MICRESSOFT

G

Microsoft.
FORTRAN Compiler

for the Applee Macintosh.

Microsoft Corporation

Information in this document is subject to change without notice and
does not represent a commitment on the part of Microsoft Corporation.
The software described in this document is furnished under a license
agreement or nondisclosure agreement. The software may be used or
copied only in accordance with the terms of the agreement. It is
against the law to copy Microsoft FORTRAN Compiler, or any of the
software provided, on magnetic tape, disk, or any other medium, for
any purpose other than the purchaser's personal use.

© Copyright Microsoft Corporation, 1985
© Copyright Absoft Corporation, 1983, 1984, 1985
© Copyright Apple Computer, Inc., 1983, 1984, 1985

The Finder (including System), Editor (Edit), and Resource Compiler
(RMaker) included with this product are owned and copyrighted by
Apple Computer, Inc., and are licensed to Microsoft by Apple Computer,
Inc.

APPLE COMPUTER, INC., MAKES NO WARRANTIES, EITHER
EXPRESS OR IMPLIED, REGARDING THE ENCLOSED COMPUTER
SOFTWARE PACKAGE, ITS MERCHANTABILITY, OR ITS FITNESS
FOR ANY PARTICULAR PURPOSE. THE EXCLUSION OF IMPLIED
WARRANTIES IS NOT PERMITTED BY SOME STATES. THE
ABOVE EXCLUSION MAY NOT APPLY TO YOU. THIS WARRANTY
PROVIDES YOU WITH SPECIFIC LEGAL RIGHTS. THERE MAY BE
OTHER RIGHTS THAT YOU MAY HAVE WHICH VARY FROM
STATE TO STATE.

This package may contain software which has Apple software

included. Apple software shall not be copied onto another
disk (except for archive purposes) or into memory unless as
part of the execution of the Microsoft software. When the

Microsoft software has completed execution, Apple software
shall not be used by any other program.

If you have comments about the documentation that accompanies the
software, complete the Document Report at the back of this manual and
return it to Microsoft Corporation.

If you have comments about the software, complete the Software
Problem Report at the back of this manual and return it to Microsoft
Corporation.

Microsoft, the Microsoft logo, and MS are registered trademarks of Microsoft
Corporation. The High Performance Software is a trademark of Microsoft Corporation.

Apple is a registered trademark, and Macintosh, MacPaint, and MacDraw are
trademarks of Apple Computer, Inc.

Absoft is a registered trademark of Absoft Corporation.
IBM is a registered trademark of International Business Machines Corporation.
UNIX is a registered trademark of Bell Laboratories.

Document Number 690500003-210-R00-0685
Part Number 005-096-007

The Microsoft FORTRAN documentation is divided into six major
sections, separated by tabs. The first four tabs pertain directly to
FORTRAN. The final two tabs cover utilities and the Macintosh
interface.

Brief introductory material appears before the first tab. This includes a
table of contents covering the first four tabs, and a section titled
"Getting Started.” Getting Started examines the contents of the
distribution disks, explains how to organize the disks for use on your
Macintosh configuration, and steps you through the use of Microsoft
FORTRAN to write a short sample program. Getting Started attempts to
answer many of the questions that new users have.

Tab 1: The User's Guide contains an introduction to FORTRAN, a
chapter on the Microsoft FORTRAN compiler, and a chapter on the
interactive debugger.

Tab 2: The Reference Manual contains six chapters that cover the
syntax and semantics of the FORTRAN language.

Tab 3: The Appendices discuss overlays, error messages, assembly
language subroutines, IEEE floating point, RADSO0 character
representation, "C" language subroutines, file preconnections, and
restrictions on this implementation of FORTRAN 77.

Tab 4: The Index covers material in the User's Guide, Reference
Manual, and Appendices.

Tab §: The Utilities cover the Linker and Library Manager,
Subroutines (spool, time, and date), Edit, and the Resource Compiler
(RMaker).

Tab 6: The Toolbox includes chapters on the Toolbox Interface, the
Event Manager, and the Desk Manager.

After the Toolbox section, you will find a Document Report reply card
and a Software Problem Report reply card.

In addition to the written documentation, there may be one or more
README files on the distribution disks. @ When present, these contain
additional information developed after the written documentation went
to press.

User's Guide
CHAPTER 1

CHAPTER 2

Contents

INTRODUCTION

1.1

1.2

FORTRAN 77 ceevscscsoscossssosssscscccsssccscsse
1.1.1 History of the Language ..cececscscscse
1.1.2 MICROSOFT FORTRAN 77 ceececcsccsvcscsce
USING THIS DOCUMENT .ececcossscccssccccsscscns
1.2.1 CONVENTIONS USED IN THIS DOCUMENT

THE MICROSOFT FORTRAN COMPILER

2.1

2.2

2.3

COMPILER INVOCATION 0 8 8 0600 00 0000 OE OO E NSO OLNE
2,1.1 Compiler PaSS€S .ecesceccccscssccsesosss
Compiler Error RepPOItS cceeceeovscvccoses
File NamMeS .cceesesessssooscssossocccas
Compiler OUtPUL seeeecevrcccscsscsscnnscse
The Transfer Menu ® 90 00050 PSSO EEPSNPOSEPOSDS
LE TIME OPTIONS .cceccccsccsccscscccscose
The INCLUDE statement ..cecccccccsocsse
The PAGE statement .cceeeeececccssccces
Generating Assembler SOUICE ceecsccsces
Long Addressing MOGe .eeccecvvccscsnces
Array Boundary Error Checking Code
Card Number Display at Compile Time ...
Generating Inline Hardware Floating
Point Code .veveecensvvccssosacscnccccs
FORTRAN 66 compatibility cecececscncecs
Generating External Symbol References .
0 Compiler LisStingsS .ccscececcecscscccses
2,2,10.1 The L Compiler Listing Option .
2,2,10.2 The I Compiler Listing Option .
2,2,10.3 The E Compiler Listing Option .
2,2,10,4 List Option Compiler Display ..
1 Folding Symbolic Names to Upper Case .
2 Card Numbers with Run Time Errors
3 Creating Unlinked External
SUDPrograms cecceccccscccccecscossscosocse
.14 Generating Symbol Tables for DEBUG ...
.15 Redirecting File Preconnections
.16 Changing implicit INTEGER and LOGICAL

SiZES .eereecrsscsssscsonccssessceccces
.17 Conditional Compilation ..cceeecescecee
2.2.18 The OPTION statement cccecesrcecscscesnce
CONVERTING EXISTING PROGRAMS TO MICROSOFT
FORTRAN 77 ceeecocoscccscscsovssssccssssssnsssss

DRDNONNDNNNNDNAON NN
s o 0o o 0o 0 o Oe o s o
NN NN NIE

« o 0

® o o ¢ o o o IIJe

= O SN B WN U & WN

NNNNNNI}JNNNN NN

2-13
2-14
2-15
2-15
2-16
2-16
2-16
2-16
2-17
2-17
2-17
2-18
2-18
2-18
2-19
2-19

2-20

iii

CHAPTER 3

iv

DEBUG - THE SYMBOLIC DEBUGGER

3,1 INITIALIZATION .ccccccccocccscscscsovnecsaccscncs
3.2 SOURCE CODE WINDOW cccoceecssccsacvcsccncnsscs
3.3 THE DEBUG MENU ccceveccocrccccrsccscsccasscssans

.

W WW W WWW W wWw

¢ ¢ o 8 & ¢ o 0 o @

0
1

WW WW W WwWww www
e ® o 0 o o e s o &
= O -~JAUd W -

3.

SOURCE CODE ® 0 960 58T OO ES OSSNSO NSNSONPES
VARIABL Es ® 6 90000 000 OS LSOO ELEIBSOENINOIOSEEEDRNSES
SEARCH LI B AR B B BN N BN B RE Y BE N BN BECE AR B BE R BN B B BN B A AR N N J

FIND LABEL ccseccccvcccocccocacocccsvee
FILE STATUS .ceeceococceccsccsccsscsces
TYPE FILE ® 9 09 0000000800000 BIONPSEBIPSIEILTES

FINISH 0 0000000000000 0000000000000000s

QUIT cececoovoccccccsssosocsscsosccscccons

TRANSFER cccocescccsscccssevcoscconcsscone
BREAK POINTS .ecccececccecccccccccncce
SINGLE STEP ® & 9 8 00088008000 CeON PSS OS

3.11.1 BLOCK EXECUTE .ss0ssscccccncnesrse
PROCEED TO CURSOR tecsvveoscccsccncens
HOME CURSOR ¢evsevcecccvceccccccccnans
SKIP SUBROUTINES .eceevocvcccccsccccne
BREAKPOINTS 90 0000 000 PSP POOELINOSIIPIERLEISIOEOSETERDS
PROCEED TO BREAKPOINT scccecvccccscace

)
O WY NN W

|
[~

wwwc:awwwwwww www
[}
o

!
bt et
oo

3-10
3-11
3-11
3-11
3-11
3-11

Reference

CHAPTER 4

CHAPTER 5

HE FORTRAN 77 PROGRAM

T
4,1 CHARACTER SET ceveeessececsccsccecscscsscccscns
4,2 SYMBOLIC NAMES .eeecocscovovsccscscscscssscscse
4.3 KEYWORDS ceveoceveososassscsoesssscnscsscsoscscs
4,4 LABELS teecsccoscsscsocsscnsssscasnssossacssscsss
4.5 STATEMENTS .veecscccoscsccsccscssssscsssccscsscse
4.5.1 Executable Statements ..cececcscccccsce
4,5.2 Nonexecutable Statements .eeeescocsvces
4.5.3 Statement FOIMAt .eeevesrsesccccccncsoss
4.5.4 Multiple Statement Lines .eescecccsvcss
4,6 DATA ITEMS teceescccccrccccscssancosssscssscns
4.6,1 ConStantsS seeeececssccesscsssnccssnvons
4,6.1.1 Character Constant cvececccecccse
4,6.1.2 Logical Constant ceeeceocecececas
4.6.1.3 1Integer Constant ceeceeescesccce
4,6,1,3,1 Alternate Integer Bases .
4.6.1.4 Real Constant .eeceescscccscecae
4,6.1.5 Double Precision Constant ..ee..
4.6.1.6 Complex Constant ceeeesvcscescos
4.6,1,7 Hollerith Constant .ceecesecccoce
4.6.2 Variables ..ceecececccssosssecscsssscnse
4.6.3 AXTAYS ceeceooscssscsccsrsssonscsnssassca
4.6.3.1 Array DeclaratoOr ..cescscecsccce
4.6.3,2 Array Subscript .eececccsesccces
4.6.,3.3 Array Name€ cceceececoscocscscaces
4.6.4 Substrings ® 68 0 0 00000 S Q0B SO O O ES O OESOSOSPONS
4,7 STORAGE seeeeessccccscccscscsesccscscssososoacse
4.7.1 Numeric Storage Unit .eeeeccscescesccss
4.7.2 Character Storage Unit .ccececesscccces
4,7.3 Storage SeqUENCE ceesvscscccscscscncsce
4,7.4 Storage AssoCiation ...eecececocscocssne
4.7.5 Storage Definition .c.eceeececceccscccece

EXPRESSIONS AND ASSIGNMENT STATEMENTS
5.1 ARITHMETIC EXPRESSIONS .¢eeessvvcccccsssosscce

5.1.1 Data Type of Arithmetic Expressions ...

5.1.2 Arithmetic Constant EXpression ...seceee
2 CHARACTER EXPRESSIONS .sccevcccccscscesccsnsos
3 RELATIONAL EXPRESSIONS ..ecceccecccosscccsaccns
4 LOGICAL EXPRESSIONS .vseccecccsssccssccssasscsns
5 OPERATOR PRECEDENCE .cescecscccvcscscccsascace
6 ARITHMETIC ASSIGNMENT STATEMENT .cceccecesconsce
7 LOGICAL ASSIGNMENT STATEMENT .cccecccccccccscocse
8 CHARACTER ASSIGNMENT STATEMENT ccccoccocesccocse
9 ASSIGN STATEMENT cececocsccoscscscrsoscncscoccse
10 MEMORY ASSIGNMENT STATEMENT ccecccccsccsconns

LI U B N T | [}
O OO~ AN U WN
(==X

-hallh-b LG I R
1
-
[

1
—
Pt

4-12
4-12
4-13
4-13
4-14
4-14
4-15
4-17
4-18
4-19
4-19
4-19
4-19
4-20
4-21

(S NC N NE NT] L'J'lUlLﬂUIUltﬂU‘
HWY oo~ ~NIAU & W N

CHAPTER 6

CHAPTER 7

vi

SPECIFICATION AND DATA STATEMENTS

6.1

6.11

TYPE STATEMENTS .eceececcsscccssssccssncscencos
6.1.1 Arithmetic and Logical Type Statements
6.1.2 Character Type Statement ..ccceeescccss
DIMENSION STATEMENT .ccececcecocssccccssccvens
COMMON STATEMENT .eccecccccccccccccscsssnssossss
6.3.1 Named and Blank Common Differences
EQUIVALENCE STATEMENT .ccceeccocsccccsssssssccs
6.4.1 Equivalence Of ArrayS ceeeecscccesccsces
6.4.2 Equivalence of Substrings cecescecocecss
6.4.3 Common and Equivalence Restrictions ...
IMPLICIT STATEMENT .voveeccoscoccsscscoscncnssse
PARAMETER STATEMENT .cecceccoccsccsccscscnscsne
6.6.1 Special use of the PARAMETER statement
EXTERNAL STATEMENT ...ccccccvrccccnssnssccsccs
INTRINSIC STATEMENT .cceecescencsacoccsccscsns
SAVE STATEMENT .cececcccsasssccasaccssccnonsoss
VIRTUAL STATEMENT ..ccccecccsccccsccccscncsces
6.10.1 Passing Virtual Arrays to External
ProcCedUreS .cecessssvcssscssscccssoncs
6.10.2 Restrictions on Virtual Arrays .eeceecees
DATA STATEMENT ..ceeccecocsscsccsacccsnscnsce
6.11,1 Implied DO List In A DATA Statement ..

CONTROL STATEMENTS

7.1

GOTO STATEMENTS 0 0 0 0000 00O PO RN OO RPPREEOROESEN OO OSES
7.1.1 Unconditional GOTO .ceevsccescsccsenscse
7.1.2 Computed GOTO sveeecesvecccccssoscscscase
3 AsSSigned GOTO ceeeeccscsscoscssscsnnsscns
ATEMENTS ciceeccccscccoscccssccocscnsssss

Arithmetic IF .sieveeseccessvscccncenssne
. LOgical IF tieeccscscscscscscscsnosonnan
L4 BIOCk IF ® 0 0 0 00 0P OO S S OO OO LSOO OESEDSEOSSES
PSTATEMENTS ® & 0 0 90 0 550 0GP EP O E OO OSSO SDE
el BasiC DO JOOD ceecccessscoscccnscncsnne

7.3.1.1 DO Loop ExecutiOn .ceesvecscscss

7.3.1.2 Transfer into Range of DO Loop .
e2 DO WHILE ..vcceeccscsccsscrsosscnccnccsse
e3 BlOCK DO cevececevssevseosscscscacscscascs
«4 END DO and REPEAT .ececccccccasccccsccse
5
.6

F ST
. .1
2.2
. 3
O

1
2
2
2
0
3

NN NHN

EXIT cceececcccocccocecscscscacacscccnese

CYCLE ceveecececscccccacscscocccccncacse

ONTINUE STATEMENT .cceeecccccscorcscscsscccass
BLOCK CASE tececcssccccccscssssscssssssscscccnsce
7.5.1 Execution of a block CASE statement ...
7.5.2 Block CASE EXamPle ceeeescecsscccccsccs
STOP STATEMENT .ceeecceccccceccsscnscscssssscncas
PAUSE STATEMENT .cececccccccccoscnssscsccssocse
END STATEMENT .vcececceccccsccscsscscccccsccss
EXECUTE STATEMENT ..ceceescccavscsscssscssscsssss

7.3
7.3
7.3
7.3
7.3
CON

I It I 111
:H\o\o\om\lmmhww

|
P
- o

o
t 1
ot s
WK

6-14
6-15

6-15
6-16
6-16
6-17

1
HEOYOWYOWWVWEOSN-AUTNEWWWND NN

[
N-=O

SNNNNNNNNCNNSNN NSNS NN NN
|

7-13
7-13
7-13
7-14

CHAPTER 8

INPUT/OUTPUT AND FORMAT SPECIFICATION

8.1

8.2

8.3

8.4
8.5

00 O
= = O 00~ O\

0
1

RECORDS ® 0 0 9 00 0 GO0 O 0L OO0 UL PN OO OSSOSO EESNESEDS
8.1.1 Formatted ReCOrd sececococsccscccossesse
8.1.2 Unformatted ReCOrd .ccceccescccnscccssce
8.1.3 Endfile ReCOId .vceececccccescrcosnsoscsses
FILES cececceccccccsccecsonessscsccscscasscssssaccoe
8.2'1 File Name ® 0 0 0 8 0 0 000 ¢ OO O OO0 OEO OSSN PSES
2 File POSitiON .tieeecsccscocssovsccccess
3 File ACCESS seceecsvscscscscosscnscnnee
4 Internal File .eevececcsccsccscnsccncoss
SPECIFIERS tvvececvsoscsccscccsccosssccsscs
1l Unit Specifier .eeeeecesccccsscccosvene
2 Format Specifier .sieecescescosccsscnccs
3 Record SpecCifier ..ieecovesccsccsvsscns
4 Error Specifier ..ceecesccsvcccscccccas
5 End of File Specifier ..eeececcescccass
«3.6 I/O Status SpecCifier .iesevecscsccscscne
/ LIST 5 5 20 0808000008000 00000000008000800000
.4.1 1Implied DO List In An I/O LiSt secevces
EAD, ACCEPT, WRITE, PRINT, AND TYPE
TATEMENTS tcececcccccscsonssssssssossssscsscsssass
.5.1 Unformatted Data TransSfer ..ceeecceeccee
8.5.2 Formatted Data TransSfer ccececececcssces
8.5.3 Printing .c.eceeecesccoscesccccsscnccsses
OPEN STATEMENT LK BN 2R BN BN BN BN BN BN BE BE BN BN BN BN BN N B BN B BN CRE BN N B BN N BN BE IR 2
CLOSE STATEMENT ® ® 00 00 00 C OO0 OGO e OO OO NSO NESESETSTES
BACKSPACE STATEMENT .e0cevccscocccssccssscssnee
REWIND STATEMENT cceevececsocessccccscccscscnsns
ENDFILE STATEMENT .cccecccccovsccoccsscssccccsne
INQUIRE STATEMENT ® 8 & O 0 0B 0GOSO OO OO EDOO O EEESTSES

€0 00 0 © o O coooolocooooococooooooooo
OON NNV ERWWWWNININN

8-10
8-10
8-10
8-11
8-13
8-14
8-14
8-14
8-15

vii

8.12 GIVING A FORMAT SPECIFICATION s¢ceeeccoosecee 8-17
8.13 FORMAT SPECIFICATION AND I/O LIST
INTERACTION (ceecocessococsscsscsocsoscscssnncs 8-19
8.14 INTEGER EDITING .v.vesssssccccscssscsssssscess 8-20
8.14,1 I EQiting .eeeesececccsessccsssccnssece 8-20
8.14.2 B, O, and Z Editing .eceeeecccececsssss 8-21
8.15 FLOATING POINT EDITING .eeeecccccccooncssasss 8-22
8.15.1 F EQitiNg eeeeescessscesssenssccnnssss 8-22
8.15.2 E and D Editing RN A R N I IR I I A I S 8—23
8.15.3 G EQitiNg .eeecececsscnssscccoccscnssee 8-24
8.15'4 P Editing s e s eeseessreeseNe sttt 8-25
8.16 CHARACTER AND LOGICAL EDITING ececcececccesssss 8-26
8.16.1 A EQiting ..coeceecescecrsccsccnsscessse 8-26
8.16.2 L EJiting eeeecescececsscsecosccacssss 8-26
8,17 SIGN CONTROL EDITING ccseceossccsssccsssncnsss 8-27
8.18 BLANK CONTROL EDITING RN RN I RN N R N N 8-27
8.19 POSITIONAL EDITING cecesececcoscocccscascossss 8—28
8.19.1 X EGQiting ..eeeeececccssecrececenccssss 8-28
8.19.2 T, TL’ and TR Editing eeessseesscserere 8—28
8.19.3 Slash EQiting ceeeecssesvecscscessscesss 8-29
8,20 COLON EDITING ceceecoessssssssescccccsccsssssss 8-29
8.21 APOSTROPHE AND HOLLERITH EDITING seecessseees 8-30
8,21.1 Apostrophe Editing R E R NI N N W) 8-30
8.21.2 H EAiting ceeeeecesscccscccosscccssses 8=30
8.22 LIST DIRECTED EDITING .esesvccccsccccccsssees 831
8.22.1 List Directed INPUt .cceeeesvcscsscssss 8-32
8.22,2 List Directed OUtpPUt eececesescecscsess 8-33

CHAPTER 9 PROGRAMS, SUBROUTINES, FUNCTIONS, AND BLOCK DATA SUBPROGRAM{
9,1 PROGRAMS c.cccovevcoccscssccssscsscscnsssscssscss 9—2
9,2 SUBROUTINES .seececvcccsccsscscssscscesssacscs 9=5
9.2.1 Subroutine Argumentsseccc0cc0ccses 96
9.3 FUNCTIONS 4 9 6 0 0 0 0 0T 0P OO OSSO POt OO OEOOEERS PGSO 97
9.3.1 External FUnNCtiONS .eececscscocccscsnss 9-8
9.3.2 Statement FUNCtionS ..cceceveccscccccse 9-9
9.3.3 Intrinsic FUNCtiONS ceeecsvscocsccccces 9-9
ENTRY ccceeccocsccccscccscsscccssasosssscnssnsases I-1
9-1

RETURN ceevesveovecosccososescoscscsscsccoccsnscsnsns

4
5
6 PASSING PROCEDURES IN DUMMY ARGUMENTS 9-11
7 PASSING RETURN ADDRESSES IN DUMMY ARGUMENTS .. 9-11
8
9

COMMON BLOCKS 8 8 0 0 P 0O O PPN OO0 OO0 OO0 0 eSO OSENTCESDS 9_12
NOTES ON INTRINSIC FUNCTIONS cecvcocscscscsces 9-17
9.9.1 Range of Arguments and Results

RestrictionsS .ceceeeecceccccessccscsccccses 9-19
9.10 BLOCK DATA .cccevecccccsccccnsoassscescesccsse 9-20

APPENDIX A OVERLAYS
A.1 REFERENCING AN OVERLAY ..cccccccccccoccsscssss A-2

APPENDIX B THE ASCII CHARACTER SET

viii

APPENDIX C BIBLIOGRAPHY

APPENDIX D ERROR MESSAGES
D.1 COMPILE TIME ERROR MESSAGES .ceceesscessssscsee D=1
D-2 RUNTIME ERROR CODES seccescesesres sttt D—3
D.3 MACINTOSH SPECIFIC RUNTIME ERROR CODES ..sss.. D-4
D.4 MACINTOSH SYSTEM ALERT ERROR CODES .¢eevcesees D=7

APPENDIX E STRUCTURE FOR ASSEMBLY LANGUAGE EXTERNAL PROCEDURES

E.1l STACK FRAME .ccccevceccescasovvossccscssscsosssses E—2
E.2 STACK LAYOUT AND REGISTER ASSIGNMENTcs0.. E-2
E.3 ARGUMENT PASSING cccecccccccrcsccrcscccccssosse E-3
E.4 STORAGE ©9 00000000000 000000000COIRIBLOLOIOGOIOROREOIRIBSTTOEES E'4

E.4.1 DynamiC StOrage .eeecececscscscccscscses E—4

E.4.2 Static StOIage esovesccscccnvssscsnseen E-4

E.4.3 Global Storage ®scessscscesccosssecssns E-5
E.5 COMMON BLOCKS L N R N R R N R R R RN E-6
E.G FUNCTION PROCEDURES .eceecoevsscscrsscscsscsse E-6
E.7 EXAMPLES .iesececccccocscscsssccccccccscssases E-8

APPENDIX F IEEE FLOATING POINT AND THE MATHEMATICS LIBRARY
F.1 ARGUMENT TYPES ccscscscococccocscscsssossoscncacs
F.l.l Integer ® 6 0 0 0500 0 0PSO SO0 OO RSO OOP OO ONSSEPSES
F.1l.2 Real and Double Precision .eeeeeeccecccs
Fol.3 COMPlEX cvcevcecvcoccccsscscssscssscsoscssnse
ARGUMENT PASSING L2 IR BE IR B B BE R BE BN BE BE BN BE BN SR BE BE BN AR BN BN BN BN B B A N
ERROR TRAPPING sececcacccccscocscscvscsccscassscsnse
LIBRARY ACCESS ® 0 60 500 000069 OB OGSO LON OSSN EESIRPOSEETSDS
INTRINSIC FUNCTION LIBRARY ROUTINES .ececccosce
USEFUL CONSTANTS AND COMMON MATHEMATICAL
RELATIONSHIPS .vcceccccscccnscsccoscscnccoscnnse

|
NP RWWNDNDN

e R e o Ro |
"1"3"'!'?".1"4’1!"1!

N W

o]
1
~

APPENDIX G RADS50 REPRESENTATION
G.1 THE RAD50 CHARACTER SET sevcccescoccssccccncee
G.2 THE RADSO ALGORITHM LK N 2K B BN BN B N BN BN B B BN BE BE BN B BN 2R BB BN I N N 2 G-2
G.3 FORTRAN SUBROUTINE FOR RAD50 CONVERSION ,..... G-3

2]
1
N

APPENDIX H CALLING C FUNCTIONS FROM FORTRAN

APPENDIX I FILE PRECONNECTIONS

APPENDIX J RESTRICTIONS ON THE MICROSOFT IMPLEMENTATION OF FORTRAN 7
INDEX

ix

Welcome to the World of

Microsoft FORTRAN

for the Apple Macintosh!

The Microsoft FORTRAN Compiler for the Apple Macintosh 1is a
full implementation of FORTRAN 77. It has all the 1language
features of mainframe FORTRAN, plus a powerful interface to the
Apple Macintosh's operating system and graphics capabilities.

This introduction helps you get started with this powerful
programming language. We go step by step through writing your
first short Microsoft FORTRAN program.

This manual presumes familiarity with the FORTRAN language
itself, and with the general operation of the Macintosh.

Getting Started

Microsoft FORTRAN comes on two disks - a compiler disk and a
utilities disk. We recommend that you immediately slide open
the copy-protect windows in the corners of the disks, if you
have not already-done so. This prevents you from accidentally
modifying your original disks. Make a copy of each of these
master disks. Store the original disks in a safe place. Later
on, if anything should happen to your working copies, you can
make a new copy from the original disks.

Your Microsoft FORTRAN disks contain many files used to create

and manage Macintosh applications. These take up almost all of
the space on the disks. You may want to create disks with
fewer files for everyday development work. This section

describes the function of each file so that you can decide
which ones you need for a given application.

Do not be alarmed if your disk does not appear exactly as shown
in the figures below, or if disk space available or other items
differ slightly. This is because of improvements made after
the documentation went to press.

xi

Microsoft FORTRAN Compiler

The MS FORTRAN Compiler Disk

Figure 1, "Microsoft FORTRAN Compiler Disk,"™ shows the contents
of the first Microsoft FORTRAN disk. This disk contains MS
FORTRAN, debug, £f77 overlays, Edit, and a System folder.

[ECJ= MS FORTRAN 2.1 Compiler ==

5 items 371K in disk 28K available
&
@ <
MS FORTRAN debug Edit
77 overlays System Folder | |
[
«| [

Figure 1. Microsoft FORTRAN Compiler Disk

The MS FORTRAN Compiler disk carries the main items that you
need to get started - a text editor and the Microsoft FORTRAN
Compiler. If you have more than one disk drive, or if you are
working with small source files, the organization of this disk
may be Jjust right for your FORTRAN program development
activities.

Below, we recommend a disk organization for FORTRAN development
on a single-drive system, if your programs get too big to fit
within the disk space available.

Let's look at the items on the MS FORTRAN Compiler disk.

MS FORTRAN, represented by a card deck icon, is the Microsoft

FORTRAN Compiler. This application is used to compile a
FORTRAN program or subroutine. It is not adequate in itself to
compile a program. It requires several support files which are
described below. The required support files can be found in

the £77 overlays folder.

The Microsoft FORTRAN source code debugger is invoked with the
application named debug, represented by the standard Macintosh
icon for application files (a hand writing on a piece of
paper). As with Microsoft FORTRAN, this application cannot run
by itself. It requires debug.fc, a support file described
below.

xii

Getting Started

F77 overlays (FORTRAN 77 overlays) contains object code files
used to support various portions of the Microsoft FORTRAN
system. It includes five compiler overlays, the debugger
overlay, and the runtime library. When one of these files is
required, it must be available either on the same disk as the
application needing it or on the internal drive.

The compiler overlays are £77.fc, £77001.fc, £77002.fc,
£77003.£fc, and £77004.fc. These files must be present
whenever you compile a program or subroutine.

The debugger overlay is debug.fc. It is read in as needed by
the debug application. It must be available whenever you debug
a program.

The runtime library is named £77.rl. This file must be
present whenever you run a program that you have compiled with
Microsoft FORTRAN. It may also be linked into your application
using the Microsoft FORTRAN linker. See the discussion of the
link program for more information.

Edit, represented by a hand writing on a scroll, is a text
editor. It is used to create and edit FORTRAN source code
(text) files. It is supplied by Apple, and has no special
relationship to Microsoft FORTRAN.

The System Folder contains System and Finder, and possibly
other Macintosh system files. They are supplied by Apple, and
have no special relationship to Microsoft FORTRAN.

Single Drive Operation

Working on a system with only a single disk drive, the initial
organization leaves only enough space for a few small source
files. If you need more disk space, you can organize your
disks as shown below. By dividing the program edit function
from the compile and debug functions, you can work with much
larger programs. However, this organization requires you to
copy your program file each time you go through the edit-
compile cycle.

xiii

Microsoft FORTRAN Compiler

1 Drive Edit Disk]
182K in disk 218K available

O

Source Files

System Folder s

Kol [
Figure 2. Edit Disk for 1 Drive System

Figure 2, "Edit Disk for 1 Drive System,"” shows our
recommended layout for your edit disk. This allows much more
disk space for program source code. Keep the master copy of
your program source on this disk. Edit your programs here.
When you are ready to compile and test your program, copy the
relevant source files onto the compile disk, shown in Figure 3.
This helps avoid running out of disk space during the edit and
compile steps of program development. As a side benefit,
during program testing your master copy of the source is safely
outside of the computer.

== 1 Drive Compile Disk ==
4 items 313K in disk 87K available
il
3 @
MS Fortran debug
77 overlays System Folder | |
14
<2 [

Figure 3. Compile Disk for 1 Drive System

Figure 3, “Compile Disk for 1 Drive System,” is the MS
FORTRAN Compiler disk with the Edit application removed. This
gives more disk space in which to put the files related to your
current program.

xiv

Getting Started

The Microsoft FORTRAN Utilities Disk

The MS FORTRAN Utilities Disk is the second of the two
distribution disks. It contains 1link, 1ib, RMaker, and
folders of subroutines, include files, and source files.

S J=== MS FORTRAN 2.1 Utilities —=—=]

7 items 336K in disk 63K available
i

@ < m
Tink lib RMaker System Folder

Subroutines Include Files Source Files -
&
« [&

Figure 4. Microsoft FORTRAN Utilities Disk

Link allows you to combine program modules into fewer entities.
You may not need to learn its use right away, because Microsoft
FORTRAN dynamically 1links subroutines as needed. Static
linking improves execution speed and simplifies installation of
your application by your users. Link is written in FORTRAN,
and requires the run time library £77.rl to execute.

Lib works with 1link by organizing your subroutines into

libraries. When you link your program, you can specify one or
more program libraries. These are searched by the linker to
find subroutines used by your application. Only those

subroutines needed will be combined into your finished product.
Lib is written in FORTRAN, and requires the run time library
£77.r1l to execute.

The application RMaker (resource maker), represented by a hand
painting a large "R", is used to add resources to your
Microsoft FORTRAN application file after it has been compiled

and linked. It helps you to create custom icons for your
applications, and to take advantage of other Macintosh
features. Resources and the use of RMaker in creating them are

described in the RMaker manual. RMaker is supplied by Apple.
To get the most out of RMaker, you may want to read Apple’'s
document Inside Macintosh.

XV

Microsoft FORTRAN Compiler

Subroutines

The subroutines folder contains compiled external utility
subroutines (and in most cases their source code) to support
FORTRAN programs you write. These files are not needed to run
the Microsoft FORTRAN system unless you write a program which
calls them. Only those subroutine files actually used need to
be available, and they must be available on the same disk drive
as the application calling them. They can also be linked into
your application with the Microsoft FORTRAN linker (see the
section on LINK). The function of each subroutine is described
elsewhere. Three of the subroutines deserve special mention,
however: errmsg.sub, spool.sub, and toolbx.sub.

You cannot call errmsg.sub directly. It is called by the
runtime system whenever your Microsoft FORTRAN application
encounters an error during execution. If this subroutine is

not present, an error number will be reported; if it 1is
present, a descriptive message will be reported instead. This
subroutine does not handle the reporting of compile time
errors, and its availability does not affect the appearance of
messages output by the compiler.

You can call spool.sub directly to print a text file on an
Imagewriter printer. However, it is also called by the runtime
system whenever a program which writes to unit 6 (preconnected
to the printer) is run. The run time system writes such output
to a temporary file. When the program ends, spool.sub is
called to print and then delete the file. For this reason, you
cannot print while a program is executing. Also, if spool.sub
is not available when the program ends, no printing occurs and
the temporary file is left on the disk. The source code for
spool.sub can be modified to allow direct printing
without spooling, and contains a great many comments
discussing the hardware interface with the printer port.
Serious programmers desiring to utilize the full capabilities
of the Macintosh will be well repaid by careful examination of
this and the other sample FORTRAN and assembly language code
provided.

Toolbx.sub can only be called directly. It is your interface
to the Macintosh Toolbox ROM routines. It must be present if
you are going to generate graphics or use any of the Macintosh
interface features, such as multiple windows, menus, or
dialogs. The current implementation of this interface subrou-
tine can only call Toolbox routines. There is another type of
routine in the Macintosh ROM: the Operating System traps.
These include low level file and device I/0 routines, some
Event Manager routines, Memory Manager routines, and various
utilities. If you need these functions, you must write your
own assembly language interfaces for them (see Appendix E on
calling assembly language from Microsoft FORTRAN) .

Xvi

Getting Started

Include Files

The include files folder contains items to shorten your
coding time and improve the reliability of your finished
product. Some of these are used by the sample source programs
provided in the source files folder. Many are subsets of
toolbx.par, split out to improve compile speed by reducing the
number of symbols included in your program.

Toolbx.par is a file of constant definitions which simplifies
the use of toolbx.sub, the interface to the Macintosh Toolbox
ROM routines. Toolbx.sub takes as its first argument an
integer which specifies the ROM routine that you want to call.
These integer values are rather arbitrary and difficult to
remember, so a set of constant definitions, in the form of
FORTRAN parameter statements, has been provided in toolbx.par.
It can be included in your program (after the program
statement) or subprogram (after the subroutine or function
statement) with the Microsoft FORTRAN include statement:

program myprog
include toolbx.par

or

subroutine mysub(param)
include toolbx.par

or

function myfunc(param)
include toolbx.par

Thereafter, the first argument to toolbx.sub can be a symbolic
name. Some of these names are given in the Toolbox documenta-
tion in the Microsoft FORTRAN literature; the rest can be found
in the Apple document Inside Macintosh. Toolbx.par must be
included in every program unit (program or subprogram) that
uses these symbolic names.

It should be noted that, although the use of toolbx.par does
not cost either space or time in the compiled application, it
does take up memory during compilation. This means that some
large programs may not compile with toolbx.par included which
would compile without it. There are several remedies to this
situation.

One method is to get the values of the required Toolbox names
and use them directly in calls to toolbx.sub. This allows you
to leave out toolbx.par, and takes the least compile time
memory of all. For example, the call

call toolbx (GETNEXTEVENT, eventmask, myevent)

Xvii

Microsoft FORTRAN Compiler

can be written as
call toolbx(357, eventmask, myevent) ! GETNEXTEVENT

Another method 1is exemplified by the program demo.for
(included in source on your release disk). Those parts of
toolbx.par which were required for this program were
abstracted into the file demo.inc, greatly reducing the number
of definitions in the program unit and therefore reducing the
amount of memory needed during compilation.

Source Files

The source files folder contains sample programs, benchmarks,
and demos, to highlight the capabilities of Microsoft FORTRAN
and allow you to learn by example. Also included is init.asm,
the main program startup code for programs generated by
Microsoft FORTRAN. This is included both for the benefit of
those programmers who require this specialized and detailed
knowledge, and for use by the compiler: it is automatically
include'd into the applications you write using Microsoft
FORTRAN.

The FORTRAN programs demonstrate some of the capabilities of

Microsoft FORTRAN. The subroutine source files are for
documentation purposes only. All except rad50.for are
assembly language files. They were not assembled on a

Macintosh, and are not guaranteed to be source compatible with
Apple's 68000 assembler for the Macintosh. They are included
for those Microsoft FORTRAN users who need to understand their
function in detail.

The FORTRAN programs included demonstrate various features of
Microsoft FORTRAN. You may find it useful to try compiling one
of these programs before writing any of your own to familiarize
yourself with the operation of the compiler. A brief
description of each of these programs follows.

bases.for - This program does base conversions using the
Microsoft FORTRAN decimal, binary, octal, and
hexadecimal format descriptors.

byte.for - This is a Sieve of Eratosthenes prime number
benchmark taken from Byte Magazine.

demo.for - This program demonstrates the use of some of
the Macintosh interface features using toolbx.sub.
It uses the include file demo.inc, an abstract of
definitions from toolbx.par. This file must be
present to compile demo.for. Some of the interface
features demonstrated are multiple windows, the use
of FORTRAN I/0O in Macintosh windows, menus, and
graphics.

xviii

Getting Started

err.for - This program demonstrates program control of
floating point error conditions as described in the
FORTRAN reference manual.

pi.for - This program calculates the value of pi using
the binomial theorem.

type.for - This program types a text file out to the
screen, one page at a time.

Additional sample programs may be included on your disk. These
are developed as examples in response to technical questions
asked by other programmers like yourself. They are provided
for your benefit, in case your current or future needs require
the special information that they demonstrate. Look for in-
line comments within the source files. These will explain the
purpose and operation of the sample code.

Writing a Sample Program

This discussion assumes you have only one disk drive. You will
edit, compile, and run a simple program.

First, make a copy of the compiler disk. Turn off your
Macintosh. Turn it back on. Slide OPEN the disk write
protection window of the compiler disk you received. This
protects you against accidentally damaging the files on the
disk, and ensures that you can always start over. Insert the
MS FORTRAN Compiler disk into the internal drive of the
Macintosh. Your Macintosh should "smile®™ at you, and

eventually present you with a Macintosh desktop.

Eject the compiler disk now. You can do this by holding down
the command key (the "cloverleaf" key beside the space bar) and
pressing the "E" key. (This is called pressing "command-E".)
The disk should be ejected.

Insert a disk on which you will place a copy of the compiler
disk. If the new disk has never been used before, you will be
asked whether to initialize it. If so, respond to initialize.
If the new disk has been used before, and has not already been
erased, erase it now.

Next, select the MS FORTRAN Compiler disk by moving the mouse
until it is centered on the disk icon. Hold down the mouse
button and drag the outline of -the compiler disk on top of the
target disk. When the target disk becomes highlighted, release
the mouse button.

You may be presented with a Macintosh dialog box, asking

whether you wish to completely replace the contents of the
target disk with the contents of "MS FORTRAN Compiler."

Xix

Microsoft FORTRAN Compiler

Respond OK by clicking the mouse on that selection within the
dialog box.

On a 128K Macintosh, it takes about three minutes (and about
twenty disk swaps) to complete the copy.

Now pull down the Special menu and select the Shut Down
option. It may ask you to reinsert your copy disk before it
completes the shut down process. Put your original compiler
disk in a safe place. Use it only to make new copies.

After the shut down, the Macintosh looks as though you Jjust
turned it on. Insert your newly created copy of the compiler
disk into the internal drive. It should initialize the
Macintosh just as your original compiler disk did.

Open the disk icon. You should see the desk items just as they
appear in Figure 1. Start the editor. You can do this by
double-clicking the mouse on the Edit icon.

Pull down the File menu and select New. The editor opens an
edit window, ready for you to enter your program.

Press the Tab key, then type the following program:
write(9) "Hello"
pause

end

Now pull down the File menu and select the Save As ...

option. When it asks you for a document name, key in progl.
Click on the save button. You should hear the disk whir as the
file is saved. Then the dialog box disappears and the edit

window shows the name progl across the top.

Pull down the File menu and select Quit. You are returned to
the Macintosh desktop. Two new items appear next to the six
that were initially there. One is the DeskScrap. The other
is progl, your source program file. These take up about 3K
bytes.

Double-click on the MS FORTRAN icon. A new menu bar appears,
with an apple and the words File, Compile, and Transfer.
Press command-f. This has the same effect as pulling down the
File menu and selecting Select File. A file selection window
opens. Progl is the only item displayed. Double-click on
progl, or click once on the open button. Progl is selected,
and the dialog box disappears.

XX

Getting Started

Pull down the Compile menu and select Compile, or press
command-c. A compiler window opens, and the following 1is
displayed.

1: Symbol table complete
Memory usage:

Labels 480 bytes
Symbols 2040 bytes
Total 50646 bytes
Excess 22820 bytes
Source 3 lines

2: Object file complete
3: Program file complete: 332 bytes
Elapsed time: 0:24 = 7 lines/minute

Your numbers may differ from those shown above.

Pull down the Transfer menu and select Select Application.
A window opens, presenting four applications for you to choose
from. They are debug, Edit, MS FORTRAN, and progl apl.
Click on progl apl and then on open, or simply double-click
on progl apl.

After a moment, a window opens and the word Hello appears.
Your program has executed its write statement, and is now
waiting for you to give it input to satisfy its pause state-
ment . Press Return. Your program continues from its pause,
and then ends. You are returned to the Macintosh desktop.

By dragging the disk directory window farther open, you see one
new file on the disk: progl apl. It takes about 1K of disk
space.

Additional Notes

The following notes address issues that seem to deserve addi-
tional attention.

Sample Code 1Illustrates Features

The source code and include files present on the utilities
disk, MS FORTRAN Utilities, illustrate features of Microsoft
FORTRAN 77. These file are provided to give you examples to
work from as you develop your own applications. You can find
in them many notations explaining their operation.

A Note to Serious Programmers. It is impossible to empha-
size this point too much, and so it is repeated here: Serious
programmers will find the answers to many or all of their
technical questions as they read through the commented source
files provided. This material is not presented as part of the
manual because of the degree of detail and complexity involved.

XXi

Microsoft FORTRAN Compiler

For "vanilla" FORTRAN, this information is not needed. But for
full utilization of the Macintosh, this information encapsules
the answers to many challenging interface questions.

Final Pause

If the Macintosh desktop appears too quickly after your program
ends, consider placing a pause statement in your program just
before the final exit. This lets you view the screen at your

leisure, but requires you to enter a keystroke before the
program can terminate.

The * Unit

The default for the * unit is unit 5 for input and unit 6 for
output. On the Macintosh, it is 1likely that most input and
output will be directly through the keyboard and the screen.
If this is your situation, use the compiler options to
redirect the * unit to be unit 9.

Units S5 and 7

Microsoft FORTRAN 77 is designed to support a card reader and

magnetic tape. Normally, unit 5 is pre-opened to the card
reader, or simulated card reader, and unit 7 is pre-opened to
the tape drive. However, these peripherals are not supported

by the Macintosh. You may open these unit numbers and use them
for normal file access. However, if you use these unit numbers
without opening them, you will get unpredictable results. This
is in contrast to most other unit numbers, which are not pre-
opened to any particular device, and which report an error if
access is attempted without first opening them.

Downloading Source Files To The Macintosh

Source files can be downloaded to the Macintosh, but beware of
this problem. Macintosh uses a carriage return to separate
lines of input. Many computers use a carriage return followed
by a line feed to separate lines of input. The compiler
accepts either form. However, the debugger does not handle
line feeds properly when they appear in the source file.

Debugging Applications That Use Windowing

The debugger uses windowing in the same way that application
programs might. Without multitasking capabilities, extra
caution should be used during debugging to ensure that window
operations apply to the application's windows, and not to the
windows opened by the debugger. For example, a windowing

xxii

Getting Started

application might routinely close the output window provided by
FORTRAN before opening other windows. Under the debugger, the
window close operation could accidentally terminate the
debugger itself, and result in a system error.

End-Of-Record Control

ANSI standard FORTRAN specifies that the WRITE statement
generate an end-of-record indicator for each write statement.
In some cases, this causes a great burden on programmers, and a
number of language extensions are in use by various FORTRAN
language vendors to suppress end-of-record characters in
program output. The method used by Microsoft FORTRAN for the
Apple Macintosh is to have two separate statement verbs: WRITE
and TYPE. The WRITE verb will always add end-of-record
control. The TYPE verb will never add end-of-record control.
With the TYPE verb, what you send is exactly what goes out - no
more, and no less. You are totally responsible for adding your
own control characters, including line feeds, form feeds,
carriage returns, etc.

README Files
If present on your distribution disks, README files highlight

information that was not available in time to be included in
the printed manual. Be sure to check for them.

xxiii

User's Guide

Microsofte FORTRAN Compiler
for the Applee Macintosh.

User's Guide

CHAPTER 1

INTRODUCTION

1.1 FORTRAR 77

The FORTRAN programming language, a contraction of the words
FORmula TRANslation, is a computational problem solving
language. Because it resembles familiar arithmetical
language, it greatly simplifies the preparation of problems
for machine computation., Data and instructions are organized
in a sequence of FORTRAN statements, This sequence of
statements is referred to as the source program, A program
written in the FORTRAN langquage can be processed on any
machine which has a FORTRAN compiler with little or no
modifications to the source program. In this sense, the
FORTRAN language is said to be machine independent.

Microsoft FORTRAN Compiler

1,1,1 History of the Language

The FORTRAN language, first implemented in 1956, was designed
for the solution of mathematical problems. It was released
for customer use by IBM Corporation in 1957. In the years
between 1957 and 1966, the language underwent several changes
and was standardized in 1966 by the American National
Standards Institute (ANSI). This 1966 standard, technically
known as FORTRAN 66, was the 4th version of FORTRAN, hence
the name FORTRAN IV, In the years 1leadin up to 1977 the
language evolved and extensions were agded to compilers at
various computer installations. In 1977 the language again
underwent the standardization procedure and on April 3, 1978
the American National Standard Programming Language FORTRAN,
known as FORTRAN 77, was established., As of the writing of
this document, this is the latest published standard for the
FORTRAN language and is the basis of the implementation
provided by Microsoft Corporation.

The FORTRAN language, as originally implemented, was designed
for use with punched cards. The punched card in the mid to
late 1950's was the standard method of loading programs into
computers, Later versions of the language have retained the
original formatting rules even though the use of punched
cards for source program preparation has all but vanished.

l1.1.2 RICROSOFT FORTRAR 77

Microsoft Corporation's FORTRAN 77 is a complete
implementation of the 1977 ANSI version of the FORTRAN
language. In addition, many useful extensions have been added
including many of those which will be incorporated in the
next standard published by ANSI. The compiler operates in
three passes, with each pass consisting of a separate
overlay, allowing it to operate in a minimum amount of memory.

Microsoft FORTRAN provides all of the file I/0 facilities
required by the ANSI standard resulting in the capability of
a FORTRAN program to execute with little or no knowledge of
the file I/0 conventions of a particular operating system.

INTRODUCTION

In addition, standard implicit input and output units are
provided allowing a FORTRAN 77 program to input from a data
file and output to a line printer without opening, closing,
or naming a file, Even the actual unit number that the file
is internally connected to never needs to be referenced. The
following program will copy its input to its output on
standard conforming implementations of FORTRAN:

PROGRAM COPY
CHARACTER*80 TEXT

1 READ (*,10,END=2) TEXT
PRINT *,TEXT
GOTO 1

2 STOP

10 FORMAT (A80)
END

using the structured facilities of Microsoft FORTRAN 77, the
same program could be written as:

program copy

character*80 text
integer eof

do
read (*,'(a)',iostat=eof) text

if (eof) exit
print *,text
repeat

end

Microsoft FORTRAN Compiler

1.2 USIRG THIS DOCUMERT

This document was designed as a reference manual for the use
of the Microsoft implementation of FORTRAN 77. As such it is
not a tutorial on FORTRAN, The bibliography in Appendix C of
this manual lists several books which can be helpful in
learning to program with FORTRAN,

The second chapter describes the use of the compiler and the
many options that may be selected. A careful reading of this
chapter is strongly advised as most questions we are asked
can be answered by referring to this chapter, Chapter 3
describes one of the more powerful features of Microsoft
FORTRAN 77, DEBUG, the symbolic debugger. The remaining
chapters describe the syntax and structure of FORTRAN 77.
Contained in the appendices is information on writing
assembler procedures for PORTRAN, using the instrinsic
function library, and restrictions on the implementation.

INTRODUCTION

l.2.1 CONVENTIONS USED IR THIS DOCUMENT

The terms "computer™, "monitor®, and "environment" refer in
general to the operating system under which the compiler is
implemented. Certain restrictions, enchancements, and
features may or may not apply due to a particular operating
system. Refer to the implementation notes supplied with the
compiler for further information,

The term "processor”™ refers in context both to the compiler
and to the execution environment. In particular, the compiler
will choose certain instruction sequences and execution
options which are appropriate to the hardware machine
environment.,

1, Unless otherwise indicated, all numbers are in
decimal form.,

2, [] square brackets indicate that a syntactical item
is optional

3. "¢ a circumflex followed by a character indicates
that an ASCII control character is required, This
non-printing character is usually generated by
pressing a special key on the terminal
simultaneously with the required character. The
special key is generally labeled CONTROL, CTRL, or

ALT.

4, ... indicates a repetition of a syntactic element

5. RETURN specifies generating the ASCII value 13 from
the terminal, This is normally accomplished by
pressing the key labeled RETURN, RET, or ENTER.

6. ESC indicates the ASCII escape character (27) which
is usually labeled on a terminal keyboard as ESC,
ESCAPE, or LEADIN,

7. RAD50 refers to a method of packing three upper case
ASCII letters or digits into two bytes of storage,
providing an efficient method of compression.
Appendix G describes the RADS50 algorithm.

8. The terms relative address and location when used in

referencing executable program files and object
modules refer to a memory location whose address is
specified relative to the base of the program.

1-5

CHAPTER 2

THE MICROSOFT FORTRAN COMPILER

The Microsoft FORTRAN compiler is designed to provide
mainframe FORTRAN facilities to the mini and micro computer
programmer, A large number of options and debugging tools are
available, providing a great deal of flexibility to the
programmer who 1is designing and installing applications and
systems software. The compiler can generate completely or
partially linked executable object modules or assembler
source code., All code produced by the compiler and all
library routines are relocatable, position independent, and
reentrant, The compiler itself is position independent, but
not reentrant nor serially reusable,

Microsoft FORTRAN Compiler

2.1 COMPILER INVOCATIOR

Before attempting to use the Microsoft FORTRAN Compiler
system, we suggest making a working copy of all items
provided on the distribution diskettes, This includes the
Microsoft FORTRAN Compiler itself (represented by a card deck
icon), the interactive debugger, Debug, and the F77 Overlays
folder, whose contents are represented by ordinary document
icons,

Sl 77 overlays

1 items 188K in folder 831K available
NDDODDDDD
f17.fc debug.fc f77001.fc f77003.fc f77002fc 77004 .fc 77 =

K| =]

To use the Microsoft FORTRAN Compiler, a source file is first
prepared using Edit or some other text editor. If MacWrite is
used, care must be taken to save the file as text only before
attempting to compile it, MacWrite adds text formatting
information which the compiler does not understand.

Source files moved to the Macintosh from other computers
using one of the many download utilities can also be compiled
by the Microsoft FORTRAN Compiler, It is a good idea to make
sure that there are no line feed characters (ASCII 10) in the
file, Macintosh text files use only the carriage return
character (ASCII 13) to terminate 1lines. The Microsoft
FORTRAN Compiler will compile files with line feeds in them,
treating them as blank lines. The Microsoft FORTRAN Compiler
debugger also uses the source file, however, and it cannot
tolerate line feeds. Such a file cannot be debugged.

THE MICROSOFT FORTRAN COMPILER

The compiler itself is invoked by opening the card deck icon
provided on the Microsoft FORTRAN Compiler diskette. After
the icon has been opened, a blank desktop with five menus in

the menu bar will be displayed.

To specify the file to be compiled, choose the "Select File"
option under the "File" menu. This will display the standard
file selection window which you may be familiar with from
MacWrite or MacPaint.

r
& N[N Compile Transfer

dialog.inc :
err.for FORTRAN
event.inc
factor.for
fft.for
file.inc (Drive)
font.inc

Only files with the "TEXT" attribute, represented in the
Finder by a document displaying uneven text, will be
displayed in the standard file dialog's list. Click on one of
these with the mouse, and then click the "OPEN" button. The
dialog window will disappear.

Microsoft FORTRAN Compiler

At this point, several selections under the menus which were
previously displayed in grey and therefore unavailable become
black, including all of the selections under the "Compile"
menu., There are several options affecting the behavior of the
compiler which are specified by choosing "Options” under the
"Compile™ menu. A dialog window with check boxes for each
option will be displayed.

(CLERR} [sAbE) [0K |

[JA - Generate Aissembly Source JK - Ignore Character Case
(1B - Compile Using Long Rddresses []L - Generate Full List

[J € - Check Array Boundaries N - Display Card at Run Time
& 0 - Display Card at Compilation [(JR - Subprogram Compilation
] € - Generate Errors List pJ s - Generate Symbol File
¥ - dsee Hardwsare flaating Point (Ju-*=0Unit9

[JH - Program is fortran 66 [- Integer*2 Default

1 - List Include Statements 14 - Compile if 4 in Column 1

[JJ - Externalize Unresolved

L)

Each option can be turned on or off by clicking in the
corresponding check box or on the option title itself, or by
entering the corresponding letter at the keyboard., A2n "X" in
the box next to an option indicates that it is on. Options
remain in effect until you leave the Microsoft FORTRAN
Compiler system. The effect of each option is described in
Section 2.2 of this chapter (COMPILE TIME OPTIONS).

THE MICROSOFT FORTRAN COMPILER

After the options have been set, the file can be compiled by
choosing either "Compile", "Compile and Execute", or
"Compile and Debug" under the "Compile"™ menu, The only
difference between these three options is the action taken
after a successful compile. "Compile"™ returns you to the
Microsoft FORTRAN Compiler environment, allowing you to
compile other files. "Compile and Execute" launches the
application produced by the compiler, Jjust as if you had
opened it from the Finder. When the application is complete,
it will return to the Finder desktop. "Compile and Debug"
invokes the interactive debugger on the new application.

After the compile option is chosen, the compiler window will
appear., This window is essentially a simulated teletype and
cannot be sized or moved., It does not update itself after
being covered by other windows except by erasing its contents
and placing the cursor at its upper 1left hand corner.
Through this window, the compiler reports information to you
regarding its progress.

Microsoft fortran compiler U2.] ===

t: Symbol table complete
Hemory usage:

Labels 480 bytes
Sumbols 6320 bytes
Total 54926 bytes
Excess 379512 bytes
Source 740 lines

2: Object file complete
3: Program file complete: 2408 bytes
Elapsed time: G:34 = 1305 lines/minute

This information can take varying formats depending on what
options are selected. The following discussion summarizes the
operation of the compiler without any options selected. The
variations are described with the discussion of the options

in the next section (2.1.1).

Microsoft FORTRAN Compiler

2.1.1 Compiler Passes

After performing its initialization, the compiler begins its
first pass which involves syntactical analysis, developing
symbol tables, and generating an internal intermediate code.
At the beginning of this pass, the compiler displays:

1:

At the end of this pass the compiler display will appear as
follows:

1: Symbol table complete
Memory usage:
Labels nnnnnnnn bytes
Symbols nnnnnnnn bytes
Total nnnnnnnn bytes
Excess nnnnnnnn bytes
Source nnnnnnnn lines
2:

where nnnnnnnn is a decimal value. "Total" represents the
actual amount of memory required by the compiler including
its own size, tables, and work stacks.

The compiler then proceeds with the second pass during which
run time memory allocation requirements are established,
machine object code is generated, and most backward address
references are resolved., At the end of this pass, the display
will appear as:

l: Symbol table complete
Memory usage:
Labels nnnnnnnn bytes
Symbols nnnnnnnn bytes
Total nnnnnhnnn bytes
Excess nnnnnnnn bytes
Source nnnnnnnn lines
2: Object file complete
3:

THE MICROSOFT FORTRAN COMPILER

During the final pass, the compiler resolves all remaining
address references and installs certain numeric constants
which were not established in line. The final compiler
display will be:

1l: Symbol table complete
Memory usage:
Labels nnnnnnnn bytes
Symbols nnnnnnnn bytes
Total nnannnnn bytes
Excess nnnnnnnn bytes
Source nnnnnnnn lines
2: Object file complete
3: Program file complete: nnnnnn bytes
Elapsed time: m:ss = nnnn lines/minute

where nnnnnn is the size of the executable object module.

Because the compiler is disk based, there is a certain
constant amount of overhead in file management, The
compilation of small programs will reflect this overhead in a
relatively low lines per minute statistic, Larger programs
will tend to mask this overhead and produce a far greater
statistic,

Microsoft FORTRAN Compiler

2,1.2 Compiler Error Reports

If syntactical, grammatical, or structural errors were
encountered during the first pass, the display will appear as
follows:

1: Symbol table complete - 3 errors detected
Memory usage:
Labels nnnnnnnn bytes
Symbols nnnnnnnn bytes
Total nnnnnnnn bytes
Excess nnnnnnnn bytes
Source nnnnnnnn lines
2: Bypassing
3: Error report:

If control, context, or labeling errors were encountered
during the second pass, the compiler will display:

1: Symbol table complete
Memory usage:

Labels nnnnnnnn bytes

Symbols nnnnnnnn bytes

Total nnnnnnnn bytes

Excess nnnnnnnn bytes

Source nnnnnnnn lines
2: Object file complete - 2 errors detected
3: Error report:

The "Error report"” lists the first statement line of the
statement in which the error occurred, the line number of the
statement, the six characters preceding the offending code,
and a message describing the type of error. Every practical
effort has been made to avoid meaningless "Syntax error"
messages and provide the user with informative descriptions,
Consult Appendix D of this manual for a complete list of
compile time error messages.

If there are enough error messages, the compiler window will
begin to scroll. Error messages may be scrolled out of the
window before you can read them. To temporarily stop the
printing of error messages, enter Command-S from the keyboard
(the Command key and the "S" key simultaneously); to
continue, enter Command-Q.

THE MICROSOFT FORTRAN COMPILER

2,1.3 File Names

As mentioned above, a file must have the "TEXT" attribute to
be compiled by the Microsoft FORTRAN Compiler. The name of
this file can be any legal Macintosh name except that it is
limited to 32 characters (not 64 as for the Finder).

To maintain compatibility with other systems, file name
extensions on the source file name will be processed if they
exist. An extension immediately follows the file name proper
and consists of a period followed by one to three characters.
The compiler output files have the same name as the input
source file with different extensions. If no extension was
provided with the source file, the output name extensions are
simply added to the input name. If the resulting names would
be greater than 32 characters, the input name is shortened
before adding the output extension. If an input extension is
provided (".for" by convention), it is removed before the
output extension is appended. The output extensions are:

1. ™ apl®™ - an application created by the compiler.
This extension starts with a space, not a period.

2, ".sym"™ - a Debug symbol file,
3. ".1lst"™ - a compiler list file.

4, ".,sub" - an unlinked subroutine file (loaded from
the disk when called at run time).

Microsoft FORTRAN Compiler

2,1.,4 Compiler Output

The principal output of the compiler is a Macintosh
application which appears on the Finder desktop as a hand
writing on a blank page., This is the default icon for
applications. Opening this application will start your
program, Jjust as with any other application. As mentioned
below, the compiler will optionally produce listing and debug
symbol files. These both appear as document files with no
attributes, appearing on the Finder desktop as blank page
icons. The compiler will also produce subroutine and function
files which can be loaded at run time. These appear on the
Finder desktop as document files also; they cannot be run by
themselves.

Occasionally, other blank page icons with the name of your
source code file appended with .fl, .f2, or similar
extensions will appear if the compiler failed to run to
completion., These are intermediate files used only by the
compiler, They can be put in the trash, or the compiler will
remove them the next time you compile the same file.

2.1.5 The Transfer Menu

This menu is provided as a convenience for moving easily and
qguickly from the Microsoft FORTRAN Compiler to other
Macintosh applications, The most common application you will
want to transfer to is Edit (when the compiler reports an
error), so it is listed on the menu for direct selection. You
may, however, transfer to any application by clicking the
"Select Application™ menu item which will display a standard
file dialog box,.

THE MICROSOFT FORTRAN COMPILER

2,2 COMPILE TIME OPTIONS

2.2.1 The INCLUDE statement

This statement is a compiler directive and is provided as a
convenience for copying standard declaration statements,
subroutine 1libraries, and documentation sections directly
into a source file at compile time. The syntax of this
statement is:

INCLUDE filespec{/L]
where: filespec is a standard system file specification

/L indicates that the included file is to be 1listed
with the compiler listing

The listing of INCLUDE file statements is normally
suppressed, however they may be selectively included in the
compiler 1listing by appending /L to the file specification or
using the I option switch (see below) to force the listing of
all included files.

An included file may not contain an INCLUDE statement. That
is, INCLUDE statements may not be nested.

