SYMANTEC

THINK’s
~ LightspeedC

The Professional’s Choice

USER’S MANUAL

For Macintosh Plus,
Macintosh SE, and
Macintosh Il computers

Credits

Software: Michael Kahl

User’s Manual: Philip Borenstein
Product Manager: Diana Bury
Special thanks to Andrew Singer.

Copyright © 1988 Symantec Corporation. All Rights Reserved
THINK Technologies Division

135 South Road

Bedford, MA 01730, USA

(617) 275-4800

The product names mentioned in this manual are the trademarks or
registered trademarks of their manufacturers.

“Lightspeed” is a registered trademark of Lightspeed, Inc., and is used
with its permission.

ResEdit, RMaker, and Macsbug are copyrighted programs of Apple Computer,
Inc. licensed to Symantec Corp. to distribute for use only in combination with
THINK's LightspeedC. Apple software shall not be copied onto another
diskette (except for archive purposes) or into memory unless as part of
execution of THINK's LightspeedC. When THINK's LightspeedC has completed
execution, Apple Software shall not be used by any other program.

APPLE COMPUTER, INC. MAKES NO WARRANTIES, EITHER EXPRESS OR IM-
PLIED REGARDING THE ENCLOSED SOFTWARE PACKAGE, IT'S MER-
CHANTABILITY OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. THE EX-
CLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED IN SOME STATES.
THE ABOVE EXCLUSION MAY NOT APPLY TO YOU. THIS WARRANTY
PROVIDES YOU WITH SPECIFIC LEGAL RIGHTS. THERE MAY BE OTHER
RIGHTS THAT YOU MAY HAVE THAT VARY FROM STATE TO STATE.

ONE

TWO

Contents

GETTING STARTED

Welcome

INtrOAUCHON.ocvieeeierece ettt s esaens 1
What is THINK’s LightspeedCi........cc.ccceeveermmerrerineennsneneesene 1
What You Need......cooiiiiiiiiciiniinieneeeirt e 2
What's in the Package........cccocevervenenirinniincirecnireeeniiicnienns 2
What's in the Manual..........cccoocoeieienieniniecceeeeereeeeneeens 3
What You Should KNOW.........ceeeverieeiinienenieiiiecee e eeeneen S
Notes for Experienced USers.......c..coceeveevevviniiiiniinininenennenns 7
Installing THINK C

INUrOAUCHON.overiirerierreriieintesreseeeeeesreressessesnossssesesnsssnensasens 9
Installing THINK C on a Hard Disk System.........ccceveerveiirennn. 9
Installing on a Floppy SysteM.........cccoceveniiiiinecniniininiiinneeens 10
Disk Layout DiagrafL.......c.ccceverrerierierneeereessecsessaessessnesessescsenne 11
LEARNING THINK C

Tutorial: Hello World

INtrOAUCHON.oovieiieic ittt 15
Creating the PIrOJECL.......cocevireeriiireicnriie e eeeseeetee e esenesenees 15
Creating the Source File........cccovvvriieciiriircineseeeeece e e 18
Compiling the Source File.........coooveveeveireiiiiiceieceienecere e 19
Adding the Libraries.........ccovevivievieiinienienesieienne e seesnenne 21
RUNNING the ProJECL........cceiiriiniiieeieie et ssete st e 23
Creating the ApplicCation........cccoveeverreerienieniiiencee e ccienens 24

WHere tO GO NEXL.....cocveeeeeesienrteeeeeessiireerreesseeesesssseessseesses 25

THREE

Tutorial: MiniEdit

INOAUCHON.cotirrireiectire ettt s 27
Creating the Projech......co.ovceceevinninreniineee e 28
Adding the Source Files and Libraries............ccccceveeveererennenne. 30
Compiling and Running the Project..........c.coceeverecrmnrrcrenennnas 32
Fixing a BUgocvmiiiicie et 33
Running the Project AGain.........ccceveeiinmeenvieneeniececiee e 35
Building the AppliCAtON............ccovvevirerreeiereeeereceeeeeeee e 36
Using a Resource File..............ccoveeveeeiiciieineceeeecireeesnee s 38
FINIShiNG UP.....oouiiiiiriiriene et et 38
WhEre t0 GO NEXL....ovieieeieriiieeierererciesesereeeseesee st enesneeens 38
Tutorial: Bullseye

INErOdUCHON. ...ttt se e 39
Opening the BullSeye Project.........c.oovieeveeeirinnemeeniennvereeanne 40
Turning the Debugger On..........cccoverieviinenecninireenesieeeneenae 40
Watching the Program RUn.............oeoveeeiirinee v ceeenececien e/ 41
Examining and setting variables..............c.cccccccvivinneininninnn 47
Examining Structs and arrays..........ccceceeeeceneeneennenninnneneens 51
Expressions and CONLEXLS.........ccevvirrerreneniinrimneiinireeeseesenas 54
Quitting the DEDUZEEL.ccocueeiiereeeerireceeierereeeeesreseeaenaesens 56
USING THINK C

Overview

INtrOAUCHON.....cceieieiiciererir ettt ese e sneneens 59
The THINK C ENVIirOnment..........c.ceevvvvereericenieereeseeseneeseessene 59
TRE PIOJECE.....cvirtetiereeeetenieie et steees e bereeneveeseeesssseeseaneneseens 59
Writing a Program in THINK Ci.........cccoovveevveernererevereesrerernsenens 60
USING THINK Ci...ooovviecececee et sesnereevere e essasesenns 61
The Project

INUOAUCHON. ...ttt ettt ass e e ene s e 65
AnNatomy Of @ PIOJECL.......cevvireeerenererereenienesiereseneveeesesneneresenee 90
SEZMENLAUONL........vvieiiiiiririiireieeecieeesinreeerreeecirresesssaaesssneeasens 70
Building AppliCatoNS...........cccecmrireeirierrenreerireseesteseeeeresvennnnn 71
Building Desk Accessories and Device Drivers........coceeeeveienne 74
Building Code RESOUICES...........covvieerceerrieieereeirreeseeecvessreesenes 82
The Editor

INOAUCHON.cceiiiinittnrerree et 89
Creating and Opening Files.........cccvrveevenieiinreeieenienrenennennnn 89
Editing @ File......coueooieieiieeeeee ettt 92
Printing Files.........ccovvieriereeiiiiinenieereee et 94
Closing and Saving Files..........cccvveeveevrievreecienieiee e e e 94
Searching and Replacing........cccccccverereeeeninnenneenneccnenencneens 95

Searching for a Pattern (Grep).........cccceeveerieerneernnienseereernnsnenees 98

10

11

12

13

Files & Folders

INrOAUCHON.......oveviriererierietetete ettt eeestesesresaesnens 105
Organizing Your FOlders.........ocovverencricinireceecccteninne 105
How THINK C Names Files........cooueoverueiereeerenenerenecseeiesesinnens 106
How THINK C Looks for #include Files............ccocoverereerennce. 106
Moving Files Within @ Project.........cccoveiveniininnnienenninnns 107
USING the TTEES......ocvvieirieieie ettt e esenaeas 108
Disk Layout DIiagramL........ccceceeeeeurvenrernerinreneenrenesineneencsnennens 110
The Compiler

INtrOAUCHON. ..ottt essssnaeses 111
Compiling Source Files..........cceieieirnrnenineerccecceereeeeeneenes 111
Precompiled Headers...........cccevvininiiiiniinniienecnecnnenee. 113
Calling the Macintosh Toolbox Routines............cccevevereeeunnnee 115
Code Generation OPLONS........c..coverererieinieneniecne st 121
Compiler OPHONS......c.occiriireriererire s e stsraens 123
FUNCHON PTOLOLYPES......cveverienierieiereeresneereenaesaeeseessesseseessennes 124
POMADILILY.....ccvinvii ittt et e ne et 125
The Debugger

INtrodUCHON. ..ottt 129
Running with the debugger...........ccccevvevierieveeciereceeeeeceen 129
The Debugger Windows.........cceevevereeoeeienveenenineesieseseeenens 131
Working with the Source Window...........cccccvieveenveniencnenene 133
Setting Breakpoints..........ccviceeenicrininicciniiicncincccienns 135
Controlling EXeCUtiON.........ccoeeriereieeseeeeee et cree e 137
Working with the Data Window.........c.cccveeeeveeeieenenneniceescceeneene 140
Using Low Level DEbUGEETS..........occoeiviiiiieeecereeeeeiiecneceeees 144
Quitting the DEDUZEEL.........cceeviieieieeieeeieiecre e ene e 145
Memory Considerations.............cccuecveuvereereerereeereeiuesenereesesssenns 145
Assembly Language

INtrOAUCHON. ...ttt cen e esasaean 147
Using the Inline Assembler.............ccccoieveiiiienienienneeeree e 147
C Calling CONVENLONS........cvevieiienienrerririeeteeieiesiesesseeseesseeneens 152
Pascal Calling CoNVENLONS............cevveerererereeiereeeersessesesissenenns 154
TIPS cvvvvevereeueeeeeeeestesesse s e s tesaema st e es et anae e e a e e nenenenraes 156
Libraries

INtrOAUCHON. ..ottt 159
Using HDraries........cccoceverviniiinecriniiiicsese e st siessnenens 159
Creating LIDraries.cooveovevieieieiecee et seess s e nsnens 160
Converting object files into Libraries.........cccocveoreeneeniirnienen 160

iii

iv

FOUR
14

15

16

FIVE

o O

REFERENCE

THINK C Menus

INEEOAUCHON. ... eee et eeete e e s se s et e e st st raessessbesseorsoneon 167
THE 8 MENU......eeeeeeeeeeeeeeeeee e eer et ee e s e e eesasea 167
THE FIle MENU......oocoivirieeiiieee et eeeeseeresene s sveesens s 168
The EQIt MENU......cooveiiiirieieeeeeeeeettee e cereeeeeneeeeeereeseeessreseesaaeaas 171
The Search MENU........ccoooeiiieeeiiiiiiiee et esieeeeteesae e sne e eaeeas 177
The Project MENU.........coouicieeniieieniercie et eesae e s 180
The SOUTCE MENU.....ccoocoeeiiiieeeerrreeeeeir e srieeseeesssasssbeeeesssnssenen 185
WiINAOWS MENU......oooiiieeeiiiiieeiiteecee e e e estaree e s erasaesaeaee s 188
Debugger Menus

INEEOAUCHON.eeii ittt et ee e s ebvbe e eerareseennes 191
THE @ MENU..c.roveeieeeeeeeeeeeeeeeee et te e eseteeeeess e see e beessns e 191
ThE File MENU....cccouvieeeiiiiiiie ettt eeavre e sbee e eanraees 191
The EQit MENU......coeeoeiriiiiie et esee e ere et eeaneenns 192
The Debug MeNU........cccccueieiieiieiiiiereeeee st e eee e eenees 193
The SOULCE MENU........ccooiiiitniee it eetreeeeeeee e eeaaeeeesaeereeenn 195
ThE DAL2 MENU......eeeeeeeeeeeeeeeee e eveeeeeeesseeerensaeas 196
The Windows MENU.........occuvviveeeeiiiieies e evee et seeeeens 198
Language Reference

INIOAUCHON.ccciiiiiceee ettt e err e e e e e e e e 199
APPENDICES

The Profiler

INtrOAUCHON.vviiiteeiecee ettt et e ae e e s e aeeaes 213
Using the Profiler..........coviveviiiiciercenirreeeeeere e eeesneseeens 213
Modifying the Profiler...........coivivecieneeirieeereeiereerecee e e 214
SUMMATY.....eiciiieieeeereeieiieeeseesre e erbeesaeeene e ebeennnesaseessraaesneesnes 214
Troubleshooting

INEEOAUCHON.ceeeevii et 217
Getting Help........occveieieeeeciieetetee e s 217
Some Common Problems.........c.ooceeeeeeiiinnieeeieeiccieeeeceeeeaans 217
Error Messages 221
RMaker Reference

INOAUCHON. ..ottt eerenraeeenes 249
USING RMaKET......ccooiiiiiieeiieeeeie et ese e 249
RMaKer File FOMMAL.........ouveiviiiiiiieceeeee et eeeeeesssvaveeseenees 249
Predefined ReSOUICE TYPES......cccvevirinreerieeiienteenieseneesene 251
Index 257
License Agreement 261

THINK's
LightspeedC

PART ONE
Getting Started

1 Welcome
2 Installing THINK C

Welcome
1

Introduction

Welcome to THINK’s LightspeedC. This chapter tells you what’s in your THINK C package,
what equipment you need, and what you need to know to write C programs on your
Macintosh.

If you don’t read manuals
If you need to get started quickly, read this chapter, the next chapter, and one of the tutorials.

If you’re an experienced THINK C user

If you already use THINK'’s LightspeedC, you'll be pleased with the source level debugger
and other improvements. Read “Notes for Experienced Users” at the end of this chapter.

Topics covered in this chapter:

e What is THINK's LightspeedC
What you need

What's in the package

e What's in the manual

e What you should know

* Notes for experienced users

What is THINK’s LightspeedC

THINK’s LightspeedC is a unique development environment for the Macintosh. It features a
very fast compiler, a faster linker, an integrated text editor, an auto-make facility, and a pro-
ject organizer that holds all the pieces together. Because the editor, the compiler, and the
linker are all components of the same application, THINK C knows when edited source files
need to be recompiled. And if you edit an #include file, the auto-make facility recompiles all
the source files that depend on it for declarations.

With THINK C you can build Macintosh applications, desk accessories, device drives, and
any kind of code resource. The standard C libraries include the standard I/O functions as well
as Unix operating system functions.

You can run your program from THINK C as you work on it. Your program runs exactly as if
you had opened it from the Finder, not under a simulated environment. And if you use

THINK's LightspeedC

MultiFinder your program runs in its own partition while THINK C remains active, soO you can
examine and edit your source files as you watch your program run.

The THINK C development environment includes a source level debugger that lets you de-
bug your code exactly how you wrote it. No more translating assembly language back into C.
The debugger lets you set breakpoints, step through your code, examine variables, and
change their values while your program is running. And because the debugger runs under
MultiFinder, you can edit your source files while you’re debugging.

What You Need

THINK C works best when you have at least 2 megabytes (Mb) of RAM and a hard disk. It
will also run with IMb of RAM and two 800K floppy drives. With only 1Mb you won't be able
to take advantage of MultiFinder, and you won't be able to use the debugger. With a floppy
based system, you won't be able to write very large programs.

How much RAM?

You can run THINK C on a Macintosh Plus, Macintosh SE, or Macintosh II. You can run
THINK C on a Macintosh 512Ke if you’ve upgraded it to at least 1Mb of RAM.

You can run THINK C without the debugger, on any Macintosh computer with at least IMb
of RAM. To use the debugger, you need at least 2Mb of RAM.

How much disk space?

The complete THINK C system takes up about 1IMb on your disk, not including your own
files. The actual size of your system may be smaller, depending on the kinds of programs you
work on.

Although you can use THINK C with two 800K floppy drives, it works much better when you
use a hard disk.

Which System/Finder?

Use the latest System and Finder provided by Apple. At press time, this is System Tools 6.0
(System 6.0/Finder 6.1). THINK C requires at least System Tools 5.0 (System 4.2/Finder 6.0).

THINK C is designed to work best under MultiFinder. If you're using a standard Mac Plus
with 1Mb RAM, however, you're better off not using MultiFinder.

What'’s in the Package

Your THINK C package consists of two double sided floppies, this manual, and the Standard
Libraries Reference.

What’s in the Manual |

This manual is organized in five sections: Getting Started, Learning THINK C, Using THINK C,
Reference, and the Appendices. Each chapter beings with an introduction that describes
what’s in the chapter followed by a list of the major topics covered in the chapter.

Getting Started

Learning THINK C

Using THINK C

This is the section you're reading. It contains this chapter and the
installation instructions. Even if you don’t read manuals, be sure to
read the installation instructions in Chapter 2.

This section contains three tutorials. The first one, “Hello World”
shows you how to write a minimal program that uses the standard
C libraries and introduces you to the basics of using THINK C.

The second tutorial, “MiniEdit,” shows you how to build a
Macintosh application. This tutorial is based on the Sample pro-
gram in Inside Macintosh. It shows you how to fix bugs, how to
use resource files, and how to build a double-clickable
application.

The third tutorial, “Bullseye,” shows you how to use THINK C’s
source level debugger. Read this chapter even if you already know
how to use THINK C.

This section contains eight chapters that describe the different
components of THINK’s LightspeedC.

Overview, Chapter 6, describes how THINK C works,

The Project, Chapter 7, describes the four different kinds of pro-
jects. It gives you the details of building applications, desk acces-
sories, device drivers, and code resources. This chapter contains
several code examples to make writing your program easier.

The Editor, Chapter 8, describes the THINK C integrated text edi-
tor. The editor has several features to make editing C source files
easier and a sophisticated searching facility.

Files and Folders, Chapter 9, tells you why you should follow the
installation instructions in Chapter 2. This chapter describes how
THINK C looks for files on your disk and how it names files.

The Compiler, Chapter 10, describes how THINK C compiles your
source files. It also tells you how to call the Macintosh Toolbox

THINK's LightspeedC

routines, how to generate code for the 68881 floating point copro-
cessor, how to use function prototypes, and how to port code from
Unix machines.

The Debugger. Chapter 11, describes the source level debugger.
This chapter tells you how to control execution, how to set break-
points, and how to examine and modify your variables as you
debug.

Assembly Language, Chapter 12, describes THINK C’s inline as-

sembler. This chapter also explains C and Pascal calling conven-
tions so your assembly language routines will integrate smoothly
with both your C functions and the Macintosh Toolbox routines.

Libraries, Chapter 13, tells you how to build and use libraries in
your THINK C programs, and how to convert object code from
other compilers and assemblers into THINK C libraries.

Reference This section contains three reference chapters.

THINK C Menus, Chapter 14, describes the THINK C menu
commands.

Debugger Menus, Chapter 15, describes the source level
debugger’s menu commands.

Language Reference, Chapter 16, is a supplement to the C
Language Reference (Appendix A) of Kernighan and Ritchie’s The
C Programming Language.

Appendices This section contains appendices that describe the code profiler,
some tips and troubleshooting suggestions, a list of error messages
(with explanations), the RMaker resource compiler reference, and
the index.

Conventions in the Manual
The names of menus and commands are in bold face.

When a technical term or key word is introduced, it also appears in bold face.

Names of files, code fragments, resource names, function names, and variables appear in
“typewriter face.”

All numbers are decimal. Hexadecimal numbers are written in C notation: 0x3EFA instead of
Pascal notation ($3EFA).

In this manual, the term Toolbox routine means any routine in ROM. The Macintosh ROM
actually consists two different kinds of routines: Operating System routines and Toolbox rou-
tines. Operating System routines deal with low-level aspects of the machine like the file man-
ager, the event posting mechanism, interrupts, device management, etc. The Toolbox deals
with high-level aspects like the drawing environment, the window mechanism, menus,
dialogs, etc.

What You Should Know

This manual assumes you already know, or are at least learning, how to program in C. If
you're just getting started in C, THINK C is a great platform.

If you're planning to write Macintosh applications, you should be familiar with the Macintosh
Toolbox as described in Inside Macintosh. The Toolbox is the set of operating system and
user interface routines that make a Macintosh a Macintosh. It's beyond the scope of this man-
ual to show you how the different parts of the Toolbox work together.

Learning C

As the popularity of C grows, more and more introductory level books appear on the shelves.
Some books assume that you're just learning how to program, and others assume that you al-
ready know how to program in another language. Some books spend time telling you how to
use the development environment: the editor, the linker, the make facility. These things are I
done very differently in THINK C, so when you choose a book, choose one that doesn’t
dwell to much on these aspects of programming.

If you’re learning C from a book, or if you're using THINK C to do coursework, be sure to do
the first tutorial. It shows you how to set things up to write and run C programs that use the
standard C libraries.

The standard references for the C programming language are the first edition of Kernighan &
Ritchie’s The C Programming Language (Prentice Hall) and Harbison & Steele'’s C: A
Reference Manual (Prentice Hall). The second edition of The C Programming Languageis an
update that incorporates the proposed ANSI standard. These books assume that you’re al-
ready an experienced programmer.

Learning to write Macintosh programs

If you're new to programming the Macintosh, you might find yourself overwhelmed by the
complexity of the Macintosh Toolbox and unfamiliar programming techniques. When the
Macintosh was released in 1984, there was very little technical information available to casual
programmers, and even commercial developers had a hard time figuring out how to get
things to work correctly.

THINK's LightspeedC

The Macintosh is even more complex today than it was in 1984, but now there are more
places you can go for information.

There are now several good books that introduce you to programming the Macintosh and
teach you some of the finer points of using the Macintosh Toolbox. No matter which books
you choose to help you get started, Inside Macintosh is indispensable.

Inside Macintosh Volumes IV (Addison-Wesley) is the official reference that describes the
more than 600 Macintosh Toolbox routines. You might be able to get by without it for a
while, but if you're planning to write serious applications, you just can’t do without. At five
volumes, it represents a hefty investment. The first three volumes cover the fundamentals.
Volumes IV and V cover the additions and changes made with the introduction of the Mac
Plus, Macintosh SE, and Macintosh II.

Stephen Chernicoff’s two volume set, Macintosh Revealed (Hayden Books), is a step-by-step
introduction to Macintosh programming. Chernicoff shows you how to build a working ap-
plication and points out the parts of Inside Macintosh you really need to know as opposed to
the parts you just need to be aware of. The programs in the book are written in Pascal, but
they’re not too difficult to translate to THINK C.

Scott Knaster, formerly of Apple Technical Support, is the author of two books about
Macintosh programming. The first, How to Write Mactntosh Software (Hayden Books),
teaches you what’s going on inside the Toolbox. This books also contains some valuable tips
about debugging Macintosh programs. The second book, Macintosh Programming Secrets
(Addison-Wesley), deals with some of the conventions and techniques that have become
standard in writing Macintosh programs. It also contains information about the Macintosh II
and the Mac SE. These books are more technical than Macintosh Revealed and are loaded
with pictures, diagrams, and examples (as well as some awful jokes).

Finally, MacTutor is the leading technical journal for Macintosh programming. The articles
range from tutorial examples to advanced techniques. MacTutor covers several languages,
not just C, but most of the C examples are written in THINK C. (All of the programs described
in the magazine are available on disk.)

Apple Programmer’s and Developer’s Association

The Apple Programmer’s and Developer’s Association (APDA) is an Apple-sponsored mem-
bership organization that distributes technical information to programmers and developers.

APDA is a great source for Technical Notes, programming utilities, reference books, and in-

formation about announced (but unreleased) products. Membership costs $20 per year.

Welcome 1

For information about membership and products, contact APDA directly:

Apple Programmer's and Developers Association (APDA)
290 SW 43rd Street

Renton, WA 98055

(206) 251-6548

CompuServe

Symantec has a forum on CompuServe specifically for THINK C users. Simply type GO
THINK at any ! prompt. You'll find discussions here about programming in general and
THINK C in particular. The data libraries contain utilities as well as sources for some of the
programs. When upgrades are ready, they're usually posted here first.

CompuServe also has an Apple developers forum. Just type GO APPDEV at any ! prompt.
This forum is a good place to get in touch with the Macintosh programming community.

Notes for Experienced Users

If you've used THINK’s LightspeedC before, you'll be pleased with the new features of this
new release. This section describes the changes and enhancements.

Compatibility
THINK C version 3.0 reads and converts version 2.x projects automatically. Be sure to use the
newer version of MacTraps or any other supplied libraries.

Note: It's not enough to copy MacTraps to your disk. You also need to
reload it into your project. Use the Load Project command in the Source
menu, or choose Make... from the Source menu and click on the Use Disk
button to mark MacTraps for reloading.

You will not be able to use projects from version 1.x. Create a new project, and add your ex-
isting source files instead.

String literals and floating point constants no longer live in the STRS component by default.
Instead, THINK C places them in the DATA component. You can choose to have separate
STRS in the Set Project Type... dialog.

If you use string literals or floating point constants in code resources, make sure you set up
register A4 correctly or your project may not work. See “Building Code Resources” in Chapter
7 to learn how to set up register A4.

THINK's LightspeedC

New features

The source level debugger is the biggest new feature. Read Chapter 3, the Bullseye tutorial,
to learn how to use the debugger. Read Chapter 11 to learn more about the source level
debugger.

Precompiled headers are a major new feature. Precompiled headers work like regular
#include files, but since they’re in a form THINK C can use readily, they load faster. A stan-
dard precompiled header, MacHeaders, contains most of the declarations used in writing
Macintosh programs. This means that you don’t have to #include files like QuickDraw.h in
every file. Read “Precompiled Headers” in Chapter 10. Your projects will build faster if you
remove the #include statements.

The Set Project Type... dialog contains many new enhancements. You can set the type and
creator for all files, MultiFinder attributes for applications, ask THINK C to build multi-
segment desk accessories and device drivers, specify resource attributes for code resources,
and more. Look up the Set Project Type... command in Chapter 14, THINK C Menus to
learn the details for each type of project.

While you're in Chapter 14, look at the new options available in the Options... dialog. You
can now ask for 68881 and 68020 code generation, choose not to have MacHeaders
included automatically, and set options for the source level debugger.

Installing THINK C
2

Introduction
This chapter tells you how to install THINK’s LightspeedC on your system.

Topics covered in this chapter:
e Installing on a hard disk system
¢ Installing on a floppy system

Installing THINK C on a Hard Disk System

This section tells you how to set up THINK C on your hard disk. This setup ensures that
THINK C will know where to find all the files it needs to compile your programs. To learn
more about why the files are organized this way, see Chapter 9.

installation summary

First you'll create a development folder. The development folder will contain a folder for
THINK C, the #include files, and the libraries. Then you’ll create folders for each of your pro-
jects. The project folders will be in the development folder, but not in the THINK C folder.

The picture at the end of this chapter shows you what this disk layout looks like. You can use
the picture to set up your disk, or you follow these directions.

Instaliation instructions
Start at the Finder and create a new folder. Name it Deve Lopment.

Open the Development folder and create a new folder in it. Call the new folder THINK C
Folder.

THINK's LightspeedC

Now, copy all the files from disk THINK C 1 to the THINK C Folder. At least these files
should be in the THINK C Folder: (Note that for THINK C to work correctly, these files
must be in the same folder.)

THINK C (the application)
MacHeaders

Mac #includes folder

Mac Libraries folder
DAShell

e THINK C Debugger

Next, copy the Libraries folder from THINK C 2 to the THINK C Folder. This folder
contains the standard C libraries, the standard #include files, and the library sources. If you're
running short on disk space, you can get rid of the Library Sources folder. They'll be on your
original disk if you ever need them.

That'’s all there is to it. Be sure to read Chapter 9 to learn more about how THINK C treats
files and folders.

Installing on a Floppy System

Although THINK C works best when you use a hard disk, it's possible to use it if you have
two 800K floppy drives. If you use floppies, you probably like to put your application and a
System folder on one floppy and all of your data files on another. Unfortunately, the THINK
C system won't fit on the same floppy as the System. To use THINK C from floppies, your
“data disk” will be your System disk, and THINK C will be on another floppy.

Making the System disk

First, create your System disk; just drag the System folder from one of your original Macintosh
System disks to a blank floppy.

Next, use the Font/DA Mover to remove all the fonts except the ones needed by the system.
Just select all the font names, and click on the Remove button. You'll get a warning dialog
telling you the system fonts won't be removed. While you’re still in the Font/DA Mover, re-
move all but one of the Desk Accessories. (The Calculator seems to be the smallest one).

Now remove the print drivers, the Control Panel files (General, Mouse, Sound, etc.). Leave
the System, Finder, MultiFinder, and DA Handler.

You'll use this System floppy as your data disk. Use this disk to store your projects.

10

Installing THINK C 2

Making the THINK C disk

Now you're ready to make the THINK C disk. This disk will contain the THINK C application,
the libraries, and the #include files.

First, copy all the files from the THINK C 1 to a blank floppy. If you are planning on writing
programs that use the standard C libraries, copy the Libraries folder from the THINK C
2 disk to your floppy.

Disk Layout Diagram

This diagram on the next page shows the recommended disk layout. You don’t have to set
up your disk this way, but the important thing to remember is that your project folders should
not be in the THINK C folder.

11

THINK's LightspeedC

12

L]
Hard Disk
Y
Development
V.am N P P
THINK C Folder Bullseye Folder Project Folder
B #)
THINK C 3.0 THINK C Debugger 3.0
= Pany {":b
— =
) =
MacHeaders Mac Libraries bullseye.c
(=D
Pan Py =
Mac ®includes Libraries bullMenus.c
=D
bullWindow .c

THINK’s
LightspeedC

PART TWO

Learning THINK C

3 Tutorial: Hello World
4 Tutorial: MiniEdit
5 Tutorial: Bullseye

Tutorial: Hello World
3

Introduction

This chapter shows you how to put together an application with THINK’s LightspeedC. The
idea here is not to write a fancy program, but to show you how to build an application in
THINK C. The program just writes the words “hello world” in a window on the screen.

Before you begin

Be sure you followed the instructions in Chapter 2 to put THINK C on your disk. The names
of your folders may not match the pictures in this chapter. It’s all right as long as you remem-
ber where you put your files.

What you should know

You should know how to use the standard file dialog boxes to move around to different
folders. If you don’t know how to do this, read the documentation that came with your
Macintosh.

You will need to know which folders contain the files stdio (not to be confused with the
file stdio.h) and MacTraps.

Topics covered in this chapter:
e Creating a project
¢ Creating the source file
e Compiling the source file
¢ Adding the libraries
¢ Running the project
e Creating an application

Creating the Project

The first thing you need to do is create a folder for your project in the Development folder.
This is the folder you’ll use for all your development work.

Create a folder called Hello Folder inthe Development folder. Do this now, before you
start THINK C. You can use a different name if you like, but remember that your dialog boxes
won’t match the pictures in this chapter.

15

THINK's LightspeedC

16

Generally speaking, you'll have a folder for each project you work on. The folder should
contain your source files, your #include files, and the application’s resource file.

When you've created the Hello Folder, open the THINK C Folder (the one that con-
tains the THINK C application) and double click on the THINK C icon.

You'll see a dialog box that asks you to open a project.

[THINK C Folder

o Tess
O Mac #¥includes _
[Mac Libraries [gject |

Iy® ﬂkj

[Cancel]

Since you're creating a new project, click on the New button.
You'll see another dialog box, one that lets you create projects.
Move back tothe Hello Folder you just created.

Note: It's very important that you move to the Hello Folder.

Tutorial: Hello World 3

Name the project hello project, and click on the Create button.

<3 Hello Folder

= Tess
fipet

firipe

el

il B

Name new project: Create

hello project Cancel

THINK C creates a new project document on disk and displays a project window:

hello project

Name obj size

&

(=<

The Name column shows the names of all the source files and libraries in your project, and
the obj size column displays their sizes in bytes.

17

THINK's LightspeedC

Creating the Source File
Now you’re ready to create your source file. Choose New from the File menu to bring up an
empty editing window.

-~

" & Flle Edit Search Project Source Windows

| B
| hello project
@ Untitled _Elllz;
K

|

2]

[N 4

Type this program into the editor window (you don’t need to type in the comments if you're
in a hurry):

/*****

* hello.c
*

* The hello world program for THINK C
*

*****/

#include <stdio.h>

main ()

{
printf ("hello world\n");
}

The THINK C text editor works like most other text editors on the Macintosh. You can drag to
select a range of text or double click to select words. Triple click to select an entire line. If
you have a keyboard with arrow keys, you can use them to move around your file.

The text editor does not wrap text back to the left edge of the window when you type past
the right edge of the window. Use the horizontal scrollbar at the bottom of the window to see
any text that goes past the right edge.

18

Tutorial: Hello World 3

For more information about the THINK C text editor, see Chapter 8.

When you've typed in the program, select Save As... from the File menu to save it. You’ll get
a dialog box like the one below. Name the file hello. ¢, and click on the Save button.

€3 Hello Folder |
Y hellg prajeqt > Tess

tipot

fHiipe

<

"E
., -

Save file as:

hello.c | Cancel |

THINK C will only compile files that end in . ¢, but you can edit any text file with the THINK
C editor.

Compiling the Source File

Now you’re ready to compile your source file. Select Compile from the Source menu.
THINK C displays a dialog box that shows how many lines have been compiled.

19

THINK's LightspeedC

20

When THINK C compiles a source file, it adds its name and size to the project window. Your
project window should now look like this:

== hello project

* Name obj size

&

THINK C keeps all the object code for your source files in the project document.

Did you get an error?

If you made a mistake typing the program, THINK C will display an error message in a dialog
box. The message may say syntax error. In this small program, about the only thing you can
do is forget a quote, a parenthesis, or a semicolon.

Click anywhere in the dialog box to get rid of it. THINK C puts the insertion point in the line
with the error. Look over your program to make sure everything is correct. Then select
Compile from the Source menu.

If you get an error message that says “can’t open #include'd file” like this one:

* can't open #Include’d flle

it means that THINK C wasn’t able to find the #include file stdio.h. THINK C might not be
able to find the #include files if you didn’t move the Libraries folder into the THINK C
Folder. The best thing to do now is to start over from the beginning.

Tutorial: Hello World 3

Quit THINK C and move the Hello Folder to the Trash. Then look in Chapter 2 to make
sure you installed THINK C correctly. Once you're sure everything is OK, start again from the
beginning of this chapter.

Note: Throw the Hello Folder into the Trash only if you're starting all
over. If you didn’t get the “can’t open #include’d file” error message, go on.

Adding the Libraries

If you were to try to run your program now, you’d get linking errors because the project
doesn’t know where the print £ () function is defined.

Printf () is a standard C input/output function, so it’s in the stdio library. The next thing
you need to do is to add the stdio library to your project.

Note: It’s easy to get confused. There is a file called stdio.h and another
called stdio. Just remember that stdio. h is a text file that contains the
definitions of constants and data structures used in the stdio library. You
#include stdio.h only when you’re using the stdio library.

To add the stdio library to your project, select Add... from the Source menu.

When you get the standard file dialog box, open the folder called Libraries. This folder
contains all the libraries for Unix compatibility, including the stdio library. Select stdio,
and click on the Add button. (Jf you’re having trouble finding stdio, be sure you're not
looking for stdio.h.)

&3 Libraries

O ¥include files —Tess

O Library Sources

0 math [fject]
O profile

[@ive]

O setjmp.Lib

O sprintf/sscanf
[b stdio

O storage

00 storageu

Add

[cancel]

21

THINK's LightspeedC

THINK C adds the name stdio to the project window and then puts up the standard file
dialog box again. Don't click on any button just yet.

The stdio library is implemented in terms of Macintosh Toolbox routines. The printf ()
function, for instance, uses Toolbox routines to open a window and to draw a string to it. To
| make sure that printf () knows about the Toolbox routines, you'll need to add the
| MacTraps library to your project as well.

Since the standard file dialog is still up, use it to move to the Mac Libraries folder. This
folder contains the libraries for interfacing to the Macintosh Toolbox.

Select MacTraps and then click on the Add button.

| €3 Mac Libraries

D Appletalk * e Tess
0 MacinTalk.Lib _
[0 MacTraps [fject]

[mrive]

Add

5 | Cancel

These are all the libraries you'll need for this project, so click on the Cancel button when the
standard file dialog reappears after you add MacTraps.

22

Tutorial: Hello World 3

Your project window should look like this:

E=—= hello project

Name obj size
hello.c

MacTraps

" g

The object size for the libraries reads zero because when THINK C adds a library to your
project, it doesn’t load the code for it right away. This lets you add a whole set of libraries
without waiting for them to load.

THINK C loads the libraries automatically when you run the project. Another way to load a
library is to click on its name in the project window, and then select Load Library from the
Source menu. For this example, let THINK C load them for you.

Running the Project

Everything is all set to run the project. The source file is in the project window along with the
libraries you'll be using. Now select Run from the Project menu.

THINK C notices that the libraries need to be loaded, so it puts up a dialog box asking you if
you want to bring the project up to date:

-/E Bring the project up to date?

e =)

Rt

ﬁdaks] ﬁnncel]

Click on the Yes button. THINK C goes to disk to load the code for the libraries. It may take
THINK C a little time to load the libraries. Once they’re loaded into the project, though,
THINK C doesn'’t need to load them again.

23

THINK's LightspeedC

Any time you choose to run your project and THINK C notices that you've made changes
(added libraries or source files or edited source files) it will ask you if you want to update the
project. If you say yes, it will compile the new or changed files and load the new libraries.

This program uses the stdio library, so all output from print£ () calls goes to a window
called console. The console window emulates a generic terminal screen. You'll see the “hello
world” string at the bottom of this window.

" & File Edit @

Enit Window

Click close box of this window or press Return to continue

Ihnllu wor ld

N 4

To exit the program, press Return or click on the close box of the Exit window. Like the con-
sole window, the exit window appears only when you use the stdio library.

Creating the Application

As you develop a large application, you'll make changes to your source files. Each time you
run your project, THINK C will recompile only those files that have changed. When you're
ready to turn your project into a stand-alone double-clickable application, select Build
Application... from the Project menu.

24

Tutorial: Hello World 3

You'll see a dialog box asking you to name your application. Name it hello appl.

3 Hello Folder

0 hello prajeq? —Tess
0} hellag

fient

ripe

<

i

Save application as:

hello appl Cancel
BJ Smart Link

Leave the Smart Link box checked. This option tells THINK C to make your application as
small as possible.

THINK C puts up a dialog box telling you it's linking your application. When it’s finished, the
application will be in the folder you chose.

If you're running without MultiFinder, quit THINK C to run your application. Use the Quit
command in the File menu. If you’re using MultiFinder, you don’t need to quit first. Just bring
up the window with the folder your application is in. Double click on your application and
watch it run. That’s all there is to it.

Where to Go Next

The tutorial in the next chapter is a more elaborate example of building an application with
THINK C. It describes how THINK C reports errors when you compile and link, and it will
show you some advanced features of the THINK C editor.

If you would rather explore on your own, read the chapters of the Using THINK C section
that interest you. Or if you want to learn how to use THINK C’s source level debugger, now,
go to Chapter 5 and follow the tutorial there.

25

Tutorial: MiniEdit
4

Introduction

This chapter shows you how to use the more advanced features of THINK's LightspeedC.
You’ll build a small text editor based on the sample application described in Chapter 1 of
Inside Macintosh I. One of the source files has a small, intentional bug to show you how
THINK C makes it easy to fix mistakes.

You'll learn how to create a project, how to fix mistakes, how to run a project, how to build
an application, and how to use a resource file.

Before you begin

If you didn't follow the “hello world” example in the last chapter, read it now to get an idea
of how THINK C works in general.

Copy the folder MiniEdit Folder from disk THINK C 2 to your THINK C folder. This
folder contains all the files you’ll need to follow this example.

What you should know

You should know how to use the standard file dialog boxes to move around to different
folders. If you don’t know how to do this, read the documentation that came with your
Macintosh.

You will need to know which folder contains the file MacTraps.

Topics covered in this chapter:
e Creating a project
e Adding the source files and libraries
e Compiling and running the project
¢ Fixing a bug
* Running the project again
e Creating an application
* Using a resource file
e Finishing up

27

THINK's LightspeedC

Creating the Project

Make sure you copy the entire MiniEdit Folder from disk THINK C 2. This folder con-
tains the source files you need to create the MiniEdit application as well as the application’s
resource file.

Generally speaking, you'll have a folder for each project you work on. The folder should
contain your source files, your #include files, and the application’s resource file.

Open the THINK C Folder, and double click on the THINK C icon to begin. You'll see a dia-
log box that asks you to open a project.

[THINK C Folder

Sess
[0 Mac #includes _
[3 Mac Libraries [fject]
[0 Read Me (Bve)

[open]
gy [New k]
(cancel |

Since you're creating a new project, click on the New button.

When you get the next dialog box, move to the MiniEdit Folder, and name your project
MiniEdit.w. Project names don’t have to end in .7, though it’s a good idea. For this ex-
ample, it is important that you name your project MiniEdit . m. (To make a 7, type Option-

p)

Note: It’s very important to move back to the MiniEdit Folder.

Tutorial: MiniEdit 4

[MiniEdit Folder

0y Buggytdite

Y minh e«

D minbprint.o

O mintasindowss.g
0 Minifgilsfyere
O Mnitgithg

—oTess

b ivot

Hiipe

v’

Create

'y
/)

Name new project:
MiniEdit.w Cancel

]

Click on the Create button. THINK C creates a project document on disk, and displays an
empty project window.

MiniEdit.n ————xs

Name obj size

(=<

Now you're ready to add the source files and the MacTraps library to your project. All the
source files forMiniEdit.m are inthe MiniEdit Folder you copied from disk THINK
Cc 2.

29

THINK's LightspeedC

Adding the Source Files and Libraries

Select Add... from the Source menu. You'll see a standard file dialog that lets you add
source files and libraries.

[€3 MiniEdit Folder

0 BuggykEdit.c —Tess
D mini.file.c _
D mini.print.c [fiect]

0O mini.windows.c [

! Brive |
D) pleasewait.c

Add

| [Cancel]

Double click on the first file in the file list, BuggyEdit . c. THINK C adds the file name to the
[project window and displays the standard file dialog again. Add all of the source files in the
MiniEdit Folder to the project:

BuggyEdit.c
mini.file.c
mini.print.c
mini.windows.c
pleasewait.c

When you've added the last file, pleasewait . c, do not click on the Cancel button.

