The FUNdaMENTAL
Teacher’'s Manual and Curricuum Guide

KartoffeiSoft, Inc

Welcome o
Our Programming Environment for Kidsl

01997 KartoffelSoft, Incorporated All rights reserved

The software described in this document is furnished under a license agreement or
non-disclosure agreement. The software may be used, disclosed, or copied only in
accordance with the terms of the pertinent agreement.

This document is and should remain the property of KartoffelSoft, Incorporated. It is
against the law to copy the software on any medium except as specifically allowed in
the license or nondisclosure agreement.

Information in this document is subject to change without notice and does not
represent a commitment on the part of KartoffelSoft, Incorporated.

No part of this document may be reproduced, transmitted, or disclosed in any form or
by any means, electronic or mechanical, including photocopying and recording, for
any purpose except as defined in the license or nondisclosure agreement or without
the express written permission of KartoffelSoft, Incorporated.

FUNdaMENTAL is a trademark of KartoffelSoft, Incorporated.

Windows 95 and Windows 3.1 are registered trademarks of Microsoft Corporation.
For further information, please contact KartoffelSoft, Incorporated, at:

3475 Edison Way, Suite H

Menlo Park, CA 94025

(415) 306-0670

or contact your licensed KartoffelSoft representative.

----- AuPhor's NoTe -----

When I was first asked to learn FUNdaMENTAL as “a typical teacher”
would, I have to admit I was a little nervous. I'd always purposefully
avoided anything to do with the inner workings of my computer. I just
clicked buttons and pushed keys, and left the rest to the “genie in the box.”
Actually, I guess I’d always known that a breed of humans (not genies)
called programmers were responsible for making the computer do the
things it did. I’d just never imagined that I could become a programmer
myself. (Suffice it to say, 'm the only one at Kartoffelsoft, Inc. sporting a
degree in Latin American Literature on my undergraduate diploma)
Imagine my delight when I did, indeed, become a FUNdaMENTAL
programmer. I was truly proud.

When I was offered the opportunity to teach FUNdaMENTAL to a group of
seventh and eighth graders in the Stanford Tennis and Tutorial program for
at-risk students, I jumped at the chance. I couldn’t wait to share my
enthusiasm for the magic of the programming process with young people.
Through their frustrations and triumphs, those bright and intrepid
youngsters helped me unravel the general sequence of lessons which form
the basis for this book. Highlights of my experiences appear in the Teacher’s
Journal sections throughout the manual.

When I was asked to write the Teacher’s Manual, my jaw dropped
practically past my belly button. I tried to maintain my professional
composure. But inside I was thinking, “Okay so I learnedit, and 1 faught it,
but now I'm supposed to write the book!T7 'm going to need a lof of
help...”

“We want it to be in your voice—a real teacher’s voice, like the one in your
journals. Not the typical, dry user’s manual...” the young man in front of
me was saying.

“I’'m going to need a lof of help!” I finally squeaked out loud.

I cannot begin to offer enough thanks to all of those who gave the heaps and
heaps of help necessary to bring this book into existence. Sarah Morse
provided initial inspiration and momentum. Marlo Khan, Sam Birney, and
Thai Bui reviewed the initial drafts and shored up the structural and
technological underpinnings. After that, Stephen Wu took over as my
technical guru, patiently answering my confused, and often repeated,
questions about everything from memory to pixels. Shane Reilly worked out
an early layout design for the book. A group of valiant beta-testers took on
an initial “final” draft. Their input on the practice sections and the overall
tone was invaluable. And Joe Davila was there throughout to provide
encouragement and vision when I fell prey to what he so aptly called
“analysis paralysis.” In the end, he took on the final layout effort which
resulted in the book you now hold.

And now, after many months and lots and /ofs of help, this book is finally in
your hands, which means you’re about to begin the adventure of learning
and teaching FUNdaMENTAL yourself. It is, indeed, not your typical user’s

manual. As well as providing instruction and practice, [hope that this
manual offers the companionship and inspiration that you’d get from a close
colleague and friend as you set out to bring this exciting new learning tool
into the lives of your students. And in the true spirit of collegiality, I hope
that this book is the beginning of a dialogue in which you share with us at
KSI, Inc. your own stories of challenge and triumph as your students
demonstrate the true power of programming.

Read on, and enjoy!

Janet Ellman
jellman(@kartoffelsoft.com

TABLE OF CONTENTS

[llustration Guide 7
From The Creator Of FUNdaMENTAL 11
Introduction - Welcome to Programming with FUNdaMENTAL! 13

UNIT 1 23

Getting Started: Writing Simple Animation Programs

Chapter 1 - Exploring the Territory and Giving Commands: 25
A Guided Tour of the FUNdaMENTAL Programming
Environment
Chapter 2 - Moving And Changing Objects 41
Chapter 3 - Constructing Objects...and getting them out there 53
where your audience can see them!
Chapter 4 - Using Boxes to Keep More Than One Frog Hoppin’ 63
Chapter 5 - Using Loops to Repeat Yourself with Style 71
Chapter 6 -~ A Few Other Goodies 81
Chapter 7 - Be Your Own Graphics Department and Sound Crew 89
Chapter 8 - Designing Blueprints for “Clickable” Objects 99
Unit 1 Highlights 111

UNIT 2 113

Branching Out: Creating Interactive Programs And Simple Games

Chapter 9 - Adding Text Strings to Your Programs for More 115
Interactive Fun

Chapter 10 - Number Crunching and Variables 131

Chapter 11 - Making a Splash with TOUCHING OBJECT 145

Chapter 12 - Bouncing Around: GET, COMPARE, and 153
JUMP Commands

Chapter 13 -~ Breaking Things Down with Sub-Tasks 169

Unit 2 Highlights 185

UNIT 3

Thinking Like An Expert

Chapter 14 - A Whole Little Chapter About Boxes
Chapter 15 - Flocking to Gaggles for Style, Flexibility, and Fun

Chapter 16 - HOLD THAT THOUGHT! Using FILE Commands
to Save Information
Chapter 17 - True And False With Booleans
Chapter 18 - “Everything Is Trees”: Elements of Programming Style

Unit 3 Highlights

AFFPENDIX A

Educator’s Grab-Bag

Section 1A - The FUNdaMENTAL Learning Process, In Principle And
In Practice

Section 2A - Try This In Your Class Tomorrow!
Section 3A -~ “What’s So Great About Programming?”

Talking to Administrators, Parents, and Older Students
about the FUNdaMENTAL Benefits of Programming

AFPPENDIX B

FUNdaMENTAL Programmer’s Tool Kit

Section 1B -~ All-Commands List
Section 2B ~ FUNdaMENTAL Quick-Reference Guide
Section 3B - Glossary

INDEX

187

189
201

225

245
255
260

261

263

267

279

285

286
295
317

325

ILLUSTRATION GUIDE

Screen Images

]

FUNdaMENTAL Executable Icon

Windows ’95 Start menu

FUNdaMENTAL Welcome Window

Open Program Directories Window

Open Program Directories Window, Demo1.fmp
Main Task Window (Demo1.fmp)

Toolbar

All Commands List and Instruction-Entry Field (detail of Task Window)
Program Window (Demo1.fmp)

Object Designer (Demo1.fmp)

Graphics Library (Demo1.fmp)

Soundroom (Demo1.fmp)

1] 1 1]
o

1

t

] t 1 t

Pk pd pd pd el e pd pd el

t

1
—_ = O RN U RN ==

— O

Grid Button (detail of Toolbar)

MOVE OBJECT Data Wizard Dialog

Highlighted Instruction (detail of Task Window)
MORPH OBJECT Data Wizard Dialog (Program1.fmp)

t

]

IIQNNN
©

W IO =

]

CONSTRUCT OBJECT Data Wizard Dialog (Program1.fmp)
PLACE OBJECT Data Wizard Dialog
Debugger Window

W W W
l
W N =

1

]

STORE BOX Data Wizard Dialog (Program4.fmp)
Define Box Data Wizard Dialog
Box List (detail of Task Window)
LOAD BOX Data Wizard Dialog (Program4.fmp)

t

o
N =

t

SET LOOP Data Wizard Dialog

JUMP LOOP Data Wizard Dialog

Comment Code (detail of Task Window, Program5.fmp)
Marker Code (detail of Task Window, Program5.tmp)

Q1 01 C1 U1
1 1

l
W

]

RESIZE PLAYGROUND Data Wizard Dialog
INSTALL BACKGROUND Data Wizard Dialog
LOAD SOUND Data Wizard Dialog
Soundroom

gﬁm@m

1
W =

t

“Save New Program As” Directory Window

Hand-Made Masterpiece in Paint Application

Hand-Made Masterpiece in FUNdaMENTAL Graphics Library
Graphics Importer

New Sound Name (detail of Sound Room)

Sound Importer

]

t t

NN ENIEN N N

1

1
DU W=

]

t

t

1

0000900000
6 B PN OS NS

]

t

t

comcpwcp
6 B PN O NS

]

“Create a New Task” Directory Window

“Morph” Sub-Task Window

New Object in Object Designer

Click-Task Pop~-Down Menu (detail of Object Designer)
“Morph” Sub-Task Name in Program Window

LOAD STRING Data Wizard Dialog

RESIZE CONVERSATION Data Wizard Dialog
PLACE CONVERSATION Data Wizard Dialog
APPEND STRING Data Wizard Dialog

Box Option in APPEND STRING Data Wizard Dialog

LOAD NUMBER Data Wizard Dialog

ADD NUMBER Data Wizard Dialog

RANDOM NUMBER Data Wizard Dialog
MULTIPLY NUMBER Data Wizard Dialog

New Box Name (detail of Task Window Box List)

TOUCH OBJECT Data Wizard Dialog

COMPARE STRING Data Wizard Dialog
DISSECT STRING Data Wizard Dialog
COMPARE OBJECT Data Wizard Dialog

Key Assignment Button (detail of Sub-Task Window)
Key Assignment Data Wizard Dialog

EXECUTE SUB-TASK Data Wizard Dialog

Local Box Icon (detail of Task Window)

Received Box Window (detail of Sub-Task Window)

Parameters specified in EXECUTE SUB-TASK Data Wizard Dialog

In/Out Received Box Icon (detail of Sub-Task Window)

CONSTRUCT GAGGLE Data Wizard Dialog
SET GAGGLE REGISTER Data Wizard Dialog
STORE-ITEM GAGGLE Data Wizard Dialog
Gaggle Debugger

WRITE-FILE STRING Data Wizard Dialog
READ-FILE STRING Data Wizard Dialog
REWIND FILE Data Wizard Dialog

Text File in File Manager Directory Window

LOAD BOOLEAN Data Wizard Dialog
AND BOOLEAN Data Wizard Dialog

“What’s Going On Inside The Compuber?” Diagrams

3A:

4A:

5A:

OCA:

8A:
9A-9E:
11A:
12A-12C:

13A-13B:

13C-13D:

14A-14C:
15A-15B:
15C:

15D-~15H

The Binary Representation of Data

The Inner Workings of STORE BOX

The Loop Register

“Wrong AC Type!”

Execution of a Click-Task

Storage and Manipulation of String Data

The Inner Workings of TOUCHING OBJECT

The Inner Workings of GET/COMPARE/JUMP Instructions Sequences

Execution of a Key-Task

The Inner Workings of Processes

Storage and Manipulation of Object Data
Storage and Manipulation of Gaggles
The Inner Workings of GET LOOP

: The Inner Workings of 2-Dimensional Gaggles

10

11

FROM THE CREATOR
OF FUNdaMENTAL

When I was in sixth grade, I had my first real exposure to computer
programming. It was then that a classmate and I spent several months
tinkering with a program called Logo. To us, it was a nifty game that made
a little “turtle” draw colorful lines on the screen if you gave it the right
instructions. We became quite proficient at this, and soon had a Godzilla-
like creature chasing a Ferrari across the screen. After a few months of
tinkering we grew tired of Logo, not knowing that the skills we were
mastering were not just useful to turtles, but would be honed and utilized
for the rest of our lives.

It was more than seven years later when computer programming and I next
crossed paths. This time, it was in an introductory programming class at
Stanford University. About a week into the course, we began fiddling with
Karel the Robot, a programming language that controls a little robot in his
own “microworld.” That’s when it dawned on me: I had done this before.
Karel was nothing more than a boring version of Logo. Only then did I
realize that what I had been learning all those years ago was how to
program a compulier.

As the quarter progressed, I was taught how to solve problems “from the top
down” (using a technique called decomposition), and to think logically and
“step~wise” like a computer. Ilearned to “de-bug” programs with a
methodical and swift attack. These were all skills to which I’d been
unwittingly introduced way back in the sixth grade, and which I'd been
using ever since to write seventh grade English essays, solve algebra
problems, unravel logic puzzles, and even pursue my affinity for baking.

If only I had known back than that I had been learning all those things, I
would have learned them ten times as well. 1 would have wanted to learn
how a computer works, and Zow I could make it do really cool things. It
seemed that an early opportunity to focus my creative energies and refine
my problem-solving skills had been squandered.

In 1994, when I began searching for a thesis topic, my first thought was to
combine two of my main passions: kids and computers. That’s when I
recalled my revelation of freshman year and my stunted Logo career. What
kids should really be using, I thought, is a computer language that isa
computer language, and not one that is hidden behind a game. How many
other kids, like me, had failed to see Logo for its true magnificence because
they were too busy playing with a turtle?

I was motivated by my firm belief that children want to learn how things
work, and by my conviction that there are actually more effective ways to
get a child’s attention than video games (like a piece of paper and crayons).

12

[set out to write my own computer language for children that didn’t try to
be something else.

The result is FUNdaMENTAL, a computer language for kids that is simply
that: a programming language which empowers the child (or anyone else
with the time and creativity) to make the computer do whatever s/he wants
it to do. We’d like to think that it is proof that “fun” and “mental” can be in
the same sentence for a kid.

All of us at KartoffelSoft would like to thank you for taking the time and
effort to learn FUNdaMENTAL. Unlike many “educational” products on the
shelves today FUNdaMENTAL cannot be learned by simply taking it out of
the package and clicking around. This product is designed to be a learning
tool, not a productivity tool; the focus should be not only on what is being
createdbut also on the process of creating. In other words, learning
FUNdaMENTAL is using FUNdaMENTAL. It involves dozens of mini “mental
conquests” on the learner’s part—the internalization of new concepts and
possibilities—which take hours, not seconds. As you embark upon the
process of preparing to bring FUNdaMENTAL into the lives of your students,
you’ll need to follow all the same advice you’ll soon be giving them:
practice, experiment, turn mistakes into features, and, most of all, frust
yourself.

More than anything else FUNdaMENTAL is about conquering a technology
that is unknown and therefore intimidating. You’ll need to model for your
students what it means to be an aggressive learner who refuses to give up.
Learning FUNdaMENTAL is difficult, but it is supposed to be. Like all truly
worthwhile endeavors, it is both frustrating and exhilarating. It is an
experience that will transform the way you and your students approach
technology and problem solving.

I sincerely hope you enjoy learning FUNdaMENTAL. More importantly, I
hope you take this opportunity to share the magic of programming with the
children in your life, those professional learners and creators who never
cease to amaze us all.

Justin Shelby Kitch
President & Cofounder
KartoffelSoft, Inc.

1997, Menlo Park, CA
jkitch@kartoffelsoft.com

13

INTRODUCTION

Welcome to Programming

with FUNdaMENTAL

Who Can Program? 15
What Is Programming, Anyway? 15
What ls FUNdaMENTAL? 15
What Do FUNAaMENTAL Commands Look Like? 16
Why Programming? 16
Why FUNdaMENTAL? 15
What’s in This Book? 19

What’s The Best Way Do Use This Book? 22

14

----- Teacher’s Journd -----

“HEYT” I called out to my husband. “You have to come see this! You won’t
believe it!”

He put down his magazine and came in right away. After all, it wasn’t like
me to be hogging the computer on a Saturday afternoon.

“Look!” 1 said with a goofy Cheshire Cat grin spread all over my face. “Just
look at this!”

I clicked a button on the screen and watched as the monitor cleared and
revealed an empty, white window. A moment later, a little green frog
appeared from the left and hip-hopped a zigzag path across the white field
and out of sight past the upper right-hand corner. As soon as he was gone,
another one followed.

“Okaaaaaay,” my husband said, struggling to maintain a diplomatic little
smile.

“Don’t you get it?” I said. “I MADE this! I WROTE THIS PROGRAMI! Just
think what you could do with this in the classroom.”

My husband blinked at the procession of little frogs hopping across the
screen. (I think he may have resisted the impulse to feel my forehead. Was
this the same woman who usually hovered around outside the study
doorway, saying things like, “Why don’t you turn that thing off and go
outside?”)

“That’s great, Jan” he finally said, and turned to go back to his reading.

[peeled my eyes off my creation and turned to stare after him as he went
down the hall. It dawned on me that despite all the time he’d spent using
the computer (for games and grade sheets and word processing and taxes),
he had never really thought about what went into making all those
programs he used. He just didn’t get it.

But the most amazing part of it was, Idid! I really got it!

15

Who Can Program?

If you’re a dedicated educator, eager to help guide your students
toward the challenges of the 21st Century...and still a little afraid to

turn on that computer in the back of the classroom, the programmer
in the teacher’s journal above could be you!

I know, because the journal is mine, and, not long ago, I was still a
little shaky about computer basics myself (details like “Where’s the
ON switch?”) Yet now I can say this with confidence: 1am a
computer programmer! The fact that I still sometimes get lost on my
way to the Toolbar does not change that amazing truth.

And that’s not all. Within a few weeks of starting to learn
FUNdaMENTAL myself, I brought it into the classroom and became a
programming teacher!

What ls Programming, Anyway?

I certainly had no idea before I got started using FM. When I first
came on as resident teacher at KartoffelSoft, Inc., I just tried to paste a
comprehending look on my face and nod professionally whenever
one of the programmers started talking about “modularity” or “ub-
asks” or “code.” I really had no concept of what programming was.
Just in case you’re in the same boat, let me tell you what I’'ve learned.

In a nutshell, programming is the arf and science of giving
instructions fo computers in order to achieve human goals.

(In my own first programming effort, for example, I was trying to
make a little animated tribute to Kermit the Frog.)

Every computer program that you buy in the store exists because
someone, somewhere sat down and typed in a looooooong list of
instructions called commands, in a language that the computer
understands. This list is the program. The program is like the recipe
for everything you see, hear, and do when you use a piece of
software. Collectively, all of the commands that make up a particular
program are called the program’s code.

What ls FUNdaMENTAL?

FUNdaMENTAL is both a programming language and an
“environment” in which beginners of all ages can write and run
their own computer programs.

When you want to write a program, you start out in the Task window
where you actually write the programs, using the keyboard to type in
instructions for the computer to follow. Then, by clicking the Play
button on the Toolbar, you can see what happens when the program
runs in the Playground and Conversation windows, as the computer

carries out all your instructions. You can switch back and forth
between the writing mode and the running mode as often as you like.

When you’re writing a program, you’ll notice that you’ll click that
Play button pretty frequently, as a way to get a sense of how your
program is coming along. If you like what you see, then the
Playground and Conversation windows become the public forum in
which you can “publish” your program by showing it off to other
people.

What Do FM Commands Look Like?

There are many different computer languages, and each one of them
uses a different code for “communicating” with the computer. In
FUNdaMENTAL, the commands are all made of words, sometimes
two and sometimes three. Here are some examples of
FUNdaMENTAL commands:

CONSTRUCT OBJECTfrog
PLACE OBJECT(150,150)
SHOW OBJECT

With these three commands you can tell the computer to construct
an object in memory of type “frog,” to place that object at a
particular coordinate in the Playground window, and to make the
object visible to the user.

Seems reasonable enough...

There are a total of 86 commands in FUNdaMENTAL, but don’t
panic! The language is divided into about a dozen “families” of
related commands. In most cases, once you work with one command
in a family, it’s easy to get to know its siblings and cousins.

Why Programming?

On the day I wrote my first program, I realized too late that when I
called my husband in for the grand performance, all he could see
was a little green frog hopping across a white space. He had no way
of knowing what that frog meant to me.

Programming ls Process-Oriented

To me, that little frog represented a process. To get my frog out there
hopping, I’d had to first visualize what [wanted my final program to
do, and then mentally break it down into the steps I’d need to take to
create it. As I went along, I had to make sure that all my commands
were in correct sequence, and that I’'d accounted for every aspect of
my plan.

17

[freaked out at least 19 times, and more than once thought of
throwing the whole computer off the deck. And yet, in finding my
way out of various messy tangles, I discovered that my original plan
was reshaped and enriched.

By the time I was finally finished, I was already plotting my next
program.

Strange as it may seem coming from a recently reformed
technophobe, I found the whole process to be somehow familiar.
Only after I thrilled to see my froggies hopping did I realize why.

Programming Promobes Critical Thinking and Creativiby

At the heart of the programming process lies something that I
recognized in almost any worthwhile endeavor, from writing an
organized essay to solving a mathematical proof to building a
homemade model of an airplane. It was even present in my effort to

understand and bridge the miscommunication between me and my
husband.

At the heart of it all is critical thinking and creativity. As a classroom
teacher, I've always kept those two biggies foremost in my mind as I
planned lessons across the curriculum. In fact, up until recently, I
had self-righteously allowed myself to put off bringing technology
into the classroom in the name of critical thinking and creativity.

The truth was, most of the “educational” software I’d seen was either
a glorified video display or skill and drill. In all cases, the label
“INTERACTIVE!” seemed more of a marketing ploy than a truly fair
description of the packaged contents. Why should I risk
technophobic meltdown in the classroom, I reasoned, if the software
doesn’t offer anything truly valuable to my students anyway?

So much for that excuse.

Now that I am a FUNdaMENTAL programmer, I’ll be bringing
programming into my curriculum every chance I get. Although I do
many things across the curriculum to promote good thinking skills in
my students, I find the benefits of programming to be truly unique.

Programming ls Structured

On the one hand, there is an enhanced feeling of mental discipline
that comes from working within the formal limits of a programming
code. And you never have to wait to see if you got it right. You can
test~-run your program at any time to see how it’s coming along.
Seeing something unexpected causes you to look closely at your list of
commands to see where you went wrong.

As much as it may hurt to admit it, the computer never does anything
that you didn’t specifically tell it to do! If it messes up, that probably
means you did first. This strict structure can indeed be frustrating.
But as you start to grasp the patterns of the language, things come

18

out the way you’ve planned them more and more often. That’s all the
reward my students and I ever needed to keep us coming back for
more.

Programming ls Open-Ended

On the other hand, when it comes to what you do with your
programming skills, it’s almost safe to say the sky’s the limit. As
programmers advance, they become more and more concerned with
issues of style. The challenge lies in discovering ways to achieve
complex goals with efficiency and elegance. Animation, video
games, strategy games, interactive conversations, simulated
calculators, and piano keyboards are just a few of the things that
have been created so far with FUNdaMENTAL.

We’re eager to find out what you can add to the list!

Why FUNdaMENTAL?

Now that you think about it, you may have heard of other
programming languages besides FUNdaMENTAL. Basic and Logo are
two of the most well-known programming languages for beginners.
You may know of others. Languages like Pascal, C, C++, Visual
Basic, and Java are industrial-strength languages. They are more
efficient and run faster than the beginners’ breeds. But if you make a
mistake, you’re on your own and the computer will probably crash,
which is never a good sign.

So with all these other programming languages out there, what
makes FUNdaMENTAL different?

FUNdaMENTAL is designed so that young and novice learners can
create fun, interactive, graphical programs with little difficulty. At
the same time, the new programmers learn about what’s going on
inside the computer when their programs are running.

This is true because, unlike most computer languages for young and
novice learners, FUNdaMENTAL is not buried in layers of abstraction.
You’re not “moving the turtle,” or “giving instructions to the robot.”
FUNdaMENTAL’s metaphor for programming a computer is simply
that: programming a computer. The user programs in an
environment that imitates the internal behavior of a simple computer
— one not very different from a basic Macintosh or PC. What is
more, the FUNdaMENTAL language models an assembly or machine
language, which means that the commands “speak” directly to the
different parts of the machine involved in running the program.

If any or all of that flew right over your head, don’t worry! The
important thing to know is this: FUNdaMENTAL is educational
software that is truly interactive, challenging, and, above all, fun.
Whether you’re a classroom teacher, computer camp counselor,
home-schooling provider, or concerned parent, we hope you’ll take

19

this opportunity to discover the rich benefits that FUNdaMENTAL can
bring to your learning community.

What’s in This Book?

The bulk of this book contains a tutorial that introduces you to all the
elements of the FUNdaMENTAL programming language. It explains
how they work and provides hands-on-the-keyboard activities, with
step~by-step instructions for starting out on your own programming
adventures.

Following the introduction, the main body of the book is organized
into three units.

Uni't> 1

Getting Starbed. Writing Simple Animation Programs

In the first chapter, you’ll find a tour of the FUNdaMENTAL interface
environment (that’s all the stuff you see on the screen when you’re
working with the software) There are specific instructions for how
to use the mouse and keyboard to write your own programs.

(We assume that you already have some basic computer skills: using
the mouse, using menus, clicking and dragging, resizing and moving
windows on the screen. If you still haven’t mastered these skills,
check out the instructions that came with your computer, or grab
one of your students and beg them to take pity on a poor, struggling
technosaurus. It’s fun to learn things that way—don’t ask me how I
knowT)

The subsequent chapters in this unit focus on the basic commands for
constructing and manipulating graphical objects with
FUNdaMENTAL. By the end of this unit, you should know how to
make fun, animated sequences to entertain yourself (at least!) and
probably other people, too- especially other programmers!

Unt 2
Creabing Inberactive Programs and Simple Games

This unit introduces the main commands and skills you need to
create programs that are “interactive,” which in this case means that
the person using your programs will have something to do, as well as
to see. By the end of this unit, you should have the tools to make an
almost endless variety of simple games and other interactive
experiences for your program users (which by this point will likely
include a wide audience of adoring fans).

Unit 3
Thirking Like an Exper's

This unit presents some of the skills and command groups that can
help you design more complex programs and manage them with
efficiency and elegance. Where you are at the end of this unit will
depend largely upon your background with computers. For some of
you it will mean a fairly natural transition into more advanced
programming. For others, this unit should provide at least a good
understanding and appreciation of what goes into more complex
programs (even if you’re not yet ready to incorporate the skills and
commands into your own programming).

Featured Sections

Throughout the tutorial, you’ll find various special features that help
you develop your programming skills.

LET'S PROGRAMI

These sections appear in each chapter to give you hands-on practice
with new commands and skills. You simply cannot learn about
programming unless you program!

Programming Tips and Tricks

Following the Let’s Program sections, these Tips provide extra help or
suggestions for further thought and activities to help you get the most
out of the programming exercises.

21

In This Chaper/Unt and Unt HighlighTs

These sections appear at the beginnings of chapters and at the ends of
units. They list the important new commands and skills covered
throughout the manual, to help you preview and review as you learn.

----- Teacher's Journals -----

Like the one at the start of this manual, these vignettes appear
throughout to illustrate and inspire. They capture real student
programmers at work with FUNdaMENTAL.

Whats Going On Ingside the Computer?

As you go through the tutorial, you will find periodic boxes bearing
this title. They will be accompanied by an illustrated model depicting
some of the computer’s inner workings.

What’s inside your computer is a whole bunch of wires and
transistors and other computer guts that you don’t need to know
about. But that’s okay, because you don’t have to. It does help to
know what all the wires and stuff are up to in there, and that’s what
the model represents.

It’s a “virtual” computer that represents a particular system for
processing information, and you can understand the system without
knowing how the computer engineers make it all happen with
transistors and chips.

You can read these sections before the other parts of the chapter, or

after, or both— whatever works best for you. And for you
technophobes out there: Please, don’t skip them!T Understanding
the way things work is the key to being a good problemsolver.
FUNdaMENTAL is designed so that the actual process of using it will
enhance your understanding of how the computer works, which of
course will better enable you to take advantage of FM’s full potential,
which in turn will further increase your understanding of what’s
going on inside the computer, and so on. You’ll soon be surprised to
find how much you really do understand. Trust me on this one.
And, more importantly, trust yourself!

At the end of the book are two appendices designed specially to
support you in using FUNdaMENTAL with your students.

22

Appendix As Educabor's GrabBag

This section contains four different sections with information and
lesson ideas that will help you integrate programming and
FUNdaMENTAL into your classroom curriculum.

Appendix B: More Tools for The FUNdaMENTAL
Programmer

Here you’ll find a list of all commands with their functions, an
extended glossary, and a quick reference of interface features.

What’s the BesT Way To Use This Book?

As an Individud Tuborid

The main purpose of this book is to help whoever reads it become a
FUNdaMENTAL programmer. After all, to the extent that
programming is an art as well as a science, trying to teach it without
being a programmer yourself is a little like giving piano lessons
without considering yourself a musician!

(But you don’t have to be a master programmer before you can
successfully bring programming to your students. I wasn’t much
past my hopping frog program when I began to teach
FUNdaMENTAL. Yet not only was I successful in helping my students
become programmers, I even found my own learning and interest in
the process increased dramatically once I was working within a
community of other new programmers. I didn’t have to be an expert;
being a professional learner was enoughl)

As a Teaching Resource

In addition to providing you with an individual tutorial, this book 1s
also intended to serve as a teacher’s manual. Beyond including the
resources in the last section, we have tried our best to structure the
tutorial so that it could form the foundation for daily lesson planning.
(You may even decide to use portions of the book as student text if
you feel it’s appropriate.) Of course it will be up to you to determine
the particulars of your FM curriculum according to the needs of your
students and the requirements of your setting. But

So, now you have all you need to get started. It’s time to get hopping!

23

UNIT 1

GETTING STARTE

Writing Simple Anima’Bion Programs

CHAPTER 1 Exploring the Terribory and Giving Commands

CHAPTER 28 Movirg and Changing Objects

CHAPTER 3. ConsTructing Objecbs...

CHAFPTER 4. Using Boxes Bo Keep More Than One Frog Hoppirg

CHAPTER 5. Using Loops To Repeat Yourself with Style

CHAFPTER 6. A Few Other Goodies

CHAPTER 7. Be Your Own Graphics Deparbment and Sound Crew

CHAPTER 8. Designing Blueprints for “Clickable” Objects

24

We all know that there are countless kinds of programs that do millions of
different kinds of things, but let’s face it: what most people (especially young
people) want to know right off is how to make animation.

In chapter 1 you’ll take an interface tour, see a demo program, and learn
the introductory skills you’ll need to write your own programs.

In chapter 2 you’ll learn commands for moving and changing objects that
are already constructed and visible on the screen.

In chapter 3 you’ll learn commands for constructing your own objects
according to a particular object design, and for making sure those objects
are properly placed and visible to your users.

In chapter 4 you’ll learn how to store objects in memory so you can use
them again and manipulate them simultaneously with other objects.

In chapter 5 you’ll learn commands that tell the computer to repeat portions
of the program, so you don’t have to write the same commands over and
over.

In chapter 6 you’ll learn several commands that will give you more creative
options and control in writing your animation programs.

In chapter 7 you’ll learn how to import your own sounds and graphics to
use in the FUNdaMENTAL programming environment.

In chapter 8 you’ll learn how to use your customized graphics to design
your own blueprints for objects that do tricks when you click on them.

Making animation programs is a great, fun way to start learning about
programming. But as you go through the manual please remember that
although we may be using one particular type of program for a given lesson,
the commands and skills you are learning could be used in any number of
kinds of programs, from animated book reports to checkerboards, from
word games to jukeboxes. So keep an open mind, and imagine all the things
you could make and do with the power tools you’re about to acquire.

25

Exploring The Terribory and Giving Commands.
A Guded Tour of The FUNAaMENTAL Programming Environme

Ins Blling The Program 27
Let’s Learn Phe Inberface Fundamenbals 25
Launching FM and Opering ExisDing Programs 25
Running FM Programs o2
Entering Commands ko %)
EdiPing Exisbing Code o4
Leb’s Explore a Little Furbher 25

Using the Window Menu 95

26

----- Teacher’s Journd -----

It was the first time I’d ever tried to write a program with FUNdaMENTAL,
and I felt like I had gotten on the wrong subway train, without even
knowing where I was supposed to go in the first place.

“Help!” I cried to no one in particular. Sarah, a kindly programmer
working nearby, took pity on me and came over to see what the problem
was.

“It says I'm supposed to do something in the Program window,” I whined,
“But 'm IN the Program window, and I can’t find the buttons I'm supposed
to use.”

“Actually,” said Sarah, “you’re in the Task window. The Program window is
something different. It’s hidden right now.”

“Hidden? HIDDEN? How’m I supposed to find it if it’s hidden?” I said.

“Use the Toolbar” said Sarah with the patience of a Saint.

“Where’s the...Oh. There it is,” I said, finding the Toolbar. “Now what?”
“Pull down the windows menu,” Sarah coached.

“Okay...O0O0PS! What did I do now?” I howled, watching the windows on
the screen shuffle by rapidly and stop at a blank white window with a frog
in the middle.

“You accidentally clicked the Play button. That’s okay. You can still see the
Toolbar, so use the Windows menu from here.”

[gingerly moved the mouse over the Toolbar and pulled down the Windows
menu. With the care of a passenger traveling in a foreign land, I chose
“Program window” from the list, held my breath, and let go of the mouse.
“There ya go!” said Sarah, as the elusive Program window popped up on the
screen.

“AHAT” I said, as if I’d just apprehended a scoundrel. Sarah barely
suppressed a little smile and headed back to her desk.

“Don’t worry,” she said. “Soon you’ll know your way around
FUNdaMENTAL like you know your way around your own back yard.

27

Ins Balling The Program

To begin working with FUNdaMENTAL, you must have the FM
software installed on your computer.

Windows 9501

(Note: During the setup, the installer program will ask you to make
sure all other applications are closed. Now’s a good time to make
sure you aren’t running any other programs on your computer while
you’re trying to install FUNdaMENTALL.)

1. Insert the disk labeled FUNdaMENTAL Disk 1 into your PC.

2. In the Start menu, select Run.

3. In the field labeled Open type: a:\setup

4. Follow the on-screen instructions.

Windows 3.x

(Note: During the set-up, the installer program will ask you to make
sure all other applications are closed. Now’s a good time to make
sure you aren’t running any other programs on your computer while
you’re trying to install FUNdaMENTALL.)

1. Insert the disk labeled FUNdaMENTAL Disk 1 into your PC.

2. In the Program Manager, under the File menu, select the option
Run.

3. Type: a:\setup

4. TFollow the on-screen instructions.

Let’s Learn the Inberface Fundamentals

Once you have installed the software on your computer, you are
ready to begin exploring the FM programming environment.
Opening programs, running programs, entering commands and
editing existing program code are the primary skills you need to get
started programming with FUNdaMENTAL.

Launching FM and Opening ExisBing Programs
1. Launch FUNdaMENTAL. For windows 3.x, do this by double-

clicking on the FUNdaMENTAL Executable icon in your Program
Manager.

=| FUNdaMENTAL [~]=

o

FUMdaMEMTAL

Fig. 1-1 FUNdaMENTAL Executable icon

For Windows 95, click the Start button and move the mouse over
Programs. A submenu will pop up. Move the mouse over the
FUNdaMENTAL 2.2 icon, and another submenu will appear.
Finally, click on the FUNdaMENTAL 2.2 icon that pops up.

Adminuztrabive | ools |Lommon] #

n@ Brograms Corel Graphics 4
F5 FUNdaMEMWTAL 2.2 & FUMdaMEMTAL 2.2
Main v
=) Microsoft ODEC *
hicrogoft Yisual C++ *
L=} Metscape Communicator »
Ddbe ’
=, Startup r
TruelGnd ProVersion 21c L
r,g'.. Yizual Bagic 4.0 [16-bit) L4
WirZip v

Fig. 1-1a Windows ’95 Start menu

This will bring you to the FUNdaMENTAL Welcome window.

29

KartoffeiSoft, Inc

Fig. 1-2 FUNdaMENTAL Welcome window.

The Welcome window gives you three choices. You can create
new programs, open existing programs, or quit FUNdaMENTAL.

2. Open Existing Programs. Do this by clicking once on the Open

Existing Programs button. This will bring you to the Open
Program directories window.

Open Program EE3 |
File name: Eolders: 0k
Ix_fmp & Mfundarm

Cancel
;I = -
5 FMHELF Help
£ GALLERY
Metwark....
£ LANGLUAGE =
lI £ Manual ;I
Lizt file= of twpe: Dirives:
Furndamental Program j = j

Fig. 1-3 Open Program window

3. Starting from c:\, open the folder marked FUNDAM. It may

already be open, but it’s best to be ready to start “from the top”
when you set out to navigate through directories. If it’s not open,

double-click on the word FUNDAM which appears next to the
little folder icon in the list of things in c:\.

4. Open the folder marked Manual. Do this by double-clicking on
it in the directories list.

30

5. Open the folder marked Practice. Double-~click again.

6. Open the folder marked Demo1. Another double-click. The file
name “Demol.fmp” will now appear in the files list on the left.
(The “.fmp” stands for FUNdaMENTAL program)

Fil: name: Eolders: 0K
I*_fmp b Amanualhpracticedemo _
Cancel
DEMO1.FMP == - 4|
[== FUMDuak
[= Manual | Az |
[Practice |

[

Lizt files of t{pe:

M etwork..

C1 GR&PHICS = =]

Dirives:

I Fundamentt Program j

Files List

IE::: &[

Directories List

Fig. 1-4 Demol.fmp in file list, ready to open

7. Open this program. Do this one of two ways: 1)click once on the
file name, Demo1.fmp in the files list, and then click the OK
button on the upper right side of the window or 2) double-click
on the file name Demo1.fmp in the files list.

8. Don’t try this now, but...to close one FUNdaMENTAL program
and open another without quitting FM, use the File menu on the
Toolbar and select Close Program. This will bring you back to the
Welcome window, from which point you can begin again by
clicking on the Open Existing Programs button. For now, though,
stay in Demo1.fmp. Goodness knows we worked hard enough to
get here; let’s stay awhile!

You should now be looking at the main Task window for

Demol.fmp.

31

E} main

Task Window

| FUNDaMENTAL Gun

LOAD BOOLEAM -
LOAD B
LOAD NUMBER

Thinkz AC |z Doesn't care

M= E3

j| Wihat It Does: Pute & Vlikeral” gtring into the AC [any
words in quotes iz a "literal” string).

LOAD SOUND [ata It Meeds: <sting:
Ewample: LOAD STRIMG "Hello, wiorld"

LOAD STRING | o)

" Comment & |nstruction Marker Boxes
i LOAD STRING "Rapunzel, Rapunzel, let down your ha il@ bird =
O WRITE-SCREEMN STRIMG @ bidloop —
O LOAD STRING "Click on the bird to make itda icks ' | e
O WRITE-SCREEN STRING © pincowalk
i LOAD STRIMNG "Click on the prince to make himwalk s |@ star
i WRITE-SCREEN STRIMNG @ stars
@] LOAD STRING "Click on the sun to change the time aof g f;ﬂer
i WRITE-SCREEN STRIMNG -
i LOAD STRIMG "Click on the witch to make her stop jun
o WRITE-SCREEN STRIMNG

ONORORONS]

(zetup playground and conversation windaws)
FLACE PLAYGROUMND 0, 0

RESIZE PLAYGROUMND 4580, 500

FLACE COMVERSATION 490, 0

RESIZE COMYVERSATION 140, 400

MSTALL BACKGROUMND "skyltbmp"

Fig. 1-5 Main Task window for Demo1.fmp

This is the place where the commands are entered to make a
program. Because you have chosen to open an existing program, you
should see some text in the Instruction list. Those are the
FUNdaMENTAL commands that are responsible for making the
program run the way it does. (Note that if back at the Welcome
window you had chosen Create a New Program, you’d see the same
Task window, but the Instruction list would be blank. It would be up
to you to fill in all the commands to make the program.)

You’ll get a chance to run this program in just a minute. In other
words, you’ll get a chance to see and hear and interact with
everything that happens when the computer follows all the
instructions in the commands list. But before you do, take a minute
to look at the commands (collectively called “the code”) for this

program... Stop and predict:

What, if anything, do you think you might see when this program
is run?

32

* What, if anything, do you think you might hear when this
program is run?

* What other things might happen when this program is run?

Take a minute to record your predictions in a couple of sentences, or
even make a quick sketch.

(This is not a quiz! “I haven’t the foggiest ideal” is a perfectly
acceptable prediction at this point in your programming career...but
I bet if you give yourself a minute to examine the instructions in the
Instructions list, you will find that you do, indeed, have at least a nice
little foggy idea about what you’re about to see.)

Running FUNdaMENTAL Programs

1. Find the Toolbar. It looks like this:

® FUMdaMENTAL - DEMO1_fmp M=l E3
File Edit Tazk Program ‘Window Help

IE3 2 =) S I I S
Play Button 1 \gmpgum;\me”m

Fause Button
Fig. 1-6 FUNdaMENTAL Toolbar

It should be near the top of your screen. Since it’s the central
control panel for FUNdaMENTAL, the Toolbar will always stay
“on top of the pile” of all the windows on your computer desktop.
That means it will always be visible. But it’s a draggable window,
so you can move it anywhere you choose.

1. Click once on the Play button. After a little more shuffling of
windows, the program will begin to run. (You may want to drag
the Toolbar out of the way in order to see all the action.)

2. Watch and play with the program. Rapunzel and her prince are
foiling the Witch, and it’s all happening in the Playground
window. Read and follow the instructions that are displayed in
the Conversation window. When you ran the program, there
were things going on in two different places. The Playground
window, which displays the animation, is where most of the fun
18! The Conversation window displays text and receives keyboard
input so that the program and the user can exchange
instructions, insults, or pleasantries, as the programmer sees fit.
To stop the program, click on the witch, or on the Stop button on
the Toolbar.

3. Return to the main Task window. Do this by pulling down the
Window menu on the Toolbar and dragging the mouse to select

33

the last item in the list, Main. You should now see the main Task
window for this program.

Entering Commands

1. Find the end of the Instruction list. Do this by using the scroll
bar to the right of the Instruction list in the Task window. Look
for the command EXIT PROGRAM

2. Get ready to enter an instruction. Click on the list, in the space
above the second to last command, SLEEP MAIN. The blue
highlight indicates an open space, ready to receive a command.

Fy main M=
Task Window
| FLUIMdaMENTAL Gurl j| What [t Doez: Putz a "literal” ztring inta the AC
[ar_1_l.J wards in quotes iz a Vliteral”
LOAD BOOLEAN = sting).
tgig EEﬁEEH Thinks AC 15 Doesn't care
LOAD SOUMD Data lt Heeds: <Strir‘|g>
Example: LOAD STRIMG "Hello, Warld"
| w USE |
" Comment = |Instruction " Marker Boxes:
] ExECUTE SUB-TASK rapunzel =& bid |~
& birdioop
& moon T
@ :
O CONSTRUCT OBJECT "hair" e =
) FLACE OBJECT 210,103
) SLEEF hAAIMN
)] E=IT PROGRAM =

Fig. 1-7 Highlighted “open” line in Instruction list

Notice that the two instructions above your empty line tell the
computer to construct an object of type “hair,” and to place it on
the Playground. So far, though, it’s invisible.

3. Tell the computer to show this object. Although we’ve made a
space in the Instruction list, this is not where we actually enter
the command. Above the Instruction list, there are three radio
buttons marked Comment, Instruction, and Marker which allow
you to select your code type. Click on the Instruction radio
button so the computer knows what kind of information you’re
about to give. Now move your cursor up to the text-entry field
above and select the command SHOW OBJECT in one of two
ways: 1)begin typing it into the text-entry field or 2)scroll
through the All Commands list above the text-entry field, and

34

click on the command you wish to use. It will then appear in the
text-entry field.

Confirm your command choice. Once you see the command
SHOW OBJECT in the text-entry field, click on the Use button to
the right, and the command will appear in the highlighted space
in your Instruction list. You can achieve the same thing by
double-clicking on the command where it appears in the
scrolling All Commands list or by pressing the Enter key on your
keyboard.

Run the program to see how it’s changed with the inclusion of
your new nstruction. Click on the Play button on the Toolbar to
do this. (Now that’s Rapunzel). When you’re ready, click on the
Stop button on the Toolbar. Now use the Window menu on the
Toolbar, and select Main to return to the ain Task window so we
can edit the code for this program.

Edibing Exisbing Code

Many times, when you want to add a new instruction, as we just did
in the above exercise, there isn’t an empty space in the Instruction list
waiting conveniently where we need it. Instead, we need to insert a
blank line between two adjacent instructions. Just as often, we
discover that a particular instruction in the list needs to be deleted
altogether. We’ll learn how to insert and delete lines in the
Instruction list now.

1.

Insert a blank line in the list. Move the cursor over the last
command 1in the Instruction list, EXIT PROGRAM. Click on it. It
should now be highlighted in blue. (Please note that when you
want to highlight a line currently occupied by an instruction,
click in the middle of the line, and not on the little open dot to its
left. If you click on that dot, it will turn red, like a little stop sign.
A red dot next to an instruction causes the computer to stop on
that instruction when executing a program. This is a tool
programmers use when they’re trying to find an error, or “bug,”
in a program. If you happen to click on the dot and turn it red by
accident, don’t panic; just click it again, and it will return to its
original color.) Once you’ve highlighted the line where you want
to make your insert, use the Edit menu on the Toolbar, and select
Insert Line. The command EXIT PROGRAM will move down a
space, and the blue highlight will remain on the new, blank line,
ready to receive a new Instruction. (Notice that you can achieve
the same effect from the keyboard, using a Control Key-I
combination.)

Delete a line from the list. Let’s give Rapunzel a haircut. Find
the new Instruction that you entered during the last exercise:
SHOW OBJECT. It should be the last instruction before EXIT
PROGRAM. Click on it once to highlight it. Then, use the Edit
menu on the Toolbar, and select, Delete Line. The SHOW OBJECT

35

command will be deleted from the Instruction list. (Notice you
can achieve the same effect from the keyboard by using a Control
Key-K combination.)

3. Run the program to see how the changes you’ve made affect it.

LeT’s Explore a Libtle Furbher

You’ve already acquainted yourself with the majority of important
interface features in FM. There are, however, a few other windows
that you’ll have more and more occasion to use as your programming
skills increase. We’ll visit them now to take a look and learn more
about what they do and how to use them later on in the book.

Using ‘Phe Window Menu

All of the primary interface destinations in FM can be reached from
the Window menu on the Toolbar.

1. Find the Program window. In the Window menu on the Toolbar,
select, Program window. It looks like this:

Program Window ﬁ

Hew | Add | Bemove |

{mair

List of bair

yyininlg]

Tasks moonclck,

Graphie Object
Library Designer

Fig. 1-8 FUNdaMENTAL Program window, Demo1.fmp

Don’t confuse this with the Task window, which holds the list of
your instructions for the computer. Although it is possible to
have a program with just one “main” list of commands, most
programs are made up of a bunch smaller sub-tasks, like the ones
you see listed here in the Program window. Each one is like a
miniprogram in itself, which is responsible for a particular aspect
of the program’s total action. Think of this Program window as
the directory, or table of contents, to all the components, or sub-
tasks, of your program. From the Program window, you can get

36

into any of the sub-tasks that make up the entire program.
Double-~click on the close box in the upper right-hand corner of
the Program window once you’ve taken a look.

Find the Object Designer. From the Toolbar window menu,
select the Object Designer. It looks like this:

Object Desic

Graphic: | birdnarm. brp j|
Click Task: | birdclck =]

Ctri-Click-Task: | <None> |

X-pos: EI Y-pos: EI

Objeet: |bird

Mew

Delete |

FUNdaMENTAL™

Fig. 1-9 FUNdaMENTAL Object Designer, Demo1.fmp

Here is where it possible to design the objects for your programs
by combining graphics with other information. Best to leave all
the buttons alone for now. We’ll learn to use them later. Please
note: The Object Designer is not where you give program
instructions fo the compufer. Think of it as a place where you
assemble the supplies that the computer will need to follow the
program instructions which you enter in the Task window. Click
on the Done button when you have finished taking a look at the
Object Designer.

37

2. Find the Graphics Library. From the Window menu on the
Toolbar, select “Graphics Library.”

Graphic Library

R

Graphie: II:uin:H bmp

Delete

Impart....

Fig. 1-10 FUNdaMENTAL Graphics Library, Demo1.fmp

This is where you can import and store the graphics you need for
your object designs and program backgrounds. Again, just use
the scroll bar to take a look, but leave the buttons alone for now.
And remember: Working with graphics in the Graphics Library
1s not programming/ 1t’s like going to the store to buy the
supplies you’ll need to have on hand for the computer to follow
the instructions you give in the Task window. Click the Done
button when you are finished taking a look.

38

3. Find the Sound Room. In the Toolbar Window menu, select the
Sound Room. It looks like this:

Sound Boom

ahooga. wavy
doorbell veaw
drip.way

PO Was
Larzan. wav

Fig. 1-11 FUNdaMENTAL Sound Room, Demo1.fmp

Here is where you can record, import, and store the sounds you
tell the computer to use in your program. Take a look at the list,
and then click the Done button.

If it all seems a little overwhelming, don’t worry. We’ll be
reviewing all this information as we g0, and before you know it,
(just as my programming friend Sarah promised me not too long
ago) you’ll know your way around this interface like you know
your way around your own neighborhood.

So, now that you’ve had a chance to survey the territory and get a
feel for writing commands, it’s time to get to the fun part! Let’s
program!

39

Programming Tips and Tricks

Many people find the keyboard faster than the mouse for getting
around the interface and performing basic functions such as saving
work on the computer. FUNdaMENTAL has a number of useful
keyboard shortcuts. You can see them displayed next to certain items
in the menus on the Toolbar. Most of them work by holding down
the Control Key, ressing another key on the keyboard. Here
are a few you mlght find useful as you begin learning to program:

Control Key-S: Save (It’s VERY IMPORTANT to remember to save
our work frequently while your working
program!l)
-I: Inserts a line in the Instruction list
Control Key-D: Deletes a line in the Instruction list
Control Key-W: Closes the active window (not to be confused with
closing an FM program...for that, you have to use the
mouse and the File menu.)
Control Key-G: “Go”: like clicking the Play button on the Toolbar
Control Key-J: “Abort”: like clicking the Stop button on the Toolbar
Control Key-Q: Quits FUNdaMENTAL
Control Key-P: Prints the program code in an active Task window
Enter key: Can be used instead of clicking on the Use and Done
buttons in the FM interface
F1 key: Press this key after clicking once on an FM interface feature,
and you will see an on-line Help screen with information

about that feature.

40

41

Let’'s Get Moving

The Grid

Gel Ready To Program
Avzilable Graphics
Alip-Book Fun

Commands Inbroduced.