2.2.2 The PAGE statement

The PAGE statement is a compiler directive to force the
compiler to insert a form feed in the list file, The PAGE
statement itself is removed and replaced by the form feed
character.

2-11

Microsoft FORTRAN Compiler

2.2.3 Generating Assembler Source

The compiler normally generates executable machine code and
contains branch shortening logic. Unresolved procedure
references will be treated as overlays unless linked with the
Microsoft 1linker. There may be situations where it is
desirable to have more control over the object code (hand
optimization, additional assembler code, etc.,). In these
instances, the compiler can generate an assembler source file
by selecting the A option,

The assembler source code will have the first 1line of each
FORTRAN statement interleaved as commentary. The compiler
assumes that the local assembler has no facilities
whatsoever., There are no macro definitions nor symbolic
assignments; branches are not optimized and every opcode is
explicitly stated.

When this option is selected, the first pass proceeds
normally, however a special second pass is called which is
also the last pass:

1: Symbol table complete
Memory usage:
Labels nnnnnnnn bytes
Symbols nnnnnnnn bytes
Total nnnnnnnn bytes
Excess nnnnnnnn bytes
Source nnnnnnnn lines
2: Source file complete
3: Elapsed time: m:ss = nnnn lines/minute

2.2,4 Long Addressing Mode

In order to generate position independent code, the compiler
selects program counter relative and base register addressing
modes during code generation. Using these modes, certain
instructions are limited to a signed 32K byte displacement
and cannot reach the entire address space. Some FORTRAN
statements can generate machine instructions that exceed this
limit: GOTO, DO, ASSIGN and label references. When this
occurs, a diagnostic is issued during the 1last phase of
compilation and the program must be recompiled using the B
option. Your program will be larger, but will still be
position independent.

THE MICROSOFT FORTRAN COMPILER

2.2.5 Array Boundary Error Checking Code

The C option causes the compiler to generate code for
validating an array index. The code determines if an
individual array element falls within the lower and upper
boundaries of the array; individual dimension subscripts are
not tested.

Only arrays whose dimension specifications were established
with actual declarators have code generated for boundary
checking. Adjustable arrays and arrays whose lower and upper
bounds are equal to one do not have boundary checking code

generated.

2,2,6 Card Number Display at Compile Time

Selecting the D option causes the compiler to display the
card number of the statement it is processing during passes 1
and 2. During pass 3 it will display the symbolic name of the

program unit it is linking.

The P option is primarily a compiler debugging tool: it
indicates the card number of the statement where the compiler
choked., However, many users swear that the compiler runs
faster with card numbers flashing by.

2,2.7 Generating Inline Hardware Ploating Point Code

Hardware support for floating point operations wusing
peripheral devices such as the SKY FFP board or the National
Semiconductor N32081 is provided on a threaded code basis in
a special runtime 1library. There is a small amount of
overhead involved in calling the routine and returning from
it, Under certain circumstances this overhead can be
significant and it may become desirable to eliminate the call
and return instructions from the execution path., The F
compiler option causes inline expansion of the hardware
library procedures for single precision add, subtract,
multiply, divide, and type conversion operations.

The inline expansion may be selectively controlled through
the use of the OPTION statement (see below).

Note: There are currently no hardware floating point devices
available for the Macintosh,

2-13

Microsoft FORTRAN Compiler

2.2.8 PORTRAR 66 compatibility

To a great extent, FORTRAN 77 is compatible with FORTRAN 66,
There are, however, some areas where problems may arise in
attempting to compile and run a FORTRAN 66 program without
modification., These include PFORTRAN 66 features no 1longer
supported, resolution of ambiquities, and the inclusion of
newer features in FORTRAN 77 that conflict with FORTRAN 66.
The major issues are the Hollerith data type, DO loops, and
dynamic storage allocation,

This implementation of FORTRAN 77 has been extended to
support Hollerith constants in DATA statements, in the

argument lists of CALL statements, and in the argument 1lists
of external function references,

The following FORTRAN 66 features are invoked by specifying
the H compiler option:

1. Under certain conditions, FORTRAN 66 permitted
branching into the range of a DO loop. This was
known as "extended range of a DO" and is prohibited
in FORTRAN 77. The compiler normally attempts to use
machine registers for DO loop indexing: branching
out of and then back into a DO loop may cause the
index register to be altered yielding unpredictable
results, The H option will cause the compiler to use
memory rather than registers for DO 1loop indexing
providing for extended range DO loops.

2., FORTRAN 66 did not specify the execution path if the
iteration count of a DO loop, as established from
the DO parameter 1list, was zero. Many processors
would execute this loop once, testing the iteration
count at the bottom of the loop. FORTRAN 77 requires
that such a DO loop not be executed. The H option
will cause all DO 1loops to be executed at least
once, regardless of the initial value of the
iteration count.

3. In FORTRAN 66, all storage was static. If you called
a subroutine, defined local variables, and returned,
the variables would retain their values the next
time you called the subroutine, FORTRAN 77
establishes both static and dynamic storage. Storage
local to an external procedure is dynamic and can
become undefined with the execution of a RETURN
statement., The SAVE statement is normally used to
prevent this, but the H compiler option will force
all program storage to be treated as static. Chapter
4 fully discusses definition status and events that
can cause entities to become undefined,

THE MICROSOFT FORTRAN COMPILER

2.2.9 Generating External Symbol References

When generating an assembler source file, the compiler treats
unresolved procedure references as overlays. The J option
allows you to specify that unresolved references are to be
treated as external references for your linker to resolve and
tauses the compiler to generate appropriate source code,

The J option implicitly sets the A option and can be
selectively controlled with the OPTION statement ({see below).

2,2,10 Compiler Listings

Three of the compiler options concern listings: L, I, and E.

The 1listings generated by the compiler are useful for
debugging and documentation purposes.

A compiler listing takes the following general form:

1. Page headers including source file name and
directory, date, and page number.

2, Program unit name and the relative address (in
octal) of its entry point.

3., Fifty-five 1lines of source text per page with each
source line numbered, including comment lines,

4. Symbol and label tables.,

The symbol table generated by the compiler reports the name,
type, and size of variables, arrays, symbolic constants, and
function procedures in each program unit, If the symbol is
associated with a common block, the name of that common block
is listed. In addition, a storage location relative to the
base of the data area is given., The location takes the form
of a relative address (in octal).

Undeclared symbols, symbolic names which did not appear in a
specification statement, are noted with a plus sign (+)
following the listing of their name. This is useful for
locating possible spelling errors and checking on implicit
typing.

The label table section of the listing includes the label and
its relative address (in octal).

2-15

Microsoft FORTRAN Compiler

2.2.10.1 The L Compiler Listing Option

The L option invokes the full listing phase of the compiler,
This is actually a separate pass, If any errors were
encountered during compilation the error diagnostic will
appear in the list file at the offending statement,

2,2,10,2 The I Compiler Listing Option

INCLUDE files normally are not incorporated into a compiler
listing. Individual INCLUDE files can be added to the
listing by appending "/L" to the file specification in the
INCLUDE statement., For documentation purposes it may be
useful to have a listing which reflects every source line
encountered by the compiler, To force all INCLUDE files to be
listed, select the I option.

The I option is recognized only when used with the L option.

2.2.10.3 The E Compiler Listing Option

The E compiler option causes error reporting to be directed
to a file rather than the terminal. A file is not created if
there were no errors encountered during compilation.

2.2,10.4 List Option Compiler Display

The compiler display, when a list option is specified, will
appear as:

1: Symbol table complete
Memory usage:

Labels nnnnnnnn bytes
Symbols nnnnnnnn bytes
Total nnnnnnnn bytes
Excess nnnnnnnn bytes
Source nnnnnnnn lines

2: Object file complete

3: List file complete

4: Program file complete: nnnnnn bytes

Elapsed time: m:ss = nnnn lines/minute

2-16

THE MICROSOFT FORTRAN COMPILER

2,2,11 Folding Symbolic Names to Upper Case

Normally, the compiler considers upper and 1lower case
characters to be unique, If you do not require case
sensitivity for your compilations or specifically require
that the compiler not distinguish between case, including the
K option on the compiler invocation command line will force
all symbolic names to be folded to upper case.

2.2.12 Card Numberg with Run Time Brrors

It is possible to have the line number reported during error
recovery at run time, This option is invoked by adding the N
option switch to the file specification at compile time. The
N option is intended as a debugging tool and its use is not
recommended after the program is completely operational in
that it will slow execution speed and add six bytes to the

object file for every executable statement.

2,2,13 Creating Unlinked External Subprograms

It is not necessary for all external procedure references to
be resolved either at compile time or run time, A completely
linked executable object module may be created by either the
compiler or the 1linker. In addition, the FORTRAN runtime
system is capable of providing dynamic linkage to external
Srocedures. The unlinked procedure may reside in a library

irectory on external media or in a sharable area of systenm
memory. The runtime system will attempt to locate (and load)
any external procedure whose reference is unresolved at
compile time or at link time, If the module was loaded from
disk storage, the memory space allocated for its execution
and data areas is recovered when it returns to the calling
procedure, This is in essence a powerful overlay facility. 1In
addition, commonly used subroutines, such as DATE and TIME
may be placed in a sharable area of system memory reducing
the runtime memory requirements of all programs requiring
them.

Normally, if a source file does not contain a main program,
the error diagnostic: "Missing main program®™ is generated.
The R option is used to force the compiler to generate code
which can be 1linked by either of the two methods described

above.

As a consequence of dynamic linking, misspelled references to
subprograms may cause the compiler to treat them as external,

resulting in the runtime error message: "subprogram not
found®.

2-17

Microsoft FORTRAN Compiler

2.2.14 Generating Symbol Tables for DEBUG

DEBUG is the symbolic debugger provided with the compiler. In
order to use the debugger on a program, a symbol table
containing symbolic names, data types and sizes, and relative
addresses must be available. The S compiler option is used to
inform the compiler that this symbol file is to be created.
The symbol file itself is partially generated during pass two
and completed during a special pass immediately preceeding

the final linking pass. The compiler display when the §8
option is selected will appear as:

1: Symbol table complete
Memory usage:
Labels nnnnnnnn bytes
Symbols nnnnnnnn bytes
Total nnnnnnnn bytes
Excess nnnnnnnn bytes
Source nnnnnnnn lines
2: Object file complete
3: DEBUG symbol file complete
4: Program file complete: nnnnnn bytes
Elapsed time: m:ss = nnnn lines/minute
When using "Compile and Debug" under the "Compile® menu, a
symbol file will always be generated regardless of the
setting of the § option.

2.2,15 Redirecting File Preconnections

File unit identifiers which are specified with an asterisk
(*) are normally connected to the system input and output
devices. In the Microsoft implementation of FORTRAN 77 these
are the simulated card reader and line printer spooler. The U
option allows you to redirect these connections to unit 9,
the terminal.

Units 5 and 6 cannot be redirected in this manner, only units
specified with an asterisk.

2.,2.16 Changing implicit INTEGER and LOGICAL sizes

Without an explicit length declaration, INTEGER and LOGICAL
data types default to thirty-two bits (two machine words).
The ¥ option is used to change this default length to sixteen
bits (one machine word).

THE MICROSOFT FORTRAN COMPILER

2,2,17 Conditional Compilation

Statements containing an X or a D in column one are treated
as comments by the compiler unless the X compiler option is
selected. This option allows a restricted form of conditional
compilation designed primarily as a means for easily removing
debugging code from the final program.

When the X option is selected, any occurrence of an X or a D

in column one is considered to be the same as a blank
character.

2,2.18 The OPTION statement

The OPTION statement provides a facility for selectively
turning certain options on or off during the compilation
process, The form of this statement is:

OPTION pption list

where option list consists of any combination of B, C, F, J,
N, or X. Each of these six options may be modified by a plus
(+) or minus (-) sign which turns the option on or off
respectively. The plus sign may be omitted., For example, in
the code segment:

OPTION CN

A(IX,IY) = DSQRT(VAL1-PI)
A(IX+1,I¥Y+1) = A(IX,IX)*2DO

OPTION -C-N

the first OPTION statement turns on array boundary checking
and card number reporting at run time, The two assignment
statements are compiled with these debugging features
enabled. The second OPTION statement turns off these features
until another OPTION statement reenables them,

Microsoft FORTRAN Compiler

2,3 CONVERTING EXISTING PROGRAMS TO MICROSOFT FORTRAN 77

First and foremost, spend the time and learn how to use the
debugger. It can save you hours of time and completely
eliminate the need to insert WRITE statements throughout your
code,

If your program is written in FORTRAN 66 you may have to
decide if you want to convert it to FORTRAN 77 or simply use
the H compiler option to establish FORTRAN 66 compatibility.
The H option was documented earlier in this chapter in the
section on COMPILE TIME OPTIONS and points out areas of
potential problems you will have to examine. If you do
convert your program to FORTRAN 77 it will run faster.

If your program is written in FORTRAN 77 there will be very
little, if anything, you will have to do.

1. Some FORTRAN 77 compilers treat all storage as
static but recommend that you include SAVE
statements in your subprograms for portability if
you depend on retaining the definition status of
local variables and named COMMON blocks through
successive call and return sequences. If you did not
do this originally, you will have to now.

2, You may have to examine explicit OPEN statements
with named files if your program came from a
different operating system environment, If you
relied on file preconnections established through
some JCL, the PROGRAM statement (Chapter 9) will
allow you to change the default unit numbers from 5
and 6. The Microsoft FORTRAN Compiler for the
Macintosh does not have the ability to establish a
file preconnection to unit 5 (the simulated card
reader).

THE MICROSOFT FORTRAN COMPILER

The Macintosh has I/0 capabilities not considered in the
design of FORTRAN 77. These are available to you using the
tool box subroutine (toolbx.sub) provided with the Microsoft
FORTRAN Compiler. To avoid having to convert your programs to
use these routines, a simulated teletype environment is
provided automatically by applications created by the
compiler, This is a non-movable, non-sizable window with no
goaway box, which displays 80 columns by 24 lines of text in
the Monaco 9 font, If you use standard FORTRAN output
statements such as WRITE directed to the console (unit 9),
the output will appear in this window. READ statements
directed to the console (also unit 9) will read keyboard
input, which is echoed on this window. Using toolbx.sub,
different fonts and graphics can be displayed 1in the
standard window, or it can be disposed of to make way for
more exotic interfaces.

You should make note of the fact that, when your FORTRAN
program terminates, the Macintosh will return to the Finder.
This erases all program results directed to the console., This
is not a problem if your program is interactive, but programs
which just display the answer on the console and quit will
give you very 1little time to read it. Such programs should
contain at least one PAUSE statement or a READ statement
directed to the console so that the program will not exit
until a carriage return is entered.

Microsoft FORTRAN Compiler

If your program uses extensions to FORTRAN provided by your
previous compiler, chances are we have included the@ for
portability. In addition to the various compile time options,
below is a list of some of the extensions we provide:

1. You may assign character data types to numeric
variables:

IVAL = 'TEST'

2. You may use logical operators on integer variables
for boolean operations:

IVAL = IVAL ,AND, 255

3. INTEGER*1, INTEGER*2, LOGICAL*1l, and LOGICAL*2 data
types are available.

4. SHIFT is provided as an integer intrinsic function;
you will not have to write your own again.

5. DATE and TIME are provided as subroutines for
extracting the system date and time,

6. A means is provided for specifying binary, octal,
and hexadecimal constants and 1/0 format lists,

7. SELECT CASE, CASE, and END SELECT statements are
provided for structuring multiple condition
execution blocks.

8. DO WHILE, WHILE, END DO, DO, REPEAT, CYCLE, and EXIT
statements are provided for looping structures,

9., TYPE and ACCEPT statements are available for
performing list-directed 1/0 to your terminal.

10. An EXECUTE statement is provided for chaining
programs together,

11. The compiler is case sensitive and symbolic names
may be up to thirty-one characters long.

12, The characters <, >, and = may be used for forming
relational operators.

13. Several methods of handling floating point
exceptions are provided (see Chapter 9).

2-22

CHAPTER 3

DEBUG - THE SYMBOLIC DEBUGGER

DEBUG is a window oriented symbolic debugging tool for
FORTRAN programs and external procedures written in FORTRAN,
It provides for executing single statements, setting
breakpoints, executing blocks of statements, and examining
and modifying the contents of program variables,

Microsoft FORTRAN Compiler

Throughout this chapter, the term "card" is used to refer to
the standard FORTRAN source record 1layout of seventy-two
significant columns. In that FORTRAN statements may be
continued over as many as nineteen records, the term card is
used to distinguish a single record from a complete
statement. Only the first card of any statement is listed in
the source code window; continuation cards are not displayed.
When listing source in the source code window, DEBUG will
display any executable statements contained in INCLUDE files
in place of the INCLUDE statement, This is necessary to
insure proper card/object code synchronization,

DEBUG is position independent, but 1is not reentrant nor
reusable,

When DEBUG requires a text response, line editing is
accomplished using standard Macintosh text editing commands.
The mouse may be used to position an insertion point within
the text, which will be displayed as a vertical line between
two characters. Text entered at the keyboard will be inserted
at this point, and the draw point will move to the right of
the new character, The backspace key deletes the character
immediately to the 1left of the cursor, and moves the cursor
left one character, Dragging the mouse through text will
select that text, Backspace will delete any selected text,
and any character entered at the keyboard will replace the
entire selection,

When DEBUG requires a file name, it will display the
Macintosh Standard File Window. This window displays all
files of the proper type(s) on the current disk volume in a
scrollable window, along with several buttons that can be
selected with the mouse. Choose the desired file by clicking
on the file name and then selecting OPEN, Selecting CANCEL
will abort the operation. The DRIVE button displays files on
the alternate disk drive if you have a two drive system, and
the EJECT button will eject the disk in the current drive,
allowing you to insert another.

DEBUG - THE SYMBOLIC DEBUGGER

3.1 INITIALIZATION

To use DEBUG on a FORTRAN program or subprogram, the source
file must be compiled using the 8 compiler option, This will
cause the compiler to generate a symbol file, The name of
this symbol file will be the same as the source file with an
extension of .SYM. The object file generated will be
identical to the standard object file with one exception:
subprograms which have a RETURN statement directly preceding
the END statement will be longer. The compiler does not
normally generate code for an END statement if it is directly
preceded by a RETURN statement since they produce exactly the
same code, however DEBUG requires that this c¢ode be present
for synchronization purposes.

The debugger can be invoked in one of two ways. One is by
opening the DEBUG file from the Macintosh Finder. This can be
done by single clicking the DEBUG icon and then choosing OPEN
from the Finder FILE menu, or by double clicking the DEBUG
icon, When invoked using this method, DEBUG will display a
Standard File window, as described above, allowing you to

select any text file on your system,

DEBUG can also be invoked from the Microsoft FORTRAN
Compiler, Selecting DEBUG from Microsoft FORTRAN's COMPILE
menu will debug the current file, which is specified with the
SELECT FILE option under the compiler's FILE menu. The
COMPILE AND DEBUG option will compile a file (generating a
symbol table regardless of the setting of the compiler
options) and then invoke DEBUG on it,

DEBUG will locate the object file and symbol file and load
them automatically. The source file will also be located for
listing the statement 1lines in the source code window. The
source file is read as a file, and is not loaded into memory.

After all the required files have been located and loaded, if
the object file is a main program, execution will be
initialized, returning to DEBUG at the first executable

statement, If the object file is an external procedure, DEBUG
will prompt for the main program with the same file selection
box it wuses to get the source file name. After all the
required files have been located and 1loaded, execution will
proceed until the first statement in the external procedure
is encountered. The menu bar will display a single menu named
Debug, and two windows will appear, One is a smaller version
of the default window used as a console b all Microsoft
FORTRAN Compiler applications; the other displays the first
page of the source code being debugged. These are described
below.

Microsoft FORTRAN Compiler

3.2 SOURCE CODE WINDOW

DEBUG keeps a page of twenty-one lines of executable source
statements in memory. The Source Code window can .be used to
view a portion of this text, up to the total 21 lines.

The file name of the source code being debugged is displayed
in the window's title bar. To the left of the file name is a
goaway box. Clicking on this with the mouse will make the
window invisible and inactive, The menu command SOURCE CODE
(see THE DEBUG MENU, below) will bring it back. It can also
be moved anywhere on the Macintosh screen by clicking the
mouse in its title bar, dragging the mouse to the new
location, and letting up on the mouse button.

The size of the Source Code window can be changed to view
long source 1lines or to accommodate other windows on the
screen, Clicking the mouse in the grow icon at the bottom
right will allow an outline of the bottom and right sides of
the window to be dragged to a new location, Letting up on the
mouse button changes the size of the window to fit the
outline,

A smaller version of the default run time window is displayed
at the bottom of the screen, This window is not sizable or
movable, but can be modified or even replaced through the use
of the TOOLBX subroutine in the application being debugged
(see "Microsoft FORTRAN Compiler Tool Box Interface", the
notes on using the toolbox from the Microsoft FORTRAN
Compiler).

Two card numbers are significant to DEBUG: the card number of
the current statement to be executed and the card number at
the cursor, When single stepping, these values will be the
same and the cursor will be on the statement to be executed
next, When executing blocks of statements, the cursor will be
on the statement where a soft breakpoint is set. The card
number of the current card is displayed in the source code
window enclosed in a hollow rectangle. A hollow arrow appears
to the right of the card number at the cursor.

Two types of breakpoints are used with DEBUG: hard and soft,
Hard breakpoints are those which are set explicitly with the
mouse, Soft breakpoints are implicitly set by moving the
cursor from the card which is to be executed next,

DEBUG - THE SYMBOLIC DEBUGGER

The 1locations of both the current card and the cursor are
affected by executing program statements. The cursor location
can also be changed by the SEARCH and FIND LABEL menu options
(above) or by the source code window scroll bar. Note that
this scroll bar, unlike most scroll bars in Macintosh
applications, does not necessarily affect the data displayed
in the window. It only moves the cursor; the source code
displayed in the window is adjusted to ensure that the cursor
is always visible,

The down arrow scroll bar button will cause the cursor to
advance to the next card and set a soft breakpoint at that
card, If the cursor leaves that portion of the source code

currentlg in memory (21 1lines), the next page will be
displayed with the cursor at the top.

The up arrow scroll bar button will cause the cursor to go to
the previous statement and set a soft breakpoint at the
cursor, If the cursor leaves that portion of the source code
currently in memory (21 1lines), the display will page
backwards eleven lines.

The page up and page down scroll bar regions (the gray areas
above and below the scroll box or thumb) will cause the
cursor to go back or forward 21 lines, respectively. A soft
breakpoint is set at the cursor.

Moving the scroll box (or thumb) within the gray area of the
scroll bar will move the cursor to the same proportional
point in the source file and set a soft breakpoint there. For
example, moving the thumb to the top of the scroll bar will
put the cursor on the first executable card; moving it to the
bottom will put it on the last executable card.

It is not possible to execute FORTRAN statements out of
sequence, All memory addressing modes are either PC relative
or base register relative. The contents of certain address
pointers is dependent on the previous execution sequence. All
execution is therefore forced to be sequential.

To conserve memory, the source file 1is read as a file to
locate cards to be displayed. An attempt is made to preserve
the current 1location 1in this file so that paging forward in
the source proceeds as quickly as possible. When Jjumping
around or moving backwards in extremely large source files, a
noticeable delay may occur in setting up a Source Code
window. Also, a pause may be noted when an INCLUDE statement
is encountered.

Microsoft FORTRAN Compiler

Only the first card of an executable FORTRAN statement or a
statement which generates in line data is displayed. Comments
and non-executable statements, except CONTINUE, ELSE, END IF,
CASE, and END SELECT, are not displayed. External procedure
references are executed as though they were a single
statement, If they are not already in memory, they will be
fetched, executed, deleted, and control will return at the
statement directly following the reference.

To use DEBUG on an external procedure written in FORTRAN, it
is necessary to either include it entirely within the main
source file, or execute DEBUG in the external procedure mode,

The external procedure mode is indicated by selecting the
name of the procedure when DEBUG is invoked. DEBUG will then
display a menu of application file names which can be
selected with the mouse, Select the name of the FORTRAN
program through which the procedure will be referenced.
Execution will proceed until the external procedure is
referenced at which point the Source Code window will appear
displaying it.

3.3 THE DEBUG MENU

Most operations under DEBUG are selected from the DEBUG menu,
This 1is a standard Macintosh menu, and commands can be
entered by pressing the mouse button while in the word
'‘Debug' in the menu bar, dragging to the desired operation,
and releasing the button. A summary of these commands follows.

3.3.1 SOURCE CODE
Command Key Equivalent: Command~C.

This option makes the source code window visible, This window
is described above in the section 'Source Code Window'.

3.3.2 VARIABLES
Command Key Equivalent: Command-V,

This option makes the Variable and Variable Entry windows
active and visible. The Variable window 1is used to examine
and modify the contents of variables within a program unit.
The name of the current program unit appears in the title bar
of the variable window, followed by the word 'Memory' and the
amount of local or dynamic memory required for the program
unit. Like the Source Code window (described above), the
Variable window can be moved, its size can be changed, and it
can be made invisible by clicking its goaway box.

DEBUG - THE SYMBOLIC DEBUGGER

The size of the Variable window can be changed to view
variable types with longer displays (such as complex) or to
accommodate other windows on the screen, Clicking the mouse
in the grow icon at the bottom right will allow an outline of
the bottom and right sides of the window to be dragged to a
new location. Letting up on the mouse button changes the size
of the window to fit the outline,

To examine variables, select the Variable Entry window by
clicking on it with the mouse, enter the name of the variable
in the text edit box, and click the OK button {or press the
Return key). Once entered, a variable will remain selected
until it 1is deleted, so long as the program unit in which it
is defined remains active, Only variables in the currently
active program unit can be displayed.

If the variable is an array element, its subscript(s) must
also be given enclosed in parentheses., A range of array
elements may be examined by typing a colon and second
subscript enclosed in parentheses after the name and
subscript of the array element:

VAR(i):(])

When examining variables or array elements, the variable's
symbolic name, type, size, and value are displayed.

More variables can be selected for display than can actually
be displayed in the Variable window. These are accessed with
the scroll bar along the right hand side of the window.
Clicking the arrow buttons at the top and bottom of the
scroll bar will move the text in the window up or down a line
at a time, Clicking the grey areas above or below the scroll
box will move a page (one window's worth) up or down. Holding
the mouse button down in any of these controls causes the
command to be executed repeatedly. Clicking and dragging the
scroll box to a new location in the scroll bar cases the top
line of the window to be positioned at the same proportionate
location within the currently selected variables,

When a variable is selected, it is displayed immediately in
the vVariable window, provided its position is on the current

page. If the variable does not appear, it is above or below
the current page, and the scroll bars must be used to center
the window over it. The variables selected for display will

be listed in the Variable window in the order of declaration.

To delete a variable from the Variable window, <c¢lick on its

name with the mouse. The name will be highlighted. When the
mouse button is released, the variable will be deleted.

Microsoft FORTRAN Compiler

To modify the contents of a variable or array element, cligk
the value displayed in the window with the mouse. An edit
window will appear. This window contains a text edit box, an
OK button, and a CANCEL button. The new value is entered
using standard Macintosh editing commands., After entering the
value, click on the OK button (or press the Return key). To
exit without changing the value of the variable, click the
CANCEL button,

All floating point values are displayed in scientific
notation,

3.3.3 SEBEARCH
Command Key Equivalent: Command-P,

The SEARCH command is used to 1locate a specific card or
program unit., When this option is selected, an edit window
will appear. This window contains a text edit box, an OK
button, and a CANCEL button, The card number or program unit
is entered using standard Macintosh editing commands. After
entering the value, click on the OK button (or press the
Return key). To exit, click the CANCEL button,

To locate a particular card, enter its number into the edit
window, Cards containing non-executable statements and
continuation cards cannot be located as only those cards
containing executable FORTRAN statements generate object code
and therefore entries in the symbol table, If the card is
found, it will be displayed at the top of the source code
window.

To locate a program unit, enter its name into the text edit
window, The first card of the program unit will be displayed
in the source code window.

3.3.4 FIND LABEL
Command Key Equivalent: Command-L.,

The LABEL command is used to search for a 1label within the
source file, When this option is selected, an edit window
will appear. This window contains a text edit box, an OK
button, and a CANCEL button., The last label sought will be
selected in the text edit box. A new label will overwrite the
old one, it can be edited using the standard Macintosh
editing commands, or it can be reused to find the next
occurrence of this label., After entering the label, click on
the OK button (or press the Return key). The search will
begin after the cursor position. To exit, click the CANCEL
button.

DEBUG - THE SYMBOLIC DEBUGGER

The label argument can be any five digit integer in the range
of 1 to 99999. Embedded blanks are ignored, If the label is
found in the source file, DEBUG displays the statement
containing the label on the first line of the source code
window.

3.3.5 PILE STATUS

Command Key Equivalent: Command-I.

This command reports on units which are connected to files,
Information is provided regarding the unit number, file name,
access method (direct or sequential), iostat, and status
(keep or scratch). For direct access connections, record
length and next record are also listed. If an error condition
exists in the file connection, a FORTRAN run time error code
(see Appendix D) is reported in iostat.

The file status information is displayed in a modal window
with two buttons (MORE and CANCEL). This window covers most

of the screen, and no other operation can take place while it
is wvisible, Clicking on either button (or pressing the Return
key) removes it,

3.3.6 TYPE FILE
Command Key Equivalent: Command-T.

The TYPE FILE option is used to display the contents of a
file on the terminal, The text is displayed in a modal window
with two buttons (MORE and CANCEL), a page at a time., This
window covers most of the screen, and no other operation can
take place while it is visible, Clicking on the MORE button
(or pressing the Return key) displays the next page (if any).,
and CANCEL aborts the command and removes the window.

3.3.7 FINISH

Command Key Equivalent: Command-F,

This command causes execution to continue unconditionally.
The program will complete its normal execution including

implicitly closing all files at termination.

Microsoft FORTRAN Compiler

3.3.8 QUIT

Command Key Equivalent: Command-Q.

The QUIT command ceases execution of DEBUG and returns
control to the operating system. Execution is first passed

through the FORTRAN service module exit routine and all files
which do not contain an error condition will be closed.

3.3.9 TRANSFER
Command Key Equivalent: Command-E,

This command allows another application to be opened without

going through the Finder, It can be used to enter DEBUG
again., A Standard File window is used to allow the selection
of any application file on the system. This file will be
started as if it had been opened from the Finder.

3.3.10 BREAK POINTS

Command Key Equivalent: Command-B.

This menu option displays all current breakpoints (maximum
8) . The breakpoints are displayed in a modal window with two
buttons (MORE and CANCEL). This window covers most of the
screen, and no other operation can take place while it is
visible, Clicking on either button (or pressing the Return

key) removes it.

3.3.11 SINGLE STEP

Command Key Equivalent: Command-S (also Return).

When the current card number and the cursor card number are
the same (the arrow and box are on the same line) only the
statement that the cursor is positioned on will be executed,
This is equivalent to pressing the Return key.

3.3.11.1 BLOCK EXECUTE

Pressing the RETURN key or selecting SINGLE STEP when the
current card number and the cursor card number values are
different will cause all of the statements up to and
including the statement that the cursor is positioned on to
be executed.

DEBUG - THE SYMBOLIC DEBUGGER

3.3.12 PROCEED TO CURSOR

Command Key Equivalent: Command-G.

This option will execute all statements up to but not
including the card the cursor is positioned on.

3,3.13 HOME CURSOR
Command Key Equivalent: Command-H.

This option returns the cursor to the next card to be
executed,

3.3.14 SKIP SUBROUTINES
Command Key Equivalent: Command-\.

This option will toggle the subroutine skip flag. When

subroutine skip mode is on, a check mark will appear to the
left of the 'SUBROUTINE SKIP' option name on the DEBUG menu,

When subroutine skip mode is on, a call to an internal
subprogram is executed as if it were a single statement, This
is equivalent to moving the cursor to the statement directly
following the subroutine call and executing the proceed to
cursor command (Command-G).

3.3.15 BREAKPOINTS

To set a breakpoint, click on a card in the source code with
the mouse. The card number will be redisplayed inverted
(white on black) indicating that a hard breakpoint has been

set,

To clear a breakpoint, again click on the card where the

breakpoint is set. The card number will be redisplayed in
normal text indicating that the breakpoint has been cleared.

3.3.16 PROCEED TO BREAKPOINT

Command Key Equivalent: Command-X.

This option causes execution to proceed to the next
breakpoint. When the breakpoint 1is reached, the 1line

containing the breakpoint is shown in the source code window.
If no breakpoints are set or a breakpoint is not encountered,

execution proceeds as though the FINISH command were entered.

3-11

Reference

Reference

CHAPTER 4

THE FORTRAN 77 PROGRAM

FORTRAN 77 source programs consist of one program unit called
the main program and any number of program units called

subprograms, A program or program unit is constructed as an
ordered set of statements that describes procedures for
execution and information to be used by the FORTRAN 77

compiler during the compilation of a source program., Every
program unit is written using the FORTRAN 77 character set
and follows a prescribed statement line format, A program
unit may be one of the following:

1. Main program

2. Subroutine subprogram

3. Function subprogram

4. Block Data subprogram

This chapter describes the format of FORTRAN programs, and
the data objects that may be manipulated by them.

4-1

Microsoft FORTRAN Compiler

4.1 CHARACTER SET

There are 80 characters which have meaning to the compiler,

These characters include the 52 upper and lower case
of the alphabet, the 10 decimal digits from 0 to 9, and the

special characters:
Character Definition

plus

minus
asterisk
slash

equals
decimal point
comma

blank

e NN %)+

-

apostrophe
colon
semicolon

Bwe 00 @ ey

underscore

less than
greater than

VA -

quotation mark

opening parenthesis
Cclosing parenthesis

exclamation mark

Any of these characters, as well as

ASCII characters, may appear
constants (see below).

in

the remaining
character and

letters

printable
Hollerith

THE FORTRAN 77 PROGRAM

4.2 SYMBOLIC NAMES

A symbolic name is used to identify a FORTRAN 77 entity, such
as a variable, array, program unit, or labeled common block.
The compiler accepts symbolic names of up to thirty-one upper
and lower case letters and digits. The first character of a
symbolic name must be a letter, The underscore character and
the blank character are not significant in a symbolic name
and may be used as separators, Upper and 1lower case letters
are distinct unless the compiler case fold option, K, has
been selected (see Chapter 2). Symbolic names of greater
than thirty-one characters are acceptable, but only the first
thirty-one characters are significant to the compiler.

Only the first six characters of the symbolic name of a main
program; a subroutine, function, or block data subprogram; a
common block; or a virtual array are significant., Lower case
letters are folded to upper case, The file naming
conventions of operating systems vary wildly, however most

rovide for at least six upper case letters or digits. Names
in this class are stored internally in packed RADS50 form (see
Appendix G for a discussion of the RADS0 algorithm).
Consequently, only four bytes are required for storing a name
or making an external reference,

Global symbolic names are known to every program unit within
an executable program and therefore must be unique., The names
of main programs; subroutine, function, and block data
subprograms; common blocks, and virtual arrays are global
symbolic names.

Local symbolic names are known only within the program unit
in which they occur. The names of variables, arrays, symbolic
constants, statement functions, and dummy procedures are
local symbolic names,

Microsoft FORTRAN Compiler

4.3 KEYWORDS

A keyword is a sequence of characters that has a predefined
meaning to the compiler, A keyword is used to identify a
statement or serve as a separator in a statement, Some
typical statement identifiers are READ, FORMAT, and REAL. Two
separators are TO and THEN.

There are no reserved words in FORTRAN 77, therefore a

symbolic name may assume the exact sequence of characters as
a keyword. The compiler determines the meaning of a sequence
of characters through the context in which the characters are

used. A surprising example of a keyword/symbolic name
exchange is:

Statement Meaning
D0101=1,7 Control statement
DO 10 I =1,7 Assignment statement

Note that the embedded blanks are not significant nor are
they required as separators for the compiler to determine
that the first statement 1is the initial statement of a DO
loop. The absence of a comma in the second statement informs
the compiler that an assignment is to be made to the variable
whose symbolic name is DO1l0I.

In some instances it may be impossible for the compiler to
determine from the context the meaning the programmer
intended. For example:

DIMENSION SIN{15)
A = SIN(B)

Such ambiguous contexts should obviously be avoided.

THE FORTRAN 77 PROGRAM

4.4 LABELS

A statement label may be placed anywhere in columns 1 through
5 of a FORTRAN 77 statement initial line. A statement label
is used for reference in other statements. The following
considerations govern the use of the statement label:

1. The 1label is an unsigned integer in the range of 1
to 99999,

2. Leading zeros and blanks are not significant to the
compiler.

3. A label must be unique within a program unit.

4. A label is not allowed on a continuation line.

5. Labels may appear in any numeric order.

The following examples all yield the same label:

1101
1101
11 01
110 1

The use of labels has no effect on either the ultimate size
of the compiled program and/or its execution speed. However,
their inclusion in the source program does increase the
memory required for compilation, Labels are used in FORTRAN
77 as their name implies: to 1label statement 1lines for
reference purposes, Excessive unnecessary labels slow
compilation and may even prevent compilation and should
therefore be avoided.

Microsoft FORTRAN Compiler

4.5 STATEMENTS

Individual statements deal with specific aspects of a
procedure described in a program unit and are classified as
either executable or nonexecutable, The proper usage and
construction of the various types of statements are described

in the following chapters.

4.5.1 BExecutable Statements

Executable statements specify actions and cause the FORTRAN
77 compiler to generate object program instructions. There
are 3 types of executable statements:

1. Assignment statements

2. Control statements

3. Input/Output statements

4.,5.2 Nonexecutable Statements

Nonexecutable statements are used as directives to the
compiler: start a new program unit, allocate variable

storage, insert a form feed in the listing, initialize data,
set the options, etc., There are 7 types of nonexecutable
statements:

1. Specification statements

2. Data initialization statements
3. FORMAT statements

4. Function defining statements

5. Subprogram statements

6. Main program statements

7. Compiler directives

4-6

THE FORTRAN 77 PROGRAM

4,5,3 Statement Format

A FORTRAN statement consists of one or more source records
referred to as a statement line. Historically a record is
equivalent to a card, In current source file formats, a
record is one line of text terminated by an end of record
character (generally a carriage return, 1line feed, or
carriage return-line feed pair). A statement line consists of
80 character positions or columns, numbered 1 through 80
which are divided into 4 fields:

Field Columns
Statement label 1-5
Continuation 6
Statement 7-72
Identification 73-80

The 1Identification field is available for any purpose the
programmer may desire and is ignored by the FORTRAN 77
compiler, Historically this field has been used for sequence
numbers and commentary. The statement line itself may exceed
80 characters; the compiler ignores all characters beyond
column 72,

Statements are placed in columns 1 through 72, formatted
according to line types. Their are four line types in FORTRAN

77

1. Comment Line - used for source program annotation
and formatting., A comment line may be placed
anywhere in the source program and assumes one of
the forms:

a, Column 1 contains the character C, an asterisk,
or an exclamation point, Columns 2 through 72

may contain any sequence of characters or may be
blank.

b. The line is completely blank.

c. An exclamation point not contained within a
character constant designates all characters
including the exclamation point through the end
of the line to be commentary.

Comment lines have no effect on the object program
and are ignored by the FORTRAN 77 compiler except

for display in the listing of the program.

Microsoft FORTRAN Compiler

2. End Line - the last line of a program unit.

a, The word END must appear within columns 7
through 72,

b. Each FORTRAN 77 program unit must have an END
line as its last 1line to inform the compiler
that it is at the physical end of the program
unit.

¢. An END line may follow any other type of line,

3, Initial Line - the first and possibly only line of
each statement,

a, Columns 1 through 5 may contain a statement
label to identify the statement,

b. Column 6 must contain a zero or a blank,

C. Columns 7 through 72 contain all or part of the
statement,

4. Continuation Line - used when additional characters
are required to complete a statement originating on
an initial line,

a, Columns 1 through 5 must be blank

b. Column 6 must contain a character other than
zero or blank.

c. Columns 7 through 72 contain the continuation of
the statement.

d. There may be only 19 continuvation 1lines per
statement, for a total of 20 lines per statement.

4.5.4 Multiple Statement Lines

Multiple statements may be placed on the same 1line by
separating them with a semicolon (;). Only executable

statements may be placed on the same statement line in this
manner,

I=10; J=10; N(I,J)=0

THE FORTRAN 77 PROGRAM

4.6 DATA ITEMS

The symbolic name used to represent a constant, variable,
array, substring, statement function, or external function
identifies its data type, and once established, it does not
change within a particular program unit., The data type of an
array element name is always the same as the type associated
with the array.

Special FORTRAN statements, called type statements, may be
used to specify a data type as character, 1logical, integer,
real, double precision, or complex. When a type statement is
not used to explicitly establish a type, the first letter of
the name is used to determine the type. If the first letter
is 1, J, kK, L, M, N, i, j, %k, 1, m, or n, the type is
integer; any other letter yields an implied type of real. The
IMPLICIT statement, described later, may be used to change
the default implied types. The IMPLICIT NONE statement, also
described later, causes the compiler to require declaration
of all variables.,

An intrinsic function, LOG, EXP, SQRT, INT, etc., may be used
with either a specific name or generic name. The data types
of the specific intrinsic function names are listed in Table
9-1. A generic function assumes the data type of its
arguments as discussed later in Chapter 9.

A main program, subroutine, common block, and block data
subprogram are all identified with symbolic names, but have
no data type.

4.6.1 Constants

PORTRAN 77 constants are identified explicitly by stating
their actual value; they do not change in value during
program execution. The plus {(+) character is not required for
positive constants., The value of zero is neither positive nor
negative; a zero with a sign is just zero.,

The data type of a constant is determined by the specific
sequence of characters used to form the constant. A constant
may be given a symbolic name with the PARAMETER statement,

but a constant itself may not be constructed using the
symbolic name of another constant.

Except within character and Hollerith constants, blanks are
not significant and may be used to increase legibility. For

example, the following forms are equivalent:

3.14159265358979 3.1415 92653 58979
2.71828182845904 2.7182 81828 45904

Microsoft FORTRAN Compiler

4,6.1.1 Character Constant

A character constant is formed with a string of any of the
characters from the ASCII character set, The string is
delimited by either apostrophes (') or quotation marks (").
The character used to delimit the string may be part of the
string itself by representing it with two successive
delimiting characters. The number of characters in the string
determines the length of the character constant. A character
constant requires a character storage unit (one byte) for
each character in the string.

'TEST' “TEST"

'EVERY GOOD BOY' "EVERY GOOD BOY"
‘Luck is everything' "Luck is everything"
'didn''t? "didn't"

FORTRAN 77 has no facility for specifying or representing a
character constant consisting of the null string, If the
character constant '' or "" is encountered by the compiler it
is interpreted as a single blank character,

4.,6.1.2 Logical Censtant

Logical constants are formed with the strings of characters,
2TRUE., and ,FALSE., representing the boolean values true and
false respectively. A false value is represented by a field
of thirty-two 2zero bits and a true value is represented by a
field of thirty-two one bits. A logical constant requires one
numeric storage unit (four bytes).

4,6.1.3 1Integer Comstant

An integer constant is an exact binary representation of an
integer value in the range of -2147483648 to +2147483647 with
negative integers maintained in two's complement form. An
integer constant is a string of decimal digits which may
contain a 1leading sign. An integer constant requires one
numeric storage unit (four bytes).

15

101

-72

1126

123 456 789

THE FORTRAN 77 PROGRAM

4.6.1.3.1 Alternate Integer Bases

The compiler normally expects all numeric constants to be in
base ten, however, three alternate unsigned integer bases are
available when explicitly specified. These optional bases are
binary, octal, and hexadecimal and are designated by
preceding the constant with the characters B, 0O, and 2
respectively and delimiting the constant itself with
apostrophes, The following examples all result in the
assignment of the decimal value 3994575:

B'1111001111001111001111"

0'17171717"
Z'3CF3CF'

J
K

As with all numeric constants, spaces may be used freely to
enhance legibility. The following examples produce identical
assignment statements:

B'0011 1100 1111 0011 1100 1111°
0'017 171 717°

Z'3C F3 CF'

I
J
K

4.6.1.4 Real Constant

A real constant consists of an optional sign and a string of
digits which contains a decimal point. The decimal point
separates the integer part of the constant from the
fractional part and may be placed before or after the string
indicating that either the integer or fractional part is
zero, A real constant may have an exponent which specifies a
power of ten applied to the constant. An exponent 1s appended
to a real constant with the letter E and an integer constant
in the range of a -37 to +39. If an exponent is given and the
fractional part is zero, the decimal point may be omitted. 2
real constant requires one numeric storage unit (four bytes).

Constant = Value
1E2 = 100.0
-12.76 = -12.76
1.07E-1 = ,107
0.4237E3 = 423.7

Real values are maintained in IEEE single prec1sxon floating
point representation., The most significant bit is interpreted
as the sign, the next eight bits provide a binary exponent
biased by 127, and the remaining twenty-three bits form the
binary mantissa with a twenty-fourth bit implied. This
representation supplies seven digits of precision and a range
of #0.3402823E+39 to +0.1175494E-37. (See Appendix F for
further information.)

4-11

Microsoft FORTRAN Compiler

4.6,1.5 Double Precision Constant

A double precision constant is formed in the same manner as a
real constant except that the exponent is designated with the
letter D and must always be given, even if its value is =zero.
The exponent range of a double precision constant is =307 to
+309, A double precision constant requires two numeric
storage units (eight bytes).

Constant Vajue
1D2 = 100.0
-12.76D6 = -12.,76
1.07D-1 = ,107
0.4237D3 = 423.7

Double precision values are maintained in IEEE double
precision floating point representation. The most significant
bit is interpreted as the sign, the next eleven bits provide
a binary exponent biased by 1023, and the remaining fifty-two
bits form the binary mantissa with a fifty-third bit implied.
This representation supplies sixteen digits of precision and
a range of 40.1797693134862320D+309 to
+0.2225073858507202D-307. (See Appendix F for further
information,)

4,6,1,6 Complex Constant

A complex constant is stated using a left parenthesis, a pair
of real or integer constants separated by a comma, and a
right parenthesis., The first constant is the real portion (in
the mathematical sense) and the second is the imaginary
portion, A complex constant requires two numeric storage
units (eight bytes).

(2.76,-3.81) = 2,76 -3.81i
(-12,15) = ~12.0 +15,.0i
(0.62E2,-0,22E-1) = 62.0 -,022i

Microsofte FORTRAN Compiler
for the Applee Macintosh.

Reference Manual

THE FORTRAN 77 PROGRAM

4,6.1,7 Bollerith Constant

The Hollerith data type is an older method of representing
characters in FORTRAN. While it is not included 1in the
current standard, this implementation of FORTRAN includes the
Hollerith data type to provide compatibility for older
programs, Like character constants, a Hollerith constant is
formed with a string of any of the characters from the ASCII
character set. Logical, integer, real, double precision, and
complex variables can be defined with a Hollerith value
through DATA statements and READ statements.

A Hollerith constant is stated with a nonzero, unsigned
integer constant, the 1letter H, and a string of characters
whose length must be the same as the integer constant.

4HTEST
14HEVERY GOOD BOY

When a Hollerith constant is assigned to a variable it is
left justified and space padded if the length of the constant

is less than the length of the variable.

4.6.2 Variables

A variable is the used to maintain a FORTRAN 77 gquantity and
is associated with a single storage 1location through a
symbolic name, Simple variables are often called scalar
variables to distingquish them from arrays and array elements
(see below). Unlike a constant, the value of a variable can
be changed during the execution of a program with assignment
statements and input and output statements,

Microsoft FORTRAN Compiler

4,6,3 Arrays

Bn array is a sequence of data elements all of the same type
and referenced by one symbolic name, When an array name is
used alone it refers to the entire sequence starting with the
first element. When an array name is qualified by a subscript
it refers to an individual element of the sequence.

4.6.3,1 Array Declarator

An array declarator is used to assign a symbolic name to an
array, define its data type (either implicitly or
explicitly), and declare its dimension information:

ﬁ(g [’g]oo-)

where a is the symbolic name that will be used to reference
the array and the elements of the array, and d is called a
dimensjion declarator. An array declarator must contain at
least one and no more than seven dimension declarators. A
dimension declarator is given with either one or two
arguments:

(di:] d2

where dl and 42 are called the lower and upper dimension
bounds respectively. The lower and upper dimension bounds
must be expressions containing only constants or integer
variables. Integer variables are used only to define

adijustable arrays (described below) in subroutine and
function subprograms, If the lower dimension bound is not
specified, it has a default value of one,

An array declarator specifies the size and shape of an array:
the number of dimensions, the upper and lower bounds of each
dimension, and the number of array elements. The number of
dimensions 1is determined by the number of dimension
declarators., Dimension bounds specify the size or extent of
an individual dimension, While the value of a dimension bound
may be positive, negative, or even zero, the value of the
lower dimension bound must always be less than than or equal
to the value of the upper dimension bound. The extent of each
dimension is defined as d2-dl+l. The number of elements in an
array is equal to the product of all of its dimension extents,

THE FORTRAN 77 PROGRAM

Array declarators are called constant, adjustable, or assumed
size depending on the form of the dimension bounds. A
constant array declarator must have integer constant
expressions for all dimension bounds., An adjustable array
declarator contains one or more integer variables in the
expressions used for its bounds. An array declarator in which
the upper bound of the last dimension is an asterisk (*) is
an assumed size array declarator, Adjustable and assumed size
array declarators may appear only in subroutine and function
subprograms.

All array declarators are permitted in DIMENSION and type

statements, however only constant array declarators are
allowed in COMMON statements, Adjustable and assumed size
array declarators do not supply sufficient information to map

the COMMON block at compile time.

An array can be either an actual array or a dummy array. An
actual array uses constant array declarators and has storage
established for it in the program unit in which it is
declared., A dummy array may use constant, adjustable, or
assumed size array declarators and declares an array that is
associated through a subroutine or function subprogram dummy
argument list with an actual array.

The number of dimensions and the dimension extents of arrays
associated with one another either through common blocks,

equivalences, or dummy argument lists need not match,

4,6.,3,2 Array Subscript

The individual elements of an array are referenced by
qualifying the array name with a subscript:

a(s [,8]...)

where each 8 in the subscript is called a subscript
expression and a is the symbolic name of the array.

The subscript expressions are numeric expressions whose
values fall between the 1lower and upper bounds of the
corresponding dimension, If the value of the expression is
not an integer, the compiler supplies the appropriate
conversion., There must be a subscript expression for each

declared dimension.

4-15

Microsoft FORTRAN Compiler

Some FORTRAN constructs accept array names unqualified by a
subscript. This means that every element in the array is
selected. The elements are processed in colump major order,
The first element is specified with subscript expressions all
equal to their lower dimension bounds. The next element will
have the 1leftmost subscript expression increased by one,
After an array subscript expression has been increased
through its entire extent it is returned to the lower bound
and the next subscript expression to the right is increased
by one,

Subscript expressions may contain array element and function

references, The evaluation of a subscript expression must not
affect the value of any other expression in the subscript.
This means that functions should not bhave side effects

altering the values of the other subscript expressions.

The order of an array element within the column major storage
sequence of the array in memory is called the subscript
yalue. This is calculated according to the following table:

TABLE 5-1

Subscript Value

Number
of Dimension Subscript
Dimensions Declarator Subscript Value
1 (j1l:k1) (sl) 1+(s1-31)
2 (31:k1,32:k2) (sl,s2) 1+{sl-jl)+(s2-j2)*d1
3 (jl:k1,32:k2,33:k3) {(sl,s2,s3) 1+(s1-jl1)+(s2-j2)*dl
n (31:k1,...,jn:kn) (sl,e..,Sn) 1+(sl-jl)+(s2-j2) *dl1

+(s3-3j3) *d2*d1+...
+{(sn-jn)*dn-1*dn-2
*

di = ki-ji+l

THE FORTRAN 77 PROGRAM

Note that subscript values always range from 1 to the size of
the array:

DIMENSION X(-4:4),Y(5,5)
X(3) = ¥(2,4)

For the array element name X(3), the subscript is (3), the
subscript expression is 3 with a value of three, and the
subscript value is eight, For the array element name Y(2,4),

the subscript is (2,4), the subscript expressions are 2 and 4
with values two and four, respectively, and the subscript

value is seventeen, The effect of the assignment statement is

to replace the eighth element of X with the seventeenth
element of Y.

4.6.3.3 Array Name

When an array name is used unqualified by a subscript, it
implies that every element in the array is to be selected as
described above. Array names may be used in this manner in
COMMON statements for data alignment and sharing purposes, in
actual and dummy argument lists to pass entire arrays to
other procedures, in EQUIVALENCE statements where it implies
the first element of the array, and in DATA statements for
giving every element an initial value. Array names may also
be used in the input and output statements to specify
internal files, format specifications and elements of input

and output lists,

4-17

Microsoft FORTRAN Compiler

4.6.4 Substrings

A substring is a contiguous segment of a character entity and
is itself a character data type. It can be used as the
destination of an assignment statement or as an operand in an
expression, Either a character variable or character array

element can be qualified with a substring name:
y{ [g1] : le2])
a(s [,s]l...)([21] : [&2])

el and e2 are called substring expressions and must have
integer values, y is the symbolic name of a character
variable, and a(s [,s]...) is the name of a character array

element,

The values gl and g2 specify the leftmost and rightmost
positions of the substring. The substring consists of all of
the characters between these two positions, inclusive. For
example, if A 1is a character variable with a value of
'ABCDEF', then A(3:5) would have a value of 'CDE'.

The value of the substring expression el must be greater than
or equal to one, and if omitted implies a value of one, The
value of the substring expression g2 must be greater than or
equal to gl and less than or equal to the 1length of the
character entity, and if omitted implies the length of the
character entity.

As with arrays, substring expressions may contain array or
function references, The evaluation of a function within a
substring expression must not alter the value of other
entities also occurring within the substring expression. If a
substring expression is not integer, automatic conversion to
integer is supplied by the compiler.

THE FORTRAN 77 PROGRAM

4,7 STORAGE

Storage refers to the physical computer memory where
variables and arrays are stored. Variables and arrays can be
made to share the same storage locations through
equivalences, common block declarations, and subprogram

argument lists, Data items which share storage in this manner
are said to be associated,

The contents of variables and arrays are either defined or
undefined, All variables and arrays not initially defined
through DATA statements are undefined,

A storage unit refers to the amount of storage needed to
record a particular class of data. A storage unit can be a

numeric storage unit or a character storage unit.

4.7.1 Numeric Storage Unit

A numeric storage unit can be used to hold or store an
integer, real, or logical datum. One numeric storage unit
consists of four bytes, The amount of storage for numeric
data is as follows:

Data Type Storage

Integer 1 storage unit
Real 1 storage unit
Double precision 2 storage units
Complex 2 storage units
Logical 1 storage unit

4,7.2 Character Storage Unit

A character datum 1is a string of characters., The string may
consist of any sequence of ASCII characters, The length of a
character datum 1is the number of characters in the string. A
character storage unit differs from numeric storage units in
that one character storage unit is equal to one byte and
holds or stores one character.

4,7.3 Storage Sequence

The storage sequence refers to the sequence of storage units,
whether they are held in memory or stored on external media

such as a disk or a tape.

Microsoft FORTRAN Compiler

4,7.4 Storage Association

The

storage locations of variables and arrays become
associated in the following ways:

1.

The EQUIVALENCE statement (described in Chapter 6)
causes the storage units of the variables and array
elements 1listed within the enclosing parentheses to
be shared, Note that the data types of the
associated entities need not be the same,

The variable and array names appearing in the COMMON
statements (described in Chapter 6) of two different
program units are associated.

The dummy arguments of subroutine and function
subprograms are associated with the actual arguments
in the referencing program unit.

An ENTRY statement (described in Chapter 9) in a
function subprogram causes its corresponding name to
be associated with the name appearing in the
FUNCTION statement,

THE FORTRAN 77 PROGRAM

4.7.5 Storage Definition

Storage becomes defined through DATA statements, assignment
statements, and I/0 statements., READ statements cause the
items in their associated 1/0 lists to become defined. Any
I/0 statement can cause items in its parameter list to become
defined (the IOSTAT variable for instance). A DO variable
becomes defined as part of the loop initialization process.,

The fact that storage can become undefined at all should be
carefully noted. Some events that cause storage to become
undefined are obvious: starting execution of a program that
does not initially define all of its variables (through DATA
statements), attempting to READ past the end of a file, and
executing an INQUIRE statement on a file that does not exist.
When two variables of different types are either partially or
toga%}y gssociated, defining one causes the other to become
undefined.

Because FORTRAN 77 provides for both dynamic as well as
static storage allocation, certain events can cause
dynamically allocated storage to become undefined., 1In
particular, returning from subroutine and function
subprograms causes all of their variables to become undefined

except for those:
l. in blank common
2, specified in SAVE statements
3. in named common blocks established by higher 1level

referencing procedures

The H compiler option has the effect of an implicit SAVE for
every program unit encountered during the current compilation

(see Chapter 2).

CHAPTER 5

EXPRESSIONS AND ASSIGNMENT STATEMENTS

Being primarily a computational lanquage, a large number of
FORTRAN statements employ expressions, The evaluation of an
expression results in a single value which may be used to
define a variable, take part in a 1logical decision, be
written to a file, etc. The simplest form of an expression is
a scalar value: a constant or single variable, More
complicated expressions can be formed by specifying
operations to be performed on one or more operands.

There are four types of expressions available in FORTRAN 77:
arithmetic, character, relational, and logical, This chapter
describes the rules for the formation and evaluation of these
expressions,

Assignment statements, together with expressions, are the
fundamental working tools of FORTRAN., Assignment statements
are used to establish a value for variables and array
elements, Assignment statements can also be used to modify
the contents of absolute memory locations., Assignment
statements assign a value to a storage location,

Microsoft FORTRAN Compiler

5.1 ARITHMETIC EXPRESSIORS

An arithmetic expression produces a numeric result and is
formed with integer, real, double precision, and complex
operands and arithmetic operators. An arithmetic operand may
be one of the following:

1. an arithmetic scalar value

2, an arithmetic array element

3. an arithmetic expression enclosed in parentheses

4, the result of an arithmetic function

The arithmetic operators are:

Operator Purpose

*k exponentiation

* multiplication

/ division

+ addition or identity

subtraction or negation

The operators **, *, and / operate only on pairs of operands,
while + and - may operate on either pairs of operands or on
single operands. Pairs of operators in succession are not
allowed: A+-B must be stated as A+(-B). In addition, there is
precedence among the arithmetic operators which establishes
the order of evaluation:

Operator Precedence
*% highest
* and / intermediate
+ and - lowest

Except for the exponentiation operator, when two or more
operators of equal precedence occur consecutively within an
arithmetic expression they may be evaluated in any order if
the result of the expression is mathematically eguivalent to
the stated form, However, exponentiation is always evaluated
from right to left:

Expression Evaluation

A+B-C (A+B)-C or A+(B-C)
A**B**C A**(B**C)

A+B/C A+(B/C)

EXPRESSIONS AND ASSIGNMENT STATEMENTS

However, the result of an arithmetic expression involving
integer operands and the division operator is the quotient;
the remainder is discarded: 10/3 produces an integer result
of 3., Consequently, expressions such as I*J/K may have
different values depending on the order of evaluation:

(4*5)/2 = 10, but 4*(5/2) = 8

5.1.1 Data Type of Arithmetic Expressions

When all of the operands of an arithmetic expression are of
the same data type, the data type of the result is the same
as that of the operands. When expressions involving operands
of different types are evaluated, automatic conversions
between types occur., These conversions are always performed
in the direction of the highest ordered data type presented
and the data type of the result is that of the highest
ordered operand encountered. Integer is the lowest ordered
data type and complex is the highest:

Data Type Conversion Order
integer
real
double precision
complex

Consider the expression I/R*D+C, where I is integer, R'is
real, D is double precision, and C is complex. The evaluation

proceeds as follows:

1. the value of I is converted to real and then divided
by the value of R

2. the result of the division 1is converted to double
precision and multiplied by the value of D

3. the result of the multiplication is converted to
complex and the value of C is added in

4. the data type of the result of the expression is
complex

Parentheses are used to force a specific order of evaluation
that the compiler may not override,

When exponentiation of real, double precision, and complex
operands involves integer powers, the integer power is not
converted to the data type of the other operand.
Exponentiation by an integer power 1is a special operation
which allows expressions such as =-2.1**3 to be -evaluated
correctly.

5-3

Microsoft FORTRAN Compiler

Conversion from real to double precision does not increase
the accuracy of the converted value. For example, converting
the result of the real expression 1,0/3.0 to double precision

yields:
0.333333343267441D+00

not:

0.333333300000000D+00 or 0,333333333333333D+00

5.1.2 Arithmetic Constant Expression

Arithmetic expressions in which all of the operands are

constants or the symbolic names of constants are called
arithmetic constant expressions, Integer, real, double
precision, and complex constant expressions may be used in

PARAMETER statements., Integer constant expressions may also
be used in DATA statements and in specification and
declaration statements (see Chapter 6).

5.2 CHARACTER EXPRESSIONS

A character expression produces a character result and is
formed using character operands and character operators. A

character operand may be one of the following:
1. a character scalar value
2. a character array element
3. a character substring
4, a character expression enclosed in parentheses

5. the result of a character function

The only character operator 1is //, meaning concatenation,
Although parentheses are allowed 1in character expressions,
they do not alter the value of the result, The following
character expressions all produce the value 'CHARACTER':

'CHA'//'RAC'//*'TER'
('CHA'//'RAC')//'TER'
‘CHA'//('RAC'//'TER"')

EXPRESSIONS AND ASSIGNMENT STATEMENTS

5.3 RELATIONAL EXPRESSIONS

A relational expression produces a logical result (true or
false) and is formed using arithmetic expressions or

character expressions and relational operators. The
relational operators perform comparisons; they are:

Operator =~ Comparison

.LT, or < less than

.LE. or <= less than or equal to

+EQ. or = equal to

.NE, or <> not equal to

.GT., or > greater than

+GE, or >= greater than or equal to

Only the .EQ. and .NE, relational operators can be applied to
complex operands.

