Wndow. cp"
circleStart - $0000FO0(A5)

wi dt h - $0000E8(A5)

dr agRect - $0000DA(A5)

bul | seyeW ndow - $0000D2(A5)

qd - $0000CE(A5) fi | e="MacTr aps"
randSeed - $000082(A5)

screenBits - $00007E(A5)

arr ow - $000070(A5)

dkGr ay -$00002C(A5)

ItGay -$000024(A5)

gray - $00001C(A5)

bl ack -$000014(A5)

white - $00000C(A5)

t hePor t - $000004(A5)

Here is how to read it:

< The top line gives the segment’s name and size. This
segment is named %3 obal Dat a and is 0x00084E
bytes in size.

« Each of the other lines lists a variable and its address as a
negative offset from A5. The variable appl eMenu is at
0x00084E offset from A5.

= At the far right is the name of the file that defines the
variable. The variables appl eMenu, fi | eMenu,
edi t Menu, and wi dt hMenu are in the file
bul | Menus. cp. The variables wi ndowBounds and
circleStart arein bul | Wndow. cp.

Symantec C++ Reports

L 4
And this is an excerpt from a code segment:
Segrment " Seg2" si ze=$000524r srci d=2
Set UpMenus(voi d) $000004 file="bul | Menus. cp"

Adj ust Menus(voi d) $000092
Handl eMenu(| ong) $00019A

I ni t Maci ntosh(void) $00029Cfile="bull seye.cp"

Handl eMouseDown(Event Record *) $0002BE
Handl eEvent (voi d) $00039C
mai n $00045E JT=$000072(A5)

Set UpW ndow(voi d) $000472 file="bul | Wndow cp"

Dr awBul | seye(short) $0004AA

Here is how to read it:

= The top line gives the segment’s name, size, and resource
ID. The segment Seg?2 is 0x0004FC bytes in size and is
in code resource 2.

= Each of the other lines lists a function name and its offset
within the segment. Notice that when using C++, the
compiler adds the type of the arguments to the name for
each function. This is done throughout C++ so that you
can distinguish between overloaded functions with the
same name. These parameter types show up in the
debugger displays, MacsBug names, and other compiler
output. The function Set UpMenus(voi d) is at offset
0x000004 from the beginning of the " Seg2" code
segment.

= If a function has a jump table entry, the address of the
entry is listed as an offset from A5. The function mai n()
has a jump table entry at 0x000072 offset from A5.

= At the far right is the name of the file that defines the
function. The functions Set UpMenus() ,
Adj ust Menus(), and Handl eMenu() are in the file
bul | Menus. cp. The functions | ni t Maci nt osh(),
Handl eMouseDown(), Handl eEvent (), and mai n()
are in bul I W ndow. cp.

pascal keyword
The identifier pascal is reserved to define functions that follow
Pascal calling conventions.

Compiler Guide

55

4 Using the Symantec C++ Compiler

56 Compiler Guide

Symantec C++

THINK Inspector 4
S

Inspectors work in a manner fundamentally different from that of
debuggers. A debugger lets you examine the state of a program from
the point of view of variables that are explicitly in the source text of
a program. An inspector helps to uncover objects present in the
program’s address space wherever they occur, even if no variables
reference them explicitly.

This chapter describes the operation of the Symantec THINK
Inspector.

Contents

Quick Starth9

Features .h9

Menus. .60
Filemenu60
Editmenu60
Classesmenu60
Inspectmenu60
Font and size menus61

Inspector Window.62

Compiler Guide 57

. 5 Symantec C++ THINK Inspector

58 Compiler Guide

Quick Start

L 4
Quick Start

To use the THINK Inspector, the following must be true about your
program:

e It is written in Symantec C++.

= It uses Object Pascal objects or C++ pointer-based objects
with virtual destructors.

= It is compiled for debugging and with MacsBug symbols.

To use the inspector, choose Use Debugger and then Run from the
Project menu. After the Debugger has finished starting up, choose

Launch Inspector from the Inspect menu. The inspector starts up
and presents a hierarchical list of classes.

Features

The inspector provides the following features:

= You can view, hierarchically or alphabetically, your
program’s classes.

= You can find active objects in memory.

= You can list selected classes’ methods and currently
existing instances.

= You can direct the debugger’s source display to a
particular method by double-clicking the method name in
the lower pane; option-double-click brings the debugger
to the front.

= You can determine the line of code where an object was
allocated.

= You can display objects hierarchically to show the nesting
of object types.

= You can resize the three panes, and they will maintain a
proportional relationship regardless of the window size.

= You can specify the font and size of the text in the panes
differently for each pane.

Compiler Guide 59

5 Symantec C++ THINK Inspector

< You can open multiple inspectors simultaneously and
store the sizes of the windows from session to session.

Menus

This section describes each of the menus.

File menu
< New inspector — creates a new inspector window.

= Close inspector — closes the frontmost inspector window
(no saving).

= Page setup, print, quit — standard operations.

Edit menu
< Standard editing functions

Classes menu
« Hierarchical, alphabetical - classes are displayed
according to which of these is checked.

= Expand/collapse subclasses — active when in
hierarchical display, performs all at once expansion/
contraction of the display at the selected class.

= Expand all subclasses — exhaustively expands the
hierarchical display.

= Find next active class — searches in memory for the next
class in the list that has active instances.

« Find all active classes — selects classes that have active
instances.

Inspect menu
= Instances — evaluates the selected objects in the upper-
right pane and puts the results into the THINK
Debugger’s data display already expanded.

< Function — moves the THINK Debugger’s code window
to the beginning of the selected method in the bottom
pane.

60 Compiler Guide

Menus
2

= Both - evaluates selected objects and shows the selected
method.

= Update value - re-evaluates the selected and expanded
object in the upper-right pane.

« Show allocation - locates the line of code on which the
selected object was created.

Font and size menus
< Standard font and size operations.

Compiler Guide 61

62

5 Symantec C++ THINK Inspector

Inspector Window

The following figure shows a typical inspector window:

Inspector 1
LlebuggerChare ﬁ} < (CBraint? Ox
CHEarChore woidd __uptr = OxAEC20000
= CCol labarator yoid¥ jtsProviders = 0x00000000
‘T/CBPEGEPM E wvoidt jtsDependents = Ox00000000
CErain woid¥® itsSupervisor = Ox00C23AEC

= COirectorOwnear

=~ CAppl ication
CChes=sApp

= COirectar
CAboutChessBox
CChes=5plashSory
CCl i pboard

VCDiGngDiPECtDr‘

=

unsigned char isBrainsfove = 0
unsighed char isThinking = 0
un=sighed char abortiMowe = 0

void® theRealBoard = Ox00000000
voidt thelirtualBogrd = 0x00000000
short theBrainsColor = 0

short searchDepth = 1

un=sighed char soundOnBetterMoves =

u]

CBrain: : |Brain{CBurequcrat *+3
CBrain: :Dawdle

CBrain: :Think d2

CBrain: :ClearThoughtstwoid?
CBrain:
CBrain:
CBrain:
CBrain:
CBrain:
CBrain:
CBrain:

:CheckForMatedwaid?

:UpdateMenus

(CheckForStalemateduaid)
:CopyBoardiCChessBoard + 3
:0i sposeBoard{CChessBoard *3

:FindMowvella luedCChessBoard #*, short, short)
:FindBestlirtualResponselCChessBoard *, short, short, short, short s

o] 4]

<]

Figure 5-1 Inspector window

This inspector is in hierarchical display mode and has one class

selected: CBr ai n. There is a single instance of CBr ai n, which is
shown in the upper-right pane, fully expanded. The member
function CBr ai n: : Thi nk is selected in the lower pane.

Compiler Guide

Inspector Window

*

The size of the panes can be altered by clicking the mouse between
the panes. If you click the space between the upper panes, the
widths of the upper panes are adjusted. If the mouse is clicked
between the bottom and upper panes, the heights of all panes are
adjusted. Finally, if you click the mouse in the center point where all
panes meet, both dimensions are adjusted. Three different cursors
are used to represent these adjusting options, as shown below:

+

Figure 5-2 Horizontal adjuster

|

—

w
Figure 5-3 Vertical adjuster

<l

—_—

Figure 5-4 Both dimensions adjuster

Compiler Guide 63

. 5 Symantec C++ THINK Inspector

64 Compiler Guide

Language Reference 4
6

I his chapter describes in detail aspects of the Symantec C++
implementation that are not part of the C++ language definition.

Contents
How Symantec C++ ImplementsC++67
Identifier length and capitalization.67
How Symantec C++ Looks for Header Files67
Once-only headers67
Shielded folders68
Project-specific folders68
Usingaliases68
Using the trees . . .69
Don't put project folders in the THINK PrOJect Manager tree .69
Avoid duplicate file names in trees . . .69
Using Register Variables.69
Alignment70
The _new_handler.70
Internal limits71
Integer Representation72
Shortintegers.72
longintegers72
Floating-Point Representation72
Removing Symantec C++ Extensions73
Strict ANSI conformance73
Relaxed ANSI conformance75
Predefined Macros.76
SC__, THINK CPLUS76
macmtosh MC68000, mc68000, mesk76
mc68881 Y ()
_cplusplus 0.76
LINE .. o000 T6
FILE Y 4 o}
_DATE__16
CTIME_6

Compiler Guide 65

66

6 Language Reference

Compiler Guide

__FPCE_, _FPCE_IEEE__
~_FAR CODE__ .
__FAR DATA _

A4 GLOBALS__

#pragma Directives .
pragma SC align
pragma SC template .
pragma SC template_access
pragma SC once .
pragma SC parameter
#pragma SC message .
#pragma SC noreturn(functlon name)
#pragma SC trace on . .o
#pragma SC trace off .

Using Pascal Object Classes .

Pascal object extensions to Symantec Ct+

Using the Macintosh Handle Pointer Type .
The __machdl pointer
Dereferencing a handle .
Storage allocation .
Portability . .
Placing C++ classes in handle memory
Debugging programs that use handles .

The Inherited Keyword
Inline Function Definitions

76
76
76
76

77
77
77
78
79
79
80
80
81
81

81
82

84
84
85
86
86
86
88

89
89

How Symantec C++ Implements C++ .

How Symantec C++ Implements C++

Symantec C++ supports the enhanced language features of version
3.0 of the C++ language including templates, nested classes, and
nested types. Exception handling is not yet implemented.

Identifier length and capitalization

Symantec C++ allows up to 256 significant characters in an identifier.
If you exceed this maximum, the compiler flags the identifier as a
syntax error. Underscores, letters, and digits are allowed, and case is
significant.

How Symantec C++ Looks for Header Files

These are the rules Symantec C++ uses to find header files:

#include statement Symantec C++ looks here
<fil enane. h> Symantec C++ looks only in the
THINK Project Manager tree.

"fil enanme. h" Symantec C++ looks first in the
referencing folder, then in the
project tree, and finally in the
THINK Project Manager tree.

The referencing folder is the folder that contains the file that has the
#i ncl ude preprocessor directive. For example, if a source file
references a header file MyUt i | s. h, and that file in turn has the
line #i ncl ude "MWyUtil Types. h", Symantec C++ looks for
MyUti | Types. h first in the folder that contains MyUti | s. h.

Once-only headers

You can create a header file that you want included in several places
but that should define its symbols only once in a project. You can
use the #pr agma once directive to do this.

If you have the directive:

#pragma SC once

in your header file, Symantec C++ includes that file only once. If
another file tries to include that header file, Symantec C++ knows
that the symbols in that file have already been defined, so it doesn’t
process the file again.

Compiler Guide 67

68

6

Language Reference

Compiler Guide

Note
Placing the SCin the directive forces Symantec C++
to produce an error if the directive is not recognized
and is not required.

Shielded folders

To shield a folder from either search tree, enclose its name in
parentheses. For example, you might have a folder in the project
folder named (Backups) . Symantec C++ ignores all files and
subfolders in shielded folders. You can use shielded folders to store
old versions of source or header files or to keep Symantec C++ from
wasting time looking in folders that contain other kinds of
documents such as development notes.

Project-specific folders

There is one exception to the shielding rule. If the folder your
project is in contains a folder that has exactly the same name as your
project surrounded by parentheses, Symantec C++ will search that
folder.

You can use this feature if you're working on two projects that share
files. For instance, suppose you're working on two projects,
INITProject and cdevProject, that share some source files and are in
the same folder. You create two folders, (1 NI TProj ect) and
(cdevProj ect), that both contain versions of the header file
confi g. h tailored to control conditional compilation of the
common source files.

Using aliases

Symantec C++ lets you work with the alias of a project file. The
project tree begins where the original project is. However, Symantec
C++ does not support aliases in these cases:

Putting aliases in a project=

Including aliases in an #i ncl ude statement

Using an alias as a project’s resource (. r src) file
Inserting an alias of a folder in your THINK Project
Manager tree or project tree, except in a folder called
Al i ases in the THINK Project Manager tree or project
tree

Using Register Variables .

Using the trees

The way Symantec C++ keeps track of your files lets you organize
your files the way you like without having to specify full path
names. There are a few points you should remember about using the
Symantec C++ and project trees.

Don’t put project folders in the THINK Project Manager tree

This is the most common mistake. It seems natural to put all your
Symantec C++ files in one folder, then toss your project folders in
there as well. If you set up your disk like this, Symantec C++
searches all your other project trees every time it searches the THINK
Project Manager tree. Setting up your project folders this way not
only increases search time, it also increases the likelihood of
duplicate names within trees.

Avoid duplicate file names in trees

Just as you can't have two files with the same name in the same
folder, you shouldn’t have duplicate file names in different folders
within the project or THINK Project Manager tree. If you do,
Symantec C++ won't know which file to use. Duplicate file names
won't lead to any explicit errors, but you may end up using the
wrong file.

It's OK to have the same file name in both the project and THINK
Project Manager trees. Symantec C++ resolves the conflict by search
order.

Using Register Variables

The following table shows how Symantec C++ supports registers:

Register Defined to be

DO, D1, D2, A0, and Scratch registers, which are not preserved
Al by functions

A5 Global variable and jump table pointer
A6 Local frame pointer

A7 Stack pointer

Table 6-1 Register assignments

Compiler Guide 69

70

6

Language Reference

Compiler Guide

Alignment

In general, variables are aligned on 16-bit word boundaries.

By default, structure members align on word boundaries. The
exceptions to this rule are:

= Structure or class members that are character arrays that
align on byte boundaries

= Where two or more single-character variables follow each
other, the first character is aligned on a word boundary,
whereas subsequent ones are byte-aligned

This structure alignment is useful for defining a structure that maps

onto a hardware device or a predefined data element. This alignment
control is only valid within structures; everything else is still aligned
on word boundaries.

Warning)))
You must compile each source file referencing a

structure with the same type of alignment. If two of
your files are compiled with different alignments
but reference the same structure, the resulting error
messages flag a condition that is very hard to track
down when debugging.

The new_handler

The _new_handl er variable lets you call one of your functions if a
call to new fails due to lack of memory. The program can then use
the function to free up more memory. If you use _new_handl er,
you don’t always need to check the return value of new for failure.

_new_handl er is a pointer to a function. It is declared in the
CPlusLib library, and is set to NULL by default. Its declaration is:

voi d (*_new_handl er) (voi d);

When new fails, it tests if _new_handl er points to a function or if
_new_handl er is NULL. If _new_handl er contains a value, the
function it points to is called. If _new_handl er is NULL, new
returns a NULL pointer. You must set _new_handl er explicitly.
You can set _new_handl er directly, as shown below.

The _new_handler

*

voi d newfai |l ed_handl er (voi d);
/'l prototype of handl er
_new _handl er = newfail ed _handl er;
/lset _new handl er

or through the set _new_handl er library function:

set _new _handl er (newf ai | ed_handl er);

Note
You must #i ncl ude <new. h> to make these
declarations.

Internal limits

The following table specifies how big you can make certain aspects
of your code.

Description Limit
Characters in a line No limit
Characters in an identifier 256
Characters in an external identifier 256
Characters in a string No limit
Number of cases in a switch No limit
Characters in an argument to a macro No limit
Number of arguments to a macro No limit
Number of arguments to a function No limit
Length of macro replacement text No limit
Number of subscripts in an array No limit
Complexity of a declaration No limit
Number of #i ncl udes that can be nested No limit
Number of #i ncl ude paths No limit
Number of #i f s that can be nested No limit
Number of command line arguments No limit

Table 6-2 Internal limits of Symantec C++ implementation

Note
“No limit” means that the compiler establishes no
limit. The operating system or the amount of
memory available to the compiler may impose a
practical limit.

Compiler Guide 71

6

Language Reference

The Apple Numerics
Manual, Second Edition

(Addison-Wesley) by Apple

Computer documents
those formats in detail.

72

Compiler Guide

Integer Representation

Integers are represented as two’s complement binary numbers. The
size of an i nt is 4 bytes. In C++ an i nt is signed by default.

Short integers
Ashort int is2bytes. Thei nt in the declaration short int is
optional and is usually omitted. In C++ a short is signed by default.

Long integers
Along int is4 bytes. The i nt in the declaration | ong i nt is
optional and is usually omitted. In C++ a | ong is signed by default.

Floating-Point Representation

You use floating-point variables to store numbers that may have a
fractional part. A floating-point number has two parts, a mantissa
and an exponent. The size of the mantissa determines the number of
digits of accuracy of the values you can store; the size of the
exponent determines their range. Both of these are system-
dependent. The size limits for the floating-point types are declared in
the header file <f | oat . h> and are documented in the online
Standard Libraries Reference.

Symantec C++ uses four different representations for floating-point
values:

= 4-byte IEEE single precision

= 8-byte IEEE double precision

= 10-byte SANE extended precision

= 12-byte MC68881 extended precision

A f | oat uses the 4-byte IEEE representation. The representations
for doubl e and | ong doubl e depend on the option settings, as
shown in the following table:

If 8-byte doubles is... and Generate Then doubles
68881 is... format is...

On On or Off 8-byte IEEE

Off Off SANE extended

Off On MC68881 extended

Table 6-3 Option settings and resulting doubles format

Removing Symantec C++ Extensions .

If you're writing a library for general use, or if your project contains
any libraries or projects compiled with the SANE extended format,
use the SANE extended format. These Symantec C++ libraries use the
SANE extended format:

- ANSI++
= profile++
e unix++

94 80 63 0

| Jexponent | aways zero | mantissa MC68881 extended

12-byte doubles
default and 881 code generation
79 63 0

‘ - 10-byte doubles
/ exponent mantissa ‘ (SANE)

default
62 51 0
- 8-byte doubles
exponent ‘ mantissa ‘ (8-byte IEEE
. .) 3 double precision)
if chosen with compiler option
sign bit 30 22 0 4pytefloat
exponent ‘ mantissa ‘ (4-byte IEEE

single precision)

Figure 6-1 Floating-point representation

Removing Symantec C++ Extensions

The Symantec C++ compiler contains language extensions that let
you program the Macintosh more easily. The compiler also has
extensions that let you compile code written for less strict language
implementations. These extensions do not conform to ANSI
restrictions on the C++ language. This section describes how you can
remove these extensions to make your code more portable.

Strict ANSI conformance

If you check the Strict ANSI conformance option on the Language
Settings page, the compiler adds the following ANSI-compatible
restrictions to the Symantec C++ language:

= These keywords are not recognized:

asm _cdecl
cdecl __fortran
__handl e _inf

Compiler Guide 73

74

6

Language Reference

Compiler Guide

i nherited __nmachdl
__hans __nan
pascal _pascal
__pasobj

Predefined macros that do not start with a single or
double underscore are not defined.

You cannot use arithmetic on pointers to functions.

Trigraphs are supported. Trigraphs are sequences of three
letters that are treated as one. The sequence is ?? and an
additional character. Trigraphs let computers without such
characters as braces ({ ,}), tildes (~), and carets (") use
C++. However, many Macintosh applications use
character literals that resemble trigraphs. For example, the
file type ' ????' is interpreted as' ?”. To write the file
type ' ???7?' ,use’' ???\?".

Text on the end of a preprocessor line is not ignored and
is an error. For example, you would need to change
#endi f COMVENT to #endi f /* COMVENT*/ .

Empty member lists in enumdeclarations and member
lists with a trailing comma are syntax errors.

You cannot use binary numbers such as 0b10110.

At least one hexadecimal number must follow a \ x
escape sequence.

The program must end with a newline. Each translation
unit must end with a newline.

Enums may be 1 byte, 2 bytes, or 4 bytes long. If the
enums are always ints option of the Language Settings
page is on, enums are always 4 bytes long.

You cannot obtain the size of a function with si zeof .
You cannot use the operators ! <, <>, and ! >.
You cannot use hexadecimal floating-point constants.

You cannot use #i dent .

Removing Symantec C++ Extensions

L 4
= You cannot cast an | val ue to a different type.
= Anonymous unions must be static.

= A noninteger expression is not converted to an integer
expression where a constant expression is required.

= Member functions cannot be static. For example, the
following declaration is legal C++:;

cl ass Foo {

publi c:
void static int f(void) {return 3;}
int b(void);

b
However, the following definition is a compile-time error:
static int Foo::b(void)

return 1017;
}

= A reference cannot be generated to a temporary.

= The type voi d * is not compatible with other pointer
types.

< You cannot convert to and from a voi d.

= You cannot type something voi d where a value is
required.

< You cannot put a si zeof or a cast in a preprocessor
expression.

= You cannot use the pre-increment or post-increment
operator function as an overloaded function for post
increment or post decrement.

Relaxed ANSI conformance

The Relaxed ANSI conformance option on the Language Settings
page includes all items in the above list except numbers 1 and 12.
These two items are of specific relevance to Macintosh
programming. Use this option to ensure strict type checking while
retaining the extensions necessary for native Macintosh
programming.