0 MOVE OBJECT

[J MORPH OBJECT

43
43
45
47
49

42

----- Teacher’s Journal -----

It was a half-hour after the end of the period on a warm summer school
day, and LaToya wouldn’t leave the classroom. All the other kids in the class
were long gone to lunch and recess, but LaToya was oblivious to the sounds
of calling voices and running feet in the hallways.

“Just one more command! ONE more...I'm about to get it. Pleeeease!”
LaToya pleaded, never taking her eyes off the computer. I made a half-
hearted show of looking at my watch, but in truth, I was just as excited as
she was. Before this, I had been nearly ready to give up on her. Deeply
distracted by grave family troubles, LaToya had always been better at
making excuses than making an effort. But not today.

She tapped away at the keys, adding new instructions to her program task
list, and then clicked on the button to give it a test run. In a moment, her
own simple drawing of an Olympic diving platform appeared on the screen,
with a stick-figure diver waiting at the bottom of the ladder. LaToya clasped
her hands under her chin in suspenseful anticipation and watched as the
computer followed the instructions she had given it.

First, the little diver stepped forward and climbed the ladder to stand erect
at the back end of the platform. LaToya applauded this small feat with
delight, even though it wasn’t the first time she’d seen it. The real test was in
what followed.

As we both held our breath, the little stick figure raised one knee after the
other and marched resolutely toward the end of the platform. Our cheers
turned to laughing groans as the diver took three or four extra steps off the
end of the board and levitated in the air above the water.

“Oh NOY” LaToya said, slapping her forehead melodramatically. She
quickly switched back to the program task and scanned through her list of
commands to find the bug in her program.

“LaToya,” I began, looking at my watch with the beginning of real concern
that I might actually miss an afternoon meeting.

“Just ONE more, Jan! JUST ONE MORE....”

43

Let’s Get Movingl

What is animation all about, anyway? It’s about moving objects
around on a screen or, in this case, in the Playground window.
LaToya, for example, was trying to move her diver object up the
ladder and across the diving platform. Here’s the primary command
she was using to do it:

LI MOVE OBJECT

This command does exactly what it says. It moves a specified object
according to your instructions.

Whenever you use this command, it automatically brings up a new
interface feature, the Data Wizard.

MOYE OBJECT

Data Wizard

kove the AC thiz much in the » direction;

@ Number E Haorizontal
Movements
.Bux
Fove the AC thiz much in the v direction;
Vartical
Mumb] —wllf
© Number Movements

.BDH

Cancel | (1] 4 I

Fig. 2-1 Move Object Data Wizard dialog window

This is where you fill in the details that complete your instructions to
the computer. In this case, when you say “Hop!” the computer will
literally ask you “How high?”

The Grid

The computer automatically thinks of the Playground window as an
x/y coordinate grid, with the point (0,0) in the upper left-hand
corner. (Notice that the programming grid is an “upside~-down”
version of the conventional Cartesian grid.) When you tell the
computer to MOVE OBJECT, the Data Wizard will ask you for an x-
distance (horizontal) and a y-distance (vertical) by opening up a
little dialog box that looks like this on your screen.

44

% FUNJaMENTAL - PROGRAM1.fmp M=

File Edit Tazk Program ‘Window Help

A S [E=1 S I I

Grid Button
Fig. 2-1a Grid button on Toolbar

You can type numbers straight into the text boxes for each direction.
For movements away from the point (0,0) —which in this case is at

the upper-left corner of the Playground —use positive numbers, and
for movements back toward (0,0) use negative numbers. In other
words, negative numbers in the x field will cause the object to move
back toward the left edge of the Playground. Negative numbers in
the y field will cause the object to move up, toward the top of the
Playground.

(You may have noticed that the Data Wizard offers the option of
using a box instead of a number. This allows for the use of variables

in more complex programming—to be covered in later chapters.)

Until you get a good feel for the dimensions of the grid, it helps to see
it. To see the grid during a test run of your program, just click on the
Grid button on the Toolbar. The grid will appear superimposed on
the Playground window as your program runs.

Note that while your program is running, you cannot see the Task
window that holds your list of commands. If you want to see the
Playground grid while you’re working in the Task window, go to the
Window menu on the Toolbar and select the Playground window. If
you have run the program before doing this, then the Playground
will appear with your program graphics in it. If you do this before
running your program, then the Playground will appear blank.
(Either way, you may need to drag the Playground out of the way to
be able to see the Instruction list.) Once you see the Playground
window, click on the Grid button and...voilal The grid appears
before your very eyes. To make the grid disappear click the Grid
button again. (To make the entire Playground disappear when you’re
done, click on either the little box marked with an x in its upper
right-hand corner for Windows 95, or on the little box marked with
a - in its upper left-hand corner for Windows 3.1.)

45

Get Ready Po Program

Time to try all this out!

PLEASE NOTE: For your first practice experiences, you’ll be adding
things to programs that already exist so you can focus your attention
on the new commands and skills at hand. Before long youw’ll know
enough to start your own programs from scratch.

LET'S PROGRAMI

1. Start at the FM Welcome window. If you’re already inside a
FUNdaMENTAL program, then you need to go to the File Menu on
the Toolbar and choose Close Program. That will bring you back
to the Welcome window. From there, you can get to another
place in FM. If you’re starting a new session with this exercise,
launch FUNdaMENTAL, and that will bring you to the FM
Welcome window.

2. Click on Open Existing Programs, and navigate to
Program1.fmp. In the Open Program window, double -click on
the following folders: c:\ then Fundam then Manual, then
Practice, then Program1.

3. Open the program. You should now see Program1.fmp in the
files list to the left. Double-click on that, or click once, and then
click the OK button. After passing back by the Welcome window,
you'll see a simple program code written out in the Task window.

FY main ME &3
Task Window

=
File Edit Tazk Program ‘window Help

[FUNGaMENTAL Guns PEERIRnRER =

FY
meE j= _{ Thinks ACls: Doesnt care
JUMP <3 Data [t Needs: <picture name or bows
"tyPicture"
NSTALL BACKGROUMND ‘ [v USE I
" Comment = Instruction " Marker Bozes:
- NSTALL BACKGROUMND "hnslbkgd bmp" =

@] COMSTRUCT OBJECT "house"
@] FLACE OBJECT 280, 20

@] SHOW OBJECT
@]
8]

COMSTRUCT OBJECT "hansel_grettel"

FLACE OBJECT &80, 20
Fig. 2-2 Task window for Program1.tmp

46

4. Take a look at the code and see if you can make some predictions
about what might happen when you run this program. What do
you think the program does so far? What do you think it looks
like and sounds like?

5. Run the program. On the Toolbar, click the Play button and see
what this program does so far. Return to the Task window, and
accomplish your mission: Use the MOVE OBJECT command to
make Hansel and Gretel walk toward the witch’s house!

6. Insert a few lines in the Instruction list. Click the mouse in the
Instruction list on the line just above the command EXIT
PROGRAM. Use Control Key-I on your keyboard three or four
times, and the EXIT PROGRAM command will move down.
Highlight the first blank line under under these instructions:

CONSTRUCT OBJECT “hansel-gretel”
PLACE OBJECT 80, 20
SHOW OBJECT

7. Use MOVE OBJECT several times, with different number inputs
each time. Make sure that the button next to the word
“Instruction” is selected. Click the mouse in the text-entry field
below the list of all commands. Now, begin to type in the
command MOVE OBJECT until it appears in the field. Click on
the Use button. The MOVE OBJECT Data Wizard dialog will
appear. Now type in the distance in each direction you want the
object to move by using the data-entry fields in the Data Wizard.
Click on the OK button to enter the command into the Instruction
list. Your inserted lines of code may look something like this:

MOVE OBJECT(10,10)
MOVE OBJECT(10,-10)...

When you’re finished entering three or four new lines of MOVE
OBJECT code, click the Play button on the Toolbar to see your
program run. To go back to the Task window and make additions or
changes to your program code, you can either click on any portion of
the Task window that may be visible, or you can use the Window
menu on the Toolbar and select the Task window to bring it back up
to the top of the pile. If you want to change any of the number
inputs for your MOVE OBJECT commands, simply click on the
command in the list and then click on the Use button. The Data
Wizard dialog will appear, and you can change the numbers for
horizontal and vertical movements for that command.

47

Programming Tips and Tricks

It’s possible to get your objects from point A to point B with one
MOVE OBJECT command, but you’ll have smoother animation if you
string together several of these instructions...Take your time, and see
how creative you can get with this one powerful command. Can you
make Hansel and Gretel do zigzags? Loopdy-Loops?

Don’t forget to use the Grid button on the Toolbar if you need hel

planning your next move.

If you’re ending your session, don’t forget to save your program by
selecting Save from the File menu on the Toolbar, or by holding down
the Control Key and then pushing the “S” key on your keyboard.

Congratulations! You just wrote your first program! (Remember,
even though a few commands were already there, nothing happened
until you finished it off.) Stay at this same program. We’re going to
add some fun stuff to it.

Here’s another great command for animating objects:

L] MORPH OBJECT

If you’re a Kafka fan, you may already have a hunch what this
command does....if you aren’t, we’ll just go ahead and tell you. It
changes the appearance of the object that the computer is “thinking
of” by changing the graphic that belongs to the object.

Ahal 1bet you thought an object wasa graphic. But actually, they’re
two different things. A graphic is only part of an object—the part that
determines how the object looks. Working with the MORPH OBJECT
command will be the first step in helping you develop a feeling for
the distinction. There are a couple of things you should know before
you start “morphing” objects.

Avallable Graphics

Whenever you use MORPH OBJECT, it automatically brings up the
Data Wizard. This time you should see a list of the available graphics
in the Graphics Library.

48

Data Wizard

karph the AC to thiz picture:;

.Buu mughroom. bmpy

o Picture hnelgrtl. brp -
hirizllhos. b

-

Cancel | (1].4 I

Fig. 2-3 morph object dialog with available
graphics for Program1.fmp

If the object you want to change looks like a pair of children, for
example, you might want to morph it into the graphic called
gingerbrd.bmp (Can you guess the meaning of this abbreviation? If
you wish to actually see the graphics at your disposal, you can do so
by going to the Graphics Library itself.

Get there by pulling down the Window menu on the Toolbar, and
selecting Graphics Library. Once you’re in the Graphics Library, you
can see the pictures associated with the names displayed in the Data
Wizard dialog box. Click on each graphic name in the list to see the
graphic that belongs to it, and to familiarize yourself with the names.
Click the Done button to get back where you were before.

You can choose the name of the graphic you want your object to
morph into by clicking on it in the list that appears in the Data
Wizard.

Try using this command to add a new twist to your MOVE program.

LET'S PROGRAMI

You need to be back inside Program1.fmp for this exercise. If you’re
not there already, launch the FM application and click on the Open
Existing Programs button at the Welcome window. In the Open
Program window that appears, double-click on the Fundam folder
under c:\ in the directories list. Double-click again on the following:
Manual, Practice, Program1. Double-click Program1.fmp where it
appears on the left in the File Name list. That should get you where
you need to be.

1. Find a good place to insert a MORPH OBJECT command. Look
over the code for your MOVE OBJECT program, in which Hansel
and Gretel approach the witch’s house. Decide on a good place
for Hansel and Gretel to get morphed into something else...maybe
two gingerbread kids? Two toadstools?

49

2. Insert a space between existing commands, if necessary. (You
want them to be transformed in the middle of the action. Do this
by first clicking on the command that currently occupies the
desired space. Then select Insert Line from the Edit enu at the
top of the screen, or hold down the Control Key and press “i” on
your keyboard. That will make a blank space in the middle of the

existing lines of code.)

3. Use the command MORPH OBJECT, and give Hansel and Gretel
a whole new look! Once you type the command in the text-entry
field and click on the Use button, the Data Wizard dialog will
appear with a list of available graphics. Choose the name of the
new graphic from the list in the Data Wizard by double-clicking
on it (try toadstl.bmp or gingerbd.bmp). Click the OK button in
the Data dialog to enter the command into the Instruction list.

Programming Tips and Tricks!

You can see here that objects are different from their graphics.
Remember that even after you have morphed Hansel and Gretel into
mushrooms, as an object, they are still called hnslgrtl. If you want
the mushroom to keep moving around, you still use the same
instruction as before the transformation: MOVE OBJECThnslgrtl

A sample solution to this assignment can be found in the folder

the Fundam folder in Directories list in the Open Program window.

Get there by selecting Close Program from the File menu on the
Toolbar, and then clicking the Open Existing Programs button at the
Welcome window. This is a good place to visit if you’re stumped on
an exercise, or if you’re just interested in seeing how another

programmer would do it.

Flip-Book Fune Coordinalting Move and Morph

Do you remember playing with flip books when you were a kid? You
hold the book in one hand and flip the pages past your other thumb
to see Mickey and Minnie do a waltz or Donald Duck take a fall.
Each page shows the same picture with a slight variation in the
placement of the figures so that the images blend to create the
illusion of movement when the pages are flipped.

Can you guess where we’re heading with this? As we’ve already
seen, you can morph an object into an entirely different thing (and
make a caterpillar turn into a butterfly, or a cat turn into an alien).
But you can also morph an object to show the same thing in a
ditferent position. If done repeatedly, this can achieve a fun flip-~

50

book effect in your animated programs. Let’s try this now. Use the
File menu in the top left corner of your screen, and select Close
Program. This will close the program you’ve been working on and
bring you back to the Welcome window.

LET’5 PROGRAM!

. Open Program2.fmp. At the Welcome window, click on the
Open Existing Programs button. In the Open Program window,
double-click on the folder marked Fundam under c:\ in the
directories list, and then navigate through Manual and Practice
folders to find the folder for Program2. Open that program by
double-clicking Program?2.fmp where it appears in the Files list in
the Open Program window.

2. Before you click on the Play button on the Toolbar, look at the
code and make some predictions about what you’re about to see.
Now test run the program. Not much happening, is there? But
we won’t let that be true for long! Time to accomplish your
mission: Make the frog do jumping jacks and then hop across the
screen!

3. Visit the Graphics Library to see what you’ve got to work with.
Start by using the Window menu on the Toolbar, andselect the
Graphics Library so you can get familiar with the available
graphics. Click on the different graphic names in the list to see
the different pictures available for you to use in this program.
Notice that they are all pictures of the same frog in different
positions. Click Done when you are finished viewing the
graphics.

4. In the Task window, use the command MORPH OBJECT. In the
Instruction list, highlight the line under the command SHOW
OBJECT. Now click in the text-entry field. Type or select MORPH
OBJECT and click the Use button. When the Data Wizard comes
up, click on the button next to the word “picture,” and then
choose a picture of the frog in a different position from the list of
available graphics. Click Done to enter the instruction into the
list under the existing code.

5. Play around with MOVE OBJECT and MORPH OBJECT
commands to animate your frog. Just use MORPH commands for
several lines to get the jumping-jacks effect. Then intersperse
MOVE commands to get him hopping...

(Remember, your family may not be so impressed with your
programs yet, but you certainly should bel)

51

Programming Tips and Tricks

Take your time and play around. Keep your program MOVIN’ and
MORPHIN’ in as many different ways as you can think of! A sample
solution for this, as well as for all other assignments, can be found

inside the folder marked Examples in the list that appears when you
double-click on the Fundam folder in the Directory list in the Open
Program window. Get there by selecting Close Program from the File
menu on the Toolbar, and then clicking the Open Emstmg Programs
button at the Welcome window.

52

53

CHAFTER S

ConsBrucbing Objects

...and gebPing Bhem out There

where your audience can see Theml

Where Do These ObjecTs Come From? 55
The Object Desigrer 55
What's Going On Inside The Compuber? 57
The Debugger 55

Commands Inbroduced.

1 CONSTRUCT OBJECT
0 PLACE OBJECT

L SHOW OBJECT
[DESTROY OBJECT

54

----- Teacher’s Journd -----

“Where is it?” Shane asked.

“Where’s what?” 1 asked.

“The object,” Shane said, tipping her chair waaaay back to make sure I
knew she didn’t buy any of this. “I told the computer, ‘CONSTRUCT
OBJECT,’ but I don’t see any object there when I run it.” She clicked the Play
button on the Toolbar to demonstrate her action-free program. Sure
enough, nothing happened.

“See?” she said, content in confirming her own grouchy outlook on the
whole project. “You said I was the boss and the computer would do
whatever I tell it to do, but it didn’t construct any object.”

“Oh yes,” 1 said, “it did.”

“Then where is if77” she asked, giving in to exasperation.

“Right here,” I said, tapping the casing on the computer, “inside the
computer’s itty-bitty brain.”

“But [want it to be right HERE!” Shane said, flicking the screen.
“Then you need to fe/l the computer that,” I said.

“You mean I have to tell it to show the stupid thing even though I already
told it to build it?”

“You’re the boss!” I said.

55

Where Do These Objects Come From?

So far, you’ve been working with objects that have already been
constructed for you. In the practice programs you’ve used so far, you
may have noticed these three commands in the Task window:

L] CONSTRUCT OBJECT

L PLACE OBJECT
L] SHOW OBJECT

The first one tells the computer to construct an object according to a
specific blueprint in the Object Designer. You can make a whole
bunch of the same kind of object, or a set of different objects.

Once you’ve asked the computer to construct an object, you have to
tell the computer where to place the object in the Playground
window, and also remind the computer to show the object to your
audience.

It may seem odd at first to have to tell the computer anything more
than “construct object,” but that’s all in the day’s work of the
programmer. The big secret here is that the computer is really,
REALLY stupid. You have to tell it eeeeeeeeeverything!

The Object Desigrer

When you use the construct object command, the Data Wizard
shows you a list of names belonging to the object blueprints that are
currently in the Object Designer.

CONSTRUCT OBJECT

Data Wizard

Create a new object of thiz type:
selected
Ohject

available
hose Objects

Cancel | (1] I

hanzel gretel

Fig. 3-1 CONSTRUCT OBJECT dialog with
available object designs for Program1.fmp

PLEASE NOTE: Although this list may look somewhat similar to the
list that corresponds to the contents of the Graphic Library, objects

56

and graphics are completely different things. It may help you to think
of the object as the character in your movie and the graphic as the
costume, make-up, or even special effect that determines the way the
character appears to the audience at any given time. An object called
“Alien” may start out wearing a “costume” called “alien,” but may
easily morph into another costume, say, “littlegirl” or “alienpuddle”,
by the end of the program. Despite the “costume change,” the object
(or character) is still the same Alien.

When you first start working with CONSTRUCT OBJECT, you’ll be
working with object blueprints that we’ve already designed for you.
You can see the actual object designs by choosing Object Designer in
the Window menu on the Toolbar.

When you use PLACE OBJECT, the Data Wizard will appear again.

PLACE OBJECT

Data Wizard

Flace the &AC at thiz »# coordinate:
&) Number 280

.an

Place the AC at thiz v coordinate:
Q Number 20

.Bux

Cancel | 0K I

Fig. 3-2 PLACE OBJECT dialog

You use it here pretty much the same way you use it for the MOVE
OBJECT command, only this time the numbers signify particular
coordinates in the Playground Grid, instead of distances moved.

SHOW OBJECT is a nice, self-explanatory command.

L] DESTROY OBJECT

I know, I know. You worked hard to construct your object, so you’re
wondering why you have to destroy it now. Here’s the reason.
Whenever you are running FUNdaMENTAL on your computer, you
have a certain amount of the computer’s memory to play with. The
trick of good programming is to use that memory as efficiently as
possible. Each object that you construct takes up a little bit of the

57

computer’s memory while your program is running, and that’s okay,
as long as you are still getting good use out of that object.

Using this command really involves thinking about how your
program runs through fime. As you start to make more complex
programs, you’ll find that some objects may have a big role at the
beginning of your program, but then aren’t used at all later on. This
is fourth~-dimension stuff that’s pretty heavy duty. Still, it’s a good
idea now to get in the habit of telling the computer to destroy each
object once it’s no longer needed in your program, even if the
program is about to exit anyway.

Whats Going On Inside the Computers

Those of us without a strong technical background are used to
thinking of “the computer” as something like a genie in a plastic box.
But of course, when the commands CONSTRUCT OBJECT/PLACE
OBJECT/SHOW OBJECT result in a cartoon image of an alien
appearing on the Playground, it’s not because “some little guy in
there read the instructions and just did it.” (although it may be
tempting to think about it that way).

How is it really accomplished?

FUNdaMENTAL 1s an assembly language, which means that it sends
commands directly to the computer hardware that it controls,
specifically, the Central Processing Unit, or the CPU. The CPU itself
is divided up into various components. One of the most important of
these for our purposes is called the Accumulator, or the AC to its
friends (who now officially include you!). The AC is the place where
the computer’s current “thought” (or data) is contained. For
example, the CONSTRUCT command constructs an object from the
specified blueprint, and puts that new object into the AC. The MOVE
command moves whatever is in the AC (as long as that thing is an
object) in whatever way you tell it. Similarly, the LOAD commands
that you’ll be learning later “load” different things like numbers,
sounds, or strings of text into the AC. Other commands then tell the
AC what to do with whatever it currently contains.

There are two main rules for dealing with the AC:

1. The AC can only contain one thing at a time.

2. The AC can only do things with whatever it’s contains at the time.
(For example, it can’t play a sound after you’ve told it to construct
an object...)

Which means:

Knowing what’s in the AC at all times is essential for successful
programming!

58

But wait! Can the computer read English? Not really. The computer
interprets everything you tell it as a binary number. Binary numbers
are strings of 1s and Os. Looooong strings of 1s and Os! (For
example, if you were to ask the computer to load the word “hi,”
here’s how the computer understands that word in “binary speak”:
0100100001101001-kind of makes you grateful the computer can’t
talk back, doesn’t it?) Which is exactly why we need computer
languages like FM to act as official tour guide and interpreter as we
navigate the computer’s inner landscape.

CPU

This data
represents the
object thatis
constructed.

ONOOAIOTNON00ON This binary data
represents an

Current Instruction instruction like
Y ONSTELCT
OB JECT"

Illus. 3A The computer understands commands and data as binary numbers

The Debugger

Once you get used to thinking about how your program actually
maps onto the inner landscape of the computer, you’ll be much more
effective at rooting out bugs in your programs. FUNdaMENTAL has a
little feature called the Debugger which can help. The Debugger has
a window in the FM interface that helps you find places in your
program where you and the computer may not be communicating in
the way you intended. You use it when a program doesn’t run the
way you expected it to, or doesn’t run at alll For any given
instruction in your program, the Debugger can tell you the current
contents of the AC. It can tell you a bunch of other things, too, which
will be useful as you learn more about what’s going on inside the
computer. Here’s what the Debugger looks like:

59

Debugger

Debugger @

AL |S|:|me abject, | | .-\db Object

Gaggle: |{unknnwn} |

Loop: | <Maone: j C-bit: |<| =| >

Fig. 3-3 The Debugger can give you the inside scoop on any given instruction in your program

Don’t let all the other stuff in this window scare you out of using the
AC field and the data field to help you debug your programs. It’s a
great tool, and it can really strengthen your understanding of how
you and the computer are communicating.

Here’s how you open it up.

Scan through your program to find an instruction in the list that you
think might be causing a problem. (Remember, the Debugger is just
a tool for you to use. You’re still the one in charge of rooting out the
bugs in your program!)

Click on the little round stop button that’s in the Instruction list, just
to the left of the instruction you want to inspect on the inside. The
dot should turn from white to red. This makes a break point, or
stopping point, in the code.

Click on the Play button on the Toolbar and then click immediately
on the Debugger button on the Toolbar. (You may notice a little blue
arrow that appears in the middle of the red dot next to the
instruction. This means that the computer will execute this
instruction, and then pause.) The Debugger window will then open
up. You can drag the Debugger window over to the side and see it
simultaneously with the Task window.

The instruction you see highlighted and marked by the little blue
arrow is the one that the computer has paused at before executing.
In order to get the computer to execute this command, and display
the results in the Debugger window, you need to click on the Step
button on the Toolbar. It’s the little button with a shoe print on it.
Doing this will cause the computer to execute the instruction you’ve
highlighted and pause before the next one (which will now appear
highlighted and marked with the little blue arrow). By using the Step
button repeatedly, you can “step” through the whole task and see
your program executed instruction by instruction, with the
computer’s inner workings mapped out in the Debugger window.
(Just remember that you won’t see the results of the highlighted
instruction in the Debugger window until affer the Step button has
been clicked.)

60

Visit the Debugger frequently. The more you do, the better your
programs will be and the more you’ll understand and appreciate the
information the Debugger offers.

LET'S FPROGRAM

1.

Launch FUNdaMENTAL and open Program3.fmp. At the
Welcome window, click the Open Existing Programs button. In
the Open Program window, double-click on the following
folders: c:\, Fundam, Manual, Practice, Program3. Open that
program by double-clicking on Program3.fmp in the File Name
list on the left. When you open it up, you should see a task list
that 1s blank, except for the command EXIT PROGRAM. (Yoiks!
This 1s all about you! But don’t be fooled by appearances; your
program will soon take off and flyT)

Use CONSTRUCT OBJECT. Click the cursor in the text-entry field
and type or select the command, CONSTRUCT OBJECT. Click the
Use button, and choose one of the available object blueprints by
clicking on a name in the Data Wizard list.

Tell the computer to PLACE the OBJECT. Type or select the
command PLACE OBJECT and click the Use button. Type in
numbers for the x and y coordinates when the Data Wizard
shows you the dialog box .

. Remind the computer to SHOW the OBJECT...

Test run your program. Click the Play button on the Toolbar and
applaud when your new object appears in the Playground
window!

Now use MOVE and MORPH to animate your new OBJECT.
Use similar sets of commands to add more objects to the scene.
At the end of your program, use the command DESTROY
OBJECT for every object in your program so your computer

knows it can free up the little bit of memory space it set aside at
the start of your program with the CONSTRUCT command.

61

Programming Tips and Tricks

To make a really fun animation, you’ll want to have a fairly long

of commands. You can use the Control Key-I keyboard command as
many times as necessary in order to cause that EXIT PROGRAM
command to scoot down and make room.

Construct another object, or two...or three! Notice what happens

when you start trying to work with more than one object in your
animation programs. Read on to the next chapter for instructions on
how to keep everything moving.

But before you g
experiment with the Debugger to see a breakdown of how each of
our instructions affects the data in the AC, or moves data in and out.

62

63

CHAFTER 4

Using Boxes To Keep More Than One Frog Hoppin’

Moving More Than One Object 65
What's Going On Inside The Compuber? (5/5]
Boxes (515)

Commands Introduced.

[STORE BOX o/
[LOAD BOX o/

64

----- Teacher’'s Journal -----

[was raring to g0, ready to make a veritable plague of frogs in the
Playground window. That, for sure, would impress my husband! I told the
computer to construct five or six of them and place them all around the
Playground. Then I inserted MOVE OBJECT commands for every froggie.

Hop! went the first one, and then sat still. Hop! Hop! went the second and

third ones, each in turn. And on they went, one at a time, like popcorn
kernels that popped once and then played dead.

“Hmmm,” I said to myself. “Not QUITE the effect I had in mind...”

65

Moving More Than One Object:

If you constructed more than one object in the last practice exercise,
you may have noticed something funny (and a little frustrating?).
Once you have more than one object on the screen, it’s natural to
want to make them run, or jump, or fly, or waltz, or wrestle at the
same time.

It starts out okay if you construct/place/show one object, and then
use some commands to move it around. But as soon as you do it
again with another object, the computer acts like a baby who sees a
bigger lollipop. It drops the first object and “forgets” about it
forever.

UNLESS...T Unless you use commands that tell the computer to store
away the memory of the first object before it moves on to the next,
and later use commands that tell the computer to recall the stored-
away object so it can be used again.

Look at this sample code and see if you can figure out what does
what:

CONSTRUCT OBJECT froggy
PLACE OBJECT (50, 0)
SHOW OBJECT

STORE BOX frog1box

CONSTRUCT OBJECT froggy
PLACE OBJECT (100, 0)
SHOW OBJECT

STORE BOX frog2box

LOAD BOX frog1box
MORPH OBJECT longfrog
MOVE OBJECT (50, 0)
MORPH OBJECT shortfrog

LOAD BOX frog2box
MORPH OBJECT longfrog
MOVE OBJECT (50, 0)
MORPH OBJECT shortfrog

LOAD BOX frog1box
MORPH OBJECT...

If you kept up in this manner, what’s your best guess as to how the
program would look if you ran it?

66

Whats Going On Inside the Computers

Remember the rules of AC? It can only contain one thing at a time,
and it can only do stuff with what it contains. If you have something
in the AC that you want to put aside now, but use again later, you
have to use another part of the computer’s hardware to preserve a
copy of it.

The STORE BOX command creates a labeled “box” in the computer’s
memory space, and then fills that space with a copy of whatever’s in
the AC at the time you use the command. In the sample code above,
even though the second CONSTRUCT OBJECT “froggy” boots froggy
number one out of the AC, he isn’t lost forever. There is now a copy
of him “in storage.”

The LOAD BOX command copies things back into the AC from the
storage space. But it does this indirectly, by calling for a box name,
instead of for the object itself.

You can load objects back into the AC, and then move them or even
morph them, and the stored copy will be automatically updated
according to your changes.

For example, if you load the frog in Frog1box into the AC, and then
morph the AC copy into a prince, Frog1box will now contain a copy
of the prince as well.

Frog
> Object | Frogboxi

STORE BOX Frogbox]

Current Instruction /\/\

CPU Boxes (aka Memory)

Fig. 4A STORE BOX places a copy of the AC contents in memory

67

L LOAD BOX

When you use the STORE BOX command, the Data Wizard reminds
you to name your box with some word or words that will later help
you remember what’s in it.

[STORE BOX

STORE BOX

Data Wizard

Store the contents of the AC in thiz box; MNew Box
MName-Entry
badwolfbo] Fiald
hovzebo o
redhoodbox Existing Boxes

Cancel | 1].4 I

Fig. 4-1 STORE BOX dialog, Program4.fmp

You can just type in an appropriate name for your box and press
return when you are done. Now it’s time to make your box official.

The Data Wizard will ask you to do so with a little dialog box that
looks like this:

I |

Box housebox has not been defined.
Would vou like to define this box?

Fig. 4-2 Undefined Box dialog

The computer can’t work with a box unless it has been named and
entered into an official box list, which is to the right of the
Instruction list in the Task window. One thing you should know is
that box names cannot contain a space, so if you’re using more than
one word, run them together like this: “frogbox.” Clicking Yes in
this dialog will “define” the box by entering it into this list. (If you
click No, then youw’ll return to the dialog and the new box name will
not appear in the list. You can either change the name of the new
box that you want to define, or cancel the whole thing by clicking on
the Cancel button.)

68

Now that the box is “defined,” it will appear in the list of available
boxes in the region to the right of the code in the Task window.

Boxes: _
@ badwolfbox Boxes List
@ housebox *'-[EI” =lobal
@ redhoodbox Eoxes]

Fig. 4-3 Box region of the Task window, Program4.fmp

Notice that there is a little globe symbol next to the box name in the
list. That signifies a “global box,” which means that whatever’s
inside can be called into any part of your program at any time.

When you use the LOAD BOX command, the Data Wizard will ask
you to choose from the same list of official, or defined, boxes.

LOAD BOX

Data Wizard

Load thiz box into the AC:
badwolfhox

badwolfbox
housebox
redhoodbox

Cancel | | 1].4 I

Fig. 4-4 LOAD BOX Data Wizard Dialog

You can do this by clicking on the correct name in the list of boxes.
The name should appear in the empty space at the top of the Data
Wizard dialog. Click OK when you’re sure you’ve selected the
correct box. (At this point, that shouldn’t be too tricky, since there’s
only onel)

Boxes

The nifty thing about boxes is that they can help you hoard a whole
variety of things, from objects to sounds to numbers to text strings to
advanced programming stuff like gaggles and booleans!

The rules for boxes vary slightly, depending upon the kinds of data
they’re storing. But in general they always serve the same handy
function in your programs. We’ll be seeing a lot of them!

69

LET'S PROGRAMI

1. Launch FM, and open Program4.fmp. Atthe FM Welcome
Window, click the button to Open Existing Programs. In the Open
Program window, double click on the folder markedFunddam
under c:\ in the directories list, and then navigate through
Manual and Practice until you find the folder for Program4 and
double-click on it. When Program4.fmp appears in the file
names list to the left, double-click there, to open the program.
The Instruction list should show those old familiar
CONSTRUCT/PLACE/SHOW commands for two different objects,
Red Riding Hood and the Wolf.

2. Use STORE BOX. Insert the new command after the first SHOW
OBJECT command. Click the Use button after you have typed or
selected the STORE BOX command.

3. Use the Data Wizard to name the box. Don’t forget to use
descriptive names so you know what’s in them.

4. Repeat steps 2 and 3 for the second object. Look for the second
SHOW OBJECT command, and insert your new STORE BOX
underneath.

5. Now use LOAD BOX underneath all the existing code, and above
the command EXIT PROGRAM. (You may need to insert some
lines to make room above the command EXIT PROGRAM. Do this
with the keyboard shortcut Control Key-1.). Click the Use button
to see the two boxes from which you can choose for loading into
the AC.

6. Select the box containing the object you wish to move first.
Click Done to enter this instruction into your list.

7. Use MOVE OBJECT. The AC will now move the object that was
stored in the box you just loaded.

8. Repeat steps 4, 5, and 6 for the second box, and continue
alternating between the boxes with MOVE commands in
between. Get Red and the Wolf both moving through the woods
toward Grandma’s house.

9. Spice up the adventure! Add Grandma and Woodcutter objects,
and get them going too. Or go back to the program you created
in the last chapter, and use boxes to add more characters and
actions.

70

Programming Tips and Tricks

Once you have a program with boxes, take a look at what the
Debugger can do for you. Refer back to chapter 3 for a reminder
the Debugger window. Notice that in the
bottom portion of the Debugger window, you can see a list of all the
boxes used in your task. You’ll find yours under the Global Box list.
This may not seem so vital now, but it gets more and more useful
when you have longer programs with dozens of different kinds of

If you need help getting started with this exercise, check out the code
elinsert correct page numbpber for code sequence] of

this chapter. You can use it as a model, just to remind you what

command goes where. Once you get going, you can rock the house!

ertips? Read on to Chapter 5 for nifty tricks to save

@, @,
you from typing the same code over and over.

71

Using Loops To Repeals Yourself with Style

Do That Againl 73
What's Going On Ihside The Compuber? 74
Markers 70

Commands Inbroduced.

[SET LOOF
0 JUMP LOOP

O JUMP ALWAYS
[JUMP ALWAYS

72

----- Teacher’s Journd -----

The assignment was simple. Use the MOVE OBJECT command to make the
little spaceship in the upper left corner of the Playground fly over and land
on the head of the stick-figure teacher (a KidPix self-portrait), who stood
unsuspectingly at the lower right.

Pairs of students went to work, and within a few minutes we had several
versions of the same alien abduction running on monitors around the room.
In some, the ship made a straight beeline and crash-landed on the teacher’s
head. In others, the ship hovered, loopdy-looped, or skulked menacingly
below the horizon before swooping down upon the victim.

Everyone was finished, except for Manuel. Despite the urgings of his
partner, LaToya (“just LEAVE it1”), Manuel was determined to add some
feature to his program. He was leaning forward in his seat, pecking away at
the keyboard, and emphatically waving off all the would-be audience
members.

Finally, he was ready. We all gathered around, eager for his demo. As we
watched, the little ship flew across the screen, landed on the stick-teacher’s
head, and proceeded to pulse up and down repeatedly for several seconds.

“Brain scans!” Manuel announced, his own face fairly abducted by a huge,
satisfied grin.

“Awesome!” we all agreed.

“Hey, Manuel,” I said. “Let’s see the part of the code that makes it go up
and down like that.”

Manuel scrolled down his program to find the place where the same pair of
Move commands was repeated over and over. It looked like about 50 lines
of code. (MOVE OBJECT(0,-10)/MOVE OBJECT(0,10) etc.)

“About how many times does it scan, do you think?” I asked.

Manuel looked at LaToya, who shrugged. “I don’t know, maybe 20?” he
said.

“All T know is, it took us forever!” LaToya said.
“What do you mean, ‘Us’?” Manuel retorted.
“How’d you like to try something like, say, 4,000?” I said, enjoying the sight

of Manuel’s dropped jaw, as LaToya nearly fell out of her chair. “Let me tell
you about a couple of new commands...”

73

Do That Agsrl

Okay, so we haven’t been quite fair. If our experience with these
things holds true, at some point during the previous practice
exercises you: a) sat there diligently like Manuel, repeating the same
sequences of code over and over again in order to keep your program
running a little longer, all the while thinking to yourself, “There has
to be a better wayl!” or b) like LaToya, you got disgusted and gave up
as soon as you got the point, thinking to yourself, “There has to be a
better way!”...a better way, that is, to repeat code sequences without
actually having to sit and type them in the Task window, over and
over and over.

Well, in either case, you were right. There is a better way, especially
now that you know what short work the computer makes of your
laborious efforts.

When LaToya and Manuel left class that day, their spaceship was still
boinking up and down, somewhere on the way toward completing
4,000 brain scans. Here’s how their new code looked:

SET LOOP 4000
@scan

MOVE OBJECT (0,~10)

MOVE OBJECT (0, 10)

JUMP LOOP @scan

Before you read on, take a minute to really look at the commands and
see if you can tell what’s going on.

[SET LOOP

L] JUMP LOOP
L] JUMP ALWAYS

When you want the computer to repeat a sequence of code, you must
first use a command that tells the computer the number of
repetitions you want. (Remember, you can’t leave anything up to the
imagination, because your computer does not have onell)

When you use the command SET LOOP, the Data Wizard will ask
you how many times you want the action repeated.

74

SET LOOP

Data Wizard

Set the loop regizter to this number or bos:

Enter desired
eNuthI number of
@Box iterations.

Fig. 5-1 SET LOOP Data Wizard dialog

Notice that just telling the computer SET LOOP 4,000, wasn’t
enough for Manuel and LaToya to get that little spaceship to actually
do 4,000 brain scans. They also needed the command JUMP LOOP,
to remind the computer when it was time to “jump” back up and
repeat something that came before, instead of continuing on down
the list.

Whats Going On Inside the Computers

The command SET LOOP brings in another part of the computer
called the Loop Register. This is like the little counter they use at the
ticket booth to keep track of how many people have gone into the
fair. Here, it keeps track of how many times the computer has run
through a particular piece of code. Unlike the counter at the fair
gates, the Loop Register counts backwards, starting with the number
you specify with the SET LOOP instruction, and going down (or in
techie speak, “decrementing”) one number for each loop until it
finally reaches zero. A reading of zero on the Loop Register signals
the computer that it can finally move onto the next instruction after
the JUMP LOOP command.

JUMP LOOFP is in a whole different category of commands from
those we’ve seen so far. It doesn’t put a value into any part of the
CPU. Instead, it gives directions to the computer about how to follow
the other instructions in the list, by way of telling it to jump up to
repeat previous instructions, and to keep on jumping until all 4,000
repetitions were checked off in the Loop Register.

(If class hadn’t ended before the 4,000 was completed, Manuel and
LaToya would have seen how the computer finally finished its task
and proceeded to ignore the JUMP LOOP in order to move down to
EXIT PROGRAM).

Using these two commands is an example of good programming style
because it makes it a lot easier to read and to change the commands
in your list. You may be tempted to think of this as more efficient

75

programming, but that’s not actually the case. In programming,
efficiency is measured by how many steps the computer has to take
in order to complete all of your instructions. Regardless of how fast it
goes, the computer will still do every little thing you tell it to. Even
though Manuel and LaToya saved themselves a lot of work, the
computer still had to go through the same number of steps that it
would have done had they chosen to sit there forever and type in
8,000 MOVE OBJECT commands.

CFU

AC

SET LOOF 25

Current Instruction

Illus. 5A The Loop Register

76

Markers

When you use the command JUMP LOOP, the Data Wizard will ask
you to identify the place where you want the repetition to begin.

JUMP LOOP

Data Wizard

|
Jump tothis Marker if the LR iz > O

Selected
Marker

Declared
Markears

Fig. 5-2 JUMP LOOP Data Wizard Dialog

“What???1” you ask. “I thought I already did that with the whole SET
LOOP business...”

Nope. SET LOOP does what the command name implies (in terms of
setting the Loop Register) and not a thing more. So every time you
use the SET LOOP command, you need to follow it with a marker to
mark the beginning of the sequence that needs to be repeated.
Manuel and LaToya marked the spot with this marker: @scan.

A marker is not a command. It gives no instructions to the computer
in itself. This is reflected in its slightly off-center orientation in the
Instruction list. It’s also a different color.

L] JUMP ALWAYS

And while we’re jumpin’ around... another useful JUMP command is
JUMP ALWAYS. It is similar to JUMP LOOP in that it also tells the
computer to jump to another place in the code instead of just moving
down to the next command down on the Instruction list. You need a
marker in place before you use this command too.

Can you guess how it differs from JUMP LOOP? (Hint: JUMP
ALWAYS works by itself with its marker. It does not require a SET
LOOP command.)

77

LET'S PROGRAM!

1.

Launch FM and open Program5.fmp. Start at the Welcome
window. Click Open Existing Programs, and navigate through
the directories folders to Program5.
(c:\Fundam\Manual\Practice \Program5). Open Program5.fmp,
and look at the existing code. You should see commands to
construct one Jack object which is getting stomped by one giant’s
boot object one time.

Notice the little note in plain English which says “Jack starts

running from the giant here” inserted into the code for this
practice program.

1T L

iJack starts running from the giant here) [¥ USE |

{* Comment " Instruction " Marker

O

D000 0

STORE BOX giant N

(Jack starts running from the giant here) [
LOAD BO giant

bMORFPH CBJECT "jackfitbmp"

FLACE OBJECT 320, 30

LOAD BOx jack

MORFPH CBJECT "jackjpr.brmp" -

-

ig.

5-3 Comments give information to people, not to the computer

That’s called a comment. It doesn’t tell the computer anything,
but it’s very useful for humans, as I'm sure you’ll agree. You can
make comments in your code any time you want, by clicking on
the little radio button next to the word “Comment” which
appears above the Instructions list. You can add or delete them
the same way you do regular Instructions.

Examine the instructions responsible for the stomping, and test
run the program to see what it does so far. You’ll use the Play
button on the Toolbar for this.

Go back to the Task window and use SET LOOP. You’ll highlight
the line just above the comment, and then click the cursor in the
text-entry field and select SET LOOP. Click the Use button and
use the Data Wizard dialog to specify how many repetitions of
the action you have in mind.

Place a marker underneath the SET LOOP instruction so the
computer knows which instructions to repeat. Start by inserting
and highlighting a blank line under SET LOOP, and clicking on

78

the radio button labeled “marker” above the Instruction list.

Then enter the text for your marker in the text-entry field, the
same way you would type in a command. (Please note that,
except for the @ sign, the Instruction Wizard can’t help you with
this, since a marker doesn’t exist until you write it!). Click the
Use button, or press the Enter key, and the marker will be entered
into the Instruction list.

(@

S TOMPF [—]v' USE

-

Comment " Instruction = Marker

O

[
SET LOOR 1000
@ETOMPI
(Jack starts running from the giant here) [
LOAD BO giant
bMORFPH CBJECT "jackftlt brp"
FLACE OBJECT 320, 30
LOAD BOx jack
MORFPH CBJECT "jackjprbrmp" -

F[O0000

. 5-4 Marker button and marker text, “@stomp”

Use JUMP LOOP. Scroll down and find the last instruction before
EXIT PROGRAM. Insert a line about EXIT PROGRAM, if
necessary, and use either the text-entry field or the All
Commands list to select this command. Click Use and then use
the Data Wizard to specify the marker that will identify the code
which needs repeating.

Run your program and see how it looks. Then experiment with
different inputs for the SET LOOP command to really get a feel for
how it works.

Try these commands in other programs. Choose Close Program
from the File menu in the Toolbar. From the Welcome window,
open up one of the other practice programs you’ve worked on.
Play around, framing different sections of code with the
SETLOOP/marker/JUMP LOOP commands to get a finite number
of repetitions.

Experiment with JUMP ALWAYS. Try putting a marker
somewhere near the top of your program-say, after an object is
constructed, but before you do anything else with it. Then use
JUMP ALWAYS as the last command before Exit Program, and
specify the marker you just put in near the top. Find a place in
between JUMP ALWAYS and its marker and use SET LOOP/JUMP
LOOP with a different marker. Your code might look something

like this...

79

CONSTRUCT OBJECT littlefish
SHOW OBJECT

@repeat
PLACE OBJECT (0,0)

@grow!

MORPH OBJECT bigfish
MOVE OBJECT (5,5)
MORPH OBJECT littlefish
JUMP LOOP @grow!

JUMP ALWAYS @repeat

Programming Tips and Tricks

Try using loops and markers to move an object a ver
say, (1,1),a lot of times in a row. Your code might look something
like this:

SET LOOP 300

LOAD BOX fishbox
awfloat
MOVE OBJECT(1,-1)

JUMP LOOP @float

Using SET LOOP/JUMP LOOP around sets of MOVE commands with
small inputs is a good way to make slower, smoother animation.
Aside from looking better, slower animation will be useful later on
for programs in which you want the user to be able to click on

®.
B 0 0 <

moving things to achieve a special effect

Don’t forget to check the radio buttons above the Instruction list to be
sure that the one you’ve got highlighted is correct for what you’re
trying to do!

Once again, the debugger can help you keep track of your loops. If
ou activate the Debugger and then step through your

Debugger window. For each time the JUMP LOOP instruction is

executed, the number in this field will decrease by one. Niftyl

80

81

CHAFTER ©

A Few Other Goodies

Sound Cues And Scenery Changes &5
What's Going On Inside The Compuber? &6
Two Ways To Flay Sounds &7

Commands Inbroduced.

ERINGFRONT OBJECT
SEND-BACK OBJECT
HDE OBJECT

RESIZE FLAYCROUND
INSTALL BACKGROUND
LOAD SOUND

PLAY SOUND
PLAY-N-WAIT SOUND

[
[
[
[
[
[
[
[]

32

----- Teacher’s Journd -----

“Hey. You can’t see it!” Teodros wailed.
“Can’t see what?” I asked.

“These aliens are supposed to land, turn into a bombs, and explode,”
Teodros said. “You can’t see the last part with the bomb.”

“Let’s see,” I said, taking the mouse and clicking on the Play button. A stark
landscape appeared in the Playground window, with a lone brick building
on the right under siege from a parade of aliens entering and descending
from the left. And sure enough, each time an alien appeared, it descended
down behind the brick building, and the bomb effect was lost.

Across the room, Kulin and Kelley were having a different problem.
“That looks silly!” Kulin was saying.

“I don’t think it looks that bad,” Kelley said. “I mean after having all that
pizza and soda, he SHOULD burp, don’t you think?”

“Well, yeah, but that KidPix writing looks silly on there. I wish it could
actually MAKE the sound, you know?”

“Yeah,” grinned Kelley, beginning to tune up her own repertoire of gaseous
sound effects.

I decided it was a good time to pull the class together and teach them some
new commands.

83

Sound Cues And Scenery Changes

With the commands you know, you have everything you need to
make basic animation come to life. Now you’re ready to add the
trimmings! How about sound effects? Scenery changes? Extra
choreography?

In this chapter, you’ll learn eight new commands that really help you
spice up your programs. You now know enough about
programming with FUNdaMENTAL to begin using these commands
right away.

Begin by looking at the list at the head of the chapter. Try to make
some predictions about what each command does. Then go ahead
and read the explanations below.

L BRINGFRONT OBJECT

L] SEND-BACK OBJECT
LI HDE OBJECT

These three commands give you more control over how your objects
appear, move around each other, and disappear. BRING-FRONT
OBJECT tells the computer to superimpose the object that’s in the AC
in front of the other objects in the program. SEND- SEND-BACK
OBJECT does the opposite. HIDE-OBJECTtells the computer to do
exactly that. (Great for disappearing acts!)

L RESIZE PLAYGROUND

LT INSTALL BACKGROUND

These two commands give you more control over the Playground
environment. If you want your Playground to appear bigger or
smaller, use the RESIZE PLAYGROUND command which allows you
to plug in the dimensions of the Playground window before you start
your program (or anytime in the middle, for that matter).

84

RESIZE PLAYGROUND

Data Wizard

Iz this number or box for the width:
&) Number 300

.Bux

Ize thiz number or bow for the height:
. Humber

.Bux

Cancel | | 1].4 I

Fig. 6-1 Resize Playground dialog

INSTALL BACKGROUND tells the computer to put up or change the
scenery behind the action. When you use this command, the Data
Wizard will offer you a list of all the available graphics in the
Graphics Library.

INSTALL BACKGROUMND

Data Wizard

[nztall this picture in the background:

_ selected
@ Box Bl 207 Background
Pict
®Ficture ducklt brop Available
duckrt.brp raphics

Cancel | 0K I

Fig. 6-2 Install Background dialog with
available graphics from program3fmp

Any graphic can serve as your background, from Green Forest to
Green Frog. Experiment and see what happens when you tell the
computer to install different graphics as the background for your
program. Again, this is a good command to use at the beginning of
your program, but you can use it to get a change of scenery any time.

85

LI LOAD SOUND

L] PLAY SOUND

L PLAY-NEWAIT SOUND

(Hey! It’s a new kind of datal Data is the techie term for all the kinds
of stuff you can manipulate in your program. Remember, objects are
only one kind of data that you can manipulate with FUNdaMENTAL.
There are five other kinds. Two of the data types have funny-
sounding names: gaggles and booleans. The other data types are
more self~explanatory: numbers, text ~“strings,” and sounds.)

You can use the sound commands to add sound effects to your
programs. Any sound is possible; spoken messages and instructions,
soft music, or animal sounds can be at your service. (Rude noises of
all kinds are always a favorite among my younger students.)

When you use the command LOAD SOUND, the Data Wizard will
show you a list of sounds in the Sound Room which are available for
you to use.

LOAD SOUND

Data Wizard

|
Load thiz zound into the AC: Selacted

ahooga. o Sound

= Avallable

doorbell.waw
drip_wal.l,l w SOUﬂdS

Cancel | 1].4 I

Fig. 6-3 LOAD SOUND dialog with
available sounds from Program3.fmp

(You may have chosen to take a look at the Sound Room in the
previous unit. You can do so from anywhere inside FM by pulling
down the Window menu on your Toolbar, and double-clicking on
Sound Room. You can also get there by clicking the headphones icon
on the bottom of the Program window.)

86

Whate Coing On Ingcide the Computer’

Once you load a sound into the AC, whatever else that was there
before is now gone. You cannot, for example, tell the computer:

LOAD SOUND “getalongcow”
PLAY SOUND
MOVE OBJECT (5,0)

or

CONSTRUCT OBJECT cow
PLACE OBJECT (100,100)
SHOW OBJECT

PLAY SOUNDmoo!

