IgyB

Graphlcs and Sound
Programming
echmques

o0 FOR THE MAC

) The essential
guide to
programming
sound and
graphics for
the Mac

Covers
QuickDraw GX
and QuickTime

J Includes complete
coverage of
speech on the Mac

Dan Parks Sydow

GRAPHICS AND SOUND
PROGRAMMING TECHNIQUES
FOR THE MAC

Dan Parks S]{dow

M&I'

[

08

§)

M&T

[s

E

en

M&T Books

A Division of MIS:Press, Inc.

A Subsidiary of Henry Holt and Company, Inc.
115 West 18th Street

New York, New York 10011

Copyright © 1995, by Dan Parks Sydow.
Printed in the United States of America

All rights reserved. No part of this book may be reproduced or transmitted in
any form or bz any means, electronic or mechanical, including photocopying,
recording, or by any information storage and retrieval system, without prior
written permission from the Publisher. Contact the Publisher for information
on foreign rights.

Limits of Liability and Disclaimer of Warranty

The Author and Publisher of this book have used their best efforts in greparing the
book and the programs contained in it. These efforts include the development,
research, and testing of the theories and programs to determine their effectiveness.

The Author and Publisher make no warranty of any kind, expressed or implied,
with regard to these programs or the documentation contained in this book. The
Author and Publisher shall not be liable in any event for incidental or consequential
damages in connection with, or arising out of, the furnishing, performance, or use
of these programs.

All products, names and services are trademarks or registered trademarks of their
respective companies.

Wayzata sound files and QuickTime movie distributed with permission of
Wayzata Technology. Screen snapshots of the Robot movie used with permission
of Wayzata Technology.

Library of Congress Cataloging-in-Publication Data
Graphics and sound programming for the Mac / by Dan Parks Sydow.

. cm

Inc}l)udes index.

ISBN 1-55851-442-2

1. Macintosh (Computer)—Programming. 2. Computer graphics.
3. Computer sound processing. L Title.

IN PROCESS
006.6'765—dc20 95-40387
CIp
10987654321

Associate Publisher: Paul Farrell

Managing Editor: Cary Sullivan Production Editor: Anne Incao
Development Editor: Michael Sprague Technical Editor: Pete Ferrante
Copy Edit Manager: Shari Chappel Copy Editor: Winifred Davis

Dedication

To Nadine and Taylor Ann
—Dan

ficknowledgments

Michael Sprague, Development Editor, M&T Books, for keeping things
rolling and on schedule.

Anne Incao, Senior Production Editor, M&T Books, for another fine
page layout effort.

Winifred Davis, Copy Editor, for making it appear that I really do
know how to write!

Peter Ferrante, Apple Computer, for another helpful technical review.

Carole McClendon, Waterside Productions, for making this book
happen.

Jeffery Garland, M.D., St. Joseph’s Hospital, Milwaukee, Wisconsin,
for choosing medicine as your profession, and for bypassing convention!

Karen Heine, RN, St. Joseph’s Hospital, Milwaukee, Wisconsin, for
providing help as both a professional and a person—Taylor’s parents
will always remember you!

CONTENTS

WHy This Book Is For You XV

CHAPTER 1 = INTRODUCTION TO MACINTOSH GRAPHICS AND SOUND......cc0ees.]

Graphics, Sound, and This BOOKcccouvuueiiuniririnieiniiicciiinaines 1
SouUNd PIaying......ccceuevueiiimeiiiniiiieisei e 2
Sound Recording.........cccueiriniuirninieinii i esasssssaes 2
SPEECN ...ttt 3
ANIMAION ..ot 4
QUICKDIAW GX .ottt tesressessestesaesnessssssessessessessesaessesaesassassessesessans 5
QUICKTIME IMOVIES....euvereerierenrireeresresresrensesseraesesesessassessassessesersessessessesessessens 5
QuickTime Musical INStrUMENtScoveveruerreeecieirieeieinrerecreeeeecseeesesaeneens 7
A Complete Example Program.......ccooeeieieicieieininciccecneeinnsnes 8

NOW ..t bbb 9

CHAPTER 2 = SOUND PLAYING n

The Sound Managercccouuiiiucmnmninnieiiiese s sassssans 12
The Sound Manager Version 3.0......ccocoeuenierninininienninicinieeeesssenees 12
Synchronous and Asynchronous Sound Playccccvvimiinnienininnnne. 13

SOUNA RESOUICEScoovvirirriininiiniiiisie sttt rsbesnsaaes 13
About SoUNd RESOUICTESccuvuvemimiiiiriirirniiiiiiisisseeiensssesesesssisessses 13
Playing a Sound RESOUICEceemuemmuriiuinricieseisi s 15
Now, Really Playing a Sound Resourceccocouvereeeerirnnicncnerencnens 16
Chapter Example: SOUNARESOUICEc.ouivimeveeiciririccrerenes 19

Sound Channels ... 22
Allocating and Disposing of a Sound Channelccccoovivirininninnene. 22
Using a Sound Channel............coooieeiiiiniieieve s 26
Chapter Example: SoundChannelIntro.........c.ocooevemiiinrencnininiersinnen, 27

Sound CommMANAS ..o 29
About Sound CommANAS ..o s 30
Chapter Example: SoundCommands...........cccoeueueeverrcunincicuneaneninesinenens 34

Asynchronous Sound Play ... 36
An Approach to Playing a Sound Asynchronously.............ccccevuerennneee. 36
The Callback Command and Callback Routinecccocvvuvivincuirireannns 38
Installing the Callback Command in the Command Queue................. 43
The Sound Callback ROUHINEc.c.oimiimimiiiiiiiiiiceccccne s 46
Starting the Sound and Animation.........cc.cueveeeveieiiieccenneceeee 52

Graphics and Sound Programming Techniques for the Mac

Performing Animation While a Sound Plays.........ccccccevuvverniniivninrennnnns 56
Chapter Example: AsynchSndPlaycocveueeeieecrcininicinisieicinns 60
More Asynchronous SOUNd..........cevmiinincinnicc s 70
Allowing User Input While a Sound Plays...........ccccoeviuiiiinininccncininnnnnes 70
Chapter Example: ASsynchSndEvt ..., 72
Sound Commands and Asynchronous Sound Play.........c.ccccecovsunrurruenneee 76
SndDolmmediate() and Sound Volume...........cccccevevrerninereeinnneererenens 77
SndDolmmediate() and Sound Pitchcccevevvereennnnenenneeeeenes 80
Chapter Example: MoreSndCommands.............cccoveiivnininieicennincnninns 82
SUINIMATY «..oviiiniirrrnr bbb es 86
CHAPTER 3 = SOUND RECORDING 87
Sound INPut DEVICESccoviriviiiiiiriiniinitceeeeereen e seanes 87
Recording a Sound t0 MemMOTYccommmiimininicicininicies s 90
Sound Data and MemOTYccccuvmieriniiiiiciiciicccniessesssesaees 90
Allocating a Memory Block for Sound Data..........cccoeueveeuriciiricinininnnens 93
Recording the Sound Data to MemOTycccoeuveimeinierniiriinncnnicnnnens 96
Chapter Example: SoundRecord.........cvuviiiiiciieniciiiciicciicnciiens 98
Playing Back a Recorded Sound..........ccocuiiiiuiicuniniinciiciiciiecienaenes 102
Using the Handle to the Recorded Sound...........ccoooeniiiiiniicinnnnnnn. 102
Chapter Example: SoundHandle...........c..ccooviiiiniiniiiicinins 104
Saving a Recorded Sound to a snd Resource..........ccooeeuvrrreinciriniicrennnnens 107
The Format of Sound Data in Memoryc.ccceceviveernmerenicrernerereesenens 107
Saving Sound Data to a snd Resourcecccoerueerrcivcinenciecinnnennes 108
Chapter Example: SaveSound..........ccoeuviciciicinininciiciicnieiciinees 111
Sound Quality and Disk Storage Space...........cccccoivirrniiicivncrninineace. 116
SUIMMATY ..ot sesseerasese s seeseseasassassesssencs 119
CHAPTER & = SPEECH 121
The Speech Managercccurueuiucirieiniiiccissssss s sssseseens 122
The Speech Manager and Speech Synthesizers............cccocooveurieinnennnne. 122
Voices and Speech Synthesizersccooouuievvrieiireiciiiciniciine, 124
Checking for the Availability of the Speech Manager...........cccccceuuuuuee. 125
Speaking a Stringc.cceiveiveinininii s 126
The SpeakString() Toolbox FUNCHON. ..ot 126
Chapter Example: QuickSpeech ..o 127
Speaking More Than One Stringccoiivcncinicnicnniicnenenes 129
Chapter Example: WaitSpeech..........ccoceiiciiiiiiniciicicsiecnaes 131
User Input and Speech ..., 131
Chapter Example: InputSpeech ... 132

Resource Strings and Speech.........cocceviiiiiiicieiecnes 135

Contents

Chapter Example: ResourceSpeech..............ccouiuririiciiicincenininencneinens 137
Speech Channels ... 140
Allocating and Disposing of a Speech Channel..............cccccoucuvcuvcunaee 141
Using a Speech Channel.............ccoooniiiinciccs 143
Chapter Example: SpeechChannelIntro..........c.cocccvuvicicieiencnnincinciennens 144
VOIS ..ottt s 146
Specifying @ VOICecovuvucuicieiteieit s sasaseseaees 146
Obtaining a Voice Description for a VOice..........ccccvururcuiiciiieniuennnns 148
Chapter Example: ChangeVoicecoewuiciiivininininiiisiiisiinesnens 152
SUMINATY ..ottt ssessesencs 159
(U1 LT R R— . . 161
Monochrome Animation and CopyBits()........cccovuvuveeuirnienurinicerereencennee 162
Bit Images and BitMapsc.cccoeevnieinirinicitc s 162
BitMaps, Graphics Ports, and Windows..........c.ccccccviencicicinncnnincnccnnn. 166
BitMaps and Graphics Ports Without Windows............ccccceecuiicninnnce. 168
Creating a New BitMapc.cocooveenieieiniiiicc e 176
Copying @ BitMapcccocuiieirininn e 180
Chapter Example: CopyBitsB&W...........ccccuvvviurieicrvieineenecicieircrnennes 185
Color Animation and GWOrlds ...t 192
Color Images and PIXMaps.......ccoceuimruriiiniiiicniiniecieetesieseseesssscseses 192
Pixel Maps, Color Graphics Ports, and the GWorld............cccccecuruunece. 193
Checking for the Availability of GWorlds..........cccccocuniiiiiniiiinicicnnees 194
Creating a GWorld and its PIiXMapc.cccoccueiriiiriricinciicnicniienene 195
Using GWorlds for Animation..........coeeeuieinieiciicinnccncnciinnens 198
CopyBits() and Color ANIMatioN........ccucieuverivienicrsiinenesneesiesenersscssens 199
Chapter Example: GWOTLAS........ccocvvunirnminciciciiiiiecsecssises 216
SUIMIMATY ..ottt nas s 225
CHAPTER 6 » QuickDRaw GX — —71
About QUICKDIaW GX.....coooovirierieerenrenieriesienietesereseee s esssesessessessesseseesessen 228
Object and Shapes ..ot eessenes 228
QuickDraw vs. QUIickDraw GXcccceeeveeerenreereereereerereeeneereeseenesesseenes 229
Chapter Example: PoorMansQDGXccccoovruniininninininininiciininnns 230
Readying a Program for QuickDraw GX.........cccccouvueiiivininininicnnncnnicneenines 235
Checking for QUickDraw GX.......cooeivmereiiininiiniiiciiniicscsessssisensenes 235
Initializing QuickDraw GX.......ccocoveinimieininiiiiciiccicncisiecsnes 238
Terminating a QuickDraw GX Applicationcccecvvevevueienicicuniennnnens 243
Chapter Example: QDGXINETOccevevuevmiiiisiniciciiiiciscsscieesenes 244
Windows and QuickDraw GX......cccevveereerenieveieieeeeerieeieeeeeeessesessense 250

Chapter Example: QDGXWINAOWcccouveueveieiuciniieiiicicieiiiinees 252

Graphics and Sound Programming Techniques for the Mac

Graphic Shape ObJECtSccovvuireriieiiniietiet e 254
Creating and Drawing a Shape Object............cccocovererrririervcrnineiecieinines 255
Chapter Example: QDGXShape...........ccoruviriniiiirinincininiiincniens 259
Shape Object Propertiescccuuirrcuevniiciniciscinicsie e 260
Shape Object Style Properties..........c.coccvirueiuciniciiieiniicininiiciccnnens 262
Shape Object Ink Propertiesccoueueueirueicierciieieicniesicinienens 262
Chapter Example: QDGXProperties.............cooovivirinirnrninierveinicisnnnnnes 266
Shape Object Transform Properties..............ccccoveveereicreiiicinniinciniennns 267
Chapter Example: QDGXMapPPINgccovuvueerrrrunimeiniiininnisicinisnenenes 267

SUMIMATY ..ottt sans 271

CrapTER 7 = QuickTIME Movies 273

The MoVie TOOIDOX.......c.ciiimiiiniiniiii e sssesenss 274
Checking for QUICKTIMEcccvevrvrriciciiccc i 276
Initializing the Movie TOOIDOX.......cccouuruierueiminiiiicrcinis e 277

Loading @ MOVie ...t 278
Opening a Movie File ...t 279
Loading a Movie from a File ... 281
Closing a Movie File ... 285

Displaying a MOVI€........cccceurinininiiintinii et sasnans 285
Setting the Movie Graphics World—SetMovieGWorld()c.cccco..... 286
Resizing the Display WindOw ..o, 286

Playing a QuickTime MoVie.........ccoveuiimririniciiccc e 289
Preparing a Movie for Playing ..., 289
Playing @ MOVI€......coceveieriiiienini s s 290
Cleaning Upceverimiiinninieii s sssnes 291
Chapter Example: QUickPlayc.cooeviiiviciiiiiciicnicninines 291

Chapter Example: MovieDialogccoouueuiiicvnicecniccicicncnciiees 294
The MovieDialog Programccececiciiiiniiciicicceseeienes 294
The MovieDialog ReSOUICES.........ccvuuriurrirerteiiinrieinrtsese e 296
The MovieDialog Source Code Listingccccccoeuiiviiiiinuvincncecinicinnnas 300
Improving the MovieDialog Programcccocovevvivieininnnncincinnnes 306

Chapter Example: SelectMovVie ..., 307

Movie COMUTOLEIS ... e 310
About Movie Controllers ... 310
Attaching a Movie Controller to a Movie...........ccoccovcnieininnncinincinas 311
Movie Controllers and the Event Loopcocccvcniinninicnnccninninencn, 314
Chapter Example: QuickController ..o, 317
Movie Controllers and Movie LOOPINgcooevciiiiiviiniiinininnacn. 321
Chapter Example: MovieLoOPINg ..., 322

Chapter SUMMATYccoociiiininiri s 323

CHAPTER 8 = QuICKTIME MusicAL INSTRUMENTS 325
About QUICKTIME MUSIC ...covevvereereerereneeninnteeneeesreeseesaesessessesens w326
The Note ALlOCAtOrcuouiuiiveiciiniisieiisaaes 326
Opening a Note Allocator Component 327
ToneDescription: Describing an Instrument 327
Describing a Note Channel................... 329
Opening a Note Channel ... 330
Playing a Noteccccovuvernricnirnnrerennnenns 331
Chapter Example: PlayNote........cc.cccoeuerrrunnee. .334
Chapter Example: PlayScale................. - cereeensnsanaen 336
Selecting an INSLIUMENEccururmreirrrnieiini s seasessssnns 337
Adding the Instrument Picker Dialog Box to a Program..................... 339
Chapter Example: PickInstrumentcccoecvmiinenicisisccnrnnnniines 340
Chapter Example: PickANdPIaycccccoveiniererrrineeniereciencenssesiesnaes 344
SUMIMATY ..ot be b bns 347
CHAPTER 9 = APPLICATION: QuicKTIME MoviE EDITOR 349
Movie EdIting......cccovviiriiininiierieieetssn e sas s nens 350
Movie Editing and the Movie Controllerccocvereiernnnnrnerennnnnnens 350
Movie Toolbox Movie Editing Routines.............cccocvrueuvcuvnmrinecuncencrennes 351
Saving an Edited MOVIe........ccorvuiivmrernmenerciineerereieseseaesenens 357
Saving a Movie with a “Save” Menu Itemcccocoeuerienvernivcienennnes 357
Saving a Movie with a “Save As” Menu Item cerererenersienes 358
Working with Multiple MOVIESc.ccovuriirririeinicttr s 362
Window Records and Extra Window Data..........cccceeuuevrrnuenneee. ...362
Accessing the Application-Defined Window Structure........................ 366
Example Program: FIIMEdit.........ccoovveniniimiitciiniciisensnens 371
The FilmEdit ReSOUICES........cccceureverienieeneintnisstese et sssnennes 372
Program InitialiZationcceeeueiineineiniininisisscsei st 373
The Main Event Loop and Menuscccomeennieintnicscsienecensenees 376
The Main Event Loop and Movie Controllers.............cc.coceereeresreernnnnn 380
The Main Event Loop and Event Handlingcccecooeuevuenieincicrecennnnnnas 381
The Application-Defined Window Structure....... 390
Updating Multiple MOVIESccceeveiremiiireriieienicee st ncssssennnes 395
The Movie Controller Action Filter Functioncccovvuevvuvncnncesinenee. 397
Handling Apple Menu Item Selectionscccocovuveveivennenernerenncneennens 401
Handling the File Menu Open Item ..ot 401
Handling the File Menu Close Item ...t 403
Handling the File Menu Save Item...........ccooveeiiieeornnencciiienennns 404
Handling the File Menu Save As Item............coconnrieencinienriennes 405

Handling the File Menu Quit Item...........coooviiiiinirennen 406

Graphics and Sound Programming Techniques for the Mac

Xii
Handling Edit Menu Item Selections.............coccceuiveciininecicceninininnencecnee 407
The FilmEdit Project File Organizationc.cceeccninicncciniiesenencs 409
SUININATY ..cvviricrececrcirinrceeeertrss e s seesees e e sesseseasseseesenssnens 414
ApPENDIX A = GENERAL MIDI INSTRUMENT NUMBERS 417
ApPENDIX B = THE A5 WORLD 425
Switching the Contents of AS.........ccceeicininiissaes 425
Macintosh Memory, the A5 World, and the A5 Register...................... 426
Keeping Track of the Value in an Application’s A5 Register 428
Callback Routines and the A5 Register.............cccooevcervcreenennuecsiennencnns 430
The AsynchSndPlay Example Program............cccecvcuvirviunrcincrnnnninnceines 433

INDEX 439

Why This Book
Is for You

From the beginning, graphics and sound are what the Macintosh has
been all about. For the Macintosh user, applications that include pictures,
animation, movies, and sound have made working with computers fun.
For the programmer, however, things haven’t always been so fun. Such
topics as pixel maps, asynchronous sound, and offscreen animation are
all new experiences for any anyone coming from a programming back-
ground that doesn’t include graphical user interface programming. Even
those who have programmed the Mac for quite some time find these topics
bewildering. Documentation is often sketchy and example source code
hard to come by. Now, that’s all changed.

This book provides detailed discussions, plenty of figures, slow walk-
throughs of source code listings, and short, straight-to-the-point examples
that will get all the fun and exciting multimedia features such as sound,
speech, and animation out of the books and into your own programs.

If you are:

* A programmer who has been hesitant to try to add graphics and
sound features to a program

* A programmer who has tried to understand such topics as off-
screen animation, and given up

Graphics and Sound Programming Techniques for the Mac

* Someone who wants a single reference for all of the most popular
multimedia programming techniques

¢ A programmer looking for documentation on the newest Apple
software, such as QuickDraw GX and QuickTime Musical
Instruments

* A person who would like to know some of the basic game pro-
gramming techniques such as asynchronous sound, flicker-free
animation, and QuickTime movie-playing

...then this book is for you.

What You Need

To get the most out of this book, you'll need an understanding of either the
C or C++ language. While you don’t need to know advanced Macintosh
programming techniques, you should be familiar with the Macintosh
Toolbox and have programmed on the Macintosh.

Standalone, executable versions of each of the more than thirty example
programs can be found on this book’s CD. You can test drive them even
if you don’t own a compiler. To make changes to the code and recompile
it, you'll need an integrated development environment (IDE). That’s the
fancy term for what used to be called a compiler. If you look on this book’s
CD you'll find that M&T Books has supplied a few versions of each
example. Whether you have the THINK C, Symantec C++, or Metrowerks
CodeWarrior C/C++ compiler, there are project files, source code files,
and resource files that will work for you. There are also separate sets of
project files for owners of PowerPC Macs and owners of Macs with a
680x0 CPU.

Because much of the code in the examples depends on Toolbox
routines not found in System 6, you should try compiling the examples
on a Mac that’s running any version of System 7 or, soon, the Copland
operating system.

Because the book comes bundled with a CD, you'll of course need a
CD-ROM drive to access all the neat stuff on the CD. Or, you'll need to

find a friend or coworker with a CD-ROM drive. He or she can copy the
most important files from the CD to a few floppy disks for you.

Why This Book Is for You

What’s on the CD

Source code, source code, source code. When learning programming
techniques, you can never get too much source code to study. As men-
tioned, the CD holds several versions of each of the more than 30 example
programs from the book—a different version for each of the most popular
compilers.

You'll find that the CD has a folder that holds sound files—a couple
dozen digitized sounds you can use in your own programs. There’s also a
few QuickTime movies you can play or edit—including the talking robot
QuickTime movie pictured in Chapter 1.

Finally, there are numerous shareware and freeware programs on the
CD—all related to graphics and sound, of course. You'll find such goodies
as animation libraries, sound files converters, and a utility that turns
pictures into pixel patterns (PixPats) that you can use as a desktop pattern
or window background in your own programs.

CHAPTER 1

Introduction to
Macintosh Graphics
and Sound

Graphics and sound programming means multimedia. What exactly can
you expect to do with multimedia programming? If you skim through
this chapter before digging in, you'll get an overview of the many topics
covered in this book. Getting a hint of what’s in store will start you
thinking—thinking about that game, instructional software, or movie,
graphics, or sound-editing utility that’s just waiting to be developed!

Graphics, Sound, and This Book

The nine chapters that make up this book offer a wealth of exciting pro-
gramming topics and techniques—the next several pages summarize
what you'll find in the 400-plus pages that follow.

Graphics and Sound Programming Techniques for the Mac

Sound Playing

For a programmer, adding sound-playing features to applications that
run on a computer known for its multimedia capabilities should be
easy—and it is. A single Toolbox function will play a sound resource
that’s tucked in your application’s resource fork. But if you want to
play a sound while other action takes place—your programming efforts
need to increase. Chapter 2 shows you how to do the easy stuff, such as
playing a digitized sound—and the more difficult, such as playing a
digitized sound while animation takes place. Figure 1.1 shows the win-
dow from one of the example programs in Chapter 2. Here the cartoon
bear slides across ice as classical music plays.

== Newllindow=——————

FIGURE 1.1 Asynchronous sound—a Chapter 2 program
that plays music while animation takes place.

Sound Recording

If your application plays sounds, you might consider letting the user
record the sounds to play. You can let the user do so right from within
your own application. Figure 1.2 shows the standard Record dialog box
that you can add to your programs—Chapter 3 examples show you how.

Chapter 1 = Introdaction to Macintosh Graphics and Sound

Q=) [i]] <o

Record Stop Pause Play

| —]
0 seconds 45 m

FIGURE 1.2 The standard Record dialog box
that you can add to any of your programs.

Speech

If you want your program to speak, you can digitize voices, store them
in your application’s resource fork, and then use the sound-playing
techniques described in Chapter 3 to play these sounds. That, however,
takes careful planning of the exact text that is to be spoken and requires
a lot of disk space. Instead, you’ll want to store as text the words that
your program will speak, then rely on the Speech Manager to speak
that text. Text is easy to type into a program or resource, is easy to edit,
can be entered by the user, and takes up very little disk space. Figure 1.3
shows a practical use for speech. Here, the user is allowed to type in
different phrases for a character in a game.

" To hear.a phrase, click the
speaker button

FIGURE 1.3 An example of a dialog box that takes advantage of the Speech Manager.

3

A

Graphics and Sound Programming Techniques for the Mac

Using the Speech Manager, your program will not only have the
ability to choose what to say, it will have the power to choose who will
say it. That’s because your Mac hosts a number of voice synthesizers—
components that let your program speak in the voice of a child, an
adult—even a robot. Read Chapter 4 for a description of how to add
text-to-speech capabilities to your programs, and how to select from the
numerous available voices.

@nimation

Smooth, flicker-free color animation. What Macintosh game would be
considered first-rate without it? If you've only experimented with moving
an object on the screen, you've probably encountered the dreaded prob-
lem of flicker. In Chapter 5, you'll see how to use offscreen bitmaps to add
smooth animation to any of your programs. Figure 1.4 shows how one of
the example programs from this chapter looks. Here, the balloon smoothly
glides across the background without flicker and without obscuring the
background. In fact, as the balloon moves you'll even be able to see the
background through the three clear, round panels in the balloon.

FIGURE 1.4 A Chapter 5 example program that displays flicker-free color animation.

Chapter 1 = Introduction to Macintosh Graphics and Sound

QuickDraw GX

QuickDraw has been the source of all Macintosh graphics for a decade.
Now there’s a new QuickDraw—QuickDraw GX. This powerful, object-
oriented version of QuickDraw works in conjunction with the old, orig-
inal (but still useful) version—as shown in Figure 1.5. In Chapter 6,
you'll see how your program can get ready for, and take advantage of,
QuickDraw GX.

QuickDraw graphics port QuickDraw GX view port

EE==——= New|Wipdow =

Qb GX

U

= New Window

T
(=
i

FIGURE 1.5 QuickDraw GX adds a new type of port—the view port—
to the Mac’s graphics programming environment.

QuickTime Movies

Chapter 5 shows you how to create your own animated sequences and
play them in an application. There is, of course, another way to achieve
animation. Chapter 7 tells you all about QuickTime movies—how
they’re stored, how to open them, how to play them.

You're used to seeing QuickTime movies played in a window with a
movie controller attached to it—like the ones shown in Figure 1.6. But a

Graphics and Sound Programming Techniques for the Mac

movie can also be played within a dialog box, with or without a controller.
Figure 1.7 shows an example of a program that displays movies in an inset
area of such a dialog box. Chapter 7 explains just how this can be done.

E Gorilla =——[I=

FIGURE 1.6 QuickTime movies that use movie controllers.

Atlantis
Challenger
Columbia
Discovery
Apollo
Planets
Astronauts
Spacewalks

%K

Clear

FIGURE 1.7 A dialog box with an area devoted to movie display.

Chapter 1 = Introduction to Macintosh Graphics and Sound

QuickTime Masical Instruments

For the musically inclined, creating tracks of cool-sounding music is no
problem. For the rest of us, a software package that includes more than
100 instruments and an interface that allows sounds from these instru-
ments to be easily added to a program would be a blessing. Consider
yourself saved—the QuickTime Musical Instruments extension is such a
package. Chapter 8 shows you how to use this new extension to select
instruments and then play music from them—within any of your appli-
cations. In that chapter, you'll also see how to display the Instrument
Picker dialog box shown in Figure 1.8. This dialog box provides an
interface that allows users of your program to choose the instruments
they want to hear.

l No Instrument |
Select an inst

Piano
Chromatic Percussion
atego Organ

Guitar 0000 e
Instrument: Bass ‘ §
Strings & Orchestra
Ensemble
E E Brass
Reed

Pipe
synth Lead 0K il
Synth Pad
Synth £Frrect
Ethnic
Percussive
Sound Effects

Best Synt

Drum Kits

FIGURE 1.8 The Instrument Picker dialog box
can be easily added to any of your programs.

Graphics and Sound Programming Techniques for the Mac

A Complete Example Program

The first eight chapters contain a total of more than 30 example programs—
you'll find the listings in this book, the source files and projects on the
CD. These example programs are short, simple, and to the point. That
makes it easy for you to pull out the code you need for your own pro-
grams. If you're the type of programmer who also learns by seeing the
source code for a more complete program—such as one with multiple
window-handling capabilities, file editing, and menu items for opening
and saving files—then Chapter 9 is for you. This chapter provides a
complete walk-through of the source code for a QuickTime movie editing
program. The FilmEdit program allows the user to open multiple movie
files, play them one at a time or simultaneously, copy frames from one
movie to another, and save any changes that are made. Figure 1.9 shows
two different-size movies being played by FilmEdit.

FIGURE 1.9 The Chapter 9 FilmEdit program allows multiple,
different-size movies to be open at the same time.

Chapter 1 = Introduction to Macintosh Graphics and Sound

NOWl am

Now you know what’s in store for you in the next several hundred pages.
You can jump to the chapter of interest right now, or read and learn from
cover to cover. Either way, now is the time to begin.

CHAPTER 2

Sound Playing

The Mac has always been known for its graphics abilities—but its sound-
playing powers are equally as impressive. In this chapter, you'll see
how to take advantage of the latest release of the Sound Manager to
add sound to any of your Mac applications.

Sounds can conveniently be stored as resources in the resource fork
of a Macintosh application. Here you'll see how to load and play such a
resource. You'll also learn how to allocate a sound channel in which to
play a sound. The topic of sound channels will be especially important
when you learn about asynchronous sound playing—the playing of a
sound while other action takes place. Because asynchronous sound
playing is such an important part of interesting and exciting applications
such as games and multimedia educational software, this topic is covered
in great detail. Here you'll see several examples of how to play a sound
while animation takes place. Finally, you'll discover how to alter features
of a sound, such as its volume and rate, as the sound plays.

n

12

Graphics and Sound Programming Techniques for the Mac

The Sound Manager

The Sound Manager is a set of system software routines that provide
programmers with the means of playing and altering existing sounds
and recording new sounds.

The Sound Manager Version 3.0

The original Macintosh system software didn’t include a Sound
Manager—though there were a few sound-related Toolbox routines.
The Sound Manager didn’t exist until version 6.0 of the system software
was released. With version 6.0.7 of the system software came an
improved Sound Manager (version 2.0), and version 7.5 included the
most powerful Sound Manager yet—version 3.0.

Mac owners that haven’t upgraded to System 7.5 can still use Sound
Manager 3.0. Instead of having it as an integral part of the system software,
however, a Mac owner running pre-System 7.5 software will need to obtain
the Sound Manager 3.0 extension and add it to the Extensions folder on his
or her computer.

Some of the Sound Manager routines covered in this chapter are avail-
able only to Mac owners who have version 3.0 (or, eventually, a higher
version) of the Sound Manager. You can determine the version of the
Sound Manager that is on the host machine by calling the Sound
Manager routine SndSoundManagervVersion(). Calling this function once
near the start of a program will provide the information necessary to
determine if your application can run on the user’s Macintosh. You'll
find the code shown in the following snippet in each of the example
programs listed in this chapter.

NumVersion theSndMgrVers;
theSndMgrVers = SndSoundManagerVersion();

if (theSndMgrVers.majorRev < 3)
ExitToShell();

Chapter 2 = Sound Playing

Rather than simply calling ExitToShe11() when encountering an error, call
an application-defined error-handling routine.

NOTE

SndSoundManagerVersion() returns a NumVersion—a data structure with
four fields of Sound Manager version information. Check the majorRev
field to see if it has a value of at least 3. If it does, the user has version 3.0
(or greater) of the Sound Manager.

Synchronous and Asynchronous Sound Play

The Sound Manager provides routines that allow your program to play
sounds either synchronously or asynchronously. Synchronous sound
play means that no other code will execute during the playing of the
sound. While this mode of sound play is the easiest to program, it has
the drawback of preventing on-screen action from taking place. If your
program requires nonsound-related action to take place as a sound
plays, you'll need to play sounds in an asynchronous mode. This chapter
describes both types of sound playing, starting with the easier synchronous
sound play.

Sound Resources

A digitized sound can conveniently be stored in the resource fork of an
application, where it is always available for playing by the application.

@boat Sound Resources

A sound resource has a resource type of snd. Because all resource types
must consist of four characters, the sound resource type ends with a
blank space. Figures 2.1 and 2.2 show a sound resource in ResEdit and
Resorcerer, respectively.

13

Graphics and Sound Programming Techniques for the Mac

14

SoundResource.rsrc

E(]}D) snds from SoundResource.rsrc
=nd [Size Narne
9000 66421 “Police Siren”

=[@= snd “Police Siren” 1D = 9000 fron =

000000 0002 0000 0001 S0S0 DOOO0ODAP
000008 0000 0000 OOOE 0000 00000000
000010 0000 0001 0340 S6EE 000DOMUO
000018 SBA2 0001 034C 0001 &E00OLOO
0000z0 0340 003C 2121 8181 OMO<ARAA
000028 2121 2181 2181 8181 ARARAAAA
000030 28121 2181 8181 2181 ARRARAAA
00038 2181 2181 2181 2181 ARARARAA

FIGURE 2.1 A snd sound resource, as viewed in ResEdit.

SoundResource.asrc
Types: 1 ‘snd ' (Sound) Resource:
<DF> ir L S 69K : 9000 “Police Siren” [}
snd B &5
[E[Fi=== :nd 5000 "Police Siren” from SoundResource rsrc
Format: Record
Number of Synthesizers/Modifiers: N/A

seld Number of Sound Commands: 1

[Chg [Sound Me Out! J[Silence!] [Cancel]

FIGURE 2.2 A snd sound resource, as viewed in Resorcerer.

Chapter 2 - Sound Playing

You’ll find that all of the snd resources shown in this book have a resource
ID greater than 8191. Apple reserves IDs in the range of 0 to 8191 for its
own system sound resources.

NOTE

From the two previous figures you can see that there’s not much you can
do to edit a sound resource—even with the aid of a graphical resource
editor. This isn’t much of a drawback, though—digitized sounds of just
about any animal, person, or sound effect are available from a variety of
sources. If a sound doesn’t quite meet your needs, it is possible to edit it
using a sound-editing application such as Macromedia’s SoundEdit.

One source of sound resources is the software libraries of online
services such as CompuServe, America Online, and eWorld. You can also
buy a CD that contains a thousand or more sounds. Another option is to
create sounds yourself by plugging a sound digitizer into one of the ports
of your Mac. Finally, you can create them by using the Macintosh built-
in microphone.

You can use the Sound control panel to record a sound using the Macintosh
microphone. If you'd like to give users of your program the power to record
and save sounds, you can do that too—the next chapter shows you how.

Playing a Sound Resource

Every Mac has a number of sound resources in its System file—each
system alert sound is a snd resource. If you include a call to the
Toolbox routine SysBeep() in your source code, your program will play
whichever system alert sound is currently selected in the user’s Sound
control panel.

SysBeep(1);

The value of the parameter to SysBeep() is unimportant. Any short
value used here will produce the same result—the system alert sound
will play a single time.

16

Graphics and Sound Programming Techniques for the Mac

The parameter to SysBeep() used to determine the duration of the
system beep. That was back when the Mac only had a single system alert
sound—a simple beep. This now-useless parameter still exists for backwards
cumpatibility—older programs that made use of the duration parameter will
still work with newer system software.

Now, Really Playing a Sound Resource

While playing the system alert a single time does qualify as playing a
sound resource, it's not what one generally thinks of when the time
comes to add sound-playing capabilities to a program. Instead, you'll
want your program to be able to play a sound resource that you've
selected and, typically, included as part of your project’s resource file
(and, consequently, as a part of your program’s resource fork). To do
that you’ll rely on the Toolbox function SndP1ay (). Here’s a snippet that
includes a call to SndPTay():

Handle theHandle;
OSErr theError;

theHandle = GetResource(‘snd *, 9000);
theError = SndPlay(nil, (SndListHandle)theHandle, false);

The first parameter to SndPlay() is a pointer to a sound channel. Sound
channels, described in more detail later in this chapter, are used by the
Sound Manager to store information about sounds. Passing a ni1 pointer
as the first parameter tells the Sound Manager to handle the details of
allocating a sound channel.

If a sound is to be played in an altered form, such as at a different pitch
then the one at which it was recorded, you’'ll need to allocate your own

sound channel. If a sound is to be played asynchronously, you’ll again
need to allocate your own sound channel. Both of these topics are covered
later in this chapter.

The second parameter to SndPlay() is a handle to the snd resource to
play. You can load a snd resource into memory and receive a generic
handle to this memory be calling the Toolbox function GetResource()—

Chapter 2 = Sound Playing 17

as shown in the above snippet. This generic handle (type Hand1e) must
be typecast to a SndListHandle in the call to SndPTay().

The third parameter to SndPlay() indicates whether the sound
should be played asynchronously or synchronously. A value of true
tells the Sound Manager to play the sound asynchronously, while a
value of false means the sound should be played synchronously.

parameter to SndPTay () isn’t enough to play the sound asynchronously.
You also need to perform a few other steps, such as writing a callback routine.

: " Ah, but if only life were so simple. Just passing a value of true as the final

NOTE These details are, of course, described later in the chapter.

Figure 2.3 shows that GetResource() loads snd resource data in memory
and SndPlay() sends that data to the Mac’s speaker or speakers.

GetResource () SndPlay ()

MySoundApp

FIGURE 2.3 A call to GetResource() loads sound resource data
into memory, while a call to SndP1ay () plays that data.

Because the SndPlay() routine may move memory, lock the handle that
leads to the sound data before calling SndPTay (). After the call to SndPTay()
has completed, unlock the handle. The following snippet is an improve-
ment over the previous one:

Graphics and Sound Programming Techniques for the Mac

Handle theHandle;
0OSErr theError;

theHand]e = GetResource(‘snd *‘, 9000);

HLock(theHandle);
theError = SndPlay(nil, (SndListHandle)theHandle, false);
HUnlock(theHandle);

Using SndPlay() to play a snd resource is easy work. Simple enough,
in fact, that you probably understand how sound playback works with-
out the help of Figure 2.3. The SndPTay () function’s ease of use is exactly
why the figure has been included, though—to contrast the effort neces-
sary to play a sound synchronously with that needed to play a sound
asynchronously.

If your application will be playing more than one sound resource you'll
find it useful to define a sound-playing function. The application-defined
routine PlaySoundResourceSynch(), which is shown below, accepts a
SndChanne1Ptr and the ID of a snd resource as its two parameters.

You've seen that to play a sound synchronously you need only pass
a nil pointer to SndPlay()—the Sound Manager then handles sound
channel allocation. The PlaySoundResourceSynch() function gives you
the option of passing a value other than ni1—just in case the sound is to
be played in a way that is different from the way it was recorded. For now,
simply pass nil as the first parameter to PlaySoundResourceSynch().
Later in this chapter you'll use the same routine with a sound channel
pointer value other than ni1.

The PlaySoundResourceSynch() routine loads the sound resource
with that ID, plays the sound, and then releases the memory that the
sound data occupies. If the attempt to load the sound resource fails, the
routine will return the Apple-defined constant resProblem as the oper-
ating system error. If the resource loads successfully, but the call to
SndPlay() fails, P1aySoundResourceSynch() will return the error reported
by SndPlay().

0SErr PlaySoundResourceSynch(SndChannelPtr theChannel,
short theResID)

{
Handle theHandle;

Chapter 2 = Sound Playing 19

0SErr theError;
theHandle = GetResource(‘snd ¢, theResID);

if (theHandle == nil)

{
return (resProblem);

}

else

{
HLock(theHandle);

theError = SndPlay(theChannel, (SndlListHandle)theHandle,
false);

HUnlock(theHandle);
ReleaseResource(theHandle);
return (theError);

}

}

To play a sound resource, pass P1aySoundResourceSynch() anil pointer
and the ID of a snd resource. As an example, consider the following
snippet. It plays snd resource 11500.

0SErr theError;

theError = PlaySoundResourceSynch(nil, 11500);
if (theError != noErr)
ExitToShell();

Chapter Example: SoundResource

The SoundResource program plays one sound resource, then quits.
Because the program doesn’t display menus or a window, it requires only
a single resource—the police siren snd resource shown in Figure 2.4.

royalty-free sounds. CDs such as this are available from the various Mac soft-

7 The siren sound used here was, incidently, copied from a CD of over 1000
ware mail-order vendors.

NOTE

Graphics and Sound Programming Techniques for the Mac

20

SoundResource.rsrc

ﬁﬂﬁb snds from SoundBesource.rsrc
snd =3 Size MNarne
9000 66421 “Police Siren”

=M= snd “Police Siren” 1D = 9000 fron

000000 0002 0000 0001 S80S0 DO0OODARP
000008 0000 0000 QOOE 0000 00000000
000010 0000 0001 0340 S6EE DOOOOMUD
000012 2BAZ 0001 034C 0001 &E000LO0
000020 034D 003C 8181 8181 OMO<ARAA
ooooze 2121 2121 2181 3181 ARARAAAA
000030 2181 8121 2181 8181 ARAARAAA
n0n0za 2181 2121 2181 2181 AARARAAA

FIGURE 2.4 The SoundResource project requires only one resource—a snd resource.

If you’d like to play other sounds, replace the siren sound resource in
the SoundResource.rsrc file with any other snd resource, then recompile
the project. To play several sounds, add the desired snd resources to the
project’s resource file. Number the sound resources consecutively. Then
alter main() by wrapping the call to PlaySoundResourceSynch() in a
loop. The following code is an example that plays three sound resources
(with IDs 9000, 9001, and 9002) in a row. Listed first is the original code
from main(), followed by the code that should replace the original version.

// Original version
theResID = kPoliceSirenResID;
theError = PlaySoundResourceSynch(nil, theResID):
if (theError != noErr)
ExitToShel1();

// Looping version
theResID = kPoliceSirenResID;
for (i="0; i < 33 i++)
{
theError = PlaySoundResourceSynch(nil, theResID);
if (theError != noErr)
ExitToShell();
++theResID;

Chapter 2 = Sound Playing n

The source code listing for the SoundResource program follows.

/17

f#Hinclude <Sound.h>
//

void InitializeToolbox(void);
0SErr PlaySoundResourceSynch(SndChannelPtr, short):

//
ftdefine rPoliceSiren 9000
//
void main(void)
{
NumVersion theSndMgrVers;
short theResID;
OSErr theError;
InitializeToolbox();
theSndMgrVers = SndSoundManagerVersion();
if (theSndMgrVers.majorRev < 3)
ExitToShell1();
theResID = rPoliceSiren;
theError = PlaySoundResourceSynch(nil, theResID);
if (theError != noErr)
ExitToShell();
}
//

0SErr PlaySoundResourceSynch(SndChannelPtr theChannel,
short theResID)
{
Handle theHandle;
OSErr theError;

theHandle = GetResource(‘snd ‘, theResID);
if (theHandle == nil)

22

Graphics and Sound Programming Techniques for the Mac

{
return (resProblem);

}

else

{
HLock(theHandle);

theError = SndPlay(theChannel, (SndListHandle)theHandle,
false);

HUnlock(theHandle);
ReleaseResource(theHandle);
return (theError);

}

Sound Channels

Any sound data in memory has a corresponding sound channel that
holds a queue of sound-playing commands. When you call SndPlay()
and pass a ni1 pointer as the first parameter, the Sound Manager takes
care of the allocation of a sound channel. When your program is simply
to play a sound synchronously, letting the Sound Manager take care of
this task makes sense. If your program is to play a sound asynchro-
nously, or if it is going to alter the way in which the a sound is played,
your program needs access to the sound channel. In such cases, your
program must allocate the sound channel so that it can use that channel
at a later time.

Allocating and Disposing of a Sound Channel

To allocate a sound channel, use the Toolbox function SndNewChannel().
This routine allocates memory for a new sound channel record (of the type
SndChannel) and returns a SndChannelPtr—a pointer that points to a
sound channel record. A sound channel record is the data structure
used to represent a sound channel. Your program can allocate memory
for the sound channel record or, simply let the Sound Manager allocate
this memory as in the following snippet:

Chapter 2 = Sound Playing

SndChannelPtr theChannel;
OSErr theError;

theChannel = nil;
theError = SndNewChannel(&theChannel, 0, 0, nil);

The first parameter to SndNewChannel() is a pointer to a SndChannelPtr.
If you pass a nil pointer as the first parameter (as shown above),
SndNewChannel() will allocate the memory for a new sound channel
record and return a pointer to that record. As described later, you’ll
then be able to use this pointer in subsequent sound-playing functions,
such as SndPlay().

The second parameter to SndNewChannel() is a constant that tells
the Sound Manager what type of sound data is to be played on the
new channel. Apple defines three constants that can be used here
(squareWaveSynth, waveTableSynth, and sampledSynth), but you're just
as well off if you pass a value of 0 so that the channel can be used for
any type of sound.

The third parameter to SndNewChanne() supplies channel initialization
information based on the type of sound that will be played (for
instance, whether or not the sound is compressed). As was the case for
the second parameter, pass a value of 0 here if you are uncertain of the
exact type of sound that will be played from this channel.

The fourth parameter to SndNewChannel() is a pointer to a callback
routine. A callback routine is an application-defined function that the
Sound Manager executes (as opposed to being invoked by your own
code) when a sound has finished playing on this channel. The callback
routine is useful only for the playing of asynchronous sounds. For syn-
chronous sound play, pass a ni1 pointer.

When SndP1ay() is passed a nil pointer as its first parameter, the
Sound Manager takes care of allocating a sound channel and disposing
of that channel. When a sound channel is instead created by a call to
SndNewChannel(), your program is responsible for its disposal. A call to
the Toolbox function SndDisposeChannel () does that.

OSErr theError;

theError = SndDisposeChannel(theChannel, true);

23

24

Graphics and Sound Programming Techniques for the Mac

The first parameter to SndDisposeChannel() is a pointer to the sound
channel to release from memory. The second channel is a Boolean
value that tells whether a currently playing sound should be stopped
(true) or whether SndDisposeChannel() should wait until the sound
completes (false).

When a sound channel is created via a call to SndNewChannel (), a sound
channel record is allocated in memory, as is a pointer to that record. The
SndNewChanne1 () function disposes of the sound channel record, but has no
effect on the pointer to it. After calling SndDisposeChannel (), also call the
Toolbox function DisposePtr() to release the memory occupied by the
sound channel pointer. DisposePtr() accepts a generic pointer as its one
parameter, so you'll need to typecast the SndChannelPtr to the Ptr type.
Figure 2.5 clarifies the allocation and deallocation of a sound channel.

0OSErr theError;

thekError = SndDisposeChannel(theChannel, true);
DisposePtr((Ptr)theChannel);

SndNewChannel () SndDisposeChannel () DisposePtr()
allocates a sound disposes a sound channel disposes the pointer that
channel record and a record, but not the pointer pointed to the now-
pointer to that record toit released sound channel

—

FIGURE 2.5 After using a sound channel, you must deallocate
both the sound channel and the pointer that points to it.