Compiler Guide 75

76

6

Language Reference

Compiler Guide

Predefined Macros

Symantec C++ predefines these macros:

(In the context below, the name One means the preprocessor
expansion 1.)

__SC__, THINK_CPLUS

The hex version number of Symantec C++. The current version is
0x700. THI NK_CPLUS is defined only for the integrated Symantec
C++ translator, to distinguish it from the Symantec C++ for MPW
translator. All Symantec C/C++ compilers define _ SC .

macintosh, MC68000, mc68000, m68k
One.

mc68881
One, if the option Generate 68881 instructions is on.

__cplusplus
One.

__LINE__
The current line number in the source file.

__FILE__
Set to a string containing the name of the current source file.

__DATE__
Set to a string containing the current date.

__TIME__
Set to a string containing the current time.

__FPCE__, FPCE_IEEE__
One, to indicate support for NCEG and IEEE conformance.

__FAR_CODE__
One, if the project type is set to “Far CODE.”

_ FAR_DATA__
One, if the project type is set to “Far DATA.”

__A4 GLOBALS__
One, if the project type is a hon-application.

#pragma Directives .

Note that _ STDC__ is never defined (it indicates ANSI C
conformance) and that appl ec is never defined (Symantec C++ for
MPW defines it to be one).

#pragma Directives

Symantec C++ implements the following #pr agnma directives:

align once

nessage par anet er

nor et urn tenpl ate

trace on t enpl at e_access
trace off

The Symantec C++ compiler ignores the segment pragma. The
pragmas are case-sensitive.

Pragma directives are in the form:
#pragma [SC] pragma-directive [pragma_args]

If you specify SC, the pragma directive must be one of the pragmas
recognized by the Symantec C++ compilers. If you do not specify SC
and the pragma directive is not one of the nine listed above, then the
Symantec C++ compiler assumes that the pragma is for another
compiler and produces a warning.

pragma SC align
This pragma lets you set byte alignments within structures. It takes
the form:

#pragma SC align [1]2]4]

The optional number indicates which byte boundary to align on. The
default is 2, which maximizes performance on systems with a 16-bit
bus. If you use this pragma with no argument, the compiler uses the
default setting.

pragma SC template
This pragma produces one or more instantiations of a template in a
source file. It uses the following syntax:

#pragma SC tenpl ate cl ass<argl, arg2, ...>
#pragma SC tenpl ate function(argl, arg2, ...)

Compiler Guide 77

78

6

Language Reference

Compiler Guide

You can use these pragmas anywhere in your source file to expand
the specified templates at the end of the file. It does not matter
where the pragma occurs in relation to the template declaration. One
typical use is after #i ncl ude-ing the interface or source file for the
template.

For example, assume file vect or . cp contains the following:

tenpl at e<cl ass T> cl ass vector {

™ v,
int size;
public:
vector(int);
T& operator[] (int);

!/ other
H
#pragma tenpl ate vector<int>
/Il will instantiate a vector class for
ints.
#pragma tenpl at e vect or <doubl e>
/Il will instantiate a vector class for
/'l doubl es.
Note

This #pr agnma will expand only the specified
template and not any templates that depend on it.

pragma SC template_access

The template_access pragma option controls the access of template
expansions that occur during compilation. The three types of
access—publ i c, ext ern, and st at i c—allow flexibility in
template instantiation. The syntax is:

#pragma SC tenpl ate_access public
#pragma SC tenpl ate_access extern
#pragma SC tenpl ate_access private

Public access means that templates are expanded as usual and that
their names are globally accessible. If one template is expanded with
public access in two different files, you get an error in Symantec
C++. Public access is most useful when used with external access.

#pragma Directives

*

External access means that templates specified are not expanded
during compilation. Instead, the compiler generates an external
reference to any name it would normally expand. This is useful
when several source files use a particular template but you need
only one copy of it. You can designate one source file as your
“template expansion” file, use public access for it, and then use
extern access for all other source files.

Static access means that templates are expanded as usual, but their
names are local to the current source file. This is useful for projects
where you don't want to leave a special file aside for expanding
templates. It is the default setting for Symantec C++.

pragma SC once

When this directive appears in a header file, Symantec C++ includes
the file only once even if #i ncl ude directives include it multiple
times.

#pragma SC once

Note
Any file included in a precompiled header will only
be included once, whether or not this #pr agma is
specified. Capitalization is significant only in
inclusion of header files. For example,

#i ncl ude “one. h”
#i ncl ude “ONE. h”

includes one. h two times even though it contains a
#pragnma sc once.

pragma SC parameter

This directive applies to a subsequent inline function definition and
allows parameters to be passed in registers instead of on the stack. It
specifies which register holds the return value and which registers
parameters are passed in. The #pragnma par anet er directive
must appear before the inline declaration.

#pragma SC paranet er return-regq, function-name
(param-reglistyp)

Compiler Guide 79

80

6

Language Reference

Compiler Guide

Function-name is the name of a function that is subsequently
defined inline. If the definition is not defined inline, never defined,
or already defined, the directive is ignored.

The optional return-reg can be A0, A1, DO, or __ D1.

The optional param-reglist is a parameter list made up of __A0,
__Al, DO, Di,or__D2.

The inline definition must have a prototype. The return type must be
an integer type or a pointer type. The return type must be 4 bytes
long if the return is in an address register. The argument types may
not exceed 4 bytes, except when the inline definition is declared
pascal , in which case the address of the parameter is used. An
address register can hold a 2-byte or 4-byte value for arguments, but
in no case can an address register hold a 1-byte value.

Examples:

#pragma parameter _ A0 NewHandl eC ear (___DO)
pascal Handl e NewHandl eCl ear (Si ze

byt eCount)

= 0xA322;

#pragma paranmeter Delay(__A0, __Al)
pascal void Del ay(l ong nunTi cks, | ong
*final Ti cks)

= {0xA03B, 0x2280} ;

#pragma SC message
This pragma causes the compiler to print the specified text while
compiling. The syntax is:

#pragma SC nessage "text”

#pragma SC noreturn(function-name)

This pragma informs the compiler that the function does not return,
which enables the compiler to generate improved code. The syntax
is:

#pragma SC noreturn(identifier)

This pragma is useful for marking functions such as exi t (),
_exit(), abort(), longjm(), and especially assert (),
which never return to the caller.

Using Pascal Object Classes .

#pragma SC trace on

Inserting #pr agma SC trace on in the Prefix generates calls to
code profiler routines that collect timing statistics about your
function. The syntax is:

#pragma SC trace [on]

Using #pragma SC trace on has the same effect as selecting the
Generate profiler calls option in the Symantec C++ options dialog
box. (See Chapter 7, “Compiler Options Reference.”)

Symantec C++ can profile only functions that have stack frames. To
create stack frames for most functions, turn on the Always generate
stack frames option in the Symantec C++ options dialog box and,
for inlines, the Use function calls for inlines option.

#pragma SC trace off
Inserting #pr agma SC trace of f in the Prefix turns off calls to
code profiler routines. The syntax is:

#pragma SC trace [of f]

Using #pragma SC trace of f has the same effect as deselecting
the Generate profiler calls option in the Symantec C++ options
dialog box.

Using Pascal Object Classes

THINK C, MPW Pascal, THINK Pascal, and Symantec C++ have some
object-oriented extensions that can define Pascal records similar to
C++ classes. The keyword __pasobj defines a C++ class that is
compatible with a Pascal object. If __pasobj is placed after the
keyword struct or cl ass, the class is in relocatable memory in
the form of a Pascal object. The objects are accessed via Macintosh
handles.

Pascal hj ect is a single inheritance model supporting inherited
menber () and new_by_name() . Data for class objects is also
allocated using NewHandl| e. To create an object hierarchy based on
Pascal hj ect, use either the name Pascal (bj ect as the base
derivation or use the special name __pasobj . For example:

cl ass TOoject : Pascal Object {
...

}

Compiler Guide 81

82

6 Language Reference

Compiler Guide

or

class __pasobj TObject {
/...
}

Note
To use Pascal Obj ect, you need to #i ncl ude
<Types. h>.

The name __pasobj must be used when forward-declaring a class
implemented as Pascal Ohj ect:

cl ass __pasobj TShape;
cl ass __pasobj TOval;

This is necessary because the mangled name for a pointer to a
Pascal nj ect differs from a pointer to a non-Pascal Cbj ect .

Pascal object extensions to Symantec C++

The following extensions to Symantec C++ exist only when you are
using Pascal Qbj ect s. Be sure that you #i ncl ude <oops. h>in
the source file that uses these functions.

voi d *new by nane(char *aNane);

Creates a new object. aName is a C string that names the class. If
there is no class with the given name, new_by_name returns NULL.
The named class must be defined in your program. If your program
defines a class but never creates an instance of it, the smart linker
may remove the class definition. In this case, you'll be unable to use
new_by_ name to create an instance of that class. One way to get
around this restriction is to create a dummy object, then immediately
delete it. Another way is to use the nember () function to refer to
the class.

char *class_nane(void *anObj ect);

Returns a string that is the name of the class to which the anCbj ect
belongs. This function does not check anQhj ect to make sure that
it is a valid object reference.

char nenber (void *anCbject, void *ad ass);

Returns 1 if anQbj ect is an instance of aCl ass or an instance of
one of its ancestors; zero otherwise.

Using Pascal Object Classes .

voi d set _class_index pascal voi d(
*met htabl e(), void *obj);

Sets the class index for a Pascal Obj ect . You need to use this
function only if you make a custom allocator for your

Pascal Ooj ect class. It sets the class ID so that virtual functions
are called correctly.

Pascal handle-based classes have the following restrictions, in
addition to the restrictions noted above for all handle-based classes:

< You cannot declare nonvirtual member functions in Pascal
code or call them from Pascal code. You can declare
member functions as either Pascal or non-Pascal, but you
can call non-Pascal member functions only from C++
code.

= You can use constructors and destructors, but they can't
take any arguments. If a class has virtual member
functions, then the destructor should also be virtual. Since
you can write a conventional cleanup routine to call from
Pascal, you can call it in the destructor. Don't call the
Dispose method of your object from within your
destructor, as it will try to delete the object a second time.

= Overloading, type conversion, and operator functions are
not allowed for virtual members of Pascal classes or for
any function with the pascal attribute. These features
require type signatures, which the Pascal haming
conventions do not support.

= Overloading, type conversions and operator functions are
allowed for member functions of Pascal classes, but they
cannot be declared or accessed from Object Pascal.

= You cannot cast a pointer to a Pascal handle-based class
to a pointer to a non-Pascal handle-based class, and vice
versa.

= You can override newand del et e for Pascal classes, but
the overridden functions have different arguments from
those for other classes. Pointers are of type voi d**, not

Compiler Guide 83

84

6

Language Reference

Compiler Guide

voi d*, and new has an additional (leading) parameter of
type pascal void (*) ().

= You cannot declare global variables, local variables,
arrays, members, or parameters of handle-based classes
(rather than pointers to them).

Using the Macintosh Handle Pointer Type

The Macintosh handle pointer type implements a compiler-
supported scheme for using Macintosh relocatable memory in a
portable manner. It is a compatible extension to ANSI C and is
compatible with C and C++.

A Macintosh handle is a type used to refer to the data rather than a
normal pointer to pointer. To refer to the data, the handle must be
accessed, in other words, converted into a pointer by a dereference.
Traditionally, the user was required to dereference, which produced
code not portable to other environments. The Symantec C++
implementation removes the requirement to dereference the handle
from the developer and places the responsibility with the compiler.

The __machdl pointer
This additional pointer type is attached to a **.’ Declarations look
like:

long _ machdl *h;
/[* his a handle to a |long */

A more typical Macintosh declaration would be:

| ong **h;
/[* his a handle to a long */

Macintosh handles modify the declaration from <pointer to> to
<mac handle pointer to>. __ _machdl is right-associative. A
Macintosh handle pointer is a 32-bit type and follows the same rules
as pointers.

Using the Macintosh Handle Pointer Type .

Dereferencing a handle

Conversions from handles to pointers occur whenever a handle
pointer is dereferenced, or when a handle is cast to a pointer. The
conversion is done by the compiler by generating a pointer
dereference in the code. For example, the following operations all
convert handles to pointers.

int __machdl *h;

struct A __machdl *h2;

int *f;

int i;

extern void func(int *pi);

f = h;

*h = i;

h[3] = *f;

i =*((int *)h + 6);
h2->b = i;

func(h);

The same code done explicitly by the user would be:

int **h;

struct A **h2;

int *f;

int i;

extern void func(int *pi);

—h~ =~ % —h
b

c %
SIS0

The conversion is done for the handle every time the compiler
decides that the previous conversion is invalid.

The optimizer is aware of handles as a special type and determines
when a new handle dereference is necessary or when a previous
one can be used instead. Consider:

int a,b; } _ machdl *h;
h- >a

struct
h->b =

{
1
2;

Compiler Guide 85

86

6

Language Reference

Compiler Guide

To convert h to a pointer once, the optimizer changes the code to:

struct { int a,b; } __machdl *h, far *p;
p=h
p->a
p->b

2;

The result of a previous conversion cannot be used if:
= The value of the handle might have changed.
= A handle dereference was carried out on another handle.

« A function was called (because that function may convert
other handles, resulting in the previous case).

Handle dereferencing is slower than normal pointer access. To speed
up operations, you can convert a handle to a pointer yourself; if you
know that a called function does not move memory, your
conversion is still valid after the function call is made. (See

Inside Macintosh for a description of when the operating system will
move memory.)

Storage allocation
Storage allocation is done by using the NewHandl e toolbox routine.

Portability

Using Macintosh handles allows the _ machdl keyword to be
defined and the storage allocation routines to be redefined to
standard memory allocation routines. For example:

#defi ne machdl

#defi ne NewHandl e nal | oc

The code will still port to a flat memory environment. The code
explicitly dereferencing handles cannot be ported to a flat space.

Placing C++ classes in handle memory

The __ machdl keyword may also be used to indicate a class
storage type. If __machdl follows the keyword struct or cl ass,
the class is in relocatable memory. All derivations of the class are
allocated in relocatable block memory, and all class pointers are
implicitly Macintosh handle pointers.

Using the Macintosh Handle Pointer Type

For example:

class __machdl Rel ocatabl eQbj ect {
publi c:

int x;

/'l other fields

}

Rel ocat abl e(bj ect *obj ect;

/[* this is an inplicit mac handl e */

The default new and del et e operators are implemented via the
Macintosh Toolbox Memory Manager handle routines. As with
explicitly declared Macintosh handle pointers, the compiler
generates the required double dereference.

For example, to access field x:

obj ect - >x

Handle-based classes have the following restrictions:

You cannot declare global variables, local variables,
arrays, members, or parameters of handle-based classes
(rather than pointers to them).

You cannot use multiple inheritance with handle-based
classes.

You can create handle-based objects only with the new
operator. The only use of a dereferenced handle-based
class pointer (for example, * x) is to refer to a field in the
class (for example, *x. y or x- >y).

You cannot cast pointers to handle-based classes to any
other type except to a pointer to another handle-based
class. You cannot cast pointers to anything else to a
pointer to a handle-based class.

You cannot perform address arithmetic on a pointer to a
handle-based class, except the implicit arithmetic used in
a member reference.

Avoid taking the address of a field belonging to an
indirect class (for example &x- >y). It is legal, but unsafe,
because the object may move. This restriction includes

Compiler Guide

*

87

88

6

Language Reference

the implicit use of pointers by references, such as i nt &
p = X->y.

= You cannot allocate an array of handle-based objects; for
example, new MyQbj ect s[10] .

Debugging programs that use handles

Debugging C++ applications that use a lot of dynamically allocated
memory is notoriously difficult. Experienced C++ programmers have
learned to live with this.

Known danger zones include:

< Function calls that could dereference handles or move
memory.

= Converting code from using mal | oc to
handl e_nmal | oc. When doing so, watch out for:

p (char *) malloc(n);

to

h

(char *) handl e_mall oc(n);

instead of the correct:

h=(char __handl e *) handl e_mall oc(n);

The castto (char *) dereferenced the handle and stored a pointer
into h instead of the required handle.

To deal with these problems:

= While writing and debugging the program, disable
handles with NO_HANDLE. If handles are then enabled
and the program fails, you can confine your search to the
handle pointers.

= If possible, encapsulate data structures that use handles
into C++ classes. This confines the code that dereferences
the handles to a few places and isolates the problems
within a class definition.

= Program defensively. Assume that all function calls
invalidate previous handle dereferences.

Compiler Guide

The Inherited Keyword

For a detailed description of
the #pragma parameter
directive, see “#pragma
Directives” earlier in this
chapter.

L 4
The Inherited Keyword

Use the i nheri t ed keyword to access a base-class version of a
member function without explicitly naming the base class. For
example:

i nheri t ed: : functionname

refers to the instance of functionname that the compiler would have
found if functionname had not been declared in the current class.

The i nheri t ed keyword is not a portable language extension. It is
supported in both Symantec C++ and THINK C with object
extensions.

Inline Function Definitions

You can define inline functions using this form:

returnType functionname (arguments) =
{ instrl, instr2, ...};

Symantec C++ replaces a call to the function functionname with the
machine instructions instrl, instr2, ... instead of generating a
function call. For example, the function Pr Qpen() is defined as
follows:

pascal void PrQpen(void)
= {0x2F3C, 0xC800, 0x0000, OXA8FD} ;

When you call Pr Open() , Symantec C++ generates these
instructions:

nove.| #$C8000000, - (AT)
dc. w $ASFD

You can use the #pr agnma par anet er directive to assign registers
to parameters:

#pragma paranmeter _ A0 NewHandl eC ear (__DO)
pascal Handl e NewHandl eC ear (Si ze

byt eCount)

= 0xA322;

Most of the Macintosh Toolbox routines are defined in the header
files as inline functions.

Compiler Guide 89

6 Language Reference

90 Compiler Guide

Compiler Options

Reference
/

I his chapter describes the Symantec C++ Options menu commands.
Within each menu, commands are described in the order in which
they appear.

Contents

The OptionsMenu93
Language settingsY%
Compiler settings9
Code optimization99
Debugging 104
Warning messages 106
Prefix 110

Compiler Guide 91

7 Compiler Options Reference

92 Compiler Guide

The Options Menu

L 4
The Options Menu

Use the Options menu to choose Symantec C++ compiler options.
There are six types of options, as shown in Figure 7-1. Each is
described on one of six pages of a single dialog box. To go to a
certain page, select the appropriate name by clicking, scrolling with
the arrow keys, or using the arrow buttons to the left of the pop-up
menu. (To reach the Prefix page, you have to press the Command
key along with an arrow key.)

v+ Language Settings
Compiler Settings
Code Optimization

Warning Messages
Prefix

Figure 7-1 The Options menu
The six types of compiler options are as follows:

= Language Settings lets you choose extensions to the C++
language.

=« Compiler Settings lets you control how Symantec C++
generates code.

« Code Optimization lets you control how Symantec C++
optimizes your code.

= Debugging lets you specify how the Symantec C++
debugger works.

= Warning Messages lets you control which warning
messages (if any) Symantec C++ generates.

= Prefix lets you write code that Symantec C++ includes in
all your files.

You can set options that affect only the current project, or set
defaults that Symantec C++ uses whenever you create a new project.
Use the Copy button at the top of the page to copy the Symantec
C++ defaults to the current project, or if you want the options you've
set for a particular project to be the Symantec C++ options. Note that

Compiler Guide 93

7 Compiler Options Reference

even though only one page of the options shows up on the screen at
a time, the Copy button copies the settings for all of the options at
once.

When you click the Factory Settings button at the bottom of the
page, Symantec C++ sets the options on all pages back to their
original settings. These original settings are noted in this chapter.

When you click OK, the program saves the changes for all pages of
the dialog box.

Language settings
On the Languages Settings page, you can choose whether the
Symantec C++ compiler uses extensions to the C++ language.

®) This Project) New Projects

| Language Settings |

E AMNE] Conformance
: ® Relaked ANS] conformance
{3 Strict ANSI conformance

] Read each header file once
[J Treat chars as unsigned

[Jenums are always ints

Thiz iz the Symantec C++ Options dialog. Click on any button to find out more about that option. Use the
p-up menu to go to & specific page, or use the arrow button to move to the next or previous pages.

[Factory Settings | [ANSI Settings | [cancel | | ok ||

Figure 7-2 The Language Settings page

Use the options on this page to decide how closely Symantec C++
conforms to the ANSI draft description of the C++ language. This is
the only page that contains the ANSI Settings button at the bottom of
the page. When you click that button, the options on this page are
set to be strictly ANSI-conformant.

94 Compiler Guide

The Options Menu .

The ANSI conformance
options are described in
detail in the sections

“Strict ANSI conformance”
and “Relaxed ANSI
conformance” in Chapter 6.

ANSI conformance
With this option originally on, you can choose between two levels of
ANSI conformance in the Symantec C++ compiler:

Relaxed ANSI This option is the same as strict

conformance ANSI-conformant, but it allows
you to use language extensions
that are convenient for Macintosh
programming. The original

setting is on.
Strict ANSI This option provides the strictest
conformance conformance to the ANSI draft
specification. The original setting
is off.

enums are always ints

When this option is on, enumeration constants are the same size as
an i nt. When it is off, enumeration constants can be the same size
asachar, short int, int,orlong int.Ifyourewriting ANSI-
conformant code, turn this option on. Otherwise, leave it in its
original setting, off.

If this option is off, Symantec C++ makes enumeration constants as

small as possible. And, if necessary, it makes a constant as large as a
I ong i nt. For example, these constants will only be as large as a

char:

enum { red=1, yellow, green };
And these constants will be as large asal ong i nt:

enum {
m | 1ion=1000000, billion=1000000000
b

If this option is on, you cannot use constants as large as a | ong
int.

Read each header file once

If this option is on, Symantec C++ treats header files that contain
#if ... #endif around the entire contents of the file as if the
file contained a #pr agma SC once directive. Its original setting is
on.