I know these sequences may seem perfectly logical to you, but the
computer isn’t so smart. Go ahead and try this sometime, and see
what happens. (BONKI) Remember the rules of the AC:

It can only hold one thing at a time, and it can only do things with
what it’s holding.

If you use CONSTRUCT OBJECT to put an object into the AC, and
then immediately tell the computer to play an appropriate sound, the
computer will essentially answer, “What sound?” Just because you
remember that the perfect sound is ready and waiting in the Sound
Room doesn’t mean that your computer remembers. You have to
LOAD SOUND first!

AC still
has data
from
previous
instruc-
tion!

FLAY SOUND

Current Instruction

CFPU

Illus. 6.A Wrong AC type!

87

Two Ways Bo Flay Sounds

You may have noticed that there are two different options for playing
a sound that has been loaded into the AC: PLAY SOUND and PLAY-
N-WAIT-SOUND. Their names give a hint about the different
functions they’ll serve when you use them in your programs. When
you do the next Let’s Program section, play around, and see what else
you can discover....

LET’S PROGRAM!

Launch FM and open Program3. fmp. We’re going back to this
program for this exercise. From the Welcome window, click
Open Existing Programs, and navigate through c:\, Fundam,
Manual and Practice to Program3. Open Program3.fmp.

2. Go to the Sound Room to see what sounds you have so you can
make decisions about adding sound effects. Use Window menu
on the Toolbar, and select Sound Room. The Sound Room
window looks like this:

Sound Boom

Frewiew
Sounds

doorbell waw
drip.waw
pOp.ay
Larzan. wav

Fig. 6-4 Sound Room with available sounds from Program3.fmp

3. Preview the available sounds. Click on each sound name in the
list to highlight it, and then click the Play icon to get a preview of
what they all sound like. Click Done when you are finished.

4. Return to the Task window and review the code you wrote for
this program. Think about how you might incorporate the

available sounds into your program, and when you’d want them
to be played.

5. Add the commands LOAD SOUND/PLAY SOUND or PLAY-N-
WAIT SOUND to your program. (You may need to insert some
lines to fit these commands in.) Use the list in the Data Wizard to
specify the sounds you have in mind. (Note: If you want all the
action in your program to stop until the sound has finished
playing, then use PLAY-N-WAIT SOUND. If you want the sound
to play as the action continues, then try PLAY SOUND.)

6. Test-run the program. Click on the Play button on the Toolbar to
see (and hear!) your program run.

7. Now think about adding scenery with INSTALL BACKGROUND.
(This 1s a good thing to do at the beginning of your program code,
although you can add or change scenery at any time in your
program.) Insert a space, if necessary, and use the command
INSTALL BACKGROUND. When the Data Wizard shows you a
list of available graphics, choose a graphic that you think would
work well here, and select it as the input for this instruction.

8. Do another test-run. Click the Play button on the Toolbar to see
how it looks.

PROGRAMMING TIPS AND TRICKS

It’s fun to experiment with different graphics — even unlikely ones!-
for your background. Take your time and play around with this.
You can get some neat effects.

once. Add background scenery, choreography, disappearing acts,
and sound effects to this or other programs that you’ve created.

Dazzle yourself... your cat...your neighbors... (Come on! By now

you’re ready for a tougher audiencer)

89

CHAFPTER 7

Be Your Own Graphics DeparBmenT

and Sound Crew

If You Want I Done Right...)

Let’s Start A New Programl)

Personalizing Your Graphics Library 92
Let’s Bring In Our Own Artl 93
Let’s Import Graphics... 95
Let’s Take Over The Sound Rooml 96
Let’s Import Sounds... 97

Pubbing Your Picbures And Sounds To Work 95

90

----- Teacher’s Journd -----

Jaime was a tough nut from day one. He wore baggy slacks and a little
ponytail at the nape of his neck, and generally came to class wrapped head
to foot in a bad attitude.

The only things about him as noticeable as his attitude were his innate
intelligence and his artistic talent.

As soon as we started, he was dying to get his hands on the graphics. All
the prefab stamps and stick drawings I used in the practice programs just
served to put extra curl in his lip.

“That’s LAMEY” he would regularly pronounce. “That’s SORRY!”

Imagine my delight on the day I was finally able to say, “Okay, Jaime! I'm
through torturing you with my lame graphics. From now on, you run the
whole show!”

He shot me a suspicious glance, but soon his slouching body was
transformed with artistic concentration. With amazing skill, he was using a
popular children’s draw -and- paint program to create a detailed boxing
ring, complete with full-color Mexican and U.S. flags hanging from the
ceiling.

I reminded him that the stick-figure boxers had to be drawn on a separate
“sheet” since they would need to move around as objects, independent from
the background.

“Hey, wrap it up!,” I finally said. “That’s enough, Leonardo da Vinci. Let’s
transfer your stuff over to FUNdaMENTAL and start programming.”

At first he was reluctant, afraid that pasting his work into the FM
environment would somehow “mess it up.”

But once he saw his own artwork appear in the program Graphics Library,
his face cleared of its habitual scowl and filled with interest. He quickly
used the Object Designer to create object blueprints using his stick figures.
Then he began to program.

He used INSTALL BACKGROUND, and there was his own boxing ring! Then
he used CONSTRUCT OBJECT and constructed two boxers according to his
blueprints in the Object Designer.

And as his hand-drawn boxers began duking it out in front of their custom-
designed boxing ring, Jaime forgot himself completely. He spread out his
arms, almost as wide as the smile spread across his face, and announced to
the world, “Hey! I'm famous!”

91

If You Want It Done Right...

If you are of the artistic bent, or even if you just feel that getting
something done right means doing it yourself...then maybe you, like
Jaime, have been waiting to find out how to personalize your
Graphics Library and Sound Room with homemade (or at least hand-
picked) supplies. Perhaps you’ve asked yourself when you would get
a chance to design your own object blueprints in the Object
Designer. If you haven’t asked yourself these questions, it’s time you
did! And if you have, then the time is now!

Up until now, we’ve provided you with ready-made goodies from the
Graphics Library, the Object Designer, and the Sound Room so you
could concentrate on how to manipulate different kinds of data with
commands. But now that you are an experienced programmer (you
arel), you’re ready to supply personalized, hand-picked data for your
programs.

You can always add to the Graphics Library and Sound Room of
existing programs. But once you’re ready to bring in your own stuff,
you’re ready to start from scratch with a whole new program. So
let’s begin with that.

LET'S START A NEW PROGRAM!

1. Create a new FM program. At the Welcome window, click on
the Create New Program button. (Congratulations! This is a
first!) You should see a window that looks like this:

Save new Program as |
File narne: Folders:
I'T'.'r'F'_“Z'Eﬂlfl'ﬂD ‘=\fundam
;I = ot ;I Cancel |
%Th?l??l_h; Help |
S e |
;I 1 Manual ;I

Save file as ype: Dinives:

IFundamentaI Frograrm j I =l j

Fig. 7-1 New Program window
This is where you name your program and make a new folder for it.

2. Name the program. Click the cursor between the asterisk and
the dot in the new file name *.fmp which appears in the text-
entry field. Hit the backspace key on your keyboard once to get
rid of the askterisk, and type the name myprog1 in its place to the

92

left of the dot. (This is short for My first program.) The whole
thing should look like this: Myprog1.fmp.

3. Save the new program file in the fundam folder. In the
Directories list, double-click on the folder marked fundam to
open it. The text under the word “Directories” (which describes
the path you’ll follow to get at this new file once it’s saved),
should read, c:\fundam.

4. Click OK, and yow’ll automatically end up at the Task window for
your new program. Please note: if you quit out of this program
and want to work on it again later, you’ll find it with the other
existing programs.

When you choose to make a new program from the Welcome
window, you’ll not only end up with an empty Instruction list, but
you’ll have an empty Graphics Library, Object Designer, and Sound
Room as well. You’ll need to stock up before you can get started
programming.

Personalizing Your Graphics Library

In the Graphics Library, you can paste in your own hand-made
graphics and import graphics from other libraries and programs
within FM.

Bringing in your own artwork is the most fun. You’ll get a chance to
see your own images come alive in your programs, and feel truly
famous, just like Jaime! Here’s how to do it:

93

LET’S BRING IN OUR OWN ART!

Use your favorite draw -and- paint program to make a simple
masterplece (If your computer has enough memory, you can
even keep your FM program open while you do this.) You can
also use available stamps if you’re not feeling particularly artistic.

2. Copy your picture to the clipboard. When you finish with your
design in your draw-and-paint program of choice, use available
selection tools to select it, and then use the Edit menu at the top of
your screen to copy the image onto the computer’s “central”
clipboard.

Use'copy” [e Edit View Text Pick Options
in Edit menu

——————

5.5
2/

Fig. 7-2 Custom graphic in paint application,
ready for export

3. Go back to Myprog1.tmp. If you’ve quit out of FM, launch it
again, and select Open Existing Programs at the Welcome
window. In the Open Program window, navigate through the
directory folders to find Myprogr1.fmp which you’ve just
created. Open the program.

4. Go to the Graphics Library. Select it from the Window menu on
the Toolbar, or get there by clicking the Graphics Library icon at
the bottom of the Program window.

5. Define and name a new graphic. In the Graphic Library, click
on the New button. A generic graphic name will appear in the
graphics list; it should look like this: “image_1.bmp”

94

#% Graphic Library

Graphic Library

Graphie: |Elir|-bm|:'

Fig. 7-3 Custom graphic imported into the Graphics
Library for Myprog1.tmp

. You can double-click in the text box to highlight the generic

name, and then enter a new graphic name that describes the
picture you have waiting on the clipboard.

Paste your picture into the Graphics Library. Select “Paste” from
the Edit menu...Hey! There’s your picture! (fun, huh?)

. Another option is to import graphics from another FM program

(which is most useful if you used your own really cool artwork
in one program, and you’d like to use it again in another), or
from the FUNdaMENTAL central Graphics Library. Here’s how:

95

LET'S IMPORT GRAFPHICS
- From Other Flaces in FUNAaMENTALI

1. Go to the Graphics Library and select the Import option by
clicking on the “Import” button. That will bring you to the
Graphic Importer.

#% Build Graphics Library

GraEhic Imnorter %

Picture Files: Graphics to Add:

Directory:

Y manual -
3 practice

2 demal
(] 50UNDS h

el [[o0]

Fig. 7-4 Graphics Importer

2. Navigate through the directories to select the program or library
which has the graphics you want. Notice on the left of the
Graphics Importer there is a box marked Directory. This works
just the same way as the directories box in the Open Program
window. Start by double-~clicking on the folder marked Fundam
to make sure you can see all the choices. Then scroll down the
list until you find the program from which you want to grab
graphics. Double -click on the directory folder for this program.

3. Get into the graphics. Double-click on the folder marked
graphics which will appear among the files and folders beneath
open program directory. A list of all the picture files in this folder
will be displayed in the Picture Files list in the middle of the
Graphic Importer.

(Note that you may also grab files off a floppy disk or CD-ROM
using the drive box, which is directly below the Directory box.)

4. Preview the picture files. Once you’re into a stock of pictures,
click on any file in the Picture Files box and you will get a
preview of the picture in the frame above the directories.

5. Import the ones you want. To import a graphic from this list to
your Graphics Library, click on it’s name. Then click on the Add

96

button (it has an arrow pointing right.) The graphic name should
appear in the Graphics to Add box.

If you somehow end up with a graphic in your import column
that you don’t really want, select that graphic in the right-hand
list and click on the Delete button.

6. Close the Graphics Importer. After you’ve finished adding all the

graphics you want, click on the OK button. This will bring you
back to the Graphics Library, where you can rename your newly
imported graphics by following the procedure you learned earlier
in this chapter. Click Done when you are finished to return to
the Task window. (Make sure you have af least two different
graphics in the Graphics Library to use in Myprog1.fmp.)

LET'S TAKE OVER THE SOUND ROOM!

“Oink!?” “Vroom!” “Splash!”

In the same way that you created or selected your own images to use

in your program, you can record or select your own sounds to use in
your programs.

1.

3.

Get into the Sound Room. You can do this by selecting Sound
Room from the Window menu on the Toolbar.

To create a new sound, click on the New button. A new sound

name will appear in the sounds list. It should look like this:
sound_1.wav.

Sound Boom

RECORD

] 0.0 secs

Fig. 7-5 Sound Room with generic new sound name

You can double-click in the text box and enter a new sound
name. Press return to make it official.

97

4. To record a new sound click on the Record icon. (You need a
microphone of course; many standard tape-deck mics will do
fine).

5. To play a sound, click on its name in the sounds list and then
click on the Play icon.

6. To delete a sound, first click on the sound in the sounds list and
then click on the Delete button.

LET'S IMPORT SOUNDS
- From Elsewhers in FUNdaMENTAL

1. Click the Import button in the Sound Room Window.

2. Navigate through the directories to find the program that has the
sounds you want. When the Sound Importer comes up, it will
look like this:

Sound Importer E

r——

Sound Importer ﬁ a

6
PLAY spgp
!
000 secs
I 1

Directory:
=3 practice -

29 demal
[GRaPHICS

Sound Files: Sounds to Add:

Add

Bemave

Cancel | ak. I

Fig. 7-6 Sound Importer

3. Select the program you want by navigating through the
Directory box. When you reach a folder that contains sound files
(their name will end with “.wav”), they will appear in the sound
Files box. (Note that you may also grab files off a floppy disk or
CD-ROM using the drive box, which is directly below the
Directory box.)

4. To preview the sound, click on the file in the sound Files box
and then click on the Play icon.

5. To import a sound from this list to your Sound Room, click on
the name of the one you want. Then click on the Add button (it

98

has an arrow pointing right). The sound should appear in the
Sounds to Add box.

If you somehow end up with a sound in your “sounds to Add:”
column that you don’t really want, select that sound in the right-
hand list and click on the Remove button.

6. Close the Sound Importer. Click on the OK button when you are
finished selecting sounds to import, and you will be returned to
the Sound Room. Your imported sound names should appear in
your Sound Files list.

PubPing Your Pictures and Sounds to Work

Well, now you have a new program with a stocked Graphics Library
and Sound Room. What now?

You can make a program that just plays different sounds, and if
you’re creative you can come up with something neat. But you can
really strut your sonic stuff if you incorporate sounds as sound effects
for animation.

And we know that FM can’t do much at all with those nifty graphics
unless you attach them to objects. So now it’s time for you to learn
how to build your own object blueprints, complete with hand-picked
graphics and a few other cute tricks. Read on to chapter 8 to learn
how!

99

Designing BlueprinBs for “Clickable” Obj

ObiecT hsPances And Object Designs 101
Sw-Task? What's A Sub-Task?2? 101
Let’s Make A New Sub-Task 102
What's Going On Inside The Compuber? 104
Let’s Design Our Own Objec sl 105
How Quick Is Your Clicker Finger? 109
New Commands.

[SLEEP MAN 109

[WAKE MAIN 109

100

----- Teacher’'s Journdl -----

Sarah was the first one done with the day’s assignment, and she was pretty
pleased.

“Come seel” she called, waving me over with an enthusiasm that almost
tipped her out of her seat.

I came over and she clicked on the Play button to demo her program. Two
identical objects began floating around on the screen. She’d brought in a
ghost stamp from a draw/paint program to make them.

“Click on them! Click on them!” she said. I clicked.

The little ghost stopped mid-float and flashed through about 10 ghoulish
transformations before finally returning to his original form and continuing
his haunt. The other one worked just the same way.

“Pretty darn scary!” I complimented.

“Yup!” agreed Sarah. “Hey, Yolanda! Come look at this...I”

101

ObiecT IhsBances and Object Designs

At the start of her program, Sarah had used the command
CONSTRUCT OBJECT spook twice. What she was actually doing was
making two instances, or editions, of an object type according to a
specific blueprint. The Object Designer allows you to design your
own object blueprints.

It’s easy to think of an object primarily in terms of how it looks, but
there’s more to it than that. An object design consists of the
following;:

* astarting graphic (Once you have an object you can always
change its appearance by morphing it...Sarah’s starting graphic
was called “ghost”, but the object was called “spook” because it
did a lot more than just wear a ghost graphic.)

* astarting location, in terms of the coordinate grid

* aclick-task, which means that any object you construct from this
blueprint will do a particular trick when you click on it...Iike
morph into a centipede, or burp loudly.

The code to make this special effect happen could be as short as one
or two lines: MORPH OBJECT centipede, or LOAD SOUND
buuurp/PLAY-N-WAIT SOUND. (Sarah simply used the MORPH
OBJECT command over and over until she had run through all the
graphics that she’d hand-picked for her library.)

But these lines can’t be in the main list because you only want the
computer to follow these instructions 7£the user clicks on the object.

You need a separate place to stash these commands...That’s why an
object click -task is actually a separate mini-program, or sub-task...

Sub-Pask? What's A Sub-Task?d??

(Remember in the introduction, when I said that most programs
consist of a bunch of smaller programs called sub-tasks, that are all
linked to the main task and sometimes to each other? Well that’s
okay...I can say it again now.)

Most programs consist of a bunch of smaller programs that are all
linked to the main program, and sometimes to each other. (Oh,
REALLY???)

An animated program with one or more objects that you can “click
on,” to make burps or centipedes or whatever, is one example of how
programs can incorporate sub-tasks.

Since 1t’s really fun to design objects with click-tasks, and click-tasks
are really sub-tasks, then this is a good time for you to learn how to
make new sub-tasks when you need them.

102

LET'S MAKE A NEW SUB-TASK

1.

Open Myprog1.fmp which you created in the last chapter. You’ll
find it with the other existing programs in the Open Program
Directories window: (c:\Fundam\Myprog1.fmp).

This program will have a blank task list since all you’ve done so
far is gather supplies.

Stop and take a moment to envision this: At the end of this
chapter, I want you to have a program that shows an object
moving around the Playground, and I want it to morph into
something else when you click on it. Right now we’re going to
write the part of the program that’s in charge of that morphing
click task. It’s okay that all the commands for the main task are
not yet written.

Find the Program window. You can use the Toolbar, pull down
the Window menu, and select Program window to do this, or just
click on any part of it that may be visible to you.

The Program window is the directory for everything that’s going
on in your program. The big white space in the middle shows all
the Tasks (or instructions lists) that your program has. Unless
you’ve been a real prodigy and figured out how to add sub-tasks
on your own, there should be only one task showing: Main.
We’re about to change that.

Create a new sub-task. Click on the New button near the top of
the Program window. The computer will show you a dialog
labeled, Create a New Task which asks you to name the new File,
but what it really means is you should name your sub-task.

You might have noticed by now that choosing names in FM is
almost as important as choosing names for your pets...If you
name your dog, your cat, your iguana, and your canary all Mike,
when you yell out “Mike! Dinner!” you’re likely to be trampled in
a stampede... sub-tasks, like boxes and pets, need distinctive
names so you, and the computer, can be certain of what you’re
calling.)

Name the sub-task Type the name of your sub-task into the little
file-entry field that’s highlighted in blue. Call the sub-task
“Morph.”

103

F
-

Program Window

Prngram Window E

Hew Add | Bemove |
| T
Create a new task |
File Hame: Directorny:

tmorph 'an::l
3 funclam

bl lrd FRAT Almypron

= j

Cancel I,

I_.....r'--..

Fig. 8-1 New Task dialog

. Click the OK button in the Create a New Task Window. You
should now see a Task window with a blank Instruction list that
looks just like the regular main Task window, except that it has
your carefully chosen sub-task name at the top.

Inactive
. Main Task
Task Window Window
[y MORPH
FUII .
® Task Window Active
RE! ™
SE[= \ihat It L Sub Task
3 [FUNDaMENTAL Gun = Window
ADD NUOMBER =
ALLOCATE GAGGLE = :
@ AND BOOLEAN DT h'”lkif
APPEND STRING C"tE'Et '
. - wa
[=; [ERINGFRONT OBJECT

[
Fig. 8-2 Task window for sub-task “Morph”

. In the Instruction list for this sub-task, use MORPH OBJECT.
Enter the command the same way you have all along. Click the
Use button and use the Data Wizard to choose a hand-picked
graphic object to morph into...You can add any number of other

104

commands to this sub-task at any time, but let’s keep it simple for
now. Just one command is enough to make a cool special effect
for whoever clicks on your object when you demo your
completed program.

Whats Going On Inside the Computers

I know what you’re thinking: “What if I have more than one object
in my program? If the only instruction in my sub-task is MORPH
OBJECT, how will the computer know which of my objects [want it
to morph when the mouse clicks?”

Good question. Here’s the answer. FM has a little built-in sleight of
hand to make click-tasks easy to incorporate into your programs.

The act of clicking on an object automatically puts that object in the
AC, and executes whatever commands are in the associated sub-task.
So while you would never be able to start your main task with the
command MORPH OBJECT, you can begin a click-task this way.

CPU will check to see where mouse clicked. If click is on an
object. then it will load the object into the AC and

beqgin to execute first instruction of click task.

The clicked
object

AC

MORBPH OB.JECT ®“frog2.bmp*®

Current Instruction

"Bus” line to mouse CF"U

|
[llus. 8A Clicking on an object puts it into the AC.

105

EveryThing You Need...

Now you have everything you need to make a blueprint for an object
to construct and use in your program. You have the graphics to give
it its look, and a click-task waiting to spice up its act. Time to put it
all together in an object design.

LET'S DESIGN OUR OWN OBJECTSI

To create a new object design, you must first have at least one
graphic in the Graphics Library. (If you followed the instructions in
the previous chapter, you should have at least two custom-made ones
there.)

Once you’re in the Object Designer, you’ll need to do five things:

* let the computer know you want to design a new object,

* name the new object,

* choose its initial graphic,

* choose its initial location, and

e assign a sub-task, if you have one (which in this case you do?) to
be the click-task for your object plan. (Note that you can actually
have two different sub-tasks linked to one object: one that
executes when the user clicks on the object, and another that
executes when the user pushes the Control Key on the keyboard
while simultaneously clicking on the object. This second kind of
click-task is called a Control-click-task.)

1. Get into the Object Designer. You can do this by using the
Window menu on the Toolbar and selecting the Object Designer
from there.

2. Click the New button. A new object design will be created that 1s
currently named object_#1.

3. Rename the object. Since object_1 is not a terribly descriptive
name, you should name your new object something else. First,
double-click on the name object_1 where it appears in the file
name-entry field labeled Object. Then rename the object.

4. Choose an initial graphic. Notice that the graphic that currently
appears to be associated with the object is the first one
alphabetically in your Graphics Library collection.

106

| Object Designer

Object Desig _
Graphic:|ﬂ|"‘- -

Click Task: | <None> =

Graphic MName

Associated Graphic

Ctri-Click-Task: | <None> =

X-pos: EI Y-pos: EI

Object; Obiect_1 Selected Object

Available Objects

FUNdAaMENTAL™

Fig. 8-3 Object Designer with available graphics

If the graphic you see is the one you want as the starting graphic
for this object, skip down to step 5.

If the picture you see is not the one you want for this object, then
click on the down arrow next to the drop~-down menu labeled
Graphic, and scroll until you see the name of the graphic you
want. When you find it, click on the name so it will appear in the
Graphic box, and you can see a little preview of the picture, so
you can be sure it’s the right one.

. Leave the location fields at (0,0). Sometimes you may want to

write a program with stationary objects, in which case it makes
sense to plug location coordinates into your object design. But
since this program will have moving objects, you can take care of
lacing your object with a PLACE OBJECT command in the code.

. Assign the sub-task, “morph” as the click-task for this object.

Use the drop-down menu labeled Click-Task, and find the name
of your new sub-task, “Morph,” in the list. Select it by clicking
on the task name.

Obiect Desianer Sub-Task
selected as

Graphie: | irll.bmp - Click-Task
Click Task: mrjlrph =] Pop-up
< i
Cut-CleTesk: i — menu of
available
[Ctrl-click task sub-tasks

menu hidden)

107

Fig. 8-4 click-task pop-up menu in Object Designer

Now, every object instance of this type will be “clickable,” and
able to do the morph trick. Leave the Control click-task with
“None” for now, but once you get the hang of this, you can link
another sub-task to your object here in exactly the same way as
you did with the regular click-task.

Close the Object Designer. Click on the Done button when
you’re finished designing your object.

LET'S PROGRAMI

WHAT ARE YOU WAITING FOR? Now you’re ready for your
moment of fame...write a program using your hand-picked/drawn
graphics, your custom-designed objects, and your original and hand-
picked sounds.

1.

Get back to the main Task window that belongs to
Myprogl.fmp. You can find it by using the Window menu on
the Toolbar, and selecting Program window from the drop-down
list. Once in the Program window, double-click on the main item
in the list of program tasks.

= Program Window =l

Program Window ﬁ

Add | Bemove |

ol

Graphic Objact
Library Designer

Fig. 8-5 Program window for Myprog1.fmp,
with two tasks in the list

Okay, so that was the long way, but I wanted you to see that your
Program window Task list now holds two tasksT)

108

. Use the command CONSTRUCT OBJECT. Click Use, and the Data

Wizard will show you a list containing the object(s) that you
designed earlier in this chapter. Select from among them, and
click Done to enter the instruction into the list.

. Use PLACE and SHOW commands to make your object visible.

It’s a good idea to STORE it in a box, too.

. If you wish, make another instance of the same object.

. Use MOVE OBJECT to get things moving. Remember to use SET

LOOP/JUMP LOOP or JUMP ALWAYS to get the computer to
repeat small movements like (3,3) over and over. This will allow
your users a chance to try out the click-task you’ve included in
your object design.

. Use LOAD SOUND/PLAY SOUND to add sound effects to your

program using your hand-picked and custom-made sounds from
the Sound Room.

. Refer all calls from the press to your agent.

109

Programming Tips and Tricks

This is where that trick of looping through a lot of slow movements

i ogram. You can’t click on an object if you
can’t catch up to it, and the computer is so quick to obey your
commands that regular MOVE instructions will likely leave your user

out of breath, and your object unclicked.

When you add your sound effects, don’t forget the flexibility you
have with the two different PLAY commands. One flicks the Pla
switch, and then goes about its business while the sound plays. The
other stops everything to wait until the sound has finished playing.

How Quick ls Your Clicker Finger?

Having trouble beating the computer to the punch (or should I say
“to the click”)? Has it zipped through the commands and gotten over
the Exit Program finish line before you’ve even got your hand on the
mouse? There has to be a way around this. After all, it’s great to
have such speedy delivery on your instructions, but sometimes you
need the computer to slow down a moment (“take a chill pill,” as my
students like to say) so you have the chance to interact. There is,
indeed, a way, for even the shortest of programs to allow you to
catch up with the computer.

L] SLEEF MAIN

L] WAKE MAIN

The command SLEEP MAIN orders the computer to take a siesta break
before carrying out whatever command(s) follow it in the main Task
list.

If the only thing under the SLEEP MAIN command is the command
EXIT PROGRAM, then you’ll find you have as much time as you like
to try out your click task. In fact, the computer will essentially be in
an enchanted slumber that lasts either for eternity or until you abort
your program by clicking on the Stop button on the Toolbar. This is
not the most elegant of programming techniques (imagine a puppet
show that would only end when the audience tore down the
theater!), but it works just fine for really short and simple programs
with one or two clickable objects.

As you begin to get into more complex programming, however,
you’ll find it more to your advantage to use SLEEP MAIN in
conjunction with its opposite, WAKE MAIN. This command is
usually found at the end of a sub-task, and causes the main task to
“wake up” and carry out whatever instructions may follow the SLEEP

110

MAIN command leading up to the instruction to exit. (Often these
post-snooze commands will take care of destroying any objects that
you have in your program in order to free up the memory space that
they consumed while your program was running.)

Keep WAKE MAIN in mind as you read on and learn more about
branching out into sub-tasks, but for now, you can use the SLEEP
MAIN trick by itself to give your clicker finger a break.

111

COMMANDS,

MOVE OBJECT
MORPH OBJECT
CONSTRUCT OBJECT
PLACE OBJECT
SHOW OBJECT
DESTROY OBJECT
STORE BOX

LOAD BOX

SET LOOP

JUMP LOOP

JUMP ALWAYS
BRING-FRONT OBJECT
SEND-BACK OBJECT
HIDE OBJECT

RESIZE PLAYGROUND
INSTALL BACKGROUND
LOAD SOUND

PLAY SOUND
PLAY-N-WAIT SOUND
SLEEP MAIN

WAKE MAIN

OTHER TOOLS:

Graphics Library
Sound Room
Object Designer
Program Window

INSIDE THE COMPUTER.

Accumulator (AC)
Loop Register

112

113

UNIT 2

BRANCHING OUT.
Creabing InDeracTive Programs and Simple Games

CHAFPTER 9 - Adding Text Strings Yo Your Programs...
CHAFPTER 10 - Number Crunching and Variables
CHAPTER 11 - Making a Splash with TOUCHNG OBJECT

CHAPTER 12 - Bouncing Arounds GET, COMPARE, and JUMP
Commands

CHAFTER 15 - Breaking Things Down with Sub-Tasks

114

Making animation is fun, but using your animation to get the user involved
in interactive programs is even better! In this unit you’ll learn a variety of
skills and commands that will allow you to bring your users into the action.
Of course this will make things a little more complicated as you learn to
account for all the possible responses your users may enter. So we’ll also be
learning how to control for different possibilities, and break complex
programs down into more manageable chunks.

In chapter 9 you’ll learn commands for displaying and receiving text in the
Conversation window, so you can write programs which “chat” with your
users.

In chapter 10 you’ll get an introduction to working with number data in
FM, and learn to see boxes as variables that allow for flexibility and good
style in your programs.

In chapter 11 you’ll learn commands for checking to see if two moving
objects are touching, so you can build different outcomes into your
programs depending upon what’s going on in the Playground window.

In chapter 12 you’ll learn how to use commands that compare a whole
bunch of different things in order to allow you to check for different
possible conditions as your program runs its course, and build in
corresponding outcomes.

In chapter 13 you’ll expand your understanding of sub-tasks to see that they
have many more uses in programming than just to make click-tasks for
objects.

115

CHAFTER 9

Adding Text SPrings Po Your Programs
for More Inberactive Fun

Communicating With Your Users 17
Be Your Own Stage Hand 120
LetPing The User Tak Back 121
Syicing Up The Conversabion 121
Using Strings With Boxes 124
What's Going On Inside The Compuber? 125
A New Take On Boxes 1256
Commands Inbroduced:

LOAD STRING
WRITE-SCREEN STRING
PLACE PLAYGROUND
PLACE CONVERSATION
RESIZE CONVERSATION
READ-SCREEN STRING
APFPEND STRING
ESENPASININE
UPFERCASE STRING
LOWERCASE STRING

SISESESESEeR

N N
)

N N L G O U O G

[
[
[
[
[
[
[
[
[
[
[]

NEN

116

----- Teacher’s Journd -----

Manuel and Andre were pooling their resources. They had begun in a feud
because each boy claimed the other was copying his idea to make a speed
boat program. But within minutes of working independently, Andre
noticed Manuel’s interesting, top-view art work, while Manuel became
intrigued with Andre’s use of a click-task to create an explosion.

Now, they were huddled together in front of the same computer, a
collaborative effort well underway.

They were almost finished when Andre thought of a problem.
“Wait,” he said. “How they gonna know to click on the boat?”

“We tell ‘em, dummy!?” Manuel said, test-running the explosion one more
time.

“I KNOW,” Andre protested. “But I mean, you know, like if we’re not here
or something.”

“What do you mean, if we’re not here...” Manuel began.

“What he means...,” I interjected (reconfirming my theory that all good
teaching arises from good eavesdropping), “What he MEANS is, what if you
guys decide to sell this game for a million dollars to some software company
and they distribute it all over the place and someone in New York buys it in
a store and takes it home to play with it... HOW ARE THEY GOING TO
KNOW TO CLICK ON THE BOAT?”

“Yeah!” said Andre.

“Oh.” said Manuel.

“Let me tell you about strings.” I said.

117

Communicabing with Your Users

Once I had taught them to use strings, Andre and Manuel were able
to stand back, proudly mute, as their program users read the
ominous message WHATEVER YOU DO, DON’T CLICK ON THE
BOATT The text was automatically displayed in the Conversation
window, just underneath the animation in the Playground.

After another lesson on strings, Jaime got busy transferring his bad
attitude and rude wit into a humorous, grouchy computer persona:

“Hey, get over here! What’s your name?” the Conversation window
on his computer beckoned passers-by.

“Janet,” I typed in response.

“Well, JANET,” the computer replied, “That’s a pretty sorry name!
How old are you?”

“33,” I responded.

or I will self-destruct!”

The next participants got the same bad treatment, customized with
their own names and ages worked into the computer’s seemingly
spontaneous responses.

You get an A+ if you’ve already figured out how to use the Sound
Room and SOUND commands to enhance your programs with
messages and instructions. But working with a lot of recorded
sounds can get unwieldy, especially if you want to have a fairly
involved “conversation” with the user. For this, and other reasons,
you will often prefer to use text to communicate with your program
users. For that, you need string commands.

I know what you’re thinking. Some of these techie terms can get
pretty weird. (Just wait until we get to “gaggles” and “booleans” in
the next unit!) This string business really has nothing to do with
kites or spaghetti.

The term “string” refers to any series of keyboard characters that you
type in as input. It could be poetry, shopping lists, or just plain
nonsense; to the computer, it’s all just “strings” of textual characters.

118

[LOAD STRING

(] WRITE-SCREEN STRING
L1 The Backglash [\]

LOAD STRING and LOAD-SCREEN STRING and WRITE-SCREEN
STRING are the two commands you need to communicate with your
program users in the Conversation window.

When you use the command LOAD STRING, the Data Wizard will
present you with a data-entry field where you can type in the string
you want to use. You can edit your text in the text-entry field using
standard word processing techniques for highlighting, inserting, and
deleting text.

LOAD STRING

Data Wizard

|
Load thiz ztring inka the AC:

“"Hey you! What's your name? "

Cancel | 0K I

Fig. 9-1 LOAD STRING Data Wizard dialog

You can type in a message of up to 1,024 characters. The main thing
to remember, if you want to keep from going crazy with strings, is
this: String text must be between quotes, or the computer will not
recognize it as a string! (I can almost guarantee that this will trip
you up at least once before you remember it foreverT)

Like CONSTRUCT OBJECT, the LOAD STRING command serves only
to put the specified string into the AC where it can be further
manipulated according to your needs.

If you want the user to be able to see the string printed up in the
Conversation window, (which is always convenient for
communication) you must use the command WRITE-SCREEN
STRING. These two commands are all you need to post a message in
the Conversation window. Let’s play around with them before we
look at how to let the user “talk back.”

Unless you tell it to, the computer will print out all the input strings
in one long line. If you want the computer to insert a line break, you
use the backslash key on your keyboard to insert a thing that looks
like this: \ . Every time it comes to one of those, the computer will

119

start a new line in the Conversation window. Just like any other
string data, this character must be between quotes. If you want to
make a carriage return at the end of a line of text, then just include
the backslash at the end of the string like this: “Backslashes are for
bozos!\”. A backslash can also stand alone as its own string to make
a blank line in the text you want to print out in the Conversation
window. It looks like this in the code: LOAD STRING “\”. You’ll get
a better feel for how this works once you’ve had a chance to play
around with it a little bit.

LET'S PROGRAMI

1. Go back to Myprog1.tmp. Choose Open Existing Programs, and
navigate through c:\Fundam\Manual\Practice until you find the
folder for this program.

2. Use LOAD STRING and WRITE-SCREEN STRING to add
instructions, captions and quips. Insert two lines near the
beginning of the program, and use the commands LOAD STRING
and WRITE-SCREEN STRING to add some printed instructions for
your user. Don’t forget to include backslashes at the end of each
instruction, so they’ll each be on a separate line when they’re
printed out in the Conversation window.

3. Add strings to your sub-tasks. Spice up what happens when the
user follows your directions and clicks the mouse. You’ll need to
get into the code for the sub-task “morph” for this. You can get
there by pulling down the Window menu on the Toolbar, and
selecting theProgram window from the list. In the Program
window, double-click on the task name “morph,” which appears
in the list under main. That will automatically open up the Task
window for this sub-task. You can add to and revise the code
here in the same way that you do in the main Task window.
When you’re finished, you can get back to the main Task window
via the Program window once again.

Programming Tips and Tricks

You can type almost anything you want in the data-entry field on the
LOAD STRING Data Wizard, but whatever you do... “DON’T FORGET

THE QUOTATION MARKS!T”

And remember, just because you told the computer to “think” of a

particular message with your LOAD command, the computer won’t
remember to write the message on the screen unless you tell it to do

120

Be Your Own Stage Hand

Once you’ve got stuff going on in both the Conversation and the
Playground window, you may want to have some control over how
they’re placed, in relationship to each other, on the monitor screen.
In the last unit, we learned about the command RESIZE
PLAYGROUND. Here are a few more commands that work along
similar lines.

L FLACE PLAYCROUND

[PLACE CONVERSATION

L RESIZE CONVERSATION

Let’s start with the last one first. RESIZE CONVERSATION works
exactly the same way as RESIZE PLAYGROUND. It allows you to
decide how big or small the Conversation window will be while your
program is running. When you use this command, you’ll see a
familiar Data Wizard dialog, inviting you to specify dimensions for
the window’s width and height.

RESIZE CONYERSATION

Data Wizard

I1ze this number or bow far the width
&) Number 300

.Bux

I1ze thiz number or baow far the height:
o Mumber 100
. Box

Cancel | 0K I

Fig. 9-2 RESIZE CONVERSATION Data Wizard dialog

The PLACE PLAYGROUND and PLACE CONVERSATION commands
assume that a grid, similar to that used within the boundaries of the
Playground window, is actually superimposed across your entire
screen. You can assume that the point (0,0) is in the upper left-hand
corner of your screen, and then place the two windows where ever
you want them to be. Note that what you are really placing here are
the windows’ upper left-hand corners. You’ll work with the Data
Wizard here again, and plug in the coordinates as you wish. (Most
often, you’ll choose a zero for your x coordinate since it’s nice to
have the left edges of the Playground and Conversation windows

121

align with the left edge of the screen. But, as always, it’s entirely up
to you!)

PLACE CONYERSATION

Data Wizard

Place the Conversation at this » coordinate: Hﬂriztnntal
&) Number 0 position I:::f
Window's upper
. Box
left-hand corner
Place the Conversation at this y coordinate: VEF!IIFEl
Numb 200 position of
O tunkcr Window's upper
&Eox left-hand corner

Cancel | 1].4 I

Fig. 9-3 PLACE CONVERSATION Data Wizard dialog

Letting Phe User Talk Back

LOAD STRING and WRITE-SCREEN STRING are all you really need to
write out simple messages and instructions to users of your
animation programs. But what if the string that you load is not a
statement, but a question? What if, like Jaime, you want the user to
be able to answer back?

[] READ-SCREEN STRING

With just one extra command, strings can become the main
ingredient for a whole different kind of interactive program. READ-
SCREEN STRING causes the computer to pause in the course of the
program and “read in” (to the AC) a message that the program user
types on the keyboard. That’s how Jaime got his computer to insult
my name the first time, and Yolanda’s the next.

Syicing Up The Conversabion

Once you or your user have put a string into the AC, there are several
commands you can use that add to, or change, the text before you
print it out to the Conversation window.

122

L] APPEND STRING

ERENEEENPASIININE,

L] UPPERCASE STRING

L LONERCASE STRING

Instead of putting a new string into the AC (as do LOAD STRING and
READ-SCREEN STRING), APPEND STRING adds something to the end
of whatever string is in the AC at the time the APPEND command is
executed. Let’s say for example you have a program that asks the
user to type in his name, and you want the computer to answer back
with « is the funniest name I ever heard of!” You can use
the APPEND STRING command after READ~-SCREEN STRING to tack
that message onto whatever name the user types into the AC.

APPEND S5TRING

Data Wizard

] .
fppend this sting or bow to the A This get stuck

&) String "I Weird name!"] on the lE.‘I'id of
@Box the String

in the AC.

Cancel | (1] I

Fig. 9-4 APPEND STRING Data Wizard dialog. String data
entered here gets appended to the string in the AC.

(Notice this dialog offers you a box option. We’ll be discussing the
use of boxes with strings later in the chapter.)

PREPEND STRING works the same way, only it tacks something onto
the front of the string in the AC, as its name suggests. (“I never heard
of a name like 17)

UPPERCASE STRING and LOWERCASE STRING are two commands
that you can use to further control the tone and appearance of the
text on the Conversation window. The first makes all the characters
in the string uppercase, and the second makes them all lowercase.
Remember that these commands will only affect the string that is
currently in the AC.

123

LET'S PROGRAM!

1. Create a new program and name it heyyou.fmp. Start at the FM
Welcome window, and click on the Create a New Program
button. (Check back in chapter Six if you need a reminder of how
to do this.) You don’t have to worry about stocking your Graphics
Library for this one until later...and that’s only if you want to;
strings can stand all on their own to make fun and funny
programs.

2. Write a whole interactive conversation with string commands.
Use READ-SCREEN STRING with APPEND and PREPEND STRING
to give the impression that the computer is actually reading and
responding to user input. Here’s what Jaime’s program looked
like, to give you an idea of how to begin:

LOAD STRING “Hey, get over here! What’s your name?”
WRITE-SCREEN STRING

READ-SCREEN STRING

UPPERCASE STRING

PREPEND STRING “Well,”

WRITE-SCREEN STRING

LOAD STRING “That’s a pretty sorry name! How old are you?”
WRITE-SCREEN STRING

READ-SCREEN STRING

Programming Tips and Tricks

'y thinking of your computer as a puppet for this assignment. Give
it a character and a “voice.” If you’re creative, this simple program
model is good for hours of fun!

124

Using SPrings with Boxes...

APPEND and PREPEND STRING let you tack things onto the beginning
and the end of the string that’s currently in the AC. But what if you
want to hold onto a string and use it again later? Let’s say you want
to save up a bunch of user responses and print them all out at the end
of the conversation. What commands do you think you can use to
store away your strings in a place where you can get to them again?

You guessed it! You can use the same STORE BOX/LOAD BOX
commands with strings that we used to store and reuse objects in the
last unit. (See chapter 4 for reminders about using boxes to hold
onto things for later use.) Handy little things, those boxes. Don’t
forget to name your string boxes appropriately so you can remember
what’s in them.

Remember MadLibs? Look at the following code sample. Can you
tell what happens when this program is run?

LOAD STRING “What’s your name?\”
WRITE-SCREEN STRING
READ-SCREEN STRING

STORE BOX username

PREPEND STRING: “Cool name,”
APPEND STRING “.\”
WRITE-SCREEN STRING

LOAD STRING “What’s your favorite color?\”
WRITE-SCREEN STRING

READ-SCREEN STRING

STORE BOX usercolor

LOAD STRING “what’s your favorite animal,”
APPEND STRING username

APPEND STRING “?\”

WRITE-SCREEN STRING

READ-SCREEN STRING

STORE BOX useranimal

LOAD STRING “Hey, everyonel\”
UPPERCASE STRING
WRITE-SCREEN STRING

LOAD BOX username

APPEND STRING “ hasa”
WRITE-~SCREEN STRING

LOAD BOX usercolor

APPEND STRING “”
WRITE-SCREEN STRING

LOAD BOX user animal
WRITE-SCREEN STRING

LOAD STRING “ in the back yardI\”

125

WRITE-SCREEN STRING

LOAD STRING “Thanks for playing, “
APPEND STRING username
WRITE-SCREEN STRING

Whats Going On Inside the Computers

This is a good time to revisit our old friend the AC (not that it hasn’t
been with us all alongl). Strings are a great way to demonstrate how
the AC operates. LOAD STRING and READ-SCREEN STRING are the
two basic commands for putting a string into the AC.

LOAD STRING s my name"

Current Instruction

CFPU

llus. 9A LOAD STRING

Whenever a string is loaded into the AC by you, or “read in” by the
computer from something the user types in, then that and only that
string is what gets changed with any APPENDS or PREPENDS, or
whatever follows.

126

CPU MEMORY

myName "is ny name"

FEEFPEND STEING " Janet "

Current Instruction

=

Illus. 9B PREPEND STRING

Once you use a LOAD STRING or READ-SCREEN STRING command
again, whatever string was once there is now gone. Any commands
that follow will apply to the new string, at least until it, too, is
replaced by another.

Like an object, however, a string can be copied into storage and then
recopied back into the AC later in your program.

CFU MEMORY

b “Janet is n1y
myName name"

STOEE BOX myName

Current Instruction BOXES

Illus. 9C STORE BOX copies the string currently in the AC into memory

But strings have slightly different store/load rules than objects do. If
you copy a stored object back into the AC, and then make changes to
the object, the stored copy is automatically updated as well.

However, if you copy a stored string back into the AC, and then
make changes to that string, the copy in storage remains unchanged.

127

CFU MEMORY
" “Janetis ny
i my namer myName | name?

AC

PREPEND STRING "Hello,

Current Instruction

=

Illus. 9D Stored string keeps its original form after AC copy has been changed

If for some reason you want to keep a copy of the changed string, you
have to use the STORE BOX command again, so that the box will now
contain the updated version.

CFU MEMORY

. b "Hello, Janet
Hello, Janet i5 My name"

i5 My name" myName

AC

STOEE BOX myName

Current Instruction BOXES

Illus. 9E Repeating the STORE BOX command after changing a string puts the
most current version in the box.

128

LET'S PROGRAMI

1. Get back into the program called heyyou.fmp which you created
earlier in the chapter. If you’re starting a new session with this
assignment, then you’ll want to click on the Open Existing
Programs button in the Welcome window: (c:\fundam\heyyou).

2. Use the sample program from this chapter as a guide to create
your own MadLibs program using boxes and strings.

“Janet has ten purple cows in the backyard!”

Programming Tips and Tricks
et st puple o epomd”

To print out the punch-line of your MadLibs program, you’ll need to
use a bunch of LOAD BOX commands instead of specifying actual
text. To do this, you’ll need to click on the little round “radio
button” next to the word “box” that appears in the LOAD BOX Data
Wizard. When the list of boxes comes into view, double-click on the
name of the box that contains the string you want to load. And note
that there is a box option for the APPEND and PREPEND commands
as well. You can put a message like “My favorite color is also,” into
the AC, and then APPEND STRING with the box “usercolor.”

Data Wizard Box
]

& d this stri b to the &C: containing
ppend this string or bos to the AC: Jesired

. String username| Stl‘il’lg

Q Box -
Lizeranimal .

uzercolor 1__Avallable

LIZErnanme Boxes

Cancel | 1].4 I

Fig.9-5 APPEND STRING Data Wizard dialog with active box list

A New Take on Boxes

Notice that we’re using boxes in a slightly different way here than we
did when we used them with objects in chapter 4. Unlike the boxes
we used to store Red Ridinghood and Wolf objects, these string boxes
for MadLibs are used as place holders for data to which we don’t
have access when we are writing the program. When the computer

129

asks for and then reads in a user’s name, for example, the name that
then gets stored in the box “username” could be Annie, Albert, or
Aloysius. In any case, the box is there, ready and waiting to hold the
desired name. When used in this way, boxes serve as programming
variables. Read on to chapter 10 for more discussion on how
variables can add flexibility and elegance to your programs.

130

131

CHAFTER 10

Number Crunching and Varigbles

“P'm Thinking Of A Number...” 155
What's Going On hside The Compuber? 155
More Number Fun 156
Boxes As Variables 155

Looking AT Some Old Commands In New Ways 140

Commands Inbroduced.

LOAD NUMBER
WRITE-SCREEN NUMBER
READ-SCREEN NUMBER
ADD NUVBER
SUBTRACT NUMBER
MULTIFLY NUMBER
DIVIDE NUMBER
REMAINDER NUVIBER
RANDOM NUVBER
COMPARE NUVIBER
JUMP=

[
[
[
[
[
[
[
[
[
[
[]

132

----- Teacher’s Journd -----

Jose was giving me a preview of his program before doing a demo for his
classmates. He clicked the Play button and I was treated to a short
animation depicting a race between three little frogs. At the start of the
program, his own voice came out of the computer’s speakers: “On your
mark...Get set...Gol”

“Cool!” 1 said, when frog number one crossed the finish line. He grinned
up at me for a moment, but then his look of pride faded.

“It’s boring!” he said.

“You really think so?” I asked.

“Yeah. The same guy wins every time. Look.” He clicked the Play button
once again to illustrate his point. As he’d predicted, frog number one was
victorious once more. “See?” he said.

“It’s still fun, though,” I insisted.

“I guess so. But I wish...I wish there was a way for it to be a surprise each
time. I wish it could be like the horse races, you know? Like...”

“Random?” I filled in, feeling a new lesson coming on.
“Yeah!” he said. “That’s it— random.”
“Well guess what. There is a way. There’s a command called RANDOM

NUMBER that I think could help you out here. Let me show you how it
works...”

133

“Pm Thinking of a Number...”

Now that you’ve had a chance to play around with the ABC’s of
FUNdaMENTAL, it’s time to think about what you can do with 1,2,3
(and any other integer). numbers are a big deal in programming.
You can find them in plain view in programs that ask the user for
some kind of numerical input to reinforce math skills. But number
commands are also hidden in a lot of the dynamics for more
complex animation and gaming programs. Let’s take a look at some
number commands.

[LOAD NUMBER

L WRITE-SCREEN NUVBER
[READ-SCREEN NUVBER

We’ve seen that the AC can contain objects, sounds, and strings. It
can also contain numbers. LOAD NUMBER and READ-SCREEN
NUMBER are the two most direct ways that numbers can get into the
AC. With the first, you specify which number is loaded into the AC.

LOAD NUMBER

Data Wizard

Load thiz number into the AC;

14

Cancel | | 1] I

Fig. 10-1 LOAD NUMBER Data Wizard dialog

With the second, you can allow your program user to specity the
number in the AC. WRITE-SCREEN NUMBER allows the user to see
whatever number the computer is currently “thinking of.” Once you
have a number in the AC, there are several commands you can use to
manipulate it.

L] ADD NUMBER

L] SUBTRACT NUVBER

L MULTIPLY NUVBER
L DIVIDE NUVBER
[] REMAINDER NUVBER

You can use a variety of commands to do basic arithmetic with the
number in the AC.

134

When you use ADD NUMBER, the Data Wizard will ask you to
specify the number that you would like to have added to the number
in the AC.

ADD HUMEBER

Data Wizard

Add this rumber or bow o the AT

0 Mumber 3
. Box

Cancel | 0K I

Fig. 10-2 ADD NUMBER Data Wizard dialog

The result will be a line in your program code that looks something
like this:

ADD NUMBIER 3

If the AC contained a 7 before coming to the instruction above, it
would contain a 10 after completing it.

SUBTRACT NUMBER, MULTIPLY NUMBER, and DIVIDE NUMBER all
work the same way.