Chapter 2 - Sound Playing

A couple of quick reminders. Macintosh memory is shown with smaller
addresses at the bottom of a figure. An object in memory starts at a lower
address and ends at a higher address. Together, these two facts mean that a
pointer to an object (which points to the start of an object), will appear to
point to the bottom of the object.

You can combine the two memory disposal steps into one by writing a
function such as DisposeOneSoundChannel ():

0SErr DisposeOneSoundChannel(SndChannelPtr theChannel)

{
OSErr theError;

theError = SndDisposeChannel(theChannel, true);
DisposePtr((Ptr)theChannel);

return (theError);

}

Now that you're aware of the fact that both a sound channel and its
pointer should be disposed of, the OpenOneSynchSoundChannel () function
should make sense. This application-defined routine calls SndNewChannel()
to allocate memory for a new sound channel, then returns a pointer to
that channel, as follows:

SndChannelPtr OpenOneSynchSoundChannel(void)

{
SndChannelPtr theChannel;
OSErr theError;

theChannel = nil;
theError = SndNewChannel(&theChannel, 0, 0, nil);

if (theError != noErr)

{
DisposePtr((Ptr)theChannel);
theChannel = nil;

}

return (theChannel);

25

26

Graphics and Sound Programming Techniques for the Mac

If the sound channel memory allocation succeeds, the pointer to the
sound channel will be returned to the calling routine. If the allocation
fails, OpenOneSynchSoundChannel() disposes of the memory occupied by
the sound channel pointer and sets the pointer to ni1. If the calling routine
receives a nil pointer rather than a valid sound channel pointer, it can
assume an error occurred. A typical call to OpenOneSynchSoundChannel()
looks like this:

SndChannelPtr theChannel;

theChannel = OpenOneSynchSoundChannel();
if (theChannel == nil)
ExitToShell1();

The name of the OpenOneSynchSoundChannel() function provides you
with a hint that at least one change will need to be made to the function’s
code in order for it to allocate a sound channel that can be used for asyn-
chronous sound play.

Using a Sound Channel

Once you’ve allocated a sound channel, you can use a pointer to it in
any routine that requires a SndChanne1Ptr. For instance, rather than pass
nil as the first parameter to SndP1ay(), you can pass the newly allocated
sound channel pointer, as follows:

SndChannelPtr theChannel;
Handle theHandle;
OSErr theError;

theChannel = nil;
theError = SndNewChannel(&theChannel, 0, 0, nil);

// get handle to sound, lock it, then:
theError = SndPlay(theChannel, (SndListHandle)theHandle, false);

If you're using the application-defined function P1aySoundResourceSynch()
to load and play a snd resource, then the above code becomes:

theChannel = nil;
theError = SndNewChannel(&theChannel, 0, 0, nil);

Chapter 2 = Sound Playing

theError = PlaySoundResourceSynch(theChannel, theResID);

How does passing SndPlay() your own sound channel pointer differ
from passing SndPlay() a nil pointer and letting the Sound Manager
allocate a channel? In the above examples, there is no difference at all. But
then, the above snippets are for demonstrative purposes only. The differ-
ence comes into effect when you send sound commands to a sound chan-
nel, then play the sound. The sound commands get stored in a queue in
the sound channel record and are applied to sounds that are later played
on that channel. Sound commands are covered in the next section.

Chapter Example: SoundChannelintro

The SoundChannellntro program does just what the previous example,
SoundResource, did. It loads a snd resource into memory and uses a
call to SndPlay() to play the sound data. The difference is that where
SoundResource let the Sound Manager allocate and dispose of a sound
channel (by passing ni1 to SndP1ay()), SoundChannellntro takes care of
the memory allocation and disposal. While this serves no real benefit in
this simple program, it does demonstrate a technique that you’ll be
using in each of the several remaining examples in this chapter.

The 0penOneSynchSoundChannel () and DisposeOneSoundChannel() func-
tions found in Sound-ChannelIntro are identical to the versions developed
in this section. The P1aySoundResourceSynch() function is an exact copy
of the version used in this chapter’s SoundResource program.

/!

fHinclude <Sound.h>

//

void InitializeToolbox(void);

SndChannelPtr OpenOneSynchSoundChannel(void);

OSErr DisposeOneSoundChannel(SndChannelPtr);

0SErr PlaySoundResourceSynch(SndChannelPtr, short);
//

jtdefine rPoliceSiren 9000

27

28 Graphics and Sound Programming Techniques for the Mac

/1

void main(void)

{
NumVersion theSndMgrVers;
short theResID;
OSErr theError;
SndChannelPtr theChannel;

InitializeToolbox();

theSndMgrVers = SndSoundManagerVersion();
if (theSndMgrVers.majorRev < 3)
ExitToShell1();

theChannel = OpenOneSynchSoundChannel();
if (theChannel == nil)
ExitToShell1();

theResID = rPoliceSiren
theError = PlaySoundResourceSynch(theChannel, theResID);
if (theError != noErr)

ExitToShel1();

theError = DisposeOneSoundChannel(theChannel);
if (theError != noErr)
ExitToShel1();
}

/1

SndChannelPtr OpenOneSynchSoundChannel(void)

{
SndChannelPtr theChannel;
OSErr theError;

theChannel = nil;
theError = SndNewChannel(&theChannel, 0, 0, nil);

if (theError != noErr)

{
DisposePtr((Ptr)theChannel);
theChannel = nil;

}

return (theChannel);

Chapter 2 = Sound Playing 29

/1

OSErr DisposeOneSoundChannel(SndChannelPtr theChannel)
{
0SErr theError;

theError = SndDisposeChannel(theChannel, true);
DisposePtr((Ptr)theChannel);

return (theError);
}

/1

0SErr PlaySoundResourceSynch(SndChannelPtr theChannel,
short theResID)
{

Handle theHandle;
OSErr theError;

theHandle = GetResource(‘snd ‘, theResID);
if (theHandle == nil)

{
return (resProblem);
}
else
{

HLock(theHandle);
theError = SndPlay(theChannel, (SndListHandle)theHandle,
false);
HUnlock(theHandle);

ReleaseResource(theHandle);

return (theError);

Sound Commands

When you call a Toolbox routine such as SysBeep() or SndPlay(), the Sound
Manager issues sound commands, or instructions, to play the desired sound.
Because SysBeep() and SndP1ay() are high-level routines designed to shield

30

Graphics and Sound Programming Techniques for the Mac

the programmer from the complexity of sound play programming, the issu-
ing of these sound commands takes place behind the scenes, without
the programmer’s intervention.

When you participate in the allocation of your program’s own sound
channel (rather than allowing the Sound Manager to do all the work), you
gain the power to send sound commands of your choice to a sound chan-
nel. After you do that, any sounds played on that channel will be affected.

@bout Sound Commands

The SndChannel data type is used to keep track of information about a
sound channel. Of the several SndChannel fields, the most important is
the queue field. This data structure member holds the sound commands
that affect the playing of a sound played on a particular sound channel.
Figure 2.6 shows a sound channel pointer and a sound channel in memory,
with emphasis on the queue field of the sound channel.

SndChannelPtr

=g {

FIGURE 2.6 A channel’s sound commands are kept in the
queue field of a SndChannel data structure.

Chapter 2 = Sound Playing

Sound commands affect the way in which a sound is played. Apple
defines over two dozen constants, each representing one type of command.
For instance, the freqCmd sound command changes the frequency of vibra-
tion of the sound waves that make up a sound—in short, the pitch of the
sound changes.

To issue a sound command to a sound channel you'll first define the
command, then call the Toolbox routine SndDoCommand (). Each sound com-
mand is represented by a SndCommand data structure that looks like this:

struct SndCommand

{
unsigned short cmd;
short paraml;
long param?2;
};

The first field of the SndCommand holds the command number. The next
two fields hold command options. The purpose of the option fields vary
with the type of the command. For example, the frequency command
(freqCmd) ignores the value in the first options parameter and uses the
second options parameter to hold the sound’s frequency. As a second
example, consider the amplitude command, or ampCmd. For this com-
mand, the first options parameter holds the amplitude, or volume, of a
sound. This volume is expressed by a short in the range of 0 to 255. The
second options parameter is ignored. Coding to define a sound com-
mand that sets a channel to play a sound at approximately one-quarter
volume (65 being approximately one-fourth of the maximum amplitude
of 255) follows.

SndCommand theCommand;

theCommand.cmd = ampCmd;
theCommand.paraml = 65;
theCommand.param2 = 0;

Once a command is set up, it needs to be added to the queue of a sound
channel. To do this, call SndDoCommand().

SndChannelPtr theChannel;
SndCommand theCommand;

31

32

Graphics and Sound Programming Techniques for the Mac

OSErr theError;

theError = SndDoCommand(theChannel, &theCommand, false);

Figure 2.7 shows a sound channel in memory, with emphasis on the three
fields that make up a single command in the sound channel’s sound
command queue.

param2

paraml

cmd

The three fields of
one sound command

FIGURE 2.7 Each sound command is made up of three fields.

After setting up a command, issue it to a sound channel by calling the
Toolbox function SndDoCommand ().

SndCommand theCommand;
OSErr theError;

theError = SndDoCommand(theChannel, &theCommand, false);

The first parameter to SndDoCommand() is the sound channel to which
the sound command should be queued. Before calling SndDoCommand ()
you'll allocate a sound channel by making a call to SndNewChannel(), as
described earlier. The second parameter to SndDoCommand() is a pointer
to the command itself. Fill the three fields of the command, then pass it
to SndDoCommand ().

Chapter 2 = Sound Playing

When a new sound channel is created, it has a queue capable of hold-
ing 128 sound commands. If you are concerned about the unlikely event
that your program may fill this queue, you can pass a value of false as
the last parameter to SndDoCommand (). This tells the Sound Manager to
wait for a free position if the queue is full. Passing a value of true tells the
Sound Manager instead to return an error-result code (queueFull).

If your program will be issuing the same command to more than
one channel, consider writing a function such as the application-defined
routine SetSoundAmplitude(). When passed a sound channel and an
amplitude, this function fills the fields of a sound command, issues the
command to the channel (places it in the channel’s queue), and returns a
result code indicating whether the operation was successful or not.

0SErr SetSoundAmplitude(SndChannelPtr theChannel, short theAmp)
{

SndCommand theCommand;

O0SErr theError;

theCommand.cmd = ampCmd;
theCommand.paraml = theAmp;
theCommand.param2 = 0;

theError = SndDoCommand(theChannel, &theCommand, false);

return (theError);

}

It's important to keep in mind that in the above code, SndDoCommand ()
doesn’t actually play a sound at the new amplitude. The call to
SndDoCommand () only places the command in a channel’s queue. You still
need to load a sound resource into memory and call SndP1ay() in order
to play a sound. When you do that, the sound will be played at the new
volume—provided you pass SndPTay() the affected sound channel. The
following snippet shows how to play a sound at half volume (keeping
in mind that the ampCmd accepts a value in the range of 0 (off) to 255
(full volume). The SoundCommands example program that follows
demonstrates exactly how to use a sound channel.

SndChannelPtr theChannel;
O0SErr theError;

33

34

Graphics and Sound Programming Techniques for the Mac

// allocate a new sound channel here
theError = SetSoundAmplitude(theChannel, 127);
// load a sound resource here

// pass SndPlay() theChannel to play the sound here

Chapter Example: SoundCommands

SoundCommands is very similar to the previous example program,
SoundChannelIntro. Both use the same application-defined routines to
allocate a new sound channel, play a sound resource, and deallocate the
channel when done. The only difference between the two programs is
that before SoundCommands plays the sound, it calls the application-
defined function SetSoundAmplitude() to set the amplitude of the new
sound channel.

The SoundCommands program plays a sound very quietly—the
siren sound will play at about one-fifth of the volume set in the Sound
control panel. To change the volume, try experimenting with the value
of the short variable theAmplitude. Keep in mind that the range of
theAmp1itude should be from 0 to 255.

short theAmplitude;

theAmplitude = 50;
theError = SetSoundAmplitude(theChannel, theAmplitude);

The following listing omits the OpenOneSynchSoundChannel(),
DisposeOne-SoundChannel(), and PlaySoundResourceSynch() functions.
If you'd like to see the listing for any of these functions, page back to
the listing for the SoundChannellntro example program.

/1

f#Hinclude <Sound.h>
//

void InitializeToolbox(void);

Chapter 2 = Sound Playing

35
SndChannelPtr OpenOneSynchSoundChannel(void);
OSErr DisposeOneSoundChannel(SndChannelPtr);
OSErr PlaySoundResourceSynch(SndChannelPtr, short);
0SErr SetSoundAmplitude(SndChannelPtr, short);
//
ftdefine rPoliceSiren 9000
//

void main(void)

{

NumVersion theSndMgrVers;
short theResID;
OSErr thekError;
SndChannelPtr theChannel;
short theAmplitude;

InitializeToolbox();

theSndMgrVers = SndSoundManagerVersion();
if (theSndMgrVers.majorRev < 3)
ExitToShell();

theChannel = OpenOneSynchSoundChannel();

if (theChannel == nil)
ExitToShell();

theAmplitude = 50;

‘theError = SetSoundAmplitude(theChannel, theAmplitude);

if (theError != noErr)
ExitToShell();

theResID = rPoliceSiren;
theError = PlaySoundResourceSynch(theChannel, theResID);
if (theError != noErr)

ExitToShel1();

theError = DisposeOneSoundChannel(theChannel);
if (theError != nokrr)
ExitToShell1();

36

Graphics and Sound Programming Techniques for the Mac

/1

0SErr SetSoundAmplitude(SndChannelPtr theChannel, short theAmp)

{
SndCommand theCommand;
OSErr theError;

theCommand.cmd = ampCmd;
theCommand.paraml = theAmp;
theCommand.param2 = 0;

theError = SndDoCommand(theChannel, &theCommand, false);

return (theError);

Asynchronous Sound Play

Asynchronous sound play allows both sound and animation to take place
at the same time. An understanding of how asynchronous sound play
works is paramount in creating exciting games and multimedia programs.

An Approach to Playing a Sound Asynchronously

Before jumping into the complete code necessary for playing a sound
asynchronously, let’s have a general introduction to asynchronous
sound play.

To play a sound resource asynchronously, you'll first allocate a new
sound channel using SndNewChannel(). You'll then load the sound
resource to play and call SndP1ay() play it. While these two routines are
the same as the ones used to play a sound synchronously, the parame-
ters that you'll pass to them will not be the same.

Once a sound is playing, your program will enter a loop. In each pass
through the loop, a check will be made to see if the sound has finished
playing. If it hasn’t finished, an action will be performed. Typically, this
action will be one step in an animation. For example, a digitized jet-engine

Chapter 2 = Sound Playing

sound could be loaded and a call to SndPlay() could be made to start
playing the sound. In the body of the loop, a picture of an airplane
could be shifted one pixel to the left at each pass through the loop—as
long as the sound was still playing. The result would be an airplane flying
across the screen from right to left, accompanied by the roar of its engine.
When the sound stopped playing, the animation would also stop.

The following snippet shows, in general terms, how an animated
sequence that is accompanied by sound could be played from within
the main() routine of a program. Later in this chapter you’ll see how the
global variable gSoundPlaying gets set. You'll also see the development
of CleanUpSoundIfFinished()—the function that deallocates an open
sound channel when a sound is finished.

Boolean gSoundPlaying;

void main(void)
{
EventRecord theEvent;

// initializations, open window

while (gDone == false)
{
WaitNextEvent(everyEvent, &theEvent, 15L, nil);

CleanUpSoundIfFinished();

if (gSoundPlaying == true)
MovePictureOnePixel();

switch (theEvent.what)
{

// handle mouseDown, keyDown, etc.
}

}

Figure 2.8 shows an overview of the steps necessary to play a sound
asynchronously. On the next several pages this general description will
be replaced with a more detailed look at these steps.

37

38

Graphics and Sound Programming Techniques for the Mac

FIGURE 2.8 An overview of how sound and animation are carried out in unison.

The Callback Command and Callback Roatine

The third parameter to the Toolbox function SndPl1ay() specifies whether
the sound data referenced by the variable theHandle should be played
asynchronously (true) or not (false). Earlier you saw that to play a sound
synchronously, you pass false for the third parameter—as in this call:

theError = SndPlay(theChannel, (SndListHandle)theHandle, false);

Chapter 2 = Sound Playing

Specifying that a sound be played synchronously (as has been the
case up to this point) means that SndPlay() will let the Sound Manager
take control of the Mac and play the sound from start to finish. No other
action can take place until SndPTay() competes its execution. If, instead,
you pass a value of true as the third parameter to SndP1ay (), the routine
will be executed in an altogether different manner. Instead of seizing
control, the Sound Manager will share processor time with the rest of
your program. That makes it possible to have SndP1ay() play a sound
and, at the same time, have your program cycle through the loop
described on the previous pages.

Earlier, you learned that the loop body will perform a check to see if
a sound channel currently has a sound playing. The way to determine if
a sound is playing is to examine a flag variable that gets set by a callback
routine. Simply put, a callback routine is called when, and only when, a
sound has finished playing. The callback routine’s purpose is to set a
global flag variable that indicates to the rest of the program that the
sound has indeed finished playing. It is the value of this global callback
flag variable that the loop repeatedly checks.

Figure 2.9 illustrates how a callback routine works. In this figure, it's
assumed that a cartoon police car moves from right to left as a siren
sound plays. When SndPlay() is called to start the playing of the siren
sound resource, the program sets a flag variable to indicate that a sound
has started. In Figure 2.9, this flag is a global Boolean variable named
gSoundPlaying. As the sound plays, the program frequently checks the
value of gSoundPlaying. If the flag is still set to true, then the picture
boundaries are moved a little to the left and the picture is redrawn. In the
figure, this is done three times—in a real application, the check would be
performed many more times so that animation would appear smooth.

When SndPlay() has finished, the Sound Manager will invoke the
callback routine. The callback routine will change the value of gSound-
Playing from true to false. Then, when the loop again tests the value of
gSoundPlaying, it will find that this flag is now false. That tells the loop
to stop performing the animation. The effect? When the sound stops,
the animation stops, too.

39

40

Graphics and Sound Programming Techniques for the Mac

sndPlay () ends,
callback function

invoked—
gSoundPlaying
setto false

|}

f) | [[
Sndplay() called gSoundPlaying gSoundPlaying gSoundPlaying gSoundPlaying
asynchronously, is true, move is true, move is true, move is false, don't
gSoundPlaying picture to the left picture to the left picture to the left move picture

setto true

FIGURE 2.9 Animation continues as long as a
sound’s callback routine hasn't set a flag to false.

It’s important to note that while the callback routine is an application-
defined function, it isn’t called directly by your code. Instead, the Sound
Manager will invoke it. Figure 2.9 implies that this code is different by
placing it at the top of the figure, while the code called directly by the
application (SndPlay() and the animation code) appears at the bottom
of the figure.

How is it that the Sound Manager—and not your own code—
invokes the callback routine? The answer lies within the sound channel
record. A sound channel is represented in memory by a SndChannel
data structure. You're familiar with the queue field of this structure—it
holds the sound commands for a given channel. The cal1Back field is
another member of the SndChannel structure. It holds a pointer to the

Chapter Z = Sound Playing 41

channel’s callback routine. Figure 2.10 labels a couple of the SndChannel
data structure fields and shows that the cal1Back field holds a pointer to
an application-defined callback routine in memory.

queue

SndChannel

callBack

Callback routine

FIGURE 2.10 A sound channel used for asynchronous sound play
has a callback routine associated with it.

The sound channel’s queue holds 128 sound commands. For simplicity, the
queue field in this and other figures shows a queue with room for only four
commands. As an aside, this isn’t entirely inaccurate—a programmer does
in fact have control over the size of the queue.

NOTE

42

Graphics and Sound Programming Techniques for the Mac

When your application passes SndPlay() a SndChannelPtr, the Sound
Manager takes various sound-playing commands found in the snd
resource and places them in the sound channel’s queue. Figure 2.11 shows
two such sound commands added to the queue. Because the exact type of
command is unimportant in this example, they’re shown simply by the
generic name “play command” in the figure.

SndChannel

callBack

Callback routine

FIGURE 2.11 A sound channel about to play the sound data from a snd resource

After your program calls SndP1ay () it should add a cal1BackCmd sound
command to the sound channel’s queue. Because SndP1ay() has started
the sound playing, this cal1BackCmd command will be the last sound
command in the queue. Figure 2.12 shows a cal1BackCmd in the queue.
Note that the callback command is the last entry in the queue—though
the queue isn’t full. Also notice that the start of the queue is shown at
the lower end of the figure, corresponding to lower addresses.

Chapter Z = Sound Playing

callBack

Callback routine

FIGURE 2.12 A callback command should be the last
sound command in a sound channel’s queue.

Installing the Callback Command in the
Command Queue

Recall that each sound command has three fields: the cmd field that
holds a command number indicating the type of command and two
option fields—paraml and param2—that hold information that varies
depending on the type of command.

For a callback sound command, the command type is cal1BackCmd.
With the callBackCmd command, the paraml and param?2 fields are avail-
able for any purpose a particular application requires. For this chapter’s
example, the paraml field won’t be needed and will simply be set to 0.

43

44

Graphics and Sound Programming Techniques for the Mac

The param2 command will be used when a program using this chapter’s
asynchronous sound-playing technique is running on a 68K-based Mac.
Below is an application-defined function named Instal1Cal1backCommand()
that is called after SndP1ay() starts. It's used to add, or install, a callback
sound command in the queue of the sound channel currently playing
the sound.

OSErr InstallCallbackCommand(SndChannelPtr theChannel)
{

OSErr theError;

SndCommand theCommand;

callBackCmd;

0;
SetCurrentA5();

theCommand.cmd
theCommand.paraml
theCommand.param2

[

theError = SndDoCommand(theChannel, &theCommand, true);

return (theError);
}

The setting of the cmd field and the paraml field of the sound command
is simple enough to follow. The assignment of the param2 option field
may not seem as straightforward.

The call to the Toolbox function SetCurrentA5() sets the param2 field
to the value in the A5 register. This value is a pointer to the section of
the application partition that holds the application’s global variables.
By storing this pointer value in the sound-channel command queue, the
callback routine will have a backup value of this pointer should the A5
register contents be changed later on. Figure 2.13 illustrates that both
the A5 register in the CPU and the param2 field of the callback sound
command hold the same address.

Chapter 2 = Sound Playing 45

Points to application global
variables stored in the AS
world above the stack

command

SndRecord

FIGURE 2.13 The param? field of the callback command
holds the A5 register pointer value.

The reason this pointer value is stored in the sound channel’s queue has
to do with the nature of a callback routine. A callback routine isn’t
invoked by a call from your code. Instead, it’s called by the system.
When it is called, other code may be executing. If this other code happens
to be a Toolbox function, the value in the A5 register might not be a
pointer to the application’s global variables. That’s because a Toolbox
function has the power to save the A5 register value, use and alter the
register’s contents, and then restore the register to its initial condition.
Should a callback routine start executing while a Toolbox routine is

46

Graphics and Sound Programming Techniques for the Mac

executing (which is possible because a sound playing asynchronously
plays while other code executes), the callback routine will insert the
param2 value (the saved A5 value) in the A5 register so that the callback
routine knows how to find the application’s global variables.

If you already know about the A5 register, read on. If you don’t know
about the A5 register, but feel the information in this very brief overview is
satisfactory, read on. If, however, you aren’t satisfied with this discussion,
take a side trip to Appendix B—it provides all of the details about the A5
register and its importance when working with callback routines. Because the topics of
the A5 register and the A5 world are Macintosh memory topics, and not directly related
to graphics and sound, they’ve been relegated to an appendix.

NOTE

The InstaliCallbackCommand() function should be invoked just after an
asynchronous call to SndPlay() is made. That has the effect of placing
the cal1BackCmd last in the sound channel’s sound command queue.

theError SndPlay(theChannel, (SndListHandle)theHandle, true);

theError = InstallCallbackCommand(theChannel);

At first glance it may seem that the above snippet plays the sound and
then, when the sound is finished, installs the callback routine. This isn’t the
case. You're thinking back to synchronous sound play, where SndPTlay()
started a sound, then took control until the sound was finished. No other
code executed until SndPlay() completed. Remember, SndP1ay() is now playing
a sound asynchronously. That means SndP1ay() starts the sound, and then the program
carries on. In the above code, that means that the Instal1CallbackCommand() routine
is invoked immediately after SndPlay() is called—just after the sound starts playing,
but before the sound finishes.

NOTE

The Sound Callback Roatine

When a sound channel is to be used to play a sound synchronously, the
channel is allocated with the last parameter to SndNewChannel() set to ni1:

SndChannelPtr theChannel;
OSErr theError;

Chapter 2 = Sound Playing

theChannel = nil;
theError = SndNewChannel(&theChannel, 0, 0, nil);

When a sound channel is to be used for asynchronous sound play, this
last parameter should instead be a universal procedure pointer (UPP) that
points to an application-defined callback routine. When SndNewChannel ()
is called in this manner, a callback routine becomes associated with the
sound channel named as the first parameter. That tells the Sound
Manager what routine to use as a sound’s callback function. The follow-
ing code shows how a call to SndNewChannel() looks when allocating a
sound channel for asynchronous play:

SndChannelPtr theChannel;
O0SErr theError;
SndCal1BackUPP theCallBackUPP;

theCallBackUPP = NewSndCallBackProc(SoundChannelCallback);

theChannel = nil;
theError = SndNewChannel(&theChannel, 0, 0, theCallBackUPP);

The SndCal1BackUPP is an Apple-defined data type that turns out to be
nothing more than a UniversalProcPtr—a universal procedure pointer, or
UPP. The NewSndCallBackProc() function is a Toolbox routine that,
when passed the name of an application-defined routine, creates a UPP
for that function. In the above snippet, the application-defined routine is
named SoundChannelCallback(). This UPP is then passed to SndNew-
Channel (). These steps are necessary so that the Sound Manager can have
a pointer to the callback function that you've written.

aren’t familiar to you? They should be. They’re an important part of pro-
gramming the PowerPC. They all mean the same thing: a pointer that
points to a function. The UPP replaces the ProcPtr type that was used in
the past. The Apple universal header files use UPPs so that the same source code can
properly compile for both older 68K-based Macs and the newer PowerPC-based Macs.

7 Universal procedure pointer? UniversalProcPtr? UPP? These terms

NOTE

Finally, you'll need to write the application-defined callback routine.
The format of this function is as follows: the pascal keyword, a return

&7

48

Graphics and Sound Programming Techniques for the Mac

type of void, the function name, and a SndChannelPtr parameter and a
SndCommand parameter. An example follows.

pascal void SoundChannelCallback(SndChannelPtr theChannel,
SndCommand theCommand)

Generally, the only purpose of a callback routine is to let the rest of your
application know that an asynchronous sound has finished playing.
You can do that by defining a couple of global flag variables and setting
them to the appropriate value in the callback routine. This chapter’s
example defines a Boolean named gCallbackExecuted to let the program
know whether the callback routine has executed and a Boolean named
gSoundPlaying to let the program know if a sound is currently playing.
A simple version of a callback routine follows.

pascal void SoundChannelCallback(SndChannelPtr theChannel,
SndCommand theCommand)
{
gCallbackExecuted = true;
gSoundPlaying = false;
}

The above version of SoundChannelCallback() is included here to demon-
strate just how little there is to a callback routine. But to make this function
usable, you need to surround the two assignment statements with some
utility code. As mentioned earlier, at the time the system invokes a callback
routine, there’s no way to know what other code will be executing. If a
Toolbox function is being carried out, the callback routine should save
the value in the A5 register (the Toolbox may be using this register for
its own purposes) and then set the A5 register to a value that points to the
application global variables. Only then can the callback routine make
use of any application global variables. Finally, as the callback routine
ends it should restore the A5 register to the condition it found it in. That
is, it should replace the contents of the A5 register with whatever value
was in the register at the time the callback routine was invoked. That
allows the Toolbox function to finish executing after the callback routine
has finished.

To save the current value of the A5 register and to change the value in
the register, call the Toolbox routine SetA5():

Chapter 2 = Sound Playing

long theAb5;
theA5 = SetA5(theCommand.param2);

Now you see why the cal1BackCmd that was placed in the sound channel
sound command queue set param2 to the application’s A5 value. By
saving the application’s A5 value early on, it’s been preserved for use by
the callback routine. SetA5() saves the current A5 value (the one used
by the Toolbox routine that SoundChannelCallback() may be interrupt-
ing) in a variable named theA5. Then SetA5() sets the A5 register to the
param2 value.

With the A5 register pointing to the application’s global variable
section in memory, the callback routine can access global variables:

gCallbackExecuted = true;
gSoundPlaying = false;

Before exiting, the callback routine should restore the A5 register to the
condition it was in when the callback routine started. Another call to
SetA5() does this. This time the parameter is the local variable theA5.
This variable holds the value A5 had when the routine started. The
value returned by SetA5() is placed in variable theA5. Since the routine
is ending, this value is ignored.

theA5 = SetA5(theA5);

The following is a version of the callback routine that takes the A5 register
into consideration:

pascal void SoundChannelCallback(SndChannelPtr theChannel,
SndCommand theCommand)
{
lTong theA5;

theA5 = SetA5(theCommand.param2);

gCallbackExecuted = true; .
gSoundPlaying = false;

theAb = SetA5(theA5);

49

50

Graphics and Sound Programming Techniques for the Mac

Keeping track of the A5 register can be a little tricky. Figure 2.14 may
clear things up a bit. The light-background snippets represent code in an
application, while the darker-background snippets represent the code for
a Toolbox routine. In the top snippet you can see that the application’s A5
value is stored in the param2 field of a sound command. If you follow
the arrow down you can see where this saved value will be used—in
the callback routine. Follow the arrows for each of the three saved A5
values to see where each is later used.

Figure 2.14 emphasizes that the callback routine is capable of inter-
rupting an executing Toolbox routine—that’s the reason the A5 register
value has to be stored and restored. In the figure, the hypothetical
Toolbox routine ToolboxFunc() is in the middle of executing when the
Sound Manager invokes the SoundChannelCallback() routine. When
SoundChannelCallback() completes, control returns to the Toolbox
routine—which then finishes up.

Figure 2.14 was lifted directly from Appendix B. Remember, if this A5 topic is
giving you grief, take a diversion to that appendix now.

InstallCallbackCommand(.. .
{

theCommand. cmd = callBackCmd;
theCommand.paraml = 0;

SoundChannelCallback(SndChannelPtr theChannel, I
. SndCommand theCommand)

long theAS5;

theAS = SetA5(theCommand.param2);

gCallbackExecuted = true;
gSoundPlaying = false;

theAS5 = SetAS(theAS);

FIGURE 2.14 The A5 value is initially saved so that it can be used
by the callback routine at a later time.

Chapter 2 = Sound Playing

Before you can say that the callback routine is complete, you have to
account for the fact that this code might be compiled on either a 68K
compiler of a PowerPC compiler. To do that, add a couple of #ifndef
compiler directives to the routine. An #ifndef directive tells the compiler
“if not defined, do the following...” Use the powerc identifier after the
{#ifndef directive. If a 68K compiler is being used, powerc will not be
defined, and the code that follows will be compiled. If a PowerPC
compiler is being used, powerc will be defined and the code under the
#ifndef will not be compiled.

#ifndef powerc
theA5 = SetA5(theCommand.param2);
ffendif

Writing your code such that it compiles using either a 68K compiler or
a PowerPC compiler is a fact of life you should be dealing with. For a
more thorough reference to PowerPC programming, look at the M&T
book Programming the PowerPC or the PowerPC System Software version of
Inside Macintosh.

Because a native PowerPC application doesn’t keep global variables in
an A5 world, this is exactly the effect you want—the calls to SetA5()
will be skipped. The final version of the callback routine—complete
with A5 code and #ifndef directives—used in this chapter’s example
program, follows.

pascal void SoundChannelCallback(SndChannelPtr theChannel,
SndCommand theCommand)
{
long theA5;

#ifndef powerc
theA5 = SetA5(theCommand.param2);
f#endif

gCallbackExecuted = true;
gSoundPlaying = false;

fifndef powerc
theA5 = SetA5(theA5);

52

Graphics and Sound Programming Techniques for the Mac

ffendif
}

Now that the #ifndef directive and PowerPC code have been mentioned,
it’s time to point out that the Instal1CallbackCommand() routine discussed
a little earlier should also include an #ifndef powerc directive. Rather
than always setting param2 to the current A5 value, check to see if the
code is being compiled on a 68K compiler or a PowerPC compiler. If
a 68K compiler is being used, make the call to SetCurrentA5(). If a
PowerPC compiler is being used, then the param2 field of the callback
command won't be used, and you can simply set param2 to 0. The new,
final version of Instal1CallbackCommand() follows:

0SErr InstallCallbackCommand(SndChannelPtr theChannel)
{

OSErr theError;

SndCommand theCommand;

theCommand.cmd = callBackCmd;
theCommand.paraml = 0;
fHi fndef powerc

theCommand.param2 = SetCurrentA5();
felse

theCommand.param2 = 0;
fendif

theError = SndDoCommand(theChannel, &theCommand, true);

return (theError);

Starting the Sound and Animation

Playing a sound asynchronously requires several main steps and a few
lesser ones. The six main steps used in this book’s approach are as follows:

1. Allocate a new sound channel, specifying a callback routine for
that channel.

2. Load a sound resource into memory.
3. Set a global flag that states that a sound is playing.

Chapter 2 = Sound Playing 53

4. Call sndP1ay() to begin asynchronous sound play.

5. Install a cal1BackCmd sound command in the queue of the sound
channel that is playing the sound.

6. Within a loop, perform animation as the sound plays.

These six main steps can all be taken care of within a single application-
defined routine. The PlaySoundResourceAsynch() function, which is used
in this chapter’s asynchronous sound example program, needs only a
snd resource ID passed to it in order to start sound play.

functions that it calls, can be used unchanged in many programs. The only
exception is the AnimateWhileSoundPlays() routine. This function will

7 The PlaySoundResourceAsynch() routine, and the application-defined

NOTE pe application-specific. That is, the animated action it performs while sound
plays will vary depending on your program’s animation requirements.

short gSoundPlaying = false;

SndChannelPtr gSoundChannel = nil;

Handle gSoundHandle = nil;

void PlaySoundResourceAsynch(short theResID)

{

OSErr theError;

gSoundChannel = OpenOneAsynchSoundChannel();
if (gSoundChannel == nil)
ExitToShell();

gSoundHandle = GetResource(‘snd *, theResID);
if (gSoundHandle == nil)
ExitToShell();

DetachResource(gSoundHandle);
HLock(gSoundHandle);

gSoundPlaying = true;

theError = SndPlay(gSoundChannel, (SndListHandle)gSoundHandle,
true);

if (theError == noErr)
theError = InstalliCallbackCommand(gSoundChannel);

54

Graphics and Sound Programming Techniques for the Mac

else
ExitToShell();

AnimateWhileSoundPlays();
}

The first of the five steps handled by PlaySoundResourceAsynch(), the
allocation of a new sound channel, is taken care of in a call to the appli-
cation-defined function OpenOneAsynchSoundChannel(). This function is
very similar to the OpenOneSynchSoundChannel () routine described earlier
in this chapter. The chief differences are that the new routine creates a
universal procedure pointer for a callback function, then passes that UPP
to the Toolbox routine SndNewChannel(). A brief description of creating a
UPP appears earlier in this chapter.

SndChannelPtr OpenOneAsynchSoundChannel(void)
{

SndChannelPtr theChannel;

OSErr theError;

SndCal1BackUPP theCall1BackUPP;

theCal1BackUPP = NewSndCallBackProc(SoundChannelCallback);

theChannel = nil;
theError = SndNewChannel(&theChannel, 0, 0, theCal1BackUPP);

if (theError != noErr)

{
DisposePtr((Ptr)theChannel);
theChannel = nil;

1

return (theChannel);
}

After the sound channel has been allocated, a call to GetResource() handles
the second step—the loading of a sound resource into memory. After
loading the resource data, a call to DetachResource() is made. This
Toolbox routine detaches the sound resource from its resource file.
When a sound is played synchronously, this step isn’t important—no
other action can take place. When a sound is played asynchronously,
almost anything can happen as the sound plays—including the closing

Chapter 2 = Sound Playing

of a resource file. You'll want the sound resource detached from its file
in case this happens. By detaching the resource from the file in which it
hails from, you remove any dependency on the resource file.

The closing of a resource file isn’t a random event—your code would have
to deliberately do that. In a small application, you'll know whether or not
this happens. A large application that keeps resources in separate resource
files, however, may have several calls to a routine that closes a resource file.

After the resource is detached from its file, a call to HLock() locks the
resource data in memory. This is in preparation for the call to SndP1ay().
Unlike the synchronous sound-playing function developed earlier, there
is no call to Hunlock() in the asynchronous sound-playing function.
When a sound is playing asynchronously, it can be interrupted by the
user before SndPlay() finishes. That means that the call to Hunlock()
shouldn’t follow the call to SndP1ay(). Instead, it should appear in a
function that is called repeatedly from within a loop—the same loop
that will be performing any actions that take place while the sound
plays. That loop will be discussed a little later.

Just before the sound is played, a global flag should be set to show
the rest of the program that a sound is playing. This is the third of the
six steps listed above.

gSoundPlaying = true;

The next step is the actual playing of the sound—finally! A call to
SndPlay(), with the last parameter set to true, starts a sound playing
asynchronously. The first parameter to SndPlay() is the SndChannelPtr
that was returned by the call to OpenOneAsynchSoundChannel() function
that was made earlier in P1aySoundResourceAsynch().

theError = SndPlay(gSoundChannel, (SndListHandle)gSoundHandle,
true);

Just after SndP1ay() is invoked, the fifth of the six steps—the adding of
the callback sound command to the sound command queue of the sound
channel that is playing the sound—is performed. The application-defined
routine InstallCallbackCommand(), described earlier, takes care of this.

56

Graphics and Sound Programming Techniques for the Mac

theError = InstaliCallbackCommand(gSoundChannel);

Figure 2.15 adds a few concise comments to the P1aySoundResourceAsynch()
routine to sum up the tasks that this important function handles.

Open a sound channel and tell
the Sound Manager which
callback routine by the channel

void PlaySoundResourceAsynch (

OSErr theError;
Load a sound

resource into
memory

Channel = OpenOneAsynch Channel () ;
if (gSoundChannel == nil)

ExitToShell();

Free snd from
dependency on &\
the resource file

22 gso dle = ('snd ', theResID);
if (gSoundHandle == nil)
ExitToShell():;

h (dHandle) ;

D ce
HLock (gSoundHandle };

Set flag to alert
the rest of the

program that a
sound is playing

% gSoundPlaying = true;
theError = SndPlay(gSoundChannel, (SndListH...

if (theError == noErr)
theError = InstallCallbackCommand(gSound...

Play the sound el

se
asynchronously ExitToShell();

AnimateWhileSoundPlays () ;

Perform animation Add the callback command
while the sound plays to the sound channel queue

FIGURE 2.15 The PlaySoundResourceAsynch() routine performs
the steps necessary to run an animation as a sound plays.

The last step is to enter a loop that performs some on-screen action while
the sound plays. The application-defined routine AnimateWhileSoundPlays()
holds that loop.

Performing Animation While a Sound Plays

After PlaySoundResourceAsynch() makes a call to SndPlay() to start a
sound playing, AnimateWhileSoundPlays() is called to perform the ani-
mation that will accompany the sound. It’s important to keep in mind
that when SndP1ay() is called asynchronously, the Sound Manager does

Chapter 2 = Sound Playing 57

not take control of the program. Instead, the code that follows the call to
SndPlay () executes as the sound plays. That means that just after the sound
starts, AnimateWhileSoundPlays() will be called. A typical version of this
routine follows.

void AnimateWhileSoundPlays(void)
{
Boolean T1oopDone = false;

while (loopDone == false)

{
CleanUpSoundIfFinished();
if (gSoundPlaying == true)
MovePictureOnePixel();
else
loopDone = true;
}

}

At each pass through the while loop in AnimateWhileSoundPlays(), a call
is made to an application-defined routine named CleanUpSoundIf-
Finished(). The purpose of this routine is to dispose of the sound channel
when the sound is finished. Because an application can’t predict when a
playing sound will end, it needs to call this function frequently. When
the sound does finish, the Sound Manager will invoke the sound channel’s
callback routine. The callback function will set the global Boolean flag
variable gCallbackExecuted to true. When CleanUpSoundIfFinished()
notices this, the function unlocks the sound handle (which had been
locked just before SndP1ay () started to play the sound), releases the sound
resource data from memory, and disposes of the sound channel. The func-
tion also sets the gCallbackExecuted to false so thatif CleanUpSoundIf-
Finished() gets called again, the function won't try to dispose of the now
nonexistent sound channel.

void CleanUpSoundIfFinished(void)
{
O0SErr theError;

if (gCallbackExecuted == true)

Graphics and Sound Programming Techniques for the Mac

HUnlock(gSoundHandle);
ReleaseResource(gSoundHandle);
gSoundHandle = nil;

theError = DisposeOneSoundChannel(gSoundChannel);
if (theError != nokrr)
ExitToShel1();

gSoundChannel = nil;
gCallbackExecuted = false;

}

The job of AnimateWhileSoundPlays() is to perform the action that
accompanies the sound. To determine if the sound is playing, the routine
checks the value of the global flag gSoundPlaying. Recall that this
Boolean variable is set to true when SndPlay() is called, and set to
false in the callback routine. When the sound finishes playing, the
Sound Manager will interrupt AnimateWhileSoundPlays() to execute the
callback routine. When the callback function finishes, AnimateWhile-
SoundPlays() will resume. At that time gSoundPlaying will be false,
and the loop—and the animation—will end.

As long as gSoundPlaying is true, the animation will continue. In this
example, that animation consists of a picture being moved one pixel to
the left—the application-defined function MovePictureOnePixel() does
that. The asynchronous sound example that appears later in this chapter
describes this routine. Once the callback routine is invoked and
gSoundPlaying is toggled to false, the local variable 1oopDone gets set to
true and the loop, animation, and the AnimateWhileSoundPlays() func-
tion, end.

Figure 2.8, located back near the start of the asynchronous-sound
section of this chapter, gave a broad overview of how a sound is played
asynchronously. Figure 2.16 updates Figure 2.8 by filling in the names
of the functions that handle the basic sound-playing tasks.

Chapter 2 = Sound Playing

%

OpenOneAsynchSoundChannel ()

%
PlaySoundResourceaAsynch ()

7
AnimateWhileSoundPlays ()

%
(o ndIfFinished()
¢

Sevummococunnsioos

FIGURE 2.16 The application-defined functions that make
asynchronous sound play possible.

Before finishing off with an example program, let’s look at the answer
to a question you may have regarding the disposing of the sound channel.
To determine when to dispose of the channel, C1eanUpSoundIfFinished()
is called from within the while loop found in AnimateWhileSoundPlays().
Rather than calling this routine at every pass through the loop, perhaps
it could be called just a single time—when the global gSoundP1aying flag
becomes false:

while (loopDone == false)
{
if (gSoundPlaying == true)
MovePictureOnePixel();

59

60

Graphics and Sound Programming Techniques for the Mac

}

else

{
CleanUpSoundIfFinished();
loopDone = true;

}

While this approach will work in some instances, it will fail in others.
Consider a version of AnimateWhileSoundPlays() that doesn’t stop anima-
tion as soon as the sound finishes. In the following snippet, animation
might take place even after the sound has stopped. If the sound has
finished, but the picture hasn’t reached the edge of the window, the
animation continues. In this instance, the sound channel will inadver-
tently remain open even though the sound has finished.

while (loopDone = false)
{
if ((gSoundPlaying == true) || (gAtEdge == false))
MovePictureOnePixel();
else
{
CleanUpSoundIfFinished();
loopDone = true;
}
}

Instead of calling Cl1eanUpSoundIfFinished once, as is done above, call it
each pass through the loop—as shown earlier.

Chapter Example: AsynchSndPlay

The AsynchSndPlay example program is a simple demonstration of
asynchronous sound play. When you start the program you’ll see an
empty window. Pressing any key starts a cartoon bear sliding on a block
of ice across the window from right to left. Figure 2.17 shows the bear in

Chapter Z = Sound Playing

61

the window. As the bear moves, you'll hear classical music playing.
When the animation stops a short time later, the music will stop as well.
You can replay the sound by again pressing any key. When you do, the
bear will start moving from the point at which he stopped. And, of
course, the music will again play as the bear moves. To quit the program,
wait until the animation and sound stop, then click the mouse button.

FIGURE 2.17 The AsynchSndPlay program displays
a picture that moves while a sound plays.

Why is a cartoon polar bear sliding along to the music of the 18th-century
‘ composer George Frideric Handel? Who cares! What's important here is
that while a sound is playing, other action is taking place on the screen.
NOTE That's the definition of asynchronous sound—a technique you'll need to

master if you're going to write multimedia programs or games.

The AsynchSndPlay project requires three resources: a PICT, a snd , and a
WIND. Figure 2.18 shows the resource IDs of each. You can replace the
picture or the sound with resources of your own—just make sure to give
the PICT an ID of 128 and the snd an ID of 9000, in order to match the
numbers used in the source code.

62 Graphics and Sound Programming Techniques for the Mac

AsynchsSndPlay.rsrc

g <

PICT snd WIND

PICTs from AsynchSndPlay.rsrc

o
(-4

snds from AsynchSndPlay.rsrc
D Size Name

9000 140842 “Handel 7th Movement”

FIGURE 2.18 The three resources used in the
AsynchSndPlay program, as viewed in ResEdit.

Most of the routines that make up the AsynchSndPlay program have
been described in this chapter. Before presenting the source code listing,
a quick look is in order for the few routines that haven’t yet been covered.
The main() function is shown below, with an explanation following.

void main(void)

{
NumVersion theSndMgrVers;
EventRecord theEvent;

InitializeToolbox();

theSndMgrVers = SndSoundManagerVersion();
if (theSndMgrVers.majorRev < 3)
ExitToShel1();

OpenDisplayWindow();
LoadAndSetupPicture();

Chapter 2 = Sound Playing

}

63
while (gDone == false)
{
WaitNextEvent(everyEvent, &theEvent, 15L, nil);
switch (theEvent.what)
{
case mouseDown:
gDone = true;
break;
case keyDown:
PlaySoundResourceAsynch(rMusicSound);
break;
}
}

After initializing the Toolbox and verifying that the user has Sound
Manager version 3.0 or later, main() calls the application-defined routiries
OpenDisplayWindow() and LoadAndSetupPicture() to open a window
and load the PICT resource into memory. A handle to the picture is
stored in the global variable gThePicture, and the starting boundaries of
the picture are stored in the global rectangle variable gTheRect.

void OpenDisplayWindow(void)

{

}

//

WindowPtr theWindow;

theWindow = GetNewWindow(rDisplayWindow, nil, (WindowPtr)-1L);
ShowWindow(theWindow);
SetPort(theWindow);

void LoadAndSetupPicture(void)

{

short theWidth;
short theHeight;
short 1left = 475;
short top = 10;

gThePicture = GetPicture(rBearPicture);
gTheRect = (**gThePicture).picFrame;
theWidth = gTheRect.right - gTheRect.left;

64

Graphics and Sound Programming Techniques for the Mac

theHeight = gTheRect.bottom - gTheRect.top;
SetRect(&gTheRect, left, top, left + theWidth, top +
theHeight)

}

The picture handle and boundary rectangle are stored in global variables
so that their values will be retained as the program runs. When it comes
time to move the picture one pixel to the left, MovePictureOnePixel()
simply offsets the variable gTheRect one pixel, then calls DrawPicture():

void MovePictureOnePixel(void)

{
OffsetRect(&gTheRect, -1, 0);
DrawPicture(gThePicture, &gTheRect);

NOTE

For smoother animation you'll use graphic worlds rather than moving a
picture. That topic is described in Chapter 5.