Compiler Guide 95

96

7 Compiler Options Reference

This option doesn't affect the meaning of the #pr agma once
directive.

Treat chars as unsigned

If this option is on, Symantec C++ treats objects declared as char
as if they were declared unsi gned char. The types char and
unsi gned char are not equivalent types, even with this option
on. The original setting is off.

Compiler settings
The Compiler Settings page lets you control how Symantec C++
compiles your code.

@ This Project) New Projects

@| Compiler Settings |

[]Generate 68020 instructions i RAlign to 1 byte boundary
|:| Generate E22271 instructions e

PO gse BHE for ransdendenialg

- Struct Field Alignrent

. @ Align to 2 byte boundary
. O Align to 4 byte boundary

.|:| g byte doubles . (] Place string literals in code

Thiz iz the Syrantec C++ Options dialog. Click on any button to find out rore about that option. Use the
i pop-up menu to go to 3 specific page, or use the arrow button to move to the next or previous pages.

[FacturgSeltings] [Cancel] [[oK]]

Compiler Guide

Figure 7-3 The Compiler Settings page

Generate 68020 instructions

If this option is on, Symantec C++ generates code that is optimized
for Macintoshes with the MC68020, MC68030, or MC68040 (such as
the Macintosh LC, Il, 1Ifx, or Quadra) and that does not run on
Macintoshes with the MC68000 (such as the Macintosh Classic or
Plus). If the option is off, Symantec C++ generates code that runs on
all Macintoshes. The original setting is off.

The Options Menu .

If the option is on, Symantec C++ generates MC68020 instructions for
addressing and long-word multiplication, division, and modulo
operations.

Note
Before your program uses MC68020 instructions,
make sure you have a MC68020, MC68030, or
MC68040 in your machine or your program may
crash. Use the Gestalt Manager, as described in
Inside Macintosh.

Generate 68881 instructions

If this option is on, Symantec C++ generates code that is optimized
for Macintoshes with the MC68881 or MC68882 floating-point unit
(such as the Macintosh Il or IIfx) or the MC68040. The code will not
run on Macintoshes without the floating-point unit (such as the
Macintosh Classic, LC, or Plus). If the option is off, Symantec C++
generates code that runs on all Macintoshes. The original setting is
off.

If this option is on, Symantec C++ generates code for the floating-
point coprocessor.

Use 881 for transcendentals
If this option is on, the math coprocessor is used for transcendental
math functions such as sine or cosine. The original setting is off.

Note
Before your program uses MC68881 instructions,
make sure you have a MC68881 or MC68882 in your
machine or your program may crash. Use the
Gestalt Manager, as described in Inside Macintosh.

8-byte doubles

When this option is on, doubles are the same size as short doubles,
which are 8-bytes long. When it's off, they're the same size as long
doubles. The original setting is off.

Use the 8-byte doubles option if you're porting code from a compiler
that uses 8-byte doubles, such as MPW C. Otherwise, leave the
option off and Symantec C++ makes doubles and long doubles the
same size.

Compiler Guide 97

7 Compiler Options Reference

Struct field alignment

Align to 1-byte This option places all fields in

boundary structures, unions, and classes
in memory without padding.
(If not used with care, this
option can result in odd-sized
data structures.) The original
setting is off.

Align to 2-byte With this option, all fields in

boundary structures and classes are
padded out to word or 2-byte
boundaries. This option,
which is the most common
form of structure alignment,
is the default. The original

setting is on.
Align to 4-byte This option pads out all fields
boundary in structures, unions, and

classes to 4-byte (long-word)
boundaries. For machines
with MC68020 or higher
processors, this option can
increase speed. The original
setting is off.

Place string literals in code

With this option on, string literals are placed in code segments
instead of global data space. String literals are accessed using PC
relative addressing rather than A5 relative addressing. The original
setting is off.

Note
This rule applies only to string literals inside
functions. For example:

void f () {
char * x="one” //"“one” goes into code
}

char * x="two”; //“two” goes into data

98 Compiler Guide

The Options Menu

Code optimization

The Code Optimization page lets you control how Symantec C++

optimizes your code.

*

@ This Project) New Projects

@ [Code optimization |

- E Usze Global Optimizer

[<] Constant propagation
[<] Copy propagation
[Loop until can’t optimize

® Optimize for time
1 Optimize for space

[<l Dead assignment elimination Ed Hoist very busy expressions
[] Dead variable elimination (] Remove loop invariants
[<] CSE elimination (€ Create loop induction variables

This iz the C++ Corpiler Options dialog. Click on any button to find out rore about that option. Use the
pop-up meny to go to a specific page, oF use the arrow button to rowve to the next or previous pages.

[Faglorg Saifings] [Cancel] [[1] 4

Figure 7-4 The Code Optimization page

Use global optimizer

This option controls the global optimizer. It is a “master switch.” If
it's off, the options below it are disabled. If it's on, those options are

enabled, set to the same values as the last time the master switch

was on. The original setting is off.

You probably won't use the global optimizer while you're

debugging. It adds a pass over your compiled code and may more
than double your compilation time. Also, it generates machine code
that is significantly different from your source code. The debugger

may not be able to pick out the machine code instructions that
correspond to a given statement.

Dead assignment elimination

If this option is on, Symantec C++ removes assignments to variables
that are not used after being assigned, making your code smaller and
faster to execute. This optimization also allows Symantec C++ to

reuse registers for more than one variable. The original setting is on.

Compiler Guide 99

7 Compiler Options Reference

100 Compiler Guide

If the option is on, Symantec C++ doesn’t load data into a register
when that data is already in one. This optimization makes your code
smaller and faster.

To understand how this optimization works, consider this example:
int j=0, i=1, k;

i+1;
|

]
k

When you reach the last statement (k = |), the value of j is found
in two places: in a register and in memory. If this option is off, k gets
the value from memory, requiring you to compute the memory
address. If the option is on, k gets the value from the register, saving
the time and space that computation takes.

Symantec C++ loads j from memory into a register twice, once for
each time it appears. If this option is on, Symantec C++ loads it from
memory only once.

If you're debugging, you may want to turn the option off. When you
set a variable in a data window, the debugger puts the new value
into memory. If the option is on, however, your program may use a
value in a register and not in memory.

For example, look at the code above. After j = i + 1 executes,
there are two copies of j : one in memory and one in a register. Your
program uses the register copy. The value in the register and in
memory is 2. If you examine j , the data window shows 2.

Now, assume you change the value of j in the data window to 10.
When your program continues, k is still set to 2. You changed the
value of j in memory, but your program used the value of j in the
register.

Dead variable elimination

With this option on, Symantec C++ determines the live ranges of
variables in your code, removing any variables that have empty live
ranges. The original setting is on.

This optimization also allows Symantec C++ to reuse registers for
more than one variable.

The Options Menu

*

CSE elimination

This optimization makes your code smaller and faster. The original
setting is on. Selecting CSE elimination replaces each subexpression
that is used more than once with a temporary variable set to the
subexpression’s value. For example, consider this code:

i*2 + 3
sqrt(i*2);

a
b

With this optimization, your code assigns i * 2 to a temporary
variable and computes it only once. It's as if the code were written
like this:

temp = i*2;
a =tenp + 3;
b = sqgrt(tenp);

Use this optimization on all your code.

Optimize for time
With this option on, Symantec C++ optimizes for speed at the
possible cost of making your code larger. The original setting is on.

Optimize for space

With this option on, Symantec C++ optimizes to reduce code size at
the possible expense of increasing execution time. The original
setting is off.

Hoist very busy expressions

With this option on, the compiler produces a single version of an
expression that occurs over several different paths in the code. The
result is smaller code. The original setting is on.

Remove loop invariants

This optimization makes your loops faster. The original setting is on.
Selecting this option moves expressions out of loops that remain
constant in each iteration. For example, consider this loop:

vvhile(tfeof (fp)) {
5;

X*
DoSorret h| ng(fp, i);

Compiler Guide 101

7 Compiler Options Reference

102 Compiler Guide

The compiler moves i = x*5 outside this loop and computes it
only once, as if you had written the loop like this:

i = x*5;
while (!feof(fp))
DoSonet hing(fp, i);

Use this optimization if your code has many loops.

Create loop induction variables
Selecting this optimization makes loops faster, especially those that
cycle through an array. For example, consider this loop:

int a[ARRAY_SI ZE], i;

for (i=0; i<ARRAY_SIZE; i++)
a[i] = GetNextElelnment();

With the option off, the compiler performs a multiplication each time
it figures the address for the next array element

(i * sizeof (int)). With the option on, the compiler remembers
the address of the last element and adds the size of an element to
that address. Use this optimization if your code has a lot of loops.
Note, however, that using it may make your code slightly larger. The
original setting is on.

Constant propagation
Constant propagation replaces certain variables with constants.
Consider the code:

A=5;
for(i=0; i<A i++)
abc[i]=A

A always has the value 5 within the loop body. To optimize, the
compiler replaces A with its value:

A=5;
for(i=0; i<b; i++)
abc[i] =5;

Constant propagation opportunities occur frequently when loop
rotation is done. For example, constant propagation converts:

while (e)
expression;

The Options Menu

*

to:

if (e)
do
expression;
while (e)

The original setting is on.

Copy propagation
Copy propagation is similar to constant propagation, except that it
copies variables instead of constants. For example, it replaces:

A=b;
for(i=0; i<A i++)
abc[i]=A
with:
A=b;
for(i=0; i<b; i++)
abc[i] =b;

Copy propagation frequently uncovers unnecessary assignments,
such as the assignment to A, that can be removed.

The original setting is on.

Loop until can’t optimize

If this option is on, Symantec C++ repeatedly runs all selected
optimizations until it discovers no further opportunities for
optimization. The original setting is on.

Note
Some optimizations are performed sequentially.
Occasionally, one optimization creates the
opportunity for other optimizations. If this option is
on, each optimization is run repeatedly until your
code is optimized maximally.

Compiler Guide 103

7 Compiler Options Reference

Debugging
The Debugging page lets you specify how the Symantec C++
compiler generates code for debugging.

® This Project () New Projects

E] | Debugging |

[] Always generate stack frames ;- Error reporting

] Generate profiler calls) Stop at first error
@ Report the first few errors

] Generate Macsbug names
1 Report all errors in a file

[JUuse function calls for inlines

Thizs is the Syrnantec C++ Options dialeg. Click on any button to find out more about that aption. Use the
i pop-up menu to go to a specific page, or use the arrow button to mowve to the next or previous pages.

[Fadctoryg Sattings] [Cancel] [[oK]]

Figure 7-5 The Debugging page

Always generate stack frames

When you select this option, Symantec C++ generates a stack frame
for most functions called, although inline functions don’t have stack
frames. When it's off, Symantec C++ does not generate a stack frame
for functions that don't have local variables or parameters. The
original setting is off.

If you're using the debugger’s call chain menu or the profiler, turn
the option on. Otherwise, leave it off. Your program will be smaller
and faster without the unnecessary stack frames.

Generate profiler calls

When this option is on, Symantec C++ generates calls to code
profiler routines. The code profiler collects timing statistics about
your functions. The original setting is off.

Symantec C++ can profile only functions that have stack frames. To
create stack frames for most functions, select the Always generate
stack frames option. For inlines, select the Use function calls for
inlines option, described below.

104 Compiler Guide

The Options Menu

*

Generate MacsBug names

With this option on, Symantec C++ includes function names in your
compiled code for assembly language level debuggers such as
MacsBug or TMON. The original setting is off.

Symantec C++ generates symbols only for functions that have stack
frames. To create stack frames for almost every function, turn on the
Always generate stack frames option. Be aware that while MacsBug
symbols are useful for debugging, they add at least 8 bytes to every
procedure.

Use function calls for inlines

When you check this option, Symantec C++ uses a function call for
any inline functions. This allows profiling and debugging of inline
functions. The original setting is off.

Error reporting
Each of these three options produces a different error report:

Stop at the first If this option is on, Symantec C++

error stops at the first error in your
source file. The original setting is
off.

Report the first few If this option is on, Symantec C++

errors reports the first few errors in your
code or stops at the first
unrecoverable error. The original
setting is on.

Reportall errorsina If this option is on, Symantec C++

file reports errors it finds in your
source file or stops at the first
unrecoverable error. The original
setting is off.

Compiler Guide 105

7 Compiler Options Reference

Warning messages

@ This Project 3 New Projects

E“ Warning Messages |

- E Enable “warning Messages
(] Using = in conditionals
<] Nested comments
<] Unused expressions
] Empty loops
(] Large automatic variables

] 0Id style delete []

(<] Missing overloads for ++ & -~
<] Reference initialization

(<] bariable used before set

(<] Return address of auto

(] Unrecognized pragma

Thiz is the Syrmantec C++ Options dialog. Click on any button to find out more about that option. Use the
pop-up rmend to go to a specific page, or use the arrow button to move to the next or previous pages.

[Fadinryg Soiiings] [Cancel] [[0K]]

106 Compiler Guide

Figure 7-6 Warning Messages page

Enable warning messages

This option controls whether Symantec C++ generates warning
messages. If it is off, the compiler will not display any warning
messages. If it is on, you can choose options for the individual
warning messages.

Choosing Factory Settings causes all 11 warning message options to
revert to their original settings. By default, the Enable Warning
Messages option is set, which automatically sets all warning message
options.

The next 11 sections describe these messages and the conditions
under which the compiler generates them.

Using = in conditionals

If this option is on, Symantec C++ warns you when the conditional
expression of a for, i f, or whi | e statement contains an
assignment. The original setting is on. For example:

if (x=y) { ...} /!l WARNING possible
/1 unintended assi gnnent

The Options Menu

*

The warning points out that you may have meant this:

if (x ==vy) {. ..}

In cases in which the assignment is intentional, you can avoid the
warning by rewriting the code, with identical results, as:

if ((x=y)!=0) { ...}

Nested comments
If this option is on, Symantec C++ produces a warning when C style
comments are nested. The original setting is on. For example:

/* This file contains the source code for the project
/* By: John Doe */ [/ Warning: can't nest comments

Unused expressions
If this option is on, Symantec C++ alerts you when the value of an
expression has not been used. The original setting is on.

X == Y; /1 Warning: val ue of
/] expression is
/1 not used
Empty loops

If you enable this option, Symantec C++ produces a warning when a
semicolon appears immediately after ani f, whil e, or switch
statement. The original setting is on. For example:

if (x==y); [/ Warning: possible
/'l extraneous ';'

cout << "x== << endl ;
If the semicolon is intentional, add white space after the end of the

statement prior to the semicolon:

it (x==y)

cout << "x may or may not equal y" << endl;

Compiler Guide 107

7 Compiler Options Reference

108 Compiler Guide

Large automatic variables
With this option, Symantec C++ warns you when the total size of
automatic variables in a procedure is larger than 32KB. For example:

void f(void)

int i[32000]
/1 Warning: very large autonatic

}

This code can cause a stack overflow. In such cases a dynamic
memory allocation using oper at or new may be preferred. The
original setting is on.

Old style delete []
If this option is on, Symantec C++ warns you against using the older-
style array del et e operator. The original setting is on. For example:

delete [10] p; // Warning: use delete[]
/1l rather than del ete[expr],
/'l expr ignored

Missing overloads for ++ & --

This option produces a warning when you have used the postfix
versions of the ++ or - - operators instead of the missing
corresponding prefix operators, or the prefix version of the ++ and
- - operators instead of the missing corresponding postfix operators.
The original setting is on. When ANSI conformance is turned on, this
warning becomes an error and cannot be disabled. For example:

A& operator ++();

at+; /1 VWARNI NG usi ng
/1 operator++() (or --)
/'l instead of nissing
/1 operator++(int)

Reference initialization

If this option is enabled, Symantec C++ produces a warning when a
reference is initialized with a temporary value. The original setting is
on. If ANSI conformance is turned on, this warning becomes an
error and cannot be disabled. For example:

void f(int &);

f(2); /1 WARNI NG non- const
/'l reference initialized to
/1

tenporary

The Options Menu

*

Variable used before set

This option warns you when an attempt is made to obtain the value
of an uninitialized variable. The original setting is on. This error is
detected for the last line in the function in which it appears; use the
name of the variable appearing in the warning message to determine
where the error appears. This problem can be detected only when
the global optimizer is enabled. For example:

} /1 WARNI NG variable 'a'
/'l used before set

Return address of auto

If you enable this option, Symantec C++ produces a warning when
the address of an automatic variable is the return value from a
function. The original setting is on. For example:

int *f(voi d)

int a;
return(&); // WARNING returning address
/'l of automatic 'a'

}

Unrecognized pragma

With this option, Symantec C++ produces a warning when it does
not recognize a #pr agma directive. The original setting is on. If SC
appears immediately after the #pr agna directive, this warning
becomes an error and cannot be disabled. For example:

#pragma nooptim ze(Qq)

/1 WARNI NG unrecogni zed
/1 pragma

Compiler Guide 109

7 Compiler Options Reference

Prefix
Prefix page lets you write code that Symantec C++ will include in all
your files.

®) This Project) New Projects
[Prefix |

Binclude <MocHeaders++:

This is the C++ Compiler Options dialeg. Click on any button to find out more about that option. Use the
pop-up menu to go to a specific page, or use the arrow button to move to the next ar previous pages.

[i%;{?;}?;_;éée‘iéér;g;@] [Cancel] [[11,4]]

Figure 7-7 The Prefix page

Use the Prefix page to automatically include the same text in all the
C++ source files for a project. The effect is the same as if you
manually put the code into the files.

If you use a precompiled header file, such as MacHeader s++,
include it here. By default, this page contains the line:
#i ncl ude <MacHeader s++>.

If you need to define a macro in all your files, define it here. For
example, you may have some debugging code in your files that’s
compiled only if the macro DEBUG is defined. To include that code,
include this line here:

#def i ne DEBUG

When you don't need to include the debugging code anymore,
delete that line from this page. You don’t need to edit every C++
source file in your project.

110 Compiler Guide

Porting Code
A

I his chapter helps you port existing code to Symantec C++.

Contents

Porting from MPWC++ 113
Include file searchpath 113
Structures as arguments 113
enum prototyping . . I
Function prototypes and varargs functions 113
Pascal and handle objects 114
Structure definition 114
Static member functions 114
const violations 115
Data definitions in precomplled headers 115
Instantiating abstract base classes 115

Calling C++ Functions 115
C++arguments 115
C++returnvalues 117

Calling Pascal Functions. 118
Pascal callback routines 118
Calling Pascal routines |nd|rectly A
Pascal arguments 120
Pascal return values 122

Compiler Guide 111

. A Porting Code

112 Compiler Guide

Porting from MPW C++

L 4
Porting from MPW C++

Wherever possible, Symantec C++ has striven for compatibility with
MPW C++. The Symantec C++ calling conventions are the same as
MPW C++ except that MPW C++ promotes char and short
arguments to i nt , and MPW C++ promotes f | oat and doubl e
arguments to | ong doubl e. Symantec C++ calling conventions for
procedures with a variable number of arguments are compatible
with calling conventions in MPW C++.

Symantec C++ mangled names for functions are different from those
used in MPW C++. You must recompile source code with the
Symantec compiler due to this difference. The following are other
known differences between the compilers:

Include file search path
In Symantec C++, include directives in the form

#i ncl ude <fil enane>

search only the compiler include directory for the file. They do not
search the user directories.

Structures as arguments

Symantec C++ passes structures on the stack, while MPW Pascal
passes a pointer to the structure and then copies the data into a
temporary location. Symantec C++ routines that you declare as
pascal use the MPW Pascal convention, but they do not use a copy
constructor to copy the passed structure to the temporary location.

enum prototyping

Symantec C++ defaults to the Macintosh convention of sizing an
enumto the smallest data size (char, short, ori nt) that holds the
enumrange. MPW C++ does the same, but other implementations of
Symantec C++ handle enumprototyping differently.

Function prototypes and varargs functions
In the Symantec C++ compiler, a function that you prototype and
define using the convention

f unc(type arg, type arg)

passes the specified type size. The MPW C++ compiler converts such
an argument to a larger type—in other words, short toi nt, enum
toint, fl oat to doubl e. Prototypes for functions compiled with

Compiler Guide 113

. A Porting Code

114 Compiler Guide

one compiler and called with the other compiler must use i nt
instead of enum short, and char ; these functions must also use
| ong doubl e instead of f | oat or doubl e.

Pascal and handle objects

In the Symantec C++ compiler, you define Pascal objects and handle
objects using the additional type modifiers __nmachdl or
__pasobj . The compiler includes these type modifiers when
prototype checking. As in MPW C++, these types are inherited from
base classes. The classes Pascal Cbj ect and Handl eCbj ect are
defined in Types. h using the extended type modifiers.

Structure definition

The Symantec and MPW compilers both place fields in structures,
but they align bit-fields differently. Symantec C++ packs bit-fields
according to the size of the type of the containing field.

For example:
struct a
{
char x : 2;
char y : 2;
short z : 2;
int zz : 15;

H

Symantec compilers start field z on the next new short word while
MPW compilers place field z in the same byte as field x and y. This
difference can also result in a size difference in the structures.
Symantec C++ allocates an integer (4 bytes) for field zz. MPW C++
allocates only 2 bytes.

Static member functions

You cannot declare static member functions as const . MPW C++
ignores the declaration. The Symantec C++ compiler gives an error
message.

For example, the following statement is flagged as illegal by the
Symantec C++ compiler:

static void DoSonmeStuff() const;

Calling C++ Functions .

const violations

Symantec C++ is stricter than MPW C++ regarding const
declarations. The MPW compiler allows you to define a const
member function that violates the const declaration; Symantec
C++ refuses to compile incorrect function definitions. To port MPW
C++ code, either rewrite your functions or don’t declare functions as
const.

Data definitions in precompiled headers

Symantec C++ does not support data definitions in precompiled
headers. You may, for example, forget to declare a function inline
when it is defined in a header file.