REMAINDER NUMBER divides the number in the AC by the input
number, and then puts the remainder in the AC. If the AC contains a
10 and you use the instruction REMAINDER NUMBER 7, the AC will
now contain a 3.

Stop and think for a moment about how you might be able to use
these commands to make fun and interesting programs. Can you
imagine, for example, how this program would run?:

LOAD STRING “Hi, what’s your name?/”
WRITE-SCREEN STRING

READ-SCREEN STRING

PREPEND STRING “How old are you, “
APPEND STRING “?\”

WRITE-SCREEN STRING

READ-SCREEN NUMBER

STORE BOX userage

LOAD STRING “Wow! Gettin’ up there!\ And by the year 2050,
you’ll really be over the hilll\You’ll be,”

WRITE-SCREEN STRING

LOAD BOX userage

ADD NUMBER 53

135

WRITE-SCREEN NUMBER

WRITE-SCREEN STRING

Whats Going On Inside the Computers

And as you’re thinking...keep in mind that numbers, too, can be
stored in boxes using the same STORE BOX and LOAD BOX
commands that you used for strings and objects. As always, you’ll
want to give your box a good name, so you can later distinguish it
from the other boxes in storage. We’ll use the name “numbox” (for
“number box”) as our example here, but you’ll probably want to be
even more specific in naming the boxes for numbers in your
programs.

The rules for stored numbers are the same as the rules for stored
strings: If you copy a stored number from “numbox” back into the
AC, and then change that number somehow, the copy in “numbox”
remains unchanged. If you want to keep a copy of the new number,
you have to use the STORE BOX command again to put the updated
version of the number into “numbox.” The code you need to use
looks like the example below:

LOAD BOX numbox
ADD NUMBER 3
STORE BOX numbox

That way, the sum of numbox plus 3 is saved as the new contents of
numbox.

LET'S PROGRAM!

1. Go back to (or create) a program which uses strings to interact
with the user.

2. Add a string that elicits some kind of numerical input from the
user. Something like this will do nicely:

LOAD STRING “How many buttons are on your clothes?”
WRITE-SCREEN STRING
READ-SCREEN NUMBER
(Anything goes here: age, height, number of siblings, etc.)

3. Use STORE BOX to make sure you can get back to the number if
you need it later.

136

4. Now use the MULTIPLY NUMBER command, and tell the user
how many buttons there would be if she were standing next to 42
identically dressed friends. (Of course the 42 is just an example.
You can multiply by any number; maybe you’d like to try
something a little bigger, like 4207 4,2007?

5. Run the program using your own stats as the “usernumber”
data, just to get a feel for how the commands get processed.

Programming Tips and Tricks

Play around with the number using all of the NUMBER commands in
FM. Take your time and have fun. Tell the user how many buttons

she and 42 identically dressed friends would be wearing altogether,
or how old she’ll be in the year 2050, or how much less he weighs
than the average adult elephant, or how far 10 of her clones would
reach if they lay down end to end...

More Number Fun

There are two more things that FUNdaMENTAL can do with numbers
in the AC which are both useful for adding elements of surprise and
complexity to your programs. As Jose found out, you can get a lot of
use out of numbers that are chosen randomly by the computer. And
you can also use numbers as the basis for making comparisons and
determining different outcomes for different possibilities.

L] RANDOM NUMBER

L] COMPARE NUVBER

L JUMP =

RANDOM NUMBER takes two numbers or boxes as input, and then
randomly chooses a number between them, putting the resulting
number in the AC. When you use the RANDOM NUMBER
command, the Data Wizard will ask you to input two numbers, two
boxes, or one of each, to set the range the computer will then choose
from (kind of like making a customized die or roulette wheell)

137

RANDOM NUMBER

Data Wizard

I1ze this number or box to start;
e Humber 1

.an

IJz& this number or bow ta finish:
Q Mumber 10
. Box

Cancel | 0K I

Fig. 10-3 RANDOM NUMBER Data Wizard dialog

COMPARE NUMBER tells the computer to compare whatever
number is currently in the AC with the number or box that you
input. The computer will be able to tell when two numbers are equal
(for more information about how it accomplishes this, see chapter
11), and you can use that to your advantage in many different ways
in your programs.

The COMPARE NUMBER command is often paired with JUMP =.
This command, in the same jumping family as JUMP LOOP and
JUMP ALWAYS, causes the computer to jump to a different place in
the code if two things that are being compared are, indeed, equal.
Just like its JUMPing counterparts, the command JUMP = has to have
a marker in order to mark the spot in the code to which the
computer needs to jump.

Look at the following sample, and take special note of how boxes are
used:

LOAD STRING “Hi, how old are you? (Don’t worry, I won’t telll) \”
WRITE-SCREEN STRING

READ-SCREEN NUMBER

STORE BOX userage

LOAD STRING “About how many inches tall are you?\”
WRITE-SCREEN STRING

READ-SCREEN NUMBER

STORE BOX userheight

RANDOM NUMBER userage, userheight
STORE BOX secretnumber

LOAD STRING “I'm thinking of a number between...”
WRITE-SCREEN STRING

138

LOAD BOX userage
WRITE-SCREEN NUMBER

LOAD SCREEN STRING “and”

WRITE-SCREEN STRING

LOAD BOX userheight

WRITE-SCREEN NUMBER

LOAD STRING “Can you guess what it is? You have three
chances...\”

WRITE-SCREEN STRING

SET LOOFP 3
(@guess
READ-SCREEN NUMBER
COMPARE NUMBER secretnumber
JUMP = (@congrats
LOAD STRING “Nope! Try againT\”
WRITE SCREEN STRING
JUMP LOOP @guess

JUMP ALWAYS @bye
(@congrats

prize at the door...”
WRITE-SCREEN STRING
@bye
LOAD STRING “Thanks for playing!”
WRITE SCREEN STRING

EXIT PROGRAM

Can you tell what this little program does when you run it? If not, go
ahead and type it in yourself. Then run it and see!

Boxes as Variables

Did you notice how boxes came into play in the above code
sequence? Just like their data counterparts (objects, strings, and
sounds), numbers can also be stored away in boxes, and the contents
of a box can then be used as the input for a subsequent NUMBER
command. For example, if you have a program that asks the user to
type in her age, and you store that number in a box called “userAge,
you can later put another number into the AC and then use the
command MULTIPLY NUMBER userage in order to multiply the AC
number by the age of your program’s current user.

2

To choose a box for such an operation, instead of specifying a
number, you first need to click on the little round “radio button”
next to the word “box” in the Data Wizard dialog.

139

Data Wizard

kultiply the AC B this number o o

@ Number Available Boxes

@ Box e [visible if Box
yr— radio button is
userheight depressed]

Fig. 10-4 MULTIPLY NUMBER Data Wizard dialog

That will cause a list of the boxes currently in storage to appear. You
can select an existing box by clicking on its name, or you can type a
box name straight into the data-entry field, if you don’t yet have any
boxes in storage.

Using boxes in this manner allows you to account for variables in
your programming. Variables are essentially placeholders for certain
types of data. In the first sequence of commands in the previous
sample code, the computer is told to elicit a number representing the
age of the user, and to store the resulting number in a box called
“userage.” The type of data (a number representing age) will always
be the same, but the specifics will vary with each user (hence the
term “variable”).

In the early chapters on objects, we used boxes as a way to save a
particular (or constant) piece of data so we could get back to it again
later. We knew in advance, for example, that the Red Ridinghood and
Wolf objects would be stored in the boxes we defined for them.

But if you focus on the box and not so much on the particular data
that goes in it, you’ll really be thinking like a programmer. And
numbers are a good place to start, since many of us are accustomed
to thinking about variables as part of the realm of mathematics.

So instead of saying to yourself, “I want the frog to hop a distance of
150,” you say, “I want the frog to hop some distance.” Then,
somewhere else in your program, use commands that put some
number into the AC, and follow that with STORE BOX somedistance.

It’s sort of like leaving a space in your schedule to talk to students’
parents every Thursday from 3:00 to 3:30. The parents you’ll be
speaking with each Thursday afternoon will vary, but the time slot is
set up in advance so you’re always ready to make the necessary calls.

Boxes can hold spaces for every kind of data in FM. You were using
boxes as variables in the last chapter when you stored away string
input from the user to make a MadLibs game, using commands like
STORE BOX usercolor. In the same way, you can use boxes to mark
the place where you want some sound or somie object to come into

play.

140

Looking at> Some Old Commands in New Ways

Knowing that you can use boxes, or variables, instead of constant
numbers, you can teach a couple of old commands some new tricks.

Set Loop

Look at the code sample below. How is SET LOOP affected by the use
of a box instead of a constant number?

LOAD STRING “So, it’s your birthday...how old are you?\”
WRITE -~-SCREEN STRING

READ-SCREEN NUMBER

STORE BOX userage

LOAD STRING “Well, then...”
WRITE-SCREEN STRING

SET LOOP userage

@happy!
LOAD STRING, “Happy birthday!
UPPERCASE STRING
WRITE-SCREEN STRING
JUMP LOOP @happy!

LOAD STRING “And one to grow on!: HAPPY BIRTHDAY!”
WRITE-SCREEN STRING

EXIT PROGRAM

Move Object>

So far we’ve been looking at how number commands can spice up
your conversation programs. But the real power of number
commands comes out when you use them in your animation
programs.

Imagine, for example, a game of chance in which a user must predict
the winner of a frog-jumping contest. Assume that the following
code sequence 1s preceded by the necessary commands to
CONSTRUCT, PLACE, SHOW, and STORE BOX three frog racers.

Notice, again, how the command JUMP = causes the computer to
jump to a different place in the code if two things being compared
are equal. Otherwise (if they’re unequal), the computer just skips
over the JUMP = and goes on to the next command in the list.

141

@random

RANDOM NUMBIR 1,3
COMPARE NUMBER 1
JUMP = @go1
COMPARE NUMBER 2
JUMP = (@go2
COMPARE NUMBER 3
JUMP = (@g03

@go1
LOAD BOX frog1
JUMP ALWAYS @hop

@go2
LOAD BOX frog?2
JUMP ALWAYS @hop

@803
LOAD BOX frog3
JUMP ALWAYS @hop

@hop
MORPH OBJECT legstraight
MOVE OBJECT 0, 50
MORPH OBJECT legsbent
JUMP ALWAYS @random

Place Object:

And what happens when we use a randomly chosen number as the
coordinate input for the PLACE OBJECT command? The following
sample code shows the commands necessary to construct and store a
target object called sittingduck. The intent of the program is to get
the object to move around the Playground unpredictably to set up a
sort of a shooting gallery game.

RESIZE PLAYGROUND (350,300)
@shift

RANDOM NUMBER (0,350)

STORE BOX leftsideobject

RANDOM NUMBER (0, 300)

STORE BOX bottomobject

LOAD BOX sittingduck
PLACE OBJECT leftsideobject, bottomobject

EXECUTE SUB-TASK wait
JUMP ALWAYS @shift

EXECUTE SUB-TASK is what keeps the target from moving hopelessly
fast. You’ll learn how to use the commands to manipulate time lapses
in your programs in the next unit. Go look up GET TICKS if you can’t
wait to waitl...)

142

LET'S PROGRAMI

Becoming an advanced programmer means finding creative ways to
build flexibility and efficiency into your thinking, and into your
programs.

1. Open up one of your animation programs and get ready to use
some familiar commands in new ways...

2. Use RANDOM NUMBER and STORE BOX to build in a
customized game spinner somewhere near the start of the
program. Do this by inserting two lines of code that look
something like this:

RANDOM NUMBER 1,10
STORE BOX random#

3. Now use the “random#” box (instead of typed-in constants) as
the input for a command like SET LOOP or MOVE OBJECT.

4. Use the sample code for the race program from earlier in this
chapter as a model, and make your own race game, either by
revising an old program or making a new one.

Programming Tips and Tricks

Expert programmers plan out much of their code in advance, laying
out their variables ahead of time by adding things directly to the

Boxes region of the Task window. Here’s how to do it:

1. Start at the top, or at the first empty space, of the box list, and
click there. You’ll see a highlighted area for entering text.

Boxes:
| ® — New
WOrTy, |1 - secretrumber
& userage Box
& uszerheight MName
luckytum]

Fig. 10-5 Box reéion of the Task window with a highlighted line ready to
receive a new box

1. Now, type the name of the box you would like to define and press

the Enter key on your keyboard when you are done.

143

2. Add as many boxes as you think you’ll need for the variables in

Now, when you use the command STORE BOX, the computer will

have a predefined variable to connect with the data you’ve selected.
(You won’t be seeing that little prompt asking, “Would you like to
define this box?” because you’ll have already defined it.

144

145

CHAFPTER 11

Making a Splash with TOUCHNG OBJECT

A Command, Indeedl 147
“If...Then...OPherwise...” 145
What's Going On lnside The Compuber 149

Commands Introduced.

0 TOUCHNG OBJECT

146

----- Teacher’'s Journal -----

Remember LaToya? The girl who wouldn’t leave the classroom? Well, she
finally got her diver to march resolutely to the end of the diving platform
(and no further?), bend over, and dive gracefully down into the cube of blue
water underneath. I actually thought I might make my afternoon meeting,
and was packing up my things, when...

“Wait!” she said, “What about a splash?”
“A splash?” I said, putting down my bag and taking off my watch.

“Yeah,” she said, “when she hits the water, there should be a splash...”

147

A Command, Indeed!

I missed my meeting so I could stay and teach LaToya about
TOUCHING OBJECT. When I first told her the name of this
command, she wrinkled up her nose and said, “Touching object?
What kind of a command is that?”

[repeated it to myself and realized that it is, indeed, no kind of
command at all...unless you understand it to be an abbreviation for
“Check-to-see-if-[the object in the AC]-is touching-[this other]-
object”.

“You see,” I explained, “it’s really checking, and not touching, that
you’re telling the computer to do.”

She rolled her eyes at the inconvenience of having to absorb all this,
then quickly absorbed it and got on with the business of using the
new command to make a splash.

L TOUCHING OBJECT

When you use the command TOUCHING OBJECT, the Data Wizard
will show you a list of all the program’s stored objects so you can
indicate which other object the computer should look for when
checking to see if the AC object is touching something.

TOUCHIMNG OBJECT

Data Wizard

See if the AC iz touching thiz object:

Fig. 11-1 TOUCHING OBJECT Data Wizard dialog
LaToya, for example wrote code that looked like this,

@dive
MOVE OBJECT 1,-2
TOUCHING OBJECT water
JUMP ALWAYS @dive

Notice that she made the diver’s descent slow and graceful by looping
through a whole bunch of little (1,-2) moves. Then she used
TOUCHING OBJECT in order to tell the computer this: “After every

148

downward move, check to see if the diver (which is in the AC) is
touching this other object: water.”

She placed this command directly after the MOVE command, which
essentially causes the computer to ask— and answer— the question

“Are we there yet?” over and over and over again, like a three-year-
old in the back seat of the car.

Notice that the above sample code only accounts for the answer
“NOT” If the answer is no, then we keep driving (or in this case
diving), by jumping back up to move the diver down a bit more,
before asking once again, “Are we there yet?” (Remember that the
computer can whiz through your instructions so fast that all this
moving and checking still translates into animation that appears
quite fluid.)

But what about when the answer is finally “YES!”??7?77?

“Uf we're There, Then get oub of the cars
otherwise keep driving...”

Right now, the sample code above checks to see “if” the diver object
is touching the water object, but it only accounts for the “otherwise”
possibility by jumping always to the code that keeps her diving
without morphing the water to make a splash.

We need to tell the computer to jump somewhere else if the diver is
actually there! (Imagine the screams of protest from the back seat if,
after an arduous trip, you finally did get to Grandma’s, and just kept
driving!) It’s time to use JUMP = again.

Look at this section of code and see if you can tell what’s going on:

@dive
MOVE OBJECT 1,-2
TOUCHING OBJECT water
JUMP = @splash
JUMP ALWAYS @dive

@splash
LOAD BOX waterbox
MORPH OBJECT splshwtr

@finishdive
LOAD BOX diverbox
MOVE OBJECT 1, -2
JUMP ALWAYS @finishdive

Notice how the JUMP = command works together with TOUCHING
OBJECT. Remember that the TOUCHING OBJECT command 1s really
a “checking” command, which means that the program must have

149

two possible outcomes built into it. As long as the diver is not yet
touching the water, we want her to keep descending with the water
left undisturbed. But once the diver does touch, we want something
different to happen. We want the computer to jump down (in this
case) and follow a whole new set of instructions that first creates a
splash on the surface of the water and then makes sure the diver
keeps descending through the water.

So JUMP = in this context roughly translates into, “If they are
touching then go do what’s after this marker...”

Whats Going On Inside The Computer’

How does the computer really tell if two objects are touching? It
can’t look the way we do. Instead, it uses numbers. When LaToya
used the command TOUCHING OBJECT, the computer didn’t care
about the diver and the water. All it did was consider the placement
of both objects in the Playground window. As soon as any of the
diver object’s coordinates overlapped or equaled any of the water
object’s coordinates, the computer “knew” that the two objects were
touching and followed the instructions for that case.

So each time the diver moved a tiny bit further down, the computer
stopped and checked for overlapping coordinates. Whenever the
computer checks anything, it needs to store the outcome of the
comparison in the simplest, most direct terms possible. These terms
will then be used to allow the JUMP command to do its thing (or not).

The AC is busy holding objects and their coordinates, so the outcome
of each comparison has to be stored in another place called the
Comparison bit (C-bit for short). You can think of the C-bit as
something like a little dial gauge, with three possible settings: less
than (<), greater than (>), and equals (=).

Each time the command TOUCHING OBJECT 1s executed, the C-bit
gets reset in terms of these three values, according to the outcome of
each comparison. As LaToya’s diver dove, the C-bit settings went
something like

(Note that you can see the current C-bit reading at any time during
your program’s run time by looking into the Debugger window. The
C-bit indicator will tell you the reading currently on the C-bit as you
step through each execution of the TOUCHING OBJECT command.)

The command JUMP = doesn’t know or care what is being compared.
All it does is read the C-bit each time, waiting for that “equals”
setting to give it the cue to jump.

150

CFU

AC C-BlT

TOUCHING OBJECT "water®

Current Instruction

Illus. 11A When two objects being checked by the TOUCHING OBJECT
command touch, the C-bit is set to “equals” and JUMP = is executed.

LET'S PROGRAM!

1.

Open Program6.fmp. Go to the Welcome window and click on
Open Existing Programs. Navigate through c:\, Fundam,
Manual, Practice, and Program 6. Then open Program6.fmp.

Find the part of the code that looks like this:

LOAD BOX frog
@frog_jump

MOVE OBJECT 4, 1

JUMP ALWAYS @frog_jump

As it is, the frog will just keep on flying past the princess, even
after the frog_prince object touches the princess object.

Insert the TOUCHING OBJECT command so that, after each
move of (4,1) the computer checks to see if the two objects are
touching.

In a moment, you’ll need to put the command JUMP = directly
after TOUCHING OBJECT (hint: to make room for these two
commands in your code, insert two line spaces after MOVE
OBJECT 4,1 and JUMP ALWAYS@frog_jump). But before you
insert the JUMP =, you have to place a new marker somewhere
else in the code.

151

4. Insert the marker @kiss. Insert a line after the JUMP ALWAYS
command, and then click on the marker radio button above the
Instruction list. Type in the label @kiss, and click OK.

This marks the spot where you’ll write the code for what happens
when the princess and the frog prince kiss. We’ll come back and
write that section in just a minute.

5. Insert the JUMP = command just after TOUCHING OBJECT and
select the @kiss label in the Data Wizard.

6. Write the code for what happens when the objects touch. Now
comes the fun part: Return to the new marker, @kiss, and insert
some lines after the marker. Write the code that will make the
frog prince morph into a regular prince if the two objects are,
indeed, touching.

Programming Tips and Tricks

You’ll definitely want to take a good look into your Graphics Librar
for this program in order to familiarize yourself with all the funny
“bmp” names to go with your different graphics. Make sure to
check out “frprsmok.bmp” for a nice, transitional image to use in the
frog’s transformation. There’s a fun sample solution for this pro

in your Examples folder.

Here’s a challenge: Can you figure out a way to use a click-task so
that the user will have some control over whether or not the two
objects actually touch? Decide whether having the two objects touch
1s something the user wants to achieve or avoid, and... you have your
first gamel (If this feels a little overwhelming, we’ll be revisiting
click ~tasks in chapter 13. Maybe you can try this then!)

152

153

CHAFTER 12

Bouncing Arounds
GET, COMPARE, and JUMFP Commands

Boinkl 155
Think Before You Jump 157
What's Going On Inside The Compuber? 1586
Ticksl (Another Fun Thing You Can Get) 162
“ssecB-Day Ing-Stray” 164
You Can Compare Objecs, Tool 167
I%’s Not As Simple As 1T Looks 165
Commands Introduceds

CET-BOTTOM OBJECT
CET- TOP OBJECT
CET-RIGAT OBJECT
CET-LEFT OBJECT
RESIZE PLAYGROUND
COMPARE NUVIBER
JUIMP <=

JUMP <

JUMP >=

JUMP >

JUIMP <>

CGET TICKS

COMPARE STRING
CREIENCIESIINNE,
DISSECT STRING
COMPARE OBJECT

OO0OooooOooooooooQgnd

N SEEREEEE899535999

154

----- Teacher’'s Journal -----

Tom had a good program going. A lot of kids were gathered around his
computer watching as an alien and a puppy moved randomly around the
Playground window. When the two objects happened to touch, the dog was
transformed into an identical alien, and a spaceship appeared to take both
aliens away.

Trouble was, it only worked about half the time. Since the numbers were
chosen randomly, they sometimes caused the objects to move away from,

rather than toward each other. In some cases, one or both of them simply
disappeared off the edge of the screen.

“There should be TOUCHING OBJECT for the top and sides of the
Playground,” Tom lamented. “Then they could, you know, bounce back the
other way if they hit the edge. They’d have to touch each other sooner or
later that way.” He clicked on the Play button to try his luck at a successful
run one more time.

“In a way, there is such a thing,” I said. “It has to do with finding the
coordinates of your objects as they move, and keeping track of where they
are in relationship to the edge. It’s a whole bunch of commands that all start
with GET. Come on, I'll show you.”

155

Boinkl

Let’s say you want to write a program like the old Pong game, which
allows users to hit a ball back and forth between two paddles. So far
we’ve learned about how to use the TOUCHING OBJECT command as

a way to program the computer to check if two objects—like, say, a
paddle and a ball-are touching each other.

But, as Tom’s problem illustrates, TOUCHING OBJECT wouldn’t allow
us to make sure that the computer “bounces” the ball off the side of
the Playground to keep it in play, rather than just letting the ball fly
out of view on the first missed shot. In this case, there’s no other
object to check, unless you’ve gone to the trouble of creating and
importing some kind of boundary objects.

L CGET-BOTTOM OBJECT

L CGET-TOP OBJECT
L CGET-RICHT OBJECT

L CGET-LEFT OBJECT
[RESIZE PLAYGROUND

L] COMPARE NUVBER

Let’s forget about the paddles for a minute and just think about what
it would take to keep a ball “bouncing off the walls of the
Playground.” The following code sample does just that. First, cover
up the side notes and take a look at the code to see if you can figure
out what’s going on. Then you can check the notes to confirm your
thoughts.

RESIZE PLAYGROUND 300,300 assures you know the

playground dimensions, so
you can use the numbers
later with COMPARE NUMBER

CONSTRUCT OBJECT ball constructs and stores the ball
PLACE OBJECT 150, 150

SHOW OBJECT

STORE BOX ballbox

RANDOM NUMBER -10, 10 picks a random num-

ber between -10 and 10

156

STORE BOX leftright

RANDOM NUMBER -10, 10

STORE BOX updown

@move

LOAD BOX ball

MOVE OBJECT leftright, updown

GET-LEFT OBJECT

COMPARE NUMBER O

JUMP <=(@sidewallbounce

LOAD BOX ball

GET-RIGHT OBJECT

COMPARE NUMBER 300

JUMP >=(@sidewallbounce

LOAD BOX ball
GET-TOP OBJECT
COMPARE NUMBER 300

stores the number fo
use as left/right move amount

puts another random number
in the AC

stores the number fo use as
up/down move amount

marks the code for when the
ball is NOT touching walls

puts the ball in the AC

moves if the amount defermined
by random number commands

puts number corresponding fo current
left coordinate of object info the AC

compares number with coordinate
of Playground’s left edge(0)

Jumps to marker if left side of
object is at O, or less

puts the ball in the AC

puts object’s current right
coordinate in the AC

compares right coordinate with
coordinate of Playground’s right edge
(300)

Jumps fo marker if right side
of object is a 500 or more

157

JUMP <=(@topbotbounce

LOAD BOX ball
GET-BOTTOM OBJECT
COMPARE NUMBER O
JUMP >= @topbotbounce
JUMP ALWAYS @move
@sidewallbounce
LOAD BOX leftright loads distance of left right
movement
MULTIPLY NUMBER -1 reverses direction of movement
STORE BOX leftright stores movement with new
direction to use in MOVE command
JUMP ALWAYS @move returns to code that keeps
object moving
(@topbotbounce
LOAD BOX updown reverses ball’s direction for vertical
moves
MULTIPLY NUMBER-1
STORE BOX updown
JUMP ALWAYS @move

Thh’lk B@‘FO]" (o YOU Jump...(“lf ..., then ...; otherwise, ...”)

Among the things you may have noticed in this elegant and efficient
little piece of code are some interesting uses of JUMP commands.
Let’s take a moment to look at this.

Whenever the computer makes a comparison, it’s comparing a
number associated with the contents of the AC, to another number.
JUMP = accounts for the possibility that they are equal. There are a
whole bunch more, one for every possible combination of C-bit
readings:

158

€ carvpareor

Whats Going On Inside the Computers

Remember the C-bit? That’s the place that stores the results of any
comparison that the computer makes. The C-bit has three settings:
equals (=); less than (<); greater than (>). Depending upon what’s
going on, you may want the computer to jump to another part of the
code if the C-bit shows something other than just equals. In the code
sequence on the previous page, the programmer told the computer to
jump if the C-bit read “>” OR “=.” Why?

Remember, the computer doesn’t “see” the picture of the ball as we
do; it just keeps track of the whereabouts of a little cloud of dots
called pixels. When we GET-LEFT OBJECT, we are telling the
computer to load into the AC the number coordinate of the leftmost
pixel of the ball object.

CFPU

AC C-BIT

GET-RIGHT OBJECT

Current Instruction

Mlus. 12A GET-LEFT OBJECT

159

JUMP = would tell the computer to send the ball back the other way
when the edge of the ball object exactly equaled the coordinate at the
edge of the Playground. (Actually, you should know that graphical
pictures exist within a little transparent background square. It’s the
location of this frame that is “gotten” with GET
LEFT/RIGHT/TOP/BOTTOM OBJECT. So when you use the selection
tools to bring in handmade graphics, you’ll want to draw the little
square as close as possible to the edges of your picture so it doesn’t
carry around a big, transparent frame.) But what if one move causes
that leftmost dot to leap over the boundary of the Playground, so that
from one second to the next the C-bit goes from “less than”, to
“greater than,” without ever actually hitting the “equals” spot?

CPU

AC C-BIT

COMFARE NUMBEE. 500

Current Instruction

[llus. 12B The object coordinate in the AC can switch from “less
than” (the Playground edge) to “greater than” in one move.

Using JUMP >= allows the programmer to be prepared for this
possibility, and to make sure the ball bounces back the other way, as
planned, even if its edge hops over the edge of the Playground instead
of actually “bouncing” off it.

160

CPU

AC C-BIT

JUMF > = @sidewallkounce
(Willjump of ¢-bit is O or1)

Current Instruction

Illus. 12C JUMP >= allows you to account for and control a
range of possible outcomes from the COMPARE command.

It will be up to you, the programmer, to decide which jumping
conditions are right for the programming task at hand.

LET'S PROGRAM!

This assignment is based on the sample code we just finished
studying, so don’f peek back at the sample code until you’ve given
this exercise a try!

1.

Launch FM and open Program7.fmp At the FM Welcome
window, click on Open Existing Programs. Navigate through c:\,
Fundam, Manual, Practice and Program 7. Then open the
program marked Program?7.fmp.

This program is basically the same as the one that appeared
earlier in the chapter, only the ball doesn’t bounce. You need to
add the commands to fix that. For every time the ball moves,
you’ll have to do the following:

Get all the edges of the object, each in turn.

Compare their respective coordinates to the edges of the
Playground.

Jump to another marker to reverse the direction when any of the
comparisons finds that part of the object is at a coordinate less
than or equal to zero, or greater than or equal to 300. The labels
and reversing code are already in place for you.

161

. Use GET-LEFT OBJECT to get the leftmost coordinate of the ball
object, into the AC.

. Use COMPARE NUMBER to compare the coordinate in the AC
with the horizontal coordinate corresponding to the left edge of
the Playground.

. Use JUMP <= to tell the computer to jump to the marker
@sidewallbounce if the comparison finds that the left edge of
the object is at a point less than or equal to the left edge of the
Playground.

Great! You’ve just finished your instructions for checking one of
the four sides of the object!

. Use LOAD BOX ballbox in order to get the ball object back into
the AC for another check. (Can you see what would happen if
you missed this step before trying to check the other edges of the
object?)

. Repeat the four steps above until all of the remaining three sides
of the object have been checked.

. Use the command JUMP ALWAYS (@move when you’ve finished
making all four of your checks, in order to make sure the ball
keeps moving if it’s nof touching any of the sides.

. EXTRA CHALLENGE: If you’ve got your ball bouncing and you’re
ready for some more fun, make this program into a pinball game.
At the beginning of the code, construct one or more barriers to
place somewhere in the Playground. Put each barrier you
construct in its own box, with box names like, “barrier,”
“barrier2,” etc. Then, under the first MOVE OBJECT command in
the program, insert one TOUCHING OBJECT command for each
barrier box. After each TOUCHING OBJECT barrier#, use JUMP
= (@sidewallbounce to get the ball going in the opposite direction
ifthe ball happens to be touching that particular barrier. (If the
ball isn’t touching any of the barrier objects, then the computer
will just drop down and execute the other COMPARES you
already ordered for bouncing off the Playground edges.

162

[] [] []
Programming Tips and Tricks
Don’t forget to adjust your COMPARE NUMBER, and JUMP inputs to
fit the edge of the Playground that you’re currently checking.

Did you notice that we asked you to use LOAD BOX ball as the first
new command, after MOVE OBJECT, even thought the ball is alread
in the AC at this point? It’s good programming style to keep things

arallel, and since the next three groups of similar commands had to
start with LOAD BOX ball (since the command beforehand will leave
a number in the AC), we’re better off also making the first set of GET
commands begin that way, as well. The code is easier to read and
understand that way because it is consistent.

Go back and take a look at the way MULTIPLY NUMBER was used to

manipulate animation in the sample program above. Can you think
of a way to use it in this same way in any of your existing programs?
Keep in mind the versatility of these NUMBER commands as you
move into new programming projects. How can you use them to
help you better manipulate different aspects of your programs?

Ticksl (Another Fun Thing You Can Get)

Wait! (and I really do mean “wait,” because that’s what Ticks are all
about). Don’t run for the bug spray! I'm not talking about nasty
bugs you pick up when you’re hiking in deep bushes...I’'m talking
about the programming kind of Ticks, which are actually little teeny
time particles...1/60 of a second, to be exact. They may seem like
nasty little buggers at first, but once you get used to using them, they
can actually be quite friendly, especially if you want to tell the
computer to stop and take a deep breath for five seconds or so while
the user catches up with what’s going on.

(You’ve probably noticed by now that the average CPU is quite swift
in doing your bidding. Instructions that took you half an hour to
figure out and type in can take the computer half a minute to run
through!)

GET TICKS takes a reading off the computer’s internal clock to find
out the number of Ticks that have transpired since midnight. So at
one second past midnight, a GET TICKS command would put a
number 60 into the AC. If 60 ticks make one second, then 180 ticks
make 3 seconds, 600 Ticks make 10 seconds, and so on. With that in
mind, take a look at this sample code. It essentially takes the number

163

for now, calculates what now will be three seconds in the future, and
then simply waits for the not-at-all-distant future to arrive.

GET TICKS
ADD NUMBER 600
STORE BOX later

@wait
GET TICKS
COMPARE NUMBER later
JUMP >= @action!
JUMP ALWAYS @wait

As long as we’re comparing and jumping, try these new string
tricks...

L] COMPARE STRING

L CET-LENGTH STRING
L DISSECT STRING

Now that you have variables and various jumps in your bag of tricks,
look at these new string commands. COMPARE STRING works with
strings in exactly the same way it works with numbers in COMPARE
NUMBER: It compares what’s in the AC with something else that you

specify.

COMPARE STRING

Data Wizard

Compare thig string or box to the AC:

. String answerstring

eﬂmr.
LZEMespanse

Cancel | 0K I

Fig. 12-1 COMPARE STRING Data Wizard dialog

Look at the program segment in the example below:

LOAD STRING “arctic gray fox”
STORE BOX answerstring

LOAD STRING “I’'m thinking of an animal from the Antarctic...Can
you guess what it is?

WRITE-SCREEN STRING

READ-SCREEN STRING

STORE BOX guesstring

164

COMPARE STRINGanswerstring
JUMP =(@congratulations
JUMP <>@try again

GET-LENGTH STRING tells the computer to count the number of
characters and spaces in a given string, and to put the resulting
number into the AC.

DISSECT STRING is a little more complicated. It allows you to get at a
particular character or group of characters from inside a string.
When you use the command DISSECT STRING the Data Wizard will
ask you for two number inputs. (Ahal So that’s the connection to
numbers!)

DISSECT STRING

Data Wizard

Start digzecting at this number or box;
e Humber 3

.an

Finizh dizzecting at thiz number or bos:
Q Number 10

.Bux

Cancel |

Fig. 12-2 DISSECT STRING Data Wizard dialog

The whole instruction will look something like this:
DISSECT STRING 3,10

That tells the computer to put in the AC all the characters (including
spaces) from the third through the tenth in a given string.

So if the AC contains the string “I’'m not sure this makes sense!” the
command DISSECT STRING (3,10) pulls out “m not su” and puts that
into the AC. DISSECT STRING is just another tool for setting up
COMPARES and JUMPS in a program.

“lssecb-Day Ing-Strayl”

Neither GET-LENGTH STRING nor DISSECT STRING are very
commonly needed for simple programs. But one programmer found
a use for both of them in this program that will take any word a user
types in and translate it into Pig Latin. That’s more complicated than
it sounds! Let’s take a look.

165

(@beginning
LOAD STRING “Hello, give me a word to translate into Pig

Latin.\”

WRITE-SCREEN STRING
READ-SCREEN STRING
STORE BOX englishWord
LOAD NUMBIER 1

STORE BOX currentLetter

@findfirstvowel

LOAD BOX englishWord
GET-LENGTH STRING

STORE BOX stringLength
COMPARE NUMBER currentLetter

JUMP < @novowels

LOAD BOX englishWord
DISSECT STRING currentLetter, currentLetter

UPPERCASE STRING
COMPARE STRING “A”
JUMP = @foundfirstvowel

COMPARE STRING “E”
JUMP = @foundfirstvowel
COMPARE STRING “1”
JUMP = @foundfirstvowel
COMPARE STRING “O”
JUMP = @foundfirstvowel
COMPARE STRING “U”
JUMP = @foundfirstvowel

LOAD BOX currentLetter
ADD NUMBER 1

STORE BOX currentLetter
JUMP ALWAYS @findfirstvowel

} gets and stores word

ygives #1.d. fo 1
letter

gets string’s length
makes sure word 1s
long enough

Jumps if it’s not
loads user word

takes ouf current
letter

J}compares current
letter fo vowels

} puts next letfer in
box

166

@foundfirstvowel
LOAD BOX currentLetter

COMPARE NUMBER 1
JUMP = @firstletterisavowel
JUMP <> (@firstletterisaconsonant

@firstletterisavowel
LOAD BOX englishWord

APPEND STRING “way”
STORE BOX piglatinWord
JUMP ALWAYS @end

@firstletterisaconsonant
LOAD BOX englishWord

DISSECT STRING currentLetter, stringLength
STORE BOX startOfNewWord
LOAD BOX currentLetter
SUBTRACT NUMBER 1

STORE BOX currentLetter

LOAD BOX englishWord

DISSECT STRING 1, currentLetter
APPEND STRING “ay”

PREPEND STRING startOfNewWord
STORE BOX piglatinWord

JUMP ALWAYS @end

@novowels
LOAD STRING “try a word with vowels”
STORE BOX piglatinWord

JUMP ALWAYS @end

@end
LOAD BOX piglatinWord

LOWERCASE STRING
WRITE-SCREEN STRING

LOAD STRING “\”
WRITE-SCREEN STRING
JUMP ALWAYS @beginning

EXIT PROGRAM

} checks initial
letter,:(vowel?
consonant?)

} translates words
with initial vowel

} translates words
with initial consonant

} asks user for
transilatable word
(always a good idea fo
anficipate weird input])

} prints Pig Latin.
word, or asks for
translatable word

Whew! That’s a lot of jumping around!! But I hope you took the
time to really dissectthis code. It’s a fun program, and worth the

167

effort. (If you want to see it run, it’s waiting in the Examples folder
inside Fundam and Manual in your Existing Programes.)

You Can Compare Objecbs Tool

LI COMPARE OBJECT

You can compare objects, too! COMPARE OBJECT works in a slightly
different way than COMPARE STRING and COMPARE NUMBER.
When the Data Wizard appears, it lets you pick either a box (which
should contain an object inside it) or an object type or blueprint.

COMPARE OBJECT

Data Wizard

Compare thiz object bupe or box to the AL

QBDR foxbox

i Obiject
pehguinbo

Cancel | 0K I

Fig. 12-3 COMPARE OBJECT Data Wizard dialog

If you pick a box, when the user makes the comparison, the two
objects are “equal” if the object in the AC is equal to the object in the
box. If you pick the name of an object blueprint, the comparison is
“equal” if the object in the AC was made from the blueprint you
selected.

Take a look at this sample code which makes up a matching game for
young children. See if you can figure out what it does and how it
makes use of COMPARE OBJECT. The first chunk of code sets up the
game, and the second chunk is a sub-task which has been linked to
all the program’s objects as a click-task.

Setup:
CONSTRUCT OBJECT mouse

SHOW OBJECT
CONSTRUCT OBJECT snake
SHOW OBJECT
CONSTRUCT OBJECT turtle
SHOW OBJECT

LOAD STRING “Click on the animal which is a mammal.”
WRITE-SCREEN STRING

END SUB-TASK

168

Click-task:

COMPARE OBJECT mouse

JUMP <>@wrong

LOAD STRING “That’s correct! Good jobI\”
WRITE-SCREEN STRING

WAKE MAIN

JUMP ALWAYS@end

@wrong
LOAD STRING “Try again!\”

WRITE-SCREEN STRING

@end
END SUB-TASK

It’s pretty easy to see how this program uses COMPARE OBJECT.
There are three animals on the screen, and when the child clicks on
one of them (which you remember will automatically transfer the
clicked-upon object into the AC), the click-task simply compares the
child’s choice with the mouse object and jumps accordingly. (You
can see this program in action by clicking Open Existing Programs at
the Welcome window, and navigating through
c¢:\Fundam\Manual\Examples\DemoZ2, and opening Demo2.fmp.

I%’s Not as Simple as [T Looks

Perhaps more difficult to understand in the above code are the
commands END SUB-TASK, in the set-up portion, and WAKE MAIN
in the click-task sub-task. Isn’t the set-up the main task here?
Actually, it’s not. The main task for this program has three
commands:

EXECUTE SUB-TASKsetup
SLEEP MAIN

END PROGRAM

Why not just put all the stuff in setup in the main task? Well there is
a reason. In this case, if “setup” wasn’t in a task by itself, then the
program would have no way to EXIT. It would run on forever unless
someone clicked the Stop button on the Toolbar. (Can you see why?)
This may be functional, but it’s bad style. So, in fact, this program is
more complex than you’d think at first glance, because it presents
this stopping problem. That’s why the programmer decided to make
one extra sub-task besides the one she used for her click-task. In the
next chapter, we’ll learn more about how sub-tasks can help you
break such problems down, and solve them with style.

169

CHAFTER 15

Bregking Things Down with Sub-Tasks

Branching Out 171
Click-Tasks And Key-Tasks 171
What's Going On Inside The Compuber? 172
Sub-Tasks On Command 175
What's Going On Inside The Compuber? 176
What Can Sub-Tasks Do For Me? 178
Everyday Sub-Tasks 179
Decomposition And Modularity 179
Remember Ticks? 160
Programming With Sub-Tasks 161
Whose Box s [T Anyway? 161
“Local” Benefits 1862

Commands Introduced.

[EXECUTE SUB-TASK

[EXECUTE PROCESSTASK

170

----- Teacher’s Journd -----

Brian and Tove had a pretty complex program going. They had a
caterpillar object with a click-task that made it inch across the screen, while
two different birds swooped down and tried to eat it.

“If he makes it to the other side of the Playground,” Tove explained, “we
want the caterpillar to turn into a chrysalis and then a butterfly, and fly
away...”

“And it would say something like ‘You win! Butterflies rule!’ in the
Conversation window,” Brian added.

“Cooll” I said.

“Yeah, but wait,” Tove said, “If he doesn’t make it across without getting
dive-bombed, then obviously he can’t turn into a butterfly...”

“AAAUUUUUUUUGGGGHHH! I’'m DEAD!” Brian said, dramatizing the
other possible outcome their game would hold.

“But it’s too many JUMPS and everything, and we can’t keep track of it all,”
Tove said, her shoulders sagging under the weight of all the possibilities.

“What you guys need are some sub-tasks,” I said.

“We need things to be SIMPLER, not MORE COMPLICATED,” Brian
protested.

“Sub-tasks do make things simpler,” I said. “You already use them all the
time.”

“We do?” Tove and Brian said together, giving each other a ‘There-she-~
goes-again!’ look.

“Sure. Tove, tell me what you did this morning before you came to school.”
“Took a shower, ate breakfast, brushed my teeth, and made my lunch. So?”
“So, you just used sub-tasks to make things simpler.”

“I did???”

“Yeah. You knew you couldn’t really tell me EVERYTHING you did or it
would take up the rest of the period and go into break time. So instead, you

named the sub-tasks....”

“Ohhhhhhhhh,” Tove said. And then she gave me a sheepish grin. “Okay,
so you’re not TOTALLY out of your mind...”

171

Branching Out

Now that you’re “branching out” in your programs, it’s time to get
back to the whole business of sub-tasks. You already know of one
way to use sub-tasks, as sub-tasks for your objects. But that’s just
scratching the surface of what sub-tasks can do for you. Let’s dig a
little deeper.

Remember that the term “click-task” refers to any sub-task that has
been connected to a particular object in the object designer, and that
a sub-tasks is a separate section of program code written in its own
Task window. Using sub-tasks as click-tasks is just one of the many
ways to link them (or, in tech speak, “call them in”) to your main
program. Once they are written, sub-tasks can be used in a variety
of ways.

Click-Tasks and Key-Tasks

Sub-tasks can be used to bring the user into the action in two
different ways, as click-tasks and as key-tasks. If you need to review
how to make a new sub-task or how to link a sub-task to an object to
create a click-task, refer back to chapter 8.

But let’s say you want to make a program with a walking guy object.
In the main task, you construct, show, and store him. But you don’t
want him to just automatically start walking; you want the user to be
in control.

You could make a click-task, but it’s sometimes better to have the
user hit a key on the keyboard, especially if speed is of any
importance. So let’s say you want the Walker Guy to take one step
for every time the user hits the spacebar on the keyboard. How do
you think you’d accomplish this?

FUNdaMENTAL offers a really easy method for making key-tasks.
Like a click-task, a key-task is a sub-task that gets called into play
only when the user does something while the program is running.
As the name “key-task” suggests, the computer will only execute this
sub-task when the user strikes a designated key.

You can make a key-task out of any sub-task by simply clicking on
the button marked with a picture of a key (the kind you use to open a
locked door), which appears near the Use button in the sub-task
window.

172

zeds <boolean or bos: I
ey Button
mples AMD BO0LEAN TRIIE degignates
Key-Task

S

Fig. 13-1 The key-task button appears in the upper
right-hand region of the sub-task window.

(Please note that the main Task window does not have this button.
Can you explain why it would never work to make a click-task for a
key-task out of the main task?)

Clicking on this Key button brings up a dialog box asking you to
“assign” a keyboard key to this task.

"y Key Dialog M=l E3

% Current Key: none

Fress the key(s) that, when pressedin the
Flayground YWWindawe, will trigger the
execution of this sub-task.

Cancel Hone (114

Fig. 13-2 Key dialog

All you have to do is press the key on the keyboard that you want to
have linked with this sub-task. Doing so automatically creates a key-
task so that the sub-task will run whenever the user presses the
designated key while the program is running.

Key-tasks are different from click-tasks in one important way.
Whereas you can begin a sub-task that you are using as a click-task
with a command like MOVE OBJECT, you must always start a key-
task associated with an object with CONSTRUCT OBJECT or LOAD
BOX. Can you figure out why?

Whats Going On Inside the Computers

When you use the mouse to click on an object, the computer
automatically puts the clicked-upon object into the AC. Although a
key-task is similarly associated with an object in your mind, pushing
a key on the keyboard does not automatically put what you’re
thinking of into the AC. It simply causes the computer to start
following whatever instructions are listed in the sub-task that you’ve
linked with the key. If you start with the command MOVE OBJECT,
the computer will either:

173

a) move whatever object is currently in the AC, which very well
may be a different object than the one you have in mind, or

b) freak out entirely because there is not an object at all in the AC,
but some other kind of data instead.

BEFORE user pushes key

LOAL STRING "is nry name"

Current Instruction

"Bus"lineto keyboard CPU
|

AFTER uger pushes key, CFU starte to execute
firet instruction of Task associate with the key

MOVE OBJECT 10,0

Current Instruction

"Bus"lineto keyboard CPU

|
Illus. 13A and 13B Pushing a key on the keyboard does not specify the
contents of the AC in the same way that clicking on an object does.

174

That’s why you want to start your key-tasks with LOAD BOX, so that
when the computer stops what it’s doing and picks up this new list of
instructions, the first thing it does is put the desired object into the
AC.

LET’S PROGRAM!

Return to Myprog1.fmp. You should already have at least one
program with a click-task from back in Unit 1 when we took
over the whole show and designed our own objects. For this
assignment, you can return to that program, which should still be
called Myprog1.fmp in your Fundam folder, or you can go back
to any other program that you want to enhance with more tricks.

2. Select an object to be the recipient of a key-task. Make sure that
the object you select is stored in a box, and make sure that the
little globe symbol appears next to the box name in the list of
boxes. (That way you’ll know that you can load the object from a
sub-task as well as from the main task. We’ll be learning more
about local and global boxes later in this chapter.) Now it’s time
to write the code for the sub-task that will determine what
happens with the object when the user presses a key on the
keyboard.

3. Create a new sub-task. Go to the Program window and click the
New button for making a new sub-task.

4. Name the task something descriptive.

5. Start with the command LOAD BOX, and select the box for the
object you’ve chosen for this key-task. (Unlike click-tasks, a key-
task does not automatically put the desired object into the AC.
You have to do that with a command.)

6. Write a really simple sub-task, no more than a few lines. Maybe
this object could take a leap, or morph into a different thing, or
disappear for a moment when the user touches the designated
key.

7. Define this sub-task as a key-task. Look for the little button with
a picture of a key on it. Click on it.

8. Select the key that will make it all happen All you have to do is
press the key of your choice on the keyboard, and that key will
become the trigger for your new sub-task. Click OK once you
have selected the key.

175

9. Test-run your program. While it’s running, press the key you
designated to see your key task executed. How did it turn out?

(Remember, before you share this program with another user, you
should probably add a string or a sound that gives the tip-off about
which key to press.)

Sub-Tasks On Command

Clicking the mouse and pressing keys on the keyboard are not the
only ways to call a sub-task into the action... in fact, among seasoned
programmers (a category of folks that will very soon include youl)
those are not even the most commonly used ways.

Another way to “call” sub-tasks is to use commands. Commands can
call a sub-task either from within the main task or from another sub-
task.

L EXECUTE SUB-TASK

[EXECUTE PROCESS-TASK

When you use either EXECUTE SUB-TASK or EXECUTE PROCESS
TASK, the Data Wizard will ask you which of the existing sub-tasks
you wish to call. You’ll see the same list of sub-tasks that appears
when you pull down the click-task menu in the Object Designer. It
will be in the list that appears in the top portion of the dialog. (The
two columns in the lower portion have to do with some special box
tricks we’ll be learning about in the next chapter. You can disregard
them for now.)

EXECUTE SUB-TASK

Data Wizard

Choose a sub-tazk to execute:
Selected
Sub-Task

Available
Tasks

Choosze a box for each parameter;

[disregard
for now..

Fig. 13-3 EXECUTE SUB-TASK Data Wizard dialog

176

Select the sub-task you have in mind by double-clicking on it, and
the EXECUTE command will automatically appear in the Instruction
list followed by the name of the sub-task it’s calling, like this:

EXECUTE SUB-TASK gofish
or
EXECUTE PROCESS TASK gofish

The command EXECUTE SUB-TASK is pretty self-explanatory. You’re
simply telling the computer to stop whatever it’s doing in the current
list of instructions, go over and carry out the commands in another
list, and then return to the first task to do whatever comes after the
EXECUTE SUB-TASK command. You’re essentially telling the
computer, “Go do some other things, and then come back and finish
this stuft.”

On the other hand, EXECUTE PROCESS TASK is more like telling the
computer to flip a switch that starts another set of things happening,
and then continue on with the original task, while the new task goes
along as a separate process. Here, your message to the computer is,
“Do two things at once, at least until one of them’s finished.”

Whats Going On Inside the Computers

When the computer is in charge of accomplishing two different tasks
at one time, it is said to be running two separate “processes.” Since
the computer can only do one thing at a time, this may seem
impossible. In fact, it is. The computer is never doing more than one
thing at a time. When it’s in charge of two separate processes, what
it actually does is switch back and forth between them. It does a little
of the first and then a little of the second, and then a little of the first
again, and so on, until something gets finished. Luckily for us, the
computer does everything really, really fast. So even though it’s not
really doing two, or three, or ten things at once, it sure looks like it is
when the program is run.

When more than one process has been established in a program, a
little thing called the Scheduler jumps into the action.

177

MEMORY

b STORE BOX

Frocess #1 myName

SHOW OB JECT

STORE BOX myName

Current Instruction

LOAD BOX "horse"
Frocess #2
MORFHOBJECT
*horseZ bmp®
CODPE SPACE

Illus. 13C The scheduler makes sure all processes get a fair shake.