To play a sound and run the animation, a user of AsynchSndPlay press-
es any key. A keystroke causes a keyDown event to occur, which is picked
up by WaitNextEvent(). In response to the keyDown event, main() calls
PlaySoundResourceAsynch() to start the sound and animation.

Now, the complete source code listing for AsynchSndPlay follows
below. As you look over the listing, keep in mind that many of the routines
can be used “as is” in your own programs that will take advantage of
asynchronous sound. In particular, in their present form SoundChannel-
Callback(), InstallCallbackCommand(), CleanUpSoundIfFinished(), and
PlaySoundResourceAsynch() may all meet your needs.

/1

f#Hinclude <Sound.h>

/17

pascal void SoundChannelCallback(SndChannelPtr, SndCommand);
O0SErr InstallCallbackCommand(SndChannelPtr);
void : CleanUpSoundIfFinished(void);

Chapter 2 = Sound Playing

65
void PlaySoundResourceAsynch(short);
void AnimateWhileSoundPlays(void);
void InitializeToolbox(void);
void OpenDisplayWindow(void);
void LoadAndSetupPicture(void);
void MovePictureOnePixel(void);
SndChannelPtr OpenOneAsynchSoundChannel(void);
O0SErr DisposeOneSoundChannel(SndChannelPtr);
//
ftdefine rMusicSound 9000
define rDisplayWindow 128
jidefine rBearPicture 128
//
short gSoundPlaying = false;

Boolean gCallbackExecuted = false;
SndChannelPtr gSoundChannel =nil;
Handle gSoundHandle =nil;
Boolean gDone = false;
PicHandle gThePicture;

Rect gTheRect;

//

void main(void)

{
NumVersion theSndMgrvers;
EventRecord thetvent;

InitializeToolbox();

theSndMgrVers = SndSoundManagerVersion();
if (theSndMgrVers.majorRev < 3)
ExitToShell();

OpenDisplayWindow();
LoadAndSetupPicture();

while (gDone == false)
{
WaitNextEvent(everyEvent, &theEvent, 15L, nil);

switch (theEvent.what)

Graphics and Sound Programming Techniques for the Mac

case mouseDown:
gDone = true;
break;

case keyDown:
PlaySoundResourceAsynch(rMusicSound);
break;

}
/1l

void PlaySoundResourceAsynch(short theResID)
{
OSErr theError;

gSoundChannel = OpenOneAsynchSoundChannel();
if (gSoundChannel == nil)
ExitToShel1();

gSoundHandle = GetResource(‘snd ‘, theResID);
if (gSoundHandle == nil)
ExitToShell();

DetachResource(gSoundHandle);
HLock(gSoundHandle);

gSoundPlaying = true;
theError = SndPlay(gSoundChannel, (SndListHandle)gSoundHandle,
true);

if (theError == noErr)

theError = InstallCallbackCommand(gSoundChannel);
else

ExitToShell();

AnimateWhileSoundPlays();
}

//

void AnimateWhileSoundPlays(void)
{

Chapter 2 - Sound Playing 67

Boolean T1oopDone = false;

while (loopDone == false)

{
CleanUpSoundIfFinished();
if (gSoundPlaying == true)
MovePictureOnePixel();
else
loopDone = true;
}
1
1/
void CleanUpSoundIfFinished(void)
{
OSErr theError;
if (gCallbackExecuted == true)
{
HUnlock(gSoundHandle);
ReleaseResource(gSoundHandle);
gSoundHandle = nil;
thekError = DisposeOneSoundChannel(gSoundChannel);
if (theError != noErr)
ExitToShell();
gSoundChannel = nil;
gCallbackExecuted = false;
}
}
!/

0SErr InstallCallbackCommand(SndChannelPtr theChannel)
{

OSErr theError;

SndCommand theCommand;

theCommand.cmd = callBackCmd;
theCommand.paraml = 0;
##ifndef powerc

theCommand.param2 = SetCurrentA5();
felse .

Graphics and Sound Programming Techniques for the Mac

68

theCommand.param2 = 0;
ffendif

theError = SndDoCommand(theChannel, &theCommand, true);

return (theError);

}
//
pascal void SoundChannelCallback(SndChannelPtr theChannel,
SndCommand theCommand)
{
long theA5;
#ifndef powerc
theA5 = SetA5(theCommand.param2);
ffendif
gCallbackExecuted = true;
gSoundPlaying = false;
#ifndef powerc
theA5 = SetA5(theA5);
#endif
}
//

SndChannelPtr OpenOneAsynchSoundChannel(void)
{

SndChannelPtr theChannel;

OSErr theError;

SndCal1BackUPP theCallBackUPP;

theCal1BackUPP = NewSndCallBackProc(SoundChannelCallback);

theChannel = nil;
theError = SndNewChannel (&theChannel, 0, 0, theCallBackUPP);

if (theError != noErr)

{
DisposePtr((Ptr)theChannel);
theChannel = nil;

}

return (theChannel);

Chapter 2 = Sound Playing 69

}
//

OSErr DisposeOneSoundChannel(SndChannelPtr theChannel)

{
0SErr theError;

theError = SndDisposeChannel(theChannel, true);
DisposePtr((Ptr)theChannel);

return (theError);
}

//

void OpenDisplayWindow(void)

{
WindowPtr theWindow;

theWindow = GetNewWindow(rDisplayWindow, nil, (WindowPtr)-1L);
ShowWindow(theWindow);
SetPort(theWindow);

}

//

void LoadAndSetupPicture(void)

{
short theWidth;

short theHeight;
short left = 475;
short top = 10;

gThePicture = GetPicture(rBearPicture);
gTheRect = (**gThePicture).picFrame;
theWidth = gTheRect.right - gTheRect.left;
theHeight = gTheRect.bottom - gTheRect.top;
SetRect(&gTheRect, left, top, Teft + theWidth, top +
theHeight);
}

/1!

void MovePictureOnePixel(void)

{
OffsetRect(&gTheRect, -1, 0);

70

Graphics and Sound Programming Techniques for the Mac

DrawPicture(gThePicture, &gTheRect);
}

More Asynchronous Sound

Not only can a sound be played while animation takes place, but that
sound can have its characteristics altered while the animation continues.

Allowing User Input While a Sound Plays

In the AnimateWhileSoundPlays() function of last section’s Asynch-
SndPlay program, a loop was used to move a picture across a window
as a sound played. While looping is a powerful programming device, it
can have one serious drawback: for the entire time that a loop executes,
it takes control of a program and locks out the user. This may be an
acceptable practice for programs that run on certain machines, but it runs
counter to the notion of how an event-driven program should operate.

While a loop generally does take control of a program, it doesn’t
have to. You already know that fact from working with the event loop
of any Mac program. The call that is at the heart of an event loop—
WaitNextEvent()—makes it possible for the user to constantly interact
with the program. By looking for,—and processing—keyboard and
mouse events, WaitNextEvent() allows the user to set the course of
action for a program.

Typically, a Macintosh programmer will include just a single call to
WaitNextEvent() in a program—the call that appears in the event loop.
This is done because one call is usually adequate—not because there is
a restriction on the number of times WaitNextEvent() can appear in a
program. When it makes sense to use an additional call to WaitNext-
Event(), a program should do so. As you may have guessed, this makes
perfect sense for last section’s AsynchSndPlay program.

Adding a call to WaitNextEvent() in the AnimateWhileSoundPlays()
function allows the function to watch for user-input. One likely scenario
is that the user may want to stop the asynchronous sound from playing
before it’s finished. The following new version of AnimateWhileSound-

Chapter 2 = Sound Playing

Plays() respondstoa keyDown event by calling a new application-defined
routine named StopSoundPlaying() and then setting the loop-ending
local Boolean variable 1oopDone to true.

void AnimateWhileSoundPlays(void)

{
EventRecord theEvt;
Boolean ToopDone = false;

while (loopDone == false)

{
CleanUpSoundIfFinished();

if (gSoundPlaying == true)
MovePictureOnePixel();
else
loopDone = true;

WaitNextEvent(everyEvent, &theEvt, 15L, nil);

switch (theEvt.what)
{
case keyDown:
StopSoundPlaying();
loopDone = true;
break;

}

StopSoundPlaying() sets the global flags gCallbackExecuted to true and
gSoundPlaying to false. Then the CleanUpSoundIfFinished() function is
called to dispose of the sound channel.

void StopSoundPlaying(void)

{
if (gSoundChannel != nil)
{
gCallbackExecuted = true;
gSoundPlaying = false;
}

CleanUpSoundIfFinished();

1/

Graphics and Sound Programming Techniques for the Mac

The StopSoundPlaying() is called by the application—not by the
Sound Manager (as the callback routine is). Because the application is
terminating the sound early, the Sound Manager doesn’t get the chance to
issue the callback command. That’s why the StopSoundPlaying() routine
has to “artificially” set gCallbackExecuted to true. When CleanUpSound-
IfFinished() begins to execute, it will note that this flag is true and will
dispose of the sound channel.

Because the keyDown-handing code in AnimateWhileSoundPlays() sets
the 1oopDone flag to true, the loop will end regardless of the value of
gSoundP1aying. However, StopSoundPlaying() makes no assumptions about
the routine that calls it. It sets gSoundPlaying to false in case the calling
function relies on this flag to end the loop.

Having a keystroke as the event that triggers some action makes for a clear,
easy-to-follow example. Your program can apply the same event-handling
principle in a more complex way. For example, your animation routine
could respond to mouseDown events in the menu bar rather than keyDown
events. Then, rather than pressing a key, the user could stop a sound by making a Stop
Sound menu selection from a Sound menu.

Chapter Example: AsynchSndEvt

The AsynchSndEvt program that you'll find on the CD in this chapter’s
folder of examples is almost identical to the AsynchSndPlay example.
Once again a polar bear slides to the classical music of Handel. The
difference is that AsynchSndEvt uses the new version of AnimateWhile-
SoundPlays() and the StopSoundPlaying() routine. That allows the user
to stop a sound that is playing by pressing any key. Another keystroke
will restart the sound from the beginning.

As you look over the AsynchSndEvt source code, take note of the fact
that there are two calls to WaitNextEvent(). As always, one call appears
in the event loop. When ever a sound isn't playing, this is the call to
WaitNextEvent() that processes events. When a sound isn’t playing the
program responds to keyDown and mouseDown events in main(). Once a
sound is playing, the program will be in the while loop of Animate-
WhileSoundPlays(). That means that when a sound is playing, it is the call

Chapter 2 = Sound Playing

to WaitNextEvent() in AnimateWhileSoundPlays() that processes events.

When a sound is playing, only keyDown events will be processed.

// main() handles events when a sound isn’t playing.
// A click of the mouse quits the program, a press of a
// key plays a sound asynchronously.

void main(void)

{
while (gDone == false)
{
WaitNextEvent(everyEvent, &theEvent, 15L, nil);
switch (vtheEvent.what)
{
case mouseDown:
gDone = true;
break;
case keyDown:
PlaySoundResourceAsynch(ksnd resourcelD);
break;
}
}
}

// AnimateWhileSoundPlays() handles events during sound play.
-// Mouse clicks are ignored, a press of a key stops the sound.

void AnimateWhileSoundPlays(void)

{
EventRecord theEvt;
Boolean loopDone = false;

while (ToopDone == false)
{

WaitNextEvent(everyEvent, &theEvt, 15L, nil);

switch (theEvt.what)
{
case keyDown:
StopSoundPlaying();

3

14

Graphics and Sound Programming Techniques for the Mac

lToopDone = true;
break;

}

There’s one final addition to the AsynchSndEvt source code that is worthy
of note. The P1aySoundResourceAsynch() routine now starts with a check
to verify that gSoundChannelisn’t nil:

void PlaySoundResourceAsynch(short theResID)

{
O0SErr theError;
if (gSoundChannel != nil)
StopSoundPlaying();
// rest of routine is the same as the previous version
}

The AsynchSndEvt program won’t ever make use of this addition, but
it is a useful one nonetheless. If you ever make a change to the program
such that it stops and restarts a sound in response to pressing a key,
StopSoundPlaying() will be called from within PlaySoundResource-
Asynch () .Consider the following version of AnimateWhileSoundPlays().
It has two lines of keyDown-handling code commented out, and one new
line in their place.

void AnimateWhileSoundPlays(void)

{
EventRecord theEvt;
Boolean lToopDone = false;
while (ToopDone == false)
{

CleanUpSoundIfFinished();

if (gSoundPlaying == true)
MovePictureOnePixel();
else
loopDone = true;

WaitNextEvent(everyEvent, &theEvt, 15L, nil);

Chapter 2 = Sound Playing

switch (theEvt.what)

{
case keyDown:
// StopSoundPlaying();
// loopDone = true;
PlaySoundResourceAsynch(ksnd resourcelID); // NEW
break;
}

}

In the above version of AnimateWhileSoundPlays(), a keystroke will call
PlaySoundResourceAsynch(). Because a sound is already playing, a
sound channel is already allocated, and a pointer to it is held in the
global SndChannelPtr variable gSoundChannel. When AnimateWhile-
SoundPlays() calls PlaySoundResourceAsynch(), the test of the value of
gSoundChannel will reveal that this variable is not a ni1 pointer, and the
current sound should thus be stopped:

void PlaySoundResourceAsynch(short theResID)

{
0OSErr theError;

if (gSoundChannel != nil)
StopSoundPlaying();

What would happen if the above test of gSoundChannel wasn’t made?
PlaySoundResourceAsynch() would go on to allocate a new sound channel
and place a pointer to it in gSoundChannel. Because the original sound
would be playing in a channel pointed to by gSoundChannel, this would
result in the very troubling situation.

As a test, alter the AsynchSndEvt source code to match this new
example: comment out the StopSoundPlaying() call and the ToopDone
assignment under the keyDown case section in AnimateWhileSound-
Plays(). If you do that, then recompile and run the project, you'll find
that when a sound is playing, the sound stops, then restarts, each time a
key is pressed.

75

16

Graphics and Sound Programming Techniques for the Mac

Sound Commands and Asynchronous Sound Play

The Toolbox function SndDoCommand() adds a sound command to the
sound command queue of a sound channel. You've used this routine to
add a callback command to the sound channel that is playing a sound
asynchronously. As Figure 2.19 shows, a call to SndPlay() starts issuing
the commands in a queue to the speaker—starting with the first command
in the queue (shown lower in memory). The figure also shows that a call
to SndDoCommand () adds a sound command to the end of a queue.

SndPlay () SndDoCommand ()

FIGURE 2.19 A call to SndDoCommand() adds a command to a sound channel queue.

The Toolbox includes a second routine that works with sound com-
mands—SndDoImmediate(). Like SndDoCommand(), SndDoImmediate()
accepts a sound channel pointer and a sound command as parameters.
Unlike SndDoCommand(), SndDoImmediate() issues a sound command
directly to the sound hardware of a Mac. The sound channel sound com-
mand queue is bypassed entirely. Figure 2.20 shows SndDoImmediate()
sending a command to change the amplitude, or volume, of a sound
that is currently playing.

Chapter 2 = Sound Playing

SndPlay () SndDoImmediate ()

FIGURE 2.20 A call to SndDoImmediate() immediately processes a sound channel.

When combined with asynchronous sound, a routine that immediately
affects a sound channel is a powerful programming tool. When a program
starts a sound, a call to SndDoImmediate() lets the user change a character-
istic of the sound as it plays.

SndDolmmediate() and Sound Volume

SndDoImmediate() works with a variety of sound commands, one of which
is the ampCmd sound command introduced earlier in this chapter. In this
chapter’s SoundCommands example program, you saw the ampCmd used
in a call to SndDoCommand (). Recall that the ampCmd varies the amplitude, or
volume, of a sound. For the amplitude command the cmd field is ampCmd,
the paraml field is the desired amplitude, and the param? field is unused.
The paraml field has a range of 0 to 255, with 0 turning the sound off and
255 setting the sound to 100 percent of the sound level currently set by the
user in the user’s Sound control panel. The following snippet will change
the volume of a playing sound to one-half its current volume. As soon as
the call to SndDoImmediate() is made, the sound playing on theChannel will

7

78

Graphics and Sound Programming Techniques for the Mac

drop in volume by 50 percent (because a paraml value of 127 is approxi-
mately one half of the maximum paraml value of 255).

SndChannel?Ptr theChannel;
SndCommand theCommand;
OSErr theError;

theCommand.cmd = ampCmd;
theCommand.paraml = 127;
theCommand.param2 = 0;

theError = SndDoImmediate(theChannel, &theCommand);

NOTE

Keep in mind that the amplitude is in relation to the sound level set by the
user in the user’s Sound control panel. Thus a single paraml value will
generate different volumes, depending on how loud the user has set the
volume of the Mac’s speaker. For instance, don’t assume that a half volume
setting of 127 will always play a sound at half the maximum level that a Mac can deliver.
If the user has his or her Sound control-panel sound level set to 1, the sound will play
at a volume midway between 0 and 1 on the Sound control-panel scale—and that’s a
very quiet sound.

This chapter’s next example program uses a routine named SetSound-
Amplitude() to change the volume of a sound. Pass SetSoundAmp1itude()
a sound channel pointer and the new amplitude, and the function will
immediately change the volume of whatever sound is currently playing
on the sound channel pointed to by the SndChannel1Ptr parameter.

0SErr SetSoundAmplitude(SndChannelPtr theChannel, short theAmp)
{

SndCommand theCommand;

OSErr theError;

theCommand.cmd = ampCmd;
theCommand.paraml = theAmp;
theCommand.param2 = 0;

theError = SndDoImmediate(theChannel, &theCommand);

return (theError);

Chapter 2 - Sound Playing

This same routine, with one change, appears much earlier in this chapter—in
the SoundCommands example program. There, a call to SndDoCommand()
was used in place of SndDolmmediate().

NOTE

Earlier you saw how to add event handling to the loop that performs the
animation accompanying a sound that is playing asynchronously. The
following snippet shows how that technique could be expanded upon.
In the following example, a keyDown event is handled by first determining
which particular key was pressed by the user. If the key was the minus
key on the numeric keypad of the keyboard, SetSoundAmplitude() is
called to turn the sound volume down to half volume. If any other key is
pressed, the sound and animation are stopped—just as they were in the
previous example program, AsynchSndEvt.

void AnimateWhileSoundPlays(void)
{

while (loopDone == false)
{

WaitNextEvent(everyEvent, &theEvt, 15L, nil);

switch (theEvt.what)
{
case keyDown:
theChar = theEvt.message & charCodeMask;
switch (theChar)
{
case ‘-’:
theError = SetSoundAmplitude(gSoundChannel, 127);
if (theError != noErr)
ExitToShell();
break;
default:
StopSoundPlaying();
loopDone = true;
break;

79

80

Graphics and Sound Programming Techniques for the Mac

}
break;

The MoreSndCommands example program that appears a little later
provides a complete version of the above AnimateWhileSoundPlays()
snippet.

SndDolmmediate() and Sound Pitch

Your application can use SndDoImmediate() to change the rate of play of a
sound. The rateCmd sound command allows the frequency of a playing
sound to be lowered or raised. A lower frequency corresponds to a
lower pitch, and produces a lower sound—Ilike a bass drum. A higher
frequency corresponds to a higher pitch, and generates a higher
sound—as in a violin. The rateCmd also alters the duration of a sound.
A lower rate not only lowers the sound’s frequency, it also slows the
sound down. A higher rate increases the sound’s frequency and speeds
up the sound.

The rate command requires a cmd field of rateCmd, a paraml field that
is unused, and a param2 field that is a hexadecimal 1ong value. A
param2 value of 0x00010000 plays a sound at 22 kHz—the rate at which
most sampled sounds are recorded. Other rates all use this 22 kHz
value as a base. That is, to play a sound at twice its normal rate, or 44
kHz, use 0x00020000 for the param2 value. A value of 0x00030000 plays
a sound at 66 kHz. To slow a sound to 11 kHz, set param2 to 0x00008000.

If your hexadecimal skills are a little rusty, here’s why 0x00008000 is one-
half of 0x00010000.

0x00010000 in decimalis (1) x (16x16 x16x16), or 65, 536.
0x00008000 in decimalis (8) x (16x16x16), or 32,768.

The following snippet will change the rate of a playing sound to 66 kHz.

Chapter 2 - Sound Playing

81
SndChannelPtr theChannel;
SndCommand theCommand;
0SErr theError;

theCommand.cmd = rateCmd;
theCommand.paraml = 0;
theCommand.param2 = 0x00030000;

theError = SndDoImmediate(theChannel, &theCommand);

The MoreSndCommands example program found on this book’s CD
includes a routine named SetSoundRate(). Pass SetSoundRate() a sound-
channel pointer and a 1ong variable (in hexadecimal), and the function
will immediately change the rate of the playing sound.

0SErr SetSoundRate(SndChannelPtr theChannel, long theRate)

{
SndCommand theCommand;
OSErr theError;

theCommand.cmd = rateCmd;
theCommand.paraml = 0;
theCommand.param2 = theRate;

theError = SndDoImmediate(theChannel, &theCommand);

return (theError);
}

As was done for the amplitude of a sound, the sound’s rate can be con-
trolled by the user from the event-handling section of the animation
loop. In the following snippet, pressing the f key (for “fast”) will set the
sound that is playing to 66 kHz.

void AnimateWhileSoundPlays(void)
{

while (loopDone == false)
{

Graphics and Sound Programming Techniques for the Mac

WaitNextEvent(everyEvent, &theEvt, 15L, nil);
switch (theEvt.what)

{
case keyDown:
theChar = theEvt.message & charCodeMask;
switch (theChar)
{
case ‘f’:
theError = SetSoundRate(gSoundChannel,
0x00030000);
if (theError != noErr)
ExitToShell();
break;
default:
StopSoundPlaying();
loopDone = true;
break;
}
break;
}

Chapter Example: MoreSndCommands

The MoreSndCommands example program represents the final return
of the sliding bear and Handel’s 7th Symphony. This version of the sliding-
bear program gives the user the ability to vary both the amplitude and
rate of the classical score that accompanies the bear’s slide.

To change the amplitude of the sound, the SetSoundAmplitude()
routine developed on the preceding pages is used. The changing of the
sound’s rate is handled by another function you’ve recently seen—
SetSoundRate().

Once again, it’s the call to WaitNextEvent() in the loop of Animate-
WhileSoundPlays() that makes it possible for the user to gain control of
the sound. If the event is a keyDown event, AnimateWhileSoundPlays()
will begin by determining which key was pressed. If the key was the +

Chapter 2 = Sound Playing

or - key on the numeric keypad, the sound’s amplitude will change.
Pressing the - key lowers the amplitude by 30 on the scale of 0 to 255.
Repeatedly pressing the - key will continually lower the volume of the
sound until the level approaches 0. Pressing the + key raises the ampli-
tude 30. Before lowering or raising the volume, a check is made to ensure
that the amplitude will not go out of the paraml range of 0 to 255. Here's
the amplitude-related case sections used in AnimateWhileSoundPlays():

case ‘+’:
if (theAmplitude <= 225)
theAmplitude += 30;
theError = SetSoundAmplitude(gSoundChannel, theAmplitude);
if (theError != nokErr)
ExitToShell();
break;

case ‘-’:
if (theAmplitude >= 30)
theAmplitude —= 30;
thekError = SetSoundAmplitude(gSoundChannel, theAmplitude);
if (theError != nokrr)
ExitToShel1();
break;

The user can change the rate of play of the sound by pressing one of
three keys. The f key (for “fast’) sets the sound playing at 66 kHz. This
increased rate will produce sound that is played very fast. The s key
(for “slow”) sets sound play to 11 kHz—resulting in a sound that plays
at half its normal speed. Pressing the p key (for “play”) plays the sound
at its normal 22 kHz rate. Here’s a snippet that shows the case sections
for these three keystrokes:

ftdefine kllkHzFreqRate 0x00008000
ftdefine k22kHzFreqRate 0x00010000
ftdefine k44kHzFreqRate 0x00020000
fidefine k66kHzFregRate 0x00030000
case ‘p’:

theError = SetSoundRate(gSoundChannel, k22kHzFreqRate);
if (theError != nokrr)

ExitToShell();
break;

84

Graphics and Sound Programming Techniques for the Mac

case ‘s’:
theError = SetSoundRate(gSoundChannel, kllkHzFreqRate);
if (theError != noErr)

ExitToShell();
break;

case ‘f’:
theError = SetSoundRate(gSoundChannel, k66kHzFreqRate);
if (theError != noErr)
ExitToShel1();
break;

AnimateWhileSoundPlays(), shown below, holds the code that differs
from the AsynchSndEvt program. To see the full listing for the
MoreSndCommands program, refer to the MoreSndCommands.c
source-code file found on the included CD.

void AnimateWhileSoundPlays(void)

{
EventRecord theEvt;
Boolean loopDone = false;
char theChar;
O0SErr theError;
short theAmplitude = 255;

while (ToopDone == false)
{
CleanUpSoundIfFinished();

if (gSoundPlaying == true)
MovePictureOnePixel();
else
loopDone = true;

WaitNextEvent(everyEvent, &theEvt, 15L, nil);

switch (theEvt.what)
{
case keyDown:
theChar = theEvt.message & charCodeMask;
switch (theChar)
{
case ‘+’:

Chapter 2 = Sound Playing 85

if (theAmplitude <= 225)
theAmplitude += 30;
theError = SetSoundAmplitude(gSoundChannel,
theAmplitude);
if (theError != noErr)

ExitToShell();
break;
case ‘-’:

if (theAmplitude >= 30)
theAmplitude -= 30;
theError = SetSoundAmplitude(gSoundChannel,
theAmplitude);
if (theError != nokrr)
ExitToShell();
break;
case ‘p’:
theError = SetSoundRate(gSoundChannel,
k22kHzFreqRate);
if (theError != noErr)
ExitToShel1();
break;
case ‘s’:
theError = SetSoundRate(gSoundChannel,
k1lkHzFreqRate);
if (theError != noErr)
ExitToShell();
break;
case ‘f’:
theError = SetSoundRate(gSoundChannel,
k66kHzFreqRate);
if (theError != nokrr)
ExitToShell1();
break;
default:
StopSoundPlaying();
loopDone = true;
break;
}
break;

86

Graphics and Sound Programming Techniques for the Mac

Summary

Version 3.0 of the Sound Manager provides you, the programmer, with the
routines necessary to play and alter sounds. Before adding sound-playing
capabilities to your program, you’ll want to call SndSoundManager-
Version() to verify that the user has this version of the Sound Manager
as part of his or her system software.

Sounds can conveniently be stored as snd resources in the resource
fork of a Macintosh application. To load a sound into memory, call
GetResource(). To play the loaded sound, call SndP1ay(). For simple
synchronous sound play, you can let the Sound Manager take care of
the allocation of a sound channel from which a sound is played. For the
more complex asynchronous sound play (sound playing that allows
other action, such as animation, to take place), your program will
become involved.

Playing a sound asynchronously requires that a callback routine be
associated with the sound channel from which the sound will be played.
The callback routine gets invoked by the Sound Manager when the
asynchronous sound finishes playing. The purpose of this function is to
set a flag variable that indicates to the rest of the program that the
sound has finished playing.

CHAPTER 3
Sound Recording

The Sound Manager, described in Chapter 2, is the set of Toolbox routines
that provides your programs with the capabilities to play sounds through
either the Mac’s built-in speakers or a pair of external speakers. Sound
Manager routines such as SndDoCommand() and SoundDoImmediate() allow
your programs to alter the way in which a sound is played.

The Sound Input Manager—the topic of this chapter—is the set of
Toolbox routines that gives your applications the power to record sounds.
The most important of these routines is the one that displays and controls
the standard Sound Recording dialog box. By including this dialog box in
your program, you provide a standard interface that is recognizable to the
user. Once the user records a sound using this dialog box, your program
can play the sound back at any time or save it to a sound resource in a
resource file. Each of these topics is covered in this chapter.

Sound Input Devices

From the very oldest Macintosh to the most current model, each has had
a built-in speaker. That means that your program doesn’t have to check

87

Graphics and Sound Programming Techniques for the Mac

for the presence of sound-playing hardware before it plays a sound. The
same is not true for sound recording. While all current Macs come with
built-in sound recording capabilities, many older models don’t. So before
your program attempts to record a sound, it should first make a check to
verify that the host computer does indeed have a sound input device. For
this task you can use a short application-defined routine such as the
IsSoundInputAvailable() function described below. An example of a call
to this function is shown here:

Boolean soundInputPresent;

soundInputPresent = IsSoundInputAvailable();
if (soundInputPresent == false)
ExitToShel1();

Here’s a look at IsSoundInputAvailable(), followed by a description of
how this function determines whether an input device is available.

Boolean IsSoundInputAvailable(void)
{

0SErr theError;

long theResult;

Boolean inputAvail;

theError = Gestalt(gestaltSoundAttr, &theResult);
if (theError != nokrr)
ExitToShell();

inputAvail = theResult & (1 << gestaltHasSoundInputDevice);
if (inputAvail > 0)
return (true);
else
return (false);
}

IsSoundInputAvailable() calls the Toolbox routine Gestalt() to request
system information. By passing the Apple-defined constant gestaltSoundAttr
as the first parameter (the selector code), IsSoundInputAvailable() is
requesting information about the host machine’s sound capabilities.
This information is returned by the system in the response parameter—the
long variable theResult.

Chapter 3 = Sound Recording

With gestaltSoundAttr as the selector code, Gestalt() returns several
pieces of sound-related information. Each piece of information occupies
just a single bit in the filled-in variable theResult. To get the one piece of
information of importance here (whether a sound input device is avail-
able on the user’s Mac), you'll need to perform some bit-shifting. That’s
what the shift-left operator (<<) is used for in IsSoundInputAvailable().
If the bit in question (gestaltHasSoundInputDevice) is turned on, then
sound input is available, and a value of true should be returned to the
calling function.

The IsSoundInputAvailable() routine checks to see only if there is a
sound input device available—it makes no attempt to determine what
type of microphone is present. Because the sound recording Toolbox
routine you'll use to record sounds works with any microphone, the
detail of what kind of microphone is connected to a Mac is unimportant
to your application.

If a user has more than one sound input device on his or her Macintosh,
only one will be current at any time. The user makes this choice using the
Sound control panel. Figure 3.1 shows the Sound control panel for a Mac
that has two sound input devices: a built-in microphone and a
MacRecorder sound digitizer connected to one of the ports. Your application
won’t have to check to see which of these devices is in use—your program
will simply verify that there is a device, then it will go ahead and allow
sound recording.

cE=—— I ———— |

AAAAA [Sound In v |

Choose a source for recording:

i}.
l MacRecorder

&l

FIGURE 3.1 The Sound Input screen of the Sound control panel.

89

90

Grthics and Sound Programming Techniques for the Mac

Recording a Sound to Memory

The Sound Input Manager makes it easy for you to add sound recording
capabilities to any of your Mac applications. It only takes a call to the
Toolbox routine SndRecord() to display the standard Sound Recording
dialog box pictured in Figure 3.2. Once this dialog box is on the screen,
the Toolbox and the Sound Input Manager will handle the user’s
actions—whether they involve recording, pausing, stopping, or playing
back a sound.

Record Stop Pause Play

=

seconds

FIGURE 3.2 The standard Sound Recording dialog box.

Sound Data and Memory

When your program uses the SndRecord() routine to allow the user to
record a sound, the sound data will be recorded to memory. Before calling
SndRecord(), your program will allocate a block of heap memory in
which to hold this data. In allocating this block, your program will obtain
a handle to this block. Figure 3.3 shows a section of an application heap
that holds a block of memory for sound data and a SndListHandle that
references the block (via a master pointer, as is the case with all handles).

Chapter 3 = Sound Recording

Memory block
for sound data

SndListHandle

Master pointer

FIGURE 3.3 The data for a recorded sound is held
in a block of memory referenced by a handle.

When it comes time to allow the user to record a sound, your program
will call SndRecord() to display the standard Sound Recording dialog
box. When the user clicks the Record button in this dialog box, the Sound
Input Manager will route incoming sound from the sound input device
(such as the built-in microphone) to the block of memory that has been
allocated for the sound data. Figure 3.4 illustrates this.

92

Graphics and Sound Programming Techniques for the Mac

B (=][0])]

Record Stop Pause Play

E]
0

seconds $12

FIGURE 3.4 The standard Sound Recording dialog box sends
recorded sound data to a block of heap memory.

The Sound Recording dialog box records a sound directly to memory.
The more memory you have available to record to, the more sound data
you can record. More data translates to a longer sound. A small block
will allow a sound of only a few seconds in length to be recorded; a
large block can hold several minutes of recorded sound. The larger the
memory block, the longer the sound that the user is allowed to record.
The question that arises is this: How large a block should your program
allocate for the sound data? The answer: As large a block as can be
spared by your application. That answer, of course, begs another ques-
tion: How can you tell how much memory your application has to
spare? The answer to that question is provided by the Toolbox function
PurgeSpace().

Chapter 3 = Sound Recording

93

Allocating a Memory Block for Sound Data

You know the total amount of heap space that will be given to your
application—that figure is set up in your Symantec or Metrowerks compiler
environment. Figure 3.5 shows the Project panel of the Metrowerks
CodeWarrior Preferences dialog box. Here, a project has set the resulting
application’s heap size to 1 megabyte. From this 1024 KB of memory will
come the block that will hold recorded sound data.

If you're using a Symantec compiler, you'll use the Set Project Type menu
item in the Project menu to set the application heap size.

Apply to open project. The largest
] block of free
B Project Type: memary is
Bl j8ct up Ll based on the
Application Info: size of the
lication'
File Name [soundRecord6sk | el

heap

'SIZE' Flags Creator | 2?77
Type
Preferred Heap Size (k) [1024 =

Minimum Heap Size (k) | 768

Pl pams [Factory settings] [Revert Panel] [cancel] [ok ||

FIGURE 3.5 Metrowerks owners use the Preferences dialog box
to set an application’s heap size.

of 384 KB. Now that you know sound data will be saved directly into this

Both the Symantec and Metrowerks compilers provide a default heap size
heap memory, you'll probably want to increase the heap size of any projects

4, SR you're creating that include sound-recording capabilities.

94

Graphics and Sound Programming Techniques for the Mac

A sound data memory block must occupy contiguous heap memory,
that is, the block must occupy adjacent free bytes. Because there will be
other objects in the application heap besides the sound data block, and
because these blocks may break up the available free memory into small
blocks of unknown sizes, your program shouldn’t make assumptions
about the part of the heap that it can reserve for the sound data block. If
you've set your application heap size to 1 MB, there’s no guarantee that
a block anywhere near that size will be free. Instead, just before allocating
the block, your program should call the Toolbox function PurgeSpace()
to check on the availability of free RAM:

long theTotalHeap;
long theContigMem;

PurgeSpace(&theTotalHeap, &theContigMem);

Contrary to its name, PurgeSpace() doesn’t purge, or deallocate, any
memory. Instead, a call to this function tells your application how much
free space would exist if the heap were to be purged. After a call to
PurgeSpace(), the first parameter will hold the total free space (in bytes)
in the heap if the heap were to be purged. The second parameter will
hold the size of the largest contiguous block of memory (in bytes) that
will exist in the heap if the heap is purged. Because the sound data
must reside in a contiguous block, it is the value of the second parameter
that is of interest to your program.

To make sure that your application has access to all of the available appli-
cation heap, call the Toolbox routine MaxApp1Zone() near the start of the
program. The SoundRecord program listed later in this chapter provides
an example.

Figure 3.6 provides an example of the information returned by a call to
PurgeSpace(). This figure shows part of the Metrowerks MW Debug
window both before and after a call is made to PurgeSpace(). Before the
call, the variable theContigMem has a random value that doesn’t reflect
the free memory space. After the call, the variable theContigMem has a
value (1,035,972 bytes) close to the 1 MB partition size (1,048,576 bytes)
this example application program is given.

Chapter 3 = Sound Recording

95

If you're using a Symantec compiler, your debugger window will look dif-
ferent. This example is straightforward enough, however, that Figure 3.6
should suffice—you shouldn’t have to follow along in your own compiler.

Before PurgeSpace () After PurgeSpace() is called,
is called, the free the free memory is reported to
memory is unknown be almost 1 megabyte

= SoundRecors,
theContigMem i17 i

D theCorner i0x008C|
theError {-7536

P theSound 10x008C)
theTotalHeap i2180

@% PurgeSpace(&theTotalHeap, &theContighem);

theSound = (SndlListHandle)NewHandle(theContigh — kHeapReserve);

theContigMem

[theCorner
theError

P theSound

theTotal Heap

i1035972

PurgeSpace(&theTotalHeap, %theContiglem);
theSound = (SndListHandlelNewHandle(theContigMem - kHeapReserve);

theError = SndRecord(nil, theCorner, siBestQuality, &theSound);

return (theError);

O oees | s vl

FIGURE 3.6 The Metrowerks debugger shows how PurgeSpace()
returns the amount of available heap memory.

After calling PurgeSpace(), call the Toolbox function NewHandle() to allocate
a block for the sound data. The size of the block should be the theContigMem
value returned by PurgeSpace(), minus some number of bytes that you'd
like to keep reserved for your program’s use. If a contiguous block this size
isn’t available, NewHandle() will purge the heap to free up the necessary
amount of memory. The following snippet determines the amount of free
contiguous memory, then allocates a block that is 75 KB less than that
amount. The handle that is returned by the call to NewHand1e() is typecast to
the SndListHandle data type before being assigned to the variable theSound.

kHeapReserve 75 * 1024

SndListHandle theSound;

theTotalHeap;

96

Graphics and Sound Programming Techniques for the Mac

long theContigMem;
PurgeSpace(&theTotalHeap, &theContigMem);
theSound = (SndListHandle)NewHandle(theContigMem - kHeapReserve);

How large a reserve should you keep in the heap? That depends. If your
program will immediately save or play the recorded sound and then purge
its data from memory, the reserve can be small—less than the 75 KB used
in the above snippet. If the sound data will remain in memory for a longer
period of time, the reserve should be larger—during an extended period of its execution,
your program won’t want to dedicate most of the heap to a single sound.

NOTE

Recording the Sound Data to Memory

After allocating a block of memory in which to hold sound data, call
SndRecord() to post the standard Sound Recording dialog box. Before
doing so, make sure that the SoundInput.h universal header file is
included in your source code:

ffinclude <SoundInput.h>

SndListHandle theSound;
OSErr theError;
Point theCorner = { 50, 20 };

theError = SndRecord(nil, theCorner, siBestQuality, &theSound);

The first parameter to SndRecord() is a pointer to an optional filter
function. If used, this function specifies how the dialog box will handle
user actions (such as keystrokes and mouse clicks). The SndRecord()
routine handles sound recording, pausing, stopping, and playing, so
your program most likely will not benefit from a filter function. If that is
the case, pass a ni1 pointer here.

The second parameter to SndRecord() determines the screen place-
ment of the standard Sound Recording dialog box. Because the dialog
box is always the same size, you need only specify the left and top coor-
dinates (as a Point variable) in order for the dialog box to be positioned

Chapter 3 = Sound Recording

properly. In the above snippet, the top of the dialog box will appear 50
pixels from the top of the screen and the left side will appear 20 pixels from
the left of the screen.

The third parameter to SndRecord() is used to tell the Sound Input
Manager at which quality level to record incoming data. Use one of the three
Apple-defined constants—siGoodQuality, siBetterQuality, or siBest-
Quality—for this parameter. Your choice of quality value, along with
the size of the sound data memory block, determines the duration of the
sound that can be recorded. The lower the recording quality, the longer
the sound that can be recorded. This is the result of compression of the
sound data. A lower-quality sound has compression performed on it.
Compression conserves memory but sacrifices sound quality.

For voice recording you'll generally use siGoodQuality. For sounds
that have a critical need to be recorded at the highest quality, use
siBestQuality. The siBetterQuality records sounds that are a quality and
storage compromise between siGoodQuality and siBestQuality.

NOTE

Near the end of this chapter you'll find a short study of how these three
sound qualities affect both recording length and disk storage space.

The final parameter to SndRecord() is the pointer to the block of memory
that is to be devoted to holding the new sound data. The following snippet
sets up the memory block, then displays the standard Sound Recording
dialog box.

SndListHandle theSound;

OSErr theError;

Point theCorner = { 50, 20 };
long theTotalHeap;

long theContigMem;

PurgeSpace(&theTotalHeap, &theContigMem);
theSound = (SndListHandle)NewHandle(theContigMem - kHeapReserve);

theError = SndRecord(nil, theCorner, siBestQuality, &theSound);

97

98

Graphics and Sound Programming Techniques for the Mac

Chapter Example: SoundRecord

The SoundRecord program does nothing more than display the standard
Sound Recording dialog box. Figure 3.7 shows this dialog box as it looks
recording a sound.

R(m][u]D] <

Record Stop Pause Play Cancel
0 seconds 45 m

FIGURE 3.7 The standard Sound Recording dialog box
after the Record button has been clicked.

You can press the Record button and speak into the built-in microphone
on your Mac to record a sound. Press the Stop button to end recording,
then press the Play button to play the sound back. You can do this as often
as you wish; the dialog box won’t be dismissed until you press either the
Cancel or Save button.

Once the standard Sound Recording dialog box is posted, all of its
functionality is handled by the SndRecord() function. This routine will
maintain control of the program until either the Cancel or Save button is
clicked by the user. When that happens, the program ends. SoundRecord
won’t save a recorded sound. To do that, you'll need to add calls to a
few Resource Manager functions. A description of how to save a
recorded sound and an example program that does it appear later in
this chapter.

The SoundRecord program carries out its few tasks from main(), the
listing of which follows.

void main(void)

{
NumVersion theSndMgrVers;
0SErr thekrror;
Boolean soundInputPresent;

InitializeToolbox();

Chapter 3 = Sound Recording

MaxApplZone();

theSndMgrVers = SndSoundManagerVersion();
if (theSndMgrVers.majorRev < 3)
ExitToShell();

soundInputPresent = IsSoundInputAvailable();
if (soundInputPresent = false)
ExitToShel1();

theError = RecordSoundToMemory();
if (theError == userCanceledErr)
ExitToShell();
}

When your application is launched, its heap size isn't set to the size you
specified when you built the application with your development envi-
ronment. Instead, the heap starts out small and grows “on demand.” As
your program requests memory blocks, the heap expands to meet those
demands. If you make a call to PurgeSpace() early in a program, you'll
see that this function returns only a small value as the available heap
memory—not the large amount of free heap RAM that you might
expect it to return. To set your application’s heap to its maximum size,
call the Toolbox routine MaxApp1Zone() early in your program. After ini-
tializing the Toolbox, the main() function of the SoundRecord program
calls MaxApp1Zone(). Later, when PurgeSpace() is called, the true largest
free block size will be reported.

It's a good idea to call MaxApp1Zone() in all your Mac programs, not just
ones that work with sound. Call the function once, just after initializing
the Toolbox.

After initializing the Toolbox and expanding the heap to its maximum
size, main() verifies that Sound Manager 3.0 or later is present on the
user’s machine, as discussed in Chapter 2. Next, the application-defined
routine IsSoundInputAvailable() is called to make sure that a sound
input device is connected to the user’s Macintosh. Finally, an application-
defined function named RecordSoundToMemory () is called. A close examina-
tion of this function will reveal that it consists of the sound recording
code discussed earlier in this chapter, including the call to SndRecord().

99

100

Graphics and Sound Programming Techniques for the Mac

If the user clicks the Cancel button in the standard Sound Recording
dialog box that SndRecord() posts, the RecordSoundToMemory() routine
will return the Apple-defined result code of userCanceledtrr. The
RecordSound program chooses to exit if this happens; your program
will handle the user’s decision not to record a sound in a way that is
appropriate to the purpose of your application. As mentioned, if the user
clicks the Save button, the dialog is dismissed and no action is taken.

/1

#include <Sound.h>
#include <SoundInput.h>

/1

void InitializeToolbox(void);
Boolean IsSoundInputAvailable(void);
0SErr RecordSoundToMemory(void);

/1

fHdefine kHeapReserve 75 * 1024
//

void main(void)

{
NumVersion theSndMgrVers;
OSErr theError;
Boolean soundInputPresent;

InitializeToolbox();

MaxApplZone();

theSndMgrVers = SndSoundManagerVersion();
if (theSndMgrVers.majorRev < 3)
ExitToShel1();

soundInputPresent = IsSoundInputAvailable();
if (soundInputPresent == false)
ExitToShel1();

Chapter 3 = Sound Recording

101

theError = RecordSoundToMemory();
if (theError == userCanceledErr)
ExitToShell();

}
1/
Boolean IsSoundInputAvailable(void)
[OSErr theError;
long theResult;

Boolean inputAvail;

theError = Gestalt(gestaltSoundAttr, &theResult);
if (theError != noErr)
ExitToShell();

inputAvail = theResult & (1 << gestaltHasSoundInputDevice);
if (inputAvail > 0)

return (true);
else

return (false);

}
//
0SErr RecordSoundToMemory(void)
{
SndListHandle theSound;
OSErr theError;
Point theCorner = { 50, 20 };
long theTotalHeap;
long theContigMem;

PurgeSpace(&theTotalHeap, &theContigMem);
theSound = (SndListHandle)NewHandle(theContigMem - kHeapReserve);

theError = SndRecord(nil, theCorner, siBestQuality, &theSound);

ReleaseResource((Handle)theSound);

return (theError);

102

Graphics and Sound Programming Techniques for the Mac

Playing Back a Recorded Sound

Once a sound has been recorded to memory, your program can play it
back at any time. This section of the chapter is short for good reason; in
Chapter 2, you learned how to play a sound that is stored in memory.