Instantiating abstract base classes

When you provide definitions for the pure virtual functions of an
abstract base class, you must be careful to use the same function
prototypes as were used in the virtual function declaration. For
example:

struct X {
[l f() is a pure virtual function
virtual void f(void *) = 0;

b

struct Y : X {
virtual void f(const void *) { }
b

In this example, the member function Y: : f () does not provide an
implementation for X: : f () . Symantec C++ correctly interprets

Y:: f() as an overloaded function based on X: : f () . MPW C++
incorrectly interprets Y: : f () as the pure virtual function’s
implementation.

Calling C++ Functions

C++ arguments

Functions that take a fixed number of arguments are evaluated from
left to right and are pushed on the stack as they are evaluated. A
called function cleans the arguments off the stack. For functions that
take a variable number of arguments, arguments are pushed from

Compiler Guide 115

A Porting Code

116 Compiler Guide

right to left onto the stack. The caller of the function cleans the
arguments off the stack. Data types are placed on the stack as
follows:

Type How it’s passed
char, Uses a 16-bit word on the stack with the
unsi gned char passed value in the high-order 8 bits.

short, Uses a 16-bit word on the stack.
unsi gned short,
2-byte structs

i nt, Uses a 32-bit word on the stack.
unsi gned int,

| ong,

unsi gned | ong,

poi nters,

4-byte structs,

enuns

float, Passed as 80-bit values (96-bit for 68881) on

doubl e, the stack.
| ong doubl e,

conp

structures larger Copied onto the stack. If a copy constructor

than 4 bytes is available, this is invoked to create a local
version of the struct or class for use as the
parameter. If there is no copy constructor, a
member-by-member copy of the original
struct or class is made on the stack as the
parameter.

Table A-1 How C++ arguments are passed

Calling C++ Functions

L 4
C++ return values
This table describes how C++ functions return their values:
Type How the value is returned
char,int, | ong, Returned in DO.
unsi gned chars,
unsi gned int,
unsi gned | ong,
pointers,
enuns
conp, fl oat, Returned as 80-bit extended values
doubl e, (96-bit for 68881) with the low-order 16 bits
| ong doubl e of register DO containing the sign and
exponent, D1 containing the high-order
32 bits of the significand, and AO containing
the low-order 32 bits of the significand.
structures Returned by allocating a temporary variable

on the stack and passing a pointer to it as
the first function parameter. The called
function copies the return structure value
into this using the copy constructor, and
also returns a pointer to it. This technique,
which is re-entrant, is appropriate when the
number of parameters in the original
function call is fixed. When a function takes
a variable number of parameters, the
structure to be returned is copied into a
static area of memory and a pointer to that
area is returned. The latter technique is not
re-entrant.

Table A-2 How C++ functions return values

Note
When the Generate 68881 instructions option is on,
the compiler returns floating-point results (f | oat ,
conp, doubl e, | ong doubl e) in FPO.

Compiler Guide 117

A Porting Code

118 Compiler Guide

Calling Pascal Functions

Because the Macintosh Toolbox routines expect to be called with
Pascal calling conventions, you may need to write functions in C++
that behave as though you wrote them in Pascal.

Pascal callback routines

Some Macintosh Toolbox routines take a pointer to another function
as an argument. Those routines then call the function you passed in.
The function you provide is called a callback routine. The Toolbox
routines expect the callback routines to follow Pascal calling
conventions.

To write functions that behave as though they were written in Pascal,
the function definition must begin with the pascal keyword. Make
sure you provide a return type. If your function needs to behave like
a Pascal procedure, declare the return type voi d.

For the parameter declarations, follow the same rules as for calling
Toolbox functions. Remember that non-var parameters are passed
by value, not by reference. If the size of a non-var parameter is
greater than 4 bytes, pass its address but do not modify the
parameter in your function.

For example, Mbdal Di al og() lets you provide afilterProc to
handle events in your dialog. This is how Inside Macintosh declares
Modal Di al og():

PROCEDURE Mbdal Di al og (filterProc: ProcPtr;
VAR itenHit: | NTEGER);

Modal Di al og() expectsthe filterProc to have this
declaration:

FUNCTI ON MyFilter (theDi alog: DialogPtr;
VAR t heEvent: Event Record;
VAR itenHit: | NTEGER) : BOOLEAN;

In Symantec C++, the declaration for MyFi | t er () would look like
this:

pascal Bool ean MyFilter (D al ogPtr
t heDi al og,
Event Record *theEvent, short *itenHit)

Calling Pascal Functions .

Note
References can also be used for
VAR Pascal Obj ects so MyFi | t er could be
rewritten as:

Pascal Bool ean MyFilter (DialogPtr
t heDi al og, Event Record &t heEvent,
short & tenHit);

The call to Mbdal Di al og(), then, looks like this:
void F(void)
{

extern pascal Boolean MyFilter
(Di al ogPtr, EventRecord*, short*);
short theltem

Mbdal Di al og(MyFilter, &helten;
}

Keeping C++ and Pascal on speaking terms can be tricky, but
Symantec C++ tries to make it as painless as possible.

Calling Pascal routines indirectly

Only Macintosh Toolbox routines and functions that are declared
pascal are called using Pascal conventions. If you have a pointer to
a Pascal routine, you can call it indirectly through a pointer just as
you would call a routine in C++, but the pointer must be of type
pointer-to-pascal-function.

For instance, this type definition defines PFunc as a pointer to a
Pascal function that takes one short argument and returns short:

typedef pascal short (*PFunc)(short);

Compiler Guide 119

A Porting Code

120 Compiler Guide

This function takes a Pascal routine as an argument and calls it
indirectly:

short DoPascal (PFunc theFn, short i)
{ /! theFn is a pointer to a pascal
/1 function that returns short

(*theFn)(i);// call it indirectly
theFn(i);

this works too, but you
nm ght not be able to tel
that it was called
indirectly

~— — —
~— — —

return (i);

Now suppose you have a function declared pascal like this:

pascal short Addl(short v)

return v + 1;

}
You could call the DoPascal function defined above like this:
j = DoPascal (Addl, 10);

Pascal arguments

Arguments are pushed from left to right onto the stack as they are
evaluated. The function cleans the argument off the stack.

This table describes how Pascal passes arguments for prototyped
functions.

Type How it’s passed

char, Uses a 16-bit word on the stack with
unsi gned char, the passed value in the high-order 8
1-byte enuns bits.

short, Uses a 16-bit word on the stack.
unsi gned short,

enuns

Table A-3 How prototyped Pascal functions pass arguments

Calling Pascal Functions

Type

int,

| ong,

unsi gned int,
unsi gned | ong,
pointers,

4-byte enuns

fl oat,
doubl e

conp,
| ong doubl e

*

How it’s passed
Uses a 32-bit word on the stack.

Passed on the stack.

Extended to 80-bit values
(96-bit for 68881) and
passed on the stack.

Table A-3 How prototyped Pascal functions pass arguments

(Continued)

This table describes how Pascal passes arguments for unprototyped

functions.

Type

char,

int,

| ong,

short,

unsi gned char,
unsi gned int,
unsi gned | ong,
unsi gned short,
pointers,

structures <= 4 bytes,
enuns

fl oat,
doubl e,

conp,
| ong doubl e

structures > 4 bytes

How it’s passed
Uses a 32-bit word on the stack.

Extended to 80-bit values (96-bit for
68881) and passed on the stack.

Copied onto the stack.

Table A-4 How unprototyped Pascal functions pass arguments

Compiler Guide 121

A Porting Code

Note
Always prototype a function before calling it.
Calling an unprototyped function can have
unexpected results.

Pascal return values
Pascal functions return their values as shown below.

Type How it’s returned
char, 2 bytes on stack.
unsi gned char

i nt, 4 bytes on stack.
| ong,

unsi gned i nt, unsi gned

| ong, pointers,

enuns,

structures <= 4 bytes

conp, f 1 oat is returned as 4 bytes on
fl oat, the stack. conp, doubl e, and
doubl e, | ong doubl e are returned by
| ong doubl e allocating a temporary variable

on the stack and passing a
pointer to the stack before any
parameters.

structures > 4 bytes Returned by allocating a
temporary variable on the stack
and passing a pointer to it on
the stack before any parameters.
The called function copies the
return structure into this area.

Table A-5 How Pascal functions return values

Note
The size of the doubl e depends on the 8-byte
doubles compiler setting. See “8-byte doubles” in
Chapter 7 for more information.

122 Compiler Guide

ARM Conformance .
B

S/mantec C++ implements the C++ language as defined in The
Annotated C++ Reference Manual, currently under review by
working group X3J16 of the ANSI standards committee. This chapter
describes how Symantec C++ implements those aspects of the
language that are denoted as “implementation defined” in The
Annotated C++ Reference Manual.

This chapter makes use of two abbreviations: ARM and Gray. ARM
refers to The Annotated C++ Reference Manual, by Margaret Ellis and
Bjarne Stroustrup, published by Addison-Wesley, Reading,
Massachusetts, 1990. The Gray Book refers to The C++ Programming
Language, Second Edition by Bjarne Stroustrup, published by
Addison-Wesley, Reading, Massachusetts, 1991.

This appendix is organized by the numbered sections of the ARM,
with individual subsections marked with applicable references in
both the ARM and the Gray Book. The ANSI committee is using the
ARM as the basis for its definition of the C++ language; this chapter,
however, includes references to both the ARM and the Gray Book.

Page numbers refer to the place in the specified reference where the
implementation-dependent behavior is noted, not necessarily to the
beginning of the section.

Note
This chapter identifies the differences between
Symantec C++ and a standard C++. It does not
define C++ language, nor does it explain C++ to a
new user. See the ARM for a definition of C++
language and the Gray Book for C++ instruction.

Compiler Guide 123

B ARM Conformance

The section numbers in
this chapter correspond to
the sections in the
Annotated C++ Reference
Manual (ARM).

124 Compiler Guide

Contents

Lexical Conventions
§2.3 Identifiers . . .
§2.5.2 Character Constants .
§2.5.4 String Literals

Basic Concepts . . .
§3.4 Start and Termination .
§3.6.1 Fundamental Types .

Standard Conversions .
§4.1 Integral Promotions
§4.2 Integral Conversions
84.3 Float and Double
84.4 Floating and Integral
85.0 Expressions . .
85.2.4 Class Member Access
85.3.2 Sizeof
§5.3.3 New

§5.4 Explicit Tybe Conversmn :

§5.6 Multiplicative Operators
§5.7 Additive Operators .
§5.8 Shift Operators

Declarations . .
§7.1.6 Type SpeC|f|ers

§7.2 Enumeration Declarations'

§7.3 Asm Declarations .
§7.4 Linkage Specifications .

Classes .
§9.2 Class Members
§9.6 Bit-Fields

Special Member Functions
§12.2 Temporary Objects

Preprocessing . .
§16.4 File Inclusion

§16.5 Conditional Complllatlon'

§16.8 Pragmas . .
§16.10 Predefined Names

. 125
. 125
. 125
. 125

. 126
. 126
. 126

. 131
. 131
. 131
. 132
. 132
. 132
. 133
. 133
. 133
. 133
. 133
. 134
. 134

. 134
. 134
. 135
. 135
. 135

. 135
. 135
. 136

. 136
. 136

. 137
. 137
. 137
. 137
. 137

Lexical Conventions .

The section numbers in
this chapter correspond tc
the sections in the
Annotated C++ Reference
Manual (ARM).

Lexical Conventions

§2.3 Identifiers

[ARM p. 6, Gray p. 478]

Identifiers in Symantec C++ have a maximum size of 256 characters.
They may have upper- and lowercase letters, numbers, or
underscores (). The underscore counts as a letter. All characters are
significant. Identifiers are case-sensitive and must begin with a letter.

§2.5.2 Character Constants

[ARM p. 10, Gray pp. 480-1]

The mapping of characters in the source character set to the
execution character set is one-to-one. The basic execution character
set consists of all 256 Macintosh characters. You can represent all
integer character constants or escape sequences with the basic
execution character set.

Multi-character constants are type i nt and can contain between one
and four characters from the execution character set. If the constant
has more than four characters, then the compiler generates an error.
If a character string of three or four characters is assigned to a
short, then the last two characters are used in the assignment. For
example, the following statement assigns CD (0x4344) to f oo.

short foo = ' ABCD ;

If the character following the backslash character is not one of the
defined escape sequences, then the compiler generates an undefined
escape sequence error.

§2.5.4 String Literals

[ARM pp. 10-11, Gray p. 482]

If a string literal begins with the sequence \ p or \ P, the compiler
treats it as a Pascal string. The compiler replaces the \ p or \ P with
the length of the string. Null ('\ 0") is not appended to Pascal strings.
Pascal strings, therefore, are restricted to 255 characters. Longer
strings are truncated.

String literals are distinct; they do not overlap in memory. You can
modify a string literal, but try to avoid doing so. If you modify a
string literal, you may overwrite other global values.

The type of wchar _t is defined as a short i nt in stddef. h.

Compiler Guide 125

B ARM Conformance

Basic Concepts

§3.4 Start and Termination

[ARM p. 19, Gray p. 485]

Every C++ program must contain a function called mai n() . Its
default type is i nt, and it has external linkage. You can take the
address of mai n() .

§3.6.1 Fundamental Types

[ARM p. 22 (cf. p. 7; 3.2.1c), Gray pp. 486-7]

The compiler allocates types on word boundaries. Within structures,
you can set alignment on byte, word (2 bytes, the default), or long
word (4 byte) boundaries.

The compiler treats a char obiject that is not declared either si gned
orunsi gned as asi gned value.

Integers are represented as two’s complement binary numbers. The
sizes of the integer types are:

Type Bytes
char 1
short 2
i nt 4
| ong 4

Table B-1 The size of integer types

The header | i m ts. h specifies the largest and smallest values of
the integral types. The following table defines the limits of the
integral types.

Variable Value Definition

CHAR BI' T 8 Maximum bits in a byte

SCHAR MAX +127 Maximum value of si gned
char

SCHAR_M N -128 Minimum value of si gned
char

UCHAR_MAX 255 Maximum value of unsi gned
char

Table B-2 Limits of integral types

126 Compiler Guide

Basic Concepts

Variable
CHAR MAX

CHAR M N

SHRT _MAX
SHRT_M N

USHRT_MVAX

LONG_MAX
LONG M N

ULONG_MAX

| NT_MAX
INT_M N

Ul NT_MAX

Value
UCHAR MAX
SCHAR_NMAX

0

SCHAR M N
+32767
-32768

65535

+2147483647
-2147483648

4294967295

LONG_MAX
LONG M N

ULONG_MAX

*

Definition
Maximum value of char

Minimum value of char

Maximum value of shor t
Minimum value of shor t

Maximum value of unsi gned
short

Maximum value of | ong
Minimum value of | ong

Maximum value of unsi gned
| ong

Maximum value of i nt
Minimum value of i nt

Maximum value of unsi gned
i nt

Table B-2 Limits of integral types (Continued)

Compiler Guide 127

B ARM Conformance

You can represent floating-point values four ways. The
representation you use depends on the options you choose when

you compile.
Type

fl oat
doubl e
doubl e

doubl e

| ong doubl e

| ong doubl e

Default Size
in Bytes

4

8

10

12

10

12

Table B-3 Floating-point values

Format

IEEE single precision
IEEE double precision
SANE extended precision

M68881/2 extended
precision

SANE extended precision

M68881/2 extended
precision

You can find these formats documented in detail in the Apple
Numerics Manual, Second Edition (Addison-Wesley) by Apple
Computer and the MC68881/682 User’'s Manual (Motorola).

The header f | oat i ng. h defines the characteristics of the floating
types. The following table summarizes the floating types.

Variable
FLT DI G

FLT_MANT DI G

FLT_MAX_10_EXP

Value
7

24

38

Table B-4 Floating-point limits

128 Compiler Guide

Definition
Decimal digits of precision

Number of base
FLT_RADI X digits in
mantissa

Maximum positive integer
n such that 10 raised to the
nth is within the range of
normalized floating-point
numbers

Basic Concepts

Variable
FLT_MAX EXP

FLT_M N_10_EXP

FLT_M N_EXP

FLT_RADI X

FLT_ROUNDS

FLT_MAX

FLT_M N

FLT_EPSI LON

DBL_DI G

DBL_MANT DI G

DBL_MAX_10_EXP

Value
128

-125

1

3.402823e+38

1.175494e-38

1.192093e-7

15

53

308

*

Definition

Maximum positive integer
n such that FLT_RADI X
raised to the nth minus 1 is
representable

Minimum negative integer
n such that 10 raised to the
nth is within the range of
normalized floating-point
numbers

Minimum negative integer
n such that FLT_RADI X
raised to the nth minus 1 is
a normalized floating-point
number

Radix of exponent
representation

Direction of rounding

Maximum representable
floating-point number

Minimum normalized
positive floating-point
number

Minimum positive number
x such that 1.0+x does not
equal 1.0

Decimal digits of precision

Number of base
FLT_RADI X digits in
mantissa

Maximum integer n such
that 10 raised to the nth is
representable

Table B-4 Floating-point limits (Continued)

Compiler Guide 129

B ARM Conformance

Variable
DBL_MAX_EXP

DBL_M N_10_EXP

DBL_M N_EXP

DBL_ MAX

DBL_M N

DBL_EPSI LON

LDBL_DI G

LDBL_MANT_DI G

LDBL_MAX_10_EXP

Value
1024

-307

-1021

1.797693e+308

2.225074e-308

2.220446e-16

19

64

4932

Definition

Maximum integer n such
that FLT_RADI X raised to
the nth minus 1 is
representable

Minimum negative integer
n such that 10 raised to the
nth is within the range of
normalized floating-point
numbers

Minimum negative integer
n such that FLT_RADI X
raised to the nth minus 1 is
a normalized floating-point
number

Maximum representable
floating-point number

Minimum normalized
positive floating-point
number

Minimum positive number
X such that 1.0+x does not
equal 1.0

Decimal digits of precision

Number of base
FLT_RADI X digits in
mantissa

Maximum integer n such
that 10 raised to the nth is
representable

Table B-4 Floating-point limits (Continued)

130 Compiler Guide

Standard Conversions

*

Variable Value Definition

LDBL_MAX_EXP 16384 Maximum integer n such
that FLT_RADI X raised to
the nth minus 1 is
representable

LDBL_M N_10_EXP -4931 Minimum negative integer
n such that 10 raised to the
nth is within the range of
normalized floating-point
numbers

LDBL_M N_EXP -16382 Minimum negative integer
n such that FLT _RADI X
raised to the nth minus 1 is
a normalized floating-point
number

LDBL_MAX 1.189731e+4932 Maximum representable
floating-point number

LDBL_M N le-4926 Minimum normalized
positive floating-point
number

LDBL_EPSI LON 1.088437e-19 Minimum positive number
X such that 1.0+x does not
equal 1.0

Table B-4 Floating-point limits (Continued)

Standard Conversions

84.1 Integral Promotions

[ARM pp. 31-2, 322, Gray p. 489]

Symantec C++ follows ANSI C in that integral promotion is “value-
preserving.” See ARM p. 32 for an in-depth discussion of this and its
relationship to older C++ implementations.

84.2 Integral Conversions

[ARM p. 33, Gray p. 489]

When the compiler demotes an integer to a smaller, signed integer,
the compiler copies the low-order bits; the high-order bit of the
smaller integer becomes the sign bit.

Compiler Guide 131

B ARM Conformance

132 Compiler Guide

When the compiler tries to convert an unsigned value to a signed
integer of equal length, but the compiler cannot represent the
unsigned value by the signed type, then the representation bit
pattern doesn’t change. The high-order bit, which in the unsigned
interpretation contributes to the value, is now interpreted as the sign
bit.

84.3 Float and Double

[ARM p. 33, Gray p. 489]

If you convert a floating-point value that is in a range that the
compiler can represent but not exactly (such as 0.1, which becomes
a repeating binary fraction), the compiler rounds the result according
to the rounding mode. The default rounding mode is to round to the
nearest, and you can change this mode by editing the value

FLT _ROUNDS in f | oat i ng. h, which is documented in Table B-4.

84.4 Floating and Integral

[ARM pp. 33-4, Gray p. 489]

If you convert an integral type to a floating-point type, and that
value is in the range the compiler can represent but not exactly, the
compiler rounds the result according to the current rounding mode.
The default rounding mode is to round to the nearest integer, and
you can change it.

85.0 Expressions
[ARM p. 46 (cf. p. 72, §5.6), Gray p. 492]
The compiler ignores integer overflows.

Symantec C++ handles division by zero in several different ways,
depending on context.

If you try to divide this by The compiler returns...
Zero...
A constant expression An error

Any number during constant An error

folding

An integer A microprocessor exception
(System Error #4)

A floating-point number INF (+0)

Table B-5 Division by zero

Standard Conversions

*

For further information, consult the Apple Numerics Manual, 2nd
Edition or the 68881/682 User’s Manual.

85.2.4 Class Member Access

[ARM p. 53]

The compiler doesn’t convert values stored in a member of a union
and then accessed through another member. For example:

union u_tag {
int ival;
float fval;
} u_obj;
int i;
u_obj.fval = 4.0;
i = u_obj.ival;

assigns 0x40800000 to i .

85.3.2 Sizeof
[ARM p. 58, Gray p. 497]
The type si ze_t is defined as an unsi gned i nt in st ddef. h.

§5.3.3 New

[ARM p. 61, Gray p. 499]

Allocation is performed inside an object’s constructor if one is
present.

85.4 Explicit Type Conversion

[ARM p. 71, 37, Gray pp. 500-2]

You can convert a pointer to an integral type large enough to hold it
(that is, 4 bytes) with no changes, though the compiler interprets the
bit pattern as the integral type. When converting to a smaller integral
type, the compiler uses the low-order bytes of the pointer.