Tutorial: MiniEdit 4

Move to the Mac Libraries folder, and add the MacTraps library.

|23 Mac Libraries

O Appletalk
OO MacinTalk.Lib

e)

[Brive)

—Tess

2

Add

Iy Cancel]

All the files you need for this project are now in the project window. Click on the Cancel but-
ton now. Your project window should look like this:

Minikdit.
Name obj size
BuggyEdit.c 0

MacTraps
mini_file.c
mini.print.c

mini.windows.c

= = R I =

pleasewait.c

|24

The obj size column displays the object size in bytes for each file. The sizes are all zero be-
cause you haven't compiled any files or loaded the MacTraps library.

31

THINK's LightspeedC

Compiling and Running the Project

Before you can run your project, you need to compile the source files and load the
MacTraps library. You can use the Compile and Load Library commands in the Source
menu, or you can let THINK C take care of everything for you.

THINK C uses the project document to keep track of which files need to be compiled, so you
can go ahead and run your project. Choose the Run command from the Project menu.

None of the files in the project have been compiled, so THINK C asks you if you want to
bring the project up to date:

/_\ Bring the project up to date?

Yes [No]

[Make | [cancel |

Click on the Yes button.

THINK C starts compiling the first file in the project. It displays a dialog box that shows how
many lines have been compiled. (THINK C adds the number of lines in #includes files in the
line count.)

In this example, THINK C doesn’t get very far because BuggyEdit . ¢ has a small intentional
bug.

32

Tutorial: MiniEdit 4

Fixing a Bug

When THINK C finds an error in your source file, it opens the file that contains the error and
displays an error message in a dialog box. The insertion point is at the beginning of the line
that contains the error. In this example, THINK C complains that a variable hasn’t been
defined.

" & File Edit search JIIEYETN source windows

_K ‘myWindow’ has not been declared

T n 7
switch (myEvent.what) (
cose mousaDown:
switch (Finddindow(myEvant.where, tehichilindow > (
case [nDesk:

SysBeep< 10);
break ;

H

case InGoRway:

if Cours(whichHindow))>

| If (TrackGofway¢ miindow, muEvent.shere))
DoFilla(faCioss);

:
cose [nferwBar:
return{ DoCommand(ManuSelect(mEvent.shere)) 3;
case IinSysidindow:
SystenClick(Eaguvant, whichiindow);

case |

nOrag k
11 Courstehichidindow))
DragHindow(whichiindow, mjfvent.where, tLdrogRect);
i

&
al [,

4

LN

To get rid of the dialog box, click anywhere in it or press the Return or Enter key.

Scroll toward the beginning of the file, and you’ll see that the declaration for myWindow is
commented out:

HindosRecord whacord;

/* WindowPtr mplindow; ¢/ /* This is tha "bug” */
TEHand | @ TEN;

Int I ines|nFolder;

Rect drogRect = { 0, 0, 1024, 1024);

MenuHand e mfenus[3];

Remove the comments surrounding the declaration of myWindow.

Now, compile the file BuggyEdit . c. Choose the Compile command from the Source
menu. THINK C will compile the source file without errors this time. Note that you don't have
to save a file to recompile it.

33

THINK's LightspeedC

MiniEdit Folder.)

Before you run the project again, save the changes you’ve made to BuggyEdit. c. Since the
file no longer contains a bug, save it with a different name. Choose the Save As... command
from the File menu, and save the corrected file as MiniEdit . c. (Make sure you're in the

|3 MiniEdit Folder

£y Buggulidite

O mint e

N minhorint

DY minbapindapse.s
0N Minifditw

Save file as:
MiniEdit.c

0 -

e=>Tess

Jeot

II

Gripe

]

Cancel

file’s object code is now associated with the new name.

: =——— Minitkdit.m

Name obj size

MacTraps
mini_file_c
mini_print.c
mini.windows.c
MiniEdit.c
pleasewait.c

QEJIO oo

0

B

k

|=<a]

Now click on the project window. When you use the Save As... command on a file that is al-
ready in the project, THINK C changes the file’s name in the project window as well. The

Tutorial: MiniEdit 4

To save a file with a different name without affecting the the project, use the Save A Copy
As... command.

Now that you've fixed the bug, you can try running the project again.

Running the Project Again

Choose Run from the Project menu. When THINK C asks you if you want to bring the pro-
ject up to date, click on the Yes button.

THINK C loads the MacTraps library, then it compiles all the files in the project. Since you
already compiled MiniEdit . ¢, THINK C doesn’t recompile it.

Once THINK C compiles the whole project, it launches it as if you had opened it from the
Finder.

" & file Edit @
It.w
Untitied —b] siee
“include Minid | - :::
HindowRecord 694
HindowPtr 1446
TEHandla 1699
Int
Rect 8
la
ControlHondla 1
Cursor
Cursor
char ||

int A

Inlt0raf(t
inl tFonts¢JT
FlushEvents(everyEvent, 0);
Inl tHindows();

<o

If you’re using MultiFinder, THINK C launches your project in its own partition, so you can
shift from your project back to THINK C. If you're not using MultiFinder, THINK C launches
your project as if you had started it from the Finder. When you quit running your project,
THINK C starts up again automatically.

Play with the MiniEdit application for a while if you like. You might want to make some
changes. When you're satisfied with how the project runs, you're ready to turn it into a dou-
ble-clickable application.

35

THINK's LightspeedC

Building the Application

Turning your THINK C project into an application is easy. Choose the Set Project Type...
command from the Project menu. You'll see this dialog box:

@ Application File Type |APPL

(O Desk Accessory
¢ Aece Creator
(O Device Driver

(O Code Resource [] Separate STRS

Partition (K) |384

MF Attrs 0000

[Cancel]

Set the creator to CEM8. This will ensure that your application will have the right icon when
you build it. (CEM8 doesn’t stand for anything. It’s just unlikely that any other application on
your disk has that signature.)

Set the partition size to 128K. Since MiniEdit is such as small program, it doesn't need the de-
fault 384K partition size. MultiFinder uses the partition size to determine how much memory
to give to your application.

Tutorial: MiniEdit 4

When dialog box looks like this, click on the OK button:

® Application

(O Desk Accessory
(O Device Driver
(O Code Resource

Partition (K)

MF Attrs

)

File Type (APPL

Creator |CEMS8

[] Separate STRS

128

0000

[Cancel]

Choose Build Application... from the Project menu. You'll see a dialog box like this:

[&3 MiniEdit Folder

0y Buggultdite

N omink e«

D minbaintg

DY ominbLawindors.s
0 Mipibditoy

D Minifditsnisre

Save application as:

MiniEdit

X Smart Link

Name the application MiniEdit. Leave the Smart Link box checked. This option tells

THINK C to make the application as small as possible.

37

THINK's LightspeedC

| As it's building the application, THINK C gives you status messages. First it links all the object

| code. Then it copies the resource file for the project into the application. (The next section

| tells you how to use a resource file with a project.) When it’s finished, you’ll have a new ap-
plication in the MiniEdit Folder.

| CEXE

MinikEdit

Using a Resource File

The MiniEdit Folder you copied from disk THINK C 2 contains a file called
MiniEdit.®. rsrc. This file contains the resources that the MiniEdit project uses.

When THINK C runs your project, it looks for a file named projectname. rsrc. (That s,
the name of your project plus the characters . rsrc appended to it.) This file should contain
the resources (menus, alerts, dialogs, etc.) that your project uses.

To create a resource file, you can use Apple’s RMaker or ResEdit utilities (they’re included in
your THINK C package). MiniEdit .%. rsrc was created with ResEdit, so there’s no
RMaker source file for it.

Finishing Up

When you’re finished working on a project, you can either close the project or quit THINK C.
To close the project, use the Close Project command in the Project menu. When you close
a project, THINK C displays a dialog box that lets you open or create projects.

To quit THINK C, choose Quit from the File menu.

Where to Go Next

The tutorial in the next chapter shows you how to use THINK C’s source level debugger. It
shows you how to activate the debugger, how to trace through your code, and how to exam-
ine and change the values of your variables.

If you feel comfortable with what you know so far, you might want to start creating your own
applications right away. Use the next part of the manual, “Using THINK C”, when you need
help on a particular topic. You’ll probably find Chapter 8, “The Editor” useful now.

Tutorial: Bullseye
5

Introduction

This chapter shows you how to use THINK C'’s source level debugger. You’ll use an example
program called Bullseye, which is included in your THINK C package. Bullseye is a simple
application. It draws a series of concentric circles in a small window. Bullseye’s Width menu
lets you select how wide each of the rings is.

Before you begin
Make sure you’re running MultiFinder on a Macintosh with at least 2Mb of memory.

Copy the Bullseye Folder from disk THINK C 2 to your development folder. The
Bullseye Folder contains all the files you'll need for this example.

Make sure that the file THINK C Debugger is in the same folder as THINK C (the THINK
C folder). This file must be named THINK C Debugger.

What you should know

Before you try this example, you should know how THINK C works. You should know how
to open a project, how to edit source files, and how to run a project. If you're not familiar
with any of these operations, go back and read (or try) the examples in the last two chapters.

Topics covered in this chapter:
¢ Opening the Bullseye project
¢ Turning the debugger on
¢ Watching the program run
¢ Examining and setting variables
¢ Examining structs and arrays
¢ Expressions and contexts
¢ Quitting the debugger

39

THINK's LightspeedC

Opening the Bullseye Project

If you're at the Finder, double click on the Bullseye.r project in the Bullseye Folder.
If you're already in THINK C, use the Open Project... command in the Project menu to
open the Bullseye. T project.

Bullseye consists of three source files and the MacTraps library.

. E=== buliseye v
Rame ob]
buliMonus o
bulisege.s
Ml indew. o
MacTraps

ee-.i
I

[l

Note that none of the files have been compiled, and that the MacTraps library hasn’t been
loaded.

Turning the Debugger On

THINK C ordinarily runs your project without the debugger. Choose the Use Debugger
command from the Project menu.

When the source debugger is on, THINK C adds a “bug” column in the project window to the
left of the Name column.

bullseye o —
Name obj size
4 bullMenus_c 0
¢ bullseye._c 1)

¢ bull¥indow.c
MacTraps 0

k

=1l

40

Tutorial: Bullseye 5

Generating the debugging tables

The gray diamonds in the “bug” column let you know that THINK C will generate special de-
bugging tables for a source file. These tables go into your project document along with the
source files’ object code. THINK C never generates additional code when you run the
debugger.

Running the project

Choose Run from the Project menu to let THINK C compile and load all the files in your
project. THINK C will generate debugging tables for all the files as well.

Watching the Program Run

Instead of running your project, THINK C launches the source debugger, which controls the
execution of your program. The debugger displays two windows at the bottom of your
screen. If you're using two screens, the debugger windows are on the second screen instead.

The window on the left is the Source window. It contains the source text of your program.
The window on the right is the Data window. You use this window to examine and set the
values of your variables as you debug your program.

The Source window

The Source window shows you the source of your program. The title of the window is the
name of the source file you're looking at.

= hullseye.c =5

e Tl Data

[1MX
o

[A

main¢)
Inithacintosh();
Sa tUpHanus();
Se tupH Indow(>;
for €;;>

XX

Along the top of the Source window is a row of six pushbuttons called the status panel.

These buttons control the execution of your program. The status panel also shows you the
state of your program. Right now, the Stop button is lit to show you that your program is [
stopped.

The arrow to the left of the first line of the program points to the statement that’s about to be
executed. This is called the current statement.

The hollow diamonds at the left of the Source window are statement markers. The debug-
ger displays a statement marker for each statement in your program. (Loosely speaking, a
statement is a line that generates code.) Later, you’ll use the statement markers to set
breakpoints.

41

THINK's LightspeedC

Stepping through statements
Click on the Step button in the status panel.

bullseye.c

Ini tMacintosh();
SetUpMenus();
SetUpHindow(>;

<&
¥

for ¢;;?
< HandleEvent();

» main K2

statement, and the program stops again.

in the Debug menu or type Command-S to do the same thing.

Stepping into functions

The Step button lights up for a moment, the current statement arrow moves to the second

The Step button lets you execute your program line by line. You can use the Step command

Press the Step button (or type Command-S) one more time so the current statement arrow
points to the call to SetUpWindow (). This function creates the window that Bullseye uses.

To see how SetUpWindow () works, press the In button on the status panel (or type
Command-I). (This command is called Step In in the Debugger menu.)

bulllVindow.c

SetUplindow(>

<
¥

dragRect = screenBits.bounds;

SetPort(bul Iseyelindow?’;

SetUp¥indow K

42

bul Iseyelindow = Mewlindow(OL, &windowBounds

Tutorial: Bullseye 5

Now the current statement arrow points to the first line of the SetUpWindow () function.
This function is in the file bullWindow. ¢, so the title of the window changes to let you
know what file it’s displaying.

Note: The current statement arrow doesn’t have to be right before a function
call for the In button to work. The Step In command executes every state-
ment until the program counter is no longer in the current function. Another
way to think of the Step In command is: “Keep going until you fall into a
function.” (Step In also stops execution if you fall out of the current
function.)

Stepping out of functions

You can see the entire SetUpWindow () function in the source window. It’s a pretty
straightforward function, and you can rest assured it works.

Click on the Out button to leave the SetUpWindow () function. The Source window now
shows that the debugger is ready to execute the function HandleEvent () in the

bullseye. c file. (Pressing the Qut button is the same as choosing Step Out from the
Debug menu.)

< SetUpMenus{);
¢ SetUplindow(>;
for (;;)
oW HandleEvent();
Of }
/¥ end main */

» main Ka

The Out button steps through each statement in the current function until the current state-
ment arrow leaves the function.

43

THINK's LightspeedC

Tracing every statement

Now click on the Trace button (or type Command-T). The current statement arrow now
points to the first statement of the HandleEvent () function.

=

bullseye.c HIE

int ok;
EventRecord theEvent;

» Hil i teMenu<0>;
SystemTask (); /* Handle desk accessor i€

ok = GetNextEvent (everyEvent, &theEvent);
if (ok>

®» HandleEvent KO| |

GO OO

Tracing takes you to the next statement even if it has to step into a function. If you were to
continue tracing, you'd stop at every statement. Stepping, on the other hand, never dives into
a function.

Note: The In button actually does a Trace until the current statement arrow
leaves the current function.

Setting a breakpoint

Since the SetUpWindow () function opened a new window, the program will get an activate
event the first time through the event loop. In Bullseye, all the program does on activate
events is call InvalRect () on the whole window, so the second time through the event
loop it gets an update event.

You could Step or Trace to verify that this is what really happens. A faster way is to set a
breakpoint at the function that redraws the window.

Tutorial: Bullseye S

Scroll down in the source window until you get to the code that handles update events. Click
on the statement marker to the left of the DrawBullseye () function.

bullseye.c

case updateEvt:
BeginUpdate(bul | seyelindow);
DrawBul | seye({({lindowPeek > bul I seyeli
K’ EndUpdate(bul | seyelindow>;
break; J

COoe O

case activateEvt: l

» HandleEvent KJ E]

The hollow diamond turns black to indicate that you've set a breakpoint. You can set as
many breakpoints as you like this way. When your program is about to execute a statement
that has a breakpoint, it will stop. To remove a breakpoint, just click in the filled diamond.

To start your program running, press the Go button. The program runs for a few moments
and then stops. The current statement arrow is at your breakpoint.

Press the In button to step into the DrawBullseye () function. (This function is in the
bullWindow. c file, so that’s the file you see in the source window now.)

short active;

Rect myRect;
oW int color = true;

< SetPort(bul I seyelindow);
< EraseRect(&circleStart);
< myRect = circleStart;
»

DrawBullseye Kf] B

45

THINK's LightspeedC

Click on the Step button to watch how the program draws a bullseye in the window. If you
get bored, press the Out button. Whether you Step or Step Out, you'll eventually end back at
the call to DrawBullseye () .

bullseye.c

break;

case updateEut:

Led BeginUpdate(bul | seyelindow);
*D DrawBul | seye({((HindowPeek > bul | seyel
Lod EndUpdatec(bul | seyelindow)>;
< break;
case activateEuvt: Q

» HandleEvent ’(:J B

Note that the current statement arrow is hollow. This means that there are still some in-
structions left to execute in the statement. You'll see hollow arrows when the statement is
making an assignment or cleaning up the stack after stepping out of a function.

Before you go on, clear the breakpoint. Just click on the filled diamond.

Letting the program run

Press the Go button to let the program run. You can set and clear breakpoints while your
program is running,.

When you click in the Source window to set breakpoints, your application will go to the
background, and the debugger comes to the foreground. If you press the Go button when
your program is running, the debugger brings it to the foreground.

Stopping the program
To stop your program, click on the Stop button or press Command-Period. Your program will

stop as it’s coming out of one of the event-fetching routines (GetNextEvent () or
WaitNextEvent ()).

1f your program is stuck in a loop or if you want to stop it without waiting for control to re-
turn to the event loop, you can use the panic button, Command-Shift-Period, to stop your
program. Be careful when you do this, though, because the debugger will stop execution no
matter what it’s doing.

Tutorial: Bullseye 5

Viewing other files

Sometimes you’ll want the Source window to display another file in your project. For exam-
ple, you might want to set a breakpoint in a file other than the one the current statement ar-
row is in.

To see a different file in the Source window, first bring THINK C to the foreground. You can
do this several ways:type Command-0, choose you project name from the Windows menu,
click on the project window, or choose THINK C from the list of applications at the bottom of
the Apple menu.

Next, click on the file name in the project window. Then choose Debug from the Source
menu. The source file will appear in the Source window, and you can set breakpoints in it.

To display the file that contains the current statement again, just click on the current function
name at the bottom left of the Source window.

Examining and setting variables

Tracing your program’s execution lets you see what your program is doing. But to really fix
bugs, you need to be able to examine your variables. That’s what the Data window is for.

If you've quit the Bullseye program, start it up again. Select Run from the Project menu, and
when you see the debugger window, press the Go button in the status panel.

The Data window

The Data window appears to the right of the Source window. The best way to think about
this window is to treat it as a spreadsheet.

Data ==—[E
V|| X
<

[

[P

47

THINK's LightspeedC

At the top of the Data window is the entry fleld and two pushbuttons. The button marked
with a check mark is the enter button, and the button marked with an X is the deselect
button.

expression column, and the one on the right is the value column. You enier expressions

|

(Below the entry field and the buttons are two columns. The column on the left is the

r

: (usually variable names) in the left column, and their values appear in the right column.

Examining variables

Suppose you want to watch the value of the menulID variable in the HandleMenu () func-
tion. First, make sure the bul1Menus. c file is displayed in the source window. If it's not,
bring the project window to the front, click on the name bul1lMenus. ¢, and select Debug
from the Source menu.

Next, scroll down until you see the HandleMenu () function, and set a breakpoint at the
switch statement. Remember that you can set breakpoints even while your program is
running.

After you set the breakpoint, click once on the line that contains the switch statement to se-
lect it.

bullMenus.c

< int menul tem = Lolord(mSelect);
Str255 name;
GrafPtr savePort;

WindowPeek frontWindow;

{

case applelD:
< GetPort(&savePort);

Kal |

You select a line to give the debugger a context for evaluating menuID. In this case, you're
saying that you want to know the value of menuID right before the switch statement.

Expressions in the Data window have either local scope or global scope. An expression
has local scope if it refers to variables with dynamic storage; in other words if it refers to non-
static variables local to a function. All other expressions have global scope.

Click in the Data window. You'll see the insertion point blinking in the entry field. Type
menulID in the entry field and press the Return key.

Tutorial: Bullseye 5

'The debugger compiles the expression (it takes about a second) in the context of the selected
line. Right now, the Data window doesn’t show a value for menuID because the program
isn’t stopped there.

[E==—= pata =—=0
V|| X

menulD >

14
[

Now, go back to the Bullseye program. Click on the Bullseye window or type Command-G
to bring Bullseye to the foreground.

Next, select 7 from the Width menu. Your program stops at the breakpoint when you release
the mouse button, and the value of menuID appears in the value column.

Data ==015|

| V[

menulD 4

>

=]

Any time your program stops, the source debugger displays the values of expressions that
have global scope. Then it displays the values of expressions with local scope whose context
is the same as the current function. Finally, the debugger clears the values of local expres-
sions whose context is not the current function.

49

THINK's LightspeedC

Changing the value of a variable

Click in the Data window again, and type menuItem. This variable contains the item number
of the selected menu item. When you press the Return key, the source debugger shows you
its value.

Data ==L

=

menulD 4
menul tem ?

5] X

O
=i

To change the value of a variable, click on its value and type a new one in the entry field.
When you click on the enter button, the value of the variable changes. Here's an example.

Click on the value of menuItem (the right column) to select it. Its value appears in the entry
field as well. Now type 8 as a new value for it. Click on the enter button to assign the new
value to the variable.

Data ===

menulD 4
menul tem

[F4]

When you click on the Go button, the Bullseye program behaves as if you had chosen 8 from
the Width menu.

50

Tutorial: Bullseye 5

To remove an expression from the Data window, select it and choose Clear from the Edit
menu or press the Clear key.

Note: You can enter the same expression more than once in the Data win-
dow. You might want to do this to lock one of the expressions so you can
compare it to the same expression later in the program. See “How and when
the source debugger evaluates expressions” below.

Now choose the Clear All Breakpoints command in the Source menu to make sure there
aren’t any breakpoints set before you go on to the next section. Then click on the Go button
to start the program running again.

Examining structs and arrays

The data window lets you examine and modify structs and arrays, not just simple variables.
When you display a struct or union in the data window, its value appears as st ruct
0x000000 orunion 0x000000. Arrays appear as [] 0x000000. (The real address ap-
pears instead of 0x000000, of course.)

Note: Anything you read here about structs applies to unions as well.

When you double click on one of these values, the debugger displays another window for
the struct or array.

To see how this works, make sure the Bullseye program is still running. Display the file
bullseye.c in the Source window, and set a breakpoint on the line right after the call to
GetNextEvent () in the function HandleEvent ().

bullseye.c

<o Hil i teMenu<0>;
< SystemTask (); /* Handle desk accessori
< ok = GetNextEvent (everyEvent, &theEvent);
+* if (ok)
o R switch ¢theEvent.what)

{

case mouseDown:

K2

51

THINK's LightspeedC

52

Now click in the Bullseye window. The program will stop at the breakpoint. When it does,
type theEvent in the entry field of the Data window, and press the Return key.

Data —=0|
V|| X

menulD
menul tem —
theEvent ||struct 0x098760

k

0|
|

The debugger displays the word st ruct and the address of the struct. If you can’t see the

entire value, click on the center separator bar and drag it to the left. Or you can make the
window bigger.

Note: If you don't select a line to give a variable a context, the debugger
uses the current statement.

Double-click on the value of theEvent. The debugger displays a window. The names on the
left are the fields of the struct.

E[=— theEvent ===
X
what 8 {}
message 577164 B
when 1066595
where struct 0Ox0d4
modifiers 129
|
ol

You can edit the values of the fields, but you can't edit the names.

Tutorial: Bullseye 5

The what field indicates that you're looking at an activate event (activateEvt = 8).In
activate events, the message field points to the window record that gets the activate event.

Double-click on the message field. The debugger enters a new expression in the main Data
window: theEvent .message.

Note: Double-clicking on the left column of any Data window creates a new
entry in the main Data window.

Edit the expression so it reads * (WindowPtr) theEvent .message so you can look at the
WindowPtr.

Data =—=[12

menulD G
menul tem Bl
stryct Ox08SCESC
theEvent [|stridt 0x098760

%
&l

Double-click on the value of the new expression. The debugger displays another struct
window.

O

*[lUinfethr]the =pig|

device 0

portBits ||struct OxO08CESE
portRect [[struct Ox08CESC
visRgn 0x099A94
clipRgn | OxOABDEA

bkPat [1 OxD8CERC
fillPat [1 Ox0O8CEB4
phloc struct Ox08CEBC
pnSize struct Ox08CECO
phMode 8

53

THINK's LightspeedC

|

Scroll down to the pnPat field, and double-click. You’ll see an array window.

(*(WindowPtr)th(EOE|

o [

[T}
[]
1

VONONLWN=-O
o
X
N
T

Because C compilers don’t enforce array bounds, array windows have “infinite” scrollbars.
Unlike structs, you can select an index in the left column and change it. When you do so, the
window shows the array from the index you entered.

When you double click on the value of a pointer variable, the debugger inserts a derefer-
enced expression in the Data window and displays its value. To see a pointer as an array,
change its format to Address.

To get rid of a struct or array window, you can click on its close box, press the Clear key, or
select Clear from the Edit menu. When you use the Clear key or the Clear command, the
debugger removes the expression associated with the window from the main Data window.
If you click on the window’s close box, only the window goes away; the expression in the
main Data window remains.

Expressions and contexts

You can type any C expression in the entry field of the Data window as long as it doesn’t
have any potential side effects. This means that you can'’t type in a function call, an assign-
ment statement, or any expression that uses the autoincrement (+4) or autodecrement (--)
operators.

Every expression you type in the entry field is compiled in a context. The context is the se-
lected line of the Source window. If no line is selected, the context is the line that the current
statement arrow points to.

To see the context of an expression, click on the expression in the left column of the Data
window, and select Show Context from the Data menu. The source debugger will display
the context in the source window.

Tutorial: Bullseye)

To change the context of an expression, click in the source window at the line you want to
use as a context. Then select an expression in the Data window and choose Set Context
from the Data menu. A shortcut is to hold down the Option key as you click on the enter
button.

If you edit an expression, its context will be the context of the original expression. You can
change its context by holding down the Option key as you click on the enter button as de-
scribed above.

How and when the source debugger evaluates expressions

Expressions in the Data window have either local scope or global scope. An expression has
local scope if it refers to variables with dynamic storage; in other words if it refers to non-
static variables local to 2 function. All other expressions have global scope.

Every time your program stops, the debugger evaluates the expressions in the Data window.
It displays the values for expressions with global scope and the values of expressions with
local scope. Expressions that don't have 2 global or local context are cleared to make the
window less cluttered.

If you want to make sure that the debugger doesn’t redisplay a value, select it and choose
Lock from the Data menu. A small lock icon appears next to the expression. This command
is useful if you want to compare the value of the same expression at different times. You can
also lock expressions to keep their values from being cleared when they go out of scope.

Display formats

The way the debugger displays expressions depends on their type. You can change the for-
mat with the formatting commands in the Data menu. To change a format, select an expres-
sion from the Data window. Then choose the format from the debugger’s Data menu. .

Not all formats are available for all types. Defaults are in italics:

Type Formats Available

integers decimal, hex, char

unsigned bhex, decimal, char [
pointers pointer, address, hex, C string, Pascal string

arrays adadress, C string, Pascal string

structs address

unions address

functions address

floats Sfloating point

55

THINK's LightspeedC

56

This is what the display formats look like:

Format Example

decimal 4523345, -23576

hex 0xAQ9E1487

char 'c', 'TEXT'

C string "abcdef\nghi\33"

Pascal string "\pabcdef\nghi\33"

pointer 0x7A7000

address [1 0x09FE44, struct 0x08FC14
floating point 1961.0102

The C string and Pascal string formats display non-printing characters in backslash form.
Whenever it can, the debugger uses the built-in escape characters (\n, \ r, \b); otherwise it
uses \nnn, where nnn is an octal value.

Of course, you can use type casting to use formats that aren't normally available. For exam-
ple, if you really wanted to see an integer, i, as a C string, you would type this expression:
(char *) i.

To see any pointer as an array, just change its format to Address. This way, when you double-
click on its value, you'll see an array window instead of the value of what the pointer points
to.

Quitting the Debugger

The best way to quit the debugger is to quit your application. You should use the
ExitToShell command in the debugger’s Debug menu only when you can’t use your appli-
cation’s Quit command.

THINK’s
LightspeedC

PART THREE
Using THINK C

6 Overview
7 The Project
8 The Editor
9 Files & Folders
10 The Compiler
11 The Debugger
12 Assembly Language
13 Libraries

Overview
6

Introduction

This chapter describes the THINK's LightspeedC environment and how to write a program in
THINK C. The rest of the chapters in this part of the manual discuss specific aspects of the
components of the THINK C environment.

Toplcs covered Iin this chapter:
e The THINK C environment
e The Project
e Writing a program in THINK C
e Using THINK C

The THINK C Environment

THINK's LightspeedC is a complete integrated development environment, not just a C com-
piler for the Macintosh. Traditional development environments consist of three separate ap-
plications: the editor, the compiler, and the linker. It was up to you create your source files
with a text editor, run each file through the compiler, and finally link all your object files.

In THINK C, the three work in concert as parts of the same application. This way, THINK C
knows when you've edited a file. The compiler produces object code that the linker can put
together in an instant. Then THINK C can launch your program. And because THINK C is still
running, it can launch the source level debugger so you can debug your program.

The Project

The project is at the heart of the THINK C development environment. What you see on the
screen is a project window. It contains a list of all the files that comprise your program. Next
to each file name is the size of that file’s object code.

Rather than producing a separate binary object code file, THINK C keeps all the object code
in the project document in ready-to-link form.

Because the project document knows all the files that make up your program (including
header files), it can keep track of changes. When you edit a source file, the project manager

59

THINK's LightspeedC

marks it for recompilation. When you edit an #include file, the project manager marks all the
files that use it.

Writing a Program in THINK C

Writing a program in THINK C is like writing a program in any other development environ-
ment. You create your source files, compile them, then link the object code to create final
executable file. The difference is that in THINK C, you use the same application to do all of
this.

Creating source files

When you write a program in THINK C, the first thing you do is create a project document.
Usually, the project document is in a folder that you'’ll use for all the files related to your
program.

Next you'll create your source files and add your libraries. THINK C source files are standard
text files, so you'll be able to use existing source files. The THINK C editor provides some
features that help you edit C source code. Its search facilities include a pattern matching op-
tion based on Grep, and a multi-file search that looks for strings in any file in your project.

Adding libraries

Virtually every program you write will need to access the Macintosh Toolbox. You can call
any Macintosh Toolbox routine exactly as it’s described in mside Macintosh. The code for
Toolbox routines marked [Not In ROM] as well as the glue code needed to call some of the
other Toolbox routines is in the MacTraps library.

Your THINK C package also includes several other libraries you can use in your programs.
The stdio library contains the standard I/O functions found on most C systems. The unix
library contains UNIX system functions including memory calls. You can use these libraries
when you port code from other systems.

You can also create your own libraries in THINK C.

Complling the program

The THINK C project manager knows when files need to be recompiled. If you edit a source
file, the project manager marks it. If you edit an #include file, the project manager marks all
the files that depend on it. You can ask THINK C to bring your project up to date, or you can
rely on the Auto-Make facility to do it for you when you run the program.

Running the program

THINK C lets you run your program from THINK C. The project manager recompiles all the
marked source files and loads any unloaded libraries. Then the THINK C linker links all your
code together instantly.

THINK C launches your program as if you had double-clicked on it from the Finder. This
way, you know exactly how your program will behave in actual conditions.

If you're running under MuliiFinder, THINK C launches your program in its own partition.
Since THINK C is still running, you can look at your source files while your program is
running.

Debugging the program

To help you get your program working correctly, you can use THINK C’s source level de-
bugger. The debugger lets you step through your code, set breakpoints, and examine and
modify variables. You can set conditional breakpoints that stop execution only when certain
conditions are true.

Building the application
Finally, when you're ready to put together the final application, THINK C’s smart linker
examines the object code in your project to make the final file as small as possible.

Using THINK C

The best way to learn THINK C is to follow one of the tutorials in Part Two of this manual.
The rest of the chapters in this part of the manual describe the components of THINK C in
detail. This summary shows you the basic steps you'll take when you write a program in
THINK C.

Step Action

Create a folder for your project Use the Finder's New Folder command in the File
menu to create a folder for your project. This folder
will contain the project and all the source files your
project needs.

Start THINK C Double click on the THINK C icon from the Finder.

Create a new project When THINK C starts, it will ask you (with a standard
file dialog) to open an existing project or to create a
new one. Click on the New button. A second standard
file dialog will appear. Move to the folder you created
for your project, name your project, and click on the
Create button.

61

THINK's LightspeedC

62

Step

Create source files

Save source files

Add source files to the project

Add libraries

Run project

Action

Use the New command in the File menu to get an
empty edit window. To open existing source files, use
the Open... command in the File menu.

Use the Save command in the File menu to save
source files. Source files must end in . ¢ for THINK C
to use them in a project.

Use the Compile command in the Source menu to
compile the active source file and add it to the project
window automatically. If you don’t want to compile a
source file, but you still want to add it to the project
window, the Add command in the Source menu will
add the active source file. Use the Add... command to
add source files you haven’t opened with the THINK C
editor.

Use the Add... command in the Source menu to add
libraries to the project window. A standard file dialog
will appear. Move to the folder that contains the library
you want to add, and click on the Add button. The
dialog box will reappear to let you add more libraries.
When you’re done, click on the Cancel button.

Use the Run command in the Project menu to run
your project. If there are uncompiled or changed
source files or libraries that need to be loaded, THINK
C will ask you if you want to bring the project up to
date. Click on the Yes button.

If you want to use the source level debugger, choose
the Use Debugger command before running your
program to turn it on.

Step Acton

Build application Use the Build Application... command to turn your
project into a stand-alone application. A standard file
dialog will prompt you for the name of your
application.

63

The Project
7

Introduction

You can write applications, desk accessories, device drivers, and any kind of code resource
in THINK C. This chapter tells you how to build different types of projects.

The first section is about projects in general. It describes some of the internal components of
projects, how to use resource files with projects, and the different types of projects. The sec-
ond section tells you how to break up your project into segments. The remaining sections
describe the four project types: applications, desk accessories, device drivers, and code
resources.

What you should know

You should know how THINK C works. If you haven’t done so, run through the MiniEdit ex-
ample in Chapter 4. That chapter takes you step by step through building an application in
THINK C and gives you the practical background you need. This chapter deals with the more
technical aspects of projects.

If you want to write Macintosh applications, you should know about the resources that make
up an application: menus, window templates, dialogs, control templates, etc. You should
know how to build these kinds of resources with a resource editor, like ResEdit, or a resource
compiler, like RMaker. If you don’t know about these resources, look in Inside Macintosh I,
and read the chapters that talk about the resources you want to build. mside Macintosh I,
Chapter 5, “The Resource Manager” talks about the resource manager in general.

If you want to write desk accessories or device drivers, you should be familiar with the me-
chanics of DRVR resources. These are a bit more complicated, and the information about
desk accessories is interspersed with information about drivers in general. See Inside
Macintosh I, Chapter 14, “The Desk Manager” and Inside Macintosh II, Chapter 6, “The
Device Manager.”

If you want to build other kinds of code resources (INITs, WDEFs, cdevs, etc.) see the sec-
tion “Building Code Resources” later in this chapter.

If you don’t know how to call the Macintosh Toolbox routines, read the section “Calling the
Macintosh Toolbox Routines” in Chapter 10.

Topics covered in this chapter:
* Anatomy of a project

65

THINK's LightspeedC

66

Segmentation

Building applications

Building desk accessories and device drivers
Building code resources

Anatomy of a Project

The project is at the heart of the THINK C development environment. It takes over the func-
tions of several other files in more traditional development environments. The project holds
the object code of all your compiled source files and maintains the dependencies and con-
nections among them. It keeps track of files that need to be recompiled or that depend on an
edited #include file. And if you’re using the source level debugger, the project keeps the ta-
bles that the debugger needs.

The project types

THINK C lets you build four kinds of projects: applications, desk accessories, device drivers,
and code resources. To set the project type, use the Set Project Type... command in the
Project menu. This command displays a dialog box that lets you set type-specific attributes
for your project. For every project you can set the type and creator of the final file.

@ Application File Type |APPL
(O Desk Accessory
(O Device Driver

(O Code Resource
|

)
sy
)
=

Creator

The File Type and Creator of a file let the Finder know what icon to display. Some types, like
RDEV, INIT, and cdev, are treated specially by the Macintosh System software. To learn
about File Types and Creators (also called signatures), see Iside Macintosh I, Chapter 1,
“The Finder Interface.”

There is a section in this chapter for each project type. Each section describes the type-spe-
cific settings.

The best time to set the project type is when you create a new project. You can change pro-
ject types as you wish, but you’ll have to recompile everything if you do so.

When you set the project type to something other than Application, the name of the Build
Application... command in the Project menu will change accordingly. For example, if you
set the project type to Desk Accessory, the menu will read Build Desk Accessory....

The Project i

Changing the type of a project changes the way a project is built, not the way a project be-
haves. You can'’t turn an application into a desk accessory merely by changing the project
type. Desk accessories are structurally different from applications.

When you choose one of the Build... commands (Build Application..., Build Desk
Accessory..., etc.) from the Project menu, THINK C creates a file and creates the ap-
propriate CODE resources for applications, a DRVR resource for desk accessories and drivers,
or whatever type you specify for your code resource. THINK C also creates resources that it
uses to manage global data and inter-segment calls.

Components of a project l
Each source file or library in a project has up to four object components: CODE, DATA, STRS,
and JUMP. The CODE component contains the object code generated for the project. The
DATA component contains the global and static variables. In applications, string literals and
floating-point constants can be stored separately in the STRS component. Finally, the JUMP
component contains the jump table. Not all project types use all four components.

To examine the sizes (in bytes) of each of the components, select a source file in the project
window and choose the Get Info... command in the Source menu. The display also shows
the segment and project totals.

MiniEdit.c
CODE DATA STRS JUMP
File 1698 380 0 72 .
Segment 2 15360 1094 0 42792
Project 16104 1094 0 4384

(Next][Prev] File
(Mesd](Preu] Segment

0K

For some components there is a small amount of per segment or per project overhead.

Depending on the kind of project you build, there are different limits on the sizes of these
components.

67

THINK's LightspeedC

If project is a(n)... The limits are...

Application CODE: 32K per segment
DATA: 32K per project
JUMP: 32K per project
STRS: unlimited (if you use them)

Single-segment desk accessory or CODE: 32K per project
device driver DATA: 32K per project
JUMP is not used for single segment drivers

Multi-segment desk accessory or CODE: 32K per segment
device driver DATA + JUMP: 32K per project

Code resource ' CODE + DATA: 32K per project
JUMP is not used for code resources

If you exceed any of these limits, you’ll see an error at link time.

THINK C generates an 8 byte JUMP table entry for each function that is not declared static
as well as for each use of a function in a non-call context (i.e. whose address is taken). The
jump table built by the Build Application... command may be smaller; the entry for each
function that is only referenced within a single segment is removed.

How THINK C puts projects together

When you choose a Build... command from the Project menu, THINK C puts all the pieces
of your project together as compactly as possible. THINK C uses a technique called smart
linking to extract only the CODE elements it needs to build your application, desk acces-
sory, device driver, or code resource.

THINK C searches the project for files or libraries whose code is never referenced and ig-
nores them during the link. If you use a project as a library, THINK C takes only the code it

[needs from the project. If you use a library that you converted from a . rel file or one that
you built with the Build Library... command, all of its code will be included in the final file.

Smart linking yields smaller code, but it takes several seconds longer to produce the final file.
You can choose not to use smart linking; your files will be larger, but they’ll come out faster.

To turn smart linking off, choose your Build... command from the Project menu as you
normally do, then click on the Smart Link checkbox to clear the option. (It's on by default.)

68

The Project 7

[MiniEdit Folder

1Y Buggybdite

0 mint e

D ominbprinte

DY minbapindows.e
0 Minitdity

D MiniEdit e rere

= Tess

tipet

.

fHripe

i o

Save application as:

MiniEdit Cancel

X Smart Link A

After THINK C finishes linking the object code, it produces the application, desk accessory,
device driver, or code resource file. Finally, it copies any resources you put in the project re-
source file into the final file.

Using resource files with projects

Most Macintosh applications use resources for menus, window templates, dialogs, etc.
THINK C makes it easy to use resources with your applications.

Use ResEdit or RMaker to create a file that contains the resources your program needs. Save
the resource file with the same name as your project plus . rsrc. For instance, if the name of
your project is MyPro ject, name your resource file MyProject . rsrc. If your project is
name SuperWizzy.project, THINK C will look for the project’s resources in
SuperWizzy.project.rsrc.

Make sure the resource file is in the same folder as your project so THINK C can find it.

When you choose Run from the Project menu, THINK C opens the resource file auto-
matically, so your program can access its resources.

When you choose one of the Build... commands from the Project menu (Build
Application..., Build Desk Accessory..., etc.) THINK C copies the resource file into the
finished application.

69

THINK's LightspeedC

|

70

Segmentation

Most Macintosh programs are made up of several segments. Segments are units of object
code that can be swapped in and out of memory as needed. The Macintosh Operating System
limits segments to 32K, so if you’re writing a large program, you will have to segment your
code. To learn more about segments, see Inside Macintosh II, Chapter 2, “The Segment
Loader.”

THINK C lets you segment not only applications, but desk accessories and device drivers as
well. Applications can have up to 254 segments. Desk accessories and device drivers can
have up to 31 segments.

Dotted lines separate segments, and the current segment has gray hatching running along the
left edge. When you add files to your project, they’re added to the current segment.

[E==—= Minikdit.7w
Name obj size

H MacTraps 9992

H mini.file.c 1518 |

E mini_print.c 694

E mini_windows ¢ 1446

{ MiniEdit.c _

pleasewait.c & 8
<
el

To move a source file into another segment, click on its name in the project window and drag
it below the dotted line.