The Scheduler is what makes sure each process gets its fair share of
the computer’s attention. Unless the computer gets instructions from
the current process to move on to another, the Scheduler will
intervene after a short amount of time and make sure the computer
moves on to the next process in the lineup.

178

MEMORY

STORE BOX

Frocess #1 myName

SHOW OB JECT

LOAD BOX "horse®

Current Instruction

After Process #1 runs for a

given period of time, the

Scheduler will allow ancther . LOAD BOX "horse"

Process to run by pointing to | Frocess #2

an instruction in the Process. MORFHOBJECT
*horseZ bmp®

TheCurrent Instruction

kFecomes what the Scheduler CODE SPACE

point to.

Illus. 13D The scheduler alternates between processes.

“What Can Sub-Tasks Do for Me?”

Like the two SOUND commands (PLAY SOUND and PLAY-N-WAIT
SOUND), the two sub-task commands will offer distinct advantages
to your program. The choice you make will depend upon what best
accomplishes the effect you’re trying to achieve when your program
is run.

It’s clear that click-tasksk, and key-tasks are useful to make your
programs interactive. But what can be gained by using these other
kinds of sub-tasks?

Sub-tasks, in general, enable you to break down complex programs
into component parts so you can accomplish complicated tasks with
style and efficiency. As you continue to advance in your
programming, try to keep your mind open to different ways you can
break things down into smaller chunks and try dealing with them
separately in sub-tasks.

Process-tasks, in particular, are useful for achieving flexibility in
your program. They’re the ones that really make the computer
appear to do several things simultaneously. You can set as many of

179

them spinning as you want to, and get a lively, circuslike atmosphere
in your animation programs.

Or you can use them to keep a running set of instructions or
soundeffects going in the background together with the main action.

Everyday Sub-Tasks

As prickly as they may sound in the context of programming, sub-
tasks are really old friends of yours. You use them all the time, as
Tove only reluctantly admitted. (“Do not!” “Do too!”)

Let’s say you have a busy day ahead. You need to deposit money at
the bank, go to the grocery store, cook supper, learn a little bit about
programming, and plan tomorrow’s lesson for your students. Each of
these items on your “to do” list is made up of a whole bunch of
smaller “commands” that you give to yourself as you complete the
task.

For example, Deposit Money at the Bank breaks down into a lot of
different little things once you’re standing in front of the ATM —
things like: take out your wallet; open your wallet; take out the check;
pick up a pen; sign your name; etc.

But when the alarm goes off in the morning, you’d never make it out
of bed if you tried to actually tally up everything you’ll be doing that
day. Only when it comes time to EXECUTE SUB-TASK deposit, do you
deal with all the smaller details. When you think about it this way,
it’s easy to see how sub-tasks themselves can break down into sub-
tasks. Inside the Deposit sub-task, for example, you might find
EXECUTE SUB-TASK lookupaccount#, or EXECUTE SUB-TASK
signature.

Decomposition and ModulariBy

Now we’re getting into the nitty gritty! My programmer buddies
have a name for all this breaking down of stuff: “decomposition.”
Aside from making it easier to face your day—or your program—
decomposition also allows you to reuse certain sub-tasks. For
example, you EXECUTE SUB-TASK signature every time you write a
check, send a letter, or pass the guest book at a wedding. This kind of
reusable sub-task is said to have a high degree of “modularity.”

The more you practice with programming, the more you’ll find ways
to create self-contained, or modular, sub-tasks that you can reuse in

many different programs. In fact, there’s a FUNdaMENTAL interface

feature which allow you to do just that. It’s called the

Task Importer. It looks like this:

180

Fi

: Tasks to Add:
et
S fundam
Sy manual
3 practice
25 demal
[GRaPHICS
[50UNDS

Bemove

Cancel | Ok I

1g. ~3a The Tas
whole sub-tasks from other programs

You get to it by clicking the Add button in the Program window.
Once it’s open, you use it basically the same way you use the
Graphics and Sound Importers. Navigate through the directories to
find the program that has the sub-task you want to reuse elsewhere.
Open the folder marked “tasks”, and then highlight the task you
want and click on the Add button in the Task Importer. The task
name will now appear in the right-hand column of the Task

Importer. Close it up when you’ve grabbed all the reusable tasks that
you need.

Remember Ticks?

They’re the little critters that allow you to control time lapses in your

programs. A “wait!” function with ticks is a perfect miniprogram to
separate into its own sub-task, as in the example below.

GET TICKS

ADD NUMBER numseconds
STORE BOX later

@wait

GET TICKS

COMPARE NUMBER later

JUMP >= @action!

JUMP ALWAYS @wait

END sub-task

To make it truly recyclable, you want to put a box/variable, instead
of a number constant, with the ADD NUMBER command (something
like ADD NUMBER numseconds). That way, you can use whatever
number of seconds best serves your “waiting” needs.

181

Programming with Sub-Tasks

This wait function is just one example of how you can take care of a
portion of your program’s business in a separate sub-task. In this
same way, you can move objects, print instructions in the
Conversation window, or play sounds. There’s no single correct way
to achieve good decomposition no formula for perfect modularity.
This is the true art of programming. Your own style will grow with
experience. (But just remember: Sub-tasking is a natural thinking
process in which you engage every day of your life, from morning ‘il
night!)

So if you are trying to do something in your main task that seems to
break down into several, different functions, or if you find yourself
writing miles of code in a single task, ask yourself if you could find a
place for all or part of your plan in a sub-task.

Whose Box ls I Anyway?

Let’s say you’re working in a sub-task and you want to use the
command LOAD BOX. You’re already starting to think like an expert
(and we’re not even to unit 3 yetl), and so suddenly you stop and ask
yourself: “Wait a minute! If I stored a box in the main task, can I
load it into a sub-task?”

Hey! Good question! (Aren’t you glad you thought of it?)

And the answer is...yes, and no. Two answers, because there are two
kinds of boxes: global boxes and local boxes. In using the command
STORE BOX, you may have noticed that when you created a box, it
added the new box name to the list on the right side of the Task
window. And next to each box in this list, there is a picture of a little
globe. If you click on the globe, you’ll see that it changes to a picture
of a little house.

Boxes:

& pince el Local
8 frog Box
@ princess

Fig. 13-4 Global boxes are marked with a globe icon,
and local boxes are marked with a house icon.

That means that the box is now “local,” or specific to the sub-task in
which it appears. Local boxes will only appear in the box list for one
task in the program. The boxes next to the globe, on the other hand,
are “global” and will appear in the box lists for all the tasks in your
program.

182

So, let’s start with global boxes, the kind that go with the “yes”
answer. (Can you even remember the question? Here it is again:
Once a box is stored away in one task, do all the other tasks in the
program have access to that same box?) If a box is designated as a
global box, then that means that it resides in a storage area that is
shared by all the tasks in your program. Every task is allowed to
“walk right in” and get boxes out.

On the other hand, local boxes come from a private storage bin
belonging to one specific task. Sometimes local boxes get filled up
with data that’s “passed in” from another task. But for now, we’ll
focus on local boxes that have to be stored (or filled up) within the
task that uses them, and labeled as local. In this case, whenever the
computer is following the instructions of that sub-task and needs to
load a local box, it dips into the special, private bin, rather than going
to the main storage area.

“Local” Benefits

At first, I couldn’t see why all the programmers around me were
insisting that local boxes were the way to go. Hey, I reasoned, why
not just store away everything once, and let all the tasks share.
Sharing is good, isn’t it?

Orgenizabion and Readzabiliby

Not in this case. Not usually, anyway. The main reason to use locals
whenever possible is to keep things organized, which, in
programming, translates into readability, a key component of good
programming style. A fairly complex program may use dozens of
boxes altogether. When you’re working in a particular sub-task, you
will see a box list that contains all the program’s global boxes, plus
only the local boxes that pertain to that particular sub-task.

All the other local boxes that go with different sub-tasks are hidden.
That way, it’s a lot easier to sift through the list and find the box you
had in mind. Using all global boxes would be a little like storing

duplicates of everything you use in your actual household—from your

tooth brush to the dog’s collar to your frying pans—in every single
cabinet in every single room. (Yikes! What a mess)

Modkdzrity

The other main reason to use local boxes applies to more advanced
programming, but it’s a good idea to start thinking along these lines
early in your programming career. It has to do with the value of
modularity, that is, trying to make sub-tasks that can be used in more
than one program. That may be hard to imagine now, but it’s a big
part of the real stuff of programming. Imagine, for example, that
you had a sub-task that used the command LOAD BOX bunnyhop for
a global box containing a hopping distance that had been stored in
the program’s main task. Suppose you then tried to use that sub-task

183

in another program called Rabbit Race. During that program’s
“syntax check” (when the computer runs down your list to make
sure all the necessary elements are there), the computer would look
for the definition of the “bunnyhop” box, which, of course, wouldn’t
be there because it would be stranded back inside the Easter Bunny

program as a global variable—CRASH!

Mordl

When it comes to boxes in sub-tasks, forget everything your teacher
told you about sharing, and use local boxes whenever you can.

LET'S PROGRAMI

1. Launch FM and open Program6.fmp. At the Welcome window,
click on Open Existing Programs, then navigate through c:\,
Fundam, Manual, Practice, and Program 6, and open
Program6.fmp. Once this program appears in the Files window,
double-click to open it. (It’s the frog prince; remember him?)
We’re going to change this program so that it includes EXECUTE
SUB-TASK and EXECUTE PROCESS-TASK.

2. Review the code to find the chunk you’ll use as a sub-task. Find
the part that makes the frog turn into a prince and walk into the
sunset after the kiss.

3. Use the cut function in the Edit menu to remove these lines of
code from the main task. (Make sure you leave the “(@kiss”
marker in place, though; you’re still going to need it.) The
copy, cut, and paste functions work the same way they do in
conventional word processing applications. When you use cut or
copy, the selected text is either removed or copied to the
computer’s clipboard. The paste function will paste the last thing
cut or copied into the chosen location. To select more than one
instruction to be cut or copied, click on the line at the top of the
sequence and drag the mouse down until all the desired lines are
highlighted.

4. Go to the Program window and make a new sub-task and name
it “change!” Use the Window menu on the Toolbar to select
Program window. Click on the New button and type the name of
the sub-task into the Data Wizard dialog that appears.

5. Paste the code you cut from the main task into this sub-task.
Highlight the first line of the Instruction list in the new sub-task
window, and then select Paste from the Edit menu on the Toolbar.

6. Go back to your main task. (You can do this by clicking directly
on it if you can see any part of it, or by finding the Program
window and double-clicking on “main” in the list of tasks in your
program.)

184

7. Add the instruction EXECUTE SUB-TASK change! It belongs
underneath the “@kiss” marker. Your program should run
exactly the same as it did when this stretch of code was part of
the main task list.

8. Go back to the Program window, and click on the New button to
make another new sub-task. Call it “madwitch.fmt” (You’ll
find witch graphics in the Graphics Library for this program.)
Construct a witch object. Place and Show it. Then use the
necessary MOVE and MORPH commands to make her have a
tantrum in the background as her spell is foiled by the frog’s kiss.

9. Go back to your main task, and review the code to find a good
insertion point. Find the place in the main program where you
want the mad witch stuff in the new sub-task to start happening.

10. Insert the instruction EXECUTE PROCESS TASKmadwitch and
attach your new witch object sub-task to this command. Run the
program, and see how it looks.

Programming Tips and Tricks

Can you see the advantages of moving these small chunks of code
mto their own sub-tasks? What if you had a whole bunch of things

on in the program with several different possible outcomes
dependmg upon what was touchmg what? It’s much easier to keep
track of all these outcomes if they’re in separate little tasks, all on
their own.

A programmer friend of mine says that if he finds himself using more
than 15 or 20 lines of code in one task, he figures it’s time to stop and
look for a way to break things down. Most times, he can find one!
The Pig Latin program in the previous chapter is a perfect candidate
for sub-tasks. Can you see how you’d break it up into separate sets of

commands to stash in sub-tasks? Give it a tryl

And remember the different advantages offered by the two
commands EXECUTE SUB-TASK and EXECUTE PROCESS-TASK. With
EXECUTE SUB-TASK, the computer will stop in its tracks upon
reaching that 111st1 uctlon and go execute all the instructions in the
sub-task before where it left off. With EXECUTE
PROCESS-TASK, the compute1 begins executing the instructions in
the sub-task as a separate process and so appears to be doing two
things simultaneously.

Please note that the sample solution to this assignment can be found
under the name Progrmoa.fmp in the Examples folder.

(Fundam/Manual/ Exam les/Programéa)

185

UNIT 2

Highlights

COMMANDS

LOAD STRING
WRITE-SCREEN STRING
READ-SCREEN STRING
PREPEND STRING
APPEND STRING
UPPERCASE STRING
LOWERCASE STRING
DISSECT STRING

PLACE CONVERSATION
RESIZE CONVERSATION
RESIZE PLAYGROUND
LOAD NUMBER
WRITE-SCREEN NUMBER
READ ~-SCREEN NUMBER
ADD NUMBER
SUBTRACT NUMBER
MULTIPLY NUMBER
DIVIDE NUMBER
REMAINDER NUMBER
RANDOM NUMBER
COMPARE NUMBER
TOUCHING OBJECT
JUMP =

COMPARE OBJECT
GET-BOTTOM OBJECT
GET-TOP OBJECT

GET RIGHT OBJECT
GET-LEFT OBJECT

GET TICKS
GET-LENGTH STRING
JUMP </>/<=/>=/<>
COMPARE STRING
EXECUTE SUB-TASK
EXECUTE PROCESS-TASK

INSIDE THE COMPUTER

C-bit
Scheduler
Processes

186

187

UNIT &

THINKING LIKE AN EXPERT

CHAPTER 14 - A Whole Little Chapber about Boxes
CHAFPTER 15 - Flocking Bo Gaggles for Style, Flexibiliby and Fun

CHAPTER 16 - HOLD THAT THOUGHT! Using FILE Commands to
Save Information

CHAFPTER 17 - True and False with Booleans

CHAPTER 15 - “BEverything is Trees™ Elements of Programming
Style

188

Now that you’ve had a good foundation in the basics of programming, it’s
time to begin exploring the way that expert programmers think. This is
where the programming process becomes a true art. We’ll be looking at
advanced uses for variables, and new, dynamic methods for storing data, all
with an eye toward creating programs that show “good style” with respect
to readability and efficiency.

In Chapter 14 we’ll revisit the central concept of boxes in FUNdaMENTAL,
reviewing what we’ve learned so far, and adding some new dimensions to
make the use of variables an even more powerful tool for achieving your
program goals.

In Chapter 15 we’ll look at a new way for storing large amounts of data in a
way that is both flexible and orderly. We’ll see how storing things in
“gaggles” allows for more dynamic and elegant programming.

In Chapter 16 we’ll learn commands that allow you to stash string and
number data in separate text files. We’ll see how this is useful for hanging
onto data permanently. Even more fun, we’ll see how structuring files well
can allow you to write stylish programs that work like little machines,
independent of the particular data they’re handling.

In Chapter 17 we’ll take a look at a new kind of data called “booleans,” and
use FUNdaMENTAL to have some fun with formal logic.

In Chapter 18 we’ll take a focused look at the theme of good style. We’ll
revisit a variety of style elements that we’ve been developing throughout the
manual, including decomposition, modularity, readability, and naming
conventions.

189

CHAPTER 14
A Whols Libble Chapter Abouts Bores

A Whole LitTle ChapTer About Boxes

Boxes? Again? 191
Boxes In Review 191
And Now For Something New... 195
Special Delivery... 195
Paramebers AL Work 197

One-Way Versus Two-Way Delivery 199

190

----- Teacher’s Journd -----

“Okay!” I bellowed. “Company meeting, everyone!” I blew my wooden
train whistle, and, slowly, clusters of kids began to leave their computers to
come to the open spot in the middle of the room where we met to learn new
commands and share ideas for programs and troubleshooting.

“What do we gotta meet about now?” Stephen groaned. He hated more
than anyone to give up his precious work time.

“We have to talk about boxes,” I began.
“BOXES?? AGAIN?7?7?” the class chimed in unison.

“Oh, yes!” I said. “Boxes again, and boxes still. Boxes are a big, BIG deal in
programming.

191

Boxes? Again?

Yes, boxes again, and boxes still, because having the right idea about
making storage space for your data is one of the main skills you need
to bring your programming up to a whole new level. Throughout
the manual, boxes have resurfaced several times, each time with a
new twist. Let’s recap everything we’ve learned, and then add some
new ideas so we can get a sense of how experts see boxes.

Boxes in Review...
Holding Onto Constants

When we first started using boxes, way back in unit1 we used them
as a way for the computer to “keep track” of a particular object so we
could get back to it later, once we had loaded something new into the
AC. We focused on Red Ridinghood and he Wolf as we loaded them
by turns into the AC to move them through the forest scene.

Boxes as Varigbles...

Then, in unit 2, we saw how boxes themselves are actually more
important than what goes in them. To the expert programmer, a box
is really a variable, a nice open place that you can create within your
program for storing different instances of a certain data type.

Instead of thinking, “I need a box for this #3,” you think, “Here’s
where I'll put a numbox so that numbers-like, say, #3—can slip in
and do their thing!” Expert programmers usually start the
programming process by identifying all the variables they’ll need to
build into their program.

Boxing Rules for Different Data Types

In unit 2, we also learned that different types of data use boxes
differently. Here’s the whole story. The command CONSTRUCT
OBJECT actually sets aside a little chunk of memory in a separate
place called the “Heap,” and then constructs the object there.

192

CPU MEMORY

pointertoa
"froggy"object

AC

CONSTRUCT OBJECT
froggy"

Current Instruction

CPU BOXES

THE "HEAF*®

Illus. 14A objects are constructed in a portion of the computer’s memory
known as the “Heap.”

When we store an object in a box, what we are actually storing is not
a copy of the object itself, but rather a “pointer,” or reference (like a
“This-Way-to-objectfroggy” road sign, or a library call number).

193

CPU

pointertoa
"froggy"object

AC

MEMORY

STORE BOX Frogboxi

Current Instruction

CPU

‘pointerttoa
“froggy* object

BOXES

THE "HEAF*®

Illus. 14B A pointer to the object is copied from the AC into a box.

When we later load box in order to manipulate the object, the
pointer inside the box directs the computer straight to the original

copy which resides in the Heap.

194

CFU MEMORY
_ "pointer®to a
‘pointer"to a "froggy"object

"froggy"object

AC

MORPH OBJECT "prince”

Current Instruction

CPU

THE "HEAF*®

Illus. 14C After an object in the heap has been changed through a pointer in the
AC, the pointer in the box leads to the same, updated copy.

Even if a constructed object is never stored in a box, it remains in the
Heap, but the program will have no way to get back to it.

Strings and numbers are different. When we load a string or a
number into the AC, there is no special memory space set aside
elsewhere for the data. It exists only in the AC, and will be gone
completely if it’s bumped out of the AC before being stored. When
we store a number or a string in a box, we are storing away an actual
copy of this data. It’s kind of like making a virtual rubber stamp to
preserve the data’s current form. The command LOAD BOX
numberbox causes a copy of what’s in the box to get “stamped” back
into the AC. That’s why, if we in any way change the number after
loading it back into the AC, we need to use STORE BOX numberbox
to update the contents of the box; otherwise it will still contain a
copy of the original, unchanged form of the data.

Locd and Global Boxes

In the chapter on sub-tasks, we saw how programmers distinguish
between boxes that are global and ones that are local. Although all
programs will have some global boxes, which are accessible (or
loadable) from within all the separate sub-tasks in the program, it’s

195

best, whenever possible, to use local boxes, which are only accessible
from the sub-task that contains them.

And Now for Something New
... (How about a Little Variety?)

Okay, so you have a “Hop!” sub-task that makes your frog hop across
the screen. He hops 30 times to the right every time you call this
sub-task.

The code looks like this:

LOAD BOX frog

MORPH OBJECT longfrog
MOVE OBJECT (30,0)
MORPH OBJECT shortfrog

What a boring frog. You would like him to be able to hop a distance
of 5 sometimes, and 50 other times, and every once in a while you
want your frog to hop 63. But each time he hops, he goes no more
nor less than 30.

Of course, you could write separate sub-tasks called HOP5, HOP50,
and HOP63, but that’s a lot of extra work, and you still couldn’t
account for every possible hopping distance.

But what if you could make one sub-task where you could plug in a
different hopping distance each time it was executed? Well, I have
good news... you can!

Specidl Delivery.
Received Boxes and Passed-In Parameters

You can send data into a box in a sub-task, which you can then use
throughout the sub-task, by “passing in” the data as a parameter.
Then the data is automatically stored in the received box and can be
used throughout the sub-task.

To do this, the sub-~task must have a “received” (or empty) box that
can “receive” the information that is “passed-in” in the form of a
parameter. When you execute the sub-task, you specify the
parameters, or information that you are passing into the sub-task,
and it will be automatically stored in the received box. You can send
a number, or a string, or even another box, to be stored in a sub-
task’s received box.

196

Defining Recelved Boxes

You can make a received box for a sub-task by using the area marked
“received” under the regular box region in the task window for that
sub-task.

v USE

Boxes:

@ frog

@ prncess
Fecejved

Receiveds: Eoxes

— 1 HOP waiting for
passed-in
Parameters

Fig. 14-1 received box region in the sub-task window.

The boxes in this list are empty until the computer follows the
instruction to execute the sub-task, and brings in the specified
parameters.

Specifying Paramebers

Now it’s time to learn how to specify the parameters you want filled
in. (Once you do, you’ll notice the little blue arrow that appears next
to each received box, which signifies that something is due to come
in.) You do this in the EXECUTE SUB-TASK Data Wizard dialog. As
soon as you select a sub-task in the list of available tasks, the Data
Wizard will display a list of the empty, received boxes that need
parameters in the column to the left of the lower portion of the
dialog. Simply double-click in the adjacent space in the column to
the right, and fill in the desired number, string, or box name. Now
you have specified parameters!

197

EXECUTE SUB-TASK

Data Wizard

Choose a sub-tazk to execute:

froghop selected
Sub-Task
mair
mnakt
Zlick here
Chooze a box for each parameter: to select
Received Eoy as
Boxin
Sub.Tack Farameter
"froghop”
typed-in
Farameter

Cancel

Fig. 14-2 Specify parameters in the EXECUTE SUB-TASK Data Wizard dialog.

ParamePers ab Work

Let’s go back to the hopping frog. We will change our sub-task
“hop” so that it has a received box called “AmountToHop.” Let’s look
at how our code changes, now that we are using the received box.

LOAD BOX frog

MORPH OBJECT longfrog

MOVE OBJECT (AmountToHop, 0)
MORPH OBJECT shortfrog

Then, when we execute the sub-task hop, we can “pass in” a number
for the distance that we want the frog to hop. We could even pass in
a box containing a number that we want the frog to hop. Here is
what code would look like to make the frog hop 10, 54, 32, 21,and a
distance the user specifies that is stored in a box called “userhop.”

EXECUTE SUB-TASK HOP (10)
EXECUTE SUB-TASK HOP (54)
EXECUTE SUB-TASK HOP (32)
EXECUTE SUB-TASK HOP (21)
EXECUTE SUB-TASK (userhop)

Now you can have a sub-task that will work for any frog object and
any hopping distance.

198

LET’S PROGRAM!

Go back to Program2.fmp since we’ve been talking of hopping
frogs From the FM Welcome window, select, Open Existing
Programs, and then navigate through c:\, Fundam, Manual,
Practice, Program 2, and open Program2.fmp. Open this
program.

You should already have the MOVE and MORPH code there that
you wrote while you were learning those commands in chapter 2.
You can leave it there and work around it, or delete it, if you find
it distracting. But make sure to leave the commands that
construct, place, and show a frog object. We’ll be needing those.

. Store the frog object in a global box.

. Create a new sub-task named “froghop.” Do this by finding the

Program window in the Window menu on the Toolbar (or by
clicking on any part of the Program window that may be visible)
and clicking on the New button. Name the sub-task in the Data
Wizard dialog that comes up.

. Define a received box named “hopamount.” Click in the

received box region directly under the regular box list in the Sub-
task window, and type the box name in the highlighted space.
Press the Enter key to enter it into the list as a defined received
box.

. Write a short sub-task to make your frog object hop. Use the

box, hopamount, as the MOVE input for the x-direction. You
really only need four commands in this sub-~task. Load the global
box containing the frog object, morph him to the stretched-out
position, move him, and morph him back to the scrunched-up
position. (visit the Graphics Library if you need a reminder of
which graphic goes with which .bmp file name.)

. Go back to the main task window. In the Window menu on the

Toolbar, select main from the bottom of the list, or double-click
on Main in the Program window.

. Use EXECUTE SUB-TASKfroghop. Find the place in the code

where you want the frog to start hopping and do it with your
ready-made sub-task, instead of with MOVE and MORPH
commands written directly into the main task.

. Specify parameters for the sub-task’s received box,

“hopamount.” When the EXECUTE SUB-TASK Data Wizard
comes up, click on the sub-task “froghop” where it appears in the
list at the top of the dialog. In the lower portion, the box name
“hopamount” will appear automatically in the column to the left.
Double-click in the right-hand column opposite the box name
and type in any number in the highlighted space.

199

9. Use EXECUTE SUB-TASK in the main task several more times,
and each time specify a different parameter to pass into the
received box “hopamount.”

Programming Tips and Tricks:

Don’t forget that you can use another box as the parameter that you
pass into a received box. Just click on the little pop-down icon in the
arameters column of the EXECUTE SUB-TASK Data Wizard dialog,

and you’ll see all the available boxes. Stop and think for a moment
about the added flexibility this gives you.

ge your frog program so that a user can be in control of
the parameter that gets passed into “hopamount”?

Or how about making “hopamount” receive a random number each
time the sub-task is executed? (If you used RANDOM NUMBER and
set a loop, you’d have a great way to execute the sub-task several
times with a different parameter in “hopamount” for each round.

One-Way Versus Two-Way Delivery

There’s one more thing you should know about received boxes. They
come in two varieties: one-way (or “in”), and two-way (or “in-~
out”). This has to do with storing rules again. With the one-way
variety of received boxes, the data that was delivered to the box is not
updated if the data is altered in the sub-task. With the two-way
variety, it is. (This only applies, of course, to “actual value” data, like
strings and numbers, since objects are not copied but only referenced
in boxes.) Let’s look at some examples.

Let’s say you EXECUTE SUB-TASK ADD (numbox), and the sub-task
gets a 5 passed in from “numbox” to a received box called
“subnum.” Even after the sub-task does its adding thing and changes
its own copy of the number 5 to something bigger, the copy in the
original “numbox” box stays the same. The received box in the
“Hop!” sub-task is an example of an “in,” or one-way received box.

On the other hand, “in-out” received boxes pass whatever they have
back out, when the sub-task is finished. For “in-out” received boxes,
the data from the passed-in box is actually changed if the received
box is changed in the sub-task. So if you pass in a “numbox” that
contains 5, and the “add” sub-task adds 5 to whatever’s in
“numbox,” then the original “numbox” will now contain 10. This is
something to consider, with respect to your program goals, when you
decide which kind of received box you want to use. To specify an
“in-out” received box, simply click on the little blue arrow that

200

appears next to the box name in the “received” box list in the sub-~
task window. The icon will now show a little red arrow pointing ouf
underneath the original blue arrow pointing iz. To return a received
box to its original, one-way status, just click again on the same place
and the double arrows will revert back to a single, blue arrow.

Boxes:

@ frog
@ princess

Receiveds: L
=1 HOF

52 skip e

Dne-way 1Min")
Feceived Box

— [r-tay (Min-out”)

Feceived Box

Fig. 14-3 Arrows indicate whether a received box
will contain one-way or two-way parameters.

Now that you’re truly an expert on boxes, it’s time to get into a whole
new dimension of storage...

201

CHAFTER 15

Flocking ‘Bo Gaggles for

Styls, Fexibiliby, and Fun

Bunches Of Boxes 205
Two Kinds Of Gaggles 203
Staking Out Your Storage Space 203
Storing Your Gaggles 205
What’s Going On Inside The Compuber? 205
All *Er U 207
What’s Going On Inside The Compuber? 206
Avoiding Object Stacks 209
What About Structures? 210
Using Box Names For Readability 21
And Flexibiliby
Now Youve Got A Gaggle 215
How Many Geese In A Gaggle? 216
Arrays Of Arrays 217
What’s Going On Inside The Compuber? 215
Arrays Of Structures 223
Commands Inbroduced:

O CONSTRUCT GACGLE 204
' ‘ 206

0 STOREATEM GACGLE
O LOADITEM GACGLE {

O COUNT GAGGELE {
[J DESTROY GAGGLE 7

202

----- Teacher’s Journd -----

‘This is going to take forever!” I heard Luis complaining from across the
room.

“C’mon!” urged Rina. “We need, like, a hundred of them—a THOUSAND!”

“What??” Luis exclaimed. “You’re crazy.”

“No way!,” Rina retorted. As I drifted closer, she conceded, “Okay okay;
then 20...AT LEAST?”

“But we’ve only done five so far and that’s just constructing them and
storing them! After that, we gotta load ‘em all to move ‘em around! You’re
crazy!” Luis asserted once again.

“What’ve you got going?” I asked, deciding it was time to intervene.

“Amoebae...KILLER AMOEBAE, taking over the world,” Rina said, showing
me the graphics she’d brought in.

“She wants to put about a thousand of them!” Luis said.

“I said 20, all right? But they’re really SMALL, you know? It takes a lot to
take over the world.”

“It’s going to take forever,” Luis said again, shaking his head with a fatalistic
expression.

“Maybe not, Luis,” I said. “There’s another way to store data I’'ve been
wanting to tell you guys about. It’s something called ‘gaggles.”

“GAGGLES!?” Luis and Rina cut in together, making the requisite choking
noises deep in their throats.

“Not like that; gaggle, you know, like flocks of geese, groups of stuff.” (I
glanced at Rina, who was giving Luis a ‘Now-~You’ve-Done-It!’ glare)
“HOARDS AND HOARDS of killer amoebae” I added, watching both faces
fill with interest.

“Okay,” Rina said. “What’s a gaggle?”

203

Bunches of Boxes

A gaggle 1s actually just a collection of boxes that are working as a
bunch, either because they contain identical things or because they
contain parts of a whole.

Each gaggle has a specific number of boxes, and each box has a
number assignment according to its place in the gaggle. That means
you don’t have to name each individual box in the collection.
Instead, you can load a particular box in a gaggle by “calling” its
number. This makes for much more flexibility and better
programming style. Gaggles make programs more readable, and
allow us to write programs that can deal with dynamic, or shifting,
amounts of data, like the number of students in your class, or the
number and placement of checkers on a checkerboard.

Two Kinds of Gaggles

When it comes to their contents, there are basically two kinds of
gaggles: arrays, which are collections of things that are all of the
same type, and structures, which are collections of things that are not
necessarily all of the same type, but that constitute parts of a whole.

An example of an array would be a gaggle containing 6 geese flying
south for the winter. An example of a structure would be a set of
information containing 6 different features of any particular goose,
such as its wingspan, flight speed, feather color, beak length, favorite
nursery rhyme, and personal honking sound.

Staking Oub Your Storage Spaces

Regardless of whether it contains an array or a structure, the gaggle
itself is just a big storage space. So the first thing you have to do
when you want to use a gaggle is stake out some memory by
constructing a gaggle of a certain size.

Constructing a new gaggle consists of four basic phases.

* Tirst, you have to construct the number of items (or empty boxes)
that you want your new gaggle to have.

* Then you name the gaggle by putting it in a box of its own.

* Next you transfer the new gaggle into the Gaggle Register, which
1s a separate place inside the computer that’s just for gaggles. It
keeps track of the whole thing so the AC is free to deal with one
item at a time.

* Tinally, you have to fill the open spots (or “store the items”) in the
gaggle. Depending upon what you fill it with, a gaggle will either
be an array, with same-type things (like geese) or a structure
(with different-type things like personal data features).

204

Since gaggles are bigbunches of things, it takes several commands
just to get one ready to go. It may seem like a lot of extra footwork
at the beginning, but trust me, it’ll save you many more steps later on
when 1t comes to manipulating complex data in your program! The
next few commands are the ones you need to set up a gaggle.

L CONSTRUCT GAGGLE

[1 STORE BOXgaggle

L] SET CACCLERECISTER

Remember that the gaggle itself is separate from what you ultimately
put in it. When you construct a gaggle, your first task is to set up
empty storage space according to your needs. The Data Wizard will
show you a dialog like this:

CONSTRUCT GAGGLE

Data Wizard

Create a new gaggle with this many ikems:

5

Cancel |

Fig. 15-1 CONSTRUCT GAGGLE Data Wizard dialog.

Let’s look at the commands to complete phase one of gaggle
construction in which you simply construct space for the number of
items you want to store, and then bring the new gaggle into the
gaggle AC, or Gaggle Register.

Look at the following sample code that completes the first step in
creating a gaggle containing an array of sharks.

CONSTRUCT GAGGLE 5
STORE BOX sharkgaggle
SET GAGGLE REGISTER sharkgaggle

“Wait a minute!” you say. “What’s that STORE BOX command
doing there? Isn’t a gaggle just a big bunch of boxes tied together?
What do we need that other box for?”

205

Storing Your Gaggles

Here’s the thing. The command CONSTRUCT GAGGLE serves only to
set aside the number of storage spaces you want for this particular
new gaggle. But knowing the number of items in a gaggle is not
sufficient information for identifying a gaggle later on. Let’s say you
want to create a gaggle of 5 fish to be eaten by your gaggle of 5
sharks, for example. Both gaggles would have the command
CONSTRUCT GAGGLE 5 as the first step of their construction. You
can see the problem with identification here. Trying to identify a
gaggle by the number of its items would be kind of like pointing into
a crowded room and saying, “My brother is the man with two legs!”

For that reason, we need to be able to identify each gaggle by
something more specific. And the way to do that is to put each newly
constructed gaggle in its own box, and to name the box
appropriately, according to the nature of the gaggle it will contain.
When you use the command SET GAGGLE -REGISTER, the Data
Wizard will ask you to specify by box name the gaggle you want to
fill up or use.

SET GAGGLE-REGISTER

Data Wizard

Gaggle box to be put in the Gagale Register:

sharkgaal

nameitem -

eopleqgagl

Cancel | 0K I

Fig. 15-2 SET GAGGLE REGISTER Data Wizard dialog.

Whats Going On Inside the Computers

Gaggles, like objects, reside in the portion of the computer’s memory
called the “Heap.” After you construct a given number of items for,
and store, a new gaggle, a pointer to that gaggle, and not the gaggle
itself, is what’s in the AC.

206

CPU

MEMORY

GagqleRegister

pointer*to

"pointerto

MyGag | gaggle
BOXES

(nodata hereyet.)

gaggle

AC

S5TOFRE BOX myGaq

Current Instruction

(no data hereyet.)

(no data hereyet.)

(nodata hereyet.)

(no data hereyet.)

THE HEAP"

Illus. 15A Gaggles reside in the Heap and are accessed through pointers.

But once you want to do anything with a particular item in the

gaggle, you have a problem, since the AC will stop “thinking about”
the gaggle as a whole, in order to deal with the individual piece of it.
The pointer to the gaggle will be replaced by the data in its item, and

the gaggle will be stranded, inaccessible, in the Heap.

That’s where the Gaggle Register comes into play. It’s a whole new
part of the computer that keeps track of the entire gaggle while the

AC shuffles through the gaggle’s individual parts. So after you name

the gaggle with the STORE BOX instruction, you have to use the

command SET GAGGLE REGISTER to transfer the gaggles pointer into

the Gaggle Register and free up the AC to deal with the data to be

stored in the gaggle items.

207

CFPU MEMORY
‘pointer*to "ointerto
daggle myGag | gaggle
Gagyle Register BOXES
(no data here yet.) -
AC (no data hereyet.)
SET-GAGGLE REGISTER
"ryag" (no data hereyet.)
Current Instruction
(nodata hereyet.)
(no data hereyet.)
THE HEAFP"

Illus. 15B The Gaggle Register keeps track of the whole gaggle while the AC is
busy with individual gaggle items.

Al er Upl
Everything we’ve done so far has only served to set aside and identify
the storage space the computer will use while it runs your program.
Now let’s look at the next step, which is filling up, or storing the
items of the new gaggle. The way this part works depends upon
whether the gaggle represents an array or a structure. The first set of
new commands can help you set up gaggles that hold arrays.

208

[SET LOOP

L] CET LOOP
[STORETEM GAGGLE

Let’s look at the complete code for constructing a bunch of sharks.
You’ll see an old command, SET LOOP, working together with its
counterpart GET LOOP to do a new trick.

CONSTRUCT GAGGLE 5 ~constructs space for 5 ifems in the
new gaggle

STORE BOX sharkgaggle -stores this 5-item gaggle in a box
labeled sharkgaggle.

SET GAGGLE-REGISTER sharkgaggle -puts the gaggle in the Gaggle
Register

SET LOOP 5 ~tells the compufter fo repeat the

following action exactly one time
for each ifem in the gaggle

@makesharks

GET LOOP ~-puts the number on the loop Reg.
in the AC

STORE BOX sharkgagitem# -stores numper as a gaggle ifem
number

CONSTRUCT OBJECT shark ~constructs shark object

PLACE OBJECT (0,0)

SHOW OBJECT

STORE- ITEM GAGGLE sharkgagitem# -puts the shark in gaggle item
corresponding fo the current
number on the Loop Reg.

JUMP LOOP @makesharks ~repeats until Loop Reg. is O

Whats Going On Inside the Computers

Remember that SET LOOP sets a counter, or Register, to tell the
computer how many times you want something be repeated. The
Loop Register always contains a number that represents the number
of loops, or repetitions, left to be completed. So if you use SET LOOP
5, for example, the Loop Register contains first 5, then 4, then 3, then
2, then 1, then 0, with the numbers dropping (or, in techie speak,
“decrementing”) after every repetition. The command GET LOOP
simply tells the computer to take the number currently in the Loop
Register and put that number into the AC.

209

CPU

GET LOOF

Current Instruction

Illus. 15C GET LOOP puts the current number
on the loop register into the AC.

Avoiding Obiec> Stacks

Actually, there’s something wrong with the section of code
above...Can you find the bug? Here’s a hint: If you typed it in and
ran it exactly as it appears, you’d only be able to see one shark.
Why?

Because you told the computer to put all of the sharks at exactly the
same location, that’s why! You do have 5 sharks; it’s just that they’re
all stacked up on top of each other, so you can only see the one on
top.

When you make gaggles with objects, you’ll always want to make a
variable out of at least one of the coordinates, so that each of the
sharks ends up in a different place. You can do this by storing the
coordinate in a box, and then each time the computer runs through
the loop, it adds to the coordinate a number that’s big enough to
cover the length of the object, plus a little elbow room. A
comfortable distance from one shark bottom to the next, for example,
is about 20 on the Playground grid. Here’s how the corrected code
looks:

210

LOAD NUMBER O
STORE BOX sharkbottom

CONSTRUCT GAGGLE 5
STORE BOX sharkgaggle

SET GAGGLE-REGISTER sharkgaggle

SET LOOP 5

@makesharks

GET LOOP
STORE BOX sharkgagitem#

LOAD BOX sharkbottom
ADD NUMBER 20
STORE BOX sharkbottom

CONSTRUCT OBJECT shark

PLACE OBJECT (0,sharkbottom)
SHOW OBJECT

STORE-ITEM GAGGLE sharkgagitem#

JUMP LOOP @makesharks

Notice that when we GET LOOP here, we store the number in a box
named “sharkgagitem#.” That’s because the number of loops
exactly matches the number of items in our gaggle. This section of
code is essentially saying, “with 5 sharks left to construct, make one
and put it in gaggle item #5. ...With 4 sharks left to construct, make
one and put it in gaggle item #4. ...With 3 sharks left to construct,
make one and put it in gaggle item #3. ...”and so on, until there are
no more sharks to construct and no more gaggle items left to fill.

This procedure for setting gaggle items with a set loop only works, of
course, if the gaggle represents an array, meaning that the same type
of thing is going into every item (e.g. item #1-goose; item #2 ~ goose;
item #3-goose, etc.)

What About Structures?

For gaggles representing structures in which item #1 could be “6
feet” (for wingspan), item #2 could be “10 mph” (for flight speed),
and item #3 could be “Diddlediddle Dumpling” (for favorite nursery
rhyme), we need to do something different.

Look at the following sample code constructing a gaggle of personal
information items. See if you can figure out how the command
STORE-ITEM GAGGLE fits in here.

211

LOAD NUMBER 1
STORE BOX name-item#
LOAD NUMBER 2
STORE BOX age-item#
LOAD NUMBER 3
STORE BOX color-item#

NEW GAGGLE 3
STORE BOX userinfogagl
SET GAGGLE -REGISTER userinfo.gagl

LOAD STRING “Please type in your name.”
WRITE-SCREEN STRING

READ-SCREEN STRING

STORE-ITEM GAGGLE name-item#

LOAD STRING “Please enter your age.”
WRITE-SCREEN STRING

READ-SCREEN STRING

STORE-ITEM GAGGLE age-item#

LOAD STRING “Please enter your favorite color.”
WRITE-SCREEN STRING

READ-SCREEN STRING

STORE-ITEM GAGGLE color-item#

Whew! There’s a lot going on here! Let’s work backwards, looking
at this code sequence from the bottom section up. Since you already
know all the string commands, it should be pretty easy to see how
STORE-ITEM GAGGLE works here. Everything that the user types in
during the READ~SCREEN phases of this sequence gets stored as an
item in the gaggle. So this gaggle might ultimately contain “Lucille”
as the first item, “13” as the second item, and “hot pink” as the third.

In the above code, the three commands making up the second section
construct memory space for a three-item gaggle, name the gaggle by
way of storing it in a box, and put the gaggle into the Gaggle
Register.

Now let’s look at the first group of commands. These may have been
the most mysterious part of this code. I mean, really—what’s the point
of storing plain numbers in boxes and then using the box names
instead of the numbers later on? Why not just say STORE-ITEM
GAGGLE 1, 2, and 37

Using Box Names for ReadabiliBy and FlexibiliDy

There are a couple of reasons. The first has to do with readability.
Advanced programmers do whatever they can to make their thinking
clear and “readable” in their code. This is important for both the
programmer, who may leave off working on a complicated program

212

and come back to it later, and for others, who may want to look at a
program’s code and try to see what’s going on. In this case, a
descriptive box name is a lot more telling than a simple numeral.

The second reason is flexibility. This is just another take on how
boxes serve as variables in FUNdaMENTAL. Here’s how it works. At
some point while working on a program, you may decide to add an
item, or change the order of the items in a gaggle. If you did that,
and your numbers were not stored in boxes, you’d have to go
through and change the numbers every time an affected gaggle item
was mentioned in the code. (For example, if you wanted to make
“favorite color” item #4, and stick in “best family cooking secret” as
item #3, you’d have to go through your program and change every
reference to the color item from a 3 to a 4).

When you use the command STORE-ITEM GAGGLE, you’ll see a
dialog offering you a choice between assigning a number or choosing
a box that contains a reference number.

STORE-ITEM GAGGLE

Data Wizard

|ndes of the gagale item where you want to

. Mumber nameitem#}

e Box ageitemi
colonitermni
Cancel | 1] .4 I

Fig. 15-3 STORE-ITEM GAGGLE Data Wizard dialog.

For gaggles that represent structures, it’s always best to start, as the
above code does, by storing one number for each gaggle item in a
box. That way, all the boxes will be there to choose from when you
use STORE-ITEM GAGGLE. (Make sure, as always, that the box has a
good, descriptive name on it. And it’s a good idea to add something
like “item#” or “index” to the end of the box name, so you can tell it
apart from any regular, single boxes. They’ll all appear in the same
listT)

213

Now Youve Gobt a Gaggle

So far, we’ve taken time for some pretty fancy footwork just to
construct gaggles. Now it’s time to see how the gaggles of data that
you’ve stored away can be manipulated to achieve different program
goals.

Let’s go back to the example of the array gaggle containing a bunch
of sharks. For the sake of adventure, let’s assume that this gaggle
contains 100 sharks, instead of just 5. And now that we have them,
we want to get them swimming. Here’s the code.

SET LOOP 10
(@sharkattack
SET GAGGLE -REGISTER sharkgaggle
SET LOOP 100
@swim!
GET LOOP
STORE BOX sharkgagitem# (7%is stores a loop reg. number in a
box called sharkgagitem #)
LOAD-ITEM GAGGLE sharkgagitem#
MOVE OBJECT (5,5)
MOVE OBJECT (5,-5)
JUMP LOOP @swim!
JUMP LOOP @sharkattack

L LOAD-ITEM CACGLE

Like STORE-ITEM GAGGLE, LOAD-ITEM GAGGLE calls up one of the
items of a gaggle. But while STORE-ITEM GAGGLE “fills-up” an
empty item space with some kind of data, LOAD-ITEM GAGGLE
“takes out” the contents of the specified gaggle item and loads it into
the AC, to be manipulated by whatever commands follow. The
number in the Loop Register points to the item of the same number in
the gaggle. As the numbers drop down, each new gaggle item is
taken out and moved automatically. The loop at the start marked
with “@sharkattack” ensures that each shark swims forward a total
of 10 separate moves.

Consider now the difference between using LOAD-ITEM GAGGLE in
a set loop of 100, and writing out

214

LOAD BOX shark1
MOVE OBJECT(5,5)
MOVE OBJECT (5,-5)
LOAD BOX shark?2
MOVE OBJECT (5,5)
MOVE OBJECT (5,-5)
LOAD BOX shark3...

until all 100 sharks have been taken out and moved!

All of a sudden the effort of constructing storage space for all those
sharks in a gaggle doesn’t seem so bad after alll (And that’s not even
to mention the yards of code it would take to construct and store each
shark individually in its own box.)

LET'S PROGRAMI

Okay. Take a deep breath; it’s time to try some of this stuff. You are
going to make a new animated program with froggies, only this time
you’ll use a gaggle array to make an amphibious plague of biblical
proportions!

1.

Launch FM, and open Program8.fmp. At the FM Welcome
window, select Open Existing Programs, and navigate through
c:\, Fundam, Manual, Practice, and Program 8, and open the
Program8.fmp.

This program has a frog object already designed. You need to use
gaggle commands to make 10 frogs and get them hopping in a
wave across the Playground.

Use the instruction LOAD NUMBER 0, followed by STORE BOX
frogbottom so that all your frogs don’t end up stacked, 15 thick.

Use CONSTRUCT GAGGLE 10, followed by STORE BOX. Don’t
forget to give the box an appropriately amphibious name.

. Use SET GAGGLE- REGISTER and specity the name of the box in

which you just placed the new gaggle.

Use SET LOOP so that the computer will keep making frogs until
all the gaggle items are filled. (The loop should have the same
number of turns as there are items in the gaggle.)

Place a marker at the spot to which the computer should return
in order to “makefrogs.”

Use GET LOOP, followed by STORE BOX. A good name for this
box would be “frogagitem#” or something like that.

215

8. Use LOAD BOX frogbottom, followed by ADD NUMBER 20, and
STORE BOX frogbottom, so that each frog’s bottom will be placed
a distance of 20 from the previously constructed frog.

9. Construct the frog object and place it at (0, frogbottom). Then
show the object.

10.Use STORE-ITEM GAGGLE and specify the box “frogagitem#,”
which contains the number corresponding to the current gaggle
item.

11.Use JUMP LOOP, so the computer will do it all again!

12. Now you’ve got a gaggle of froggies! Get them hopping! Use
the sample shark code from earlier in this chapter to see how to
use LOAD-ITEM GAGGLE to make each one hop. Set another
loop so they keep hopping. And don’t forget to add some MORPH
commands so the frog will stretch out and bunch up between
hops.

Programming Tips and Tricks

Just because you stored the items of your gaggle in sequential order
doesn’t mean you have to load them back into the AC that way. If
you’re ready for a challenge, try replacing GET LOOP with RANDOM
NUMBER to make an exciting little frog race that has a different
outcome each time.

When you re using gaggles, the Debugger really earns it’s keep. On

revious visits to the Debugger window, you may have noticed
a little field labeled “gaggle.” This shows you the contents of the
Gaggle-Register. Until the first SET GAGGLE REGISTER instruction is
executed, this field will display the word “unknown.” But once the
Gaggle Re ister contains a gaggle, this fleld will reflect that with a
1eadmg that looks somethmg Tike this: “a gaggle of 5 elements.”
Once a gaggle shows in this field, you can make use of the debugger’s
Gaggle window. Open it by double-clicking on the gaggle field in
the Debugger window. It looks like this:

216

Gaggle: ID# 301426126 |[Mi[=]

1 =tring "HI JARMET!"
2 Mumber 1

3 Boolean TRLE

4 Mo type =unknowne=
5 Mo type =unknovn=

Fig. 15-4 The Debugger’s Gaggle window

As you step through your program, you’ll see the contents of each
item displayed with its data type in the grid. Expert programmers

rely on this to help them keep track of what’s what when they get u

to their necks in gangly gaggles.

How Many Geese in a Gaggle?

Once you understand the benefits of gaggles, and know how to use
them, it’s likely that you’ll have more than one of them in a program.
As we have seen, if you want to get anything done with a gaggle, it’s
essential to know how many items are in it. Otherwise, you won’t
know how many loops to set and get in order to make sure that all
the items (or boxes) in a gaggle are accounted for.

But with more than one gaggle going, it may be difficult to remember
at any given time how many items a particular gaggle has. This is
especially true if you’ve been making changes as you’ve been going
along, adding or subtracting items in your gaggles. Remember that
when you tell the computer to SET GAGGLE-REGISTER, it will only
show you the existing gaggles by name without reminding you how
many items each gaggle has.

L] COUNT GACGLE

With COUNT GAGGLE you can make sure that the computer knows
how many items it’s dealing with. When you use this command, the
computer automatically counts the number of items in the gaggle
currently in the Gaggle Register, and puts the resulting number in
the AC. The following sample code demonstrates how it works.

217

SET GAGGLE-REGISTER sharkgaggle
COUNT GAGGLE
STORE BOX numsharks
SET LOOP numsharks

@swim
GET LOOP
STORE BOX sharkgagitem#
LOAD-ITEM GAGGLE sharkgagitem#
MOVE OBJECT...etc.

In this case, we don’t even have to know the exact number of items,
because the computer does. All we need is a box called “number of
sharks” (or “numsharks”) that is read to take up whatever number is
put in the AC by the COUNT GAGGLE command. Then, we’re in
business.