If you convert an integral type to a pointer, the compiler promotes
and sign-extends smaller integral types to the appropriate integral
type without losing information.

You can cast away the constantness of an object, so that it is possible
to modify the value of the constant object. If a pointer or reference
to a const is cast to a pointer or reference to non-const , writing to
the pointer or reference succeeds if the original pointer or reference
contained a valid address.

Compiler Guide 133

B ARM Conformance

134 Compiler Guide

85.6 Multiplicative Operators

[ARM p. 72, Gray p. 503]

When two integers are divided with the / operator, where the result
is inexact and one and only one of the operands is negative, the
result is the smallest integer greater than the algebraic quotient (such
as - 23/ 4 = -5). If the % operator is used, where the division is
inexact and one and only one of the operands is negative, the result
is negative (such as - 23%! is equal to - 3). If the right operand of
the %or / operator is 0, then the compiler signals a microprocessor
exception.

8§5.7 Additive Operators

[ARM p. 73, Gray p. 503]

The compiler treats memory as a linear address space. You can
reference out of the bounds of an array without the compiler
detecting it. For example:

int* p = &[10];
*p = Oxdeadbeef;

You can subtract two pointers to objects in the same array to find the
number of elements separating the operands. The result is of type
ptrdiff_t,definedas| ong in <st ddef . h>. Subtracting pointers
of differing types results in an error, though explicit casting lets you
do the operations.

8§5.8 Shift Operators

[ARM p. 74, Gray p. 504]

If the right operand of the left-shift operator << is negative, then the
result is undefined. If it is greater than or equal to the length in bits
of the promoted left operand, then it is taken modulo 64 and used,
with the usual result that all the bits are shifted out of the left
operand.

When the left operand of the >> operator is a signed type and
negative, the compiler performs a signed right shift.

Declarations

*

Declarations

87.1.6 Type Specifiers

[ARM p. 110, Gray p. 521]

A declaration with the specifier vol at i | e tells the compiler that the
declared object can change in an undetectable way. These objects
are not optimized.

§7.2 Enumeration Declarations

[ARM pp. 114-5, Gray p. 523]

The size of an enumeration is the largest integral type that holds the
largest value in the enumeration. You can cast to an enumeration,
but you may not get the results you expected. For example:

enum col or {red, yellow, green=20, blue};
color ¢3 = col or(600);
int i =c3;

Here, i will receive 58 since each enumerator is stored as a single
byte. Changing the enumeration to:

enum col or {red, yellow, green = 2000, bl ue};

allocates each enumerator as a | ong, into which 600 fits.

§7.3 Asm Declarations

[ARM p. 115, Gray p. 524]

An asmdeclaration lets you embed short assembly language
fragments into the body of your C++ code. It takes a variable
number of integer arguments representing the machine language
instructions. The compiler then inserts these instructions into the
generated code. For example, the declaration:

asm (0x700A, 0x5A80, 0x2600) ;

inserts these instructions into the code:

MOVEQ #$0A, DO
ADDQ L #$05, DO
MOVE.L DO, D3

87.4 Linkage Specifications
[ARM p. 116, 118, Gray p. 524]
Symantec C++ supports C, C++, and Pascal linkage types.

Compiler Guide 135

B ARM Conformance

136 Compiler Guide

Classes

§9.2 Class Members

[ARM p. 173, 241, Gray p. 545]

The compiler allocates non-static data members of a class in order of
appearance in the source file, regardless of intervening access
specifiers.

§9.6 Bit-Fields

[ARM pp. 184-5, Gray p. 550]

You can declare a bit-field with any integral type. The size of the
declared type determines the “word” size for that bit-field, so a
“word” may be 8, 16, or 32 bits wide.

A sequence of bit-fields with the same word size is packed into a
word. No bit-field may be wider than its word size. If a bit-field
would straddle a word boundary, the compiler places it in the next
word. For example, the bit-field declaration

struct bits {

int bl: 24;
int b2: 8;
int b3: 24;
int b4d: 24;
H
is represented in memory as:
31 0
bl unused
b2 b3
b4 unused

Figure B-1 Sample code as represented in memory

The compiler assigns bit-fields beginning with the high-order bit of a
word. An unnamed field with a width of 0 “closes out” the current
word. A bit-field with a different word size from the preceding bit-
field causes this closing out to happen automatically, just as a non-
bit-field member does.

The compiler treats a plain i nt bit-field as a signed i nt .

Special Member Functions

*

Special Member Functions

§12.2 Temporary Objects

[ARM pp. 267-8, Gray p. 572]

The compiler destroys temporary objects when their values go out of
scope.

Preprocessing

816.4 File Inclusion
[ARM pp. 375-6 (cf. 16.3.2c), Gray pp. 610-11]
These are the rules Symantec C++ uses to find header files:

#include statement Symantec C++
<fil enane. h> Looks only in the THINK Project
Manager tree

"fil enanme. h" Looks first in the referencing folder,
then in the project tree, and finally
in the THINK Project Manager tree

The referencing folder is the one that contains the file that has the
#i ncl ude preprocessor directive. For example, if a source file
references a header file MyUti | s. h, and that file in turn has the
line #i nclude "MyUtil Types. h", Symantec C++ looks for
MyUti | Types. h in the folder that contains MyUt i | s. h first.

§16.5 Conditional Compilation

[ARM p. 377, Gray p. 613]

No limit has been placed on the number of #i f directives that you
can nest.

816.8 Pragmas

[ARM p. 378, Gray p. 613]

Symantec C++ defines nine pragmas. The preprocessor produces a
warning for unrecognized pragmas. See “#pragma Directives” in
Chapter 6.

§16.10 Predefined Names
[ARM p. 379, Gray p. 614]
Symantec C++ does not define the predefined name __ STDC

Compiler Guide 137

. B ARM Conformance

138 Compiler Guide

Symantec C++ Errors
C

I his appendix lists and describes error and warning messages
generated by Symantec’s C++ compiler. Use this reference to:

= Check or confirm that an error has been reported
= Discover possible causes for an error
= Discover possible ways to correct an error

Messages marked Warning indicate code that does compile but that
may not execute as you expect. This appendix lists messages in
alphabetical order.

Some descriptions contain a margin note that refers to sections in
The Annotated C++ Reference Manual by Margaret A. Ellis and
Bjarne Stroustrup, published by Addison-Wesley, Reading,
Massachusetts, 1990. These sections contain information that will
help fix your program.

Contents

Recognizing Compiler Error Messages 141

Error Message Types 14
Lexicalerrors 142
Preprocessor errors 142
Syntaxerrors 142
Warnings 142
Fatal errors 142
Internal errors 142

Symantec C++ Compiler Error Messages 143

Compiler Guide 139

C Symantec C++ Errors

140 Compiler Guide

Recognizing Compiler Error Messages

L 4
Recognizing Compiler Error Messages

When the compiler encounters a line in source code it can’t compile
or believes is incorrect, it usually prints the reason in the Compile
Errors window, as in the figure below, and continues compiling your
project.

=—————— (Compile Errors ="c0F07—D1——————

File “bullsegye.c”; Line 55
Ertor: “thelindow® has not been declared

File “bul IHindow.c*; Line 26

Figure C-1 Compile Errors window

To see the line described in the message, double-click the message,
or select it and press Return. If the error is in a source file, the
THINK Editor opens the file and selects the line, as in the figure
below. The THINK Editor keeps track of your edits.

" hliMenus.t ==———1]

kbt f

woid SetUpMenusCwaid?
{

| h=ertMenulapp | etenu = HewMenudapplelD, ™%

InsertHenulfi laeManu enMenudfilelD, "\pFile"h, 0O;
Ih=sertMenuladi tHanu ewMenudieditiD, "\pEdit"2», 0O3;
In=zertMenuiwidthMenu = HewMenuiwidthiO, "swpHidth"», 0O3;
OrawkenuBarC 3 ;

AddResHenu{app leMenuw, "ORUR" »;

= H
=H

Figure C-2 THINK Editor with incorrect line of code highlighted

Error Message Types

There are six error message types. Each message usually contains
specific information about the problem. The compiler normally lists
four errors of the preprocessor, syntax, or lexical types before
exiting. Use the Report all errors option to let compilation continue
to the end of the source file before exiting with an error.

Compiler Guide 141

C Symantec C++ Errors

142 Compiler Guide

Lexical errors

Lexical errors occur when the compiler encounters an unidentified
or incomplete token. While they do not terminate compilation
immediately, lexical errors do prevent the compiler from generating
executable code.

Preprocessor errors

Errors can occur in one of the preprocessing directives. While they
do not terminate compilation immediately, preprocessor errors can
prevent the compiler from generating executable code.

Syntax errors
While they do not terminate compilation immediately, syntax errors
can prevent the compiler from generating executable code.

Warnings

Warnings occur when the compiler finds a statement that is
legitimate but is probably not what you intended. Warnings are not
errors and do not terminate compilation or prevent the compiler
from generating code.

Fatal errors
Fatal errors terminate compilation immediately. A typical fatal error
occurs when the compiler runs out of memory.

Internal errors
Internal errors, a class of fatal error, take the following form:

filelline #

An assertion failure within the compiler generates this type of error.
The error number is useful only in designating where the error
occurs in the compiler code. The cause of this message may be an
error in source code that the compiler cannot handle intelligently or
a bug in the compiler itself. If your code generates this type of error,
report it to Symantec, even if your code causes the error. With this
information, Symantec can improve error reporting in future
releases.

Symantec C++ Compiler Error Messages

*

How to report an internal error
Before reporting an internal error to technical support, try to isolate
the error in a small program fragment. Use the following procedure:

1.

Place all included code into the main program body using
the Preprocess command on the Source menu.

. Find the approximate cause of the error by backtracking

and removing excess code to isolate a short program that
demonstrates the fault.

. Use mnemonic names for objects and variables in the

sample code. Code containing cl ass Base rather than
cl ass Hyperxytri sns59 is much easier for the
technical support staff to understand.

. If applicable, put the offending code in an #i f def

BUG .. #endif block.

. Write a comment header with the following information:

your name, telephone number, address, version of the
compiler, and the THINK Project Manager as well as any
other software involved, the nature of the problem, and
other relevant details.

A short bug report lets the technical support staff quickly find and
reproduce the problem.

Symantec C++ Compiler Error Messages

This list contains error messages that the compiler may generate:

‘identifier’ is a pure virtual function
The compiler cannot directly call a pure virtual function.

‘identifier is already defined
The object is already declared.

Compiler Guide 143

C Symantec C++ Errors

‘identifier’ is a virtual base class of ‘identifier

You cannot convert a pointer to a virtual base class into a pointer to
a class derived from it. Also, you cannot create a pointer to a
member of a virtual base class. For example:

class virtual class {
publi c:

int x;
b

class sub_cl ass :

virtual public virtual _class { };
void main()

virtual class *v;

sub_class *s;

int virtual class::*i;

S
|

(sub_class *) v;// error
&sub_cl ass: : Xx;

}

‘identifier’ is not a class template

The compiler expects to find the name of a class template but
doesn’t. If you are declaring a template member function, make sure
the function’s class name is a template. If you use a type of the form
f oo<bar >, make sure you declare as a template the class name
before the less-than sign.

‘identifier’ is not a constructor
See ARM 12.6.2 formore You can use a member initialization list only when you're defining

information. base constructors and member initializers. For example:
struct base { base(int); };
struct other { other(int); };
class sub : base {
sub(int); /1 A constructor.
sub2(int); /1 Just a nethod.

ot her o;

sub: :sub(int a) : o(a), base(a) { }// XK
sub: :sub2(int a): o(a), base(a) { }// ERROR

144 Compiler Guide

Symantec C++ Compiler Error Messages

See ARM 11.4 for more
information.

*

‘identifier’ is not a correct struct, union or enum tag identifier
The struct, uni on, or enumtag identifier includes invalid
characters or is already defined.

‘identifier’ is not a member of struct ‘identifier

The member identifier is not a member of this cl ass, struct, or
uni on. Make sure to spell the member name correctly and verify
that the member actually belongs to the st r uct with which you're
using it. If the member belongs to a different st r uct but you want
to use it with this st r uct anyway, cast the st ruct . Also check for
a class member function that is forward-referenced. For example:

class X /'l Forward reference
class Y { /1 Decl aration
void g();
[~ . . . *
b
class Z {
friend voi ERROR

d Xe:f();/1/
friend void Y::g();// XK
b
‘identifier is not a struct or a class

You can derive new classes only from a cl ass orastruct. Itis
not possible, for instance, to derive a class from a uni on.

‘identifier’ is not in function parameter list
The parameter identifier is not listed as a parameter to the function
in the function definition.

‘identifier’ is not a static variable
A static variable is not used as an argument to a static constructor
when required.

Compiler Guide 145

C Symantec C++ Errors

‘identifier must be a base class

When naming a member of a base class in a derived class
declaration, qualify the member with a base class identifier. For
example:

cl ass ot her;
cl ass base {

private:
[* . . . *
H
class sub : base {
publi c:
ot her:: a; // ERROR: other nust be a
[. . . * /] base cl ass of sub.
3

‘identifier’ must be a class name preceding ‘:’
The identifier before the double colon operator must be a cl ass, a
struct, or auni on.

‘identifier must be a public base class
When you use the syntax p- >class: : member, class must be a public
base class member of the class to which p is referring. For example:

class public_base {
publi c:
int x;

class other_class {

publi c:
int z;
s
class sub : public public_base {
[* . *
b
voi d main()
sub* s;
s->public_base::x = 1; I K
s->ot her _class::z = 1; /1 ERROR

}

146 Compiler Guide

Symantec C++ Compiler Error Messages .

See ARM 14.1 for more
information.

‘identifier previously declared as something else

You previously declared the identifier as another type. For example,
you may have used a function without declaring it, so the compiler
automatically declares it as a function returning an i nt . You cannot
then declare that function to be something else.

identifier storage class is illegal in this context
Check for one of the following:

= You declared a template outside the global scope.
= You declared a function argument st ati ¢ or ext ern.
= You used an aut o or r egi st er variable with global

scope.
regi ster int global;
/1 ERROR. Can’t declare gl obal
11 variabl e as register.
void f()
{

tenpl ate<class T> T ave(T* a, int size)

/1 ERROR Can’t declare tenplate
/1 in a function.

}
(= . . . =
}

number actual arguments expected for identifier
The compiler expects a different number of arguments for the
function or template. You may be using the function incorrectly, or
you may be calling a function with a variable number of arguments
without including its header file.

number exceeds maximum of number macro parameters
A macro has more than the allowed number of macro parameters.

‘" expected

The compiler expects a colon after a constant expression in a case
statement and after the keywords publ i c, pri vat e, and

pr ot ect ed in a class declaration.

Compiler Guide 147

C Symantec C++ Errors

148 Compiler Guide

‘.7 or ‘(" expected after class ‘identifier

The compiler expects two colons or an open parenthesis after a class
name in an expression. Casting, however, does not allow two
colons. For example:

cl ass x;
f=*(x*)y;

‘;” expected
The compiler expects a semicolon at the end of a statement.

‘1" expected
The compiler expects a close bracket at the end of an array
declaration or reference.

‘(" expected
The compiler expects the expression after the i f, whi | e, or f or
keywords to be enclosed in parentheses.

‘)’ expected
The compiler expects a set of parentheses to be closed. Check for a
pair of mismatched parentheses or a bad expression.

‘{” expected
The compiler expects an open brace.

‘} expected
The compiler expects a close brace.

‘{” or tag identifier expected
The compiler expects a tag name or an open brace to follow the
keywords st ruct, cl ass, uni on, or enum

‘=’ %7 or‘,” expected
A variable is declared incorrectly. A declaration must include an
equals sign, a semicolon, or a comma after the variable name.

cannot appear at beginning or end

The double-number sign operator cannot appear at the beginning or
end of a list of tokens. The operator must be placed between two
tokens. For example, a ## b.

Symantec C++ Compiler Error Messages

See ARM 14.1 for more
information.

See ARM 14.1 for more
information.

*

must be followed by a parameter
The number sign operator must appear in front of a macro
parameter. For example, #c.

‘#else’ or ‘#elif’ found without ‘#if’
More #el se or #el i f preprocessor directives appear than
preceding #i f, #i f def, or #i f ndef directives.

‘#endif’ found without ‘#if’

More #endi f preprocessor directives appear than preceding #i f ,
#i f def , or #i f ndef directives.

‘<’ expected
In a class or function template, the argument list must be placed
between angle brackets.

‘>’ expected
In a class or function template, the argument list must be placed
between angle brackets.

0 expected
A pure virtual function is declared incorrectly. The following is the
correct syntax:

class X {
virtual pure_virtual func() =0; // K
[* . ..

}

0 or 1 expected
Only binary digits can follow the characters Ob. No spaces should be
placed between the b and the number.

Compiler Guide 149

C Symantec C++ Errors

access declaration must be in public or protected section

See ARM 11.3 for more A class member’s access can change only if that class member is in a
information. public or protected section. For example:
cl ass base {
int a;
publi c:
int x;

class sub : private base {

base: : a; /1 ERROR
publi c:
base: : x; /[l OK x is public
}
a derived class member has the same name identifier
See ARM 11.3 for more A base member’s access cannot change when a derived class defines
information. a member with the same name. For example:

cl ass base {

publi c:
int x, vy;
/> . ..
b
class sub : base {
publi c:
void x();
base: : x; // ERROR sanme nane as Xx()
base: :y; Il K

alignment must be 1, 2, 4

The value for the alignment in a #pragma al i gn statement must
be 1, 2, or 4.

150 Compiler Guide

Symantec C++ Compiler Error Messages

*

already seen initializer for ‘identifier
Either more than one member-initializer for the identifier exists, or
more than one initializer for the base class exists. For example:

cl ass base {
int x;
base(int);

class sub : base {

base b;
sub(int);
sub: :sub(int a) : base(a+l), // XK
b(a*2), Il K
base(a-2) /1 ERROR

{ x=a; }

ambiguous reference to base class ‘identifier
This class has more than one base class, and it is not clear to which
the program is referring.

ambiguous reference to function
In calling an overloaded function, more than one definition of the
function matches the call. For example:

struct X {
X(int);

struct Y {
Y(int);
void f(X); [/ f() can take an argunment of
(I

void f(Y); either type X or type Y.
voi d main()

f(l); /1 ERROR: Anbi guous,

11 f(X(1)) or f(Y(1))?
fOX(1); /11 XK
f(Y(1)); /1 XK

Compiler Guide 151

C Symantec C++ Errors

See ARM 12.1 for more
information.

See ARM 13.4.7 for more
information.

See ARM 8.4.3 for more
information.

152 Compiler Guide

ambiguous type conversion
The compiler cannot find an unambiguous type conversion. For
example:

struct X {
operator int();
operator void*();

voi d main()
X X;
if (x) ; I/ ERROR
if o ((i t) X) I K
if ((void*) x) ; [/ X

}

argument of type ‘identifier to copy constructor
Copy constructors for class X cannot take an argument of type X.
Instead, use the reference to X.

argument to postfix ++ or -- must be int
Only declarations of the following form can declare overloaded
functions for the prefix and postfix operators ++ and - - :

operator ++() [l prefix ++X
operator ++(int) // postfix X++
operator --() [l prefix --X
operator --(int) // postfix X--

array dimension must be > 0
A negative number or zero cannot act as an array dimension when
you declare an array.

array of functions or refs is illegal
An array of pointers to functions, not an array of functions, can be
declared. For example, instead of this:

i nt (&x[lO])()
ERROR: an array of functions
// returning int

use this:

int (* x[10])();
/[l OK an array of pointers to
11 functions returning int

Symantec C++ Compiler Error Messages .

array or pointer required before ‘[’
The brackets operator can only follow an array or pointer identifier.

assignment to ‘this’ is obsolete, use X::operator new/delete
Avoid performing storage management by assigning to this. Instead,
overload the operators new and del et e.

Warning
Assigning to this is not part of the latest definition of

C++, and future compilers may not support it.

at least one parameter must be a class or a class&
An operator overloaded function that is not a class member must
have at least one parameter that is a class or class reference.

bad member-initializer for ‘identifier
A syntax error exists in the base class initializer for the class
identifier. For example:

struct base {
base(int);
struct sub : base {
sub(int);
int var;

H

sub::sub(int a) : base(a),, var(a) { }
/1l ERROR. Extra commma

binary exponent part required for hex floating constants

The exponent is missing from a hexadecimal floating-point constant.
A hexadecimal floating-point constant comprises an optional sign,
the Ox prefix, a hexadecimal significand, the letter p to indicate the
start of the exponent, a binary exponent, and an optional type
specifier. These are valid hexadecimal floating-point constants:

Ox1. FFFFFEp127f

0x1p- 23
-0x1. 2ACp+10

Compiler Guide 153

C Symantec C++ Errors

154 Compiler Guide

blank arguments are illegal
Arguments are missing from a macro reference that is defined to take
them. For example:

#defi ne TWCE(x) (x+x)

TWCE(10) // OK
TW CE() /| ERROR

‘break’ is valid only in a loop or switch
The br eak statement can occur only within a f or, whi | e,
swi t ch, or do/whi | e statement.

can only delete pointers
The del et e operator works only on pointers. Use del et e on a
pointer to an object and not the object itself.

can’t assign to const variable
A new value is assigned to a const variable. Remove the
assignment or remove the restriction from the variable.

can’t declare member of another class identifier
In a class declaration, a class name modifies a member function
name. For example:

class X {
void func_in_X();

s

class Y {
void X :func_not _in_X(); /1 ERROR
int func_in_Y(); [K

b

can’t handle constructor in this context
Having a constructor as a default function parameter is illegal. For
example:

class X {
publi c:
X(int);
void foo(X = X(1));// ERROR X(1) is a
11 constructor.