The Project 7

[S=—= MiniEdit.w

pleasewait.c 8

Name obj size
§ MacTraps 9992 K>
H mini.file.c 1518 |
- mini.print._c 694
mini.windows _c 1446
: MiniEdit.c

|2[<3]

Source files appear in alphabetical order within segments, so even if your program is small
enough to fit in one or two large segments, you might want to break it down into smaller
segments for cleaner organization.

If you want to rearrange whole segments at a time, hold down the Option key as you click
and drag on any file name in the segment. The entire segment is placed before the segment
where the drag ends. Moving segments affects only the project window display.

If you move all the files out of a segment, THINK C deletes the empty segment. When you l
use the Add... command, new files are placed in the current segment.

To learn more about segmentation, read nstde Macintosh II, Chapter 2, “The Segment
Loader.”
Building Applications

THINK C is set up to build applications by default, the Set Project Type... dialog gives you
an opportunity to set some application attributes.

Choose Set Project Type... from the Project menu, and you'll see this dialog:

71

THINK's LightspeedC

72

@ Application File Type |APPL
(O Desk Accessory
O Device Driver

(O Code Resource [] Separate STRS

Creator |{M&#&4

Partition (K) |64

MF Attrs

v) (o)

Setting the application file type and creator

When you’re building an application, the default file type is APPL. (In order for applications
to work with the Finder, applications must be of type APPL.) Set the Creator to whatever you
want your application’s signature to be. The Finder uses the file's creator to link icons with
specific applications (See mside Macintosh III, Chapter 1, “The Finder Interface” to learn
more about applications and icons.)

0000

Using separate STRS

THINK C normally places string literals and floating point constants in the DATA component
of a project. When you check Separate STRS, THINK C uses a separate STRS component to
store string literals and floating point constants.

When this option is off (the default), THINK C uses a 2 byte offset from register A5 to access
the string literals and floating point constants. Not only is the code smaller but there’s no
need to do run-time address fixups. When the Separate STRS option is on, THINK C uses a 4
byte absolute address to access the string literals and floating point constants.

The only time you might want to use this option is when your DATA component is coming
close to the 32K per project limit. Separating the STRS component might open up some room
in the DATA component. Remember, there’s no limit to the size of the STRS component.

If you build a library (or use a project as a library) with the Separate STRS option on, you can
use it only in projects that have the option on as well. To ensure compatibility for both cases,
leave the option off when you build a library.

The Project £

Setting the partition size and MultiFinder attributes

THINK C uses the values you set in the Partition and MF Attrs fields to build the SIZE re-
source your application needs to run under MultiFinder.

The partition size determines how much memory your application gets under MultiFinder.
The default partition size is 384K, which is more than enough for moderate size applications.
You’ll want to use a higher value for larger applications or a lower value for small applica-
tions when memory is tight.

The MF Attrs sets the flag that tells MultiFinder how compatible your application is. To learn
how to make your application MultiFinder compatible, you can order the MultiFinder ‘|
Development Package from APDA. (See Chapter 1 for more information about APDA.)

You can type in the value of the flag (in hex) in the field, or you can set the bits from the pop
up menu next to the field. The pop up menu looks like this:

MultiFinder-Aware

Background Null Events
Suspend & Resume Events

If the MultiFinder-Aware bit is set, MultiFinder expects you to conform to the MultiFinder
guidelines for shifting from the foreground to the background layers. Your application will
get suspend/resume events as your application shifts from foreground to background but not
activate/deactivate events.

Note: If MultiFinder Aware is checked, Suspend & Resume events should be
checked as well.

If the Background Null Events bit is set, your application gets regular null events when your
application is in the background. Otherwise, your application gets only update events.

If the Suspend & Resume Events bit is set, your application will get these events as it shifts
from the foreground to the background layers in addition to the activate/deactivate events
you normally receive.

Running the project

The Run command in the Project menu lets you run your application project as you work
on it. When you choose the Run command, THINK C launches your application as if you had
opened it from the Finder. If you're using MultiFinder, your application runs in its own
partition.

Under MultiFinder, you can watch your application run and examine your source code at the
same time. You can switch back and forth between your application and THINK C to edit

73

THINK's LightspeedC

your source files. When you quit your application, you'll be back in THINK C, and the auto-
make facility will be ready to recompile your changed files. While your application is run-
ning, the Run command changes to Resume. Choosing Resume brings your application to
the foreground.

Note: When you're running under MultiFinder, you have to be a little more
careful about stray pointers. A pointer to random memory may be pointing
into another application’s partition. A stray pointer to THINK C’s data struc-
tures may damage your project, and the damage will be copied out to disk.
Be careful with stray pointers. If this happens to you, delete the damaged
project, and start over with your backup and bring it up to date with the Use
Disk button in the Make... dialog. You do have a backup, don’t you?

Building Desk Accessories and Device Drivers

Desk accessories and drivers are structurally identical; they’re both drivers. According to
Inside Macintosh, drivers don’t behave much like applications and have a different internal
structure. In this section, the word driver by itself means either a device driver or a desk
accessory.

This section won't teach you how to write a desk accessory or a device driver from scratch.
To learn how to write these, read Instde Macintosh I, Chapter 14, “The Desk Manager,” Inside
Macintosh II, Chapter 6, “The Device Manager,” and Inside Macintosh V, Chapter 23, “The
Device Manager.”

Setting the project type

Set the project type before you start working on a driver. If you set the project type after
you've started compiling code, you’ll have to recompile your source files and reload your li-
braries.

Choose Set Project Type... from the Project menu. When the project type dialog appears,
click on either the Desk Accessory check box or the Device Driver check box.

O Rppiication File Type O Rppllcation File Type
@ Desk Rccessory Q Desk Rccessory

QO Device Driver Creetor @ Device Drver Creator
QO Code Resource [0 Multi-Segment QO Code Resource O Muiti-Segment
Name |] Name || |
we pm] Y w [z] Y ow [

74

The Project 7

The Desk Accessory dialog presets the File Type and Creator so the resulting file will be a
Font/DA Mover file. The ID is set to 12. The Font/DA Mover renumbers it when you install it
in your System. You shouldn't need to change the ID number. All that’s left to do is to name
the desk accessory and write the code. By convention, desk accessory names begin with a
null. THINK C provides the null for you automatically.

The Device Driver dialog leaves all the options empty for you to set. Device driver names
begin with a period. If you don’t provide one in the Name field, THINK C automatically pro-
vides one for you.

The preset fields in the project type dialogs aren’t the only difference between desk acces-
sories and device drivers. See “Setting the fields of a driver’s header” below to learn about the
internal differences between desk accessories and device drivers.

Both device drivers and desk accessories can have more than one segment, just like appli-
cations. Just click on the Multi-Segment checkbox. You can learn more about multi-segment [
drivers below, but read how a driver works first. |

How drivers work

The Device Manager expects drivers to have five entry points and to be written in assembly
language. When the Device Manager calls a driver written in THINK C, a short assembly-lan-
guage stub (or glue routine) translates the Device Manager’s request into a call to the C func-
tion main (). THINK C automatically places the driver glue at the beginning of your driver.

The THINK C driver glue also does two things designed to make writing a driver easier. First,
it sets up a data area so that your driver can have its own global variables. Second, it figures
out the proper way to return control to the Device Manager automatically. These services are
discussed later in this section.

75

THINK's LightspeedC

How to write main() for a driver

The driver’s main function takes three arguments. The function returns an int and is no¢
declared pascal. A typical driver skeleton looks like this:

main (paramBlock, devCtlEnt, n)
cntrlParam *paramBlock;

DCtlPtr devCtlEnt;
int n;

switch (n) {

| case 0 : /% Open */
case 1 : /* Prime */
case 2 : /% Control */
case 3 : /% Status */
case 4 : /* Close */

ParamBlock is a pointer to an I/O parameter block. This is the value that is passed in ad-
dress register A0 to the assembly-language entry point of the driver.

DevCt1Ent is a pointer to the driver's device control entry. This is the value that is passed in
address register Al to the assembly-language entry point of the driver.

N is a selector that specifies which entry point actually received the call. Use the value of n to
dispatch control to the appropriate routine.

Getting the event record pointer from paramBlock

According to Inside Macintosh I, Chapter 14, “The Desk Manager”, the csCode field of the
paramBlock passed to your driver specifies what kind of action your driver should take.

When paramBlock->csCode == accEvent, the csParam ficld of paramBlock con-
tains a pointer to an EventRecord. Since csParam is defined as an array of ints, this is
how you cast the field to get a pointer to the event record (assume that eventPtr is de-
clared EventRecord *):

eventPtr = (*(EventRecord **) paramBlock->csParam)

Global data In drivers

You can declare global and static variables in drivers. The THINK C driver glue allocates the
space for the globals in the heap before it callsmain () to implement the Open entry. The

76

The Project 7

glue releases the memory when the driver returns from a Close call. (There is a way to keep
the global data area allocated after a Close ; see “Returning from a driver” below.)

Note: In drivers, string literals and floating point constants are stored the
same way as global variables.

Macintosh applications use register A5 to access their globals. Since drivers co-exist with run-
ning applications, they can’t use register A5 to access their globals. Instead, drivers use
register A4.

The THINK C driver glue stores a handle to the dynamically allocated data area in the
dCtlStorage field of the driver’s device control entry. This handle is dereferenced into ad-
dress register A4 and locked before each call to main (). Your Open routine must check
whether the data area was allocated successfully. If it was not, the dCt1Storage field will
be 0, and your driver should display some error message (without using any globals!) and
close itself.

The data area remains locked between calls to your driver. If you like, you can unlock it
yourself before returning. If you unlock the dalta area, though, make sure that you don’t rely
on the address of any data item staying the same between calls. Also, make sure that the data
area doesn’t contain any objects, such as windows, that the Toolbox assumes will not move.

Using driver globais In cailback and trap intercept routines

The THINK C driver glue sets up register A4 for you whenever it’s called frommain (). If
your driver defines callback routines, trap intercept routines:, or other functions that might be
called when the value of A4 is in doubt, you have to save A4 where your routines can find it.

The #include file SetUpA4.h defines a set of macros that take care of saving, setting, and
restoring A4 for you.

Suppose your driver calls ModalDialog () with a filterProc. Since you're not sure if
the value of A4 will be correct when ModalDialog () calls your filterProc, you need
to save it. Your filterProc needs to set A4 to the saved value and then restore it before it
exits. Your call to ModalDialog () would look like this:

engage_in_dialog()

{
extern pascal Boolean myFilter();
int item;

RememberA4 () ;
ModalDialog(myFilter, &item);

71

THINK's LightspeedC

Your filterProc would look like this:

pascal Boolean myFilter(dp, eventp, itemp)
DialogPtr dp;
EventRecord *eventp;
int *itemp;
{
Boolean result;

SetUpA4 () ;

Restoreld4 () ;
return(result) ;

The calls to Remembera4 () and SetUpA4 () must appear in the same source file.

Use the same technique for trap intercept routines that need access to a driver’s globals. Of
course, if your callback or trap intercept routine doesn’t use driver globals, you don’t need to
set up and restore A4.

Using libraries In drivers

You can use libraries in drivers as long as the libraries don’t reference global variables ac-
cessed through register A5.

The MacTraps library doesn'’t reference any globals, so you can use it in your drivers.
MacTraps does define the QuickDraw globals, though. If you access these globals from a
driver, you'll find that they aren’t the real QuickDraw globals but simply the driver’s own
variables that QuickDraw knows nothing about.

You can access the real QuickDraw globals from a driver by observing that 0 (A5) holds the
address of the last of the QuickDraw globals, thePort. The remaining QuickDraw globals
are at descending addresses from thePort; refer to mside Macintosh I, Chapter 6,
“QuickDraw” for more information. The value of A5 is stored in the low-memory global
CurrentA5. You might want to use the inline assembler to get to the QuickDraw globals.
See Chapter 12 for details.

Other libraries supplied with THINK C reference their globals from register A5, so you can’t
use them in drivers without modifying them. To make a library use register A4 for its globals,
first make a copy of the library. Then change the project type of the library to anything but
Application, and recompile and rebuild the library. See Chapter 13 to learn how to build
libraries.

78

The Project 7

Setting the fields of a driver’s header

A driver begins with a header containing several flags and other data items (some of which
apply only to desk accessories). When the driver is opened, the Device Manager copies these
fields to the device control entry before the Open entry point is called. After that, the device
header is not used. The fields in the driver are used only to initialize the fields in the device
control entry.

THINK C presets these fields to reasonable default values. If your device driver or desk ac-
cessory requires different settings for these fields, modify them on the fly in the device con-
trol entry.

These are the default settings for desk accessories:

Field Value

dCtlFlags dReadEnable 0
dWritEnable 0
dCtlEnable 1
dStatEnable 0
dNeedGoodbye 0
dNeedTime 0
dNeedLock 0

dCtlDelay N/A because dNeedTime = 0

dCt1lEMask 0x016A (mouseDown, keyDown, autoKey,
update, activate)

dCt1Menu 0

These are the default settings for device drivers:

Field Value

dCtlFlags dReadEnable 1
dWritEnable 1
dCtlEnable 1
dStatEnable 1
dNeedGoodbye 0
dNeedTime 0
dNeedLock 1

dCtlDelay N/A because dNeedTime = 0

dCtlEMask N/A (desk accessories only)

dCt1lMenu N/A (desk accessories only)

79

THINK's LightspeedC

Suppose you want a desk accessory to remain locked between calls and to be called once
per second (every 60 ticks). Just include this code in the driver’s Open routine. (devCt1Ent
is the second argument to main (), the pointer to the device control entry.)

devCtlEnt->dCtlFlags |= dNeedLock|dNeedTime;
devCtlEnt->dCtlDelay = 60;

Opening an open driver

The Open entry point of a driver (main () ’s third argument == 0) may be called even if the
driver is already open. This happens, for example, when the user selects the name of a desk
accessory that's already on the screen. The driver should check to see if it is already open to
avoid repeating its initialization sequence.

You can set the fields of the device control entry directly as shown above, but the Device
Manager copies the dCt1Flags, dCt1Menu, dCt1Delay, and dCt 1EMask fields of the
driver’s header to the corresponding fields of the device control entry every fimethe Open
routine is called, even if the driver is already open. So you need to set these fields to their
proper values each time. Your Open routine might look something like this:

doOpen ()
{
devCtlEnt->dCtlFlags|= dNeedLock;/* or whatever */

if (already open) /* already open is a driver global */
return;

already open = 1;

/* one-time initialization */

}

How to return from a driver

If your Open routine was successful, return 0. If the Open routine fails, return a negative re-
sult and the driver will not be opened.

Return 0 from Close if it was successful. If your Close routine returns closeErr (-24) the
driver won’t be closed. If you return a 1, the THINK C driver glue will preserve the
dCtlStorage field of the device control entry. This way you can keep your driver globals
around until your driver is reopened. (The driver glue will make it seem as though your
Close routine returned 0, meaning the Close was successful.)

Note: Returning negative values from Open and Close to prevent opening
or closing works only on 128K and later ROMs,

80

The Project 7

Return 1 from asynchronous calls to Prime, Control, and Status routines if the request
could not be completed right away. This result code will be stored in the ioResult field of
the I/O parameter block, but 0 (no error) will be returned to the Device Manager.

The jIODone probiem

THINK C always returns from a driver correctly. In other development systems, it's not so
easy. Read this section if you want to learn about this problem. Since you don’t have to worry
about it, you might want to skip this section.

One of the trickiest aspects of returning from a driver is deciding whether to return directly to
the Device Manager (via an RTS instruction) or whether to jump to jIODone. This is a com-
plex issue, and many existing desk accessories do it wrong (though, fortuitously, they man-
age to work anyway). [

Associated with each driver is an I/O queue, which is a list of /O parameter blocks waiting
for service from the driver. Calls made to a driver fall into one of two categories: queued,
meaning that the 1/O parameter block passed as an argument to the call is in the driver’s
queue; and immediate, meaning that it is not. In the immediate case, the queue may even be
(and in fact usually is) empty.

All open and Close calls are immediate. All Cont rol calls made to desk accessories are
immediate, except for the “goodbye kiss” (csCode=-1) issued to desk accessories that have
requested to be notified when the current application exits out from under them. Other calls
may be queued or immediate.

The rules for returning from a driver are: The driver should return directly to the Device
Manager from all immediate calls. It should also return directly to the Device Manager from
queued calls requesting asynchronous 1/0 that could not be completed right away. Finally, it
should jump to §I0Done from queued calls if the driver completed the request (or if there
was an error).

It is incorrect to violate these rules; in particular, it is incorrect to jump to jIODone to return
from an immediate call. jI0Done will attempt to examine the driver's I/O queue, and since
the queue is usually empty it will end up examining low-memory locations beginning at
0x0000. Apparently, these locations somehow look enough like an I/O parameter block to
satisfy the Device Manager, but this is clearly an unsafe situation.

Just to make things difficult, when returning from Prime, Control, and Status calls, it is
jIoDone that unlocks the driver’s code and its device control entry so they won't form is-
lands in the heap between calls to the driver (unless, of course, the driver has requested that
they remain locked). So the author of a desk accessory, for instance, has to make a difficult
decision — to return directly to the Device Manager, leaving the driver’s code and its device
control entry locked and potentially interfering with the host application; or to violate the
rules and jump to jIODone. Most desk accessories seem to take the latter route.

81

THINK's LightspeedC

THINK C avoids this dilemma. When a driver written in THINK C returns frommain (), the
decision whether to call jT0Done is made automatically (and correctly). For Prime,
Control, and Status calls, if the decision is made to return directly to the Device
Manager, and the driver has not requested that its code and device control entry remain
locked, they are unlocked.

Multl-Segment drivers

If the Multi-Segment option is on, drivers can contain multiple segments. As with appli-
cations, segments are loaded automatically as they are called. In addition, all loaded seg-
ments are unloaded automatically upon return to the Device Manager after each call, unless
the dNeedLock bit is set in the driver’s device control entry.

You can unload driver segments manually with this function:

void UnloadA4Seg (ProcPtr);
This function works just like UnloadSeg () does in applications.
Note: Do not use UnloadSeq () instead of UnloadA4Seg () by mistake!

Read the Segmentation section above to learn how to break up a project into different
segments.

Building Code Resources

You can use THINK C to write pure code resources. Code resources don’t have the complex
structure of drivers; they simply contain code to be called at the entry point, main ().

You might want to write code resources for several reasons. You might want to write a win-
dow definition function that you can use in several other programs, or you might want to
write an INIT to run at startup. You may define your own code resource types to make a
function you’ve written in THINK C available to a program written in another language. The
“client” program simply loads the resource and calls it at its beginning. It’s up to you whether
you use C or Pascal calling conventions. (For more information about calling conventions,
see Chapter 12.)

This section tells you how to build code resources in THINK C. The specific formats and call-
ing sequences for code resources are given in the various volumes and chapters of Inside
Macintosh. This list will help you get started.

82

The Project 7

To learn how to build a... Read Inside Macintosh...]
ADBS resource Volume V, Chapter 20, “The Apple Desktop Bus”
CDEF resource Volume I, Chapter 10, “The Control Manager” |
cdev resource Volume V, Chapter 18, “The Control Panel”
FKEY resource Technical Note 3 (also see below)
INIT resource Volume 1V, Chapter 29, “The System Resource File”
Volume V, Chapter 19, “The Start Manager”
LDEF resource Volume 1V, Chapter 30, “The List Manager Package”
MBDF resource Volume V, Chapter 13, “The Menu Manager”
MDEF resource Volume I, Chapter 11, “The Menu Manager”
Volume V, Chapter 13, “The Menu Manager”
WDEF resource Volume I, Chapter 9, “The Window Manager”

Setting the project type

Set the project type before you start working on a driver. If you set the project type after
you've started compiling code, you'll have to recompile your source files and reload your
libraries.

Choose Set Project Type... from the Project menu. When the project type dialog appears,
click on the Code Resource check box.

O Rpplication Fite Type
O Desk Recossory
O tevice Driver Creator @

@® Cede Resource [J Custom Header

Neme | |

e[|w[| aum EL
[oK] [Concel]

Fill in the Type and ID of the code resource you’re building. If you like, you can give your
code resource a name.

Use the Attrs (attributes) popup menu to set the resource attributes for your code resource. If
you prefer, you can enter a hex value in the Attrs field. To learn about resource attributes, see
Inside Macintosh I, Chapter 5, “The Resource Manager.”

How to write main() for a code resource

The way you write your main () routine depends on the kind of resource you're writing.
The main point to remember is that if your code resource is going to be called from a Pascal
program or as a callback routine, it must be declared pascal.

83

THINK's LightspeedC

An FKEY, for example, is called by the Event Manager. It doesn’t have any arguments. You
would define main () like this:

main ()

{
}

A WDEF resource is a custom window definition. The Window Manager calls main () with
several arguments and expects the window definition function to return a 1ong. This is how
you would write main () for a WDEF:

pascal long main(varCode, theWindow, message, param)
int varCode, message;

WindowPtr theWindow;

long param;

{
)

Global data in code resources
Code resources, like applications and drivers, can have global and static variables. When you

build a code resource, the DATA component is appended to the CODE component, so CODE
and DATA together must be less than 32K.

Code resource globals are addressed as offset from A4. Unlike drivers, however, A4 isn't set
up automatically for you when your main () routine is called. You have to do this yourself.

Note: THINK C treats string literals and floating points constants the same
way as globals in code resources. If you're using literals and constants and
not globals, you still need to set up A4. Earlier versions of THINK C did not
handle string literals and floating point constants this way.

Whenmain () is called, A0 points to your code resource. This is the same value that your
code resource expects A4 to have to find your globals.

The Project 7

The #include file SetUpA4 . h contains a set of macros that help you set up the A4 register. ‘
Immediately after you enter main (), call RememberA0 (). This macro saves the value of A0
where another macro, SetUpa4 (), can find it. You must call RestoreA4 () before you re-
turn from main (). For example:

main ()

{
RememberAQ(); /* To access resource globals */
SetUpA4 () ;

RestoreAd () ;

Note: This technique works only when you use the default code resource
header. If you use a custom header, you’ll have to set up A4 another way.
See “Code resource headers” below to learn how to do this.

Using librarles In code resources

You can use libraries in code resources as long as the libraries don't reference global vari- [
ables accessed through register A5.

The MacTraps library does not access any globals, so you can use it in your drivers.
MacTraps does define the QuickDraw globals, though. If you access these globals from a
code resource, you'll find that they aren’t the real QuickDraw globals but simply the re-
source’s own variables that QuickDraw knows nothing about.

You can access the real QuickDraw globals from a driver by observing that 0 (A5) holds the
address of the last of the QuickDraw globals, thePort. The remaining QuickDraw globals
are at descending addresses from thePort; refer to Inside Macintosh I, Chapter 6,
“QuickDraw” for more information. The value of A5 is stored in the low-memory global
CurrentAS5. You might want to use the inline assembler to get to the QuickDraw globals.
See Chapter 12 for details.

The other libraries supplied with THINK C reference their globals from register A5, so you
can’t use them in code resources without modifying them. To make a library that uses register
A4 for its globals, first make a copy of the library. Then change the project type of the library
to anything but Application, and recompile and rebuild the library. To learn more about li-
braries, see Chapter 13.

85

THINK's LightspeedC

Locking code resources

86

The Macintosh Toolbox takes care of locking and unlocking the standard code resources like
WDEFs. When you write your own code resources, you can either let the caller take responsi-

bility for locking and unlocking them, or you can have the code resource do it itseif.

Whenmain () is entered, register A0 contains a pointer to your code resource. If you need
to lock it, you would write main like this:

#include <SetUpA4.h>

main ()
{
Handle h;
RememberA0(); /* To access resource globals */
SetUpAd () ;
asm {
_RecoverHandle /* a0 already points to resource */
move.l a0, h
}
HLock (h) ;

HUnlock (h) ;
RestoreAd () ;

Note: This technique works only when you use the standard code resource
header. If you use a custom header, you’ll have to get the address of your
code resource another way. See “Code resource headers” below.

If your code resource can be called reentrantly, it should not unconditionally be unlocked
each time it returns. Instead, it should be restored to the same state of locked-ness it had on

entry.

The Project 7

Code resource headers '
If the Custom Header option is off, THINK C creates a code resource with a standard header:

Offset Contents

0 BRA.S .+0x10 (branch to header code)
2 0x0000 (unused)

4 'TYPE' (resource type)

8 0x000A (resource ID)

10 (0xAa) 0x0000 (unused)

12 (0xC) 0x0000 (unused)

14 (0xE) 0x0000 (unused)

The standard header code puts the address of your code resource in register A0 and then
branches to your main () routine, but, the file containing main () is znot guaranteed to be
the first file in the code resource. You can do anything you like with the unused words.

Note: Older versions of THINK C put the address of your code resource in
the low memory global ToolScratch. The standard code resource header
does not do this. Use inline assembly if you need to reference A0 directly.

If the Custom Header option is checked, THINK C does not generate the standard header.
Instead, your code resource starts with the first function in the file where main () is defined.
Main () doesn’t have to be the first function in the file, so your resource can begin any way
you like. (In fact, main () may never be called.) This option is useful for certain types of
code resources that must begin with a table of some kind, rather than with code.

When you use a custom resource header, A0 does not contain the address of your code re-
source. This means that you can’t use the RememberA0 () macro to set up register A4 to use
your code resource globals until you set up A0 to point to your code resource.

87

THINK's LightspeedC

The following code shows one way to set up your code resource globals when you use a
custom resource header.

Note: SetUpA4 . h generates code, so if you #include it at the top of your
file, the internal function defined in SetUpA4 . h will be your header. This is
not what you want.

/* #includes, globals, declarations */
extern main(); /* declare it so we can JMP to it */

header() /* First function in file */

{
asm
DC.L 0 /* header information */

/* end of header */
LEA header, a0 /* put address of code resource in a0 */

JMP main

}
}
/* SetUpA4.h generates code, so don’t put it at the * /
/* top of the file with the other #includes. */

#include <SetUpA4.h>

main ()

{
RememberAl () ;
SetUpA4d () ;

RestoreAd () ;

88

The Editor
8

Introduction

This chapter describes the features of the built-in THINK's LightspeedC editor. The editor
uses standard Macintosh editing techniques so you’re familiar with its basic operation.
Although you can use it to edit any text file, the editor has some features that make editing
your source and #include files easier.

Topics covered In this chapter:
¢ Creating and opening files
e Editing text
¢ Printing files
¢ Closing and saving files
¢ Searching and replacing text

Creating and Opening Files

To create or open a file, you must have a project window open. You can open as many files
as the memory in your Macintosh will allow, and each file appears in its own edit window.
Although you usually create and open source or header files, you can also use the THINK C
editor to open any text file.

89

THINK's LightspeedC

| Creating a new file
’ To create a new file, select New from the File menu. An untitled edit window will appear,
ready for you to start typing into it.

Al

" & File Edit Search Project Source Windows
N [hello project

f mw———— —EmllZS
| &

|] T

A 4

Opening a text file

The Open... command in the File menu opens any text file. A standard file dialog box dis-
plays the names of all text files in the current folder, even if they weren't created with THINK
C. The file you open appears in its edit window.

Openling a source file

To open a source file that’s already in your project window, just double click on its name in
the project window. If the file is already open, double clicking on its name brings the file’s
edit window to the front.

You can open a file by typing the first portion of its name and then pressing Return or Enter
when the project window is the active window. Since the files in the project window are in
alphabetical order, the selected file is the first file in the project which matches the characters
typed so far. If what you type doesn’t match any name in the project window, any selected
file is deselected. When what you type matches more than one file name, you can use the
Tab key to cycle among all the names that match. The up- and down-arrow cursor keys also
change the selection in the project window.

Note: In the project window, you can use Backspace to mean up-arrow, and
Shift-Backspace to mean down-arrow.

Opening #include files

Sometimes when you’re working on a source file, you want to look at the #include files asso-
ciated with it. Naturally, you can use the Open... command in the File menu to open
#include files, but THINK C gives you a way to open these files quickly.

The Editor 8

Hold down the Option or Command key as you click in the title bar of a source file’s edit
window to get a pop up menu of all the files included in the source file. Choose the #include
file you want to look at and it will appear in its own edit window. If the file is already open,
its window will be brought forward.

V

Buggy HinlEdit.c

" ControlMgr.h
DeskMgr.h
DialogMgr.h
Tha sample appllication from insida Hacintosh| EpentMgr.h

beefed up a bit by Staphen 2. Stein, Think T
Use this fila with the “MinlEdit~ chapter of| Fil@Mgr.h

e In thi In th FontMgr.h
rescurcas used In s program are In

The fila was creatad with Res€dit, so there | MacTypes.h
for It. MenuMgr.h

In ordar for LightspeedC to find the resourc MinlEdit.h
project, be sure you’ve named the project Hi{ QuickDraw.h
TestEdit.h
ToolbouUtil.h
WindowMgr.h [*/

3

= There Is o bug In this flle) &=

Sinclude <OulckDrow.h>
sinclude <HacTypes.h>
sinciude Fonthgr.h>

®inciude <Hindostigr.h>

.] [T

Holding down the Option or Command key as you click in the title bar of the project window
brings up a pop up menu containing the names of all the #include files used in the project.

THINK C builds the pop up menus only for compiled source files. Any #include files that are
part of a precompiled header don’t appear in the pop up menus. (To learn more about pre-
compiled headers see Chapter 10.)

If you want to open an #include file that you've added to the source file since the last compi-
lation, or if you want to open an #include file for a file you haven’t compiled yet, use the
Open Selection command described below.

Opening the current selection

The Open Selection command in the File menu lets you open an #include file by select-
ing its name in the current source file (double clicking on the name works here). You don't
have to select the . h extension. The selection will automatically be extended to include it as
long as you've selected the first part of the file name.

Open Selection can deal with path names. If the character following the selection is .
(period) or : (colon), the selection is extended to the end of the next word following, and
this process is repeated. A partial path name is searched for as though it appeared in an
#include "..." statement in the file being edited. (Open Selection is not smart enough to look
for angle brackets.) If the editing window is untitled, only the project and THINK C trees are
searched. (To learn about the project and THINK C trees, see Chapter 9.)

91

THINK's LightspeedC :

Editing a File

The editor uses all the standard Macintosh editing techniques as well as some designed for
editing C programs. Double clicking on a word will select the entire word. Cut, Copy, Paste,
and Undo all work the way they do in other Macintosh applications.

Typlng text

The THINK C text editor does not have the word wrap feature you might be used to in other
editors. If you type past the right edge of the window, use the horizontal scroll bar at the bot-
tom of the window to see past the right edge.

Undoling changes to a file

If you make an unintentional change to your file, use the Undo command in the Edit menu.
Undo remembers only the last thing you did. You can also use Undo to Redo what you un-
did. The wording of the Undo command always reflects what it will undo. For instance, if you
cut a range of lines, the Undo command will read Undo Cut. If you select Undo, the com-
mand will now say Redo Cut. You can undo the most recent replace (see Searching and
Replacing in the next section), but you can’t undo a Replace All command.

If you've made numerous changes to your file, and you want to undo all of them, or if you
want to undo a Replace All, use the Revert command in the File menu. Revert discards all of
the changes you’ve made since you last saved (or opened) the file.

Scrolling to the insertion point

THINK C includes a feature that allows you to examine other areas of the text, then instantly
jump back to where you were. Pressing the Enter key while you are anywhere in the text will
reposition the text to show the current insertion point or the start of the current selection.
Since scrolling in any direction does not affect the insertion point or the current selection, this
will take you back to your previous position in the file.

If the start of the selection is already visible, pressing the Enter key makes the end of the se-
lection visible, so you can toggle between the two ends of the current selection. This is par-
‘ ticularly useful after using the Balance command.

H

Using the arrow keys

The arrow keys on the Macintosh Plus, Macintosh SE, and Macintosh I1 keyboards move the
insertion point up, down, left, and right. Holding down the Option key with an arrow key
moves the insertion point to the beginning of file, end of file, beginning of line, and end of
line, respectively. Shift-arrows and Shift-Option-arrows extend the current selection.

Note: Because of the Macintosh keyboard hardware design, it’s not possible
to distinguish between Shift-arrows and the +, *, /, and = keys on the nu-
meric keypad of the Macintosh Plus keyboard. For example, when you type
a + on the keypad, it will be treated as a Shift-left arrow. The shifted versions

92

The Editor 8

of these keys are the same as Shift-arrow combinations. On the Mac SE and
Mac], the +, *, /, and = keys work correctly.

Selecting lines

To select a line, triple click anywhere on the line. To select a range of lines, drag the mouse
after you triple click.

Indenting
If you indent a line with leading tabs or spaces, the editor will indent the following lines by
the same amount of space.

To keep a line from auto-indenting, hold down the option key when you press Return. The
editor uses tabs and spaces to indent the line, so you can just backspace over them if you
want to change the indentation.

Shifting blocks right and left

To change the indentation level for a range of lines use the Shift Left and Shift Right com-
mands from the Edit menu. Shift Left deletes the leading tab from each selected line. Shift
Right inserts a tab at the beginning of each selected line. Both Shift Left and Shift Right
extend the current selection to include entire lines.

Note: Do not type anything while doing Shift Left or Shift Right on a
selected region. This will, of course, replace the selected text with what you

typed.

Balancing parentheses, brackets, and braces

The Balance command in the Edit menu extends the current selection in both directions un-
til it encloses the smallest surrounding balanced text enclosed in parentheses (), brackets
[1, orbraces {}. Successive invocations select larger sequences of text.

Note: The Balance command just scans for matching characters without
taking into consideration whether the match is inside a string or a comment.

Try this: Start at the beginning of a file and search for the first left brace {. Then use Balance
and Find Again commands repeatedly until you get to the end of the file. This is a quick way
to check whether all your function definitions are properly balanced.

Changing font and tab settings

When you open a new edit window with the New command, the font is preset to Monaco-9,
and the tab stops are set to every 4 spaces. You can change these settings with the Set Tabs
& Font... command in the Edit menu. When you choose this command, you'll see this
dialog:

93

THINK's LightspeedC

-

Font: [Monaco N [[9]
ha

The quick brown fox jumps over the lazy dog.

Type a number to set the number of spaces per tab. To change the font, click on the font
name. You'll see a pop up menu with the names of the fonts in your System file. Click on the
font size to see a pop up menu of the sizes for the font.

If you are using a proportionally spaced font like New York or Geneva, the THINK C editor
uses the width of the non-breaking space (Option-Space) to figure out the width of a tab.

When you change the font or tab settings, the editor adds EFNT and ETAB resources to your
text files to record the new settings. Other text editors use these resources as well.

Note: To change the default font and tab settings, use ResEdit to modify the
CNFG 0 resource in the THINK C application. The second, third, and fourth
words of this resource specify the font number, font size, and tab width, re-
spectively, used for newly created Untitled windows.

Printing Files

Use the Print... command in the File menu to print the file in the frontmost edit window.
You'll see the standard print dialog for either the ImageWriter or LaserWriter.

The File menu also contains a standard Page Setup... command that lets you set the page
size and other options before you print.

Closing and Saving Files

I's a good idea to save your work every fifteen minutes or so just in case something horrible
happens. Power failures usually come at the most inopportune times, and strange machine
crashes do occur.

Closing a Fiie

To close a file, click on its edit window’s close box. If you've made changes, and you haven’t
saved the file, the editor will ask you if you want to save it before closing. You can also use
the Close command in the Edit menu to close a file.

Saving a Fiie

To save a file without closing it, use the Save command from the File menu. If you’ve never
saved the file before (that is, if its edit window is untitled), you'll get a standard file dialog
asking you to name the file.

The Editor 8

Saving a File With a Different Name

The THINK C editor gives you two ways of saving a file under a different name. The Save
As... command asks you to name a new file and then saves the contents of the edit window
under that name. If the file is part of your project (it’s in your project window), its name will
change there, too.

The Save a Copy As... is similar to the Save As... command except that it doesn’t change
the name of the file. This command files the contents of the current edit window under a new
name, but lets you continue editing the original file,

Saving and closing all open files
To save all the open files, use the Save All command in the Windows menu. This command
is the same as using the Save command on each window.

The Close All command closes all the open files. If a file hasn’t been saved, the editor will
ask you if you want to save it.

Saving Files Automatically

THINK C will save files for you automatically when you close them if you uncheck the
Confirm Saves checkbox in the Preferences section of the Options... command. See Chapter
14 for more information about the Options... command.

Searching and Replacing

The THINK C editor offers a wide range of search and replace capabilities. You can:

find a string in a file

replace one string with another

find a string in any file in your project
find the definition of a2 symbol

find strings that match a pattern (grep)

Finding a String
Use the Find... command in the Edit menu when you want to find a string. You'll see this
dialog box:

Search for: Replace with:
myWindou|
O Match Words [6rep [0 Multi-Flle Search

O wrep Around [
X tgnore Case

find | Don't Find J(cancel]

95

THINK's LightspeedC

Type the string you’re looking for in the Search for: field and click the Find button. If the
string is in the file you’re editing, it will be highlighted. If it’s not, the editor just beeps.

Since the string you've found is highlighted, you can replace it just by typing in a replacement
string.

To find the next instance of the string, use the Find Again command in the Edit menu.

Search options

The three checkboxes on the left side of the Find dialog let you specify how the editor looks
for your string. You can set the defaults for these options with the Options... command in
the Edit menu.

If you check the Match Words option, the editor will match only whole words. This option is
useful when you're looking for one-letter variable names, for instance.

The editor usually searches from the insertion point to the end of the file. If you check the
Wrap Around option, it will search the entire file for your string. The search begins from the
insertion point (or the end of the selection). If your string hasn’t been found by the time the
editor gets to the end of the file, it searches from the beginning to the insertion point.

When the Ignore Case option is checked, the editor will match the search string regardless of
case. If this option is off, the case of the strings must match exactly.

Replacing a String

If you want to replace some but not all instances of the search string, enter a replacement
string in the Replace with field of the Find dialog box. Then, when the editor finds the first
occurrence, you can use the Find Again command to go on to the next instance, Replace, to
replace it with the replacement string, or Replace and Find Again to replace the current in-
stance and then immediately go on to the next one.

Replace All replaces every instance of the search string in the file with the replacement
string. If you don’t type in a replacement string, it will delete every instance of the search
string (that is, it will replace it with nothing).

Setting things up for searching later

In addition to the Find button (*Go ahead with the search”) and the Cancel button (“Pretend I
never invoked this command”), there is a Don’t Find button. Clicking on this button sets up
the search and replace strings and the option settings without doing the search.

You might want to use this button when you realize that the insertion point is not where it
should be to start the search. Click on the Don't Find button, move the insertion point to the
proper place, then use the Find Again command to find your string.

The Editor 8

Note: The Find Again command looks for the string you've entered in the
search string.

Finding Non-printing Characters

To look for tab and return characters, hold down the Command key as you type them into
the Search for and Replace with fields. To insert other non-printing characters, use the Copy
command to copy them into the Clipboard, then Paste them into the Search for and Replace
with fields.

A return signifies the end or beginning of a line in a string search.

Searching Through Multiple Files

The Multi-File Search option lets you look for a string in more than one file. This feature is
useful when you're tracking down undefined or multiply defined symbols, or if you change
the number of parameters to a function, and you need to fix up all the references to it.

To look for a string in more than one file, check the Multi-File Search checkbox in the Find...
dialog box. When you check this box, another dialog box displays all the text files associated
with the project.

Source flles to search: 2
0K Cancel
Include files to search: 0 L J [j

baTiisans s O
ballsege. s
v baliindev .8

Check Rl &

Scroll through the list and click on individual files to select them. A small check mark appears
next to the file name.You can use the buttons in the dialog box to Check All, Check None,
Check All .c, or Check All .h files. (If a file is already selected, clicking on its name will re-
move the checkmark.)

When you've checked the files you want to search, click OK to return to the Find dialog box.,
then click Find to start the search.

THINK C looks for the search string through each of the checked files, starting with the first
one checked. When it finds a file that contains the search string, THINK C opens the file and
selects the search string. At this point, you can edit the file, or, if you want to search further in
the current file, you can use the Find..., Find Again, Replace, and Replace All commands
to work within the current file. When you’re ready to go on to the next file, use the Find in
Next File command.

97

THINK's LightspeedC

Note: Multi-file search just finds the first instance of the search string in each
file. To find subsequent instances of the search string in the file, use the
Find Again command. Once you issue a Find in Next File command,
THINK C will look in the next file you checked, even if there are additional
instances of the search string in the current file.

| Here’s another example of when you’d want to use Don't Find button: Suppose that in a
multi-file search, you decide that you really want to set the Match Words option. Open the
Find dialog, and change the option. If you were to click on the Find button, the search
would go on to the next file. So you click on the Don’t Find button, and continue using the
Find Again and Find in Next File commands.

Disabling multi-file search
Entering a new search string cancels a multi-file search,

To enter a new search string without cancelling a multi-file search, bring up the Find dialog.
Click on the Multi-File Search check box. The list of all the text files will appear. Click OK to
accept all the checked files, and then enter the search string in the “Search for” field.

To cancel a multi-file search without going through the multi-file selection dialog, hold down
the Option or Command key as you click the Multi-File Search checkbox.

Finding the definition of a symbol

To find the definition of a symbol (a function name or a variable), hold down the Option (or
Command) key as you double-click on it. THINK C opens the file in which the selected sym-
bol is defined and looks for its first occurrence in that file. Usually, the first occurrence is the
definition of the symbol. You can use the Find Again command if the first instance wasn’t
the definition.