Using the Handle to the Recorded Sound

In the SoundRecord example just described, the application-defined
function RecordSoundToMemory() declared a local SndListHandle vari-
able named theSound. After a call to SndRecord(), this variable held a
handle to whatever sound the user recorded. Because the handle to the
sound data was a local variable, when the dialog box was dismissed any
reference to the sound data in memory was lost. This wasn’t a concern
for the SoundRecord program—it only allowed the user to play back a
recorded sound via the Play button of the standard Sound Recording
dialog box. A more likely case is that your application will want to pre-
serve the sound handle so that the user’s sound can either be played
back after the Sound Recording dialog box has been dismissed or saved
todisk asa snd resource.

In this section’s SoundHandle program, the sound handle will be
declared outside of RecordSoundToMemory () and passed to this routine.
When the routine ends, the sound handle value will be a valid reference
to the recorded sound data in memory. At any point in the program the
sound can be played by passing this handle to the Toolbox routine
SndPlay (). Here’s how a call to the new version of RecordSoundToMemory ()
would look:

0SErr theError;
SndListHandle theSound;

theError = RecordSoundToMemory(&theSound);
if (theError == userCanceledErr)
ExitToShell();

Note that the address of the variable theSound is passed so that changes
to theSound made by RecordSoundToMemory () will be preserved after the
function has completed. The new version of RecordSoundTo-Memory()
follows the same steps as the old version: the largest contiguous block of

Chapter 3 = Sound Recording

free heap memory is determined, a block that size (less a reserve) is allo-
cated, and a call to SndRecord() is made.

OSErr RecordSoundToMemory(SndListHandle *theSound)
{

O0SErr theError;

Point theCorner = { 50, 20 };

long theTotalHeap;

long theContigMem;

PurgeSpace(&theTotalHeap, &theContigMem);

*theSound = (SndListHandle)NewHandle(theContigMem -
kHeapReserve);

theError = SndRecord(nil, theCorner, siBestQuality, theSound);

return (theError);

Take note of two subtle changes to RecordSoundToMemory (). Because the
address of a SndListHand1e is passed as a parameter, this line from the old
version of the function:

NOTE

theSound = (SndListHandle)NewHandle(theContigMem - kHeapReserve);
becomes:

*theSound = (SndListHandle)NewHandle(theContigMem - kHeapReserve);

The new version of the function must dereference theSound (which is now a pointer to
a SndListHandle rather than a SndListHandle) before using it here. Conversely, in
the call to SndRecord(), theSound is passed as the last parameter, rather than
&theSound—as was the case in the previous version of RecordSoundToMemory (). The
last parameter to SndRecord() must be a pointer to SndListHand1e. In this new version
of RecordSoundToMemory (), that’s what theSound is.

The new version of RecordSoundToMemory() doesn’t release the sound
handle, as the old version did. Instead, the sound data is kept in memory
for later use. Now that the sound data is in memory and the program
has a handle to that memory, the sound data can be played at any time.
You can pass the handle to an application-defined routine designed for

103

104

Graphics and Sound Programming Techniques for the Mac

that purpose. When your application is through playing the sound, it can
free up the memory occupied by the sound data by calling Release-
Resource(). The following snippet calls a routine that plays the sound
referenced by the passed sound handle and then releases the memory
that handle references.

theError = PlaySoundSynchFromHandle(theSound);
if (theError != noErr)
ExitToShell();

ReleaseResource((Handle)theSound);

The PlaySoundSynchFromHandle() is similar to the Chapter 2 routine
PlaySoundResourceSynch(). That routine had additional code that
loaded a snd resource into memory. Because the standard Sound
Recording dialog box has provided a handle to a sound in memory,
there’s no need for this new routine to load a sound. '

0SErr PlaySoundSynchFromHandle(SndListHandle theHandle)
{
OSErr theError;

if (theHandle != nil)

{
HLock((Handle)theHandle);
theError = SndPlay(nil, theHandle, false);
HUnlock((Handle)theHandle);
return (theError);
}

Your application could, of course, use the asynchronous sound playing
techniques discussed in Chapter 2 to play the sound while other action
takes place on screen, if there is a need to do so.

Chapter Example: SoundHandle

When you run the SoundHandle example program, you'll see the same
thing you witnessed when you ran SoundRecord: the standard Sound

Chapter 3 = Sound Recording

Recording dialog box. Like that program, SoundHandle allows you to
use this dialog box to record and play back your own sounds. Again,
like SoundRecord, clicking the Cancel button terminates the program.
The one difference between SoundHandle and SoundRecord comes
when you click on the Save button. Doing that dismisses the dialog box,
then plays the recorded sound one more time; this is something that
SoundRecord couldn’t do. In that program, once the Sound Recording
dialog box was dismissed the recorded sound could not be accessed.
Here, in SoundHandle, the handle to the sound data is preserved after
the Sound Recording dialog box is dismissed, and consequently, the
sound data can be accessed at any time.

You've probably noticed that the source code for InitializeToolbox()—
a routine used in every program in this book—isn’t provided in every
source code listing. You should be familiar with that very basic routine by
now. To save a little ink, the SoundHandle listing and the listing for the
next example don'’t include the source for IsSoundInputAvailable(). You'll find that
listing in the SoundRecord example earlier in this chapter.

NOTE

/17

f#include <Sound.h>
f##include <SoundInput.h>

//

void InitializeToolbox(void);

Boolean IsSoundInputAvailable(void);

OSErr RecordSoundToMemory(SndListHandle *);
OSErr PlaySoundSynchFromHandle(SndListHandle);

/7
fdefine kHeapReserve 75 * 1024
//

void main(void)

{
NumVersion theSndMgrVers;
OSErr theError;
SndListHandle theSound;

105

Graphics and Sound Programming Techniques for the Mac

106

Boolean soundInputPresent;
InitializeToolbox();
MaxApplZone();

theSndMgrVers = SndSoundManagerVersion();
if (theSndMgrVers.majorRev < 3)
ExitToShell();

soundInputPresent = IsSoundInputAvailable();
if (soundInputPresent == false)

ExitToShell();
theError = RecordSoundToMemory(&theSound);
if (theError == userCanceledErr)
ExitToShell1();

theError = PlaySoundSynchFromHandle(theSound);
if (theError != nokErr)
ExitToShell();

ReleaseResource((Handle)theSound);
}

1/

0SErr RecordSoundToMemory(SndListHandle *theSound)
{

0SErr theError;

Point theCorner = { 50, 20 };

long theTotalHeap;

Tong theContigMem;

PurgeSpace(&theTotalHeap, &theContigMem);

*theSound = (SndListHandle)NewHandle(theContigMem -
kHeapReserve);

theError = SndRecord(nil, theCorner, siBestQuality, theSound);

return (theError);
}

/1

0SErr PlaySoundSynchFromHandle(SndListHandle theHandle)

Chapter 3 = Sound Recording

OSErr theError;

if (theHandle != nil)
{
HLock((Handle)theHandle);
theError = SndPlay(nil, theHandle, false);
HUnlock((Handle)theHandle);

return (theError);

Saving a Recorded Sound to a
snd Resource

Your application may want to play a user-recorded sound, but not right
away. Rather than keep the sound data (which may be quite memory-
intensive) in the heap, your program can save the sound to a resource
and then release the memory the sound data occupies. When it comes
time to play the sound, the sound resource data can be loaded back into
memory in preparation for a call to SndPTlay ().

Some programs may allow a user to record sounds and save them
as sound resources in a separate resource file—possibly for use by other
programs. Here again your application can make use of the fact that
saving sound data from memory to disk is an easy task.

The Format of Sound Data in Memory

When the standard Sound Recording dialog box is used to record a
sound, the sound’s data ends up in a block of memory. Conveniently, the
sound data is stored in the format that matches a snd resource. As you've
seen, that makes it possible (and very easy) to play back the sound data
using a call to SndP1ay (). Likewise, having the sound data already in the
format of a snd resource makes it possible (and, again, easy) to save the
sound data as a snd resource in a resource file. Figure 3.8 emphasizes the
fact that sound data in memory matches the layout of snd resource data.

107

108

Graphics and Sound Programming Techniques for the Mac

Recorded sound

data in memory is
in the format of a
snd resource

“44 SndListHandle

Master pointer

FIGURE 3.8 When sound data is saved to memory,
it is done so in the format of a snd resource.

Saving Sound Data to a snd Resource

Saving sound data to a snd resource involves three steps, each of which
corresponds to a Resource Manager Toolbox call:

1. Call CurResFile() to get the file reference number of the current
resource file.

2. Call AddResource() to add the sound data to the resource map
in memory.

3. Call UpdateResFile() to add the sound data to a resource in a
resource file.

Here’s a snippet that uses the above three routines:

SndListHandle the Sound;
OSErr theError;

Chapter 3 « Sound Recording

short theResourceFileRef;
theResourceFileRef = CurResFile();
AddResource((Handle)theSound, ‘snd ‘, 9000, “\pNew Sound”);

UpdateResFile(theResourceFileRef);

The Toolbox routine CurResFile() returns a short value that is a file
reference number to the current resource file. If your program hasn’t
explicitly opened any resource files, then the resource fork of your
application will be considered the current resource file. This reference
number will be used in a subsequent call to UpdateResFile().

To add a resource to the resource map—the map in memory that serves
as a guide to resources on disk—call the Toolbox function AddResource():

AddResource((Handle)theSound, ‘snd ‘, 9000, “\pNew Sound”);

The first parameter to AddResource() is a handle to the data in memory
that is to be saved as a resource. The second parameter is the four-
character resource type that the data is to be saved to. The third parameter
is the resource ID that should be given to the saved resource. The final
parameter is the name that should be given to the resource. Note that
this isn’t the name of a file; it is the name that will be given to the individ-
ual resource in the file it is saved to.

The call to AddResource() adds the new resource to the resource map
in memory; it doesn’t add the new resource to the resource file
on disk. To do that, call the Toolbox routine UpdateResFile(). Pass this
routine the reference number that was obtained in the earlier call to
CurResFile().

UpdateResFile(theResourceFileRef);

The above steps are the minimum steps necessary to save sound data in
memory to a snd resource in a resource file. The application-defined func-
tion SaveSoundFromMemoryToResource() uses those steps and a few others
to ensure a proper saving of the resource to file.

jidefine kSndResIDMaxReserved 8191

Tong SaveSoundFromMemoryToResource(SndListHandle theSound)

109

Graphics and Sound Programming Techniques for the Mac

no

long theResID;
0SErr theError;
short theResourceFileRef;

theResourceFileRef = CurResFile();

do

{
theResID = UniqueID(‘snd *);
} while (theResID <= kSndResIDMaxReserved);

AddResource((Handle)theSound, ‘snd ‘, theResID, “\pNew Sound”);
theError = ResError();
if (theError != noErr)

ExitToShell();

UpdateResFile(theResourceFileRef);

theError = ResError();

if (theError != noErr)
ExitToShell();

return (theResID);
}

After obtaining a reference number to the current resource file, SaveSound-
FromMemoryToResource() calls the Toolbox routine UniqueID() to select
an ID that will be given to the resource that is about to be created. While
your program could select the ID itself, doing so would provide no
guarantee that a resource of the type being saved, with that same ID,
doesn’t already exist. The UniqueID() function searches open resource
files (including the current one) for resources of the type specified in the
parameter passed to it. It takes note of the IDs of all such resources and
returns an ID that is not used.

Calling UniqueID() a single time would be adequate for coming up
with an ID that is unique for the snd resource to be created. However,
it wouldn’t ensure that the ID was out of the range that Apple reserves
for its own system sound resources—0 through 8191. That’s why
SaveSoundFromMemoryToResource() calls UniqueID() from within a loop.
When UniquelID() returns a value outside this range, a valid ID is con-
sidered to be found and the loop ends.

Chapter 3 = Sound Recording

After an ID is selected, AddResource() and UpdateResFile() are called
in the manner described before the SaveSoundFromMemoryToResource()
listing. Following each call, the Toolbox function ResError() is called
to verify that no error occurred. If an error did occur, the SaveSound-
FromMemoryToResource() function handles the error by simply exiting
the program.

When SaveSoundFromMemoryToResource() has completed, the ID of
the new sound resource is returned to the calling function. That allows
the rest of the program to use this new sound resource. Any time the
program wants to use the new sound resource, it should pass this ID to
GetResource() toload the snd data to memory.

Chapter Example: SaveSound

Like the previous two programs in this chapter, SaveSound displays the
standard Sound Recording dialog box to allow the user to record a new
sound. Unlike the other two programs, SaveSound provides the dialog
box with a functional Save button. When the user clicks Save, the dialog
box will be dismissed and the new recording will be saved to the
resource fork of the SaveSound application.

Before the program exits, the newly recorded sound will be played.
This is done simply to prove that the sound data was in fact saved to a
snd resource. Consider this snippet, taken from main():

theNewSoundID = SaveSoundFromMemoryToResource(theSound);

ReleaseResource((Handle)theSound);
theSound = nil;

theError = PlaySoundResourceSynch(theNewSoundID);

The above code saves sound data to a resource. SaveSoundFromMemory -
ToResource() returns the new resource’s ID to the variable theNewSoundID.
Then main() releases the sound data, and, just to make sure that the
program can’t access that data in memory, sets theSound to nil. Next,
the application-defined routine PlaySoundResourceSynch() is called.
This function was lifted directly from Chapter 2. When passed the ID of

n

Graphics and Sound Programming Techniques for the Mac

a sound resource, PlaySoundResourceSynch() calls GetResource() to
load the resource to memory and then calls SndP1ay() to play the sound
data. Purging the sound data from memory and then loading the snd
resource and playing the user-recorded sound provides proof that the
user-recorded sound data was properly saved as a snd resource in the
application’s resource fork.

You can verify that SoundSave always gives a new snd resource a
unique ID when it writes sound data to its resource fork. To do this, use
your compiler to build a stand-alone version of SoundSave. Then, from
the Finder, double-click on the SoundSave icon to run the program.
Record and save a sound. After clicking the Save button, the program
will quit. Next, from the Finder again, run SoundSave. Record a sound
and save it. Now run your resource editor (ResEdit or Resorcerer). Use
it to open the SoundSave application (don’t open the SoundSave.rsrc
file, open the SoundSave application). If you look at the snd resources
in the application you'll find the two resources created from running
the program twice—one resource per execution of SoundSave. Notice
that the snd resources have different IDs and that both have IDs greater
than 8191. Figure 3.9 shows a look at SoundSave using ResEdit.

SoundSapendK
L <)
CODE DATA SIZE snd
Efi== snds from SoundSave68K ==
— D Size Name
15691 84522 “New Sound” it
16976 146474 “New Sound”

)

FIGURE 3.9 The SoundSave program will save a new sound
to its own resource fork each time the program runs.

Chapter 3 = Sound Recording

You don’t have to have your application save the sound resource to the applica-
tion’s resource fork, of course. You can save it to any open resource file. The
SaveSound example saves the sound resource to its own fork to keep the source
code listing focused on the process of creating a snd resource rather than on
resource file management techniques. If your program will be used over a network, it
shouldn’t write data to its own resource fork. It should instead save the sound resource to a
new or existing resource file. For information on working with multiple resource files, refer
to the M&T book More Mac Programming Techniques or the More Macintosh Toolbox volume of
Inside Macintosh. These books show you how to create a new resource file, open it, write to it,
save the changes, close it, and, at a later time, reopen the file and read it. After reading about
these techniques, combine them with this book’s technique for saving a sound resource.

NOTE

/1

f#include <Sound.h>
f#finclude <SoundInput.h>

/1

void InitializeToolbox(void);

Boolean IsSoundInputAvailable(void);

0SErr RecordSoundToMemory(SndListHandle *);

long SaveSoundFromMemoryToResource(SndListHandle);
OSErr PlaySoundResourceSynch(short);

/7

fHdefine kHeapReserve 75 * 1024
ftdefine kSndResIDMaxReserved 8191

//

void main(void)

{
NumVersion theSndMgrVers;
OSErr theError;
SndListHandle theSound;
long theNewSoundID;
Boolean soundInputPresent;

InitializeToolbox();

MaxApplZone();

n

N4

Graphics and Sound Programming Techniques for the Mac

theSndMgrVers = SndSoundManagerVersion();
if (theSndMgrVers.majorRev < 3)
ExitToShell(); '

soundInputPresent = IsSoundInputAvailable();
if (soundInputPresent == false)
ExitToShel1();

theError = RecordSoundToMemory(&theSound);
if (theError == userCanceledErr)
ExitToShell();

theNewSoundID = SaveSoundFromMemoryToResource(theSound);

ReleaseResource((Handle)theSound);
theSound = nil;

theError = PlaySoundResourceSynch(theNewSoundID);
if (theError != noErr)
ExitToShell();
}

/1!

O0SErr RecordSoundToMemory(SndListHandle *theSound)
{

OSErr theError;

Point theCorner = { 50, 20 };

long theTotalHeap;

long theContigMem;

PurgeSpace(&theTotalHeap, &theContigMem);

*theSound = (SndListHandle)NewHandle(theContigMem -
kHeapReserve);

theError = SndRecord(nil, theCorner, siBestQuality, theSound

return (theError);
}

/1

long SaveSoundFromMemoryToResource(SndListHandle theSound)
{

long theResID;

OSErr theError;

Chapter 3 = Sound Recording 15

short theResourceFileRef;
theResourceFileRef = CurResFile();

do
{
theResID = UniqueID(‘snd *);
} while (theResID <= kSndResIDMaxReserved);

AddResource((Handle)theSound, ‘snd *, theResID, “\pNew Sound”);
theError = ResError();
if (theError != noErr)

ExitToShell();

UpdateResFile(theResourceFileRef);

theError = ResError();

if (theError != noErr)
ExitToShell();

return (theResID);
}

/1

0SErr PlaySoundResourceSynch(short theResID)
{

Handle theHandle;

0SErr theError;

theHandle = GetResource(‘snd ‘, theResID);
if (theHandle == nil)

{
return (resProblem);

}

else

{
HLock(theHandle);

theError = SndPlay(nil, (SndListHandle)theHandle, false);

HUnlock(theHandle);
ReleaseResource(theHandle);
return (theError);

}

né

Graphics and Sound Programming Techniques for the Mac

Sound Quality and Disk Storage Space

When your application calls SndRecord() to display the standard Sound
Recording dialog box, the dialog box will display the amount of time
that the user can use to record a single sound. Figure 3.10 illustrates this.

[P] <

Record Stop Pause Play
[] :00 saue |
0 seconds 46 -

Maximum length of a single recording

FIGURE 3.10 The standard Sound Recording dialog box specifies-
the amount of time available for a single sound recording.

The time displayed in this dialog box is dependent on two factors. The
first is the size of the memory block to which the sound data will be saved.
Recall that this memory block is set up with a call to NewHandle(), and
the handle returned by this function is passed as the fourth parameter
to SndRecord():

O0SErr theError;

Point theCorner = { 50, 20 };
long theTotalHeap;

Tong theContigMem;

PurgeSpace(&theTotalHeap, &theContigMem);
*theSound = (SndListHandle)NewHandle(theContigMem - kHeapReserve);

theError = SndRecord(nil, theCorner, siBestQuality, theSound);

Chapter 3 = Sound Recording

The second factor used to determine the maximum duration of the
sound that can be recorded is the quality at which the sound is recorded.
The third parameter to SndRecord() can be one of three Apple-defined con-
stants, each of which represents a different sound-quality recording level:

theError = SndRecord(nil, theCorner, siBestQuality, theSound);
theError = SndRecord(nil, theCorner, siBetterQuality, theSound);
theError = SndRecord(nil, theCorner, siGoodQuality, theSound);

The higher the quality, the less time that is allotted for the recording.
The primary reason for this is compression. A lower-quality sound uses
compression during sound recording. This has the advantage of allowing
a longer sound to fit in the same amount of memory and the disadvantage
of decreasing the quality of the sound.

To provide a rough idea of the differences in sound time and quality
that the three recording quality constants provide, you can run a simple
test using the source code for the SoundSave example program. First,
build a version of SoundSave using the following call to SndRecord():

theError = SndRecord(nil, theCorner, siBestQuality, theSound);

Next, run the newly created SoundSave program. Take note of the amount
of time that can be used to record a sound; this time appears in the standard
Sound Recording dialog box. In the top section of Figure 3.11 you can see
that in one test this time was 46 seconds. Now record a 10-second
sound; a 10-second clip of music will work fine. Click the Save button
to save the sound and exit the SoundSave application. Open the
SoundSave program using your resource editor. Examine the snd
resource that was added to the application’s resource fork. In the top
section of Figure 3.11 you can see that in one test the 10-second sound
takes up approximately 200 KB of disk space.

m

Graphics and Sound Programming Techniques for the Mac

theError = SndRecord(nil, theCorner, siBestQuality, theSound);

EEmE)

Record Stop Pause Play

) seconds 46

theError = SndRecord(nil,

[o][a] [u][»]

Record Stop Pause Play

-

o minutes 2:16

theError = SndRecord(nil,

[e][m][u][] <

Record Stop Pause Play

Lo 0:10 E
0 minutes 4:32

FIGURE 3.11 Changing the sound recording quality affects both the amount of time
available for sound recording and the size of a recorded sound.

Now repeat the previous test—this time using the siBetterQuality sound
quality in place of siBestQuality:

theError = SndRecord(nil, theCorner, siBetterQuality, theSound);

Leave the application heap size at whatever value it was set at for the
first test (the SoundSave project comes with the heap size set to 1024 KB,
or 1 MB). After changing the one line of code, build a new version of
SoundSave. Run the stand-alone application and again note the time
that is allotted to sound recording. In Figure 3.11 you can see that with
siBetterQuality, the time increased from 46 seconds to 2 minutes and
16 seconds. Note that the size of the memory block used to hold the
sound remained approximately the same between the running of the
two versions of SoundSave.

After recording another 10-second sound (using the same 10-second
music clip), Figure 3.11 shows that the size of the saved snd resource

dropped from about 200 KB to about 70 KB.

Chapter 3 = Sound Recording

The same test was repeated one last time with a sound quality of
siGoodQuality. The result was a recording time of 4 minutes and 32
seconds. The snd resource size turned out to be about 35 KB.

What observation can you make from this test? This isn’t a scientific
test designed for accuracy. Instead, it provides a general feel for how the
recording quality affects recording times. A more important observation,
however, might be that this real-world test resulted in time values that
closely match the compression used for the three sound qualities. The
siBestQuality quality, which uses no compression, allowed a 46-second
recording. The siBetterQuality quality, which uses 3:1 compression,
allowed a 136-second recording—very close to three times the 46-second
siBestQuality time. The siGoodQuality, which uses 6:1 compression,
allowed a 272-second recording—very close to six times the 46-second
siBestQuality time.

Summary

The Sound Manager gives your program the ability to play sounds. The
Sound Input Manager gives your application the ability to record
sounds. Before your program attempts to record a sound it should verify
that the user’s Mac has a sound input device. Generally, this device will
be the built-in microphone.

The Sound Input Manager Toolbox routine that you'll become most
familiar with is SndRecord(). This function posts the standard Sound
Recording dialog box. For the duration that this dialog box is on the
screen, SndRecord() controls your program. This powerful Toolbox routine
takes care of user mouse clicks in the dialog box. These actions include
recording, pausing, stopping, and playing sounds.

You can use Resource Manager functions to save a recorded sound
that is in memory to a resource file that resides on the user’s hard disk.

ne

CHAPTER 4
Speech

In Chapter 2, you saw how the Sound Manager allows sounds to be
played, while in Chapter 3 you read how the Sound Input Manager
allows sounds to be recorded. Together, these two managers can be
used to record and play back digitized speech. But there is a far easier
way to add speech capabilities to your Mac applications. The Speech
Manager includes functions that allow your program to turn text into
spoken words. Whether the text comes from a string that is hard-coded
into your source code, one that is read in from a string resource, or one
that is entered in a dialog’s Edit box by the user, the Speech Manager
knows how to turn those characters into speech that emits from the
user’s audio hardware.

Besides being an easier way to add new speech phrases to a program,
using text and the Speech Manager to generate speech offers additional
advantages to using digitized sound resources. One advantage is the
savings in disk “real estate.” Whereas a single digitized sentence may
often require over 100 MB of disk storage, the same sentence stored as
text will need only a couple of dozen bytes of disk space—one byte per
character in the sentence. A second advantage to using the Speech Manager

121

122

Graphics and Sound Programming Techniques for the Mac

rather than digitized speech is the voice option. While the digitized
speech comes in one voice only—the voice in which it was originally
recorded—speech generated from text can be spoken in any number of
different-sounding voices.

In this chapter, you'll see exactly how to easily turn text into speech
by using the Speech Manager and sound synthesizers. You'll also learn
about the topics covered in the preceding paragraphs: speaking text
from strings that you include in your source code or in resources, or that
are supplied by the user. You'll also see how to generate speech in a variety
of voices—including speech that sounds like that spoken by a robot.

The Speech Manager

In Chapter 3, you saw that the Sound Input Manager uses the Sound
Manager to access the audio hardware connected to a user’s Macintosh.
In this chapter, you'll see that the Speech Manager does the same.

The Sound Manager can be used to play sounds—either from sound
resources or sound files—through the Macintosh speakers. With the
assistance of the Speech Manager, the Sound Manager can also speak
words that originate as text. The use of the Sound Manager by the
Speech Manager is transparent to the user and to the programmer. For
that reason, there’s no need to worry if you've skipped Chapter 2 of this
book—you won't need information from that chapter in order to under-
stand the topics covered in this chapter.

The Speech Manager and Speech Synthesizers

The Speech Manager is used to allow a program to generate synthesized
speech—speech that results from the conversion of text to spoken sound.
The Speech Manager itself doesn’t perform the conversion, however.
Instead, this manager passes text to a speech synthesizer and relies on this
synthesizer’s built-in dictionaries and sets of pronunciation rules in order
to pronounce the text properly. The Speech Manager is capable of using
different synthesizers to speak text. Figure 4.1 shows several extensions
found in the Extensions folder of the System Folder—including the Speech
Manager extension and the MacinTalk Pro speech synthesizer extension.

Chapter 4 = Speech
123

59 items

1 E}z
me™ Macintosh Drag and Drop

Speech Manager MacinTalk Pro Yoices

QuickTime™ Husiéal Instruments QuickTi

FIGURE 4.1 The Speech Manager and the MacinTalk Pro speech
synthesizer are both system software extensions.

After the speech synthesizer applies its pronunciation rules to the text
that the Speech Manager passes it, the synthesizer passes the converted
data to the Sound Manager for output to the Mac’s audio hardware.
Figure 4.2 shows the path that text takes to become speech. In the
figure, the data is passed to the MacinTalk Pro speech synthesizer for
processing—but a different synthesizer could be used instead.

sladbmar
3

e
Imatn:

Text

Speech
Manager

Speech.

Sound
Manager

Speakers

FIGURE 4.2 The Speech Manager uses a speech synthesizer
and the Sound Manager to generate speech from text.

124

Graphics and Sound Programming Techniques for the Mac

Figure 4.2 shows the text that is to be spoken as words in a text file. The
text doesn’t have to appear in a document, though. As you'll see in this
chapter, it can also be entered into an Edit box in a dialog box by the user, it
can be a string resource, or it can be hard-coded into an application.

Voices and Speech Synthesizers

If you look back at Figure 4.1, you'll see that the figure provides a hint that
there’s more software involved in speech generation than what is
shown in Figure 4.2. The Macintosh allows text to be spoken in different
voices. A voice is information held in a data structure. This information
specifies different qualities of speech that result in the speech having
characteristics such as that of a old man, a young woman, a small boy, or
even a robot. If your application doesn’t specify a particular voice, text
will be spoken using the system-default voice.

Voices are designed for specific speech synthesizers. Figure 4.3 shows
several voice files found in the Voices folder in the Extensions folder of
the System Folder. The three voice files at the bottom of Figure 4.3 are
used by the MacinTalk synthesizer. The three voice files at the top of the
figure are used by the speech synthesizer that comes built into the
Speech Manager extension.

Earlier, it was stated that the Speech Manager doesn’t actually speak.
Instead, it routes text to a speech synthesizer. A synthesizer is a code compo-

nent in a resource file or the resource fork of a file. A speech synthesizer can

NOTE

appear anywhere in the System Folder—including within the Speech
Manager itself. The resource fork of the Speech Manager extension includes a speech
synthesizer—used with some voices—that guarantees that a Mac with the Speech
Manager will always have at least one speech synthesizer as well. If you removed the
synthesizer code from the Speech Manager, you'd still have a functional Speech Manager.

Chapter & = Speech
125

EH==——— Uoices
21 items 302.9 MBindisk 21.3 MBava

2

Albert Bad News Bahh

TTS Agnes TTS Bruce TTS Yictoria

FIGURE 4.3 Voice files can be found in a folder the System Folder—
usually in the Extensions folder.

Manager, MacinTalk Pro, and the Voices folder in it—they're all added as
part of your System install. If they’re not there, look on your system disks
or CD. For System 7.5, search for the Install Speech icon. Launch the
installer, click the Continue button, then select Custom Install from the pop-up menu.
Check the Text-to-Speech Software checkbox and click the Install button.

? The Extensions folder of your Mac should already have the Speech

NOTE

Checking for the Availability of the Speech Manager

Macintosh computers don’t have built-in speech capabilities—they need
the Speech Manager software. Before your program attempts to speak
text, it should first call Gestalt() to verify that the host computer has this
system software extension. As was done for sound recording in Chapter
3, you can use a short application-defined routine to make this check. The
following snippet makes a call to a function named IsSpeechAvailable().

Boolean speechPresent;

speechPresent = IsSpeechAvailable();
if (speechPresent == false)
ExitToShell();

126

Graphics and Sound Programming Techniques for the Mac

The IsSpeechAvailable() function makes a call to Gestalt() with a
selector code of gestaltSpeechAttr. Like the gestaltSoundAttr selector
code used in Chapter 3, this selector returns more than one piece of
information in the response parameter. To extract the information you
need, use the left shift operator on the gestaltSpeechMgrPresent bit and
perform a logical AND on the shifted value and response parameter. If
the bit in question (gestaltSpeechMgrPresent) is turned on, then the
Speech Manager is present and a value of true should be returned to
the calling routine.

Boolean IsSpeechAvailable(void)
{

OSErr thekrror;

long theResult;

Boolean speechAvail;

theError = Gestalt(gestaltSpeechAttr, &theResult);
if (theError != noErr)
ExitToShel1();

speechAvail = theResult & (1 << gestaltSpeechMgrPresent);
if (speechAvail > 0)

return (true);
else

return (false);

Speaking a String

If your application requires only simple speech generation—such as the
speaking of a string using the system, or default, voice, then the
SpeakString() Toolbox function may be all your program needs.

The SpeakString() Toolbox Function

The Speech Manager provides a very simple means of generating
speech—the SpeakString() function. To use SpeakString(), pass in a
Pascal string—as shown in the following snippet. SpeakString() will have

Chapter 4 = Speech

the Speech Manager generate the speech for the string and broadcast the
speech through the Mac’s speakers. Note that the snippet includes the
Speech.h universal header file—as should any code that makes use of
speech functions.

#include <Speech.h>
O0SErr theError;
theError = SpeakString(“\pYes, it’s really this easy!”);

The string that gets passed to SpeakString() can also be a variable. The
following snippet gives the same results as the above code:

O0SErr theError;
OSErr theString = “\pYes, it’s really this easy!”;

theError = SpeakString(theString);

After calling SpeakString(), you can compare the returned 0SErr value to
the Apple-defined constant noErr to verify that the call was successful:

theError = SpeakString(theString);
if (theError != noErr)
ExitToShel1();

Chapter Example: QuickSpeech

QuickSpeech is the simplest example of generating speech. The program
begins by initializing the Toolbox and then calling the application-defined
IsSpeechAvailable() to determine if the user’s Macintosh has the Speech
Manager extension. This function is identical to the version developed
earlier in this chapter.

When it is known that the Speech Manager is present, QuickSpeech
calls SpeakString() to speak a single string.

/1

f#Hinclude <Gestalt.h>
#include <Speech.h>

127

Graphics and Sound Programming Techniques for the Mac

128
//
void InitializeToolbox(void);
Boolean IsSpeechAvailable(void);
//
void main(void)
{
OSErr theError;
Boolean speechPresent;
InitializeToolbox();
speechPresent = IsSpeechAvailable();
if (speechPresent == false)
ExitToShell();
theError = SpeakString(“\pTesting 1 2 3 Testing 123);
if (theError != noErr)
ExitToShell();
}
//
Boolean IsSpeechAvailable(void)
{
OSErr theError;
long theResult;
Boolean speechAvail;
theError = Gestalt(gestaltSpeechAttr, &theResult);
if (theError != noErr)
ExitToShel1();
speechAvail = theResult & (1 << gestaltSpeechMgrPresent);
if (speechAvail > 0)
return (true);
else
return (false);
}
//

void InitializeToolbox(void)
{
InitGraf(&qd.thePort);

Chapter & = Speech

InitFonts();

InitWindows();

InitMenus();

TEInit();

InitDialogs(OL);
FlushEvents(everyEvent, 0);
InitCursor();

Speaking More Than One String

In Chapter 2, you saw that by the use of the SndP1ay () Toolbox function,
the Sound Manager can produce sound asynchronously. The Speech
Manager can also produce asynchronous sound. In fact, asynchronously
generated speech is the norm for the Speech Manager.

Asynchronous speech means that before the call to SpeakString()
completes, control will be returned to your program—and the code fol-
lowing the call to SpeakString() will execute. This asynchronous speech
generation must be taken into account if your program is to speak more
than one string. Consider the following incorrect example:

theError = SpeakString(“\pThis is string #1.”);

theError = SpeakString(“\pThis is the second string.”);

Rather than speak two strings one after the other, the Speech Manager will
generate speech for both strings at almost the same time—an undesirable
result. To force the Speech Manager to generate synchronous speech—one
string spoken after the other, use the SpeechBusy () Toolbox function.

After the first call to SpeakString(), use SpeechBusy() in a “do nothing”
while loop. Because SpeakString() generates speech asynchronously,
the while loop will be executed almost immediately after the call to
SpeakString(). SpeechBusy() will return a value of true if speech is
taking place, false if it isn’t. That means that as long as the first call to
SpeakString() is still executing, SpeechBusy() will keep returning a
value of true. The result will be that the program will remain at the
while loop until the first SpeakString() completes. Only then will
SpeechBusy() return a value of false, sending the program on to the

129

130

Graphics and Sound Programming Techniques for the Mac

second call to SpeakString(). Here’s the snippet that corrects the pre-
ceding wrong example:

theError = SpeakString(“\pThis is string #1.”);
while (SpeechBusy() == true)

theError = SpeakString(“\pThis is the second string.”);

Saying that SpeechBusy() returns a value of true or false is a simplifi-
cation. SpeechBusy () doesn’t actually return a Boolean value. It returns
the number of active speech channels. While the details of speech channels
aren’t discussed until later in this chapter, this brief discussion will intro-
duce them. The SpeakString() function automatically opens a speech channel to use
in speaking a string, and then closes the channel when finished speaking. If
SpeechBusy() is called while SpeakString() is speaking text, SpeechBusy () will
return a value of 1 (or more than 1 if other speech channels are also active). This nonzero
value correlates to true—and means the whi1e statement will continue to cycle through
the “do nothing” loop.

NOTE

This next snippet does the same task as the preceding one—it just adds a
little error-checking.

theError = SpeakString(“\pThis is string #1.”);
if (theError != noErr)
ExitToShell1();

while (SpeechBusy() == true)

»

theError = SpeakString(“\pThis is the second string.”);
if (theError != noErr)
ExitToShel1();

Chapter 4 = Speech

131

Chapter Exumple: WaitSpeech

WaitSpeech demonstrates how to include a call to SpeechBusy() so that
two strings can be called one after the other. When WaitSpeech runs, it
will say the phrase “This is string number 1. This is the second string.”

void main(void)

{
Str255 theString = “\pThis is the second string.”;
0SErr thekrror;
Boolean speechPresent;

InitializeToolbox();

speechPresent = IsSpeechAvailable();
if (speechPresent == false)
ExitToShell1();

theError = SpeakString(“\pThis is string #1.”);
if (theError != noErr)
ExitToShell();

while (SpeechBusy() == true)

theError = SpeakString(theString);
if (theError != noErr)
ExitToShell1();

User Inpat and Speech

SpeakString() will speak the text of a string no matter where the string
comes from. If your program needs to generate speech based on text
provided by the user, SpeakString() may again be your solution.

132

Graphics and Sound Programming Techniques for the Mac

Your applications can obtain user-entered strings just as they always
have—by displaying a dialog box that contains one or more edit boxes.
After the user enters text and dismisses the dialog box, call the Toolbox
function GetDialogItem() to get a handle to an edit box. Then pass that
handle to the Toolbox function GetDialogItemText() to retrieve the text
from that edit box. Finally, save the string so that it can be spoken later,
or immediately use the retrieved text as the parameter in a call to
SpeakString(). The following snippet performs these tasks in order to
speak the text found in an Edit box with a dialog item number of 3.

fidefine kPhraseEdit 3
DialogPtr theDialog;

short theType;

Handle theHandle;

Rect theRect;

Str255 theString;

OSErr theError;

GetDialogItem(theDialog, kPhrasekdit, &theType, &theHandle,
&theRect);

GetDialogItemText(theHandle, theString);

theError = SpeakString(theString);

Chapter Example: InputSpeech

The InputSpeech program allows the user to enter text into the Edit box
item of a dialog box. When the user clicks on the Speak button, the pro-
gram retrieves the text and speaks it. By repeatedly clicking the Speak
button, the user can have the computer speak the phrase as many times
as desired. Figure 4.4 shows the InputSpeech dialog box.

Enter a word or sentence to speak:

Speak me! —I

(Speak)] (Couit)

FIGURE 4.4 The dialog box displayed by the InputSpeech program.

Chapter 4 = Speech
P P 133

The InputSpeech project requires just two resources: a DL0G and a DITL.
The DITL, with the item number of each item shown, appears in Figure 4.5.

inputSpeech.rsrc

DITL DLOG
BITLs from InputSpeech.rs
— 1D Size Mame
128 112
E[E! DITL ID = 128 from InputSpeech.rsrc

[Enter a word or sentence to speak: [4]

lrs;)eak me! g
[speak [[ouit(Z

FIGURE 4.5 The DITL resource used by the InputSpeech program.

InputSpeech checks for the availability of the Speech Manager, then
opens a dialog box. When the user clicks on DITL item number 1, the
text from item number 3 (kPhraseEdit) is obtained and sent to the speaker
via a call to SpeakString():

GetDialogItem(theDialog, kPhraseEkdit,

&theType, &theHandle, &theRect);
GetDialogltemText(theHandle, theString);
theError = SpeakString(theString);
if (theError != noErr)

ExitToShel1();
break;

The technique used in the InputSpeech program can easily be expanded
to provide user-input for a program with a more sophisticated interface.
Figure 4.6 shows one possible example. Here, the user-entered phrases
can be played back immediately—as in InputSpeech—and can be
saved. Clicking the Done button would save each phrase as a string in a
global array of strings. That would allow the program to play back the
strings at any time.

134

Graphics and Sound Programming Techniques for the Mac

l Surrender now and you maaay live!

| 1t will take more than that to stop me.

Enter the text that the warrior

will use during the game.
Enter upb;?e phrases.

Tohear a phrase, click the 1 |
speaker button (!

FIGURE 4.6 An example of implementing speech into an application.

//
ffdefine rSpeechDialog 128
fdefine kSpeakButton 1
ftdefine kQuitButton 2
fidefine kPhraseEdit 3
//
void main(void)
{
Boolean speechPresent;
InitializeToolbox();
speechPresent = IsSpeechAvailable();
if (speechPresent = false)
ExitToShell();
OpenSpeechDialog();
}
//

void OpenSpeechDialog(void)

{

Chapter 4 = Speech

135

DialogPtr theDialog;

short theltem;

Boolean allDone = false;

short theType;

Handle theHandle;

Rect theRect;

Str255 theString;

OSErr theError;

theDialog = GetNewDialog(rSpeechDialog, nil, (WindowPtr)-1L);
ShowWindow(theDialog);
SetPort(theDialog);

while (allDone == false)
()
ModalDialog(nil, &theltem);

switch (theltem)
{
case kSpeakButton:
GetDialogItem(theDialog, kPhraseEdit,
&theType, &theHandle, &theRect);
GetDialogItemText(theHandle, theString);
theError = SpeakString(theString);
if (theError != noErr)
ExitToShell();
break;
case kQuitButton:
allDone = true;
break;

}
}
DisposeDialog(theDialog);

Resource Strings and Speech

Up to this point you've seen that SpeakString() uses strings that were
hard-coded into a program and strings that were obtained from a dialog
box Edit box item. You can also use SpeakString() with strings that are
saved as resources in a string list resource—a STR# resource.

136

Graphics and Sound Programming Techniques for the Mac

Figure 4.7 shows a few of the many strings held in the resource file of
a program that is used to keep inventory of a computer store’s computer
wares. When an employee checks to see if a particular computer model is
in stock, the inventory will load two of the strings from the STR# resource
and then call SpeakString() twice to speak a phrase such as “Power Mac
6100 slash 66 is back ordered.”

STR¥ ID = 128 from Computerinventory.rsrc ===—

HumStrings 67
1) HAKKK

The string |[is in stock |
2) FKKkk

The string (Tﬁ out of stock |

3) EE2 S

The string [is back ordered

4) FAAkkKE

The string [Pouer Mac 6100/66]

§) kkkkk

The string F%wer Mac 7100/80 I

6) Hkkkk

FIGURE 4.7 An example of a STR# resource.

The source code listing could include a #define directive for each string in
the STR{ resource:

jtdefine rStringlist 128
ftdefine kInStockStrIndex 1
ftdefine kOutStockStrIndex 2
{fdefine kBackOrderStockStrIndex 3
ftdefine kPowerMac6100_66StrIndex 4
ftdefine kPowerMac7100_80StrIndex 5

When it comes time to speak the on-hand status of a computer, call the
Toolbox routine GetIndString() to load the string from the string resource
to memory. Then call SpeakString()—as shown in the following snippet.

short theStringlndex;

theStringIndex = kPowerMac7100_80StrIndex;

Chapter & = Speech

GetIndString(theString, rStringlList, theStringlndex);
thekError = SpeakString(theString);

Since the preceding example relies on calling SpeakString() twice to
generate one sentence from two strings, it’s important to keep in mind
the asynchronous nature of the Speech Manager. In the following snippet
the SpeechBusy () function is called so that the two phrases will be spoken
one after the other.

theStringIndex = kPowerMac7100_80StrIndex;

GetIndString(theString, rStringlList, theStringIndex);
theError = SpeakString(theString);

while (SpeechBusy() == true)

theStringIndex = kBackOrderStockStrIndex;

GetIndString(theString, rStringlList, theStringlndex);
thekError = SpeakString(theString);

Chapter Example: ResourceSpeech

The ResourceSpeech example displays a dialog box with three buttons in
it—as shown in Figure 4.8. Clicking on the Speak Short String button
causes the phrase “Correct” to be spoken. Clicking on the Speak Long
String button results in the phrase “Congratulations, that’s correct” to
be spoken.

(speak Short String]

(speak Long String)

Figure 4.8 The dialog box displayed by the ResourceSpeech program.

Figure 4.9 shows the resource file for the ResourceSpeech project, with
emphasis on the dialog item numbers of the file’s one DITL resource.

137

Graphics and Sound Programming Techniques for the Mac

138
Figure 4.10 shows the resource file’s one STR# resource and the two
strings it holds.
ResourceSpeech.rsrc
DITL DLOG STR#*

DITLs from ResourceSpt
— D Size Name

128 84 |
EEE DITL 1D = 128 from R =]

[Speak Short String L[]
[speak Long string 2]

FIGURE 4.9 The DITL resource used by the ResourceSpeech program.

|

I

&

STR# 1D = 128 from ResourceSpeech.rsrc %
&

NumStrings 2

1) ®okkkk

The string Itorrect |

2) Hkdokk

The string ICongratuIations, that's correct !

3) wkkk

(Bl

FIGURE 4.10 The STR# resource used by the ResourceSpeech program.

ResourceSpeech begins by checking the host Mac for speech capabilities,
then opens the program’s dialog box. A click on either Speak button
results in a call to GetIndString() with the appropriate STR# index, and
then a call to SpeakString(). The following code executes when the
Speak Short String button (DITL item number 1, or kSpeakShortButton)

gets clicked:

Chapter 4 = Speech 139

GetIndString(theString, rStringList, kShortStrindex);
theError = SpeakString(theString);
if (theError != noErr)

ExitToShell();

The following is the source code listing for the ResourceSpeech example.

//
fidefine rSpeechDialog 128
ftdefine kSpeakShortButton 1
jHdefine kSpeakLongButton 2
fdefine kQuitButton 3
jidefine rStringlist 128
fHdefine kShortStrIndex 1
jidefine kLongStrIndex 2
//
void main(void)
{
Boolean speechPresent;
InitializeToolbox();
speechPresent = IsSpeechAvailable();
if (speechPresent == false)
ExitToShel1();
OpenSpeechDialog();
}
//
void OpenSpeechDialog(void)
{
DialogPtr theDialog;
short theltem;
Boolean allDone = false;
Str255 theString;
0SErr theError;

theDialog = GetNewDialog(rSpeechDialog, nil, (WindowPtr)-1L);
ShowWindow(theDialog);
SetPort(theDialog);

while (allDone == false)

140

Graphics and Sound Programming Techniques for the Mac

ModalDialog(nil, &theltem);

switch (theltem)
{
case kSpeakShortButton:
GetIndString(theString, rStringlList, kShortStriIndex);
theError = SpeakString(theString);
if (theError != nokErr)
ExitToShell();
break;

case kSpeakLongButton:
GetIndString(theString, rStringlist, kLongStrIndex);
theError = SpeakString(theString);
if (theError != nokErr)
ExitToShell();
break;

case kQuitButton:
allDone = true;
break;
}
}
DisposeDialog(theDialog);
}

Speech Channels

In Chapter 2, you saw that whenever sound data is processed by the
Sound Manager, a sound channel is involved. Processing speech is
similar—whenever text is spoken from the Macintosh speakers, a
speech channel is involved. When you call SpeakString(), the Speech
Manager takes care of allocating a speech channel. The Speech Manager
is also responsible for using that same channel to produce the speech
and disposing of the speech channel when speech has finished. When
you call SpeakString(), you'll notice that the speech is always spoken
in the same voice—the system default voice. If your application needs
to use a different voice, it should allocate its own speech channel and
use that channel when generating speech. Since SpeakString() doesn’t

Chapter 4 = Speech

have a provision for using an application-specified speech channel, you'll
use the SpeakText () Toolbox function when using your own channel.