Symantec C++ Compiler Error Messages .

can’t have unnamed bit-fields in unions
Using an unnamed bit-field in a union is illegal. Use a named bit-
field or remove the bit-field.

can’t nest comments

Warning. Avoid nesting comments; it's easy to nest incorrectly and
accidentally comment out the wrong code. Instead, use #i f 0 and
#endi f to block out sections of code. Avoid crossing existing #i f .
For example, the following statements comment out the enclosed
code:

#i f

#endi f
can’t pass const/volatile object to non-const/volatile member
function
An object declared as const or vol ati | e is trying to call a

member function that is not. Declare the member function const or
vol ati | e, or remove the restriction from the object. For example:

struct A {
int regular_func();
int const_func() const;

s
voi d mai n()

const A const_obj;
A regul ar _obj ;

const _obj.regular_func(); /1 ERROR
const _obj.const_func(); [l K
regul ar _obj.const_func(); I K
regul ar_obj . regul ar_func(); Il K

Compiler Guide 155

C Symantec C++ Errors

156 Compiler Guide

can’t return arrays, functions or abstract classes

A function cannot return an array, function, or abstract class.
However, a function can return a pointer to an array, a pointer to a
function, or a pointer to an abstract class. For example:

typedef char ARRAY[256];
ARRAY func_returning_ array(); /| ERROR
ARRAY *func_returning_ptr_to_array();

I K

class X*func_returning_abstract _class();
Il K

can’t take address of register, bit-field, constant or string

You cannot take the address of a register variable, a bit-field in a
structure, a constant, or a string. Declare the object differently, or
avoid taking its address.

can’t take sizeof bit-field
It is illegal to use si zeof to determine the size of a bit-field
member of a struct.

cannot convert identifier* to a private base class identifier*
A pointer to a cl ass X cannot convert to a pointer to a private base
cl ass Y unless the current function is a member or a friend of X.

class Y {

ciass XY,
voi d f(void)

cl ass X*Px;
class Y*Py;
Py=(class Y *)Px;

Symantec C++ Compiler Error Messages

See ARM 8.5.3 for more
information.

*

cannot create instance of abstract class ‘identifier

An abstract class contains at least one pure virtual function by the
declaration vi rtual func() = 0. Itis illegal to declare objects of
such a class. For example:

cl ass abstract _class {

publi c:
virtual int func() = O;
int x, vy;
b
cl ass subclass : abstract_class {
publi c:
virtual int func() { return (x*2); }
int a, b;

voi d main()

subcl ass a; /1
abstract cl ass b; /1 ERROR
. ..

}

cannot define parameter as extern
ext ern is an illegal storage class for a function parameter.

cannot delete pointer to const
Using the delete operator on a const pointer is illegal. Remove the
const casting, or remove the delete operator.

cannot find constructor for class matching name

The compiler cannot find a constructor that matches the current
initializers. Use different initializers. Coerce some initializers so they
match those of a constructor, or define a new constructor. For
example:

struct X {
X(char *);

b

voi d main()
X a = 1L; /1 ERROR
X b = 3.1e20; /1 ERROR
X c = "hello"; Il K

Compiler Guide 157

C Symantec C++ Errors

See ARM 12.1 and 12.8 for
more information.

158 Compiler Guide

cannot generate identifier for class ‘identifier

The compiler cannot define a copy constructor X: : X(X&) for

cl ass X or an assignment operator X& oper at or =(X&) for

cl ass X for the class. If a class needs these methods, define them
explicitly.

The compiler cannot define an assignment operator if one of these
conditions is true:

= The class has a const member or base.
« The class has a reference member.

« The class has a member that is an object of a class with a
private operator=().

= The class is derived from a class with a private
operator=().

The compiler cannot generate a copy constructor if one of these
conditions is true:

= The class has a member that is an object of a class with a
private copy constructor.

= The class is derived from a class with a private copy
constructor.

cannot generate template instance from #pragma template identifier
The compiler cannot generate a template instance from the specifier
in the #pragma template directive. Include the template definition in
the program and spell the template instance correctly.

cannot have member initializer for ‘identifier
The constructor initializer can initialize only non-static members.

cannot implicitly convert

This expression requires the compiler to perform an illegal implicit
type conversion. To perform this conversion, explicitly cast the
expression.

Symantec C++ Compiler Error Messages

L 4
cannot raise or lower access to base member ‘identifier
See ARM 11.3 for more Access declarations in a derived class cannot grant or restrict access
information. to an otherwise accessible member of a base class. For example:
cl ass base {
publi c:
int a;
private:
int b;
prot ect ed:
int c;
b
class sub : private base {
publi c:
base: : a; Il K
base: : b; // ERROR can’'t nake b
11 accessi bl e
prot ect ed:
base: : c; Il K
base: : a; /1 ERROR can’t nake a
}; /1 i naccessi bl e

case number was already used
This value already occurs as a case within the swi t ch statement.

casts and sizeof are illegal in preprocessor expressions

A Symantec extension to ANSI C allows the use of the si zeof
operator and performs a cast in preprocessor directives. Turning on
the Strict ANSI conformance option on the Language Settings page
disallows use of these expressions in a preprocessor directive.

class name identifier expected after ~
A destructor is declared incorrectly. The proper name is
class::~class(). If the class is named X, its destructor is X: : ~X() .

code segment too large
The code contribution of one file exceeds 32K.

comma not allowed in constant expression
It is illegal to use a comma in a constant expression or to separate
numbers by commas or spaces.

const or reference ‘identifier needs initializer
Non-extern const declarations or references must be initialized.

Compiler Guide 159

C Symantec C++ Errors

160 Compiler Guide

constant expression does not fit in type
Each constant expression evaluates to a constant in the range of
representable values for its type.

constant initializer expected

When you are initializing a variable being declared, any nonpointer-
type initializer must be either a constant or the address of a
previously declared st at i ¢ or ext er n item. For example:

const float pi = 3.1415;

float a = 3.0;

static float b;

float w = a*2; // ERROR a isn't const
float x = pi*pi; [/ OK pi declared const
float *z = &b; /Il OKI bis static

‘continue’ is valid only in a loop
A cont i nue statement occurs out of context. Use it only within
for, whi | e, and do/whi | e statements.

data or code ‘identifier’ defined in precompiled header
Precompiled headers can contain only declarations, not definitions.

declarator for O sized bit-field
A bit-field must have a size.

‘default:’ is already used
The def aul t : statement appears more than once in a swi t ch
statement.

delete[] identifier not allowed for handle/Pascal class
You cannot use delete on an array of Pascal or handle-based objects.

different configuration for precompiled header

The precompiled header being used is precompiled with different
options. Precompile the header again with the current options or
check the current options for accuracy.

divide by 0
A constant expression tries to divide by zero or get modulo (%9 of
zero.

Symantec C++ Compiler Error Messages

See ARM 10.1 for more
information.

*

duplicate direct base class ‘identifier
When you are declaring a new class, the same class occurs more
than once in its list of direct base classes.

empty declaration
A declaration must declare at least a declarator, a tag, or the
members of an enumeration.

end of file found before ‘#endif’
Missing #endi f causes the compiler to reach the end of the file in
the middle of a conditional compilation statement list.

end of file found before end of comment, line number
A missing */ causes the compiler to reach the end of the file in the
middle of a comment.

end of line expected

Using the Strict ANSI conformance option on the Language Settings
page does not allow any text to follow the #endi f keyword, unless
the text is a comment. For example:

i fdef DEBUG
printf ("oops\n");
#endi f DEBUG /1 Not ANSI-conpatible

i fdef DEBUG
printf ("oops\n");
#endi f /| DEBUG /1l ANSI - conpati bl e

exponent expected

The compiler cannot find the exponent for the floating-point number
written. Do not put any white space between the e and the
following exponent.

expression expected
The compiler expects to find an expression but cannot. A missing
semicolon or close brace may cause this problem.

external with block scope cannot have initializer
Initializing a variable declared ext er n is illegal. Instead, initialize
the variable in the file where it is defined.

field ‘identifier must be of integral type
An inappropriate type occurs for a member of a bit-field structure.
Use signed/unsigned char, short, i nt, orl ong.

Compiler Guide 161

C Symantec C++ Errors

See ARM 14.1 for more
information.

162 Compiler Guide

filespec string expected
The compiler cannot find the filename string in an #i ncl ude
statement. Enclose the filename in double quotes or angle brackets.

forward referenced class ‘identifier cannot be a base class
A class must be declared before it can be used as a base class for a
new class. A forward declaration is not sufficient. For example:

cl ass A; /'l Forward reference for A
class B { /1 Declaration of B

int a, b, c;

void f();

class X : A{ /*...*/ };// ERROR Aisn't
/1 decl ared

class Y: B{ /*...*] };/] OK Bis
/1 decl ared

function ‘identifier’ has no prototype
The compiler cannot find a function prototype for this function. The
C++ compiler requires function prototypes by default.

function ‘identifier’ is too complicated to inline
Warning. A function declared as i nl i ne is too complex to compile
inline, so the compiler compiles it as a normal function.

function definition must have explicit parameter list

A function definition requires an explicit parameter list. It cannot
inherit a parameter list from at ypedef . For example, this
definition does not compile:

typedef int functype(int g, int r);

functype funky // ERROR: No explicit
{ paraneter |ist
return qg+r;

}

function expected

The compiler expects to find a function declaration but does not.
Check for mismatched braces, parentheses not preceded by a
function name, or a template declaration not followed by a class or
function declaration.

Symantec C++ Compiler Error Messages

See ARM 9.5 for more
information.

*

function member ‘identifier’ cannot be in an anonymous union
Anonymous unions cannot have function members.

global anonymous unions must be static
Anonymous unions must be extern or stati c.

hex digit expected
The compiler expects to find a hexadecimal digit after the characters
0x. Do not put any white space after the x.

identifier expected
The compiler expects to find an identifier, but finds instead another
token.

identifier found in abstract declarator
A type in a si zeof expression, t ypedef statement, or similar
place incorrectly includes a variable name. For example:

X sizeof (int a[3]);
/! ERROR a is a variable
/1 name.

sizeof (int[3]);
/1

x
1

identifier is longer than 254 chars
The maximum size of an identifier is 254 characters.

identifier or ‘(declarator)’ expected

The compiler expects to find a declaration for a static variable, an
external variable, or a function. If this error appears in a function,
see if there are more left braces than right braces.

illegal cast
It is illegal to cast an object to an inappropriate type. For example,
struct or uni on cannot be cast to other types.

illegal character, ascii number decimal
The source file includes a character outside a comment or string,
such as @or $, that is not part of the C character set.

Compiler Guide 163

C Symantec C++ Errors

illegal combination of types
Certain types cannot occur together. For example, you cannot
declare a variable to be a short |ong int.

illegal constuctor or destructor declaration

A constructor or destructor is declared incorrectly. For example, a
constructor may be declared as vi rt ual or fri end, a destructor
may be declared as f ri end, or a return value may be specified for a
constructor or destructor.

illegal operand types
The operands are of the wrong type. Cast the operands to the correct
type.

illegal parameter declaration
The parameter declaration is formed improperly. For example, an
old-style declaration may not declare one of the parameter’s types:

void f(x, y)
X; /1 ERROR: Left out the type.
int y; Il K
11
}

Another example is a declared function with a
#pragma par anet er that takes more than five arguments:

#pragma paraneter g(al, a2, a3, a4, ab, a6)

illegal pointer arithmetic

The only legal operations on pointers are adding or subtracting an
integer from a pointer; subtracting a pointer from another pointer;
and comparing two pointers with <, >, ==, <=, or >=.

illegal return type for operator->()

See ARM 13.4.6 for more oper at or - >() must return one of these:
information.
= A pointer to an object of the class that defines
operator->()

= A pointer to an object of another class that defines
operator->()

164 Compiler Guide

Symantec C++ Compiler Error Messages .

See ARM 9.4 for more
information.

= A reference to an object of another class that defines
operator->()

= An object of another class that defines oper at or - >()

illegal type for ‘identifier member
Variables cannot be of type voi d.

struct X {
voi d var; /1 ERROR
}

inherited function must be member of derived class
When using the inherited : : , the member being accessed must exist
in the first base class of the specified object.

initializer for static member must be outside of class def
Static class members must initialize outside the class definition. For
example:

class A {
static int a = 5;
// ERROR Can't initialize static

/1 class var in class def.
void f();
class B {
static int b;
void f();
iht B::b = 6;
[/ OK: Initialize static class var
/1 out si de cl ass def.

integer constant expression expected

An integer constant expression must occur in case statements; in
array size declarations; and in the #i f, #el i f, #exit,and #l i ne
preprocessor commands.

integral expression expected

An integer type must occur in case statements; in array size
declarations; and in the #i f, #el i f, #exi t, and #l i ne
preprocessor commands. For example:

float f;
f=f <<1;

Compiler Guide 165

C Symantec C++ Errors

internal error ‘filename’ line number

This indicates a defect in the Symantec C++ compiler. Please contact
Symantec technical support with details of this problem, including
the filename and line number reported.

invalid reference initialization

See ARM 8.4.3 for more Results from trying to initialize:

information.
= A vol ati | e reference to a const
= A const referencetoavol atil e
= A plain reference to a const orvol atil e
invalid storage class for friend
Friend functions cannot be virtual.
last line in file had no \n
Compiling with the Strict ANSI conformance option on means that
the last line of a source file must end with a newline character. A
backslash cannot precede the newline.
line number expected
The line number in the #l i ne directive must be a constant
expression.
linkage specs are “C”, “C++", and “Pascal”, not “identifier”
The compiler supports only the C++, C, and Pascal linkage types.
local class cannot have static data on non-inline function member
‘identifier
See ARM 9.4 for more A local class (that is, a class declared within a function) cannot have
information. a static data member or a non-inline function member. For example:
void f()
class local _class {
int a, b;
static int ¢; // ERROR Can't have /
/ static var in
/1 local class
void g(); /1 ERROR non-inline
Yol 12 /'l function
11
}
166 Compiler Guide

Symantec C++ Compiler Error Messages

*

Ivalue expected

The compiler expects to assign a value to an expression, such as a
variable. For example:

short short f(void);
short *pshort f(void);
voi d function(void)

short i;
short *p = & ;

/1l Operand of ++ must be an |val ue
7++; /1 NO
short f () ++; /1 NO
pshort f () ++; /1 NO

/1 Left operand of an assi gnnent
/1 must be an | val ue.

pshort f() =1i; // NO
*pshort f() =1i;// OK Produces an |val ue
(*p) ++; I oK
(*pshort _f())++// K
}
main() cannot be static or inline
See ARM 3.4 for more It is illegal to declare the function mai n() as static orinline.

information.
maximum width of number bits exceeded
This field can contain number bits. For example:

struct X {
char x:9; [// ERROR char is 8 hits
short y:17; // ERROR short is 16 bits
long z:33; // ERROR long is 32 bits

macro ‘identifier’ can’t be #undefd or #define'd
It is illegal to redefine or undefine this predefined macro.

Compiler Guide 167

C Symantec C++ Errors

malformed template declaration

See ARM 14 for more
information.

tenpl at e<cl ass T,

A template class or function is declared incorrectly. The following
are correct declarations:

int x> Il K

class vector {

T v[X];
publi c:
vector();

T& operator[](int);
[* ...

b

tenpl at e<cl ass T> /1
Ty

T ave (T x,

K

return ((T)((§<+y)/2));

maximum length of number exceeded definition
A macro was seen that was larger than the compiler’s internal buffer.

member ‘identifier’ can’t be same type as struct ‘identifier’
A structure cannot contain itself as a member, as in:

struct X {

struct X Xx;

member ‘identifier’ is const but there is no constructor
If a class has a const member, the class must also have a
constructor. Initialize a const variable only in the constructor, for

example:

class A {
const int
int vy, z;
void f();

class B {
const int
int vy, z;
void f();
B():

// ERROR. no constructor
X; /1 toinitialize x
X5

[/ OK: x can be

/1 initialized.

member ‘identifier of class ‘identifier is not accessible
A class member that is private or protected cannot be accessed.

168 Compiler Guide

Symantec C++ Compiler Error Messages .

member ‘identifier of class ‘identifier’ is private
Only a class function or a derived function of the class can use a
private member. For example:

cl ass super {
private:

int x;

int f();

class sub : super {
int g();

int super::f()

return (x++); [/ OK B::f() is a
/1 menber function
int sub::g()
return (x++); [/ ERROR sub::g() is a
/1 menber function
/1 of a derived
/1 cl ass
mai n()
super s;
s.X = 3; /] ERROR nmain() isn't a
return O; /1 menber function
} /1 or a friend
/1 function

member functions cannot be static

If you use the ANSI conformance option, you cannot declare a
member function to be static.

must be void operator delete(void * [,size_t]);

The improper prototype occurs when the del et e operator for a
class that uses the C++ model is overloaded. The prototype for an
operator delete overload must be either:

voi d operator delete(void *); [l K

or

voi d operator delete(void *,size t);// K

Compiler Guide 169

C Symantec C++ Errors

must be void** operator delete(void**)

You can override new and del et e for Pascal classes, but the
overridden functions have different arguments from those for other
classes. Pointers are of type voi d**, not voi d*.

new identifier [], not allowed for handle/Pascal class

You cannot allocate an array of Pascal or handle-based objects using
new.

must use delete[] for arrays

See ARM 5.3.4 for more To delete an array a, use this statement:
information.
delete[] a; /] XK

and not

del ete a; /'l ERROR

no constructor allowed for class ‘identifier
The class includes a variable with the same name as the class. This
prevents the use of a constructor that must have that name.

no definition for static ‘identifier’
A static function was declared but never defined.

static void f(void);
void g(void)
§ f();

no instance of class ‘identifier’

You get this error message for attempting to reference class members
in a class static function.

no identifier for declarator
An identifier is missing from this declaration. For example:

void f(char [3]) // ERROR No identifier
{

11
}
int [3]; /1 ERROR. No identifier
int a[3]; /] OK ldentifier is a

170 Compiler Guide

Symantec C++ Compiler Error Messages

*

no instance of class ‘identifier for member ‘identifier
It is illegal to attempt the following:

= Call a nonstatic member function without using an
instance of the class

= Access a nonstatic data member without using an instance
of the class

« Define a nonstatic data member outside a class
However, it is legal to attempt the following:

= Call a st ati ¢ member function without an object
= Access a st ati ¢ data member without an object
= Define a st ati ¢ data member outside a class

For example:

struct CLASS {
static void static_func();
voi d nonstatic_func();

static int static_data;
int nonstatic_dat a;

H

int CLASS.:nonstatic_data = 1; /'l ER
int CLASS: :static_data = 1; [l K

ROR
voi d main()
CLASS obj ect;

CLASS:. : nonstatic_data;// ERROR
obj ect.nonstatic_data;// K

>S5
~—
I

m
Py}

CLASS: : nonstatic_func(); ROR

11
CLASS: :static_func(); [K
obj ect. nonstatic_func(); [K

}

no match for function ‘identifier
The function is overloaded and the compiler cannot find a function
that matches the call.

Compiler Guide 171

C Symantec C++ Errors

See ARM 8.4.3 for more
information.

172 Compiler Guide

no return value for function ‘identifier
A function has a return type other than voi d, but it has no return
statement or has a path by which it doesn’t return. For example:

int f()

if (x)
return (1);

}

no tag name for struct or enum

Warning. If ast ruct or an enumdoes not have a tag name, further
objects of this type cannot be declared later in the program. Give
every st ruct and enuma tag name so the compiler’s type-safe
linkage system can use it.

non-const reference initialized to temporary

Warning. In most cases, this message means that a temporary occurs
and the warning initializes the reference to that temporary. Since the
reference is not const , the referenced temporary may change its
value.

However, this message becomes an error when the Strict
ANSI conformance option on the Language Settings page is set.

not a struct or union type

The type of object preceding the object member operator selector
(.) or the pointer to object selection (oper at or ->) is not a

cl ass, astruct, oraunion.

not an overloadable operator token
You cannot overload these operators:

. V¥ - ?: si zeof
#i#t
not in a switch statement

It is illegal to use a case or def aul t statement outside a swi t ch
statement.

number ‘number’ is too large
The number is too large to be represented in an object with | ong
type.

Symantec C++ Compiler Error Messages

*

number is not representable
The compiler cannot represent a numeric constant because of the
constraints listed in the following table:

You cannot represent... Ifitis...
Integer Greater than ULONG_MAX
(inlimts.h)

Floating-point number Less than DBL_M N or
greater than DBL_MAX
(infloat.h)

Enumeration constant Greater than | NT_MAX
(inlimts.h)

Octal character constant Greater than 255

Table C-1 Unrepresentable numbers

object has 0 size
The compiler does not allow objects of zero size. Trying to subtract
two pointers that point to zero-sized objects causes division by zero.

octal digit expected
The compiler expects that a number with a leading O is an octal
digit. Using an 8 or a 9 is illegal.

one argument req’d for member initializer for ‘identifier

Member initializers in which the member lacks a constructor must
have exactly one parameter because the member is initialized by
assignment.

only classes and functions can be friends
It is legal to declare other classes or functions f ri end only when
declaring a function within a class.

only one identifier is allowed to appear in a declaration appearing in
a conditional expression

When declaring identifiersini f, for, whil e, and swi tch
statements, only one identifier is allowed.

Compiler Guide 173

C Symantec C++ Errors

See ARM 11.3 for more
information.

174 Compiler Guide

only pointers to handle based type allowed
You cannot declare an instance of a handle object or Pascal object.
For example:

cl ass x__Pasobj

{
}
Xy,

operator functions ->() and [] must be non-static members
It is illegal to declare as static these operators:

< The pointer to object selection operator (- >)
< The function call operator (())
« The array operator ([])

operator overload must be a function
It is illegal to declare an overloadable operator as a variable. For
example:

struct X {
i nt operator<<; /1 ERROR

out of memory
The compiler is out of memory. Try the following:

= Break the file or function into smaller units
< Increase the partition size for the THINK Project Manager
< Close any open windows in the editor

overloaded function ‘identifier’ has different access levels
It is illegal to adjust the access of an overloaded function that has
different access levels. For example:

cl ass base {
publi c:

void f(int);
private:

void f(float);

cl ass sub : base {
base: : f; /[l ERROR f() is
11 over | oaded.