If the editor can’t determine where the symbol is defined, you’ll hear a beep.

This feature relies on information the compiler keeps in the project file, so the file that de-
fines the symbol must be compiled. This feature only works for global (non-static) functions
and variables.

If the symbol is multiply defined, the editor arbitrarily opens one of the files that defines it.

Searching for a Pattern (Grep)

In addition to the search and replace functions described in the previous section, the THINK
C editor also provides a powerful pattern search capability called Grep. The Grep search op-
tion in THINK C is based on the Grep utility on Unix systems. If you're familiar with this kind
of pattern matching you'’ll find an old friend here. If pattern searching is new to you, experi-

ment with this feature before you use it on a real file.

98

The Editor 8

Note: The editor will look for patters only when the Grep option is on.

Patterns

A pattern is a description of a set of strings rather than a specific string. For example, you can
build a pattern that means “any word that begins with P.” Or a pattern that means “any func-
tion call with &event as an argument.”

Patterns can’t span lines. So you can’t write a pattern that means “three consecutive lines that
begin with a, b, and ¢.”

Simple Patterns
The simplest patterns match a single character.

¢ Any character, with the exceptions noted below, is a pattern that matches itself.
Example: The pattern 2 matches a character 2. If you've checked Ignore Case in the
Find... dialog box, any letter will match both its upper- and lower-case equivalent. So, ei-
ther a or A will match both a and A.

¢ The character . is a pattern that will match any character.

¢ The character \ followed by any character except () < > or one of the digits 1-9 is a
pattern that matches that character.
Example: \ . matches a . and \\ matchesa \.

¢ A string of characters s surrounded by [and] is a pattern [s] that matches any one of
the characters in the string s. The pattern [~s] matches any character that is not in the
string s. If a string of three characters in the form a-b appears in s, this represents all of
the characters from a to b inclusive. All other characters in s are taken literally. The only
way to include the character] in s is to make it the first character. Likewise, the only way
to include the character - in s is if it appears either at the beginning or at the end of s.
Example: The pattern [A-Za-z0-9] matches any alphanumeric character. The pattern
[~!-~]1 matches any non-printing ASCII character. The Ignore Case option has no ef-
fect between brackets.

Complex Patterns

To match strings, not just individual characters, you need patterns that match consecutive se-
quences of characters. One way of doing this is to append a * to the end of one of the sim-
ple patterns.

¢ A pattern x followed by a * is a pattern x* that matches zero or more consecutive occur-
rences of characters matched by x.
Example: The pattern @ * matches a string containing any number of at-signs. If the string
does not begin with an at-sign, or if it contains no at-signs at all, then the pattern matches

THINK's LightspeedC

the empty string at the beginning of the string to be matched. You’ll see later on why this
is useful.

You can put patterns together to form more complex patterns:

e A pattern x followed by a pattern y forms a pattern xy that matches any string ab, where a
matches x and b matches y.
Example: The pattern P. matches any string beginning with P and any other character.

e Of course, you can concatenate the compound pattern xy with another pattern z, forming
the pattern xyz.

To put all of this together, consider the pattern (. *) . This pattern matches any string en-
closed in parentheses. This includes the string (), since the sub-pattern . * will match the
empty string between the (and the).

Will this pattern match the string (()) ? Since the sub-pattern . * will match any number of
occurrences of all characters, won’t the pattern match just the (() and not the very last)? The
answer is any sub-pattern of the form x* in a pattern x*y matches the largest number of oc-
currences of whatever x matches that still allows a match to y. In matching (()) against the
pattern (. *), only the inner pair of parentheses matches the sub-pattern . *, so the pattern
will match (()).

Grep has a way of remembering sub-patterns so you can use them again as part of even more
complex patterns. Things get a little complicated here.

e A pattern surrounded by \ (and \) matches whatever the sub-pattern matches.
Example: \ (a[b-y]z\) matches the same thing as a [b-y] z.

* A\ followed by n, where n is one of the digits 1-9, matches whatever the nth \ { sub-
pattern matched. You can add a * to a \n pattern to form a pattern \n* that matches zero
or more occurrences of whatever \n matched.

Example: To find two repeated words (like “the the”) you might use a pattern like this:

\ ([a-z] [a-z]*\) \1. This pattern matches a space, any sequence of letters, a space,
and the same sequence of letters. Note that \1 is not a reapplication of the pattern,
Instead it becomes whatever the first \ (\) pair matched.

Finally, you can constrain patterns to match only if they meet certain conditions in the con-
text outside the string.

* A pattern surrounded by \ < and \> matches whatever the pattern matches, provided that
the first and last characters of the matched string match [A-zZa-z0-9_] and that the
characters immediately surrounding the matched string don’t match [A-Za-z0-9].In
other words, the pattern matches only if the string begins and ends on a word boundary.
If you've checked Match Words in the Find... dialog box, the entire pattern you enter is

100

The Editor 8

treated as though it were surrounded by \< and \>. |
Example: To find occurrences of repeated words even if they're not surrounded by
spaces, you would use the pattern \ (\<[a-z] [a~z]*\>\) [*a-2z] *\1

e A pattern x preceded by a ~ forms a pattern ~x . If “x is not preceded by any other pat-
tern, it matches whatever x matches as long as the first character x matches occurs at the
beginning of a line.

e A pattern x followed by a $ forms a pattern x$. If the pattern x$ is not followed by any
other pattern, it matches whatever x matches as long as the last character that x matches
occurs at the end of a line. If the pattern x$ is followed by another pattern, then the $ is
taken literally.

These last two items constrain pattern matches to begin or end at line boundaries, and can be
combined to constrain a pattern to match an entire line only.

Replacing with Grep
You can use Grep not only to search for strings, but also to replace them. The following spe-
cial characters let you alter the replacement string.

* Each occurrence of the character & is replaced with whatever the entire pattern matched.
Example: If you wanted to add a P to the beginning of every word that ended with ptr,
you would search for \<. *pt r\> and replace it with P& .

e Each occurrence of \n, where n is one of the digits 1-9, is replaced by whatever the nth
occurrence of \ (matched.
Example: To change all strings like #define FOO 1 to FOO = 1, search for:
#define \ (\<[A-Z2a-z0-9] [A-2a-z0-9]1*\>\) \ (\<.*\>\)
and replace it with
\1 = \2

e Each occurrence of a string \x, where x is not one of the digits 1-9, is replaced by x.

Grep Examples
Grep is not easy to learn. To give you a hand, here are some typical examples .

Suppose that you've written 2 Macintosh application , and you’ve forgotten to put a \p at the
beginning of your strings to signal to the compiler to make them Pascal strings rather than C
strings. You can change all your C strings to Pascal strings by specifying

"\ ()

as the search pattern and

"\\p\l"

101

THINK's LightspeedC

as the replacement string.

To convert

symbol equ (expressionti4) ; a comment

to

#define symbol (expression+4) /* ; a comment */

search for

\ (\<.*\>\) [space tab]l*\<equ\>\ ([*;1*\)\ (.*\)

and replace with

#define \1 \2 /* \3 */

Explanation:

e \<.*\> matches a symbol.

e The surrounding \ (and \) lets you use the symbol in the replacement string as \1.

e The [space tab]* matches any number of spaces or tabs between the symbol and the
key word equ. (The words space and tab stand for the characters here because you can't
see them on paper. To enter a Tab, type Command-Tab in the dialog box.)

¢ \<equ\> matches the word equ. It will not match equ if it is part of another word, for ex-
ample equal. \<equ\> is not surrounded by \ (and \) because it will be thrown away in

the replacement string.

e [~;1* matches an expression formed by any number of characters up to but not in-
cluding a ; (semi-colon).

* The surrounding \ (and \) lets you use the expression in the replacement string as \ 2.
e The . * matches the comment which is the rest of the line.
* The surrounding \ (and \) stores the comment as \3.

| » If there was no ; (semicolon) in the line, then \2 will consist of everything after the equ to
the end of the line and \ 3 will be an empty string.

To convert $HHHH to OxHHHH, where H is a2 hexadecimal digit, Grep search for

S\ ([0-9A-Fa-£f] [0-9A-Fa-£f]*\)

102

The Editor 8

and replace with

0x\1

Explanation:

e Smatchesa $. [0-9A-Fa-f] matches one hex digit.

* [0-9A-Fa-f] [0-9A-Fa-£f]* matches one or more hex digits. (The pattern [0-9A-
Fa-£f]* matches zero or more hex digits.)

* The surrounding \ (and \) lest you remember the hex digits in the replacement string as
\1.

Note: Save complicated Grep search and replace strings in a file so you can
copy and paste them into the Find... dialog box.

103

Files & Folders
9

Introduction

This chapter tells you why your files and folders are organized the way they are, how THINK
C looks for #include files, and what happens when you move your files from one folder to
another or to another machine.

Before you begin

Make sure that you followed the installation instructions in Chapter 2. If you didn't, go back
now, and check to make sure that your disk is set up correctly. This chapter explains why
your disk should be set up this way.

Topics covered in this chapter:
¢ Organizing your folders
¢ How THINK C names files
¢ How THINK C looks for #include files
e Moving files within a project
e Using the THINK C and project trees

Organizing Your Folders

This section tells you how THINK C knows where to find your source files, libraries, and '
#include files. THINK C expects to find your source files, libraries, and #include files relative
to the folder THINK C is in or relative to the folder your project is in. The diagram at the end
of this chapter shows you how your disk should be set up.

The THINK C and Project trees

THINK C treats all the files in all the folders within the THINK C Folder as if they were in
the same flat folder. From now on, we’ll call the THINK C Folder and all the subfolders in
it the THINK C Tree.

THINK C treats all the files in your project folder as if they were all in the same folder. From
now on, we'll call the folder and subfolders your project is in the project tree.

This organization lets you put your files into folders as you like, without worrying about
pathnames. Since you use a standard file dialog to add files to your project, THINK C knows

105

THINK's LightspeedC

106

which tree they're in. If you move them around later on, THINK C looks in the appropriate
tree to find where you put them.

How THINK C Names Files

When THINK C displays a file name in an edit window’s title or in a Get Info... dialog, it
uses these naming conventions to let you know which tree the file is in:

<filename> THINK C Tree
filename project tree

If a file isn’t in the THINK C Tree or in the project tree, THINK C displays an absolute name
for it:

vol:filename top level folder
vol:folder:filename subfolder of top level folder
vol:..:folder:filename deeper subfolder
vol:?:filename subfolder on unmounted volume

How THINK C Looks for #include Files

These are the rules THINK C uses to find #include files:

<filename.h> THINK C looks only in the THINK C Tree
"filename.h" THINK C looks first in the referencing folder, then in
the project tree, and finally in the THINK C Tree.

The referencing folder is the folder that contains the file that has the #include preprocessor
directive. For example, if a source file references an #include file MyUtils.h, and that file in
turn has the line #include "MyUtilTypes.h", THINK C will look for M\yUtilTypes.h
in the folder that contains MyUtils. h first.

Another example: You might use #include <QuickDraw.h> in your program to get the
definitions for QuickDraw. If you look at QuickDraw. h, you'll see that it contains
#include "MacTypes.h". TheMac #includes folderis QuickDraw.h’s referencing
folder, which is in the THINK C Tree, so that’s where the preprocessor looks first to find
MacTypes.h.

Files & Folders 9

Moving Files Within a Project

You can move files freely within a tree. If THINK C can’t find a file that’s already in your pro-
ject, it assumes that you've just moved it somewhere within the tree, and tries to find it there.

Moving a source file

To move a file that’s already in one of the trees to the other tree, it’s best to use the Save
As... command in the file menu. This command will take care of updating the references to
the file in your project document without losing the object code, so you won'’t have to re-
compile it.

This is how you move a file from one tree to the other:

¢ Open the file you want to move. Double clicking on its name in the project window is the
fastest way.

¢ Choose Save As... from the File menu. When the standard file dialog box appears, go to
the folder within the tree you want to save the file in, and click on Save.

e Make sure you delete the file from the original tree. Since Save As... makes a copy, the
original file is still in the old tree.

Note: If you have Symantec’s HFS Navigator™, you can delete the original
file before you save it at the new location. When you get the standard file
dialog box, hold down the Command key as you click on the folder pop up
menu, and choose Get Info. Click on the delete button to delete the original
file. (Don't worry, the file is in the edit window.) Then go on to save the file
in the new folder.

Moving a library
Moving a library is a little trickier since you can’t open libraries with the editor.

¢ Move the library to a folder in the other tree. Use the Finder or a file-moving desk
accessory.

¢ Choose Remove from the Project menu to remove references to it from the project.
¢ Use the Add... command in the Project menu to put it back into the project.

Moving other files

From time to time your project may refer to files and libraries outside the THINK C or project
trees. To move these files, use the same procedure as for libraries above.

107

THINK's LightspeedC

Moving files to another machine

When you move a project to a new machine, use the Use Disk button in the Make... dialog
to let THINK C find all the files. Files don’t need to be in exactly the same place on the two
machines as long as they’re within the project or THINK C Trees. Files outside either tree
must have the same absolute pathname on the two machines.

A note about search times

Searching the trees after you've moved files around can take a little time. Once THINK C
finds a file, though, it remembers where it is and looks there first the next time. So if the
compiler seems slower than usual, don’t worry. Once THINK C learns where your files are, it
will speed up again.

Using the Trees

|

[The way THINK C keeps track of your files gives you the flexibility to organize your files just
the way you like without having to specify full path names. There are a couple of points you
should remember, though, about using the THINK C and project trees.

Don’t put project folders in the THINK C Tree

This is the most common mistake. It seems natural to put all your THINK C files in one folder
and then toss your project folders in there as well. If you set up your disk like this, THINK C
will search all your other project trees every time it searches the THINK C Tree. Setting up
your project folders this way not only increases search times, it also makes it more likely that
you’ll duplicate names within trees (see below).

| Avold duplicate file names in trees

Just as you can’t have two files with the same name in the same folder, you shouldn’t have
duplicate file names in different folders within the project or THINK C Tree. If you do, THINK
C won't know which file to use. Duplicate file names won'’t lead to any explicit errors, but
you may end up using the wrong file.

It's OK to have the same file name in both the project and THINK C trees. THINK C resolves
| the conflict deterministically by search order.

Note: The Save As... command copies files, so if you use it to save a copy in another folder,
be sure to remove or rename the original file. See Moving Files Within a Project above.

Shielding folders from the trees

To shield a folder from the search tree, enclose its name in parentheses. For example, you
might have a folder in the project folder named (Backups). THINK C ignores all the files
and sub-folders in shielded folders. Since THINK C doesn’t see these files, it's OK if they have
the same name as another file in the tree. Project specific folders are the only exception to
this rule.

108

Files & Folders 9

Project specific folders

There is one exception to the shielding rule above. If the folder your project is in contains a
folder that has exactly the same name as your project surrounded by parentheses, THINK C
will search that folder.

This feature is useful is you’re working on two projects that share files. For instance, suppose
you're working on two projects, INITProject and DAProject, that share some source
files. You create two folders, (INITProject) and (DAProject), that both contain ver-
sions of the #include file config. h tailored to control conditional compilation of the com-
mon source files.

109

THINK's LightspeedC

110

Disk Layout Diagram

This diagram shows the recommended disk layout. You don't have to set up your disk this
way, but the important thing to remember is that your project folders should not be in the
THINK C folder.

L]
Hard Disk
P
Development
£ P N
THINK C Folder Bullseye Folder Project Folder
B * &
THINKC 3.0 THINK C Debugger 3.0 bullseye 7
= o~ {=h
= =
MacHeaders Mac Libraries bullseye.c
{=b
P Py _E
=
Mac *includes Libraries bullMenus..c
=N
V=
bull¥indow .c

The Compiler
10

Introduction

This chapter describes features unique to the THINK C compiler. It tells you how to compile
source files, how to use precompiled headers, and how to call the Macintosh Toolbox rou-
tines. This chapter also tells you how to set options that affect the way THINK C compiles
your source files. If you're porting code from other compilers or writing code that will run on
other machines, read the Portability section at the end of this chapter.

Topics covered in this chapter:
e Compiling source files
e Precompiled headers
e (Calling Macintosh Toolbox routines
* Code generation options
e Compiler options
e Function prototypes
¢ Portability

Compiling Source Files

Unlike traditional compilers, THINK C doesn’t generate separate object files from your
source files. Instead, THINK C puts all the object code into the project document. Although
you can compile files yourself, most of the time you'll be using the Auto-Make facility to
compile your files.

Note: Source files are your program files. Object code is the machine lan-
guage that the THINK C compiler generates from your source files.

Compiling files not in the project

You can add a source file to your project and compile it in one step. First, create your source
file with the THINK C editor. Save your file in the same folder as the project document. Make
sure that the file name ends in . ¢. THINK C will only compile files that end in . c.

Next, choose Compile from the Source menu. A dialog box shows you how many lines
THINK C has compiled. If there were no errors in the source file, THINK C adds the file and
its object code to the project.

111

THINK's LightspeedC

Complling files already in the project

If you want to compile a file that is already in the project, just click on its name in the project
window and choose Compile from the Source menu. Once a file is in the project, you don't
need to open it to compile it.

| Checking files without compiling

Sometimes you just want to make sure that your source file will compile without actually
compiling it. The Check Syntax command in the Source menu checks the syntax of the
contents of the frontmost edit window without generating code or adding the file to the pro-
ject window. In fact, you don’t even have to save the file first.

Fixing errors in source flles

When THINK C detects an error in your source file, it opens the source file and displays a
bug alert.

i_ ‘theEuent’ has not been declared

Click anywhere in the alert box or press the Return or Enter key to get rid of it.

The source file that contains the error will be in an editor window with the insertion point at
the beginning of the line that contains the error.

Identifier length and capitalization
In THINK C every character in an identifier and its case is significant, even when the identi-
fiers aren’t in the same file. For example, suppose you had two files like this:

/* file 1 */
int a_very long external name;

| /* file 2 */
extern int a_very long external_nme; /* misspelled */

THINK C would report the second misspelled identifier as an undefined symbol at link time.

THINK C is stricter than other compilers in this matter to help you catch spelling and capital-
ization errors.

Using register variables

You can declare up to eight register variables per function. Five variables can hold data in
| registers D3-D7, and three variables can hold addresses in registers A2-A4.

112

The Compiler 10

If the 68881 option in the Code Generation section of the Options... dialog is on, THINK C
uses floating point registers for floating point variables declared register. You can declare
up to five floating point register variables. See “Code Generation Options” later on.

Note: If you're building a desk accessory, device driver, or code resource,
register A4 is not available for register variables. These project types use A4
to access their globals.

Floating point arithmetic

The THINK C type double actually corresponds to the SANE type Extended. This type takes
up 10 bytes of storage, but is the fastest floating point type. Conversely, the THINK C type
float actually corresponds to the SANE type Single. This type takes up 4 bytes of storage,
and is the second fastest floating point type. The THINK C type short double actually
corresponds to the SANE type Double. This type takes up 8 bytes of storage, but strangely
enough is the slowest floating point type. If you want speed, stick with double. If you want
to save space and are willing to sacrifice some accuracy and speed, then use float.

Precompiled Headers

THINK C lets you “precompile” headers (#include) files. Precompiled headers contain only
declarations and preprocessor symbols. Since precompiled headers are in a format THINK C
can use readily, they load faster than text header files.

Note: If you're using the source level debugger, you should use precom-
piled headers. Precompiled headers help make the debugger tables smaller.

THINK C comes with one precompiled header file, MacHeaders, which contains the most
common declarations you use for writing Macintosh programs. When the MacHeaders option
is on, THINK C automatically loads MacHeaders, so you never have to explicitly #include
common header files like QuickDraw.h. (It doesn't hurt if you do, but it slows down
compilation.) See “Code Generation Options” below to learn how to turn the MacHeaders
option on and off.

113

THINK's LightspeedC

The MacHeaders file contains these files:

0OSUtil.h
PackageMgr.h
QuickDraw.h
ResourceMgr.h
ScrapMgr.h

ControlMgr.h
DeskMgr.h
DeviceMgr.h
| DialogMgr.h
EventMgr.h

FileMgr.h SegmentLdr.h
FontMgr.h StdFilePkg.h
HFS.h TextEdit.h
IntlPkg.h ToolboxUtil.h
ListMgr.h WindowMgr.h
MacTypes.h asm.h
MemoryMgr.h pascal.h

MenuMgr.h

These files aren’t used as often, so they’re not included in MacHeaders. You'll have to
#include them yourself.

Appletalk.h SCSIMgr.h
nAppletalk.h SetUpaA4.h
Color.h SerialDvr.h
ColorToolbox.h SlotMgr.h
DeskBus.h SoundDvr.h
DiskDvr.h SoundMgr.h
PrintMgr.h StartMgr.h
ScriptMgr.h TimeMgr.h

VRetraceMgr.h

Usually, you'll just use the built-in MacHeaders. You can, however, edit the default
MacHeaders file or make your own precompiled headers.

Editing the MacHeaders file

You might find that in the kinds of program you write, you frequently refer to a header file
that is not already in MacHeaders. Or, MacHeaders might include some files you never
use. You can edit the MacHeaders file to suit the kinds of programs you write.

Open the file Mac #includes.c, and edit it to include any other files or declarations you
need. Then, select Precompile...from the Source menu. After THINK C precompiles the
file, save it as MacHeaders. (Precompiled files don't go into the project.)

The auto-make facility marks the files in the current project for recompilation if you change
MacHeaders.

114

The Compiler 10

To let other projects know that MacHeaders has changes, use the Make...command in the
Source menu to mark all the . ¢ files, then click on the Make button to recompile all the files.

Creating your own precompiled headers

If you want to use your own precompiled headers, first disable THINK C’s automatic loading
of MacHeaders. Use the Code Generation radio button in the Options... dialog from the
Edit menu to turn this feature off (see “Code Generation Options” below).

Create a file containing the desired series of #include statements, and choose the
Precompile... command from the Source menu. When THINK C is through precompiling,
save the file.

Note: You can use #include <MacHeaders> as the first line of your
precompiled header.

You use a precompiled header the same way you use any other header file. Use the
#include statement to load it into your source file. The #include statement must be the
first non-comment line of your source file. You can use only one precompiled header per
source file. (If the MacHeaders option is enabled, you can’t explicitly include any other pre-
compiled header.)

When the MacHeaders option is off, you can use serval different precompiled headers for
different parts of your program, and you can still explicitly include MacHeaders if you want
to use it in certain files.

Note: You can use only one precompiled header per source file.

Calling the Macintosh Toolbox Routines

THINK C knows about all the routines in Inside Macintosh I-V including the ones marked
[Not in ROM]. To use the Toolbox routines, call them exactly as they appear in Inside
Macintosh. The only thing you need to know is how to convert the Pascal declarations into C
declarations.

THINK C knows how many arguments every Toolbox routine takes and the sizes of the ar-
guments. If you supply a wrong size integer (for instance, an int for a 1ong), THINK C ad-
justs the argument automatically. If you pass the wrong size non-integer argument (an
EventRecord instead of a pointer to an EventRecord, for example), THINK C displays an
error dialog.

i‘ pascal argument wrong size

115

THINK's LightspeedC

For example,

If the object is...
a VAR parameter

4 bytes or smaller
larger than 4 bytes

Pascal Type
INTEGER
LONGINT
CHAR
BOOLEAN
Byte

VAR Byte

OSType, ResType

PACKED ARRAY [1.4] OF
CHAR

String255

VAR String255

StringPtr

VAR StringPtr

Point

116

THINK C knows the sizes of the return values but not their types, so it assumes the values are
integers. (Of course, for functions that do not return a value the return type is void.) The
#include files supplied with THINK C contain declarations that specify the correct return type.

extern pascal Handle GetResource():;

ensures that the result from Get Resource will be considered a Handle. Without this defi-
nition the result would be considered a 1ong.

Most Macintosh calls are implemented by traps that use the Pascal calling conventions di-
rectly. THINK C generates these traps inline instead of generating a subroutine call. For
register based traps or routines marked [Not In ROM], THINK C generates calls to library
functions in MacTraps. Calls to these routines also follow Pascal calling conventions.

Passing arguments to Toolbox routines

Since the argument declarations in Inside Macintosh are given in Pascal, you have to know
how to convert them to C. You don'’t need to know the details of C and Pascal calling con-
ventions to call the Toolbox routines, but it helps; see Chapter 12. This table shows you the
general rule for converting argument declarations in Pascal to C:

Pass...

a pointer to the object
the object

a pointer to the object

Here are some examples of Pascal parameter declarations and their C counterparts:

CType

int

long

int

char

Byte or unsigned char in struct declarations,
int when passed as an argument.

int *

long

long

String255 or char *
String255 or char *
StringPtr orchar *
StringPtr * orchar **
Point

The Compiler 10

VAR Point Point *

Toolbox routines that take strings as arguments expect them to be Pascal strings. Unlike null-
terminated C strings, Pascal strings begin with a length byte. To write a Pascal string constant,
start your string with "\P"™ or "\p". This is how you would call the QuickDraw routine
DrawString():

DrawString ("\pThis is a Pascal string");
Because Pascal strings start with a length byte, the largest Pascal string is 255 bytes.
Note: Pascal strings are not null terminated.

Use the routines CtoPstr () and PtoCstr () convert back and forth from Pascal strings to C
strings. These routines convert the strings in place, and return the converted string. These are
their function prototypes:

char *CtoPstr(char *s);
char *PtoCstr(char *s);

Note: If you turn the MacHeaders option off, be sure to #include pascal.h
when you use these functions.

Some Macintosh Toolbox routines use the Pascal type PACKED ARRAY[1.4] OF CHARto
specify resource types and file types. Although this is an array type in Pascal, don’t treat it as
an array in C. Since it is only 4 bytes long it is passed by copying it onto the stack, and should
be declared in C as a 1ong. THINK C lets you specify multi-byte character constants like
'STR#' or 'TEXT' for this purpose.

The QuickDraw data type Point is only 4 bytes long, so it’s passed by copying it onto the
stack. Don’t pass its address unless it is a VAR parameter. Most RECORD (st ruct) types,
however, are larger than 4 bytes, so you would have to pass their address.

Special cases of Toolbox routines

Because the Macintosh Toolbox is written in Pascal, some functions work differently when
you call them from THINK C. Fortunately, the number of cases is very small.

The Fix2X () and Frac2X () functions (see mside Macintosh 1V, Chapter 12, “Toolbox
Utilities”) are defined as returning Extended. In THINK C, these functions return double.
These two functions are the only Toolbox functions that use C calling conventions. They are
not declared pascal. See ToolboxUtil.h for their declarations.

117

THINK's LightspeedC

The List Manager function LLastClick () returns long instead of Cell as documented in
I Inside Macintosh IV, Chapter 30, “The List Manager.”

The “old” File Manager data structuresdescribed in mside Macintosh II, Chapter 4, “The File
Manager” are defined in FileMgr. h. The “new” data structures described in Inside
Macintosh IV, Chapter 19, “The File Manager” are defined in HFS. h. The “new” definitions
have an H prepended to the data structure name. For instance, the “new” VCB structure is
called HVCB.

The routines SetUpAS () and RestoreAb5 () described in mside Macintosh 1T, Chapter 13,
“The Operating System Utilities” are provided as macros instead of as functions in
MacTraps. They are defined in 0SUtil.h.

Using the RAM serial driver routines

In the 64K ROMs, your application needs a SERD resource to use the RAM serial driver de-
scribed in Inside Macintosh II, Chapter 9, “The Serial Drivers.” This resource was incorpo-
rated into later ROMs. If your application uses the serial driver, and you want it to run on 64K
ROM machines, you'll find the SERD resource in the file SERD in the Mac Libraries folder.
Use ResEdit to copy the resource into your application’s resource file.

Calling AppleTalk routines

If your application uses AppleTalk, you should be aware that there are now two sets of
AppleTalk interfaces. Apple calls the old interface (described in mside Macintosh Volume 1)
the alternate set. The new interface (described in Inside Macintosh Volume V) is called the
preferred set. You can use either or both sets of interfaces.

To use the alternate AppleTalk routines, use the library AppleTalk and the #include file
AppleTalk.h.

Interfaces to the preferred set are in the MacTraps library. The #include file
nAppletalk.h defines data structures necessary when using these calls.

To use this interface... Use this library / header
preferred MacTraps /nAppleTalk.h
alternate AppleTalk/AppleTalk.h

Remember, if you are using only the preferred calls, there’s no need to load the AppleTalk
library into your project.

Writing Pascal callback routines

Some Macintosh Toolbox routines take a pointer to another function as an argument. Those
routines then call the function you passed in. The function you provide is called a callback
routine. The Toolbox routines expect the callback routines to follow Pascal calling conven-

118

The Compiler 10

tions. (To learn about the difference between Pascal calling conventions and C calling con-
ventions, see Chapter 13.)

THINK C gives you a way to write functions that behave as though they were written in
Pascal. The function definition must begin with the pascal keyword. Make sure you pro-
vide a return type. If you're writing a function that behaves like a Pascal PROCEDURE, the re-
turn type is void.

For the parameter declarations, follow the same rules as for calling Toolbox functions.
Remember that non-VAR parameters are supposed to be passed by value, not by reference. If
the size of a non-VAR parameter is greater than 4 bytes, you’ll need to pass its address, but
you may not modify the parameter.

For example, ModalDialog () lets you provide a filterProc to handle events in your
dialog. This is how Inside Macintosh declares ModalDialog ():

PROCEDURE ModalDialog (filterProc: ProcPtr; VAR itemHit: INTEGER):;

ModalDialog () expectsthe filterProc to have this declaration:

FUNCTION MyFilter (theDialog: DialogPtr; VAR theEvent: EventRecord;
VAR itemHit: INTEGER) : BOOLEAN;

In THINK C, the declaration for MyFilterQ would look like this:

pascal Boolean MyFilter (theDialog, theEvent, itemHit)
DialogPtr theDialog;
EventRecord *theEvent;
int *itemHit;

The call to ModalDialog (), then, looks like this:

extern pascal Boolean MyFilter();
int theIltem;

ModalDialog (MyFilter, &thelItem)

Keeping C and Pascal on speaking terms can be tricky, but THINK C tries to make it as pain-
less as possible.

Calling Pascal routines indirectly

Only Macintosh Toolbox routines and functions that are declared pascal are called using
Pascal conventions. If you have a pointer to a Pascal function, you can call the function by

119

THINK's LightspeedC

using one of the library functions CallPascal (), CallPascalB(), CallPascalW (), or
CallPascalL().

For example, suppose that pC is a pointer to a C function and pP is a pointer to a Pascal
function; both functions accept two int arguments and return void. You can declare both
pointers the same way:

void (*pC) (), (*pP) ();

To call the function pointed to by pC you would write:
(*pC) (5, 7):

But to call the the function pointed to by pP you write:

CallPascal (5, 7, pP):

Note that the pointer to the function must be the last argument to CallPascal (). When
you use these routines, be aware of the different return types.

Note: If you turn the MacHeaders option off, be sure to #include pascal.h
when you use these functions.

To call a Pascal... Use...

PROCEDURE Callpascal(argl, arg2, .., fp)
FUNCTION returning CallpascalB(argl, arg2, .., fp)
BOOLEAN

FUNCTION returning CallpascalW(argl, arg2, .., fp)
INTEGER, CHAR

FUNCTION returning CallPascall(argl, arg2, .., fp)

LONGINT, Ptr, Handle

Accessing low memory globals

The #include files (or MacHeaders) define most of the low memory globals referenced in
Instde Macintosh. THINK C provides a way to define additional low memory globals:

extern int MemErr : 0x220;
extern char FinderName{[] : 0x2EOQ;

The address you provide cannot be greater than OXFFFF.

Tips

SetRect, SetPt, elc., take more time than setting up the coordinates yourself, because of
the overhead of the Macintosh trap dispatcher. However, you’ll notice significant improve-
ments only if you are executing lots of them.

120

The Compiler 10

If you are dereferencing Handles, make sure that the memory the Handle points to won't
move while using it. Otherwise, HLock it (and HUnlock it later). Example:

HLock (aTEH) ;
/* Without the previous HLock, */
/* the next two calls may not always work*/

/*(1) printf calls Memory Mgr: */
printf ("first character in text handle is %c\n", **(**aTEH).hText);

/*(2) Handle dereference on the left is done BEFORE call:*/
(**aTEH) .hText = (Handle)NewHandle (somesize):;

HUnlock (aTEH) ;

To increase your zone (the memory available to your program) to the maximum, call the
procedure MaxApplZone ().

Don't forget to make all necessary Macintosh initialization calls. In THINK C, you must make
all the necessary calls yourself.

You don’t need to call the initialization routine when you use the stdio library. Initial-
izations are automatically done the first time a stdio procedure (that needs it) is called. You
can turn this off if you'’re doing your own initializations — for example, if you are using the
standard output window for debugging. The automatic initialization is for users of THINK C
who want to have the more traditional, non-Macintosh C environment.

The Byte and Char types in Pascal actually correspond to the int type in C. The three
places that this causes problems are the functions ATPOpenSocket (), GetItemMark (),
and GetItemIcon (). In these functions, a Byte argument is passed by reference. The
proper way to do this in C is to pass a pointer to an int.

Code Generation Options

THINK C lets you control some aspects of code generation. The simplest way you can affect
code generation is by using register variables. You can also use the Options... command
in the Edit menu to instruct THINK C to generate symbols for assembly language debuggers,
to generate special code for the code Profiler (see Appendix A), and to generate code for the
68020 CPU or the 68881 coprocessor. You can also use the same dialog to tell THINK C
whether to use the precompiled MacHeaders (described above).

121

THINK's LightspeedC

Setting the options

To set the code generation options, choose Options... from the Edit menu. Click on the
Code Generation radio button, and you’ll see this dialog box:

@® This Project O New Projects

O Search Options X Mecsbug Symbols
O Preferences [Profile

@ Code Generation [] 68028

O Complier Flags [] 68881

QO Source Debugger BJ <MacHeaders>

[[11.4] [Cancel]

Chapter 14 talks about the Options... command in detail.

Using Macsbug symbols

When the Macsbug Symbols options is set, THINK C generates symbols for assembly lan-
guage level debuggers such as Macsbug or TMON . THINK C generates symbols only for
functions that have stack frames, so functions without arguments and local variables don’t get
symbols. Be aware that while Macsbug symbols are useful for debugging, they add 8 bytes to
every procedure. This option is on by default.

Using the Profile options

When the Profile option is set, THINK C generates calls to code profiler routines. The code
profiler collects timing statistics about your functions. See Appendix A to learn more about
the code profiler. This option is off by default.

Generating 68020 code

If the 68020 option is checked, THINK C uses the 68020 instructions for bitfield operations
and long word multiplication, division, and modulo operations.

Note: When you use the 68020 option, it’s up to you to make sure your ap-
plication is running on a Macintosh with a 68020 processor.

Generating 68881 code

If the 68881 option is checked, THINK C generates inline code for the floating point copro-
cessor. Up to five local variables of type double may be declared register and will be
placed into 68881 registers.

When this option is on, the size of double variables is 96 bits. Since SANE expects 80 bit
doubles, you'll need to convert from one format to the other. The £loat (32 bits) and
short double (64 bits) types are identical for SANE and for the 68881.

If you have this option set, you'll need to use the 68881 version of the math library.

122

The Compiler 10

Note: When you use the 68881 option, it’s up to you to make sure your ap-
plication is running on a Macintosh with a 68881 processor.

Using the MacHeaders option

When the <MacHeaders> option is on, THINK C will automatically include the MacHeadexs
file for every file in your project. The MacHeaders file contains the declarations for the most
common Macintosh Toolbox types, functions, and low memory globals. Since these declara-
tions are in binary form, compilation is faster than if you included the header files manually.
It doesn’t hurt to include header files already included in MacHeadexs, like QuickDraw.h,
but compilation will be a bit slower.

If you want to use your own precompiled headers, make sure this option is turned off.
THINK C allows only one precompiled header per source file.

To learn more about precompiled headers, see the Precompiled Headers section in this
chapter.

Compiler Options

THINK C lets you specify how strictly it should enforce type checking. You can set the com-
piler options to make sure that THINK C checks that pointer types are assignment compati-
ble. You can also enforce some strict type checking by requiring that every function have a
function prototype. (To learn about function prototypes, read the next section.)

To set the compiler options, choose Options... from the Edit menu, and click on the
Compiler Flags radio button. You'll see this dialog box:

® This Project O New Projects

QO Search Options X Check Pointer Types
O Preferences [Require Prototypes
Q Code Generation

@ Compiler Flegs

Q Source Debugger

r oK] [Jlncel]

Chapter 14 talks about the Options... command in detail.

Check Pointer Types

When the Check Pointer Typesoption is on, THINK C makes sure that pointer types match
when you assign one pointer to another or when you do pointer arithmetic. If this option is
off, THINK C treats all pointers as equivalent types, and won'’t display the “pointer types do
not match” error message. When subtracting two pointers, however, the two types must be
pointers to objects of the same size.

123

THINK's LightspeedC

Require Prototypes

When the Require Prototypes option is on, THINK C forces very strict type checking: You
can't use or define a function unless it has a prototype. (Macintosh Toolbox routines don’t
need prototypes even if this option is on.) Read the next section to learn about function

prototypes.

Function Prototypes

A function prototype is a function declaration with additional information that describes the
arguments the function takes. For example:

extern int strcpy(char *dest, char *source);
extern int printf(char *, ..);

Argument identifiers are optional and are ignored if supplied. You can specify functions with
a variable number of arguments with ellipsis (...) as in the print £ example above. The el-
lipsis must appear at the end of the argument list. No type information is provided about the
additional arguments.

A function declaration with no argument information, e.g.

extern long foo():;

is not a prototype and supplies no information about the arguments. It only declares the re-
turn type. To write a prototype specifying that the function takes no arguments, use

extern long foo(void);
[(This is a special case and does not mean that the function takes a void argument.)

Prototypes are optional unless you have checked the Require Prototypes option. If you use
prototypes, they must appear before the first definition or use of the function. The best place
for prototypes is in #include files, so other files in your project will be aware of them.

If a prototype is in effect when a function is called, the actual arguments are checked against
the prototype. Unless the prototype ends in ellipsis (..), the number of arguments must match
exactly. The argument types must be assignment-compatible (the state of the Check Pointer
Types option is honored). Appropriate conversions are applied to arithmetic (integral and
floating-point) values. Additional arguments allowed by the ellipsis are not checked or con-
verted.

If a prototype is in effect when a function is defined, the definition is checked against the

| prototype. Unless the prototype ends in ellipsis (...), the number of arguments must match

124

The Compiler 10

exactly. The types of the arguments must be identical. Additional arguments allowed by the
ellipsis are not checked.

If no prototype is in effect when a function is called or defined, the “null” prototype (...) is

assumed. However, if the Require Prototypes option is checked, THINK C displays an error
message. (THINK C never requires prototypes for the Macintosh Toolbox routines, but you
can supply them if you prefer.)

You can supply prototype information for a Macintosh Toolbox routines. THINK C checks
the prototypes against the built-in size and count information, and will subsequently use the
prototype in preference to the built-in information. For example:

extern pascal Handle GetResource (OSType, int);
Full prototype information is not built in for the Macintosh calls.

A function definition is not itself a prototype, so the following example won’t work:

f (x)
long x;

"f.(O);
}

The 0 argument will be passed to £ () as an int, not a long. To get automatic type co-
ercion, you must supply this prototype before you call the function £ () :

int f(long):;

Portability

It is sometimes said — not entirely tongue-in-cheek — that the best feature of the C pro-
gramming language is its portability while its worst feature is its lack of portability!

The American National Standards Institute (ANSI) is finalizing the standard definition of the C
language. The standard is expected to be approved in late 1988. To learn more about the
ANSI definition of C, see the second edition of Kernighan and Ritchie ’s The C Programming
Language (Prentice Hall).

125

THINK's LightspeedC

THINK C follows the “stable” parts of the ANSI standard, and you can expect that it will fol-
low the standard soon after it’s released.

A section is devoted to Unix compatibility issues; comments made there may also be applica-
ble to compilers designed for other non-Macintosh environments such as the IBM PC.

Predefined preprocessor symbol
THINK C predefines a preprocessor symbol, THINK_C, so you can test for THINK C when
doing conditional compilation.

Slzes of numbers
The most common way C compilers differ is in the sizes of the three integer types, short,

int, and long. There seems to be general — though by no means universal — consensus
that:

1. short should be the shortest integer type bigger than char supported by the hardware
2. long should be the longest integer type supported by the hardware
3. int should be the “most natural” integer type supported by the hardware

On the 68000 this means that short should be 2 bytes and 1ong should be 4 bytes, and
most compilers do it this way. The correct size for plain int is more problematic. The 68000
has 32-bit registers, so some compilers (including MPW) implement 4-byte ints. But the
68000 has a 16-bit data bus and a 16-bit ALU, so 16-bit operations are considerably more effi-
cient than 32-bit operations. Furthermore, Macintosh applications are often pressed for mem-
ory, and 2-byte ints use a lot less space than 4-byte ints, so some compilers implement 2-
byte ints. THINK C implements 2-byte ints.

If you are porting from a compiler which has different integer sizes, and you have code
which relies on those sizes, you’ll have to do some conversion. The most common case is
code that assumes that int and long are the same size. Here is an example:

foo()
{
long a, b, result;
result = baz(a, b):;
}
baz (i, 3J)
{
return(i + j);

}

126

The Compiler 10

This code works fine when int and long are the same size, but it is not portable. It won't
work in THINK C (or in many other compilers). Either i and j should be declared 1ong, or
a and b should be cast to int before being passed to baz.