@llocating and Disposing of a Speech Channel

To allocate a speech channel, use the Toolbox routine NewSpeechChannel ().
This function allocates memory for a new speech channel record—a
structure of type SpeechChannelRecord. NewSpeechChannel() then
returns a SpeechChannel—a pointer to the new speech channel record.
The following snippet allocates a new speech channel.

SpeechChannel theChannel;
O0SErr theError;

theError = NewSpeechChannel(nil, &theChannel);

The first parameter to NewSpeechChannel() is a pointer to a voice specifi-
cation data structure. As you'll see later in this chapter, this data structure
corresponds to the voice that is to be used for speech generated through
this one speech channel. Using a ni1 pointer as this first parameter—as
done here—tells the Speech Manager to use the system default voice.

The second parameter to NewSpeechChannel() is a pointer to a speech
channel. When NewSpeechChannel() finishes executing, this parameter
will hold a newly allocated speech channel. You'll use this speech channel
in subsequent calls to SpeakText ().

A variable of type SpeechChannel is generally referred to as a speech
channel—even though it is a pointer to a SpeechChannelRecord. That's
because your application won’t ever directly use a SpeechChannelRecord—
it’s used internally by the Speech Manager. If you look at the definition of
the SpeechChannelRecord data type, you'll see that it consists of nothing more than a
single 4-byte field that serves as a pointer to other data:

struct SpeechChannelRecord
{

long data[l];
}:

141

142

Graphics and Sound Programming Techniques for the Mac

After using a speech channel to speak text, you'll need to deallocate
the memory it occupies. To do that, call the Toolbox function Dispose-
SpeechChannel(). The only parameter required by DisposeSpeechChannel ()
is the identification of speech channel to dispose.

OSErr theError;

theError = DisposeSpeechChannel(theChannel);

You might recall from Chapter 2 that when a sound channel is disposed of,
both the sound channel data structure and the sound channel pointer were

disposed of:
theError = SndDisposeChannel(theChannel, true);
DisposePtr((Ptr)theChannel);

For a speech channel, you need only call DisposeSpeechChannel(). That call
; will deallocate both the SpeechChannel and the SpeechChannelRecord.

NOTE

If you write a routine to open a new speech channel, include a call to
DisposeSpeechChannel () in the event that the call to NewSpeechChannel ()
returns an error. The application-defined function OpenOneSpeechChannel()
will be used in the remaining examples in this chapter:

SpeechChannel OpenOneSpeechChannel(void)
{

SpeechChannel theChannel;

OSErr theError;

theError = NewSpeechChannel(nil, &theChannel);

if (theError != nokrr)
{
thekrror = DisposeSpeechChannel(theChannel);
theChannel = nil;
}
return (theChannel);
}

If the speech channel memory allocation goes smoothly, the sound
channel will be returned to the calling routine. If the allocation fails,

Chapter & = Speech

OpenOneSpeechChannel () disposes of the memory occupied by the
speech channel and sets the pointer to ni1. If the calling routine receives
a nil pointer instead of a valid speech channel, the calling function will
assume an error occurred. Here’s a call to OpenOneSpeechChannel():

SpeechChannel theChannel;

theChannel = OpenOneSpeechChannel();
if (theChannel == nil)
ExitToShel1();

Using a Speech Channel

After allocating a speech channel, use the channel in a call to SpeakText ().
Rather than speak a single string, SpeakText () speaks text from a buffer.
The second parameter to SpeakText () is a pointer to the first byte in the
buffer, while the third parameter is the number of bytes to be spoken
from that buffer. The first parameter is the speech channel to use. The
following is an example that allocates a new speech channel, calls
SpeakText() to speak a sentence, then deallocates the speech channel.

O0SErr theError;
SpeechChannel theChannel;
Str255 theString = “\pUsing my own speech channel”;

theChannel = OpenOneSpeechChannel();

theError = SpeakText(theChannel, (Ptr)(theString + 1),
theString[0]);

while (SpeechBusy() == true)

theError = DisposeSpeechChannel(theChannel);

Like SpeakString(), SpeakText() generates asynchronous speech. So
it’s important that you call SpeechBusy () in a loop before disposing of the
speech channel that SpeakText () uses. Remember, the code that follows the
call to SpeakText () will execute before SpeakText () completes talking.

NOTE

In the above snippet, the variable theString is considered the text buffer.
The first byte to speak from that buffer is the second byte of the string,

143

144

Graphics and Sound Programming Techniques for the Mac

not the first—the first byte of a Pascal-formatted string holds the length
of the string. In C, an array name serves as a pointer to the array. Adding
to the array name adds to the address of the start of the array. With that
in mind, theString holds the address of the start of the string, while
theString + 1 holds the address of the next byte in the string—the first
character in the string. Finally, because SpeakText() requires a generic
pointer to a buffer, the string variable needs to be typecast to type Ptr.

The last parameter to SpeakText() is the number of bytes that
should be used from the buffer. As mentioned, the first byte of a Pascal-
formatted string holds the length of the string. For this reason, it is the
value of the first byte of theString that should be used here.

The above example speaks one string of text—just as earlier examples
that used SpeakString() did. The only difference is that this new example
required the extra work of allocating a new sound channel and then
disposing of that channel. At first glance, that doesn’t seem much of an
improvement over the SpeakString() way of generating speech. The
advantage to this new method doesn’t show up in the above snippet—
or in the SpeechChannellntro program presented next. Instead, the
small amount of extra work pays off in the following section when a
speech channel and SpeakText() are used together to speak a string
using a voice other than the system default voice.

Chapter Example: SpeechChannelintro

The SpeechChannellntro program ties together the snippets from this
section an presents them in a simple program that opens a new speech
channel, speaks a sentence using that channel, and then disposes of
the channel.

/7

void InitializeToolbox(void);
Boolean IsSpeechAvailable(void);
SpeechChannel OpenOneSpeechChannel(void);
//

void main(void)

Chapter 4 = Speech

145
{
0SErr theError;
Boolean speechPresent;
SpeechChannel theChannel;
Str255 theString = “\pUsing my own speech channel”;

InitializeToolbox();

speechPresent = IsSpeechAvailable();
if (speechPresent == false)
ExitToShell1();

theChannel = OpenOneSpeechChannel();
if (theChannel == nil)
ExitToShel1();

theError = SpeakText(theChannel, (Ptr)(theString + 1),
theString[0]);
if (theError != noErr)
ExitToShel1();

while (SpeechBusy() == true)

theError = DisposeSpeechChannel(theChannel);
if (theError != noErr)
ExitToShell();
}

/1

SpeechChannel OpenOneSpeechChannel(void)
{
SpeechChannel theChannel;
OSErr theError;
theError = NewSpeechChannel(nil, &theChannel);

if (theError != nokrr)

{
theError = DisposeSpeechChannel(theChannel);
theChannel = nil;

}

return (theChannel);

146

Graphics and Sound Programming Techniques for the Mac

Voices

One of the primary reasons for creating a speech channel is so that you
can associate a particular voice with the text that is to be spoken.
Without an application-defined speech channel, your application must
settle for the system-default voice used by the SpeakString() function.

Specifying a Voice

Voices are stored as files in the System Folder of a user’s Macintosh—as
are speech synthesizers used with the voices. While you might know
which voices and which synthesizers are present on your Mac, you
have no way of knowing what users of your application might have on
their computers. That means that rather than specifying one particular
voice, your program should specify one or more characteristics the
desired voice should have. After that, your program should cycle
through the voices that are available on the user’s machine. When a
voice that has characteristics matching the desired ones is found, that
voice should be associated with the channel that is to be used to speak a
buffer of text.

Each voice has a VoiceDescription data structure that holds infor-
mation about that voice. The following snippet shows that structure:

struct VoiceDescription

{
long length;
VoiceSpec voice;
long version;
Str63 name;
Str255 comment;
short gender;
short age;
short script;
short language;
short region;
Tong reserved[4];

Chapter 4 = Speech

Of most interest in selecting a voice will be the gender and age fields
of the VoiceDescription structure. The gender field will always have a value
matching one of three Apple-defined constants:

enum
{
kNeuter =0,
kMale =1,
kFemale = 2
};

The kMale and kFemale gender values are self-explanatory. The other,
kNeuter, is used to describe a voice that is robotic-sounding. If your pro-
gram wants to see if a voice generates speech in a male voice, it should
include a snippet similar to the following:

VoiceDescription theVoiceDesc;
// get a voice description for a voice

// now check to see if the voice has characteristics matching
// the desired ones:
if (theVoiceDesc.gender == kMale)

// voice matches, use it to generate speech

The above snippet uses a comment in place of one important step: obtain-
ing a voice description structure for a voice. That topic will be covered in
the next section.

The age field of the VoiceDescription structure yields the approximate |

age that a speaker of this voice would have. If you'd like to generate speech
using a voice that sounds as if it were that of a teenager, you might have a
test such as the following:

if ((theVoiceDesc.age > 12) && (theVoiceDesc.age < 20))
// voice matches, use it to generate speech

If you'd like the voice to be that of a teenage male, combine the above
two tests:

147

148

Graphics and Sound Programming Techniques for the Mac

if (theVoiceDesc.gender = kMale)
if ((theVoiceDesc.age > 12) && (theVoiceDesc.age < 20))
// voice matches, use it to generate speech

Obtaining a Voice Description for a Voice

To begin a search for a voice that matches your program’s specifications,
call the Toolbox function CountVoices():

0SErr theError;
short theNumVoices;

theError = CountVoices(&theNumVoices);

As its name implies, CountVoices() searches the user’s system to find
all available voices, counts them, and returns the total in the parameter.
This returned value should then be used as the index in a for loop. The
purpose of the loop is to examine each voice in turn, searching for one
that has characteristics matching the program’s needs—such as a voice
of a middle-aged man.

for (theIndex = 1; thelndex <= theNumVoices; thelndex++)
{

// examine each voice until a middle-aged man match is found
}

Within the loop body, getting a VoiceDescription for a voice is a two-step
process. First, a VoiceSpec is needed. The VoiceSpec is used to provide a
unique reference to each voice. The VoiceSpec data structure consists of
two fields: an identification number of the speech synthesizer for which
the voice was created and an identification number of the voice itself.
Any number of voices can share the same speech synthesizer ID, but
each voice of these voices with the same synthesizer ID will have a
voice ID that is unique. To get a VoiceSpec for a voice, call the Toolbox
function GetIndVoice():

OSErr theError;
short thelndex;
VoiceSpec theVoiceSpec;

theError = GetIndVoice(thelIndex, &theVoiceSpec);

Chapter 4 = Speech

The first parameter to GetIndVoice() is an index that tells which
voice is of interest. This parameter must have a value no less than 1, for
the first voice, and no greater than the total number of voices currently
present in the user’s system—as reflected in the value returned by
CountVoices(). The following shows how the voice-searching loop is
shaping up:

0SErr theError;
short theNumVoices;
short thelndex;

VoiceSpec theVoiceSpec;
theError = CountVoices(&theNumVoices);

for (thelndex = 1; thelndex <= theNumVoices; theIndex++)
{

theError = GetIndVoice(thelndex, theVoiceSpec);

// examine the voice specified by theVoiceSpec
}

A voice description can be obtained by making a call to the Toolbox
function GetVoiceDescription():

thekError = GetVoiceDescription(theVoiceSpec, &theVoiceDesc,
sizeof(theVoiceDesc)):

The first parameter to GetVoiceDescription() is the VoiceSpec for the
voice of interest. The VoiceSpe is the one returned by the preceding call to
GetIndVoice(). The second parameter is a pointer to a variable of type
VoiceDescription. After the call to GetVoiceDescription() is complete,
this data structure will be filled with information about the voice specified
by the VoiceSpec. The final parameter to GetVoiceDescription() is the
number of bytes in a VoiceDescription data structure. Use the sizeof()
function to get this value.

At this point, enough is known about a voice to make a decision as to
whether it is one that matches the program’s needs. An updated version
of the voice-checking loop follows.

OSErr theError;
short theNumVoices;
short thelndex;

149

150

Graphics and Sound Programming Techniques for the Mac

VoiceSpec theVoiceSpec;
VoiceDescription theVoiceDesc;

theError = CountVoices(&theNumVoices);

for (thelndex = 1; thelndex <= theNumVoices; theIndex++)
{

thekError = GetIndVoice(thelndex, theVoiceSpec);

theError = GetVoiceDescription(theVoiceSpec, &theVoiceDesc,
sizeof(theVoiceDesc));

// compare fields of the VoiceDescription with the desired
// voice characteristics to see if this voice is a match

// if voice matches, exit Toop
// else loop again and check the next indexed voice

}

This loop can be included in a function that is used to return the VoiceSpec
for a voice that fits a certain requirement. Consider as an example the
GetVoiceSpecBasedOnGender() routine listed below. When passed a
pointer to a VoiceSpec and a gender value, the function loops until it
finds a voice of the specified gender. When it does, the loop is exited
and the function returns the VoiceSpec of the voice. Notice that because
the VoiceSpec is passed in as a pointer, the parameters to GetIndVoice()
change from:

theError = GetIndVoice(thelndex, &theVoiceSpec):

to the following:

theError = GetIndVoice(thelndex, theVoiceSpec);

The same applies to the first parameter to GetVoiceDescription(). If the
function cycles through all of the voices that are available on the user’s
Mac, and a match is never found, the function returns a value of
kNoMatchingVoiceErr. This is an application-defined constant that tells
the caller that no matching voice was found. It is then up to the caller to
determine how to proceed.

Chapter & = Speech
151

fidefine kNoMatchingVoiceErr -999

0SErr GetVoiceSpecBasedOnGender(VoiceSpec *theVoiceSpec,
short theGender)
{
OSErr theError;
short theNumVoices;
short thelndex;
VoiceDescription theVoiceDesc;

theError = CountVoices(&theNumVoices);
if (theError != noErr)
return (theError);

for (theIndex = 1; theIndex <= theNumVoices; thelndex++)
{
theError = GetIndVoice(thelndex, theVoiceSpec);
if (theError != noErr)
return (theError);

theError = GetVoiceDescription(theVoiceSpec, &theVoiceDesc,
sizeof(theVoiceDesc));
if (theError != noErr)
return (theError);

if (theVoiceDesc.gender == theGender)
return (nokrr);

}
return (kNoMatchingVoiceErr);

}

The following indicates how an application would call GetVoiceSpec-
BasedOnGender() to obtain a VoiceSpec for a robotic voice:

OSErr theError;
short theGender;
VoiceSpec theVoiceSpec;

theGender = kNeuter;
theError = GetVoiceSpecBasedOnGender(&theVoiceSpec, theGender);

Once a VoiceSpec is obtained, it can be used in a call to NewSpeechChannel()
to open a speech channel:

152

Graphics and Sound Programming Techniques for the Mac

theError = NewSpeechChannel(&theVoiceSpec, &theChannel);

After the channel is open, text generated from it will use the robotic
voice. Calls to SpeakText(), SpeechBusy(), and DisposeSpeechChannel()
follow the opening of the new speech channel:

theError = SpeakText(theChannel, (Ptr)(theString + 1),
theString[0]);
while (SpeechBusy() = true)

theError = DisposeSpeechChannel(theChannel);

If your application will use voices, you'll want to replace the applica-
tion-defined function OpenOneSpeechChannel() with a routine that
includes a VoiceSpec as a parameter. Then, rather than opening the
speech channel with a first parameter of ni1, use the passed VoiceSpec:

SpeechChannel OpenOneSpeechChannelVoice(VoiceSpec theVoiceSpec)
{
SpeechChannel theChannel;
OSErr theError;
theError = NewSpeechChannel(&theVoiceSpec, &theChannel);
if (theError != nokrr)
{
theError = DisposeSpeechChannel(theChannel);
theChannel = nil;
}
return (theChannel);

Chapter Example: ChangeVoice

The ChangeVoice program opens a dialog box like the one shown in
Figure 4.11. This dialog box allows the user to set the voice to that of a
young boy, a woman, a robot, or the system-default voice. After setting
the voice, a click on the Play Speech button results in a spoken sentence
using the selected voice. ChangeVoice speaks the same sentence regardless
of the voice selected.

Chapter & = Speech
P 153

Click on a "Set Doice" button,
then click on the Play button...

Set Voice

Boy: 5-10 years |

Woman: 30-50 years]

(
(
(Robot: over 500 years |
(

Default]

[Play Speech }

FIGURE 4.11 The dialog box displayed by the ChangeVoice program.

ChangeVoice relies on an application-defined function named Get-
VoiceSpecBasedOnAgeGender (). This routine is very similar to the
GetVoiceSpecBasedOnAgeGender() function developed a couple of pages
back. The difference between the two functions is that the new routine
looks for a voice that meets two requirements rather than one—the new
function loops until a voice of the specified gender and specified age
range is found. The following snippet executes in response to a click on
the Boy: 5-10 years button.

OSErr theError;
short theAgelo;
short theAgeHi;
short theGender;

VoiceSpec theVoiceSpec;

theGender = kMale;

theAgelo = 5;

theAgeHi = 10; .

theError = GetVoiceSpecBasedOnAgeGender(&theVoiceSpec, theAgelo,
theAgeHi, theGender);

154

Graphics and Soand Programming Techniques for the Mac

The ChangeVoice project uses two resources: a DL0G and a DITL. The
dialog items are shown in the DITL pictured in Figure 4.12. Following the
figure are the application-defined constants used to represent the DITL
and its items.

Changeloice.rsrc

Iy DIL ID = 128 from Change |

128 ITick on a "Set Doice” button,|9
then click on the Play button...

[Set Doice _17]

[Boy:s-10years 12

[woman: 30-50 years3]

[Robot: over S00 gearii]

[Default 5]
[5]
[Play Speech I‘—J

FIGURE 4.12 The DITL resource used by the ChangeVoice program.

jtdefine rSpeechDialog 128
fidefine kPlaySpeechButton 1
fidefine kSetSpeechYoungBoyButton 2
fidefine kSetSpeechMidd1eAgeWomanButton 3
fidefine kSetSpeechRobotButton 4
fHdefine kSetSpeechDefaultButton 5
ftdefine kQuitButton 6

One point of interest in the code is the manner in which the program
gets a VoiceSpec for the system-default voice:

O0SErr thekError;
VoiceSpec theDefaultVoiceSpec;

Chapter 4 = Speech

VoiceDescription theVoiceDesc;

theError = GetVoiceDescription(nil, &theVoiceDesc,
sizeof(theVoiceDesc));

theDefaultVoiceSpec = theVoiceDesc.voice;

The GetVoiceDescription() function is usually called with a VoiceSpec as
the first parameter. If, instead, a value of ni1 is passed, a VoiceDescription
for the system-default voice will be returned. So far, you've seen the
gender and age fields of this structure. Among the many other fields in
this structure is the voice field. This field is a VoiceSpec structure for the
voice being described. By assigning the voice field to a VoiceSpec variable,
the program can at any time speak text in the system-default voice by
opening a new speech channel with theDefaultVoiceSpec as the first
parameter to a call to OpenSpeechChannel().

//

void InitializeToolbox(void);

Boolean IsSpeechAvailable(void);

SpeechChannel OpenOneSpeechChannelVoice(VoiceSpec);

void OpenSpeechDialog(void);

0SErr GetVoiceSpecBasedOnAgeGender(VoiceSpec *, short,
short, short);

//

{idefine rSpeechDialog 128

ftdefine kPlaySpeechButton 1

fidefine kSetSpeechYoungBoyButton 2

ffdefine kSetSpeechMidd1eAgeWomanButton 3

jtdefine kSetSpeechRobotButton 4

fHdefine kSetSpeechDefaultButton 5

fidefine kQuitButton 6

fidefine kNoMatchingVoiceErr -999

//

void main(void)

{
Boolean speechPresent;
InitializeToolbox();
speechPresent = IsSpeechAvailable();
if (speechPresent == false)

Graphics and Sound Programming Techniques for the Mac

156
ExitToShel1();

OpenSpeechDialog();

}

//

wvoid OpenSpeechDialog(void)

{
DialogPtr theDialog;
short theltem;
Boolean allDone = false;
OSErr theError;
SpeechChannel theChannel;
Str255 theString = “\pMilwaukee, that’s in
Minnesota right?”;
short theAgelo;
short theAgeHi;
short theGender;
VoiceSpec theDefaultVoiceSpec;
VoiceSpec theVoiceSpec;

VoiceDescription theVoiceDesc;

theDialog = GetNewDialog(rSpeechDialog, nil, (WindowPtr)-1L);
ShowWindow(theDialog);
SetPort(theDialog);

theError = GetVoiceDescription(nil, &theVoiceDesc,
sizeof(theVoiceDesc));

theDefaultVoiceSpec = theVoiceDesc.voice;
theVoiceSpec = theDefaultVoiceSpec;
while (allDone == false)
{
ModalDialog(nil, &theltem);

switch (theltem)
{
case kSetSpeechYoungBoyButton:
theGender = kMale;
theAgelo = 5;
theAgeHi = 10;
theError = GetVoiceSpecBasedOnAgeGender(&theVoiceSpec,
theAgelo,
theAgeHi,
theGender);
break;

Chapter & = Speech

case kSetSpeechMiddleAgeWomanButton:

theGender = kFemale;

theAgelo = 30;

theAgeHi = 50;

theError = GetVoiceSpecBasedOnAgeGender(&theVoiceSpec,
theAgelo,
theAgeHi,
theGender);

break;

case kSetSpeechRobotButton:

theGender = kNeuter;

theAgelo = 500;

theAgeHi = 10000;

theError = GetVoiceSpecBasedOnAgeGender(&theVoiceSpec,
theAgelo,
theAgeHi,
theGender);

break;

case kSetSpeechDefaultButton:
theVoiceSpec = theDefaultVoiceSpec;
break;

case kPlaySpeechButton:
theChannel = OpenOneSpeechChannelVoice(theVoiceSpec);
if (theChannel == nil)
ExitToShel1();
theError = SpeakText(theChannel, (Ptr)(theString + 1),
theString[0]);
while (SpeechBusy() == true)

theError = DisposeSpeechChannel(theChannel);
if (theError != nokErr)

ExitToShell();
break;

case kQuitButton:
allDone = true;
break;

(theError == kNoMatchingVoiceErr)

SysBeep(0);
theVoiceSpec = theDefaultVoiceSpec;

Graphics and Sound Programming Techniques for the Mac

158
else if (theError != noErr)
ExitToShell();
}
DisposeDialog(theDialog);

}

// :

OSErr GetVoiceSpecBasedOnAgeGender(VoiceSpec *theVoiceSpec,
short theAgelo,
short theAgeHi,
short theGender)

{

O0SErr theError;
short theNumVoices;
short thelndex;

VoiceDescription theVoiceDesc;

theError = CountVoices(&theNumVoices);
if (theError != noErr)
return (theError);

for (thelndex = 1; thelndex <= theNumVoices; thelndex++)
{
theError = GetIndVoice(thelndex, theVoiceSpec);
if (theError != noErr)
return (theError);
theError = GetVoiceDescription(theVoiceSpec, &theVoiceDesc,
sizeof(theVoiceDesc));
if (theError != nokrr)
return (theError);

if ((theVoiceDesc.age >= theAgelo) &&
(theVoiceDesc.age <= theAgeHi))
if (theVoiceDesc.gender = theGender)
return (noErr);
}
return (kNoMatchingVoiceErr);
}

/1

SpeechChannel OpenOneSpeechChannelVoice(VoiceSpec theVoiceSpec
)

{
SpeechChannel theChannel;

Chapter 4 = Speech

OSErr theError;

theError = NewSpeechChannel(&theVoiceSpec, &theChannel);
if (theError != noErr)

{

theError = DisposeSpeechChannel(theChannel);
theChannel = nil;

}

return (theChannel);
}
Sammary

The Speech Manager is a system software extension that, with the aid of
speech synthesizers and the Sound Manager, converts text into speech.
Speech Manager functions, such as SpeakString() and SpeakText(),
allow your program to generate speech from any string.

To generate speech using the system-default voice, just call Speak-
String() with a string as the lone parameter. To generate speech using
other voices—a man, a woman, a child, or a robot—call SpeakText()
instead. SpeakText() requires that your application first create a sound
channel from which the speech will be played.

159

CHAPTER 5

Animation

Everybody wants to do animation. It’s the first thing a new programmer
wants to do after figuring out how to write “Hello World” to a window,
and it’s what a number-crunching engineer wants to do for fun.
Animation is easy—if you're content with the annoying flicker that
accompanies the animated objects produced by repeatedly drawing a
picture to a window. If you want slick, smooth, flicker-free animation, a
little extra work is in order.

The extra work involved in generating professional-looking animated
effects comes from gaining an understanding of a single Toolbox function—
CopyBits(). In this chapter you'll see how to use this powerful function
in conjunction with offscreen bitmaps and offscreen graphics worlds to
create both black-and-white and color animation. You'll find out how
CopyBits() is used to move an object across any background—without
obscuring that background, and without the noticeable screen flicker
seen in some programs.

If you're interested in programming games, this chapter and Chapter 2
will help you reach that goal. If you combine the color animation tech-

161

162

Graphics and Sound Programming Techniques for the Mac

niques found in this chapter with the sound-playing techniques pro-
vided in Chapter 2, you’ll be well on your way to writing the next great
Macintosh game.

Monochrome Animation and CopyBits()

Understanding the Toolbox function CopyBits() is a must for any pro-
grammer interested in producing smooth animation. As its name implies,
CopyBits() copies a bit image—a collection of bits—from one location
to another. In this section CopyBits() will be used on monochrome
images. Later, this same function will be used to generate color animation.

Bit Images and BitMaps

A graphical image can be thought of as having two representations. The
first, and most obvious, is the screen representation—the image as it
appears visually. The second is its representation in memory. For mono-
chrome images, each screen pixel that makes up an image on the screen
has a corresponding bit in memory used to keep track of the state of the
pixel. If an image pixel appears black, its corresponding bit in memory
has a value of 1, or “on.” If an image pixel appears white, its corre-
sponding memory bit has a value of 0, or “off.”

The above discussion implies that a pixel is not the same as a bit. That's true.
In discussions that deal less specifically with graphical images, though, you
may see the words interchanged.

NOTE

To form a graphical image, bits are grouped together in a data structure
known as a BitMap—represented by the BitMap data structure:

struct BitMap

{
Ptr baseAddr;
short rowBytes;
Rect bounds;

};

Chapter 5 = Ainimation

While graphical images vary in size, each BitMap data structure is
always the same size. That’s possible because the BitMap data type
doesn’t actually hold the BitMap bit information. Instead, this data resides
elsewhere in memory. The first field of a BitMap (the baseAddr field) is a
pointer to the first byte of this data.

The second field of a BitMap specifies how many bytes appear in a
single row of the graphical image. For alignment purposes, all images
are held in rows that have a byte length divisible by 2. Consider the bit
image shown in Figure 5.1. The letter “T” that this image forms is seven
bits across at its widest point. Yet the bit image is 16 bits, or two bytes,
across. Whether this image had a width of 1 bit, 16 bits, or any value in
between, it would occupy two bytes across. For the example shown in
Figure 5.1, the rowBytes field of the BitMap data structure representing
this image would have a value of 2, for two bytes across.

— | —>l— 1
byte byte_ﬂ
9
rows
l— 7 —
bits

FIGURE 5.1 The BitMap data structure keeps track of
the number of bytes in a bit image.

The third field of the BitMap is a rectangle that specifies the boundaries
of the image. This rectangle encompasses the image without taking into
consideration any byte padding. Again referring to Figure 5.1, the
image would have a bounding rectangle seven pixels across and nine
pixels vertically. The values that make up the bounding rectangle may
or may not be normalized (use the point (0, 0) as a reference point).
Thus for the image in Figure 5.1, the bounding rectangle could have
coordinates such as the following;:

163

164

Graphics and Sound Programming Techniques for the Mac

bounds.left 30
bounds.right 37
bounds.top 50
bounds.bottom 59

By keeping track of the number of bytes in a row and the coordinates of
an image, the size in bytes of an image can be determined. Using the
following equation makes the image in Figure 5.1 occupy 18 bytes.

image byte size = rowBytes * (bounds.bottom - bounds.top)

In C, a BitMap is referenced using a pointer. In Figure 5.2, you can see
that a pointer to a BitMap is used to access a BitMap data structure. The
BitMap data structure in turn references the BitMap data in another part
of memory. Figure 5.2 shows the bit values in the bit image memory,
along with the image that those bit values would form.

2 bytes

9rows

bounds

BitMap
rowBytes
| baseaddr E

* BitMap (pointerto a BitMap)

FIGURE 5.2 The baseAddr field of a BitMap
points to the actual bit image in memory.

Chapter 5 = Animation

The individual bits that make up the bit image appear to form an upside-
down “T” in Figure 5.2. As you look at this figure (and all others in this book),
keep the Macintosh memory-addressing convention in mind: smaller, or lower,
addresses are shown at the bottom of a figure. That's why a figure shows a
pointer pointing to what appears to be the bottom of an object in memory. This “bottom”
is actually the start of the object.

NOTE

Once again, it is important to remember the distinction between bits and
pixels. An image that exists in a BitMap structure exists as bit values in mem-
ory—it doesn’t appear in a window. A program can have several images
stored in BitMaps, and each of these images will be invisible to the user. Not
until an image is drawn to a window’s port does it become visible.

You've just seen that a BitMap holds a graphic image. But how does
this “invisible” BitMap image contribute to animation? The answer lies
in the number of BitMaps used to create an animated effect. Offscreen
animation works in the following way. Your program will allocate
memory for three BitMaps. A window will be opened, which will add a
fourth BitMap. As you'll see on the next pages, a window always has its
own BitMap. To draw a single frame from an animated sequence, your
program will make use of each of these four BitMaps. One BitMap will
be used to hold a background picture, a second will be used to hold a
foreground picture, and a third will be used as a mixture BitMap—it will
hold a BitMap that is the combined image of the foreground BitMap
overlaid upon the background BitMap. It is this mixture BitMap that will
be copied to the final BitMap—the one that holds the contents of the open
window. Figure 5.3 illustrates.

165

166

Graphics and Sound Programming Techniques for the Mac

Background bitmap

Foreground bitmap

Merge bitmap

Window bitmap

FIGURE 5.3 Smooth animation is produced by combining
a foreground with a background offscreen.

Because BitMap images are simply bits in memory, the blending of the
BitMaps is invisible to the user—it takes place “behind the scene.” To
create animation, the coordinates of the foreground BitMap are slightly
moved, the foreground and background BitMaps are again combined to
form the merge BitMap, and this new merge BitMap is again copied to
the window. The result? The flicker that is apparent with other types of
animation doesn’t exist. That’s because the mixing of the BitMaps takes
place in memory—not in the window.

BitMaps, Graphics Ports, and Windows

When you create a new window, whether by a call to GetNewWindow() or
NewWindow(), the Window Manager allocates memory for a WindowRecord

Chapter 5 = @nimation

data structure and returns a WindowPtr to your program. A WindowPtr is a
pointer to the first field in that structure—the port field. A WindowRecord is
a data structure consisting of several fields that hold descriptive informa-
tion about a window. The first field, the port field, is of type GrafPort.
Figure 5.4 shows a WindowRecord in memory.

data structure will be shown—and these fields will not be to scale with the

s To emphasize the topic being discussed, only select fields of the WindowRecord
by
" entire WindowRecord structure. This applies to other data structures pictured

in figures as well.

WindowRecord

GrafPort

WindowPtr

FIGURE 5.4 A WindowPtr points to the first field in a
WindowRecord—a field of type GrafPort.

A GrafPort is a data structure that consists of several fields. The second
field in a GrafPort is the portBits field, which is of type BitMap. The
GrafPort of a WindowRecord holds information about the drawing envi-
ronment of the window (such as the font that text will be displayed in),
while the BitMap of a WindowRecord holds the bit image representing the

167

168

Graphics and Sound Programming Techniques for the Mac

contents of the window. Figure 5.5 shows the BitMap and GrafPort of a
WindowRecord.

WindowRecord

| Windowptr

FIGURE 5.5 A GrafPort contains a field of type BitMap.

From earlier discussions you'll recall that a graphics port’s BitMap field
doesn’t hold the BitMap image itself, but rather, a pointer to the bit image
that is elsewhere in memory. Exactly where in memory the bit image ends
up is of no concern to you.

BitMaps and Graphics Ports Without Windows

The preceding text and figures have shown that both a BitMap and a
graphics port are a part of a window—they’re fields of a WindowRecord
data structure. But each can also exist on its own. That is, you can allocate

Chapter 5 = Animation

169

memory for a BitMap or GrafPort without creating a new window. This is
exactly what you’ll do when performing offscreen animation. Figure 5.6
shows a section of memory after a GrafPtr variable has been declared
and set to point at memory allocated for a GrafPort. As shown in the
figure, this new graphics port will be used to hold an image that will
serve as a background over which animation will take place.

GrafPtr (points to the background bitmap)

GrafPort (holds the background bitmap)

WindowRecord

GrafPort

WindowPtr (will hold the merge bitmap)

FIGURE 5.6 A GrafPtr variable is used to access a GrafPort drawing environment.

Figure 5.6 shows what memory might look like for a program that opens
a window (pointed to by a WindowPtr variable) and also creates an addi-
tional graphics port (pointed to by a GrafPtr variable). In the figure, the
graphics port that isn’t a part of the WindowRecord is assumed to hold a
BitMap that will be used to hold the background of the offscreen drawing.
This graphics port is pointed to by a GrafPtr variable.

170

Graphics and Sound Programming Techniques for the Mac

Both the BitMap data type and the GrafPort data type will be of
interest to you when performing offscreen animation. As mentioned,
you'll use four bitmaps (each represented by a BitMap data structure)
when performing animation. Rather than just allocating BitMap data
structures, you'll instead allocate GrafPort data structures. A GrafPort
includes a BitMap as one of its fields—and it has the additional benefit of
keeping track of the drawing environment for that BitMap structure.
That means, for instance, you could use the picture from a PICT resource
as a background BitMap, then set the font for the BitMap’s GrafPort and
draw a string of text that will become a part of that picture.

Figure 5.7 shows this same area of memory after another GrafPort is
allocated. This one will be used to hold a foreground image.

S0 crafper (points to the background bitmap)

GrafPtr (points to the foreground bitmap)

GrafpPort (holds the foreground bitmap)

GrafPort (holds the background bitmap)

WindowRecord

Grafport

windowPtr (will hold the merge bitmap)

FIGURE 5.7 An application can create more than one GrafPort.

Chapter 5 = @nimation

Figure 5.8 shows memory after another graphics port is allocated. The
BitMap associated with this graphics port will be used to hold the result of
combining two bitmaps.

| Grafptr (points to the background bitmap)
GrafPtr (points to the merge bitmap)

GrafPtr (points to the foreground bitmap)
Grafport (holds the foreground bitmap)

Grafport (holds the merge bitmap)

crafPort (holds the background bitmap)

o WindowRecord
s N]
GrafPort i

|) 4

windowPtr (will hold the merge bitmap)

FIGURE 5.8 For animation, three GrafPorts—
and three GrafPtr pointers—will be used.

Allocating a GrafPort, and the BitMap that accompanies it, reserves
memory for these data structures—but doesn’t place any image in the
area of memory reserved for the BitMap. To do that, youll make the new
GrafPort the active port and draw to it. In Figure 5.9, the graphics port
used to hold a background has been drawn to. In this example assume
that a picture of a gray rectangle was loaded from a PICT resource and
drawn to the graphics port.

m

172

Graphics and Sound Programming Techniques for the Mac

GrafPtr (points to the background bitmap)

Background bitmap

FIGURE 5.9 A GrafPort can be used to hold the background
over which an object will move.

Next, the graphics port that will be used to hold the image resulting
from the merging of a background image and a foreground image is
sized to match the background BitMap. Nothing is drawn to this BitMap
at this time. Then the graphics port that is used to hold a foreground
image is drawn to. Figure 5.10 illustrates.

Chapter 5 = @nimation

N4

NOTE

Foreground bitmap

Merge bitmap

Background bitmap

FIGURE 5.10 Three offscreen graphics ports are used to hold

a foreground, background, and combined image.

Each GrafPtr in Figure 5.10 leads to a GrafPort. Each GrafPort has a
field that is a BitMap. Each BitMap has a baseAddr field that points to an
area in memory that holds the actual bit image.

173

Graphics and Sound Programming Techniques for the Mac

174

To create a single scene, or frame, for animation, the background
BitMap is copied to the merge BitMap. Then the foreground BitMap is copied
to that same merge BitMap—directly over the background. The result is
shown in Figure 5.11.

Merge bitmap

Background bitmap

FIGURE 5.11 The merge BitMap is created by copying a background
BitMap and a foreground BitMap to a single graphics port.

Now, with the combining of the background and foreground taken care of—
and taken care of in memory rather than in a window—the completed
scene is copied to the BitMap that holds the contents of the window.
Figure 5.12 illustrates.

Chapter 5 = @nimation

Foreground bitmap

Merge bitmap

Background bitmap

Window bitmap

FIGURE 5.12 The combined BitMap is copied to a window.

The preceding steps show how a single frame appears in a window—
but how does this lead to animation? The copying of the background
and foreground to the merge BitMap, and then the copying of the merge
BitMap to the window, take place within a loop. After the merge BitMap
is copied to the window BitMap, the coordinates of the foreground
BitMap get changed slightly. Then the merging of the BitMaps, and the
blasting of this merged BitMap to the window, are repeated. The result is
that the image appears to have moved slightly. And, best of all, no
noticeable flicker has taken place.

175

176

Graphics and Sound Programming Techniques for the Mac

Creating a New BitMap

The BitMap that accompanies a window gets created during the call to
NewWindow() or GetNewWindow()—your program doesn’t need to be con-
cerned with its allocation. The other three BitMaps needed for offscreen
drawing, however, need to be created explicitly by your application.

To allocate the memory for a BitMap data structure, make a call to
the Toolbox routine NewPtr (). Pass the size of the BitMap structure as the
only parameter, and typecast the resulting generic pointer to a pointer
that points to a BitMap:

BitMap *theBitMapPtr;

theBitMapPtr = (BitMap *)NewPtr(sizeof(BitMap));

The above statement allocates a block of memory the size of a BitMap
structure, but doesn’t provide values for any of the three fields of this
data structure. Those values are dependent on the graphic image that is
to be stored in the BitMap. As a refresher, here’s another look at the
BitMap data structure definition:

struct BitMap

{
Ptr baseAddr;
short rowBytes;
Rect bounds;
};

Begin by getting the bounding rectangle of the image that is to be
stored in the new BitMap. For instance, if the image is saved as a PICT
resource, load the PICT and find its framing rectangle from the picFrame
field of the Picture structure that defines the picture. You can call the
Toolbox routine 0ffsetRect() to ensure that the rectangle has a left
coordinate of 0 and a top coordinate of 0—as done in this snippet:

PicHandle thePicture;
Rect theRect;

thePicture = GetPicture(128);

theRect = (**thePicture).picFrame;
OffsetRect(&theRect, - theRect.left, - theRect.top);

Chapter 5 = Animation

The bounds field of a BitMap holds the bounding rectangle of the
image. Use the BitMap pointer to access the bounds field, and set it to the
bounding rectangle for the picture that is to be stored:

theBitMapPtr->bounds = theRect;

Determining the value that is to be stored in the rowBytes field requires
a little work. You can get the number of bits in a row by simply looking
at the width the picture’s bounding rectangle:

theRect.right - theRect.left

Unfortunately, the rowBytes field is a byte value, not a bit value. And
there is the byte padding to consider—rowBytes is always a multiple of
two bytes. You can be assured that the image’s rowBytes value includes
the necessary padding, as follows. Begin by taking the bounding rectangle
width and adding 7 to it, then divide by 8. This returns the number of
bytes needed, without concern for padding. Adding 7 forces the division
to return the correct byte value. For instance, if an image is 10 pixels
wide, dividing by 8 would yield a byte value of 1 (the remainder gets
truncated, or dropped). By adding 7, the 10 pixel width becomes 17, and
division by 8 gives a 2-byte row value—as desired.

BitMap *theBitMapPtr;
Rect theRect;

theBitMapPtr->rowBytes = (theRect.right - theRect.left + 7) / 8;

Now it’s time to consider the padding. To do this, divide the rowBytes
value by 2 and examine the remainder (use the C modulus operator, %,
to return the remainder of an integer division). If rowBytes isn’t an even
value, increment it by 1 so that it is even:

if ((theBitMapPtr->rowBytes % 2) !=10)
theBitMapPtr->rowBytes++;

The following snippet shows how rowBytes can be calculated:

BitMap *theBitMapPtr;
Rect theRect;
short theTest;

177

178

Graphics and Sound Programming Techniques for the Mac

theBitMapPtr->rowBytes = (theRect.right - theRect.left + 7) / 8;

theTest = theBitMapPtr->rowBytes / 2;

if ((2 * theTest) != theBitMapPtr->rowBytes)
theBitMapPtr->rowBytes+t+;

The last BitMap field to fill is the baseAddr field—the address at which the
bit image will be stored. When memory is allocated for a BitMap structure,
the memory for the BitMap itself isn’t allocated. To do that, you'll need
the byte size of the image. The rowBytes field tells how many bytes
across the image is. This value multiplied by the bit height of the image
gives the image size in bytes. For an example, refer back to Figure 5.1.
Use the following code to verify that the graphic image in that figure
requires an 18-byte bitmap.

short thelmageHeight;
short thelmageByteSize;

thelmageHeight = theRect.bottom - theRect.top;
thelmageByteSize = theBitMapPtr->rowBytes * thelmageHeight;

With the size of the image calculated, allocate memory for the bitmap.
theBitMapPtr->baseAddr = NewPtr(thelmageByteSize);

Rather than using the BitMap directly, it will be accessed through a
graphics port. This allows graphics environment information to be

saved along with the BitMap if desired. It also makes writing to the

BitMap easy—Toolbox calls like SetPort() work on graphics ports. The
allocation of a graphics port follows:

GrafPtr theGrafPtr;
theGrafPtr = (GrafPtr)NewPtr(sizeof(GrafPort));

To initialize the fields of the new graphics port, call the Toolbox function
OpenPort (). This call has the additional benefit of making the new graphics
port the current port—something that needs to be done before a BitMap
can be paired with the new port:

BitMap *theBitMapPtr;

OpenPort(theGrafPtr);
SetPortBits(theBitMapPtr);

Chapter 5 = Animation

One of the fields of a graphics port is a BitMap. Creating a new graph-
ics port doesn’t associate the new BitMap that you've just created with the
new graphics port. The call to the Toolbox function SetPortBits() does
that. It matches the BitMap that is passed to it to whichever port is current.

At this point, the new BitMap is ready to be drawn to. Because you’ll
want to perform the above steps three times—once for each of the three
offscreen BitMaps used in the animation—you’ll want to turn the above
steps into a function. The MakeNewBitMapAndSetPort() function accepts a
pointer to a rectangle that holds the boundaries of a graphic image. The
function then creates a new BitMap, creates a new graphics port, ties the
two together, makes the graphics port current, and then returns a pointer
to the new port.

NOTE

The MakeNewBitMapAndSetPort() function uses the coordinates of the
passed-in rectangle, but doesn’t make any changes to them. So the function
doesn’t need a pointer to the rectangle. Yet that’s what gets passed to it.
Macintosh C parameter-passing conventions state that a parameter that is
greater than four bytes in size should be passed by reference—that is, as a pointer. A
Rect variable is larger than four bytes, so it should be passed as a pointer.

GrafPtr MakeNewBitMapAndSetPort(Rect *theRectPtr)
{

BitMap *theBitMapPtr;

short thelmageHeight;

short theImageByteSize;

GrafPtr theGrafPtr;

theBitMapPtr = (BitMap *)NewPtr(sizeof(BitMap));
if (theBitMapPtr == nil)
ExitToShell1();

theBitMapPtr->bounds = *theRect;

theBitMapPtr->rowBytes = (theRect->right - theRect->left + 7) / 8;
if ((theBitMapPtr->rowBytes % 2) !=0)
theBitMapPtr->rowBytes++;

thelmageHeight = theRect->bottom - theRect->top;
thelmageByteSize = theBitMapPtr->rowBytes * thelmageHeight;
theBitMapPtr->baseAddr = NewPtr(theImageByteSize);
if (theBitMapPtr->baseAddr == nil)

ExitToShell();

179

180

Graphics and Sound Programming Techniques for the Mac

theGrafPtr = (GrafPtr)NewPtr(sizeof(GrafPort));
if (theGrafPtr == nil)
ExitToShell();

OpenPort(theGrafPtr);
SetPortBits(theBitMapPtr);

return(theGrafPtr);
}

Before calling MakeNewBitMapAndSetPort(), obtain the bounding rectangle
of the image that is to be drawn to the new BitMap. Then call the function.
MakeNewBitMapAndSetPort() will return a pointer to the new graphics
port that holds the new BitMap. MakeNewBitMapAndSetPort() makes this
graphics port the current one, so any drawing that takes place will end
up in the new BitMap. If you're using a picture as the graphics image, the
following snippet will draw that picture to the new BitMap. Remember,
the drawing sets bit values in memory—it doesn’t affect what the user
sees in any open windows.

GrafPtr theBackGrafPtr;
PicHandle theBackPicture;
Rect theRect;

theBackPicture = GetPicture(128);

theRect = (**theBackPicture).picFrame;
OffsetRect(&theRect, - theRect.left, - theRect.top);

theBackGrafPtr = MakeNewBitMapAndSetPort(&theRect);
DrawPicture(theBackPicture, &theRect);

Copying a BitMap

After using a function like MakeNewBitMapAndSetPort to create three
BitMaps—one for the foreground image, one for the background image,
and one to hold the combination of the other two—your program will
need to copy images from one BitMap to another. As you've certainly
surmised, CopyBits() is the Toolbox function that handles this chore.

As part of the offscreen animation process, the background BitMap
must be copied to the merge BitMap. Here’s the CopyBits() call that takes
care of that task:

Chapter 5 = Animation

GrafPtr theBackGrafPtr;
GrafPtr theMergeGrafPtr;

CopyBits(&(theBackGrafPtr->portBits),
&(theMergeGrafPtr->portBits),
&(theBackGrafPtr->portBits.bounds),
&(theMergeGrafPtr->portBits.bounds),
srcCopy,
nil);

At first glance, the six parameters to CopyBits() may make the function
call seem a little imposing. This needn’t be the case, though, as each
parameter serves an easily understood purpose. Once you understand
one call to CopyBits(), all others will quickly be understood. The above
snippet places each parameter on a separate line so that you can quickly
see where one ends and the next begins.

The first parameter is the BitMap that is to be copied—the source
BitMap. The portBits field of a graphics port is a BitMap. In the above
example, theBackGrafPtr is the GrafPtr returned by a call to the appli-
cation-defined routine MakeNewBitMapAndSetPort(). When that function
created a BitMap, it associated it with a graphics port. Associated means
that the function set the graphics port’s portBits field to this BitMap.