All of the relational operators have the same precedence
which is 1lower than the arithmetic operators and the

character operator.

If the data types of two arithmetic operands are different,
the operand with the lowest order is converted to the type of
the other operand before the relational comparison is
performed., However, because conversion from double precision
to complex forces a conversion to real for the real portion
and the creation of an imaginary portion of zero, the
corresponding 1loss in precision prevents the comparison of a

double precision operand with a complex operand.

Character comparison proceeds on a character by character
basis using the ASCII collating sequence to establish
comparison relationships. Since the letter 'A' precedes the
letter 'B' in the ASCII code, 'A' is less than 'B'., Also, all
of the upper case characters have 1lower “values"™ than the
lower case characters. A complete chart of the ASCII
character set is provided in the appendices.

When the length of one of the character operands used in a
relational expression is shorter than the other operand, the
comparison proceeds as though the shorter operand were
extended with blank characters to the length of the longer
operand.

when an inteqer variable is compared with a character
expression, the integer is treated as though it were a
character expression having a length equal to the number of
bytes it occupies in storage. This is useful if the integer
has been defined with a Hollerith data type.

Microsoft FORTRAN Compiler

5.4 LOGICAL EXPRESSIONS

A logical expression is formed with 1logical or integer
operands and 1logical operators. A logical operand may be one
of the following:

‘ 1. a logical or integer scalar value
2. a logical or integer array element

3. a logical or integer expression enclosed in
parentheses

4., a relational expression

5. the result of a logical or integer function
A logical expression involving logical operands and
relational expressions produces a logical result (true or

false). When applied to 1logical operands the logical
operators, their meanings, and order of precedence are:

Operator Purpose _Precedence
«NOT. negation highest

-AND. conjunction

.OR, inclusive disjunction

.EQV. equivalence lowest

.NEQV. and .XOR. nonequivalence same as ,EQV,

A logical expression involving integer operands produces an
integer result. The operation is performed on a bit-wise
basis. When applied to integer operands the logical operators
have the following meanings:

Operator Purpose

.NOT, one's complement
.AND. boolean and

.OR. boolean or

<EQV, integer compare
.NEQV. and .XOR. boolean exclusive or

The integer intrinsic function SBIFT is available to perform
left and right logical shifts (see Table 16-1).

EXPRESSIONS AND ASSIGNMENT STATEMENTS

5.5 OPERATOR PRECEDENCE

As described above, a precedence exists among the operators
used with the various types of expressions. Because more than
one type of operator may be used in an expression, a
precedence also exists among the operators taken as a whole:

arithmetic 1is the highest, followed by character, then
relational, and finally logical which is the lowest.

A+B .GT, C .AND. D-E ,LE, F
is evaluated as:

((A+B) .GT. C) .AND, ((D-E) .LE., F)

5.6 ARITHEETIC ASSIGWMENT STATEMENT

Arithmetic assignment statements are used to store a value in
arithmetic variables. Arithmetic assignment statements take
the following form:

Y=g

where: y is the symbolic name of an integer, real, double
precision, or complex variable or array element whose
contents are to be replaced by ®

® is a character or arithmetic expression

If the data type of @ is arithmetic and different than the
type of y, then the value of & is converted to the type of ¥
before storage occurs, This may cause truncation,

If the data type of e is character, the number of characters
taken from the expression g is the number of bytes used for
the storage y. The characters are taken from left to right,
If the length of & is less than the number of bytes required,
the expression g is treated as though it were extended to the
right with blank characters until it is the same length as ¥w.

Microsoft FORTRAN Compiler

5.7 LOGICAL ASSIGNMENT STATEMERT

Logical assignment statements are used to store a value in
logical variables, Logical assignment statements are formed
exactly like arithmetic assignment statements:

Y=g

where: y is the symbolic name of a 1logical variable or
logical array element

e is a logical or arithmetic expression

If the data type of e is not logical, the value assigned to ¥
is the logical value false if the value of the expression e

is zero, For non-zero values of g, the value assigned to y is
the logical value true, This rule for the conversion of an
arithmetic expression to a logical value applies wherever a

logical expression is expected (i.,e. an IF statement).

5.8 CHARACTER ASSIGNMERT STATEMENT

Character assignment statements are used to store a value in
character variables:

r==

where: ¥ 1is the symbolic name of a character variable,
character array element, or character substring

e is an expression whose type is character.

If the length of © is greater than the 1length of ¥, the
leftmost characters of g are used,

If the 1length of ® is less than the length of y, blank
characters are added to the right of g until it is the same
length as y.

EXPRESSIONS AND ASSIGNMENT STATEMENTS

5.9 ASSIGN STATEMENT

The ASSIGN statement is wused to store the address of a
labeled statement in an integer variable. Once defined with a
statement label, the integer variable may be used as the
destination of an assigned GOTO statement (Chapter 7) or as a
format descriptor in an I/O statement (Chapter 8). The ASSIGN
statement is given in the following manner:

ASSIGN 8 TO i

where: s is the label of a statement appearing in the same
program unit that the ASSIGN statement does.

i is an INTEGER*4 variable name

Caution: No protection is provided against attempting to use
a variable that does not contain a valid address as

established with the ASSIGN statement.

Microsoft FORTRAN Compiler

5,10 MEMORY ASSIGNMENT STATEMENT
The form of a memory assignment statement is:
m =32
where: ma is an absolute memory address
e is any arithmetic, logical, or character expression
A memory address is formed as follows:
BYTE (e) byte (8 bit) reference

WORD (e) word (16 bit) reference
LONG (&) long (32 bit) reference

where: g is an integer expression

For example:

10

BYTE(Z'FFFFEO*)

will store the decimal value 10 at the hexadecimal memory
byte address FFFFEQ.

The BYTE, WORD, and LONG keywords also represent intrinsic
functions (see Chapter 9) allowing indirect addressing:

WORD (WORD(0'4000°')) = Z'FFFF’'
results in the storage of the sixteen bit hexadecimal value
FFFF at the absolute memory location whose address 1is the
address contained at the octal address 4000.

Note: the incorporation of these features in the compiler
removes them from the set of available array names,

CHAPTER 6

SPECIFICATION AND DATA STATEMENTS

Specification statements are used to define the properties of
the symbolic entities, variables, arrays, symbolic constants,
etc, that are used within a program unit., For this reason,
specification statements are also called declaration
statements and are grouped together in the declaration
section of a program unit: before any statement function
statements, DATA statements, and executable statements,
Specification statements themselves are classified as
nonexecutable.

DATA statements are used to establish initial values for the
variables and arrays used within a FORTRAN 77 program,
Variables not appearing in DATA statements may contain random
values when a program starts executing. The use of undefined
variables can cause problems that are difficult to detect
when transporting a program from one environment to another,
because the previous environment may have set all storage to
zeros while the new environment performs no such housekeeping.

Microsoft FORTRAN Compiler

6.1 TYPE STATEMERTS

The most common of the specification statements are the type
statements. They are used to give data types to symbol names
and declare array names, Once a data type has been associated
with a symbol name it remains the same for all occurrences of
that name throughout a program unit.

6.1.1 Arithmetic and Logical Type Statements

The form of the type statement for the arithmetic and logical
data types is:

type [*len] ¥ [,¥]...

where:

type can be LOGICAL, INTEGER, REAL, DOUBLE PRECISION, or

COMPLEX

¥ is the symbolic name of a variable, an array, a
constant, a function, a dummy procedure, or an array
declarator,

ien is an unsigned integer constant that specifies the
length, in bytes, of a variable, an array element, a
symbolic constant, or a function.

SPECIFICATION AND DATA STATEMENTS

The following len specifiers are available:

1.

LOGICAL*4 is the default for LOGICAL and occupies
one numeric storage unit, The default may be
changed to LOGICAL*2 with the "W" compiler option
(see Chapter 2).

LOGICAL*2 data is a representation of the 1logical
values of true and false. This type of logical data
occupies one half of one numeric storage unit. A
false value is represented by a field of sixteen
zero bits and a true value is represented by a field
of sixteen one bits.

LOGICAL*1 data is a representation of the logical
values of true and false. This type of logical data
occupies one byte. A false value is represented by a
field of eight =zero bits and a true value is
represented by a field of eight one bits.

INTEGER*4 is the default for INTEGER and occupies
one numeric storage unit. The default may be
changed to INTEGER*2 with the "W"™ compiler option
(see Chapter 2).

INTEGER*2 data is an exact binary representation of
an integer in the range of -32768 to +32767 with
negative integers carried in two's complement form,
This type of integer is maintained in one half of
one numeric storage unit.

INTEGER*1 data is an exact binary representation of
an integer in the range of -128 to +127 with
negative integers carried in two's complement form.
This type of integer is maintained in one byte of
storage.

REAL*4 is the default for REAL and occupies one
numeric storage unit.

REAL*8 data is identical to DOUBLE PRECISION and
occupies two numeric storage units,

COMPLEX*8 data is identical to COMPLEX and occupies
two numeric storage units.

Microsoft FORTRAN Compiler

6.1.2 Character Type Statement
The form of the type statement for the character data type is:

CHARACTER {*len [,]] v[*len] [,¥[*len]]...

where:

v is a variable name, an array hame, an array

declarator, the symbolic name of a constant, a
function name, or a dummy procedure name

len is either an unsigned integer constant, an integer
constant expression within parentheses, or an
asterisk within parentheses and specifies the length,
in bytes, of a variable, an array element, a symbolic
constant, or a function.

If 3Jen directly follows the word CHARACTER, the 1length
specification applies to all symbols not qualified by their
own length specifications. When len is not specified directly
after the word CHARACTER, all symbols not qualified by their
own length specifications default to one byte.

The 1length of symbolic character constants, dummy arguments
of subroutine and function subprograms, and character
functions may be given as an asterisk enclosed in
parentheses: (*). The length of a symbolic constant declared
in this manner is the number of characters appearing in the
associated PARAMETER statement. Dummy arguments and functions
assume the length of the actual argument declared by the
referencing program unit.

CHARACTER TITLE* (*)
PARAMETER (TITLE = 'FORTRAN 77°')

produces a ten byte symbolic character constant.

SPECIFICATION AND DATA STATEMENTS

6.2 DIMENSION STATEMENT

The DIMENSION statement declares the names and supplies the

dimension information for arrays to be used within a program
unit,

DIMENSION a(d) [,a(d)l...
where g(d) is an array declarator as described in Chapter 4.

Arrays may be declared with either DIMENSION statements,
COMMON statements, or type statements, but multiple
declarations are not allowed. That is, once a symbolic name
has been declared to be an array it may not appear in any
other declaration statement with an array declarator in the

same program unit. The following three statements declare the
same array:

1., DIMENSION A(5,5,5)

2. REAL A(5,5,5)

3. COMMON A(5,5,5)

Microsoft FORTRAN Compiler

6.3 COMMON STATEMENT

The COMMON statement is used to declare the storage order of
variables and arrays in a consistent and predictable manner.
This is done through a FORTRAN data structure called a common
block, which is a contiguous block of storage. A common block
may be identified by a symbolic name but does not have a data
type. Once the order of storage in a common block has been
established, any program unit that declares the same common
block can reference the data stored there without having to
pass symbol names through argument lists, Common blocks are
specified in the following manner:

COMMON [/([gk]/] nlist [[,]1/[cbh]/ niistl...

where:
cb is the symbolic name of the common block. If c¢b is
omitted, the first pair of slashes may also be
omitted.
nlist contains the symbolic names of variables, arrays, and

array declarators.

When the common block name is omitted, the common block is
called blank common, The symbolic name "BLANK" is reserved by
the compiler for blank common and if wused explicitly as a
common block name will result in all entities in the pilist
being placed in blank common,

Any common block name or an omitted name (blank common) can
occur more than once in the COMMON statements in a program
unit, The 1list of variables and arrays following each
successive appearance of the same common block name is
treated as a continuation of the list for that common block
name,

A common block name can be the same as that of a variable,
array, or program unit.

SPECIFICATION AND DATA STATEMENTS

6.3,1 Named and Blank Common Differences

1.

If a named common block was declared for the first
time in a subroutine or function subprogram, the
execution of a RETURN or END statement may cause the
variables and arrays in it to become undefined. The
SAVE statement (described later in this chapter) can
be wused to prevent this from occurring. Blank

common is associated with the main program unit
(whether or not it was actually declared there) and
its variables and arrays can never become undefined.

Common blocks appearing in subprogram units which
are separately compiled and either 1loaded as
overlays or linked must be the same size in all
program units where they are declared.

DATA statements in block data subprograms may be
used to initially define entities in named common
blocks, but not blank common.

Microsoft FORTRAN Compiler

6.4 EQUIVALENCE STATEMENT

The EQUIVALENCE statement provides a means for one or more
variables to share the same storage location, Variables which
share storage in this manner are said to be associated. The
association may be total if both variables are the same size,
or partial if they are of different sizes. The EQUIVALENCE
statement is used in the following manner:

EQUIVALENCE (nlist) [,(nlist)]...

The symbolic names of at least two variables, arrays, array
elements, or character substrings must be specified in each
nplist. Only integer constant expressions may be used in
subscript and substring expressions, An array name
unqualified by a subscript implies the first element of the
array.

An EQUIVALENCE statement causes storage for all items in an
individuval nlist to be allocated at the same starting
location:

REAL A,B
INTEGER I,J

EQUIVALENCE (A,B), (I,J)

The variables A and B share the same storage location and are

totally associated., The variables 1 and J share the same
storage location and are totally associated.,

Items which are equivalenced can be of different data types
and have different lengths., When a storage association is
established in this manner several elements of one data type
may occupy the same storage as one element of a different
data type:

DOUBLE PRECISION D
INTEGER I(2)
EQUIVALENCE (D,I)

The array element I(1) shares the same storage location as
the upper (most significant) thirty-two bits of D, and the

array element 1I(2) shares the same storage location as the
lower (least significant) thirty-two bits of D. Because only
a portion of D is stored in the same location as I(1), these

entities are only partially associated.

The EQUIVALENCE may not specify that an item occupy more than

one storage location or that a gap occur between consecutive
array elements,

SPECIFICATION AND DATA STATEMENTS

6.4.1 Equivalence of Arrays

The EQUIVALENCE statement can be used to cause the storage
locations of arrays to become either partially or totally
associated.

REAL A(8),B(8)
INTEGER I(5),J(7)
EQUIVALENCE (A(3),B(1)), (A(1),I(1)), (I(4),J(1))

Storage would be allocated as follows:

6.4.2 Equivalence of Substrings

The EQUIVALENCE statement can be used to cause the storage
locations of substrings to become either partially or totally
associated,

CHARACTER A(2)*5
CHARACTER B*8
EQUIVALENCE (A(2)(2:4),B(4:7))

Byte storage would be allocated as follows:

f1i12131415]1617181]9I 10} 111

Notice that the lengths of the equivalenced substrings need
not be the same, as in the above example.

6.4.3 Common and Equivalence Restrictions

The EQUIVALENCE statement can be used to increase the size of
a common block by adding storage to the end, but it cannot
increase the size by adding storage units prior to the first
item in a common block.

The EQUIVALENCE statement must not cause two different common
blocks to have their storage associated.

Microsoft FORTRAN Compiler

6.5 IMPLICIT STATEMERT

The IMPLICIT statement is used to establish implicit data

typing that differs from the default integer and real typing
described in Chapter ¢4. The IMPLICIT can also be used to
remove implied typing altogether, The IMPLICIT statement

takes the following form:
IMPLICIT type [*len] {(a [,al...) [,typ i*len] (a [,al...)]
where:

type is a type chosen from the set CHARACTER, LOGICAL,
INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or NONE.

len is the 1length specifier applied to character,
logical, integer, or real variables and is an
unsigned, nonzero, integer constant.

a is an alphabetic specifier which is either a single
letter or a range of letters. A range of letters is
specified with a character representing the 1lower
bound of the range, a minus, and a character
representing the upper bound of the range. The range
A-z specifies all the letters of the alphabet,

If len is not specified, the defaults are:

character 1 byte

logical 4 bytes
integer 4 bytes
real 4 bytes

The IMPLICIT statement must appear before all other
declaration statements except PARAMETER statements and
specifies the data type of all symbolic names that can take a
data type that are not given one explicitly with a type
statement. The data type will be the data type that
corresponds to the first character of their names,

When NONE appears in place of a type specifier, all variables
used within the program unit must appear in an explicit type

statement, This transforms FORTRAN into a strongly typed
language.

SPECIFICATION AND DATA STATEMENTS

6.6 PARAMETER STATEMENT

The PARAMETER statement allows a constant to be given a
symbolic name in the following manner:

PARAMETER (p=¢ {,p=tl...)

where p is the symbolic name that is used to reference the
constant and £ is a constant expression,

If the data type and length attributes of the symbolic name
are to be other than the implied default for that name, then
the type (and size) must be previously defined in an explicit
type statement or through the typing supplied by an IMPLICIT
statement, A character parameter may have its length declared
as an asterisk in parentheses, in which case the actual size
will be the number of characters in the expression.

The type of the constant expression must match the type of
the symbolic name,

INTEGER EOF

CHARACTER TITLE*(*)

PARAMETER (PI=3,1415926, THIRD=1,0/3.0)
PARAMETER (EOF=-1)

PARAMETER (TITLE='FORTRAN 77°*)

6.6,1 Special use of the PARAMETER statement
As a means of defining character symbolic names with
non-printing ASCII characters, a character symbolic name may

be defined with an integer constant in the range of 0-255:

CHARACTER EOL,EOF
PARAMETER (EOL=10,EOF=0'377")

Microsoft FORTRAN Compiler

6.7 EXTERNAL STATEMENT

The EXTERNAL statement allows symbolic names to be used as
arguments in CALL statements and function references without
the compiler automatically creating a variable at the point
of reference. Symbolic names so declared may or may not have
an associated data type. The EXTERNAL statement is given with
a list of external or dummy procedure names or instrinsic
function names:

EXTERNAL proc [,procl...

where each proc is the symbolic name of a procedure or
instrinsic function,

An ;n;rinsic function name appearing in an EXTERNAL statement
specifies that the particular instrinsic function has been
replaced by a user supplied routine,

SPECIFICATION AND DATA STATEMENTS

6.8 INTRINSIC STATEMERT

The INTRINSIC statement designates symbolic names as
intrinsic functions (see Chapter 9). Similar to the EXTERNAL
statement, this allows instrinsic functions to be used as
arguments in CALL statements and function references without
the compiler automatically creating a variable at the point
of reference, The intrinsic function name specified in an
INTRINSIC statement retains its associated data type. The
INTRINSIC statement is given in the following manner:

INTRINSIC func [,func]...
where funpc is the name of an intrinsic function.

The following intrinsic functions are expanded in 1line and
may not appear in an INTRINSIC statement: INT, IFIX, IDINT,
FLOAT, SNGL, REAL, DBLE, CMPLX, ICHAR, CHAR, LGE, LIGT, LLE,
LLT, MAX, MAX0, AMAX1, DMAX1l, AMAX0, MAX1, MIN, MINO, AMIN1,
DMAX1, AMINO, MINl, SHIFT, ADJUST, ADJUSTR, BYTE, WORD, and
LONG.

The INSTRINSIC statement is used to pass instrinsic functions
to external procedures:

INTRINSIC SIN,COS
DIMENSION A(100)
CALL TRIG(SIN,A)
CALL TRIG(COS,B)
END

SUBROUTINE TRIG(FUNC,ARRAY)
DIMENSION ARRAY(100)
DO 10 I1=1,100

10 ARRAY (I) = FUNC(FLOAT(I))
END

Microsoft FORTRAN Compiler

6.9 SAVE STATEMENT

FORTRAN 77 permits dynamic as well as static storage
allocation., Variables, arrays, and common blocks declared in
a main program are allocated statically and always retain
their definition status. Variables, arrays, and common blocks
which are declared only in subprograms are allocated
dynamically when the subprogram 1is invoked. When the
subprogram executes a RETURN or END statement, these items

are deallocated and 1lose their definition status. The SAVE
statement is used to retain the definition status of these
items by specifying them in the following manner:

SAVE [a [,al...]
where:

a is either a common block name delimited with slashes,
a variable name, or an array name.

If a is not specified, the effect is as though all items in
the program unit were presented in the list.

The variables and arrays in a named common block may become

undefined if the common block was also declared in a higher

level subprogram which subsequently executes a RETURN or END

statement and does not contain a SAVE statement specifying

the common block. This may occur even if the lower level

;guténe contains a SAVE statement specifying the named common
ock,

SPECIFICATION AND DATA STATEMENTS

6,10 VIRTUAL STATEMENT

This implementation of FORTRAN 77 supports the additional
array declaration statement, VIRTUAL., This statement is used
in exactly the same manner as the DIMENSION statement and
specifies the symbolic names and dimension specifications of
arrays to be located in external storage rather than internal
storage. This allows for arrays of a far greater extent than
would normally be available, The form of the VIRTUAL

statement is:

VIRTUAL a(d) [,a(d)]...
where each a(d) is an array declarator (see Chapter 4).

Each symbolic name appearing in a VIRTUAL statement declares
it to be an array in that program unit. Unlike arrays
declared for internal storage, a virtual array cannot be
declared with either a type statement or a COMMON statement,
however, a symbolic name appearing without an array
declarator in a type statement may also be declared in a
succeeding VIRTUAL statement. Obviously, a virtual array may
not be associated by means of the COMMON statement or the
EQUIVALENCE statement to any other variable,

The storage unit structure for virtual array elements is
identical to that for internally stored data.

A virtual array is maintained in a direct access file on the
device where execution of the program was initiated. The name
of the file 1is the same as the symbolic name of the array
with an extension of VRT. If the specified array does not
exist as a file on the device it will be created. If the file
already exists, but is of insufficient size to maintain the
array, it will be deleted and a new file will be created.

6,10,1 Passing Virtual Arrays to External Procedures

A virtual array may be passed to a subroutine or function
subprogram by declaring the array in a VIRTUAL statement with
exactly the same name used to declare the array in the

calling procedure.

The array name may appear in the actual argument list of the
referencing procedure and in the subprogram dummy argument
list. The appearance is not strictly necessary, but
recommended to simplify conversions from a virtual array to a
physical array or to use another compiler; changing the
specification statement from VIRTUAL to DIMENSION is all that
would be required.

Microsoft FORTRAN Compiler

6.10.2 Restrictions on Virtual Arrays

Some operating systems have an upper limit on the number of
files that may be open at once, Since a virtual array is
accessed as a file, such limitations should be considered in
the design of a program which accesses a large combination of

files and virtual arrays.

6.11 DATA STATEMENT

Variables, substrings, arrays, and array elements are given
initial values with DATA statements., DATA statements may

appear onlg after the declaration statements in the program
unit in which they appear. DATA statements take the following

form:
DATA vlist/clist/ [[,] xlist/clist/]...
where:

yvlist contains the symbolic names of variables, arrays,
array elements, substrings, and implied DO lists

clist contains the constants which will be used to provide
the initial values for the items in yijist

A constant may be specified in £ljist with an optional repeat
specifier: a positive integer constant (or symbolic name of a
constant) followed by an asterisk. The repeat specifier is

used to indicate one or more occurrences of the same constant:
DATA A,B,C,D,E/1.0,1.0,1.0,1.0,1.0/

can be written as:
DATA A,B,C,D,E/5%1.0/

An array name unqualified by a subscript implies every
element in the array:

INTEGER M(5)
DATA M/5*0/

means:

INTEGER M(5)
DATA M(1),M(2) ,M(3),M(4) ,M(5)/0,0,0,0,0/

6-16

SPECIFICATION AND DATA STATEMENTS

Type conversion is automatically performed for arithmetic
constants (integer, real, double precision, and complex) when
the data type of the corresponding item in yilist is
different. Character constants are either truncated or padded
with spaces when the length of the corresponding character
item in ylist is either shorter or longer than the constant
respectively.

The items specified in ylist may not be dummy arguments,
functions, or items in blank common. Items in a named common

block can be initialized only within a block data subprogram
(see Chapter 9).

6.11.1 Implied DO List In A DATA Statement

An implied DO 1list is used to initialize array elements as

though the assignments were within a DO loop. The implied DO
list is of the form:

(dlist, i = ml, m2 [,m3])
where:
dlist contains array elements and implied DO lists

i is the DO variable and must be an integer

ml, m2, and m3 are integer constant expressions which
establish the initial value, limit value, and
increment value respectively (see Chapter 7)

INTEGER M(10,10) ,N(10),L(4)
CHARACTER*3 S(5)

DATA (N(I),I=1,10),((M(I,J),3=3,8),1=3,8)/5*%1,5%2,36%99/
DATA (L(I),I=1,4)/'ABCD','EFGH','IJKL',"'MNOP'/
DATA (S(I),I=1,5)/'ABC','DEF','GHI','JKL','MNO'/

CHAPTER 7

CONTROL STATEMENTS

Control statements direct the flow of execution in a FORTRAN
77 program. Included in the control statements are
constructs for looping, conditional and unconditional
branching, making multiple choice decisions, and halting
program execution.

Microsoft FORTRAN Compiler

7.1 GOTO STATEMENTS

7.1.1 Unconditional GOTO

The unconditional GOTO statement causes immediate transfer of
control to a labeled statement:

GOTO s

The statement label § must be in the same program unit as the
GOTO statement.

7.1.2 Computed GOTO

The computed GOTO statement provides a means for transferring
control to one of several different destinations depending on
a specific condition:

GOTO (§ [I§]00-) [l] g

2 1is an expression which is converted as necessary to integer
and is wused to select a destination from one of the
statements in the 1list of labels (s [,s]...). The selection
is made such that if the value of & is one, the first label
is used, if the value of e is two, the second label is used,
and so on. The same label may appear more than once in the
label 1list., If the value of & 1s less than 1 or greater than
the number of labels in the list no transfer is made., All of
the statement labels in the list must be in the same program
unit as the computed GOTO statement,

7.1.3 Assigned GOTO

The assigned GOTO statement is used with an integer variable
which contains the address of a labeled statement as

established with an ASSIGN statement:
GOTO i [[,] (8 [,8)...)]

The address of the labeled statement contained in the integer
variable i is wused as the destination. If the optional list
of statement labels, (8 [(,8]...), appears then 3 must be
degined with the address of one of them or no transfer is
made.

CONTROL: STATEMENTS

7.2 IF STATEEENTS

7.2.,1 Arithmetic 1P

The arithmetic IF statement is used to transfer control based
on the sign of the value of an expression:

IF (e) 81 , B2 , 83

& can be an integer, real, or double precision expression
which if negative, transfers control to the statement 1labeled
Sl; if zero, transfers control to the statement labeled s2;
and if positive, transfers control to the statement 1labeled

83. The statements labeled gl, 82, and 83 must be in the same
program unit as the arithmetic IF statement,

7.2.2 Logical IF

The logical IF statement is used to execute another statement
based on the value of a logical expression:

IF (g) st

The statement st is executed only if the value of the logical

expression g is true. The statement gt cannot be a DO, END
DO, REPEAT, IF, ELSE IF, ELSE, END IF, SELECT CASE, CASE, END
SELECT, END, or logical IF statement.

Microsoft FORTRAN Compiler

7.2.3 Block IF

A block IF consists of IF (e) THEN, ELSE, and END IF
statements. Each IF (e) THEN statement must be balanced by an
END IF statement. A block IF provides for the selective
execution of a particular block of statements depending on

the result of the logical expression g.

IF (e) THEN

block of statements
ELSE

block of statements

END IF

The ELSE statement and the second block of statements are
optional, If the value of the logical expression g is true,
the first block of statements is executed and then control of
execution is transferred to the statement immediately
following the END IF statement, If & has a false value, then,
if a second block of statements exists (constructed by ELSE
or ELSE IF statements) it 1is executed, and control of
execution is transferred to the statement immediately
following the END IF statement,

Each block of statements may contain more block IF
constructs, Since each block IF must be terminated by an END
IF statement there is no ambiquity in the execution path,

A more complicated block IF can be constructed using the
alternate form of the ELSE statement: the ELSE IF (e) THEN
statement. Multiple ELSE IF (e) THEN statements can appear
within a block IF, each one being evaluated if the previous
logical expression & has a false value:

IF (1.GT.0 .AND, I.LE.10) THEN
block of statements

ELSE IF (I.GT.10 .AND, I,LE.100) THEN
block of statements

ELSE IF (I.GT.100 ,AND. I.LE,1000) THEN
block of statements

ELSE
block of statements

END IF

CONTROL STATEMENTS

7.3 LOOP STATEMENTS

The DO statements provide the fundamental structure for
constructing loops in FORTRAN 77. The basic DO loop, along
with extensions available with this compiler; DO and DO
WHILE, are discussed in this section.

7.3.1 Basic DO loop

The basic DO statement takes the following form:

DO s [,]1 di=2¢gl, €2 [,e3]

where:

s is the 1label of the statement that defines the range
of the DO loop and must follow the DO statement 1in
the same program unit

i is called the PpO -variable and must be either an

integer, real, or double precision scalar variable

el, e2, and &3 may be integer, real, or double precision
expressions whose values are called the jinitial
yvalue, the Jimit value, and the increment value,

respectively

The 1loop termination statement, labeled s, must not be a DO,
arithmetic IF, block IF, ELSE, END 1IF, unconditional GOTO,
assigned GOTO, SELECT CASE, CASE, END SELECT, RETURN, STOP,
or END statement,

DO loops may be nested to any level, but each nested 1loop
must be entirely contained within the range of the outer
loop. The termination statements of nested DO 1loops may be
the same,

DO 1loops may appear within IF blocks and IF blocks may appear
within DO 1loops, but each structure must be entirely
contained within the enclosing structure.

Microsoft FORTRAN Compiler

7.3.1.1 DO Loop Execution

The following steps govern the execution of a DO loop:

1., The expression gl, the initial value, is evaluated

and assigned to the DO variable i, with appropriate

type conversion as necessary.

2. The expressions g2 and g3, the 1limit value and

increment value respectively, are evaluated.
is omitted, it is given the ée

If =3
fault value of one.

3. The jiteration count is calculated from the following

expression:

MAX(INT((22 - el + £3)/e3), 0)

and determines how many times the statements

the loop will be executed.

within

4. The iteration count is tested, and if it is zero,
control of execution is transferred to the statement
immediately following the loop termination statement,

S. The statements within the range of the loop are

executed.

6. The DO variable is increased by the increment value,
the iteration count is decreased by one, and control

branches to step four.,

Variables that appear in the expressions gl, 82, and g3 may
be modified within the loop, without affecting the number of

times the loop is iterated.

oo +-HO

0
1
1

K
L
DO I=l, L
DO J=1, I
L =
10 K = K+l

When the execution of both the inner and outer 1loops

is

finished, the values of both I and J are 11, the value of K

is 55, and the value of L is 10,

CONTROL STATEMENTS

7.3.1.2 Transfer into Range of DO Loop

Under certain conditions, FORTRAN 66 permitted transfer of
control into the range of a DO loop from outside the range,
This was known as the "extended range of a DO". Such a
transfer is considered highly unstructured and is prohibited

in ANSI FORTRAN 77. However, in this implementation of
FORTRAN 77, all DO loops may be considered extended range if

the program is compiled with the H option (see Chapter 2)
selected,

7.3.2 DO WHILE
The DO WHILE statement is an extension to standard FORTRAN 77

and provides a method of looping not necessarily governed by
an iteration count. The form of the DO WHILE statement is:

(DO [s[,]]] WHILE (e)

where:

s is the statement 1label of an executable statement
that defines the range of the 1loop. The statement
identified by s must follow the DO statement in the
sequence of statements within the same program unit
as the DO statement, If the label s is omitted, the
loop must be terminated with a REPEAT or END DO
statement,

e is a logical expression,

The DO WHILE statement tests the logical expression at the

top of the loop. If the expression evaluates to a true
value, the statements within the body of the 1loop are
executed., If the expression evaluates to a false value,

execution proceeds with the statement following the loop:
integer status,eof; parameter (eof=-1)
data a,b,c /3%0.0/

status = 0
while (status<>eof)
c =c + a*b
read (*,*,iostat=status) a,b
repeat

Microsoft FORTRAN Compiler

7.3.3 Block DO

The block DO extension to standard FORTRAN 77 provides three
additional methods for constructing a 1loop. They are as
follows:

1. DO
block
REPEAT

2. DO (i=el, e2 [,e3])
block

REPEAT

3. DO (e4 TIMES)
block
REPEAT

All three forms of block DO require a REPEAT or END DO
statement to terminate the loop. An EXIT statement (described
below) may be used to abnormally exit from the loop and a
CYCLE statement (also described below) may be used to force
iteration of the loop.

The first case is essentially a DO forever construct for use
in situations where the number of loop iterations is unknown
and must be determined from some external condition (i.e.
processing text files).

The second case is identical to the standard DO 1loop without
a terminating statement label. The value i is the DO
variable, 1 is its initial value, 2 1is its terminating
value and e3, if present, is the increment value,

The value =4, in the third case, is the iteration count and
may be an integer, real, or double precision expression.
Where the value g4 is not an integer, it is first converted
to an integer and the truncated value becomes the iteration
count. At least one blank character must be present between
the iteration count expression and the keyword TIMES,

CONTROL STATEMENTS

7.3.4 END DO and REPEAT

The END DO and REPEAT statements are extensions to standard
FORTRAN 77 and are used to terminate DO WHILE loops and block
DO structures. Each block DO must have a matching END DO or
REPEAT statement., After execution of an END DO or REPEAT

statement, the next statement executed depends on the result
of the DO loop incrementation processing. The form of the END

DO and REPEAT statements is:

END DO (or REPEAT)

7.3.,5 EXIT

The EXIT statement is also an extension to standard FORTRAN
77 and provides a convenient means for abnormal termination
of a DO loop. The EXIT statement causes control of execution
to be transferred to the statement following the terminal
statement of a DO loop or block DO,

do
read (*,*,iostat=ios) vl,v2; if (ios=-1) exit
call process(vl,v2)

repeat

7.3.6 CYCLE

The CYCLE statement is an extension to FORTRAN 77 and causes
immediate 1loop 1index and iteration count processing to be
performed for the DO loop or block DO structure to which the

CYCLE statement belongs.

read (*,*) n
z=20,0
do (n times)
read (*,*) x,y; if (y=0.0) cycle
z =2+ x/y
repeat

7.4 CORTINUE STATEMENT

The CONTINUE statement is used to provide a reference point.
It is usuvally used as the terminating statement of a basic DO
loop, but it can appear anywhere in the executable section of
a program unit. Executing the CONTINUE statement itself has
no effect. The form of the CONTINUE statement is:

CONTINUE

Microsoft FORTRAN Compiler

7.5 BLOCK CASE

The block CASE structure is an extension to the FORTRAN
standard for constructing blocks which are executed based on
comparison and range selection, The SELECT CASE statement is
used with an END SELECT statement, at least one CASE
statement and, optionally, a CASE DEFAULT statement to
control the execution sequence. The SELECT CASE statement is
used to form a block CASE.

The form of a block CASE is:

SELECT CASE (g)
CASE (case selector)
block
[CASE (case selector)
b}ock
(CASE DEFAULT]
block
END SELECT

where e 1is an expression formed from one of the enumerative
data types: character, integer, real, or double precision,
For the purposes of the block case construct, the value of
character expression is its position in the ASCII collating
sequence,

A CASE block must contain at least one CASE statement and
must be terminated by an END SELECT statement, Control of
execution must not be transferred into a block CASE.

CASE blocks are delimited by a CASE statement and the next
CASE, CASE DEFAULT, or END SELECT statement. A CASE block may
be empty. After execution of a CASE block, control of
execution is transferred to the statement following the END
SELECT statement with the same CASE level, Block CASE
structures may be nested., Since each block CASE must be
terminated by an END SELECT statement there is no ambiguity

in the execution sequence.

7-10

CONTROL STATEMENTS

A case selector takes the form of either of the following:
CASE (conl,con,...,conl)
CASE DEFAULT

con may be either a value selector or a range selector. A
value selector 1is a constant. A range selector takes one of
the following three forms:

conl:con2 where c¢onl .LE. ® .LE. con2
con: where con J.LE. ®
tcon where e .LE, con

All constants must be of the same type as the expression & in
the SELECT CASE statement, A block CASE may have only one
CASE DEFAULT statement where control of execution is
transferred if no match is found in any other CASE statement,
If a CASE DEFAULT statement is not present and no match |is
found, a run time error is reported.,

7.5.1 Execution of a block CASE statement

Execution of block CASE statement causes evaluation of the
ex Ste551on € in the SELECT CASE statement. An attempt is then

e to match the value of the expression with the parameters
f the gase ~selectors. If a match is made, transfer of
control is passed to that case block.

Microsoft FORTRAN Compiler

7.5.2 Block CASE Example

routine to count the number and types of characters
in a text file

* ¥ % %

implicit integer(a-z)
character line*80
parameter (EOF=-1)

lines=0; alf=0; num=0; blk=0; trm=0; spl=0

do
read (5,'(a)',iostat=ios) line
if (ios=EOF) exit
chars = len(trim(line))
lines = lines+l
do (i=1, chars)
select case (line(i:i))
case ("A":"z","a":"z")
alf = alf+l
case ("0":"9")
num = num+l
case (" ")
blk = blk+l
case (u'n’u!n'n?n)
trm = trm+l
case default
spl = spl+l
end select
repeat
repeat

end

7-12

CONTROL STATEMENTS

7.6 STOP STATEMENT

The STOP statement terminates execution of a program:

STOP [s]

The optional string s may be a character constant or string
of five or fewer digits and is output to unit 9 ith end of
record characters.

7.7 PAUSE STATEMENT

The PAUSE statement suspends execution of a program until the
RETURN key is pressed on the terminal connected to unit 9
(see Chapter 8):

PAUSE [s]

The optional string s may be a character constant or string
of five or fewer digits and is output to unit 9 without end

of record characters,

7.8 END STATEMENT

Every program unit must have an END statement which
terminates the range of individual program units within a
source file., A source file itself may contain more than one
program unit; the entry points of the individual program
units in the compiled object file are available to the
linker. However, only the first program unit can be used as
an entry point if the file is loaded as an overlay.

An END statement is executable and if encountered in a main
program has the effect of a STOP statement and if encountered
in a subroutine or function subprogram has the effect of a
RETURN statement. An END statement is given on a statement
line by itself with no other characters:

END

7-13

Microsoft FORTRAN Compiler

7.9 EXECUTE STATEMERT

As an extension to FORTRAN 77, a statement is provided for
chaining to another program, similar to the CHAIN statement
found in other languages. The form of the EXECUTE statement
is as follows:

EXECUTE arg
where: arg is one of the following:
1., A character expression
2. A character variable name

3. A character substring

4., A character array element

The argument must contain a complete command 1line acceptable
to the operating system. The EXECUTE statement has the effect
of a STOP statement except that any open files are not
implicitly closed., All files should be closed before an
EXECUTE statement is executed to insure that buffers are
flushed and scratch files are deleted.

Note: Under UNIX, the argument of the EXECUTE statement is
the file name of a script which is passed to the shell,

CHAPTER 8

INPUT/OUTPUT AND FORMAT SPECIFICATION

Input and output statements provide a channel through which
FORTRAN 77 programs can communicate with the outside world.
Facilities are available for accessing disk and tape files,
communicating with terminals and printers, and controlling
external devices, FORTRAN 77 input and output statements are
designed to allow access to the wide variety of features
implemented on various computer systems in the most portable
manner possible,

A format specification is used with formatted input and
output statements to control the appearance of data on output
and provide information regarding the type and size of data
on input, Converting the internal binary representation of a
floating point number into a string of digits requires a
format specification and is called editing. A format
specification divides a record into fields, each field
representing a value, An explicitly stated format
specification designates the exact size and appearance of
values within fields.

When an asterisk (*) is used as a format specification it
means "list directed" editing., Instead of performing editing
based on explicitly stated formatting information, data will
be transferred in a manner which is "reasonable" for its type
and size,

Throughout the remainder of this chapter, input and output
will be referred to in the conventional abbreviated form: I/O.

Microsoft FORTRAN Compiler

8.1 RECORDS

All FORTRAN I/O takes place through a data structure called a
record. A record can be a single character or sequence of
characters or values., A record might be a line of text, the
data received from a bar code reader, the coordinates to move
a plotter pen, or a punched card. FORTRAN uses three types of
records:

* Formatted

* Unformatted

* Endfile

8.1.1 Formatted Record

A formatted record is a sequence of ASCII characters. It may
or ma not be terminated depending on the operating system.
If it 1s terminated, the usual terminating characters are
either a carriage return, a 1line feed, or both, A single
line of text on this page is a formatted record., The minimum
length of a formatted record is zero and the maximum length

is 1024,

8.1.2 Unformatted Record

An unformatted record 1is a sequence of values. Its
interpretation is dependent on the data type of the value,
For example, the binary pattern 01010111 can be interpreted
as the integer value 87 or the character value "W" depending
on its data type. The minimum length of an unformatted record
is zero and the maximum length is 1024 except for unformatted
sequential access records containing no record length

information (see below) which have unlimited length.

8.1.3 Endfile Record

The endfile record is the last record of a file and has no
length, An endfile record may or may not be an actual record
depending on the file system of a particular operating system.

INPUT/OUTPUT AND FORMAT SPECIFICATION

8.2 FILES

A file is composed of zero or more records and can be created
and accessed by means other than FORTRAN 77 programs, For
example, a text processor might be used to create and edit a
document file and a FORTRAN 77 program used to manipulate the
information in the file,

Files which are usually stored on disks or tapes are called

external files, Files can also be maintained in main memory.
These are called interpal files.

8.2.,1 Pile Name

Most external files are accessed explicitly by their names.
While the file naming conventions of operating systems vary
greatly, FORTRAN 77 can accommodate most of the differences.

The circumstances where a name is not required to access a
file are discussed later in this chapter.

8.,2.,2 File Position

The position within a file refers to the next record that
will be read or written, When a file is opened it is wusually
positioned to just before the first record. The end of the
file is just after the 1last record. Some of the 1/0
statements allow the current position within a file to be
changed.

8.2.3 File Access

The method used to transfer records to and from files |is
called the access mode. External files may contain either
formatted or unformatted records. When the records in a file
can be read or written in an arbitrary manner, randomly, the
access mode 1is direct. Individual records are accessed
through a record number, a positive integer. All of the
records in a direct access file have the same 1length and
contain only the data actually written to them; there are no
record termination characters. Records may be rewritten, but
not deleted. Generally, only disk files can use the direct
access mode of record transfer,

When the records are transferred in order, one after another,
the access mode is seguential. The records in a sequential
access file may be of different 1lengths, Some files, 1like
terminals, printers, and tape drives, can only use the
sequential access mode,

Microsoft FORTRAN Compiler

Formatted sequential access files usually contain textual
information and each record has a terminating character(s) as
described above,

Unformatted sequential access is generally used for two
conflicting, but equally common purposes:

1. For controlling external devices such as plotters,
graphics terminals, and machinery as well as
processin unencoded binary information such as
object fi?es. In this case it is important that the
data transferred to and from the external media be a
true byte stream containing no record length
information,

2, For its data compression and speed of access
characteristics, In this case it must be possible to
determine the 1length of a record for partial record

reads and backspacing purposes.

This implementation of FORTRAN 77 contains provisions for
both of these requirements, The default manner of unformatted
processing of a sequential access device is to treat it as a
pure byte stream, Partial record reads and backspacing are
not possible. The data transmitted is exactly what your WRITE
statement specifies or what the external media contains.
There is no limit on the length of a record.

When partial record reads and backspacing of unformatted
sequential files are required, the runtime system is informed
by adding the "BLOCK=-1" specifier to the OPEN statement, The
BLOCK specifier is an extension to the ANSI standard normally
used to specify the blocking factor applied to magnetic tape.
When a file 1is opened for unformatted sequential access and
this specifier is negatively valued, each record written will
be preceded and followed by two bytes containing the length
of the record, The maximum record length is 1024 bytes.

8.2.4 Internal File

Internal files are comprised of character variables,
character array elements, character substrings, or character
arrays. An internal file which is a character variable,
character array element, or character substring has one
record whose length is the length of the character entity. An
internal file which is a character array has as many records
as there are array elements. The 1length of an individual
record is the 1length of a character array element. Data may
only be transferred through the formatted sequential access
mode. Internal files are usually used to convert variables
between numeric and character data types.

INPUT/OUTPUT AND FORMAT SPECIFICATION

8.3 1I/0 SPECIFIERS

FORTRAN 77 1/0 statements are formed with lists of specifiers
that are used to identify the parameters of the operation and
direct the control of execution when exceptions occur.

8.3.1 Unit Specifier

The mechanism through which a channel of communication with a
file 1is established and maintained is called a unit. A unit
may be either explicitly or implicitly identified, and may
refer to an external or internal file. When the channel is
established, the unit is said to be connected to the file,
The relationship is symmetric; that is, you can also say that

the file is connected to the unit.

A connection to an external file is established and

maintained with an exterpal unit jdentifier which is an
integer expression whose value is an arbitrary positive
integer. An external wunit identifier 1is global to the

program; a file opened in one program unit may be referenced
with the same unit number in other program units. There is no
relationship between a FORTRAN unit specifier and the numbers

used by various operating systems to identify files.,

A connection to an internal file is made with an internail

file identifier which is the name of the character variable,
character array element, character substring, or character
array that comprises the file.

Some units are "preconnected" to files:

1. Unit 5 is preconnected to a file specified on the
command line and provides a method for simulating
the card reader preconnections of older FORTRAN

programs,

2. Unit 6 1is preconnected to a file which will be
spooled to the 1line printer when the program
finishes execution.

3. Unit 7 is preconnected to a magnetic tape drive,

4, Unit 9 1is preconnected to the terminal device for
both input and output operations.

5. An asterisk as a unit identifier by default refers
to unit 5 for input operations and unit 6 for output
operations. The default may be changed to unit 9
with the "U" compiler option (see Chapter 2).

Microsoft FORTRAN Compiler

A unit specifier is given as:
[UNIT=] u

where u is either a positive integer expression representing
an external unit identifier, or a character entity
representing an internal file identifier,

The characters ™"UNIT=" may be omitted if the unit identifier
occurs first in the list of identifiers.

8.3.2 Format Specifier

The format specifier establishes the method of converting

between internal and external representations, It can be
given in one of two ways:

{FMT=] £
or
[FMT=] *
where:
£ is the statement 1label of a FORMAT statement, an
integer variable that has been assigned a FORMAT
statement label with an ASSIGN statement, a character
array name, or any character expression
* indicates "list directed” editing

The characters "FMT=" may be omitted if the format specifier
occurs second in the list of identifiers and the first item
is the wunit specifier with the characters "UNIT=" also

omitted. The following are equivalent:
WRITE (UNIT=9, FMT=1000)
WRITE (9,1000)

8.3.3 Record Specifier

The record specifier establishes which direct access record
is to be accessed and is given as:

REC = rn

where 1n is a positive integer expression.

INPUT/OUTPUT AND FORMAT SPECIFICATION

8.3.,4 Error Specifier

The error specifier provides a method to transfer control of

execution to a different section of the program unit if an
error condition occurs during an I/0 statement. It takes as
an argument the label of the statement where control is to be

transferred:

ERR = s

where s is the statement label.

8.3.5 End of Pile Specifier

The end of file specifier provides a method to transfer
control of execution to a different section of the program
unit if an end of file condition occurs during an I/0

statement, It also takes as an argument the 1label of the
statement where control is to be transferred:

END = s

where s is the statement label.

8.3.6 I/O Status Specifier

The I/0 status specifier is used to monitor error and end of
file conditions after the completion of an I/0 statement. Its
associated integer variable becomes defined with a -1 if end
of file has occurred, a positive integer if an error
occurred, and =zero if there is neither an error nor end of

file condition:
IOSTAT = ios

where ios is the symbolic name of an INTEGER*4 variable or
array element.

8-7

Microsoft FORTRAN Compiler

8.4 I/0 LIST

The I/0 1list, iolist, contains the names of variables,
arrays, array elements, and expressions (only in output
statements) whose values are to be transferred with an 1/0
statement. The following items may appear in an iolist:

* A variable name

* An array element name

* A character substring name

* An array name which is interpreted as every element in the
array

* Any expression (only in an output statement)

8.4.1 1Implied DO List In An I/0 List

The elements of an jolist in an implied DO 1list are
transferred as though the I/0O statement was within a DO loop.
An implied DO list is stated in the following manner:

(dlist, i = el, 22 [,e3))
where:
i is the DO variable

el, e2, and g3 establish the initial value, the limit
value, and increment value respectively (see Chapter
7).

dlist is an jolist and may consist of other implied DO lists
In a READ statement (see below), the DO variable, i, must not

occur within dlist except as an element of subscript, but may
occur in the jo9list prior to the implied DO 1list,.

INPUT/OUTPUT AND FORMAT SPECIFICATION

8.5 READ, ACCEPT, WRITE, PRINT, AND TYPE STATEMENTS

The READ and ACCEPT statements transfer data from files into

storage and the WRITE, PRINT, and TYPE statements transfer
data from storage to files. They are collectively called data
transfer statements and cause one or more records to be

transferred, The data transfer statements are:
READ (gilist) [iolist]
READ £ [,iolist]
ACCEPT [iolist]
WRITE (cilist) [iolist]
PRINT £ [,iolist]
TYPE (cilist) [iolist]
TYPE £ [,iolist]

TYPE ¢

where:
£ is a format identifier
iolist is an I/0 list
c is a character constant

cilist is a parameter control list that may contain:

1. A unit specifier identifying the file connection,

2. An optional format specifier for formatted data
transfers.

3. An optional record specifier for direct access
connections,

4. An optional error specifier directing the execution
path in the event of error occurring during the data

transfer operation,
S. An optional end of file specifier directing the

execution path in the event of end of file occurring
during the data transfer operation.

6. An optional 1I/0 status specifier to monitor the
error or end of file status.

Microsoft FORTRAN Compiler

The PRINT statement and READ statements that do not contain a
cilist implicitly use the asterisk as a unit identifier.

The ACCEPT statement and TYPE statements that do not contgin
a cilist implicitly use 9 as the unit identifier with "list
directed™ editing.

8.5.1 Unformatted Data Transfer

Unformatted data transfer is ermitted only to external
files. Only one unedited recor is trdnsferred per data

transfer statement.

8.5.2 Formatted Data Transfer

Formatted data transfer requires a format specifier which
directs the interpretation applied to items in the jolist.
Formatted data transfer causes one or more records to be
transferred,

8.5.3 Printing

WRITE, PRINT, and TYPE statements specifying unit 6, the 1line
printer spooler file, use the first character of each record
to control vertical spacing. This character, <called the
carriage control character, is not printed and causes the
following veritical spacing to be performed before the record

is output:

ct tic ci
blank one line
0 two lines
1 top of page
+ no advance (over print)

Any other character appearing in the first position of record
or a recqrd containing no characters causes vertical spacing
of one line.

8-10

INPUT/OUTPUT AND FORMAT SPECIFICATION

8.6 OPEN STATEMERT

The OPEN statement either connects a unit to an existing file

or creates a file and connects a unit to it, The OPEN
statement has the following form:

OPEN ([UNIT=] u [,olist])

where [UNIT=] is the external unit specifier and the optional
list, olist, consists of 2zero or more of the following
specifiers, each of which must have a variable or constant
following the equals sign:

IOSTAT= an I/0 status specifier as described above (see
Appendix D for a list of error codes).

ERR= an error specifier as described above,

FILE= a character expression which represents the name

of the file to be connected to the unit. If this
specifier is omitted a file name will be created.

STATUS= a character expression which must be OLD, NEW,
SCRATCH, or UNKNOWN, The file must already exist
when OLD is specified. If NEW is specified a
file is created and if the file already exists,
it will be first deleted. If SCRATCH is
specified a file will be created which will
exist only during the execution of the program
and PILE= must not specified. If UNKNOWN is
specified, a file will be created if one does
not already exist. The default value is UNKNOWN.

ACCESS= a character expression which must be SEQUENTIAL
or DIRECT and specifies the access mode. The
default value is SEQUENTIAL.

FORM= a character expression which must be FORMATTED
or UNFORMATTED specifying the type of records in
the file. The default value 1is UNFORMATTED for
direct access files and FORMATTED for sequential
access files.

RECL= a positive integer expression which must be
given for direct access file connections and
specifies the 1length of each direct access
record. The specifier may be given for
connections involving magnetic tape devices in
which case its value indicates a fixed length
record.

8-11

Microsoft FORTRAN Compiler

BLANK=

SIZE=

POSITION=

ACTION=

BLOCK=

a character expression which must be NULL or
ZERO specifying how blank characters in
formatted numeric input fields are to be
handled. A value of ZERO causes blanks in the
input field (leading, embedded, and trailing) to
be replaced with zeros. The default value is
NULL and causes blanks to be ignored,

a positive integer expression specifying the
number of disk blocks to allocate for direct
access files opened with a NEW status specifier,
This specifier is only recognized on operating
systems that distinquish between direct access
and sequential access files. The default is 100,

a character expression which must be REWIND,
APPEND, or ASIS. If REWIND is specified the file
is opened at its beginning position for input or
output, If APPEND is specified, the file is
opened at its end position for output. The
default is ASIS and has the same effect as
REWIND for sequential disk files and has no
effect for tape devices.

a character expression which must be READ,
WRITE, or BOTH. If READ is specified, only READ
statements and file positioning statements are
allowed to refer to the connection, If WRITE is
specified, only WRITE statements and file
positioning statements are allowed to refer to
the connection, If BOTH is specified, any
input/output statement may be used to refer to
the connection., The default is BOTH.

a positive integer expression specifying the
number of bytes in a data block (between IRGs)
on a magnetic tape file connection,

If a unit is already connected to a file, the connection is
first terminated before the new connection is established.

8-12

INPUT/OUTPUT AND FORMAT SPECIFICATION

8.7 CLOSE STATEMENT

The CLOSE statement disconnects a file from a unit. The CLOSE
statement has the following form:

CLOSE ([{UNIT=] u [,clist])

where [UNIT=] is the external unit specifier and the optional
list, c¢list, consists of zero or more of the following

specifiers, each of which must have a variable or constant
following the equals sign:

IOSTAT= an I/O status specifier as described above (see
Appendix D for a list of error codes).

ERR= an error specifier as described above,

STATUS= a character expression which must be KEEP or

DELETE which determines whether a file will
continue to exist after it has been closed.
STATUS has no effect if the value of the STATUS

specifier in the OPEN statement was SCRATCH. The
default value is KEEP,

Normal termination of execution of a FORTRAN 77 program
causes all units that are connected to be closed.,

8-13

Microsoft FORTRAN Compiler

8.8 BACKSPACE STATEMENT

The BACKSPACE statement causes the file pointer to be
positioned to a point 3just before the previous record. The
forms of the BACKSPACE statement are:

BACKSPACE 1
BACKSPACE ([UNIT=] u [,alist])

where [UNIT=] is the external unit specifier and the optional
list, alist, consists of zero or more of the following
specifiers:

IOSTAT= an 1/0 status specifier as described above,

ERR= an error specifier as described above,

8.9 REWIRD STATEMENT

The REWIND statement causes the file pointer to be positioned
to a point just before the first record., The forms of the
REWIND statement are:

REWIND g
REWIND ([UNIT=] u [,alist])

where [UNIT=] is the external unit specifier and the optional
list, alist, consists of zero or more of the following
specifiers:

IOSTAT= an I/0 status specifier as described above.

ERR= an error specifier as described above.

8.10 ERDPILE STATENENT

The ENDFILE statement writes an endfile record to magnetic

tape files and does nothing to disk files. The forms of the
ENDFILE statement are:

ENDFILE u
ENDFILE ({UNIT=] u [,alist])

where [UNIT=] is the external unit specifier and the optional
list, alist, consists of zero or more of the following
specifiers:

IOSTAT= an I/0 status specifier as described above,

ERR= an error specifier as described above.

INPUT/OUTPUT AND FORMAT SPECIFICATION

8.11 INQUIRE STATEMENT

The INQUIRE statement is used to obtain information regarding
the properties of files and units. The forms of the INQUIRE
statement are:

INQUIRE (UNIT= u, ilist)
INQUIRE (FILE= fin, ilist)

The first form, inquirv by unpit, takes a unit number as the
principal argument and is used for making ingquiries about
specific units. The unit number, u, is a positive integer
expression, The second form, inguixy by file, takes a file
name as the principal argument and is used for making
inquiries about specific named files. The file name, fin, is
a character expression., Only one of "UNIT=" or "FILE=" may be
specified. One or more of the following ilist specifiers are
also used with the INQUIRE statement:

IOSTAT= an I/0 status specifier as described above.

ERR= an error specifier as described above.

EXIST= a logical variable or array element which is
defined with a true value if the unit or file
exists,

OPENED= a logical variable or array element which is
defined with a true value if the unit or file is
connected.

NUMBER= an integer variable or array element which is

defined with the number of the unit that is
connected to the fije.

NAMED= a logical variable or array element which is
defined with a true value if the file has a name.

NAME= a character variable or array element which is
defined with the name of the file,

ACCESS= a character variable or array element which is
defined with either the value SEQUENTIAL or
DIRECT depending on the access mode,

SEQUENTIAL= a character variable or array element which is
defined with the value YES or NO indicating
whether the file can be connected for sequential
access.,

Microsoft FORTRAN Compiler

DIRECT= a character variable or array element which.is
defined with the value YES or NO indicating
whether the file can be connected for direct

access.,

FORM= a character variable or array element which is
defined with either the value FORMATTED or
UNFORMATTED depending on whether the file is
connected for formatted or unformatted I/0.

FORMATTED= a character variable or array element which is
defined with the value YES or NO indicating

whether the file can be connected for formatted
1/0.

UNFORMATTED= a character variable or array element which is
defined with the value YES or NO indicating
whether the file <can be connected for

unformatted 1I/0.

RECL= an integer variable or array element which is
defined with the record length if the file is
connected for direct access,

NEXTREC= an integer variable or array element which is
defined with the value of the next record number
to be read or written.

BLANK= a character variable or array element which is
defined with either the value NULL or ZERO

depending on how blanks are handled.

SIZE= an integer variable or array element which is
defined with the size of the file in bytes.

Some of the specifiers may not be defined if a wunit is not
connected or a file does not exist. For example:

CHARACTER*20 FN,AM
LOGICAL OS

INTEGER RL
INQUIRE (UNIT=18, OPENED=0S, NAME=FN, ACCESS=AM, RECL=RL)

If unit 18 1is not connected to a file, 0S will be defined
with a false value, but FN, AM, and RL will be undefined. If
unit 18 is connected for sequential access, 0S, FN, and AM
will be defined appropriately, but record length is
meaningless in this context, and RL will be undefined.

8-16

INPUT/OUTPUT AND FORMAT SPECIFICATION

8.12 GIVING A FORMAT SPECIFICATION

An explicit format specification may be given in either a
FORMAT statement or in a character array or character
expression. A FORMAT statement must be labeled so that it can
be referenced by the data transfer statements (READ, WRITE,
PRINT, etc.). The form of the FORMAT statement is:

FORMAT format specification

When a format specification is given with a character array
or character expression (character variables, array elements,
and substrings are simple character expressions) it appears
as a format specifier in the gjlist of data transfer
statements as described later in this chapter. An array name
not qualified by subscripts produces a format specification
which 1is the concatenation of all of the elements of the
array. Leading and trailing blanks within the character item
are not significant,

A format specification is given with an opening parenthesis,
an optional 1list of =edit ~descriptors, and a closing
parenthesis, A format specification may be given within a
format specification; that is, it may be nested. When a
format specification is given in this manner it is called a
group specifier and can be given a repeat count, called the
group repeat count, which is a positive integer constant
immediately preceding the opening parenthesis, The maximum
level of nesting is twenty.

The edit descriptors define the fields of a record and are
separated by commas except between a P edit descriptor and an
F, E, D, or G edit descriptor and before or after slash and
colon edit descriptors (see below). The fields defined by
edit descriptors have an associated width, called the field
width.

8-17

Microsoft FORTRAN Compiler

An edit descriptor is either repeatable or nonrepeatable.
Repeatable means that the edit descriptor is to be used more
than once before going on to the next edit descriptor in the
list. The repeat factor is given immediately before the edit

descriptor as a positive integer constant,

The repeatable edit descriptors and their meanings are:

Iy and I¥.m integer editing

By and Bw.m binary editing

Oy and Ow.m octal editing

Zw and Iy.m hexadecimal editing

Fu.d floating point editing

Ew.d and Ew.dEe single precision scientific editing
. double precision scientific editing

Ge.d and G.dEe general floating point editing

Ly logical editing

Alw] character editing

¥ and & are nonzero, unsigned, integer constants and d and nm
are unsigned integer constants,

The nonrepeatable edit descriptors and their meanings are:

'hl h2 ... hn' character string

*hl h2 ... hn" character string

nBhl b2 ... hn Hollerith string

nx skip positions

T¢c, TLg, and TRg tab to column

kP set scale factor

/ start a new record

: conditionally terminate 1/0
S, SP, and S8 set sign control

BZ and BN set blank control

h 1is an ASCII character; n and ¢ are nonzero, unsigned,
integer constants; and k is an optionally signed integer
constant.

8-18

INPUT/OUTPUT AND FORMAT SPECIFICATION

8.13 FPORMAT SPECIFICATION ARD I/0 LIST INTERACTION

During formatted data transfers, the I/0 list items and the
edit descriptors in the format specification are processed in
parallel, from 1left to right. The 1I/0 list specifies the
variables that are transferred between memory and the fields
of a record, while the edit descriptors dictate the
conversions between internal and external representations,

The repeatable edit descriptors control the transfer and
conversion of I/O list items. A repeatable edit descriptor or
format specification preceded by a repeat count, 1, is
treated as I occurrences of that edit descriptor or format
specification., Each repeatable edit descriptor controls the
transfer of one item in the I/O list except for complex items
which require two F, E, D, or G edit descriptors., A complex
I/0 list item is considered to be two real items.

The nonrepeatable edit descriptors are used to manipulate the
record. They can be used to change the position within the
record, skip one or more records, and output literal strings.
The processing of I/0 1list items is suspended while
nonrepeatable edit descriptors are processed.