L DESTROY GAGGLE

Gaggles, like objects, take up computer memory in the Heap while
your program is running. That’s fine, as long as you’re getting good
use out of them. But if, as your program progresses, a once-
important gaggle fades from the scene, you want to make sure that
it’s not still skulking out of view, wasting memory. It’s a good idea to
get in the habit of using the command DESTROY GAGGLE in your
programs with gaggles. Use this command once for each gaggle
somewhere before the command EXIT PROGRAM. Even if you’ve
only got one gaggle going, you’ll still be practicing good, efficient
programming if you destroy it at the end.

Arrays of Arrays

The real power of using gaggles in your programs becomes apparent
when you are ready to use gaggles of gaggles! (No, I'm not kidding.)

It 1s possible to have a gaggle in which one or more of its items are,
themselves, gaggles. There are two main reasons to do this.

The first is to make an array of arrays. This makes the most sense
when you think about it in terms of representing a grid or chart with
columns and rows. If you think of each column or row as a gaggle in
itself, (a set of identical cells or squares), then the whole chart is a
gaggle of these gaggles.

This is useful if you want to make a game of checkers, and you need
to keep track of which piece 1s on which square. Each square could
be a number that corresponds to red checker, black checker, or no-
checker. Each row of the board would be represented by a gaggle of
8 squares. Then you would want to have a larger gaggle of 8 row
gaggles for the whole board.

218

To find out what’s on the fourth square in the third row, your code
would look like this:

SET GAGGLE -REGISTER boardgaggle
LOAD-ITEM GAGGLE 3

STORE BOX rowgaggle

SET GAGGLE -REGISTER rowgaggle
LOAD-ITEM GAGGLE 4

STORE BOX the square

Whats Going On Inside the Computers

Once you get into 2-D gaggles, it’s easy to lose track of what does
what. Look at the following illustrations for a pictorial blow-by-blow
(or, rather, command-by-command) of the code sample above.

219

CFU MEMORY
rointerto
daggle boardGaggle &
GagqleRegister rowGaggle
SET GARSLE
EEGISTER
th
boardGaggle esquare
Current Instruction
i BOXES
subr gagqgles
"/'{1 z2|3|4|6|6|7|8
1
1|l2z|3|4|6|6|7|8
Z //—'
c 3L 1[z[3@s]e]7]e
§ 4—pi1|2|3|4|6|6|7|8
=
E Str——— i 1|2|3|als|l6|7]|2
&
” w1]z]3als0]7 e
5\1 z|3|4|6|la|7|8
\1 2|3|a|6|le|7|8

THE HEAP
[lus. 15D SET GAGGLE REGISTER boardgaggle.

220

CPU MEMORY
boardGaggle
rowCagqle
LOAD-ITEM GAGGLE
3 thebquare
Current Instruction
| BOXES
| sulr gagqles
v 1(2|3|4|56|6 8
1 1|2|3|4|56|6 S
2
G|tz [3@s]e]7]e
§ 4 1(2|3|4|6|6 2
=
= b
E 1(2|3|4|56|6 8
&
7 12| 3|4 |68 &
8 1(2|3|4 |5 |6 B
1(2|3|4|6|6 2
THE HEAF

[llus. 15E LOAD-ITEM GAGGLE 3

221

CPU MEMORY

[o |

boardGaggle

row(Gagqle @

STOREE BOX.
mw(_;aggb thef‘xauar&

Current Instruction

i BOXES
I sulr gagqles
!123456?8—
1 1|2|3|4a|6|l6|7|8
2| —»
1|2 |3 AAEAR:
=
=
S |4 1|2 |3|a|6|6|7]|8
=
E | 5B
5 1|2 |3|a|6|l6|7]|8
&
Z 1|2|3|4a|6|l6|7|8
2 1|2 |3|a|s|l6|7|8
1|2 |3|a|6|l6|7|8

THE HEAP
[llus. 15F STORE BOX rowgaggle

222

CPU

MEMORY

[o |

boardGaggle

row(Gagqle @

EEGISTER
ronGaggle theﬁquare
Current Instruction
| BOXES
subr gagqgles
!23456?5
1 2|3|a|6|6|7|8
2 —p
g3 —® 2|3 (@ s|e|7|2
§4 zZ|a3|4a|b|a|7|8
=
= [b
E 2|3|4|6|6|7|8
5]
7 2|13 |4 |6 |7 | &
2 Z|3|4|6|B|7|8
Z|3|4a|b|a|7|8
THE HEAF

[lus. 15G SET GAGGLE REGISTER rowgaggle

223

MEMORY

boardGaggle —‘
rowCagqle
GET-ITEM
GAGGLE 4 theSquare
Current Instruction
~ . i BOXES
| subr gagqgles

|123456?5

1(2 |3 (4|6 |6 |7 |8

main gagqle

- I NI I O S I I IS

THE HEAP
[lus. 15H LOAD-ITEM GAGGLE 4

Arrays of StrucTures

The second reason to have a gaggle of gaggles is to make an array of
structures. Remember that a structure is a linked set of dissimilar
items, such as the personal data items for one individual.

Say you want to store information about your whole flock of geese.
You have 23 geese in the flock. For each goose you want to keep
track of its wingspan (a number), feather color (a string), and
personal honk (a sound). So you make a structure for your goose: a
gaggle with the wingspan, the feather color, and the personal honk
as its items. All set, right? Wrong! Because now you want to link
this gaggle to 22 other gaggles, each containing the same kind of

224

information about another goose in the flock. In this case, the larger
gaggle would form an array because it would be a collection of
structures that are all of the same type.

Looking back at the sample checkers code above, can you see how
yow’d find out the wingspan of the 18th goose in your gaggle?

And guess what! You can even make 3-dimensional gaggles as well
(that 1s, gaggles of gaggles of gaggles of gaggles!)...but that’s a whole
other bookl!

Whatever dimension of gaggles you’re exploring, remember: When
you’ve got more than one gaggle going, MAKE SURE TO SET YOUR
GAGGLE REGISTER TO THE NEXT GAGGLE. Otherwise, you’ll never

get your goosel

225

CHAFTER 10

HOLD THAT THOUGHT!

Using FILE Commands o Save Informabion

Long-Term Parking 227
Line ‘Em Upl 225
Dipping InBo Files 229
How Does It Know What To “Read In?” 250
Where Are We Going With All This? 251

Files In Advanced Programming 250
Let’s Check I Outll 250
The Art Of Filing 257
The Art Of Programming With Files 255
What’'s With All Those Backslashes? 240
Wowl We Said A Mouthfull 240
Let’s Mzke Our Own Madlibs Filel 241

Commands Inbroduced.

WRITE-FILE STRING
WRITE-FILE NUMBER
READ-FILE STRING

READ-FILE NUVBER
REWIND FILE

226

----- Teacher’s Journal -----

Josh and Thai had spent the period making a fairly involved MadLibs
program. Based upon a section of the United States Constitution taken from
their American history textbook, the program substituted crucial nouns and
verbs with those chosen blindly by their program’s users, with hilarious
results. The initial demos had been a huge hit with their classroom
compatriots.

But now they were calling me over to ask for help.

“It won’t print!” Josh said, trying the Control Key-P combination with
exasperated pokes.

“What, the task?” I asked, still not up to speed on the problem.

“No, this!” Josh said, indicating the latest Crazy Constitution that had been
left in the Conversation window by a fellow student.

“It’s hilarious. We want to keep it. We want to keep them all,” said Thai.
“Oh, I get it,” I said.

“But it won’t print, and as soon as the program’s run again it’s, you know,
just gone,” said Josh.

“I guess we’ll just have to copy them all out on paper, all the good ones,
anyways,” said Thai, reaching resolutely for his backpack to take out a
pencil and paper.

“Hold on, Thai. I think there’s a better way to do this,” I said.
“FUNdaMENTAL knows how to save strings and numbers in a text file on the
hard disk. You can open the files up through the notepad application on
your computer and print them out from there.”

“We can?”

“Yup,” I said. “But you’ll have to add some FILE commands to your
program.”

227

Long-Term Parking

When you write an instruction like LOAD STRING “what’s your
name?” the command, along with its string-data input is stored away
on the computer’s hard drive as soon as you save the program. But if
your user uses the commands WRITE~-SCREEN STRING/READ~
SCREEN STRING, and then types in “Irving,” that name string data
will then exist in the computer’s memory only for as long as the
program is running. When the program ends, it’s gone, and it
definitely won’t be there after you turn off the computer and come
back again tomorrow.

This is where files come in. With a file, you can save text
information between executions of your program, between the times
you use FUNdaMENTAL, and even after you’ve turned off your
computer!

L WRITE-FILE STRING

L WRITE-FILE NUVIBER

You can file away strings and numbers using commands almost
identical to the ones we use to move strings in and out of the
Conversation window: WRITE-FILE STRING and WRITE-FILE
NUMBER. The code might look something like this:

LOAD STRING “what’s your name”
WRITE-SCREEN STRING
READ-SCREEN STRING
WRITE-FILE STRING “namefile.txt”

With this code, the user’s name has now been stored on the hard
drive, in a text file called “namefile.txt”. It won’t go away, even
when the program ends and the computer is turned off.

Notice that when you use the WRITE-FILE commands, the input data
1s not the thing to be put in the file, but rather the file name. But
here’s the tricky part. Whenever you give the computer an
instruction with a data input, the data has to be of a type that the
computer recognizes. Trouble is, there is no such data type as “file
name.” The only kinds of data FM recognizes are strings, numbers,
objects, sounds, booleans and gaggles. (And I promise you that
neither of the last two data types actually means “file name” in
Martianese!)

How can we get around this? Well, what is a name, anyway? It’s a
string of characters, of course. So the way FUNdaMENTAL
recognizes and works with file names is to have you convert them
into strings in their own right.

228

When you use the command WRITE-FILE STRING, a Data Wizard
dialog that looks like this will appear:

WRITE-FILE STRING

Data Wizard

I
Wirite a gtring in AC o following file:

‘I File Name

.BDH

Cancel

Fig. 16-1 WRITE-FILE STRING Data Wizard dialog.

Notice that you have a choice here between specifying a file name in
the form of a string, or a specifying a box. Don’t get confused! The
string that you want to put in the file is already identified and
waiting in the AC. The string the Data Wizard is asking for here is
the one that will serve as the name of the file you’re setting up. All
these file-name strings will need to have a name or eight characters
of less, followed by “.txt”. They should look something like this:
“namefile.txt”, or “madlib.txt”.

Note that you can also use the LOAD STRING command with these
file names. You can have a file name with a “.txt” ending as the
input, and then store that file-name string in a box. Then, when you
use the WRITE-SCREEN command, you can click on the box radio
button in the Data Wizard, and then select the box that holds your
file-name string. Either way, the contents of the AC get stored away
on the computer’s hard drive.

Line ‘Em Upl

Once a file is set up, it can hold as many strings or numbers as you
want. For example, if Irving, Mathilda, Serafina and Hank all walked
by and used a program like the one in the above code sample, then
somewhere on the hard drive you would have a text file called
“namefile.txt” containing the following:

Irving
Mathilda
Serafina
Hank

229

Each time the WRITE-FILE command is executed for a particular file,
the data in the AC is stored on the next line down in the text for that
file.

Dipping inBo Files

Getting things into permanent files is useful for a variety of reasons.
For one thing, it’s a way to get a hard copy printout of program
output as it appears in the Conversation window. But there may be
other times when it is useful for the computer to pull things out of an
already existing file in order to use them during the program. And,
of course, you can.

L READHILE STRING

L] READ-FILE NUMBER

READ-FILE STRING and READ-FILE NUMBER are two commands
which allow you to pull string and number data out of existing “.txt”
files on the hard-drive in order to manipulate them in your program.
When you use a READ-FILE command to access either a string or a
number, you’ll see a Data Wizard dialog that looks like this:

READ-FILE S5TRING

Data Wizard

Read a string from thiz file;

‘File Mame F

.BDH

Cancel

Fig. 16-2 READ-FILE STRING Data Wizard dialog.

Notice, once again, that the thing you need to specify here is the file
name and nof the string you’re trying to get out of the file. You can
either type in the actual file name, in the form of a string
(“namefile.txt”), or you can specify the box that holds the file- name
information. Either way, the computer will open the specified file
and “read in” to the AC a string or a number from that file.

But waitl...

230

How Does I1£ Know What to “Read In”?

Good question. Let’s explore it further. With the WRITE-FILE
commands, there’s always a particular string or number waiting in
the AC to be written out to the specified file. But with the READ-FILE
commands, the string or number we need is already stored away in
the file, and if 1t’s in there with a bunch of other strings and
numbers, then how will we know which of those strings or numbers
we’re getting with the READ-FILE command?

Here’s how it works: Unless you tell it otherwise, the computer will
begin by reading the last thing it wrote out to a file. Subsequent
executions of the READ-FILE command for that file would then go up
to the top line of the file and move down in order.

For example, in the “namefile.txt” we looked at in the above sample
code, the order of reading priority would go like this:

Hank

[rving
Mathilda
Serafina
Hank

[rving
Mathilda
Serafina, etc.

The first READ command got the last entry in the file, because that’s
the last place the computer left off in working with that file. After
that, it has nothing to read from below, so it hops to the top of the
list.

L] REWIND FILE

Can you guess what this does? You got it! It gives you a way to tell
the computer to go back to the top of a particular file, which allows
you to make sure that your first READ command pulls information
from the top of the list. In the scenario above, aBREWIND- FILE
command would allow you to be sure that Irving held onto his
rightful place at the top of the list when the information in the file
was read back into the AC. In other words, it allows you some
measure of control over what the computer pulls out of the file that
you specify with the READ-FILE commands.

When you use the command REWIND FILE, a Data Wizard dialog
that looks like this will appear:

231

REWIND FILE

Data Wizard

Mame af file ta rewind:

Cancel

Fig. 16-3 REWIND FILE Data Wizard dialog.

Notice once again that you specify not the actual information you
want, but rather the name of the file that holds the information.

Where Are We Going with All This?

Like many programming concepts and skills, files are best learned
with simple examples, but they don’t really show their stuff until they
get to work in some pretty complex programs.

In the second part of this chapter, we’ll take a look at a way to write a
complex MadLibs program in which the user substitutes up to 15
words in a famous literary passage. Although there are about 50
separate strings involved (including those that ask the user for nouns;
verbs, etc. those that are the user’s responses; and those that
constitute the intact text to which the user’s responses are appended)
the program only uses the command LOAD STRING twice. (Okay,
three times, but the third string is “\\”, so it doesn’t really countl)

Before we see how FILE commands make this possible, let’s spend
some time playing around with them in a simple exercise, so you can
get a basic, hands-on feel for how they work before we get into the
art of filing.

You’re about to fill in the missing file instructions in a program that
will test users on their knowledge of world capitals. The program
will offer the user two options: to set up a new quiz by entering new
countries and capitals into a text file, or to take the quiz. There are
actually several sub-tasks involved here, but you’ll only need to
complete three of them to get this program up and running.
Everything else is ready to go.

232

LET'S PROGRAMI

You’ll be working in three different sub-tasks to complete this
exercise. You'll start by completing the code that allows the user to
enter new countries and capitals into the file to make a fresh quiz.
Next, you’ll work on the code that allows a user to take the quiz on
the information currently in the file. Finally, you’ll complete the sub-
task that is responsible for checking the user’squiz answers to make
sure that the countries are all matched with the correct capitals.

1.

Launch FUNdaMENTAL and open Program9.fmp. From the
Welcome window, select Open Existing Programs, and navigate
through the following directories:

c:\Fundam\Manual\Practice \Program9.

Open the sub-task called “writfile.” Use the Window menu on
the Toolbar and select Program window. When the Program
window comes up, double-click on the task name “writfile” in
the task list, and the Task window for this sub-task will open up.
You’ll see four lines of code and a label responsible for deciding
whether to execute or skip the code you’re about to write,
depending upon whether or not the user chooses to enter new
countries and capitals. (This will make more sense after you
complete the program and see how it runs. I promisel)

Stop and think about the code you’ll need to add in order to ask
the user to enter 5 countries and their capitals, and write this
input out to a text file.

Use the command, SET LOOP 5 under the “@continue” marker.
Here, you’re setting up the asking and filing action to happen 5
times, once for each country/capital pair you elicit.

Place a marker under the SET LOOP command to mark the
beginning of the asking/filing code. You might use the marker
name “@ask/file.”

Use LOAD STRING and create a string that asks the user to enter
the name of a country. (“Please enter the name of a country,” or
some such thing, will do nicely.)

Use WRITE-SCREEN STRING and READ-SCREEN STRING to get
your message out on the screen and the user input into the AC.

Use APPEND STRING “\”. This tells the computer to put the
name of the country on its own line when it writes it out to the
text file.

Use WRITE-FILE STRING “capital.txt”. Remember, the string
input here specifies the name of the text file to which you want to
write the country name the user put into the AC. The first time
the computer encounters this instruction in executing your

233

program, it will automatically set up a new text file of this name
in the program folder. (Nifty, huh?)

10. Drop down a line in your Instruction list to make a blank line
between the WRITE-FILE instruction and the next instruction
that you’re about to write. (You’re about to move onto asking for
the capital of the country, so it makes your program more
readable if you set this off from the request for a country you just
completed.)

11. Repeat the same 5 lines of code, this time eliciting the country’s
capital. The only thing you’ll need to change is the string text,
which here should read something like this: “Please enter its
capital.” Everything else should be the same, and the capital
name will be written out to the same text file, on the line just
below its country.

12. Leave one more blank line, and then use JUMP LOOP
@ask/file. This will cause the computer to repeat the code until
5 country/capital pairs have been written out to your
“capital.txt” text file.

13. Use END SUB-TASK.

The text file that results from the execution of this sub-task might
look something like this:

Egypt
Cairo
France
Paris
England
London
Taiwan
Taipei
Peru
Lima

Later in the chapter you’ll learn how to go and see your text files for
yourself. For now, just trust me— it’s there! Now it’s time to use
READ-FILE commands to complete the sub-task that reads the
country names out of the text file, “capital.txt” in order to test the
user’s knowledge of capitals.

1. Close the “writfile” sub-task, and open the sub-task called
“dotest”. You can do this by simply double-clicking on the little
close box in the uppermost left corner of the Task window for this
sub-task.

2. Find the place where you’ll insert the code that tells the
computer to read the country names out of the file. You should
see four commands and a marker at the top of this task, followed

234

by the comment, “(The code for reading the file goes here).” You
can highlight the line just below the comment to make a space for
the instruction you’re about to insert.

3. Use READ-FILE STRING “capital.txt”. This will start reading
from the top of the file, since the sub-task began with the
REWIND FILE instruction. The first line of the file, and every
other line after that, will always be a country name.

4. Use STORE BOX and define a box named “currentcntry”. This
will store the country name that you’ve just had the computer
pull from the text file and put into the AC.

5. Use LOAD STRING “Please enter the capital of”.

6. Use APPEND STRING with “currentcntry” as the input. When
the Data Wizard comes up after you click the Use button for this
command, click the radio button next to the word “Box,” and
then select the box name from the list. This will put the current
country name on the end of the general request string in the AC.

7. Use WRITE-SCREEN STRING and READ-SCREEN STRING to get
the request written in the Conversation window and the user’s
response into the AC.

8. Notice the next instruction in the task, EXECUTE SUB-TASK
chkcap. This sub-task is in charge of reading all the capitals out
of the file and comparing them with the user’s response in order
to determine if the user is correct. Let’s go and fill in the file code
for that sub-task, and then we’ll be ready to run the program.

9. Close this sub-task, and use the Program window to open the
sub-task called “chkcap”.

10. Highlight the first line in the Instruction list for this sub-task.
There’s already some code in place down below, but we’ll be
filling in the first 7 instructions to complete this sub-task.

11.Use STORE BOX and define a box called “useranswer”.
Remember what was in the AC from the last sub-task when the
EXECUTE SUB-TASK command started this one? We had just
used READ-SCREEN STRING to get the user’s guess at a country’s
capital into the AC. That response is what we’re storing here.

12.Use READ-FILE STRING “capital.txt”. Since this is the second
READ-FILE command in the program, it will begin by reading the
second line from the text file, and continue reading every even-
numbered line until the program ends.

13.Use STORE BOX and define a box for this correct capital
information. The box should have a name like, say, “capital.”

235

14.Use COMPARE STRING and select the box called “useranswer”,
which is offered in the Data Wizard once you click the Use
button.

15.Use JUMP<>@wrong. If the two strings don’t match, this will
cause the computer to jump to a marker that gives an appropriate
message to the user. The marker and its code are already in place
below.

16.Use LOAD STRING and create a good congratulatory string. If
the two strings do match, then the computer will skip the above
instruction, and congratulations for a correct response will be in
order. Type in your string after selecting the command and
clicking on the Use button.

17.Use WRITE-SCREEN STRING so the user can enjoy your
congratulations.

And congratulations are in order for you too! You have now
completed all the code necessary to run the program. Give it a test
run and play around entering countries and capitals and then taking
the quiz yourself. Experiment with right and wrong answers to see
how the different possibilities come into play.

Programming Tips and Tricks

That was quite a little trip in and out of sub-tasks, wasn’t it? This
-ogram is a great one for demonstrating the virtues of sub-tasks

and good decomposition in general. After you’ve had a chance to

lay around with the program and get a feel for what it does from
the user’s perspective, go back and take a close look at all the sub-
tasks to see how the program breaks down.

236

Files in Advanced Programming

Files get really interesting to work with only in pretty complex
programs. Once you get into more advanced stuff you can use file
commands to your advantage in a variety of ways.

In some cases, we use files so we can keep a permanent record of
user input. For example, a class database is one kind of program that
makes good use of file commands. Stop and think about it. You’d be
working with a two-dimensional gaggle (a big gaggle of People
entries made up of smaller gaggles containing
name/phone#/homework info. for each person), and you’d need a
sub-task in charge of putting information into the database, and
another sub-task in charge of getting information out. Of course,
you’d want all the people data to be stored permanently on the hard
drive, so there would be a lot of file commands involved here,
wouldn’t there?

In other cases, however, you can fill up a file in advance and
structure it so that it supports the writing of an extremely succinct,
readable, and elegant program.

LET'S CHECK IT OUT!

The program we’re about to look at is the MadLibs program I
described earlier in the chapter. The first thing you should do is
check it out and see what it does. (It’s pretty fun to play with, so
don’t get carried away rewriting Shakespeare and forget to come
backT)

1. Launch FM and open Demo3.fmp. Youw’ll find it by navigating
through Fundam, Manual, Examples and Demo 3 folders.

2. Play with the program and see what it does.

3. Look at the code. Start with the main task, and then look at the
sub-tasks in this order: “set-up”, “askinput”, “writelib”. If you
can’t see any part of the Program window to click on and bring it
forward, then use the Window menu on the Toolbar to get to it.
From there, you can get into the code of each of the tasks in the
program by double-clicking on their names in the list. Notice
that the programmer has left some comments in the code to help
explain what’s going on. But it’s still a little hard to figure out
what’s what until you see the file from which all these commands
are reading. So let’s go take a look. Then we’ll come back and
study the code one more time.

4. Get into your computer’s File Manager. (That’s the one that lists
all the directories for everything you’ve got going inside your
computer). Notice we’re leaving FM territory here so that you

237

can view the contents of files through your computer’s notepad
or word processing application.

5. Navigate through the following directories:
c:\Fundam\Manual\Examples\Demo3. You do this the same
way you navigate through folders to open program files in the FM
Open Program directories window. (We’re just entering a
familiar place through a new doorT)

6. Open the text file “Hamlet.txt” which is in the Demo3 directory.
Once the Demo3 directory is open, you should see a files list that
looks like this:
Edt “iew Toolz Help
olders | Contents of 'C:AFUM
El- l:l Fundam ;I | Tasks

..... - Fmhelp E Catcher. bt
. +-_] Gag Demo. frig

..... D EEI”E-'[_'.-' DEI‘I‘lDE.flTll:l
! #_] Language = :
B {1 Manual Z] Hamlet bt
' E| |:| E:-:amples """

Fig. 16-4 The text file resides with all the other contents of the program
folder.

7. Double-click on the text file icon marked Hamlet.txt.
8. Examine this text; print it out, if possible.

9. Return to FUNdaMENTAL and get into Demo3.fmp once more,
so we can look at the file and the code together.

The Art of Hiling

You can use WRITE-FILE commands to get information into a file, but
you can also manually set up a text file in advance through your
computer’s notepad or word processing application. (Instructions for
doing that follow later in the chapter.) That’s how this file was set
up. In order for it to work properly, the programmer had first to
envision a file formulia that would work with the desired program
design. If you go back and look at the other two files in this program,
you’ll see that they also follow the same formula, starting with a
number, followed by a bunch of solicitations for nouns and verbs and
such, and ending with a long list of literature fragments strung
together between numbers. Are you starting to get a sense of where
all the string data and gaggle item numbers are coming from for the

program? Let’s go back and take a look at the program code one
more time.

The Art of Programming with Files

The neat thing about this program is that it works just like a little
machine that can read any file set up according to the proper
formula, and turn that information into a fun MadLibs game. Notice
that the program contains very few specifics. All the necessary data
is planted inside the file, and the program just pulls out what’s there
and plugs it into the proper spots.

Main Task

I think this is my favorite.

EXECUTE SUB-TASK setup
EXECUTE SUB-TASK askinput’
EXECUTE SUB-TASK writelib

How simple and readable can you get?! Any questions? I didn’t think
so. Let’s move on.

Setup

In preparing this demo, the programmer has constructed three
different text files according to the proper, Madlibs formula. All
three of the text files reside in the Program folder with all the other
stuff the program needs in order to run. The sample code below is
the part of the program which 1s responsible for asking the user to
choose between Hamlet.txt, Catcher.txt and Eleanor.txt. (Perhaps by
looking at these file names you can guess which great works of
literature we’ll be scrambling.) This section of the program also
constructs gaggle space for all the literature fragments that,
combined with user responses, will constitute the final MadLib.

RESIZE CONVERSATION 640,350
PLACE CONVERSATION 0, 100

LOAD STRING “Please enter the name of a file to be read.”

WRITE-SCREEN STRING
READ-SCREEN STRING
STORE BOX filename

READ-FILE NUMBER filename

STORE BOX numquestions
CONSTRUCT GAGGLE numquestions
STORE BOX questiongaggle

Remember the first line of all
these files is a number that
corresponds to the number
of gaggle items required fo
handle all of the strings.

239

END SUB-TASK

LOAD NUMBER 1

AskinpuB

This is the part of the code that reads the top portion of the entries in
the file, the ones that contain the requests for verbs, nouns, etc. It
also is responsible for storing all the user’s responses into the items of
the gaggle set up in the previous sub-task.

STORE BOX curloopindex } top 2 lines make a variable of the
gaggle ifem#
SET GAGGLE-REGISTER questiongaggle
SET LOOP numquestions in the case of Hamlet. txt, this box
contains 20
@top
READ-FILE STRING filename reads the next line down in

Hamlet. txt, through line 21

WRITE-SCREEN STRING

READ-SCREEN STRING
STORE-ITEM GAGGLE curloopindex
LOAD BOX curloopindex

ADD NUMBIER 1

these lines relate fo the first 2
commands in this fask

STORE BOX curloopindex

JUMP LOOP @top

END SUB-TASK

Writelib

This task is responsible for pulling numbers out of the file, matching
those numbers with gaggle items containing user responses, and then
appending those user responses to fragments of text from the original
literature. It’s also in charge of knowing when to end. And finally, it
gets the user’s final results into a file of their own from which they
can be reviewed or even printed.

SET GAGGLE-REGISTER questiongaggle

LOAD STRING “\\” use backslashes as strings fo specity

carriage returns and line breaks

WRITE-SCREEN STRING this inserts ftwo blank Ilines in the

@top

Conversation window between the
response requests and the printed
MadlLib

READ-FILE NUMBER filename

240

COMPARE NUMBER -1 makes sure program ends at end of
file instead of cycling back fo the fop

JUMP = @end

STORE BOX gagindex

LOAD-ITEM GAGGLE gagindex
STORE BOX wordtoinsert

READ-FILE STRING filename
APPEND STRING wordtoinsert
WRITE-SCREEN STRING
WRITE-FILE STRING “result.txt”
JUMP ALWAYS @top

@end
READ-FILE STRING filename

WRITE-SCREEN STRING
WRITE-FILE STRING “result.txt”
LOAD STRING “\\Your ‘Bad Lib’ has been saved to the file Result.txt.

END SUB-TASK

What’s with All Those Backslashes?

This is something that actually applies to strings in general. When it
1s printing out strings in the Conversation window, the computer will
automatically lump together all the strings it’s accumulating to make
one paragraph chunk. If you want the computer to “print” a line
break or some blank lines between text, you have to tell it to. (By
now you should be used to your computer’s dim wits when it comes
to things like this!) But, of course, there is no form of data called
“line break” or “empty space.” So, once again, we have to fall back
on using the tools at hand to communicate. In this case, we use
strings, as the data type, and the backslash character from your
keyboard (“\”), between quofes, of coursel A string containing a
single backslash will be translated by FUNdaMENTAL as a line break.
(Note that you can use as many backslashes as you need to create the
desired amount of space. For example, a string that looks like “\\\”
will cause the computer to drop down three line spaces before
printing what ever follows.

Wowl We Said a Mouthfull

There’s a lof going on in this deceptively simple MadLibs program, as
we have seen. It basically rests on this principle: The more thought
and complexity you put into your system for arranging text in your
text file, the more concise and elegant your program can be. This
example illustrates just one way to achieve really good programming
style, by creating programs that function as little independent
machines, completely detached from any specific data. Stick around
with files a little longer, and follow the instructions for setting up

241

your own MadLibs file according to the formula necessary for
running this demo program.

Let’s Make Our Own Madlibs Filel

These instructions will demonstrate how to make a MadLib file out of
any passage of text you choose. This, of course, will make much
more sense if you have a pretty good basic understanding of how the
MadLibs program works.

(Please note: You need to be inside your notepad or word processing
application when you try this! You can’f create a fext file from inside
FUNdaMENTAL.)

The paragraph we’re using has been gratuitously stolen from
“Primitivism" in Z0th Century Arf, ed. William Rubin. Here it 1s in its
original, “unlibbed” form:

The crucial influence of the tribal arts— especially

those of Africa and Oceana—on modern painters and
sculptors has long been recognized. Yet surprisingly,

this book is the tirst comprehensive scholarly freatment
of the subject in half a century, and the first ever fo
illustrate and discuss tribal works collected by vanguard
artists. In this visually stunning and intellectually
provocative work, nineteen heavily illustrated essays by
fifteen scholars confront complex aesthetic, art-historical,
and sociological problems posed by this dramatic

chapter in the hisfory of modern art.

Step 1:
Type the paragraph into your notepad or other word processing

application. Use Save As from the file menu and save the new text
file by navigating through c:\Fundam\Manual\Practice\Demo3 to
select the directory for the MadLib program into which you’ll be
saving this file, and naming the file something descriptive with a
“.txt” ending, like “artbore.txt”.

242

Step 2:
Put a “\” at the end of every line. Now the paragraph should start

like this:

The crucial influence of the fribal arts- especially \
those of Africa and Oceana-~ on modern painters and \

Step 3:
Pick out all the words you want to put up for grabs, and replace them

with numbers. As you go, note the part of speech (e.g. noun,
adjective) of each word you replace with a number. The resulting
paragraph should now look like this:

The I influence of the 2— especially \
those of 3 and 4—on modern 5 and\

And your notes should look like this:

adjective

noun

a place

another place

a group of professionals (e.g. bankers, doctors)

GO

Step 4:
Count how many numbers you have and put this number as the first

line in the file, above the first line of the paragraph.

Your text file should now look something like this:
5

The I influence of the 2— especially \
those of 3 and 4—on modern 5 and \

Step 5:
Insert requests for the missing parts of speech between the number at

the top of the file and the paragraph underneath.

The file now should look like this:
5
FEnfer an adjective:
Enter a noun:
Enter a place:
Enter another place:
Enter a group of professionals (e.g. bankers, doctors)

The 1 influence of the Z—especially \
those of 3 and 4—on modern 5 and \

243

Step 6:
Working again with the paragraph itself, remove all new lines from

the paragraph like so:

The 1 influence of the Z—especially \those of 3 and 4— on modern
5 and\

Step 7:
Now, place a new line after every number in your paragraph, so the

paragraph portion looks like this:

The 1
influence of the 2

— especially \those of 3
and 4

—on modern 5
and |\

Step 8:
Cut the number at the end of the line and put it above the line from

which it came. Now the whole text file should look like this:

5

Enter an adjective:

FEnfer a noun:

Enter a place:

Enter another place:

Enter a group of professionals (e.g. bankers, doctors)

7

The

2

nfluence of the
3

—especially \those of
4

and

5

—on modern
and \

Step 9:
Place a “~1” above the last line of text, if necessary, or as the last line

of the file.

You now have a new MadLib file which can be read by your MadLib
program!

244

Notice that the program doesn’t have to be changed at all to run with
this or any other new text through this MadLibs machine. Thisis a
perfect example of good programming style, which we’ll be revisiting
in chapter 18.

But first we’ll take a little detour into formal logic, FUNdaMENTAL
style. Read on to chapter 17 to learn about a new data type called
“booleans.”

245

CHAFPTER 17

True and False with Booleans

The Beauly Of Logic 247
Brushing Up On Formal Logic 245
“OKazaay...” 250
Flags 250
Commands Inbroduceds

[0 LOAD BOOLEAN

0 JUMP TRUE 245

[0 JUMP FALSE

0 AND BOOLEAN
0 OR BOOLEAN
[NOT BOOLEAN

246

----- Teacher’s Journdl -----

[was griping at one of the programmers at the company.

“Okay,” I said. “I survived Strings and Loops and even TICKS! But gaggles?
GAGGLES? Can we talk? What is the deal with you people and weird names,
anyway? And how about ‘BOO-Leens’? Huh? What the heck is a Boo-Leen
supposed to be? It sounds like someone’s skinny, bug-eyed greyhound dog!”

Sarah smiled at me in her most soothing way. She recognizes the symptoms
of an acute attack of technophobia. “It’s actually just the named for a 19th-
century mathematician named George Boole. He formalized logic as we
know it. And booleans (pronounced “boo-lee-enz”) are all about logic. But
now that you mention it, it would make a great name for a dog.”

247

The Beauby of Logic

As long as it’s wires aren’t crossed, your computer thrives on logic.

That’s one of the best things about working with them —or the worst,
depending upon your point of view. But in learning a little about
programming, even the most steadfast technophobe can begin to see
the beauty in logic. And if you happen to be a logic buff already,
then this chapter should be a special treat for you.

A boolean is a kind of data with only two possible values: true and
false. Since they can only go one of two ways, they are actually
pretty easy to use. You can always be sure that if a boolean isn’t true,
then it’s false, and if it isn’t false, then it’s true. Sounds logical,
doesn’t it?

L] LOAD BOOLEAN

When you use the LOAD BOOLEAN command, it only gives the
options of “true” and “false” to load into the AC.

LOAD BOOLEAN

Data Wizard

Load thiz boolean into the &AC;

& TRUE |ITHUE

@ FALSE
Cancel | 1] 4 I

Fig. 17-1 LOAD BOOLEAN Data Wizard dialog.

Just like numbers, booleans can be boxed in such a way that their
value is associated with something meaningful. For example, you
could make a box called “HasBlueEyes” and store “true” in the box if
you do have them:

LOAD BOOLEAN true
STORE BOX hasblueeyes

and “false” in the box if you don’t:

LOAD BOOLEAN false
STORE BOX HasBlueEyes

248

L JUMP TRUE

L JUMP FALSE

We can use JUMP TRUE and JUMP FALSE commands as soon as we
load a boolean into the AC. JUMP TRUE jumps to the specified
marker when the boolean in the AC is true. I’ll bet you can figure
out what JUMP FALSE does.

Say we have a box called “I_am_happy” with a boolean in it. We
want to write a program where if “I_am_happy” is true, then a smile
appears in the Playground window, but if “I_am_happy” is False,
then we see a frown. Here’s what it could look like:

LOAD BOX I_am_happy
JUMP TRUE @smile
JUMP FALSE @frown

@smile
EXECUTE SUB-TASK smile
JUMP ALWAYS @end
@frown
EXECUTE SUB-TASK frown
JUMP ALWAYS @end

@end

Brushing Up on Formal Logic

Once a boolean is in the AC, it can be manipulated with AND, OR,
and NOT commands according to the rules of formal logic. Using the
options according to the following table will change the value of the
boolean in the AC.

AC Operator Result
True And True
True And False
False And False
False And False
True Or True
True Or True
False Or True
False Or False
True Not False
False Not True

Illus. 17A Table of logical operators

Just in case your formal logic is rusty, here’s the run-down. It helped
me when one of the programmers explained about booleans in terms

249

of spoken statements. Let’s say it’s Wednesday, and it’s raining
outside.

If I say “It’s Wednesday and it’s raining outside” then what I said was
true. But if I said “It’s Wednesday and it’s sunny outside” or “It’s
Thursday andit’s raining outside” then what I have said is false,
right? The first sentence is true because I used two true statements
and connected them with the “and” operator. But in the other two
sentences, I used one true statement and one false statement and
connected them with the “and” operator, which means that they
need to be taken together. As a package deal, they constitute a
falsehood.

But, if I say “It’s Wednesday orit’s sunny outside” then what I have
said counts as true even though it sounds false because it is
Wednesday. If I say “It’s Thursday orit’s raining outside” then what
I have said was also true, even though it sounds funny, because it is
raining outside. The “or” operator means that only part of what I
say must be true for me to avoid telling a lie.

But if I say “It’s Thursday orit’s sunny outside” then this is false,
since both options given are false.

Put another way, the first two sentences are true because I used at
least one true statement and connected the two statements with the
“or”operator. The last sentence 1s false because I used two false
statements and connected them with the or operator.

L] AND BOOLEAN

L] OR BOOLEAN

LI NOT BOOLEAN

Using any of the three commands above performs the indicated
logical operation on the true/false value in the AC, with respect to
another true/false value that you specify. When you use any of these
commands, the Data Wizard will bring up a little dialog which
allows you to click a radio button for “True,” “False,” or “Box.” (Of
course, if you choose a box here, it will be one in which you’ve
already stashed a boolean value of “true” or “false.” True? Truel)

250

AND BOOLEAN

Data Wizard

AHD thiz boolean or box to the AC:
& TRUE |ITHUE

@ FALSE

. Box
Cancel | 0K I

Fig. 17-2 AND BOOLEAN Data Wizard dialog.

“Okazay...”

It may be difficult now for you to see how all this ties into making
really cool programs. And I must admit that I’ve never met a
programmer who said that booleans were absolutely necessary for
programming.

But one programmer I know likes to make elaborate games. He told
me he recently used several boolean commands to make his program
check to see if the action hero was tall enough, strong enough and
rich enough to receive a reward toward victory. “It’s kind of like
making your own, customized C-bit,” he said.

I looked at him with widening eyes and said, “Ooooooh, I think I'm
beginning to see.”

For him, booleans were just another way to have control and
flexibility over how comparisons and possibilities helped him reach
his program goals. And even if you never use them to reach your
own program goals, booleans are kind of fun to play around with in

their own right—especially if you happen to really like formal logic!

Flage

My programming friend was using ooleans as “flags.” A flag is when
you take something the computer understands, like a number, or in
this case, a boolean, and use a box to attach it to something the
computer doesn’t understand, for use in a program. For example, the
computer can’t deal with pairs of possibilities like “happy or sad,” or
“strong or weak.” But it does understand “true” or “false.” So for
the sake of your program, you could callthe “sad” possibility
“false,”and the “happy” possibility “true.” The computer doesn’t

have to know what “true” and “false” mean in any given instance—
only you do.

251

An example will help, so let’s write one. In the next exercise, we’re
going to use the values of “true” and “false” as a way to tell if a light
bulb graphic is morphed “on” or “off.”

LET’S PROGRAM!

Launch FUNdaMENTAL, and open Progrm10.fmp. At the FM
Welcome window, chck on Open Existing Programs, and then
navigate through the following directories:
c:\fundam/manual/practice/progrm10

2. Look at the code in the main task, and test-run the program. As
you can see, a boolean value of “false” has been stored in a global
box called “onOffFlag.” Also, a “bulb” object has been
constructed, placed, and shown, and a box called “theBulb” has
been defined as a global box. You can see the bulb when you test-
run the program. The “false”-in-a-box, sets up the flag we’ll be
needing in the sub-task.

3. Stop and think for a minute about using booleans to make an
“on/off” click-task. It seems simple at first, but it’s actually a
little tricky to make a click-task that does one thing the first time
you click on it (click “on!”), and another thing the next (click
“off]”),

4. Create a new sub-task called “bulbclic.” Use the Window menu
and select the Program window. Click the New button, and use
the file name entry field to enter the name “bulbclic.fmt”. Click
OK, and youw’ll automatically wind up in the blank task window
for the new sub-task, “bulbclic.fmt”.

5. Use the command, LOAD BOX, and select the global box,
“onOffFlag.”We know that the first time “bulb” is clicked upon,
this box will contain the boolean value of “false,” because that’s
what we stored in the main task. That “false” is what the
computer uses to know that the bulb appears in its “off” form,
and should be morphed to “on” when clicked.

6. Use the command JUMP TRUE and define a marker called
“@turnoff.” Here’s where you have to think of how your
program runs through time. The first click will need to turn the
bulb on, but the next click should turn it off. This JUMP
command covers the second possibility, and tells the computer to
<o follow “off” instructions. When you use this command, you
can just type the marker text into the entry-field in the Data
Wizard dialog. We’ll put the marker in the Instruction list after
we write the “on” code.

7. Use LOAD BOX and select “theBulb” from the box list. Now the
AC contains the bulb and is ready to morph some light on the
subject.

252

8.

Use MORPH OBJECT and select “bulbon.bmp” from the list of
available graphics.

Use LOAD BOOLEAN TRUE. This command will serve as a signal
“flag” to the computer that the bulb is now in its “on” state, and
the next click should turn it off, instead of turning it on again.

10.Use JUMP ALWAYS and define a marker called “@end.” I bet

11.

12.

13.

14.

15.

1e.

you thought we were about to use a STORE BOX command, didn’t
you? Well, we are, but we’re going to do it at the end of the task,
so that whichever boolean happens to be in the AC at the time
will get stored in the “onOffFlag” box and be ready to go for the
next click. We’ll be putting the command STORE BOX onOffFlag
under the “@end” flag at the end of the task.

Now place your “@turnOft” marker in the code. This marks the
code for the JUMP command we placed near the top of the task.
Click on the radio button labeled “marker” above the Instruction
list, and type the text after the “(@” which appears in the entry
field.

Use LOAD BOX and MORPH OBJECT, to get the bulb object into
the AC, and morph it to the “off” form. You’ll be looking for a
graphic called “bulboff.bmp” in the available graphics list in the
MORPH OBJECT Data Wizard dialog.

Use LOAD BOOLEAN FALSE, to switch the flag and signal the
computer that the next click should turn the bulb on again.

Place your “@end” marker in the code. This marks the place for
the JUMP ALWAYS that we put just before the “turnOff” code.
Click the “marker” radio button about the Instruction list, and
type the text in the entry field.

Use STORE BOXonOffFlag. Now, whatever is in the AC, “true”
or “false,” will be stored in the “onOffFlag” box, ready for the
next click.

Use END SUB-TASK.

Test~-run the program, and try clicking on the light bulb to see
your click-task work.

253

Programming Tips and Tricks

Once you get a chance to see how booleans work as “flags” in this
program, you may notice that this is not the only possible way to

make flags. For example, you could achieve the same effect with
number data loaded into the “onOffFlag” box. Can you see how it
would work and what changes you’d have to make in the code?

254

255

CHAFTER 16

“Everything ls Trees”

Elements of Programming SDyle

The Beauby Of 1T 257
Decomposition 257
Modularity 258
Reusabiliby 258

Readability And Naming 259

256

----- Teacher’s Journd -----

I was sitting with one of the programmers, trying to work out the solution to
a teaching problem. I was concerned that in attempting to make the
material accessible to my young students, I was limiting their sense of the
true nature and potential of programming.

“They know how to use the environment, and their vocabulary of
commands gets bigger every day,” I said. “But how can I communicate to
them what programming really IS...how can I teach them at least to
appreciate the elements of style and efficiency that expert programmers
incorporate into their work—stuff I can recognize in the programs you guys
write, even if I can’t write them that way myself?”

Sam began doodling on his yellow pad and said “Well, of course learning
the art of decomposition is a whole college career in itself. But basically all
good programs are shaped pretty much the same way. They look like
this...” He added a few more strokes to his drawing.

“It boils down to something pretty simple,” he said, handing me the picture
showing a collection of loops branching symmetrically away from a central
line. “Everything is trees.”

257

The Beauby of I

The more you learn about programming, the more you’ll see that
Sam is right. Really good programs are indeed “trees,” in which sub-
tasks relate to the main task (and to each other) the way branches of
trees relate to the trunk, or the way coral divides away from its
anchor point.

But that’s just the root of it.

At the heart of advance programming lies the ability to visualize a
system in four dimensions. That’s right: Three dimensions of space,
and then toss in time.

As you advance in your programming, you’ll learn to think of every
task as a minimachine that’s doing something. Each one is connected
to the other tasks through EXECUTE SUB-TASK and EXECUTE
PROCESS-TASK commands to make one big machine that is your
program. Once the machine is assembled in your mind, add the data.
Think of the data as flowing from one minimachine to another
through the connections by way of parameters (information and
specifications “passed in” from one task to another.) Now you have
to imagine the machine as it runs through time. If you can do that,
you’re the J.S. Bach of programming. Luckily, we don’t have to think
of it all at once...at least not if we use good programming style!

Throughout this manual, we’ve dealt with various skills and concepts
that will help you see your programs in this way, and manage them,
once you do. Let’s revisit some of those key ideas now.

Decomposition

“Decomposition” is the art of breaking things down into manageable,
component parts. If you want to write a program to keep track of
your checkbook, for example, think about what is entailed on the top
level first. Keeping track of checks involves recording deposits and
withdrawals. Each of these actions should be a sub-task of the main
program. You’ve already broken the program in half. The secret of
decomposition is that it’s easier to write two halves than a whole.

Now break down the problem of handling a withdrawal. That
consists of finding out how much was withdrawn, subtracting that
amount, and recording the new balance. Ahal There are three sub-
tasks in withdrawal. Just like magic, the problems left to solve are
even smaller. Keep doing this until each task you have is small
enough that you can easily write it.

This kind of top-down design is the key to happy programming. If
you take the time to break each task into smaller tasks, until the
commands in a task are obvious, you’ll save yourself much
debugging agony later. Trying to shove all your commands into the

258

main task is like eating without chewing: You and your program will
probably choke.

ModulariBy

Another thing to keep in mind when dividing your program into
tasks 1s “modularity.” This is a nice word for breaking your program
into conceptual chunks. Good modularity is what results when you
think of your boxes as variables, and make sure that each sub-task is
equipped with local boxes so that it can be easily read and
understood on its own. This is good for a variety of reasons, but it’s
especially helpful for program troubleshooting. If your program is
divided into good, modular chunks, then problems that can (and
willl) arise are more easily traced and rooted out.

Think about it this way: Each task should have one specific function.
Let’s say your program involves finding the square root of some
numbers (rounding down to the lowest integer). This only takes a
dozen or so commands, so you might be tempted to just put these
lines into whatever task needs them. Don’t give in to temptation,
because there are many reasons for making a separate task that takes
a number in a box, finds the square root, then puts that number back
in the original box.

The first reason is that once you write that task and get it to work,
you can close it and never worry about it again. If you had left it in
with all the other commands, and something didn’t work right, you
would have to examine every line to find the mistake. Modular
writing of tasks allows you to concentrate on and test individual parts
of your program without worrying about what’s happening on other
levels.

The other major advantage of writing modular tasks is the time it
saves you rewriting commands, because it allows for...

Reusabilrby

In actuality, we’ve seen that good programs are more like Tinker Toy
trees than the botanical kind. The reason is that advanced programs
often contain sub-tasks, or “branches,” that are interchangeable in
that they can be used and reused in a variety of different programs.
If you’ve written that square root task well, you can pick it up and
plop it down in any other program and it will work fine. How do
you write a task so that it can be reused? Avoid relying on global
boxes. Global boxes that are in one program aren’t necessarily in
another, and if your task depends on their existence, it won’t work
without them. For this reason, use local boxes wherever possible.

Reusability also applies to lines of code within a single
task. Let’s say you use the RANDOM NUMBER command to
randomly pick one of three frogs to turn into a prince. You could

259

jump to a separate section for each number, load the object and
change it, or you could jump to a separate section, load the object,
then jump to a common section where the object in the AC is altered.
This saves you from having to write the each line three times.

Readability and Naming

Program “readability” is a primary ingredient of good programming
style. A lot of things go into making a program readable, from one
programming session to the next, and between different
programmers. We’ve already seen how good decomposition, and
modularity, and reusability can help. Another extremely important
skill of programming in any language is the use of good, “descriptive
names.”

If you name all the tasks in your program “task1,” “task2,” “task3,”
and your boxes are “box1,” “box2,” “box3,” you’ll quickly lose track
of what’s going on. Name everything according to its purpose. If a
box holds a Gaggle of sharks, call it “GaggleOfSharks,” or
“sharkgag,” for short. If a label marks the spot in your program to
go to when the ball is done bouncing across the screen, name the
label “@ball_done_bouncing,” or something similar. You’ll be
amazed how much of a difference this makes in your ability to follow
what 1s happening in your program and see where the mistakes are.

You don’t have to be an expert programmer to appreciate the
elements of style in programming. The more experience you have in
programming, the more you will recognize that all of this technology
and cyberspeak is really just another way to give form to the order
that characterizes critical thinking, and that mimics patterns found
throughout the natural world.

260

UNIT &

Highlights

COMMANDS

CONSTRUCT GAGGLE
SET GAGGLE-REGISTER
STORE-ITEM GAGGLE
LOAD-ITEM GAGGLE
DESTROY GAGGLE
COUNT GAGGLE

GET LOOP
WRITE-FILE STRING
WRITE-FILE NUMBER
READ-FILE STRING
READ-FILE STRING
REWIND FILE

LOAD BOOLEAN
AND BOOLEAN

OR BOOLEAN

NOT BOOLEAN

JUMP TRUE

JUMP FALSE

PROGRAMMING STYLE

Decomposition
Modularity

Reusability

Readability and Naming

INSIDE THE COMPUTER

Gaggle Register

261

AFPFPENDIX A

Educator’'s Grab-Bag

Section 1A The FUNAaMENTAL Learring Process, in Principle and

in Practice

Section 2A: Try This in Your Class Tomorrow

Section SA. “What’s So Great About Programming?” Talking
to Parents, Adminisbrabtors, and Older Students

262

This section is designed to give you extra support as you prepare to bring
FUNdaMENTAL into your classroom or computer lab.