It is less common for a program to make specific assumptions about the sizes of floating-
point numbers, but you should be aware that these also tend to differ between compilers. For
maximum accuracy and efficiency, THINK C uses the SANE or 68881 extended-precision type
to implement the C type double. Other compilers for the Macintosh either don’t provide the
extended-precision type at all, or add a new largest type.

Passing a Point as an argument
Because the QuickDraw Point is a structure, some compilers require that you pass the ad-
dress of a Point instead of the Point itself. They require, for example,

result = PtInRgn(&aPoint, aRgnHandle) ;
even though Pt InRgn expects the actual Point as its first argument.

In THINK C, the above statement would cause aPoint’s address to be passed to Pt InRgn;
the correct call is:

result = PtInRgn(aPoint, aRgnHandle);

Some Toolbox functions expect a Point to be passed as a VAR parameter; in such cases an
address must be passed. For example,

SetPt (&aPoint, horizontal, vertical):;
would be correct in THINK C as well as in other compilers.

Converting from Unix

The primary issue involved in porting code from a Unix or Unix-like environment to THINK
C is library support for standard Unix functions. THINK C comes with a robust set of Unix
compatibility libraries that provide many of the functions found on the most popular versions
of Unix. Some standard Unix functions that would have no meaning on the Macintosh have
been omitted, and Unix systems themselves vary in the libraries they support, so you may
encounter occasional problems. We've tried to keep them to a minimum.

The standard libraries are described in the Standard Libraries Reference.

A useful Unix feature not available in the standard Macintosh environment, the command
line, is supported by THINK C's libraries. To use this feature, name your main function
_main instead of main, and add the source file Unix main.c to your project. This file
contains an implementation of main which prompts for a command line when your program
begins execution and calls _main with Unix-style argc and argv parameters. Redirection

127

THINK's LightspeedC

of the standard input, standard output, and standard error channels is supported using the
following conventions:

< redirect stdin to the file name that follows
> redirect stdout to the file name that follows
>> redirect stderr to the file name that follows

Some Unix implementations use >> to cause the standard output to be appended to the file
name that follows. You can easily modify unix main.c so that it behaves this way instead.
Just change:

else if (*cp == '>') {
mode = "w";
filename = true;
if (*++cp == '>7) {
file = stderr;
cpt+;
}
else
file = stdout;
}
to:
else if (*cp == ">') {
mode = “w";
filename = true;
if (*++cp == '>') |
mode = “w+";
cpt+;

}
file = stdout;

128

The Debugger
11

Introduction

This chapter describes THINK C’s source level debugger. The source level debugger lets you
debug your application the way you wrote it: in C. The debugger lets you step through your
program line by line, set breakpoints, examine and set the values of your variables.

This chapter describes some of the more advanced features of the THINK C debugger.
Chapter 5 is a tutorial that teaches you how to use the debugger. You might want to work
through that tutorial before you read this chapter.

Before you begin
Make sure the file THINK C Debugger is in the same folder as THINK C. If you followed
the installation instructions , it should be in the folder named THINK C Folder.

To use the source debugger you need at least 2Mb of memory, and you must be running
THINK C under MultiFinder. The debugger works only with application projects. It won't
work with code resources or device drivers. To use the source debugger to debug desk
accessories, use the file DA main. c in the disk THINK C 1 and follow the instructions there.

Topics covered In this chapter:
* Running with the debugger
e The debugger windows
e Working with the Source window
e Setting breakpoints
¢ Controlling execution
e Working with the Data window
e Using low level debuggers
¢ Quitting the debugger
* Memory considerations

Running with the debugger

The debugger runs as a subordinate application with THINK C. Although there is a debugger
document icon, you can't launch it from the Finder by itself. When you set the option to use
the source debugger, THINK C takes care of launching it. Make sure that the THINK C
Debugger file is in the same folder as THINK C.

129

THINK's LightspeedC

130

Turning the debugger on

To run your application with the debugger, choose the Use Debugger command in the
Project menu. This command turns the Use Debugger option on and off. When the option is
on, THINK C adds a “bug” column to the project window.

bullseye " 0=

A Name obj size

¢ bullMenus.c 696 [{>

4 bullseye.c 458 | |

4 bull¥indow.c 186
MacTraps 2802

=<7

THINK C generates debugging information for files that have gray diamonds next to them.
Initially, all files get gray diamonds. THINK C never generates debugging tables for libraries
or projects used as libraries.

Clicking in the “bug” column next to a file name turns the gray diamonds on and off. If you
hold down the Option key as you click on a gray diamond, THINK C removes the gray
diamonds from every file. If you hold down the Option key as you click in the “bug” column
where there isn’t a gray diamond, THINK C turns the diamonds on for every file in the
project.

Note: Another way to turn the debugger on is to check the Use Debugger
checkbox in the Source Debugger section of the Options... dialog.

Running the project

When you run your program, THINK C launches the source debugger instead of launching
your program. The debugger then gets ready to run your program.

The Debugger

The debugger displays its own menu bar and two windows at the bottom of your screen. If
you’re using a Macintosh II with two screens, and you have the Use 2nd Screen option on,
the two debugger windows appear in the second screen.

" & File Edit Debug Source Data Windows &
bullseye
[2K Wasne o] siee
* bulBfienus.o 6%
¢ bullsege s 438
* bulTWindew o 196
MasTraps 902

buliseye.c ===

Inl thocintosh();
SetUpHenus(); R
SetUpHindow();

Kal

for <;;)

» maia b

The larger window on the left is the Source window. It contains the debugger status panel
and the source text of your program. The window on the right is the Data window. Use the
Data window to display and change the values of your variables.

When your application is running, the screen shows the application’s menu bar, and its
windows are brought forward. When your application stops (at a breakpoint, for example),
the debugger’s menu bar appears, and its windows are brought forward.

Note: Unlike other Macintosh applications, the debugger doesn’t use the
File menu, so it’s always dimmed. When your screen is cluttered with a lot
of debugger and application windows, the dimmed File menu tells you
instantly that the debugger’s windows are active.

The Debugger Windows

The debugger windows show you the source of your program and the values of your
variables. Since the debugger works like any other application running under MultiFinder,
you'll need to be aware whether its your application or the source debugger is in the
foreground. Just because the debugger windows are frontmost doesn’t mean that your
program isn’t running. In fact, if your application can run in the background under
MultiFinder, it will continue doing its background processing.

11

131

1

THINK's LightspeedC

| The Source window
The Source window contains the source text of your program, the debugger’s status panel,
statement markers, the current statement arrow, and the current function indicator. The title
of the source window is the name of the source file.

bullseye.c =——11|

maing)
{
od 3 Ini tMacintosh();
< SetUpMenus(>;
< SetUpHindow();
for (;;?
» main K:II

The Source window shows the source text of your program. When you start the debugger,
this window shows the file that contains the main () routine of your application. See
“Working With the Source Window” to learn how to see other files in your project in the
source window.

The top of the Source window has a six button status panel. These buttons control the
execution of your program. The names of these buttons match the commands in the
debugger’s Debug menu. See “Controlling Execution” below to learn how to use the status
panel and the Debug menu commands to step through your code.

The column of diamonds running along the left side of the source text are statement
markers. Every line of your program that generates code gets a statement marker. You can
set breakpoints only at statement markers. See “Setting Breakpoints” to learn how to set and
clear breakpoints.

The black arrow to the right of the statement markers is the current statement arrow. This
indicator shows you the current statement, the one that the debugger is about to execute.
When you first start your program, the current statement arrow is at the first executable line
of your program.

of the current function. When you click here and hold the mouse button down, the
debugger displays a pop up menu that shows the call chain — the names of the functions

|

|

The source debugger uses the the space at the lower left of the source window for the name
that were called to get to the current function.

132

The Debugger 11

The Data window

The other debugger window is the Data window. In this window you can examine and set
the values of your variables.

Data =[]
V|| X

ok 1
theEvent | struct O0x08CSFC

@<

The Data window is modeled after a spreadsheet. Expressions you type into the entry field
appear in the left column when you press the enter button (check mark) or when you press
the Return or Enter key. Pressing the Enter key leaves the expression selected. Pressing the
Return key leaves the entry field empty so you can type in the next expression. The enter
button works just like the Enter key.

If you change your mind and don't want to enter an expression, press the deselect button
(X mark). The expressions you enter appear in the left column and their values are displayed
in the right column.

You can select items in either the expression column or in the value column. If it’s legal to
edit the item, you can use the entry field to edit the item.

You can drag the center bar to make a column wider.

To clear an expression in the Data window, select it and choose Clear from the Edit menu or
press the Clear key.

Working with the Source Window

The debugger gets the text for the source window directly from your source file, so you see
the file exactly the way you wrote it. As you step through your code and move from file to
file, the debugger gets the text for the files it needs. The Source window is read only. You
can select text in to copy, but you can't change it.

133

THINK's LightspeedC

The debugger displays the source text only if THINK C generated debugging information for
it. If you step into a function that’s in a file that didn’t have a gray diamond next to it in the
project window, the debugger displays the message Debugging information not
available.

If the debugger can’t find a source file as it was when it was last compiled, the debugger
displays the message Source text not available. (See “Editing while debugging”
below.) This will happen, for instance, when the debugger can't find a source file or when a
source file has been edited.

The current statement and the selected statement

The current statement is the one that the debugger is about to execute. The current
| statement arrow always points to the current statement.

Some of the debugger commands require you to select a statement in the Source window. To
select a statement, just click once anywhere on its line. This is called the selected statement.

Note: All commands that work on the selected statement operate on the
current statement if you didn’t select any other statement.

If the current statement arrow isn’t visible (because you've scrolled away or because you're
viewing another source file in the Source window), click on the current function indicator in
the lower left of the source window, or press the Enter key. The source file that contains the
| current statement will appear in the Source window.

The current function indicator

The current function indicator at the lower left of the Source window displays the name of
the function that the current statement is in. If the current statement is in a library, the current
function indicator displays the name of the file. If the current statement is in ROM, the current
file indicator displays the address of the program counter.

When you click and hold the mouse button down on the current statement indicator, you’ll
! see a pop up menu that shows you the call chain. The call chain follows stack frames from
register A6, so if a function doesn’t generate a stack frame, you won'’t see it in the call chain.

If you choose an item in the call chain pop up menu, the debugger opens the file that the
selected function is in, and selects the line that the called function would return to.

Viewing other files in the source window

The Source window usually shows the file that contains the current statement. To look at
another file in the Source window (to set breakpoints in it, for example) you tell THINK C to
send the text to the debugger:

» Click on the THINK C project window (Or choose your project name from the
Windows menu)

134

The Debugger 11

e Click on the name of the file you want to look at
* Select Debug (Command-G) from THINK C’s Source menu

The source debugger’s Source window will display the text of the file you chose. Now you
can examine the file and set breakpoints in it. To get back to the current file, click on the
current function indicator at the lower left of the Source window or press the Enter key.

Editing files while debugging

Because THINK C is still running, you can edit your source files while you're debugging. To
edit the file that’s in the source window, choose the Edit filename.c’ command in the
Source menu.

To edit any other file in your project, click on the project window (or choose your project
name from the Windows menu), and edit your files normally.

Naturally, the changes you make to source files won't take effect until you recompile.

Whenever the debugger needs the source text for a file, it looks for it on disk. The debugger
will cache the file as long as it can, but if it needs the memory for something else, it may
reclaim the cache space. If you edit and save a file that the debugger has displayed in the
Source window, it will continue to display the unedited version of the file as long as it’s still
cached. If the debugger sees that the source file on disk and the object code in the project
don’t match, it displays the message Source text not available. in the Source
window.

Searching in the Source window
To search for something in the source window, you use the THINK C editor.

e Choose Edit ‘filename.c’ from the Source menu (or press Command-E) to open an
edit window for the file in the Source window.

¢ Use the THINK C Find... command to find what you’re looking for.

¢ Choose Debug from the THINK C Source menu (or press Command-G) to get back
the source debugger. The line containing the selection in the editor window is
displayed in Source window.

When the Source window displays what you're looking for, you'll usually want to use the Go
Until Here command. See “Controlling Execution” later on to learn about this command.

Setting Breakpoints

The THINK C debugger lets you set breakpoints at any line that has a diamond statement
marker. When your program is running, the debugger stops execution just before a
breakpoint.

135

THINK's LightspeedC

You can set three kinds of breakpoints: simple breakpoints, conditional breakpoints, and
temporary breakpoints. Execution always stops at a simple breakpoint. Conditional
breakpoints let you use the value of an expression in the Data window to determine whether
execution should stop. Temporary breakpoints let you set a breakpoint and start execution in
a single step. When your program reaches a temporary breakpoint, execution stops, and the
debugger automatically clears the temporary breakpoint.

You can set breakpoints while your program is running, not just when it’s stopped.

Simple breakpoints
To set a breakpoint, click on a statement marker diamond. The diamond will turn from
hollow to filled, indicating that the breakpoint is set.

To clear a breakpoint, click on the filled diamond. The statement marker changes to a hollow
diamond to show you that the breakpoint is clear. The Clear All Breakpoints command in
the Source menu clears all the breakpoints.

Note: You can also use the Set Breakpoint and Clear Breakpoint
commands in the Source menu to set and clear breakpoints. Select a line in
the source window by clicking once on the line. Then choose Set
Breakpoint or Clear Breakpoint from the Source menu.

Setting temporary breakpoints

To set a temporary breakpoint, hold down the Command or Option key as you click on a
statement marker. When you release the mouse button, the debugger starts your program,
and execution continues until you hit any breakpoint, not just the temporary breakpoint. The
source debugger clears all the temporary breakpoints when you stop for any reason.

Temporary breakpoints are useful if you want to go quickly to a particular line of your
program. For instance, suppose you wanted to examine how your program handled menu
selections. You'd set a temporary breakpoint at the first line of your menu handling routine.
The program would run normally until you chose a command from one of your menus.

The Go Until Here command (see “Controlling Execution” below) sets a temporary
breakpoint at the selected line.

Setting conditional breakpolnts

The THINK C debugger lets you set conditional breakpoints. A conditional breakpoint is a
breakpoint has a condition associated with it. The debugger stops execution at conditional
breakpoints only when the condition evaluates to non-zero.

To set a conditional breakpoint:

* Set a breakpoint by clicking on the statement marker diamond
* Click on the line to select it

136

The Debugger 11

¢ Click on an expression in the Data window
¢ Choose Attach Condition from the Source menu.

When you set a conditional breakpoint, the statement marker turns to a gray diamond

bk
ul(!eh (theEvent.shat)

=l

case msouselown:
0| Hand | eftousaDosn (& theEvent);
» main _Ka] [

If you're already stopped at a simple breakpoint that you want to turn into a conditional
breakpoint, just select an expression in the Data window, and choose Attach Condition.
Since the debugger uses the current statement if there isn’t a selected line, the condition will
be attached to the current statement.

The Attach Condition command will be dimmed if:

¢ the expression can't be evaluated in the context of the breakpoint
e a breakpoint isn’t set

¢ an expression in the Data window isn't selected

¢ the expression is a floating point expression

As you debug your program, you may forget the condition that’s associated with the
breakpoint. To see the condition associated with a conditional breakpoint:

¢ Click on the line to select it
e Choose Show Condition from the Source menu.

The condition associated with the conditional breakpoint will be selected in the Data
window.

To learn how to use the Data window, see “Examining Variables” below.

Controlling Execution

The debugger has six commands that control execution. To make it easier to debug your
programs, there three ways to use them: you can choose them from the Debug menu, you
can use the Command key equivalents, or you can use the buttons in the status bar of the
Source window.

137

THINK's LightspeedC

The buttons in the status panel do double duty as status indicators. When your program is
running, the Go button is lit. When your program is stopped, the Stop button is lit. Remember
that your program can still be running even if the debugger windows are frontmost.

Go

The Go command starts your program if it was stopped. Your program will run until you stop
it (with the Stop button, for example) or until it’s about to execute a line with a breakpoint or
until it hits an exception (dividing by zero, for instance). If your application is already
running, the Go command brings it to the foreground.

Trace

The Trace command executes the current statement. In most cases, the statement indicator
will go on to the next statement marker, even if the next statement marker is in another
function. The only time it won’t is when the program counter steps into some code that the
debugger doesn’t have the source text for. This usually happens when you step into a trap
that’s not generated inline. So, for a brief period, the current statement arrow isn’t really
anywhere in your program, but somewhere in MacTraps instead. Though you can’t see the
current statement arrow, the current function indicator at the lower left tells you which file it’s
in.

Step

The Step command is like the Trace command except that it goes on to the next statement
marker in the current function. If you're at the end of a function, Step returns to the calling
function. Use Step when you want to follow the execution within a function without falling
into another function. (Technically speaking, Step skips over JSRs.)

Step In

The Step In command executes Trace commands until the current statement arrow falls into a
function. Step In is useful when you want to skip over a set of assignments or Toolbox traps,
to fall into the next function call. If Step In reaches the last statement of the current function
without falling into another function, it will stop immediately after the function returns.

Step Out

The Step Out command executes Step commands until the current statement arrow falls out
of the current routine. This operation can be slow if there’s a lot left to do, but it’s a sure way
of leaving the current routine. A faster way of leaving the current routine is to use the Go
Until Here command or to set a temporary breakpoint at the last diamond in the function.

138

The Debugger 11

Stop

The Stop command stops execution of your program. The Stop command works when any

debugger window is active, and the Stop button only works when the source window is the
active window. When you press the Stop button you’ll usually be coming out of your call to
GetNextEvent () or WaitNextEvent ().

If your program is not in its event loop, you might not be able to make the debugger the
frontmost application. In this case, Command-Shift-Period is the panic button. Use
Command-Shift-Period to stop execution when one of your application’s windows is
frontmost or when you think it’s stuck in a loop. (Command-Shift-Period won’t work if you're
stuck in an infinite loop in ROM, though.)

Go Until Here

The Go Until Here starts execution and stops at the selected line. This command is exactly
the same as setting a temporary breakpoint (see “Setting Breakpoints” above) at the selected
line. Use this command when you want to move through a block of code quickly.

This command is more convenient than setting a temporary breakpoint when the line you
want to go to is already selected. For instance, it’s easier to press Command-H after you've
found a string you're looking for. See “Searching in the Source window” above.

Skip To Here

The Skip To Here command changes the program counter to the selected line without
executing any intervening code.Use it when you want to skip over code you know to be
buggy but not crucial to the rest of the program’s operation.

Note: This command is potentially dangerous. Make sure the code you're
skipping to doesn’t depend on anything the skipped code does. For
instance, it is be a very bad idea to skip over initialization routines.

Stepping continuously

If you hold down the Option or Command key as you click on one of the status panel
buttons (except Stop) you’ll enter auto mode. In auto mode the debugger updates the
Source and Data windows and repeats the command when the program stops. To trace
through every line of your program automatically, for example, hold down the Option key as
you click on the Trace button.

One useful technique is to set breakpoints at spots where you'd like to look at some variables
and then do an Auto-Go. When your program hits the breakpoint, the debugger will update
the Data window and start the program up again.

To cancel auto mode, type Command-Shift-Period or click on the Stop button in the status
panel. The debugger will finish the command and then stop. Note that if you were doing an

139

THINK's LightspeedC

Auto-Go, the Stop button just cancels auto mode. You'll have to click on the Stop button
again to stop your program.

Working with the Data Window

The Data window lets you examine and modify the values of your variables as you debug
your programs. You can type any legal C expression in the left column, and its value is
displayed in the right column. You can display values in several formats to make your
debugging easier. You can also display structs and arrays in their own windows.

Data HIE
V|| X
myArray [1 0x09C7A4
myUnion. fourBytes {1 0x09C?7BC]
myUnion. longint i 0x54455854
myUnion union 0Ox09C7BC

*(WindowPtr YtheEvent.message || struct 0x090D 14
(WindowP tr>theEvent.message ||0x090D 14
theEvent struct O0x09CSES8

=<

Entering an expression

You can enter any expression that does not have a potential side effect. That means you
cannot enter assignment statements, function calls, or expressions involving ++, ——, +=, etc.

The debugger compiles the expressions you enter in the context of the selected line in the
Source window, or, if you haven’t selected a line, within the context of the current statement.
If the expression you enter is not defined within the context, the debugger will display an
error message as the value of the expression.

Expressions in the Data window have either local scope or global scope. An expression has
local scope if it refers to variables with dynamic storage; in other words if it refers to non-
static variables local to a function. All other expressions have global scope.

If you use the Enter key to enter an expression, the expression remains selected. If you use
the Return key to enter an expression, the entry field is ready to accept the next expression.
Clicking on the enter button is the same as pressing the Enter key.

140

The Debugger 11

Formatting values

When you enter an expression, it's added to the left column. The value of the expression
appears in the right column. You can use the formats in the Data menu to change how the
debugger displays the variables.

To change a format, select an expression in the Data window. Then choose a format from the
Data menu. Some of the formats won't be available. The formats available depend on the
type of the expression. The default formats are shown in italics.

Type Formats Available

integers decimal, hex, char

unsigned hex, decimal, char

pointers pointer, address, hex, C string, Pascal string
arrays address, C string, Pascal string

structs address

unions address

functions address

floats Sloating point

This is what the display formats look like:

Format Example

decimal 4523345, -23576

hex 0xA09E1487

char ‘c', 'TEXT'

C string "abcdef\nghi\33"

Pascal string "\pabcdef\nghi\33"

pointer 0x7R7000

address [] 0x09FE44, struct 0x08FCl4
floating point 1961.0102

The C string and Pascal string formats display non-printing characters in backslash form.
Whenever it can, the debugger uses the built-in escape characters (\n, \ r, \b); otherwise it
uses \nnn, where nnn is an octal value.

Of course, you can use type casting to use formats that aren’t normally available. For exam-
ple, if you really wanted to see an integer, i, as a C string, you would type this expression:
(char *) 1i.

To see any pointer as an array, just change its format to Address. This way, when you double-
click on its value, you'll see an array window instead of the value of what the pointer points
to.

141

THINK's LightspeedC

Displaying and changing contexts

If you forget the context of an expression in the Data window, use the Show Context
command in the Data menu. The Source window will display the context for the expression.

When you select an expression, you can edit it in the entry field. When you press the enter
button (or the Return or Enter keys), the debugger will recompile the expression in its
original context.

To change the context of an expression you've already entered or edited, select the context
in the Source window, select the expression, then choose Set Context from the debugger’s
Data menu. You can do the same thing by holding down the Option or Command key as
you click on the enter button (or press the Return or Enter key).

Evaluating expressions

The debugger re-evaluates the expressions in the data window every time your program
stops. Expressions whose context isn’t in the current function are not re-evaluated unless
they have global scope. To keep the Data window from getting too cluttered, the debugger
clears their values.

Sometimes, you don't want an expression to be re-evaluated. For instance, you might want to
compare the values of the same expressions at different times. Select an expression and
choose Lock from the Data menu.

Setting values

The debugger lets you change the values of your expressions as long as the expression
would be legal in the left side of an assignment statement.

Working with expressions

Double-clicking in the left column of the data window makes a copy of the expression. This
is useful if you want to lock one copy down while you let another be evaluated every time
the debugger stops.

Double-clicking on the value of struct, union or array opens up a new window.

Double-clicking on a value formatted as Pointer enters a new, dereferenced, expression in
the Data window. If you hold down the Shift key, the new expression will be dereferenced
twice.

If you hold down the Option key as you double-click, the new entry replaces the original
entry.

Examining structs and arrays

You can examine fields of structs and arrays displayed in the Data window. (In this section,
whatever you read about structs applies to unions as well.)

142

The Debugger

When you double-click in the right column on an expression whose value is struct, the
debugger opens up a struct window. The struct window looks like the data window. The
names of the fields appear in the left column, and their values appear in the right column.

E[J= theEvent ==Qg|

V|| X

what

message 0x00090D 14
when 241706
where struct Ox0

modifiers

You can change the values of the fields of the records the same way you change any variable.

Of course, you can’t change the names of the fields.

Double-clicking on a value opens other windows the same way as double-clicking in the
main data window. A new expression appears in the main Data window for the new
window.

Note: All struct and array windows “belong” to the main Data window. For
every struct or array window there is an entry in the main Data window.

Double-clicking on a field name enters a new expression in the main Data window.

As mentioned above, Option-double-clicking replaces the original expression with the new
one. For example: Suppose you had a struct window for an EventRecord, theEvent.
Option-double-clicking on the what field would make the struct window disappear (the
original expression is theEvent), and theEvent . what would appear in its place in the
Data window.

Array windows are similar to struct windows. The indices appear in the left column and
values appear in the right column. Unlike the main Data window or struct windows, every
element in an array is displayed in the same format.

Because C compilers don't enforce array bounds, array windows have “infinite” scrollbars.

11

143

THINK's LightspeedC

144

[T}
W"'

myfArray =P

o
C

VOO NLWOUN-O

If you select an index in the left column and change its value, the debugger will display the
array from that index.

To see a pointer as an array, set its format to Address and double-click on its value.

Using Low Level Debuggers

The THINK C source level debugger is great for figuring out what your application is doing.
But sometimes you need to get closer to the machine, The Monitor command in the Debug
menu invokes a low level debugger like TMON or Macsbug.

When you use the Monitor command, all registers and low memory globals contain the
correct values. The PC (program counter), however will not be pointing to the next in-
struction. Instead, it will be pointing somewhere in the debugger.

Note: If you don'’t have a low level debugger installed, don’t use the
Monitor command.

Using the Monitor command with TMON

If you're using TMON, the value of the PC will be in TMON's V register. It's a good idea to
keep a TMON disassembly window anchored to V so you can see your program’s code when
you use the Monitor command.

If there was an expression or value selected when you dropped into TMON, the N register
contains that value.

To return to the THINK C debugger, use TMON's Exit command.

The Debugger 11

Using the Monitor command with Macsbug
If you're using Macsbug, the correct value of the PC is right before the current PC. To display
your program’s code in Macsbug, type:

DM PC-4
IL Q.

The value of the current Data window selection is not available in Macsbug.
Use Macsbug’s G command to return to the THINK C debugger.

Leaving the low level debugger

If you entered the low level debugger through the Monitor command, use your debugger’s
standard exit function: Exit in TMON, G in Macsbug.

If you got into your low level debugger any other way, there is no simple way to return to the
source debugger. You can use your low level debugger’s ExitToShell to abort your program
as long as it's the foreground application. Check the low memory global CurApName
(0x0910). If it contains the name of your program, go ahead.

Quitting the Debugger

The best way to quit the debugger is to quit your application. You should use the
ExitToShell command in the debugger’s Debug menu only when you can'’t use your appli-
cation’s Quit command.

Memory Considerations

THINK C, the source debugger, and your project each run in their own MultiFinder partition.
The default partition sizes are enough to ensure that you can run all three with enough space
left over for the Finder and the System on 2Mb of memory.

The default partition sizes are:

Application Partition Size
THINK C 700K
debugger 200K
project 384K

If you want to run other applications, or if you find you’re running out of memory, you can
change the partition sizes. Change your project partition first. If you still don’t have enough
memory, change the size of the THINK C partition. Finally, change the debugger’s partition.

145

THINK's LightspeedC

146

When you’re running under MultiFinder, your application doesn't need to reserve memory
for the system heap, so you can set the project partition size to be quite small. For moderate
size projects you might want to try values like 128K.

THINK C uses the most memory when its compiling. If THINK C complains that it's running
out of memory when you compile, close any open windows before rebuilding your project.
The THINK C partition should be no smaller than 500K.

If you have the Update Windows debugger option on (Source Debugger options under the
Options... command in the Edit menu), the debugger partition might need to be bigger than
200K. You will definitely need to increase it if you’re running with either large or color
monitors. If this option is off, and you're running a small project, you can make the debugger
partition as small as 150K.

To change the size of your project’s partition, use the Set Project Type... command in the
Project menu. You can change the partition sizes for THINK C and the debugger from their
Get Info... boxes in the Finder. You can't change the partition size of an active application,
so you'll have to quit THINK C first.

Assembly Language
12

Introduction

This chapter tells you how to use assembly language in your THINK’s LightspeedC programs.
You can use THINK C’s built in inline assembler, or you can use object files generated by
other assemblers. This chapter also describes C and Pascal calling conventions so you can
write well-behaved assembly code.

Topics covered in this chapter:
e Using the inline assembler
e C calling conventions
e Pascal calling conventions
e Tips

Using the Inline Assembler

THINK C lets you use assembly language within your source files. The THINK C inline
assembler works within the compiler to produce object code. You can refer to C variables
and functions within assembly language routines. Your C routines can goto labels in the as-
sembly routines and vice versa.

The asm keyword invokes the inline assembler. The syntax for mixing assembly language
statements with C code is simple:

asm {
/* assembly instructions, one per line */

}

The compiler treats this construct as a C statement. It can appear anywhere a C statement can
appear, which means that it must appear within a function.

Use only one assembly language instruction per line. You can use semicolon style comments,
but since you're still writing in C, you can use C style comments as well. Preprocessor sym-
bols and macros are expanded even if they appear within assembly language.You can use a
C constant expression wherever a constant would be legal.

147

THINK's LightspeedC

The inline assembler supports all the standard 68000instructions. (68020 and 68881 instruc-
tions are not supported.) The inline assembler follows assembly language syntax conventions
with a few exceptions. The DC (define constant) directive, which places literal values in the
code stream, is the only assembly language directive the inline assembler recognizes. Use C
to declare data, to define symbolic constants, and to import and export symbols.

The assembler is not case sensitive with respect to instruction mnemonics, register names,
and size specifications (.B, .W, .S, .L).

Using C identifiers In assembly language

The inline assembler lets you use C identifiers directly. The base register (A6 for locals, A5 or
A4 for globals) is optional, but must be correct if supplied.

If you've declared register variables, you can use their names wherever a register would be
legal. The inline assembler is case sensitive with respect to C identifiers.

Note: C identifiers which conflict with register names (D0-D7, A0-A7, SP,
USP, SR, and CCR) cannot be referenced by name in inline assembly.

You can reference fields of a st ruct directly. Use the OFFSET () macro in the #include file
asm. h to get offsets of fields of a structure. For example, if you have a variable of type
WindowRecord, you can get the refCon field like this:

long myRefcon() /* refCon of myWindow */
{
extern WindowRecord myWindow;
asm (
move.l myWindow.refCon,d0
} /* same as “return(myWindow.refCon)” */

If you only had a pointer to a WindowRecord, you’d use the OFFSET () macro to get the
refCon field:

long refcon(wp) /* same as "GetWRefCon"™ */
WindowPtr wp;
{
asm |
move.l wp,a0
move.l OFFSET (WindowRecord, refCon) (al),d0

148

Assembly Language 12

Labels and branching

You can label assembly language instructions with C or assembler labels. An assembler label
consists of an at sign (@) followed by one or more digits. Colons are optional following as-
sembler labels, but must appear after C labels.

foo ()

{
asm {
@123.. /* A legal asm label */
@73:.. /* A legal asm label */
here: w /* A legal C label */

}
}

The scope of an assembler label is the enclosing function, not just the sequence of inline as-
sembly in which it appears. This is the way C labels work, too.

You can use these C branching statements within assembly language:

break ; exits the surrounding loop or switch

continue ; skips to next iteration of the surrounding loop
return ; exits function

goto label ; same as "bra @label™

You can goto C labels in assembly language from C code.

You can also refer to C labels from inline assembly, whether the label appears in assembly
code or in C code. The label must be preceded by @ to indicate to the assembler that it is a
label. (This avoids ambiguity in statements such as: LEA FOO, Al.)

Do not use the RTS instruction unless you're absolutely sure you know what you’re doing.
Use return, or simply fall through to the end of the function. This way, the C stack frame
will be cleaned up properly.

If you use the return statement, don’t specify a return value. Put the return value in the
proper place (usually DO) instead. See the following sections for information about C and
Pascal calling conventions for more information.

If you JSR to a function from within assembly language, the function must be already de-
clared. For example, to call the function MyFun () from assembly:

149

THINK's LightspeedC

extern int MyFun();

150

OtherFun ()

{

asm {

}

JSR MyFun

It’s up to you to make sure that you pass the correct arguments for a function you call from
assembly language. See the sections below for C and Pascal calling conventions.

Note: A short branch (BRA. S) to the immediately following instruction is an
error which is not detected by the inline assembler. (This instruction gene-
rates an 8-bit zero displacement, which results in the next instruction word
being used as a 16-bit displacement for a long branch rather than being exe-
cuted as an instruction. See the 68000 manual for more details.)

Uslng the Macintosh Toolbox In assembly language

You can use any of the Macintosh Toolbox functions (except those marked [Not in ROM])
in your assembly language routines. The inline assembler is case sensitive with respect to trap
names. If you like, you can precede trap names with an underscore.

The inline assembler generates one instruction for ROM traps even though some might re-
quire glue when you call them from C. If you want to use the glue from assembly language,
you'll need to JSR to the routine. For example:

DemoFun ()

{

asm {
/* Direct, register based call */

MOVE.L #256,D0
_NewHandle
/* result in A0, error code in DO */

/* Stack based call through glue */

CLR.L ~-(SP) /* save space for result */
MOVE.L #256,-(SP) /* push number of bytes */
JSR NewHandle

/* Result at (SP), error in MemErr */

Assembly Language 12

Note: With the 64K ROMs, Memory Manager traps do not set the low-mem-
ory global MemErr, though the glue does. This is a time when you’d want to
use the glue instead of using the trap directly.

You can provide an optional argument, a 2-bit value to be placed in bits 9.10 of the trap to set
trap modifier bits, such as AUTOPOP, SYS, CLEAR, and ASYNC. The various trap modifier bits
are defined in asm. h. For example:

Handle NewClearSysHandle (size)
{
asm {
move.l size,d0
NewHandle CLEAR+SYS
move.l a0,do

}

Register usage

You may modify registers DO, D1, D2, A0, and A1, as well as registers holding register vari-
ables. All other registers should be saved and restored as you need them. If you want to use a
register other than for scratch purposes, declare a register variable. You'll be able to refer to it
by name, and you won't have to bother to save and restore its value.

If intervening C code is executed between two stretches of inline assembly, you can assume
that the C code preserves the values of registers A5, A6, and A7 — as well as A4 for drivers

and code resources. All other registers may have been modified. It is safe to leave things on
the stack while C code is executing, provided the stack is cleaned up before returning from

the function.

See the next sections for more information about C and Pascal calling conventions.

Ditferences from other assemblers
Omitting a zero displacement in the Address Register Indirect with Index addressing mode —
(a1,D2.W) instead of 0 (A1, D2.W) — is not supported.

The DC. B directive always generates an even number of bytes. A zero pad byte is generated
if an odd number of values are specified. For example:

DC.B 'a','b','c','d"' ; Assembles as four packed bytes
DC.B 'a’' ; These assemble as four words with
DC.B b ; zero pad in the low byte

DC.B 'c!

DC.B ra?’

151

THINK's LightspeedC

The syntax $NNNN is not available to designate a hex constant. Use the C syntax 0xNNNN
instead.

The difference of two addresses is not a constant expression, so instructions like
I move.w #Q@2-Q@1,d0

are not possible. Similarly, the inline assembler does not support the syntax
dc.w @1-*

to assemble the PC-relative offset of the label @1. Use

dc.w @1

instead. For example, to code a dispatch table, use:

; d0 contains 0,1,2,..
add.w do0,do
add.w Q0 (d0.w),d0

. jrop @0 (d0.w)
| Q0 dc.w Ql ; case 0
| dc.w Q@2 ; case 1

| ;

The alternative syntax for PC-relative addressing — @1 (PC) instead of @1, or
@1 (PC,DO) instead of @1 (D0) — is not supported.

C Calling Conventions

Most of the time, the functions you write will be C functions. They will follow C calling con-
ventions for placing arguments on the stack and returning values in register DO.

C calling sequence

The caller pushes the arguments in right-to-left order, then calls the function. When the func-
tion returns, it’s the caller’s responsibility to remove the arguments from the stack. The
caller’s code looks something like this:

MOVE..., - (SP) ; last argument

MOVE..., - (SP) ; first argument
JSR function
ADD #...,SP ; total size of arguments

152

Assembly Language 12

The function’s code looks something like this:

LINK A6, #.. ; (optional)
MOVE .., DO ; result
UNLK A6 ; (optional)
RTS

C function entry

The arguments to the function appear on the stack in right-to-left order. The first (leftmost)
argument appears just above the return address, followed by the remaining arguments in
order.

The stack looks like this on entry (just after the call):

arg-N

arg-1
SP -> return address

The first argument can be found at 4 (SP) . If the function begins with a LINK A6, #... in-
struction, the first argument can also be referred to as 8 (A6).

All arguments occupy an even number of bytes on the stack. The caller converts 2 byte ar-
gument into a word. To address this argument as a word use d (SP) , where d is the appro-
priate offset. To access the argument as a byte, use d+1 (SP).

C function exit

C functions return their result (if any) in register DO. The result may be 1, 2, or 4 bytes long.
Unused high-order bits may contain garbage.

The stack looks like this on exit (just after the return):

arg-N
SP -> arg-1
It is the caller’s responsibility to remove the arguments from the stack.

Functions that return struct, union, or double

An alternate method is used to return a result of type struct, union, or double, since
values of these types are in general too large to fit in DO. (Some structs or unions may be
small enough to be returned in DO, but the alternate method is used anyway.)

153

THINK's LightspeedC

After pushing the arguments, but before issuing the actual call, the caller pushes the address
of the location where the return value is to be placed. This address appears at 4 (SP) (or

8 (A6)) and the first argument appears instead at 8 (SP) (or 12 (A6)). The function must
obtain this address and store the result at the location pointed to. The address is considered a
hidden argument to the function, and it is the caller’s responsibility to remove it from the
stack.

Because a function returning a st ruct, union, or double expects its caller to have placed
a hidden argument on the stack, it is essential that the caller do so! Therefore, even when you
are not interested in the actual return value, always be sure that the function is declared cor-
rectly before calling it.

Functions that accept a variable number of arguments

The C calling conventions are designed to make it easy to write functions that take a variable
number of arguments. The first argument(s) can always be found in the same place regard-

less of how many additional arguments are supplied. Because responsibility for removing the
arguments from the stack lies with the caller, the function doesn't need to clean up the stack.

As an elementary example, here is a function that returns the minimum of an arbitrary num-
ber of integers. The first argument is the number of additional arguments passed and must be
at least 1.

int minimum(count, x)
int count, x;
{
int *xp = &x; /* pointer to arg list */
while (~-count) {
if (*++xp < x)
X = *xp;
}
return(x);

}

A function using Pascal calling conventions cannot accept a variable number of arguments,
unless it is written in assembly language.

Pascal Calling Conventions

The Macintosh Toolbox is written in Pascal and expects that calls to it follow Pascal calling
conventions. When you write functions that expect to be called as Pascal functions, be sure
to use the pascal keyword when you define them. This section tells you how Pascal func-
tions expect to be called.

154

Assembly Language 12

Pascal calling sequence

The caller pushes the arguments in left-to-right order, then calls the function. Upon return,
the result (if any) may be found on the stack. The caller’s code looks something like this:

CLR -(SP) ; reserve space for result
MOVE vy — (SP) ; first argument

MOVE w.r —(SP) ; last argument

JSR function

MOVE (SP) +, ... ; result

The function’s code looks something like this:

LINK A6, #.. ; (optional)

UNLK A6 ; (optional)

MOVE (Sp)+,A0 ; return address

ADD ¥..,SP ; total size of arguments
MOVE ..r (SP) ; store return result
JMP (A0)

Pascal function entry

The arguments to the function appear on the stack in left to right order. The last (rightmost)
argument appears just above the return address, followed by the remaining arguments in re-
verse order. If the function returns a result, space for it is reserved above the first argument. If
the return value is 1 byte long, 2 bytes are reserved.

The stack looks like this on entry (just after the calD:

space for return value (if any)
arg-1

arg-N
SP —> return address

The last argument can be found at 4 (SP) . (If the function begins with a LINK A6, #... in-
struction, the last argument can also be referred to as 8 (A6) .)

All arguments occupy 2 or 4 bytes on the stack. A byte argument appears in the high byte of
its word and is found at an even offset from SP (or A6).

155

THINK's LightspeedC

Pascal function exit

The function stores its return result (if any) on the stack in the location reserved by the caller.
If the result is 1 byte long, it is placed in the high byte of the word reserved.

The stack looks like this on exit (just after the return):

SP -> result (if any)

It is the function’s responsibility to remove the arguments from the stack.

Tips
Inline assembly can be tricky if you are not familiar with assembly language. It can be espe-

cially dangerous if you're used to thinking in terms of high-level languages. The following
problems are not specific to THINK C; they are common to assembly language in general.

Using constants
Don't forget the # sign when using an immediate constant. The result will be very different
than what you intended.

extern int MemErr : 0x220; /* declare MemErr low memory global */
asm{
MOVE.W 0x220, DO ;moves contents of location 0x220
; (MemErr) into DO
MOVE.W MemErr, D0 ;same way of writing the above

;symbolically
MOVE.W #0x220, DO ;moves the value 0x220 into DO
MOVE.W 5, DO ;WRONG: this will cause an odd
;address error!
MOVE.W #5, DO ;Right

}

Local storage

Use C variables to declare local storage. If you use the directive DC instead to declare storage
space, storage will be allocated in your code segment. Most of the time, this {s not what you
want.