The second parameter to CopyBits() is the BitMap that is to be copied
to—the destination BitMap. Again, the GrafPtr and BitMap used in the
above snippet are the result of calling MakeNewB1itMapAndSetPort().

The third parameter is the bounding rectangle of the source BitMap.
Recall that the MakeNewBitMapAndSetPort() routine placed the graphic
image’s bounding rectangle in the bounds field of the newly created
BitMap, then put that BitMap in the portBits field of the newly created
graphics port. The fourth parameter is the bounding rectangle of the
destination BitMap. Because the first four parameters are all greater than
four bytes in size, each is passed using the & operator.

The fifth parameter to CopyBits() specifies a copy mode. The mode
tells CopyBits() how the bits of the source image should be placed over
the bits of the destination image. Using the Apple-defined constant
srcCopy tells CopyBits() to stamp the source image over the destination
image, obscuring anything under the source. Because the above snippet
is copying the background BitMap to the destination BitMap, whatever
currently lies at the destination should be covered by the background

181

182

Graphics and Sound Programming Techniques for the Mac

BitMap. If CopyBits() is being used in an animation loop, then the
merge BitMap will hold the most recent frame of an animation. The
background BitMap is now used to “erase” this frame—as shown in
Figure 5.13. The next step (shown in the next snippet) will be to copy
the foreground BitMap to the merge BitMap.

The final parameter to CopyBits() is a RgnHandle that serves as a
clipping mask. This mask will alter how the resulting image is clipped
in the destination rectangle. Pass ni1 here to ignore this clipping mask.

Before copyBits ()

Background bitmap Merge bitmap

After copyBits ()

Background bitmap Merge bitmap

FIGURE 5.13 The background B1itMap is being used to erase
what is about to become the previous scene in an animation.

The previous snippet copied the background BitMap to the merge BitMap.
The following snippet copies the foreground BitMap to the merge BitMap.
Here, four of the six parameter values will change from the preceding
call to CopyBits().

GrafPtr theForeGrafPtr;

GrafPtr theMergeGrafPtr;
short forelmageWidth;

short forelmageHeight;
Rect theRect;

Chapter 5 = @nimation

183

SetRect(&theRect, 15, 15, 15 + forelmageWidth, 15 + forelImageHeight);

CopyBits(&(theForeGrafPtr->portBits),
&(theMergeGrafPtr->portBits),
&(theForeGrafPtr->portBits.bounds),
&theRect,
srelr,
nil);

In the above snippet, the source BitMap is now theForeGrafPtr->portBits
rather than theBackGrafPtr->portBits. The source-bounding rectangle is
now theForeGrafPtr->portBits.bounds rather than theBackGrafPtr->port-
Bits.bounds. The destination rectangle is now one that defines where
the foreground image should be drawn—Figure 5.14 shows two examples.
In the top part of this figure, the left top corner of the foreground BitMap
is set to appear at point (15, 15). In the bottom part of the figure, the left
top corner is set to appear at point (65, 15).

SetRect (&theRect, 15, 15, 55, 55);
CopyBits(...);

Foreground bitmap Merge bitmap

SetRect (&theRect, 65, 15, 105, 50);
CopyBits(...);

Foreground bitmap Merge bitmap

FIGURE 5.14 The destination rectangle defines where the foreground
BitMap will be placed against the background BitMap.

Graphics and Sound Programming Techniques for the Mac

184

Finally, the copy mode parameter to CopyBits() will now be srcor
rather than srcCopy. Using a mode of srcOr tells CopyBits() to copy only
the black bits of the source BitMap to the destination BitMap. Where white
bits appear in the source image, CopyBits() will allow destination bits
to show through. Figure 5.15 illustrates.

Before CopyBits ()

Foreground bitmap Merge bitmap

After CopyBits()

Forearound bitmap Merge bitmap

FIGURE 5.15 Using the srcOr copy mode tells CopyBits()
to copy only black bits from the source BitMap.

merge BitMap. In Figure 5.15, you see the foreground BitMap being
copied to the merge BitMap. These two steps follow one another to create
a single frame in an animation. Notice that if these steps took place in a

Back in Figure 5.12 you saw the background BitMap being copied to the
I

NOTE

window—rather than in memory—the user would see flicker as the background
BitMap covered the previous frame.

Chapter 5 = Animation
P 185

After the foreground image has been added to the merge BitMap, the
merge BitMap is ready for display in a window. Another call to CopyBits()
takes care of this:

GrafPtr theMergeGrafPtr;
WindowPtr theWindow;

CopyBits(&(theMergeGrafPtr->portBits),
&(theWindow->portBits),
&(theMergeGrafPtr->portBits.bounds),
&(theWindow->portRect),
srcCopy,
nil);

In this third call to CopyBits() the source BitMap is theMergeGraf-
Ptr->portBits and the destination BitMap is the BitMap of the window that
will display the animation—theWindow->portBits. Back in Figure 5.5, you
saw that a WindowPtr points to the GrafPort field of a WindowRecord, and
that the GrafPort field holds a BitMap field.

The source rectangle in this call to CopyBits() is the bounding rec-
tangle of the merge BitMap: theMergeGrafPtr->portBits.bounds. The
destination rectangle is the contents of the window—defined by the
portRect field of the window’s GrafPort.

The image that is in the window just before this call to CopyBits() is
about to become the previous frame of the animation. That means that the
merge BitMap that is now being copied to the window should obscure the
contents of the window. Using the Apple-defined constant srcCopy does that.

Chapter Example: CopyBitsB&W

The CopyBitsB&W program demonstrates how the CopyBits() function
can be used to create smooth, flicker-free black-and-white animation.
When the program runs, the user sees a small toothbrush moving up
and down over a large set of teeth. A click of the mouse button ends the
program. Figure 5.16 shows how CopyBitsB&W looks when running.

Graphics and Sound Programming Techniques for the Mac

186

SE=——— New Window

FIGURE 5.16 The CopyBitsB&W program in action.

Dental students, dentists, and orthodontists—take note. The next edition of
this book might use a CopyBits() example that also includes flossing.

D

z
o
-3
m

Figure 5.17 shows the two PICT resources used in the CopyBitsB&W pro-
ject. PICT 128, of course, serves as the background image and PICT 129
becomes the foreground image.

E{i PICTs from CopyBitsB&1.rsrc

FIGURE 5.17 The two PICT resources used in the CopyBitsB&W project.

Chapter 5 = Animation

the CopyBitsB&W program, however, the images will appear in mono-
chrome—the gray pixels will appear white. Later in this chapter, you'll see
how to use CopyBits () with images with a greater pixel depth.

Notice that the two PICT resources are grayscale images. When you run
7

NOTE

CopyBitsB&W uses all of the techniques described earlier in this chapter.
First, three BitMaps are created using the same application-defined
MakeNewBitMapAndSetPort() routine that you saw several pages back.
Each time this function is called, a new BitMap is created and a pointer
to the GrafPort that holds that BitMap is returned.

Figure 5.18 shows the three BitMaps in memory. In the figure, you
can see that the background and foreground BitMaps have been copied
to the merge BitMap, and the merge BitMap is being copied to the win-
dow BitMap.

theBackGrafPtr‘ e

theMergeGrafPtr

theForeGrafPtr |

theWindow i

FIGURE 5.18 The CopyBitsB&W program uses three off
screen BitMaps to produce flicker-free animation.

187

Graphics and Sound Programming Techniqiles for the Mac

The initial placement of the toothbrush is determined just after the
toothbrush PICT is loaded into memory. The bounding rectangle for the
picture is found and stored in the Rect variable theRect. Those coordinates
are then used to determine the picture’s width and height. After that,
the coordinates are changed to match the desired starting location for
the brush. When the program runs, the top left corner of the brush will
initially appear at point (135, 50) of the window. The code that sets up
the foreground B1itMap rectangle follows:

Rect theRect;
short theWidth;
short theHeight;
short Teft = 135;
short top = 50;

theWidth = theRect.right - theRect.left;
theHeight = theRect.bottom - theRect.top;
SetRect(&theRect, left, top, left + theWidth, top + theHeight);

Animation is carried out from within a while loop. A counter in the loop
body ensures that the brush moves down 50 pixels, then up 50 pixels,
over and over. At passes 1 through 50 of the loop, the brush moves down.
At passes 51 through 100, the brush moves up. At pass 101, the cycle
starts anew. The count variable is set back to 1 and the top is incremented
for the start of the downward brush stroke. The following snippet outlines
the animation loop.

short count = 0;

while
{

++count;

if (count <= 50)

++top;
else if ((count > 50) && (count <= 100))
—top;
else
{
count = 1;
++top;

}

Chapter 5 = Animation

189

// copy background BitMap to merge BitMap
SetRect(&theRect, left, top, left + theWidth, top + theHeight);
// copy foreground BitMap to merge BitMap

// copy merge BitMap to window BitMap
}

Now, the complete listing of CopyBitsB&W follows:

//

fidefine rDisplayWindow 128
#define rBackPicture 128
fidefine rForePicture 129
//

void InitializeToolbox(void);

GrafPtr MakeNewBitMapAndSetPort(Rect *);
//

void main(void)

{
WindowPtr theWindow;
GrafPtr theBackGrafPtr;
GrafPtr theForeGrafPtr;
GrafPtr theMergeGrafPtr;
PicHandle theBackPicture;
PicHandle theForePicture;

Rect theRect;
short theWidth;
short theHeight;
short left = 135;
short top = 50;
short count = 0;

InitializeToolbox();
HideCursor();

theBackPicture = GetPicture(rBackPicture);
if (theBackPicture == nil)
ExitToShell1();

190 Graphics and Sound Programming Techniques for the Mac

theRect = (**theBackPicture).picFrame;
OffsetRect(&theRect, - theRect.left, - theRect.top);

theWidth = theRect.right - theRect.left;
theHeight = theRect.bottom - theRect.top;

theWindow = GetNewWindow(rDisplayWindow, nil, (WindowPtr)-1L);
SizeWindow(theWindow, theWidth, theHeight, true);
ShowWindow(theWindow);

theBackGrafPtr = MakeNewBitMapAndSetPort(&theRect);
DrawPicture(theBackPicture, &theRect);

theMergeGrafPtr = MakeNewBitMapAndSetPort(&theRect);

theForePicture = GetPicture(rForePicture);
if (theBackPicture == nil)
ExitToShell();

theRect = (**theForePicture).picFrame;

theWidth = theRect.right - theRect.left;
theHeight = theRect.bottom - theRect.top;
SetRect(&theRect, Teft, top, left + theWidth, top + theHeight);

theForeGrafPtr = MakeNewBitMapAndSetPort(&theRect);
DrawPicture(theForePicture, &theRect);

while (!Button())
{

+t+count;

if (count <= 50)

++top;
else if ((count > 50) && (count <= 100))
—top;
else
{
count = 1;
++top;
}

CopyBits(&(theBackGrafPtr->portBits),
&(theMergeGrafPtr->portBits),
&(theBackGrafPtr->portBits.bounds),
&(theMergeGrafPtr->portBits.bounds),
srcCopy,

Ch 5 = @nimati
apter nimation 191

nil);
theRect = theForeGrafPtr->portBits.bounds;
SetRect(&theRect, left, top, left + theWidth, top + theHeight);

CopyBits(&(theForeGrafPtr->portBits),
&(theMergeGrafPtr->portBits),
&(theForeGrafPtr->portBits.bounds),
&theRect,
srcOr,
nil);

CopyBits(&(theMergeGrafPtr->portBits),
&(theWindow->portBits),
&(theMergeGrafPtr->portBits.bounds),
&(theWindow->portRect),
srcCopy,
nil);

}
/1

GrafPtr MakeNewBitMapAndSetPort(Rect *theRectPtr)
{

BitMap *theBitMapPtr;

short theImageHeight;

short theImageByteSize;

GrafPtr theGrafPtr;

theBitMapPtr = (BitMap *)NewPtr(sizeof(BitMap));
if (theBitMapPtr == nil)
ExitToShel1();

theBitMapPtr->bounds = *theRectPtr;

theBitMapPtr->rowBytes =
(theRectPtr->right - theRectPtr->left + 7) / 8;
if ((theBitMapPtr->rowBytes % 2) =10)
theBitMapPtr->rowBytes++;

thelmageHeight = theRectPtr->bottom - theRectPtr->top;
thelmageByteSize = theBitMapPtr->rowBytes * thelmageHeight;
theBitMapPtr->baseAddr = NewPtr(theImageByteSize);
if (theBitMapPtr->baseAddr == nil)

ExitToShell();

192

Graphics and Sound Programming Techniques for the Mac

theGrafPtr = (GrafPtr)NewPtr(sizeof(GrafPort));
if (theGrafPtr == nil)
ExitToShell();

OpenPort(theGrafPtr);
SetPortBits(theBitMapPtr);

return(theGrafPtr);

Color Animation and GWorlds

Monochrome is boring. Color is cool. If you're like most programmers,
you might have skipped the preceding section that dealt with black-
and-white animation and jumped right to this section. If you did,
please, go back and read it now. That section’s in-depth discussion of
offscreen animation, and its example program that uses CopyBits(),
provides much of the background for the topics presented in the
remainder of this chapter.

Color Images and PixMaps

Earlier you saw that the BitMap is used to keep track of a monochrome
graphical image. A reminder of what the BitMap data structure looks
like follows:

struct BitMap

{
Ptr baseAddr;
short rowBytes;
Rect bounds;
};

For color images, a pixel map is used. The PixMap data structure is used
to keep track of a color image. Color images require more data, and the
PixMap data structure reflects that fact.

struct PixMap
{

Chapter 5 = @nimation

Ptr baseAddr;
short rowBytes;
Rect bounds;
short pmVersion;
short packType;
long packSize;
Fixed hRes;

Fixed vRes;

short pixelType;
short pixelSize;
short cmpCount;
short cmpSize;
Tong planeBytes;
CTabHandle pmTable;
long pmReserved;

};

As you look at the PixMap definition, you'll notice that its first three
fields are the same as the three fields that make up the BitMap data
structure. Like the BitMap, the PixMap doesn’t hold the data that makes up
an image. Instead, it holds a pointer to that data, along with additional
descriptive information.

Pixel Maps, Color Graphics Ports, and the GWorld

QuickDraw uses a GrafPort and a BitMap to display the black-and-white
contents of window. Color QuickDraw uses a CGrafPort and a PixMap to
display the color contents of a window. In your study of monochrome
animation, you saw that BitMaps and GrafPorts can exist without
windows—they can be created off screen. For monochrome animation,
you created three offscreen GrafPorts (accessed through GrafPtr vari-
ables), each of which held a BitMap. You'll use a similar approach for
color animation. Instead of creating GrafPorts, however, you'll create
CGrafPorts (accessed through CGrafPtr variables), each of which will
hold a pixel map.

Because color graphics ports are complex structures, Apple has
defined a special environment that makes working with the CerafPort
and the PixMap easier. The offscreen graphics world, or GWorld, exists to
simplify working with offscreen color images. The GWorld is based on
the CGrafPort—the first field of a GWorld is a color graphics port. When

193

194

Graphics and Sound Programming Techniques for the Mac

you work with a GWorld, your program will use a GWor1dPtr. This
pointer points to the first field of the GWorld, the CGrafport field.

After the color graphics port, remaining fields of the GWorld data
structure are private—you won't find them listed in the universal header
files. Because there is no GWorld data structure to point to, a GWor1dPtr
is defined to be a CGrafPtr:

typedef CGrafPtr GWorldPtr;

Keeping the contents of a GWorld private is all right with you, the pro-
grammer—a graphics world is supposed to provide you with a simple
interface for working with offscreen color images. As such, there is no
need for your program to manipulate individual GWorld fields. Toolbox
routines will handle those tasks.

Checking for the Availability of GWorlds

Before using color graphics worlds, verify that the user’s machine
supports this feature of Color QuickDraw. As you’ve seen in previous
chapters, calling a simple application-defined routine that returns a
Boolean value works well. In this chapter, that function is AreGWorlds-
Available():

Boolean graphicsWorldsPresent;

graphicsWorldsPresent = AreGWorldsAvailable();
if (graphicsWorldsPresent == false)
ExitToShel1();

The AreGWorldsAvailable() function makes a call to Gestalt() with a
selector code of gestaltQuickdrawFeatures. Like some other selector
codes, the gestaltQuickdrawFeatures selector returns more than one
piece of information in the response parameter. To extract the needed
information, use the left shift operator on the gestaltHasDeepGWorlds
bit and perform a logical AND on the shifted value and response para-
meter. If the bit in question—gestaltHasDeepGWorlds is turned on, then
color graphics worlds are supported and a value of true should be
returned to the calling routine.

Chapter 5 « Animation

195
Boolean AreGWorldsAvailable(void)
{
0SErr theError;
long theResult;

Boolean worldAvail;

theError = Gestalt(gestaltQuickdrawFeatures, &theResult);
if (theError != noErr)
ExitToShel1();

worldAvail = theResult & (1 << gestaltHasDeepGWorlds);
if (worldAvail > 0)

return (true);
else

return (false);

Creating a GWorld and its PixMap

The Toolbox function NewGWor1d() is used to create a color offscreen graph-
ics world. Before calling NewGWor1d() your program should establish the
size of the pixel map that the graphics world will use to hold a pixel image.
Typically, a graphics world will be the size of a picture that will be used
as a moving object in an animation. The following snippet sets a global
Rect variable to the size of a picture stored in a PICT resource. To ensure
that the rectangle has its top left coordinate at point (0, 0), 0ffsetRect ()
is called.

jtdefine rForePicture 128

Rect gGWorldPixMapRect;
PicHandle theForePicture;

theForePicture = GetPicture(rForePicture);

gGWor1dPixMapRect = (**theForePicture).picFrame;

OffsetRect(&gGWorldPixMapRect, - gGWorldPixMapRect.left,
- gGWorldPixMapRect.top);

Next, NewGWor1d() is called to create a new graphics world—as shown
in this snippet:

GWor1dPtr gForeGWorldPtr;

196

Graphics and Sound Programming Techniques for the Mac

theError = NewGWorld(&gForeGWorldPtr, 0, &gGWorldPixMapRect,
nil, nil, noNewDevice);

When NewGWor1d() has completed execution, the first parameter will hold
a pointer to a newly created graphics world. The remaining parameters
supply NewGWor1d() with information about some of the properties the
new GWorld should be created with.

The second parameter to NewGWor1d() is the pixel depth for the off-
screen world. The pixel depth is the number of bits used to hold color
information about a single pixel. Passing a value of 0 tells NewGWor1d()
to determine the pixel depth to use. If only one monitor is in use,
NewGWor1d() will then use the pixel depth of that monitor. If more than
one monitor is in use, NewGWor1d() will determine which monitor, or
monitors, the rectangle used as the third parameter is found. The pixel
depth of the screen with the greatest pixel depth will then be used.

The third parameter is the bounding rectangle to be used for the
pixel map that is a part of the new graphics world. The fourth parameter
to NewGWor1d() is a handle to a color table. Passing a ni1 value here (and
a value of 0 as the second parameter) tells NewGWor1d() to use the color
table of the monitor used to determine the pixel depth.

The fifth parameter specifies which graphics device should be used.
Passing a value of ni1 here tells NewGWor1d() to use the GDevice structure
of the monitor used to determine the pixel depth.

The final parameter to NewGWor1d() allows your program to supply
optional information about the new graphics world. Passing the Apple-
defined constant noNewDevice tells NewGWor1d() to not create a new
GDevice structure.

When working with an offscreen graphics world, you'll often be
accessing the graphics world’s pixel map. Because the internals of the
GWorld are private, the Toolbox provides a function that returns this
pixel map to your program. That means your code won’t have to worry
about where in the GWorld structure the PixMap field is located. You can
call the Toolbox function GetGWor1dPixMap() to get a PixMapHandle to a
graphics world PixMap:

PixMapHandle gForePixMap;
gForePixMap = GetGWorldPixMap(gForeGWorldPtr);

Chapter 5 = Animation

Pass GetGWor1dPixMap() a pointer to a graphics world and the function
will return a handle to that graphics world’s pixel map. Figure 5.19 shows
what happens when GetGWor1dPixMap() is called. In the figure, you can see
that a GWorld contains a PixMapHandle as one of its fields. Like any handle,
the PixMapHandle points to a master pointer, which in turn points to the
desired structure. GetGWor1dPixMap() takes care of determining where
the GWorld PixMapHand1e points to, and returns this value to your program.
Your program can store this information in a local or global PixMapHandle
variable. As your program executes, this variable should be used to
access the GWorld'’s pixel map.

GWorldpPtr

ez PixMapHandle

laster pointer

=

FIGURE 5.19 GetGWor1dPixMap() returns a handle to a GWorld’s pixel map.

A PixMapHand1e points to a master pointer. The master pointer points to a
PixMap. The PixMap has a baseAddr field that points to an area in memory
that holds the actual pixel image. Figure 5.19 doesn’t show where the
baseAddr field leads—it just shows the pixel map you'll find at whatever
location baseAddr references.

197

Graphics and Sound Programming Techniques for the Mac

198

Using GWorlds for Animation

The pixel map that is a part of a graphics world is used in color animation
much as the BitMap is used in monochrome animation. Figure 5.20 shows
that an animation uses four pixel maps: three of the pixel maps are from
GWorlds, while the fourth holds the contents of a color window.

E

Merge pixel map

Il

Background pixel map

Window pixel map

PixMapHandles

| Master pointers

FIGURE 5.20 Color animation uses three offscreen pixel maps.

Figure 5.20 hints that in this book color animation will employ a different
strategy than was used for black-and-white animation. For monochrome

Chapter 5 = Animation

animation, the background and merge offscreen BitMaps were the same
size as the window that was to display the animation. For color animation,
all three offscreen pixel maps will be the size of the offscreen foreground
pixel map—that means that each of the offscreen pixel maps will be
smaller—usually much smaller—than the window pixel map that displays
the animation. Because there’s much more data for the Mac to keep track
of in the display of color than there is in the display of black and white,
this approach will keep the animation moving quickly.

CopyBits() and Color Animation

You saw earlier that one way to perform monochrome animation was to
save the entire background to a merge BitMap, then overlay the fore-
ground BitMap onto the merge BitMap, and then copy this combined
BitMap to the animation window BitMap. For color animation, a few
extra steps are necessary.

Over the next several pages you'll see how the CopyBits() Toolbox
function can be used to move an object a single pixel from left to right
in a window. While this may not seem like a lofty goal, keep in mind
that once you understand how the object moves smoothly across this
short distance, you'll know everything you need to about animation—
further movement of the object is done by simply looping through the
code described here.

Figure 5.21 shows what the animation window looks like for the
example that will be examined next. In this window, a very small framed
rectangle (six pixels by five pixels) moves across a background that
includes several vertical lines. The movement of this object will be illus-
trated in several figures—each of which includes enlarged views of the
four pixel maps used in the animation. Figure 5.21 gives you an idea of
how a pixel map will be shown in the figures.

199

200

Graphics and Sound Programming Techniques for the Mac

Animation window
EE== Window

. ED

Enlarged view of a section of the above window

1 pixel ‘

FIGURE 5.21 The figures used to clarify the following example
will include an enlarged view of an area of a window.

Before stepping through the copying of pixel maps, the GWorlds and
PixMapHandles have to be set up. The following global variables will be
used in the upcoming example:

GWorldPtr gForeGWorldPtr;
GWorldPtr gBackGWorldPtr;
GWorldPtr gMergeGWorldPtr;

PixMapHandle gForePixMap;
PixMapHandle gBackPixMap;
PixMapHandle gMergePixMap;

Rect gGWor1dPixMapRect;
Rect gWindowPixMapRect;
WindowPtr gDisplayWindow;

The three GWor1dPtr variables will be used in calls to NewGWor1d() to create
three new graphics worlds. After that, the PixMapHandle variables
(obtained from calls to GetGWor1dPixMap()) will be used to access the off-

Chapter 5 = Animation

screen pixel maps. The gGWor1dPixMapRect variable establishes the size
of each of the three offscreen pixel maps. This rectangle will have a top
left point of (0, 0), and its coordinates won’t change as the program
runs. The gWindowPixMapRect will be the same size as the pixel map rec-
tangle—but it won’t be normalized to (0, 0). And its coordinates will
change. This rectangle will be used to hold the coordinates of a rectangle
in the animation window. The rectangle will be the area involved in the
animation at any given moment. See Figure 5.22 for clarification.

Animation window
EE== Window

(30, 40)

(38, 47)

FIGURE 5.22 A global Rect variable will be used
to keep track of a rectangle in the animation window.

In Figure 5.22, the solid-framed rectangle that will be the moving object
has not yet been drawn to the window. Instead, the window at the top
of the figure shows two dashed rectangles. These rectangles won’t
appear in the animation—they’re shown merely as a reference to where
the animation will be taking place. The larger rectangle represents the area
of the window that will be shown in an enlarged view in the following
figures. The inner rectangle represents the area of the window that the

201

202

Graphics and Sound Programming Techniques for the Mac

program will be working with. This rectangle serves two purposes.
First, the area in this rectangle will be copied to preserve the current
background. Second, this is the area in which the merge pixel map will
be drawn—notice that this rectangle is the same dimensions as the off-
screen pixel maps. As the animation moves to the right, one pixel at a
time, the coordinates of this rectangle will change, one pixel at a time.

Near the start of the program, the GWorlds and PixMapHandles are
set up. The following application-defined function performs these
tasks. CreateGWorldsAndPixMaps() loads the picture that will serve as
the foreground into memory. When created in a paint or draw program,
this picture should be created with a one-pixel-wide white border—
you’ll see why as the example progresses. CreateGWorldsAndPixMaps()
uses the size of this picture to establish the size of the pixel maps used
by the three graphics worlds—which are created next. Handles to the pixel
maps are then obtained by calling the Toolbox function GetGWor1dPixMap()
three times. Finally, the foreground GWorld is made the current port
and the picture is drawn to it.

void CreateGWorldsAndPixMaps(void)
{

PicHandle theForePicture;

QDErr theError;

theForePicture = GetPicture(rForePicture);
if (theForePicture == nil)
ExitToShell();

gGWorl1dPixMapRect = (**theForePicture).picFrame;
OffsetRect(&gGWorldPixMapRect, - gGWorldPixMapRect.left,
- gGWorldPixMapRect.top);

theError = NewGWorld(&gForeGWor1dPtr, 0, &gGWorldPixMapRect,
nil, nil, noNewDevice);

theError = NewGWorld(&gBackGWorldPtr, 0, &gGWorldPixMapRect,
nil, nil, noNewDevice);

theError = NewGWorld(&gMergeGWorldPtr, 0, &gGWorldPixMapRect,
nil, nil, noNewDevice);

gForePixMap = GetGWorldPixMap(gForeGWorldPtr);

gBackPixMap = GetGWorldPixMap(gBackGWorldPtr);

gMergePixMap = GetGWor1dPixMap(gMergeGWorldPtr);
SetGWorld(gForeGWorldPtr, nil);

Chapter 5 = Animation

DrawPicture(theForePicture, &gGWorldPixMapRect);
}

Each of the next several figures will include four pixel maps—as shown
in Figure 5.23. The three pixel maps on the left of the figure are the off-
screen pixel maps that are each a part of an offscreen graphics world.
For each of these pixel maps, the entire pixel map is shown—seven
rows of eight pixels. The larger pixel map on the right of the figure
represents a part of the window pixel map. Since the traveling rectangle
will only be shown moving a single pixel from left to right, only a part
of the window pixel map is needed to demonstrate what’s going on.

Foreground pixel map

Merge pixel map

Part of the animation window pixel map

Background pixel map

FIGURE 5.23 The next several figures will use this format
to display the contents of pixel maps.

The object that will be traveling across the window is first drawn to the
offscreen foreground pixel map. Drawing that normally takes place in a
window can be directed to an offscreen graphics world by first calling
SetGWor1d(). Because a pointer to a graphics world is also a pointer to a
color graphics port, subsequent calls to QuickDraw routines like
DrawPicture() will result in drawing taking place off screen—as shown

203

Graphics and Sound Programming Techniques for the Mac

204

in Figure 5.24. As mentioned, when the picture was copied from the
paint program in which it was created, a border of white pixels was
included. The foreground pixel map includes this border.

0.0

Foreground pixel map

(0,0)
Merge pixel map
©,0) Part of the animation window pixel map
SetGWorld(gForeGWorldPtr, nil);
DrawPicture(theForePicture,
&gGWorldPixMapRect) ;

Background pixel map

FIGURE 5.24 A picture can be drawn to an offscreen
pixel map using a call to DrawPicture().

Animation will take place from within a loop. Before starting the loop—
and before the object is first drawn to the window—the area of the window
that is to hold the object is preserved. A simple application-defined routine
named PrepareForAnimation() handles this chore.

void PrepareForAnimation(void)

{
gWindowPixMapRect = gGWor1dPixMapRect;
OffsetRect(&gWindowPixMapRect, 30, 40);

CopyBits(&(gDisplayWindow->portBits), (BitMap *)(*gBackPixMap),
&gWindowPixMapRect, &gGWorldPixMapRect, srcCopy, nil);

CopyBits((BitMap *)(*gBackPixMap), (BitMap *)(*gMergePixMap),

Chapter 5 = @inimation

&gGWor1dPixMapRect, &gGWorldPixMapRect, srcCopy, nil);
}

PrepareForAnimation() begins by setting the coordinates of the window
rectangle. First, ghindowPixMapRect() is set to the size of the pixel map
rectangles—gGWor1dPixMapRect. That gives the rectangle coordinates of
0, 0,8, 7). A call to 0ffsetRect() moves this rectangle to the onscreen
location where the animation is to start. This example starts the animation
in a rectangle at coordinates (30, 40, 38, 47). Figure 5.25 shows how the
examples pixel maps look at this point.

Foreground pixel map

©.0 (30, 40)

lﬁa 47) i

(0,0) Part of the animation window pixel map

Merge pixel map

gWindowPixMapRect = gGWorldPixMapRect;
OffsetRect (&gWindowPixMapRect, 30, 40);

Background pixel map

FIGURE 5.25 A rectangle is set up in the animation window.

PrepareForAnimation() makes two calls to CopyBits(). The first call saves
the gWindowPixMapRect area to the offscreen background pixel map—as
shown in Figure 5.26. From this chapter’s introduction to CopyBits(),
you'll recall that the first and second parameters to this function must
each be a pointer to a BitMap. For color animation, though, you'll be
working with the PixMap data type. That means that some typecasting

205

206

Graphics and Sound Programming Techniques for the Mac

will be in order. In this first call to CopyBits(), the source pixel map is
the window’s pixel map. Because gDisplayWindow has been declared to
be a WindowPtr, no typecasting is needed here—the portBits field of the
GrafPort that a WindowPtr points to is defined to be a BitMap. The destina-
tion pixel map gBackPixMap, though, needs to be typecast. Dereferencing
this PixMapHandle once provides its pointer. Using (BitMap *) to typecast
the result satisfies CopyBits().

CopyBits(&(gDisplayWindow->portBits), (BitMap *)(*gBackPixMap),
&gWindowPixMapRect, &gGWorldPixMapRect, srcCopy, nil);

(0,0)

Foreground pixel map

(0,0)

Merge pixel map

i) 75

Part of the animation window pixel map

CopyBits(&(gDisplayWindow->portBits),
(BitMap *) (*gBackPixMap),
&gWindowPixMapRect,
&gGWorldPixMapRect,

o srcCopy, nil);

Background pixel map

FIGURE 5.26 The contents of the animation window rectangle
are copied to the offscreen background pixel map.

The second call to CopyBits() copies the offscreen background pixel
map to the offscreen merge pixel map—as shown in Figure 5.27. Recall
that the rectangle gGWor1dPixMapRect has (and will have throughout the
program) coordinates of (0, 0, 8, 7).

Ch 5 = @nimati
apter 5 = @nimation 207

CopyBits((BitMap *)(*gBackPixMap), (BitMap *)(*gMergePixMap),
&gGWorldPixMapRect, &gGWorldPixMapRect, srcCopy, nil);

Part of the animation window pixel map

CopyBits((BitMap *) (*gBackPixMap),
(BitMap *) (*gMergePixMap) ,
&gGWorldPixMapRect,
&gGWorldPixMapRect,

..... b O b srcCopy, nil);

Background pixel ma

FIGURE 5.27 The contents of the offscreen background pixel map
are copied to the offscreen merge pixel map.

The remainder of the animation is handled from within a loop. Each pass
through the loop executes a function that calls CopyBits() five times. A
typical version of this application-defined function follows:

void AnimateOneFrame(void)
{
Rect theTempRect;

theTempRect = gGWorldPixMapRect;
OffsetRect(&theTempRect, 1, 0);

CopyBits((BitMap *)(*gForePixMap), (BitMap *)(*gMergePixMap),
&gGWorldPixMapRect, &theTempRect, transparent, nil);

CopyBits((BitMap *)(*gMergePixMap), &(gDisplayWindow->portBits),
&gGWorldPixMapRect, &gWindowPixMapRect, srcCopy, nil);

Graphics and Sound Programming Techniques for the Mac

208

OffsetRect(&gWindowPixMapRect, 1, 0);

CopyBits(&(gDisplayWindow->portBits), (BitMap *)(*gMergePixMap),
&gWindowPixMapRect, &gGWorldPixMapRect, srcCopy, nil);

theTempRect = gGWorldPixMapRect;
0ffsetRect(&theTempRect, -1, 0);

CopyBits((BitMap *)(*gBackPixMap), (BitMap *)(*gMergePixMap),
&gGWorl1dPixMapRect, &theTempRect, srcCopy, nil);

CopyBits((BitMap *)(*gMergePixMap), (BitMap *)(*gBackPixMap),
&gGWor1dPixMapRect, &gGWorldPixMapRect, srcCopy, nil);
}

The AnimateOneFrame() function begins by setting up a temporary rectangle
that is shifted one pixel in the direction of the animation movement—
one pixel to the right. A temporary Rect variable is used so that gGWor1d-
PixMapRect retains its normalized coordinates. The gGWor1dPixMapRect
rectangle was used to define offscreen pixel maps that have a top left
coordinate of (0, 0). In CopyBits() calls it will serve as a reference that
can be used to grab any pixel map (which exists in a pixel map that has
(0, 0) as its top left point). For that reason, gGWor1dPixMapRect should
preserve its original coordinates.

Rect theTempRect;

theTempRect = gGWorldPixMapRect;
OffsetRect(&theTempRect, 1, 0);

CopyBits((BitMap *)(*gForePixMap), (BitMap *)(*gMergePixMap),
&gGWor1dPixMapRect, &theTempRect, transparent, nil);

The CopyBits() call copies the offscreen foreground pixel map to the
offscreen merge pixel map. gGWor1dPixMapRect is used as the source rectan-
gle, so the entire foreground pixel map is copied. The shifted temporary
rectangle is used as the destination, so the foreground will appear in the
merge pixel map shifted one pixel to the right—as shown in Figure 5.28.
The rightmost column of foreground pixels will be cut off. That’s all

Chapter 5 = @nimation

209

right, since the foreground picture was intentionally created with an
“empty” one pixel border. The Apple-defined constant transparent is
used as the copy mode. This mode tells CopyBits() to ignore any white
pixels in the source pixel map.

For black-and-white BitMap copying, the srcOr copy mode was used to
' ignore white pixels. For color copying, use transparent instead. This mode
actually tells CopyBits() to ignore all source pixels that don’t match the
destination background color. This background is usually—but not

always—white. Color windows may have a nonwhite background.

(0,0)

Foreground pixel map

(30, 40) -

T

Part of the animation window pixel map

theTempRect = gGWorldPixMapRect;
OffsetRect(&theTempRect, 1, 0);
CopyBits((BitMap *) (*gForePixMap),
(BitMap *) (*gMergePixMap),
&gGWorldPixMapRect,
&theTempRect,
transparent, nil);

Background pixel map

FIGURE 5.28 The contents of the offscreen foreground pixel map are shifted
on pixel to the right, then copied to the offscreen merge pixel map.

The next call to CopyBits() blasts the offscreen pixel map to the window— -
as shown in Figure 5.29. Since this is the first rectangle object to be drawn
to the window, no movement will be noticed. The next pass through the

Graphics and Sound Programming Techniques for the Mac

210

loop will provide proof that this call to CopyBits() shifts the object one
pixel to the right.

CopyBits((BitMap *)(*gMergePixMap), &(gDisplayWindow->portBits),
&gGWorldPixMapRect, &gWindowPixMapRect, srcCopy, nil);

(0,0)

Foreground pixel map

0,0) (30, 40)

Merge pixel map | Ed e b ﬁe, (47? At]

Part of the animation window pixel map

CopyBits((BitMap *) (*gMergePixMap),
& (gDisplayWindow->portBits),
&gGWorldPixMapRect,
&gWindowPixMapRect,
srcCopy, nil);

Background pixel map

FIGURE 5.29 The contents of the offscreen merge pixel map
are copied to the rectangle in the animation window.

There are three calls to CopyBits() remaining in the AnimateOneFrame()
function. Preparation for the next frame of animation—one that will be
drawn one pixel to the right of the one that was just copied to the
window—begins with the first call. First, the global rectangle variable
gWindowPixMapRect—the rectangle that keeps track of where in the
window animation is taking place—is offset by a single pixel. Compare

Chapter 5 = Animation

Figure 5.30 to Figure 5.29 to see that the window rectangle does indeed
enclose an area one pixel to the right of the previous area.

OffsetRect(&gWindowPixMapRect, 1, 0);

(0,0;

0,0)

39, 47) 1

Part of the animation window pixel map

of fsetRect (&gWindowPixMapRect, 1, 0);

FIGURE 5.30 After the object is drawn to the window,
the window rectangle is shifted one pixel to the right.

A call to CopyBits() copies the newly enclosed area of the window to the
offscreen merge pixel map. Figure 5.31 illustrates. As you'll soon see,
this step is necessary in order to preserve the new pixels that are now in
the window rectangle—the rightmost column of pixels.

CopyBits(&(gDisplayWindow->portBits), (BitMap *)(*gMergePixMap),
&gWindowPixMapRect, &gGWorldPixMapRect, srcCopy, nil);

m

212

Graphics and Sound Programming Techniques for the Mac

(0,0

Part of the animation window pixel map

CopyBits(&(DisplayWindow->portBits),
(BitMap *) (*gMergePixMap) ,
&gWindowPixMapRect,
&gGWorldPixMapRect,

=t srcCopy, nil);

Background pixel map

FIGURE 5.31 The contents of the animation window rectangle
are copied to the offscreen merge pixel map.

Once again, the temporary rectangle is set to match the coordinates of
the offscreen pixel map rectangle. This time, though, the temporary rectan-
gle is then shifted one pixel to the left rather than one pixel to the right.
A call to CopyBits() then copies the offscreen background pixel map to the
offscreen merge pixel map. As Figure 5.32 shows, this has the effect of
stamping over almost the entire pixel map that was just copied from the
window to the merge pixel map. Almost is the key word in that last
sentence. Since the destination rectangle has been shifted one pixel to the
left, the rightmost column of pixels in the merge pixel map will be pre-
served. That’s the only reason the pixel map was copied from the window
to the merge pixel map in the previous step—to save this one column.

Chapter 5 = Animation

What this latest CopyBits() does is to create a merge pixel map that
holds the background that appears in the window rectangle. Note that
he contents of the offscreen merge pixel map is the same as the window
pixel map—minus the black rectangle.

theTempRect = gGWorldPixMapRect;
OffsetRect(&theTempRect, -1, 0);

CopyBits((BitMap *)(*gBackPixMap), (BitMap *)(*gMergePixMap),
&gGWor1dPixMapRect, &theTempRect, srcCopy, nil);

Foreground pixel map

(0' 0 (31 .:40) B S — ..,T..u..

39, 47){——

0,0 Part of the animation window pixel map

theTempRect = gGWorldPixMapRect;
OffsetRect (&theTempRect, -1, 0);
CopyBits((BitMap *) (*gBackPixMap),

(BitMap *) (*gMergePixMap),
&gGWorldPixMapRect,
&theTempRect,

Background pixel map srcCopy; nil);

FIGURE 5.32 The contents of the offscreen background pixel map are shifted
one pixel to the left and then copied to the offscreen merge pixel map.

213

Graphics and Sound Programming Techniques for the Mac

214

Now, the rebuilt window background that is in the offscreen merge
pixel map is copied to the offscreen background pixel map—as shown in
Figure 5.33. There it will be saved for, and used in, the next pass through
the animation loop.

CopyBits((BitMap *)(*gMergePixMap), (BitMap *)(*gBackPixMap),
&gGWor1dPixMapRect, &gGWorldPixMapRect, srcCopy, nil);

©,0

Foreground pixel map

0.0).

0,0 Part of the animation window pixel map

CopyBits((BitMap *) (*gMergePixMap),
(BitMap *) (*gBackPixMap),
&gGWorldPixMapRect,
&gGWorldPixMapRect,
srcCopy, nil);

Background pixel map

FIGURE 5.33 The offscreen merge pixel map is saved by
storing it in the offscreen background pixel map.

Chapter 5 = @nimation

215

That completes one pass through the animation loop. The next pass
through the loop will begin with the offscreen foreground pixel map get-
ting copied to the offscreen merge pixel map. Again, transparent mode
will be used. The next step will be to send the contents of the offscreen
merge pixel map to the window. In this example, the rectangle will then
appear to move one pixel to the right. Figure 5.34 shows the first step of
the next pass through the loop, while Figure 5.35 shows the second step.

(31, 40) T+

39, 47)

Part of the animation window pixel map

theTempRect = gGWorldPixMapRect;
OffsetRect (&theTempRect, 1, 0);
CopyBits((BitMap *) (*gForePixMap),
(BitMap *) (*gMergePixMap),
&gGWorldPixMapRect,
&theTempRect,
transparent, nil);

Background pixel map

FIGURE 5.34 The contents of the offscreen foreground pixel map are shifted
one pixel to the right and then copied to the offscreen merge pixel map.

216

Graphics and Sound Programming Techniques for the Mac

(0,0)

Foreground pixel map

39'14?) =

Part of the animation window pixel map

CopyBits((BitMap *) (*gMergePixMap),
& (gDisplayWindow->portBits) ,
&gGWorldPixMapRect,
&gWindowPixMapRect,
srcCopy, nil);

Background pixel map

FIGURE 5.35 The contents of the offscreen merge pixel map
are copied to the animation window.

Calls to AnimateOneFrame() continue for as long as the animation runs—
each call moves the rectangle object one pixel to the right.

Chapter Example: GWorlds

The GWorlds example program opens a large, color window that holds
the picture shown in Figure 5.36. As the program runs, a multicolored
hot-air balloon moves horizontally across the window, from left to right.
When the balloon reaches the right edge of the window, it starts back to
the left. Because the GWorlds program uses offscreen graphics worlds,
the animation is flicker-free. To quit the program, click the mouse button.

Chapter 5 = @nimation

FIGURE 5.36 The result of running the GWorld program.

The GWorlds project requires a single WIND resource and two PICT
resources—the PICTs are shown in Figure 5.37. The pixels that make up
the three circles in the balloon picture were drawn in white to demon-
strate that the background picture can be made to show through parts
of a foreground picture. Not evident in the figure is the fact that the bal-
loon picture has a one-pixel-wide white border surrounding it. Figure 5.38
shows the balloon picture pasted against a black background so that
you can see the area that this picture occupies.

Gillorids.rsrc
==
1
PICT WIND
EE==—=— PpICTs from GWorlds.rsrc %ﬁ%
129 Eﬂ}_:l

FIGURE 5.37 The two PICT resources used in the GWorlds project.

217

218

Graphics and Sound Programming Techniques for the Mac

Rk | /|03 0]
Q8| / |\ [>|= P>

FIGURE 5.38 The foreground picture is framed by white pixels.

The GWorlds example program uses the routines developed in this
chapter: AreGWorldsAvailable(), CreateGWorldsAndPixMaps(), Prepare-
ForAnimation(), and AnimateOneFrame(). In all cases, these routines are
identical to—or very similar to—the versions you're familiar with.

The earlier discussions of animation used an object that moved in
just one direction. In the GWorlds example program, the balloon moves
both to the right and to the left. To determine in which direction the
balloon should move, the program adds a short routine named Determine-
AnimationDirection().

jdefine kXincrement 1
short gCurrentXIncrement = kXincrement;

void DetermineAnimationDirection(void)
{
Rect theRect;

theRect = gWindowPixMapRect;
OffsetRect(&theRect, gCurrentXIncrement, 0);

if (theRect.right > gDisplayWindow->portRect.right)
gCurrentXIncrement = - kXincrement;

else if (theRect.left < gDisplayWindow->portRect.left)
gCurrentXIncrement = + kXincrement;

Chapter 5 = Animation

DetermineAnimationDirection() is called from AnimateOneFrame().
That means that before each movement of the balloon, its direction is
determined. The global variable gCurrentXIncrement holds the current
number of pixels in which the balloon should move at each pass through
the animation loop. This variable is initialized to a value of kXincrement,
or 1. When the balloon reaches the right edge of the window, its time for
the balloon to travel from right to left. The variable -gCurrentXIncrement
then gets set to -kXincrement, or ~1. When the balloon then reaches the
left edge, gCurrentXIncrement gets set back to 1. At any point in
between, gCurrentXIncrement keeps whatever value it currently has.

The constant kXincrement establishes the number of pixels that the
balloon moves at each pass through the animation loop. A value of 1
moves the balloon at a moderate pace. To speed things up, try changing
the value of kXincrement to 2.

The balloon picture used in the GWorld program is set up for a kXincrement
value of 1—the picture has a one pixel wide white border. If you change
kXincrement to 2, change the picture border to two white pixels—otherwise
one pixel of the balloon will get cut off as the balloon travels across the
screen. You can easily add this border by cutting PICT 129 from the project’s resource
file and pasting it into a paint program. Then select the balloon, allowing for two extra
pixels on each side. Copy the picture and paste it back into the resource project. Make
sure that the new balloon picture has an ID of 129 before closing the resource file.

NOTE

Before using CopyBits(), the example program makes calls to the Toolbox
routines RGBForeColor() and RGBBackColor() to set the foreground color
to black and the background color to white. Apple suggests doing this to
avoid unwanted coloring of images. An application-defined routine
named SetForeAndBackColors() accomplishes this by declaring two
RGBColor variables and by then setting one to white and one to black.

A PixMap is accessed using a PixMapHand1e. Because objects referenced
by handles can move in memory, your application should call the Toolbox
routine LockPixels() before calling CopyBits(). This function will ensure
that a pixel map won’t move in memory. After CopyBits(), call Unlock-
Pixels(). LockPixels() and UnlockPixels() should be called for both the
source and destination pixel maps. For simplicity, the example program
doesn’t nest each call to CopyBits() with lock and unlock calls. Instead,

219

220

Graphics and Sound Programming Techniques for the Mac

it just locks each pixel map at the start of the program and unlocks
them as the program ends.