In section 1A you’ll find a description of the FUNdaMENTAL learning
process as we’ve observed it during field testing. Each learning principle is
presented with corresponding implications for optimal teaching practices.

In section 2A you’ll find a series of tried and true lesson designs for a variety
of online and offline activities which support the learning of
FUNdaMENTAL.

In section 3A you’ll find suggestions for talking to parents, administrators,
and older students about the benefits of FUNdaMENTAL, and programming
in general. Included are guidelines and curriculum standards from a variety
of educational frameworks.

263

SECTION 1A

The FUNAaMENTAL Learning Process,

In Principle And In PracTice

What follows is a series of learning principles that we’ve derived
from our observations during the field-testing of FUNdaMENTAL.
Each one describes a general feature of the typical beginning
learner’s development and state of mind in learning programming.
Each learning principle is followed by general implications for
classroom practice which, when applicable, can help you to get the
most out of your FUNdaMENTAL curriculum.

IN PRINCIFLE AND IN PRACTICE...

U FUNdaMENTAL learners need to reinvent their customarily
passive users’ role into one that is dynamic and creative.

In Practice:

It helps to hold many discussions about favorite software titles, and
raise questions about how software is made in the first place.
Specific references to programmers and software companies help to
demystify the phenomenon of computer technology.

J FUNdaMENTAL learners almost always find animation and
graphics to be the most engaging and motivating place to begin
learning about programming.

In Practice:

Start with objects. This is not as obvious as it seems to someone who
learned this way. Strings actually make for easier programming
because you don’t have to stock any libraries or design any
blueprints. You can just jump right in. Trouble is, in our experience
most students (especially younger ones) just can’t get too excited
about strings until they come to understand something about
programming through the medium they know best: graphics!

264

U When starting out with animation, FUNdaMENTAL learners need
to be sheltered from peripheral interface challenges so they can
focus on the process of programming itself.

In Practice:

Use premade program starters and program frames, like the ones
accompanying this manual, for beginning classroom practice and
computer lab time. Try to ensure that inexperienced students don’t
confront interface difficulties that overshadow the programming
challenges at the center of your lesson.

U0 Depending upon their prior experience and goals,
FUNdaMENTAL learners will respond to the learning process in
various, and somewhat unpredictable, ways. They will benefit
most from lessons designed around their specific needs and
interests.

In Practice:

Because programming is much better described as a “process” than
as a “skill,” we have found it beneficial to teach FUNdaMENTAL in a
“workshop” atmosphere. Although goal setting and planning are
essential in any educational endeavor, teachers of FM need to make
the time, on a regular basis, to observe students at work. Lesson
plans should incorporate activities that respond to specific student
needs and interests.

U FUNdaMENTAL learners need plenty of time to “spread out” and
explore at each new level of understanding. Even the simplest of
program starters or classroom activities can trigger a challenging
creative effort. The benefits of “horizontal” curriculum can vary,
depending upon both the needs of the students and the particular
topic of study within the discipline of programming.

In Practice:

Again, a workshop approach works well here. Be willing to
individualize. Plan activities in a goal-based menu format, and know
that different students will end up in different places at the end of
any given lab time. If you use cooperative learning structures in
your teaching, make sure to plan for both heterogeneous and
homogeneous groupings. Pairing students according to common
interest with respect to program outcomes (e.g. “We both want to
make a boat race program.”) is one good way to make sure all
students are invested in the process, regardless of differences in their
programming abilities.

265

J FUNdaMENTAL learners will be continually reinventing what
they know about programming. Learned concepts will remain in
flux as new experiences add depth and complexity to the
learner’s understanding.

In Practice:

In teaching something as complex as programming, one of the
greatest challenges is finding the right place to begin. Presenting
material in a spiraling format can go a long way toward solving the
problem. Know that it’s okay to present part of the truth— just
enough to initiate and support your students’ hands-on experience
with programming. When you spiral back around to revisit concepts
again, your students will be in a better position to absorb more of the
truth about difficult concepts. Help the students recognize, predict,
and welcome the changes in their thinking as they progress with FM.

J FUNdaMENTAL learners may be inclined to hold onto metaphors
and comparisons in order to resolve their early uncertainties
about programming. Although sometimes helpful for building
beginning concepts and putting learners at ease, such
comparisons can often be limiting, and may work against a full
understanding of the ideas they initially seemed to illuminate.

In Practice:

Be frugal and judicious in your use of metaphor when teaching
FUNdaMENTAL. When I started out, I found myself wanting to
compare different aspects of programming to any number or wild
things, from making potato prints (with respect to the AC), to making
omelets in my mother’s kitchen. Although the prospect of clearing
things up may be just as tempting to you as it is to your students,
don’t give in to the impulse to make broad comparisons without
giving it a lot of thought first. Condone uncertainty as part of the
process. Endure the occasional perplexed grimace and blank look.
Stick with “the computer” as your primary point of reference, and
your students will almost surely benefit from a fuller understanding
later on.

U FUNdaMENTAL learners will learn more quickly, and program
more effectively and efficiently, if they understand the computer’s
inner workings.

In Practice:

The one metaphor that does consistently pay off over time is the
metaphor that explores the question “What’s going on inside the
computer.” To those of us with little or no experience in
programming, it may be hard at first to sense the presence of a
metaphor here. But when you really think about it, talking about
“putting things in” the AC, or “setting” the C-bit or the Loop Register

266

doesn’t really get at what’s going on inside the computer. It may
comfort you to know that many professional programmers don’t
actually grasp how the computer chip executes commands. It’s
enough to help students form a strong sense of a physical model to
represent this mystery in order to help them become powerful
programmers.

0 FUNdaMENTAL learners will best learn how commands affect the
“inside of the computer” by using commands to write programs.

In Practice:

Don’t try to force an early understanding of the computer model.
Nor is it necessary to hold back from introducing new commands
until students master all the concepts associated with the ones in
previous lessons. Keep the commands themselves at the center of
your early lesson planning. Hands-on programming experience will
allow the students to make more and more use of the model both for
better understanding and for program troubleshooting.

0 Learning FUNdaMENTAL can be very frustrating.

In Practice:
Teaching FUNdaMENTAL can be very frustrating.

U Learning FUNdaMENTAL can be very, very rewarding.

In Practice:
Teaching FUNdaMENTAL can be very, very, VERY rewarding.

267

SECTION 2A

Try This In Your Class Tomorrowl

Tried And True
How ‘o Make a Peanut Bubber Cracker
FM Coordinabe BatTleship
What's Wrong with This Code?
Command Lineup
Predictbion Activities
Program Flanning Sessions
Company Meetings

More ldeas
Cue Card Code
ReflecBion/Prediction/Flanning Journsls
Programming Across the Curriculum

Although the tutorial portion of this book may serve as the foundation for your online
lesson planning, there is a whole collection of other learning experiences that can
enrich the program you build around FUNdaMENTAL. The majority of these are offline
activities that should be done, if possible, with the class assembled away from the
computers (or at least with backs turned).

The first group of activities we have personally tested in the classroom and have been
found to be successful. The majority of our testing grounds were at the junior high
school level, but the tools for collaboration and reflection presented here will be helpful
for students of all ages.

The second group of ideas are ones we have not yet had the chance to test ourselves, but
they have been suggested to us by others who have brought FUNdaMENTAL into their
classrooms.

268

Tried and True

How Po Make a Peanut

Bubter Cracker

Who: Great for all students new to programming/whole group or
rotating clusters

Why: Helps build foundation for understanding task decomposition
and the programming process

When: Third or fourth class session, after students have had some
hands-on programming experience

How: At a place away from the computers and visible to all students,
display the following items:

~-small jar of peanut butter, unopened (and sealed if possible)
~package of crackers, unopened

~knife

~-plate

(Feel free of course to add ingredients of your own, but keep it
simple. You’ll be amazed how involved things can get!)

Also have handy:
~-sentence strips, or other large strips of paper
-2 large felt-tip pens

Tell the students that you would like to treat them all to a snack. The
only thing they need to do 1s to tell you how to make a peanut butter
cracker. Appoint two recorders to keep track of the instructions on
the sentence strips, so you can examine them later.

Stand in front of the table of ingredients with your hands at your
sides. Smile pleasantly and raise your eyebrows in a docile fashion.
Before long, some hungry soul will start to call out instructions.

Here’s the fun part (and the challenge!): You have to follow their
instructions exactly. That means, you don’t do anything that they
don’t tell you to do, and you do everything they tell you precisely as
they say it.

Feel free to “crash”... that is, to decline to follow an instruction that
1s incomplete or out of sequence. For example, my students almost
always start out with the instruction “Open the peanut butter!” (In
your mind, visualize the FM translation: OPEN peanutbutter). That’s
your cue to say, “Peanut butter? What peanut butter? I’'m not
holding any peanut butter.” (Read, “Wrong AC type.”)

After that, they’re off and running. It’s always great, aggravating fun
for the group to collectively deconstruct this deceptively simple task.

269

“Okay! Pick up the jar?” (1 pick up the jar.)

“Now open it!” (I like to start banging the jar against the table top,
or shout “Open, Jar!” in response to this one)

“No, take off the lid!”

(“Off, LidT)

“No, put your hand on the lid...”, “The PALM of your hand...”
someone else chimes in. (Now they’re getting the hang of it)

The best part, of course, is when, after ten minutes of arduous group
programming, there’s one lonely peanut buttered cracker in the
middle of the plate to show for it.

“Do it again!” some of my students shout.
“Repeat!” command others, trying for a slightly more technical tone.

“What, all of it?” I answer, starting to go through the motions of
breaking the seal on the already open jar.

The first time I tried this lesson, I discovered inadvertently that it was
a great way to set my students up to learn about SET LOOP/JUMP
LOOP. Even the sometimes tricky issue of marker placement comes
up as students review their list of instructions to identify the parts
that need to be repeated.

270

FM Coordinate BalTleship

Who: Good for younger students who may not yet have experience
with coordinate grids/Whole group or partners

Why: After introducing MOVE OBJECT, you may find some students
still unable to focus on the programming task because they
are unclear on how to think about object placement and
movement in terms of coordinates. Even with the Show Grid
button on the Toolbar, you may find that some students
benefit from some offline practice. What better reason to
learn/review this basic math skill?

When: Try this lesson after students have had at least one experience
programming with MOVE OBJECT. That way they’ll be sure
to connect the lesson to what they’re doing in FM.

How: There are various approaches to offline activities that give
students extra practice moving things around on a grid. To
do them you should have at hand:

-A xeroxed copy of the coordinate grid for every pair of students;
or one large grid on butcher paper

- A moveable Object: cut-out graphics, beans, or coins...anything
will do

- If you’re working whole class, you may want a large number of
strips with various x/y coordinate pairs printed out on them for
volunteers to choose randomly

If you’re working with the whole class, you can have different
volunteers come up to the large grid and move an object according to
the coordinate “input” on a slip of paper that another volunteer
draws from a hat.

Or, pairs of students can sit with grids on opposite sides of a barrier
so that they can’t see each others’ work. Starting with their object at
(0,0), they can take turns calling out MOVE commands which both
partners follow simultaneously. After six turns, the barrier is
removed, and partners check to see if their Objects ended up in the
same place. Remind students to record their moves on a separate
sheet of paper, so they can retrace their steps if they come out in
different spots.

And of course, pairs of students can always play Coordinate
Battleship. For those of you who never played this game as a child,
here’s how it goes. Once again, partners need to sit with a barrier
between them. Each player has a grid on which s/he places several
objects at various different coordinates. Players take turns calling out
coordinates, trying to be the first to find all of their opponents’
objects. This helps students familiarize themselves with the territory.
It may even lead to inspiration for a future programming project...

271

What’s Wrong With This Code?

Who: All students of FUNdaMENTAL/Whole class, small groups, or
pairs

Why: Aside from being a great critical thinking activity in its own
right, this lesson is extremely effective for addressing
recurring problems and troublesome issues that you observe
during your students’ lab time.

When: Any time and all the time. You can use this activity as a
warm-up, a wrap-up, or a mid-lesson intervention. Begin
using it as soon as the students have enough programming
experience to start making mistakes.

How: The activity title says it all. This simple, powerful lesson
consists of students analyzing a piece of faulty code to find the
flaw. To do this activity, you’ll need...

-a stretch of faulty code printed on individual sheets, butcher
paper, or an overhead transparency

You can use any faulty code at the students’ level, but the most
effective ones come straight from your observations of your students’
work.

When you first begin, it helps to give students a short description of
what happens when you try to run the faulty program (“This is
supposed to be a jumping kangaroo, but when you push Play, it looks
like he’s trying to fly to the moon; he just goes up, up, UP1”). As they
progress and become more experienced, ask them to tell you the
nature of the program “crash.”

272

Command Lineup

Who: All FM students, but more often those having little or no
programming experience/ Whole class or small clusters

Why: To get students thinking about task decomposition and logical
sequencing

When: As soon as students have had some hands-on experience with
FM, and as needed to help students tease out the sequence of
things in their programming.

How: This activity consists of having students physically manipulate
a set of commands that are printed on individual strips in
order to...well, put them in order! To do this activity, you’ll
need:

~-commands (the larger the better) on strips

Although partners can do this with small strips at individual work
stations, I always like to make this activity a group affair. The
commands are passed out, one to a customer, and everyone has to
physically find his/her place in a line-up. This approach invites
comments from the peanut gallery, and gets everyone involved in an
active, nonthreatening activity.

273

Prediction Activities

Who: All FUNdaMENTAL students regardless of ability and
experience/Whole class, small clusters

Why: Because planning ahead and analyzing outcomes is what it’s
all about

When: After about the first 10 minutes of the first FM class, it’s safe,
and educationally profitable, to start using prediction
activities; anytime, all the time, warm-up, wrap-up or mid-
class intervention

How: Prediction activities can go both ways. You can either show
students the program output and ask them to predict what
commands they’ll see in the Task list, or you can show them a
stretch of code and ask them to predict what the program will
look like. To do this you’ll need:

~-sample programs

Students can either work out loud together or individually in writing
to make their predictions. You can bring small groups of students
around individual computers or if you’re lucky enough to have an
overhead projector connected to one of the computers in the room,
you can do this as a whole class. One way for the whole group to
predict program output (that is, look at commands and try to imagine
what they’ll do when the program is run), even if you don’t have one
of those fancy overheads, is to print the program up on butcher
paper. After the class has had a chance to voice ideas, have small
groups of students take turns running the program on a designated
computer during lab time.

274

Program Flanning Sessions

Who: Beginning intermediate FM students who are ready to start
running the whole show/Individuals or pairs

Why: Although program plans will inevitably grow and change
throughout the creative process, it’s essential that students
form the habit of envisioning their program before diving in
to start building it. This helps condition them toward
proactive, “decompositional” thinking, and also yields a
documented plan which can help them avoid being
overwhelmed at the outset.

When: At the start of independent programming projects

How: Set aside a good portion of one class period for offline
planning. The first time you present this activity, younger
and inexperienced students will find it quite challenging. You
should demonstrate by talking through the process of filling
out a Program Planning Sheet. To do this you’ll need (you
guessed it!):

- sample Program Planning Sheet, printed up on butcher
paper or an overhead transparency

~one copy of the same sheet for every student or pair of
students who will be writing a program from scratch

We’ve included a sample Program Planning Sheet, but please use this
only as a starting point. All planning sheets should contain space to
write about, or, better yet, sketch the desired outcome. They should
also include a place to brainstorm key commands. Beyond that, it
will be up to you to guide their planning depending upon what’s
going on in class at the time you start the project.

For example, at the time I made the Planning Sheet included here, my
students were still struggling to distinguish between objects and
graphics. They still didn’t quite grasp the “flip-book” phenomenon
which requires that a single object (like a diver or a prize fighter) be
represented with several graphics showing the figure in different
positions. In order to cue their thinking in this direction, I designed
the Planning Sheet with the difference between graphics and object
in primary focus.

As your students advance, the issues important to their planning will
change. Your planning sheets should change along with them.

275

Program Planning Sheet

Name:
Date:
Period:

Proposed Program Title:

What will your finished program look like?...sound like?...do? (Describe and make a
sketch on the back of the sheet):

Name the object types you will have in your program, and tell how many of each type
you’ll be using:

-Object 1: H:
~-Object2 H:
-Object3 H:

Name the graphics you’ll need to represent each object as it moves through your
program.

Object 1:

~-Graphic1:

~-Graphic2:

~Graphic3:

Object 2:

~-GraphicT:
~Graphic2:
~-Graphic3:

Object3:

~-Graphic1:
~-Graphic2:
~Graphic3:

List the first 5 to 10 commands that you think you will need to start this program:

List any questions you have about building your program, or problems you anticipate
facing as you work:

276

Company MeeTings

Who: Junior high and high school FM students/Whole class

Why: Helps demystify programming process by elevating student
efforts in their own eyes; provides career awareness; models
positive practices from private industry. (When I went to
work for KartoffelSoft, I was immediately struck with the
productive and communal feeling at the company meetings.
Company meetings accomplish three functions at once:
community building , troubleshooting, and goal-setting.

I've always had the same three goals in mind in planning
meetings in the classroom. And yet, somehow, they never
quite seemed to jell in the same way they did in the company
loft.

It occurred to me that perhaps my students never really
understood that when we were “just sitting around in a circle
talking,” we were actually modeling something that goes on
all the time in the “real world” (What, our classrooms are in
some kind of fairy land?); and it’s serious business.

At the outset of the class, you may want to invite students to
come up with a company name. And once they get a sense of
what programming is and how it works, it’s good to set a
large-scale company goal, such as putting on a computer fair
for a younger class, or making a collaborative exhibit around
a particular theme...Once your class has a new identity and a
collaborative sense of purpose, your company meetings can
really take off.)

When: As soon as students begin programming
How: To make this activity part of your enterprise’s routine you
need:

-a nice, strong voice to holler “Com-panyyyy Meeeeeting!” in
a way that’s loud and persuasive enough to get those kids
away from the computers

-an optional secondary signal (I'm partial to a train whistle
myself...) that has been pre-established as the signal to take
those hands off the computers and listen up

-a clear and consistent agenda that follows generally the same
pattern each time

Students should begin with a check-in to share with the group what
they’ve been working on since the last meeting. This should give rise
to issues for celebration and troubleshooting. Make sure to end each
meeting with goal setting so that all of your students are clear on
where they are going when they pick their up work once again. If
you’re working with a large group, certain aspects of the agenda can

277

be handled within small clusters and then summarized for the whole
group at another time.

Cue Card Code

Take a short sequence of code and write it out on a large sheet of
paper. Have large cut-outs representing the graphics and strings of a
program, and hand those out to individual volunteers. Assign one
volunteer to be the Central Processing Unit. Have the students act
out the code to show what it would look like when it was run, with
the designated CPU acting as choreographer/conductor.

I’'m not even sure if this would work...What do you think?

PredicBion/Flanning/ReflecBion Journals

With all of the predicting and planning and trouble-
describing/shooting going on it would be very useful to include
regular journal writing in the FM workshop. Depending upon the
literacy needs of the students and their level of experience with
technology, you may decide to have set forms or just notebook paper.

Journals could form an integral part of the Company Meeting cycle,
with students reflecting on paper before or even during the meetings.
Aside from providing students with a valuable opportunity to use
writing as a tool for math and technology, journals would be a great
help to us when it came time to assess student progress in the class.

Programming Across the Curriculum

If you’re teaching in A self-contained, multiple-subject setting, then
I'm sure this has occurred to you, as well. As soon as I learned about
FUNdaMENTAL, I started envisioning what programming could do
for a classroom community. I figured that, by about February, we
could count it among our standard tools for accomplishing academic
and extracurricular goals.

[imagined students in committees making programs for practicing
spelling or math facts, with the contents tailor-made to fit the current
curriculum.

I imagined them doing the same thing for younger tutoring buddies
in lower grades.

I imagined interactive book reports on books we’d just finished.
The whole concept of the shoe box diorama, or the painted mural,

took on new dimensions, as I imagined how they could translate into
dynamic programs to culminate social studies or science units.

278

And why not have students custom-design programs to keep track of
some of the community business that is so central to the fabric of
classroom life? I could assign students to create programs that were
exactly tailored to the specifics of our classroom jobs, homework
routines, and student information.

Even if you teach in a single-subject, computer lab setting, I would
like to encourage you to connect with teachers in other curriculum
areas to get ideas for how your students might reach out to the
school, and wider communities, as their programming skills increase.
Is there a particular academic skill or theme you could emphasize in
structuring programming assignments? Is there a group of younger
students who could benefit from some custom-~made programs? Are
there community service or charity groups that might like to sponsor
a computer fair, with programs that illuminate certain issues or
promote a certain cause?

We’re eager to hear from any of you who read this and decide to take
this challenge. Visit our Website at www .kartoffelsoft.com to share
your ideas, and to find out what others are up to in exploring the
outer limits of FUNdaMENTAL’s potential.

279

SECTION SA
“WHAT'S 50 GREAT ABOUT

PROGRAMMING?”

Talkirg 'l;'o;";;i;n-q-i;'t—ra'l;ors, Parents, and Older
Students about the FUNAaMENTAL

Benefits of Programming

What Is “Critical Thinking,” Anyway? 260
Higher-Order Thinking Skills 280
Mearingful Technology Education 281

Learner-Cenbered Software 282

When Kids Won't Leave The Classroom 2863

280

If only a handful of your students may actually choose
rogramming as a career, why should you spend so much time and
energy teaching programming to everyone?

At this point, we’re confident that we don’t need to answer this
I r your benefit! But we’re well aware that in your
educational practice, it may be necessary for you to answer the same
uestion, -ators, parents, and maybe even
older students. In this section we present the most compelling
ing 1s good for all students, in order to hel

you communicate with others about your decision to use
FUNdaMENTAL in your teaching.

What s “Gribical Thirking,” Anyway?

Although many outside the field of computer science may think of
programming as among the most specialized of skills, in truth, it
embodies a process that is central to almost every hlgher level
academic endeavor: critical thinking..

It’s a term that educators and parents alike are so used to hearing,
that for some it may have lost its meaning. But critical thinking is at
the heart of what’s good about programming, so it’s a good idea to
clarify what it means to you.

The following provides one definition. “Critical thinking skills
[include the ability to] define and clarify problems; judge
information related to a problem; solve problems and draw
conclusions.” Certainly all three of these skills are directly developed
and enhanced when a student becomes involved in programming a
computer. And please note that this particular definition of critical
thinking comes straight from the California State Framework...in
History and Social Science!

Higher-Order Thirking Skills

Closer to home, the California Mathematics framework (citing L.B.
Resnick, 1987) lists the following features as recognizable in
“higher-order thinking”:

U Higher-order thinking is non-algorithmic. That is, the path of
action is not fully specified in advance.

U Higher-order thinking tends to be complex. The total path is not
visible (mentally speaking) from any single vantage point.

U Higher-order thinking often yields multiple solutions, each with
costs and benefits, rather than unique solutions.

281

U Higher-order thinking involves nuanced judgment and
interpretation.

U Higher-order thinking involves the application of multiple
criteria, which sometimes conflict with one another.

U Higher-order thinking often involves uncertainty. Not everything
that bears on the task at hand 1s known.

U Higher-order thinking involves self-regulation of the thinking
process. We do not recognize higher order thinking in an
individual when someone else “calls the plays” at every step.

U Higher-order thinking involves imposing meaning, finding
structure in apparent disorder.

U Higher-order thinking is effortful. There is considerable mental
work involved in the kinds of elaboration and judgment required.
(Mathematics Framework for California Public Schools, Cal. State
Dept. of Education, 1992, p.21)

This, too, reads like a FUNdaMENTAL checklist of the qualities
present in your programming lessons. Check out your own local
mission statements, model standards, and state frameworks, in all
areas of the curriculum. You’re sure to find equally compelling
arguments for using programming as a means of promoting critical
thinking in your students.

Mearingful Technology Educabion

In addition to the general desire to develop students’ critical-thinking
skills, we are experiencing an ever more urgent need to give students
meaningful experiences with technology. Again, this is something
we hear about constantly as we approach the 21st century. So, once
again, you will have to stop and ask yourself how you define truly
meaningful technology education.

Just plunking down computers in the classrooms certainly doesn’t
make the grade. Nor does the use of software which is essentially
glorified, electronic flash cards or video.

In his book Mindstorms: Children, Compufters and Powertul Ideas
(New York: Basic Books, Inc., 1980), the mathematician Seymour
Papert observes that, all too often, computers are used to program the
child, instead of the other way around. He specifically promotes
programming as a learning experience that is “more active and self-
directed. In particular, the knowledge is acquired for a recognizable
personal purpose. [The learner] does something with it. The new
knowledge is a source of power, and is experienced as such from the
moment it begins to form in the [learner’s] mind.” (p. 5)

282

Learner-Centered Softtware

In outlining educational practices that promote “mathematically
powerful” students, the California Mathematics Framework strikes a
similar chord with respect to the use of technology. Citing Beyond
Drill and Practice: Expanding the Computer Mainstream (Russell, et
al1989), the framework identifies the following characteristics in
“learner-centered” software:

¢ Learner-centered software offers students choices in selecting the
goal of the activity, the strategies to reach the goal, or both.

[0 FUNdaMENTAL offers both!

¢ Learner-centered software provides feedback that is
informational rather than judgmental.

U In FUNdaMENTAL, there are no Whoopsie Whistles of golden
biscuits. All of the explicit feedback is informational and, in the
end, your program either runs or it doesn’t!

¢ Learner-centered software allows, emphasizes, or encourages
prediction and successive approximation.

[0 FUNdaMENTAL is all about making predictions, and revisions to
reach ever more challenging programming goals.

¢ Learner-centered software encourages learning within a
meaningful context for students, building on students’ intrinsic
motivation.

U Since FUNdaMENTAL is truly interactive, it’s the students’ own
visions and goals that guide, and reward, their efforts. The best
reward is a program that runs, entertains and amazes!

As you can see, FUNdaMENTAL was designed with each one of these
qualities in mind. Regardless of their particular career goals,
students can only benefit from working with software that is truly
learner-centered according to the above definition.

But you don’t need fancy academic definitions to tell you when
something you do with your students is learner-centered. For me,
the meaning of learner-centered was summed up the day that
LaToya wrote her diver program. Ididn’t need to check my district
standards to know the value of her learning experience. It was
simple: the bell rang, class was over, and LaToya wouldn’t leavel

283

When Kids Wont Leave The Classroom

But you don’t need fancy, academic definitions to tell you whether or
not something is “learner-centered”. For me, the meaning of
“learner-centered” was summed up on the day that LaToya wrote her
diver~program. As she sat transfixed, cheering her little stick-
figure’s comical swan-dive, I didn’t need to check my district
standards to know the value of her learning experience. It was
simple: the bell rang, class was over, and LaToya wouldn’t leavel

Once you’ve had a chance to see the power of FUNdaMENTAL at
work in your classroom, it’s stories like these - and not the wisdom of
researchers —that you’ll find yourself repeating. You’ll tell them to
colleagues, to parents and administrators...to anyone who will listen.
And once you do, it’s not likely you’ll have much else to explain. The
proof is in the programming!

284

285

AFPFPENDIX B

FUNAaMENTAL Programmer’s Tool Kit

Section BT All-Commands List
Section B2: FUNAaMENTAL Quick-Reference Gude

Section BO: Glossary

This appendix contains some basic tools you and your students will come
back to again and again as you explore the world of FUNdaMENTAL
programming.

In section B1 you’ll find a list of all FUNdaMENTAL commands, each
presented with its function and data requirements. This is the same
information you can see for each command in the Task window, but it’s
useful to see all the commands explained together so you can make
connections and comparisons as you learn the FUNdaMENTAL language.

In section B2 you’ll find a glossary of special terms used in the manual,
including those applying to programming in general and others that are
specific to the FUNdaMENTAL environment.

In section B3 you’ll find a information on all the FUNdaMENTAL interface
features as well as some quick tips on program editing and debugging.
Please nofte that the same information is available online. Simply click on
any feature in the interface and press the F1 key on the keyboard.

286

ALL-COMMANDS LIST

Command Name What It Does Thinks AC Is | Data It Needs Example Usage
ADD NUMBER | Adds the specified NUMBER <number or ADD NUMBER 37
number to the AC box>
AND BOOLEAN |Logically "ANDs" the |BOOLEAN <boolean or AND BOOLEAN
specified boolean with box> TRUE
the AC.
APPEND STRING |Appends the specified |STRING <string or box> |APPEND STRING " 1s
string to the AC. funny - looking."
BRING-FRONT |Brings the objectin ~ |OBJECT None BRING-FRONT
OBJECT the AC to the front of OBJECT
the playground.
COMPARE Compares the BOOLEAN <boolean or COMPARE
BOOLEAN specified boolean to box> BOOLEAN TRUE
the AC; sets the c-bit
accordingly.
COMPARE Compares the ACto |NUMBER <number or COMPARE NUMBER
NUMBER the specified number; box> 55
sets the c-~bit
accordingly.
COMPARE If the object in the AC |OBJECT <object type or |COMPARE OBJECT
OBJECT 1s identical to the box> "Blue Fish"
inputted box, or if it is
a "member" of the
inputted object type,
sets the c-~bit to O.
COMPARE Compares the ACto |STRING <string or box> |COMPARE STRING
STRING the specified string; "Hello, World"
sets the c-~bit
accordingly.
CONSTRUCT Allocates boxes for a |Doesn't care |<number or CONSTRUCT
GAGGLE new gaggle with the box> GAGGLE 101
specified number of
items and puts it in
the AC.
CONSTRUCT Constructs a new Doesn't care |<object type> CONSTRUCT
OBJECT object using the OBJECT
specified object "GreenTriangle"
"blueprint" and puts it
in the AC.
DESTROY Destroys the gaggle in | GAGGLE None DESTROY GAGGLE
GAGGLE the AC (reclaiming its

memory); you can't
use the gaggle
anymore after this
call.

287

Command Name What It Does Thinks AC Is | Data It Needs Example Usage
DESTROY Destroys the object in |OBJECT None DESTROY OBJECT
OBJECT the AC (reclaiming its

memory); you can't

use the object

anymore after this

call.
DISSECT STRING | Takes the letters of the | STRING <number or DISSECT STRING

AC which are box>, <number |bLen, 5

between and or box>

including the

specified positions and

puts them in AC.
DIVIDE Divides the AC by the |NUMBER <number or DIVIDE NUMBER 2
NUMBER specified number. box>

END SUB-TASK

Causes the Sub-Task
to end; Must have at
least one at the end of
all Sub-Tasks.

Doesn't care

None

END SUB-TASK

EXECUTE
PROCESS-TASK

Triggers the specified
task; note that this
creates a new process.

Doesn't care

<task name>

EXECUTE PROCESS-
TASK BounceBall

EXECUTE SUB- |Executes the specified |Doesn't care |<task name> EXECUTE SUB-TASK
TASK Sub-Task; does not StartGame
create a new process.
EXIT PROGRAM |Causes the program to |Doesn't care |None EXIT PROGRAM
end; must be the last
line of the Program
Task.
GET-BOTTOM |Puts the AC's bottom |OBJECT None GET-BOTTOM
OBJECT y-~coordinate in the OBJECT
AC.
GET-HEIGHT Puts the Conversation |Doesn't care |None GET-HEIGHT
CONVERSATION | Window's height in CONVERSATION
the AC.
GET-HEIGHT Puts the Playground |Doesn't care |None GET-HEIGHT
PLAYGROUND | Window's height PLAYGROUND
(drawing area) into
the AC.
GET-LEFT Puts the Conversation |Doesn't care |None GET-LEFT
CONVERSATION | Window's left x-~ CONVERSATION
coordinate in the AC.
GET-LEFT Puts the AC's left x- OBJECT None GET-LEFT OBJECT
OBJECT coordinate in the AC.
GET-LEFT Puts the Playground |Doesn't care |None GET-LEFT
PLAYGROUND | Window's left x-~ PLAYGROUND

coordinate in the AC.

288

Command Name What It Does Thinks AC Is | Data It Needs Example Usage
GET-LENGTH Counts the number of |STRING None GET-LENGTH
STRING letters in the AC and STRING

puts that number in
the AC.

GET-PICTURE |Puts the name of the |OBJECT None GET-PICTURE
OBJECT AC's current picture OBJECT
in the AC.
GET-RIGHT Puts the AC's right x- |OBJECT None GET-RIGHT OBJECT
OBJECT coordinate in the AC.
GET-SIZE Counts the number of |Doesn't care |None GET-SIZE GAGGLE
GAGGLE items in the gaggle in
the Gaggle Register
and puts that number
in the AC.
GET-TOP Puts the Conversation |Doesn't care |None GET-TOP
CONVERSATION | Window's bottom y- CONVERSATION
coordinate in the AC.
GET-TOP Puts the AC's top y- OBJECT None GET-TOP OBJECT
OBJECT coordinate in the AC.
GET-TOP Puts the Playground |Doesn't care |None GET-TOP
PLAYGROUND | Window's top y- PLAYGROUND
coordinate in the AC.
GET-WIDTH Puts the Conversation |Doesn't care |None GET-WIDTH
CONVERSATION | Window's width in CONVERSATION
the AC.
GET-WIDTH Puts the Playground |Doesn't care |None GET-WIDTH
PLAYGROUND | Window's width in PLAYGROUND
the AC.
GET LOOP Puts the value of the |Doesn't care |None GET LOOP
Loop Register in the
AC.
GET TICKS Counts the number of |Doesn't care |None GET TICKS
"ticks" (1/60 seconds)
since midnight and
puts it in the AC.
HIDE OBJECT |Makes the objectin |OBJECT None HIDE OBJECT
the AC invisible in the
Playground Window.
IMPRINT Imprints the picture |OBJECT None IMPRINT OBJECT
OBJECT of the object in the AC
to the background.
INSTALL Installs the specified |Doesn't care |<picture name |INSTALL
BACKGROUND | picture as the or box> BACKGROUND
background of the "MyPicture"

Playground Window.

289

Command Name What It Does Thinks AC Is | Data It Needs Example Usage

JUMP < Jumps to the specified |Doesn't care |<Marker name> |JUMP <
Marker if last @MyMarker
compare was less-
than (will jump when
c-bitis -1).

JUMP <= Jumps to the specified |Doesn't care |<Marker name> |JUMP <=
Marker if last @MyMarker
compare was less-
than or equal (will
jump when c-bit is -1
or 0).

JUMP <> Jumps to the specified |Doesn't care |<Marker name> |JUMP <>
Marker if last @MyMarker
compare was not
equal (will jump
when c-bit 1s non-

Zero).

JUMP = Jumps to the specified |Doesn't care |<Marker name> |JUMP =
Marker if last @MyMarker
compare was equal
(will jump when c-bit
15 0).

JUMP > Jumps to the specified |Doesn't care |<Marker name> |JUMP >
Marker if last @MyMarker
compare was greater-
than (will jump when
c-bit is 1)

JUMP >= Jumps to the specified |Doesn't care |<Marker name> |JUMP >=
Marker if last @MyMarker
compare was greater-
than or equal (will
jump when c-bit is 1
or 0)

JUMP ALWAYS |Jumps to the specified |Doesn't care |<Marker name> |JUMP ALWAYS
Marker (always). @MyMarker

JUMP FALSE Jumps to the specified |BOOLEAN <Marker name> |JUMP FALSE
Marker (if the AC @MyMarker
contains "FALSE").

JUMP LOOP Subtracts 1 from LR |Doesn't care |<Marker name> |JUMP LOOP
and "Jumps" to the @MyMarker
specified Marker (if
LR is greater than 0)

JUMP TRUE Jumps to the specified |BOOLEAN <Marker name> |JUMP TRUE
Marker (if AC @MyMarker
contains "TRUE")

LOAD-ITEM Loads the specified Doesn't care |<number or LOAD-ITEM

GAGGLE item from the Gaggle box> GAGGLE 10

in the Gaggle Register
into the AC.

290

Command Name

What It Does

Thinks AC Is

Data It Needs

Example Usage

LOAD BOX Puts the contents of |Doesn't care |<box> LOAD BOX MyBox
the specified box into
the AC.
LOAD NUMBER |Puts any regular old |Doesn't care |<number> LOAD NUMBER 14
number like 12 or
495889 into the AC.
LOAD SOUND | Puts the specified Doesn't care |<sound name> |LOAD SOUND
sound into the AC. "Ahhhhhhhhhh!"
LOAD STRING |Puts a "literal" string |Doesn't care |<string> LOAD STRING
into the AC (any "Hello, World"
words in quotes is a
"literal" string).
LOWERCASE Makes the string in STRING None LOWERCASE
STRING the AC all lowercase STRING
letters.
MORPH OBJECT |Changes the graphic |OBJECT <picture name |MORPH OBJECT
of the object in the AC or box> "MyPicture"
to the specified
picture.
MOVE OBJECT |Moves the objectin |OBJECT <number or MOVE OBJECT -5, 0
the AC the specified box>, <number
distance in the x (first or box>
input) and y (second
input) directions.
MULTIPLY Multiplies the ACby |NUMBER <number or MULTIPLY NUMBER
NUMBER the specified number. box> 88
NOT BOOLEAN | Performs the NOT BOOLEAN None NOT BOOLEAN
operation on the AC
ORBOOLEAN |Performs an "OR"on |BOOLEAN <boolean or OR BOOLEAN TRUE
the AC using the box>
specified boolean
value.

PLACE Moves the Doesn't care | <number or PLACE
CONVERSATION | Conversation Window box>, <number |CONVERSATION 10,
to the specified or box> 20

location on the screen.
PLACE OBJECT |Moves the objectin ~ |OBJECT <number or PLACE OBJECT 10,

the AC to the specified
location in the
Playground Window.

box>, <number
or box>

20

291

Command Name

What It Does

Thinks AC Is

Data It Needs

Example Usage

PLACE Moves the bottom-left |Doesn't care |<number or PLACE
PLAYGROUND |corner of the box>, <number |PLAYGROUND

Playground Window or box> 10,20

to the specified

location on the screen.
PLAY-N-WAIT |Plays the sound in the |SOUND None PLAY-N-WAIT
SOUND AC through the SOUND

speaker and waits

until it is done

playing.
PLAY SOUND Plays the sound in the |SOUND None PLAY SOUND

AC through the

speaker; does not wait

for the sound to

finish.
PREPEND Prepends (puts in STRING <string or box> |PREPEND STRING
STRING front) the specified "Hello, my name is "

string to the AC.
RANDOM Picks a random Doesn't care |<number or RANDOM NUMBER
NUMBER number between (and box>, <number |1, 10

including) the two or box>

specified numbers and

puts it in the AC.
READ-FILE Reads a number from |Doesn't care |<file name or READ-FILE NUMBER
NUMBER the specifiled file. box> "MyFile.txt"
READ-FILE Reads a string from |Doesn't care |<file name or READ-FILE STRING
STRING the specified file. box> "MyFile.txt"

READ-SCREEN | Waits for the user to |Doesn't care |None READ-SCREEN
NUMBER type in a number in NUMBER

the Conversation

Window and puts it in

the AC (when

<return> is pressed).
READ-SCREEN | Waits for the user to |Doesn't care |None READ-SCREEN
STRING press <return> in the STRING

Conversation Window

and puts what was

typed in the AC.
RECORD Displays a sound- Doesn't care |None RECORD SOUND
SOUND recording panel, waits

for user to record and
save a sound, and puts
the sound in the AC.

292

Command Name What It Does Thinks AC Is | Data It Needs Example Usage
REMAINDER Divides the AC by the |NUMBER <number or REMAINDER
NUMBER specified number and box> NUMBER 66
puts the remainder in
the AC.
RESIZE Resizes the Doesn't care |<number or RESIZE
CONVERSATION | Conversation Window box>, <number |CONVERSATION 88,
to have the specified or box> 400
width (the first
inputted number) and
height (the second
number).
RESIZE Resizes the Doesn't care | <number or RESIZE
PLAYGROUND | Playground Window box>, <number |PLAYGROUND
to have the specified or box> 88,400
width (the first
inputted number) and
height (the second
number).
REWIND FILE Rewind the specified |Doesn't care |<string or box> |REWIND FILE
file to the beginning. "myFile"
SEND-BACK Sends the object in the |OBJECT None SEND-BACK OBJECT
OBJECT AC to the back of the
playground.
SET GAGGLE- Puts the contents of |Doesn't care |<box> SET GAGGLE-
REGISTER the specified box into REGISTER
the Gaggle Register. myPhoneNumbers
SET LOOP Sets the LR (Loop Doesn't care |<number or SET LOOP 25
Register) to the box>
specified value.
SHOW OBJECT |Makes the objectin |OBJECT None SHOW OBJECT
the AC visible on the
Playground Window.
SLEEP MAIN Puts the Program Task | Doesn't care |None SLEEP MAIN
"to sleep"; can only be
called from the
Program Task.
STORE-ITEM Stores the contents of | Anything <number or STORE-ITEM
GAGGLE the AC into the box> GAGGLE 10
specified box of the
gaggle in the Gaggle
Register.
STORE BOX Stores the contents of | Anything <box> STORE BOX myBox
the AC in the specified

box.

293

Command Name What It Does Thinks AC Is | Data It Needs Example Usage
SUBTRACT Subtracts a number | NUMBER <number or SUBTRACT NUMBER
NUMBER from the AC. box> 99
TOUCHING Sets the c-bit to O if OBJECT <box> TOUCHING OBJECT
OBJECT the object in the AC is bullsEye

"touching" the

inputted object.

Otherwise, sets the c-

bit to non-zero.
UFPPERCASE Converts the string in |STRING None UPPERCASE STRING
STRING the AC to all

uppercase letters.
WAKE MAIN Wakes the main task |Doesn't care |None WAKE MAIN

(if it was asleep); can

only be called from a

non-main task.
WRITE-FILE Writes the number in |[NUMBER <file name or WRITE-FILE
NUMBER the AC out to the box> NUMBER

specified file. "Mytile.txt"
WRITE-FILE Writes the string in -~ |STRING <file name or WRITE-FILE STRING
STRING the AC out to the box> "Mytile.txt"

specified file.
WRITE-SCREEN | Writes the number in |NUMBER None WRITE-SCREEN
NUMBER the AC out to the NUMBER

Conversation

Window.
WRITE-SCREEN | Write the string in the | STRING None WRITE-SCREEN
STRING AC out to the STRING

Conversation

Window.

294

295

FUNAaMENTAL Quick-Reference Guide

The FUNAaMENTAL Inberface
The Graphic Library........................ 296
The Welcome Window 296
The Galleryoceveveiiiiiiiiiiiinnn... 296
The Toolbarccovevviiiiiiiininn .o 297
Toolbar Buttons...............cooeiiiennt. 298
File MeNU......ccooeiiiiiiiiiiiiiiiieeee 298
The Object Designer.........ccevvveneennn. 299
The Graphic Importer....................... 301
Directory BOXeS......oovevvuienneinneennnnn. 303
The Task Windowc..ooeeeeee. 303
Instruction Wizard........................... 303
Coding Area......cccvvuviniinninniiiinnanne.. 304
Editing Fm Programs
Adding/Editing Comments.................. 305
To add a comment............................ 305
Adding/Editing Instructions................ 306
USING BOXESINFM.....coiiiiiiiiannnen. 307
Using “STORE BOX”covviiiiiiinnnnne.. 307
Editing within the “Boxes” area............ 308
Scope Of BOXES...vvuiiieiiiiiiiiiineanann. 308
Regular boxes (global vs. local scope).... 308
Received Boxes (in parameters 309
vs. in/out parameters)
Program Window........................... 309
Sound Room........coeviiiiiiiiiiiin.n. 309
Sound Importer..........ccoveviiinnenn... 310
Importing sounds in 5 easy steps......... 310
Task Importer.......ccoovvveeiiiiiiennnnn 311
Importing tasks in 5 easy steps............ 311
Data Wizard.............coooeviiiiiiine. 312
Cutn’ Paste.....cooevieiiiiiiiniiiiiiinan. 312
Creating Key Tasks.........cccceviuviiieinn. 313
The Debugger........covvvviiiiiiniineinen. 313
Debugging Programs........................ 314
Debugging a first lesson..................... 314

MarkersS...ooovvriiiiii i, 316

296

Graphic Library

Graphic: Show the name of the currently selected graphic. You may
rename the current graphic by double-clicking on its name and
typing in another name.

Graphic List Box: Shows the name of all available graphics in the
program.

Viewing Area: Shows the currently selected graphic.

New: Use this to create a new “empty” graphic. After creating a
new graphic name you may link it to graphics which you paste
from the Windows clipboard into the viewing area.

Delete: Click here to delete an unwanted graphic.

Import: Click here to import graphics from other places (e.g. the
FUNdaMENTAL graphics archive.) See also Graphic Importer

Welcome Window

Create New Program: Clicking on this sign will allow you to create a
new FUNdaMENTAL program for code writing and editing.

Open Existing Program: Clicking on this sign will allow you to open
a pre~-written FUNdaMENTAL program for code editing.

Gallery: Clicking on the castle takes you to the gallerywhere you
may play completed FUNdaMENTAL programs. You cannot edit
or see the code of any programs in the gallery Instead you simply
play and enjoy completed programs. (Windows version only)

Quit: Exits FUNdaMENTAL

The Gallery

Picture Preview: Shows a graphic representing your program. See
also The Toolbar and the Add To Gallery menu item

Current Programs List: Displays all the programs currently in your
gallery

Play!: Play a program by finding it within the picture frame and then
click once to select it. When selected, a black rectangle will
outline the program. Then click the “Play” button. You may also
play the program by double-clicking on it.

Remove: If you do not wish for a certain program to be in the
Gallery, click once on it to highlight it in the Current Programs
List, and then click the “Remove” button.

297

The Toolbar

(See also Toolbar Buttons)

Menu IPems

Close Program: Closes the current program and returns to Welcome
Window

Save Program: Saves the current program

Close Window: Closes the current Task Window

Add To Gallery: Puts the current program into the Gallery

Make Plug-In File: Makes the current program into a special file
that 1s viewable on Internet browsers that support plug-ins. (e.g.
Netscape) See also Plug-Ins

Quit: Quit FUNdAMENTAL

Undo: Undoes the last cut, copy, paste or delete.

Cut: Cuts the selected text into the FM clipboard. See also Cut n’
Paste

Copy: Copies the selected text into the FM clipboard

Paste: Pastes the selected text from the FM clipboard

Delete: Deletes the selected lines

Insert Line: Inserts a line at the highlighted point in the Instruction
List
Delete Line: Deletes the highlighted line.

Languages

Switches the current language of FM. Currently English and Spanish
are available.

Rename Task: Renames the current task. (If the Program Window is
the topmost or ACTIVE window then the current task is the task
highlighted in the Program Window. If Task Window is the
ACTIVE window, then it is the current task.)

Syntax Check: Checks the syntax of the current task.

Print Task: Prints the current task.

Go: Starts the current program
Pause: Pauses the current program

298

Abort: Stops the current program.

Step: Go one instruction step. See also Debugging.

New Task: Creates an new empty task.

Add Task: Adds a prewritten sub-task to the current program. See
also Task Importer

Delete Task: Removes a sub-task from the current program.

(Note these are in the Program menu because these are thing that
affect the entire program and not just one single Task.)

Program Window: Shows the Program Window

Playground Window: Shows the Playground window .

Conversation Window: Shows the Conversation window

Debugger: Shows the Debugger window.

Object Designer: Shows the Object Designer

Sound Room: Shows the Sound Room

Graphic Library: Shows the Graphic Library

Clean Up All: Neatly arranges the open Task windows and also
places the Program Window and Toolbar in a tidy order on the
desktop.

[Current Windows] : Shows a list of all the currently open Task
Windows. Selecting one will bring that Task Window to the top
of the desktop

How to use FM: Shows this interface help on-line

Search: Starts a search for a topic or keyword in this FM help file.
FM Manual: Shows the on-line teachers manual for FM..

About KSI: Tells about the people who brought you FUNdaMENTAL!

Toolbar Bubtons

Copy: Copies the currently selected text. See also Cut n’ Paste

Cut: Cuts the currently selected text to the FM clipboard.

Paste: Pastes code from the FM clipboard.

Play: Plays the current program.

Pause: Pauses the current program.

Stop: Stops the current program.

Step: Executes a single FM instruction. See also Debugging

Debug: Opens the Debugger window

Grid: Shows a grid on the Playground Window. This is useful for
the placement of objects in the Playground.

299

The File Menu

Close Program
Save Program
Close Window
Make Plug-In File
Add To Gallery

Quit

ObiecT Designer

Graphic: Click here to open a pop-up menu of all available graphics
you can associate with an object. The selected graphic can be
seen to the right of the Graphic pop-up menu. See also Graphic
Library

Click Task: Click here to open a pop-up menu of all available sub-
tasks to execute when the given object is clicked with the mouse.

Ctrl-Click Task: Click here to open a pop-up menu of all available
sub-tasks to execute when the given object is ctrl-clicked with the
mouse.

X-Pos: Specify the initial x position of a given object in the
Playground Window. The default is zero. See Also Playground
Window

Y-~Pos: Specify the initial y position of a given object in the
Playground Window. The default is zero. See Also Playground
Window

Object: This text field shows the name of the currently selected
object. Objects are selected by clicking on an object’s name in the
list below the Object text field. You may also rename objects
here.

Object List Box: This is the area where all objects available to the
current program are displayed. To select an object and
see/change it’s properties (e.g. name, graphic, click-task, etc)
scroll to it in the list box and click on it.

New: Creates a new object. When pressed this will be given a
default name Object_X where X is a number. We recommend
you name all objects you create in a more descriptive manner.

Delete: When you have selected an object in the Object List Box, you
may delete it by clicking on the Delete button.

Done: When you are finished designing your objects, click here to
close the object designer.

(See Also Creating New Objects)

300

Creating New ObjecTs

To create a new object, you must first have at least one graphic
available in your program’s Graphic Library. Please see the Graphic
Library if you are unsure about how to check this.

Creating that new object

D

2)

3)

4)

5)

6)

7)

8)

Click ctrl-M to open the Object Designer. Alternatively you can
go to the Window menu on the Toolbar and select “Object
Designer” or .click on the Object Designer icon on the Program
Window

Click the "New" button. A new object will be created named
"Object_1".

If you'll notice, the graphic associated with the object will be the
first one alphabetically in your Graphic Library collection. If you
want to use that one great, go on to step #5.

Otherwise you can choose any picture you want... In the drop-
down list labeled "Graphic" click on the down arrow and scroll
until you see the name of the graphic you want. When you find
it, click on the name and you will see a little preview to the right
of what your graphic is going to look like.

For now don't worry about the "Click-Task" and "Ctrl-Click-Task"
drop-down lists or the "x~pos" and "y-pos" boxes

Since "Object_1"is a poorly descriptive name, you should rename
your new Object. Do this by clicking to the left of the 'O' in
"Object_1". ("Object_1"1s in the text box labeled "Object:")

Click and drag (i.e. keep that mouse button held down) until you
have highlighted all of "Object_1" in the box.