Instruction size
Be sure to use the right-sized instruction when referring to variables. Example:

156

function()
{
int anInt;
int GetsTrashed;
asm{
move.L #3, anInt

move.W #3, anInt

}

Assembly Language

;WRONG: will overwrite
;variable GetsTrashed
;RIGHT: Word size matches int.

12

157

Libraries
13

Introduction

This chapter shows you how to use and build libraries with THINK's LightspeedC. A library is
a collection of compiled code you can use in many programs. Libraries usually contain utility
functions or interface functions to the operating system. The MacTraps library, for instance,
contains the interfaces to the Macintosh Toolbox.

Topics covered in this chapter:
¢ Using libraries
* Using projects as libraries
e Creating libraries
¢ Converting object files into libraries

Using libraries

To add a library to a project, use the Add... command in the Source menu. The library name
will appear in the project window. When you add a library to a project, its object size is zero.
The object code isn’t loaded automatically when you add a library.

You can use the Load Library command in the Project menu to load a library’s object code,
or you can rely on THINK C’s auto-make facility to load the library for you the first time.

The auto-make facility can tell when a library hasn’t been loaded, but it cannot tell whether a
library you’ve added to a project has changed. Libraries are modified outside the project, so if
you know a library has changed, reload it with the Load Library command.

If you’re not sure whether a library has changed, use the Make... command to find out.
Select Make... from the Source menu, and click on the Use Disk button.

When you press the Use Disk button, THINK C checks the dates of the libraries on disk
against the libraries loaded in your project. If the creation date and time of a library on disk is
different from when it was loaded, THINK C marks it as needing reloading. Click on the
Make button to bring the project up to date. (To learn more about the Make... command, see
its description in Chapter 14.)

159

THINK's LightspeedC

Creating Libraries

THINK C gives you to ways to create libraries. You can either use any THINK C project as a
library, or you can create a separate library document. When you use a project as a library,
the smart linker uses only the code it needs. Binary libraries, on the other hand, are smaller,
and take up less space on disk.

Projects as libraries

You can use any THINK C project document as a library. When you use a project as a library,
THINK C uses smart linking to build your project. The linker links only the CODE
components that contain functions that your program uses. (See Chapter 7 to learn about the
components of a THINK C project.)

Most of the time, you'll use projects as libraries.

Binary libraries
Use the Build Library command in the Project menu to create a binary library. When you
use this command, you’ll see a standard file dialog asking you to name the library.

When you use a library in your project, the linker adds all of the object code in the library to
your project.

By convention, libraries end in . 1ib.

Converting object files into libraries

To use object code produced by other compilers and assemblers in THINK C, convert the
obiject files to libraries or projects. Your THINK C package includes two utilities that convert
object files.

To convert . Rel files produced by Consulair compilers and assemblers into libraries use
RelConv. To convert . o files produced by Apple’s MPW compilers and assemblers into
projects use oConv.

Converting .Rel files

The RelConv application converts object files created by Consulair compilers and assemblers
into THINK C libraries.

160

Libraries 13

When you double click on the RelConv application, you'll see this standard file dialog:

) O Tess
O Libraries
0 Mac ¥includes
0 Mac Libraries _
O Read Me [_Diive]
_\
w

Double click on the . Rel file you want to convert (or click on the Convert button). RelConv
generates files with . 1ib suffix. If the name of your object file was foodle.Rel, the
resulting library will be foodle. lib.

When RelConv is finished converting, it will display the standard file dialog again so you can
convert more object files. To quite RelConv, select Quit from the File menu. (You can use
the menus even though the standard dialog is active.)

Object files produced by Consulair compilers and assemblers do not retain case information.
RelConv assumes that all symbols should be lower case. If you want upper case characters in
your symbols, you can supply a vocabulary file,

If RelConv sees a file with the same name as the file it is converting but with a . voc suffix, it
is considered to be a vocabulary file containing a list of symbols, one per line, with the
desired capitalization. Each symbol in the . rel file that matches the spelling of a symbol in
the vocabulary file will appear with the specified capitalization in the resulting library.
Symbols not found in the vocabulary file will appear in lower case.

To help you build a vocabulary file when converting a . Rel file for the first time, RelConv, if
it finds no vocabulary file, will create one containing all the symbols in the . rel file in lower
case. You can then edit this file to supply the desired capitalizations and run RelConv again.

RelConv accepts a script file containing a list of . Rel files, one per line. The script file must
be a text file with an extension of . rcv. If relative pathnames appear in the script file, they
are interpreted relative to the directory containing the script file.

RelConv has an Options menu. There is only one option, requesting RelConv to delete each
.Rel file after converting it.

RelConv will not convert files that were created with the RESOURCE directive. This directive
is usually used to create resources containing code. THINK C has its own mechanisms for
building code resources. See Chapter 7 (You can use the Apple utilities RMaker and ResEdit
to create other kinds of resources.)

161

THINK's LightspeedC

Converting .o files

The oConv application converts object files created by Apple’'s MPW compilers and
assemblers into THINK C projects. You can use these projects as libraries (see above) or, if
you prefer, you can build a library from the resulting project.

When you double click on the oConv icon, you'll see this standard file dialog:

—Tess
D Libraries
[Mac #includes
O Mac Libraries
O hood Me
fddressing: @RS O R4 N
Vocabulary: [JTrapList []“.v” file 1.Da5

The dialog has some buttons that let you control how the converter builds the project.

The converter displays only files of type 'OBJ ', with creator 'MPS ', and thatend in . o.
When you double click on a . o file (or click on the Convert button), the converter generates
a file ending in . %. For instance, if you convert a file called xyzzy . o, the resulting project
file will be called xyzzy.x.

When the converter is through converting the file, it displays the standard file dialog again to
let you convert more files. To exit the program, click on the Cancel button.

To convert all the . o files in a folder, click on the Convert All button. The converter doesn’t
convert files that have already been converted.

The converter lets you choose whether to use A5 or A4 addressing. If you'll be using the
project in an application, choose A5. If you'll be using it in a desk accessory, device driver, or
code resource, use A4 addressing. To learn more about A4 addressing, read “Global data in
drivers” in Chapter 7.

The addressing option only affects those relocatable references where the .o file specifies that
PC-relative addressing be automatically substituted as appropriate. Other references to A5 or
A4 appearing in the object code cannot be detected; it is the user's responsibility to ensure
that they are correct for the kind of program being built. In particular, references to global
data may work only with A5-relative addressing.

In some . o files, symbol names appear in all upper case. The vocabulary mechanism
provides a way to translate such names back to their proper capitalizations. Only names
entirely in upper case will be translated.

162

Libraries 13

When TraplList is checked, the Toolbox and OS glue routines are added to the vocabulary.
This includes all the Iside Macintosh routines known to THINK C, except those for which
THINK C generates inline traps.

When the “.v” file option is checked, the converter examines a user-supplied vocabulary file
for each . o file converted. The vocabulary file is a text file that contains the proper capital-
ization for each symbol, one symbol per line. If the file to be converted is named xyzzy . o,
the vocabulary file must be named xyzzy.v.

If the vocabulary file doesn’t exist, the converter will create it. The file will contain one line
for each symbol that appears entirely in upper case in the .o file. You can edit this file to
supply the proper capitalization, and then run oConv again. ;

163

THINK's
LightspeedC

PART FOUR

Reference

14 THINK C Menus
15 Debugger Menus
16 Language Reference

THINK C Menus
14

Introduction ;

This chapter describes each of the THINK C menu commands. It is organized by menu, from
left to right along the menu bar. Within each menu, commands are described in the order in
which they appear in the menu.

The € Menu

About THINK C...
This command tells you what version of THINK C you’re using in an entertaining display.
Click the mouse button to end the display.

167

THINK's LightspeedC

168

The File Menu

New 3N Use the File menu commands to work with files
that you open and edit with the THINK C text

Open... 30 editor. This menu also has the commands that
Open Selection 38D let you launch other applications and that let
Close you quit THINK C.

Save 38S

Save As...

Save a Copy fAis...

Revert

Page Setup...
Print...

Transfer...
Quit 380

New

This command opens a new Untitled window. You must save this file with a . ¢ extension if
you plan to compile it or add it to the project. However, you can use the Check Syntax
command on the Source menu to compile it without adding it to the project.

Open...

This command displays a dialog box that lets you select from existing files on the disk and
open them for editing. When you first begin a project, one way to add a file is to open it with
this command, then compile it or add it with the Add command. (The Add... command lets
you add multiple files without compiling or opening the files. Once files have been added to
the project, they can be opened by double-clicking on the file name in the project window.)

You can open multiple files and the edit windows will stack up with the titles showing, so
you can easily click on any window to bring it to the front.

If you open too many files at once, you may have to close some windows to free up memory
when you compile.

THINK C Menus 14

Open Selection |
This command lets you open an #included header file simply by selecting its name in the
current program text. You don’t need to select the . h extension (or full path name for HFS
files). The selection will automatically be extended to the right to include it as long as the file
name itself is selected.

Close

This command is the same as clicking on the active window’s close box. If you try to close an
edit window, and the file has been modified since it was last saved, a dialog box will ask you
if you want to save the changes, discard them, or cancel the Close command. To close the
project window, use the Close Project command in the Project menu. |

If the Confirm Saves option in the Options... dialog box is off, THINK C will save changed
files without asking,

Save

This command saves the file in the active edit window to disk. If the file is currently untitled,
a dialog box will ask you to name the file.

Note that an updated file can be compiled and added to the project without being saved, as
long as it has been saved at least once and given a name with a . ¢ extension.

Save As...

This command lets you save the current file under another name. If you have made edits in
the current session, they will be saved under the new name. The original file will remain un-
changed, and as you continue editing, you will be editing the new file. This feature is useful
for switching to a new version of a file, leaving the old file as a backup.

Save As... tries to preserve the tie between the file you are editing and its entry in the project
window. If the file appears in the project window, and the name you want to save it as has a
. ¢ extension, and if the new name doesn’t already appear in the project window, then the
entry for the file in the project window is changed to match the new file name. Use Save a
Copy As... if you don't want this to happen.

Save a Copy As...

Unlike Save As..., this command does not affect the status of the file currently being edited;
it simply snapshots it to another file. This is a good way to make backups without finding
yourself editing the backup!

Neither Save As... nor Save a Copy As... will let you save into a file already open in an edit
window.

169

THINK's LightspeedC

Revert
This command restores the last-saved version of the current file, and discards any edits made
in the current session.

Page Setup...

This command displays the standard Page Setup dialog that lets you specify the size of the
paper you're printing on, and whether the file should be printed upright on the page (tall
orientation) or sideways (wide orientation). See you Macintosh owner’s manual for details.

Print...

This command lets you print the current file. The standard Print dialog box lets you set the
page range among other options. When you press the OK button, your file will begin to
print. Each page of the file has a header showing the name of the file and the last modifica-
tion date. The thumb of the vertical scroll bar moves from top to bottom on an ImageWriter,
and from bottom to top on a LaserWriter, to show you the printing progress. To cancel print-
ing , press Command-Period.

Transfer...

This command lets you launch another application without first returning to the Finder.
When you’re running under MultiFinder, this command launches applications without quit-
ting THINK C.

Quit
This command exits THINK C and returns to the Finder.

170

THINK C Menus 14

The Edit Menu

Undo ®2Z The Edit menu contains the standard Macintosh
editing commands (Cut, Copy, Paste) as well as
other commands that let you format your THINK

Cut ¥EH C source files. The Edit menu also contains the

Copg $8C Options... command that lets you set several

Paste || THINK C options so the environment suits your
rsonal needs.

Clear pe

Select All

Set Tabs & Font...
Shift Left |
Shift Right]
Balance 3B

Options...

Undo

The Undo command reverses the last edit operation. The actual name of this command
changes to let you know exactly what operation you'll be undoing. After a Paste, for instance,
the name of this command changes to Undo Paste. Once you’ve undone something, the
name of this command changes to Redo.

If there isn’t anything to Undo, this command will be dimmed. If the operation to undo
doesn’t belong to the frontmost window, the name of the command will indicate that there is
something to do, but the command will be dimmed.

You can't undo a Replace All, Revert, or a Set Tabs & Font... command.

Cut

This command removes selected text and places it in the Clipboard. It replaces the current
contents of the Clipboard (if there are any). Use the Paste command to insert text from the
Clipboard into your file at the insertion point.

Copy
This command copies the selected text and places it in the Clipboard. The copy can now be
pasted somewhere else using the Paste command .

171

THINK's LightspeedC

172

Paste
This command copies the contents of the Clipboard into the file being edited at the insertion
point. If text is currently selected, it is replaced.

Clear

This command clears the selected text. The selection is not placed on the Clipboard. The
Clear key on your keyboard has the same effect as the Clear command.

Select All
This command selects all the text in the current edit window.

Set Tabs & Font...

This command lets you change the tab stops and the font used by the THINK C editor. You
can select different tab stops and fonts for each edit window. When you choose this com-
mand you’ll see a dialog box like this one:

-
Font: [Monaco N | (9]
X

The quick brosn fox jumps over the lazy dog.

Type a number to set the number of spaces per tab. To change the font, click on the font
name. You’'ll see a pop up menu with the names of the fonts in your System file. Click on the
font size to see a pop up menu of the sizes for the font.

If you are using a proportionally spaced font like New York or Geneva, the THINK C editor
uses the width of the letter m to figure out the width of a tab.

When you change the font or tab settings, the editor adds EFNT and ETAB resources to your
text files to record the new settings. Other text editors use these resources as well.

Shift Left

This command shifts a selected range of lines to the left. It deletes the first character of each
line in the selected range, as long as the line begins with a tab.

Shift Right
This command shifts a selected range of lines to the right. It inserts a tab at the start of each
line in the selected range.

Balance

This command extends the current selection in both directions until it encloses the smallest
surrounding balanced text enclosed in parentheses Q, brackets [l, or braces {. Successive in-
vocations select larger sequences of text.

THINK C Menus 14

Try this: Start at the beginning of a file and search for the first left brace {. Then use Balance
and Find Again commands repeatedly until you get to the end of the file. This is a quick way
to check whether all your function definitions are properly balanced.

Balance is a textual operation. It doesn’t know about comments or strings, so if you have a
lone brace, bracket, or parentheses in a comment, it will try to find a match for it.

Options...

The Options... command opens a dialog box that lets you set five groups of options: search
options in the editor, project preferences, code generation options, compiler options, and
debugger options.

You can set the options for the current project, or you can set the defaults that THINK C will
use when you create a new project. Use the Copy button at the top of the dialog box to copy
the THINK C defaults to the current project, or, if you want the options you've set for a par-
ticular project to be the THINK C options. Note that even though only one section of the op-
tions shows up in the dialog at one time, the Copy button copies all of the options, even the
ones in the sections you can't see.

When you click on the OK button, the changes for all sections of the dialog are saved.

SEARCH OPTIONS

This P 1 New P 1
The Search Options section of the ® This Projec O New Projects

Options... dialog lets you set the defaults gSur:h options gMalch Words
: : Preferences Wrap Around

used in the Find... dialog. (When you set O Code Seneration | @ 1gnore Case

the same options in the Find... dialog, O Complier Flags

they apply only for the current session. O Source Debugger

[0K] rCnncel]

Match Words When this option is set, the editor’s search and replace functions
will work on whole words only. For example, a search for “string”
will not match the word “strings.” This option is off by default.

Wrap Around When this option is set, the editor’s search and replace functions
will search the entire file, rather than from the current position to
the end of the file. When the end of the file is reached, the search
“wraps around” to the beginning of the file and continues. This
option is off by default.

Ignore Case When this option is set, the editor’s search and replace functions
will disregard case when performing a search. A search string will
match either upper or lower case. This option is on by default.

173

THINK's LightspeedC

174

PREFERENCES

The Preferences section lets you specify

how THINK C behaves when it rebuilds O Search Options [Confirm Auto-Make
X . @ Pref & Confirm §
projects, closes files, closes projects, and o Cote comaretion I:In:::-;“ c:;::u

how it deals with memory. O Compller Flags [More Memory

Confirm Auto-Make

Confirm Saves

Always Compact

More Memory

@ This Project O New Projects

Q Source Bebugger

[oK] [Cancel]

When this option is off, THINK C does not display the “Bring pro-
ject up to date?” dialog when you choose the Run or any of the
Build... commands. THINK C assumes you would have answered
Yes. This option is on by default.

When this option is off, THINK C automatically saves changes to a
file that you have modified without asking if you are sure you
want to do so. This is a dangerous option to turn off, since it pro-
tects you from inadvertently replacing previous versions of your
files with newly modified versions. It is, however, very convenient
when you want to do program development in quick, incremental
steps. This option is on by default.

In order to achieve its remarkable speed, THINK C pre-allocates
space in the project for anticipated requirements, and does not
necessarily free up the space when an item is deleted. As much as
20% of an uncompacted project document can contain unused
space. If you turn this option on, the project document will be
compacted when you Close the project, Transfer..., or Quit (but
not when you Run). Compaction may be time-consuming and you
will normally want this this option on when disk space is at a pre-
mium. The amount of space freed will vary. To compact a project
without setting this option, use the Close & Compact Project
command in the Project menu. This option is off by default.

When this options is on, THINK C tries to find more memory dur-
ing compilation by discarding certain data structures. This incurs
some additional disk activity, since (1) the data structures will need
to be read back in when compilation is complete, and (2) if they
are “dirty”, the data structures must be written out prior to
compilation in case the compiler runs out of memory. Leave this
option unchecked unless you are developing a large project on a
small machine which keeps running out of memory.

CODE GENERATION
This P t New P t
The Code Generation section lets you ® i Projec O New ProJects
control how THINK C generates code. O search Options X Macsbug Symbols
QO Preferences [J Profite
@ Code Generation [68020
O Compiler Flags [68881

Macsbug Symbols

Profile

68020

68881

<MacHeaders>

THINK C Menus 14

O Source Debugger B3 <MacHeaders>

[« | (cancer)

When the Macsbug Symbols options is set, THINK C generates
symbols for assembly language level debuggers such as Macsbug
or TMON. THINK C generates symbols only for functions that have
stack frames, so functions without arguments and local variables
don't get symbols. Be aware that while Macsbug symbols are use-
ful for debugging, they add 8 bytes to every procedure. This op-
tion is on by default.

When the Profile option is set, THINK C generates calls to code
profiler routines. The code profiler collects timing statistics about
your functions. See Appendix A to learn more about the code pro-
filer. This option is off by default.

If the 68020 option is checked, THINK C uses the 68020 instruc-
tions for bitfield operations and long word multiplication, division,
and modulo operations.

If the 68881 option is checked, THINK C generates code for the
floating point coprocessor. Up to five local variables of type
double may be declared register and will be placed into
68881 registers. When this option is on, the size of double vari-
ables is 96 bits. Since SANE expects 80 bit doubles, you’ll need to
convert from one format to the other. The £loat (32 bits) and
short double (64 bits) types are identical for SANE and for the
68881.

When the <MacHeaders> option is on, THINK C will automatically
include the MacHeaders file for every file in your project. The
MacHeaders file contains the declarations for the most common
Macintosh Toolbox types, functions, and low memory globals.
Since these declarations are in binary form, compilation is faster
than if you included the header files manually. It doesn't hurt to
include header files like QuickDraw. h, but compilation will be a
bit slower. If you want to use your own precompiled headers,
make sure this option is turned off. THINK C allows only one pre-

175

THINK's LightspeedC

compiled header per source file. To learn more about precompiled
headers, see the “Precompiled Headers” section in Chapter 10.

176

COMPILER FLAGS

The Compiler Flags section of the
Options... section lets you specify how
the THINK C compiler interprets your
source files.

@ This Project QO New ProjJects

QO Seearch Options
QO Preferances

QO Code Generation
@ Compller Flags
O Source Debugger

L)

(& Check Pointer Types
[Require Prototypes

oK

[Canc M

When the Check Pointer Types option is on, THINK C makes sure

that pointer types match when you assign one pointer to another
or when you do pointer arithmetic. If this option is off, THINK C
treats all pointers as equivalent types, and won't display the
“pointer types do not match” error message. When subtracting two
pointers, however, the two types must be pointers to objects of the

When the Require Prototypes option is on, THINK C forces very

strict type checking: You can’t use or define a function unless it
has a prototype. (Macintosh Toolbox routines don’t need proto-
types even if this option is on.) Read the “Function Prototypes”

section in Chapter 10 to learn about function prototypes. By de-

Check Pointer Types

same size.
Require Prototypes

fault, the option is not set.
SOURCE DEBUGGER

The Source Debugger section lets you
specify whether to use the source level
debugger, where the debugger windows
will show up, and how your application’s
windows will be updated.

® This Project O New Projects

Q Seerch Options
Q Preferences

QO Code Generation
O Complier Flegs
@ Source Debugger

L)

[0 use Debugger
[Use 2nd Screen
[update Windows

0K

[Cancel J

Use Debugger

When this option is checked, THINK C launches the source level

debugger when you run your project. Checking this option is the
same choosing the Use Debugger command in the Project menu.

Use 2nd Screen

When this options is on, and you’re running on a Macintosh II with

more than one screen, THINK C will display the source debugger
windows in the second screen.

Update Windows

THINK C Menus 14

When this option is on, the debugger tries to update your win-
dows for you when your project is stopped. Without this option
checked, your program must wait until control comes back so it
can handle updates itself. Since it cannot do so until it gets back to
its event loop, an update may remain pending for some time. This
option is especially useful when you’re trying to step through code
that draws in a window. This option uses memory to save your
window’s image. If there isn’t enough memory, the debugger
won't be able to perform automatic updates. If you have a large or
color screen, you might want to increase the debugger’s partition
size. See Chapter 11 for details.

The Search Menu

Replace Rl

Replace and Find Again %W

Find... 8F The commands in the Search menu let

: you find and replace strings in your
E!]ter Sel_ectlon SE source files. THINK C has extensive
Find Rgain %A search and replace functions including
Replace P multi-file searching and pattern matching

searching. To learn the details of pattern
searching, see Chapter 8.

Find in Next File

kT

Find...

This command lets you specify a string to search for. If the string is found, it is highlighted. If

it is not found, the editor s

imply beeps.

At the start of an editing session, only the Find... command is active. The dialog box that ap-
pears in response to this command lets you specify a string to search for, as well as an op-

tional replacement string.

Search for: Replace with:

myWindouw|
[IMatch Words [6rep [Muiti-File Search
E:‘;::':'c":": [rina Y nontrind) cancel)

177

THINK's LightspeedC

You can also set search options in this dialog box. Note that you can also set these options in
the Search Options section of the Options... dialog. When you set the options in the Find...
dialog, though, they apply only to the current session. If you want to set the defaults perma-
nently for the project you're working on or for new projects you create, use the Options...
dialog.

Match Words When this option is set, the editor’s search and replace functions
will work on whole words only. For example, a search for “string”
will not match the word “strings”. This option is off by default.

Wrap Around When this option is set, the editor’s search and replace functions
will search the entire file, rather than from the current position to
the end of the file. When the end of the file is reached, the search
“wraps around” to the beginning of the file and continues. This
option is off by default.

Ignore Case When this option is set, the editor’s search and replace functions
will disregard case when performing a search. A search string will
match either upper or lower case. This option is set by default.

In addition to the Find button (“Go ahead with the search”) and the Cancel button (“Pretend I
never invoked this command™), there is a Don'’t Find button in the dialog box. Pressing this
button causes the editor to accept the new string and option settings but doesn't initiate a
search. This is useful for setting values for a replace operation without executing the first
Find.

Enter Selection
This command sets the search string to the current selection, clearing Grep and Multi-File
Search. You can then use Find Again to begin searching, or Find... to set search options.

Find Again
This command searches for the next occurrence of a previously specified string.

Replace

This command replaces the current selection with a replacement string. If you haven'’t pro-
vided a replacement string, this command will clear the string that has been found (that is, it
will replace it with nothing). Usually, you use this command after finding a string.

E Replace & Find Again
This command replaces the current seelction with the replacement string, then finds the next
instance of the search string, but does not replace it. Use this command to step through a se-
ries of replacements. After each replacement, you will see the next instance of the search
string, so you can decide whether you want to replace it. If you want to replace the string,

178

THINK C Menus 14

use the Replace or Replace & Find Again commands. If not, use the Find Again command
to find the next occurrence of the string.

If you haven't provided a replacement string, this command clears the string that has been
found (that is, it will replace it with nothing).

Replace All

This command replaces every instance of the search string. If the Wrap Around option is on,
it replaces every instance in the file. If the Wrap Around option is off, it replaces every in-
stance from the current cursor position to the end of the file. Use this command when you
don’t want to give your approval for every replacement. If you haven't provided a replace-
ment string, this command will clear the string that has been found (that is, it will replace it
with nothing).

Find in Next File
This command lets you search for a string through more than one file.

To use this command, you must check the Multi-File Search check box in the Find... dialog
box. When you check this box, another dialog box displays all of the text files known to
THINK C. You can scroll through the list and select individual files by clicking on them to
place a checkmark by the name, or you can use the buttons in the dialog box to Check All,
Check None, Check All .c or Check All .h. (If a file is already selected, clicking on its name
will remove the checkmark.)

When you've checked the files you want to include in the multi-file search, click OK to return
to the Find... dialog box.

THINK C will search for the string specified in the Find... dialog box through each of the
files that have been checked, starting with the first one. If the search string is found in a given
file, THINK C opens an edit window containing the file, and the search string is selected. At
this point, you can go on and make any edits you choose. If you want to search further in the
current file, you can use the Find..., Find Again, Replace, and Replace All commands,
which work within the current file. When you’re ready to go on with the multi-file search, use
the Find in Next File command.

Multi-file search is useful when you are writing a program, and decide to modify a function
that is used in multiple files. You can open each of the files containing the search string, so
you can switch back and forth between the various edit windows as necessary. (This feature
is also helpful when you are tracking down link errors due to undefined or multiply defined
symbols.)

179

THINK's LightspeedC

180

The Project Menu

New Project... The commands in the Project menu work with

. iect. d
Open Project... the 'curren[project _You can open and create

_ projects, set the project type, make sure all the
Close P roject files in the project are compiled and loaded. This
Close & Compact menu also contains the commands you'll use
when you’re ready to build a file containing
your application, desk accessory, device driver,
or code resource.

Set Project Type...
Remove Objects

Bring Up To Date 38U
Check Link L
Build Library...

Build Rpplication...

Use Debugger
Run 3R

New Project...

This command creates a new project and opens an empty project window. Only one project
can be open at a time.

Open Project...
This command opens an existing project.

Close Project

This command closes the current project and then lets you open an existing project or creale
a new project. If you try to close a project with open files whose latest versions have not
been saved, a dialog box will ask you if you want to save your edits. To disable this dialog,
turn the Confirm Saves option off in the Preferences section of the Options... menu. When
this option is off, changed files will automatically be saved when you close.

Close & Compact

This command is the same as Close Project, but it makes the project document as small as
possible without removing any object code. Use this command before you back up your
project, or when you plan to use a project as a library (see Chapter 13) or when you plan to
transmit the project through a modem (See also the Remove Objects command).

THINK C Menus 14

Set Project Type...

This command lets you set the project type. The default project type is Application, but you
can change it to Desk Accessory, Device Driver, or Code Resource. All project types let you
specify the File Type and Creator of the file created by one of the Build... commands. To
learn the details of each project type, see Chapter 7.

Set the project type before compiling any of your sources. THINK C will need to throw away
any existing object code if you switch the project type once there is compiled code in the
project. If the project already contains files, THINK C will ask if you’re sure you want to
change the project type.

The Set Project Type... dialog box lets you specify different attributes for each type.

APPLICATION
1

The Application dialog lets you specify g::::‘n:l:::,w riieTpe

how string literals and floating point con- O Device Driver Creator [EREEN|

stants are stored and lets you set some of O Code Resource [separate STRS

the fields of the SIZE resource Pertition (X)

MultiFinder uses. MF Attrs

l oK l I Cancel l

Separate STRS When this options is set, string literals and floating point constants
are placed in their own STRS component. Otherwise, strings and
floating point constants are part of the DATA component.

Partition The value in this field is the amount of memory MultiFinder allo-
cates for your application. The default is 384K, which is more than
enough for most moderate size applications.

MF Attrs The pop up menu lets you set the bits that tell MultiFinder how
compatible your application is. You can use the pop up menu or
type a hex value into the field.

181

THINK's LightspeedC

DESK ACCESSORY

O Applicetion File Type -
DEVICE DRIVER @ Desk Accessory c m
The Desk Accessory and Device Driver O Device Driver reator oMoy _]
dialogs are similar. For desk accessories O Code Resource [Multi-segment
the File Type and Creator fields are filled Neme | |
in for you so the resulting file will be a Type L w iz]

Font/DA Mover file. There are other dif-

ferences between Desk Accessories and l o) l Cancel l

Device Drivers which have to do with the
header fields. See Chapter 7 for details.

Q Rpplication Flle Type IE

QO Desk Rccessory

Creator |?7227
@ Device Driver ato -
QO Code Resource [Muiti-Segment
Neme || |

Y e[
[oK J uoncol]

Multi-Segment When this option is on, your desk accessory or device driver can
have up to 31 segments.

Name This field is the name of your desk accessory or device driver. By
convention, desk accessory names begin with a null byte. THINK
C takes care of this for you. Device drivers begin with a period. If
you don't provide one, THINK C will add one for you.

Type Desk accessories and device drivers are resources of type DRVR.
You can change the type if you have some reason for doing so.

D The ID number of the DRVR resource. Desk accessories default to
12. The Font/DA Mover will renumber your desk accessory (and
its owned resources) if there is a conflict.

CODE RESOURCE

The Code Resource dialog lets you specify 8::::;:':::",“ P Type (7277]
whether your code resource will begin O Bevice Driver Creator
with a standard header, its name, type, @ Code Resource O Custom Header

and ID, and its resource attributes. Neme [|

Type [[w [| s Eb
l oK l l Cancel '

182

THINK C Menus 14

Custom Header When this option is off, THINK C uses a standard header for your
code resource. The header places the address of your resource in
register A0 and branches to yourmain () function. If you check
this option, your code resource will begin with the first function in
the file in which main () is defined.

Name The name of your code resource. For most code resources, the
name is optional.

Type The resource type of your code resource.
ID The ID number of your code resource.
Attrs The resource attributes (Jocked, purgeable, system, etc) of your

code resource. You can select the attributes from the pop up
menu, or you can set them by typing a hex number into the field.

Remove Objects

This command removes all the object code from a project. It reverses the effects of all previ-
ous compilations and loading of libraries. The project document is “dehydrated”; it can be
“reconstituted” by recompiling all source files and reloading all libraries.

Use Remove Objects when you need to make the project document as small as possible,
e.g., for archiving or for transmitting to someone else.

Bring Up To Date

This command compiles and source files that need to be compiled and loads any libraries
that haven’t been loaded.

Check Link

This command checks for all the same error conditions as Run or Build Application...
would, but without running the project or building an application. If any files need to be
made, you will be asked whether you want to bring the project up to date, even if you have
set Confirm Auto-Make off.

183

THINK's LightspeedC

The Check Link command displays errors in the Link Errors window. If there are multiply
defined or undefined symbols, the names of the files containing the symbols appear in
parentheses.

ECO IR 1ink frrors IR

multiply dafined: here_!_am (main.c, ausxfns.c) [
undefined: not_bere (maln.e)

S
e o]

When the Link Errors window comes up as the result of an attempt to Run or Build..., this
additional information is not displayed. Since some disk activity is required to compute the
information, it is only displayed when you specifically request Check Link.

Build LIbrary...

This command saves the current project as a single binary file that can be added as a library
to other project documents. A dialog box prompts you for the name of the library file. The
convention is name . Lib; however, a library may have any valid file name. Note that you can
include a project in another project without first saving it explicitly as a library. See Chapter
13 for details.

Bulld Application...

Build Desk Accessory...

Bulld Device Driver...

Bulid Code Resource...

This command saves the current project as an application, desk accessory, device driver, or
code resource. A dialog box lets you name the resulting file:

save application as:

T

KX smert Link A

0O Buggykdit.c ©Tess
Q minl.fila.c

0 minb.mint.c @
Q minL.windows.c

Q MiniEdit.m
D MiniEdit.avysee

If the Smart Link option is checked, THINK C uses the smallest number of code components
of the source files or libraries to create the resulting file. It takes a little longer to put the ap-

184

THINK C Menus 14

plication or resource together, but the resulting file will be as small as possible. Uncheck this
option if you’re building frequently for testing.

If there is a file with the same name of the project that ends in . rsrc in the same folder as
the project, the resources in the . rsrc file will be merged into the resulting file

Use Debugger

This command turns the source debugger on and off. When the source debugger is on, you'll

see a “bug” column in the project window, and when you run the project the debuggers
windows appear on the screen. Selecting this command is the same as clicking on the Use
Debugger checkbox of the Source Debugger section of the Options... dialog box. See
Chapter 11 to learn how to use the source level debugger.

Run

This command will run the program contained in the project. If the project is not up to date, a

dialog box will ask if you want to bring it up to date. If the Confirm Auto-Make option in
the Options... dialog box is not checked, then the project will automatically be brought up
to date. This lets you edit a source file and run the changed program, without ever explicitly

recompiling or relinking the program.

If the project type is Desk Accessory, the Run command uses an auxiliary program, DAShell,
to run your desk accessory. THINK C needs to build you desk accessory and save it in a file
first, then THINK C launches DAShell. Your desk accessory will be in the Apple menu.

The Source Menu

| source N

Rdd

Remove

Get Info k1
Check Syntar 38Y
Precompile...
Debug #06
Compile 8K
Load Library
Add...

Make... #EM

The commands in the Source menu let you add
and remove source files to your project. This
menu also contains commands to create pre-
compiled headers, to compile source files, to
load libraries, and to control the auto-make
facility yourself.

185

THINK's LightspeedC

Add

This command adds the file in the frontmost edit window to the project to the project win-
dow. The files must end in . c.

Remove
This command removes a selected source file or library from the project.

Get Info...

The Get Info... command display a dialog box that contains the sizes of each project compo-
nent. The displays initially contains information for the currently selected file.

MiniEdit.c
CODE DATR
File 1698 380
Segment 2 15360 1094
Project 16104 1094
File
Segment

The dialog shows the size of the CODE, DATA, STRS, and JUMP components for the selected
file. If the file hasn’t been compiled, these values will be zero. The dialog also shows the
same information for the segment and the entire project. The Next and Prev buttons let you
examine the other files and segments in the project.

Check Syntax

This command lets you compile a file in order to check its syntax. This command compiles
the front window but does not add the file to the project window or post the results of the
compilation to the project document. You can check the syntax of the contents of the edit
window, even an untitled window. Compile, by contrast, works only on files thatend in . c.

Precompile...

This command creates a precompiled header from the contents of the frontmost edit win-
dow. Precompiled headers may not have any code or data definitions. You can include
#include files (even other precompiled headers) in precompiled headers.

Debug

When you're using the source level debugger, this command sends the frontmost edit win-
dow (or the selected file in the project window) to the Source window of the debugger.

Complle

This command will compile either the contents of the active edit window, or the currently
selected file in the project window. The results of the compilation will be posted to the pro-
ject document.

186

THINK C Menus 14

Only files that end in . ¢ can be compiled. To check the syntax of a source file without
adding it to the project document, use the Check Syntax command instead. The Compile
command is dimmed when a library file is selected in the project window.

Load Library

Load Project

These commands are active when the selected file in a project window is a library or a pro-
ject. (You can use projects as libraries. See Chapter 13 for details.) When you select this
command, THINK C loads the code for the library into the project. To add a library to a pro-
ject for the first time, use the Add... command.

Add...

This command lets you add existing source files and libraries to a project. This command dis-
plays a standard file box and lets you select a source file, library, or project to be added to the
project. It keeps asking for more until you press the Cancel button. Only files which can be
added (i.e., source files that end in . ¢, libraries, or other projects) appear in the scroll box.

Make...

When you select this command, a dialog box appears showing all the files in the project in-
side a scroll box. The files that THINK C thinks need to be recompiled (or in the case of li-
braries, reloaded) are checked. You can alter the list if you like by using the cursor to check
or uncheck files, or by clicking the Check All, Check All .c or Check None buttons. Your
changes will not be remembered if you click the Cancel button.

When you press the Make button, THINK C will bring the project up to date. It will recompile
files that need to be recompiled and load libraries that need to be reloaded. If you press the
the Don’t Make button, the project will be updated next time you use any of the commands
that the update the project: Bring Up To Date, Run, Check Link, or Make....

Source files to complle: 3

Libraries to load: 1

—

—

v ullYindew.s

vMacTraps —_—
| [Quick Scan

[Make J [Ilnn'l Make] [Cancel]

If you click the Use Disk button and the Quick Scan checkbox is checked, THINK C checks
the date/time-modified of all the files in the project. Normally this is not necessary because
THINK C automatically tracks the changes you make as you edit. This knowledge is project-
specific, though, so if you have a source file that belongs to two different projects and you

187

THINK's LightspeedC

change it in one, the other project won’t know it’s been changed unless you say Use Disk.
Also, if a library file changes, you have to click Use Disk or explicitly check it to let THINK C
know.

If the Quick Scan checkbox is not checked, THINK C does a more extensive check. If a file
can’t be found, THINK C searches the tree the file was originally in to find the file. (The Use
Disk feature can’t help you detect when you’ve moved files from one tree to another. See
Chapter 9 for details.)

Use Disk displays its progress if the Quick Scan option is off. You can abort it by typing
| Command-. (command-period), although the next Use Disk will start again at the beginning.

| Ifasource file or library is not found by Use Disk, its status (i.e. whether it is checked in the
Make... box) is unchanged. However, if a source file is found but one of the files it includes
is not found, the source file is marked as needing to be made (i.e., it is checked).

Clicking Cancel does not undo the effect of Use Disk. Unlike the other buttons, which simply
add (or remove) a check mark to those specified by Auto-Make, Use Disk actually updates
the date/time record associated with each file that is in the project. You can, of course, man-
ually check or uncheck files after telling THINK C to Use Disk.

Windows Menu

| Windows I

Clean Up The Windows menu has three sections, sepa-
Zoom 9%/ rated by dotted lines. The first section has five

) commands: Clean Up, Zoom, Full Titles,
Full Titles Close All, and Save All. The second section has
Close All an entry for the project window and one for
Sape #i each Untitled window. The third section has an

entry for each file open in an edit window, in al-
‘ phabetical order.

myProject.w 360

Untitled #3

auHfns.c 31

main.c 382
Clean Up
Restacks the windows as though they were freshly opened. The rearmost window is assigned
the first slot, as though it was the first window opened, the next-rearmost window is assigned
the second slot, etc. The front-to-back order of the windows is not changed.

188

THINK C Menus 14

Zoom

Resizes the frontmost window to occupy the full screen. If the window already at full screen,
it is restored to its previous position and size. This is the same clicking the window's zoom
box in the upper right corner of the window.

Full Titles

This is a checkable item, initially unchecked. When checked, the title of each edit window
indicates the volume name and directory name as well as the file name.

Close All

This command closes all the edit windows. If the Confirm Saves option is checked, THINK C
asks whether you want to save each modified window, otherwise windows are automatically
saved. Holding down the Command or Option key as you click in the close box of an edit
window is the same as Close All

Save All
Saves all the modified windows. No confirmation is requested.

Project window

The project window is brought to the front. (The menu item will be the name of the project,
not the literal words “Project window”.)

Titled and Untitled edit windows

Brings the selected window to the front. The number reflects the “slot number”, i.e., the initial
position of the window. (The first created window occupies slot #1, and slots #6-10 occupy
the same screen positions as slots #1-5, etc. Slots vacated by closed windows are reused at
the next opportunity.) The number of windows is limited only by available memory, but only
windows in the first nine slots have a Command-key equivalent. A diamond (0) appears next
to windows which have been modified.

189

Debugger Menus
15

Introduction

This chapter describes each of the source level debugger’s menu commands. It is organized
by menu, from left to right along the menu bar. Within each menu, commands are described
in the order in which they appear in the menu.

Some of the debugger’'s commands operate on the selected statement. To select a statement,
just click on its line in the Source window. If there isn't a selected statement, the commands
operate on the current statement.

The & Menu

Shortcuts...

This command displays a series of dialog boxes that describe some shortcuts that make
working with the debugger faster.

The File Menu

Unlike virtually every Macintosh application, the source level debugger does not have a File
menu. This menu is always dimmed. The reason this non-menu still occupies a slot is to let
you know at a glance that one of the source level debugger’s windows is the active window.

191

192

THINK's LightspeedC

The Edit Menu

Undo 87 The Edit menu lets you use the standard editing

commands on expressions in the Data window.

Cut 38H
Copy ¥€C
Paste sl
Clear

Copg To Data 3D

Undo

This command undoes any edits you make to an expression in the Data window. Choosing
this command is the same as clicking on the deselect button and then selecting the same ex-
pression again.

Cut

This command deletes the selected text and copies it to the Clipboard. You can’t cut text out
of the Source window.

Copy
This command copies the selected text to the Clipboard.

Paste

This command pastes the text in the Clipboard into the current window. You can't paste into
the Source window.

Clear
This command removes the selected expression from the Data window.