If the end of the format specification is reached before
exhausting all of the items in the I/0 1list, processing
starts over at the beginning of the last format specification
encountered and the file is positioned to the beginning of
the next record. The last format specification encountered
may be a group specifier, if one exists, or it may be the
entire format specification, If there is a repeat count in
front of a group specifier it is also reused.

8-19

Microsoft FORTRAN Compiler

8.14 INTEGER EDITING

The I, B, O, and Z edit descriptors control the translation
of character strings representing integer values to and from
the appropriate internal formats,

8.14,1 I Bditing

The Iv and Iw.m edit descriptors must correspond to an
integer I/0 list item. The field width in the record consists
of w characters,

On input, the I/0 list item will be defined with the value of
the 1integer constant in the input field which may have an

optional leading sign,

The output field consists of a string of digits representing
the integer value which is right justified and may have a

leading minus sign if the value is negative. If @ is
specified, the string will consist of at least m digits with
leading zeros as required. The output field will always
contain at 1least one digit unless an @ of zero is specified
in which case only blank characters will be output, If the
specified field width is too small to represent the integer
value, the field is completely filled with the asterisk
character.

WRITE (9,10) 12, -12, 12
10 FORMAT (214,16.4)
12 -12 0012

8-20

INPUT/OUTPUT AND FORMAT SPECIFICATION

8.14,2 B, O, and Z Editing

The B, 0, and 2 edit descriptors are specified in the same
manner as the integer edit descriptor and perform bit editing
on binary, octal, and hexadecimal fields respectively. The
field width in the record consists of w characters. An input
list item can be up to sixty-four bits in length and may have
a logical, integer, real, double precision, or complex data
type. An output 1list value can be no longer than thirty-two
bits in length and may have a 1logical, integer, real, or
complex data type.

On input, the 1I/0 list item will be defined with the binary
representation of the external value.

The output field consists of a string of characters
representing the value and is right Jjustified, If p is
specified, the string will consist of at least m digits with

leading =zeros as required, The output field will always
contain at least one digit unless an m of zero is specified
in which case only blank characters will be output.

WRITE (9,10) 199, 199, 199
10 FORMAT (Z4,07.6,B9)
C7 000307 11000111

8-21

Microsoft FORTRAN Compiler

8.15 PLOATING POINT EDITING

The F, E, D, and G edit descriptors control the translation
of character strings representing floating point values
(real, double precision, and complex) to and from the
appropriate internal formats. The edit descriptor must
correspond to a floating point I/0 list item, On input, the
I/0 list item will be defined with the value of the floating
point constant in the input field,

A complex value consists of a pair of real values and
consequently requires two real edit descriptors.

8.15.1 F Editing

The field width of the Fy.d edit descriptor consists of w
characters, The fractional portion, i1f any, consists of d
characters, If the specified field width is too small to
represent the value, the field is completely filled with the
asterisk character.

The input field consists of an optional sign and a string of
digits which can contain a decimal point. This may be
followed by an exponent which takes the form of either a
signed integer constant or the letter E or D followed by an
optionally signed integer constant.

The output field consists of a minus sign if the value is
negative and a string of digits containing a decimal point

with d fractional digits, The value is rounded to d
fractional digits and the string is right justified in the
field, If the value is less than 1,0, and the field width

permits, a leading zero will be incorporated in the string.
The position of the decimal point may be modified by the
scale factor as described under the kP edit descriptor.

WRITE (9,10) 1.23, -1.23, 123.0, -123.0

10 FORMAT (2F6.2,F6.1,F6.0)
1.23 -1.23 123.0 -123,

8-22

INPUT/OUTPUT AND FORMAT SPECIFICATION

8.15.2 E and D Editing

The field width of the Ew.d, Ew.dEe, and Dw.d edit
descriptors consists of w characters in scientific notation.
d specifies the number of significant digits. If g is
specified, the exponent contains e digits, otherwise, the
exponent contains two digits for E editing and three digits
for D editing.

The input field is identical to that specified for F editing.

The output field consists of a minus sign if the value is
negative, a zero, a decimal point, a string of d digits, and
an exponent whose form is specified in the table below. The
value is rounded to d fractional digits and the string is
right justified in the field, The position of the decimal
point may be modified by the scale factor as described under
the kP edit descriptor,

Edit Absolute value Form of
Descriptor of Exponent £xponent
Ew.d < 99 E+nn

Ew.d 100 -~ 309 +nnn

Ew.dEe < (10**g) -1 E+nin2...nge
Dy.d £ 99 D+nn

Dw.d 100 - 309 +nnn

WRITE (9,10) 1.23, -1.23, -123.0E-6, .123D3
10 FORMAT (2E12.4,E12.3E3,D12.4)

0.1230E+01 -0.1230E+01 -0.123E-003 0.1230D+03

Microsoft FORTRAN Compiler

8.15,3 G Editing

The G¥.d and Gw.dEe edit descriptors are similar to the F and
E edit descriptors and provide a flexible method of
accomplishing output editing.

The input field is identical to that specified for F editing.

The form of the output field depends on the magnitude of the

value in the I/0 1list., F editing will be used unless the
value of the item would cause the field width to be exceeded
in which case E editing is used. In both cases, the field

consists of yw right justified characters,

Magnitude of N Eguivalent Conversjon
N < 0.1 Ew.d

0.1 <N<1.0 F(w-4).d, 4X

1.0 < N < 10.0 F(w-4).(d-1), 4X
10**(;1—2) < N < 10%*(d-1) F(}g-:l) .1, 4x
10%*(d-1) < N < 10%*g F(w-4) .0, 4X

N > 10**d Ey.d[Eg]

WRITE (9,10) 1.0, 10.0, 100.0, 1000.0, 10000.0
10 FORMAT (5G10.4)

1.000 10.00 100.0 1000. 0.1000E+05

8-24

INPUT/OUTPUT AND FORMAT SPECIFICATION

8.,15.,4 P Editing

The kP edit descriptor is used to scale floating point values
edited with the F, E, D, and G edit descriptors,., k is called
the scale factor and is given as an integer constant which
may negtive, positive, or zero. The scale factor starts at
zero for each formatted I/0 statement.

If there is an exponent in the input field, the scale factor
has no effect, otherwise the external value is equal to the
internal value multiplied by 10%**k,

For output with F editing, the effect of the scale factor is
the same as described for input. For E and D editing, the
scale factor is used to control decimal normalization of the
output wvalue, If k 1is negative, leading zeros are inserted
after the decimal point, the exponent is reduced by k, and
Ikl significant digits are lost. If k is positive, the
decimal point is moved to the right within the 4 significant
digits, the exponent is reduced by k, and no significant
digits are lost, The field width remains constant in all
cases, meaning that -d < k < 4 + 2.

WRITE (9,10) 1.23, 1.23, 1.23
10 FORMAT (1PF8.4,-1PF8.4,1PE12,.4)

12.3000 1230 1.2300E+00

Microsoft FORTRAN Compiler

8,16 CHARACTER AND LOGICAL EDITING

The A and L edit descriptors control the translation of
character strings representing character and logical values
to and from the appropriate internal formats,

8.16.1 A Editing

The A[w) edit descriptor is used to copy characters (bytes)
to and from I/0 list items. If present, w specifies the field
width; otherwise the field width is the same as the length of
the I/0 list item. The only editing performed is to space
£ill or truncate for input and output respectively.

For input, when y 1is 1less than the length of the I/O list
item, the characters from the field are left justified and
space filled to the length of the item. When w is equal to or

greater than the length of the I/0 list item, the rightmost
characters in the field are used to define the item.

For output, when w is less than or equal to the length of the
I/0 1list item, the field will contain the 1leftmost w
characters of the item. When w is greater than the length of
the I/0 list item, the item is right justified in the field
with leading spaces added as necessary.

WRITE (9,10) 'HELLO, WORLD ‘', ',', ‘WORLD'
10 FORMAT (A5,A,A6)

HELLO, WORLD

8.16.2 L Editing

The Lw edit descriptor must correspond to a logical I/0 list
item. The field width in the record consists of w characters.

The input field consists of an optional decimal point and
either the letter T (true) or F (false). Other characters may
follow, but they do not take part in determining the logical

value, The field may contain leading spaces.

The output field is right justified and contains either the

letter T or F representing the values true and false,
respectively.

WRITE (9,10) .TRUE., .FALSE.
10 FORMAT (2L2)

T F

INPUT/OUTPUT AND FORMAT SPECIFICATION

8.17 SIGK CONTROL EDITING

The S, 8P, and SS edit descriptors control the output of
optional plus signs. Normally, a leading plus sign is not
output for positive numeric values. The SP edit descriptor
forces a plus sign to appear in the output field. The S and
SS edit descriptors return the processing of plus signs to
the default state of not being output.

WRITE (9,10) 123, -123, 123.0, -123.0, 123.0
10 FORMAT (SP,215,2F7,.1,8S,F7.1)

+123 -123 +123.0 -123.0 123.0

8,18 BLANK CONTROL EDITING

The BN and BZ edit descriptors control the processing of
blanks in numeric input fields which can be interpreted
either as nulls or zeros. The default for an individual file
connection is established with the "BLANK=" specifier. If the
specifier does not appear in an OPEN statement blanks are
treated as nulls, The BN edit descriptor causes blanks to be
treated as nulls and the BZ edit descriptor causes blanks to
be treated as zeros,

Microsoft FORTRAN Compiler

8.19 POSITIONAL EDITING

The X, T, and / edit descriptors are used to control the
position within the record and the position within the file.

8.19.1 X Editing

The pX edit descriptor moves the position within the record n
characters forward. On input n characters are bypassed in the
record, On output n blanks are output to the record.

WRITE (9,10) -123, -123.0
10 FORMAT (I4,1X,F6.1)

-123 -123.0

8.19.2 T, TL, and TR Bditing

On output, the entire record is first filled wih spaces., The
T¢, TLc, and TRc edit descriptors are also used to move the
position within the record, but in a non-destructive manner.
This 1is called tabbing, Position means character position
with the first character in the record being at position one,
Changing the position within the record does change the
length of the record.

The T¢ edit descriptor moves to absolute position © within

the record. The TLc and TRc edit descriptors move to
positions relative to the current position, TRc moves the
position ¢ characters to the right and TLg¢ moves the position

¢ characters to the left, ¢ is a positive integer constant,

WRITE (9,10) 89, 567, 23, 1, 4
10 FORMAT (T8,12,TL5,13,T2,12,TL3,I1,TR2,I1)

123456789

INPUT/OUTPUT AND FORMAT SPECIFICATION

8.19.3 Slash Bditing

The / edit descriptor positions the file at the beginning of
the next record. On input it skips the rest of the current
record, On output it creates a new record at the end of the
file,

The / edit descriptor can be used to skip entire records on
input or to write empty records on output. Empty records in
internal or direct access files are filled with blanks.

When the / edit descriptor is used with files connected for
direct access it causes the record number to be increased and
data transfer will be performed with that record.

WRITE (9,10) (A, A=1.0,10.0)
10 FORMAT (5F5.1,/,5F5.1)

1.0 2.0 3.0 4.0 5.0
6.0 7.0 8.0 9.0 10.0

8,20 COLON EDITING

The : edit descriptor is used to terminate a formatted I/0

statement if there are no more data items to process., For

example, the : edit descriptor could be used to stop

ggsétional editing when there are no more items in the I/0
ist,

8-29

Microsoft FORTRAN Compiler

8.21 APOSTROPHE AND HOLLERITH EDITING

Bpostrophe and Hollerith edit descriptors are used to copy
strings of characters to the output record. These edit
descriptors may only be used with the output statements:
WRITE, PRINT, and TYPE.

8.21,1 Apostrophe Editing
An agostrophe edit descriptor takes exactly the same form as
a ¢

aracter constant as described in Chapter 4. The field
width is equal to the length of the string.

WRITE (9,10)
10 FORMAT ('APOSTROPHE',1X,'EDIT FIELDS')

APOSTROPHE EDIT FIELDS

8.21.2 H Editing

The nH edit descriptor takes exactly the same form as a

Hollerith constant as described in Chapter 4, The field width
is equal to the positive integer constant, n, which defines
the length of the Hollerith constant,

WRITE (9,10)
10 FORMAT (14HHOLLERITH EDIT,6HFIELDS)

HOLLERITH EDIT FIELDS

INPUT/OUTPUT AND FORMAT SPECIFICATION

8.22 LIST DIRECTED EDITING

List directed editing is indicated with an asterisk (*) as a
format specifier, List directed editing selects editing for
I/0 1list items appropriate to their data type and value., List
directed editing treats one or more records in a file as a
sequence of values delimited by value separators. A value
separator is one or more blanks, a comma, a slash, or an end
of record, Tabs are expanded modulo eight. Blanks can precede
and follow the comma and slash separators., Except within a
quoted character constant, multiple blanks and end of record
characters are treated as a single blank character. An end of
record occurring within a quoted character constant is
treated as a null,

The values are either constants, nulls, or one of the forms:
I*c

r*
where r is an unsigned, nonzero, integer constant, The first
form is equivalent to r occurrences of the constant ¢, and
the second is equivalent to r nulls., Null items are defined
by having no characters where a value would be expected, that
is, between successive separators or before the first
separator in a record.

8-31

Microsoft FORTRAN Compiler

8.,22,1 List Directed Input

A character value is a string of characters between value
separators. If the string is gquoted embedded blanks are
significant and the value can span more than one record. The
corresponding I/0 list item is defined with the value as
though a character assignment statement was performed; left
justified and truncated or blank filled as necessary.

Any form suitable for an I edit descriptor can be used for
list directed input of an integer item,

Any form suitable for an L edit descriptor can be used for
list directed input of a logical item., In particular, .TRUE.
and .FALSE, are acceptable.

Real and double precision input is performed with the effect
of an Fy.0 edit descriptor where ¥y 1is the number of
characters in the constant. The value can be in any form
acceptable to the F edit descriptor.

A complex constant must have an opening parenthesis, a real
constant as described above, a comma, another real constant,
and a closing parenthesis., Leading and trailing spaces are
permitted around the comma. The first constant represents the
real portion of the value and the second constant represents
the imaginary portion,

Null values have no effect on the corresponding I/0 list
items; their definition status will not change.

A slash in the input record terminates a list directed input
statement. Any unprocessed I/0 1list items will be left

unchanged,

INPUT/OUTPUT AND FORMAT SPECIFICATION

8.22,2 List Directed Output

With the exception of character constants, all output items
are separated by a single blank which is generated as part of
the string,

Character output is performed using an A edit descriptor.
There is no leading blank.

Logical output is performed using an L2 edit descriptor.

Integer output is performed using an Iy edit descriptor where
¥ is one digit greater than the number of digits required to
represent the value,

Real and double precision output is performed using a
1PG12.4E2 edit descriptor.

Complex output consists of an opening parenthesis, the real
portion of the value, a comma, the imaginary portion of the
value, and a closing parenthesis. The numeric portions are

formatted with a 1PG12.4E2 edit descriptor.

8-33

CHAPTER 9

PROGRAMS, SUBROUTINES, PFUNCTIONS, AND BLOCK DATA SUBPROGRAMS

There are six types of procedures available in FORTRAN 77:
main programs, subroutines, external functions, statement
functions, intrinsic functions, and block data.

The main program is the entry point of a FORTRAN 77 program,
The compiler does not require that the main program occur
first in the source file, however, every FORTRAN 77 program
must have exactly one main program.

Subroutines and external functions are procedures which are
defined outside of the program unit that references them,
They may be specified either in separate FORTRAN 77
subprograms or by means other than FORTRAN 77 such as
assembly language or the C programming language. The
appendices contain information on writing external procedures
in assembly language and C.

Block data subprograms are nonexecutable procedures which are
used to initialize variables and array elements in named
common blocks. There may be several block data subprograms in
a FORTRAN 77 program.,

Microsoft FORTRAN Compiler

9.1 PROGRANS

The PROGRAM statement is given in the following manner:

PROGRAM pum| (elist)]

where: pum is a unique symbolic name which is used as the
name of the main program

elist is an optional execution environment parameter
list

The PROGRAM statement itself is optional, If it is not
sufplied, the six most significant characters of the source
ile name will be used as the name of the main program.

glig;' is an extension to FORTRAN 77 to provide control over
certain runtime execution parameters. The form of an

environment parameter specification is:
bar = ¢

where: par is the parameter specifier
t is the constant to be applied

The following parameters are available:

1. INPUT accepts an unsigned integer constant which is
the unit number of the preconnected sequential input
file. This unit is implicitly connected to a file by
including the data file name on the command 1line at
run time (e.g. under VERSAdos: MYPROG ;R=DATA).
This allows emulating main frame installations where
the card reader is a preconnected 1nput unit for
program data. The default value for INPUT is 5.

2., OUTPUT accepts an unsigned integer constant which is
the unit number of the preconnected sequential
output print file. This unit is connected for output
to the system 1line printer at run time, When
execution of the program stops, this file is
automatically spooled to the system line printer,
The default value for OUTPUT is 6.

3. TAPE accepts an unsigned integer constant which is
the wunit number of the preconnected tape device,
This unit is connected for input and output to the
default magnetic tape drive at run time, The default
value for TAPE is 7.

PROGRAMS, SUBROUTINES, FUNCTIONS, AND BLOCK DATA SUBPROGRAMS

BLOCK accepts an unsigned integer constant which is
the block size of data in bytes on a magnetic tape
between IRGs. The default value for BLOCK is 512,

RECL accepts an unsigned integer constant which
indicates that fixed 1length records are to be used
with the connection to the unit designated in the
TAPE specifier. For example, RECL=80 indicates card
images. The default value for RECL is 0 (variable
length records terminated by line-feed).

ERR specifies the action to be taken when a floating
point error occurs and accepts either an unsigned
integer constant or the symbolic name of a
subroutine. The default value of ERR is 0 and
indicates that floating point errors are to be
reported to the operator and program execution is to
be terminated. When ERR is set to 1, the IEEE value
for infinity is used at the point the error occurred
and program execution continues,

When the ERR specifier is the symbolic name of a
subroutine, execution is transferred to the
subroutine for program control of error conditions.
The subroutine must be in the same source file as
the main program. Upon execution of either a RETURN
statement or an END statement, control returns to
the point of error., The subroutine must declare
exactly five dummy arguments:

SUBROUTINE FPERR (IERR,ICARD,IVAL,AVAL,DVAL)

where IERR contains an error code, ICARD contains
the statement number where the error occurred if the
program was compiled with the N option (see Chapter
2), and 1IVAL, AVAL, and DVAL may be used to replace
the IEEE value for infinity with a program supplied
value., The error codes passed in IVAL are as follows:

overflow zero divide argument
INTEGER 66
REAL 321 322 323
DOUBLE 577 578 579

IVAL, AVAL, and DVAL represent INTEGER, REAL, and
DOUBLE PRECISION variables respectively and are
equivalenced at the point of reference so that
definition of IVAL will cause definition of AVAL and
DVAL as well., This provides a method of defining
floating point variables with hexadecimal and octal
integer constants,

Microsoft FORTRAN Compiler

Example:

7.

10.

11.

12,

PRINTER accepts the name of the line printer for
spooling the print file, The default value for
PRINTER is the default system line printer,

SWITCHES accepts an unsigned integer constant
specifying a control code for certain parameters
relating to the printing of the print file, This
code represents the sum of the codes required as
listed below:

1 - grint banner
2 o not print banner

4 - delete after printing

8 —- do not delete after printing

16 - print page headers

32 - do not print page headers

64 - append a final form feed
128 - do not append a final form feed
256 - wait if print queue is full

The default value for SWITCHES is 102 = 2+4432464

COPIES accepts an unsigned integer constant
specifying the number of copies of the print file to
be spooled. The default value for copies is 1.

FORM 1is the form name to be used for print output.
The default value of PORM is NORMAL.

LPP is an unsigned integer constant specifying the
number of 1lines per page in the print file, The
default value for LPP is the default value for the

specified printer.

WIDTH is an unsigned integer constant specifying the

page width of the print file, The default value for
WIDTH is the default value for the specified printer.

PROGRAM MYPROG (INPUT=1,0UTPUT=2,PRINTER=TI810,COPIES=2)

Note:
parameters is operating system dependent; all of the features
may not be supported on your operating system.

the implementation of the various switches and printer

PROGRAMS, SUBROUTINES, FUNCTIONS, AND BLOCK DATA SUBPROGRAMS

9.2 SUBROUTINES

A subroutine is a separate procedure which is defined
external to the program unit which references it and is
specified in a subroutine subprogram. A subroutine may be
referenced within any other procedure of the executable
program. While the ANSI standard prohibits a subroutine from
referencing itself, either directly or indirectly, this
implementation of FORTRAN 77 allows recursion, The form of a
subroutine subprogram declaration is:

SUBROUTINE gsub [([arg] [,argl...)]

where sub is a unique symbolic name that is used to reference
the subroutine, Only the first six characters of the symbolic
name are significant. ({arg] [,arg}...) is an optional 1list
of variable names, array names, dummy procedure names, oOr
asterisks that identifies the dummy arquments that are
associated with the actual arquments in the referencing
statement.

A subroutine is referenced with a CALL statement which has
the form:

CALL sub [([arg] [,argl...)}]

where sub is the symbolic name of a subroutine or dummy
procedure and ([arg] [,argl...) 1is the 1list of actual
arguments which are associated with the arguments in the
SUBROUTINE statement,

If the subroutine is undefined when the CALL statement is
executed an attempt is made to read the subroutine as an

overlay from the disk.

Microsoft FORTRAN Compiler

9,2,1 Subroutine Arguments

The argument lists of CALL and SUBROUTINE statements have a
one to one correspondence; the first actual argument is
associated with the first dummy argument and so on. The
actual arguments in a CALL statement are assumed to agree in
number and type with the dummy arguments declared in the
SUBROUTINE statement., No type checking is performed by the
compiler or the run time system to insure that this
assumption is followed.

The addresses of labeled statements may be passed to
subroutines by specifying the label preceded by an asterisk
in the actual arqument list and specifying an asterisk only
in the corresponding position in the dummy argument 1list of
the SUBROUTINE statement, This allows you to return to a
location in the calling procedure other than the statement
that immediately follows the CALL statement (see RETURN

below).

Dummy procedure names allow you pass the names of procedures
to other subprograms., The dummy procedure name can then be
referenced as though it were the actual name of an external
procedure,

PROGRAMS, SUBROUTINES, FUNCTIONS, AND BLOCK DATA SUBPROGRAMS

9.3 FPURCTIORS

A function returns a value to the point within an expression
that references it. An external function is specified in a
separate procedure called a function subprogram. A statement
function is defined in a single statement within a program
unit and is 1local to that program unit. Intrinsic functions
are 1library procedures provided with the FORTRAN 77
environment and are available to any program unit in an
executable program. A function name may not be used on the
left side of an equals sign except for an external function
name and then only within the program unit which defines it.

A function reference is made in the form of an operand in an
expression, The function name is given with an argument list
enclosed in parentheses. The parentheses must be used even if
there are no arguments to the function so that the compiler
can determine that a function reference is indeed being made
and not simply a reference to a variable,

Microsoft FORTRAN Compiler

9.3.1 External Fumctions

An external function may be referenced within any other
procedure in an executable program. The recursive use of
external functions 1is allowed as an extension to the FORTRAN
77 standard, Character functions must be declared with
integer constant lengths so that the compiler can determine
the size of the character value which will be returned. The
form of a function subprogram declaration is:

[typ [*len]l PUNCTION fun (larg] [,argl...)

where fup is a unique symbolic name that is used to reference
the function, Only the first six characters of the symbolic
name are significant. ([arg] [,arg]...) is an optional list
of variable names, array names, or dummy procedure names that
identifies the dummy argquments that are associated with the

actual arguments in the referencing statement.

As indicated, the function can be given an optional type and
length attribute. This can be done either explicitly in the
FUNCTION statement or in a subsequent type statement, or
implicitly following the data typing rules described in
Chapter 4, Note that an IMPLICIT statement may change the
data type and size.

When a character function is given a length attribute of *(¥)
it assumes the size established in the corresponding
character declaration in the referencing program unit.

The symbolic name used to define the function must be
assigned a value during the execution of the function
subprogram, It is the value of this variable which is
returned when a RETURN or END statement is executed.

If the function is undefined when it 1is referenced, an
gptgmpt is made to read the function as an overlay from the
isk.

PROGRAMS, SUBROUTINES, FUNCTIONS, AND BLOCK DATA SUBPROGRAMS

9,3,2 Statement Functions

A statement function is specified with a single statement
which may appear only after the declaration section and
before the executable section of the program unit in which it
is to be used. A statement function is defined in the
following manner:

m ([QIS[IM]-H]) =8

where fun is the name that is used to reference the function,
(largl,argl...]) 1is the dummy argument 1list, and g is an
expression using the arguments from the dummy argument list,

The dummy argument names used in the statement function
argument 1list are local to the statement function and may be
used elsewhere in the program unit without conflict.

A statement function statement must not contain a forward
reference to another statement function. The compilation of a
statement function removes the symbolic name of the function
from the 1list of available names for variables and arrays
within the program unit in which it is defined. Any variable
or array which is defined in a program unit may not be
redefined as a statement function.

Character statement functions may not use the *(*) size
specifier.

9.,3.,3 Intrinsic Punctions

Intrinsic functions contained in the math library do not
follow the typing rules for user defined functions and cannot
be altered with an IMPLICIT statement, The types of these
functions and their argument list definitions appear in Table

9-1.

The generic names 1listed in Table 9-1 are provided to
simplify the use of intrinsic functions which take different

types of arguments, Except for the type conversion functions,
the type of a generic function is the same as the type of its

arguments,

Microsoft FORTRAN Compiler

9.4 ENTRY

The ENTRY statement may only be used within subroutine and
function subprograms and provides for multiple entry points
into these procedures, The form of an ENTRY statement is the
same as that for SUBROUTINE and FUNCTION statements except
that the key word ENTRY is used. An optional type clause may
precede an ENTRY statement used in a FUNCTION subprogram. An
ENTRY statement may not occur within any block structure (DO,
IF, or CASE). The number of dummy arguments appearing in an
ENTRY statement must agree with the number of arguments in
the corresponding SUBROUTINE or FUNCTION statements,

In a function subprogram, a variable name that is used as the
entry name must not appear in any statement that precedes the
appearance of the entry name except in a type statement. All
function and entry names in a function subprogram share an
equivalence association,

Entry names used in character functions must have a character
data type and the same size attribute as the name of the

function subprogram itself,

9.5 RETURN

The RETURN statement ends execution in the current subroutine
or function subprogram and returns control of execution to
the referencing program unit., The RETURN statement may only
be wused in function and subroutine subprograms. Execution of
a RETURN statement in a function returns the current value of
the function name variable to the referencing program unit.
The RETURN statement is given in the following manner:

RETURN [g]

vwhere & is an integer expression allowed only in subroutine
RETURN statements and causes control to be returned to a
labeled statement in the calling procedure associated with an
asterisk in the dummy argument 1list., The first alternate
return address corresponds to the first asterisk, the second
return address to the second asterisk, etc. If the value of @&
is less than one or greater than the number of asterisks,
control 1is returned to the statement immediately following
the CALL statement.

9-10

PROGRAMS, SUBROUTINES, FUNCTIONS, AND BLOCK DATA SUBPROGRAMS

9.6 PASSING PROCEDURES IN DUMMY ARGUMENTS

When a dummy argument is used to reference an external
function, the associated actual argument must be either an
external function or an intrinsic function. When a dummy
argument is associated with an intrinsic function there is no
automatic typing property. If a dummy argument name is also
the name of an intrinsic function then the intrinsic function
corresponding to the dummy argument name is removed from the
list of available intrinsic functions for the subprogram.

If the dummy argument is used in a CALL statement then the
name cannot be used as a variable or a function.

9.7 PASSING RETURN ADDRESSES IN DUMEY ARGUMENTS

If a dummy argument is an asterisk, the compiler will assume
that the actual argument is an alternate return address
passed as a statement label preceded by an asterisk. No check
is made by the compiler or by the run time system to insure
that the passed parameter is in fact a valid alternate return
address,

9-11

Microsoft FORTRAN Compiler

9.8 COMMON BLOCKS

A common block is used to provide an area of memory whose
scoping rules are greater than the current program unit.
Because association is by storage offset within a known
memory area, rather than by name, the types and names of the
data elements do not have to be consistent between different
procedures. A reference to a memory location is considered
legal if the type of data stored there is the same as the
type of the name used to access it. However, the compiler
does not check for consistency between different program
units and common blocks,

Common blocks are allocated at the point of first use and
deallocated at the end of that program unit. When a common
block is needed and does not exist, it will be created. This
means that common blocks in a main program are global to the
entire execution of a program, even if no values within the
block are referenced or used by the executable section of the
main program. Also, any subroutine or function which creates
a common block will delete it when it returns, except for
those that are specified by SAVE statements. Blank common is
never deleted.

The total amount of memory required by an executable program
can be reduced by using common blocks as a sharable storage
pool for two or more subprograms. Because references to data
items in common blocks is through offsets and because types
do not conflict across program units, the same memory may be
remapped to contain different variables.

9-12

PROGRAMS, SUBROUTINES, FUNCTIONS, AND BLOCK DATA SUBPROGRAMS

Table 9-1 Intrinsic Punctions

Specific Generic Argument Result
Name Name Usage Type Type Notes
Type Conversion
INT INT INT(x) any integer 1
IFIX INT IFIX(r) real integer 1
IDINT INT IDINT(d) double integer 1
REAL REAL REAL(x) any real 2
FLOAT REAL FLOAT (i) integer real 2
SNGL REAL SNGL (d) double real 2
DBLE DBLE DBLE(x) any double 3
CMPLX CMPLX CMPLX (x) any complex 4
ICHAR ICHAR(a) character integer 5
CHAR CHAR(1) integer character S
Truncation
AINT AINT AINT(r) real real 1
DINT AINT DINT(4d) double double 1
Nearest Whole Number
ANINT ANINT ANINT(r) real real
DNINT ANINT DNINT(d) double double
Nearest Integer
NINT NINT NINT(r) real integer
IDNINT NINT NINT(4) double integer
Absolute Value
ABS ABS ABS (x) any any 6
IABS ABS IABS(i) integer integer 6
DABS ABS DABS (d) double double 6
CABS ABS CABS (c¢) complex real 6
Remaindering
MOD MOD MOD(x,y) any any
AMOD MOD AMOD(r,s) real real
DMOD MOD DMOD(d, e) double double
Transfer of Sign
ISIGN SIGN ISIGN(i,]) integer integer
SIGN SIGN SIGN(r,s) real real
DSIGN SIGN DSIGN(d,e) double double

9-13

Microsoft FORTRAN Compiler

Specific Generic Argument Result
Name Name Usage Type Type Notes
Positive Difference
IDIM DIM IDIM(i,J) integer integer
DIM DIM DIM(r,s) real real
DDIM DIM DDIM(d,e) double double
Double Precision Product
DPROD DPROD(,s) real double
Choosing the Largest Value
MAX MAX MAX(X,Yres.) any any
MAX0 MAX MAXO0(1,),e00) integer integer
AMAX] MAX AMAX1(r,s,...) real real
DMAX1 MAX DMAX1(d,e,...) double double
AMAX0 AMAX0(i,j,;...) integer real
MAX1 MAX1(r,S,e..) real integer
Choosing the Smallest Value
MIN MIN MIN(X,V,ee0) any any
MINO MIN MINO(i,j,...) integer integer
AMIN1 MIN AMINl(r,s,...) real real
DMIN1 MIN DMINl (d,e,...) double double
AMINO AMINO{i,j,...) integer real
MIN1 MINlI(r,S,...) real integer
Imaginary Part of a Complex Argument
AIMAG AIMAG(c) complex real 6
Conjugate of a Complex Argument
CONJG CONJG(c) complex complex 6
Square Root
SQRT SQRT SQRT(r) real real
DSQRT SQRT DSQRT(4d) double double
CSQRT SQRT CSQRT (c) complex complex
Exponential
EXP EXP EXP(r) real real
DEXP EXP DEXP (d) double double
CEXP EXP CEXP(c) complex complex

9-14

PROGRAMS, SUBROUTINES, FUNCTIONS, AND BLOCK DATA SUBPROGRAMS

Specific Generic Argument Result
Name Name Usage Type Type Notes
Natural Logarithm
LOG LOG LOG(x) any any
ALOG LOG ALOG(r) real real
DLOG LOG DLOG(d) double double
CLOG LOG CLOG(c) complex complex
Common Logarithm
LOG10 LOG LOG10(x) any any
ALOG10 LOG ALOGl0(r) real real
DLOG10 LOG DLOG10 (d) double double
Sine
SIN SIN SIN(r) real real 7
DSIN SIN DSIN(d) double double 7
CSIN SIN CSIN(c) complex complex 7
Cosine
Cos COos COS(r) real real 7
DCOS cos DCOS (d) double double 7
CCoS CoSs CCOS{(c) complex complex 7
Tangent
TAN TAN TAN(r) real real 7
DTAN TAN DTAN(d) double double 7
Arcsine
ASIN ASIN ASIN(r) real real
DASIN ASIN DASIN(d) double double
Arccosine
ACOS ACOS ACOS(r) real real
DACOS ACOS DACOS (4) double double
Arctangent
ATAN ATAN ATAN(r) real real
DATAN ATAN DATAN(d) double double
ATAN2 ATAN2 ATAN2(r,s) real real
DATAN2 ATAN2 DATAN2(d,e) double double

Microsoft FORTRAN Compiler

Specific Generic Argument Result
Name Name Usage Type Type Notes
Hyperbolic Sine
SINH SINH SINH(r) real real
DSINH SINH DSINH(d) double double
Hyperbolic Cosine
COSH COSH COSH(r) real real
DCOSH COSH DCOSH (4d) double double
Byperbolic Tangent
TANH TANH TANH(r) real real
DTANH TANH DTANH (d) double double
Length of a Character Argument
LEN LEN(a) character integer 11
Location of a Substring
INDEX INDEX (a,b) character integer 10
Trim Trailing Blanks
TRIM TRIM(a) character character 13
String Replication and Justification
REPEAT REPEAT(a, i) character character 14
ADJUSTL ADJUSTL(a) character character 15
ADJUSTR ADJUSTR(a) character character 16
Lexical Comparisons
LGE LGE(a,b) character logical 12
LGT LGT(a,b) character logical 12
LLT LLT(a,b) character logical 12
LLE LLE(a,b) character logical 12
Absolute Memory Addressing
BYTE BYTE (i) integer integer
WORD WORD (i) integer integer
LONG LONG (i) integer integer
Logical Shift
SHIFT SHIFT(i,]) integer integer

PROGRAMS, SUBROUTINES, FUNCTIONS, AND BLOCK DATA SUBPROGRAMS

9.9 KOTES ON INTRINSIC FUNCTIONS

Intrinsic functions, sometimes referred to as mathematics
library functions, are presented in Table 9-1, This table
presents all of the intrinsic functions, their definitions,
number of arguments required, types of arguments and
function, and the generic and specific names of each
function. The following are notes referenced in Table 9-1:

1., If a 1is real or double precision, there are two
cases: if lal<l, then int(g)=0; if {al>l, then
int(g) is an integer which is rounded toward zero
and has the same sign as a. If a is complex then the
real part of the argument is returned.

2, If a 1is integer or double precision, then the
function REAL(g) will return as much precision as
can be specified in a real variable., If @ is complex
then the real portion is returned. If the argument
is integer then the function FLOAT will return the
same result.

3. This function will return a double precision result
which contains all the precision of the argument
passed, If the argument is of type complex then the
real portion is used.

4, CMPLX may have one or two arguments. If there is one
and the type is complex then the argument is
returned unmodified, If there is one argument of any
other type then the value is converted to a real and
returned as the real part and the imaginary part is
zero, If there are two arguments then they must be
the same type and cannot be complex, The first
argument is returned as the real part and the second
is the imaginary part.

5. ICHAR provides type conversion from character to
integer, based on ASCII value of the argument,

6. A complex value is expressed as an ordered pair of

reals, (ar,ai), where the first is the real part and
the second is the imaginary part.

9-17

Microsoft FORTRAN Compiler

9-18

7.
8.

10.

11.

12,

13.

14,

15,

l6.

All arguments are expressed in radians.

The result of a function of type complex 1is the
principal value,

All arguments in an intrinsic function reference
must be of the same type.

INDEX (2l ,a2) returns an integer value indicating the
starting position of the first occurrence of al in
a2. A zero is returned if there is no match or a2 is

shorter than al.

The string passed to the LEN function does not need
to be defined before the reference to LEN is
executed,

LGE, LGT, LLE, and LLT return the same result as the
standard relational operators.

TRIM(a) returns the value of the character
expression a with trailing blanks removed.

REPEAT(a,n) replicates the character expression a, n
times where n is an integer expression.

ADJUSTL(a) returns a character result which is the
same as its argument except leading blanks have been
removed and sufficient trailing blanks have been

added to make the result the same length as a.

ADJUSTR(a) returns a character result which is the
same as its argument except trailing blanks have
been removed and sufficient leading blanks have been
added to make the result the same length as a.

PROGRAMS, SUBROUTINES, FUNCTIONS, AND BLOCK DATA SUBPROGRAMS

9.9.1 Range of Arguments and Results Restrictions

The second argument of the MOD, AMOD, and DMOD functions must
not be zero,

Zero 1is returned if the value of the first argument of ISIGN,
SIGN, or DSIGN is zero.

The argument of the SQRT or DSQRT function must not be

negative, CSQRT returns the principal value with the real
portion greater than or equal to zero. When the real portion
1s zero, the imaginary portion is greater than or equal to

zZero,

The argument of the ALOG, DLOG, ALOGl0, and DLOGl0 functions

must be greater than zero, Both portions cannot be zero for
CLOG.

Automatic argument reduction allows the arguments of the SIN,
DSIN, <COS, DCOS, TAN, and DTAN functions to be greater than
2pi.

The argument of the ASIN or DASIN function must be less than
or equal to one. The range of the result is between -pi/2 and
pi/2 inclusive.

The argument of the ACOS or DACOS function must be less than
or equal to one. The range of the result is between 0 and pi
inclusive,

The range of the result for the ATAN and DATAN functions is
between -pi/2 and pi/2 inclusive., If the value of the first
argument of ATAN2 or DATAN2 is positive, the result is
positive, If the value of the first arqument is zero, the
result is zero if the second argument is positive and pi if
the second argument is negative, If the value of the first
argument is negative, the result is negative, If the value of
the second argument is zero, the absolute value of the result
is pi/2. The arguments must not both have the value zero. The
range of the result for ATAN2 and DATAN2 is between -pi and
pi inclusive,

Microsoft FORTRAN Compiler

9.10 BLOCK DATA
A BLOCK DATA statement takes the following form:

BLOCK DATA [subl

Where sub is the unique symbolic name of the block data
subprogram,

There may be more than one named block data subprogram in a
FORTRAN 77 program, but only one unnamed block data
subprogram.

Only COMMON, DATA, DIMENSION, END, EQUIVALENCE, IMPLICIT,
PARAMETER, SAVE, and type declaration statements may be used

in a block data subprogram.

In this implementation of FORTRAN 77, block data subprograms
are compiled as data initialization subroutines which are
jmplicit called when storage is allocated for a named
common block., If a block data subprogram is compiled
separately, it must be 1linked with the 1linker to the
subprogram which first establishes storage for the named
common block.

Appendices

Appendices

APPENDIX A

OVERLAYS

Three methods of linking procedures together are available in
Microsoft FORTRAN 77. The most straightforward method is to
present the compiler with a single source file containing all
of the procedures used by your program. The compiler will
create a single application file.

The second method involves the traditional use of a linker.
Files containing one or more procedures are compiled
separately and then linked using the Microsoft linker, LINK,
to create a single application module. The linker and 1library
manager manual details the use of the linker,

The third method is to create overlay modules which can be
loaded and linked dynamically at run time. This appendix
describes the dynamic 1linking process, which allows you to
call an external procedure from a secondary storage device as
an overlay.

Creating procedures which execute as overlays is useful
during the development stages of a program and for the
sharing of commonly used subroutines between several users or
tasks., Overlays are also useful on systems where the program
is larger than the available memory.

Microsoft FORTRAN Compiler

A.l REFERENCING AN OVERLAY

When the compiler encounters an unresolved external procedure
reference, it automatically generates code to load it as an
overlay. This code may be later modified by the linker to
generate a direct call if the procedure is statically linked.

when a run time reference is made to a subroutine or function
that has not been 1linked to the program, a call is made to
the overlay manager which is contained in the run time
library, F77.RL. The overlay manager takes one argument which
is the external procedure name packed RADS50, A file name is
generated using an appropriate path name and extension., The
ath names are those directories 1listed in your system
implementation notes under "run time search paths." On those
systems which distinguish between upper and 1lower case
characters in file names, the procedure name is folded to
lower case before being used.

The various directories are searched for the file, which if
located, is loaded into memory, stripping any header block in
the process. Execution is then passed to the procedure,

If the procedure file cannot be located, the run time 1library
will issue the message "subprogram not found" (error number
75) . Before reading the procedure into memory, a check is
made to insure that enough memory is available to the FORTRAN
program. If the amount is insufficient, a ‘“heap space
overflow" message (error number 64) is emitted,

This process may be nested (a procedure loaded from the disk
may cause the 1loading of another) to a 1level of fifty.
Recursive invocations of a procedure do not force new copies
to be loaded; control of execution simply passes to the entry
point of the procedure.

Multiple entry points are not supported in the dynamic
linking process, however, an overlay may contain other
procedures which are local to itself. The file name must be

the same as the symbolic name of the procedure.

When a RETURN or END statement is encountered in an overlay,
the memory space used by the overlay is freed for use by the
next routine that is fetched from the disk.

APPENDIX B

THE ASCII CHARACTER SET

CHARACTER | DEC | OCT | HEX | NAME
NULL 0 000 00 null
SOH 1 001 01 start of heading
STX 2 002 02 start of text
ETX 3 003 03 end of text
ECT 4 004 04 end of transmission
ENQ S 005 05 enquiry
ACK 6 006 06 acknowledge
BEL 7 007 07 bell code
BS 8 010 08 back space
HT 9 011 09 horizontal tab
LF 10 012 oA line feed
VT 11 013 0B vertical tab
FF 12 014 (1]} form feed
CR 13 015 0D carriage return
f:{o] 14 016 OE shift out
SI 15 017 OF shift in
DLE 16 020 10 data link escape
DCl 17 021 11 device control 1
DC2 18 022 12 device control 2
DC3 19 023 13 device control 3
DC4 20 024 14 device control 4
NAK 21 025 15 negative acknowledge
SYN 22 026 16 synchronous idle
ETB 23 027 17 end of transmission blocks
CAN 24 030 18 cancel
EM 25 031 19 end of medium
Ss 26 032 ia special sequence
ESC 27 033 1B escape
FS 28 034 1C file separator
GS 29 035 1D group separator
RS 30 036 1E record separator
us 31 037 1F unit separator

Microsoft FORTRAN Compiler

CHARACTER | DEC | OCT | HEX | NAME
SP 32 040 20 space
! 33 041 21 exclamation mark
" 34 042 22 quotation mark
35 043 23 number sign
$ 36 044 24 dollar sign
% 37 045 25 percent sign
& 38 046 26 amper sand
' 39 047 27 apostrophe
(40 050 28 opening parenthesis
) 41 051 29 closing parenthesis
* 42 052 2A asterisk
+ 43 053 2B plus
’ 44 054 2C comma
- 45 055 2D minus
. 46 056 2E period
/ 47 057 2F slash
0 48 060 30 zZero
1 49 061 31 one
2 50 062 32 two
3 51 063 33 three
4 52 064 34 four
5 53 065 35 five
6 54 066 36 six
7 55 067 37 seven
8 56 070 38 eight
9 57 071 39 nine
: 58 072 3A colon
H 59 073 3B semicolon
< 60 074 3C less than
= 61 075 3D equal
> 62 076 3E greater than
? 63 077 3F question mark
e 64 100 40 commercial at

CHARACTER |

Yt SN KM E <CHONXO WOZ BN RUHDONMBOOW >

/)

OUBEH XU ITOHMOQAO TN

DEC

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

oCT

101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137
140
141
142
143
144
145
146
147
140
151
152
153
154
155
156
157

| HEX

41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
53
5B
5C
5D
SE
SP
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F

THE

NAME

upper
upper
upper
upper
upper
upper
upper
upper
upper
upper
upper
upper
upper
upper
upper
upper
upper
upper
upper
upper
upper
upper
upper
upper
upper
upper

ASCII CHARACTER SET

case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter

opening bracket
back slash
closing bracket
circumflex
underscore
accent

grave
lower
lower
lower
lower
lower
lower
lower
lower
lower
lower
lower
lower
lower
lower
lower

case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter

Microsoft FORTRAN Compiler

CHARACTER | DEC | OCTr | HEX | NAME

P 112 160 70 lower case letter
q 113 161 71 lower case letter
r 114 162 72 lower case letter
s 115 163 73 lower case letter
t 116 164 74 lower case letter
u 117 165 75 lower case letter
v 118 166 76 lower case letter
w 119 167 77 lower case letter
X 120 170 78 lower case letter
Y 121 171 79 lower case letter
b 122 172 7A lower case letter
} 123 173 7B opening brace

124 174 7cC bar
} 125 175 7D closing brace

126 176 7E tilde
DEL 127 177 7F delete

APPENDIX C

BIBLIOGRAPHY

Loren P, Meissner and Elliot 1I. Organick, FORTRAN 77,
Addison-Wesley Publishing Company (1980)

Harry Katzan, Jr., FORTRAN 77, Van Nostrand Reinhold Company
(1978)

J.N.P, Hume and R.C. Holt, Programming FORTRAN 77, Reston
Publishing Company, Inc., (1979)

Harice L., Seeds, FORTRAN 1V, John Wiley & Sons (1975)

Jehosua Friedmann, Philip Greenberg, and Alan M, Hoffberg,
FORTRAN IV, A Self-Teaching Guide, John Wiley & Sons, Inc.
(1975)

V. Thomas Dock, FORTRAN IV Programming, Reston Publishing
Company (1972)

Daniel D. McCracken, A Guide To FORTRAN IV Programming, John
Wiley & Sons (1965)

Mario V, Farina, FORTRAN IV Self-Taught, Prentice-Hall Inc.
(1966)

James S, Coan, Basic FORTRAN, Hayden Book Company (1980)

Brian W. Kernighan and P.J. Plauger, Software Tools,
Addison-Wesley Publishing Company (1976)

Brian W. Kernighan and P.J. Plauger, The Elements of
Programming Style, McGraw-Hill Book Company (1978)

Cc-1

Microsoft FORTRAN Compiler

American National Standard Programming Language FORTRAN,
X3.9-1978, ANSI, 1430 Broadway, New York, N.,Y, 10018

COMPUTER, A Proposed Standard for Binary Floating-Point
Arithmetic, Draft 8.0 of IEEE Task P754, 10662 Los Vaqueros
Circle, Los Alamitos, CA 90720 (1981)

M. Abramowitz and I.E, Stegqun, BHandbook of Mathematical
Functions, U.S. Department of Commerce, National Bureau of
Standards (1972)

APPENDIX D

ERROR MESSAGES

D.1 CONPILE TIME ERROR MESSAGES

missing END statement

symbol must be a PARAMETER

first line of statement is a continuation
label on a continuation line

more than 19 continuation lines
expecting end of statement

illegal character

RETURN statement within a main program
specification statement syntax error
invalid statement label

duplicate statement label

duplicate subprogram name

duplicate variable name

more than one main program

missing main program

missing program unit statement

missing argument

numeric overflow

illegal statement ordering

SYNTAX error

undeclared dimension specifier
undefined statement label

undeclared array

too many right parentheses

too many left parentheses

ASSIGN statement syntax error

missing label on FORMAT statement
FORMAT statement syntax error

FORMAT specifier field width underflow
I/0 control list specifier error
illegal statement following logical IF
maximum of seven dimensions exceeded
array subscript error

Microsoft FORTRAN Compiler

invalid alternate numeric base

main program in a subprogram compilation
illegal EQUIVALENCE of COMMON blocks
previous EQUIVALENCE variable

spelling error?

unterminated DO loop in program unit
unterminated IF block in program unit
ELSE without IF (exp) THEN block
illegal argument

DATA statement syntax error

illegal DATA variable (not in COMMON)
illegal DATA variable (in COMMON)

I/0 control list specifier error
illegal dimension specifier

alternate RETURN not allowed in FUNCTION
data type of symbol not established
illega¥ statement in a BLOCK DATA
variable in BLOCK DATA is not in COMMON
INCLUDE file not found

alpha character expected

illegal INCLUDE statement in INCLUDE file
invalid INTRINSIC function name
statement cannot be reached

invalid program control list specifier
illegal CHARACTER length specification
unterminated CASE block in program unit
CASE statement expected

variable previously declared in COMMON
DATA list variable/constant mismatch
I/0 control argument is not CHARACTER
FMT reference is not a FORMAT statement
illegal symbol in a SAVE statement
COMMON block not previously declared
illegal symbol in a DATA statement
label reference is to a FORMAT statement
expecting a symbol

expecting an opening parenthesis
unexpected end of statement

invalid OPTION specifier

REPEAT without DO

ENDIF without IF (exp) THEN block
array boundary error

data type of symbol is undefined
implied DO list syntax error

assumed size specifier in actual array
assumed size specifier must be last
illegal DO variable

expecting a LOGICAL constant

D.2 RUNTIME

0 -
1-63 -
64 -
65 -
66 -
67 -
68 -
69 -
70 -
71 -
72 -
73 -
74 -
75 -
76 -
77 -
78 -
79 -
80 -
8l -
82 -
83 -
84 -
85 -

ERROR MESSAGES

ERROR CODES

operator interrupt

reserved for host operating system
insufficient memory

numeric overflow

divide by zero

argument error

stack underflow

stack overflow

COMMON buffer not found
illegal record length

record overflow

duplicate virtual array
virtual buffer not found
subprogram not found

FORMAT syntax error

file not open for WRITE

file not open for READ
SELECT CASE match error
argument list mismatch
FORMAT descriptor error
array boundary error

illegal function call
floating point hardware not found
illegal substring expression

Microsoft FORTRAN Compiler

D.3 MACINTOSH SPECIFIC RUNTIME ERROR CODES

General System Errors

B W N

queue element not found during deletion
invalid queue element

core routine number out of range
unimplemented core routine

I/0 System Errors

17
18
19
20
21
22
23
24
25
26
27
28

control error
status error

read error

write error
invalid I1I/0 unit
unit empty error
open error

close error

tried to remove an open driver
driver not found
I/0 call aborted
driver not opened

ERROR MESSAGES

File System Errors

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

directory full

disk full

no such volume

1/0 error

bad file name

file not open

end of file

tried to position to before start of file (r/w)
memory full (open) or file won't fit (load)
too many files open

file not found

diskette is write protected

file is locked

volume is locked

File is busy (delete)

duplicate filename (rename)

file already open with write permission
error in user parameter list

invalid file reference number

get file position error

volume not on line error (was Ejected)
permissions error (on file open)

drive volume already on-line at MountVol

no such drive (tried to mount a bad drive num)
not a mac diskette (sig bytes are wrong)
volume in question belongs to an external fs
file system error during rename

bad master directory block

write permissions error

Microsoft FORTRAN Compiler

Disk, Serial Ports, Clock Specific Errors

64
65
66
67
68
69
70
71

72
73

74
75
76
77
78
79
80
81
85

drive not installed

r/w requested for an off-line drive
couldn't find 5 nibbles in 200 tries
couldn't find valid addr mark

read verify compare failed

addr mark checksum didn't check

bad addr mark bit slip nibbles

couldn't find a data mark header

bad data mark checksum

bad data mark bit slip nibbles

write underrun occurred

step handshake failed

track 0 detect doesn't change

unable to initialize IWM

tried to read 2nd side on a l-sided drive
unable to correctly adjust disk speed
track number wrong on address mark
sector number never found on a track
unable to read same clock value twice
time written did not verify

parameter ram written didn't read-verify
InitUtil found the parameter ram uninitialized
SCC receiver error (framing, parity, OR)
Break received (SCC)

Storage Allocator Errors

108
109
111
112
110
113
114
115
116

- not enough room in heap zone

- Handle was NIL in HandleZone or other;

- WhichZone failed (applied to free block);

- trying to purge a locked or non-purgeable block;
- address was odd, or out of range;

- Address in zone check failed;

- Pointer Check failed;

-~ Block Check failed;

- Size Check failed;

Resource Manager Errors {(other than I/0 Errors)

192 - Resource not found

193
194
195
196
197

- Resource file not found
- AddResource failed

— AddReference failed

- RmveResource failed

- RmveReference failed

Scrap Manager Errors

100 - No scrap exists error
102 - No object of that type in scrap

ERROR MESSAGES

D.4 MACINTOSH SYSTEM ALERT ERROR CODES

These errors are not reported by the Microsoft FORTRAN

Compiler, but will instead be reported by the system in an
alert box with a bomb icon.

32767 - general system error
- bus error
- address error
- illegal instruction error
- zero divide error
- check trap error
- overflow trap error
- privilege violation error
- trace mode error
- line 1010 trap error
0 - line 1111 trap error
11 - miscellaneous hardware exception error
12 - unimplemented core routine error
13 - uninstalled interrupt error
14 - I0 Core Error
15 - Segment Loader Error
16 - Floating point error
17 - package 0 not present
18 - package 1 not present
19 - package 2 not present
20 - package 3 not present
21 - package 4 not present
5
6

WO ONO W N

22 - package not present

23 - package not present

24 - package 7 not present

25 - out of memory

26 - can't launch file

28 ~ stack has moved into application heap

27 - file system map has been trashed

30 - request user to reinsert off-line volume
31 - not the disk I wanted

Storage Allocator Trouble Codes

32 - Set Logical Size Error,

33 - Adjust Free Error.

34 - Adjust Counters Error.

35 - Make Block Free Error,

36 - Set Size Error,

37 - Initialize Memory Manager Error,

APPENDIX E

STRUCTURE FOR ASSEMBLY LANGUAGE EXTERNAL PROCEDURES

A facility is available for using external procedures written
in assembly language with FORTRAN. These external procedures
are separately generated using the resident assembler and
linker and may be placed in library directories for use by
any FORTRAN program requiring them., Five such procedures:
ARGS, SPOOL, TIME, DATE, and ERRMSG are provided with the
compiler.

The procedure has complete access to the entire run time
library and all of the intrinsic functions contained within
it., A description of the routines and the method of accessing
them is contained in the next appendix.

In order for a procedure written in assembly 1language to
communicate with the calling program, certain program
structure specifications must be followed. The remainder of

this appendix describes that structure.

Note: Several examples are given on the following pages using
assembler opcodes and directives based on Motorola standard
mnemonics, Your resident assembler may use different opcodes
and directives,

Microsoft FORTRAN Compiler

E.1 STACK FRAME

The execution environment is heavily dependent upon a data
structure known as a stack frame. The stack frame is used to
maintain pointers to arguments passed to a procedure and to
establish local dynamic memory. A6 is wused as the frame
pointer and it is absolutely critical that your routine
maintain this register., All FORTRAN procedures use the
following code sequence to establish a stack frame and
allocate local memory:

LINK A6 ,%-100 * allocate 100 bytes of local memc
MOVEA.L A7,A3 * use A3 as a local base register
ﬁﬁﬂx Aé. * restore previous frame

RTS

E.2 STACK LAYOUT AND REGISTER ASSIGNMENT

On entry to an external procedure the stack, indexed by A7,
contains pointers to the arguments that the calling procedure
passed., A map of the stack with its contents follows, This
map is laid out such that the first location described is the
"top" of the stack and is referenced by A7 (all locations are
long word except as noted):

RTS - return address to calling procedure

an - address of nth argument in the call list

a3 - address of third argument in the call list

a2 - address of second argument in the call list
al - address of first argument in the call list

sl - length of first argument (word)

s2 - length of second argument (word)

s3 - length of third argument (word)

sn - length of nth argument (word)

Only CHARACTER arguments have their lengths placed in sl-sn.

On entry to an external procedure the following registers
contain information:

DO - number of arguments passed
A0 - communications area pointer
A4 - library jump table pointer
A5 - work stack pointer
A6 - stack frame pointer

If your procedure is to be called as an overlay, it must
preserve AQ.

STRUCTURE FOR ASSEMBLY LANGUAGE EXTERNAL PROCEDURES

E.3 ARGUERERT PASSIRG

Arguments may be freely passed back and forth between program
units via dummy argument lists, Actual argument addresses are
placed on the stack from left to right., Constants are copied
and their addresses are placed on the stack to avoid

inadvertently changing their values in the calling procedure,
To access a particular argument, 1load its address as an

offset from A7 or, if you established a stack frame, A6. The

following example will scale a vector by a constant (see
Appendix F for details on using the library routine MULF).

C FORTRAN calling sequence:
CALL SCALE(VECTOR,LENGTH,FACTOR)

*
* assembly language subroutine:
*

SCALE: MOVEA.L 12(A7) ,A2 * load pointer to VECTOR
MOVEA.L 8(A7),Al * load pointer to LENGTH
MOVE.L (Al),D2 * load LENGTH
MOVEA.L 4(A7),Al * load pointer to FACTOR
MOVE.L (Al),Dl1 * Joad FACTOR

LOOP: MOVE.L (A2),DO * load vector element
JSR MULF (A4) * gcale it
MOVE.L DO,(A2)+ * store scaled vector element
suBQ.L £1,D2 * done?
BNE.S LOOP * no
RTS
END

Microsoft FORTRAN Compiler

E.4 STORAGE

E.4.1 Dynamic Storage

The simplest method of allocating dynamic storage for your
procedure is to use the LINK and UNLK instructions with A6 as
the linkage register or frame pointer, You may also use the
AS work stack for up to 200 bytes of local storage:

LEA -200(A5) ,A5

The A5 stack does not have to be restored when your procedure
returns,

E.4.2 Static Storage

Two types of static storage are available: local and common,
Allocating and 1locating static storage is accomplished by
passing arguments to a run time library routine. Local
storage 1is allocated or located by passing arguments in
registers and common storage is allocated or located by
passing a pointer to a list of parameter blocks. Arguments
for both storage types must be passed to the allocation
routine even if only one type of storage is required. The run
time allocation routine returns a pointer to local storage in
A3 and a list of pointers to common blocks below the A6 frame
pointer.

The arguments for allocating local storage are passed as long
word items in DO and D2, DO contains the name of the local
storage module packed RADS50 and D2 contains the size as an
even number of bytes,

Each parameter block for a common storage block contains
three long word entries, The first 1long word contains the
name of the common block packed RAD50. The second long word
contains the amount of memory to allocate as an even number
of bytes. The third 1long word must be zero., The list of
parameter blocks is terminated by 1long word containing a
zero., Al is passed as a pointer to the parameter blocks,

STRUCTURE FOR ASSEMBLY LANGUAGE EXTERNAL PROCEDURES

The first example allocates or 1locates a 1local block of
storage and no common blocks:

MOVE.L #$4D5B0820,D0 name = LOCAL

*
MOVE.L $#1024,D2 * gize = 1k
LEA BLOCK (PC) ,Al * load pointer to common blocks
JSR 8(A4) * allocate or locate
oo soe * a pointer to local storage is
ene ces * returned in A3
RTS
BLOCK: DC.L 0 * no common storage

The second example allocates or locates two common blocks and
no local storage:

LINK A6,%#-8 * allocate space for pointers
MOVEQ #0,D2 * no local storage
LEA BLOCK (PC) ,Al * load pointer to common blocks
JSR 8(A4) * allocate or locate
o coe * -4(A6) = pointer to BLK1
cee ves * -8(A6) = pointer to BLK2
UNLK A6
RTS
BLOCK: DC.L SO0EB6C1CO * name = BLK1
DC.L 4564 * size = 4564
DC.L 0 * must be zero
DC.L SOEB6C800 * name = BLK2
DC.L 200 * gsize = 200
DC.L 0 * must be zero
DC.L 0 * terminate parameter list

E.4.3 Global Storage

Sixteen bytes of global storage have been reserved in the run
time communications block for end user applications. The run
time communications block is indexed by address register A0
and the reserved area begins at 4(A0).

Microsoft FORTRAN Compiler

E.5 COMMON BLOCKS

All references to data within a COMMON block should take into
account the fact that the actual data is offset by four bytes
from the base of the module. The full listing created by the
compiler generates relative offsets for variables with these

four bytes accounted for.

COMMON blocks use the first word of storage as a reference
level counter, Whenever a subprogram declares a COMMON
block, this word is incremented. The second word in each
COMMON block is reserved and should not be used.,

E.6 FURCTION PROCEDURES

External procedures designed as functions require special
handling in that they must always return a value to the
calling procedure, For LOGICAL, INTEGER, and REAL functions,
the return value is placed in DO. For DOUBLE PRECISION
functions, the most significant portion of the result is
placed in DO and the least significant portion is placed in
Dl1. For COMPLEX functions, the real portion of the return
value is placed in DO and the imaginary portion is placed in
Dl.