Symantec C++ Compiler Error Messages .

overloading type conversion or operator function not allowed
Pascal object classes do not allow overloaded functions or operators.

parameter list is out of context
Parameters in a function definition are illegal and are discarded. For
example:

int f(a, b); /1l ERROR
int g(int, int); I K
int h(int a, int b); // XK

parameter lists do not match for template ‘identifier
The parameter list for the template instantiation does not match the
formal parameter list for the class definition.

tenpl ate<class T, int size> class vector;
tenpl at e<cl ass T, unsigned size> cl ass
vect or; /1 no {}
vector<int, 20> x; // K
vector<float,3.0> // ERROR 3.0 is not an
/1 int.
Pascal object class expected
You cannot use C++ virtual functions in a code resource.

pointer required before ‘->’, *->*’ or after ‘*’
These operators can apply only to pointers. The operators - >, - >*
and the operator * must be used with a pointer.

pointer to member expected to right of .* or ->*
The identifier after . or - >* must be a pointer to a member of a
class orstruct.

pointers and references to references are illegal
You cannot declare a pointer or reference to reference type, as in:

int & & a;

Compiler Guide 175

C Symantec C++ Errors

possible extraneous ;’

Warning. The compiler finds a semicolon immediately after ani f ,
swi t ch, or whi | e statement and executes the next statement,
regardless of whether the test evaluates to true or false. For example:

int x=1, y=0;

if (x==y); /1 WARNI NG Extra
printf("x==y\n"); // semicolon. printf()
/1 always execut ed.

if (x==y) Il K
printf("x==y\n");

If you want a semicolon, suppress the warning by putting white
space, such as a space or a return, between the close parenthesis
and the semicolon.

while (fread(file)==unwanted_dat a)
; [/ OK: semicolon is
/1 i ntenti onal

possible unintended assignment

Warning. The assignment operator (=) instead of the equality
operator (==) appears in the test condition of ani f orawhil e
statement. For example:

if (x=y) {. . .} /I WARNING x=y 1is an
/11 assi gnnent

instead of
if (x==y) {. . .} /] OK x==y is a test

Test the value of the assignment explicitly, like this:

if ((x=y) '=0) {. . .} _

Il OK (x=y)!=0is a test
The compiler produces identical code for the first and third
examples.

pragma parameter function prototype not found
This error occurs when a #pr agna parameter is not followed by
the function declaration.

176 Compiler Guide

Symantec C++ Compiler Error Messages

*

premature end of source file

A string that is missing a close quote or a comment that is missing a
* | causes the compiler to reach the end of the file while processing
a function.

prior forward reference class identifier must match handle/Pascal
class type

This error occurs when there is a mismatch between a forward
declaration of a class and a definition, as in:

cl ass x;
class _ pasobj x {

}
prototype for ‘identifier should be identifier
A function of the form: func(s) short s; { ... } should be

prototyped as:
func(int s);

rather than:
func(short s);

pure function must be virtual
Pure member functions must be declared as vi r t ual , like this:

class B {
virtual void f() = 0; I K
void g() = O; /1l ERROR

Compiler Guide 177

C Symantec C++ Errors

qualifier or type in access declaration
See ARM 11.3 for more It is illegal to specify a storage class or type when adjusting the
information. access to a member of a base class. For example:

cl ass base {

publi c:
int b, ¢, d;
int bf();

class sub : private base {

int e;
publi c:
base: : b; Il K
i nt base::c; /'l ERROR
static base::d; /1 ERROR

redefinition of default parameter

It is illegal to redefine the default argument for a parameter even if it
is redefined to the same value. For example:

/1l Prototyping the function.
int f(int, int=0);

/1 Defining the function.
int f(int a, int b=0)// ERROR Can’'t
/'l redefine default
return g(a,b); /1 argument, even to
/1l the same val ue.

The line given for the error is sometimes past the close brace of the
body of the function.

return type cannot be specified for conversion function

See ARM 12.3.2 for more It is illegal to specify the return type of a conversion function. For
information. example:

class X {
char* operator char* (); /1 ERROR
operator char* (); [l K

returning address of automatic ‘identifier
This results in an invalid pointer beyond the end of the stack. When

the function returns, the caller receives an illegal address that can
cause a bus error.

178 Compiler Guide

Symantec C++ Compiler Error Messages

*

should be number parameter(s) for operator

The incorrect number of arguments appears in a declaration of an
overloaded operator. The function call operator () is n-ary; it can
take any number of arguments.

size of identifier is not known
It is illegal to use a st ruct or an array with an undefined size. For
example:

struct x {
int a[]; /1 ERROR
Y |

b

struct y {
int a[100]; Il K
/* . ..

b

statement expected

The compiler expects a statement but does not encounter one. A
missing comma or semicolon or a label without a statement can
cause this error. For example:

while (TRUE) ({
...
i f (done) goto endl;
...
endl:
} /] ERROR. No statement after
/1 | abel .
while (TRUE) ({
. ..
i f (done) goto end2;
...
end2:
; /1 OK Null statement after |abel.
}

static function ‘identifier’ cannot be virtual
Static member functions of classes cannot be virtual.

static or non-member functions can’t be const or volatile

It is illegal to declare a static cl ass member function or a
nonmember class function as const or vol atil e.

Compiler Guide 179

C Symantec C++ Errors

static variables in inline functions not allowed
It is illegal to declare a static variable within an inline function.

storage class for ‘identifier can’t be both extern and inline
It is illegal to use the inline type specifier for a function declared
external.

string expected
The compiler expects to encounter a string but cannot find one.
Check for an #i dent directive not followed by a string.

template-argument ‘identifier must be a type-argument
See ARM 14.4 for more In a function template, template arguments must be type arguments.
information. Unlike class templates, function templates cannot have expression
arguments. For example:

tenpl ate<class T, int x> foo(T vy)
/1 ERROR X is an expression argunent.

{
return x+y;
}
template-argument ‘identifier not used in function parameter types
See ARM 14.4 for more When you define a function template, every template argument in
information. the template’s argument list must appear in the function’s argument

list. For example:

tenpl at e<cl ass T1, class T2>

int bar(T1l x) /[l ERROR T2 isn't in
11 function's
T2 v; /1 argunent |ist.
..

}

too many characters in character string
The character literal has more than four characters. Try splitting the
literal into two or more smaller ones. For example:

'1234" K

char a /1
'12345' ; /1l ERROR Too big

char b

too many initializers
The item contains too many initializers. For example:

char a[3]="hello";// ERROR
char c[3]="hi" Il K

180 Compiler Guide

Symantec C++ Compiler Error Messages

*

trailing parameters must have initializers
Parameters with default initializers must occur at the end of a
parameter list. For example:

int f(int, int=1, int=0); // K
int g(int=0, int=1, int); // ERROR
int h(int=0, int, int=1); // ERROR

type conversions must be members
It is illegal to declare a type conversion function outside a class.
Declare it inside a class.

type is too complex

The compiler appends information regarding parameter and return
types to the end of a function name. With this information added,
the identifier exceeds the compiler's maximum of 1024 characters.

type mismatch

This error is either a syntax error or a warning message. The
compiler expects to find one data type but finds another. More
information about which types it expects and what it finds follows
this message.

type must be void *operator new(size_t [,..]);

The wrong prototype appears when the new operator for a class that
uses the C++ model is overloaded. When operator new is
overloaded, it must have a return type of voi d * and take a first
argument of si ze_t . The compiler automatically sets the value of
the first argument to be the class size in bytes.

type must be void **operator new(Pascal void (*) (), size_t)

You can override new and del et e for Pascal classes, but the
overridden functions have different arguments from those for other
classes. Pointers are of type voi d**, not voi d*, and new has an
additional (leading) parameter of type pascal void (*) ().

type of ‘identifier does not match function prototype
The arguments of the function do not match the prototype
previously given.

Compiler Guide 181

C Symantec C++ Errors

182 Compiler Guide

undefined escape sequence
The compiler recognizes only the following escape sequences in a
string or character constant:

This Represents...

sequence...

\' Single quote

\ " Double quote

\? Question mark

\\ Backslash

\a Alert (bell)

\b Backspace

\ f Form feed

\n Newline

\r Return

\t Tab

\v Vertical tab

\ X XXX The character specified with the hexadecimal number
\ 000 The character with the octal number

Table C-2 Defined escape sequences

undefined identifier ‘identifier
Itis illegal to use an identifier without declaring it. Spell the identifier
correctly.

undefined label ‘identifier

A label must be defined for the got o command to go to. Spell the
label correctly and make sure the label appears in the same function
as the got o.

undefined tag ‘identifier
The structure or union is not defined.

undefined use of struct or union
It is illegal to use operators, such as arithmetic or comparison
operators, on a struct, cl ass, or uni on.

union members cannot have ctors or dtors

A union cannot contain a member that is an object of a class with a
constructor or a destructor.

Symantec C++ Compiler Error Messages .

unrecognized pragma

This error occurs when a #pr agma is seen that the compiler does
not recognize. It is a warning when using #pr agnma xxx and an
error when using #pragma sc XXX.

unrecognized preprocessor directive ‘#identifier
The compiler does not support the specified preprocessor directive.

unrecognized token

The compiler does not recognize the token as valid. Check for an
extra U or L suffix in an integer constant. It is illegal to use $ and @
in identifiers.

unterminated macro argument
A macro argument is missing a close quote or parenthesis.

unterminated string
A string is missing a close quote, or a file contains a lone quote
mark.

use delete[] rather than delete[expr], expr ignored

Warning. This syntax for deleting an array of objects is outdated,
although the current version of the compiler supports it and ignores
expr:

del ete [expr] p; /1 WARNI NG obsol ete

New code uses this syntax instead:

delete [] p; Il K

using operator++() (or --) instead of missing operator++(int)
Warning. Itis illegal to use the postfix increment (or decrement)
operator on an object of a class, such as x++, without overloading
the postfix operator for that class. However, the prefix operator is
overloaded. The compiler uses the prefix version of the operator.

To overload the postfix increment operator x++, use
oper at or ++() . To overload the prefix increment operator ++x,
use operat or ++(int).

value of expression is not used

Warning. It is illegal to compute an expression without using its
value, such as the equality operator (==) instead of the assignment
operator (=). For example:

Compiler Guide 183

C Symantec C++ Errors

184 Compiler Guide

X==y; /1 WARNI NG The val ue of x
11 doesn’ t change.
X=Y; /'l OK x and y have same val ue.

Failure to assign the result of a computation to a variable can also
cause this error. For example:

t-5; WARNI NG Result of this

/1

/1 conputation is |ost.
X=t-5; [/ OK: x contains the result.
t - =5; // OK: t contains the result.

variable ‘identifier used before set

Warning. The optimizer discovers that a specified variable appears
before it is initialized. The program may generate inexplicable
results.

vectors cannot have initializers

It is illegal to initialize a vector of objects with a constructor that has
an argument list.

very large automatic

Warning. Large automatic variables can cause stack overflow.
Dynamically allocate the memory with a function such as

mal | oc() .

voids have no value, ctors and dtors have no return value

It is illegal to return a value from a constructor, destructor, or
function declared voi d or a reference to a voi d. It is also illegal to
use the value of a constructor, destructor, or function declared voi d.

‘while’ expected
The keyword whi | e is missing from the end of a do/ whi | e loop.
For example:

do {
x = f(y); o _
} (x!=0); /1 ERROR missing while.
do {
x = f(y);
} while (x!=0); Il K

Index .

Entries in boldface are menu commands. Entries in t ypewri t er
f ace are functions, methods, variables, keywords, or files.

Numeric/Symbol blank 154

. . see also type
4-byte IEEE single precision format vectors 35

8-byte I’EEE double precision format ARy;BgmL%:giezéZ&lSS

72,73, 127
10-byte SANE extended precision 32421 gt?ﬂgctﬁ;g?sni?g ts 125

format 72, 73, 127 inati
12-byte MC68881 extended precision gjglftﬁﬁnzna?nzfﬁg}'r}iﬁg gg
format 72, 73, 127 4.1 Integral Promotions 131
#pragmas 4.2 Integral Conversions 131
see pragmas 4.3 Float and Double 132
#pragma directive 4.4 Floating and Integral 132
see pragmas 5.0 Expressions 132

A 5.2.4 Class Member Access 133
. 5.3.2 Sizeof 133

address register 80 533 New 133

addressing n

5.4 Explicit Type Conversion 133
5.6 Multiplicative Operators 133
5.7 Additive Operators 134

A5 relative 98
PC relative 98

a:iases 68 98 5.8 Shift Operators 134
a 'g?g‘.e?f[ds 114 7.1.6 Type Specifiers 134
Of It I%I S 20 7.2 Enumeration Declarations 135
of variables ‘ |7 7.3 ASM Declarations 135
Ann%tgtelcizg+13R§ erence Manual /, 7.4 Linkage Specifications 135
! ' 9.2 Class Members 135
see also ARM conformance g
ANSI dard 9.6 Bit-Fields 136
standar 123 12.2 Temporary Objects 136
gor?tmlttez tor C+ 45. 94 16.4 File Inclusion 137
raft standard for C++ 49, 16.5 Conditional Compilation 137
extensions, restrictions on 73 16.8 Pragmas 137
relaxed conformance to 75, 95 16:10 Predefined Names 137

strict conformance to 45, 73-75, array 70, 84, 87, 134, 152
94-95, 159, 161 see also vector
Iso ARM conformance

see a assembly code 52, 135

argument 55, 147, 178 auto-make facility 3, 47, 48, 51

Compiler Guide 185

Index

186 Compiler Guide

B

bit-field 114, 136, 155, 160
boundary
byte 70, 77, 98, 126
long word 126
word 70, 126
breakpoint 27, 28, 29, 30, 34, 35, 39,
40, 41
bug alert 48

C

C
compiling 45
translator 16
C++
arguments 115-116
calling functions 115-117
“implementation-defined” aspects
of 123
learning 3, 7
libraries 4, 18. see also library
return values 117
template mechanism in 32-41
translator 16
C++ Programming Language, Second
Edition 7, 25, 123
callback routine 118
calling
C++ functions 115-117
conventions 113. see also the
names of arguments
Pascal functions 118-122
char 35, 96, 113, 114, 116, 117,
120, 121, 122, 126
character
constants 125
literals 74
class(es)
calling conventions regarding
135-136
defining 82
indirect 87
libraries. See library
member
access 150
alignment 70
initialization 165
virtual 83-84
menu 60

nested 67
sorting 43
types of
base 115, 146, 156
container 32
local 166
Pascal Object 81-84
template 32, 37
vector 38, 39, 41
code
assembly 52, 135
disassembling 53
for debugging 104-105
generation 32, 34, 35, 37
optimization 96-97, 99-103
porting 111-122
profiler routines 104
size 71, 159
comments, nested 107, 155
common subexpression elimination
(CSE) 101
compiler
eIror messages. see error messages
and warning messages
internal limits 71
options 93-110
code optimization 96-97,
99-103
compiler settings 96-99
debugging 104-106
language settings 94-96
prefix 110
warning messages 106-110
compiling
files already in the project 47
files not in the project 47
const violations 114-115, 133, 154
constructor 83, 133, 144, 154, 157,
158, 168, 173
coprocessor 97
copy constructor 113, 116, 152
custom allocator 83

D

data definitions 115
database
10Streams Reference 3
Standard Libraries Reference 3
debugger
source-level 27, 37, 59

E
*

debugging 70, 88, 104-105
global optimizer, use in 99
programs using handles 88
see also debugger
declaration 134-135
asm135
enum74, 135
destructors 83, 164
dialog
Save As 15
Standard libraries 18
Symantec++ options 48, 81,
91-110
THINK Project Manager options
21, 27, 28, 53
Update 21
directive
see pragmas
doubl e 72,97, 113, 114, 116, 117,
121, 122, 127
double-precision floating-point 72,
73, 127

E

enumeration constant 95, 113, 173
enuml13, 114, 116, 117, 120, 121,
122
prototyping 113
error messages 16, 139-184
error reporting 105
escape sequence 182
exception handling 67
extended precision floating-point 72,
73, 127
extensions
object-oriented 81-84
removing 73
to the C++ language 94
see also ARM conformance

F

Finder 4
float 35,72, 113, 114, 116, 117,
121, 122, 127
floating-point number 72-73, 153
parts of 72
size limits for 72, 173
folder
Denos 25
Devel opnent 12, 25

Mac #i ncl udes 48, 51

Onl i ne Docurnentation 3

parentheses used with names 68

Proj ects 12

referencing 67

shielding 68

St andard Li braries 17,18

Symantec C++ for
Maci nt osh 17, 18

function

as argument 118

const member 114, 115

debugging 33

defining with files 55

friend 166

generic 32

inline 27, 28-31, 38, 79, 89, 104,
105, 162

mai n() 126, 167

operator 83

pointers to 70, 74

prototypes for 113, 115

returning pointers 156

stack frames in 81

template 32, 33, 37. See also
template

varargs 113

vectors as arguments 35

virtual 83, 115, 143, 157, 177

writing new sort 43

G
global optimizer 99

H

handle
converting to pointer 85
dereferencing 84-86, 88
in debugging programs 88
Macintosh 81, 84-88
memory 86-88
header file 30, 33, 126
aliases and 68
directives in 77-81
once-only 67-68
rules for finding in Symantec C++
67-69, 137
see also precompiled header
hexadecimal 74, 153
high-order bit 131

Compiler Guide 187

Index

188 Compiler Guide

identifier 125
length of 67
see also Appendix C
IEEE floating-point representation
72-73, 127
#i ncl ude files 48-52
#i ncl ude statement 38, 51, 52, 67,
68, 71, 78, 110, 137
inline function 27, 28-31, 38, 79, 105
and stack frames 104
debugging 28-31
declaring 28, 89, 162
inline specifier 28
Inside Macintosh 7, 86, 97, 118
inspector 4, 57-64
adjusting window pane size with
63

Classes menu 60
Debug menu 27
Edit menu 60
features of 59
File menu 14, 15, 22, 27, 60
Inspect menu 59, 60
Options menu 93
Project menu 21, 22, 27, 29, 35,
39, 59
Source menu 16, 17, 18, 20, 35,
39, 47,51, 53, 143
vs. debugger 57
window 62
Windows menu 39
instantiation file 33, 37-41
i nt 35,95,113,114, 116,117,121,
122, 125
integer
long 72, 126
overflows 132
representation of 72, 173
see also type
short 72, 126
signing 72, 126, 131
integral
conversions 131
promotions 131

J

jump table
entry 55
pointer 69

K
keyword

asm73

cdecl 73

_cdecl 73

cl ass 81, 86

_fortran73

_handl e 73

_inf 73

inherited 74, 89

_machdl 74, 84, 86, 114

_nhan 74

_nans 74

pascal 55, 74, 118-122

_pascal 74

_pasobj 74,81, 114

struct 81,86, 98,114,115, 116,
117, 120, 121, 145, 156, 168

see also ARM conformance

L

library
adding to projects 17-21
loading 21
ANSI++ 18, 19, 21
Complex 4
CPlusLib 18, 19, 21, 70
10Streams 4, 18, 19, 21
linking applications 23
link
errors 17
map 52, 53
local frame pointer 69
LoMem h 51
| ong doubl e 72, 113, 114, 116,
117, 121, 122
long int 95
loop 101, 102, 107, 154

M

MacHeader s++ 48-52, 110
Macintosh
handle 84-88. see also Toolbox
macros
defining for whole project 110
predefined 74, 76-77, 167
expansion, in preprocessor 52
MacsBug 55, 59, 105
mai n() function 126, 167
MC68020 97, 98

N

MC68030 97

MC68040 97

MC68881 97

MC68882 97

MC68881 extended precision format
72,128

MC68881 floating-point unit 97, 128

MC68882 floating-point unit 97, 128

messages. see error messages and
warning messages

modulo operations 97, 134

MPW Pascal 81

N

_new_handl er variable 70-71
newline 74, 166
noninteger expression 75

@)

object
C++ pointer-based 59
code 16, 34, 39, 47
dummy 82
files 47
hierarchy 81
inspector. see Inspector
nesting of types 59
Object Pascal 59, 81-84, 114
size 20
temporary 136
octal character constant 173
once-only headers. see header file
operator
<< 17,18, 134
>> 42,134
> 42,149
<149
+42
-42
< 74
I>74
<> 74
++ 108
-- 108
/133
% 134
148
#149
[153
option
8-byte doubles 72, 97