When your program is finished with an offscreen graphics world,
call the Toolbox function DisposeGWor1d(). Pass this routine a GWor1dPtr
to the graphics world that is to be disposed of.

Now, the much-awaited listing for the program that produces smooth,
flicker-free color animation follows:

/1

f#Hinclude <QDOffscreen.h>
//

void InitializeToolbox(void);
void OpenDisplayWindow(void);
Boolean AreGWorldsAvailable(void);

void SetForeAndBackColors(void);

void CreateGWorldsAndPixMaps(void);
void PrepareForAnimation(void);

void AnimateOneFrame(void);

void DetermineAnimationDirection(void);
//

fidefine rBackPicture 128
jtdefine rForePicture 129
fdefine rDisplayWindow 128
fHdefine kXincrement 1

//

WindowPtr - gDisplayWindow;

short gCurrentXIncrement = kXincrement;
GWorldPtr gForeGWorldPtr;

GWorldPtr gBackGWorldPtr;

GWorldPtr gMergeGWor1dPtr;

PixMapHandle gForePixMap;
PixMapHandle gBackPixMap;
PixMapHandle gMergePixMap;
Rect gWindowPixMapRect;
Rect gGWor1dPixMapRect;

1/

Chapter 5 = Animation

void main(void)

{

}
/1

Boolean graphicsWorldsPresent;
oolean pixelsLocked;

InitializeToolbox();
HideCursor();

graphicsWorldsPresent = AreGWorldsAvailable();
if (graphicsWorldsPresent == false)
ExitToShel1();

SetForeAndBackColors();
OpenDisplayWindow();
CreateGWorldsAndPixMaps();

pixelsLocked = LockPixels(gForePixMap);
if (pixelsLocked == false)
ExitToShell();

pixelsLocked = LockPixels(gBackPixMap);
if (pixelsLocked == false)
ExitToShell1();

pixelsLocked = LockPixels(gMergePixMap);
if (pixelsLocked == false)
ExitToShell();

PrepareForAnimation();

while (!Button())
AnimateOneFrame();

UnlockPixels(gForePixMap);
UnlockPixels(gBackPixMap);
UnlockPixels(gMergePixMap);

DisposeGWorl1d(gForeGWorldPtr);
DisposeGWor1d(gBackGWorldPtr);
DisposeGWor1d(gMergeGWorldPtr);

Boolean AreGWorldsAvailable(void)

n

Graphics and Sound Programming Techniques for the Mac

222
{
OSErr theError;
long theResult;
Boolean worldAvail;
theError = Gestalt(gestaltQuickdrawFeatures, &theResult);
if (theError != noErr)
ExitToShell();
worldAvail = theResult & (1 << gestaltHasDeepGWorlds);
if (worldAvail > 0)
return (true);
else
return (false);
}
//
void SetForeAndBackColors(void)
{
RGBColor theBlackColor;
RGBColor theWhiteColor;
theBlackColor.red = 0x0000;
theBlackColor.green = 0x0000;
theBlackColor.blue = 0x0000;
theWhiteColor.red = OxFFFF;
theWhiteColor.green = OxFFFF;
theWhiteColor.blue = OxFFFF;
RGBForeColor(&theBlackColor);
RGBBackColor(&theWhiteColor);
}
//

void OpenDisplayWindow(void)
{
PicHandle theBackPicture;
Rect theRect;

theBackPicture = GetPicture(rBackPicture);
if (theBackPicture == nil)
ExitToShell();

theRect = (**theBackPicture).picFrame;
OffsetRect(&theRect, - theRect.left, - theRect.top);

Chapter 5 = Animation 73

gDisplayWindow = GetNewCWindow(rDisplayWindow, nil,
(WindowPtr)-1L);

ShowWindow(gDisplayWindow);

SetPort(gDisplayWindow);

DrawPicture(theBackPicture, &theRect);

}
/1
void CreateGWorldsAndPixMaps(void)
{ PicHandle theForePicture;
QDErr theError;

theForePicture = GetPicture(rForePicture);
if (theForePicture == nil)
ExitToShell();

gGWor1dPixMapRect = (**theForePicture).picFrame;
OffsetRect(&gGWorldPixMapRect, - gGWorldPixMapRect.left,
- gGWorldPixMapRect.top);

theError = NewGWorld(&gForeGWor1dPtr, 0, &gGWorldPixMapRect,
nil, nil, noNewDevice);

theError = NewGWorld(&gBackGWorldPtr, 0, &gGWorldPixMapRect,
nil, nil, noNewDevice);

thekrror = NewGWorld(&gMergeGWorldPtr, 0, &gGWorldPixMapRect,
nil, nil, noNewDevice);

gForePixMap = GetGWor1dPixMap(gForeGWorldPtr);
gBackPixMap = GetGWor1dPixMap(gBackGWorldPtr);
gMergePixMap = GetGWorldPixMap(gMergeGWorldPtr);

SetGWorld(gForeGWoridPtr, nil);

DrawPicture(theForePicture, &gGWorldPixMapRect);
}

/1

void PrepareForAnimation(void)

{
gWindowPixMapRect = gGWor1dPixMapRect;
OffsetRect(&gWindowPixMapRect, 0, 25);

CopyBits(&(gDisplayWindow->portBits), (BitMap *)(*gBackPixMap),
&gWindowPixMapRect, &gGWorldPixMapRect, srcCopy, nil);

224

Graphics and Sound Programming Techniques for the Mac

}
/7

CopyBits((BitMap *)(*gBackPixMap), (BitMap *)(*gMergePixMap),
&gGWor1dPixMapRect, &gGWorldPixMapRect, srcCopy. nil);

void AnimateOneFrame(void)

{

}
/!

Rect theTempRect;
DetermineAnimationDirection();

theTempRect = gGWorldPixMapRect;
OffsetRect(&theTempRect, gCurrentXIncrement, 0);

CopyBits((BitMap *)(*gForePixMap), (BitMap *)(*gMergePixMap),
&gGWorldPixMapRect, &theTempRect, transparent, nil);

CopyBits((BitMap *)(*gMergePixMap), &(gDisplayWindow->portBits),
&gGWorl1dPixMapRect, &gWindowPixMapRect, srcCopy, nil);

OffsetRect(&gWindowPixMapRect, gCurrentXIncrement, 0);

CopyBits(&(gDisplayWindow->portBits), (BitMap *)(*gMergePixMap),
&gWindowPixMapRect, &gGWorldPixMapRect, srcCopy, nil);

theTempRect = gGWorldPixMapRect;
OffsetRect(&theTempRect, -gCurrentXIncrement, 0);

CopyBits((BitMap *)(*gBackPixMap), (BitMap *)(*gMergePixMap),
&gGWor1dPixMapRect, &theTempRect, srcCopy, nil);

CopyBits((BitMap *)(*gMergePixMap), (BitMap *)(*gBackPixMap),
&gGWor1dPixMapRect, &gGWorldPixMapRect, srcCopy, nil);

void DetermineAnimationDirection(void)

{

Rect theRect;
theRect = gWindowPixMapRect;
O0ffsetRect(&theRect, gCurrentXIncrement, 0);

if (theRect.right > gDisplayWindow->portRect.right)
gCurrentXIncrement = - kXincrement;
else if (theRect.left < gDisplayWindow->portRect.left)

Chapter 5 = Animation

gCurrentXIncrement = + kXincrement;
}

/7

void InitializeToolbox(void)
{
InitGraf(&qd.thePort);
InitFonts();
InitWindows();
InitMenus();
TEInit();
InitDialogs(OL);
FlushEvents(everyEvent, 0);
InitCursor();

Summary

To produce flicker-free black-and-white animation, you need to use off-
screen BitMaps and the CopyBits() function. Your program will begin by
creating three BitMaps offscreen—in memory, rather than in a window.
Your program can then apply a foreground object to a background picture
out of the sight of the user. After merging the object with the background,
the combined result can be drawn to the screen. By repeatedly performing
these steps offscreen, the flicker that would normally be noticeable to the
user now takes place in memory.

Color animation is performed in much the same way as monochrome
animation is. Both types of animation rely on the CopyBits() function
and offscreen drawing areas. Color animation uses offscreen pixel maps
rather than the offscreen BitMaps used in black-and-white animation.
Because keeping track of color images is more complicated than keeping
track of monochrome images, Apple provides the programmer with the
offscreen graphics world—or GWorld. A GWorld is a color environment
created specifically to support the offscreen preparation of complex
color images.

225

CHAPTER 6

QuickDraw GX

For over a decade, QuickDraw has been the drawing environment of
the Macintosh—and it still is. But now there is another QuickDraw—
QuickDraw GX. This new version doesn’t replace the original
QuickDraw—it supplements it. Programs can still use only the original
QuickDraw, or they can use both the old and the new together in a single
application. In this chapter, you'll see how that’s possible.

QuickDraw GX is a system extension that adds the power of the
new QuickDraw to a Macintosh computer. It is also the set of function
calls that allow the programmer to exploit this powerful new object-based
graphics environment. In this chapter you'll see how to make your
application ready for QuickDraw GX. You'll learn how to check for the
presence of the QuickDraw GX extension, then to initialize it, and ready
a window for QuickDraw GX drawing.

227

228

Graphics and Sound Programming Techniques for the Mac

QuickDraw GX relies on objects. Every shape or string of text that is
drawn is a shape—with its own set of properties, such as color and fill
pattern. In this chapter, you'll learn about some of the many different
QuickDraw shape objects. You'll read up on how to create them, modify
their properties, and draw them to a window.

About QuickDraw GX

QuickDraw GX is a system extension that adds new drawing, typogra-
phy, and printing capabilities to the Macintosh. QuickDraw GX is also
an extensive set of functions ready to be integrated into Mac programs
by Mac developers.

Object and Shapes

QuickDraw GX relies heavily on objects. Each shape that is drawn using
QuickDraw GX functions is its own object, with its own set of properties.
A shape has a type, such as a line, rectangle, or picture. The shape’s prop-
erties further define what a particular shape will look like. Frame width,
color, and fill pattern are all shape properties.

C language programmers—don’t let this mention of objects alarm you. While
the QuickDraw GX API (application programming interface) is a natural in
object-oriented C++ programs, it works just as well in C projects—as will be
demonstrated by the example programs found in this chapter.

A QuickDraw GX shape, or object, is defined by a private data structure.
This means that the inner workings of a shape’s structure are unknown
to an application. Such a “black box” approach relieves the programmer
from trying to decipher the complexities of QuickDraw GX shape
objects. Instead, the programmer only has to become familiar with the
set of QuickDraw GX functions that exist to make object access possible.
Just as a Mac programmer comes to know the fundamental and important
Toolbox functions, so too will the Mac QuickDraw GX programmer
gain insight into the QuickDraw GX functions that make shape creation,
modifying, and drawing possible.

Chapter 6 = QuickDraw GX

There are seven Inside Macintosh volumes devoted to QuickDraw GX
programming. This chapter will of course only touch on the topics presented
in the more than 3500 pages that comprise those books. Consider this chapter
an introduction to the vast world of QuickDraw GX programming,.

Graphics programming is memory-intensive. Keeping track of the many
properties of a shape—or of hundreds or thousands of shapes—requires
a well thought-out memory management scheme. The Apple designers
of QuickDraw GX have provided just such a memory model. First, an
application that makes use of QuickDraw GX gains an extra partition of
memory—one devoted just to QuickDraw GX. Second, a programmer
who works with QuickDraw GX does not have to be nearly as knowl-
edgeable or concerned with pointers and handles as the programmer
who works with other areas of Macintosh programming. That’s because
QuickDraw GX doesn’t return pointers or handles to objects. Instead,
QuickDraw GX uses a single object-reference value to identify and
work with an object. It is this reference value that your program will
use when calling QuickDraw GX functions.

QuickDraw vs. QuickDraw GX

QuickDraw uses a state-based architecture. That is, the current state of the
drawing environment determines how an image will be drawn. Consider
the following QuickDraw call:

Line(100, 0);

By looking at the above call, you know that the line that is drawn will be
100 pixels in length. Unknown, however, are the other properties of the
line—for example, its thickness. The thickness of the line is determined
by the last call made to PenSize(). A call to PenSize() effects the thickness
of every line that gets drawn subsequent to the call.

QuickDraw GX uses an object-based architecture. That is, a graphics
shape, such as a line, is represented by an object. An object holds all of the
information necessary to draw a shape. In QuickDraw GX, the thickness
of a line is unaffected by a call to PenSize(). Instead, the thickness of the
line is held as information that is a part of the line object.

229

230

Graphics and Sound Programming Techniques for the Mac

The object-based architecture used by QuickDraw GX has the impor-
tant advantage of freeing images from a dependency on the current state
of the drawing environment. This means that all of the properties of a
graphics shape are self-contained. This scheme becomes significant when it
is time to update a graphics shape—the shape essentially can redraw itself.

Chapter Example: PoorMansQDGX

This chapter’s first example program, PoorMansQDGX, doesn’t use
QuickDraw GX. Instead, it exists to give you an appreciation for the
power of QuickDraw GX, and for some insight into the reduction in
programming effort that this graphics extension provides.

If you like the idea of an object-based architecture—a system that
frees you from keeping track of the current graphics environment—you
don’t have to use QuickDraw GX. Instead, you can write your own
classes and member functions to define shapes that hold their own
graphics information. For instance, a line shape could be defined by its
starting point, its end point, and its thickness. The following LineObject
class defines such a class.

class LineObject

{
private:
short thickness;
short xBegin;
short yBegin;
short xEnd;
short yEnd;
public:
void SetLineSize(short);
void SetLineCoordinates(short, short, short, short);
void DrawlLine(void);
};

To create a line object, declare a pointer to a LineObject, then use the
C++ new operator:

LineObject *theline;

theline = new LineObject;

Chapter 6 = QuickDraw GX

To give the line a thickness, invoke the object’s SetLineSize() member
function. Here the line is being set to a thickness of 5:

theLine->SetLineSize(5);

The SetLineSize() member function is simple enough—it just sets the
thickness data member to the value passed to it:

void LineObject :: SetLineSize(short width)
{

}

this->thickness = width;

To set the line object’s window coordinates, invoke the SetLine-
Coordinates() member function:

thelLine->SetLineCoordinates(20, 50, 120, 50);

The SetLineCoordinates() function uses the four passed-in values to set
the beginning point and ending point of the line:

void LineObject :: SetLineCoordinates(short x1, short yl,
short x2, short y2)

{
this->xBegin = x1;
this->yBegin = yl;
this->xEnd = x2;
this->yEnd = y2;
}

Finally, to draw the line, call the DrawLine () member function:

theLine->DrawlLine();

DrawLine() uses three Toolbox functions to set the graphics pen size and
then draw the line. The result of this example is shown in Figure 6.1.

void LineObject :: DrawLine(void)

{
PenSize(this->thickness, this->thickness);
MoveTo(this->xBegin, this->yBegin);
LineTo(this->xEnd, this->yEnd);

231

232

Graphics and Sound Programming Techniques for the Mac

El=———————— New Window

FIGURE 6.1 The result of running the PoorMansQDGX program.

Now, take a look at how QuickDraw GX works with a line object. Don’t
worry about the details of the following code snippets—those details
will appear later in this chapter. First, declare a shape variable:

gxShape thelineShape;

Though the variable name implies that the shape object is to be a line,
the gxShape data type can be used for any kind of shape. A call to the
QuickDraw GX function GXNewShape () establishes the shape type:

thelLineShape = GXNewShape(gxLineType);

To set the thickness property of the new line object, call another
QuickDraw GX function. The ff() function that is used as a parameter
allows you to pass a short value in place of the Fixed data type that
QuickDraw GX works with:

GXSetShapePen(thelineShape, ff(5));

To set the coordinates for the line, declare a variable that was designed
for just such a purpose. When declaring the gxLine variable you can set
the starting point (20, 50) and the ending point (120, 50) for the line:

gxLine thelLineGeometry = { {ff(20), ff(50)}, {ff(120), ff(50)} };
Now apply the values in the gxLine variable to the shape object:

GXSetLine(thelLineShape, &thelineGeometry);

Chapter 6 = QuickDraw GX 233

Finally, draw the line shape:

GXDrawShape(thelLineShape);

For ease of reading, the following snippet groups together the QuickDraw
GX code shown separately above:

gxShape thelLineShape;
gxLine thelineGeometry = { {ff(20), ff(50)}, {ff(120), ff(50)} };

theLineShape = GXNewShape(gxLineType);
GXSetShapePen(thelLineShape, ff(5));
GXSetLine(thelLineShape, &thelLineGeometry);

GXDrawShape(thelLineShape);

You can see from the above snippet that creating a QuickDraw GX
shape isn’t difficult. Setting a shape’s properties isn’t difficult either—
you rely on QuickDraw GX functions to do the work. Notice also that
while you can easily set the properties of a line object, nowhere in the
above code is it clear what the internal structure of a line looks like. As
mentioned, QuickDraw GX data structures are private. You don’t need
to know the internal details of how QuickDraw GX defines a line object,
and you don’t have to directly access any of the line object’s fields—the
QuickDraw GX functions do that for you.

The following is the listing for the PoorMansQDGX program. As
you look over the source code, consider that the LineObject class can be
used to create a line with only a couple of properties: thickness and
location. If the LineObject was to match the QuickDraw GX version of a
line object, it would have to include code for many other properties.

//
class LineObject
{

private:

short thickness;
short xBegin;
short yBegin;
short xEnd;

Graphics and Sound Programming Techniques for the Mac

234

short yEnd;

public:
void SetlLineSize(short);
void SetlLineCoordinates(short, short, short, short);
void Drawline(void);

}s

//

void LineObject :: SetLineSize(short width)
I this->thickness = width;

void LineObject :: SetlLineCoordinates(short x1, short yl,
short x2, short y2)

{
this->xBegin = x1;
this->yBegin = yl;
this->xEnd = x2;
this->yEnd = y2;
}
void LineObject :: DrawlLine(void)
{
PenSize(this->thickness, this->thickness);
MoveTo(this->xBegin, this->yBegin);
LineTo(this->xEnd, this->yEnd);
}
//

void main(void)

{
WindowPtr theWindow;
LineObject *theline;

InitGraf(&qd.thePort);
InitFonts();
InitWindows();

theWindow = GetNewWindow(128, nil, (WindowPtr)-1L);
SetPort(theWindow);

theline = new LineObject;

Chapter 6 = QuickDraw GX

theline->SetLineSize(5);
theline->SetLineCoordinates(20, 50, 120, 50);
theline->DrawlLine();

while (!Button())

Readying a Program for QuickDraw GX

QuickDraw GX may one day be built into the system of every Macintosh—
just as QuickDraw is. When that happens, all Mac users will be able to
enjoy the advantages of programs that use the sophisticated drawing
features of QuickDraw GX. But for now, programs that make use of
QuickDraw GX functionality can make no assumptions about the user’s
machine. Instead, a QuickDraw GX program should check for the pres-
ence of the QuickDraw GX extension at application startup. Further, if
QuickDraw GX is present, this same application should make sure to
perform the proper initializations.

Checking for QuickDraw GX

Before using any of the multitude of QuickDraw GX features, your pro-
gram should verify that the user of your application indeed has the
QuickDraw GX extension installed and enabled on his or her Macintosh.
As usual, when checking for the presence of a system feature on the host
machine your program should call the Toolbox function Gestalt().

Other examples of calls to Gestalt () appear in the check for sound
recording capabilities (Chapter 3), and in the check for the presence of the
QuickTime extension (Chapter 7).

NOTE

To make a QuickDraw GX information request to the Toolbox, call
Gestalt() two times—with a different selector code at each call. The
QuickDraw GX extension consists of two parts: a graphics part and a
printing part. That the extension consists of two parts is invisible to

235

236

Graphics and Sound Programming Techniques for the Mac

both you and user, and one part will never be present without the other.
Knowing that, you'd be correct in assuming that checking for either
part should be enough to determine if the extension is available. Why
make both checks? The answer has to do with version numbers.

Each call to Gestalt() returns two pieces of information: the pres-
ence of the part (in the 0SErr return value) and the part version number
(in the response parameter). While the examples in this book don’t
examine the part versions, your code might. In the future, your pro-
gram may rely on some special feature of QuickDraw GX graphics or
QuickDraw GX printing—a feature only available in a particular ver-
sion of one part or the other. In that case, you'll be able easily to add a
check of the part version number.

In the first of two calls to Gestalt(), pass the Apple-defined selector
code gestaltGraphicsVersion. In return, Gestalt() determines if the
graphics part of the QuickDraw GX extension is installed and enabled.
If it is, Gestalt() returns an O0SErr value of noErr. If the graphics part
isn’t found, Gestalt() will return a value other than noErr. That means
your code should examine the returned 0SErr value to determine if
your program can continue.

0SErr theError;
Tong theResult;

theError = Gestalt(gestaltGraphicsVersion, &theResult);
if (theError != noErr)
ExitToShell();

In the second call to Gestalt(), pass the Apple-defined selector code
gestaltGXPrintingMgrVersion. Gestalt() will then return an 0SErr value
of nokErr if the printing part of QuickDraw GX is available:

theError = Gestalt(gestaltGXPrintingMgrVersion, &theResult);
if (theError != noErr)
ExitToShell();

Chapter 6 = QuickDraw GX
P 237

In the unlikely event that you do need to check a version number, examine
the value returned in theResult. The fourth digit holds the version. Thus
version 1.0 would be returned as 0x00010000. Because the last four digits
aren’t guaranteed to each be zero, do not assume that they will be. In other
words, version 1 could be returned as 0x00018000. You'll want to set up your test
using >= rather than ==:

NOTE

if (theResult == 0x00010000) // don’t use == in this test!

Your application may be one that uses normal QuickDraw commands for
much of its drawing, and QuickDraw GX commands only occasionally.
In that situation, your program might not want to terminate if QuickDraw
GX isn’t on the user’s machine. Instead, it could set a global flag and
then examine this flag before calling any QuickDraw GX routines:

Boolean gQuickDrawGXPresent;

if (gQuickDrawGXPresent == true)

// enable menu item that uses QuickDraw GX routines
else

// disable menu item that uses QuickDraw GX routines

The global flag can be set near the start of your program’s execution by
calling an application-defined routine that performs the two calls to
Gestalt():

Boolean gQuickDrawGXPresent;

gQuickDrawGXPresent = IsQuickDrawGXAvailable();

Your application-defined function should look like the IsQuickDrawGX-
Available() function shown below.

Boolean IsQuickDrawGXAvailable(void)
{

0SErr theError;

long theResult;

238

Graphics and Sound Programming Techniques for the Mac

theError = Gestalt(gestaltGraphicsVersion, &theResult);
if (theError != noErr)
return (false);

theError = Gestalt(gestaltGXPrintingMgrVersion, &theResult);
if (theError != noErr)
return (false);

return (true);

Initializing QuickDraw GX

Once your application has verified that the QuickDraw GX extension is
present, it will need to perform a few steps necessary to initialize of
QuickDraw GX. The first of these steps is the allocation of a graphics
client heap.

When a Macintosh application is launched, it gets loaded into a section
of memory reserved for the application’s own private use. This area,
called the application partition, is composed of the application stack, the
application heap, and a free area of memory between the stack and
heap. It is from this free pool that both the stack and the heap obtain
extra memory when either needs to grow in size.

The memory model that includes the application partition applies
both to applications that use QuickDraw GX and to those that don’t.
Additionally, an application that uses QuickDraw GX reserves another
area in memory. This section of memory, called the graphics client heap, is
then used exclusively by QuickDraw GX to hold your application’s
QuickDraw GX objects.

Your application will request that QuickDraw GX allocate a graphics
client heap from temporary memory as part of the QuickDraw GX
initialization process. QuickDraw GX will then find and reserve a suit-
ably sized area and claim it as the graphics client heap for your pro-
gram. Figure 6.2 shows the memory layout for an application that uses
QuickDraw GX.

Chapter 6 = QuickDraw GX

Application partition

Graphics client heap

FIGURE 6.2 Memory model of a Macintosh application that uses QuickDraw GX.

QuickDraw GX defines a graphics client object, of type gxGraphicsClient,
to keep track of the information in a graphics client heap. When initializing
QuickDraw GX, your program should call the GXNewGraphicsClient() to
create such an object:

fdefine kGXC1ientHeapSizeBytes 150 * 1024
gxGraphicsClient gGXClient;
gGXClient = GXNewGraphicsClient(nil, kGXClientHeapSizeBytes, OL);

The first parameter to GXNewGraphicsClient() is a pointer to a particular
area in memory in which the graphics client.heap should be placed.
Your program should pass a ni1 pointer here to let QuickDraw GX have
control of where the graphics client heap will be allocated.

The second parameter to GXNewGraphicsClient() is the size of the
graphics client heap, in bytes. The above snippet uses the application-
defined constant kGXC1ientHeapSizeBytes to request a 150 KB heap—
a block of memory large enough for a small or moderate-size program.

239

240

Graphics and Sound Programming Techniques for the Mac

To accurately determine the graphics client heap size-requirements for
your application, use Apple’s GraphicsBug debugger. GraphicsBug works
in conjunction with MacsBug or the high-level debugger of your choice.

A program can skip the call to GXNewGraphicsClient(). If it does so,
QuickDraw GX will still set up a graphics client heap—but it will always
give that heap a size of 600 KB. Since your application could very well use less
or more heap memory, it is always best to have the application determine
the graphics client heap size via the call to GXNewGraphicsClient().

NOTE

The last parameter to GXNewGraphicsClient() is a single 1ong value that
holds a set of flags that allow your program to provide additional client
heap specifications to QuickDraw GX. At this writing, only one flag is
defined—a flag that indicates whether QuickDraw GX has permission
to increase the graphics client heap size as needed (pass 0L) or whether
the heap must be left at the size specified in the second parameter to
GXNewGraphicsClient() (pass 1L, or the Apple-defined constant
gxStaticHeapClient).

A call to GXNewGraphicsClient() creates a graphics client object to
keep track of the graphics client heap, but it doesn’t allocate the memory
for the heap. A call to GXEnterGraphics() uses the information supplied
in the preceding call to GXNewGraphicsClient() to allocate a graphics client
heap and perform any necessary initializations.

GXEnterGraphics();

A program that skips the call to GXNewGraphicsClient () can also skip the
call to GXEnterGraphics() as well. QuickDraw GX will then set up a default
600 KB graphics client heap. As mentioned in the preceding note, though,
having the application specify the heap size is the preferred method.

One of the advantages to calling GXNewGraphicsClient() and GXEnter-
Graphics() is that you get to select the size of the graphics client heap.
Another advantage is that you get to determine if enough memory was
available for the allocation of the heap. After calling GXEnterGraphics(),
call GXGetGraphicsError() to see if the call to GXEnterGraphics() suc-

Chapter 6 = QuickDraw GX

ceeded. You can compare the returned error value to the following
Apple-defined error out_of_memory:

gxGraphicsError theGXgraphicsError;

theGXgraphicsError = GXGetGraphicsError(nil);

if (theGXgraphicsError == out_of_memory)
ExitToShel1();

QuickDraw GX graphics routines don’t return errors. Instead, they return
a nil pointer as the function result. To check for an error, follow the
QuickDraw GX call with a call to GXGetGraphicsError(). Although you
can use the GXGetGraphicsError() function to determine if an error
occurred after any QuickDraw GX call, it generally makes sense to do so
only after GX calls that allocate blocks of memory.

The QuickDraw GX error-handling scheme is similar to the one used to
handle resource errors. After calling a Resource Manager routine (such as
FSpCreateResFile(), AddResource(), or GetResource()), you can call
ResError() to determine if an error occurred. Here’s an example:

NOTE

theRefNum = FSpOpenResFile(theFSSpec, fsRdWrPerm);
theError = ResError();
if (theError != nokErr)

// handle the error here

The following snippet shows how the preceding GX calls can be used to
create a graphics client heap, allocate a block of memory for that heap,
and then verify that the allocation was successful.

fidefine kGXClientHeapSizeBytes 150 * 1024
gxGraphicsClient gGXClient;

gxGraphicsError theGXgraphicsError;
OSErr theGXprintError;

gGXClient = GXNewGraphicsClient(nil, kGXClientHeapSizeBytes, OL);

GXEnterGraphics();

theGXgraphicsError = GXGetGraphicsError(nil);

if (theGXgraphicsError = out_of_memory)
ExitToShel1();

241

242

Graphics and Sound Programming Techniques for the Mac

As mentioned earlier, QuickDraw GX consists of two parts: a graphics
part and a printing part. After setting up your application’s graphics
client heap, the graphics initialization is complete. Now you should ini-
tialize the printing part of QuickDraw GX. To do that, make a call to
GXInitPrinting():

0SErr theGXprintError;
theGXprintError = GXInitPrinting();

Some QuickDraw GX printing routines don’t return errors. Instead, a
printing routine call can be followed with a call to GXGetJobError().
Other printing routines, however, do return an error—an 0SErr. As you've
just seen, GXInitPrinting() is such a routine. If GXInitPrinting()
returns noErr, the initialization was successful. Any other value means
that the initialization failed. The following snippet shows the check you
should make after calling GXInitPrinting():

OSErr theGXprintError;

theGXprintError = GXInitPrinting();
if (theGXprintError != nokErr)
ExitToShell1();

You can wrap all of the QuickDraw GX initialization calls into one func-
tion such as the application-defined InitializeQuickDrawGX() routine
shown below.

ftdefine kGXClientHeapSizeBytes 150 * 1024
gxGraphicsClient gGXClient;

void InitializeQuickDrawGX(void)

{
gxGraphicsError theGXgraphicsError;
OSErr theGXprintError;

gGXClient = GXNewGraphicsClient(nil, kGXClientHeapSizeBytes, OL);

GXEnterGraphics();

theGXgraphicsError = GXGetGraphicsError(nil);

if (theGXgraphicsError == out_of_memory)
ExitToShell();

Ch 6 = QuickD QX
apter aickDraw 243

theGXprintError = GXInitPrinting();
if (theGXprintError != noErr)
ExitToShell1();
}

At the start of your program, perform the usual Toolbox initializations.
Then make a call to the application-defined function IsQuickDrawGX-
Available() to check for the availability of QuickDraw GX. If present,
go ahead and initialize QuickDraw GX. If not present, exit or, if your
program allows it, carry on but avoid calls to QuickDraw GX functions.
The following snippet is similar to code used in each of this chapter’s
example programs.

InitializeToolbox();

gQuickDrawGXPresent = IsQuickDrawGXAvailable();
if (gQuickDrawGXPresent == true)
InitializeQuickDrawGX();
else
// exit, or carry on without using GX routines

Terminating a QuickDraw GX Application

When the user chooses to terminate your application, respond by “clean-
ing up” QuickDraw GX. Unsurprisingly, the steps involved in exiting
QuickDraw GX are related to the steps involved in initializing it.

If your application initializes printing using GXInitPrinting()—as
shown in this chapter—it must exit the printing part of QuickDraw GX
by calling GXExitPrinting(). Like GXInitPrinting(), GXExitPrinting()
returns an 0SErr value. Since your application is exiting at the time
GXExitPrinting() is being called, it needn’t check for an error.

0SErr theGXprintError;
theGXprintError = GXExitPrinting();

To allocate the memory for a graphics client heap, your application
called (either explicitly or implicitly) GXEnterGraphics(). To deallocate
this block of memory, call GXExitGraphics(), as follows:

244

Graphics and Sound Programming Techniques for the Mac

GXExitGraphics();

Finally, dispose of the graphics client object that was used to keep track of
the graphics client heap. A call to GXDisposeGraphicsClient() handles this
task. The one parameter to this function is the gxGraphicsClient type vari-
able returned by GXNewGraphicsClient() at QuickDraw GX initialization:

GXDisposeGraphicsClient(gGXClient);

When combined into a single “clean up and exit” routine, your Quick-
Draw GX exit calls should look like the ones shown in the application-
defined function CleanUpQuickDrawGXandQuit():

O0SErr theGXprintError;
theGXprintError = GXExitPrinting();
GXExitGraphics();

GXDisposeGraphicsClient(gGXClient);

Notice that the calls to exit QuickDraw GX are in an order opposite those
that initialize QuickDraw GX. This order is important—make sure that

| printing is deallocated before the graphics client object, and make sure that
NOTE gxXDisposeGraphicsClient() is the last QuickDraw GX function called.

Initializing QuickDraw GX:

GXNewGraphicsClient() // create graphics client object
GXEnterGraphics() // allocate graphics client heap
GXInitPrinting() // initialize printing

Exiting QuickDraw GX:

GXExitPrinting() // exit printing

GXExitGraphics() // deallocate graphics client heap

GXDisposeGraphicsClient() // dispose of graphics client object

Chapter Example: QDGXIntro

The QDGXIntro example demonstrates how to properly initialize
QuickDraw GX at the start of a program and how to correctly exit

Chapter 6 = QuickDraw GX
245

QuickDraw GX at the end of a program. In between, QDGXIntro opens a
window that displays a message that tells whether or not QuickDraw GX is
in the user’s Extensions folder and enabled. Figure 6.3 shows that window.

New Window

T

QuickDraw G¥ is present and enabled

FIGURE 6.3 The result of running the QDGXIntro program.

either move the QuickDraw GX extension out of the Extensions folder and
reboot or uncheck it using the Extensions Manager control panel and

To see the message that says “QuickDraw GX not present or not enabled”,
A

RO TE reboot. Then run QDGXIntro again.

QDGXIntro uses the application-defined IsQuickDrawGXAvailable()
function to determine if QuickDraw GXis present. If it is, the application-
defined function InitializeQuickDrawGX() routine is called to create the
graphics client heap and initialize printing. If QuickDraw GX isn’t avail-
able, this initialization routine is skipped. After that, a simple function that
opens a window and writes a message to it is called. A while loop that
responds only to a click of the mouse button is used as a simple event loop.
The program’s main() function follows:

void main(void)
{
InitializeToolbox();

gQuickDrawGXPresent = IsQuickDrawGXAvailable();
if (gQuickDrawGXPresent == true)
InitializeQuickDrawGX();

OpenDisplayWindow();

246

Graphics and Sound Programming Techniques for the Mac

while (gDone == false)

{
if (Button())
{
if (gQuickDrawGXPresent == true)
CleanUpQuickDrawGXandQuit();
else
CleanUpAndQuit();
}
}

}l

At the click of the mouse button, the global flag gQuickDrawGXPresent is
checked to see which of two clean-up routines should be called. If
QuickDraw GX is present, a routine that performs both QuickDraw GX
clean up and standard memory disposal tasks is called, as shown below:

void CleanUpQuickDrawGXandQuit(void)
{
O0SErr theGXprintError;

if (gDisplayWindow != nil)
DisposeWindow(gDisplayWindow);

GXExitGraphics();
GXDisposeGraphicsClient(gGXClient);

gDone = true;
}

If QuickDraw GX isn’t present, a routine that handles only traditional
memory management is called:

void CleanUpAndQuit(void)
{
if (gDisplayWindow != nil)
DisposeWindow(gDisplayWindow);

gDone = true;
}

You'll want to spend a few extra minutes examining the QDGXIntro
source code listing. That’s because almost all of the code in this example

Chapter 6 = QuickDraw GX
P 2647

will be reused in the remaining four example programs in this chapter.
Because the next four examples will add to the code used here, only the
new code will be shown in the remaining listings.

!/

Boolean IsQuickDrawGXAvailable(void);
void InitializeToolbox(void);

void InitializeQuickDrawGX(void);
void OpenDisplayWindow(void);

void CleanUpAndQuit(void);

void CleanUpQuickDrawGXandQuit(void);
//

fdefine kGXClientHeapSizeBytes 150 * 1024
!/

gxGraphicsClient gGXClient;

Boolean gQuickDrawGXPresent;
WindowPtr gDisplayWindow = nil;
Boolean gDone = false;

//

void main(void)
{
InitializeToolbox();

gQuickDrawGXPresent = IsQuickDrawGXAvailable();
if (gQuickDrawGXPresent == true)
InitializeQuickDrawGX();

OpenDisplayWindow();

while (gDone == false)
{
if (Button())
{
if (gQuickDrawGXPresent == true)
CleanUpQuickDrawGXandQuit();
else
CleanUpAndQuit();

Graphics and Sound Programming Techniques for the Mac

248
}
//
4Boolean IsQuickDrawGXAvailable(void)
{
OSErr theError;
long theResult;
theError = Gestalt(gestaltGraphicsVersion, &theResult);
if (theError != noErr)
return (false);
theError = Gestalt(gestaltGXPrintingMgrVersion, &theResult);
if (theError != noErr)
return (false);
return (true);
}
//
void InitializeQuickDrawGX(void)
{
gxGraphicsError theGXgraphicsError;
OSErr theGXprintError;
gGXClient = GXNewGraphicsClient(nil, kGXClientHeapSizeBytes, OL);
GXEnterGraphics();
theGXgraphicsError = GXGetGraphicsError(nil);
if (theGXgraphicsError == out_of_memory)
ExitToShell();
theGXprintError = GXInitPrinting();
if (theGXprintError != noErr)
ExitToShell();
}
//

void OpenDisplayWindow(void)
{
gDisplayWindow = GetNewCWindow(128, nil, (WindowPtr)-1L);
ShowWindow(gDisplayWindow);
SetPort(gDisplayWindow);
MoveTo(20, 20);

Chapter 6 = QuickDraw GX
249

if (gQuickDrawGXPresent == true)

DrawString(“\pQuickDraw GX is present and enabled”);
else

DrawString(“\pQuickDraw GX not present or not enabled”);

}
1/
void CleanUpQuickDrawGXandQuit(void)
{ OSErr theGXprintError;
if (gDisplayWindow != nil)
DisposeWindow(gDisplayWindow);
theGXprintError = GXExitPrinting();
GXExitGraphics();
GXDisposeGraphicsClient(gGXClient);
gDone = true;
}
1/
void CleanUpAndQuit(void)
{ if (gDisplayWindow != nil)
DisposeWindow(gDisplayWindow);
gDone = true;
}
1/

void InitializeToolbox(void)
{
InitGraf(&qd.thePort);
InitFonts();
InitWindows();
InitMenus();
TEInit();
InitDialogs(OL);
FlushEvents(everyEvent, 0);
InitCursor();

250

Graphics and Sound Programming Techniques for the Mac

Windows and QuickDraw GX

In the standard QuickDraw drawing environment, drawing takes place
in a graphics port. After opening a window using GetNewCWindow() (or
GetNewWindow(), NewWindow(), or NewCWindow()), your program calls
SetPort() to ensure that subsequent QuickDraw drawing commands
target the new window:

WindowPtr gDisplayWindow;

gDisplayWindow = GetNewCWindow(128, nil, (WindowPtr)-1L);
SetPort(gDisplayWindow);

In the QuickDraw GX environment, drawing takes place in a standard
window—but in a view port rather than a graphics port. When using
QuickDraw GX, your program will still execute the above code. Now, how-
ever, there’ll be an additional function call—a call to GXNewWindowViewPort():

WindowPtr gDisplayWindow;
gxViewPort gWindowViewPort;

gDisplayWindow = GetNewCWindow(128, nil, (WindowPtr)-1L);
SetPort(gDisplayWindow);

gWindowViewPort = GXNewWindowViewPort(gDisplayWindow);

The GXNewWindowViewPort() function creates a new view port object and
attaches, or associates, it with a window. Now the same window has a
graphics port and a view port, and can thus accept both standard
QuickDraw commands and new QuickDraw GX commands. Figure 6.4
illustrates. In this figure SetRect() and FillRect() calls have been
made to draw a rectangle in the window. QuickDraw GX typography
calls have been made to draw text to the window as well. While these
two objects can be thought of as existing in two planes, the outcome is
that they appear together in the window.

Chapter 6 = QuickDraw GX

QuickDraw graphics port QuickDraw GX view port

H=—— New|lWindow % ax

Sl=—— New Window

FIGURE 6.4 A single window can support both a
QuickDraw graphics port and a QuickDraw GX view port.

After a window has been given a view port, QuickDraw GX shapes can be
drawn to that window. A shape can be created using the GXNewShape()
function, paired with a view port using GXSetShapeViewPort(), and then
drawn to that view port using GXDrawShape(). Shapes, and these
QuickDraw GX functions, are covered later in this chapter. For now, the
following snippet provides an overview of the process of drawing a
shape to a window.

WindowPtr gDisplayWindow;
gxViewPort gWindowViewPort;

gDisplayWindow = GetNewCWindow(128, nil, (WindowPtr)-1L);
SetPort(gDisplayWindow);

gWindowViewPort = GXNewWindowViewPort(gDisplayWindow);

251

252

Graphics and Sound Programming Techniques for the Mac

// GXNewShape() - create a shape
// GXSetShapeViewPorts() - pair a shape with a view port

// GXDrawShape() - draw the shape

When a window that holds a view port closes, the view port should be
disposed of along with the window. Before calling DisposeWindow(), call
GXDisposeViewPort(). Pass the gxViewPort object that was created by
the earlier call to GXNewWindowViewPort().

WindowPtr gDisplayWindow;
gxViewPort gWindowViewPort;

GXDisposeViewPort(gWindowViewPort);
DisposeWindow(gDisplayWindow);

Chapter Example: QDGXWindow

QDGXWindow, like QDGXIntro, opens a window and writes a message
to it. A click of the mouse closes the window and ends the program.
Figure 6.5 shows the QDGXWindow.

=L

New Window ==

Ready for shapes!

FIGURE 6.5 The result of running the QDGXWindow program.

QDGXWindow doesn’t draw any QuickDraw GX shapes. Instead, the
program serves as an example of how to ready a window for QuickDraw
GX, and how to properly dispose of the window.

The QDGXWindow program adds one global variable to those used in
the QDGXIntro example—a gxViewPort variable named gWindowViewPort:

Chapter 6 = QuickDraw GX

253
gxGraphicsClient gGXClient;
Boolean gQuickDrawGXPresent;
WindowPtr gDisplayWindow = nil;
gxViewPort gWindowViewPort;
Boolean gDone = false;

The main() function of QDGXWindow differs from that of QDGXIntro
in that QuickDraw GX is now required. If it isn’t present, the program
will call ExitToShel1() to terminate. Because QuickDraw GX must be
present, the event loop now doesn’t check to see if QuickDraw GX clean
up should be performed upon quitting. Instead, a mouse click always
results in a call to C1eanUpQuickDrawGXandQuit(). Each of the remaining
programs in this chapter work the same way.

void main(void)

{
InitializeToolbox();
gQuickDrawGXPresent = IsQuickDrawGXAvailable();
if (gQuickDrawGXPresent == true)
InitializeQuickDrawGX();
else
ExitToShell1();
OpenDisplayWindow();
while (gDone == false)
{
if (Button())
CleanUpQuickDrawGXandQuit();
}
}

OpenDisplayWindow() now includes a call to GXNewWindowViewPort() to
create a new view port object and to attach that object to the program’s
window. The function also includes a few commented lines to hint at
the code that will appear in the next example program.

void OpenDisplayWindow(void)

{
gDisplayWindow = GetNewCWindow(128, nil, (WindowPtr)-1L);
ShowWindow(gDisplayWindow);
SetPort(gDisplayWindow);

Graphics and Sound Programming Techniques for the Mac

254

MoveTo(20, 20);
DrawString(“\pReady for shapes!”);

gWindowViewPort = GXNewWindowViewPort(gDisplayWindow);
// GXNewShape() - create a shape
// GXSetShapeViewPorts() - pair a shape with a view port
// GXDrawShape() - draw the shape
}

The CleanUpQuickDrawGXandQuit() function now includes a call to
GXDisposeViewPort()—as shown below.

void CleanUpQuickDrawGXandQuit(void)
{
0SErr theGXprintError;

if (gDisplayWindow != nil)
{
GXDisposeViewPort(gWindowViewPort);

DisposeWindow(gDisplayWindow);
}

theGXprintError = GXExitPrinting();
GXExitGraphics();
GXDisposeGraphicsClient(gGXClient);

gDone = true;

Graphic Shape Objects

There are several types of objects that QuickDraw GX works with. Of
these object types, it is the shape object with which you’ll become the
most familiar with. A shape object can be used to create, display, and
manipulate lines, rectangles, polygons, bit maps, pictures, text, and more.

Chapter 6 = QuickDraw GX
255

Creqtihg and Drawing a Shape Object

The GXNewShape () function is used to create a new shape object. GXNewShape()
accepts the type of shape to create as the single parameter and returns a
gxShape—a new shape object. The shape type can be any of the following
Apple-defined constants:

gxEmptyType
gxPointType
gxLineType
gxCurveType
gxRectangleType
gxPolygonType
gxPathType
gxBitmapType
gxTextType
gxGlyphType
gxLayoutType
gxFullType
gxPictureType

Before calling GXNewShape(), declare a gxShape variable to hold the returned
shape. Then pass GXNewShape () one of the shape types listed above.

gxShape thelineShape;
thelLineShape = GXNewShape(gxLineType);

When you create a new shape, QuickDraw GX assigns default values to
each of the shape’s properties—the characteristics that define a shape.
You can use QuickDraw GX functions to change any or all of a shape’s
properties. In all cases, you'll want to change the shape geometry property—
the property that defines the space the shape occupies. QuickDraw GX
uses a struct to define a shape’s geometry. For a line, the struct is named
gxLine and looks like this:

struct gxlLine
{
struct gxPoint first;
struct gxPoint Tlast;
};

256

Graphics and Sound Programming Techniques for the Mac

As a second example, QuickDraw GX uses a gxRectangle struct that
looks like the following:

struct gxRectangle

{
Fixed 1left;
Fixed top;
Fixed right;
Fixed bottom;
};

The line’s geometry structure uses two fields of type gxPoint to define a
line. Each gxPoint field consists of two Fixed values. The rectangle’s
geometry structure uses four Fixed values as well. The Fixed data type
is easy for QuickDraw GX to work with, but not so easy for humans to
use. For this reason, QuickDraw GX defines the ff () macro that is used to
convert an integral number such as a short to a number in Fixed format.
Whenever a QuickDraw GX routine requires that a parameter be of
type Fixed, you can use a short—provided you use the ff() macro.

The Fixed data type is defined to be a 1ong. But the Macintosh doesn’t
interpret the Fixed in the same way that it does a Tong. A number in Fixed
format holds a whole, or integer part, and a fractional part. QuickDraw GX
makes extensive use of the Fixed format because manipulating Fixed
numbers is quicker than manipulating floating-point, or float numbers.