Copy To Data

This command is active only when the Source window is the frontmost window. It copies a
selected expression from the Source window and pastes it into the Data window, where the
expression is compiled. It’s up to you to make sure that the text selected in the Source win-
dow is a valid expression. Copy To Data leaves the expression selected, so you can use some
of the formatting commands right away.

Debugger Menus 15

The Debug Menu

Debug
Go by B Use the Debug menu to control the execution of
Step %S your program. The first six commands in this
menu have equivalent buttons in the Source

Step In 1 window status panel.

Step Out 0

Trace 8T |
Stop 3. ’

Go Until Here 3%H |
Skip To Here

Moanitor ¥M
ExitToShell

Go

The Go command starts your program if it was stopped. Your program will run undl you stop
it (with the Stop button, for example) or until it's about to execute a line with a breakpoint or
until it hits an exception (dividing by zero, for instance). If your application is already run-
ning, the Go command brings it to the foreground.

Step

The Step command goes on to the next statement marker in the current function. If you're at
the end of a function, Step returns to the calling function. Use Step when you want to follow
the execution within a function without falling into other functions. (Technically speaking,
Step skips over JSRs.)

Step In [
The Step In command executes your program until the current statement arrow falls into a
function. Step In is useful when you want to skip over a set of assignments or Toolbox
traps, to fall into the next function call. If Step In reaches the last statement of the current
function without falling into another function, it will stop immediately after the current func-
tion returns.

Step Out

The Step Out command executes your program until the current statement arrow falls out of
the current function. This operation can be slow if there’s a lot left to do, but it's a sure way of
leaving the current routine. A faster way of leaving the current routine is to use the Go Until
Here command or to set a temporary breakpoint at the last diamond in the function.

193

THINK's LightspeedC

194

Trace

The Trace command executes the current statement. In most cases, the statement indicator
will go on to the next statement marker, even if the next statement marker is in another func-
tion. The only time it won’t is when the program counter steps into some code that the de-
bugger doesn’t have the source text for. This usually happens when you step into a trap that’s
not generated in line. So, for a brief period, the current statement arrow isn’t really anywhere
in your program, but somewhere in MacTraps instead. Though you can't see the current
statement arrow, the current function indicator at the lower left tells you which file it’s in.

Stop

The Stop command stops execution of your program. The Stop command works when any

debugger window is active, and the Stop button only works when the source window is the
active window. When you press the Stop button you’ll usually be coming out of your call to
GetNextEvent () or WaitNextEvent ().

If your program is not in its event loop, you might not be able to make the debugger the
frontmost application. In this case, Command-Shift-Period is the panic button. Use
Command-Shift-Period to stop execution when one of your application’s windows is front-
most or when you think its stuck in a loop. (Command-Shift-Period won’t work if you're
stuck in an infinite loop in ROM, though.)

Go Until Here

The Go Until Here starts execution and stops at the selected line. This command is exactly
the same as setting a temporary breakpoint (see “Setting Breakpoints” in Chapter 11) at the
selected line. Use this command when you want to move through a block of code quickly.

Skip To Here

The Skip To Here command changes the program counter to the selected line without exe-
cuting any intervening code.Use it when you want to skip over code you know to be buggy
but not crucial to the rest of the program’s operation.

Note: This command is potentially dangerous. Make sure the code you’re
skipping to doesn’t depend on anything the skipped code does. For in-
stance, it is a very bad idea to skip over initialization routines.

Monitor

The Monitor command drops you into a low level debugger. All your registers (including
status registers) and low memory globals will be correct. The PC (program counter) will be
somewhere in the source debugger, not in your program. You can still get the value of your
PC.

If you’re using TMON, the PC is in TMON’s V register. If you selected an expression in the
Data window, its value is in TMON’s N register.

Debugger Menus 15

If you're using Macsbug, your PC is one long word before the current PC. To look at the in-
structions in your program, type:

DM PC-4
IL @.

Note: If you don't have a low level debugger installed, don’t use the
Monitor command.

ExitToShell

This command aborts the source level debugger. You should use your application’s Quit
command to quit the debugger. Use ExitToShell only if you can't use your application’s
Quit command.

The Source Menu

Set Breakpoint The Source menu contains commands for
Clear Breakpoint working with the Source window.

Clear All Breakpoints

Attach Condition
Show Condition

Edit ‘filename.c’ $E

Set Breakpolnt
Sets a breakpoint at the selected statement.

Clear Breakpoint
Clears the breakpoint at the selected statement

Clear All Breakpoints
Clears all the breakpoints in the project.

195

THINK's LightspeedC

Attach Condition

Use the Attach Condition command to attach an expression in the Data window to a
breakpoint to create a conditional breakpoint. To set a conditional breakpoint:

¢ Set a breakpoint by clicking on the statement marker diamond
e Click on the line to select it

e Click on an expression in the Data window

e Choose Attach Condition from the Source menu.

Show Condition

Use the Show Condition command to display the condition attached to a conditional break-
point. If the selected statement has a conditional breakpoint (a gray diamond), the attached
expression in the Data window will be highlighted.

Edit ‘filename.c’

Brings THINK C to the foreground and opens an edit window for the file in the Source
widow. This is the inverse of the Debug command in THINK C'’s Source menu.

The Data Menu

Set Contexnt The commands in the Data menu operate on
Show Context expressions in the Data window. You can set
and show the context of expressions, change
their display format, and lock expressions to
Decimal keep them from being reevaluated.

Hexadecimal
Character
Pointer
Address

C String
Pascal String
Floating Point

Lock

Set Context

This command makes the selected statement in the Source window the context of the se-
lected expression in the Data window.

196

Debugger Menus 15

Show Context

This command highlights the statement that is the context of the expression selected in the
Data window.

Decimal
Hexadecimal
Character
Pointer
Address

C string
Pascal string
Floating Point

These commands control how expressions appear in the Data window. The default format
depends on the data type of the expression. The type of the expression also determines what
other formats you can use.

The default formats are shown in italics.

Type Formats Available

integers decimal, hex, char

unsigned bex, decimal, char

pointers pointer, address, hex, C string, Pascal string
arrays addpress, C string, Pascal string

structs address

unions address

functions address

floats Sfloating point

This is what the display formats look like:

Format Example

decimal 4523345, -23576

hex 0xA09E1487

char 'c', 'TEXT!

C string "abcdef\nghi\33"

Pascal string "\pabcdef\nghi\33"

pointer 0x7A7000

address [] 0x09FE44, struct 0x08FCl4
floating point 1961.0102

The C string and Pascal string formats display non-printing characters in backslash form.
Whenever it can, the debugger uses the built-in escape characters (\n, \ r, \b); otherwise it
uses \nnn, where nnn is an octal value.

197

THINK's LightspeedC

Of course, you can use type casting to use formats that aren’t normally available. For exam-
ple, if you really wanted to see an integer, i, as a C string, you would type this expression:

198

(char *) 1i.

Lock

The debugger reevaluates all the expressions in the Data window every time execution stops.
To keep an expression from being reevaluated, select it, then choose Lock. When an expres-
sion is locked, a small lock icon appears next to it.

To unlock an expression, select the expression, and choose the Lock command again.

The Windows Menu

| Windows I

projectname 30

filename.c #®1
Data 82

projectname

The commands in the Windows menu work on
the source debugger’s windows.

The real name of this command is the name of your project. Choose this command to bring
THINK C to the foreground and make the project window the active window.

filename.c

The real name of this command is the name of the file displayed in the Source window.
When you choose this command, the Source window becomes the active window.

Data

This command makes the main Data window the active window.

Language Reference
16

Introduction

This section describes the C language implemented by THINK'S LightspeedC on the
Macintosh. It is meant to be used in conjunction with Appendix A, “C Reference Manual”, of
the first edition of Kernighan and Ritchie’s The C Programming Language. The sections are
named and numbered exactly as in that work, and only those aspects of THINK C which
differ from K&R, or are potentially ambiguous in K&R, are described here.

2.2 Identifiers (Names)

K&R specifies that no more than the first eight characters of identifiers are significant,
although more can be used. In THINK C, there is no limit to the number of characters which
are significant in an identifier.

In addition, K&R specifies that external identifiers, which are used by various assemblers and
loaders, may have additional restrictions. In THINK C, no additional restrictions apply to
external identifiers.

2.3 Keywords
The following identifiers are reserved in THINK C:

asm extern sizeof
auto float static
break for struct
case goto switch
char if typedef
continue int union
default long unsigned
do pascal void
double register while
else return

enum short

The ent ry keyword reserved by K&R for future use is not reserved in THINK C. In addition,
K&R mentions that the fortran is reserved by some implementations of C; it is not
reserved in THINK C.

The keywords enum, pascal, and void were not reserved in KGR. See §§ 4 (void), 8.1
(pascal) and 8.2 (enum) for additional details.

199

THINK's LightspeedC

200

2.4.1 Integer constants

K&R allows the digits 8 and 9 to represent the values 10 and 11 in'octal constants. THINK C
does not allow the digits 8 and 9 in octal constanits.

Decimal constants are of type int, or long int if necessary; hex and octal constants are of
type unsigned int,orunsigned long int if necessary.

A leading '-' is a unary operator, not part of the constant.

2.4.3 Character constants

K&R specifies that certain non-printing characters can be specified using certain escape
sequences. The following character escapes are implemented in THINK C:

"\a'0x07 (bell)

"\b'0x08 (backspace)
'"\f'0x0C (form feed)
'"\n'0x0A (line feed)
'‘\r'0x0D (carriage return)
"\t'0x09 (horizontal tab)
"\v'0x0B (vertical tab)

As described in K&R, an escape sequence of the form "\ddd' where d is an octal digit, is
also supported.

A single-character character constant has type int, and its value is always positive; e.g.
"\377"' is 255, not -1.

Multi-character character constants are allowed. The type of such a constant is int if the
value is in range, long int otherwise. The characters are assigned left-to-right and right-
justified. More than 4 characters are not allowed.

2.4.4 Floating constants

Floating constants have type double. Data types float and short double are also
supported. See §2.6 for details.

2.5 Strings

In C, each string is terminated with a null byte (*\0') so that programs that scan the string
can find its end. This convention is supported in THINK C. However, because Macintosh
Toolbox and Operating System calls were designed to be called from Pascal, which uses a
different string representation, a second type of string constant has been included.

A string beginning "\ p" or "\P” is a Pascal string. It is not terminated with a null byte; instead
the first byte is a length byte indicating the number of characters following. Be careful; the

Language Reference 16

length byte may appear negative if it exceeds 127, and it will not be meaningful at all if the
string is longer than 255 characters.

Pascal strings are required when calling certain Macintosh routines; however, if you like, they
can be used in other cases as well.

All string constants are aligned on word boundaries.

2.6 Hardware characteristics
Data types have the following hardware characteristics in THINK C:

type size

char 8 bits

short int (short) 16 bits

int 16 bits

long int (long) 32 bits

float 32 bits

short double 64 bits

double 80 bits (96 bits if 68881 option is on)

Floating-point is IEEE standard, courtesy of Apple’s Standard Apple Numeric Environment
(SANE) numerics package. The range of double values is +10%4932, f1oat corresponds to
SANE SINGLE, short double corresponds to SANE DOUBLE, and double corresponds to
SANE EXTENDED.

4. What'’s in a name?

Integers of all sizes, including char, may be declared unsigned. “Plain” char is a signed
quantity and suffers sign-extension.

Enumerated types are implemented; see §8.2. An enumerated type is not actually a new type,
but a synonym for the appropriate size integral type.

A voidtype is available. (This is a recent addition to C, since KGR. See Harbison & Steele,
section 5.10, for additional details.)

The type “function returning void” represents a procedure that does not return a value.

The type “pointer to void” (void *) is an anonymous pointer type which may be freely
converted to any other pointer type without need of a cast.

Finally, an expression may be cast to void to indicate that it is being evaluated only for its
side effects; its value is discarded.

The void type has no other uses; no void objects may be declared, and no void values
may be used. The compiler prevents void functions from returning values.

201

THINK's LightspeedC

6.1 Characters and integers

K&R points out that a character may be used wherever an integer may be used, but that in all
cases, the value is converted to an integer, and the conversion results in sign extension.

In THINK C, variables of type char are signed and do suffer sign-extension; however, single-
character character constants are of type int and by contrast with K&R always have positive
values. For example, the value of '\377" is 255, not —1.

6.2 Float and double

All floating-point arithmetic is carried out in extended 80-bit precision (90-bit if the 68881
option is on). Whenever a £1oat or short double appears in an expression, it is extended
to double which corresponds to SANE type EXTENDED. Conversion is performed according
to Apple’s SANE numerics package. float corresponds to the SANE type SINGLE. short
double corresponds to the SANE type DOUBLE.

6.3 Floating to integer conversions
Floating-point values converted to arithmetic types are truncated to integral values.

6.5 Unsigned

In any conversion, sign-extension is performed according to the old type, not the new type.
Thus, when an unsigned integer is converted to a longer signed integer, it is 70t sign-
extended; when a signed integer is converted to a longer unsigned integer, it 15 sign-
extended. (This feature is exactly as defined in K&R.)

6.6 Arithmetic conversions

This section describes the “usual arithmetic conversions” that occur when various operators
are used. These conversions may be applied to a single operand (as in a unary operator), or
jointly to a pair of operands (as in a binary operator).

First, all operands of certain types are converted to a larger type as follows:

type converted to
char int

unsigned char unsigned int
float double

short double double

Then, if both operands have the same type (or if there is only one operand), that is the type
of the result. Otherwise, both operands are converted to a common type, and that is the type
of the result. The common type is whichever of the two types appears first in the following
list:

202

Language Reference 16

double

unsigned long int
long int
unsigned int

int

7.1 Primary expressions
The type of a constant may be int, long int, unsigned int,unsigned long int,
or double depending on its form.

In a function call, actual arguments of integral type are extended to the size of an int if
necessary, and floating-point values are converted to double. Arguments of struct or
union type are allowed, and are passed by value.

If an undeclared identifier is used as the name of the function to be called, it is contextually
declared to be a function returning an int, exactly as if the declaration extern int
identifier () ; had appeared. Exception: if the identifier names a Macintosh Toolbox or OS
call, the definition of that call is entered, somewhat as if the declaration extern pascal
type tdentifier () ; had appeared, where type may be void, char, int, or long. However,
more information is actually available than given by such a declaration.)

If an identifier which was declared pascal is used as the name of the function to be called,
Pascal calling conventions are used instead of C calling conventions. Integral arguments are
not extended to the size of an int, and no argument may exceed 4 bytes in size. (See
Chapter 10 for additional details.)

Macintosh Toolbox and OS calls are handled similarly to pascal functions. In addition, each
actual argument is extended or truncated depending on the size of argument expected by the
call. If an argument of non-integral type must be resized, or if the wrong number of actual
arguments is supplied, the compiler signals an error. (Note that the compiler does not know
the expected types of the arguments, only their sizes, so be careful.)

The rules given in K&R for st ruct and union references are strictly enforced by THINK C.
The identifier in a . or -> expression must be that of a member of the appropriate st ruct
orunion.

7.2 Unary operators

The & operator may be applied to an array, producing a value of type “pointer to array of ...".
Without the & operator, the array would have been converted to type “pointer to ...” which is
quite different, so be careful.

The & operator may be applied to a function, but with no effect since the function would
have been converted to type “pointer to function returning ...” anyway.

203

THINK's LightspeedC

7.3 Muitiplicative operators

In a division or remainder operation, an unsigned division is performed if the result is to be
an unsigned integer of any size. In a signed division, a non-zero remainder has the sign of
the dividend.

7.4 Additive operators
The operands must not have type “pointer to void”. For example:

void *generic_pointer; /*This is legal*/
generic_pointer ++; /*This is illegal*/

The difference of two pointers has type long int.

7.5 Shift operators

The usual arithmetic conversions are performed on the left operand alone, as though a unary
operator were being applied. An arithmetic right shift is performed if the left operand is
signed.

7.6 Relational operators
A pointer may only be compared to a pointer of the same type or a pointer to void.

7.7 Equality operators

A pointer may only be compared to a pointer of the same type, a pointer to void, ora
constant zero.

Whenever a value is tested to see if it is non-zero, as in the conditional operator and in the
if, while, do, and for statements, the test is equivalent to (expression) != 0. All
conversions and type restrictions apply accordingly.

7.13 Conditional operator

In addition to the possibilities given in K&R, one of the second and third operands may be a
pointer and the other a pointer to void; the type of the result is the non-anonymous pointer

type.

7.14 Assignment operators

Values of struct and union type may be assigned; the left and right side must be of the
same type. This applies only to simple assignment.

A pointer may be assigned the value of a pointer of the same type, a pointer to void, or a
constant zero. A pointer to void may be assigned the value of a pointer of any type, or a
constant zero. Anything else is a compiler error. Use casts to bypass these typing rules.

204

Language Reference 16

8.1 Storage class specifiers

THINK C implements the additional storage class pascal. An identifier declared pascal
must have type “function returning ...”. A pascal function is called using Pascal calling
conventions; see §7.1. If the pascal keyword appears in a function definition, the function
will expect to be called using Pascal calling conventions. The pascal keyword may appear
in conjunction with extern and static.

A variable of any integral type may be declared register; it will be placed in a data register
(if possible). A variable of any pointer type may be declared register; it will be placed in
an address register (if possible). As many as five data registers (D3-D7) and three address
registers (A2-A4) may be active at once; registers allocated to register variables become
available again at the end of the block in which they are assigned. Excess register
declarations are ignored. (When the project type is desk accessory, device driver, or code
resource, register A4 is not available for register variables.)

If the 68881 option is on, five floating point variables may be delcared register (FP3-
FP7).

8.2 Type specifiers

Additional type specifiers are enumeration specifiers and void. The unsigned modifier
may be applied to char and int (even in the presence of short or long). Finally,
short double refers to the SANE double-precision floating-point type (long float is
accepted as equivalent to double).

Enumeration specifiers have the following syntax:

enumeration-specifier:

enum identifier

enum identiﬁerop, { enum-list }
enum-list:

enum-item

enum-item , enum-list
enum-item:

identifier

identifier = constant-expression

The tag identifier works just as with structs and unions to identify the enumeration type.

Each identifier appearing in the enum-list is defined as an enumeration constant whose type
is the enumeration type. If not explicitly specified by “= constant-expression”, the value of the
constant is one greater than that of the constant preceding it in the enum-Iist, or 0 if it is the
first one. Constant expressions appearing in enum declarations must have integral type.

205

THINK's LightspeedC

An enumeration type is not really a distinct type, but equivalent to int, or to char if all of its
declared constants have values in the range —128 to 127.

8.4 Meaning of declarators

According to K&R, “functions may not return arrays, structures, unions or functions, although
they can return pointers to such things.” In THINK C, functions may return structures and
unions.

Caution: If a function returns a st ruct or union, make sure that declaration of the function
is present whenever the function is used, even ifthe return value is ignored. Otherwise, the
consequences may be dire. (See Chapter 12 for details.)

8.5 Structure and unlon declarations

Members of all types other than char, unsigned char, and singly and multiply di-
mensioned arrays of char orunsigned char are aligned on even addressing boundaries.
Similarly, st ructs and unions are padded to an even size.

It is legal to specify an array without size as the last member in a st ruct. The array does not
contribute to the size of the structure. For example:

struct {
unsigned int count;
char data(l}l;
} CountData; /* size of CountData is 2 */

Bitfields (or fields, as they are called in K&R) may be declared to be of any integral type. The
size of the declared type determines the word size for that bitfield; thus a word may be 8, 16,
or 32 bits in length. Keep this definition of “word” in mind throughout the following
discussion.

A sequence of bitfields with the same word size are packed into a word, but a bitfield is
placed in the next word if it would otherwise straddle a word boundary. No bitfield may be
wider than a word. Fields are assigned beginning with the high-order bit of a word. An
unnamed field with a width of 0 “closes out” the current word. A bitfield with a different
word size from the preceding bitfield causes this to happen automatically (just as a non-
bitfield member does).

The high-order bit of a bitfield is not treated as a sign bit, even if the declared type of the
bitfield is signed. Think of it this way: the “real” type of the bitfield is “unsigned # bits”,
which gets converted to the declared type whenever the bitfield appears in an expression.

Language Reference 16

Names of members need only be distinct from each other within a single st ruct or union
declaration. Each such declaration introduces a unique name space for its members; see
§11.1.

8.6 Initialization
Unions may be initialized; the initialization applies to the first member of the union.
Structures containing bitfields may be initialized.

9.7 Switch statement

The switch expression and case constants may be of any integral type, after the usual
arithmetic conversions are applied.

9.10 Return statement
A function declared “function returning void” may not return a value.

10.1 External function definitions
The pascal specifier is allowed in addition to extern or static; see §8.1.

Formal parameters declared £1oat or short double have their declaration adjusted to
read double. Formal parameters may have st ruct or union type.

11.1 Lexical scope

THINK C follows K&R in giving file scope to identifiers declared ext ern, whether explicitly
or implicitly. (Many C implementations treat extern variables as local to a procedure.)

There are several distinct name spaces. Names in the same space must not conflict with each
other, but may be the same as names in other spaces. For example, the same identifier may
be used without conflict for a statement label and an enumeration constant. However, macro
substitution is performed by the preprocessor without regard for name spaces.

Statement labels form a name space.

struct, union, and enum tags form a name space.

Each struct or union defines 2 unique name space for its members.

Variables, functions, typedef names, and enumeration constants form a name space.

11.2 Scope of externals

A function which is declared static when its definition is given is not exported to other
files, even if it was previously declared extern (explicitly or implicitly). This allows forward
references to private functions.

207

THINK's LightspeedC

12. Compiller control lines

Preprocessor lines may begin with any number of spaces or tabs (but 7ot comments). Lines
containing only a # (preceded by any number of spaces or tabs) are ignored.

12.3 Conditional compilation

An identfier may optionally appear following #else or #endif. This identifier must match
the corresponding #ifdef or #ifndef.

The command #elif is allowed; it is like #else followed by #if, but no additional
matching #endi £ is required.

Identifiers appearing in an #1if (or #elif) expression evaluate to O if they are not macro
names.

12.4 Line control
The #1ine command is accepted but ignored in the THINK C environment.

13. Implicit declarations

An undeclared identifier appearing in a function-call context is implicitly declared to be of
type “function returning int”, unlessit is recognized as the name of a Macintosh Toolbox or
OS call; see §7.1.

14.1 Structures and unions
Structures and unions can be assigned, passed as parameters, and returned from functions.

The identifier in a . or => expression must be that of a member of the appropriate st ruct
orunion.

14.4 Explicit pointer conversions

| Along int (orunsigned long int) is required to hold a pointer without loss of
information. Pointers are byte addresses. chars (and unsigned chars) have no alignment
requirements; everything else must have an even address.

15. Constant expressions

The ! operator may be used in constant expressions; its omission is clearly just an oversight
on the part of K&R.

16. Portablility considerations

In addition to the portability considerations specified in K&R, the use of the pascal type, of
Pascal string conventions, or of the type short double will result in code that is not
portable to most other C environments.

17. Anachronisms
Obsolete constructions are not supported.

Language Reference

18. Syntax Summary
The constructions described in the next two sections have been added to THINK C.

18.2 Declarations
pascal is an additional sc-specifier.

void and enumeration-specifier are additional type-specifiers.
enumeration-specifier:

enum identifier
enum identifierop; { enum-list)

enum-list:
enum-item
enum-stem , enum-list

enum-item:
identifier
identifier = constant-expression

18.5 Preprocessor
#else tdentifieryp,

#endif fdentifieryp,

#elif constant-expression

16

209

THINK’s
LightspeedC

PART FIVE

Appendices

A The Profiler

B Troubleshooting
C Error Messages

D RMaker Reference

The Profiler
A

Introduction

This chapter shows you how to use the THINK C code profiler. The profiler is a tool that
records how much time your functions take to execute. The profiler uses the stdio library.
The profiler source code is part of your THINK C package, so you can modify to suit your
task.

Topics covered in this chapter:

* Using the profiler
* Modifying the profiler

Using the Profiler

To use the profiler, check the Profile checkbox in the Code Generation section of the
Options... dialog. When this option is on, THINK C inserts calls to profile routines at the
beginning and end of your functions.

Note: The Profiler always generates a stack frame, even for functions with
no parameters and no local storage.

Your project must contain the profile library as well as the stdio library. The profiler
logs the amount of time spent in each function, and prints the results to stdout on exit. The
display reports on:

* minimum time Spent in routine

e maximum time spent in routine

e average time spent in routine

e percentage of profiling period spent in the routine
(The profiling period is the accumulated time spent in routines that were compiled |
with the profile option on.) ’

e number of times the routine was called

The profiler uses the units of the VIA 1 timer. Each unit is 1.2766 psec. You can change the
units to ticks (60ths of a second) by editing the profiler code. See “Modifying the Profiler”
below.

213

THINK's LightspeedC

214

Turning the profiler on and off

The profiler prints its report to stdout when your program exits. (It uses the onexit ()
function.) To see the statistics any time before your program ends, just call the function
DumpProfile ().

You can control whether the profiler is accumulating time statistics by setting the value of the

_profile variable. If this variable is non-zero, the profiler stops recording time information.

The profiler can print an indented call-tree of your functions calls as your program runs. Set
the _trace variable to non-zero to have the profiler print every time a function is entered.

Modifying the Profiler

You can modify the profiler code to change its behavior. The profiler sources are in the
Profiler folder of the Library Sources folder in disk THINK C 2. The profiler con-
sists of two files: profilehooks.c and profile.c.The profilehooks. c file contains

the two assembly language routines that are called at the beginning and end of each function.

These routines call the higher level profiler routines in profile.c which do the statistics
collection.

The symbol VIATIMER in profile. c controls whether to use the VIA timer or the tick
counter. This symbol is initially defined.

If the symbol SINGLE is defined the accumulated times of all routines called by a given
routine are not incorporated into the time of the routine. This way you can get an idea of
how much time is spent in individual routines. If you'd like to see accumulated times,
undefine SINGLE.

Note: When you rebuild the profile library, make sure that the Profile
option is not selected. Otherwise you will be in an infinite loop at run time.

Summary

DumpProfile () (profiler.c) Write the statistics collected so far to stdout. You
can call this function any time to print the current statistics. It is
called automatically on exit.

_profile () (profilehooks.c) Assembly language routine called at the
beginning of each function when the Profile option is on. When
this routine is called, the stack contains the address of a Pascal
string that is the name of the function. _profile_ () changes the
return address of the routine to be _profile exit ().

profile() (profile.c) C function that collects timing statistics.

|

The Profiler A

_profile exit() (profilehooks.c) Assembly language routine called at the end
of a function. Code to execute this routine is not generated, instead,
_profile () munges the stack so the original routine “returns” to
this one.

profile exit() (profile.c)C function that computes timing statistics.
_profile (profile.c) Variable, if non-zero, enables profiling.

_trace (profile. c) Variable, if non-zero, enables call tree generation.

215

Troubleshooting
B

Introduction

This chapter contains a list of frequently encountered problems, and a set of tips and
suggestions about avoiding errors and improving code.

Toplcs covered In this chapter
¢ Getting help
e Some common problems

Getting Help

If you run into a problem, look in this chapter to see if it’s covered here. If it's not, look in the
section of the manual that deals with the part of the THINK C environment that’s giving you
trouble. If you can't find the answer to your questions in the manual, you can call THINK
Customer Support at (617) 275-1710 from 9am to Spm Eastern Time.

Some Common Problems

You might run into some common problems when you use THINK C. Most of these
problems are easy to correct.

Undefined symbols

Undefined symbol errors show up in the Link Errors window when THINK C can't link your [
project during a Run, Build..., Bring Up To Date, or Make... command. Typically, you'll
see a message like undefined: printf.

* You have not added a necessary library. If the missing symbol is a Macintosh Toolbox
function, you probably forgot to add the MacTraps library to your project. The
MacTraps library must be in nearly all projects, since it contains the QuickDraw globals
and glue code that accesses the register-based Macintosh Toolbox functions, as well as
the [Not in ROM] routines.

¢ If you're using any C library routines, you may have forgotten to add the library that
contains that routine. Check the documentation for the routine in the Standard C
Libraries Reference. The name of the library you need is given with the description of
each routine. Use the Add... command to add the library to your project.

217

THINK's LightspeedC

218

* You may have made a spelling or capitalization error. C is a case-sensitive language,
which means that print £ is not the same as Print £. Check to see that the undefined
function name is spelled and capitalized correctly.

¢ You have redefined a Macintosh or C library function as “extern”. For example:

extern void SetRect ()

Such re-definitions are unnecessary, since Toolbox function definitions are already built
into THINK C. If one appears, the linker will try to resolve the reference with a user-
defined function. This is fine if what you want to do is replace a standard function, but
will cause a linker error if no replacement function is provided. (If you want to supply
return type or prototype information for Toolbox calls, see Chapter 10.)

Code segment too large
If the Link Error window reports Code segment too big, one or more of your segments
contains more than 32K of object code.

¢ Move files out of the too-big segment until it contains less than 32K of code. See the
“Segmentation” section of Chapter 7 to learn how to move files between segments. Use
the Get Info... command in the Source menu to see how large your segments are.

Data segment too big

Stack frame too big

The static and global data area of THINK C applications is limited to 32K total per project.
The limits for desk accessories, device drivers, and code resources are different. See Chapter
7 for details.

Can't find an #include fiie

When THINK C reports that it can’t find an #include file, the file is probably not in the right
tree. Your project’s #include files should be in your project tree, and standard #include files
should be in the THINK C Tree. To learn about the two trees, see Chapter 9.

Odd address error (System error ID=02)

An odd address error usually means that your program is accessing memory on the heap
incorrectly. These errors can usually be traced to a few common causes.

* You may have referenced a null handle or pointer. If your program uses a resource file

Troubleshooting B

If you want to be able to access global or local memory larger than the 32K limit, allocate
the memory dynamically as a pointer or handle. Because the C language blurs the
distinction between arrays and pointers, you can then use the pointer with an array
notation to access elements in dynamic memory. (Refer to a good C language manual,
such as Kernighan and Ritchie’s The C Programming Language for more details.) For
example:

#define SIZE 100000
#define SIZE2D 100

int BigBadArray[SIZE]; /* a too big array */
int *LooksLikeAnArray;

int BigBad2DimArray[SIZE2D] [SIZE]; /*too big 2D array*/
int *LooksLikeA2DArray[SIZE2D]; /*array of pointers*/

proc ()
{

register long i;

/* allocate ™"array"*/
LooksLikeAnArray = (int *)NewPtr(sizeof (int)*SIZE);

/* You can index it like an array */
LooksLikeAnArray[60000] = 5;

/* allocate 2D "array"*/
for (1 = 0; i < SIZE2D; i++)
LooksLikeA2DArray[i] = (int *)NewPtr(sizeof (int)*SIZE);

/* You can index this like an array, too */

LooksLikeA2DArray[10][20] = 7;
}

that is not found, a GetResource () (or GetNewMenu (), GetNewWindow (), etc.)

219

THINK's LightspeedC

220

call will return a null handle. Make sure that if you use a resource file, it’s in the same
folder as your project file, and that it is named projectname. rsrc. (See Chapter 7.)

You may not have enough memory for a NewHandle or NewPtr call, resulting in a null
return value. Be sure you check the results of every memory allocation.

You may have not initialized a pointer variable.

You may have a Toolbox routine with bad or inappropriate data. For example, you are
likely to crash if you call DisposHandle () with a handle to a resource. Use
ReleaseResource () instead.

Printf and scanf not working
It might seem that the standard C functions print £ () and scanf () don't work correctly.

A common misconception about printf () isthat printf () “knows” about its
arguments. If you pass a long expression to print£ (), you must specify in the format
string that you want a long expression to be printed. Example:

int anInt;
long along;
printf ("long is %1d, int is %d\n", along, anInt);

In scanf, the same goes for floats and doubles:

float aFloat;

double aDouble;

printf ("Input a double and a float:");
scanf ("%$1f %f", &aDouble, &aFloat);

Link error: printf undefined

Many novice users (and not-so-novice users!) get confused about the difference between
“header” files and “library” files. Header files (which conventionally have names which end in
. h) contain source statements: definitions and declarations which allow the compiler to
make sense of source code calls to a library function. Libraries contain the actual object code
for the functions themselves, which the linker references in building the project. Including a
header file is for the compiler only; it tells the linker nothing. #include-ing a library in a
source file is an error. -

Error Messages
C

8-bit reference to ‘symbol’ out of range

(Assembly) You've used a symbol that’s out of range for an assembly language instruction
that expects an 8-bit operand. Example:

asm {

bra.s Qfoo
- /* over 127 bytes */
foo:

‘&’ (address-of) operator lllegal here

The address-of operator was used on an object (such as a register variable or a bitfield) that
doesn't have an address. Example:

function()
{
register int i;
int *p = &i; /* Illegal - i is a register */

}

‘symbor has not been declared
The identifier symbol has been used before it has been declared.

‘symbor Is not a formal parameter

The symbol was declared as if it was a formal parameter in a function definition, but it is not
in the parameter list. Example:

function()

int left_out of parameter list; /* Illegal */
{

}

221

THINK's LightspeedC

‘filename’ Is not a text file

A file name in an #include statement refers to an existing file that is not a text file. You'll also
see the message when you Option double-click on a symbol to find its definition, and the
symbol is defined in a library. Example:

#include <stdio> /* stdio.h is the #include file */
/* stdio is the library */

“array of functions” Is not allowed

An array of functions is not allowed. However an array of pointers to functions is allowed.
Example:

int array of functions[](); /* Illegal */
int (*array of ptrs to functions[SIZE]) (); /* Legal */

“array of vold” is not allowed

Since void objects are not allowed, arrays of void objects are not allowed either. However,
it is legal to have an array of pointers to void. This is a C idiom for an array of generic
pointers. Example:

void abyss[SIZE]; /* Illegal */
void *generic ptr array[SIZE]; /* Legal */

bad operand

(Assembly) An assembly language operand has an instruction that is not legal in assembly
language. Example:

asm {
move d0, x->field /* use OFFSET() macro, instead */
}

222

Error Messages C

break outside of loop or switch
The break statement must be inside a loop (while, do-while, for) ora switch.
Example:

function ()
{
int i;
break; /* Illegal */
while (1)
break; /* Legal */
do { break; } /* Legal */
while (1)
switch (i) {
case 1:
break; /* Legal */

}
}

call of ‘symbol’ does not match prototype
The prototype given for symbol and the call for function symbol don’t match. Example:

extern function(int, char); /* the prototype */

another function ()
{

function (23, "skidoo"™):; /* types don’t match */
}

call of non-function
An expression in the function call position does not evaluate to a function. Example:

function (f_ptr)
int (*f ptr) (); /* £ ptr is a pointer to a function */
{
int i, Jj, k, result:;
/* probably left out an operator between i and (j+k) */
result = 1i(j+k); /* Illegal */
result = f ptr(i, 3J): /* Illegal */
result = (*f ptr)(i,j); /* Legal */

223

THINK's LightspeedC

cannot Initlalize auto struct/union/array
Only global or static structures/unions/arrays may be declared with initializers. Example:

int array[6] = { 0,1,2,3,4,5 }; /* Legal */
function{()
{
int arrayl[6] = { 0,1,2,3,4,5 }; /* Illegal - auto array */
static struct{
double pi;
} pi = { 3.14159 }; /* Legal - because of static */

}

can't do that with muiti-segment project

| What you’re trying to do is not legal when the project contains more than one segment.
You'll see this message when you use the Build Library... or Build Code Resource...
command on a multi-segment project, when you use a multi-segment project as a library, or
when you use the Build Device Driver... or Build Desk Accessory... command on a
project when the Multi-Segment option is not on.

can't load STRS in this project

You can’t load a library or project built with the Separate STRS option on into a project whose
Separate STRS option is off. You can rebuild the library with the Separate STRS off, or you can
turn the option on in the project that’s using the library.

can't open #include'd file

The file to be #include’ d cannot be opened. Its name may be misspelled, it may not exist,
or it may be in the wrong tree (see Chapter 9).

can't precomplie code or data
You tried to Precompile a file that contained a function or variable definition. Only
declarations are allowed in precompiled headers.

case not In switch
The case keyword was found outside of a switch block.

| code overflow
This message means that you have more than 32K of code or data in one file. Break your file
up into smaller files.

224

Error Messages C

constant required
A constant was required, but none was found. Example:

#define aConstant 12

function ()

{
int h;
int x[2]; /* Legal - array dimension is a constant */
int y[h]; /* Illegal - h is not a constant */

enum{
color = h, /* Illegal - enum values must be constant */
shape = -2.4, /* Illegal - enum values must be int */

size = aConstant /* Legal */
} attributes;
struct {
unsigned illegal_bitfield : h; /* Illegal */
unsigned legal bitfield : size; /* Legal */
}bits;
int z[size]; /* Legal - array dimension is a constant */
int w[3.14159]; /* Illegal - constant must be an int */
}

code segment too big
See link failed.

constant too large

The absolute value of decimal integer constants must be less than or equal to 2147483647
(231-1) . Hexadecimal integer constants must range from 0x0 to Oxf£££££££ inclusive. If
you want to express an unsigned number larger than 2147483647, you must express il as a
hexadecimal number. Example:

unsigned long a = 2147483648; /* Illegal */
unsigned long b 0x80000000; /* Legal - equals 2147483648 */
unsigned long ¢ 0x100000000; /* Illegal - larger than 32 bits */

225

THINK's LightspeedC

continue outside of loop
The continue statement must be inside a loop (while, do-while, for). Example:

function ()
{
int i;
continue; /* Illegal */
while (1)
continue; /* Legal */
do { continue; } /* Legal */
while (1) ;
switch (i) {
case 1:
continue; /* Illegal */
}
}

data segment too blg
See link failed.

debug table overflow

You've exceeded the size limits for debugging information tables. You can usually fix this by
using a precompiled header. If you’re not using MacHeaders, consider using it. If you don’t
want to use MacHeaders, make a precompiled header of the header files you are using. See
Chapter 10 to learn how to make precompiled headers.

declarator too complex

The declaration statement is too complex. Example:

int **************************X[1] [1| [l] [1] [1" [l] [l] [1J [l] [l] [1] [1]

default not in switch
The default keyword was found outside of a switch block.

duplicate case

A case constant expression evaluates to the same value as a previous case constant
expression within the same switch block.

duplicate default
There may only be one default specified in a switch block.

226

Error Messages C

expression too complex
An expression was too complex. Try breaking up the expression into subexpressions.
Example:

typedef int ***kkkkkkkkkkkkkkkkkkkkkk*xxx*x* jindirect type;

function (meta_ptr)
indirect type ******************************meta_ptr; |
{
int i; |
indirect_ type intermediary;

/* The following expression is too complex */
i = AAAAA A A A A A A A A A A A A A A A A A A AK A hhhk

AAAA A A A A KA A A A AR A A AR A A A Ak A Ak hhk meta_ptr;

/* The equivalent broken up into two subexpressions */
intermediary = ******************************meta_ptr;
1 = XXKXKXKKKKKKAAkk kXXX XXX Xkk*k*** jntermediary;

}

floating-point expression too complex

The compiler has used up all of its 68881 floating point registers. Break up the floating point
expression or use fewer floating point register variables.

formal parameter ‘symbol’ appears more than once

The formal parameter symbol was used in the function parameter list more than once. |
Example:

function(again, again, again) /* Illegal */
int again;

{

}

function definition does not match prototype

The data types in a prototype defined for a function don’t match the types in the definition of
the function. Example:

extern function(char); /* the prototype */

function(c)

int c¢; /* type doesn’t match prototype */
{ r
}

227

THINK's LightspeedC

228

"function returning array” Is not allowed

A function cannot return an array. However a function can return a pointer that is the address
of an array. Example:

char function_returning array() [SIZE]; /* Illegal */
char *function_returning ptr to array(); /* Legal */

"function returning function"” is not allowed

A function cannot return a function. However a function can return a pointer to a function.
Example:

int function_returning_function() () ; /* Illegal */
typedef int (* function_ptr) ();
function ptr f_returning ptr_to_£f(); /* Legal */

Identifier does not match #ifdef

The #endif and #else macro preprocessor statements take an optional argument which is
the symbol that the matching #ifdef or #ifndef (but not #if or #elif) used. If the
optional argument is present, it must match the corresponding #ifdef or #ifndef.
Example:

#ifdef macro_name

#else Other name /* Illegal - identifier does not match */
#endif Other name /* Illegal - identifier does not match */
#ifdef macro_name

#endif macro _name /* Legal */

illegal #else
Every #else or #elif must have a matching #if, #ifdef, or #ifndef. Example:

#ifdef name

#else

#else /* Illegal - has no matching #ifdef */
#endif name

#elif condition /* Illegal - has no matching #if */

lllegal #endlf
An #endif was encountered that didn't have a matching #if, #ifdef, or #ifndef.