*

Always generate stack frames 81,
104

Always save session 27

Constant propagation 102-103

Copy propagation 103

Create loop induction variables
102

CSE elimination 101

Dead assignment elimination
99-100

Dead variable elimination 100

Enable warning messages 106

enums are always ints 74, 95

Far CODE 76

Far DATA 76

Empty loops 107

Generate 68020 instructions 96-97

Generate 68881 instructions 72, 97,
117

Generate link map 53

Generate MacsBug names 105

Generate profiler calls 81, 104

Hoist very busy expressions 101

Loop until can't optimize 103

Missing overloads for ++ & -- 108

Nested comments 107

Old style delete [] 108

Optimize for space 101

Optimize for time 101

Place string literals in code 98

Read each header file once 95

Reference initialization 108

Relaxed ANSI conformance 75, 95

Remove loop invariants 101

Report all errors in a file 48, 105,
141

Report the first few errors 48, 105

Return address of auto 109

see also the names of option
dialogs

Smart link 23

Stop at first error 48, 105

Strict ANSI conformance 73-74, 95,
159, 161

Treat chars as unsigned 96

Unrecognized pragma 109-110

Unused expressions 107

Use function calls for inlines 28,
31, 81, 105

Use 881 for transcendentals 97

Using = in conditionals 106-107

Variable used before set 109

Compiler Guide 189

Index

190 Compiler Guide

optimization 99-103
global optimizer 99
optimizer 86, 99

P

padding 98
parameter
list 145
non-var 118
number of for functions 117
pascal routines 113, 118-120
Pascal
arguments 120
calling conventions 55, 113,
118-122
Object classes 59, 81-84, 114
pointer 82, 84-88, 113, 116, 117,
118, 121, 122
array of 152
conversions from handles 85
conversions from integral types
133
conversions to virtual base classes
144
deleting 154
operators used only with 175
portability 84, 86, 89, 97
porting
code 111-122
from MPW C++ 113-115
pragmas 32, 33, 77-81, 109, 137
#el i f preprocessor 149
#el se preprocessor 149
#endi f preprocessor 149, 161
#if 149
#i f def 149
#i f ndef 149
#i ncl ude preprocessor 67
align 77,150
message 80
nor et ur n(function-name) 80
once 67, 79, 95
par anet er 79, 89
SC option 67-68, 77, 95
tenpl ate 77
tenpl at e_access extern 38,
78-79
tenpl at e_access private
78-79
t enpl at e_access public 38,
78-79
tenpl at e vect or <char> 38

trace of f 81
trace on 8l
pragma directive
see pragmas
precompiled header 48-52, 79, 115,
160
benefits of 48
data definitions in 115
MacHeader s++ 48-52, 110
numbers used 52
preprocessor
errors 142
line 74
output 52
symbol 48
project
building from scratch (tutorial)
9-24
compiling files in 47
compiling files not in 47
folders, placement of 69
options for 93-110
macros, defining for 110
prefix 48-49, 52
running 21-22
segmenting 19-20, 53
turning into application 22
type 76
updating 21-22
using aliases for files 68
using built-in project models 11
propagation
constant 102
copy 103
prototype 80, 113, 115

R

radio button 48
register
parameters passed in 79, 89
reuse of 99-100
variables 69. see also variable
resource file 68
return value 79, 109, 117
rounding mode 132

S

SANE extended precision format 72,
73,127, 128

scope
public 38, 75
static 38, 75

segment, of project 19-21, 53

shielding folder 68

short 113,114,119,120, 121,122,
125

short doubl e 97

short int 95,125
sorting 43
source
code 34, 39, 40, 99
files

assembly code produced by 52
automatic inclusion of text in
110
changing 22
compiling 16, 47-48, 70
creating 14-16
debugging 33
disassembling 53
editing 4
errors in 48
functions in 29
hiding 68
link map 52, 53
loading headers into 52
names of 47
preprocessor output of 52
referencing header files 67
reporting of errors in 105
templates in 77-78
syntax, checking 47
window 30, 37, 39
stack
cleaning arguments off of 115, 120
frames 104, 105
pointer 69
pushing functions on 115
Standard conversion 131-134
Standard Libraries Reference 72
static member functions 114
stepping
into an inline function 28
storage allocation 86
stream variable
cout 17, 18, 22
string literal 98, 125
struct 81, 86, 98, 114, 115, 116,
117, 120, 121, 145, 156, 168
structure alignment 98, 114
subscript 41

Symantec C++
automatic inclusion of
MacHeader s++ 48-52
building applications (tutorial)
-24
calling conventions in 113
capabilities, list of 3
compatibility with MPW C++ 113
compiling 45-56
debugging 4
error messages 139-184
extensions, removing 73-75
hardware requirements 4
identifier length allowed by 67
implementation of C++ 67,
123-138
integral promotion 131
memory requirements 4
options dialog 48, 81, 91-110
optimization of code 99-103
porting of code to 111-122
reports 52-55
rules for header files 67-69
running programs 4
templates, use with 25-44
translator 76
syntax 47, 67, 74, 142
SysEqu. h 51
System 6, 4
System 7, 4

T

tag name 172

template
class 33, 144
expanding 77-78
instantiating 32-33, 37, 77-78
simple 33, 35, 37
using and debugging 32-41

THINK environment 3

THINK Inspector. See inspector

THINK Project Manager
auto-segmenting projects 21
options dialog 21, 27, 28, 53
text editor 15
tree. see tree

THINK Reference 3, 7

THINK tree. see tree

Toolbox 4, 87, 118

TMON 105

Compiler Guide 191

Index

192 Compiler Guide

tree

project 67, 68, 69, 137
THINK Project Manager 51, 67, 68,
69, 137

trigraphs 74
tutorials

Hello World++ 9-24
Vector 25-44

two’s complement binary numbers

126

type 35

char 35, 96, 113, 114, 116, 117,
120, 121, 122, 126

casting 75

checking 32

conversions 83, 152

enuml113, 114, 116, 117, 120,
121, 122

doubl e 72, 113, 114, 116, 117,
121, 122, 127

float 35,72,113,114,116, 117,
121, 122, 127

int 35,95, 113, 114, 116, 117,
121, 122, 125

| ong doubl e 72,113, 114, 116,
117, 121, 122

long int 95

return 80

signatures 83

short 113, 114, 116, 119, 120,
121, 122, 125

short doubl e 97

short int 95, 125

struct 81, 86,98, 114, 115, 116,
117, 120, 121, 145, 156, 168

unsi gned char 96, 117, 120,
121, 122

unsi gned int 116, 117, 121,
122

unsi gned | ong 116, 117, 121,
122

unsi gned short 120, 121, 122

user-defined 35

voi d 118, 172

void * 75, 84, 170

void ** 83,170

U

union 98, 133, 155

anonymous 75, 163

Unix

compatibility 18
terminal type 22

unsi gned char 96, 117,120, 121,

122

unsi gned int 116, 117, 121, 122
unsi gned | ong 116, 117, 121,

122

unsi gned short 120, 121, 122

Vv

variable

ve

alignment of 70

automatic 108

copying 103

declared register 28, 69
floating-point 72-73
induction 102

local 84, 87

global 69, 84, 87
_new_handl er 70-71
removing dead 100
removing assignments to 99-100
replacing with constants 102
stream 17, 18, 22

ctor 27-44

maximum value of 27
sorting 27

virtual destructor 59

w
warning messages 93, 106-109

Wi

see also Appendix C

ndow

Compile Errors 16, 48, 141
Data 100

Debugger 29

Editing 14, 47

Inspector 62

Project 16, 20, 39, 48
Source 30, 37, 39

Symantec C++
Disk Exchange and/or Replacement

DISK EXCHANGE: Symantec C++ is available on
high density (1.5MB) and double-sided (800KB)
disks. If you have purchased a product that does
not contain the correct disk size for your comput-
er, you may exchange the disks at no extra charge.
Simply fill out Section A, enclose all original disks,
and mail to the address below.

DISK REPLACEMENT: After your 60-Day Limited
Warranty, if your disk(s) becomes unusable, fill
out Sections A & B and return 1) this form, 2) your
damaged disks, and 3) your payment (see pricing
below, add sales tax if applicable), to the address
below to receive replacement disks. DURING THE
60-DAY LIMITED WARRANTY PERIOD, THIS SER-
VICE IS FREE. You must be a registered customer
in order to receive disk replacements.

SECTIONA —FOR DISK EXCHANGE AND REPLACEMENT

Please Send Me: [High Density Disks (1.5MB)

Name

O Double-sided Disks (800KB)

Company Name

Street Address (No P.O. Boxes, Please)

City

State Zip/Postal Code

Country*

Daytime Phone

Software Purchase Date

Version

*This offer limited to U.S. and Canada. Outside North America, contact your local Symantec office or distributor.

SECTION B —FOR DISK REPLACEMENT ONLY

Briefly Describe the Problem:

Disk Replacement Price $10.00
Sales Tax (See Table) -
Shipping & Handling $ 8.00
TOTAL DUE $

SALESTAX TABLE: AZ (5%), CA (7.25%), CO (3%), CT (6%), DC (6%), FL (6%), GA (4%),
IL (6.25%), IN (5%), |A (5%), LA (4%), ME (6%), MA (5%), MD (5%), M| (4%), MN (6.5%),
MO (7.725%), NC (6%), NJ (6%), NY (4%), OH (5%),PA (6%), SC (5%), TX (6.25%), VA
(4.5%), WA (6.5%), WI (5%), Canada (7% G.S.T.). Please add local sales tax (as well as state
sales tax) in AZ, CA, GA, LA, MN, NC, NY, OH, SC, TX, WA, WI, VA.

FORM OF PAYMENT** (Check One)
O Check (Payable to Symantec) Amount Enclosed $
Credit Card Number

O Visa 00 MasterCard 00 American Express

Expires

Name on Card (Please Print)

Signature

**U.S. Dollars. Payment must be made in U.S. dollars drawn on a U.S. bank.

MAIL YOUR DISK EXCHANGE AND/OR DISK REPLACEMENT ORDER TO:

Symantec Corporation

Attention: Disk Replacement/Exchange
P.O BOX 10849

Eugene, OR 97440-2849

Please allow 2-3 weeksfor delivery.

Symantec C++, Symantec, and the Symantec logo are U.S. registered trademarks of Symantec Corporation.

SYMANTEC.}

Other brands and products are trademarks of their respective holder/s. © 1993 Symantec Corporation. All rights reserved. Printed in the U.S.A.

	Contents
	Welcome
	If You Are New to the THINK Environment
	If You Are Learning C++
	What Is Symantec C++
	What you need
	Which System/Finder?

	What Your Package Contains
	What’s in This Manual
	Conventions Used in This Manual
	What You Should Know
	Learning C++

	Tutorial: Hello World++
	Creating the Project
	Creating the Source File
	Compiling the Source File
	Did You Get an Error?
	Adding the Libraries
	Running the Project
	Creating the Application
	Where to Go Next

	Tutorial: Vector
	About the Vector Project
	Debugging Inline Functions
	Using and Debugging Templates
	Instantiating templates
	Templates and debugging information
	Debugging simple templates
	Using template instantiation files
	Debugging with instantiation files

	What to Do Next
	Create wrapping subscripts
	Add new methods to myDate
	Write a new sort function
	Create a new class and sort it
	Change the vecMax(�) function into a member functi...
	Create a template function

	Using the Symantec C++ Compiler
	Compiling Source Files
	Compiling files not in the project
	Compiling files already in the project
	Checking files without compiling
	Fixing errors in source files
	Error reporting

	Precompiled Headers
	Customizing the MacHeaders++ file
	Creating your own precompiled header

	Symantec C++ Reports
	Viewing the preprocessor output
	Disassembling your code
	Generating a link map
	pascal keyword

	Symantec C++ THINK Inspector
	Quick Start
	Features
	Menus
	File menu
	Edit menu
	Classes menu
	Inspect menu
	Font and size menus

	Inspector Window

	Language Reference
	How Symantec C++ Implements C++
	Identifier length and capitalization

	How Symantec C++ Looks for Header Files
	Once-only headers
	Shielded folders
	Project-specific folders
	Using aliases
	Using the trees
	Don’t put project folders in the THINK Project Man...
	Avoid duplicate file names in trees

	Using Register Variables
	Alignment
	The _new_handler
	Internal limits

	Integer Representation
	Short integers
	Long integers

	Floating-Point Representation
	Removing Symantec C++ Extensions
	Strict ANSI conformance
	Relaxed ANSI conformance

	Predefined Macros
	__SC__, THINK_CPLUS
	macintosh, MC68000, mc68000, m68k
	mc68881
	__cplusplus
	__LINE__
	__FILE__
	__DATE__
	__TIME__
	__FPCE__, __FPCE_IEEE__
	__FAR_CODE__
	__FAR_DATA__
	__A4_GLOBALS__

	#pragma Directives
	pragma SC align
	pragma SC template
	pragma SC template_access
	pragma SC once
	pragma SC parameter
	#pragma SC message
	#pragma SC noreturn(function-name)
	#pragma SC trace on
	#pragma SC trace off

	Using Pascal Object Classes
	Pascal object extensions to Symantec C++

	Using the Macintosh Handle Pointer Type
	The __machdl pointer
	Dereferencing a handle
	Storage allocation
	Portability
	Placing C++ classes in handle memory
	Debugging programs that use handles

	The Inherited Keyword
	Inline Function Definitions

	Compiler Options Reference
	The Options Menu
	Language settings
	Compiler settings
	Code optimization
	Debugging
	Warning messages
	Prefix

	Porting Code
	Porting from MPW C++
	Include file search path
	Structures as arguments
	enum prototyping
	Function prototypes and varargs functions
	Pascal and handle objects
	Structure definition
	Static member functions
	const violations
	Data definitions in precompiled headers
	Instantiating abstract base classes

	Calling C++ Functions
	C++ arguments
	C++ return values

	Calling Pascal Functions
	Pascal callback routines
	Calling Pascal routines indirectly
	Pascal arguments
	Pascal return values

	ARM Conformance
	Lexical Conventions
	 2.3 Identifiers
	 2.5.2 Character Constants
	 2.5.4 String Literals

	Basic Concepts
	 3.4 Start and Termination
	 3.6.1 Fundamental Types

	Standard Conversions
	 4.1 Integral Promotions
	 4.2 Integral Conversions
	 4.3 Float and Double
	 4.4 Floating and Integral
	 5.0 Expressions
	 5.2.4 Class Member Access
	 5.3.2 Sizeof
	 5.3.3 New
	 5.4 Explicit Type Conversion
	 5.6 Multiplicative Operators
	 5.7 Additive Operators
	 5.8 Shift Operators

	Declarations
	 7.1.6 Type Specifiers
	 7.2 Enumeration Declarations
	 7.3 Asm Declarations
	 7.4 Linkage Specifications

	Classes
	 9.2 Class Members
	 9.6 Bit-Fields

	Special Member Functions
	 12.2 Temporary Objects

	Preprocessing
	 16.4 File Inclusion
	 16.5 Conditional Compilation
	 16.8 Pragmas
	 16.10 Predefined Names

	Symantec C++ Errors
	Recognizing Compiler Error Messages
	Error Message Types
	Lexical errors
	Preprocessor errors
	Syntax errors
	Warnings
	Fatal errors
	Internal errors

	Symantec C++ Compiler Error Messages
	 identifier’ is a pure virtual function
	 identifier’ is already defined
	 identifier’ is a virtual base class of ‘identifie...
	 identifier’ is not a class template
	 identifier’ is not a constructor
	 identifier’ is not a correct struct, union or enu...
	 identifier’ is not a member of struct ‘identifier...
	 identifier’ is not a struct or a class
	 identifier’ is not in function parameter list
	 identifier’ is not a static variable
	 identifier’ must be a base class
	 identifier’ must be a class name preceding ‘::’
	 identifier’ must be a public base class
	 identifier’ previously declared as something else...
	identifier storage class is illegal in this contex...
	number actual arguments expected for identifier
	number exceeds maximum of number macro parameters
	 :’ expected
	 ::’ or ‘(’ expected after class ‘identifier’
	 ;’ expected
]’ expected
	 (’ expected
)’ expected
	 {’ expected
	 }’ expected
	 {’ or tag identifier expected
	 =’, ‘;’ or ‘,’ expected
	## cannot appear at beginning or end
	# must be followed by a parameter
	 #else’ or ‘#elif’ found without ‘#if’
	 #endif’ found without ‘#if’
	 <’ expected
	 >’ expected
	0 expected
	0 or 1 expected
	access declaration must be in public or protected ...
	a derived class member has the same name identifie...
	alignment must be 1, 2, 4
	already seen initializer for ‘identifier’
	ambiguous reference to base class ‘identifier’
	ambiguous reference to function
	ambiguous type conversion
	argument of type ‘identifier’ to copy constructor
	argument to postfix ++ or �� must be int
	array dimension must be > 0
	array of functions or refs is illegal
	array or pointer required before ‘[’
	assignment to ‘this’ is obsolete, use X::operator ...
	at least one parameter must be a class or a class&...
	bad member�initializer for ‘identifier’
	binary exponent part required for hex floating con...
	blank arguments are illegal
	 break’ is valid only in a loop or switch
	can only delete pointers
	can’t assign to const variable
	can’t declare member of another class identifier
	can’t handle constructor in this context
	can’t have unnamed bit-fields in unions
	can’t nest comments
	can’t pass const/volatile object to non-const/vola...
	can’t return arrays, functions or abstract classes...
	can’t take address of register, bit-field, constan...
	can’t take sizeof bit-field
	cannot convert identifier* to a private base class...
	cannot create instance of abstract class ‘identifi...
	cannot define parameter as extern
	cannot delete pointer to const
	cannot find constructor for class matching name
	cannot generate identifier for class ‘identifier’
	cannot generate template instance from #pragma tem...
	cannot have member initializer for ‘identifier’
	cannot implicitly convert
	cannot raise or lower access to base member ‘ident...
	case number was already used
	casts and sizeof are illegal in preprocessor expre...
	class name identifier expected after ~
	code segment too large
	comma not allowed in constant expression
	const or reference ‘identifier’ needs initializer
	constant expression does not fit in type
	constant initializer expected
	 continue’ is valid only in a loop
	data or code ‘identifier’ defined in precompiled h...
	declarator for 0 sized bit-field
	 default:’ is already used
	delete[�] identifier not allowed for handle/Pascal...
	different configuration for precompiled header
	divide by 0
	duplicate direct base class ‘identifier’
	empty declaration
	end of file found before ‘#endif’
	end of file found before end of comment, line numb...
	end of line expected
	exponent expected
	expression expected
	external with block scope cannot have initializer
	field ‘identifier’ must be of integral type
	filespec string expected
	forward referenced class ‘identifier’ cannot be a ...
	function ‘identifier’ has no prototype
	function ‘identifier’ is too complicated to inline...
	function definition must have explicit parameter l...
	function expected
	function member ‘identifier’ cannot be in an anony...
	global anonymous unions must be static
	hex digit expected
	identifier expected
	identifier found in abstract declarator
	identifier is longer than 254 chars
	identifier or ‘(declarator)’ expected
	illegal cast
	illegal character, ascii number decimal
	illegal combination of types
	illegal constuctor or destructor declaration
	illegal operand types
	illegal parameter declaration
	illegal pointer arithmetic
	illegal return type for operator�>()
	illegal type for ‘identifier’ member
	inherited function must be member of derived class...
	initializer for static member must be outside of c...
	integer constant expression expected
	integral expression expected
	internal error ‘filename’ line number
	invalid reference initialization
	invalid storage class for friend
	last line in file had no \n
	line number expected
	linkage specs are “C”, “C++”, and “Pascal”, not “i...
	local class cannot have static data on non-inline ...
	lvalue expected
	main() cannot be static or inline
	maximum width of number bits exceeded
	macro ‘identifier’ can’t be #undef’d or #define’d
	malformed template declaration
	maximum length of number exceeded definition
	member ‘identifier’ can’t be same type as struct ‘...
	member ‘identifier’ is const but there is no const...
	member ‘identifier’ of class ‘identifier’ is not a...
	member ‘identifier’ of class ‘identifier’ is priva...
	member functions cannot be static
	must be void operator delete(void * [,size_t]);
	must be void** operator delete(void**)
	new identifier [�], not allowed for handle/Pascal ...
	must use delete[�] for arrays
	no constructor allowed for class ‘identifier’
	no definition for static ‘identifier’
	no instance of class ‘identifier’
	no identifier for declarator
	no instance of class ‘identifier’ for member ‘iden...
	no match for function ‘identifier’
	no return value for function ‘identifier’
	no tag name for struct or enum
	non-const reference initialized to temporary
	not a struct or union type
	not an overloadable operator token
	not in a switch statement
	number ‘number’ is too large
	number is not representable
	object has 0 size
	octal digit expected
	one argument req’d for member initializer for ‘ide...
	only classes and functions can be friends
	only one identifier is allowed to appear in a decl...
	only pointers to handle based type allowed
	operator functions �>() and [] must be non�static ...
	operator overload must be a function
	out of memory
	overloaded function ‘identifier’ has different acc...
	overloading type conversion or operator function n...
	parameter list is out of context
	parameter lists do not match for template ‘identif...
	Pascal object class expected
	pointer required before ‘�>’, ‘�>*’ or after ‘*’
	pointer to member expected to right of .* or �>*
	pointers and references to references are illegal
	possible extraneous ‘;’
	possible unintended assignment
	pragma parameter function prototype not found
	premature end of source file
	prior forward reference class identifier must matc...
	prototype for ‘identifier’ should be identifier
	pure function must be virtual
	qualifier or type in access declaration
	redefinition of default parameter
	return type cannot be specified for conversion fun...
	returning address of automatic ‘identifier’
	should be number parameter(s) for operator
	size of identifier is not known
	statement expected
	static function ‘identifier’ cannot be virtual
	static or non�member functions can’t be const or v...
	static variables in inline functions not allowed
	storage class for ‘identifier’ can’t be both exter...
	string expected
	template-argument ‘identifier’ must be a type-argu...
	template-argument ‘identifier’ not used in functio...
	too many characters in character string
	too many initializers
	trailing parameters must have initializers
	type conversions must be members
	type is too complex
	type mismatch
	type must be void *operator new(size_t [,..]);
	type must be void **operator new(Pascal void (*) (...
	type of ‘identifier’ does not match function proto...
	undefined escape sequence
	undefined identifier ‘identifier’
	undefined label ‘identifier’
	undefined tag ‘identifier’
	undefined use of struct or union
	union members cannot have ctors or dtors
	unrecognized pragma
	unrecognized preprocessor directive ‘#identifier’
	unrecognized token
	unterminated macro argument
	unterminated string
	use delete[] rather than delete[expr], expr ignore...
	using operator++() (or --) instead of missing oper...
	value of expression is not used
	variable ‘identifier’ used before set
	vectors cannot have initializers
	very large automatic
	voids have no value, ctors and dtors have no retur...
	 while’ expected

	Index