Type a new descriptive name for the object.

Click the "Done" button.

301

Graphic Importer

Use the graphic importer when you would like to import one or more
graphics into your program at once.

Directory: Displays the current directory. You may navigate
through the directory structure via this box.

Drive Selector: Below the “Directory” box is a pop-up menu where
you can select among your computers hard disk, a floppy disk, or
even a CD rom.

Picture Files: Display all the available graphics in the current folder
of the Directory box. Click on a graphic file to select it or double
click on it to add it to the “Graphics to Add” box.

Add: Click this button after you have selected a graphic in the
“Picture Files” box to add to the “Graphics to Add” box.

Delete: You may remove a graphic from the “Graphics to Add” list
using this button. Simply click on the offending entry to highlight it
and then click “Delete”

lmpor'l?]ng graphics in 5 easy sbeps.

First navigate in the “Directory” box until you reach the folder in
which your graphic file resides. FUNdaMENTAL only recognizes
graphic files that end with a “.bmp” suffix. (Note you may also
grab files off a floppy disk or CD-ROM using the drive box,
which 1s directly below the "Directory:" box.)

2. When you reach a folder with graphic (*.bmp) files, then they
will appear listed in the “Picture Files” box. Click once on any
listed in the “Picture Files” box and you will see a preview of the
graphic in the upper left hand corner of the Graphic Importer.

3. Next click the “Add” button to build a list of files you would like
to add to your FUNdaMENTAL program. You may also double
click on anything in the “Picture Files” box to add them. All
added graphics will appear in the “Graphics to Add” box.

4. If you make a mistake and don’t want to include a picture, click
on the picture name in the “Graphics to Add” box and then click
the delete button.

5. When you have finished building your list of graphics click the
“Ok” button. If you decide you don’t want to import anything
just now, then click “Cancel”.

302

DirecBory Boxes

Frequently in FUNdaMENTAL, you will be asked to navigate through
directories using a window similar to the picture above. Thisis a
necessary skill so if you’ feel a little shaky or don’t know what we’re
talking about then read on.

These seemly complex windows are for navigating through the
directory structure of your computer. A computer stores all it’s files
much like a typical file cabinet you would find in any office. Instead
of randomly placing all its papers haphazardly in the file cabinet,
people will usually arrange similar or related items in a folder. The
computer provides for the same functionality.

The directory structure 1s arranged in a hierarchy of folders or
directories. Unlike actual folders, an computer folder may contain
other folders. Any given folder or “directory” in you computer’s
hierarchy may contain files, other folders or a combination of the
two. Each time you double click on a directory (Directories are in
the right hand side scroll box) any subfolders will be displayed
underneath. Sub folders are beneath and indented a little to the right
from its parent folder

The roof directory is folder that contains all other folders. For your
hard disk, the root directory is the one labeled “c:”. The roof
directory can be thought of as the folder that contains all other
folders and files. Some people like to imagine this Aierarchy
structure as a tree. The “c:” folder is the root the subfolders in “c:”
can be thought of as branches from “c:” Further all the folders in c:
may themselves contain subfolders.

The way you designate something in the directory structure is from
the root up. Suppose we have a file called “huh”. The file “huh”
resides in a directory called “easy”, which resides inside a folder
called “is”. In turn “is” resides in a folder called “This” And finally
“This” is a subfolder of the “c:” We would designate the path to the
file “huh” as “c:\This\is\easy\huh” Notice each directory is
separated from its parent directory by the backslash(‘\’) character.

Suppose we are looking for the file
c:\fundam\manual\practice\demo1\demo1.tmp. With the tree
structure in mind, you navigate through the direcfory structure as
follows

1. Make sure the “Drives:” pop up box is on the drive labeled “c:” If
it’s not, then click on the down arrow of the “Drives” box with
the mouse and all available drives will pop up. Choose the one
the corresponds to your hard drive. In most cases this will be “c:”

2. First scroll to the top of the “Files” box. (Sometimes it will be
called “Directory”) Find the folder labeled “c:”. Double click on
this folder. You will now see all the sub directories of c: listed.

303

3. Scroll down until you find the sub folder “fundam”. When you
find it, double click on it to reveal its contents. Repeat until you
have reached the demol1 folder.

4. You may have noticed the box labeled “File Name:” now displays
the files in “c:\fundam\manual\practice\demo1\” Depending
on the type of window you are looking at, this box may either be
to the right or left of the directory box. Move the mouse over the
“demo1.fmp” entry and click on it. You have now instructed the
computer to puts it’s attention on the file
“c:\fundam\manual\practice\demo1\demo1.fmp.”

From here you can do many things, like Open a New Program, add a
graphic, or even add a sound to your program.

Task Window

This is the main area for editing your FUNdaMENTAL programs. The
Task Window is divided into two main sections, the INSTRUCTION
WIZARD and the CODING AREA. This will be primary focus for
creating and editing all FM programs. In creating a new program or
opening an existing one, you will see a programs "main" Task
Window. Other sub-task windows may be viewed by using the
PROGRAM WINDOW.

See also TOOLBAR.

Ins Bruction Wizard

Command Groups: As you are learning FM, you will find it useful to
see the various commands sorted into related groups. For
instance, a might want to see everything she can do with Objects.
So you scroll down this pop-up list until you reach "Objects". The
Instruction Wizard will filter out every command except the one's
pertaining to Objects.

All Commands: This window will alphabetically display all
commands, depending on the setting of the "User
level/Commands Grouping" box. If you click on an entry, notice
that it appears in the "Text Entry" box.

Instant Help: The upper left hand corner of the Task Window
displays the Instruction Wizard's "Instant Help". It answers all
the important questions about a FM command: What the
Command is; What data the AC should contain; What additional
data (or parameters) it requires; and shows appropriate usage for
the command.

See also TOOLBAR

304

Coding Area

Text Entry: This 1s where all new commands are entered into the
"Instruction List". If you type directly into the "Text Entry" notice
that the Instruction Wizard will show all possible commands that
match what you have typed so far. So if you type an 'e', then the
Instruction Wizard will just to the section of all commands that
start with the letter 'e'. In this case, it will high-light the
command "EXECUTE PROCESS-TASK" in the "All Commands"
window and also put "EXECUTE PROCESS-TASK" in the "Text
Entry" area.

Use: Click this button to use the current command displayed in the
"Text Entry" area. In some cases it will bring up the DATA
WIZARD

Comment/Instruction/Label: This set of radio buttons determine the
type of code the user will enter. Only one button can be
depressed at a time. See EDITING FM PROGRAMS

Instruction List: Here is where you may view the current task code
of your FM program. All commands entered from the "Text
Entry" box will appear here. You may also edit existing lines, cut
and paste code lines, or set DEBUGGER break points from this
section. See also EDITING FM PROGRAMS and DEBUGGING
PROGRAMS

Boxes: This window contains all the boxes associated with the
current Task Window. The icon next to the box name describes
the SCOPE of the box. (A globe refers to global, a house to local
scope.) To define a new box, click on the bottom of the list of
boxes (or the first line if none are defined yet.) and an empty
highlight should appear. Then simply type a new name. To
change the SCOPE, click on the icon, switching it between a globe
and a house. See also USING BOXES IN FM

Received Boxes: Sub-tasks may be written to use "Received Boxes" or
parameters. THIS AREA WILL NOT APPEAR IN YOUR
PROGRAM'S MAIN TASK. The icon next to a received box's name
indicates the type of "received box" it is. (A one-way arrow
denotes an "in" parameter. A two-way arrow denotes an "in/out"
parameter.) To create a new received box, click on the bottom of
the list of boxes (or the first line if none are defined yet.) and an
empty highlight should appear. Then simply type a new name.
To change the RECEIVED TYFE, click on the icon, switching it
between a one-way arrow and a two-way arrow. See also USING
BOXES IN FM

Key Task Button: Use this button to assign a key to a particular sub-
task. THIS BUTTON WILL NOT APPEAR IN YOUR PROGRAM'S
MAIN TASK. See also CREATING KEY TASKS

See also TOOLBAR. EDITING FM PROGRAMS

305

EDITING FM PROGRAMS

When editing FM programs you may enter in three types of code.
e Comments

e Instructions

* Markers

Adding/Editing Comments

Why comment in your code?

Although comments do nothing to the functionality of the program,
comments are an integral part to good programming. Comments are
lines of code in an FM program which aren’t executed. Comments
are denoted in green and surrounded by parenthesis. Good
commenting will describe what your FM code is supposed to do. Not
only does this help other people understand what you wrote when
they look at your program, but it will also help you, serving as a
reminder of what you wrote.

Consider the following snippet of FM code:

@top
LOAD BOX counter
ADD NUMBER 1
STORE BOX counter
COMPARE NUMBER 100
JUMP < (@dont_reset_counter
LOAD NUMBER 0
STORE BOX counter
(@dont_reset_counter
JUMP ALWAYS @top

It is rather hard to see what this is doing. However adding these
three lines of comments will help to describe what the code does.

(This code will simulate a counter that goes up to 100
and then resets to zero. After reset, the counter starts to
count upwards again.)

To add a commen®b.

Make sure that the “comment” radio button is depressed. You
should see that the “Text Entry” field and the highlighted area in
“Instruction List” will have a pair of parenthesis showing “()”.

2. Type in whatever comment is appropriate and then click the
“use” button or press the <enter> key on your keyboard.

306

Programmer’s Hint: Often you would like fo experiment by deleting
a given command fo see what eftect it will have in a program.
Instead of deleting the command line altogether, you can “comment”
1t out. To do this, highlight the line of code you wish fo take out and
click the “comment” radio butfon. Press the “use” butfon or
<enfer>.

Noftice that instruction is now green and enclosed in parentheses.
The next time the program runs, this line will not be executed. To
change it back fo an instruction, simply highlight the line again and
click the “instruction”: radio butfon.

Adding/EdiPing Ine BrucBions

Quite possibly, this is the most important skill to master when using
FM. In some ways, editing FM programs is similar to using a
spreadsheet. (See also CUTTING AND PASTING) In other ways, it's
even easier.

To begin editing, make sure the "Instruction" button is depressed.
Click inside the "Instruction List" Start by clicking where you would
like to insert a new command.

Thanks to the INSTRUCTION WIZARD _all you need in order to enter
a new command is to type the first few letters. For instance, suppose
you wanted to enter the command, LOAD NUMBER. All you would
need to type is L-O-A-D-<space>-N and the Instruction Wizard will
find the entire command LOAD NUMBER.

An added bonus of the "predictive" abilities of the Instruction Wizard,
is that it will keep you from mis-typing the FM commands. If you
were in a hurry and type L-O-D, the Instruction Wizard will give
you beep to remind you that there is no FM command that starts with
L-O-D.

Instead, it will show you all the closest commands starting with the
letters L-O. Notice that as you type, the first command alphabetically
(e.g. LOAD BOOLEAN) shows up in the "Text Entry" area.

Either continue typing the rest of the command or use the mouse to
scroll in the "All Commands" box and click on the command you
want to use. (You may also "up" or "down" arrows to select the
command you want.) When the command shows up correctly in the
"Text Entry", then hit <enter> on the keyboard or click the "use"
button.

In some cases, a DATA WIZARD window will appear after you “use”
a command. Fill in the request of the DATA WIZARD and then click
OK.

307

Now your command should appear where the blue highlight was.
Notice that the blue highlight is now directly below you're newly
entered line.

Example:
1. Enter the M command LOAD NUMBER 23.

2. Place the blue highlight by clicking where you would like to
insert the line in the "Instruction List"

3. Type L-O-A-D [hit the space bar] N. This should make the
Instruction Wizard select the command LOAD NUMBER.

4. Click the "use" button or the <enter> key on your keyboard.
5. In the Data Wizard that pops up, type in 23.
6. Click the OK button on the Data Wizard.

7. See Also USING BOXES IN FM. CUTTING AND PASTING, DATA
WIZARD

USING BOXES IN FM

In FUNdaMENTAL there are two classes of boxes: regular boxes and
received boxes. Regular boxes are used for storage of data like
numbers, objects, strings and such. Received boxes are used as
parameters for sub-tasks.

In a sub-task's "Task Window" you will see area in the lower right for
regular "Boxes" and "Received Boxes". (Note the main task has no
"Received Boxes" area since the main task cannot take any
parameters.)

You may add boxes two different ways.

Using “STORE BOX”

When you type in a new command for "STORE BOX" a DATA
WIZARD _will pop up prompting for a box to store data into. You
may either select a box already in the list or type the name of a new
one.

If you type in the name of one that is not in the list, then another FM
window will appear asking if you would like to define the box. Select
yes. You’ll notice that it will appear in the "Boxes" section of the
current Task Window with a global icon.

308

Editing within Bhe “Boxes” area

You may also work directly within the "Boxes" area to add new boxes
or edit existing boxes. Simply go to the bottom line of the list of
boxes (If there are no boxes, then click on the first line.) and click in
the middle of the line. You will see a blank highlight appear. This is
a prompt for you to type in a new box name. After you finish, hit
the <enter> key. Notice that your newly created box will be
alphabetically sorted with the others.

As a beginner you should accustom yourself to using this area. In
addition to adding new boxes, you can change the names of boxes or
delete existing boxes, as well as define the scope of the box.

To delete a box: Click on the box name you would like to delete. It
will be surrounded by a highlight. Hit the or <backspace>
key.

To change the name of a box: Highlight the box name you would
like to change by clicking on it twice. You’ll see a blinking cursor at
the end of the box name. Use the backspace to delete and type in a
new name.

To change the box's scope: Click on the icon next to the box's name.
For boxes in the "Boxes" section, it will toggle between a globe
(Global box) and a house (Local box). For boxes in the "Received
Boxes" section it will toggle between a one-way and two-way arrow.
See also SCOPE.

Scope of Boxes

Within the two classes of regular and received boxes, there are two
types of regular boxes and two types of received boxes. These types
are defined by the scope of the box.

Regular boxes (global vs local scopek

It may help to first clarify what the word scope means. Think of
'scope’ as the permission fo use a box given to a task. A task usesa
box by storing data or loading data from a box.

A box 1s global in scopeif every task in the program has permission
to use it. It is designated by a globe icon in the "Boxes:" section of a
Task Window. Notice that a global box will appear 1n all Task
Windows of a given program. (To open multiple Task Windows see
the PROGRAM WINDOW.) You can also think of a global box as a
box that can be seen by all the tasks of a given program.

A box is local in scope if only one task in the program has permission
to use it. It is designated by a house icon in the "Boxes:" section of a
Task Window. Notice that a local box defined in one Task Window
will not appear in any other Task Windows of a given program. (To

309

open multiple Task Windows see the PROGRAM WINDOW.) You
can also think of a local box as a box that can be seen by only the task
in which it is defined.

Received Boxes (n paramebBers vs. moul paramebers)
If you want to pass in data to a sub-task, but don't want that data to
change, then it must be an "in" parameter. An "in" parameter passed
in to a sub-task cannot be changed by the sub-task. All types of data
and boxes can be "in" parameters.

If you want to pass in data to a sub-task that needs to be altered, then

you must pass it as an "in/out" parameter. Only boxes may be
"in/out" parameters.

Program Window
The Program Window is the Grand Central Station of FM. You will
be able to access all Task Windows as well as the Sound Room,
Graphic Library, and Object Designer.
New: Creates a new sub-task to be added into the program.

Add: Imports a premade sub-task into the program. See also Task
Importer

Delete: Removes a sub-task from the program.

Task List: Lists all the available sub-tasks in the currently open
program. To open the Task Window for a particular sub-task,
double-click on the name.

Sound Room Icon: Click on this icon to open the Sound Room

Graphic Library Icon: Click on this icon to open the Graphic Library.

Object Designer Icon: Click on this icon to open the Object Designer

Sound Room

Play: Plays the selected sound.
Stop: Stop playing the currently selected sound.

Record: If you have a microphone, you can record sounds through it
by clicking on this graphic.

Sound: Displays the currently selected sound.
Sound List Box: Shows all available sounds in the program. To select

a sound for playing, scroll around in this list until you find the
sound you want and then click on it.

310

New: This button is for creating names for new blank sounds. New
sounds may be linked to these newly created sounds by pasting
from the clipboard or clicking the “Record” button.

Delete: Deletes an existing sound in the program.

Import: Imports a windows *.wav file from your computer’s hard
disk (e.g. the FUNdaMENTAL sounds archive). See also Sound
Importer.

Sound ImporTer

Use the sound importer when you would like to import one or more
sounds into your program at once.

Play: Plays a selected sound.
Stop: Stops the current sound playing.

Directory: Displays the current directory. You may navigate
through your the directory structure via this box.

Drive Selector: Below the “Directory” box is a pop up menu where
you can select among your computers hard disk, a floppy disk, or
even a CD rom.

Sound Files: Displays all the available sounds in the current folder of
the Directory box. Click on a sound file to select it or double
click on it to add it to the “Sounds to Add” box.

Add: Click this button after you have selected a sound in the “Sound
Files” box to add to the “Sounds to Add” box.

Delete: You may remove a sound from the “Sounds to Add” list using
this button. Simply click on the offending entry to hi-lite itand
then hit “Delete”

ImporBing sounds in 5 easy sTeps.

1. First navigate in the “Directory” box until you reach the folder in
which your sound file resides. FUNdaMENTAL only recognizes
sound files that end with a “.wav” suffix. (Note you may also grab
files off a floppy disk or CD-ROM using the drive box, which is
directly below the "Directory:" box.)

2. When you reach a folder with sound (*.wav) files, then they will
appear listed in the “Sound Files” box. Click once on any name
listed in the “Sound Files” box. You may preview the sound by
clicking on the “play” button.

311

3. Next click the “Add” button to build a list of files you would like
to add to your FUNdaMENTAL program. You may also double
click on anything in the “Sound Files” box to add them. All added
sounds will appear in the “Sounds to Add” box.

4. If you make a mistake and don’t want to include a sound, click on
the sound name in the “Sounds to Add” box and then click the
delete button.

5. When you have finished building your list of sounds click the
“Ok” button. If you decide you don’t want to import anything
just now, then click “Cancel”.

Tasgk Imporber

Use the task importer when you would like to import one or more
tasks into your program at once. Often programmers will find
themselves doing the same thing over and over, like sorting a gaggle
of numbers. In such cases, it is often possible to reuse the same sub-
task in various different programs.

Directory: Displays the current directory. You may navigate
through the directory structure via this box.

Drive Selector: Below the “Directory” box is a pop up menu where
you can select among your computer’s hard disk, a floppy disk, or
even a CD rom.

Task Files: Displays all the available tasks in the current folder of the
Directory box. Click on a task file name to select it or double
click on it to add it to the “Tasks to Add” box.

Add: Click this button after you have selected a task in the “Task
Files” box. This will include the file in the list of files in the
“Tasks to Add” box.

Delete: You may remove a task from the “Tasks to Add” list using
this button. Simply click on the offending entry to highlight it and
then click “Delete”

ImporBing Tasks in 5 easy sbeps.

1. First navigate in the “Directory” box until you reach the folder in
which your task file resides. FUNdaMENTAL only recognizes task
files that end with a “.fmt” suffix. (Note you may also grab files
off a floppy disk or CD~-ROM using the drive box, which is
directly below the "Directory:" box.)

2. When you reach a folder with task (*.fmt) files, they will appear
listed in the “Task Files” box. Click once on any name listed in
the “Task Files” box.

312

3. Next click the “Add” button to include the selected file in the list
of files you would like to add to your FUNdaMENTAL program.
You may also double click on anything in the “Task Files” box to
add them. All added tasks will appear in the “Tasks to Add” box.

4. If you make a mistake and don’t want to include a task, click on
the task name in the “Tasks to Add” box and then click the delete
button.

5. When you have finished building your list of tasks click the “Ok”
button. If you decide you don’t want to import anything just
now, then click “Cancel”.

Data Wizard

The Data Wizard is a tool that helps you to input the additional data
required by some commands. For most commands the Data Wizard’s
queries are simple. There four types of Data Wizards.

e Direct Data (e.g. number, strings, BOOLEANS, sound, pictures,
objects etc..)
{bml dwloadn.bmp} In these types of Data Wizards you type in a
direct value like 23 for a number or “Hello world\” for a string. For
sounds, pictures, and objects, respectively, the Data Wizard will
allow to you to choose from all those available (via the programmer’s
importing or creating them). See also Sound Room, Graphic Library,
and Object Designer.

* Data from Boxes: (LOAD BOX, STORE BOX)

{bml dwfishbx.bmp} For these you specify a box from which to get
the data from. Boxes may be regular or received. You may also
define boxes using the STORE BOX command. See also Using Boxes
in FM

* Data for operations (ADD NUMBER, MOVE OBJECT etc)
Data for these commands can be either Direct Data or Data from
Boxes.

* Data for parameters

The most complex Data Wizard is one where you need to add
information for parameters. First you need to select the sub-task you
wish add parameter info for in the upper half of the window. Then
in the lower half of the Data Wizard you may either select a box or
enter Direct Data by clicking in the column next to the parameter for
which you wish to provide data.

Cub n Paste

Frequently it is useful to cut, copy, and paste text from one Task
Window to another. FUNdaMENTAL provides for cutting, copying

313

and pasting like many other editing programs. Cutting or copying
text, sends it to a temporary clipboard that FM keeps for transferring
text. (Note this is separate from the Windows clipboard.)

For example to copy a section of code, click-and-hold on the area
where you would like to begin copying. Drag the mouse over the
text you want to copy. (Even if the text area you want is greater than
the displayed area on the Task Window, keep dragging. The window
will automatically scroll.)

After you have highlighted everything you want blue, then hit ‘ctrl-c’
or choose “copy” from the “Edit” menu.

To paste, simple click on the Task Window’s Instruction List in the
place you want to insert text and hit ‘ctrl-v’ or select “Paste” from the
“Edit” menu.

Use the same procedure to Cut and Paste line.

You may likewise delete things altogether (without sending them to

the FM clipboard.) by hilighting a section and pressing <backspace>
or <delete>

Crealing Key Tasks

Every sub-task (not the ‘Main” task) may be associated with a key.
That is, when the associated key is pressed, the sub-task is executed.
To associate a key with a task, simply click on the button bearing a
picture a picture of hand pushing a key that to the right of the “Use”
button. It is located in the upper right portion of the Coding Area in
any Sub-Task window.

The above dialog will appear prompting you for a key to associate

with the task. Type the key and then push OK. Click cancel if you
don’t wish to associate a key with a task.

The Debugger

See also Hints on Debugging

AC: Shows the current value of the AC.

Gaggle: Shows the current gaggle in the gaggle register.
Loop: Shows the value of the current loop register.
Glasses: Shows the current type of data in the AC.

C-bit: Shows the current state of the C-bit.

314

Local Boxes: Displays all local boxes. You may view the type and
value of all boxes in the scope of the current task.

Global Boxes: Displays all global boxes. You may view the type and
value of all boxes regardless of which task is in the current scope.

Expert: Allows for more advanced debugging options

Processes: Allows you to change the scope of the debugger to any
available processes running.

Tasks: Allows you to change the scope of the debugger to any
available processes running.

Debugging Programs

Not even the best of us get our programs right the first time.
Especially when the programs get large, keeping things straight can
be a difficult task. Fortunately, FM is equipped with a debugger. A
debugger is an instrument that slows down the execution of a
program so you can watch the FM machine execute things step by
step.

The main reason this works 1is that the FM machine does not do
anything it’s not told to do. Bugs are what occur when a person
wants to make their program do something, but they wrote an
incorrect command or set of commands to do this. Consider the
following.

LOAD NUMBER 45

STORE BOX count

LOAD BOX count

ADD NUMBER 23

EXECUTE SUB-TASK KaBlooey(count)

What the user wanted to do is pass in the value of count + 23 to the
sub-task KaBlooey. However, she forgot to store the value in the AC
back into the box “count”.

Debugging a first lessons

Set up an FM program with a sub-task KaBlooey and the above code.
Notice that there are clear circles next to each instruction. These are
where you may set break points. A break pointis a signal to the FM
machine to stop running the program at this point. A breakpoint
which is set will be filled in red.

As in the diagram above, set a breakpoint at the line LOAD BOX
count. Then push the play button on the toolbar or ctrl-G to start the
program running.

315

The program will pause in its execution at the line . Notice that
“LOAD BOX count” is the next instruction that FM will execute. It is
marked by a blue arrow.

Experiment a little and look at the values in the AC, the data-type and
the other parts of the debugger.

Now click the step button on the toolbar. Notice that the value of the
AC has changed. It will indicate the AC has 45 in it.

Step again using the step button on the toolbar. The AC will indicate
a value of 23+45 or 68.

Notice the value of count is still 45. This is what will get passed into
the sub-task “kablooey”. How do you correct this code?

Strategies: A buggy program is a lot like a polluted river . Pollution
comes from a definite source, but it is often difficult to tell exactly
what that source is. Unfortunately, even a small source of pollution
somewhere far upstream can cause all kinds of havoc for the rest of
the river. From where you happen to be looking, all you see is
polluted water. So how do you find the source of the pollution?

Often the best way to start is to make a guess at where the source of
the pollution is. This may involve actually backtracking to a point
where you know the FM code is “clean” and working properly. Set a
breakpoint in that location and then step through carefully looking
for the moment the code becomes polluted.

Again, comments are a must for good debugging. A bug usually
occurs when a person has an idea of what they want their program
to do, but makes a mistake in implementing their idea in code.
Having good comments, therefore, makes it easier for a person
debugging to know what the code should do. Then they can step
through carefully and compare what the code is acfually doing.

Don’t be afraid to tinker: The big thing to remember is the FM
machine only does what you have programmed it fo do. You will
never break FM by typing an incorrect command. Program crashes
don’t occur because FM randomly decides to be ornery and not
follow your code. Rather they happen because of some oversight the
programmer made. This means YOU, the programmer are in
complete control of fixing an ANY bugs you encounter in your FM
program.

316

Markers

Markers are “jump” points in FM code. They are used in conjunction
with the JUMP commands.

To place a marker, make sure the radio button for marker is
depressed. Then you’ll notice that that the Text Entry box in the
Coding Area has an ‘@’ (“at” sign). Then just type in an appropriate
name of the label you want.

Note: Labels may only be one word. Still you can be descriptive by
separating things with underscores “_”. An example is @turn_right.
It’s still technically one word because it contains no spaces between
characters, but you can see it’s meaning more clearly than
“@turnright”

Labels must be defined before you use a command JUMP <some
jump condition> (@<some label>. This is because the Data Wizard
will ask you to jump to an existing label if you type in a JUMP
command.

317

GLOSSARY

Accumulator (AC): The portion of the Central Processing Unit responsible for holding
the current data. This is where the computer “looks” for the data to be processed
when it encounters a command like ADD NUMBER or MOVE OBJECT.

ADD: (See ADD NUMBER in All-Commands List)

APPEND: To add string data to the end of a string in the AC. (See All-Commands List:
APPEND STRING.)

Array: A gaggle with items all of the same type.

Binary number: A long string of 1’s and O’s that the computer understands and to
which we can attach more easily understood information like commands and data.

Boolean: A kind of data that always has a value of either “true” or “false,” and that can
be manipulated according to the rules of formal logic

Box: A chunk of computer memory allocated to hold either a copy of a data value (in
the case of numbers, strings, sounds, and booleans), or a copy of a pointer to a data
value (in the case of objects and gaggles). (See also Global box; Local box;
Memory; Parameters; Passed-in; Received boxes; Variable)

Bug: An error in the program code which causes a program to run differently than
intended, or stop running altogether (“crash”).

Bus: The communication line between the CPU and all the external components such
as the keyboard, mouse, monitor, and audio speakers..

Central Processing Unit (CPU): The part of the inside of the computer that processes
all the instructions in a program, containing the AC, c-bit, gaggle register, loop
register, and scheduler.

Click-task: A sub-task linked to a particular object design, and which contains a set of
instructions to be executed only when the user clicks on any instance of an object
made from that design.

COMPARE: (See All-Commands List: COMPARE NUMBER; COMPARE STRING;
COMPARE OBJECT)

Control-click-task: A click-task that will only be executed if the Control key on the
keyboard is pressed at the same time the mouse is clicked.

Code: The collective commands, instructions, markers and comments that make up any
glven program.

Comment: A text message placed in the code by the programmer to prompt, clarify, or
explain surrounding code for the programmer’s benefit and the benefit of anyone

318

else’s who might be trying to read or work with the program. (Comments don’t
communicate with the computer at all and take no part in the execution of
programs in which they appear.)

Command: A two- or three-word phrase containing a verb followed by a data type (as
in LOAD STRING), computer component (as in SET GAGGLE-REGISTER), or C-bit
reading (as in JUMP =). The basic building blocks of the computer language,
commands can stand alone or be combined with other specifications to create the
instructions that make up program code.

Compare bit (C-bit): The part of the CPU that registers the results of comparisons in
terms of “equals” (=), “greater than” (>) or “less than” (<).

Conversation window: The window that appears with the Playground window while a
program is running, and that is displays text and receives typed input from the user.

Coordinate system: The programmer’s coordinate system is an “upside down” version
of the standard, Cartesian coordinate system, with the point (0,0) in the upper left-
hand corner.

Crash: The sudden, unexpected aborting of a program, usually due to an error in the
code.

Data: The information types that are manipulated in a program; FUNdaMENTAL can
manipulate six types of data: numbers, strings, objects, sounds, gaggles, and
booleans.

Data Wizard: The FUNdaMENTAL feature that prompts you to fill in the necessary
specifications for commands like LOAD STRING or PLAY SOUND.

Data Wizard dialog: The little box that appears superimposed on the Task window
when the Data Wizard is activated during the writing of a FUNdaMENTAL
program. This is where you can type in or select the specific information or data
required to make your instruction complete.

Debugger: The FUNdaMENTAL feature (accessible by clicking the Stop Sign radio
button to the left of each instruction in your tasks, clicking the Play button on the
Toolbar, and then clicking the Debugger button on the Toolbar) that displays
information about your program’s inner workings, including the current contents
of the AC and the listed contents of items in any gaggles you may be using.

Decomposition: The process of analyzing a problem “from the top down” and
breaking it into smaller, more manageable components.

Define: To place a box in the list of recognized boxes for a particular program.

DISSECT: To remove the outer characters from a text string and retain those
remaining in the center. (See All-Commands List: DISSECT STRING.)

DIVIDE: (See All-Commands List: DIVIDE NUMBER.)

END: See All-Commands List: END SUB-TASK.)

319

Execute/EXECUTE: The term for the computer’s action in carrying out instructions,
tasks, and whole programs. (See All-Commands List: EXECUTE SUB-TASK;
EXECUTE PROCESS-TASK.)

EXIT: To terminate and “leave” a particular application or program. (See All-
Commands List: EXIT PROGRAM.)

File/FILE: Any discrete package of information in any form, such as text (“.txt”),
graphics (“.bmp”), or FM program (“.fmp”) that is stored on your computer’s hard
drive or on floppy disk. In the FM language “file” refers specifically to text files
stored in the same folder with a program which that folder can “write out to” or
“read in from”. (See All-Commands List: WRITE-FILE... and READ-FILE...)

Flag: A piece of data such as a number or boolean that 1s combined with an informative
box name (such as “hasblueeyes” or “practicewords”) in order to allow the
computer to deal with otherwise unrecognizable information within the context of
a program.

Gaggle: A unit of memory made up of a specified number of sub-units, or “items”
(basically a bunch of boxes strung together). (See also Array, Item, Structure.)

Gaggle Register: The part of the CPU that holds a pointer to a stored gaggle while the
AC deals with the individual items of the gaggle.

GET: To get a numerical reading, and place the resulting number in the AC. (See All-
Commands List: GET-LOOP; GET TICKS; GET-BOTTOM/TOP/LEFT/RIGHT
PLAYGROUND; GET-BOTTOM/TOP/LEFT/RIGHT OBJECT.)

Global box: A box that is accessible to all the sub-tasks in a given program.

Graphic: An image that can be used as the visible component of an object or as a
program background.

Graphic Importer: The FUNdaMENTAL interface feature that allows you to import
graphics from other FM programs or from the CD-ROM. (Get there by clicking the
Import button in the Graphics Library.)

Graphic Library: The FUNdaMENTAL interface feature where the graphics for a given
program are defined with descriptive names and stored.

Hard drive: The main “static” memory device inside your computer which stores and
retrieves permanent information, and which allows information to remain intact
even when the computer is turned off.

Heap: A portion of the computer’s memory that is separate from the box portion, and
where objects and gaggles are stored and accessed through pointers. Since space in
the Heap is only reserved once the program is running (unlike the STORE BOX
command, which reserves space while the program is being written), the Heap 1s
sometimes also called “dynamic memory.”

Import: To bring existing graphical or sound files into a given program from an
outside source, such as another FM program, a floppy disk, or a CD-ROM.)

320

Input : Basically any information the user gives to the computer, whether it’s through
typing on the keyboard or moving and clicking the mouse. Input can be an FM
instruction or comment, or a click of the mouse which activates a click-task.
(Other inputs include sounds recorded through a microphone, scanned-in pictures,
etc.)

Instance: (See Object Instance)

Instruction: A line of program code comprised of a single command or a combination
of a command and another input such as a string, number, or box name.

Instruction list: The portion of the Task window that contains the program code.

Instruction Wizard: The Task window feature that automatically searches the list of
FUNdaMENTAL commands to find a match when the programmer begins typing in
the text-entry field. It also displays the function of a selected command in the upper
right-hand corner of the Task window.

Item: A sub-unit of storage space in a gaggle.

JUMP: The computer’s action of breaking the regular, “line-by-line” execution of a
program in order to “jump” to another designated place in the code. (See All-
Commands List: JUMP LOOP/ALWAYS/=/<=/>=/</>/<>))

Key-task: A sub-task that is only executed when a designated key on the keyboard is
pressed.

LOAD: To put into the AC a particular piece of data or the data contents of a specified
box. (See All-Commands List: LOAD BOOLEAN, LOAD BOX, LOAD NUMBER,
LOAD SOUND, LOAD STRING.)

Local box: A box that is only accessible from within one sub-task.

Loop/LOOP: The repetition of a specified sequence of code; also short for Loop
Register. (See All-Commands List: SET LOOP.)

Loop Register: The part of the CPU that keeps track of the number of repetitions left to
be executed when the computer is “looping” through a specified sequence of code.

Main task: The main list of instructions from which the chain of all other tasks in the
program originates. Every program has one.

Marker: The code type identified with an “@”, which marks the place above any
instructions to which the computer needs to “jump” in executing any JUMP
command.

Memory: A physical piece of computer hardware. (often called RAM, or Random
Access Memory.). It is the temporary storage device that holds information as long
as the program is running. Memory just holds a bunch of 1s and Os that are
interpreted as different data such as numbers, string, and objects, etc.

Modularity: The quality of a sub-~task that makes it self-contained for the purposes of
readability and easier “debugging,” or troubleshooting.

321

Morph: To change the appearance of an object. (See All-Commands List: MORPH
OBJECT.)

MULTIPLY: (See All-Commands List: MULTIPLY NUMBER.)
Number: A FUNdaMENTAL data type; integer.

Object: A FUNdaMENTAL data type; a short form of “Object Instance” or “Object
Design.”

Object Design: A “blueprint” residing in the Object Designer and containing the
specifications for a particular object-type, including name, initial graphic, initial
Playground location, and object click-task and/or Control-click-task.

Object Designer: The FUNdaMENTAL interface feature that allows you to create and
store object designs for a given program.

Object Instance: An instance or edition of an object type constructed within a program
from a given object design.

Output: Any information, in any form (be it picture, text, sound, etc.), which the
computer puts out as a result of what a human put in.

Parameter: The specific data sent into an empty, or “received,” box in a sub-task.

Passed-in: A transient parameter quality that is specified in one task and put to work as
a “received” variable in another sub-task.

Pixel: The smallest graphical element on the monitor. A monitor is made up of a
bunch of tiny CRTs (cathode-ray tubes) which project points onto the screen. These
points are pixels.

Place: To specify the placement of an object on the Playground grid. (See All-
Commands List: PLACE OBJECT.)

Playground grid: The coordinate grid, visible by clicking the Grid button on the
Toolbar, providing the system by which the computer processes instructions for the
placement and movement of objects in the Playground. (Please note that the
programming grid is the inverse of the standard, mathematical Cartesian coordinate
system, with the point (0,0) in the upper rather than in the lower left-hand corner.)

Playground window: The FUNdaMENTAL interface feature that appears when you
click the Play button on the Toolbar and that displays all the graphical aspects of a
given FUNdaMENTAL program (the objects, background graphics, etc.)

PREPEND: To add string data to the beginning of a string in the AC. (See All-
Commands List: PREPEND STRING.)

Pointer: The reference device used by the computer to access information about an
object or a gaggle which (unlike strings, numbers, sounds, etc.) cannot be actually
copied back and forth between the AC and memory, but rather remain stored in the
Heap while their host program is running.

322

Process: A sub-task that runs independently of other sub-tasks, allowing you to have
several different tasks running simultaneously. FUNdaMENTAL simulates this by
running one process for a while and then switching quickly to another process.
(See also Scheduler)

Process-task: A sub-task that is executed as a separate process during the running of
the program and, therefore, appears to be running simultaneously with the other
process or processes in the program.

Program (n.): A group of instructions given in a language the computer understands,
and arranged according to particular rules so the computer can create the desired
output.

Programming: The art and science of giving instruction to the computer in order to
achieve human goals.

Program window: The FUNdaMENTAL interface feature (accessed through the
Window menu on the Toolbar) that allows you to define new sub-tasks and access
preexisting ones.

READ: (See All-Commands List: READ-FILE STRING/NUMBER, READ-SCREEN
STRING/NUMBER.)

Read In: To bring information or data into the CPU.

Readability: The quality of any given passage of program code that makes it easy for a
person to understand and work with it.

Reusability: The quality of a sub-task that allows it to be used in a variety of different
programs with little or no alteration.

Received box: A box in a sub-task that receives a parameter from an EXECUTE SUB-
TASK instruction in another task.

REMAINDER: (See All-Commands List: REMAINDER NUMBER.)

Run: The computer’s action in executing all the instructions of a given program, ora
person’s action in causing the computer to execute a program by clicking the Play
button on the Toolbar.

Scheduler: The part of the CPU responsible for making sure that all current processes
in a given program get equal attention according to program specifications.

SET: To specify the contents of a register in the CPU. (See All-Commands List: SET
LOOP; SET GAGGLE REGISTER.)

SHOW: To make an object visible in the Playground window. (See All-Commands List:
SHOW OBJECT.)

SLEEP: To suspend the execution of the instructions in a task. (See All-Commands List:
SLEEP MAIN.)

323

Sound: A FUNdaMENTAL data type.

Sound Importer: The FUNdaMENTAL interface feature (accessed by clicking the Import
button in the Sound Room) which allows you to import preexisting sound files from
other FM programs, or from the CD ROM.

Sound Room: The FUNdaMENTAL interface feature (accessed by selecting Sound Room
from the Window menu on the Toolbar) that allows you to create, import and store
sound data for any given FM program.

STORE: To allocate, or reserve, memory space. (See All-Commands List: STORE BOX.)

String: A FUNdaMENTAL data type; any “string” of keyboard characters placed
between quotation marks.

Style: The overall quality of a program, defined by the degree of its readability and
efficiency and by the elegance of its logic.

Structure: A gaggle with items of different types.
Sub-task: Any task other than the main task that forms part of a complete program.
SUBTRACT: (See All-Commands List: SUBTRACT NUMBER.)

Syntax check: The FUNdaMENTAL feature (activated when the Play button on the
Toolbar is clicked) that does a quick check of the program before it is run in order
to verify that all commands, boxes, markers, and data have been correctly defined
during the designing of the program.

Task: A list of instructions constituting all or part of a computer program.

Task window: The FUNdaMENTAL interface feature that allows you to write
instructions, markers, and comments; define boxes; and see an explanation of the
function of each command in the FUNdaMENTAL language.

Ticks: A unit of time equaling 1/60 of a second. (The command GET TICKS puts into
the AC the current number of ticks elapsed since midnight.)

Toolbar: The FUNdaMENTAL “control panel” containing the primary buttons and all of
the menus for accessing other functions and features of FM.

Use button: The button found to the right of the text-entry field in the Task window
which, if clicked after selecting a command, will either enter that command in the
Instruction List, or bring up a Data Wizard dialog eliciting further input required
for the use of the command. (Note: The same effect is achieved by double-clicking
on a command where it appears in the list of all commands above the text-entry
field in the Task window.)

Variable: A predefined placeholder for a particular type of data, which may hold a
different value with any given execution of the instruction or program that contains
it. In FUNdaMENTAL, boxes provide the means for creating variables.

324

WAKE: To reverse the suspending action of the SLEEP command and cause the
computer to resume execution of the instructions in the main task. (See All~
Commands List: WAKE MAIN.)

WRITE: To copy a specified text string or number either into the Conversation window
or into a text file associated with a FUNdaMENTAL program. (See All-Commands
List: WRITE-SCREEN STRING/NUMBER; WRITE-FILE STRING/NUMBER.)

325

INDEX

A

Accumulator (AC)
basic rules of using - 78
function of - 52—-53
Animation
as motivation for student learning -
244
backgrounds for - See INSTALL
BACKGROUND under Commands
using loops for smoother - 71

using MORPH OBJECT for flip~book -

46
Assembly Language, Definition Of, - 52

B

Booleans
and formal logic - 229-31
values of - 228
Boxes

and storage rules for different data
types - 175

as parameters - 182

as variables - 120, 128-31, 175, 195

defining, in advance - 132

descriptive names for - 196

function of - 59

global versus local - 166-68, 178

global, defined - 61

local, defined - 167

received - 179-80

specifying use of, in Data Wizard
dialog - 119, 128

storing and loading data in - See
boxes under Commands

use of, with gaggles - 189

use of, with numbers - 125

use of, with objects - 176-78

use of, with strings - 115-19

using descriptive names for - 59

viewing available - 60

C

Central Processing Unit

components of - See Accumulator;
Comparison bit; Gaggle Register;
Loop Register; Scheduler
introduced - 52

Click-tasks - See Sub-tasks
Code - See also Commands, Comments,

Markers

cutting and pasting - 168

deleting, from Instruction list - 32

entering, as instruction - See entering
under Commands

entering, as marker - See Markers

inserting, into existing code - 32

placing comments in - See Comments

repeating - See Loops

Commands

JUMP LOOP - 67
appearance of, in FM - 15
background

INSTALL BACKGROUND - 76
booleans

AND BOOLEAN - 230

NOT BOOLEAN - 230

OR BOOLEAN - 230
boxes

LOAD BOX - 59

STORE BOX/LOAD BOX - 59-61
entering - 30
files

READ-FILE NUMBER - 212

READ-FILE STRING - 212

REWIND FILE - 213

WRITE-FILE STRING - 210
gaggles

CONSTRUCT GAGGLE - 188

COUNT GAGGLE - 199

DESTROY GAGGLE - 200

LOAD-ITEM GAGGLE - 197

SET GAGGLE-REGISTER - 189

STORE-ITEM GAGGLE - 192
jumps

JUMP ALWAYS - 69

JUMP LOOP - 67

JUMP TRUE - 229

JUMP< - 145

JUMP<= - 145

JUMP<> - 145

326

JUMP> - 145
JUMP>= - 145
loops
GET LOOP - 192
SET LOOP - 66
numbers
ADD NUMBER - 124
COMPARE NUMBER - 127
LOAD NUMBIER - 123
RANDOM NUMBER - 126
READ-SCREEN NUMBER - 123
REMAINDER NUMBER - 124
SUBTRACT NUMBER - 124
WRITE-FILE NUMBER - 210
WRITE-SCREEN NUMBER - 123
objects
BRING-FRONT OBJECT - 75
COMPARE OBJECT - 153
CONSTRUCT OBJECT - 50
DESTROY OBJECT - 51
GET TOP-OBJECT - 142
GET-BOTTOM OBJECT - 142
GET-LEFT OBJECT - 142
GET-RIGHT OBJECT - 142
HIDE-OBJECT - 75
MORPH OBJECT - 43
MOVE OBJECT - 40
PLACE OBJECT - 50
SEND-BACK OBJECT - 75
SHOW OBJECT - 50
TOUCHING OBJECT - 135
sounds
LOAD SOUND - 77
PLAY SOUND - 80
PLAY-N-WAIT SOUND - 80
strings
APPEND STRING - 114
COMPARE STRING - 149
DISSECT STRING - 150
GET-LENGTH STRING - 150
LOAD STRING - 110
LOWERCASE STRING - 114
PREPEND STRING - 114
READ-SCREEN STRING - 113
UPPERCASE STRING - 114
WRITE-SCREEN STRING - 110
tasks
EXECUTE PROCESS-TASK - 163
EXECUTE SUB-TASK - 162
SLEEP MAIN - 102
WAKE MAIN - 102

ticks
GET TICKS - 149
windows
PLACE CONVERSATION - 112
PLACE PLAYGROUND - 112
RESIZE CONVERSATION - 112
RESIZE PLAYGROUND - 75
Comments
entering - 70
function of - 70
Comparison bit (C-bit)
function of - 137-38
settings of - 145-47
Conversation window, resizing and
placement of - See windows under
Commands
Coordinate Grid
In programming versus mathematics
- 40
viewing of, in Playground window -
41

D

Data - See also Booleans, Gaggles,
Numbers, Objects, Sounds, Strings
defined - 77
passing of, into sub-tasks - 179. See

also Parameters
types of, in FUNdaMENTAL - 77

Debugger, Use of
for viewing available boxes - 62
for viewing contents of AC - 53-54
for viewing current reading on Loop

Register - 72
for viewing gaggle contents -+ 198
Decomposition - 165, 217, 237

F

Files (.txt) - 212—-14
Madlibs formula for - 222-25
order of data accessed from - 213
order of data stored in - 211
rewinding - See Files under
Commands
specifying line-breaks in - 222
storage of data in - 210-11
structuring in advance - 219-22
using strings as names for - 211
Flags - 231, 233

327

FUNdaMENTAL
as "learner-centered" software - 263
benefits of - 17
closing existing programs in, without
exiting - 28
compared to other programming
languages - 10-11, 17
creating new programs in -+ 83—84
described - 14—15
installing
Window '95 - 25
Windows 3.x - 25
launching, and opening existing
programs in - 26-28
running existing programs in - 30
FUNdaMENTAL Interface
challenges of - 244
Conversation window, function of -
30
Create a New Task dialog, use of - 95
Graphic Library
defining and naming new graphics
in- 85
function of - 35
Graphics Importer, use of - 86
Object Designer
function of - 34
use of - 98—-100
Playground window, function of - 30
Program window
function of - 33
viewing multiple tasks in - 100
Sound Importer, use of - 89
Sound Room
creating and naming new sounds
in- 88
function of - 36
viewing available sounds in - 79
Sub-task window, function of - 96
Task window, components of - 29
Toolbar, introduced - 30
Welcome window - 27
FUNdaMENTAL, Teaching of
and learner's role - 244
use of metaphor in - 245
within "workshop" atmosphere - 244

G

Gaggle Register - 187, 191
and 2-D gaggles - 202, 205

Gaggles
2~dimensional - 200-207
as arrays - 187
as structures - 187
counting items in - 199
function of - 187
loading and manipulating data from -
196-97
pointers to - 189
specifying number of items in - 188
steps in contructing - 187
storage and manipulation of - 189
storing data in (array) - 191-94
storing data in (structure) - 194-96
Graphic Importer - See FUNdaMENTAL
Interface
Graphic Library - See FUNdaMENTAL
Interface
Graphics
as dinstinguished from objects - 44
importing hand-made, into
FUNdaMENTAL - 84-86
importing, from other programs -
86-87
viewing available - 44

H

Heap, the - 178, 190, 200

K

Key-tasks - 158

L

Labels - See Markers
Lesson Ideas
career awareness - 257
debugging - 252
decomposition - 249, 253, 254, 255
programming coordinate system -
251
Loop Register - 193
function of - 67
viewing current contents of - See
Debugger
viewing current reading of - See
Debugger
Loops
repeating code with - 66-69

328

M

Markers

entering - 70

function of - 69
Modularity - 165, 168, 237

N

Names, descriptive - 238. See also Boxes
Numbers
comparing - See Numbers under
Commands
filing of - 210
performing mathematical operations
with - 124. See also Commands
role of, in programming - 123
selecting, randomly - See Numbers
under Commands
storage and manipulation of - See
Boxes
updating stored copies of - 125

0

Object Designer - See FUNdaMENTAL
Interface
Objects

as distinguished from graphics - 45,
51

changing the appearance of - See
MORPH OBJECT in objects under
Commands

comparing - 153

constructing, placing and showing
See objects under Commands

contact between - 135

controlling placement of, in a gaggle -
193

controlling relative placement of - See
BRING -FRONT/SEND BACK
OBJECT under Commands

creating designs for - 98—100

designs for, components of - 94

determining current coordinates of -
142

freeing memory space occupied by -
51

hiding - See objects under Commands

instance of, versus designs for - 94

moving of - See Commands;
Coordinate Grid

pointers to- 177

viewing available - 50

P

Parameters
"in" versus "in/out" - 182
function of - 179
specifying boxes as - 182
use of - 180-81
Playground window, placement and
resizing of \t- 75
Pointers - See Gaggles; Heap; Objects
Processes - 163—64
Program window - See FUNdaMENTAL
Interface
Programming
and creativity/critical thinking -
262-63
defined - 14
elements of style in - 237-39
rationale for teaching - 15-17
using loops for good style in - 67

S

Scheduler, function of - 164
Sound Importer - See FUNdaMENTAL
Interface
Sound Room - See FUNdaMENTAL
Interface
Sounds
creating original - 87-88
importing, from other programs -
88-89
playing - See sounds under
Commands
viewing available - 77
Strings
comparing - See strings under
Commands
definition of, in programming - 109
extending - 114
filing of - 210
indicating line-breaks in - 110
quotation marks for - 110
reading, in from screen - See strings
under Commands
storage of - See Boxes

329

updating stored copies of - 118
use of - 110-11, 113-14
Sub-tasks
as click-tasks - 94
effects of executing - 97
facilitating execution of - 101-2
linking of, to object designs - 99
as key-tasks - 158
designating keys for - 158
effects of executing - 159—60
as process-tasks - 163, 169
benefits of - 164—66
creating new - 95-97
executing - See Tasks under
Commands
reuse of - 238
role of, in program composition - 94
viewing available - 162

T

Task window - See FUNdaMENTAL
Interface

Text, use of in programs - 109. See also
Strings

Timing, control of - 148

Toolbar - See FUNdaMENTAL Interface

v

Variables - See Boxes

W

Welcome window - See FUNdaMENTAL
Interface

330