CHARACTER functions present particular problems in that they
can be designed to return variable length results depending
on the length attributes declared in the calling procedure,
In order to provide dynamic space for the accumulation of
intermediate values as well as the result, the calling
procedure allocates space for CHARACTER function results and
passes this address to the function on the stack. This
address is passed as the nth dummy argument and its size is
passed as the nth length attribute. This preallocated storage
space does not have to be used, but all CHARACTER functions
must return the address of the return value 1in Al, The

following example will fold alpha characters in an arbitrary
CHARACTER argument to lower case:

STRUCTURE FOR ASSEMBLY LANGUAGE EXTERNAL PROCEDURES

C FORTRAN calling sequence:

s2 = lc¢cs(sl)

*
* assembly language subroutine:
*

LCS: MOVEA.L 8(A7),Al *
MOVEA.L 4 (A7) ,A2 *
MOVE.W 12(A7),Dl *
MOVE.W 14(A7),D2 *
Ll: MOVE.B (Al)+,DO *
CMPI.B #'A',DO *
BCS.S L2 *
CMPI.B #'2',DO *
BHI.S L2 *
BSET $5,D0 *
L2: MOVE.B DO, (A2)+
SUBQ.W #1,D2 *
BEQ.S L4 *
SUBQ.W #1,D1 *
BNE.S Ll *
L3: MOVE.B &' ',(A2)+ *
SUBQ.W #1,D2 *
BNE.S L3 *
L4: MOVEA.L 4(A7),Al *
RTS
END

load pointer to argument
load pointer to result
load length of argument
load length of result

get next input character
less than an A?
yes
greater than a 2?
yes
fold to lower case

result exhausted?
yes

argument exhausted?
no

space fill result

result exhausted?
no

load pointer to result

Microsoft FORTRAN Compiler

E.7 EXAMPLES

Several
compiler
assembly

assembler source files have been supplied with your
and should be examined carefully for examples of
language interfaces to Microsoft FORTRAN 77:

ARGS - returns command line arguments.,

DATE - returns the system date in three integer
variables,

TIME - returns the system time as seconds since
midnight in an integer variable, This routine
utilizes the intrinsic function library.

SPOOL - sends a print file to the system 1line
printer. This routine is normally used to spool the
file created by FORTRAN WRITE statements to unit 6.
It is, however, a user callable routine that accepts
a variable length argument list.

APPENDIX F

IEEE FLOATING POINT AND THE MATHEMATICS LIBRARY

The following information 1is provided for those assembly
language programmers who wish to access the FORTRAN intrinsic
functions directly. These functions are contained in
executable form in the run time libraries, F77.RL (software
floating point) and HDW.RL (hardware floating point).

All of the FORTRAN intrinsic functions are position
independent and reentrant, Some require the use of other
functions and routines also contained in both libraries.

Microsoft FORTRAN Compiler

F.1 ARGUEMENT TYPES

F.l.1 Integer

Integer values are signed thirty-two bit entities with
negative integers carried in two's complement form.

F.1.2 Real and Double Precision

Single and double precision floating point values are

maintained in the format described in %_Eggggggg_szggggxg__ig;
Binary Floating Point Arithmetic by IEEE Task P754 in
COMPUTER magazine.

0 11

double precision format

The largest possible exponent for both formats is reserved to
represent the symbolic entity Not a Number (NaN).

The components of a single precision value are a one bit
sign, an eight bit exponent biased by 127, and a twenty-three

bit fraction with an implied most significant bit. The
interpretation of a single precision value y is as follows:

(a) if e=255 and £<>0, then v=NaN

(b) if e=255 and f=0, then v=signed infinity
(c) if 0<e<255, then v=2%**(e-127)*1.f

(d) if e=0 and f<>0, then v=2**({-126)*0.f
{e) if e=0 and f=0, then v=0

The extremes of representation for single precision are:

2%% 127%*1.111...111 --> 0.3402823E+39
2%%-126*1.000...000 --> 0.1175494E-37

IEEE FLOATING POINT AND THE MATHEMATICS LIBRARY

The components of a double precision value are a one bit
sign, an eleven bit exponent biased by 1023, and a fifty-two
bit fraction with an implied most significant bit,

(a) if e=2047 and £<>0, then v=NaN

(b) if e=2047 and £=0, then v=signed infinity
(c) if 0<e<2047, then v=2%**(e-1023)*1,.f

(d) if e=0 and £<>0, then v=2%**(-1022)*0.f
(e) if e=0 and £=0, then v=0

The extremes of representation for double precision are:

2** 1023*1.111...111 ~-> 0.1797693134862320D+309
2%*-1022*1.000...000 --> 0.2225073858507202D-307

Round and guard bits are maintained. Round to nearest, with
rounding to even in case of a tie, is the only rounding mode
implemented.

F.1.3 Complex

A complex arqument is passed to a library routine as two
single precision floating point values representing the real
and the imaginary components.

F.2 ARGUMENT PASSING

Two methods are employed for passing arguments and receiving
results with the library routines:

1. REGISTER: For INTEGER and REALI functions, the
principal argument is passed in D0 and the secondary
argument (if any) is passed in Dl. The result
replaces the contents of DO. For DOUBLE PRECISION
and COMPLEX functions, the principal argument is
passed in the register pair D0/Dl and the secondary
argument (if any) is passed in the register pair
D1/D2. The result replaces the contents of the
register pair DO/Dl. All registers except D2, D3,
and Al are preserved,

2. POINTER: Pointers to the elements of the argument
list are placed left to right on the A7 stack. Your
routine is responsible for restoring the stack after
the call. All registers except D2, D3, and Al are
preserved,

Microsoft FORTRAN Compiler

F.3 ERROR TRAPPIRG

Error trapping is provided for overflow, divide by =zero, and
argument errors, When an error condition occurs, control of
execution is passed to the appropriate trap routine in
F77.RL. Underflow is not considered an error condition.

F.4 LIBRARY ACCESS

Library routines are accessed through a jump table., The
pointer to the jump table is in the first 1location of the

runtime communications block which is indexed by AO.

MOVEA.L (AO0) ,Ad * address of jump table in A4

MOVE.L #S3F800000,D0
MOVE.L #$40000000,D1
JSR ADDF (A4)

*

perform addition

MOVEA.L (A0) ,Ad * address of jump table in A4
PEA ONE (PC) * set pointer to argument
JSR SIN(A4) * calculate sine

*

ADDQ.W #4,A7 restore the stack
ONE: DC.L $3F800000

A summary of the routines and the jump table offsets follows.

IEEE FLOATING POINT AND THE MATHEMATICS LIBRARY

F.5 INTRINSIC PUNCTION LIBRARY ROUTINES

Name Type Purpose Arguments Offset Notes
MULI Integq multiplication REGISTER 64 1,2
DIVI Integ division REGISTER 68 1,2,3
ADDP Real subtraction REGISTER 72 4
SUBF Real subtraction REGISTER 76 4,5
MULF Real multiplication REGISTER 80 4
DIVF Real division REGISTER 84 3,4
ADDL Doubl subtraction REGISTER 88 4
SUBL Doubl subtraction REGISTER 92 4,5
MULL Doubl multiplication REGISTER 96 4
DIVL Doubl division REGISTER 100 3,4
CMPL Doubl comparison REGISTER 104 6
ADDC Cmplx complex addition REGISTER 108

SUBC Cmplx complex subtraction REGISTER 112

MULC Cmplx complex multiplication REGISTER 116

DIVC Cmplx complex division REGISTER 120

CVTIF Real Integ to Real REGISTER 124

CVTIL Doubl 1Integ to Doubl REGISTER 128

CVTFI Integ Real to Integ REGISTER 132

CVTLI Integ Doubl to Integ REGISTER 136

CVTFL Doubl Real to Doubl REGISTER 140

CVTLF Real Doubl to Real REGISTER 144

I1 Integ Integ**Integ REGISTER 148

FI Real Real**Integ REGISTER 152

FFP Real Real**Real REGISTER 156

LI Doubl Doubl**Integ REGISTER 160

LL Doubl Doubl**Doubl REGISTER 164

C1 Cmplx Cmplx**Integ REGISTER 168

CcC Cmplx Cmplx**Cmplx REGISTER 172

AINT Real truncation POINTER 176

DINT Doubl truncation POINTER 180

ANINT Real nearest whole number POINTER 184

DNINT Doubl nearest whole number POINTER 188

NINT Integ nearest integer POINTER 192

IDNINT Integ nearest integer POINTER 196

MOD Integ remaindering POINTER 200

AMOD Real remaindering POINTER 204 3
DMOD Doubl remaindering POINTER 208 3
SQRT Real square root POINTER 212 7
DSQRT Doubl square root POINTER 216 7
CSQRT Cmplx complex square root POINTER 220

EXP Real ekky POINTER 224 7
DEXP Doubl e**x POINTER 228 7
CEXP Cmplx complex e**X POINTER 232

LOG Real natural logarithm POINTER 236 7
DLOG Doubl natural logarithm POINTER 240 7
CLOG Cnplx complex log POINTER 244

LOG10 Real common logarithm POINTER 248 7
DLOG10 Doubl common logarithm POINTER 252 7

Microsoft FORTRAN Compiler

Name Type Purpose Arguments Offset Notes
SIN Real trigonometric sine POINTER 256
DSIN Doubl trigonometric sine POINTER 260
CSIN Cmplx complex sine POINTER 264
Ccos Real trigonometric cosine POINTER 268
DCOS Doubl trigonometric cosine POINTER 272
CCoSs Cmplx complex cosine POINTER 276
TAN Real trigonometric tangent POINTER 280
DTAN Doubl trigonometric tanget POINTER 284
ATAN Real trigonometric arctan POINTER 288
DATAN Doubl trigonometric arctan POINTER 292
ATAN2 Real trigonometric arctan POINTER 296
DATAN2 Doubl trigonometric arctan POINTER 300
ASIN Real trigonometric arcsine POINTER 304
DASIN Doubl trigonometric arcsine POINTER 308
ACOS Real trigonometric arccosine POINTER 312
DACOS Doubl trigonometric arccosine POINTER 316
SINH Real hyperbolic sine POINTER 320
DSINH Doubl hyperbolic sine POINTER 324
COSH Real hyperbolic cosine POINTER 328
DCOSH Doubl hyperbolic cosine POINTER 332
TANH Real hyperbolic tangent POINTER 336
DTANH Doubl hyperbolic tangent POINTER 340
Notes:

1. overflow ignored

2, secondary argument preserved

3. division by zero trapped

4., overflow trapped

S. s8ign of secondary argument is complemented

6. signed comparison of secondary argument to principal

7. argument error trapped

F.,6 USEFUL

pi
1/pi

pi/180
pi/10800
pi/648000

180/pi
10800/pi
648000/pi

sec x
cosec x
cotan x

for complex

sin iy
cos iy

sinh x+iy
cosh x+iy

(14
|

ek*yx
10**x

IEEE FLOATING POINT AND THE MATHEMATICS LIBRARY

CONSTANTS AND COMMON MATHEMATICAL RELATIONSHIPS

3.141592653589793
0.318309886183790

0.017453292519943
0.000290888208666
0.000004848136811

57.2957795131
3437.7467707849
206264.8062470964

1/cos x
1/sin x
1/tan x
numbers where the

i sinhy
i coshy

radians
radians
radians

degrees
minutes
seconds

(1
(1
(1

(1
(1
(1

degree)
minute)
second)

radian)
radian)
radian)

complex number z =

sinh x cos y + i cosh x sin y
cosh x cos y + i sinh x sin y

= 2.718281828459045
y x =1lny
y x = log y

x+iy

Microsoft FORTRAN Compiler

conic sections:

circle

X¥%2 + y**2 = a**)
parabola

y=ax**2
ellipse

X*%2/q*%2 + y*k*2/hk*)
hyperbola

X**2/akk — yxk)/phR%)

quadratic surfaces:
circular cone

X**2/ak%2 4 yk*k2/ak%)
elliptic cone

X*%2/a*%2 4 yk*2/bk%)
ellipsoid

X*%2/a**2 4+ y**2/hkk)
hyperboloid

~X*%2/a%%2 — y*k*x2/pb*%2Q
elliptic paraboloid

X*¥%2/a%*2 4 y**2 /%2
hyperbolic paraboloid

x**2/akk2 - ykr2/bE*2

+

1

1

z2**2 = 0
z**2 = 0
Z*k2/ck%2D
Z*kk2/ch*2
z

z

APPENDIX G

RAD50 REPRESENTATION

Many areas of the compiler and the runtime system make use of
an efficient method of compressing three ASCII characters
into two bytes of storage. This method is known as RAD50
packing. The basis of the method is arithmetic performed
under radix 50 octal, hence the name RAD50.

Microsoft FORTRAN Compiler

G.1 THE RAD50 CHARACTER SET

only the uppercase letters, digits, and the blank character
can be represented in this fashion, Lower case letters are
folded to upper case. The ASCII characters are coded from
0-47 octal:

Character = Octal Code

blank 0
A-2 1-32
a-z 1-32
0-9 36-47

The values from 33-35 are not used in FORTRAN, although other
systems incorporating RAD50 packing commonly assign $, ., and
, to these values.

G.2 THE RAD50 ALGORITHM

The RADS50 procedure for packing three ASCII characters into
two bytes is as follows:

l. The code of the first character is multiplied by
3100 octal (50 x 50).

2, The code of the second character is multiplied by 50
octal and added to the first,

3. The code of the third character is added the sum of
the first and the second.

If less than three characters are to be packed, the string
must be space filled.

RAD50 REPRESENTATION

G.3 FORTRAN SUBROUTINE FOR RADS50 CORVERSION

Generally, six ASCII characters are packed into four bytes of
storage, The six characters may represent a file name,
procedure, or common block (Chapter 9). The following
subroutine is provided for performing RADS50 conversions,

%*

* FORTRAN subroutine for RAD50 conversions

*

* string - six byte character variable

* rad50 - four byte integer variable

* mode - four byte integer variable (0O=pack, l=unpack)
*

subroutine RAD50 (string,rad50,mode)

character string(6)
integer*2 rad50(0:1)
integer i, j, k, 1

integer PACK, UNPACK, RADIX

parameter (PACK=0, UNPACK=1, RADIX=0'50"')

select case (mode)

*
* "packing” routine
*

case (PACK)
rad50(0)=0; rad50(1)=0
do (i=1,6)

select case (string(i))
case ("A":"Z2"%)

1=+64

case ("a":"z")
1=296

case ("0":"9")
1l =18

case (" ")
1 =32

case default

write (9,101) string(i)

stop
. end select
j = (i-1)/3
k = RADIX**mod(6-i,3)
rad50(3j) = rads0(j) + (ichar(string(i))-1)*k

repeat

Microsoft FORTRAN Compiler

*

* "unpacking®™ routine
*

case (UNPACK)

do (i=1,6)
j = rads0((i-1)/3)
if (j<0) j = j+65536
k = mod(i,3)
if (k=1) then
~ k = j/RADIX**2
else if (k=2) then
k = mod(j,RADIX**2)/RADIX
else
k = mod(3j,RADIX)
end if
select case (k)
case (1:26)
k = k+64
case (30:39)
k = k+18
case (0)
k =32
case default
write (9,102)
stop
end select
string(i) = char(k)
repeat

*

* any other value for mode is an error
*

case default

write (9,100) mode
stop

end select
return

100 format ("illegal value for mode: ",i3)
io01 format ("illegal character: ",al)

102 format ("illegal value in rad50")

end

APPENDIX H

CALLING C FUNCTIONS FROM FORTRAN

Microsoft FORTRAN 77 is designed to interface easily and
naturally to most implementations of the C programming
language., A C function may be invoked with either a
subroutine call or a function reference. The following
considerations should be made before attempting to call a C
function from FORTRAN:

1. ¢ must maintain a frame pointer in address register
A6; all other registers may be considered volatile.

2, FORTRAN arguments are always passed by address;
never by value. When passing constants, except for
CHARACTER arquments, FORTRAN copies the constant (to
prevent inadvertent modification) and passes the
address of the copy of the constant. This means that
C functions which are called by FORTRAN must declare
their arguments to be pointers.

3. FORTRAN pushes argument addresses on the stack from
left to right, while C expects arguments on the
stack to have been passed from right to 1left.
Consequently, either the FORTRAN referencing
statement or the C function declaration statement
must have their arqument lists reversed. FORTRAN is
responsible for taking argument pointers off the
stack.

4, C must return INTEGER, LOGICAL and REAL values in
data register DO and DOUBLE PRECISION and COMPLEX
values in data registers D0 and Dl. All floating
point values ("float®™ and "“double®) must be IEEE
compatible, FORTRAN expects -1 rather than 1 for
the logical value true. Some implementations of the
C language return floating point values in global
variables rather than in registers.

Microsoft FORTRAN Compiler

5. FORTRAN returns a pointer to the value of a
CHARACTER function in address register Al, You
probably will not be able to use a C function which
returns characters or structures.,

6. C expects all string arguments to be null
terminated. FORTRAN always space fills character
arguments. To pass a string to C, use the following
FORTRAN expression to remove trailing blanks and
correctly terminate the string,

TRIM({STRING)//CHAR(O)

In order to 1link C functions to FORTRAN programs, the
compiler must generate an assembly language source file with
external references properly declared, This is accomplished
by specifying the A and J compiler options., The compiler
output is assembled using the resident assembler,

Some C runtime environments need global variables such as
"errno” which are usually implicitly provided in the program
segment "main"., Global declarations for these variables
should be added to your C function, The C function must be
compiled only to the object file stage, This is usually
accomplished with a ¢ option,

When all the required pieces are in object file format, the
resident 1linker is used to put them all together. The local C
library will usually have to be specified on the linker
command line,

The creation of the final executable file is dependent on the
resident assembler and 1linker., Consequently, your program
will probably no longer be reentrant nor position
independent. You will not be able to use the FORTRAN linker.
All other features of Microsoft FORTRAN 77 are still
available, including virtual arrays and overlays.

APPENDIX I

FILE PRECONNECTIONS

The current implementation of the Microsoft FORTRAN Compiler
supports the following preconnected units:

Unit Description

card reader (Input)

line printer (Output)
magnetic tape (Input/Output)
user terminal (Input/Output)

O~ 0n

For the Macintosh, unit 9 is the Macintosh keyboard for input
and the currently active window for output. Text output to
unit 9 is printed in the current font, character size, and
character attributes. When any FORTRAN application is
started, a default window is created and made current with
the Monaco-9 font and plain text attributes.

Output to unit 9 can be temporarily stopped by entering
Command-S (the Command key and the "S" key held down
simultaneously). To continue, enter Command-Q.

The files normally preconnected to units 5 and 7 are not
present on the Macintosh and attempting to use these unit
numbers as preconnected units will lead to unpredictable
results, However, the unit numbers may be used after
connecting them to a file with an OPEN statement,

APPENDIX J

RESTRICTIONS ON THE MICROSOFT IMPLEMENTATION OF FORTRAN 77

1., INTEGER*1 and INTEGER*2 are provided as data types
for symbols but are not supported as constants.
Expression evaluation is always performed using
thirty-two bit values to prevent overflow of
intermediate results. It is not possible to pass a
one or two byte constant through a procedure
argument list,

2, The maximum length of a direct access record, a
formatted sequential access record, and an
unformatted sequential access record with record
length information (see Chapter 8) is 1024 bytes.

3. When wusing 1list directed input on character data
types the constant may be delimited by either
apostrophes or quotation marks. If the constant is
not delimited, a space or end of record serves as a
value separator,

4. The console device (UNIT 9) cannot be rewound nor
backspaced.

5. The runtime system attempts to distinguish between
block and character structured files. Block files
are accessed using internally buffered 1I/0, while
character file buffers are flushed after every WRITE
statement. If execution is aborted, the buffers of
block structured files may not be flushed.

6. Leading as well as trailing blanks are removed from
file names.

7. Symbolic names are significant to thirty-one upper
and lower case characters.

J-1

Microsofte FORTRAN Compiler
for the Applee Macintosh.

Appendices

Index

Microsofte FORTRAN Compiler
for the Apples Macintosh.

Index

Index

Aediting « ¢« ¢ o« o
ACCEPT - L] L] L] L] L *
apostrophe editing .

arithmetic assignment statement

arithmetic constant expression

arithmetic expression
data type e o o
arithmetic expressions
Arithmetic IF
arithmetic operators
QLAY o + o o s o o
actual . . + .« . &
adjustable
dummy . . « o o o o
storage sequence .,
subscript

array boundary checking

array declarator . .
ASCII character set .
assembler source code
ASSIGN . . . « o o
Assigned GOTO . . .

B editing « + ¢ ¢ o
BACKSPACE &« « ¢ + + o«
bibliography
binary constants .

blank control edltlng
BLOCK DATA . . + .« &
Block execute ,
block IF . . .
BN editing . .
BREAK POINTS .
Breakpoints . .
BYTE . . « + &
BZ editing . .

e & o o e o e & s s o

e« o o o s s o

¢« o o & o ¢ o e o ¢ o o .

-}

mmo'ococo
W OoN
o

[1d
b b N W N W
(SN 3

b U U1
1

Index

CALL &« & o o o o o o o o o o =
Calling C functions from FORTRAN
CArd o o s o o o+ 6 s e e o @
CASE . . e s o s s s o s o
CASE block e o e o s e s o s e
CASE DEFAULT o o o s o o o o o«
case selector « ¢« ¢« ¢ ¢ ¢ ¢ o
character ., . . e e s s e
constant dellmlter . . .
character assignment statement
character editing . « + « ¢ + &
character expressions . « « .« .
character set « ¢« ¢« ¢« ¢ ¢ ¢ o
character storage unit
CLOSE . &v ¢ ¢« ¢ o o o o o o o o
colon editing . « o 4 ¢ ¢ o o
command=0 o« « o o o o o ¢ o o
command=S . . .« 4 « o o o s o
COMMON . & ¢ o o o o s o o o o
restrictions . . + 4 ¢« o .
compiler .+ & v o ¢ o o o o o @
€rror reports . ¢« « ¢« o o o
invocation .+ 4+ ¢ ¢ o ¢ o o o
OPtionsS v o v o o o o o o o
compiler listings
undeclared symbols
compiler options
Aoption . . & ¢« ¢« + ¢« ¢ . &
Boption . . « 4 ¢ 4 o o &
C option . . . o o .
Doption « ¢« o & o o o « o &
Eoption . ¢ & ¢ &« ¢« o & &« »
Foption . . ¢« ¢ ¢ ¢ ¢ o o« &
Hoption . . « « ¢« ¢« &+ & o &
I option . & 4 o ¢ o o o o+
Joption . . ¢ ¢ ¢ 4 ¢ ¢ o
Koption . « « . . ¢« « & o« &
Loption . . . ¢ ¢« ¢ o & o &
Noption . ¢ ¢ o ¢ o« o & o o«
Roption . ¢« & ¢ o o « o o &
Soption . ¢ 4 4 e s e e o .
U option« .
Woption . « ¢ ¢« & ¢« o & o &
Xoption .+ & o ¢ o o o o o o«

complex .
complex ed
COMPLEX*8
computed G
conditiona

iting « o o ¢« 4 o . .
OTO = o o o v o w v
1 compilation

o JRY-]
11

L1 1
e R O
corooOo

!
8 00 O N0 N N ts N O

1
[,

| I T O I T A I | t ot
Lo ~ s WWWO

NN w?h B0 U I W

constants
blanks in . «
character . « . « . &
COmpPleX . o « o o o &
double precision ., .
Hollerith . . . « « &
integer « ¢« « + + o &

logical . « « ¢« & «
PARAMETER . +« ¢« o +
real . ¢ v e o o o

continuation cards in DEBUG

CONTINUE . . &+ ¢« o o« &
control statement . o
Converting to FORTRAN 77
current card
cursor card . .+ 4 o o .
CYCLE ¢« v ¢ o o o o o &

D editing « « ¢ « o +
DATA . ¢ o o ¢ ¢ o o «
data length specifiers
COMPLEX*8 ., . + « o &
INTEGER*1 ,
INTEGER*2
INTEGER*4
LOGICAL*1

LOGICAL*2 , v & « o+
LOGICAL*4 ,
REAL*4 ., & &« o o o &
REAL*8 . & o« ¢ & o »
data type « ¢ « o o o &

character . « . .+
complex . « o+ o .+
double precision . .
Hollerith
IMPLICIT . « .+ « &
integer
intrinsic function
logical « « + o « &
Name .+ « « o o + o
real & ¢ .
DEBUG ¢ ¢« o ¢ ¢ o o o
external procedures
DEBUG breakpoints . .
hard breakpoint . .
soft breakpoint . .
DEBUG Display Mode
Breakpoints (P) . . .

" s o s 0 s e o

DEBUG memory reguirements

¢ ¢ o o o s o o o

e e s 0+ s s o e o

e
(= QM)

LI S N U A B Y |
HEHEOQWWWWWWWWWwWH N

BE BN N O N Www
!

|
WO

o

WWW W & ds bbb b
1
B B W O e D B O e
o

=

-

[
~

W w
It
st s

[

3-11

3-10

Index

Index

DEBUG Menu Options
BREAK POINTS .
FILE STATUS . .
FIND LABEL . .
FINISH . . . o
HOME CURSOR . . .
PROCEED TO BREAKPOIN
PROCEED TO CURSOR .
QUIT o+ o ¢ o o o &
S EARCH L] * . L] L] *
SINGLE STEP « & « o o
SKIP SUBROUTINES . . .
SOURCE CODE « & « o « o
TRANSFER .+ ¢ ¢ ¢ o o &
TYPE FILE . « ¢ ¢ o «
VARIABLES . ¢« « ¢ o o o

DEBUG Source Code Window

DEBUG symbol file ., .

debugger

decimal constants . .

DIMENSION . « o o « o«

dimension bound . . .

dimension declarator

DO o ¢ ¢ o« o o o &
extended range .

DO variable

DO WHILE . o o« o o o o

Documentation convention

double precision ., . . .

double precision editing

dynamic linking

® o ¢ ke o o s o

.
.
.
.
. .
. .
. .
.
s

E editing . . .
edit descriptor
ELSE . .
END . . .
END DO .
END IF .
END SELECT
ENDFILE . . .
endfile record
ENTRY . « « + =
EQUIVALENCE . .
arrays . o« o .
restrictions .
substrings . .
ERR ¢ ¢ ¢ ¢ o & .
error messages .
EXECUTE . « ¢ ¢ o o &
execution environment
EXIT . ¢ ¢ ¢ o o o o

e o o ¢
e ¢ o o o
e o o o ¢ o

® ® o & o e @ o @0 s e 0 e s o & o

® o s ¢ o e s e

LU |
Q O

!

-9

SNWO NN AN DO D ONN
1
WON o~ WWOWY O N

€XpresSsSions . « « o o ¢ o o
arithmetic . . ¢+ ¢ &« ¢« « &
character « « « o ¢« o o o «
relational . . + « + & o &

extended range DO loops . . .

EXTERNAL .+ ¢ ¢ o o o o o o

external function

external procedures in DEBUG

Fediting « o ¢ ¢ ¢ &« o o & &«
field width . . . + « + « « &
file preconnections
FILE STATUS . ¢« o o o o o o o
£ileS & o o o o o o o o s o
ACCESS 4 & o o o o « o o o
internal .+ ¢« 4 ¢ 4 4 ¢ . .
name ., . . .
position . .
FIND LABEL . B
FINISH ., . . .
floating point editing .
floating point error recovery

.
.
-

FMT & & ¢ ¢ o o o o o s o @
FORMAT .+ o ¢ ¢ ¢ o o o o o
format specification . . .
formatted data transfer . . .
formatted record
FUNCTION . . ¢ ¢ ¢ o o o o
functions
external
intrinsic
statement

Gediting o + + ¢ 4 ¢ s o . .
GOTO & o o o o o o o s o o =

Hediting «. o« v ¢ ¢ ¢ o o o
hardware floating point .
hexadecimal constants . .
Hollerith constant . . .
Hollerith editing

T editing ¢ ¢ o ¢ o o o o o «

IEEE floating point representation

IF . ¢ o o o o s o s o o o =
IMPLICIT . & « o ¢ o o o o o
implied DO list
INCLUDE files in DEBUG
INCLUDE statement . . .
INQUIRE o 4o o o o o o
instrinsic function . .

o« o o e o
o« o o o &
« o o o o

e o o o

¢ o s .

Index

L}
Y OO Ul N

to 5-6

N

LN B S I A [I B |
~N N

!
N

T 1111
O N~

F -

(N 1
::w N OO~ BN RO WR O 0 WW . WW O N
o

clo-h-bwoo N0 VWOOVOWWOPLPOOWOWOWWOOPE®EWHOO WLV~ TULIL !
!

W

ow

8-20
4-11 to 4-12, F-2
7-3 to 7-4
-10
6-17, 8-8
3-2, 3-5
2-11
8-15
4-9

Index

integer . . . &

integer constant expression

integer editing
INTEGER*l , . .
INTEGER*2 . . .
INTEGER*4 , ., .
internal file .

INTRINSIC ., .
intrinsic funct1
restrictions

JOSTAT . . +
iteration count

keywords . . .

L editing , . .
labels
list directed ed
list directed in
list directed ou
logical

n

ocoonoooo

o o o [N+ o o s o

1t1ng
put .
tput

logical assignment st

logical editing
logical expressi
logical IF . .
logical operator
LOGICAL*1 , . .
LOGICAL*2 .,
LOGICAL*4 . . .
IONG . . .
looping . .

mathematics libr

.
ons .
¢« o o
S .
e e o
¢ o o
¢« o o

ary

® & & 5 0 o s o o

memory assignment statement
multiple statement lines

numeric bases .
decimal . . .
hexadecimal .
octal

numeric basis
binary . . .

numeric storage

O editing . . .
octal constants
OPEN
OPTION statement
overlays . o o

unit

e ¢ o

4-10
5-4
8-20
6-3
6-3
6-3.
8-4
6-13
9-9
9-19
8-7
7-6

(=}

PETITIITIITI0IT T

! !

UHWWWAWANOHWWWUKBIN -
N O W N

(=]

8-21
4-11
8-11
2-19
2-17, 7-13, A-1

Pediting « « o « o
PAGE statement . . .
PARAMETER . &« « o o

parentheses in expressions

PAUS E - . L . .

pau51ng compxler output

pausing unit 9 output
positional editing .
PRINT o ¢ ¢ o o o o o
printing
PROCEED TO BREAKPOINT
Proceed to Cursor . .
PROGRAM ., . . « o ¢ &
PROGRAM statement
BLOCK specifier , .
COPIES specifier .
ERR specifier . . .
FPORM specifier ., .
INPUT specifier . .
LPP specifier . . .
OUTPUT specifier .
PRINTER specifier ,
RECL specifier . .
SWITCHES specifier
TAPE specifier . .
WIDTH specifier . .

QUIT.-.--...

RAD50 « o« o ¢ o
algorithm , . .
character set ,
PORTRAN routine

READ . ¢ o o o &

real . . . o

real editing

REAL*4 , .,

REAL*8 .

REC . . .

record .

records .
endfile
formatted .
unformatted

relational expressions

relational operators

REPEAT . . .

repeat factor

restrictions

RETURN . . .

REWIND . . .

® 6 ¢ o ¢ o & 2 ¢ o 0 & v .

* o o & ¢ o o o o
® s 6 ¢ o 2 o o o

* o o o o o

e o o o ¢ o o o o o

® 8 & & 4 @ o+ & ¢ 4 0 e 2 o s e o o e o+

¢ ® s s @ ¢ ¢ o s s

L] ® ® ¢ 8 & o o o o 0

® o ¢ o & o o 0 & & o ¢ o ¢

® o e @ o ¢ ¢ o o o &

1
o Db W N e N W

QO+ tf w\ou:w\fu>u>w\oc>w\n V-
—
o

1
[S SR

VN DN NOAWW

6-11

4-3, G-1

Index

Index

S editing . « .
SAVE .+ ¢ o o o o
scalar variable .
scale factor . .
SEARCH . ¢« o« o o o
SELECT CASE . « ¢« »
Selecting files . .

sign control editing

single step . . .
slash editing . . .
SOURCE CODE
source file listing
SP editing
SS editing
statement format .
statement functions
statement line ., .
comment . . . o« .
continuation . .
END - £) * . .
initial . . .
statements . .
executable .
nonexecutable
STOP ., « « o+ &
storage . « « o+ o
storage association
storage definition
storage sequence .,
storage unit . . .
character
NUMEriC « o« o o o«

subprogram compilati

SUBROUTINE , . .
Subroutine Skip
subroutines . .
subscript . . .
expression .
value . « .«
substring . . .
expression .
symbolic names
global . . .
local
restrictions

.
.
)
3
.
.
.
.
3
.
.

® 8 8 6 0 o s 0 o o o

® o 6 0 0 o s 0 0 s 0 s O & 0 s & 4 e s s e o 0

© & & & o 0 s e o o s o

® 6 46 0 0 o s s o 0 v 0o (N

® & ¢ o o 0 s 2 e o o s o

8-27

U]
0 N I |
o UVwae

USSURIL
N =

UL UL
~ WO

'
AN NO NN ONNDNDNDUIAANN

-

UN R |
o w

Lo X SRS I W \o-srco QWL DWW WJW 0N

1
N
fa

T editing . .
TL editing
TR editing
TRANSFER .
TYPE . . &
TYPE FILE .
type statement
CHARACTER . .
COMPLEX . .
DOUBLE PRECISI
INTEGER . . &
LOGICAL . . »
REAL

e o o o

oN

® & @ o & ¢ o o 6 o s e @

unformatted data transfer

unformatted record

UNIT

value separator
variable . . .
VARIABLES . . .
VIRTUAL . + «

restrictions

WORD L] . . L .
WRITE . + « ¢« &

X editing . . .

Z editing . . .

8-28
8-28

|
N
©

-10

U
DN NNNDOY

AN WO WD
1

Index

Utilities

Microsofte FORTRAN Compiler
for the Applee Macintosh.

Utilities

Microsofte FORTRAN Compiler
for the Applee Macintosh.

Linker and Library
Manager

CHAPTER 1

CHAPTER 2

CHAPTER 3

APPENDIX A

Contents

INTRODUCTION TO THE MANUAL
l.l PREFACE @0 6 00 09 G OO S PO EN SO ONSSOESSONESTIEEEDS
1.2 NOTATION AND TERMS .ccccaccoccccossccssvcasans

ORTRAN 77 LINKER (LINK)
el DESCRIPTION sceveccsscascsessoccccscscsssssccscse
2 INVOCATION cevccercoccscocscscssossssssccsnsnes
.3 COMMANDS ® G 8 0 0 0 0 P OO ST OO SO OE LTS EOSONe eSS NS
.4 OPERATION 9 0 0 0 8 0008 00 0500000800090 S0 BSOCEESERSITSDE
2,4.,1 Procedure fileS ceecscccccscecccscsssvse
2,4,2 Libraries ceeececcscscecccscccscsccnscss
2,4.3 Linker disSplay ceeseccesscocscscccsccscs
2.,4.,3.1 Linker PaSSES cesecccescocscrcss
5 ASSEMBLY LANGUAGE PROCEDURES FILES .ecccccccce
6 LIBRARIES ® 0 0 0 00 060050 O G PO SO OO eSS NSNS SN
2,6.1 Ordering within libraries ...ccecceccse
MAPS ® 0 0 0 000 608 GO RO E OO OO AN RS S ERESES
SPECIAL USES T 0 5 0 0 6008 6O 8O0 H OO SO C PO OD RO eNSNES
ERROR MESSAGES .cevecccccccssccsccscenscscccsocs

F
2
2
2
2

ORTRAN 77 LIBRARY MANAGER (LIB)

DESCRIPTION ceccocevesccsocassssoscssnscscsscns
FORTRAN PROCEDURE FILES .ccocecccccccccocscocs
ASSEMBLY LANGUAGE FILES .cccscecccccccccscecac
INVOCATION ® 0 S 0 0 00 SV O A SO0 OOO PN OO0 ONOSEESSEPESSS
COMMANDS L B N BN B B BN B K N B AR BN B B BE A B EE BB SR K AR B BN BN BN IR BN N BN 2N N N 4
ERROR MESSAGES ® 0 5 500000000605 008060000 00000000

WWWwwWww g
AUV WNHT O~

e o o o @

INKER TABLE FORMAT
.l TABLE FORMAT LR BN B BN BN BB B AR B B BN BN R BRI B BE B IR IR B IR 2R BN AL AR BN BN J

>

1t
11
ST

PEEYEENILLLLNY
HEEMHOWOWOUMOUIUILIWN -

N O

CHAPTER 1

INTRODUCTION TO THE MANUAL

1.1 PREFACE

This manual explains the use of the Microsoft FORTRAN 77
linker (link) and the library manager (1lib). The Microsoft
FORTRAN Compiler can generate completely or partially linked
object modules or assembler source code, The 1linker and
library manager deal with the object modules produced by the
compiler.

It is assumed that you are already familiar with the
Microsoft FORTRAN Compiler.
1.2 NOTATION AND TERMS

The following is an explanation of the notation and terms we
use in the manual:

{} Curly brackets contain optional elements.
Infile Input file.
Outfile Output file.

CHAPTER 2

FORTRAN 77 LINKER (LINK)

2.1 DESCRIPTION

Linking external procedures to a program, in general,
involves locating the procedures and making them accessible
to the program., A completely linked executable object module
may be created by either the Microsoft FORTRAN Compiler, or
the linker, link. The compiler and the linker perform static
(permanent) 1linking. In addition, the FORTRAN run time system
is capable of providing dynamic (temporary) 1linking to
external procedures.

If the run time system locates an external procedure, either
in memory or on the disk, a copy of the procedure is placed
in memory as an overlay. Execution of the procedure is done
just as if it were part of the original source file. This is
quite useful for referencing commonly used FORTRAN
subprograms or FORTRAN compatible assembly language routines,
such as the date and time subroutines supplied with the
compiler.

Dynamic linking allows you to skip the traditional 1link and
load process. Furthermore, having one shareable copy of a
commonly used procedure stored on the disk saves on disk
space., Note that for dynamic linking, there can only be one
entry point per file, and the file name must have the same
name as the subprogram.

2-1

Microsoft FORTRAN Compiler

Dynamic 1linking may not always be desirable; you may want to
have a fully linked program file. The primary purpose of link
is to bind separate procedure files into a single resolved
file. It accepts procedure file names and library file names
as input. link will link procedure files specified
interactively and/or procedures files contained in 1libraries
to a main program or subprogram.

link is a two pass linker, In the first pass the linker scans
all the files and collects information., In the second pass
the 1linker 1links procedure files, and may resolve references
using the information it collected during the first pass.

A statically 1linked program will run faster because the
linked procedures are a part of the program when it is
executed; whereas, dynamically linked external procedures are
linked during execution of a program by the run time system,

2,2 1INVOCATION

From the Macintosh desktop, open the 1link application by
selecting its icon and choosing Open from the File menu or by
"double clicking"™ the Jlink icon, The 1linker window will
appear as:

Microsoft FORTRAN 77 Linker Version 2.1

usage:

s filename - specifies a file to read the link commands
from, when the end of this file is found
the filels) will be processed

! filename - specifies a library name to search,
note that libraries must be specified last

o filengme - specifies an cbject file name
f filename - specifies an input file name. If a main
program is being input, it must be specified first
c - Buypasses common blocks
z iiiii ~ specifes the size of the runtime heap
m - outputs a map file
h or help - prints this options list

input is terminated by a blank tine

|>

FORTRAN 77 LINKER (LINK)

2.3 COMMANDS
INPUT FILES

The £ command is used to specify the files which contain the
procedures you want to 1link together. If you have a main
program, it must be in the first file you specify. The 1linker
provides a default extension of ".sub® for all file names you
enter after the first one. If you do not have a main program
the first file name must be given with the explicit extension
of ".,sub"; otherwise, the linker will assume it contains a
main program.

SCRIPT FILE

The s command allows you to specify linker commands in a
script. This 1is especially useful if, during application
development, you are linking a particularly 1long or
complicated list of procedures.

OUTPUT FILE

The o command provides a means to specify an explicit 1linker
output file, If an output file is not specified, the first
file name in the file list will be the default output file,
The output file is the only file that is modified; however,
if the linker exits due to an error, the output file will not
be modified.

LIBRARY FILES

Libraries can be searched for procedures by using the 1
command, Microsoft FORTRAN 77 Libraries are maintained by the
library manager, lib. ".f1" is the default extension for
libraries,

The run time library, £77.rl can be linked to a main program
by specifying it as a library file.

LOAD MAP FILE

The load map option, m, causes a load map file to be created.
The name of the file containing the map listing is the same
name as the output file with an extension of ".mp". See
section 1,7 (MAPS), for a description of the load map.

Microsoft FORTRAN Compiler

HEAP SIZE

The heap size option allows you to change the size of the
heap of your program., The heap is the memory space where
£f77.r1 communication occurs; where static storage, file
buffers, and virtual array buffers are allocated; and where
overlays are loaded. The size is specified with the 2z option
and is the number of kilobytes reserved for the heap. See
section 1.8 (SPECIAL USES) for more information on
manipulating heap sizes.

COMMON BLOCK LINKAGE SUPPRESSION

Normally, link attempts to link common block declarations to
BLOCK DATA subprograms that declare the common blocks. 1If
your program has more than 150 common block declarations, the
linker's common block table will overflow. If the linker
emits the error message:

?common block table overflow in file: filename
Use the ‘c' option as described in linker manual.

you have two alternatives:

If your program does not require linking common blocks to
BLOCK DATA subprograms, you can use the ¢ option to link your
files together. The ¢ option causes the linker to suppress
common block linkage.

If you are linking BLOCK DATA subprograms, use the following
procedure:

1. declare those common blocks that need initialization
in your main program.

2. 1link only the necessary BLOCK DATA subprograms to
your main program.

3. 1link all other desired files to the output file
which was created by step 2 using the ¢ option.

FORTRAN 77 LINKER (LINK)

2.4 OPERATIOR

2.,4.1 Procedure files

Procedure files specified with the f command are linked to a
main program or subprogram unconditionally. They may be
either FORTRAN procedure files or assembly language procedure
files. The 1linker keeps a 1list of all the entry points it
finds in procedure files., An error message will be printed if
a duplicate entry point 1is encountered and the linker will
exit,

If the linker encounters duplicate named common
initialization in a BLOCK DATA subprogram while searching a
file from the file list, it will display an error message and
then exit, This will not occur if the c option is used.

2.4.2 Libraries

Library procedure modules are linked conditionally. They are
linked only if they contain a procedure which will satisfy an
unresolved reference.

If the 1linker encounters duplicate entry names or duplicate
named common initializations while searching the libraries,
it simply counts the number of collisions, It will not give

an error message. The first occurrence of an entry name will
ge usgd, and the first initialization of a named common will
e used.

2.4.3 Linker display

The linker reports information to the user regarding its
progress. This display can take varying formats depending on
whether the load map option is specified.

2.4.3.1 Linker Passes

lipnk first displays a variety of information about the
program before any of the files are linked. This information
is explained below. Second, link displays the names of the
files and the 1library procedure modules as they are linked.
Finally, link displays the final code size in bytes, the heap
size, and the names of any unresolved external references and
their relative locations.

The following discussion summarizes the operation of the
linker without the m and c options specified,

Microsoft FORTRAN Compiler

PASS ONE

The linker begins its first pass which involves counting the
number of entry points, unresolved references, uninitialized
named commons, and block data commons while it searches files
from both the file list and the libraries. Only information
from 1library procedure files that are to be linked is
counted. After pass one, link displays this information:

1: reading tables - pass one complete
n entry points
n unresolved external references
n uninitialized named common references
n block data commons
n entry name collisions
n block data named common collisions
2:

where n is an integer.

1, "entry points" are defined by PROGRAM, SUBROUTINE,
FUNCTION, ENTRY, and BLOCK DATA statements. The
number of entry points collected by the 1linker will
include even those entry points which are not
referenced.

2. "unresolved external references” are those
references which are not, as of pass one, resolved.
Some of these unresolved references may become
resolved during pass two. The names of all
unresolved references in the final code will be
displayed just before the linker exits.

3. M"uninitialized named commons references" are those
named commons which are not initialized by BLOCK
DATA subprograms.

4, "block data commons"™ are those named commons which
are initialized in BLOCK DATA subprograms.

5. "entry name collisions" are those entry names found
more than once while the 1linker is searching

libraries. All entry name occurrences found after
the first occurrence are ignored.

FORTRAN 77 LINKER (LINK)

6. "named common collisions™ are those named commons
found initialized in more than one BLOCK DATA
subprogram, Only the first initialization of a named
common found by the linker is recognized.

For example, the following would cause one block data
named common collision:

In a program:

Block data ABC

Common /a/aa,bb,cc

Common /b/dd,ee,ff

Data aa,bb,cc/1.0,2,0,3.0/
Data ee,ff,q9/4.0,5.0,6.0/
end

In a library procedure file:

Block data XYZ

Common /a/xx,yy,zz ! "a"™ common block collision
Common /c/cc,dd,ee

Data xx,yy,zz/12.0,22.0,33.0/

Daga cc,dd,ee/44.0,55.0,66.0/

en

PASS TWO

The linker then proceeds with the second pass during which
files from the file 1list are 1linked unconditionally and
library procedure files are linked conditionally.

After pass two, link displays the names of the procedure
files it used:

1: reading tables - pass one complete
entry points
external references
uninitialized named common references
block data commons
entry name collisions
block data named common collisions
2: Processing -
XXXX at Oxnnnnnnnn
XXXX at Oxnnnnnnnn
XXXX at Oxnnnnnnnn

foJi= =Bt~ = I~ |

where XXXX is either the name of a file from the file list or
a procedure file contained in a library, and Oxnnnnnnnn (in
hexadecimal) is the relative location of XXXX,

Microsoft FORTRAN Compiler

Finally, the 1linker displays the final code size in bytes,
the heap size, and the names of any unresolved external

references and their relative locations.

1: reading tables - pass one complete
n entry points
external references
uninitialized named common references
block data commons
entry name collisions
block data named common collisions
2: Processing -
XXXX at Oxnnnnnnnn
XXXX at O0xnnnnnnnn
XXXX at Oxnnnnnnnn
3: Program file complete: nnn bytes
Heap size: nnnnn bytes

f= = Re Jin R

Unresolved references:

XXXX Oxnnnnnnnn XXXX Oxnnnnnnnn

2.5 ASSEMBLY LANGUAGE PROCEDURES FILES

If a procedure was assembled by the resident assembler, it
must be position independent and have been 1linked by the
resident linker to <create an executable image. The name of

the entry point is the first six characters of the file

and the entry point is the first word of the code in the
procedure, The FORTRAN 1linker can then 1link the assembly
procedure file., Appendix F of the Microsoft FORTRAN Compiler
manual describes writing assembly langquage procedures

callable from FORTRAN,

FORTRAN 77 LINKER (LINK)

2,6 LIBRARIES

Libraries contain collections of procedures, called modules,
and are created and managed by the Microsoft FORTRAN library
manager, lib. The 1linker makes only one pass through each
library searching for modules which contain entry points that
satisfy unresolved external references. A library module
itself can contain unresolved external references, Since the
linker only makes one pass through a library, a module which

is only referenced by another module, must follow the
referencing module.

2.6.1 Ordering within libraries

Procedures can be arbitrarily ordered within a module,
However, the modules themselves may need to be ordered. For
example, given a main program "main", and two modules "a.sub"®
and "b.sub", "a.sub" contains a subroutine called by "main®,
and "b.sub" contains one subroutine which is called only by
"a.sub". If the modules containing "a.sub" and "b.sub"™ are in
library A, then "b.sub" must follow "a.sub" in the library.
If modules "a.sub"™ and "b.sub"™ are in library A and library B
respectively, then 1library B must follow library A in the
list of libraries specified with the 1 option.

Alternatives to ordering modules and libraries are to either
list 1libraries repeatedly with the 1 option, or repeatedly
invoke the linker until all references are resolved. When a
library 1is 1listed more than once, each occurrence of the
library is treated as if it were a separate library file.
Since the 1linker can be used serially, multiple invocation
may used as a method of resolving backward library references.

Microsoft FORTRAN Compiler

2,7 MAPS
The load map file contains the following information:
Linkage Map of: <filename>
Code size: nnn bytes
Heap size: nnn bytes
Entry points:

XXXX Oxnnnnnnnn XXXX 0XNPNANNNN c.eee

Unresolved external references:
XXXX Oxnnnnnnnn XXXX 0xnnNnNnNnNNn ...

where <filename> is the name of the output file, nnn

is an

integer, XXXX is the name of a procedure, and Oxnnnnnnnn is a

relative location.

1., Entry points

All entry names found in the final code and their

relative locations.
2. Unresolved external references

All unresolved external references found

in the

final code and their relative 1locations at which

they are referenced.

FORTRAN 77 LINKER (LINK)

2,8 SPECIAL USES

The following is a 1list of special uses that the linker

provides:

1.

a way to gather information about a single file. The
linker will display the number of entry points,
unresolved external references, uninitialized named
commons, and block data commons found in the file,
Also, the size of the code, the heap size, and the
names of any unresolved external references and
their relative locations are displayed., You get the
same information as explained in section 1.4
(OPERATION). You may also specify the 1load map
option.,

a way to manipulate the heap size of your program.
You can make the heap size for your program larger
or smaller,

a way to create a stand alone module, A program is a
stand alone module if all references are resolved
and the run time library is linked.,

a way to bind subprograms together without a main
program, Suppose you have a subprogram which you
want dynamically 1linked in order to save on memory
space., This subprogram repeatedly calls several
external procedures which themselves must be
dynamically linked by the run time system.
Dynamically 1linking these procedures takes up more
time than if these procedures were statically
linked, using link, to the subprogram.

Microsoft FORTRAN Compiler

2.9 ERROR MESSAGES

- filename
The procedure file you specified could not be located
with the volume information (or defaults) given.

The run time library already is linked to the first file
specified in the file 1list,

Zmultiple entry pame ip file; filename
A duplicate entry name was encountered in the procedure
file while the linker was searching it.

isi i ;: filename
A duplicate initialization of a named common was

encountered in the procedure file while the 1linker was
searching it.,

The run time library, F77L.RL, cannot be 1linked without
specifying a main program.

t fi xt ion: °‘MP’
The output file cannot use the load map file extension,

2capnot link just libraries
You can only 1link libraries when a procedure file is
specified.

2file is not a FORTRAN library: filename
The library file you specified was not created by lib.

PFile is illega) type: filename
The procedure file you specified is not an executable
file,

?entry table overflow in file: filename
The maximum number of entry points the linker can keep
track of is 250,

2external table overflow in file; filename
The maximum number of unresolved external references
that the linker can keep track of is 500.

?block data table overflow in file: filename
The maximum number of block data entry points that the
linker can keep track of is 50.

2common block table overflow in file: filename
The maximum number of named common blocks that the
linker can keep track of is 150,

FORTRAN 77 LINKER (LINK)

Zerror while repaming tempfile to outfile

Jlink was unable to rename the temporary file to the
output file name you specified. The temporary file is in the
current directory.

2-13

CHAPTER 3

FORTRAN 77 LIBRARY MANAGER (LIB)

3.1 DESCRIPTION

lib provides a means for dgrouping FORTRAN and assembly
language procedure files together in a library which can be
used for input to the Microsoft FORTRAN 77 linker, }1ink.
Procedure files must be in executable format,

Libraries contain collections of procedures, called modules,
The 1linker makes only one pass through each specified library
searching for modules which contain entry points that satisfy
unresolved external references. Since the linker only makes
one pass through a library, a module which is only referenced
by another module, must follow the referencing module,

3.2 FORTRAN PROCEDURE FILES

FORTRAN procedure files may have more than one entry point,
and may contain unresolved references. Valid entry points are
those defined by SUBROUTINE, FUNCTION, ENTRY, and BLOCK DATA
statements.

3.3 ASSEMBLY LANGUAGE FILES

If a procedure was assembled by the resident assembler, it
must also have been linked by the resident linker to create
an executable image. It must also be position independent,
and have one entry point being the first word of code in the
file. Appendix F of the Microsoft FORTRAN Compiler manual
describes writing assembly lanquage procedures callable from
FORTRAN.,

Microsoft FORTRAN Compiler

3.4 INVOCATION

From the Macintosh desktop, open the 1ib application by
selecting its icon and choosing Open from the File menu or by
"double clicking™ the link icon. A prompt for the name of the
library file will be issued:

Library File:

Enter the name of an existing or new library after the
prompt, The library manager prompt ">" will then be given,
indicating that ljib is ready for commands.

3.5 COMMANDS

lib accepts the following seven commands:

a files add a list of files to the library. A
file cannot be placed in a library twice.

c files replace the files in the library with
those on the command line,

d files delete a list of files from the library.

1 list all files in the library.

m files list a load map of all the entry names and

their relative locations which are in the
library's procedure files.

h list the library's commands. An invalid
command will also cause the command list to
be listed.

q exit from the library manager. 1If any

additions, changes, or deletions have been
requested, all procedure files are shown as
they are being processed.

FORTRAN 77 LIBRARY MANAGER (LIB)

3.6 ERROR MESSAGES

filename is not a FORTRAN library
The library file name you entered was not a FORTRAN
procedure library file.

ibrary not
The library file you entered was not found in the
current or specified directory.

filename not found in library

The procedure file you want to change or delete is not
in the library.

filename not found
The file you entered on the command 1line could not be
located.

ib
The maximum number of procedure files a library may
contain is 210.

filename is already in the library
The procedure file you wanted to add is already in the
library.

You may also see any of the standard FORTRAN error
messages.,

APPENDIX A

LINKER TABLE FORMAT

A.1 TABLE FORMAT

The Microsoft FORTRAN Compiler appends a linker table to each
output file for use by the linker, link.

In the following, all addresses are relative to the first
word of executable code in a file,

The table has two sections: an entry section and an external
section,

Each element of the entry section is composed of two long
words, The first long word contains the name of the entry
packed RAD50. The second 1long word contains the address of
the entry. The entry section is terminated by a 1long word
containing zero.

Following the entry section is the external section., Each
element of the external section is one 1long word, The 1long
word contains an address which is the location of a ‘MOVE.L
#N,D1' instruction, where 'N' is the name of the external

reference packed RAD50 (used by the overlay manager as the
root file name). The external section is terminated by a 1long

word containing zero.

The last four bytes of the file contain the address of the
linker table.

Microsofte FORTRAN Compiler
for the Applee Macintosh..

Subroutines

SPOOL

SPOOL is an external FORTRAN subroutine for spooling a disk
file to a line printer. SPOOL is automatically called by the
run time system to print files created by writing to unit 6.
SPOOL can also by called as a subroutine to print any ASCII
text file, To spool a file to a printer, call SPOOL as
follows:

CALL SPOOL(FILE,SWTCHES,COPIES,LPP,WIDTH)
where:

FILE is a character expression which, with trailing blanks
removed, is the name of the file to be spooled, The
expression must be terminated by a 1least one space
character.

SWTCHES is an integer expression specifying a control code
for certain parameters relating to the printing of
the file. This code represents the sum of the codes
required as listed below:

4 - DELETE

8 - NODELETE
16 - HEADER
32 - NOHEADER

COPIES 1is an integer expression specifying the number of
copies to be printed.

LPP is an integer expression specifying the number of
lines per page.

WIDTH is an integer expression specifying the page width.
If any of the integer arguments are passed as variable names,

they must be declared as four byte integers (INTEGER*4),
Arguments may be omitted from right to left.

TIME

TIME 1is an external FORTRAN subroutine for returning the

system time as seconds since midnight, TIME is called as
follows:

INTEGER SECONDS

CALL TIME (SECONDS)

WRITE (9,100) SECONDS
100 FORMAT (I6)

END

63256

DATE

DATE is an external FORTRAN subroutine
system date., DATE is called as follows:

INTEGER MM,DD,YY

CALL DATE(MM,DD,YY)

WRITE (9,100) MM,DD,YY
100 FORMAT (I12.2,2('/',12.2))

END

09/18/83

for returning the

Microsofte FORTRAN Compiler
for the Apples Macintosh.

Edit Manual

Edit

This manual describes Edit, Apple's general-purpose text
editor. In the context of the Microsoft FORTRAN language
system, its primary use is to enter and edit FORTRAN source
programs, This document has been reprinted with the
permission of Apple Computer, Inc,

Files Required

If you wish to move the Editor to another disk, you must move
the file named Edit. The transfer facility in the Editor was
designed for the Macintosh 68000 Development System and has
hard wired names for the applications supplied with that
system,

Invoking the Editor

There are several ways to use the Editor:

1., from the Finder, select and open the application
named Edit.

2, from the Finder, select and open a text file created
by the Editor. You can open up to four files
simultaneously by selecting a group of them (by
shift-clicking them or dragging across multiple
icons) before opening one of them., All files created
using the Editor can be selected.

3. select Edit from the Transfer option of the compiler
or debugger.

Microsoft FORTRAN Compiler

About the Editor

The Editor is a disk-based editor., Thus, it 1is capable of
editing documents much larger than will fit in memory. When a
document is open, you can use the scroll bars to move, both
vertically and horizontally, through the document. The Editor
brings new portions of the document into memory as they're
needed.

To create a new document, select New from the File menu.
There are several ways to open existing documents:

1. To open an existing document, select the uppermost
Open command from the File menu. This opens a
standard file selection box from which you select
the file to be opened. All files with type 'TEXT'
can be opened from this menu,

2. You can also open files (including non-text files)
by selecting the name of the file in an open
document, and then choosing the other Open command
from the File menu.

3. Finally, you can open a document by typing Command-K
followed by the name of the file to be opened
(including volume name if needed), and pressing
Return. This technique is not listed in a menu, and
it gives no visual feedback until the file is opened
or not found.

As many as four such documents can be on the desktop at a
time. When you quit the Editor or transfer to another
application, the Editor gives you a chance to save each
document that has been altered.

About the Edjtor

Editor documents consist of lines of text that are separated
by Return characters. The Editor has no tools for
manipulating or organizing pages, paragraphs, sentences, or
pictures.

When you type 1long 1lines of text, characters may be placed
past the right edge of the window. To see these characters,
use the horizontal scroll bar. It is possible to type a line
longer than can be seen using the scroll bar. The text on
such 1lines 1is not 1lost, but neither is it visible. To see
the whole line, insert a Return into middle of the 1line,
breaking the line into smaller pieces.

Edit

The Editor displays an entire document in text of a single
size and font. The Monaco font, a monospaced font, is the
default., Different documents on the desktop can have
different fonts and font sizes.

Editing

Editing involves inserting text at the insertion point and
removing, moving, copying, or replacing a selection., Any
character or sequence of characters in a document can be
selected and edited.

You can replace the selection by typing or pasting. You can
remove, move, or copy the selection using commands from the
Edit menu or their keyboard equivalents, Cut or copied
selections can be pasted into another place in the document,
into another window (such as the Find or Change window), or
into another document altogether.,

You can find and change text wusing the Find and Change
commands in the Search menu. These commands search for a
specific string starting at the current insertion point, 1If
the string is found, 1it's either selected and displayed or
replaced. If not, a box is displayed to notify you that the
string was not found., When you select Find or Change, the
currently selected string is used as the default string to
find.

Tabs and Alignment

The Editor has several features that help organize programs
visually. Tab stops allow you to align columns of text at
regular intervals across the page; the Set Tabs command in
the Format menu lets you set the distance between tab stops.

The Auto Indent command in the Format menu lets you turn Auto
Indent on and off, If Auto Indent is on, the insertion point
is automatically lined up with the 1leftmost edge of the
previous line each time you press Return. To back the cursor
up to the left edge of the screen, use the Backspace key. Iif
Auto 1Indent is off, the insertion point is placed at the left
margin.

The Align command in the Edit menu aligns the left margin of
all the 1lines in a selected block of text. The Move Left and
Move Right commands, also in the Edit menu, move all the
lines 1in a selected block of text one space left or right. If
a proportional font is selected, the width of one space is
usually quite small., The easiest way to move a block of text
several spaces is to press the keyboard equivalent several
times in succession,

Microsoft FORTRAN Compiler

Document Format

Text created by the Editor is saved as a document file. A
document file is a text-only file that can be used by other
applications that use text-only files. For example, the Text
Only option of MacWrite (see Save As in the MacWrite manual)
creates text-only files that can be used by the Editor.

A text-only file is a stream of ASCII characters. It contains
no special formatting information,

Printing L

The Print command in the File menu allows you to send a copy
of the document to a printer., After selecting this command,
you are presented with two dialog boxes., The first 1lets you
specify the size of the paper you are using. The second
dialog box lets you choose the print quality (High, Standard,
or Draft), which pages to print, how many copies to print,
and whether the paper is continuous or separate sheets,

These two boxes are standard printing dialog boxes, and are
discussed in some detail in the other manuals (for example,
MacWrite).

Microsofte FORTRAN Compiler
for the Applee Macintosh.

Resource Compiler
(RMaker) Manual

Resource Compiler

This manual describes RMaker, an Apple application that is
used to produce resource files and to integrate resources
into applications. This document has been reprinted with the
permission of Apple Computer, Inc.

The first part of this manual describes RMaker., The next part
of the manual describes how to create an RMaker input file
using predefined resource types and user-defined resource
types. The final part of the manual tells how to use RMaker
to create a new resource file from the input the file,

About RMaker

RMaker is the Macintosh 68000 Development System's Resource
Compiler., It is very similar to the RMaker program in the
Lisa Workshop, but some changes have been made to the syntax.
Be careful if you are converting resource files from one
system to the other.

RMaker takes a text file as input, and produces a resource
file. The text file contains an entry for each resource, as
described below. These entries can specify all information
necessary to define the resources, or they can cause existing
resources to be read from other files,

RMaker Input Files

An RMaker input file is a text file, that may be created
using the Editor. By convention, RMaker input files have the
extension .R.

RMaker ignores all comment lines and blank 1lines (except in
some cases a blank 1line may be required). It also ignores
leading and embedded spaces (except in 1lines defined to be
strings). Comment 1lines begin with an asterisk. To put
comments at the end of other RMaker 1lines, precede the
comment with two consecutive semicolons (:;).

For example, during program development, you'll typically use
separate application and resource files. Once the application
is finished, you should combine these files. Simply use the
INCLUDE statement to read in the application created by the
Microsoft FORTRAN Compiler. It is already stored as resources
of type CODE.

Microsoft FORTRAN Compiler

Naming the Resource File

The first nonblank and noncomment 1line of the input file
specifies the name of the resource file to be created, If the
file is to be an application, it should have no extension. 1If
not, the file will be a resource file and should have the
extension .Rsrc, The line following the resource's filename
should either specify the file type and creator bytes for the
Finder, or be blank. For example, the two lines

NewResFile.Rsrc
PNTGMPNT

specify the file names NewResFile.Rsrc as the output file,
and the bytes 'PNTGMPNT'as the type and creator bytes. These
bytes tell the Finder that the file is a painting file,
created by MacPaint. (The Finder will try to launch MacPaint
if you select and open this file!)

More typically, these two lines will look like this:

MyApplication
APPLMYAP

This designates the file MyApplication as the output file.
The file is an application (type 'APPL') of type 'MYAP'.