Error Messages Cc

lllegal array bounds

Examples:

int a[-7]: /* Illegal - bounds can't be negative */

int b[0]; /* Illegal - bounds can't be zero */

char c[32768]; /* Illegal - total array size > 32767 bytes */
int d[16384]; /* Illegal - total array size > 32767 bytes */
long e[8192]; /* Illegal - total array size > 32767 bytes */
lilegal cast

Itis illegal to cast st ructs/unions to other types. It is legal to cast numerical
values/pointers to other numerical values/pointers. Example:

typedef struct {int v, h;} Point;
function ()
{
Point p;
long 1;
p = (Point) 1; /* Illegal */
p = *(Point *) &1 /* Legal */
}

lllegal floating-point operation
You cannot use some of the C operators on floating point values. Example:

function ()

{

double dl;
double d2;
double d3;
d3 = dl % d2; /* Illegal - can't do floating modulo */
d3 = dl1 << 3; /* Illegal - can't do floating shifts */
d3 = 3 << d1; /* Illegal - can't do floating shifts */

}

lllegal function prototype
Only types and optional identifiers are allowed in prototypes. Example:

extern char *badProto(int, char, cem[8]); /* Illegal */
extern int naughtyProto(int p, char fn()); /* Illegal */

229

THINK's LightspeedC

function ()

| {

char all[4];
char a2[4];
char a3[4];

int i;

if (al == a2)
al++;

al = 0;

al = a2;

i =al - a2;

}

function ()
{
int £f1();
int £2();
int £3();
int i;

if (f1 == £2) /*

£fl1++; /*
f1 = 0; /*
f1 = £2; /*

230

llilegal operation on array
You cannot use many of the C operators on arrays. Example:

/*
/*
/*
/-k
/-k

Legal - compares arrays' addresses */
Illegal - can't increment arrays */
Illegal - can't assign to an array */
Illegal - can't assign arrays */

Legal - subtracts arrays' addresses */

lllegal operation on function
You cannot use many of the C operators on functions. Example:

Legal - compares functions' addresses */
Illegal - can't increment functions */
Illegal - can't assign to a function */
Illegal - can't assign functions */

Error Messages Cc

illegal operation on struct/union
You cannot use many of the C operators on st ructs/unions. Example:

int function()

struct {
int x;
}sl, s2, s3;
int i;
if (sl == s2) /* Illegal - can't compare structs */
sl++; /* Illegal - can't increment structs */
sl = 0; /* Illegal - can't assign int to a struct */
sl = s82; /* Legal - struct assignment is allowed */

83 = sl + s2; /* Illegal - can't add structs */

i =81 - s2; /* Illegal - can't add structs */

i = (long)sl; /* Illegal - can't cast a struct */
return(sl); /* Illegal - return does an implicit cast */

}

illegal operator
(Debugger only) You've entered an expression with an operator that has a potential side
effect: a function call, ++. or --.

illegal pointer/integer combination

Integers may not be assigned to pointers with the exception of the constant zero. In addition,
pointers may not be compared with integers, again with the exception of the constant zero.
In both cases a cast can be used to force the assignment or comparison where necessary.
Example:

function ()

{
int *int ptr;

int i;

int_ptr = 0x220; /* Illegal */

int ptr = 0; /* Legal */

int ptr = (int *) 0x220; /* Legal - address of MemErr */
i = * 0x220; /* Illegal */

i = * (int *) 0x220; /* Legal - contents of MemErr */
return{int ptr); /* Illegal - implicit cast */

231

THINK'’s LightspeedC

illegal pointer arithmetic
The arithmetic being performed on the pointer is illegal. Example:

function ()
{
char *pl, *p2;
long result;
result = pl + p2; /* Illegal - can't add pointers */
result = pl / p2; /* Illegal - can't divide pointers */
}

illegal return type for pascal function
Pascal functions are only allowed to return void, integers, and pointers. Example:

typedef struct {int v, h;} Point;

pascal Point /* Illegal - can't return a Point */
pascal_ function(x,y)

{

Point p;
p.v = X;
p.-h = y;

return p;
}
pascal double illegal pascal fnc():; /* Illegal return type */
pascal void pascal proc(); /* Legal */

illegal size for bitfield

Bitfield sizes must be less than or equal to the number of bits in the word type. (See Chapter
16, § 8.5.) Labelled bitfield sizes must be greater than zero. Unlabelled bitfield sizes equal to
0 force a word alignment. Example:

struct bitfields({

char ¢ : 9; /* Illegal - chars have 8 or fewer bits */
int 1 : 17; /* Illegal - ints have 16 or fewer bits */
int zero : 0; /* Illegal - bitfield size must be > 0 */
int good : 11; /* Legal */

int : 0; /* Legal - this forces word alignment */
long 1 : 33; /* Illegal - longs have <= 32 bits */

int z : -4; /* Illegal - bitfield size must be > 0 */

232

Error Messages Cc

illegal slze for this operation

(Assembly) The size specifier for an assembly language instruction is the wrong size for what
you're trying to do. Example:

asm {
move.b a0,al /* can’t move bytes to address registers */

}

lllegal token

Certain characters that are part of the ASCII character set and all of the characters in the
extended Macintosh character set are illegal tokens in THINK C. The character # is also an
illegal token when it is other than the first character in a line preceded by any number of
whitespace characters. However, any character can occur within comments, string literals or
character literals. Example:

int a$variable; /* Illegal */
char ¢ = '$*; /* Legal to have $ here */
#define N ki /* Legal to have # here */

char d = #define M 4; /* Illegal */

lllegal type for bltfield

The only allowed types for a bitfield are char, short, int, and 1ong, and these types
prefixed by the modifier unsigned. Any other type for a bitfield is illegal. Example:

struct bitfields{

char ¢ : 5; /* Legal */
unsigned int i : 5; /* Legal */
long 1 : 17; /* Legal */
double d : 10; /* Illegal */
void *p : 8; /* Illegal */

233

THINK's LightspeedC

illegal use of inline Macintosh function

Even though the inline Toolbox Trap calls look like function calls, they are not. Hence, it is
illegal to take the address of an inline Toolbox Trap call. Another possible source of error is
forgetting to put in the parameter parentheses in a built-in call that takes no arguments.
Example:

function ()

{
void *generic_pointer = FrameRect; /* Illegal */
/* what a forgetful Pascal programmer might write */
while (Button) /* Illegal - () missing */

while (Button()) /* Legal */

}

lllegal use of type name ‘symbol’
A typedef name has appeared where it shouldn't. If 2 typedef name is used instead of a
variable name, then an error occurs. Example:

typedef char Byte;
function()

{
return Byte; /* Illegal */

}

illegal use of void
You cannot use most of the C operators on void values. Example:

void f()
{
int i, j;
i = (void)j + 5; /* Illegal - can't add a void */
i=f£() - 3; /* Illegal - f() returns void */
)

immediate operand out of range
(Assembly) Some assembly language instructions must be a certain size. Example:

asm
addqg #10, do /* immediate limit is 1-8 */
}

234

Error Messages Cc

Incomplete macro call

A preprocessor command was found while reading macro parameters during macro
expansion. Preprocessor commands are not allowed in this situation. Example:

#define macro(argl, arg2) (argl > arg2)
macro (x,

#ifdef AndIfYouCallNow /* Illegal */
1

#else

2

#endif

)

initialized object too complex
Initialization of a deeply nested st ruct will cause this error. Example:

struct sl{
struct s2{

struct s21{
int 1i;
}..}}s = {4}; /* Too deeply nested */

initialization to an address Is iliegal in a non-application

If the THINK C project is a code resource, desk accessory, or device driver, it is illegal to
initialize an address in global or static memory. Example:

static int i;
static int *p = &i; /* Illegal in non-application */

invalid declaration
Example:

/* Illegal - only a defining instance can be initialized */
extern int x = 1;

extern int y;

int y = 1; /* Legal */

235

THINK's LightspeedC

236

invalid function definition
Example:

/* Illegal - function definition can't be declared extern */
extern f1l()
{

}
£2() = 2; /* Illegal */

invalid redeclaration of ‘symbol’

An identifier was declared twice and this redeclaration is incompatible with the first.
Example:

extern int x;

long x; /* Illegal - x is redeclared differently */

extern int y;

int y: /* Legal - y is redeclared as the same type */

int z;

int z; /* Illegal - can only have one defining instance */
typedef int IsARose;

IsARose IsARose; /* Illegal */

Invalld register list
(Assembly) The register list contains duplicates, or the list is in the wrong order. Example:

asm {
movem al0/a0,-(sp)
movem d7-d1,-(sp)
}

Invalid storage class
Incompatible attributes have been explicitly or implicitly applied to a data item. Example:

register int aGlobal; /* Illegal - register global */

extern auto int y; /* Illegal - contradictory storage class */
main ()

{

}

Invalid type

The specified combination of type keywords create an ambiguous or impossible data item.
Example:

Error Messages c

unsigned double d; /* Illegal */
long struct {int i;} s; /* Illegal */

jump table too big
See link failed.

label ‘symbol’ already defined
The label symbol: has been defined twice within the function.

label ‘symbol’ not defined
There was a goto to the label symbol: but none has been defined within the function.

link falled

The linker was unable to link the program. Usually the link fails due to an undefined symbol
or to a multiply defined symbol (a symbol defined more than once in a project). To find out

which files contain the offending symbols, use the Check Link command in the Project [
menu. The Link Errors window will display the names of the files in parentheses.]

¢ code segment too big — one or more of your code segments has exceeded the 32K
limit. See “Segmentation” in Chapter 7.

» data segment too big — you’ve declared more than 32K of global and static data in
your project. Use memory allocation to create large data structures.

e jump table too big — you’ve exceeded the 32K jump table limit

e multiply defined: ‘symbol’ — ‘symbol’ was defined more than once

* resource too big — for drivers, DRVR + DATA resource is > 32K; for multisegment
drivers, DATA + JUMP > 32K; for code resources, CODE + DATA + JUMP > 32K

¢ undefined: ‘symbol’ — there was a reference to ‘symbol’ that was never defined

237

THINK's LightspeedC

Ivalue required

An lvalue is an expression that refers to an object in memory that can be stored to, as well as
examined. See Harbison & Steele or K&R for more details. Example:

int int £();
int *pint £();
function()
{
int i;
int *p = &i;
/* operand of ++ must be an lvalue */

7++; /* Illegal */

int_f()++; /* Illegal */

pint_f () ++; /* Illegal */

/* left operand of an assignment must be an lvalue */
int_f£() = i; /* Illegal */

pint_£f() = i; /* Illegal */

pint f() = i; / Legal - * produces an lvalue */
(*p)++; /* Legal */

(*pint £())++; /* Legal */
}

macro name already #define'd

It is illegal to #define a macro name that has already been #define’d. However, it is
always legal to #undef a macro name whether or not it has been #define’ d before. If you
use a #undef before a #define, you will be sure that a subsequent #define will always
work. Example:

#define macro_name 1

#define macro_name 2 /* Illegal - already #define'd */
#undef macro_name

#define macro_name 3 /* Legal to #define AFTER an #undef */

macro parameter ‘symbol’ appears more than once
The formal parameters in a macro definition must appear only once. Example:
#define macro(again,again) (again+7) /* Illegal */

memory critical - proceed at your own risk
Now would be a really good time to quit. Save your files!

missing #endif
Every #if, #1ifdef, and #1ifndef must have a matching #endif.

238

Error Messages C

missing ('

There is a missing parenthesis. if, while, do-while, switch, and for statements require
the expressions following them to be contained inside parentheses. Example:

function ()

{

int flag, value, i;

if (flag) return 1; /* Legal */

if flag return 2; /* Illegal */
while flag {..} /* Illegal */
do {..} while flag:; /* Illegal */
switch value {..} /* Illegal */

for i = 0; i < 10; i++ {..} /* Illegal */
}

missing ')
There is a missing right parenthesis. Example:

function (i)
int i;
{
if (1 > 4 /* Illegal - missing close parenthesis */
/* then clause */

}

missing "'
There is a missing colon in a conditional (? :) expression or in a case or default label
Example:

function(flag)

int flag;

{
int i;
i = flag ? 3 4; /* Illegal - Missing colon */
switch (i) {

case 3 /* Illegal - Missing colon */
return i+5;
default /* Illegal - Missing colon */

return i+6;

}

239

THINK's LightspeedC

missing *;'

A semicolon was expected, but one was not found. Sometimes it is not possible for THINK C
to determine that a semicolon was missing which will result in the error message syntax

| error.

missing T’
A closing bracket was expected to match an open bracket, but one was not found.

multiply defined: ‘symbol’
See link failed.

no files in project
You need at least one file in the project window for what you're trying to do.

no members defined
A struct/union was defined without members. Example:

struct memberless struct{ }; /* Illegal */
union memberless union { }; /* Illegal */

out of memory

THINK C ran out of memory. Close open windows to reclaim more memory. You might want
to check the More Memory option in the Preferences section of the Options... command in
the Edit menu.

If you get this message when you try to run the debugger, try making application’s partition
size smaller. See “Memory Condsiderations” in Chapter 11.

parameter list Is inappropriate here
A declaration involving a function must not have a parameter list, except when a function is
being defined. or in a function prototype Example:

int function(illegal parameter); /* Illegal */
int (*ptr_to_function) (illegal_parameter); /* Illegal */

240

Error Messages Cc

pascal argument wrong size

The call to a built-in Toolbox or OS function has a non-integral argument of the wrong size.
Example

function()

{

Rect r;

Point p;

FrameRect (r) ; /* Illegal - Should pass ptr to Rect */
FrameRect (&r) ; /* Legal - Correct call to FrameRect */
FrameRect (4) ; /* Legal but wrong - 4 gets cast to ptr */
SetPt (&p,10L,3); /* Legal - 10L gets cast to an int */

SetPt (p,4,5): /* Legal but wrong - sizeof(p) == sizeof (&p)*/

SetPt (&p, &p, 5); /* Illegal - ptr won't be cast to int */
SetPt (&p, p, 5); /* Illegal - struct won't be cast to int */
}

pointer required
A pointer was implied by an operator, but there is no pointer. Example:

function ()

{

int x, result;
result = *x; /* Illegal - x is not a pointer */
result = x->a member; /* Illegal - x is not a pointer */

241

THINK's LightspeedC

pointer types do not match

Incompatible pointers were used in an assignment, comparison, or subtraction. In THINK C,
pointers are more strictly typed than some other C compilers. In the case of assignment and
comparison, the two pointer types must match or be of type void *. In the case of
subtracting two pointers, the types must match and not be void *. Of course, pointers may
.l be cast to force compatiblity. Example:

function{()

{
char *char_ptr;
int *int_ptr;
void *void ptr;
int result;
long difference;

char_ptr = int_ptr; /* Illegal */
char ptr = (char *)int_ptr; /* Legal */
void ptr = int ptr; /* Legal */
int_ptr = void ptr; /* Legal */
result = (char_ptr == int_ptr); /* Illegal */
result = ((int *)char_ptr == int_ptr); /* Legal */
result = (char_ptr == (void *)int_ptr); /* Legal */
result = (void _ptr == int_ptr); /* Legal */
difference = char_ptr - int_ptr; /* Illegal */

difference = char_ptr - (char *)int_ptr; /* Illegal */
}

prototype required for ‘symbol’

When the Require Prototypes option in the Compiler Flags section of the Options... dialog is
checked, you must provide a function prototype for each of your functions.

recursive #include or preprocessor overflow

The most likely cause of this error is that an # include file has #included itself directly or
indirectly. Another possibility is deeply nested #1ifdefs or macro invocations. Example:

#define name_ 1 0
#define name 2 name_1

#define name_54 name_53

int i = name_54;

/* Deeply nested macro overflows preprocessor */
#ifdef name_ 1

#ifdef name 2

#ifdef name 54
/* Deeply nested #ifdef overflows preprocessor */

242

Error Messages C

redefinition of exlsting struct/union/enum

A struct/union/enum with the same tag was declared twice. Only one defining instance is
allowed. struct, union, and enumtags share the same name space. Example:

struct Rumpelstiltskin({
int member;
i
/* The following are illegal only because the tag */
/* Rumpelstiltskin has been used previously */
/* Illegal */
struct Rumpelstiltskin {
int member;
}i
/* Illegal - union name conflicts with previous struct name */
union Rumpelstiltskin {
void *where prohibited;
long 1;
bi
/* Illegal - enum name conflicts with previous struct name */
enum Rumpelstiltskin {
Jakob_Ludwig Karl Grimm,
Wilhelm Karl Grimm
}i

required array bounds missing

No size was specified for an array when one was needed to determine data storage space.
The size can be explicit or implicit through the use of an initializer. Example:

extern char al[]; /* Legal - bounds not needed */
int i = sizeof(a); /* Illegal - need to know size */
function (b)

char b[]; /* Legal - bounds not needed */

{
char c(]; /* Illegal - auto array needs bounds */ ‘

}

resource too big
See link failed.

stack frame too large
The local and temporary variable stack space required by a function exceeded 32768 bytes.

243

THINK's LightspeedC

statements nested too deeply

THINK C allows nesting of at least 20 statements. else ifs do not introduce nested i f
statements and can be put together in arbitrarily long chains. Example:

/* maximum nesting is 20 */
if (condition_1) .. if (condition_20) {/* then clause */)

/* arbitrary number of else-ifs can be chained */
if (condition_1) {/* then clause 1 */}
else if (condition_2) {/* then clause 2 */}

else if (condition_many) {/* then clause many */}

struct/union too large
The declared st ruct/union exceeded 32768 bytes of data storage.

switch value must be integral
A switch expression must be of type char, int, or 1ong or an unsigned variant. Example:

char *p;

float £:

switch(p) {..} /* Illegal - switch of pointer */
switch (f) {..) /* Illegal - switch of float */

syntax error

There was a syntax error. Some common errors: too many }s, label without :, malformed
expressions.

| there are no void objects!

Declarations provide storage space for the variable declared. It is an error to have a variable
that has no storage space. It is legal to have a pointer to void; this is a C idiom for a generic
pointer. Example:

void nugatory; /* Illegal */
void *generic pointer; /* Legal */

too many formal parameters
THINK C allows you to have up to 25 formal parameters in a function definition. Example:

f(argl, arg2.., arg25, arg26) /* one too many args */
{
}

244

Error Messages C

too many Initializers

The number of initialization values exceeds the expected number of data items specified in
the declaration of the data structure. Example:

char *directions[4] =
{"north"™, “east", "south", "west", "lost™ }; /* Illegal */
struct { int a,b,c; } x[2] = {1, 2, (3, 4} }; /* Illegal */

too many macro parameters
Macros are allowed to have up to 25 arguments. Example:

#define macro(argl, arg2, .., arg26) /* one too many args */

too many segments
Applications can have no more than 254 segments. Multi-Segment desk accesories and device
drivers are limited to 31 segments.

undefined enumeration
An enumeration declaration refers to an enumeration tag that has not been defined. Example:

enum unknown colors; /* Illegal */

undefined struct/union

A struct/union must be defined before an instance of it can be declared. However, a
pointer to an undefined st ruct/union is legal since the size of the pointer is known and
the size of the undefined st ruct/union is not needed. Example:

struct not_previously defined s; /* Illegal */
struct not_previously defined *p; /* Legal */
int i = sizeof(p): /* Legal */
int j = sizeof (*p); /* Illegal */
struct link list element{
struct link list element *next; /* Legal */
struct link_ list_element recursive; /* Illegal */

}s

undefined ‘symbor
See link failed.

245

THINK's LightspeedC

unexpected end-of-file
End of file was reached before a C language construct was completed. Example:

main (
/* EOF - end of file encountered before close parenthesis */

unions may not have bitfields
unions may not have bitfields. However, they may include st ructs that have bitfields.
| Example:

union {
int i;
unsigned int bits : 5; /* Illegal */
}union_1;
typedef struct { unsigned int bits : 5; } bitfield type:
union {
int 1i;
bitfield type b; /* Legal */
}union_2;

unknown instruction

(Assembly) The inline assembler doesn't recognize the mnemonic you've provided. This
usually happens when you forget the period in an menonic. Example:

asm {
movew do,d1
}

unknown struct/union member ‘symbol’

Ina . or -> expression either the left operand was not a st ruct/union, or the right
operand was not the name of a member of the type of the left operand. Example:

function ()

{
int non_struct, *int ptr;
struct sl_struct{ int member 1; }sl, *pl;
struct s2_struct{ int member_ 2; }s2, *p2;
/* These are all illegal */
sl.non_member; /* non_member is not in sl_struct */
pl -> non_member; /* non_member is not in sl_struct */
non_struct.member 1; /* non_struct is not a struct */
int_ptr -> member 1; /* int ptr is not a struct pointer */
sl.member 2; /* member 2 is not in sl_struct */

246

Error Messages C

unterminated comment
End of file was reached before end of comment was detected.

unterminated quote
Either a character constant or a string constant is missing its end quote. Example:

function ()

{
long file_type;
/* Illegal - missing " after world */
function("hello world);

/* Illegal - missing ' after TEXT */ |

file_type = 'TEXT;
/* Legal */
file type = 'TEXT';

}

use of struct/union/enum does not match declaration

A struct/union/enumtag was used in a declaration that conflicts with the orginal
struct/union/enumtag declaration. st ruct/union/enum tags share the same name
space. Example:

struct Rumpelstiltskin {
int member;
}:
union Rumpelstiltskin anIllegalUnion; /* Illegal */
enum Rumpelstiltskin anIllegalEnum; /* Illegal */

void function must not return a value
Example:

void in_partners_suit (condition)
int condition;
{
if (condition)
return; /* Legal */
else
return(l); /* Illegal */
}

247

THINK's LightspeedC

wrong humber of arguments to ‘symbol’

A call to the built-in Macintosh Toolbox or OS function symbol was made with the wrong
number of parameters. Example:

SetPt (&aPoint, 3, 4, 8); /* one too many arguments */

wrong humber of arguments to macro ‘symbol’
A macro was called with the wrong number of arguments. Example:

#define twice (x) (x+x)
function ()
{
int i;
i = twice(3,4); /* Illegal - macro called with 2 args */
}

wrong number of operands
(Assembly) You've probably forgotten something. Example:

asm {
add.w dao
}

wrong type(s) of operand(s)
(Assembly) Some instructions require operands of a specific type. Example:

asm {
movea d1,do0 /* movea can only move. into address registers *y

}

zero-sized object
An operator was used illegally on a zero-sized object. Example:

void vacuous ()

{

int i;

void *nowhere, *erewhon;

i = sizeof(vacuous()); /* Illegal */
i = nowhere - erewhon; /* Illegal */

248

RMaker Reference
D

Introduction

Macintosh programs are designed around objects. Windows, menus, dialog boxes, and alerts
are all objects that the Macintosh uses. You can build these objects on the fly in your pro-
grams, or you can load them in from the resource fork of your application. The advantage of
storing these Macintosh objects as resources is that your program’s function (the code) is
separate from the user interface (the look).

RMaker is a resource compiler. It takes a textual specification of the objects to be used in a
program and produces the resource data structures which are understood by the Macintosh
Toolbox routines.

To learn how to use resources with THINK C projects, read the “Anatomy of a Project” sec-
tion in Chapter 7. To learn about resources read Inside Macintosh I, Chapter 5, “The Resource

Manager.”

Toplcs covered in this appendix
e Using RMaker
¢ RMaker file format
¢ Predefined resource types

Using RMaker

To create a resource file, use the THINK C editor to create the RMaker source file. Then use
the Transfer... command in the File menu to launch RMaker. RMaker displays a file
selection dialog. Choose your RMaker source file, and RMaker will produce a resource file
from it.

RMaker File Format

RMaker input is line-oriented and has a quite rigid syntax. The RMaker input file consists of
an output specification followed by an arbitrary number of resource definitions separated by
blank lines. Comments are also allowed, either as whole lines or as tags at the end of lines.
Comment lines begin with an asterisk (*) . Comments at the end of lines are preceded by two
semicolons (; ;).

249

THINK's LightspeedC

All numbers in your file are decimal, except in certain resource type declarations (see below).
To enter special characters, use a backslash followed by two hexadecimal digits. For exam-
ple, the code for the Apple (&) symbol is \14. A ++ at the end of a line tells RMaker that the
line is continued on the next line.

You can use the /QUIT directive to tell RMaker to quit after it builds your resource file. The
/NOSCROLL directive tells RMaker not to scroll your file in its source window. For example:

/QUIT
/NOSCROLL
FileName
?2?2??SAMP

* resource declarations here..

Output file specification

RMaker files begin with the output specification. The name of the output file appears on the
first line, followed by the file signature. The file signature is a four-character file type fol-
lowed by a four-character creator. To learn more about file signatures, see Inside Macintosh
III, Chapter 1, “The Finder Interface.”

For example, if you want to name the output file Sample and give it the file type 2222 and
creator SAMP, the first two lines of the RMaker input file would be:

Sample ;7 the name of the output file
?2?2??2SAMP ;; the file type 22?2 and creator SAMP

The file signature line may be left blank, in which case the file type and file creator will be set
to nulls (four bytes of 0 each). The output specification may be preceded by an arbitrary
number of blank lines or comment lines.

If the file name begins with an exclamation point (!), RMaker merges the resources into
that file instead of creating a new file. In this case, if you don’t supply a file signature, RMaker

You can use the INCLUDE filename statement to merge the resources from another re-
source file into the output file.

Resource declarations

The body of an RMaker source file consists of groups of resource declarations headed by a
resource type clause.

(Note: in the following examples, the brackets [] enclose optional data. Words in #talics de-
scribe user-supplied data.)

250

RMaker Reference D

A resource type section begins with a TYPE declaration:

TYPE resource type [= resource type] |

The = clause lets you define your own own resource types. If the optional = clause is not
present, the first resource type must be a predefined type. If the clause is present, the re-
source type named there must be a predefined type.

The resource declarations come after the TYPE declaration. They look like this:

[(name], ID [(attributes)]
type-specific resource daia r

Note that the comma separating the name from the ID must be included even if you don’t
name the resource. The attributes byte must be surrounded in parentheses. See the Inside
Macintosh I, Chapter 5, “The Resource Manager” to learn more about resource attributes.

A blank line must follow the resource definition.

Predefined Resource Types

RMaker recognizes these 12 resource types.

'ALRT' - Alert

'BNDL' - Bundle

'CNTL' - Control

'DITL' - Dialog (or Alert) Item List
'DLOG' - Dialog

'FREF' - File Reference

'"GNRL' - General

'"MENU' - Menu

'PROC' - Procedure (contains code)
'STR ' - String

'STR#' - String List

'"WIND' -~ Window

The following sections illustrate the different types of resource declarations:

251

THINK's LightspeedC

TYPE BNDL
,128

SAMP 0

ICN#

0 128 1 129

FREF

0 128 1 129

TYPE CNTL
128

MyControl

10 10 20 20

Visible

0

0

0 100 0

o “e Sy W

’
.
’

’

’
’
.
’
’
’

’

’

’
’
’
’
.
’
-
’

’
’
’

’

¢ N wo

’

'ALRT - Alert Template
TYPE ALRT
, 128 ;; the resource number
70 100 150 412 ;; rectangle for the alert (top left bottom right)
10 ;; the resource ID for the item list
FFFF ;; stages word (hex)

* always remember the blank line at the end of a resource
* definition - it is a required separator

‘BNDL’ - Bundle Template for Application

resource number

creator for bundle

resource type (icon list)

local ID 0 maps to ICN# resource 128, 1 to 129
resource type (file reference)

local to FREF mapping 0 to 128, 1 to 129

'CNTL' - Control Template

resource number

title for control

rectangle for control (top left bottom right)
may also be Invisible

CDEF proc ID

reference constant (defines control type)
minimum value, maximum value, initial value

'DITL’ - Dialog (or Alert) Item List

TYPE DITL
, 10 ;; resource number

9 ;; number of items in the item list

button ;; enabled button items (enabled by default)

20 20 40 100 ;; rectangle (window-relative coordinates)

Cancel ;; text in the button

radioButton ;; radio button item

50 20 70 120 ;; rectangle {(includes button and text)

Push Me ;; the text goes to the right of the button
' radioButton disabled ;; dimmed radio button item

50 20 70 120

252

;; rectangle (includes button and text)

Can't Push Me

checkBox
80 20 100 120
Check Me

staticText
20 120 40 320

This text would get placed

editText Disabled
50 140 90 320
initial string

editText
100 140 120 320

you can edit this text

iconItem
100 100 132 132
3

picItem
30 100 20 200
57

userItem
30 40 80 90

'DLOG’ - Dialog Template

TYPE DLOG
,128
My Dialog Box
70 100 150 412
Visible NoGoAway
0
0
10

'FREF' - File Reference

TYPE FREF
128
APPL 0

RMaker Reference D

~e o

.
’

.
’

.
’

AT TR T ~e “e

~e

~e N

~e

~e “we

~e

.
’

.
’

~e “e

~e

you can't push a disabled button ;

check box item
rectangle (includes check box and text)
the text goes to the right of the box

static text item
rect of text
next to the Cancel button ;; the text

disabled editable text item
rect of the box for editable test
initial edit text

editable text item (enabled by default)
rectangle
the initial string for editable item

for the display of an icon
rectangle should be 32x32
resource ID for icon (Type ICON)

to display of a Quickdraw picture
display rectangle (picture will be scaled)
resource ID for picture (Type PICT)

a user-defined item
the rectangle

the resource number

a message

the rectangle (top left bottom right)

or Invisible or GoAway

the dialog definition ID

the refCon, available to the user

the resource ID for the dialog item list

the resource number
the file type and local ID

253

'‘GNRL' - General

THINK's LightspeedC

'GNRL' is used to define your own resource types and define their format. The resource's
format is constructed from “elements.” The elements available are:

Pascal string

Decimal integer

o & E H b v}

TYPE ICN# = GNRL
,128

.H

0001 8000 0002 4000

0003 C000 0004 2000

FFFF FFFF FFFF FFFF

'MENU' - Menu

TYPE MENU
,10
MyMenu
First Item
Second Item /S
(Third Item
(_
Fifth Item

Decimal 32-bit integer
Hexadecimal integer

Read the given resource from the given file.
R takes the arguments filename

~e

~e Se S

~

e No N

String without a leading length byte

resource TYPE resource ID

define the type ICN#

the resource ID

hexadecimal data follows

ICN#'s need 2 icons (icon and
mask) of 32x32 bits each, or 32
lines of two longwords apiece.

the resource number (Menu ID)

the menu title

the first menu item

the second menu item with Command-S
the third item (“(” disables items)
a gray line (this is item #4)

the fifth item

'PROC’ - Procedure (contains code)

TYPE PROC
,128
Filename

'STR ' - String

TYPE STR
128
My Wild Irish Rose

~. ~,

~

~

~e

the resource number
the code from this file will get placed
in the resource

spelled 'STR ' - trailing space
the resource number
the string assigned to the resource 128

required!

RMaker Reference D

'STR#' - String List 1

TYPE STR#
(128 ;; the resource number
2 ;; the number of strings in the list
The First String
And the second string ;; the two strings in the list

'WIND' - Window

TYPE WIND
,128 ;; the resource ID
My Window ;: the window title
40 40 200 472 ;: the window rect (top left bottom right)
Visible GoAway ;7 or Invisible or NoGoAway
0 ;; the window definition ID
0 ;; refCon, a long word available to user

255

68000 147
68020 147
68020 option 122, 175
68881 147
68881 option 122, 175

APDA 6,73
AppleTalk interfaces 118
AppleTalk routines
calling 118
applications
building 71
arrays
displaying 51-54, 143
arrow keys 92
asm See: assembly language
assembly language 147
C identifiers in 148
calling Toolbox routines from 150
directives 148
labels in 149
register usage 151
Attach Condition 137, 196
auto mode 139

Background Null Events 73

Balance 93

breakpoints 44, 135, 136
conditional 136
temporary 136

bug column 130

C: A Reference Manual 5
call chain 134
callback routines
in drivers 77
writing 118
calling conventions
C 152
Pascal 154
calling Macintosh Toolbox routines 115
Check Link 237
Check Pointer Types 123. 176
Check Syntax 112
Chernicoff, Stephen 6
Clear All Breakpoints 51
Clear Breakpoint 136

Index

Close %4

Close All 95

CODE component 67 |

Code Generation 213

code generation options 121

code resources |
building 82 ‘
global data in 84
headers 87 |
locking 86 |

Code segment too large 218

Compile 111 ‘

compiler options 123

compiling 111
fixing errors 112

CompuServe 7

conditional breakpoints 136

Confirm Saves 95

Consulair 160

context 140

contexts 48, 54, 142

controlling execution 42, 137

CloPstrQ 117

CurApName 145

current function 132, 134

current statement 132, 134

current statement arrow 132

customer supportl 217

DA main.c 129

Data segment too big 218

Data window 133

debugger
breakpoints 44, 135
conditional breakpoints 136
controlling execution 42-44, 137-140
Data window 133
displaying arrays 51-54, 143
displaying structs 143
editing files 135
entering expressions 140
evaluating expressions 55, 142
expressions 142
formats 55, 141
memory considerations 145
modifying values 142
quitting 56, 145

257

THINK's LightspeedC

searching 135
Source window 132
termporary breakpoints 136
turning on 40, 130
windows 131
deselect button 48, 133
desk accessories See also: drivers
building 74
event record pointer 76
device drivers See also: drivers
building 74
disk layout diagram 11, 110
drivers 74
closing 80
global data in 76
header fields 79
multisegment See also:segmentation
opening 80
returning 80, 81

enter button 48, 133
entry field 48, 133
errors

fixing 112
event record pointer

in desk accessories 76
examining variables 48
ExitToShell 56, 145
expression column 48

file creator 66
File Manager data structures 118
file names 106
file signatures 66
file type 66
files
closing 94
creating 89
editing 92
opening 89
printing 94
saving 94
Find Again 96
Find in Next File 97
Find... 95
Fix2XO0 117
fixing errors 112
floating point arithmetic 113
fonts 93
formats 55, 141
Frac2XO 117
function prototypes 124-125

258

Get Info... 67

global scope 48, 55, 140
Go 46, 138, 193

Go Until Here 139, 194
grep 98

Harbison 5

HFS Navigator 107

How to Write Macintosh Software 6
IBM PC 126

identifiers

capitalization 112

length 112
Ignore Case option 96
In 138, 193
indenting 93
inline assembler

See: assembly language

jlODone 81

Kemighan 5, 125
Knaster, Scott 6

libraries 159
in code resources 85
in drivers 78
moving 107
LLastClickQ 118
Load Library 159
local scope 48, 55, 140
Lock 55, 142
Iow memory globals 120

MacHeaders 113
MacHeaders option 123
Macintosh Programming Secrets 6
Macintosh Revealed 6
Macintosh Toolbox routines

calling 115-120

passing arguments to 116
Macsbug 122, 144, 175
Macsbug Symbols 122, 175
MacTutor 6
mainQ

for code resources 83

for drivers 76
Make... 115
Match Words option 96
McGarry, Carol E. 36

MF Attrs 73

Monitor 144

MPW 160, 162

Multi-File Search option 97
MultiFinder 73

MultiFinder attributes 73

MultiFinder Development Package 73
MultiFinder-Aware 73

New 90

oConv 162
Open Selection 91
Open... 90
options
compiler 123
search 96
Options... 121, 123

OSType 117
Out 138, 193

Page Setup... 94

partition size 73

Pascal
callback routines 118
calling routines indirectly 119
strings 117

portability 125-128
Unix 127

precompiled headers 113
creating your own 115

Precompile... 114

Print... 94

printfQ 220

Profile option 122, 175

project tree 105

projects
as libraries 160
components of 67
resource files 69
running (applications) 73
types of 66

prototypes See: function prototypes

PtoCstrQ 117

register usage

in assembly language 151
register variables 112
RememberAQQ 85
Replace 96
Replace All 96
Replace and Find Again 96

replacing 95
with grep 101
Require Prototypes 124, 176
resources 65
RestoreASQO 118
ResType 117
Resume 74
Revert 92
Ritchie 5, 125
Run 73

Save 94
Save a Copy As... 95
Save All 95
Save As... 95
scanfQ 220
search options 96
searching 95
for patterns 98
for symbols 98
in the debugger 135
multiple files 97
non-printing characters 97
segmentation 70
selected statement 134
selecting lines 93
SERD resource 118
serial driver 118
Set Breakpoint 136
Set Context 142
Set Tabs & Font... 93
SetUpA4 77
SetUpA4.h 85
SetUpASQ 118
Shift Left 93
Shift Right 93
Show Condition 137
Show Context 142
signatures 66
Skip To Here 139, 194
smart linking 68
turning off 68
source files See: files
compiling 111
moving 107
Source window 132, 133
Stack frame too big 218
statement markers 132
status panel 132
Steele 5
Step 42, 138, 193
Step In 42, 138, 193

259

THINK's LightspeedC

Step Out 43, 138, 193
Stop 46, 139, 194
stray pointers 74
strings
converting 117
in Toolbox routines 117
Pascal 117
structs
displaying 51, 143
Suspend & Resume Events 73
system globals 120

tabs 93
temporary breakpoints 136
The C Programming Language 5, 125
THINK C Tree. 105
THINK Customer Support 217
THINK_C (preprocessor symbol) 126
TMON 122, 144, 175
Toolbox globals 120
Toolbox routines 115
in assembly language 150
special cases 117
ToolScratch 87
Trace 44, 138, 194
trap intercept routines
in drivers 77
trees 108

Undefined symbols 217
Undo 92

Unix 127
UnloadA4Seg(ProcPtr) 82
Use 2nd Screen option 131
Use Debugger 40

value column 48

Wrap Around option 96

License Agreement

License Agreement

This manual and the software described in it were developed and are copyrighted by
Symantec Corp. (Symantec) and are licensed to you on a non-exclusive, non-transferable
basis. Neither the manual nor the software may be copied in whole or in part except as
follows:

1) You may make backup copies of the software for your use provided that they bear
Symantec’s copyright notice.

2) You have the right to include object code derived from the libraries in programs that you
develop using the software and you also have the right to use, distribute and license such
programs to third parties without payment of any further license fees, so long as a copy-
right notice sufficient to protect your copyright in the software in the United States or any
other country is included in the graphic display of your software and on the labels affixed
to the media on which you software is distributed.

You may not in any event distribute any of the source files provided or licensed as part of the
software. You may use the software at any number of locations so long as there is no pos-
sibility of it being used at more than one location at a time.

Symantec’s Plaln Language License Statement

Symantec is concerned with how you copyright your software only in the case where you
use object code of libraries which Symantec provides in source form (MacTraps does not fall
into this category). These libraries may be included in your program so long as a copyright
notice that will protect your copyright in the software is in the “About box” of your software
and on the disk labels, as specified in the license agreement. You are not required to include
a specific Symantec copyright notice except if your copyright does not satisfy the above
requirement. This is only an explanation of the License Agreement. All terms and conditions
of the License Agreement apply.

Limited Warranty on Media and Manuals

If you discover physical defects in the media on which this software is distributed or in the
manuals distributed with the software, Symantec will replace the media or manuals at no cost
to you provided that you return the defective materials along with a copy of your receipt to
Symantec or to an authorized Symantec dealer during the 60-day period following your re-
ceipt of the software.

Limited Warranty on the Product

Symantec warrants that the software will perform substantially as described in the User’s
Manual. If within 60 days of receiving the software, you give written notification to Symantec

261

THINK’s LightspeedC

of a significant, reproducible error in the software which prevents operation, and provide a
written description of the possible problem along with a machine readable example, if ap-
propriate, Symantec will either provide you with corrective or workaround instructions, a
corrected copy of the software, a correction to the User’s Guide and Reference Manual, or
Symantec will refund your purchase price upon return of all copies of the software and doc-
umentation together will a copy of your receipt. This warranty extends only to you and shall
be void if the software has been tampered with, modified, or improperly used, or if the soft-
ware is used on hardware other than the Apple Macintosh™ Computer.

EXCEPT FOR THE LIMITED WARRANTY DESCRIBED ABOVE, THERE ARE NO WAR-
RANTIES TO YOU OR ANY OTHER PERSON OR ENTITY FOR THE PRODUCT EXPRESSED
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OR MER-
CHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. ALL SUCH WARRANTIES ARE
EXPRESSLY AND SPECIFICALLY DISCLAIMED. Some states do not allow the exclusion of
implied warranties or limitations on how long they last, and you also may have other rights
that vary from state to state. IN NO EVENT SHALL SYMANTEC BE RESPONSIBLE FOR ANY
INDIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR SIMILAR DAMAGES OR LOST
DATA OR PROFITS TO YOU OR ANY OTHER PERSON OR ENTITY REGARDLESS OF THE
LEGAL THEORY, EVEN IF WE HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE. Some states do not allow the exclusion or limitation of incidental or consequential
damages, so the above limitation or exclusion may not apply to you. The warranty and
remedies set forth are exclusive and in lieu of all others, oral or written, express or implied.

SYMANTEC MAKES NO WARRANTY OF THE PERFORMANCE OF THE LIBRARIES WHEN
USED IN YOUR SOFTWARE. YOU AGREE TO INDEMNIFY SYMANTEC FROM ALL CLAIMS
BY THIRD PARTIES ARISING IN CONNECTION WITH THE USE OF YOUR SOFTWARE.

General Terms This license states the entire agreement between the parties and supercedes
all other communications between the parties relating to this License, which shall be gov-
erned and construed in accordance with the laws of the State of California. You agree to
bring any proceeding to enforce or construe this License or involving the performance of the

~ software only in a federal or state court residing in the State of California. The prevailing party
in any such proceedings shall be entitled to recover its attorneys’ fee and litigation expenses
in addition to other appropriate relief. If any provision of this License by Symantec shall be
held to be unenforceable such holding shall not affect the enforceability of any other
provision hereof. Waiver of any breach of this License by Symantec shall not be considered a
waiver of any other or subsequent breach. the licensed software is a unique and valuable
asset of Symantec and Symantec has the right to seek whatever equitable and legal redress
which may be available to it for your breach of the provisions of the License.

“Lightspeed” is a trademark of Lightspeed, Inc., and is used with its permission.

262