If you do not specify a value for these bytes, they are set
to O.

Existij c

If you wish to add the resource defined in your input file to
those in an existing resource file, simply precede the
filename with an exclamation point. For example

101dResFile.Rsrc
tells RMaker to add the new resources to the file
OldResFile.Rsrc
Note

If you are adding resources to an application created
by the Microsoft FORTRAN Compiler and you also want
to use the Microsoft FORTRAN linker (LINK) to link
external subprograms to your application, use the
linker first. The linker expects the application file
to contain only those resources created by the
Microsoft FORTRAN compiler (3 CODE type resources).
The extra resources added by RMaker will confuse the
linker and have unpredictable results.

RMaker

Adding Resources

The rest of the resource file consists of INCLUDE statements
and "Type statements",

INCLUDE statements are used to read in entire resource files.
An INCLUDE statement looks like this:

INCLUDE filename

Type statements consist of the word "Type" followed by the
resource type and, below that, one or more resource
definitions, The resource type must be capitalized to match
the predefined resource type.

The following statement creates three resources of type 'STR'.

TYPE STR
1

This is a string
2
1 4

Gnirts a si siht
3
r

Hits is a grints

It is not necessary for all resources of a given type to be
declared together, however, all resources of a type must have
unique resource ID's, If you specify a resource ID that is
already in use, the new resource replaces the old one.

A resource looks like this:

[resource name] ,resource ID [(resource attribute byte)]
type-specific data

The square brackets indicate that the resource name and
resource attribute byte are optional. Don't place these
brackets in your input file. The comma before the resource ID
is mandatory., The default attribute byte is 0. Here are some
sample resource definitions:

TYPE STR

NewStr ,4 (32)

This resource has a name and an attribute bytell
5
14

This one has only a resource ID.

MyNewStr,6

This has a name and a resource ID.

The type specific data is different for each resource type. As
you have probably guessed, the type-specific data for a 'STR'
resource is simply a string. The next section describes the
type-specific data for the resource types defined by RMaker.

Microsoft FORTRAN Compiler

Defined Resource Types

RMaker has 12 defined resource types: 'ALRT', 'BNDL', °‘CNTL',
'DITL', 'DLOG', 'FREF', 'GNRL', 'MENU', 'PROC', 'STR',
'STR#', and 'WIND'. The format for type-specific data for
each type is shown by example, below. The type 'GNRL' is used
to define your own resource types. It is explained later.

Syntax of RMaker Lines
There are a few general rules that apply to lines read by
RMaker.

1. Leading and embedded blanks are ignored, except when
necessary to separate multiple numbers on a line, or
when they are part of a string.

2. Numbers are decimal unless specified otherwise,

3. RMaker is sensitive to line breaks. Thus if a type
description, below, shows four values on a single
line, you must put four values on a single line,

Two special symbols can be used in resource definitions: the
continuation symbol (++) and the entry ASCII symbol (\).

++ goes at the end of a line that is continued on the
next line.

/ precedes to hexadecimal digits., The ASCII character
is entered into the resource definition.

Look at the description of the 'STR' type for examples of
these special symbols.

You will notice that some of the resources are listed as

templates, while others are not. A template is a list of

parameters to build a Toolbox object; it is not the object
itself.

ALRT _Alert Template
TYPE ALRT

resource ID

top left bottom right
resource ID of item list
stages word in hexadecimal

/128
50 50 250 250

e we wo we
.. Ne wo we

1
TFFF

BNDL Applicatijon Bundle

TYPE BNDL
/128

MPNT 0

ICN#

0 128 1 129

FREF

0 128 1 129

Note: the number of mappings from

Ne we we we we v
~ we e we we we

resource ID
bundle owner
resource type

RMaker

local ID 0 maps to resource ID 128; 1 to 129

resource type

local ID 0 maps to resource ID 128; 1 to 129

local ID to resource ID is

variable, Simply include multiple mappings on a single line.

CNTL

TYPE CNTL
130

stop

244 40 260 80

Invisible

0

0

010

e Ne W we e we N

e we W we e we e

control Template

resource ID

title

top left bottom right
see note

ProcID (control definition ID)
RefCon (reference value)

minimum maximum value

Note: Controls can be defined to be visible

Only the first character (V or I) is significant,

*** order different??

Invisible.

Microsoft FORTRAN Compiler

DITL Dialog or Alert Item List
TYPE DITL
129 ;s resource ID
5 43 5 items in list
staticText ;; static text dialog item (see note)
20 20 32 100 3; top left bottom right
Whoopie ;7 message
editText editable text dialog item (see note)

20 120 32 200
Default message

top left bottom right
message

~e we we
. o W

radioButton ;: radio button dialog item (see note)
40 40 60 150 ;; top left bottom right
Hello ;s message

checkBox Disabled
75 40 95 150

disabled dialog item (see note)
top left bottom right

~ we we
~ we we

Goodbye message

button ;3 button dialog item (see note)
75 160 95 200 :3 top left bottom right

Hitl $: message

Note: Five types of dialog items are defined: Static text,
Editable text, Radio Buttons, Check Boxes, and Buttons. These
items are assumed to be enabled. Otherwise you may specify
Disabled., Only the first character of an item definition word

is significant (S,E,R,C,B,D).

DIOG ~~ ~ _ _Dialog Tempiate

TYPE DLOG

3
Th{s is a dialog box,
100 100 190 250
Visable GoAway

resource ID

message

top left bottom right
box status (see note)

. NS N Ne N we N
we %o %e we we we we

0 procID (dialog definition ID)
0 refCon (reference value)
129 ID of item list ('DITL', above)

Note: A dialog box can be Visible or Invisible., GoAway and
NoGoAway determine whether or not the dialog box has a close
box. Only the first characters (V,I,G,N) are significant.

RMaker

FREF File Reference

TYPE FREF
128 :; resource ID

APPL 0 ;3 file type, local ID of icon
129 resource ID

~e “e
~e we

TEST 127 myFile file type, local ID of icon, filename

Note: If there is no filename, it can be omitted.

MENU _Menu
TYPE MENU

'3 :: resource ID
Transfer ;: menu title
Edit ;: item 1
Asm ;: item 2
Link ;3; item 3
(- 33 item 4 (draw a line)
Exec 3; item 5

s+ MUST be followed by a blank linell

PROC Procedure
TYPE PROC

128 3; resource ID
MyProcedure ;3 filename

This type is wused to create resources that contain code. It
reads the first code segment from an application file (the
'CODE' resource with ID = 1), strips the first four bytes of
it (used by the Segment Loader), and saves it as a resource
of type 'PROC', It is useful for defining code types such as
'DRVR', 'WDEF', and 'PACK'. An example is given below in the
section on creating your own resource types.

Microsoft FORTRAN Compiler

STR String

TYPE STR 31 "STR ' (space required)
1 :+ resource 1D

This is a string 3; and a string
r23 3: resource ID

This is a string ++ ;53 and a long string

that shows the line ++
continuation characters.

¢25 (32) ;3 resource ID, optional attribute byte
I've got attributes! ;3 and a string
127 33 resource ID

Testing, \31, \32, \33 ;; 'Testing, 1, 2, 3' the hard way

STR# A Number of Strings
TYPE STR#
1 33 resource ID
4 33 number of strings
This is string one ;3 and the strings

And string two
Third string
Bench warmer

WIND _ Window Template

TYPE WIND

128
Wonder Window
40 80 120 300
Invisible GoAway
0
0

title

top left bottom right

window status (see note)
ProcID (window definition ID)
RefCon (reference value)

. N N Ne we
~e we we o we

Note: A window can be Visible or 1Invisible; GoAway and
NoGoAway determine whether or not the window has a close box.
Only the first character of each option (Vv,I,G,N) is
significant.

RMaker

Creating Your Own Tvpes

There are two ways to create your own resource types. The
first is to equate a new type to an existing type. For
example, you can create a resource of type 'DRVR' like this:

TYPE DRVR = PROC
17 (32)
MyDriver

type DRVR is just like PROC
resource ID, attribute byte
filename

~ we we
~ e we

The file MyDriver should be a single~segment application, as
created by Linker. Recall that the PROC type reads in the
resource of type 'CODE' with ID = 1, then strips off the
header types.

The other way to create your own type is to equate the new
type to 'GNRL', and then to specify the precise format of the
resource. A set of element type designators lets you define
the type of each element that is to be placed in the resource.

Here are the element type designators:

.P Pascal string

.S String without length byte

.I Decimal integer

L Decimal long integer

.H Hexadecimal

.R Read resource from file. .R is followed by:

filename type 1D

For example, to define a resource of type 'GNRL' consisting
of the integer 57 followed by the Pascal string 'Finance
Charges', you could use the following type assignment:

TYPE CHRG = GNRL ;3 define type 'CHRG'
+200 ;: resource ID

oI 3+ a decimal integer

57

P s+ a Pascal string

Finance Charges

Microsoft FORTRAN Compiler

10

A more practical example:; An application that has its own
icon must define an icon list, and reference it using 'FREF'
(described above). Such an icon 1list can be defined as
follows:

TYPE ICN# = GNRL
128

«H

0001 0002 0003 0004

icon list for an application
resource ID

enter 2 icons in hexadecimal
each is 32 bits by 32 bits

e we wo o
~e me wo we

007D 007E 007F 0080 ;3 for 128 words total

The .R type designator is used to include an existing
resource as part of a new resource type. For example, to read
an existing 'FONT' resource into a new resource of type
'FONT', use the following resource definition:

TYPE FONT = GNRL
1268

R

System FONT 268

define a new type
resource ID
read from the System file

~e we e we
e e we we

Using RMaker

Once you have created the input file to RMaker, the hard work
is done. Simply select and open the application RMaker. The
standard file selection window is automatically opened.
Select the file you want to compile and off it goes.

By default, the standard file selection window displays all
the text files on the disk. If you want to display only the
.R files, Cancel the selection window, select .R Filter from
the File menu, then select Compiler from the File menu to
redisplay the file selection window.

When RMaker is compiling a file, the name of the source file
is displayed in the upper left of the window, and the name of
the output file is displayed in the upper right. As the file
is compiled, the current size of the resource data, the size
of the resource map, and the total size are tracked on the
right half of the screen. In addition, as each 1line is
compiled, it is displayed on the screen.

If there are no errors in the RMaker input file, a resource
file with the specified name is created.

If an error occurs, the line containing the error is the 1last
line on the screen, RMaker then displays a box with an error
message in it.

the 'FONT' resource with ID=26

RMaker

RMaker Error Messages

Here is a list of the error messages that can be displayed by
RMaker, A brief description accompanies the messages that are
not entirely self-explanatory.

Bad format resource designator in GNRL type: This is any error
in a user-defined resource type.

Bad ID Number

Bad item type

Bad object definition: This can happen if the specified file is
of the wrong type,

Unknown type: The spec1f1ed resource type is not defined,

11

Toolbox

Microsofte FORTRAN Compiler
for the Applee Macintosh.

Toolbox

Toolbox

Contents

Chapter 1: Toolbox Interface

1.0 The Microsoft FORTRAN Compiler Toolbox Interface........ 1-1
1.0.1 ArguUmMeNES. ..ttt ittt iinete et tanenns 1-2
1.0.2 Pixels and BilS. ..o iurienrrnnenenanronnoenonaennns 1-2
1.0.3 Bit Images and BitmapsS. ... cuitieiiien i ennneennenn 1-2
1.0.4 Coordinates and Points.......coviiiiii i innnnn. 1-3
1.0.5 Patterns. ...ttt ittt it ittt e e 1-3
1.0.6 Pointers and HandlesS.ttt iienenennaenannenns 1-4
1.0.7 TOOLBX(PTR) FUNCELION. st vttt vntovononneeoenanennnennnn 1-6

1.1 GrafPort ROULINES. ...ttt ittt ittt it ineen e 1-7

1.2 Cursor-Handling ROULINES . . vttt vt tete e e te cteeeeennnnn 1-14

1.3 Pen and Line-Drawing Routines.........cieiuvneerneneen. 1-16

1.4 Text-Drawing ROULINES . ..ttt tennerennneeieennnneennnns 1-19

1.5 Rectangle, Oval, and Arc ROULINES.ttt it 1-23
1.5.1 Calculations on RectanglesS.cveueeenennnnnenennn 1-23
1.5.2 Graphic OperationsS.euiiiimiintianneeneeeneennns 1-25

1.6 Region ROULINES . .ttt iiiit ittt ittt teite e eeinneeennnns 1-30
1.6.1 Region Definition and Termination...........ooeee.s 1-30
1.6.2 Calculations on REgiONS. ... ittt nennennens 1-32
1.6.3 Graphic Operations on RegionS.........uveiienonnn.. 1-35

1.7 Bit Transfer Operation Routines............ccivueenunnn.. 1-37

1.8 Color ROULINES. .ttt ittt ittt ittt it i e e tnae e 1-39

1.9 Picture ROULINES . ot ittt ittt ittt esoeeneneenneenaenns 1-40

1.10 Polygon ROULINES.ttt it ittt iei ittt enneans 1-42
1.10.1 Calculations on POLlYygONS. . .uu vt runererneenennenns 1-42
1.10.2 Graphic Operations on POlygonS..........oeuvieunnnn 1-43

1.11 PoOInt ROULINES . vttt it me e enateeeeeeneeeeeaneneennnnn 1-45

1.12 Miscellaneous QuickDraw Utilities.......c.iiiieeiennnn. 1-47

1.13 Window ROULINES. ...t ittt tetonertuoneneeroeneeenens 1-49
1.13.1 Window Initialization and Allocation.............. 1-49
1.13.2 Window Display Routines........oiiiiiiniinnnnnen.. 1-53
1.13.3 Mouse Location Routines.........c.iiiiiiiinnnnen.. 1-55
1.13.4 Window Movement and Sizing Routines............... 1-56
1.13.5 Update Region Maintenance Routines................ 1-58
1.13.6 Miscellaneous Window Utilities.................... 1-59

1.14 Menu Routines.......ii ittt ittt ittt 1-64
1.14.1 Menu Initialization and Allocation................ 1-64
1.14.2 Forming the Menu Bar............tiiiiiinennnennn 1-67
1.14.3 ChoosSing from @ MeNU. . v v e vt vt ononsnonnonneosonsonn 1-69
1.14.4 Controlling the Appearance of a Menu Item......... 1-70
1.14.5 Miscellaneous Menu Utilities................. ... 1-73

Microsoft FORTRAN Compiler

Chapter 2: Event Manager

RNV RONNNNNNDNNDNNNNDNDNDN

WO~ WNEO

About This Chapter....ivuiiiiiii ittt nnnnrenenenens 2-1
About the Event Manager........c.ouuiimiminenrnnennnnenn 2-1
EVENE Y PE Sttt v vt v st et tnnsesssssessssesesssasesnsenannss 2-2
Priority of BventsS. ..ttt it iieiinrneninnennnns 2-4
Keyboard Events.t iiiiiiiiiiiieinnnneennnnsanans 2-5
Event ReECOIAS. ...ttt iiiitenieeeenneeenansonenasennns 2=
Event MasKS....ii ittt ienieenneoeenaeeenaoseeananenas 2-11
Using the Event Managerot ivin e tieeoneoneenenns 2-13
Responding to Mouse Events........cotiiiiiininnnennnenns 2-14
Responding to Keyboard Events......oviiiiininienernnsas 2-15
Responding to Activate and Update Events.............. 2-15
Responding to Disk-Inserted Events......couvivivuvennon 2-16
Other OperationS.ottt ittt iiinnnenennnn 2-16
Event Manager ROULINES. v ironnnnncnennenenonens 2-17
ACCESSING EVENES .t ittt inenineneneneneeranaonanononaess 2-17
Appendix: Standard Key and Character Codes............ 2-20

Chapter 3: Desk Manager

3.1 About the Desk Manager........i ettt renennoennanenas 3-1
3.2 Using the Desk Manager........ oo ensnnenesas 3-2
3.3 Desk Manager Routines...........oiiiiiiiiiinininnn.. 3-3
3.3.1 Opening and Closing Desk Accessories................ 3-4
3.3.2 Handling Events in Desk Accessories................. 3-4
3.3.3 Performing Periodic ACtionS.......viiiiiiniinennnnns 3-5
3.4 An Example ProOgram...... ..o einoneneenennennnenenns 3-5

ii

Microsofte FORTRAN Compiler
for the Apples Macintosh.

Toolbox Interface

Toolbox Interface

1.0 The Microsoft FORTRAN Compiler Toolbox Interface

Access to the Macintosh ROM routines is provided through a
single general FORTRAN procedure called toolbx.sub. This one
procedure allows you to make nearly 500 different requests of
Macintosh resources including quickdraw, the menu manager, the
font manager, and the window manager. A parameter file,
toolbx.par, which can be used with the FORTRAN INCLUDE
statement, is supplied with the compiler and contains all the
definitions you will need to call a tool box procedure.

Toolbx.sub does not provide access to the QS Utilities routines
with the exception of SysBeep.

CAUTION: The Apple document Inside Macintosh specifies the use
of certain initialization calls in your application program
before using various features of the Toolbox. The Microsoft
FORTRAN Compiler run time system calls four of these for you:
INITGRAF, INITWINDOWS, INITMENUS, and INITFONTS. These
must not be called twice; no FORTRAN program should call these
routines.

Toolbx.sub can be referenced as a function when the Mactintosh
ROM routine returns results and it can be called as a
subroutine when no results are expected or required. It can be
linked to your program or reside on the disk and be loaded as
an overlay. When toolbx.sub is loaded as an overlay, the first
time it is called it will mark itself as permanent in the
FORTRAN heap so that successive calls will not have to access
the disk.

Note that when toolbx.sub is used as a function, it must be
declared just as any other FORTRAN function would. For usage
with multiple data types (ie, toolbx.sub returns INTEGER*4 in
one call and LOGICAL*2 in another), declare toolbx as
INTEGER*4. The Microsoft FORTRAN Compiler will handle the
conversion to LOGICAL automatically.

The first parameter in a tool box call argument list is always
an INTEGER which specifies the name of the Macintosh routine to
execute. This name represents a number that is used to refer to
the desired operation. When toolbx.sub is called, the operation
argument is tested for validity. If it is an illegal value
(ie, -1), then control is immediately returned to the calling
program. Since there is no illegal value that can be returned
by the tool box routines, the Microsoft FORTRAN Compiler has no
way of knowing if an error has been detected. Therefore, be
warned that there will be no error message in the event of a
tool box parameter range error.

There can be as many as ten additional parameters in a toolbox
call. This typical segquence of calls to toolbx.sub draws a
horizontal line in the current window from (30,30) to (80,30).

Microsoft FORTRAN Compiler

include toolbx.par
call toolbx{(MOVETO, 30,30)
call toolbx(LINETO, 80, 30)

The following definitions will help you get the most use from
the tool box routines.

1.0.1 Arguments

Scalar arguments passed to toolbx.sub are always INTEGER*4
variables or constants. Structures (Pascal Records) are passed
as arrays of integers or characters and may have any size
suitable to the Macintosh ROM routine. Since FORTRAN always
passes arguments by address, one of the responsibilities of
toolbx.sub is to format your argument list into one acceptable
to Macintosh.

Unfortunately, the toolbox routines do not use standard FORTRAN
character strings. Toolbox string arguments must be preceeded
by a length byte (like a Pascal LSTRING).

character*6é longstring

character*255 longerstring

longstring = char(5)//'Hello’
longerstring = char(12)//'Hello, world'

1.0.2 Pixels and Bits

A pixel is a "picture element." It is the smallest entity that
can be written on the screen. Each pixel displayed is repre-
sented in Macintosh memory by exactly one bit or "binary
digit.”" There are eight bits in a byte, which is the size of
an INTEGER*1 variable. A FORTRAN variable can be used to
define a pattern of pixels through bits as well as a
mathematical quantity such as length or position.

1.0.3 Bit Images and Bitmaps

Bit images are a string of bits that represent a collection the
sequential rows of a rectangular image. A bitmap is the data
structure that references a bit image. It contains the pointer
to the bit image, the number of bytes in each row, and the bit
image's rectangular boundary. Using the Microsoft FORTRAN
Compiler, the following example declares a bitmap structure:

Toolbox Interface

integer*2 bitmap(7)

integer*4 bitptr

integer*2 rowbytes,bounds(4)
equivalence (bitmap(l),bitptr)
equivalence (bitmap(3),rowbytes)
equivalence (bitmap(4),bounds(l))

1.0.4 Coordinates and Points

The origin of the coordinate plane (0,0) is the upper left hand
corner of the window. Positive horizontal coordinates increase
to the right and positive vertical coordinates increase down
the screen. Some of the routines specify absolute coordinates
in the window and others specify coordinates which are relative
to some current position.

Coordinates are usually specified by a POINT, which can be
defined with the Microsoft FORTRAN Compiler as:

integer*2 point(2)
data point /50,100/

This specifies a point 50 units below and 100 units to the
right of the origin. Note that the vertical component is
specified first and the horizontal component last (i.e. (y,x));
this is the reverse of the usual mathematical convention of
(x,y). Note also that some toolbox calls take the components
directly rather than as points, and that the order these
components appear in the toolbox is generally horizontal first
(i.e., (x,¥)). For example, EQUALPT takes two points:

integer*2 pta{(2), ptb(2)
logical pointflag
pointflag = toolbx(EQUALPT, pta, ptb)

SETPT takes two components in (x,y) order:

integer x, y

integer*2 pt(2)

data x, y /5, 10/

call toolbx (SETPT, pt, x, y)

1.0.5 Patterns

A pattern is a 64 bit image usually defined as an eight by
eight pixel square. It is most easily defined in FORTRAN as an
eight element INTEGER*1 array. A pattern is used to specify a
repeating design. The binary integer constant in the Microsoft
FORTRAN Compiler is quite useful for defining patterns:

Microsoft FORTRAN Compiler

integer*1l pattern(8)

pattern{(l) = b'00011000*
pattern(2) = b'00100100°
pattern(3) = b'01000010°
pattern{(4) = b'10000001°
pattern{(S) = b'10000001°'
pattern(6) = b'01000010'
pattern{(7) = Db'00100100°
pattern(8) = b'00011000°

1.0.6 Pointers and Handles

The Macintosh toolbox utilities create and access a variety of
structures in memory. Some of them require you to supply the

memory for these structures from FORTRAN. Others will get
contiguous pieces of memory dynamically from a structure called
the heap. This is done by the Memory Manager, described in

greater detail in the Memm:y_Managgr_P_r_o_g.mmmer_s_Gn;dg in
Inside Macintosh. These pieces of memory are called blocks.

There are two basic kinds of blocks: relocatable and
nonrelocatable. Relocatable blocks can be moved around
within the heap to <c¢reate space for other blocks;
nonrelocatable blocks can never be moved.

The memory that the Macintosh gets from the heap cannot be
accessed with ordinary FORTRAN variables. There is no way, for
example, to declare an array in your program and have its space
allocated from the Macintosh heap during execution. Instead,
when a toolbox utility allocates a block, it returns either a
pointer or a handle.

Nonrelocatable blocks are referred to by pointers. A pointer
is an absolute address to a location in Macintosh memory.
Since these blocks are always at the same location in memory,
the pointers will remain valid for as long as the block exists.

Relocatable blocks pose a greater problem. If necessary to
make room for some other block, the Memory Manager will move
relocatable blocks at any time to a new location. This would
leave any pointers you might have to the block pointing to the
wrong place in memory, or "dangling."

To help avoid dangling pointers, the Memory Manager maintains a
single master pointer to each relocatable block, allocated from
within the same heap as the block itself. The master pointer
is created at the same time as the block and set to point to
it. What you get back from the toolbox for such a block is a
pointer to the master pointer, called a handle. If the Memory
Manager later has to move the block, it has only to update the
master pointer to point to the block's new location; the master
pointer itself is never moved.

Toolbox Interface

The toolbox utilities that use the Memory Manager to allocate
blocks of memory for their structures will return either a
pcinter or a handle to the block. You can store these in
FORTRAN INTEGER variables. The main use of pointers and
handles under FORTRAN is to refer to the structures built with
toolbox utilities in calling other toolbox utilities, so you
will seldom need to access a pointer or handle directly.

If you need to access a Macintosh structure through a pointer,
you can use the Microsoft FORTRAN Compiler LONG, WORD, and
BYTE functions which return the contents of absolute memory
locations. For example, if the variable mypointer contains a
pointer to an INTEGER value on the heap, the value could be
accessed by:

integer mypointer, myint
myint = LONG (mypointer)

To access a structure through a handle, you must first
reference the handle, that is, get a copy of its master
pointer. This copy can then be used as a pointer, giving
access to the structure through LONG, WORD, and BYTE. For
example, if the variable myhandle contains a handle to an
INTEGER value, the value can be accessed by:

integer myhandle, temp, myint
temp = LONG(myhandle) ! Get the master pointer.
myint = LONG(temp)

This copy of the pointer is only guaranteed to be valid until
the Memory Manager is next used to allocate a block of memory.
To be safe, you should not assume that a copy of a master
pointer will be valid after any call to the toolbox.

A handle or pointer will generally refer to some structure
considerably more complex than an integer. The most common
structure 1is a record: a contiguous list of values of various
types and sizes. If you need to extract a value from a record
to which you have a pointer, you will need to know the offset
of that value within that type of record. Offsets for some of
the most common records are given elsewhere in this manual;
others must be calculated from information in Inside Macintosh.
To access a value at a given offset, add the offset to the
pointer and use LONG, WORD, or BYTE, as appropriate. For
example, there 1s a one byte flag in each window record (see
i) which is 1 if the
corresponding window is visible on the screen or 0 if it is
not. It has an offset of 110 and can be accessed in the
following manner, assuming mywindow contains a window pointer:

integer*l wvisible
integer mywindow
visible = BYTE (mywindow + 110}

Microsoft FORTRAN Compiler

1.0.7 TOOLBX (PTR) Function

Many toolbox utilities operate on pointers. Usually these
pointers will have been created by other toolbox utilities, so
that all you have to do is pass them from one call to another.
Occasionally, however, it 1is necessary to pass a FORTRAN
structure (such as an array or string) to a toolbox utility
expecting a pointer. Since FORTRAN does not support pointers
directly, the Microsoft FORTRAN Compiler offers a PTR function,
which returns the absolute address of a variable. PTR uses the
same calling conventions as the other toolbx calls. For
example, the GETNEWWINDOW utility initializes a window record
and adds it to the Window Manager's list (see the section
Window Initialization and Allocation). It can get the memory
for this record either from the Macintosh heap (described
above) or from your program. When you supply the memory, it
must be in the form of a pointer:

integer*l windowrecord(154)

integer windowptr

integer wstorage

integer behind

integer windowid

behind = -1 ! Put in front.

windowid = 256 ! Assumes window resource.
wstorage = toolbx(PTR, windowrecord)

windowptr = toolbx (GETNEWWINDOW,windowid,wstorage,behind)

The PTR function can be used with any of the valid FORTRAN data
types.

The following sections describe the various calls that can be
made to the interface procedure. More detailed information can
be found in the manual, Inside Macintosh, available from Apple
Computers. Inside Macintosh is the authoritative source of any
information relating to the internal workings of the Macintosh.

At the time of printing, the cost was approximately $100. For

further details concerning current price and shipping
information, call:

(408) 988 - 6009
or write to the following address:

"Inside Macintosh™

Apple Computers

467 Saratoga Avenue

Suite 621

San Jose, Califormnia 95121

Toolbox Interface

1.1 GrafPort Routines

The overriding structure behind all QuickDraw commands and
functions is the GrafPort. The grafport is where the Macintosh
stores and maintains any information that pertains to its
window (or port). It is valid to have more than one grafport
open at any given time. Control can be transferred from one
port to another without losing data.

Device - The Macintosh's output device number. 1Initially
set to 0 (the Macintosh's screen).

Portbits - The bitmap whose pointer addresses the
grafport's bit image. Initially uses the entire
Macintosh's screen as the the bit image (0, 0, 512,
342).

Portrect - A subset of the grafport's bitmap, it defines
the area of the window where output can take place.
Initially set to the Macintosh's screen (0, 0, 512,
342).

Visrgn - Defines the visible portion of the grafport's
window. Normally never changed at the programmer
level, this field is updated by some of the window
routines. Initially set to the Macintosh's screen
(0, 0, 512, 342).

Cliprgn - Defines an area inside the portrect that limits
the area of the screen where drawing can occur.
Initially set to the Macintosh's screen (0, 0, 512,
342).

Bkpat - Is the pattern used to fill a graphic figure when
it is erased, and to fill in an area left by a scroll
operation. Initially set to white.

Fillpat -~ Is the pattern that displays when a graphic
operation is invoked that has the "PAINT" prefix.
Initially set to black.

The next 5 grafport fields save attributes of the current pen.
For further details, see Pen and Line-Drawing Routines.

Pnloc - Saves the current pen location. Initially set to
0 horizontally and 0 vertically.

Pnsize - Saves the current pen size. With an initial
width and height of 1.

Pnmode - Saves the current pen transfer mode. Initially
set to patcopy.

Microsoft FORTRAN Compiler

Pnpat - Saves the current pen drawing pattern. 1Initially
set to black.

Pnvis - Designates whether any drawing is to take place
or not . Initially set to 0 (visible).

The next S5 grafport fields define characteristics of any text
that may be output. For further details, see Text Drawing
Routines.

Txfont - Defines the font number of the character font to
be used. 1Initially set to 0 (system font).

Txface - Defines the current text style value. Initially
set to 0 (normal).

Txmode - Defines the current text transfer mode. This
transfer mode is similar to the pen transfer modes.
Initially set to 1 (srcor).

Txsize - Stores the current text size in points.
Initially set to 0 (font manager decides).

Spextra - Saves the number of pixels to be added to all
spaces in a string. Initially set to O. This is
erroneously defined as a word (INTEGER*2) in Inside
Macintosh. It is actually a long word (INTEGER*4).

Fgcolor - Designates the current foreground color (when
color becomes available). Initially set to black.
Bkcoloxr - Designates the current background color (when

color becomes available). 1Initially set to white.

Colrbit - Defines the color plane for color imaging
software (when color becomes available). Initially
set to O.

Patstretch - Used to determine if a pattern needs to be
expanded when output to a printer. This field should
not be changed by the programmer. Initially set to O
(no expansion).

The next three fields are related in that they determine that
an object (picture, region, or polygon) is currently being

defined. A field is activated when an open operation
(OPENPICTURE, OPENRGN, or OPENPOLY) is executed. At this
point, the field contains the absolute address of the object's
data area. If, during the definition of an object, the

associated field is set to 0, then the object definition is

1-8

Toolbox Interface

disabled until the contents are restored or the object
definition is terminated with a close operation (CLOSEPICTURE,
CLOSERGN, or CLOSEPOLY).

Picsave - Defines the "open" state of a picture.
Initially set to 0 (closed).

Rgnsave - Defines the "open"” state of a region.
Initially set to 0 (closed).

Polysave - Defines the "open" state of a region.
Initially set to 0 (closed).

Grafprocs - Is used in the storage of a special data
structure that the application defines to customize
QuickDraw procedures. This requires specific
knowledge of the way the Macintosh processes
graphics. For further information, consult the

manual Inside Macintosh.

The structure of the grafport contains arrays, pointers, and
integer values. The grafport can be represented in the
Microsoft FORTRAN Compiler in the following manner:

integer*2 grafport (54)
integer*2 device
integer*2 portbits(7)
integer*2 portrect(4)
integer*4 visrgn
integer*4 cliprgn
integer*1 bkpat(8)
integer*l fillpat(8)
integer*2 pnloc(2)
integer*2 pnsize(2)
integer*2 pnmode
integer*l pnpat(8)
integer*2 pnvis
integer*2 txfont
integer*2 txface
integer*2 txmode
integer*2 txsize
integer*4 spextra
integer*4 fgcolor
integer*4 bkcolor
integer*2 colrbit
integer*2 patstretch
integer*4 picsave
integer*4 rgnsave
integer*4 polysave
integer*4 grafprocs

equivalence
equivalence
equivalence
equivalence
equivalence
equivalence
equivalence
eguivalence
equivalence
equivalence
equivalence
equivalence
equivalence
equivalence
equivalence
equivalence
equivalence
equivalence
equivalence
eguivalence
eguivalence
equivalence
equivalence
equivalence
equivalence

Microsoft FORTRAN Compiler

(grafport(1l),device)
(grafport (2),portbits (1))
(grafport (9),portrect(l))
(grafport (13),visrgn)
(grafport (15) ,cliprgn)
(grafport (17),bkpat (1))
(grafport(21),fillpat (1})
{grafport (25),pnloc (1))}
{(grafport (27),pnsize(l))
(grafport (29), pnmode)
(grafport (30),pnpat (1})
{(grafport (34),pnvis)
{(grafport (35),txfont)
{grafport (36) ,txface)
(grafport (37), txmode)
(grafport (38), txsize)
(grafport (39),spextra)
{grafport (41),fgcolor)
(grafport (43) ,bkcolor)
(grafport (45),colrbit)
(grafport (46) ,patstretch)
(grafport (47),picsave)
{(grafport (49),rgnsave)
{(grafport (51),polysave)
(grafport (53),grafprocs)

For all examples in the remainder of this documentation using
grafports, this structure will apply.

The array grafport can be passed to the OPENPORT toolbox
utility (below) to be filled out. However, you will often have
only a pointer to a grafport record which has been allocated by
the Macintosh Memory Manager (see The Microsoft FORTRAN
Compiler Tool Box Interface). If you need to access the fields
of such a record, you will have to use the Microsoft FORTRAN
Compiler functions LONG, WORD, or BYTE, which take an absolute
address and return the value stored there. To get a pointer to
a particular field, you add the offset of that field to the
pointer. The offsets for the grafport record can be defined in
Microsoft FORTRAN by:

integer device; parameter (device = z'0")
integer portbits; parameter (portbits = 2z'2')
integer portrect; parameter (portrect = 2z'10')
integer visrgn; parameter (visrgn = z'18')
integer cliprgn; parameter (cliprgn = 2'1C')
integer bkpat; parameter (bkpat = z'20")
integer fillpat; parameter (fillpat = =z'28')
integer pnloc; parameter (pnloc = 2'30')
integer pnsize; parameter (pnsize = 2z'34"')
integer pnmode; parameter (pnmode = z'38')
integer pnpat; parameter (pnpat = z'3A')
integer pnvis; parameter (pnvis = z'42')
integer txfont; parameter (txfont = 2z'44')

Toolbox Interface

integer txface; parameter (txface = z'46"')
integer txmode; parameter (txmode = 2z'48')
integer txsize; parameter (txsize = z'4A')
integer spextra; parameter (spextra z2'4C")
integer fgcolor; parameter (fgcolor = z'50')
integer bkcolor; parameter (bkcolor z'54"')
integer colrbit; parameter (colrbit = z'58')
integer patstretch; parameter (patstretch = =z'5A‘')
integer picsave; parameter (picsave = z'5C')

integer rgnsave;
integer polysave;
integer grafprocs;

parameter (rgnsave = z'60'}
parameter (polysave = z'64')
parameter (grafprocs = z'68')

INITGRAF initializes the QuickDraw global variables. INITGRAF
is intended to be called once and only once. The Microsoft
FORTRAN Compiler calls this procedure before any program
execution begins. Therefore, do not call this procedure. It
is documented for user information only.

OPENPORT initializes the elements of the given grafport and
allocates space for the visible and clipping regions. A port
must have been opened before it can be used. When a port is
opened, it automatically becomes the current port.

integer*4 grafptr
grafptr = toolbx (PTR,grafport(l})
call toolbx (OPENPORT,grafptr)

INITPORT reinitializes a port that has already been opened and
makes it the current port.

integer*4 grafptr
grafptr = toolbx (PTR,grafport(l))
call toolbx (INITPORT,grafptr)

CLOSEPORT deallocates the memory that OPENPORT allocated for
the visible and clipping regions.

integer*4 grafptr
grafptr = toolbx (PTR,grafport(l))
call toolbx (CLOSEPORT,grafptr)

SETPORT is used to assign the given grafport to the current
port.

integer*4 grafptr
grafptr = toolbx (PTR,grafport(l))
call toolbx (SETPORT,grafptr)

Microsoft FORTRAN Compiler

GETPORT determines which grafport is currently active and
returns a pointer to that port.

integer*4 grafptr
call toolbx (GETPORT,grafptr)

GRAFDEVICE sets the logical output device for the current
grafport to the given value. The initial value is 0 (Macintosh
screen) .

integer*4 device
device = 0
call toolbx (GRAFDEVICE, device)

SETPORTBITS provides the ability to change the current bitmap
to any previously defined bitmap.

integer*2 bitmap(7)
call toolbx (SETPORTBITS,bitmap)

PORTSIZE changes the size of the active area (portrect) of the
current window. This operation has no effect on the screen.

integer*4 width,height
data /20,-20/
call toolbx (PORTSIZE,width,height)

MOVEPORTTO changes the position of the active area (portrect)
of the current window. This operation has no effect on the
screen.

The leftglobal and topglobal values define the distance between
upper left corner of the current bitmap boundaries and that of
the current portrect.

integer*4 leftglobal,topglobal
data leftglobal,topglobal /256,171/
call toolbx (MOVEPORTTO,leftglobal,topglobal)

SETORIGIN redefines the graphic screen's reference point.
This procedure causes the coordinate (0,0) to be moved to the
absolute 1location (h,v). All subsequent absolute moves are
made relative to this new location. Any relative movement or
drawing will not be affected by this procedure. It does not
affect the screen until an attempt is made to draw a figure
based on absolute coordinates.

Toolbox Interface

integer*4 h,v
data h,v /110,220/
call toolbx (SETORIGIN,h,v)

SETCLIP defines the clipping region of the current grafport to
be equivalent to the given region.

integer*4 myregion
myregion = toolbx (NEWRGN)
call toolbx (SETCLIP,myregion}

GETCLIP defines the given region to be equivalent to the
clipping region of the current grafport.

integer*4 myregion
myregion = toolbx (NEWRGN)
call toolbx (GETCLIP,myregion}

CLIPRECT redefines the clipping region of the current grafport
to be a rectangular equivalent of the given rectangle.

integer*2 rect(4)
data rect /10,10,210,210/
call toolbx (CLIPRECT, rect)

BACKPAT assigns the given pattern of the current grafport's
background pattern (bkpat).

integer*l pat(8)
data pattern /b'10101010°',

b'10101010°,
b'01010101*/
call toolbx (BACKPAT, pat)

+ b'01010101°',
+ b'10101010°',
+ b’'01010101"',
+ b'10101010°',
+ b'01010101°',
+

+

Microsoft FORTRAN Compiler

1.2 Cursor-Handling Routines

These routines manipulate the cursor which initially appears as
an arrow pointing to the upper left. The cursor tracks the
mouse and its position cannot be changed by any means other
than mouse movement. The cursor has the following attributes:
visible or not visible, pattern, and state of underlying
pixels.

INITCURSOR sets the cursor to its default state: a visible,
upper left pointing arrow. This call also sets the cursor
level to zero.

call toolbx (INITCURSOR)

HIDECURSOR removes the cursor from the screen and decrements
the cursor level. Every call to HIDECURSOR should be balanced
by a call to SHOWCURSOR.

call tooclbx (HIDECURSOR)

SHOWCURSOR increments the cursor level and displays the cursor
if the level is zero. The cursor level cannot be incremented
past zero, so extra calls to SHOWCURSOR have no effect.

call toolbx (SHOWCURSOR)

OBSCURECURSOR hides the cursor until the next time the mouse
is moved. This call does not effect the cursor level.

call toolbx(OBSCURECURSOR)

SETCURSOR is used to change the cursor image. This call is
made with a structure containing three parameters. The new
cursor image and its attributes are defined from two 16 by 16
bit patterns. The first pattern contains the data which defines
the image of the cursor and the second pattern is the mask
which specifies its appearance.

data mask = resulting pixel on the screen

0 1 white

1 1 black

0 0 same as pixel under cursor

1 0 inverse of pixel under cursor

The new cursor's hot spot is specified by vertical and
horizontal coordinates. The hot spot aligns a relative point in
the image with the mouse position. Typically you will specify a
hot spot which coincides with the tip of your cursor.

1-14

Toolbox Interface

The routine below demonstrates the SETCURSOR call by changing
the cursor to a right pointing hand.

integer*2 data(l16),mask(16),hotspot(2)
integer*2 cursor(34)

equivalence (cursor(l),data(l))
equivalence (cursor(l17),mask (1))
equivalence (cursor(33),hotspot(l})

data(l) = b'0000000000000000°
data(2) = b'0000000000000000°
data (3) = b'0000000000000000"
data(4) = b'0000000000000000"
data(5) = b'0000011100000000"
data(6) = b'0001100100000000"
data(7) = b'0010001000000000"
data (8) = b'0100011000000000"
data (9) = b'1100011111111110°
data(10) = b'1000110000000001°
data(ll) = b'1001011111111110°
data(l2) = b'1110010000010000°'
data(l3) = b’'1000011111100000°'
data(l14) = b'1000010000100000°
data(l5) = b'1100011111000000°
data(l6) = »'0111111110000000°

do (ie=1,16)
mask (1) = data(i)
repeat
hotspot (1) = 9 { vertical
hotspot (2) = 16 ! horizontal

call toolbx(SETCURSOR,cursor)

Microsoft FORTRAN Compiler

1.3 Pen and Line-Drawing Routines

These routines all make use of a concept known as a pen. This
is not the cursor which usually appears as an arrow, but a
drawing tool with independent size, pattern, and location
attributes. Initially, the pen is one pixel in size, black,
and is located at 12,3 (vertical, horizontal).

HIDEPEN decrements the current grafport's pnvis variable which
is initialized to zero. When pnvis is negative, the pen does
not draw on the screen.

call toolbx(HIDEPEN)

SHOWPEN increments pnvis. When pnvis is equal to or greater
than zero, the pen draws on the screen.

call toolbx (SHOWPEN)

GETPEN returns the location of the pen as vertical and
horizontal coordinates.

integer*2 penloc(2)
call toolbx(GETPEN, penloc)

Penloc{l) is the vertical coordinate and penloc(2) is the hori-
zontal coordinate.

GETPENSTATE returns the current pen location, size, pattern,
and mode. This call is useful for storing the current pen
state in procedures that temporarily change the pen charac-
teristics.

integer*2 penloc(2),pensize(2),penmode
integer*l pattern(8)

common penloc,pensize,pattern,penmode
call toolbx (GETPENSTATE, penloc)

SETPENSTATE sets the current pen location, size, pattern, and
mode. This call is usually made at the end of a procedure that
has made temporary changes to the pen state.

integer*2 penloc{(2),pensize(2),penmode
integer*l pattern(8)

common penloc,pensize,pattern,penmode
call toolbx (GETPENSTATE, penloc)

PENSIZE allows you to set the width and height of the pen.

1-16

Toolbox Interface

integer*4 w,h
call toolbx(PENSIZE,w,h)

PENMODE defines the transfer mode that will be used to draw
all graphics. There are four basic types of transfer modes:
copy, or, xor, and bic. Each of these types has an alternate
form that inverts each pixel of the source pattern (white to
black and black to white) before performing the designated
function, and is given the prefix "not". The operations that
are performed are:

Transfer Mode Action on Action on
patcopy 8 force black force white
pator 9 force black leave alone
patxor 10 invert leave alone
patbic 11 force white leave alone
notpatcopy 12 force white force black
notpator 13 leave alone force black
notpatxor 14 leave alone invert
notpatbic 15 leave alone force white
Nothing is drawn if an invalid mode is given (ie - not one of
the source transfer modes or a negative value). The initial

mode is patcopy.

integer*4 patcopy
data patcopy /8/
call toolbx (PENMODE, patcopy)

PENPAT is used to change the pen pattern. A discussion of
patterns 1is given in the introduction to the tool box
interface.

integer*1l pattern(8)

call toolbx(PENPAT,pattern)
PENNORMAL resets the pen to its initial state with a size of
one bit and a pattern of black.

call toolbx(PENNORMAL)
MOVETO changes the pen location to new horizontal and vertical
coordinates.

integer*4 h,v
call toolbx (MOVETO,h,v)

Microsoft FORTRAN Compiler

MOVE changes the pen 1location relative to the current pen
location.

integer*4 dh,dv
call toolbx (MOVE,dh,dv)

If the current horizontal and vertical pen coordinates are 50
and 30, the MOVE routine with dh and dv values of 5 and -5 will
change the pen coordinates to 55 and 25.

LINETO draws a line from the current pen location to the
horizontal and vertical coordinates specified in the argument
list. After the line is drawn, the pen location is updated to
the coordinates of the line end point.

integer*4 h,v
call toolbx(LINETO,h,v)

LINE draws a line to a point which is specified relative to the
current pen location. After the 1line is drawn, the pen
location is updated to the coordinates of the line end point.

integer*4 dh,dv
call toolbx(LINE,dh,dv)

Toolbox Interface

1.4 Text-Drawing Routines

The Macintosh does not print text like other computers you may
be familiar with. It uses calls to QuickDraw which write or
draw text to the currently active window. Therefore, text
output is a part of the grafport. Each grafport contains the
information needed to produce text output.

FORTRAN's write and type statements perform the same function
as the toolbox's output statements. They take into account the
current font, face, size and spaceextra attributes.

TEXTFONT sets the text font of the current grafport to the
value held in font. The possible font values are:

(=]

systemfont =
applfont
newyork =
geneva

! chicago, used by the system for text output.
!t application font, geneva by default.

monaco =
venice

london =
athens =
sanfran =

O ® TV W N

toronto =

integer*4 monaco
data monaco /4/
call toolbx (TEXTFONT, monaco)

TEXTFACE defines the text syle for the current grafport.
Multiple text styles are defined by adding the individual text
styles together.

normal =0
bold =1
italic = 2
underline = 4
outline = 8
shadow = 1
condense = 32
extend = 64

integer*4 bold,underline,shadow
integer*4 style

data bold,underline,shadow /1,4,16/
style = bold + underline + shadow
call toolbx (TEXTFACE, style)

TEXTMODE sets the transfer mode for drawing text in the
current grafport. The mode should be one of the following:

1-19

Microsoft FORTRAN Compiler

srccopy = 0O
srcor =1
srcxor = 2
srcbic = 3

The use of the text transfer modes is the same as the use of
the pattern transfer modes in the PENMODE command (see Pen and
Line-Drawing Routines).

The initial transfer mode is srcor.

integer*4 srccopy
parameter (srccopy = O)
call toolbx (TEXTMODE, srccopy)

TEXTSIZE defines the size (in points) of the text. Although
it is legal to specify any size, the text output is better if a
font of the chosen size 1is available from the font manager.
The next best thing is to choose an even multiple of a
particular font. If a 0 is passed as the size, the output will
be the size (or as close to it as possible) of the system font.

integer*4 size
data size /9/
call toolbx (TEXTSIZE,size)

SPACEEXTRA sets the spextra field in the current grafport.
This value is used to expand the width of each space character
in a line of text. Both positive and negative values are
legal, but take care when using negative values that the lines
do not become unreadable.

integer*4 extra
data extra /2/
call toolbx (SPACEEXTRA, extra)

DRAWCHAR outputs the given character to the current grafport.
The character is positioned above and to the right of the

current pen location. After the character has been drawn, the
pen location is updated to the bottom left corner of the next
character position. If the given character is not a part of

the current font, the font's missing symbol is drawn.

Since all parameters to toolbx are 4 bytes long, it is
necessary to pass a 4 character string to DRAWCHAR. Only the
last (rightmost) character is drawn; the other three characters
are ignored.

Toolbox Interface

character*4 ch

data ch /' A/

call toolbx (MOVETO, 3,100)
call toolbx (DRAWCHAR, ch}

DRAWSTRING calls DRAWCHAR once for each character in the
string. QuickDraw does no formatting (carriage return, 1line
feed, etc.). The first character of the string must contain
the number of characters in the string, consequently the
maximum length of the string is 255 characters.

character*256 string

string = char(6)//'abcdef"

call tocolbx (MOVETO,3,100)

call toolbx (DRAWSTRING, string)

DRAWTEXT performs the same function as DRAWSTRING with the

exception that the data is retrieved from a text buffer. The
first character to be output is indexed by firstbyte and
bytecount defines the number of characters to output. The

following example outputs the characters "defghijklm":

character*255 textbuf

integer*4 firstbyte

integer*4 bytecount

data firstbyte,bytecount /4,10/

textbuf = ‘'abcdefghijklmnopgrstuvwxy'

call toolbx (MOVETO, 3,100)

call toolbx (DRAWTEXT,textbuf,firstbyte, bytecount)

CHARWIDTH is an INTEGER function that returns the width (in

pixels) of the given character. The function takes into
account all the current font parameters that determine the
actual size of the character. As for DRAWCHAR above, it is

necessary to pass a 4 character string to CHARWIDTH.

integer*4 chwide

character*l ch

data ch /° At/

chwide = toolbx (CHARWIDTH,ch)

STRINGWIDTH adds the widths of all the characters in a string
(as determined by CHARWIDTH) and returns it in an INTEGER*4
variable.

integer*4 strngwide

character*20 strng

strng = ‘'abcdefghijklmnopgrst’
strngwide = toolbx (STRINGWIDTH,strng)

1-21

Microsoft FORTRAN Compiler

TEXTWIDTH performs the same function as STRINGWIDTH, but
performs the operation on a text buffer as described in
DRAWTEXT.

character*25 textbuf

integer*4 firstbyte

integer*4 bytecount

integer*4 textwide

data firstbyte /4/

data bytecount /10/

textbuf = ‘abcecdefghijklmnopgrstuvwxy'

textwide = toolbx (DRAWTEXT,textbuf,firstbyte,bytecount)

GETFONTINFO returns information about the current font size
and spacing. The information is returned in a structure that
contains four parts: ascent, descent, widmax, and leading.
Ascent designates the number of pixels between the baseline
(the vertical element of the current pen position) and the top
of the tallest possible character of the current size (ascent
line). Descent represents the distance between the baseline
and the vertical position of the lowest character descender,
which is the portion of a character that dips below the
baseline; in a "y" or "g". Widmax is the width of the widest
character (excluding intercharacter spacing). Leading defines
the vertical distance between the descent line (the bottom of
the lowest descender) and the ascent line that would be
immediately below it (the interline spacing).

integer*2 fontinfo(4)

integer*2 ascent

integer*2 descent

integer*2 widmax

integer*2 leading

equivalence (fontinfo(l),ascent)
equivalence (fontinfo(2),descent)
equivalence (fontinfo (3),widmax)
equivalence (fontinfo (4), leading)
call toolbx (GETFONTINFO, fontinfo(l})

Toolbox Interface

1.5 Rectangle, Oval, and Arc Routines

These routines perform operations on rectangular regions. A
rectangular region is defined with a four element INTEGER*2
array. The first and second array elements specify the y and x
coordinates respectively of the upper left hand corner of the
rectangular region. The third and fourth elements specify the
y and x coordinates of the lower right hand corner of the
region.

A rectangle is completely defined by the array which specifies
the region. Ovals are drawn inside rectangular regions. An
arc is a wedge-shaped section of an oval that fits inside a
rectangular region.

None of these routines changes the current pen location.

1.5.1 Calculations on Rectangles

SETRECT assigns the four boundary values into the rectangle
array. This procedure performs the same function as four
assignment statements and is meant to reduce source code size
in Pascal, however, it will always produce more object code in
FORTRAN.

integer*2 rect (4)
call toolbx (SETRECT,rect,10,10,210,210)

OFFSETRECT logically moves a rectangle a distance of dh in the
horizontal direction, and dv in the vertical direction. If dh
and dv are positive, the rectangle is moved to the right and
down. Negative values cause movement 1in the opposite
direction. This procedure has no effect on the screen.

integer*2 rect (4)

integer*4 dh,dv

data rect /10,10,210,210/

data dh,dv /50,-5/

call toolbx (OFFSETRECT,rect,dh,dv)

INSETRECT causes the rectangle to shrink or expand. If dh and
dv are positive, the rectangle shrinks toward its center.
Negative values cause the rectangle to expand from the center.
If the height or width is less than one as a result of the
operation, the rectangle is set to empty (0,0,0,0).

Microsoft FORTRAN Compiler

integer*2 rect(4)

integer*4 dh,dv

data rect /10,10,210,210/

data dh,dv /50,-5/

call toolbx (INSETRECT, rect,dh,dv)

SECTRECT is a logical function that returns true 1if the two
source rectangles intersect at any point. If an intersection
has occurred, the area of intersection is used to define a
destination rectangle. If the source rectangles have no common
points, the destination rectangle is defined as empty and the
function returns false. Further, an intersection of only one
point or line returns false since the resulting rectangle would
be considered empty. The destination rectangle may be one of
the source rectangles.

integer*2 srcrecth(4)

integer*2 srcrectB(4)

integer*2 dstrect (4)

logical*4 rectflag

data srcrectA /10,10,210,210/

data srcrectB /100,100,300,150/

rectflag = toolbx (SECTRECT, srcrectA, srcrectB,dstrect)

UNIONRECT defines a new rectangle based on the smallest rec-
tangle that encloses both source rectangles. The destination
rectangle may be one of the source rectangles.

integer*2 srcrectA(4)

integer*2 srcrectB(4)

integer*2 dstrect (4)

data srcrectA /10,10,210,210/

data srcrectB /100,100,300,150/

call toeclbx (UNIONRECT,srcrectA,srcrectB,dstrect)

PTINRECT is a logical function that returns true if the pixel
below and to the right of the given point is part of the given
rectangle.

integer*2 point (2}

integer*2 rect (4)

logical*4 pointflag

data point /125,150/

data rect /10,10,210,210/

pointflag = toolbx (PTINRECT,point,rect)

PT2RECT defines the smallest rectangle that will contain both
of the given points.

1-24

Toolbox Interface

integer*2 pointA(2),pointB(2)

integer*2 rect (4)

data pointA,pointB /10,10,20,20/

call toolbx (PT2INRECT,pointA,pointB, rect)

PTTOANGLE defines an angle based upon an imaginary line from
the center of the given rectangle to some other point. The
angle is defined as the number of degrees from the "12 o'clock™
position, travelling clockwise around the rectangle's center,
to the imaginary line. The angle returned is adjusted for non-
square rectangles. For example, if the given point were the
upper right corner of the given rectangle, the returned angle
would be 45 degrees, regardless of the aspect ratio of the
rectangle.

integer*2 rect (4)

integer*2 point(2)

integer*4 angle

data rect /10,10,340,200/

data point /340,10/

call toolbx (PTTOANGLE, rect,point,angle)

EQUALRECT is a logical function that returns true if the two
given rectangles have the same boundary values.

integer*2 rectA(4),rectB{4)

logical*4 rectflag

data rectA /10,10,210,210/

data rectB /10,10,210,210/

rectflag = toolbx (EQUALRECT, rectA, rectB)

EMPTYRECT is a logical function that returns true if the given
rectangle is empty (left 2 right or top 2 bottom).

integer*2 rect(4)

logical*4 rectflag

data rect /10,10,210,210/

rectflag = toolbx (EMPTYRECT, rect)

1.5.2 Graphic Operations

FRAMERECT draws the hollow outline of the specified rectangle
using the current pen size and pen pattern. The outline is as
tall as the pen height and as wide as the pen width.

integer*2 rect (4)
data rect /10,10,210,210/
call toolbx(FRAMERECT, rect)

Microsoft FORTRAN Compiler

PAINTRECT paints the specified rectangle in the current pen
pattern.

integer*2 rect(4)
data rect /10,10,210,210/
call toolbx(PAINTRECT, rect)

ERASERECT paints the specified rectangle in the current
background pattern.

integer*2 rect(4)
data rect /10,10,210,210/
call toolbx(ERASERECT, rect)

INVERTRECT inverts the pixels enclosed by the specified

rectangle; white pixels become black and black pixels become
white.

integer*2 rect(4)
data rect /10,10,210,210/
call toolbx (INVERTRECT, rect)

FILLRECT fills the specified rectangle with the given pattern.

integer*2 rect (4)

integer*l pattern(8)

data rect /10,10,210,210/

data pattern /b'10101010°',
b'01010101°*,
b'10101010°',
b'01010101°*,
b'10101010°,
b'01010101°,
b'10101010°",
b'01010101*/

call toolbx(FILLRECT, rect,pattern)

N I T

FRAMEOVAL draws the hollow outline of an oval inside the
coordinates specified by the rectangle using the current pen
size and pen pattern. The outline is as tall as the pen height
and as wide as the pen width.

integer*2 oval(4)
data oval /10,10,210,210/
call toolbx(FRAMEOVAL,oval)

PAINTOVAL paints the specified oval in the current pen
pattern.

Toolbox Interface

integer*2 oval(4)
data oval /10,10,210,210/
call toolbx(PAINTOVAL,oval)

ERASEOVAL paints the specified oval in the current background
pattern.

integer*2 oval (4)
data oval /10,10,210,210/
call toolbx(ERASEOVAL,oval)

INVERTOVAL inverts the pixels enclosed by the specified oval;
white pixels become black and black pixels become white.

integer*2 oval (4)
data oval /10,10,210,210/
call toolbx (INVERTOVAL,oval})

FILLOVAL fills the specified oval with the given pattern.

integer*2 oval(4)

integer*l pattern(8)

data oval /10,10,210,210/

data pattern /b'10101010',
b'01010101",
b’'10101010°',
b'01010101°',
b'10101010°",
b'01010101°',
b'10101010°*,
b'01010101*/

call toolbx(FILLOVAL,oval,pattern)

+ 4+ o+ 4+ o+ +

FRAMEROUNDRECT draws the hollow outline of a round cornered
rectangle using the current pen size and pen pattern. The
shape of the corners is governed by the two oval parameters,
width and height. The outline is as tall as the pen height and
as wide as the pen width.

integer*2 rect(4)

integer*4 w,h

data rect /10,10,210,210/

data w,h /20,20/

call toolbx (FRAMEROUNDRECT, rect,w,h)

PAINTROUNDRECT paints the specified round cornered rectangle
with the current pen pattern.

Microsoft FORTRAN Compiler

integer*2 rect(4)
integer*4 w,h

data rect /10,10,210,210/

data w,h /20,20/

call toolbx(PAINTROUNDRECT, rect,w,h)

ERASEROUNDRECT paints the specified round cornered rectangle

with the current background pattern.

integer*2 rect (4)
integer*4 w,h

data rect /10,10,210,210/

data w,h /20,20/

call toolbx (ERASEROUNDRECT, rect,w,h)

INVERTROUNDRECT inverts all the pixels in the specified round
cornered rectangle. Black pixels become white and white pixels

become black.

integer*2 rect(4)
integer*4d w,h

data rect /10,10,210,210/

data w,h /20,20/

call toolbx(INVERTROUNDRECT, rect,w,h)

FILLROUNDRECT fills the specified round cornered rectangle

with the given pattern.

integer*2 rect (4)
integer*4 w,h
integer*l pattern(8)

data rect /10,10,210,210/

data w,h /20,20/

data pattern /b'10101010°',

+ o+ o+t

b'01010101°,
b'l10l101010",
b'01010101",
b*'10101010°,
b'01010101",
b'10101010°',
b'01010101'/

call toolbx(FILLROUNDRECT, rect,w,h,pattern)

FRAMEARC draws an arc of the oval that fits inside the
specified rectangular region using the current pen size and pen

pattern. The arc is defined with two
The first angle indicates where the
second angle specifies the extent of
swing clockwise and negative angles
Zero degrees 1is at twelve o'clock,

1-28

angles given in degrees.
arc is to begin and the
the arc. Positive angles
swing counter-clockwise.
ninety degrees at three

Toolbox Interface

o'clock, 180 degrees at six o'clock, and 270 degrees is at nine
o'clock. All other angles are measure relative to the corner
points of the enclosing rectangle; forty-five degrees is at the
upper right hand corner of the rectangle, regardless of whether
the rectangle is a square or not. The outline of the arc is as
tall as the pen height and as wide as the pen width.

integer*2 rect (4}

integer*4 start,arc

data rect /50,50,150,150/

data start,arc /0,45/

call toolbx(FRAMEARC, rect,start,arc)

PAINTARC paints the specified arc in the current pen pattern.

integer*2 rect (4)

integer*4 start,arc

data rect /50,50,150,150/

data start,arc /0,45/

call toolbx(PAINTARC, rect,start,arc)

ERASEARC paints the specified arc in the current background
pattern.

integer*2 rect (4)

integer*4 start,arc

data rect /50,50,150,150/

data start,arc /0,45/

call toolbx(ERASEARC, rect, start,arc)

INVERTARC inverts the pixels enclosed by the specified arc;
white pixels become black and black pixels become white.

integer*2 rect(4)

integer*4 start,arc

data rect /50,50,150,150/

data start,arc /0,45/

call +toolbx(INVERTARC, rect, start,arc)

FILLARC fills the specified arc with the given pattern.

integer*2 rect (4)
integer*4 start,arc
integer*l pattern(8)
data rect /10,10,210,210/
data start,arc /0,45/
data pattern /b'10101010°',
b'01010101",
b'10101010°",
b'01010101°',
b'10101010°*,
b'01010101"',
b'10101010°",
b'01010101'/
call toolbx(FILLARC, rect,start,arc,pattern)

P 4

Microsoft FORTRAN Compiler

1.6 Region Routines

These routines perform operations on regions. A region is made

up of a collection of lines and shapes. The region can be a
single figure, a figure with holes in it, several disjoint
figures, or some combination of these. Regions are built

dynamically, that is they are opened, defined, and closed.
Manipulation of a region requires an INTEGER*4 variable to hold
the handle (pointer to the absolute address) of the region
data.

1.6.1 Region Definition and Termination

NEWRGN is an INTEGER*4 function that allocates data space for
a region. This function produces no graphic output. It does,
however, return the pointer that will be used to perform
calculations and graphic operations on the region.

integer*4 myregion
myregion = toolbx (NEWRGN)

DISPOSERGN deallocates the memory space that NEWRGN defined.
Use this procedure to delete a region from memory. WARNING -
Do not try to perform operations on a region once you have
disposed of it.

integer*4 myregion
myregion = toolbx (NEWRGN)
call toolbx (DISPOSERGN,myregion)

COPYRGN allows the duplication of entire region structures.
Once the source region is copied into the destination region,
it either can be changed or disposed of without affecting the
other. COPYRGN does not create a region; the destination
region must be predefined by NEWRGN.

integer*4 srcregion

integer*4 dstregion

srcregion = toolbx (NEWRGN)

dstregion = toolbx (NEWRGN)

call toolbx (COPYRGN, srcregion,dstregion)

SETEMPTYRGN initializes the given region to an empty state.
Once performed, the region may be redefined in any way or
disposed.

integer*4 myregion
myregion = toolbx (NEWRGN)
call toolbx (SETEMPTYRGN,myregion)

Toolbox Interface

SETRECTRGN initializes the structure of the given region (as
in SETEMPTYRGN) and defines it to be a rectangle with the given
boundaries. Note that if the given rectangle is empty (ie -
left 2 right or top < bottom) the effect of this call is
equivalent to SETEMPTYRGN.

integer*4 myregion

integer*4 1left,top,right,bottom

data left,top,right,bottom /100,100,200,200/
myregion = toolbx (NEWRGN)

call toolbx (SETRECTRGN, left,top,right,bottom)

RECTRGN is synonymous with SETRECTRGN. The only exception is
the way the rectangular boundaries of the region are defined.
Instead of individual boundary values, RECTRGN takes a
rectangle array (ie - INTEGER*2 RECT(4)).

integer*4 myregion
integer*2 rect (4)

data rect /100,100,200,200/
myregion = toolbx (NEWRGN)
call toolbx (RECTRGN, rect)

OPENRGN initiates the actual definition of a region. While a
region is open, all calls to LINE, LINETO, and the operations
that draw framed shapes (except arc) affect the outline of the
region. OPENRGN calls HIDEPEN, so unless there has been an
unbalanced SBOWPEN, the pen will not draw (see Pen and Line-
Drawing Routines).

A region divides the bitmap into two groups: those that lie
inside of the region and those that are not. A region should
consist of one or more closed loops (where a closed loop 1is
defined as any framed shape or a set of lines that connect to
each other or a framed shape).

WARNING - Do not open a region while one is already open. The
results are unpredictable.

The following example under CLOSERGN demonstrates the use of
OPENRGN.

CLOSERGN concludes the definition of a region. The list of
graphic objects is converted into a region definition and saved
at the given region pointer. Note that CLOSERGN calls SHOWPEN
to offset the call to HIDEPEN that OPENRGN uses.

WARNING - Perform only one CLOSERGN for every OPENRGN.

integer*4 myregion

Microsoft FORTRAN Compiler

integer*2 rect (4)

myregion = toolbx (NEWRGN)

call toolbx (OPENRGN)
call toolbx (SETRECT,rect,100,100,200,150)
call toolbx (FRAMEOVAL, rect)
call toolbx (MOVETO,101,125)
call toolbx (LINETO,150,250)
call toolbx (MOVETO,199,125)
call toolbx (LINETO,150,250)

call toolbx (CLOSERGN,myregion)

call toolbx (PAINTRGN,myregion)

call toolbx (DISPOSERGN,myregion)

1.6.2 Calculations on Regions

OFFSETRGN 1logically moves a region a distance of dh
horizontally and dv vertically. The screen is only affected
when a graphic operation is performed on the region. If dh is
positive, the region is moved to the right. 1If dv is positive,
the region is moved down. The shape of the region does not

change as it is moved.

integer*4 myregion

integer*4 dh,dv

data dh,dv /50,-50/

myregion = toolbx (NEWRGN)

call toolbx (OPENRGN)
call toolbx (MOVETO,100,100)
call toolbx (LINETO,200,100)
call toolbx (LINETO,200,200)
call toolbx (LINETO,100,100)

call toolbx (CLOSERGN,myregion)

call toolbx (OFFSETRGN,myregion,dh,dv)

INSETRGN changes the size of the region. For positive values
of dh and dv, all points of the region are moved inward a

distance of dh on the horizontal axis and dv vertically.

For

negative values, the points are moved outward. The object
always remains centered during this operation. This operation

does not affect the screen until a graphic operation
performed.

integer*4 myregion

integer*4 dh,dv

data dh,dv /20,20/

myregion = toolbx (NEWRGN)

call toolbx (OPENRGN)
call toolbx (MOVETO,100,100)
call toolbx (LINETO,200,100)
call toolbx (LINETO,200,200)
call toolbx (LINETO,100,100)

call toolbx (CLOSERGN,myregion)

1-32

is

Toolbox Interface

call toolbx (INSETRGN,myregion,dh,dv)

SECTRGN defines a new region based on the intersection of two
other regions. Note that this does not create a new region.
The destination region can be one of the source regions. If
the regions do not intersect, then the destination region is
defined as empty.

integer*4 srcregionA

integer*4 srcregionB

integer*4 dstregion

srcregionA = toolbx (NEWRGN)

srcregionB = toolbx (NEWRGN)

dstregion = toolbx (NEWRGN)

call toolbx (SECTRGN, srcregiondA,srcregionB,dstregion)

UNIONRGN defines a new region based on the union of two other
regions. Note that this does not create a new region. The
destination region can be one of the source regions. If both
regions are empty, then the destination region is defined as
empty.

integer*4 srcregionA

integer*4 srcregionB

integer*4 dstregion

srcregionA = toolbx (NEWRGN)

srcregionB = toolbx (NEWRGN)

dstregion = toolbx (NEWRGN)

call toolbx (UNIONRGN,srcregiondA,srcregionB,dstregion)

DIFFRGN defines a new region based on the difference of the
first and the second source regions. Note that this does not
create a new region. The destination region can be one of the
source regions. If the first source region is empty, then the
destination region is defined as empty.

integer*4 srcregionA

integer*4 srcregionB

integer*4 dstregion

srcregionA = toolbx (NEWRGN)

srcregionB = toolbx (NEWRGN)

dstregion = toolbx (NEWRGN)

call toolbx (DIFFRGN,srcregionA,srcregionB,dstregion)

XORRGN defines a new region based on the difference between

the union and the intersection of the two regions. Note that
this does not create a new region. The destination region can
be one of the source regions. 1If the regions are coincident,

then the destination region is defined as empty.

Microsoft FORTRAN Compiler

integer*4 srcregionA

integer*4 srcregionB

integer*4 dstregion

srcregionA = toolbx (NEWRGN)

srcregionB = toolbx (NEWRGN)

dstregion = toolbx (NEWRGN)

call toolbx (XORRGN, srcregionA,srcregionB,dstregion)

PTINRGN is a logical function that returns true if the pixel
that is directly below and to the right of the given point is a
part of the given region. The point 1is defined as a two
element INTEGER*2 array with the first element being the

vertical value and the second being the horizontal.

integer*4 myregion

integer*2 point(2)

logical*4 pointflag

data point /110,150/

myregion = toolbx (NEWRGN)

call toolbx (OPENRGN)
call toolbx (MOVETO,100,100)
call toolbx (LINETO,200,100)
call toolbx (LINETO,200,200)
call toolbx (LINETO,100,100)

call toolbx (CLOSERGN,myregion)

pointflag = toolbx (PTINRGN,point,myregion)

RECTINRGN is a logical function that returns true if the given

rectangle intersects the given region.

integer*4 myregion
integer*2 rect(4)
logical*4 rectflag
data rect /125,150,250,175/
myregion = toolbx (NEWRGN)
call toolbx (OPENRGN)
call toolbx (MOVETO,100,100)
call toolbx (LINETO,200,100)
call toolbx (LINETO,200,200)
call toolbx (LINETO,100,100)
call toolbx (CLOSERGN,myregion)
rectflag = toolbx (RECTINRGN, rect,myregion)

EQUALRGN is a logical function that returns true if the
given regions are identical in size, shape, and location.

two empty regions are always considered equal.

integer*4 srcregionA
integer*4 srcregionB
logical*4 equalflag
srcregionA = toolbx (NEWRGN)

1-34

two
Any

Toolbox Interface

srcregionB = toolbx (NEWRGN)
equalflag = toolbx (EQUALRGN, srcregionh,srcregionB)

EMPTYRGN is a logical function that returns true if the given
region 1is empty. An empty region is one that has been
allocated (through NEWRGN), but has no size or shape data
associated with it.

integer*4 myregion

logical*4 emptyflag

myregion = toolbx (NEWRGN)

emptyflag = toolbx (EMPTYRGN,myregion)

1.6.3 Graphic Operations on Regions

These routines all depend on the coordinate system of the
current grafport. If a region is drawn in a different grafport
than the one in which it was defined, it may not appear in the
proper position inside the window.

FRAMERGN draws an outline just inside of the given region.
The border is drawn with respect to the current pen pattern,
mode, and size. The pen location is not changed by this
procedure.

integer*4 myregion
myregion = toolbx (NEWRGN)
call toolbx (OPENRGN)
call toolbx (MOVETO,100,100)
call toolbx (LINETO,200,100)
call toolbx (LINETO,200,200)
call toolbx (LINETO,100,100)
call toolbx (CLOSERGN,myregion)
call toolbx (FRAMERGN,myregion)

PAINTRGN fills the given region using the current pen pattern
and mode. The pen location is not changed by this procedure.

integer*4 myregion
myregion = toolbx (NEWRGN)
call toolbx (OPENRGN)
call toolbx (MOVETO,100,100)
call toolbx (LINETO,200,100)
call toolbx (LINETO,200,200)
call toolbx (LINETO,100,100)
call toolbx (CLOSERGN,myregion)
call toolbx (PAINTRGN,myregion)

Microsoft FORTRAN Compiler

ERASERGN fills the given region with the current background
pattern. The current pen pattern and mode are ignored. The
pen location is not changed by this procedure.

integer*4 myregion
myregion = toolbx (NEWRGN)
call toolbx (OPENRGN)
call toolbx (MOVETO,100,100)
call toolbx (LINETO,200,100)
call toolbx (LINETO,200,200)
call toolbx (LINETO,100,100)
call toolbx (CLOSERGN,myregion)
call toolbx (ERASERGN,myregion)

INVERTRGN negates all the pixels that are a part of the given
region. All white pixels become black, and all black pixels
become white. The current pen size, pattern, and mode are all
ignored. The pen location is not changed by this procedure.

integer*4 myregion
myregion = toolbx (NEWRGN)
call toolbx (OPENRGN)
call toolbx (MOVETO,100,100)
call toolbx (LINETO,200,100)
call toolbx (LINETO,200,200)
call toolbx (LINETO,100,100)
call toolbx (CLOSERGN,myregion)
call toolbx (ERASERGN,myregion)

FILLRGN fills a given region with the given pattern. This
procedure is synonymous with the call to PAINTRGN with the
exception that the fill pattern is defined as a parameter and
the current pen pattern, mode, and background pattern are
ignored. The pen location is not changed by this procedure.

integer*4 myregion
integer*l pattern(8)
data pattern /b'101€1010°,
b'01010101°',
b'10101010°*,
b'01010101",
b'10101010°',
b'01010101°,
b'10101010°',
b'01010101'/
myregion = toolbx (NEWRGN)
call toolbx (OPENRGN)
call toolbx (MOVETO,100,100)
call toolbx (LINETO,200,100)
call toolbx (LINETO,200,200)
call toolbx (LINETO,100,100)
call toeclbx (CLOSERGN,myregion)
call toolbx (FILLRGN, myregion,pattern)

+ A+ ++

Toolbox Interface

1.7 Bit Transfer Operation Routines

These routines provide the ability to perform operations on a
large block of pixels with one call. The bit transfer
operations manipulate bitmaps, so the blocks of pixels can be
moved or copied without regard to the contents of the bit
image.

SCROLLRECT moves a block of pixels a distance of dh
horizontally and dv vertically. The block of pixels is defined
as the intersection of the given rectangle, the visible region
(current window), the <clipping region (default is the
boundaries of the current window), the current port rectangle,
and the current port's bounds. The window that is supplied by
the Microsoft FORTRAN Compiler will define the scroll rectangle
to be any visible portion of the window. This operation only
affects the bits in the defined scroll rectangle, all others
remain unchanged.

When a rectangle is scrolled, a space is made. This space
defines a region and is stored in updatergn. SCROLLRECT will
not create updatergn.

integer*2 rect(4)

integer*4 dh,dv

integer*4 updatergn

data rect /10,10,210,210/

data dh,dv /20,30/

updatergn = toolbx (NEWRGN)

call toolbx (SCROLLRECT, rect,dh,dv,updatergn)

COPYBITS moves a bit image from the bitmap of one graphics
port to the bitmap of another. The bitmap data for each port
is contained in the graphics port structure (see Gxaph;ga_kg;;
Operations). When moved, the 1mage found in srcrect 1is scaled
to fit dstrect. Then the image is clipped by a mask (mskrgn).
The clipping may be suppressed by passing the number O instead
of a predefined region pointer. The bit transfer is performed
with respect to the specified source transfer mode. The source
transfer modes are:

srccopy =0
srcor =1
srcxor -2
srcbic = 3
notsrccopy = 4
notsrcor - 5
notsrcxor - 6
notsrcbic -7

Microsoft FORTRAN Compiler

The source transfer modes are analogous to the pattern transfer
modes that are outlined in the Pen and Line Drawing section,
but the values are different.

integer*2 srcbits(5),dstbits(5) ! Bitmaps from 2 grafports.
integer*2 srcrect{4),dstrect(4)
integer*4 srcor
integer*4 maskrgn
data srcrect /10,10,30,30/
data dstrect /50,80,100,160/
data srcor /1/
maskrgn = toolbx (NEWRGN)
call toolbx (OPENRGN)
call toolbx (MOVETO,100, 40)
call toolbx (LINETO,50,70)
call toolbx (LINETO,130,80)
call toolbx (LINETO,100,40)
call toolbx (CLOSERGN,maskrgn)
call toolbx (COPYBITS,srcbits,dstbits,srcrect,dstrect,
+ srcor, maskrgn)

Toolbox Interface

1.8 Color Routines

These are not enabled at present, but will be available when
the Macintosh supports multiple colors. The colors are
specified by integers. There are eight standard colors, which
are defined by the following values:

Color Yalue
Black 33
White 30
Red 205
Green 341
Blue 409
Cyan 273
Magenta 137
Yellow 69

FORECOLOR sets the foreground color of the current grafport to
the given color. The initial foreground is still going to be
black.

integer*4 color
data color /33/
call toolbx (FORECOLOR,color)

BACKCOLOR sets the background color of the current grafport to
the given color. The initial background is still going to be
white.

integer*4 color
data color /33/
call toolbx (BACKCOLOR,color)

COLORBIT is a procedure to be used by printing software and
other color imaging software. The colrbit field of the
grafport structure (see GrafPort Routines) is set to the value
held in whichbit. QuckDraw will use this information to
determine which color plane to work with. The Macintosh can
support up to 32-bits of color information per pixel (ranging
from 0 to 31, inclusive). Colrbit is initialized to 0O by
OPENPORT and INITPORT.

integer*4 whichbit
data whichbit /5/
call toolbx (COLORBIT,whichbit)

Microsoft FORTRAN Compiler

1.9 Picture Routines

These routines create, define, and delete the QuickDraw

structure known as a picture. A picture is made up of one or
more graphic commands that are fully enclosed in a rectangle
(called the picture frame). A picture may be drawn in any

grafport, onto any bitmap. The flexibility of pictures lies in
the dynamic scaling. For example, a circle that is framed by
a square would become an oval if the shape of the destination
frame is not square.

When a picture is created, the state of the current grafport is
saved. One of the things saved 1is the cliprgn, which
specifies where graphics will be visible. The default cliprgn
for a grafport, and the one you will get if you do not
explicitly set it, is the "wide-open" region (-32767, -32767,
32767, 32767). When you draw a picture in a larger frame, the
cliprgn is also enlarged. A common problem is that the default
cliprgn cannot be enlarged without overflowing, and overflow
results in an empty region. Since graphics will only be
visible inside the cliprgn, and since nothing can be inside an
empty region, you will see nothing.

The solution is to set the cliprgn to something smaller before
trying to use pictures. The bounds rectangle in the portbits
field or the portrect of the current grafport (defined in the
grafport documentation) are reasonable choices, though an
arbitrary rectangle big enough to hold your graphics will do.

An example of the picture routines follows this section.

OPENPICTURE is an INTEGER*4 function. This function returns
an absolute address that is used to let QuickDraw know which
picture is being defined. ©Note that OPENPICTURE calls BIDEPEN
to disable any drawing during the picture definition. If there
has been an unbalanced call to SHOWPEN, then drawing will
still be enabled. Do not attempt to open another picture while
one is already opened.

CLOSEPICTURE terminates the definition of the currently open
QuickDraw picture. CLOSEPICTURE calls SHOWPEN to reenable
drawing. If there has been an unbalanced call to HIDEPEN,
drawing will be disabled. There should be one and only one
call to CLOSEPICTURE for every call to OPENPICTURE.

DRAWPICTURE scales the given picture to the given destination
rectangle size and draws the picture.

KILLPICTURE deletes the picture from the Macintosh's memory.
Do not try to draw a picture once it has been killed.

1-40

Toolbox Interface

The following is a sample program that defines a QuickDraw
draws it, and then kills it. It assumes a current,
visible grafport with coordinates from 0,0 to 400,300 visible;
smaller windows may clip some of the drawings.

picture,

program drawcircles
integer*2 rect(4)
integer*4 mypicture
integer*4 toolbx
include toolbx.par

call
call
call

toolbx
toolbx
toolbx

mypicture =

call
call
call
call
call
call

call
call
call
call
call
call
call
call
stop
end

toolbx
toolbx
toolbx
toolbx
toolbx
toolbx
toolbx
toolbx

{SETRECT, rect, 0,0,400,300)
(CLIPRECT, rect)

(SETRECT, rect,0,90,100,100)
toolbx (OPENPICTURE, rect)

toolbx (SETRECT, rect,20,20,30,50)
toolbx (FRAMEOVAL, rect)
toolbx (SETRECT, rect,30,30,80,40)
toolbx (FRAMERECT, rect)
toolbx (SETRECT, rect,80,20,90,50)
toolbx (FRAMEOVAL, rect)

(CLOSEPICTURE)
(SETRECT, rect, 0, 0,200, 200)
(DRAWPICTURE, mypicture, rect)
(SETRECT, rect,0,0,100,100)
(DRAWPICTURE, mypicture, rect)
{SETRECT, rect,100,100,200,200)
(DRAWPICTURE, mypicture, rect)
(KILLPICTURE, mypicture)

Microsoft FORTRAN Compiler

1.10 Polygon Routines

These routines build irregularly shaped figures known as

polygons. Polygons are similar to regions in that they are
defined in the same manner; the figure is opened, a list of
Quickdraw commands is loaded, and the figure is closed. One

important difference between the two is the scaling function
for polygons treats it as a continuous shape (diagonal lines
are optimized to appear smooth). A region, on the other hand,
is simply a bit image and when scaled, the bits are left to
fall where they may.

1.10.1 Calculations on Polygons

OPENPOLY initiates the definition of a polygon. Being an
INTEGER*4 function, 1t returns an absolute address that
QuickDraw will use to perform operations on the polygon. A
polygon is defined by moving to a specific place on the current
bitmap and drawing a set of connecting lines until the desired
figure is complete. QuickDraw will supply a line from the last
endpoint to the polygon's initial position, if the two points
are not the same. As with regions and pictures, OPENPOLY calls
HIDEPEN so that no drawing occurs during the polygon
definition. Do not attempt to open another polygon while one
is already open.

CLOSEPOLY terminates the definition of a polygon. CLOSEPOLY
calls SHOWPEN to offset the call to HIDEPEN by OPENPOLY.
There should be one and only one call to CLOSEPOLY for every
call to OPENPOLY.

integer*4 mypoly

mypoly = toolbx (OPENPOLY)
call toolbx (MOVETO,100,100)
call toolbx (LINETO,200,100)
call toolbx (LINETO,150,200)
call toolbx (LINETO,100,100)

call toolbx (CLOSEPOLY)

KILLPOLY deletes the given polygon from memory and returns the
space to the Macintosh. Do not attempt to manipulate a polygon
once it has been killed.

integer*4 mypoly

mypoly = toolbx (OPENPOLY)
call toolbx (CLOSEPOLY)

call toolbx (PAINTPOLY,mypoly)
call toolbx (KILLPOLY,mypoly)

Toolbox Interface

OFFSETPOLY is the procedure that is used to logically move a
polygon once it has been defined. The screen is not changed by

this operation. The polygon is moved a distance of dh in the
horizontal direction (to the right for positive values) and dv
in the vertical direction (down for positive values). The

polygon's size and shape are not affected.

integer*4 mypoly

integer*4 dh,dv

data dh,dv /20,-20/

mypoly = toolbx (OPENPOLY)

call toolbx (CLOSEPOLY)

call toolbx (OFFSETPOLY,mypoly,dh,dv)

1.10.2 Graphic Operations on Polygons

FRAMEPOLY draws an outlined representation of the given
polygon. The current pen pattern, mode, and size are all
active and reflected in the drawing of the polygon. Note that
the pen hangs below and to the right of the border while

drawing occurs. For pen sizes of greater than (1,1), this may
cause the framed polygon to appear to be slightly larger than
expected. All other operations affect the interior of the

polygon, only.

If a polygon is currently open, the call to FRAMEPOLY will
affect the outline of the figure just as if the individual line
commands had been given.

integer*4 mypoly
call tooclbx (FRAMEPOLY,mypoly)

PAINTPOLY fills the given polygon with the current fill
pattern with respect to the current pen transfer mode. The pen
location is unaffected by the routine.

integer*4 mypoly
call toolbx (PAINTPOLY,mypoly)

ERASEPOLY fills the given polygon with the current background
pattern with respect to the current pen transfer mode. The pen
location is unaffected by the routine.

integer*4 mypoly
call toolbx (ERASEPOLY,mypoly)

INVERTPOLY inverts the color of every pixel in the given
polygon (black changes to white and white changes to black).
The pen location is unaffected by the routine.

Microsoft FORTRAN Compiler

integer*4 mypoly
call toolbx (INVERTPOLY,mypoly)

FILLPOLY fills the given polygon with the given pattern,
always using the patcopy transfer mode. The pen location is
unaffected by the routine.

integer*4 mypoly
integer*l pat (8)
data pat /b'10101010°',

b'10101010°',
b'01010101'/
call toolbx (FILLPOLY,mypoly,pat)

+ b'01010101",
+ b'10101010',
+ b'01010101°,
+ b'10101010°,
+ b'01010101",
+

+

Toolbox Interface

1.11 Point Routines

A point 1is a mathematical representation of a pixel on a
coordinate plane. The location of a point is defined as the
place where a specified horizontal grid 1line <crosses a
specified vertical grid line. The Macintosh provides utilities
that test and manipulate points.

ADDPT adds the source point to the destination point and
returns the result in the destination point.

integer*2 srcpt(2),dstpt(2)
data srcpt /10,20/

data dstpt /5,5/

call toolbx (ADDPT, srcpt,dstpt)

SUBPT subtracts the source point from the destination point and
returns the result in the destination point.

integer*2 srcpt(2),dstpt(2)
data srept /10,20/

data dstpt /50,50/

call toclbx (SUBPT, srcpt,dstpt)

SETPT loads the horizontal and vertical parameters into the
destination point.

integer*2 pt(2)

integer*4 h,v

data h,v /5,5/

call toolbx (SETPT,pt,h,v)

EQUALPT is a logical function that returns true if the two
given points are the same.

integer*2 ptA(2),ptB(2)

logical*4 pointflag

data ptA /10,20/

data ptB /10,20/

peintflag = toolbx (EQUALPT, ptA, ptB)

LOCALTOGLOBAL converts the given point from a local
coordinate in the current grafport to a point in the
Macintosh's global coordinate system. The advantage to this is
that the point can now be compared to all other global points,
and be converted to a point in another coordinate system of
another grafport.

integer*2 pt(2)

Microsoft FORTRAN Compiler

data pt /S5,5/
call toolbx (LOCALTOGLOBAL, pt)

GLOBALTOLOCAL converts the given point from the Macintosh's
global coordinate system into a local point in the current

grafport. This routine performs the opposite function that
LOCALTOGLOBAL performs.

integer*2 pt (2)
data pt /S5,5/
call toolbx (GLOBALTOLOCAL,pt)

Toolbox Interface

1.12 Miscellaneous QuickDraw Utilities

QuickDraw offers several utility procedures and functions for
special operations. These utilities cover a wide range of
categories from scaling the coordinates of a point to returning
a random number.

RANDOM is an INTEGER*4 function that returns a uniformly
distributed psuedo-random integer within the range of -32768 to
32767, inclusive.

integer*4 randomnumber
randomnumber = toolbx (RANDOM)

GETPIXEL is a LOGICAL function that returns true if the given
pixel is black and false if it is white.

integer*4 h,v

logical*4 pixelflag

data h,v /100,200/

pixelflag = toolbx (GETPIXEL,h,v)

STUFFHEX loads a string of hexadecimal digits into a data
stucture whose absolute address is passed in thingptr.

integer*4 stripes,stripesptr

character*255 hexstring

data hexstring /'0102040810204080'/
stripesptr = toolbx (PTR,stripes)

call toolbx (STUFFHEX,stripesptr,hexstring)

There 1s pno_ range checking in STUFFHEX. Data can easily

overrun the given structure and destroy the data that follows,
unless extreme care is taken.

SCALEPT redefines the point that is passed, based on the
relationship between the source and destination rectangles.

integer*2 pt(2)

integer*2 srcrect(4),dstrect{4)

data pt /10,10/

data srcrect /10,10,20,20/

data dstrect /10,10,30,30/

call toolbx (SCALEPT,pt,srcrect,dstrect)

MAPPT associates a pixel in the source rectangle to one that is
proportionally in the same position of the destination
rectangle, and returns the coordinates of the new pixel in pt.
For example, a pixel that lies directly in the center of the

1-47

Microsoft FORTRAN Compiler

rectangle (5,5) - (10,10) has the coordinates of (7,7). When
that pixel is mapped into the rectangle (20,20) - (35,35), that
pixel value becomes (27,27). The given point isn’'t required to
be part of the source rectangle and it is also legal for the
source and destination rectangles to overlap.

integer*2 pt(2)

integer*2 srcrect(4),dstrect(4)

data pt /10,10/

data srcrect /10,10,20,20/

data dstrect /10,10,30,30/

call tooclbx (MAPPT,pt,srcrect,dstrect)

MAPRECT performs the same function as MAPPT but with a
rectangle (which in fact 1is just a very large and sometimes
oddly shaped pixel).

integer*2 r (4)

integer*2 srcrect(4),dstrect (4)

data r /10,10,15,15/

data srcrect /10,10,20,20/

data dstrect /10,10,30,30/

call toolbx (MAPRECT,r,srcrect,dstrect)

MAPRGN performs the same function as MAPRECT but with a
region (which is always enclosed with a rectangle).

integer*4 myregion

integer*2 srcrect(4),dstrect (4}

data srcrect /10,10,20,20/

data dstrect /10,10,30,30/

myregion = toolbx (NEWRGN)

call toolbx (MAPRGN, myregion, srcrect,dstrect)

MAPPOLY performs the same function as MAPRGN but with a
polygon (which, 1like a region, 1is always enclosed with a
rectangle) .

integer*4 mypoly

integer*2 srcrect(4),dstrect (4}

data srcrect /10,10,20,20/

data dstrect /10,10,30,30/

myregion = toolbx (OPENPOLY)

call toolbx (MAPPOLY,mypoly,srcrect,dstrect)

Toolbox Interface

1.13 Window Routines

The following routines deal with windows.

1.13.1 Window Initialization and Allocation

These routines are used to define and manipulate one or more
windows on the Macintosh desktop. Windows are stored in a
structure called a window record. The window record is made up
of 17 fields that define the attributes of a window. The
fields of a window record are:

Port - The window's grafport.

Windowkind - The window's classification. Values from 1
to 7 are reserved for the system. Any value of 8 or
greater may be used by the application.

Visible - A flag that, when true, indicates that the
window is visible.

Hilited - Determines whether a window is to be highlighted
or not.

Goawayflag - Determines whether a window is to have a "Go
Away" box or not.

Spareflag - Available for future implementation.

Strucrgn - A pointer to the absolute address (handle) of
the window's structure region.

Contrgn - The handle to the window's content region.
Updatergn - The handle to the window's update region.

Windowdefproc - The handle to the window's definition
function. This field is changed and used by the window
manager and should not be accessed directly.

Datahandle - The handle to data that pertains to the
window definition function. This field may be used to
store actual data, rather than a handle, if the data is
not more than four bytes long.

Titlehandle - The handle to the window's title (if one
exists).

Titlewidth - The width of the window's title. This field
is used by the window manager and is normally not a
concern to the application.

Controllist - The handle to the window's control list.

1-49

Microsoft FORTRAN Compiler

Nextwindow - The absolute address of the next window in
the window list. This pointer refers to the window that
is directly beneath this window. If 0, then this window
is the last in the 1list (lying directly against the
desktop) .

Windowpic - The handle to the QuickDraw picture that
represents this window.

Refcon - An INTEGER*4 value that is used by an application
to store and access miscellaneous data.

The window record can be declared in the Microsoft FORTRAN
Compiler in the following manner:

integer*l windowrecord(156)

integer*2 grafport (54)

integer*2 windowkind

logical*1l visible

logical*l hilite

logical*l goawayflag

logical*l spareflag

integer*4 strucrgn

integer*4 contrgn

integer*4 wupdatergn

integer*4 windowdefproc

integer*4 datahandle

integer*4 titlehandle

integer*2 titlewidth

integer*4 controllist

integer*4 nextwindow

integer*4 windowpic

integer*4 refcon

equivalence (windowrecord(l),grafport}
equivalence (windowrecord(109),windowkind)
equivalence (windowrecord(11l1l},visible)
eqguivalence (windowrecord(112) ,hilite)
equivalence (windowrecord(113),gcawayflag)
equivalence (windowrecord(114),spareflag)
equivalence {(windowrecord(115), strucrgn)
eguivalence (windowrecord(119), contrgn)
equivalence (windowrecord(123),updatergn}
eguivalence (windowrecord(127),windowdefproc)
eguivalence (windowrecord (131}),datahandle)
eguivalence (windowrecord(135),titlehandle)
equivalence (windowrecord{139),titlewidth)
equivalence (windowrecord(141),controllist)
eguivalence (windowrecord{(145), nextwindow)
equivalence (windowrecord(149) ,windowpic)
egquivalence (windowrecord(153),refcon)

The array windowrecord can be passed to the NEWWINDOW toolbox
utility (below) to be filled out and added to the Macintosh

1-50

Toolbox Interface

window list. You can also have the Macintosh Memory Manager
allocate space for the window record (see The Microsoft FORTRAN
Compiler Toolbox Interface). 1In this case you will only have a
window pointer, an integer variable containing the absolute
memory address of the window record. If you need to access the
fields of such a record, you will have to use the Microsoft
FORTRAN Compiler functions LONG, WORD, or BYTE, which take an
absolute address and return the value stored there. To get a
pointer to a particular field, you would add the offset of that
field to the window pointer. The offsets for the window record
can be defined in Microsoft FORTRAN by:

integer windowport; parameter (windowport = 2'0')
integer windowkind; parameter (windowkind = z'6C')
integer wvisible; parameter (wvisible = 2z'6E')
integer whilited; parameter (whilited = z'6F')
integer wgoaway:; parameter (wgocaway = z'70')
integer wspare; parameter (wspare = z'71"')
integer structrgn; parameter (structrgn = z'72'})
integer contrgn; parameter (contrgn = z'76'})
integer updatergn; parameter (updatergn = z'7A'})
integer windowdef; parameter (windowdef = 2z'7E')
integer wdatahandle; parameter (wdatahandle= z’82')
integer wtitlehandle; parameter (wtitlehandle = 2z'86"')
integer wtitlewidth; parameter (wtitlewidth = z'8A')
integer wcontrollist; parameter (wcontrollist = z'8C')
integer nextwindow; parameter (nextwindow = 2'90')
integer windowpic; parameter (windowpic = z'94')
integer wrefcon; parameter (wrefcon = z'98"')
integer windowsize; parameter (windowsize = 2'9C'})

INITWINDOWS initializes the Window System and draws the
desktop. The desktop is initially a filled gray rectangle with
rounded corners.

INITWINDOWS is intended to be called once and only once. The
Microsoft FORTRAN Compiler calls this procedure before any
program execution begins. Therefore, do not <call this
procedure. It is documented for user information only.

GETWMGRPORT determines the absolute address of the Window
Manager Port. This value is important to many of the remaining
window manipulation routines.

integer*4 mywindow
call toolbx (GETWMGRPORT, mywindow)

NEWWINDOW is an INTEGER*4 function that returns the absolute
address of the new window and adds a new window to the window
list. The exact specifications of the window are defined by

Microsoft FORTRAN Compiler

wstorage, boundsrect, title, visible, procid, behind,
goawayflag, and refcon.

The
the

Wstorage represents the absolute address of the window
record structure. If this value is 0, the window record
will be allocated on the heap. The disadvantage to this
is that the record is non-relocatable and may fragment
the heap space. Therefore, it is not recommended that
wstorage be passed a 0.

Boundsrect defines the window size and location in global
coordinates. When converted to local coordinates, it
becomes the portrect for the window's grafport (see the
QuickDraw section for a more detailed description of the
structure of the grafport).

Title is the character string that will appear at the top
of the window. If the string is too long, it will be
truncated on the right to the number of visible
characters. As with other strings, the first character
must hold the length of the character string.

Visible is a logical that, when true, forces the window to
be visible upon initialization.

Procid is an integer value that defines the window type.
The possible window types are:

documentproc = 0 ! standard document window
dboxproc =1 ! alert box or modal dialog box
plaindbox - 2 ! plain box

altdboxproc = 3 ! plain box with shadow
nogrowdocproc = 4 ! document window without size box

rdocproc = 10 ! rounded-corner window

If behind is 0, then the window is at the bottom of all
other windows on the desktop. If -1, the window is on
top. Otherwise, the new window is inserted behind the
given "behind" window.

Goawayflag specifies whether the window has a goaway box.

Refcon is the window's reference value that is set and used
by the application.

following example assumes knowledge of the grafport (see
grafport section of QuickDraw) and window record structures

(see beginning of this section).

integer*4 wstorage
integer*2 boundsreect (4)
character*256 title
logical*4 visible
integer*4 procid

Toolbox Interface

integer*4 behind

logical*4 goawayflag

integer*4 refcon

integer*4 mywindow

wstorage = toolbx (PTR,windowrecord)

mywindow = toolbx (NEWWINDOW,wstorage,boundsrect,title,
+ visible, procid, behind, goawayflag, refcon)

GETNEWWINDOW is another INTEGER*4 function that returns the
absolute address of the window structure. GETNEWWINDOW
performs exactly the same function as NEWWINDOW. The only
difference is GETNEWWINDOW reads most of its information from
an application resource (identified by windowid), which must be
on the resource fork of the application file (see Resource
Compiler) . The parameters wstorage and behind define the
same type of information as with NEWWINDOW.

integer*4 windowid

integer*4 wstorage,behind

integer*4 mywindow

mywindow = toolbx (GETNEWWINDOW,windowid,wstorage,behind)

CLOSEWINDOW is used to terminate a window. The window 1is
deleted from both screen and internal memory. The window
record itself, however, is maintained. Any manipulations that
are done on the window after the CLOSEWINDOW are ignored. If
the deleted window was the active one, then the next window
becomes visible and active.

integer*4 mywindow
call toolbx (CLOSEWINDOW,mywindow)

DISPOSEWINDOW performs the same functions as CLOSEWINDOW and
deallocates the memory that was being used to store the window
record. This procedure is called when the space for the window
record was allocated on the heap by NEWWINDOW. If this space
is not released, heap fragmentation may occur.

integer*4 mywindow
call toolbx (DISPOSEWINDOW,mywindow)
1.13.2 Window Display Routines
These routines manipulate the window's appearance or plane

level but not its size or shape.

SETWTITLE sets the given window's title to the string that is
passed in title. The first character of the string must
contain the length of the title.

Microsoft FORTRAN Compiler

integer*4 mywindow

character*256 title

title = char(ll)//'Window Title'

call toolbx (SETWTITLE,mywindow,title)

GETWTITLE returns the title of the given window. The string
returned contains a length byte as the first character.

integer*4 mywindow

character*256 title

integer*4 titlelength

call toolbx (GETWTITLE,mywindow,title)
titlelength = ichar(title(l:1))

SELECTWINDOW causes the given window to be brought to the
front and become active. This procedure also causes the given
window to be highlighted and unhighlights the window that was
active (if there was one).

integer*4 mywindow
call toolbx (SELECTWINDOW,mywindow)

HIDEWINDOW causes the given window to become invisible. If it
was the foremost window, the next window is highlighted and
made active.

integer*4 mywindow
call toolbx (HIDEWINDOW,mywindow)

SHOWWINDOW causes the given window to become visible. No
action is taken to highlight the given window when it becomes
visible.

integer*4 mywindow
call toolbx (SHOWWINDOW,mywindow)

SHOWHIDE forces the window to become either visible or
invisible depending on the state of the showflag parameter.

integer*4 mywindow

logical*4 showflag

showflag = .true.

call toolbx (SHOWHIDE,mywindow,showflag)

HILITEWINDOW forces the window to become either highlighted or
unhighlighted depending on the state of the fhilite parameter.

Toolbox Interface

integer*4 mywindow

logical*4 fhilite

fhilite = .true.

call toolbx (HILITEWINDOW,mywindow,fhilite)

BRINGTOFRONT forces the given window to the frontmost position
on the desktop. This routine does not perform any highlighting
operations on the given window.

integer*4 mywindow
call toolbx (BRINGTOFRONT, mywindow)

SENDBEHIND takes the given window and puts it behind
behindwindow on the desktop. If the value in behind window is
0, then the given window is put behind all other visible
windows. If the given window is the frontmost, then it is
unhighlighted and the next window is highlighted and becomes
active.

integer*4 mywindow
integer*4 behindwindow
call toolbx (SENDBEHIND,mywindow,behindwindow)

FRONTWINDOW is an INTEGER*4 function that returns the absolute
address of the window that is frontmost on the desktop. If
there are not any visible windows on the desktop, then
FRONTWINDOW returns 0.

integer*4 mywindow
mywindow = toolbx (FRONTWINDOW)

DRAWGROWICON draws the size box and scroll bar areas in the
given window, if the given window is active. 1If the window is
not active, only the scroll bar areas are drawn. The scroll
bar areas are not erased by this routine.

integer*4 mywindow
call toolbx (DRAWGROWICON, mywindow)
1.13.3 Mouse Location Routines
The mouse location routines for windows are used to determine

the position of the cursor when a mouse down event occurs.

FINDWINDOW is an INTEGER function that returns a value that
describes the location of the given point when the call occurs.
Further, if the point lies within a window, the parameter

Microsoft FORTRAN Compiler

whichwindow will return the absolute address of that window.
Whichwindow is set to 0 if the point is not in a window.

The possible values that may be returned by FINDWINDOW are:

indesk =- 0 ! none of the following
inmenubar =1 ! in menu bar
insyswindow = 2 !t in system window

incontent -
indrag -

3 t in content region (except grow, if active)
4 ! in drag region
ingrow =5 ! in grow region (active window only)
ingoaway =- 6 ! in go-away region (active window only)

FINDWINDOW will return the value for indesk when the given
point is on the desktop but outside of the menu bar or any of
the windows. Indesk may also be returned if the point is
inside a window frame, but not in a drag or go-away region.

This routine is especially useful when used in conjunction with
GETMOUSE to determine where the cursor is at any given point.

integer*2 thept(2)

integer*4 whichwindow

integer*4 where

data thept /10,20/

where = toolbx (FINDWINDOW,thept,whichwindow)

TRACKGOAWAY highlights the go-away region of the window as
long as the mouse button is down. When the application detects
a mouse-down event inside the go-away region of the window and
calls TRACKGOAWAY, control is transferred to the function until
the mouse button is released. At that time, TRACKGOAWAY
returns a true if the cursor is still inside of the go-away
area. If not, false is returned and no action should be taken.

integer*4 thewindow

integer*2 thept (2)

logical mouseflag

data thept /10,20/

mouseflag = toolbx (TRACKGOAWAY,thewindow,thept)

1.13.4 Window Movement and Sizing Routines
These routines cause the given window to alter its position and
dimensions. This manipulation is a common occurrence with the

Macintosh since these processes are used to move and size the
volume windows from within the finder.

MOVEWINDOW uses the top left corner of the given window as a
reference point to move the window to a different part of the

1-56

Toolbox Interface

screen. The new location is defined by the global coordinates
hglobal and vglobal. Note that the local coordinates of the
top left corner of the given window remain the same. The size
and shape of the window also remain constant. If front is
true, then the given window is forced to the front and becomes
active.

integer*4 mywindow

integer*4 hglobal,vglobal

logical*4 front

data hglobal,vglobal /100,150/

front = .true.

call toolbx (MOVEWINDOW,mywindow,hglobal,vgleobal, front)

DRAGWINDOW tracks a gray outline of the given window with the
mouse position while the mouse button is being held down. When
the button is released, the window is moved to the gray outline
and forced to be active. If the button is released and the
mouse position is outside of the boundsrect, the window is
returned to its original position, without forcing it to become
active.

integer*4 mywindow

integer*2 point(2)

integer*2 boundsrect (4)

data point /100,110/

data boundsrect /10,10,210,210/

call toolbx (DRAGWINDOW,mywindow,point,boundsrect)

GROWWINDOW is an INTEGER*4 function that pulls a "grow image"
from the given window based upon the movements of the mouse
while the button is down. Note that this function does not
cause the window itself to change size. When the mouse button
is released, GROWWINDOW returns the window's size in finalsize,
with the vertical size in the first element and the horizontal
size in the second.

integer*4 mywindow

integer*2 startpt(2)

integer*2 sizerect (4)

integer*2 finalsize(2)

data startpt /100,150/

data sizerect /40,40,100,150/

finalsize = toolbx (GROWWINDOW,mywindow,startpt,sizerect)

SIZEWINDOW changes the size of the given window to the width

and height that are specified in w and h. The parameter
fupdate determines whether the area that is affected by this
size change is to be updated "“automatically". If true, any

areas added to the window will be included in the wupdate
region, causing them to be included in the next update event.

1-57

Microsoft FORTRAN Compiler

Otherwise, the application should assume the responsibility for
updating the screen.

integer*4 mywindow

integer*4 w,h

logical*4 fupdate

data w,h /100,150/

fupdate = .true.

call toolbx (SIZEWINDOW, mywindow,w,h, fupdate}

1.13.5 Update Region Maintenance Routines

These routines maintain the update region of the window
structure. When a window's dimensions are changed, there
exists an area of the desktop that becomes undefined. A data
representation of this area is loaded into the update region of
the window structure. The following routines provide support
in determining the size and position of this area.

INVALRECT defines to the Macintosh that a rectangular area of
the desktop has changed and requires updating. The rectangular
area is accumulated into the update region of the window whose
grafport is the current port. The rectangle lies within the
window's content region and is therefore defined in the
window's local coordinates.

integer*2 badrect (4)
call toolbx (INVALRECT,badrect)

INVALRGN performs the same function as INVALRECT with the
exception that the work is done using regions.

integer*4 badrgn
call toolbx (INVALRGN,badrgn)

VALIDRECT tells the window manager that the application has
already redrawn the rectangle and to cancel any updates that
have been accumulated for that area.

integer*2 goodrect (4)
call toolbx (VALIDRECT,goodrect)
VALIDRGN performs the same function as VALIDRECT with the

exception that the work is done using regions.

integer*4 goodrgn
call toolbx (VALIDRGN, goodrgn)

Toolbox Interface

BEGINUPDATE is called when an update event is detected (see

Miscellaneous Event Utilities). At this time, the window
manager has noted that there is an area on the desktop that is
undefined, and needs to be updated. This procedure is the

first step in updating the desktop. BEGINUPDATE masks out the
parts of the window that do not require an update and clears
the update region so this update event is not brought up,
again. Immediately following this call, the application is
given the responsibility to take the undefined area of the
window and define it. Since BEGINUPDATE masks out part of the
visible window it is important to always call ENDUPDATE when
the update is complete.

ENDUPDATE restores the ability to draw in any portion of the
window. There should always be a call to ENDUPDATE to offset
every call to BEGINUPDATE.

integer*4 mywindow

integer*2 rect (4)

integer*l white (8)

data rect /0,0,342,512/

data white /0,0,0,0,0,0,0,0/

call toolbx (BEGINUPDATE,mywindow)

* Clear the window, I didn't want it, anyway.
call toolbx (FILLRECT, rect,white)
call toolbx (ENDUPDATE,mywindow)

1.13.6 Miscellaneous Window Utilities

The following window utilities provide a way to define and
retrieve certain window attributes, restrict the movement of
figures in the window, and reposition the window with the
mouse.

SETWREFCON assigns the given window's reference value to the
given data.

integer*4 mywindow
integer*4 data
call toolbx (SETWREFCON,mywindow,data)

GETWREFCON returns the given window's reference value.
integer*4 mywindow

integer*4 data
data = toolbx (GETWREFCON,mywindow)

Microsoft FORTRAN Compiler

SETWINDOWPIC loads the windowpic (see Window Initialization
and Allocation) of the given window record with the given
picture handle. This causes the window manager to draw the
given picture into the window's contents, rather than
generating an update event (see Update Region Maintenance
Routines).

integer*4 mywindow
integer*4 pic
call toolbx (SETWINDOWPIC,mywindow,pic)

GETWINDOWPIC returns the pointer to the absolute address of
the picture that draws the given window's contents as
previously stored by SETWINDOWPIC.

integer*4 mywindow
integer*4 pic
call toolbx (SETWINDOWPIC,mywindow,pic)

PINRECT is an INTEGER*4 function that returns a point that is
either inside or on one of the borders of the given rectangle.
If the given point is inside the given rectangle, then the
given point 1is returned. Otherwise, the nearest boundary of the
rectangle is substituted for the 1illegal part of the
coordinate.

integer*2 therect (4)

integer*2 thept (2)

integer*2 newpt(2)

data therect /10,10,210,210/

data thept /50,60/

newpt = toolbx (PINRECT,therect,thept)

DRAGGREYRGN is an INTEGER*4 function that is used to drag the
gray shape of the given region while the mouse button is held
down.

The starting point is defined as the upper left hand corner of
the region that is being dragged. When the mouse button is
released, DRAGGREYRGN returns the offset from the starting
point to the current location of the gray region's upper left
hand corner.

If your purpose is to move a region from one place to another,
you must use COPYRGN to define a disposable version of the
region since DRAGGREYRGN will alter its shape and location.
When this copied region has been moved, the offset data that is
returned can be used to relocate the original region using

OFFSETRGN. If the mouse pulls the region outside of the
limitrect, then the region is "pinned” to the edge of the
limitrect that is closest to the cursor. If the region is

1-60

Toolbox Interface

pulled outside of the sloprect (which should completely enclose
the limitrect), DRAGGREYRGN will return -32768 in both the
horizontal and vertical values of the offset point.

The gray region can be restricted to horizontal or vertical

movements. The value of the axis determines this. If 0, then
there is no restriction to the direction a region may be moved.
If 1, then the region can only be moved horizontally. if 2,

then the region can only be moved in the vertical direction.

The actionproc points to a procedure that is performed over
and over again until the user releases the mouse button. If
this parameter is 0, then DRAGGREYRGN retains control until the
button is released.

The following example shows how DRAGGREYRGN might be used to

move a figure from one point to another. The program
continually monitors the Macintosh's event queue for a "mouse
down" event. If one is detected and if the cursor is within

the bounds of the region, DRAGGREYRGN is called. The limitrect
and sloprect are displayed to visually delimit the usable area.
When the region is moved outside of the sloprect, the program
terminates.

program dragtest

* The event record
logical*4 eventflag
integer*4 eventmask
integer*2 myevent (8)
integer*2 what
integer*4 message
integer*4 when
integer*2 where(2)
integer*2 modifiers
equivalence (myevent(l),what)
equivalence (myevent (2),message)
equivalence (myevent (4),when)
equivalence (myevent (6),where(l))
equivalence (myevent (8),modifiers)

* DRAGGREYRGN parameters
logical*4 inregion
integer*4 thergn
integer*2 1limitrect(4),sloprect (4)
integer*4 axis
integer*4 actionproc
integer*4 offsetpt

* Miscellaneous utility storage
integer*4 therxrgncopy
integer*2 dh,dv
integer*4 deltah,deltav
include toolbx.par

Microsoft FORTRAN Compiler

integer toolbx

common dv,dh
equivalence (offsetpt,dv)

data limitrect /20,20,250,300/
data sloprect /10,10,260,310/
data axis /0/

data actionproc /0/

data eventmask /-1/

* Graphically display the limits of the DRAG
call toolbx (FRAMERECT,limitrect)
call toolbx (FRAMERECT, sloprect)

* Define a diamond to DRAG...
thergn=toolbx (NEWRGN)
call toolbx (OPENRGN)
call toolbx (MOVETO, 45, 40)
call toolbx (LINETO,50,50)
call toolbx (LINETO,45,60)
call toolbx (LINETO, 40,50}
call toolbx (LINETO, 4S5, 40)
call toolbx (CLOSERGN,thergn)
call toolbx (PAINTRGN,thergn)

* ,..and allocate storage for a working copy of it
thergncopy=toolbx (NEWRGN)

do

* See 1if there are any events pending (define what and where)
eventflag = toolbx (GETNEXTEVENT, eventmask,myevent)
select case (what)

* Mouse down event
case (1)
call toolbx (GLOBALTOLOCAL,where)
inregion = toolbx (PTINRGN,where,thergn)
if (inregion) then
call toolbx (COPYRGN,thergn,thergncopy)

* Redefine the position of the working copy by dragging it with the mouse
offsetpt = toolbx (DRAGGREYRGN, thergncopy,where,
+ limitrect, sloprect,axis,actionproc)

* Make sure that it was not moved out of its limits (sloprect)
if (dh = -32768) then
exit
else

* Assign the returned offsets to INTEGER*4 variables before using them
deltah = dh
deltav = dv

*

*

Toolbox Interface

call toolbx (ERASERGN,thergn}
call toolbx (OFFSETRGN,thergn,deltah,deltav)
call toolbx (PAINTRGN,thergn)
endif
endif

All other events are ignored
case default
endselect
repeat

Discard the memory that was used to define the 2 regions
call toolbx (DISPOSERGN,thergn)
call toolbx (DISPOSERGN,thergncopy)
end

Microsoft FORTRAN Compiler

1.14 Menu Routines

The following routines operate on menus through the Macintosh
Menu Manager.

1.14.1 Menu Initialization and Allocation

These routines provide access to the Macintosh's Menu Manager.
Menus can be created directly by your application or they can
be read as predefined resources. Further information on
resources and the resource manager 1is available in the
introduction to the Microsoft FORTRAN Compiler Toolbox
Interface, and in the document that describes RMaker, the
Resource Compiler.

Menus are maintained with a menu record which is allocated in
the system heap when a new menu is created. The elements of a
menu record are:

Menuid - The unique identifier of an individual menu. Most
of the menu manager routines use this value for
indicating which menu is being referenced.

Menuwidth - The width of the rectangle that contains the
menu items. This value is calculated during the menu
definition.

Menuheight - The height of the rectangle the contains the
menu items. This value is calculated during the menu
definition.

Menuproc - A pointer to the absolute address of the menu's
definition procedure. Normally you will use the standard
Macintosh menu format, however this location allows you
to define custom menus. Refer to "Inside Macintosh” for
further information.

Enableflags - An array of flags that indicate which items
of the menu are enabled.

Menudata - Stores the menu title, text within the menu and
other menu data (see APPENDMENU in this section).

A menu record can be accessed in the Microsoft FORTRAN Compiler
in the following manner:

integer*4 menu ! pointer to menu record
integer*2 id, width, height

integer*4 proc

logical*l flags(32)

character*l data(256)

id = word{(menu)

1-64

Toolbox Interface

width = word{menu+2)
height = word (menu+4)
proc = long(menu+6)
do (i=10,41); flags(i) = byte(menu+i); repeat
do (i=42,297); data(i) = byte(menu+i); repeat

INITMENUS initializes the Macintosh's Menu System. INITMENUS

is intended to be called once and only once. The Microsoft
FORTRAN Compiler calls this procedure before any program
execution begins. Therefore, do not call this procedure. It

is documented for user information only.

NEWMENU is an INTEGER*4 function that returns a pointer to the
absolute address of the new menu structure. The memory for the
structure is allocated by NEWMENU and is assigned the given
menuid and menutitle.

The menuid is an identifier that refers to a particular menu.
This can be any number that is greater than 0 and less than
32768. Menus that are stored as resources use the resourceid
(see Resource Compiler).

Menutitle defines the character string that will appear in the
menu bar. This string may be up to 255 characters in length
and must be passed with the length of the string in the first
character position.

integer*4 menuhandle

integer*4 menuid

character*256 menutitle

menuid = 30

menutitle = char(8)//'Commands’

menuhandle = toolbx (NEWMENU,menuid,menutitle)

GETMENU is an INTEGER*4 function that returns a pointer to the
absolute address of the menu record having the given menuid.
It retrieves this information by reading an open resource file.
If RMaker was used to add the following menu type as a
resource to your application file:

TYPE MENU
, 30 ;; resource id

Commands ;; menu title
Type ;i item 1
Print ;: item 2
Chain ;; item 3

Exit ; item 4

r

~

blank line to terminate

GETMENU could be called as follows:

Microsoft FORTRAN Compiler

integer*4 menuhandle

integer*4 menuid

menuid = 30

menuhandle = toolbx (GETMENU,menuid)

DISPOSEMENU terminates a menu structure by giving the menu's
memory space back to the Macintosh. This routine will not
remove the menu from the menu list. It is removed from the
menu list with DELETEMENU. A menu should be deleted, and menu
bar updated, before the call to DISPOSEMENU is made. Do not
try to use a menu that has been disposed.

integer*4 menuid

character*256 menutitle

integer*4 menuhandle

data menuid /1/

menutitle = char(8)//'TheTitle"

menuhandle = toolbx (NEWMENU,menuid,menutitle)
call toolbx (DELETEMENU,menuid)

call toolbx (DRAWMENUBAR})

call toolbx (DISPOSEMENU,menuhandle)

APPENDMENU adds one or more menu items to the end of the given
menu. The menu record must have been allocated before an item
is appended to a menu list. The data can have imbedded meta-
characters which control the appearance of the menu items. The
meta-characters are:

; or RETURN Separates multiple items
~ Followed by an icon number, adds that icon to the
item

H Followed by a character, marks the item with that
character (a check mark for example)

< Followed by B, I, U, O, or S8, sets the character
style of the item, for example:

<B = Bold

<1 = Italic

<u = Underline

<0 = OQutline

<s - SBhadow

/ Followed by a character, associates a keyboard
equivalent with the item

(Disables the item

If the first character of a menu item is a hyphen (-), the item
will be a dividing line across the width of the menu.

integer*4 menuhandle
integer*4 menuid
character*256 menutitle
character*256 menuitems
menuid = 30

Toolbox Interface

menutitle = char(8)//'Commands’

menuhandle = toolbx (NEWMENU,menuid,menutitle)
menuitems = char(21)//"Type;Print;Chain;Edit"
call toolbx (APPENDMENU, menuhandle,menuitems)

ADDRESMENU searches all of the open resource files to locate
the resources that are of the given type. When a match is
found, the resource is appended to the given menu, and the
search continues. The following example builds a menu of all
of the character fonts that are available.

integer*4 menuhandle

character*4 type

type = 'FONT'

menuhandle = toolbx (NEWMENU,5,char(5)//'FONTS')
call toolbx (ADDRESMENU, menuhandle,type)

INSERTRESMENU performs the same operation as ADDRESMENU but
without restricting the addition of menu items to only the end
of the menu. INSERTRESMENU allows an application to position a
resource item anywhere in the menu. If the resource types are
found, they are inserted in the given menu following the item
that is indexed by afteritem. If afteritem is 0, the resource
items are inserted at the top of the menu.

integer*4 menuhandle

character*4 type

integer*4 afteritem

type = 'FONT'

afteritem= 3

menuhandle = toolbx (NEWMENU,5,char(5)//'FONTS')

call toolbx (INSERTRESMENU,menuhandle,type,afteritem)

1.14.2 Forming the Menu Bar

These routines perform the operations that build and alter the
menu bar.

INSERTMENU puts a menu into the menu list. The new menu is
positioned immediately before the current menu that is indexed
by beforeid. Note that the menu bar is not changed by this
procedure. You must call DRAWMENUBAR to update the menu bar.

integer*4 menuhandle

integer*4 beforeid

data beforeid /2/

call toolbx (INSERTMENU,menuhandle,beforeid)

Microsoft FORTRAN Compiler

DRAWMENUBAR draws the menu bar based on the information stored
in the menu list.

call toolbx (DRAWMENUBAR)

DELETEMENU deletes the given menu from the menu list. This
procedure does not affect the screen. A call to DRAWMENUBAR
should follow to make sure the current menu bar is on the
screen.

integer*4 menuid

data menuid /2/

call toolbx (DELETEMENU,menuid)
call toolbx (DRAWMENUBAR)

CLEARMENUBAR deletes all menus from the current menu list.
Note that this procedure does not affect the screen. A call to
DRAWMENUBAR should follow to make sure the current menu bar is
on the screen.

call toolbx (CLEARMENUBAR)
call toolbx (DRAWMENUBAR)

GETNEWMBAR is an INTEGER*4 function that returns the handle of
a new menu list. The new menu contains the items that are
defined by the menu bar resource having the given menubarid
and must be defined in an open resource file (see Resource
Compiler) . You can force the new menu list to become the
current menu list by calling SETMENUBAR.

integer*4 menubarid

integer*4 menuhandle

data menubarid /4/

call toolbx (GETNEWMBAR, menubarid)

GETMENUBAR is an INTEGER*4 function that returns a pointer to
the absolute address of a copy of the current menu list.
GETMENUBAR creates this copy so you can alter the current menu
list and immediately return to the original version.

integer*4 menuhandle
menuhandle = toolbx (GETMENUBAR)

SETMENUBAR forces the given menu list to become the current
menu list that was previously saved with GETMENUBAR.

integer*4 menuhandle
menuhandle = toolbx (GETMENUBAR)
call toolbx (SETMENUBAR, menuhandle)

Toolbox Interface

1.14.3 Choosing from a Menu

These routines provide support for detecting the selection of a
menu and highlighting the menu when it is selected.

MENUSELECT is an INTEGER*4 function that returns information
about the cursor location in the menu area. When a mouse down
event 1s detected in the menu bar area, and MENUSELECT is
called, control is transferred to MENUSELECT until the mouse
button is released. At that time, the routine returns two
INTEGER*2 values packed into a longword (INTEGER*4). The first
is the menu ID and the second is the menu item number. If the
mouse button was released outside of the menu area, then a 0 is
returned in both fields. In practice, the value of startpt
always comes from an event record (see "Inside Macintosh”,
available from Apple Computers).

integer*2 startpt(2)

integer*2 menudata (2}

integer*4 selectdata

egivalence (menudata, selectdata)

data startpt /20,5/

selectdata = toolbx (MENUSELECT, startpt)

MENUKEY is an INTEGER*4 function that performs much the same
function as MENUSELECT, but using the command key equivalents
for menu items. When a key down event with the command key
depressed is detected, MENUKEY can be used to return data about
the menu item corresponding to the character entered. The 4
byte integer that is returned is of the same format as the one
with MENUSELECT. In practice, the value of ch comes from the
message field of an event record (see the Event Manager Manual
of Inside Macintosh) .

character*4 ch
integer*2 menudata (2}
integer*4 selectdata

egivalence (menudata, selectdata)
data ch /* cr/
selectdata = toolbx (MENUKEY, ch)

HILITEMENU forces the given menu title to become highlighted.
If another title was highlighted, it is unhighlighted. After
the required processing for a menu selection is complete, the
menu title can be unhighlighted by calling HILITEMENU with an
argument of zero.

integer*4 menuid
data menuid /4/

Microsoft FORTRAN Compiler

call toolbx (HILITEMENU,menuid)

1.14.4 Controlling the Appearance of a Menu Item

These routines control the way a menu item is displayed when
the menu is chosen. Also, operations are provided to retrieve
information about the current menu items.

SETITEM loads the given character string into the given menu
title. The given menu is defined as a handle to the menu
record. The meta-characters that were used in ADDRESMENU are
not recognized by this procedure. The first character in
itemstring must contain the number of characters in the string.

integer*4 menuhandle

integer*4 item

character*256 itemstring

integer*4 menuid

character*256 menutitle

data menuid /1/

data item /5/

menutitle = char(10)//'Menu Title'

menuhandle = toolbx (NEWMENU,menuid,menutitle)
itemstring = char(9)//'Menu Item’

call toolbx (SETITEM,menuhandle,item,itemstring)

GETITEM returns the text in a menu item. The first character
in itemstring contains the number of characters in the string.

integer*4 menuhandle

integer*4 item

character*256 itemstring

integer*4 menuid

character*256 menutitle

data menuid /1/

data item /S/

menutitle = char(10)//'Menu Title'

menuhandle = toolbx (NEWMENU,menuid,menutitle)
call toolbx (GETITEM,menuhandle,item,itemstring)

DISABLEITEM dims the given menu item and prohibits any action
on the item, if chosen. 1If item is 0, then all items under the
given menu are disabled.

integer*4 menuhandle
integer*4 item
integer*4 menuid
character*25S6 menutitle
data menuid /1/

data item /0/

Toolbox Interface

menutitle = char(10)//'Menu Title'
menuhandle = toolbx (NEWMENU,menuid,menutitle)
call toolbx (DISABLEITEM, menuhandle,item)

ENABLEITEM causes the given menu item to no longer be dimmed

and allows it to be selected. If item is O,
enables the entire menu.

integer*4 menuhandle

integer*4 item

integer*4 menuid

character*256 menutitle

data menuid /1/

data item /0/

menutitle = char(10)//'Menu Title'

menuhandle = toolbx (NEWMENU,menuid,menutitle)
call toolbx (ENABLEITEM, menuhandle, item)

the ENABLEITEM

CHECKITEM forces the given menu item to either have a check
mark to the left of it or not, depending on the state of the

logical parameter checked.

integer*4 menuhandle

integer*4 item

logical*4 checked

integer*4 menuid

character*256 menutitle

data menuid /1/

data item /0/

menutitle = char(10)//'Menu Title'

menuhandle = toolbx (NEWMENU,menuid,menutitle)
checked = .true.

call toolbx (CHECKITEM,menuhandle,item,checked)

SETITEMICON associates the given menu item with
given icon number is added to the wvalue 256 to
icon with its resource indentification number
Compiler) .

integer*4 menuhandle

integer*4 item

integer*4 icon

integer*4 menuid

character*256 menutitle

data menuid /1/

data item /0/

menutitle = char(10)//'Menu Title'

menuhandle = toolbx (NEWMENU,menuid,menutitle)
icon = 255

call toolbx (SETITEMICON,menuhandle,item, icon)

an icon. The
associate the
(see Resource

1-71

Microsoft FORTRAN Compiler

GETITEMICON returns the icon number that is associated with

the given menu item.
integer*4 menuhandle

integer*4
integer*4
integer*4
character*256 menutitle
data menuid /1/
data item /O/
char (10) //'Menu Title’

toolbx (NEWMENU, menuid,menutitle)
(GETITEMICON, menuhandle, item, icon)

item
icon
menuid

menutitle =
menuhandle =
call toolbx

SETITEMSTYLE changes the character style of the menu

item.

given

integer*4 menuhandle

integer*4 item
integer*4
integer*4 menuid

character*256 menutitle

data menuid /1/

data item /5/

menutitle = char(10)//'Menu Title’

menuhandle = toolbx (NEWMENU, menuid,menutitle)
call toolbx (SETITEMSTYLE,menuhandle,item,chstyle)

chstyle

GETITEMSTYLE returns the character style of

item.

integer*4
integer*4
integer*4
integer*4

menuhandle
item
chstyle
menuid

the given menu

character*256 menutitle
data menuid /1/
data item /0/

menutitle = char(10)//'Menu Title'
menuhandle = toolbx (NEWMENU,menuid,menutitle)
call toolbx (GETITEMSTYLE, menuhandle,item,chstyle)

mark character to the left of the
more general case than the check

SETITEMMARK places the given
given menu item. This is a

mark used by CHECKITEM. The following are some marks that may
be used:

cloverleaf = 17 ! Command Symbol

checkmark = 18 ! Check Mark

diamond = 19 ! Diamond

Toolbox Interface

applesymbol 20
nomark =0

Apple Symbol
Nothing, to remove a mark

integer*4 menuhandle

integer*4 item

character*4 markchar

integer*4 menuid

character*256 menutitle

data menuid /1/

data item /3/

menutitle = char(10)//'Menu Title’

menuhandle = toolbx (NEWMENU,menuid,menutitle)

markchar = °' * // char (20) ! Only the last character
' is significant.

call toolbx (SETITEMMARK,menuhandle,item,markchar)

GETITEMMARK returns the mark character of the given menu item.
Returns 0 if there is no mark.

integer*4 menuhandle

integer*4 item

character*l markchar

integer*4 menuid

character*256 menutitle

data menuid /1/

data item /3/

menutitle = char{(10)//'Menu Title'

menuhandle = <toolbx (NEWMENU,menuid,menutitle)
call toolbx (GETITEMMARK,menuhandle,item,markchar)

1.14.5 Miscellaneous Menu Utilities

The following routines perform special operations ranging from
the way a menu bar flashes to retrieving information about the
menus.

SETMENUFLASH causes the menu item under the given menu to

flash when the mouse button is released. A value of 0 for
count disables the flash. The standard Macintosh default is 2
(2 tenths of a second). Anything greater than 3 1is not

recommended due to speed considerations.

integer*4 menuhandle

integer*4 count

integer*4 menuid

data menuid /1/

data count /2/

menuhandle = toolbx (GETMHANDLE, menuid)
call toolbx (SETMENUFLASH,menuhandle,count)

Microsoft FORTRAN Compiler

CALCMENUSIZE calculates and sets the horizontal and vertical
size fields in the given menu record.

integer*4 menuhandle

integer*4 menuid

data menuid /1/

menuhandle = toolbx (GETMHANDLE, menuid)
call toolbx (CALCMENUSIZE,menuhandle)

COUNTMITEMS is an INTEGER function that returns the number of
menu items under the given menu.

integer*4 menuhandle

integer*4 itemcount

integer*4 menuid

data menuid /1/

menuhandle = toolbx (GETMHANDLE, menuid)
itemcount = toolbx (COUNTMITEMS, menuhandle)

GETMHANDLE is an INTEGER*4 function that returns the pointer
to the absolute address of the menu that is assigned the given
menu ID. If the menu is not currently installed in the menu
list, then GETMHANDLE returns a 0.

integer*4 menuid

integer*4 menuhandle

data menuid /3/

menuhandle = toolbx (GETMHANDLE, menuid)

FLASHMENUBAR inverts the entire menu bar, if menu ID is 0 or
the ID of any menu in the menu list. Otherwise, it inverts
only the title of the given menu bar.

integer*4 menuid
data menuid /3/
call toolbx (FLASHMENUBAR,menuid)

Microsofte FORTRAN Compiler
for the Applee Macintosh.

Event Manager

Event Manager
2.0 About This Chapter

This chapter describes the Event Manager, the part of the
Macintosh User Interface Toolbox that allows your program to
monitor the user's actions with the mouse, keyboard, and
keypad. The Event Manager is also used for various purposes
within the Toolbox itself, such as to coordinate the ordering
and display of windows on the screen. Finally, you can use the
Event Manager as a means of communication between parts of your
own programn.

Actually, there are two Event Managers: one in the Operating
System and one in the Toolbox. The Toolbox Event Manager calls
the one in the Operating System and serves as an interface
between it and your application program; it also adds some
features that aren't present at the Operating System level,
such as the window management facilities mentioned above. This
chapter describes the Toolbox Event Manager, which is
ordinarily the one your program will be dealing with. All
references to "the Event Manager" should be understood to refer
to the Toolbox Event Manager. For information on the Operating
System's Event Manager, see the Macintosh Operating System
Reference Manual in Inside Macintosh.

The chapter begins with an introduction to the Event Manager
and what you can do with it. It then discusses the various
types of events, their relative priority, and, in particular,
how the user's keyboard actions are reported in the form of
events. Next are sections on the structure of event records
which contain all the pertinent information about each event,
and event masks, which some of the Event Manager routines
expect as parameters.

A section on using the Event Manager introduces its routines
and tells how they fit into the flow of your application
program. This is followed by detailed descriptions of all
Event Manager procedures and functions, their parameters,
calling protocol, effects, side effects, and so on.

Finally, there 1is an appendix containing information on the
standard Macintosh character set and keyboard configuration.

2.1 About the Event Manager

The Macintosh Event Manager is your program's link to its user.
Whenever the user presses the mouse button, types on the
keyboard or keypad, or inserts a disk in a disk drive, your
program is notified by means of an event. A typical Macintosh
application program is event-driven: it decides what to do from
moment to moment by asking the Event Manager for events and
responding to them one by one, in whatever way is appropriate.

2-1

Microsoft FORTRAN Compiler

Although the Event Manager's primary purpose is to monitor the
user's actions and pass them to your program in an orderly way,
it also serves as a convenient mechanism for sending signals
from one part of a program to another. For instance, the
Window Manager uses events to coordinate the ordering and
display of windows as the user activates and deactivates them
and moves them around on the Macintosh screen. You can also
define your own types of events and use them in any way your
application calls for.

Events waiting to be processed are kept in the event gqueue. In
principle, the event queue is a FIFO (first-in-first-out) 1list:
events are added to the queue (posted) at one end and retrieved

from the other. You can think of the queue as a funnel that
collects events from a variety of sources and feeds them to
your program on demand, in the order they occurred. (There are

a few exceptions to the strict FIFO ordering, which will be
discussed later.)

Note: The event queue has a limited capacity (currently 20
events, but this may change). When the queue becomes full, the
Event Manager begins throwing out old events to make room for
new ones as they are posted. The event thrown out is always
the oldest one in the queue.

Using the Event Manager, your program can:
- Retrieve events one at a time from the event queue

- Control which types of events get posted and which are
ignored

- Post events of its own (only using the Operating System
Event Manager, documented in Inside Macintosh.)

- Read the current state of the keyboard, keypad, and
mouse button

- Monitor the location of the mouse

- Read the system clock to find out how much time has
elapsed since the system was last started up

Another service provided by the Event Manager is Jjournaling.
This feature enables vyour program to record all its
interactions with the Event Manager and play them back later
(see the Event Manager Manual in Inside Macintosh for details).
2.2 Event Types

Events are of various types, depending on their origin and
meaning. Some report actions by the user, some are generated

2-2

Event Manager

by the Window Manager, and some may be generated by your
program itself for its own purposes. Some events are handled
by the Desk Manager before your program ever sees them; others
are left for your program to handle in its own way.

The most important event types are those that record user
actions:

- Mouse down and mouse up events occur when the user
presses or releases the mouse button.

- Key down and key up events occur when the user presses
or releases a key on the keyboard or keypad. The Event
Manager also automatically generates auto-key events
when the user presses and holds down a repeating key.
Together, these three event types are called keyboard
events.

- Disk inserted events occur when the user inserts a disk
into a disk drive.

Note: Mere movements of the mouse are not reported as events.
If necessary, your program can keep track of them by
periodically asking the Event Manager for the current location
of the mouse.

The following event types are used by the Window Manager to
coordinate the display of windows on the screen:

- Activate events are generated whenever an inactive
window becomes active or vice versa. They generally
occur in pairs (that is, one window is deactivated and
another activated at the same time).

- Update events occur when a window's contents need to be
redrawn, usually as a result of the user's opening,
closing, activating, or moving a window.

Another event type (device driver event) may be generated by
device drivers in certain situations; for example, a driver
might be set up to report an event when its transmission of
data is interrupted. The documentation for the individual
drivers (in Inside Macintosh) will tell you about any specific
device driver events that may occur.

A network event may be generated by the AppleBus Manager.
Documentation for this event type is not yet available.

In addition, your application can define as many as four event
types of its own and use them for any desired purpose.

Note: You place application-defined events in the event gueue
with the Operating System Event Manager procedure POSTEVENT.

Microsoft FORTRAN Compiler

See the Operating System Event Manager manual in Inside
Macintosh for details.

One final type of event is the null event, which is what the
Event Manager returns if it has no other events to report.

2.3 Priority of Events

It was stated earlier that in principle the event queue is a
FIFO list; events are retrieved from the queue in the order
they were posted. Actually, the way in which various types of
events are generated and detected causes some to have higher

priority than others. Furthermore, when you ask the Event
Manager for an event, you can specify a particular type or
types that are of interest. This can also alter the strict

FIFO order, by causing some events to be passed over in favor
of others that were actually posted later. Everything said in
the following discussion is understood to be limited to the
event types you've specifically requested in your Event Manager
call.

The Event Manager always returns the highest-priority event
available of the requested type(s). The priority ranking is as
follows:

1. Activate (window becoming inactive before window
becoming active)

2. Mouse down, mouse up, key down, key up, disk inserted,
network, I/O driver, application-defined (all in FIFO
order)

3. Auto-key

4. Update (in front-to-back order)

5. Null

Activate events take priority over all others; they are
detected in a special way, and are never actually placed in the

event queue. The Event Manager checks for pending activate
events before looking in the event queue, so it will always
return such an event if one is available. Because of the

special way activate events are detected, there can never be
more than two such events pending at the same time: one for a
window becoming inactive and another for a window becoming
active. If there's one of each, the event for the window
becoming inactive is reported first.

Category 2 includes most of the possible event types. Within
this category, events are normally retrieved from the queue in
the order they were posted.

Event Manager

If no event is available in categories 1 and 2, the Event
Manager next checks to see whether the appropriate conditions
hold for an auto-key event. (These conditions are described in
detail in the next section.) If so, it generates one and
returns it to your program.

Next in priority are update events. Like activate events,
these are not placed in the event queue, but are detected in
another way. If no higher-priority event is available, the
Event Manager checks for windows whose contents need to be
redrawn. If it finds one, it generates and returns an update
event for that window. Windows are checked in the order in
which they're displayed on the screen, from front to back, so
if two or more windows need to be updated, an update event will
be generated for the front-most such window.

Finally, if no other event is available, the Event Manager
returns a null event.

2.4 Keyboard Events

Every key on the Macintosh keyboard and the optional keypad
generates key down and key up events when pressed and released.

(Exceptions are the modifier keys--Shift, Caps Lock, Command,
and Option. These keys are treated specially, as described
below, and generate no keyboard events of their own.) In
addition, the Event Manager itself generates auto-key events
whenever you request an event and all of the following
conditions apply:

- No higher-priority event of the requested type(s) is
available

- The user is currently holding down a key other than a
modifier key

- The appropriate time interval (see below) has elapsed
since the last keyboard event

- Auto-key events are one of the types you've requested

- Auto-key events are one of the types currently being
posted into the event queue

Two different time intervals are taken into account. Auto-key
events begin to be generated after a certain initial delay has
elapsed since the original key down event (that is, since the
key was originally pressed); this is called the auto-key
threshold. Thereafter, they are generated each time a certain
repeat interval has elapsed since the last auto-~key event; this
is called the auto-key rate. The initial settings for these
two intervals are 16 ticks (sixtieths of a second) for the
initial delay and 4 ticks for the repeat interval. The user

2-5

Microsoft FORTRAN Compiler

can adjust these settings to individual preference with the
Control Panel desk accessory, by adjusting the keyboard touch
and the rate of repeating keys.

Note: The current values for the auto-key threshold and rate
are stored in system global variables located at absoclute
memory locations z'l8E' and 2'190', respectively. The
following statements could be used if you need these values:

integer*2 keythresh ! Auto-key threshold
integer*2 keyrepthresh ! Auto-key rate

keythresh = word(z'l8E')
keyrepthresh = word(z'190')

When the user presses, holds down, or releases a key, the
resulting keyboard event identifies the key in two different
ways: with a key code designating the key itself and a
character code designating the character the key stands for.
Character codes are given in the extended version of ASCII (the
American Standard Code for Information Interchange) used by
Macintosh and Lisa; see the Appendix for further information.

The association between keys and characters is defined by a
keyboard configuration. The particular character a key
generates depends on three things:

- The key itself
- The keyboard configuration currently in effect

- Which, if any, of the modifier keys were held down when
the key was pressed

As mentioned earlier, the modifier keys don't generate keyboard
events of their own. Instead, they modify the meaning of the
other keys by changing the character codes that those keys
generate. For example, under the standard Macintosh keyboard
configuration, the "C" key generates a lowercase letter c when
pressed by itself; when pressed with the Shift or Caps Lock key
down, it generates a capital C; with the Option key down, a
lowercase ¢ with the cedilla (¢), used in French, Portuguese,
and a few other foreign languages; and with the Option and
Shift or Option and Caps Lock keys down, a capital C with a
cedilla (C). The state of each of the option keys is also
reported in a field of the event record (see next section),
where your program can examine it directly.

The standard keyboard configuration gives each key its normal
ASCII character code according to the standard Macintosh
keyboard layout. When the Option key is held down, most keys
generate special characters with codes between 128 and 255 ($80
and $FF), included in the extended character set for business,
scientific, and international use.

2-6

Event Manager

Note: Under the standard keyboard configuration only the
Shift, Caps Lock, and Option keys actually modify the character
a key stands for: the Command key has no effect on the
character code generated. (Keyboard configurations other than
the standard may take the Command key into account.)
Similarly, character codes for the keypad are affected only by
the Shift key. To find out whether the Command key was down at
the time of an event (or Caps Lock or Option in the case of one
generated from the keypad), you have to examine the appropriate
field of the event record.

Normally you'll Jjust want to use the standard keyboard
configuration, which is read from the system resource file
every time the Macintosh is started up. Other keyboard
configurations can be used to reconfigure the keyboard for
foreign use or for nonstandard layouts such as the Dvorak
arrangement. In rare cases, you may want to define your own
keyboard configuration to suit your program's special needs.
For information on how to install an alternate keyboard
configuration or define one of your own, see Inside Macintosh
(this documentation is currently unavailable).

2.5 Event Records

Every event 1is represented internally by an event record
containing all pertinent information about that event. The
event record includes the following information:

- The type of event

- The time the event was posted (in ticks since system
startup)

- The location of the mouse at the time the event was
posted (in global coordinates)

- The state of the mouse button and modifier keys at the
time the event was posted

- Any additional information required for a particular
type of event, such as which key the user pressed or
which window is being activated

This information is filled into the event record for every
event--even for null events, which just means that nothing
special has happened.

An event record can be defined in the Microsoft FORTRAN
Compiler as follows:

integer*2 eventrecord(8)
integer*2 what

Microsoft FORTRAN Compiler

integer*4 message
integer*4 when
integer*2 where(2)
integer*2 modifiers

equivalence (eventrecord(l),what)
equivalence (eventrecord(2),message}
equivalence (eventrecord(4),when)
equivalence (eventrecord(6),where(l))
eguivalence (eventrecord(8),modifiers)

This definition is assumed in the examples given with the
description of individual Event Manager procedures and
functions below. If more than one event record is necessary,
different field names will be required for each one, since
FORTRAN lacks true records. However, one record definition
will usually suffice in a Macintosh application; generally your
program will not ask for another event record until it has
responded to the current one.

The what field contains an event code identifying the type of
the event. The Event Manager can handle a maximum of 16
different event types, denoted by event codes from 0 to 15.
The standard event codes built into the Event Manager are as
follows:

nullEvent = 0 ! null

mouseDown -1 ! mouse down

mouseUp -2 ! mouse up

keyDown -3 t key down

keyUp - 4 ! key up

autoKey -5 t auvto-key

updateEvt -6 ! update

diskEvt -7 !t disk inserted
activateEvt - 8 ! activate
networkEvt = 10 ! network

driverEvt - 11 ! I/0 driver

applEvt - 12 !t application-defined
app2Evt - 13 ! application-defined
app3Evt - 14 ! application-defined
app4Evt - 15 ! application-defined

The when field contains the time the event was posted, in ticks
(sixtieths of a second) since the system was last started up.

The where field gives the location of the mouse at the time the
event was posted, expressed in global coordinates.

Event Manager

15 121110 9 8 7 6 10
% 1 1§ [11 * T

| L Activate/deactivate

1 if mouse button up, 0 if not

1 if Command key down, 0 if not
1 if Shift key down, 0 if not

1 if Caps Lock key down, 0 if not
1 if Option key down, 0 if not

* reserved for future use

Figure 1. Modifier Bits

The modifiers field gives the state of the mouse button and the
modifier keys at the time the event was posted, as shown below
and in Figure 1. (Following the customary convention, the bit
positions are numbered from the right to left, starting from 0
at the low order end; see Figure 1.)

Bit = Meaning

15-12 Reserved
11 1 if option key down, 0 if up
10 1 if caps Lock key down, 0 if up
9 1 if shift key, 0 if not
8 1 if command key down, 0 if not
7 1 if mouse button up, 0 if not

6-2 Reserved
1-0 Used only by activate events (see below)

For activate events, the low-order bit of the modifiers field
(bit 0) is set to 1 if a window is being activated, or to 0 if
it is being deactivated. The remaining bits indicate the state
of the mouse button and modifier keys. Notice that the mouse
button bit is set if the mouse button is up, whereas the bits
for the four modifier keys are set if their corresponding keys
are down.

Microsoft FORTRAN Compiler

31 24 23 16 15 8§ 7 0

|— Character code

Key code

Figure 2. Event Message Format for Keyboard Events

The message field contains the event message, which conveys
extra information specific to a particular event type:

For keyboard events, the event message identifies the
key that was pressed or released, as shown in Figure 2.
The low-order byte (message .AND. 255) contains the
character code for the key, depending on the keyboard
configuration currently in effect and on which, if any,
of the modifier keys were held down. Under the standard
keyboard configuration this is just the normal ASCII
code associated with the key, which is wusually the
information your program needs. The third byte (message
/ 256) gives the key code, useful in special cases (a
music generator, for example) where you want to treat
the keyboard as a set of buttons unrelated to specific
characters. Detailed information on key codes for the
standard Macintosh keyboard configuration is given in
the Appendix. The first two bytes of the message are
set to O.

For disk inserted events, the event message gives the
drive number of the disk drive: 1 for the Macintosh's
built-in drive, 2 for the external drive, if any.
Numbers greater than 2 denote additional disk drives
connected through the serial port. By the time your
program receives a disk inserted event, the system will
already have attempted to mount the volume that was
inserted. If for any reason the attempt was
unsuccessful (the user inserted an unformatted disk, for
example), the high-order word of the event message will
contain the error code returned by the Operating System;

Event Manager

see the Qperating System Manual in_Inside Macintosh for
further details.

- For activate and update events, the event message is a
pointer to the window affected.

- For application-defined event types, you can use the
event message for whatever information your application
calls for.

- For mouse down, mouse up, and null events, the event
message is meaningless and should be ignored. For
network and device driver events, the contents of the
event message depend on the situation under which the
event was generated; the documentation describing those
situations will give the details.

2.6 Event Masks

Several of the Event Manager routines can be restricted to a
specific event type or group of types. For instance, instead
of 3just requesting the next available event, you can ask
specifically for the next keyboard event.

You specify which event types a particular Event Manager call
applies to by supplying an gvent mask as a parameter. This is
an integer in which each of the 1least significant 16 bit
positions stands for an event type, as shown in Figure 3.
Notice that the bit position representing a given type
corresponds to the event code for that type. For example,
update events (type code 6) are specified by bit 6 of the mask,
counting from 0 at the right (low-order) end. A 1 bit at the
position means that this Event Manager call applies to update
events; a 0 means it doesn't.

Microsoft FORTRAN Compiler

151413121110 9 8 7?7 6 5 4 3 2 10

Mouse down
Mouse up

Key down
Keyup
Auto-key
Update

Disk inserted
Activate
Abort
Network

1/0 driver

Application-defined

Figure 3. Event Mask

Masks for each single event type are as follows:

nullMask =1 ! null

mDownMask = 2 ! mouse down

mUpMask =4 ! mouse up
keyDownMask = 8 ! key down

keyUpMask = 16 ! key up

autoKeyMask = 32 ! auto-key

updateMask = 64 ! update

diskMask = 128 ! disk inserted
activMask = 256 ! activate
networkMask = 1024 ! network

driverMask = 2048 ! device driver
applMask = 4096 ! application-defined
app2Mask = 8192 ! application-defined
app3Mask = 16384 ! application—-defined
app4Mask = 32768 ! application-defined

Note

Null events can't be disabled; a null event will always be
reported when none of the enabled types of events is available.

To request all events, you can use an event mask of -1.

You can form any mask you need by combining these mask
constraints with logical operations. For example, to specify
any keyboard event, you can use a mask of

8 .OR. 16 .OR. 32 ! keyDownMask + keyUpMask + autoKeyMask

For any event except an update, you can use

Event Manager

.NOT. 64 { everyevent - updateMask
Caution

Recommended programming practice is always to use an event mask
of -1 unless there is a specific reason not to. This ensures
that all events will be processed in their natural order.

In addition to the mask parameters to individual Event Manager
routines, there's also a global system event mask, which
controls which event types get posted into the event queue.
Only those events corresponding to "1" bits in the system event
mask are posted; those with "0" bits are ignored. When the
system is started up, the system event mask is initially set to
post all except key up events--that is, it is initialized to

.NOT. keyUpMask

(Key up events are meaningless for most applications, and your
program will usually want to ignore them anyway.) The system
event mask is a Macintosh system global in low memory, and
resides at location 2'144'. 1If necessary for your particular
application, your can change the setting of the system event
mask with the Microsoft FORTRAN Compiler WORD operator:

* Post all but mouse up and key up events.
word(z'144') = .NOT. (4 .OR. 16)

2.7 Using the Event Manager

This section discusses how the Event Manager routines fit into
the general flow of your program and gives you an idea of which
routines you'll need to use. The routines themselves are
described in detail in the next section.

As noted earlier, most application programs are event-driven.
Such programs typically have a main loop that repeatedly calls
GETNEXTEVENT to retrieve the next available event, then uses a
SELECT CASE statement to decide what type of event it is and
take whatever action is appropriate. Two Microsoft FORTRAN
programs which demonstrate this structure are included in the
source code folder: Demo.for and Edit.for. Note that a CASE
statement does not have to be provided for all events that you
expect to receive; you can put an empty CASE DEFAULT statement
in the SELECT CASE instead. This can be useful during program
development to implement and test events a few at a time.

Your program is only expected to respond to those events that
are directly related to its own operations. Events that are of
interest only to the system, or that pertain only to system
windows, are intercepted and handled by the Desk Manager, but
are still reported back to your program by GETNEXTEVENT. After

2-13

Microsoft FORTRAN Compiler

calling GETNEXTEVENT, you.should test its LOGICAL result to
find out whether your program needs to respond to the event:
.TRUE. means the event is of interest to your program, .FALSE.
means you can ignore it.

Note: Events handled by the system include activate and update
events for system windows; all keyboard and mouse up events
when a system window is active, if the window contains a desk
accessory that is prepared to handle the event; and network
events if there's a disk accessory present that will handle

them. Further details are given in the Desk Manager Manugal in

2.8 Responding to Mouse Events

On receiving a mouse down event, you should first call the
Window Manager function FINDWINDOW to find out where on the
screen the mouse button was pressed; you can then respond in
whatever way 1is appropriate. Depending on the part of the
screen the button was pressed in, this may involve calls to
Toolbox routines such as the Menu Manager function MENUSELECT,
the Disk Manager procedure SYSTEMCLICK, the Window Manager
routines SELECTWINDOW, DRAGWINDOW, GORWWINDOW, and TRACKGOAWAY,
and the Control Manager routines FINDCONTROL, TRACKCONTROL, and
DRAGCONTROL. See the relevant Toolbox manuals for details
(Toolbox manuals pertaining to the Desk and Control managers
can be found in Inside Macintosh).

If your application attaches some special significance to
pressing a modifier key along with the mouse button, you can
discover the state of that modifier key while the mouse button
is down by examining the appropriate flag in the modifiers
field.

If you're using the TextEdit part of the Toolbox to handle text
editing, mouse double-clicks will work automatically as a means
of selecting a word; to respond to double-clicks in any other
context, however, you'll have to detect them yourself. You can
do so by comparing the time and location of a mouse-up event
with those of the immediately following mouse-down event. You
should assume a double-click has occurred if both of the
following are true:

- The times of the mouse-up event and the mouse—-down event
differ by a number of ticks less than or equal to the
value in the system global at absolute location z'2F0°':

integer doubletime
doubletime = long(z'2F0'}

- The locations of the two mouse-down events separated by
the mouse-up event are sufficiently close to each other.
Exactly what this means depends on the particular

Event Manager

application. For instance, in a word-processing
application, you might consider the two 1locations
essentially the same if they fall on the same character,
whereas in a graphics application you might consider
them essentially the same if the sum of the horizontal
and vertical changes in position is no more than five
pixels.

Mouse-up events may be significant in other ways; for example,
they might signal the end of dragging in a graphics or
spreadsheet application. Many simple applications, however,
will ignore mouse-up events.

2.9 Responding to Keyboard Events

When one of your own windows is active, you should respond to
the keyboard in whatever way your application calls for. For
example, when the user types a character on the keyboard, you
might want to insert that character into the document displayed
in an active document window. For keyboard events, you should
first check the modifiers field to see whether the character
was typed with the Command key held down: if so, the user may
have been choosing a menu item by typing its keyboard
equivalent. To find out, pass the character that was typed to
the Menu Manager function MENUKEY. If that character, combined
with the Command key, stands for a menu item, MENUKEY will
return a nonzero result identifying the item. You can then do
whatever is appropriate to respond to that menu item, just as
if the user had chosen it with the mouse. If MENUKEY's result
is 0, the user has typed a key combination that has no menu
equivalent; your program may then want to respond in some other
way .

Usually your application can handle auto-key events the same as
key—down events. You may, however, want to ignore auto-key
events that invoke commands that shouldn't be continually
repeated.

Note: Remember that most applications will want to ignore key-
up events; with the standard system event mask you won't get
any.

If you wish to periodically inspect the state of the keyboard
or keypad--say, while the mouse button is being held down--use
the procedure GETKEYS; this procedure is also the only way to
tell whether a modifier key is being pressed alone.

2.10 Responding to Activate and Update Events
When you receive an activate event for one of your own windows,

the Window Manager will already have done all of the normal
"housekeeping” associated with the event, such as highlighting

2-15

Microsoft FORTRAN Compiler

or unhighlighting the window. You can then take any further
action that your application may require, such as showing or
hiding a scroll bar or highlighting or unhighlighting a
selection.

On receiving an update event for one of your own windows, you
should usually call the Window Manager procedure BeginUpdate,
redraw the window's contents, then call EndUpdate.

2.11 Responding to Disk-Inserted Events

When you receive a disk inserted event, the Disk Manager will
already have responded to the event by attempting to mount the
new volume just inserted in the disk drive. Usually there's
nothing more for your program to do, but GETNEXTEVENT returns
.TRUE. anyway, giving you an opportunity to take some further
action if your application demands it. If the attempt to mount
the volume was unsuccessful, there will be a nonzero error code
in the high-order word of the event message; in this case you
might want to take some special action, such as displaying an
alert box containing an error message.

2.12 Other Operations

If you're using your own event types for internal communication
between parts of your program, you can use POSTEVENT to post
them into the event queue. (POSTEVENT is part of the Operating
System Event Manager, and is documented in JInside Macintosh.)
When you receive them back from GETNEXTEVENT, you can respond
in whatever way is appropriate for your application.

To "peek" at pending events without removing them from the
event queue, use EVENTAVAIL instead of GETNEXTEVENT. To
control which event types get posted into the queue, or to
cause certain types to be ignored, set the system event mask; a
word at absolute location z'144' in memory (see 'Event Masks',
above) .

In addition to receiving the user’s mouse and keyboard actions
in the form of events, you can directly read the keyboard (and
keypad), mouse 1location, and state of the mouse button by
calling GETKEYS, GETMOUSE, and BUTTON, respectively. To follow
the mouse when the user drags it with the button down, use
STILLDOWN or WAITMOUSEUP.

The function TICKCOUNT returns the number of ticks since the
last system startup; you might, for example, compare this value
to the when field of an event record to discover the delay
since that event was posted.

Finally, the system global at absolute memory location z'2F4°

contains the number of ticks between blinks of the "caret"
(usually a vertical bar) marking the insertion point in

2-16

Event Manager

editable text. If you aren't using TextEdit and therefore need
to cause the caret to blink yourself, you can get this value
with the following FORTRAN statements:

integer carettime
carettime = long(z'2F4')

You would check this value each time through your program's
main event loop, to ensure a constant frequency of blinking.

2.13 Event Manager Routines

This section describes all the Event Manager procedures and
functions. They are presented as calls to toolbx.sub, an
external subroutine supplied with the Microsoft FORTRAN
Compiler. This subroutine must reside on the same disk as your
application when it is run, or must have been linked into your
application with link. This subroutine can be invoked by using
a FORTRAN CALL statement or by using it as a function in a
FORTRAN expression. It should be declared INTEGER in every
program unit that uses it as a function, even if its value is
to be assigned to LOGICAL variables.

2.14 Accessing Events

GETNEXTEVENT is a LOGICAL function whose primary purpose is to

notify the application what the next event is. After
reporting on an event, the event is deleted from the event
queue. The current event is returned in eventrecord. If the

system intercepts the event, or the event being reported is a
null event, then GETNEXTEVENT will return .FALSE. as its
value. The events that will be intercepted by the system
include activate and update events directed at the system
window, keyboard and mouse up events in the system window, and
all network events if there is a desk accessory present to
handle them. If the system deems that the application should
take care of the current event, then GETNEXTEVENT returns
.TRUE. The following example assumes the record definition
given under the Event Records section (above).

integer eventmask
logical eventflag

eventmask = -1 ! Get all event types.
eventflag = toclbx(GETNEXTEVENT, eventmask, eventrecord)

EVENTAVAIL is identical to GETNEXTEVENT above, except that it
does not remove the event that it returns from the event queue.
This allows you to "peek" at pending events while still leaving
them in the queue for later processing.

Microsoft FORTRAN Compiler

GETMOUSE loads the current mouse position into mouseloc. The
location is given in local coordinates. Notice that this
differs from the mouse location stored in the where field of an
event record; that location is always in global coordinates.
Mouseloc is returned in the form of the vertical wvalue in the
first element, and the horizontal value in the second.

integer*2 mouseloc(2)
call toolbx (GETMOUSE,mouseloc)

BUTTON is a LOGICAL function that returns .TRUE. if the mouse
button is down, and .FALSE. otherwise.

logical*4 buttonflag
buttonflag = toolbx (BUTTON)

STILLDOWN is a LOGICAL function that is to be called after a
mouse event has been detected. STILLDOWN returns .TRUE. if the
button is still down and no other mouse events are in the event
queue.

logical*4 buttonflag
buttonflag = toolbx (STILLDOWN)

WAITMOUSEUP is a LOGICAL function that operates exactly the
same as STILLDOWN (above), except that if the button is not
still down from the original press, WAITMOUSEUP removes the
preceding mouse-up event before returning .FALSE. if, for
instance, your application attaches some special significance
to mouse double-clicks and to mouse-up events, this function
would allow your application to recognize a double-click
without being confused by the intervening mouse-up.

logical*4 buttonflag
buttonflag = toolbx (WAITMOUSEUP)

GETKEYS reads the current state of the keyboard (and keypad,
if any) and returns a 128 bit map indicating the status of each
key. A 16 element INTEGER*1 array can be used to hold the
bitmap. Each byte of this array corresponds to 8 keys, 1 bit
per key, as shown in Figure 4. If a bit is 1, the
corresponding key is down; if it is 0, that key is up. The
maximum number of keys that can be down simultaneously is two
character keys plus any combination of the four modifier keys.
For example, the following code will wait until the Shift key
is pressed:

integer*l keymap(16)
logical shiftdown
integer*2 syseventmask

* Disable posting of all events.
syseventmask = 0 !t No events.
word(z'144') = syseventmask

Event Manager

* Wait for the shift key to be pressed.

do
call toolbx(GETKEYS, keymap)
shiftdown = keymap(8) .AND. 2z'l’ ! Least significant bit.
if (shiftdown) exit

repeat

* Turn event posting back on.
syseventmask = .NOT. 16 ! Post all but key up events

word(z'144') = syseventmask

Bit %

? 685 4 32 10
1 [xizie{HiFiDisin] 9 I
2 [Ri R 10 | I
%3 T 511 |
° T T T H
£4 (91 £12 L |
3 i
§5 gtsl 5 |
&6 14 L]
7 15 [.]
8 16 L3 v f ot F]

en=enter sp=space op=option cp=caps lock sh=shift

cl=clear

Figure 4. Correspondence between keymap array and keys.
Elements 1-8 correspond to the keyboard,
9-16 to the keypad.

TICKCOUNT is an INTEGER*4 function that returns the current
tick count from the system clock. This value represents the
elapsed time since the Macintosh was turned on. The wvalue
returned is in sixtieths (1/60) of a second.

integer*4 ticks
ticks = toolbx (TICKCOUNT)

This value 1is also available in a system global at absolute
memory location z'16A'. This operation is somewhat faster.

ticks = long(z'16A')

Microsoft FORTRAN Compiler

2.15 Appendix: Standard Key and Character Codes

The following describes the key and character codes used by the
Macintosh and the characters assigned to keys on the keyboard
and keypad under the standard Macintosh keyboard configuration.
All key and character codes are given in hexadecimal.

Character codes between z'20' and z'7E' have their normal ASCII
meanings (see Appendix L of the Microsoft FORTRAN Compiler
language manual). Codes between z'80' and z'CA' denote special
characters included in the extended character set for business,
scientific, and international use; codes from z'CB' to z'FF'
are unassigned. Most of the control characters have no special
meaning on Macintosh and cannot be generated from the Macintosh
keyboard under the standard keyboard configuration. The
exceptions are the following:

Code = Character Key

z2'03" ETX Enter (keyboard and keypad)
z2'08" BS Backspace

z'09" HT Tab

z'0D" CR Return

z'1B"’ ESC Clear (keypad)

z'1C’ FS Left arrow (keypad)

2'1D' GS Right arrow(keypad)

z'1E" RS Up arrow (keypad)

z'1F" us Down Arrow (keypad)

z'20° SpP Space bar

In addition, as show in the table, codes from z'1l1l' to z'15°
denote special characters used on the Macintosh screen, such as
the open and solid Apple characters. These characters are
intended exclusively for use on the screen, and have no
keyboard or keypad equivalents under the standard keyboard
configuration.

Under the standard keyboard configuration, characters with
accents or diacritical marks cannot be typed directly from the

keyboard. Instead, they are generated by first typing the
accent or diacritical mark alone, followed by the letter to be
accented. For example, a lowercase letter e with the grave
accent (e, character code $8F) is produced by typing a grave
accent (', code z'60') followed by a lowercase e (code 2'65').

The Macintosh keyboard driver will translate such two-character
sequences involving diacriticals into the corresponding single
accented letters.

Figure 5 shows the hexadecimal key codes corresponding to keys
on the Macintosh keyboard and keypad, respectively. Modifier
keys are not shown, since they never generate keyboard events
of their own.

Event Manager

30 |oc|on|oz|orln|10[20[22[1;:[23121T1E‘[ZA%
Joo 01|02 o03]0s{0a]26]28]25]20 [22] 24

lo6 07 |08 |09] 08 |2n | 22| 28 | 2F |2c |

Figure 5. Hexadecimal key codes for the Macintosh
keyboard.

Microsofte FORTRAN Compiler
for the Applee Macintosh.

Desk Manager

The Desk Manager

This chapter describes the Desk Manager, the part of the
Macintosh User Interface Toolbox that supports the use of desk
accessories from an application; the Calculator, for example,
is a desk accessory. In particular, it tells you how to make
the standard desk accessories available in your application.

3.1 About the Desk Manager

The Desk Manager enables your application to support desk
accessories, which are "mini-accessories" that can be run at
the same time as a Macintosh application. There are a number
of standard desk accessories, such as the Calculator shown in
Figure 1.

Calculator [Calculator

Inactive Active

Figure 1. The Calculator Desk Accessory.

The Macintosh user opens desk accessories by choosing them from
the standard Apple menu (whose title is an apple symbol), which
by convention is the first menu in the menu bar. When a desk
accessory is chosen from the menu, it's usually displayed in a
window on the desktop, and that window becomes the active
window.

After being selected, the accessory may be used as long as it's

active. The user can activate other windows and then
reactivate the desk accessory by clicking inside it. Whenever
a standard desk accessory is active, it has a close box in its
title bar. Clicking the <close box makes the accessory

disappear, and the window that's then front most becomes
active.

Microsoft FORTRAN Compiler

The window associated with a desk accessory is usually a round-
corner window (as shown in Figure 1) or a standard document
window, although it can be any type of window. It may even
look and behave like a dialog window; the accessory can call on
the Dialog Manager to create the window and then use Dialog
Manager routines to operate on it. In any case, the window
will be a system window, as indicated by the fact that its
windowKind field contains a negative value.

The Desk Manager provides a mechanism that 1lets standard
commands chosen from the Edit menu be applied to a desk
accessory when it's active. Even if the commands aren't
particularly useful for editing within the accessory, they may
be useful for cutting and pasting between the accessory and the
application or even another accessory. For example, the result
of a calculation made with the Calculator can be copied into a
document prepared in MacWrite.

3.2 Using the Desk Manager

To allow access to desk accessories, your application must do
the following:

- Initialize TextEdit and the Dialog Manager, in case any
desk accessories are displayed in windows created by the
Dialog Manager (which uses TextEdit).

- Set up the Apple menu as the first menu in the menu bar.
You can put the names of all currently available desk
accessories in a menu by using the Menu Manager
procedure ADDRESMENU (see the Menu Manager manual for
details).

- Set up an Edit menu that includes the standard commands
Undo, Cut, Copy, Paste, and Clear (in that order, with a
gray line separating Undo and Cut), even if your
application itself doesn't support any of these
commands.

When a user chooses a desk accessory from the Apple menu, call
the Menu Manager procedure GETITEM to get the name of the desk
accessory, and then the Desk Manager function OPENDESKACC to
open and display the accessory. When a system window is active
and the user chooses Close from the File Menu, close the desk
accessory with the CLOSEDESKACC procedure.

Warning

Most desk accessories allocate nonrelocatable objects (such as
windows) on the heap, resulting in fragmentation of the heap
area. Before beginning an operation that requires a large

Desk Manager

amount of memory, your application may want to close all open
desk accessories.

When the Toolbox Event Manager function GETNEXTEVENT reports
that a mouse-down event has occurred, your application should
call the Window Manager function FINDWINDOW to find out where
the mouse button was pressed. If FINDWINDOW returns 2 (in a
system window), call the Desk Manager procedure SYSTEMCLICK.
SYSTEMCLICK handles mouse-down events in system windows,
routing them to desk accessories where appropriate.

Note: The application needn't be concerned with exactly which
desk accessories are currently open.

When the active window changes from an application window to a
system window, the application should disable any of its menus
or menu items that don't apply while an accessory is active,
and it should enable the standard editing commands Undo, Cut,
Copy, Paste, and Clear, in the Edit menu. An application
should disable any editing commands it doesn't support when one
of its own windows becomes active.

When a mouse-down event occurs in the menu bar, and the
application determines that one of the five standard editing
commands has been invoked, it should call SYSTEMEDIT. Only if
SYSTEMEDIT returns .FALSE. should the application process the
editing command itself; if the active window belongs to a desk
accessory, SYSTEMEDIT passes the editing command on to that
accessory and returns .TRUE.

Keyboard equivalents of the standard editing commands are
passed on to desk accessories by the Desk Manager, not by your
application.

Warning

The standard keyboard equivalents for the commands in the Edit
menu must not be changed or assigned to other commands; the
Desk Manager automatically interprets Command-Z, X, C, and V as
Undo, Cut, Copy, and Paste, respectively.

Certain periodic actions may be defined for desk accessories.
To see that they're performed, you need to call the SYSTEMTASK
procedure at least once every time through your main event
loop.

3.3 Desk Manager Routines

This section describes the routines required to access desk
accessories in your application. An example program is
included at the end of this chapter demonstrating the use of
each routine.

Microsoft FORTRAN Compiler

3.3.1 Opening and Closing Desk Accessories

OPENDESKACC is an integer function which takes the name of a
desk accessory, opens that accessory, and returns its refnum.
The name is a Pascal-style string (with the string size in the
first byte) containing the accessory's resource name, which you
get by calling the Menu Manager procedure GETITEM. You should
ignore the value returned by this function; you will not need
it for other desk accessory routines.

3.3.2 Handling Events in Desk Accessories

SYSTEMCLICK processes mouse-down events in system windows.
When a mouse-down event occurs and the Window Manager function
FINDWINDOW reports that the mouse button was pressed in a
system window, the application should call SYSTEMCLICK with the
event record and the window pointer. If the given window
belongs to a desk accessory, SYSTEMCLICK will see that the
event gets handled properly.

SYSTEMEDIT is a LOGICAL function used to process editing
commands in desk accessories. When the user chooses one of the
five standard editing commands from the edit menu, call
SYSTEMEDIT with one of the following integers:

Parameter
Undo 0
Cut 2
Copy 3
Paste 4
Clear 5

If your Edit menu contains these five in the standard
arrangement (the order 1listed above, with a gray line
separating Undo and Cut), you can simply call

toolbx (SYSTEMEDIT, menuitem - 1)

If the active window doesn't belong to a desk accessory,
SYSTEMEDIT returns .FALSE.; the application should then process
the editing command as usual. If the active window does belong
to a desk accessory, SYSTEMEDIT asks that accessory to process
the command and returns .TRUE.; in this case, the application
should ignore the command.

Note: It's up to the application to make sure desk accessories
get their editing commands that are chosen from the Edit menu.
In particular, make sure your application hasn't disabled the
Edit menu or any of the five standard commands when a desk
accessory is activated.

Desk Manager

3.3.3 Performing Periodic Actions

Some desk accessories have to perform tasks at certain time
intervals. These might include communications accessories that
have to check for new messages, scheduling accessories that
have to remind the user of appointments, or utilities which
have to check periodically for the status of peripheral devices
(such as the printer). The Alarm Clock standard desk accessory
updates its time display once a second; this update is defined
as a periodic task for that accessory.

SYSTEMTASK allows the Desk Manager access to the processor so
that it can check to see if any desk accessories are ready to
perform their periodic task. You should call SYSTEMTASK as
often as possible, usually once every time through your main
event loop. Call it more than once if your application does an
unusually large amount of processing each time through the
loop.

Note: SYSTEMTASK should be called at least every sixtieth of a
second.

3.4 An Example Program

This Microsoft FORTRAN program implements the standard Apple
menu with the desk accessories available in the current system
file. It is not useful as such, since this menu is available
under the finder, but it illustrates the use of the Desk
Manager calls described above. It is also serves to
demonstrate event processing in an event loop; the basis for
all interactive programs under the toolbox. This is described

in more detail in the Event Manager Manual.
program applemenu
implicit none ! enforce strong typing

* Toolbox definitions.
include toolbx.par

logical temp
integer code

integer*4 eventmask
integer*2 myevent (8)
integer*2 what
integer*4 message
integer*4 when
integer*2 where(2)
integer*2 modifiers

specifies the events of interest
overlying structure
type of event.
extra event information.
time of event in 60ths of seconds
mouse location in global coordinates
state of mouse button

and modifier keys.

Microsoft FORTRAN Compiler

equivalence (myevent(l),what)
equivalence (myevent (2),message)
equivalence (myevent {(4),when)
equivalence (myevent (6),where(l))
equivalence (myevent (8),modifiers)

integer mywindow, whichwindow
integer refnum
character*20 name

* Structure returned by MenuSelect - menu number in high word,
* jtem number in low word.

integer*2 menuitem(2)

integer*4 menusel

equivalence (menuitem, menusel)

integer item4 ! 4 byte version of item number.

* Declare the toolbox interface as an integer function.
integer toolbx

integer menuhandle (3)
logical doneflag ! Exit if true.
logical editflag ! Flag for SYSTEMEDIT.

Close Microsoft FORTRAN 1/0 window
(never make a DISPOSEWINDOW call on this window):

* * * ¥

mywindow = toolbx (FRONTWINDOW)
call toolbx (CLOSEWINDOW, mywindow)

eventmask = -1 ! Every event.

* Most toolbox initialization required is done by runtime. Only Text
* Edit needs to be initialized here.
call toolbx{(TEINIT)

* Set up the apple menu with the apple character for a title and add
* all available desk accessories to it.
menuhandle (1) = toolbx(NEWMENU, 1, char(l) // char(z'l4'))
call toolbx (ADDRESMENU, menuhandle(l), *DRVR')
call toolbx(INSERTMENU, menuhandle(l), O0)

* Set up the file menu.
menuhandle (2) = toolbx (NEWMENU, 2, char{4) // 'File'}
call toolbx (APPENDMENU, menuhandle(2), char(4) // 'Quit')
call toolbx(INSERTMENU, menuhandle(2), 0)

* Set up the edit menu.
menuhandle (3) = toolbx (NEWMENU, 3, char(4) // ‘'Edit')
call toolbx (APPENDMENU, menuhandle(3),
+ char(28) // 'Undo; (-;Cut;Copy;Paste;Clear')
call toolbx(INSERTMENU, menuhandle(3), 0)

Desk Manager

call toolbx{(DRAWMENUBAR)

doneflag = .false.

* Main event loop. Get and process events until doneflag
* is set to .true. by the Quit option under the File menu.
do

* Allow desk accessories to do periodic processing.
call toolbx{(SYSTEMTASK)

* Get the next event and process it.
temp = toolbx (GETNEXTEVENT, eventmask, myevent)
select case (what)
case (1) ! Mouse down.
code = toolbx (FINDWINDOW, where, whichwindow)
select case (code)
case (1) ! In menu bar
menusel = toolbx (MENUSELECT, where)
item4 = menuitem(2)! Convert to 4 bytes.
select case (menuitem(l))
case (1) ! applemenu
call toolbx(GETITEM, menuhandle{l), itemd, name)
refnum = toolbx (OPENDSKACC, name)

case (2) t file menu
doneflag = .true.
case (3) { edit menu

* Ignore the value of editflag;
* if no desk accessory processes the command we ignore it.
editflag = toolbx(SYSTEMEDIT, item4 - 1)
case default ! Ignore any other menu.
end select

* Unhilite the selected menu.
call toolbx(HILITEMENU, 0)

case (2) t In system window
call toolbx(SYSTEMCLICK, myevent, whichwindow)
case default t Ignore other window types.
end select
case default ! Ignore all other events.

end select

if (doneflag) exit
repeat
end

Documentation Report Form

Please tell Microsoft what you think about the documentation that accompanies the
software. Your comments and suggestions help us improve our products. Mail this
questionnaire to:

MICROSOFT Corporation
10700 Northup Way

Box 97200

Bellevue, WA 98009

Attn: Languages User Education

Respond to any or all of the following questions. If you want to make additional
comments, use the back of this page or a separate page.

Product Name: Version Number:

1. Did you find errors in the documentation? Please give the document title, page
number, and a description of the error.

2. Which parts of the documentation do you consider most important? Do you have
any suggestions for improving these parts?

3. Is it easy to find the information you need? Is anything missing?

4. Is the documentation clear and easy to read?

5. What type of user are you?

First-time programmer

__ First-time programmer in this language, but experienced in at least
one other language

— Experienced programmer

MICRESOFT. Software

10700 Northup Way, Bellevue, WA 98004 Problem Report

Name
Street
City State Zip

Phone Date

Instructions

Use this form to report software bugs, documentation errors, or suggested
enhancements. Mail the form to Microsoft.

Category
_ Software Problem Documentation Problem
t
Software Enhancement (Document #)
___ Other
Software Description
Microsoft Product
Rev. Registration #
Operating System
Rev. Supplier
Other Software Used
Rev. Supplier
Hardware Description
Manufacturer CPU Memory_ KB
Disk Size " Density: Sides:
Single Single ______
Double Double

Peripherals

Problem Description

Describe the problem. (Also describe how to reproduce it, and your
diagnosis and suggested correction.) Attach a listing if available.

MICRSSOFT.

	2021-11-10-0001
	2021-11-10-0002
	2021-11-10-0003
	2021-11-10-0004
	2021-11-10-0005
	2021-11-10-0006
	2021-11-10-0007
	2021-11-10-0008
	2021-11-10-0009
	2021-11-10-0010
	2021-11-10-0011
	2021-11-10-0012
	2021-11-10-0013
	2021-11-10-0014
	2021-11-10-0015
	2021-11-10-0016
	2021-11-10-0017
	2021-11-10-0018
	2021-11-10-0019
	2021-11-10-0020
	2021-11-10-0021
	2021-11-10-0022
	2021-11-10-0023
	2021-11-10-0024
	2021-11-10-0025
	2021-11-10-0026
	2021-11-10-0027
	2021-11-10-0028
	2021-11-10-0029
	2021-11-10-0030
	2021-11-10-0031
	2021-11-10-0032
	2021-11-10-0033
	2021-11-10-0034
	2021-11-10-0035
	2021-11-10-0036
	2021-11-10-0037
	2021-11-10-0038
	2021-11-10-0039
	2021-11-10-0040
	2021-11-10-0041
	2021-11-10-0042
	2021-11-10-0043
	2021-11-10-0044
	2021-11-10-0045
	2021-11-10-0046
	2021-11-10-0047
	2021-11-10-0048
	2021-11-10-0049
	2021-11-10-0050
	2021-11-10-0051
	2021-11-10-0052
	2021-11-10-0053
	2021-11-10-0054
	2021-11-10-0055
	2021-11-10-0056
	2021-11-10-0057
	2021-11-10-0058
	2021-11-10-0059
	2021-11-10-0060
	2021-11-10-0061
	2021-11-10-0062
	2021-11-10-0063
	2021-11-10-0064
	2021-11-10-0065
	2021-11-10-0066
	2021-11-10-0067
	2021-11-10-0068
	2021-11-10-0069
	2021-11-10-0070
	2021-11-10-0071
	2021-11-10-0072
	2021-11-10-0073
	2021-11-10-0074
	2021-11-10-0075
	2021-11-10-0076
	2021-11-10-0077
	2021-11-10-0078
	2021-11-10-0079
	2021-11-10-0080
	2021-11-10-0081
	2021-11-10-0082
	2021-11-10-0083
	2021-11-10-0084
	2021-11-10-0085
	2021-11-10-0086
	2021-11-10-0087
	2021-11-10-0088
	2021-11-10-0089
	2021-11-10-0090
	2021-11-10-0091
	2021-11-10-0092
	2021-11-10-0093
	2021-11-10-0094
	2021-11-10-0095
	2021-11-10-0096
	2021-11-10-0097
	2021-11-10-0098
	2021-11-10-0099
	2021-11-10-0100
	2021-11-10-0101
	2021-11-10-0102
	2021-11-10-0103
	2021-11-10-0104
	2021-11-10-0105
	2021-11-10-0106
	2021-11-10-0107
	2021-11-10-0108
	2021-11-10-0109
	2021-11-10-0110
	2021-11-10-0111
	2021-11-10-0112
	2021-11-10-0113
	2021-11-10-0114
	2021-11-10-0115
	2021-11-10-0116
	2021-11-10-0117
	2021-11-10-0118
	2021-11-10-0119
	2021-11-10-0120
	2021-11-10-0121
	2021-11-10-0122
	2021-11-10-0123
	2021-11-10-0124
	2021-11-10-0125
	2021-11-10-0126
	2021-11-10-0127
	2021-11-10-0128
	2021-11-10-0129
	2021-11-10-0130
	2021-11-10-0131
	2021-11-10-0132
	2021-11-10-0133
	2021-11-10-0134
	2021-11-10-0135
	2021-11-10-0136
	2021-11-10-0137
	2021-11-10-0138
	2021-11-10-0139
	2021-11-10-0140
	2021-11-10-0141
	2021-11-10-0142
	2021-11-10-0143
	2021-11-10-0144
	2021-11-10-0145
	2021-11-10-0146
	2021-11-10-0147
	2021-11-10-0148
	2021-11-10-0149
	2021-11-10-0150
	2021-11-10-0151
	2021-11-10-0152
	2021-11-10-0153
	2021-11-10-0154
	2021-11-10-0155
	2021-11-10-0156
	2021-11-10-0157
	2021-11-10-0158
	2021-11-10-0159
	2021-11-10-0160
	2021-11-10-0161
	2021-11-10-0162
	2021-11-10-0163
	2021-11-10-0164
	2021-11-10-0165
	2021-11-10-0166
	2021-11-10-0167
	2021-11-10-0168
	2021-11-10-0169
	2021-11-10-0170
	2021-11-10-0171
	2021-11-10-0172
	2021-11-10-0173
	2021-11-10-0174
	2021-11-10-0175
	2021-11-10-0176
	2021-11-10-0177
	2021-11-10-0178
	2021-11-10-0179
	2021-11-10-0180
	2021-11-10-0181
	2021-11-10-0182
	2021-11-10-0183
	2021-11-10-0184
	2021-11-10-0185
	2021-11-10-0186
	2021-11-10-0187
	2021-11-10-0188
	2021-11-10-0189
	2021-11-10-0190
	2021-11-10-0191
	2021-11-10-0192
	2021-11-10-0193
	2021-11-10-0194
	2021-11-10-0195
	2021-11-10-0196
	2021-11-10-0197
	2021-11-10-0198
	2021-11-10-0199
	2021-11-10-0200
	2021-11-10-0201
	2021-11-10-0202
	2021-11-10-0203
	2021-11-10-0204
	2021-11-10-0205
	2021-11-10-0206
	2021-11-10-0207
	2021-11-10-0208
	2021-11-10-0209
	2021-11-10-0210
	2021-11-10-0211
	2021-11-10-0212
	2021-11-10-0213
	2021-11-10-0214
	2021-11-10-0215
	2021-11-10-0216
	2021-11-10-0217
	2021-11-10-0218
	2021-11-10-0219
	2021-11-10-0220
	2021-11-10-0221
	2021-11-10-0222
	2021-11-10-0223
	2021-11-10-0224
	2021-11-10-0225
	2021-11-10-0226
	2021-11-10-0227
	2021-11-10-0228
	2021-11-10-0229
	2021-11-10-0230
	2021-11-10-0231
	2021-11-10-0232
	2021-11-10-0233
	2021-11-10-0234
	2021-11-10-0235
	2021-11-10-0236
	2021-11-10-0237
	2021-11-10-0238
	2021-11-10-0239
	2021-11-10-0240
	2021-11-10-0241
	2021-11-10-0242
	2021-11-10-0243
	2021-11-10-0244
	2021-11-10-0245
	2021-11-10-0246
	2021-11-10-0247
	2021-11-10-0248
	2021-11-10-0249
	2021-11-10-0250
	2021-11-10-0251
	2021-11-10-0252
	2021-11-10-0253
	2021-11-10-0254
	2021-11-10-0255
	2021-11-10-0256
	2021-11-10-0257
	2021-11-10-0258
	2021-11-10-0259
	2021-11-10-0260
	2021-11-10-0261
	2021-11-10-0262
	2021-11-10-0263
	2021-11-10-0264
	2021-11-10-0265
	2021-11-10-0266
	2021-11-10-0267
	2021-11-10-0268
	2021-11-10-0269
	2021-11-10-0270
	2021-11-10-0271
	2021-11-10-0272
	2021-11-10-0273
	2021-11-10-0274
	2021-11-10-0275
	2021-11-10-0276
	2021-11-10-0277
	2021-11-10-0278
	2021-11-10-0279
	2021-11-10-0280
	2021-11-10-0281
	2021-11-10-0282
	2021-11-10-0283
	2021-11-10-0284
	2021-11-10-0285
	2021-11-10-0286
	2021-11-10-0287
	2021-11-10-0288
	2021-11-10-0289
	2021-11-10-0290
	2021-11-10-0291
	2021-11-10-0292
	2021-11-10-0293
	2021-11-10-0294
	2021-11-10-0295
	2021-11-10-0296
	2021-11-10-0297
	2021-11-10-0298
	2021-11-10-0299
	2021-11-10-0300
	2021-11-10-0301
	2021-11-10-0302
	2021-11-10-0303
	2021-11-10-0304
	2021-11-10-0305
	2021-11-10-0306
	2021-11-10-0307
	2021-11-10-0308
	2021-11-10-0309
	2021-11-10-0310
	2021-11-10-0311
	2021-11-10-0312
	2021-11-10-0313
	2021-11-10-0314
	2021-11-10-0315
	2021-11-10-0316
	2021-11-10-0317
	2021-11-10-0318
	2021-11-10-0319
	2021-11-10-0320
	2021-11-10-0321
	2021-11-10-0322
	2021-11-10-0323
	2021-11-10-0324
	2021-11-10-0325
	2021-11-10-0326
	2021-11-10-0327
	2021-11-10-0328
	2021-11-10-0329
	2021-11-10-0330
	2021-11-10-0331
	2021-11-10-0332
	2021-11-10-0333
	2021-11-10-0334
	2021-11-10-0335
	2021-11-10-0336
	2021-11-10-0337
	2021-11-10-0338
	2021-11-10-0339
	2021-11-10-0340
	2021-11-10-0341
	2021-11-10-0342
	2021-11-10-0343
	2021-11-10-0344
	2021-11-10-0345
	2021-11-10-0346
	2021-11-10-0347
	2021-11-10-0348
	2021-11-10-0349
	2021-11-10-0350
	2021-11-10-0351
	2021-11-10-0352
	2021-11-10-0353
	2021-11-10-0354
	2021-11-10-0355
	2021-11-10-0356
	2021-11-10-0357
	2021-11-10-0358
	2021-11-10-0359
	2021-11-10-0360
	2021-11-10-0361
	2021-11-10-0362
	2021-11-10-0363
	2021-11-10-0364
	2021-11-10-0365
	2021-11-10-0366
	2021-11-10-0367
	2021-11-10-0368
	2021-11-10-0369
	2021-11-10-0370
	2021-11-10-0371
	2021-11-10-0372
	2021-11-10-0373
	2021-11-10-0374
	2021-11-10-0375
	2021-11-10-0376
	2021-11-10-0377
	2021-11-10-0378
	2021-11-10-0379
	2021-11-10-0380
	2021-11-10-0381
	2021-11-10-0382
	2021-11-10-0383
	2021-11-10-0384
	2021-11-10-0385
	2021-11-10-0386
	2021-11-10-0387
	2021-11-10-0388
	2021-11-10-0389
	2021-11-10-0390
	2021-11-10-0391
	2021-11-10-0392
	2021-11-10-0393
	2021-11-10-0394
	2021-11-10-0395
	2021-11-10-0396
	2021-11-10-0397
	2021-11-10-0398
	2021-11-10-0399
	2021-11-10-0400
	2021-11-10-0401
	2021-11-10-0402
	2021-11-10-0403
	2021-11-10-0404
	2021-11-10-0405
	2021-11-10-0406
	2021-11-10-0407
	2021-11-10-0408
	2021-11-10-0409
	2021-11-10-0410
	2021-11-10-0411
	2021-11-10-0412
	2021-11-10-0413
	2021-11-10-0414
	2021-11-10-0415
	2021-11-10-0416
	2021-11-10-0417
	2021-11-10-0418
	2021-11-10-0419
	2021-11-10-0420
	2021-11-10-0421
	2021-11-10-0422
	2021-11-10-0423
	2021-11-10-0424
	2021-11-10-0425
	2021-11-10-0426
	2021-11-10-0427
	2021-11-10-0428
	2021-11-10-0429
	2021-11-10-0430
	2021-11-10-0431
	2021-11-10-0432
	2021-11-10-0433
	2021-11-10-0434