To set up a new geometry for a new shape, declare a shape geometry
variable that matches the shape’s type. For a line object, declare a
gxLine variable. For a rectangle object, declare a gxRectangle variable.
When you declare the variable, initialize its fields. Recall that for a line,
the gxLine structure requires the line’s first and last points. For a line
that is to start at (50, 100) and end at (300, 60), declare a shape geometry
variable as shown below. Figure 6.6 shows the line that would be
defined by the following geometry.

gxLine thelineGeometry = { {ff(50), ff(100)}, {ff(300), ff(60)} };

Chapter 6 = QuickDraw GX
P 257

300

(££(300), ££(60))
(300, 60)

(50,100)
{££(50), ££(100)}

50

FIGURE 6.6 The geometry of a line specifies the line’s end points

Each shape has its own geometry-setting function: a line’s geometry is set
by GXSetLine(), a rectangle’s geometry is set by GXSetRectangle(), and so
forth. For the line shape, after declaring and initializing the geometry
variable, you'll call GXSetLine() to match the geometry to the shape
object. The first parameter to GXSetLine() is the shape whose geometry is
being set. The second parameter is a pointer to the geometry.

GXSetLine(theLineShape, &thelLineGeometry);

The following snippet shows the complete code needed to create a line
shape object and to set the shape geometry property of that line:

gxShape thelLineShape;
gxLine thelineGeometry = { {ff(50), ff(100)}, {ff(300), ff(60)} };

thelLineShape = GXNewShape(gxLineType);
GXSetLine(theLineShape, &thelLineGeometry);

To draw a shape, call the GXDrawShape() function. Before doing so, though,
you'll need to tell QuickDraw GX where the shape should be drawn.
Just as QuickDraw needs to know which graphics port to draw an
image to, QuickDraw GX needs to know which view port to draw a
shape to. The GXSetShapeViewPorts() function is used for this task. A
call to GXSetShapeViewPorts() follows:

258

Graphics and Sound Programming Techniques for the Mac

gxViewPort theWindowViewPort;
gxShape theLineShape;

GXSetShapeViewPorts(thelLineShape, 1, theWindowViewPort);

The first parameter to GXSetShapeViewPorts() is the gxShape shape
object that is to be drawn. The second parameter tells how many view
ports should be associated with the object named in the first parameter.
The third parameter holds the view port, or view ports, to associate
with the shape. While you'll generally name a single view port as the
third parameter, you can supply a list of view ports.

After assigning a view port to the shape object, call GXDrawShape()
to draw the shape to the view port:

gxShape thelLineShape;
GXDrawShape(theLineShape);

The following snippet demonstrates how to create a line shape object, set
its geometry, and then draw that shape to a view port.

gxViewPort theWindowViewPort;
gxShape thelLineShape;
gxLine theLineGeometry = { {ff(50), ff(100)}, {ff(300), ff(60)} };

thelLineShape = GXNewShape(gxLineType);
GXSetLine(theLineShape, &thelLineGeometry);

GXSetShapeViewPorts(thelLineShape, 1, &theWindowViewPort);
GXDrawShape(thelLineShape);

Chapter 6 = QuickDraw GX
259

Chapter Example: QDGXShape

The QDGXShape program draws the same line the was described on
the previous pages—Figure 6.7 shows the window you’'ll see when you
run the p rogram.

Fi=——— New Window =————1

e

FIGURE 6.7 The result of running the QDGXShape program.

QDGXShape adds one more global variable to the ones used in the pre-
ceding program. The gLineShape variable will hold the line shape object.

gxGraphicsClient gGXClient;

Boolean gQuickDrawGXPresent;
WindowPtr gDisplayWindow = nil;
gxViewPort gWindowViewPort;
Boolean gDone = false;
gxShape gLineShape;

The application-defined CreateGXLineShape() function is used to create
the new line shape object and to set the geometry of that object.

260

Graphics and Sound Programming Techniques for the Mac

void CreateGXLineShape(void)
{
gxLine thelineGeometry = { {ff(50), ff(100)}, {ff(300), ff(60)} };

gLineShape = GXNewShape(gxLineType);
GXSetLine(gLineShape, &thelLineGeometry);
}

CreateGXLineShape() is called from OpenDisplayWindow(). When CreateGX-
LineShape() returns, the global line shape object gets drawn to a view port:

void OpenDisplayWindow(void)

{
gDisplayWindow = GetNewCWindow(128, nil, (WindowPtr)-1L);
ShowWindow(gDisplayWindow);
SetPort(gDisplayWindow);

gWindowViewPort = GXNewWindowViewPort(gDisplayWindow);
CreateGXLineShape();
GXSetShapeViewPorts(gLineShape, 1, &gWindowViewPort);

GXDrawShape(gLineShape);

Shape Object Properties

All shape objects have nine properties. The shape type, shape geometry,
and shape fill are the three properties that define the shape itself. For
example, a rectangle shape object would, of course, be a shape type of
rectangle. QuickDraw GX uses the shape constant gxRectangleType to
denote a shape that is a rectangle. A rectangle object’s shape geometry is
the coordinates of the rectangle. QuickDraw GX uses a gxRectangle
struct to hold these four values. A rectangle’s fill could be any of a
number of fill types. For instance, QuickDraw GX would use the fill
constant gxSo1idFill as the shape fill for a rectangle drawn as a solid.
Figure 6.8 shows these three important shape properties.

Chapter 6 = QuickDraw GX

60

= New Window =——+

Shape fill
gxSolidFill

Shape type 150 Shape geometry

gxRectangleType struct gxRectangle
{
Fixed left;
Fixed top;
Fixed right;
Fixed bottom;

FIGURE 6.8 The three shape properties that define a shape.

Each shape object has a style property, ink property, and transform
property. These three properties are used to modify the look of a shape.
Each of these three properties is actually an object—a supporting object.
Supporting objects don’t need to be explicitly created by your program.
When your application creates a new shape, three new supporting
objects are also created. Your program doesn’t have to keep track of a
shape’s supporting objects—the shape will know how to reference them
as needed.

A shape’s style property is used to vary such characteristics as the
shape’s pen width and pattern. The ink property of a shape is used to
set the shape’s color and its transfer mode—the way in which the shape
covers the background it is set against. The transform property of a
shape is used to change the mapping of a shape—that is, to scale, skew,
or rotate the shape.

The remaining three shape properties are the object-related properties:
the shape attributes, owner count, and tag list. The shape-attributes property

261

262

Graphics and Sound Programming Techniques for the Mac

holds information such as whether or not the shape is locked in memory.
The owner- count property tells how many references exist to the shape.
The tag list property is used if you need to attach application-specific
information to an object.

Shape Object Style Properties

The style property is one of the three supporting objects for a shape (the
other two being the ink property and the transform property). When a
shape is to be drawn, QuickDraw GX first looks at the shape’s style object.

Like a shape object, a style object has a set of properties of its own.
Of these properties, you'll find the pen width the most familiar. To change
the thickness of the lines that frame an object, call GxSetShapePen(). The
first parameter to GXSetShapePen() is the shape object that the pen
affects, while the second parameter is the new width, or thickness, of
the pen. Because the second parameter should be in Fixed notation, use
the ff() macro when passing the new width. The following snippet
changes the pen width of the theLineShape:

gxShape thelineShape;
GXSetShapePen(thelLineShape, ff(15));

After the above snippet executes, any calls to GXDrawShape(theLineShape)
will result in a line with a thickness of 15 pixels being drawn.

The details of the supporting objects can be found in the more than 650
pages of the QuickDraw GX Objects volume of Inside Macintosh—one of the
seven QuickDraw GX Inside Macintosh books.

Shape Object Ink Properties

The ink property is another of the three supporting objects for a shape.
The ink object lets you add color and transfer mode information to a
shape. To set the color property of an ink object, begin by declaring a
gxColor variable:

gxColor theRedColor;

Chapter 6 = QuickDraw GX
263

As shown below, the gxColor structure consists of three members.

struct gxColor

{
gxColorSpace space;
gxColorProfile profile;
union
{
} element;
1

The first gxColor member is the space field. This member specifies the
color space—or color system—used to define the color for a shape. For
Macintosh programmers, the most common example of a color space is
the RGB space. RGB (for red, green, blue) is used by Color QuickDraw.
Other color space examples are CMYK and the indexed color space. The
gxColorSpace data type defines the different color spaces—a few of
which are shown here:

enum gxColorSpaces { ..., gxRGBSpace, ..., gxGraySpace, ... };

To set the color space of a gxColor variable, use one of the gxColorSpace
constants. As mentioned, RGB is the most commonly used space:

gxColor theRedColor;

theRedColor.space = gxRGBSpace;

The second gxColor member is the profiie field. This field holds infor-
mation used in color-matching when switching devices (monitors). If
you set this field to ni1, QuickDraw GX will use its default color profile:

theRedColor.profile = nil;

The last gxColor member is the element field. The element field holds
one specific color. In the gxColor structure, the element field is defined
as a union. Drawing on your C background you'll recall that a structure
field that is a union is one that can have different data types, but only
one type at any given time. The following is the complete definition of
the element field of gxColor.

Graphics and Soand Programming Techniques for the Mac

264

union

{
struct gxCMYKColor cmyk;
struct gxRGBColor rgb;
struct gxRGBAColor rgba;
struct gxHSVColor hsv;
struct gxHLSColor hls;
struct gxXYZColor Xyz;
struct gxYXYColor YXY;
struct gxLUVColor luv;
struct gxLABColor lab;
struct gxYIQColor yiq;
gxColorValue gray;
struct gxGrayAColor graya;
unsigned short pixell6;
unsigned Tong pixel32;
struct gxIndexedColor indexed;

gxColorValue

component[4];

} element;

If your shape object is using the RGB space for its color space, then it
should use the rgb union member for the element field of the gxColor
variable. In the above definition, you can see that the rgb field is of the
type gxRGBColor:

struct gxRGBColor

{
gxColorValue red;
gxColorValue green;
gxColorValue blue;
};

The gxColorvValue type holds a value in the range of 0x0000 to 0xFFFF. A
value of 0x0000 represents the least intense level of a color, while 0xFFFF
represents the most intense level. To create a bright red color using the
RGB space, use the following code:

theRedColor.element.rgb.red = OxFFFF;
theRedColor.element.rgb.green = 0x0000;
theRedColor.element.rgb.blue = 0x0000;

Chapter 6 = QuickDraw GX

This utility, pictured in Figure 6.9, can be found in the Color control panel

If you aren’t familiar with RGB colors, experiment with the Color Picker.
I
of System 7.1. You can click on a color on the color wheel and the corre-

NETE sponding red, green, and blue values will be shown at the bottom left of the

Color Picker. In Figure 6.9, the color red has been selected. If you know how to convert
decimal to hexadecimal, you'll know that 65535 in decimal is OXFFFF in hexadecimal. If
you don’t want to make the conversion, you can use the decimal values in your code.
Append an L to each value to force the compiler to recognize the numbers as 4-byte longs:

theRedColor.element.rgb.red = 65535L;
theRedColor.element.rgb.green = 0OL;
theRedColor.element.rgb.blue = 0OL;

Choose a highlight color:

Hue |0

Saturation |65535
Brightness (65535

Red [65535
Green |0 ‘
Blue |0

BB @EE

[cancel] |[ok |

FIGURE 6.9 Apple’s Color Picker can be used to find the RGB values of a color.

Once a color has been set up, assign it to a shape using the GXSetShape-
Color() function:

gxColor theRedColor;
gxShape thelineShape;

GXSetShapeColor(thelLineShape, &theRedColor);

265

266

Graphics and Sound Programming Techniques for the Mac

The following snippet shows how to assign a gxColor variable a
color of red using the RGB color space, and then how to associate that
color with a shape.

gxColor theRedColor;
gxShape thelineShape;

theRedColor.space = gxRGBSpace;
theRedColor.profile = nil;
theRedColor.element.rgb.red = OxFFFF;
theRedColor.element.rgb.green 0x0000;
theRedColor.element.rgb.blue 0x0000;

GXSetShapeColor(theLineShape, &theRedColor);

Chapter Example: QDGXProperties

The QDGXProperties program uses the gxShape variable theLineShape
introduced in the previous program, QDGXShape. Here, the style property
object and ink property object of the shape are altered to create a line
shape that is 15 pixels wide and purple. Figure 6.10 shows the line—
though, of course, you'll have to trust that the line is indeed purple.

Eee=———— Na o ——=——11

—

FIGURE 6.10 The result of running the QDGXProperties program.

All of the code that differs from the QDGXShape program is found in
the application-defined CreateGXLineShape() function. In this function, a
gxColor variable is declared, then set to the RGB color space. The color purple
is achieved by mixing a moderate amount of red (in hexadecimal, 0x8000 is
one half of OxFFFF) with a moderate amount of blue. No green is used.

Chapter 6 = QuickDraw GX

void CreateGXLineShape(void)

{
gxLine thelineGeometry = { {ff(50), ff(100)}, {ff(300),
ff(60)} };
gxColor thePurpleColor;

gLineShape = GXNewShape(gxLineType);
GXSetLine(gLineShape, &thelLineGeometry);

thePurpleColor.space = gxRGBSpace;
thePurpleColor.profile = nil;

thePurpleColor.element.rgb.red = 0x8000;
thePurpleColor.element.rgb.green = 0x0000;
thePurpleColor.element.rgb.blue = 0x8000;

GXSetShapePen(gLineShape, ff(15));
GXSetShapeColor(gLineShape, &thePurpleColor);

Shape Object Transform Properties

The style property and the ink property are two of the three supporting
objects used with a shape. The third and final supporting object is the
transform property object. As its name indicates, a transform object holds
information that transforms a shape in some way. Scaling, rotating, skew-
ing, and adding perspective are a few of the uses of the transform object.

Mapping is a general term used to describe some transforms. The
mapping property of a transform object holds a matrix. QuickDraw GX
multiplies the values in this matrix with the coordinates of a shape to
transform the shape into a new one.

Chapter Example: QDGXMapping

The QDGXMapping program introduces a new shape—the rectangle
shape. It also demonstrates how to use a transform property—scaling.
Figure 6.11 shows a window with the program’s original rectangle to
the right, and a scaled version to the left.

267

Graphics and Sound Programming Techniques for the Mac

268

fHII}
_T;‘

= TEme |

FIGURE 6.11 The result of running the QDGXMapping program.

All shapes—regardless of type—begin as a gxShape variable. In QDGX-
Shape you saw that was the case for a line object. Here, you'll see that it
holds true for a rectangle shape:

gxShape gRectShape;

The particular shape type of a gxShape is determined when GXNewShape()
is called. QDGXMapping uses a short application-defined routine to
create a rectangle object and define that object’s geometry.

void CreateGXRectangleShape(void)
{
gxRectangle theRectGeometry = { ff(200), ff(40), ff(320), ff(120) };

gRectShape = GXNewShape(gxRectangleType);
GXSetRectangle(gRectShape, &theRectGeometry);
}

CreateGXRectangleShape() is called from OpenDisplayWindow(). Once
the rectangle shape is created, OpenDisplayWindow() calls GXDrawShape() to
draw it to a window. Figure 6.12 shows the coordinates of this rectangle.

gWindowViewPort = GXNewWindowViewPort(gDisplayWindow);
CreateGXRectangleShape();
GXSetShapeViewPorts(gRectShape, 1, &gWindowViewPort);

GXDrawShape(gRectShape);

Chapter 6 = QuickDraw GX

200

Fi=————Newwindow ——

320
FIGURE 6.12 The geometry of a rectangle
the first time it is drawn using GXDrawShape ().

After drawing the rectangle, OpenDisplayWindow() calls the application-
defined function ScaleGXRectangleShape() to scale the rectangle to one-half
its original size. This is accomplished using the QuickDraw GX function
GXScaleShape(). Here’s the prototype for that function:

void GXScaleShape(gxShape target,
Fixed hScale,
Fixed vScale,
Fixed x0ffset,
Fixed yOffset)

Pass GXScaleShape() an object and this QuickDraw GX function will
transform the shape by applying a mapping matrix to it. The second
and third parameters determine the scaling factor for the shape. For
instance, a value of one half for hScale would tell GXScaleShape() to
reduce the horizontal geometry of a shape to one-half its current value.
Because GXScaleShape() accepts Fixed values, you can’t directly pass a
value of one half. Instead, use the QuickDraw GX FixedDivide() function
to create a Fixed format value equal to one half:

Fixed theHorizScale;

theHorizScale = FixedDivide(ff(1l), ff(2));

269

270

Graphics and Sound Programming Techniques for the Mac

The first parameter to FixedDivide() is the numerator, the second
parameter is the denominator. Use the ff() macro to pass these values as
Fixed numbers. Several more examples that use FixedDivide() follows:

theHorizScale = FixedDivide(ff(1l), ff(4)); // 1/4th original

theHorizScale = FixedDivide(ff(3), ff(l)); // triple original

Finally, the fourth and fifth parameters to GXScaleShape() are x and y off-
sets. The following function uses GXScaleShape() to scale the gRectShape
rectangle to one-half its original size. After OpenDisplayWindow() calls this
function, it again calls GXDrawShape() to again draw the rectangle shape
object. The result is shown in Figure 6.13.

void ScaleGXRectangleShape(void)

{
Fixed theHorizScale;
Fixed theVertScale;
Fixed theX0ffset = ff(0);
Fixed theYOffset = ff(0);
theHorizScale = FixedDivide(ff(1l), ff(2));
theVertScale = FixedDivide(ff(1l), ff(2));
GXScaleShape(gRectShape, theHorizScale, theVertScale,
theX0ffset, theYOffset);
}

100

160
FIGURE 6.13 The geometry of a rectangle the second time
it is drawn using GXDrawShape ().

Chapter 6 = QuickDraw GX

In Figure 6.13, notice that along with being reduced in size by a factor
of two, the location of the shape has changed from its original position.
That’s because GXScaleShape() changes the geometry of the shape. The
rectangle’s original coordinates were set as follows:

gxRectangle theRectGeometry = { ff(200), ff(40), ff(320), ff(120) };

If a rectangle shape had its geometry set using the new scaled values, the
initialization would look like the following:

gxRectangle theScaleGeometry = { ff(100), ff(20), ff(160), ff(60) };

Summary

QuickDraw GX is a system software extension that adds new, powerful
graphics functionality to the Macintosh. The new QuickDraw GX supple-
ments rather than replaces the older QuickDraw.

In QuickDraw GX, shapes are objects. A shape can be as simple as a
line and as complex as a bit-mapped image. In both cases, the shape is rep-
resented by an object. A new shape object is created using the QuickDraw
GX function GXNewShape (). The shape can be drawn using the QuickDraw
GX function GXDrawShape(). Before doing so, call GXSetShapeViewPort() to
match the shape with a QuickDraw GX view port.

A shape has properties that define the shape itself and allow the shape
to be modified. The shape type, geometry, and fill provide a description
of the type of a shape. The style, ink, and transform properties hold
information that modifies the look of a shape.

2n

CHAPTER 7

QuickTime Movies

Apple’s QuickTime system extension allows programmers to easily add
movie-playing capabilities to any Macintosh applications. By adding
little more than a page’s worth of source code to a project, you can
bring an ordinary, unassuming application to life. And with a little
extra effort, you can further turn that same application into a multimedia
showpiece. The dynamic content that movies add to your program
make the incorporation of QuickTime a surefire way to hook users on
your application.

In this chapter, you'll learn all about the Movie Toolbox—the set of
movie-related Toolbox routines that enable you to add movie-playing
and movie-editing features to any of your programs. You will also get
an introduction to the basic Movie Toolbox routines that are used to
open movie files, play movies, and add a movie controller to a movie.
In Chapter 9, you'll read about additional routines that are all you need
to add movie-editing and movie-saving features to a program.

273

274

Graphics and Sound Programming Techniques for the Mac

A movie controller is the thin, three-dimensional control panel that
appears at the bottom of a window that displays a QuickTime movie.
As you peruse this chapter, you will learn the details of creating a
movie controller, attaching it to a movie window, and implementing the
buttons that appear on that controller.

The Movie Toolbox

QuickTime isn’t an application that a Mac user runs—it’s a system soft-
ware extension. An extension is code that extends the power of the
Macintosh. In order to access this code, Apple supplies an application
programming interface (API), to it. Just as Macintosh Toolbox is the API
that allow programmers to access Apple’s graphical user interface code,
so is the Movie Toolbox the API that allows programmers to access
QuickTime code. When you know how to use the Macintosh Toolbox,
you'll be able to have your application open and then automatically
play a movie (as shown in Figure 7.1), display a movie in an area of a
dialog box (as shown in Figure 7.2), or attach a movie controller to a
movie to give the user the ability to control movie playing (as shown in
Figure 7.3). In this chapter, you'll see explanations and source code
examples that work with movies in each of these ways.

FIGURE 7.1 A QuickTime movie displayed in a window without a movie controller.

Chapter 7 = QuickTime Movies

E Gorilla

FIGURE 7.3 QuickTime movies displayed in windows that have movie controllers.

The original Macintosh Toolbox routines allow a programmer to add
hundreds of interface features—a functional menu bar, multiple windows,
a File Selection dialog box—to any application. The Movie Toolbox is noth-
ing more than another set of routines available to aid in the programming
of the Mac. While the Movie Toolbox doesn’t contain several thousand
routines as the Macintosh Toolbox does, it does contain enough functions
to allow a programmer to incorporate any movie-related feature into
any program.

275

276

Graphics and Sound Programming Techniques for the Mac

Checking for QuickTime

Before playing a movie, your program should verify that the user of your
application has the QuickTime extension installed on his or her Macintosh.
To handle this task, you'll rely on the Toolbox function Gestalt().

If you haven't used Gestalt() in the past, you should have! This powerful
function exists to supply your program with a wealth of information about
the hardware and system software found on a user’s machine. When
passed one of the dozens of Apple-defined selector codes as the first
parameter, Gestalt () returns information about the user’s Mac in the second parame-
ter—the response parameter. To learn more about the available selector codes for
Gestalt(), scroll through the Gestalt.h universal header file.

NOTE

To request QuickTime information, pass Gestalt() the Apple-defined
selector code gestaltQuickTime. In return, Gestalt() will determine if
the QuickTime extension is installed in the user’s Extensions folder. If it
is, Gestalt() returns an 0SErr value of noErr. If QuickTime isn’t found,
Gestalt() will return a value other than notrr. That means your code
should examine the returned 0SErr value to determine if your program
can continue.

#include <Gestalt.h>

OSErr theError;
Tong theResult;

theError = Gestalt(gestaltQuickTime, &theResult);

if (theError != noErr)
ExitToShell();

While a general check for the availability of QuickTime will usually suffice,
there may be times when your program needs to know if some minimum
version of QuickTime is present. If, for instance, your program makes
use of a new Movie Toolbox function that only became available with
the release of QuickTime 2.0.1, you'll want to verify that the user has
that version or a more recent one. If that’s the case, examine the value of
the response parameter—Gestalt() will have placed the QuickTime
version number in that variable.

Chapter 7 = QuickTime Movies

Gestalt() embeds the QuickTime version number in the upper two
bytes of the four-byte response parameter, and does so in a hexadecimal
format. If the user has QuickTime 1.0, the upper bytes of theResult will
be 0x0100. If the user has version 1.6.1, the upper bytes will be 0x0161.
As an example of version testing, consider the following snippet. If
your application makes use of some new movie-related feature not
found in QuickTime before version 2.0.1, your program can check to see
if the user at least has that version, as follows:

if (theResult < 0x02010000)
ExitToShell();

Always search for a minimum version value—not an exact value. For
instance, don’t check for QuickTime 1.6.1 like this:

if (theResult = 0x01610000) // don’t use = 1in this test!

Only the first four digits are version-related. The last four digits aren’t
guaranteed to each be zero. If the user does have version 1.6.1, theResult could be
returned as 0x01618000. In that event, the above test would fail.

Initializing the Movie Toolbox

Once your program has verified that QuickTime is present, the Movie
Toolbox needs to be initialized. A single function call takes care of this
chore. The Movie Toolbox function EnterMovies() reserves an area of
memory that the Movie Toolbox will use to hold information about
your application. Like many of the Movie Toolbox routines you’ll
encounter, EnterMovies() returns an 0SErr value to let your program
know if the call was executed successfully.

ffinclude <Movies.h>
OSErr theError;
theError = EnterMovies();

if (theError != noErr)
ExitToShell();

n

278

Graphics and Sound Programming Techniques for the Mac

The function prototypes for all of the Movie Toolbox routines can be
found in the Movies.h universal header file—so include that header file
in every project that makes use of QuickTime.

Before checking for QuickTime or initializing the Movie Toolbox, your
program should perform the familiar Macintosh Toolbox initializations
required of all Mac applications. If you use a standard initialization rou-
tine like the application-define InitializeToolbox() function found
throughout this book, consider appending to that routine the QuickTime
check and Movie Toolbox initialization. Since two Toolboxes are now
being initialized (and in the future, perhaps more), you might want to
rename your standard initialization routine to something more appropriate
than InitializeToolbox().

void InitializeAl1Toolboxes(void)
{

OSErr theError;

long theResult;

InitGraf(&qd.thePort);
InitFonts();

InitWindows();

InitMenus();

TEInit();

InitDialogs(OL);
FlushEvents(everyEvent, 0);
InitCursor();

theError = Gestalt(gestaltQuickTime, &theResult);
if (theError != noErr)
ExitToShell();

theError = EnterMovies();

if (theError != noErr)
ExitToShell1();

Loading a Movie

When a Macintosh program needs to display a picture that is in a picture
file (a file of type ‘PICT’), it first opens the file, then loads the picture data

Chapter 7 = QuickTime Movies

into memory. Once the data is in memory, the application can access it
whenever it needs to—typically, to draw the picture to a window. The dis-
play of text from a text file (a file of type ‘TEXT’) follows a similar course of
action. So it should come as no surprise that the playing of a QuickTime
movie, which resides in a QuickTime movie file (a file of type “MooV’), also
involves the steps of opening a file and loading data into memory.

Opening a Movie File

A QuickTime movie is stored in a QuickTime movie file. Before an
application can play a movie, the file in which the movie resides must
be opened. The Movie Toolbox function OpenMovieFile() takes care of
this job.

0SErr theError;
FSSpec theFSSpec;
short theFileRefNum;

theError = OpenMovieFile(&theFSSpec, &theFileRefNum, fsRdPerm);

The first of the three parameters to OpenMovieFile() is the file system
specification for the movie file to open. After the file has been opened,
OpenMovieFile() fills the second parameter with a file reference number.
Subsequent calls to some other Movie Toolbox routines will rely on this
reference number. The final parameter to OpenMovieFile() is a permis-
sion level for the opened file. Programs that will play a movie—but
won’t allow changes to the movie—should use the Apple-defined
fsRdPerm constant here. Programs that will allow movie editing should
use the Apple-defined constant fsRdWrPerm.

If you've worked with Macintosh files in the past, you know about
the FSSpec data type. To let a Toolbox routine know where to find a par-
ticular file, you provide the routine with three pieces of information
about the file: a reference number to the volume (the drive) that the file
is on, the file’s parent directory (the folder the file is in), and the file’s
name (as displayed on the desktop). Conveniently, all of this informa-
tion can be stored in a single data structure—the FSSpec.

If at the time you write a program, you know the location and name of
a file that is to be opened, you can call the Toolbox routine FSMakeFSSpec()

279

280

Graphics and Sound Programming Techniques for the Mac

to create an FSSpec for a file. If, instead, your application will let the user
select a file using the standard Open dialog box, you'll rely on that dialog
box to create an FSSpec for the file the user selects. For simplicity,
FSMakeFSSpec() will be used in this chapter’s first example program.
Later in the chapter, the standard Open dialog box will be used.

The following snippet creates an FSSpec for a file named Charlie-
Chaplin. The file is assumed to be in the same folder as the application
that will be opening it.

0SErr theError;
FSSpec theFSSpec;

theError = FSMakeFSSpec(0, 0, “\pCharlieChaplin”, &theFSSpec);

The first FSMakeFSSpec() parameter is a volume reference number. A
value of 0 tells FSMakeFSSpec() that the volume is the default, or startup,
drive. The second parameter is the parent directory of the file. A value
of 0 tells FSMakeFSSpec() that the parent directory is the same folder as
the one that houses the application. Because the third parameter is the
name of the file. Because FSMakeFSSpec() expects the file name to be in
the form of a Pascal string, include the leading “\p” characters—as
shown above. The final parameter is a pointer to an FSSpec variable.
After FSMakeFSSpec() uses the first three parameters to create the file
system specification, the function will return the newly created FSSpec
in this last parameter.

If your program will keep a collection of movie files in a subdirectory—a
folder within the application folder—you can still use FSMakeFSSpec()
to create the FSSpec. To do so, include the name of the subdirectory in
the file name. Including a folder name with the file name makes the file
name a partial pathname—the name now includes information regarding
the path to the file. This is done by prefacing the file name with the
folder name. Include a colon before both the folder name and the file
name. The following snippet again creates an FSSpec for the CharlieChaplin
movie file. This time it’s assumed that the file is kept in a subdirectory
named Movie Files f.

0SErr theError;
FSSpec theFSSpec;
Str255 theFileName = “\p:Movie Files f:CharlieChaplin”;

Chapter 7 = QuickTime Movies
281

theError = FSMakeFSSpec(0, 0, theFileName, &theFSSpec);

Figure 7.4 shows the pathnames for a few different folder scenarios that
each use the CHARLIECHAPLIN movie file. In each case it is assumed that
both the volume reference number and the parent directory are set to 0
in the call to FSMakeFSSpec().

EE== Muyfpp { = MyHpp § Myfpp §
32items 2items 220.4MBin Zitems 220.4MBin
My App My App Mov
== Movie Files f @ — Mouie Files §
w31 items 220.4MBin w1 3Jitems 220.4MBin

"\pCharlie Chaplin"

Silent Films §
|_E[@E silent Films § =@
—1 11 items 220.4MBin

"\pMovie Files f:CharlieChaplin"®

"\pMovie Files f:Silent Films f:CharlieChaplin"”

FIGURE 7.4 Movie names for a movie file located
in three different folder arrangements.

Loading a Movie from a File

A Macintosh QuickTime movie file (a file of type ‘MooV’) consists of a
moov resource in the movie file’s resource fork and movie data in the
movie file’s data fork. The moov resource holds information about the
format of a movie—information such as the duration of the movie and
how many tracks the movie has. The moov resource doesn’t, however,
contain the data that makes up the movie itself. That information is
held in the movie file’s data fork. Figure 7.5 shows the resource fork of a
movie file. It also shows a ResEdit Get Info window that gives infor-

282

Graphics and Sound Programming Techniques for the Mac

mation about the movie file. By examining this window, you can see
that the vast majority of a movie file’s byte size is in the file’s data fork.

CharlieChaplin

B

moovy

== Info for CharlieChaplin == ==
File: [CharlieChaplin | Ovocked
Tgpe:lMooIl | treator:ltlll]l] |

OFile Locked [] Resources Locked File In Use: Yes
O Printer Driver MultifFinder Compatible File Protected: No

Created: [Thu, Jun 22,1995 | Time:[7:11:20 PM |

Modified: [Sat, Jun 24, 1995 | Time:|5:56:59 PM |
Size: 2774 bytes in resource fork
1631093 bytes in data fork
Finder Flags: @ ?.%8 O 6.0.%

[Has BNDL ONo INITs Label:[_None |
[Shared X Inited [Invisible
[Jstationery [JAlias [Juse Custom Icon

FiGURE 7.5 The resource fork of a movie file holds a moov resource,
while the data fork holds_the movie data itself.

A movie’s data can even be held in a file, or files, other than the QuickTime
movie file that holds the movie’s moov resource. If that is the case, then the
data fork holds references to the location of the movie’s data.

After opening a movie file with a call to OpenMovieFile(), the movie
needs to be loaded into memory. A call to the Movie Toolbox routine
NewMovieFromFile() accomplishes this. The NewMovieFromFile() function
doesn’t load all of the movie data into memory—the data for a large
movie can easily exceed the amount of free RAM a user has. Instead,
some data will be loaded, along with references to the location of other
data. To a programmer, the most important aspect of NewMovieFromFile()
is that this routine handles the data loading without any help—that

Chapter 7 = QuickTime Movies
283

is, you'll never have to be concerned with the format of either the
moov resource or the data in the data fork. Here’s how a call to
NewMovieFromFile() looks:

0SErr theError;

short theFileRefNum;
Movie theMovie;

short theMovieResID = 0;
Str255 theMovieResName;
Boolean wasAltered;

theError = NewMovieFromFile(&theMovie, theFileRefNum,
&theMovieResID, theMovieResName,
newMovieActive, &wasAltered);

After the call to NewMovieFromFile() is complete, the first parameter will
hold an identifier to the loaded movie. This identifier, of the data type
Movie, will be useful in subsequent Movie Toolbox function calls. While
the data in memory may not consist of all of the data that makes up a
movie, the loading of the data and references is still referred to as “creating
amovie.” Likewise, a variable of the type Movie—used to identify the data
and data references—is referred to as “a movie.”

To load a movie into memory, NewMovieFromFile() needs two pieces
of information: the file that the movie is in and the ID of the moov
resource in that file. The file that holds the movie can be identified by the
file reference number returned by the call to the Toolbox routine that
precedes the call to NewMovieFromFile()—the routine OpenMovieFile().
This reference number is the second parameter to NewMovieFromFile().
Because it is possible to keep more than one moov resource in a single
movie file, a moov resource ID is also needed. If you specify a resource
ID of 0, NewMovieFromFile() will load the first moov resource in the specified
file. If there is only one moov resource, a value of 0 will of course tell
NewMovieFromFile() to load that resource.

Besides supplying an identifier to the movie, NewMovieFromFile()
returns three other pieces of information. However, in most instances,
your program will ignore this returned information. To begin, the third
parameter will be the ID of the moov resource that was used. If a value of 0
was used at the start of call, that value will be overwritten by the

284

Graphics and Sound Programming Techniques for the Mac

resource ID at the completion of the call. The second piece of information
provided by NewMovieFromFile() can be found in the fourth parameter.
Here, you'll find the name of the moov resource. Notice that this is the name
of the moov resource, not the name of the QuickTime movie file. The
final returned information can be found in the last parameter. This
Boolean value will tell you whether NewMovieFromFile() had to make any
changes to the data references that were a part of the data in the data fork.

The only routine not yet described is the fifth one—newMovieActive
in the above example. This parameter holds a flag that provides supple-
mental information to NewMovieFromFile(). Here, you'll want to pass
the Apple-defined constant newMovieActive to activate the new movie—
a movie needs to be active in order for it to be played.

The Toolbox call to create an FSSpec for a movie file and the Movie
Toolbox function calls used to open a movie file and load the file’s movie
can be called one after another. The following snippet illustrates this.

OSErr theError;

FSSpec theFSSpec;

short theFileRefNum;
Movie theMovie;

short theMovieResID = 0;
Str255 theMovieResName;
Boolean wasAltered;

theError = FSMakeFSSpec(0, 0, “\pCharlieChaplin”, &theFSSpec);

theError = OpenMovieFile(&theFSSpec, &theFileRefNum, fsRdPerm);

theError = NewMovieFromFile(&theMovie, theFileRefNum,
&theMovieResID, theMovieResName,
newMovieActive, &wasAltered);

All three of the above function calls return an 0SErr value. For brevity,
no error-checking is shown. In actuality, you’d want to check the value
of theError after each function call and either exit upon an error—as
shown below—or, more likely, post an alert displaying an error message—
as described in Appendix E.

theError = FSMakeFSSpec(0, 0, “\pCharlieChaplin”, &theFSSpec);
if (theError != noErr)
ExitToShell();

Chapter 7 = QuickTime Movies

Closing @ Movie File

If your application doesn’t allow the user to edit the frames that make
up a movie, the opened movie file can be closed immediately after the
file’s movie has been loaded. After a call to NewMovieFromFile(), your
program has the movie’s data—or references to all of the movie data—
in memory. That means that the application knows where to find the
movie’s data. It also means the movie file no longer needs to be open. A
call to the Movie Toolbox function CloseMovieFile() will handle the
closing of the file.

short theFileRefNum;

CloseMovieFile(theFileRefNum);

As its only parameter, CloseMovieFile() requires the reference number
to the open file. This is the same reference number returned by OpenM-
ovieFile() and used in the call to NewMovieFromFile().

As you'll see later in this chapter, if a program allows movie editing,
and the editing changes are to be saved, the program should keep the
movie file open so that the changes can be written to the file.

Displaying a Movie

After loading a movie, a window in which to display the movie needs to
be opened. There is no special “movie type” of window for this purpose—
just call either of the Toolbox functions GetNewCWindow() or
NewCWindow() to open a color window. While a QuickTime movie—even
a color movie—can be displayed in a window opened with a call to
GetNewWindow() or NewWindow(), QuickTime is more efficient at displaying
a movie if a color window is used.

jkdefine rMovieWindow 128
WindowPtr theWindow;
theWindow = GetNewCWindow(rMovieWindow, nil, (WindowPtr)-1L);

185

286

Graphics and Sound Programming Techniques for the Mac

Setting the Movie Graphics World—
SetMovieGWorld()

At this point, a movie is loaded and a window is open—but there’s no link
between the window and the movie that is to appear in it. As the movie
plays, you'll of course want to make sure it’s playing in the window it is
meant to appear in. To pair the window to a movie, call SetMovieGWor1d().
This Movie Toolbox function sets the pixel-display coordinate system of
theMovie to the same system used by theWindow.

Movie theMovie;
WindowPtr theWindow;

SetMovieGWorld(theMovie, (CGrafPtr)theWindow, nil);

The first parameter to SetMovieGWorld() is the movie returned by NewM-
ovieFromFile(). The second parameter can be a pointer to either a graphics
port, a color graphics port, or a graphics world—the SetMovieGWor1d() function
can work with any of these types. In the above snippet, the WindowPtr variable
is typecast to a color graphics port. The third parameter to SetMovieGWor1d() is
a handle to the movie’s graphics device structure. Using ni1 for this parameter
tells SetMovieGWor1d() that the current device should be used.

No, you can’t just go casting a variable of one data type to any data type
and expect things to work out all right. The above cast is valid because a
CGrafPtr and a WindowPtr both point to the same data structure—a
GrafPort. If you recall that a WindowPtr points to a WindowRecord, you
might question that statement. Keep in mind that the first field of a WindowRecord isa
GrafPort—so that a WindowPtr can be thought of as pointing to either a WindowRecord
oraGrafPort.

NOTE

Resizing the Display Window

If you use a call to GetNewCWindow() to load the information for the win-
dow that will display a movie, you of course need to define a WIND
resource. When you do, set the window to any size you wish—but make
sure to uncheck the Initially visible checkbox if using ResEdit, or the

Chapter 7 = QuickTime Movies

Visible checkbox if using Resorcerer. The window’s initial size is unim-
portant because your application will resize the window to match the
size of the movie that is to be displayed in the window. The window’s
initial invisibility is important so that this resizing takes place out of sight
of the user.

Your program will rely on one Toolbox routine and two Movie Toolbox
routines to resize a window to the size of a movie. First, a call to the Movie
Toolbox function GetMovieBox() should be made to determine the size of a
frame of the movie that is to be displayed. Pass GetMovieBox() the Movie
variable that was returned by NewMovieFromFile() and a pointer to a rec-
tangle. GetMovieBox() will measure the size of a frame from the movie and
place those dimensions in the Rect variable:

Movie theMovie;
Rect theMovieBox;

GetMovieBox(theMovie, &theMovieBox);

At this point, the temptation may arise to set the window size to the dimen-
sions held in the Rect variable theMovieBox. Before doing that, a couple
of more steps are necessary. First, the Toolbox routine 0ffsetRect()
should be called. While GetMovieBox() will provide the dimensions of a
movie, it does so indirectly. For instance, the four fields of the Rect variable
could have values similar to these:

theMovieBox.left 40
theMovieBox.right 240
theMovieBox.top 100

theMovieBox.bottom 235

As shown in Figure 7.6, the above values yield a movie that is 200 pixels
in width and 135 pixels in height. To get the variable theMovieBox to
reflect these dimensions, however, the rectangle should be offset by the
left and top values:

Rect theMovieBox;

OffsetRect(&theMovieBox, -theMovieBox.left, -theMovieBox.top);

287

Graphics and Sound Programming Techniques for the Mac

288

40 240

FIGURE 7.6 A movie’s moviebox holds the movie’s pixel dimensions,
but these values may not have an origin point of (0, 0).

After the offset, the four fields of theMovieBox variable used in the preceding
example will have the following values:

theMovieBox.left 0
theMovieBox.right 200
theMovieBox.top 0

theMovieBox.bottom 135

Next, call the Movie Toolbox routine SetMovieBox() to make these new,
offset values the boundaries for the rectangle that defines the size of the
movie. The following is a snippet that adjusts a movie’s boundaries.

Movie theMovie;
Rect theMovieBox;

GetMovieBox(theMovie, &theMovieBox);
OffsetRect(&theMovieBox, -theMovieBox.left, -theMovieBox.top);
SetMovieBox(theMovie, &theMovieBox);

After the above calls, the movie rectangle, or movie box, has been
adjusted—but these changes don’t apply to the window that is to dis-
play the movie. To do that, call the Toolbox function SizeWindow(). Pass
SizeWindow() the window to resize, along with the right and bottom
coordinates of the movie’s rectangle. In the above example, that would be

Chapter 7 = QuickTime Movies

theWindow, 200, and 135. The last parameter to SizeWindow() is a Boolean
value that indicates whether or not an update event should be generated.

WindowPtr theWindow;
Rect theMovieBox;

SizeWindow(theWindow, theMovieBox.right, theMovieBox.bottom, true);

At this point, the window is properly sized to match the dimensions of
the movie that will be displayed in it. And, because the window was
invisible, the user didn’t see the window resizing take place. Now it’s
time to display the window in preparation for the display of the movie.

WindowPtr theWindow;

ShowWindow(theWindow);

Playing a QuickTime Movie

A movie can be played directly by your application—without any user
intervention—or it can display a movie controller that gives the user
full control of movie playing. In this section, you'll see how to play a
movie using the first method. Later in this chapter, you'll read about
playing movies using a movie controller.

Preparing a Movie for Playing

When you create a new movie, or edit an existing one, you save the
movie to file. When a movie is saved, the current frame is also saved.
Consider the following scenario. You paste a frame into the middle of a
movie using a program such as Apple’s Movie Player. Then you save
the edited movie and close it. The next time that movie is opened, it will
be opened to the frame at which the movie was saved. To open a movie
and guarantee that the movie will be rewound to the first frame, call the
Movie Toolbox function GoToBeginning0fMovie(). The only parameter
this function needs is the name of the movie to rewind.

Movie theMovie;

GoToBeginning0fMovie(theMovie);

289

290

Graphics and Sound Programming Techniques for the Mac

After rewinding the movie, call the Movie Toolbox routine Start-
Movie(). Contrary to its name, this function doesn’t actually start the
movie playing. Instead, it readies the movie for playing by making the
movie active and setting the movie’s playback rate. Pass StartMovie()
the movie that is to be played.

Movie theMovie;

StartMovie(theMovie);

Playing a Movie

To play a movie your program should call the Movie Toolbox routine
MoviesTask(). This function doesn’t play a movie from start to finish,
however. Instead, it processes only a small part of the movie, updating the
display of the movie by drawing a frame. That means that MoviesTask()
needs to be called repeatedly until the movie has completed playing. You
can use another Movie Toolbox routine to determine when a movie has
finished. When passed a Movie variable, IsMovieDone() returns a Boolean
value that tells whether or not that movie has finished playing.

Movie theMovie;

do
{
MoviesTask(theMovie, 0);
}
while (IsMovieDone(theMovie) = false);

The first parameter to MoviesTask() is the movie to service. A single call
to MoviesTask() is capable of servicing more than one movie. If more
than one movie is open on the screen, rather than pass a movie your
application should pass a value of ni1 as the first parameter. That tells
the Movie Toolbox to service every active movie on the screen.

The second parameter to MoviesTask() is the number of milliseconds
that your application is willing to give the Movie Toolbox for its task of
servicing movies. If one active movie is open, the Movie Toolbox will
spend no more than this time servicing that movie. If more than one
active movie is open, then the Movie Toolbox will service as many of
those movies as it can, in the time specified by this second parameter.

Chapter 7 = QuickTime Movies

To make sure that all active movies get serviced, pass a value of 0 as this
second parameter—that tells the Movie Toolbox to service each active
movie once.

Cleaning dp

When your application has finished with a movie, release the memory
occupied by both the movie and the window the movie is displayed in.
A call to the Movie Toolbox routine DisposeMovie() frees the movie
memory, while a call to the Toolbox function DisposeMovie() deallocates
the window memory.

DisposeMovie(theMovie);
DisposeWindow(theWindow);

Chapter Example: QuickPlay

This chapter’s first example program demonstrates the basics of QuickTime
movie playing. When you run the QuickPlay program, a window will
open and a short clip from a silent movie will play in the window. The
movie has a sound track, so you'll hear a musical score play as the
movie runs. When the movie ends, the program will end too. Figure 7.7
shows the QuickPlay window and a frame from the movie.

FIGURE 7.7 The Robot movie, as viewed in the QuickPlay example program.

291

292

Graphics and Sound Programming Techniques for the Mac

The type of window that the movie plays in is established in a WIND
resource—the only resource used by the QuickPlay project. Figure 7.8
shows this resource. Notice in the figure that the resource size of the
window—100 pixels by 100 pixels—has no correlation to the size of the
window as displayed in the program. Also note that the Initially visible
checkbox is not checked. The source code listing for QuickPlay needs no
walk-through—all of the code has been discussed at length in this chapter.

Color: @ Default
O Custom

[Initially visible

(X Close box

Left: width:

FIGURE 7.8 The WIND resource for the window that will display the Robot movie.

kMovieName constant from “\pRobot” to the name of the movie you want
the program to play. Next, build (make) a new QuickPlay application from
the QuickPlay project. Finally, before running the QuickPlay program,
make sure that the movie is in the same folder as the QuickPlay application.

If you'd like QuickPlay to play a different QuickTime movie, change the
A

N'O T-E

/1

f#include <Movies.h>
L]

void InitializeAl1Toolboxes(void);

{1

fHdefine rMovieWindow 128
ftdefine kMovieName “\pRobot”

Chapter 7 = QuickTime Movies

293
//
void main(void)
{
OSErr theError;
FSSpec theFSSpec;
short theFileRefNum;
Movie theMovie;
short theMovieResID = 0;
Str255 theMovieResName;
Boolean wasAltered;
WindowPtr theWindow;
Rect theMovieBox;

InitializeAl1Toolboxes();

I

theError = FSMakeFSSpec(0, 0, kMovieName, &theFSSpec);
theError = OpenMovieFile(&theFSSpec, &theFileRefNum, fsRdPerm
)s
theError

I

NewMovieFromFile(&theMovie, theFileRefNum,
&theMovieResID, theMovieResName,
newMovieActive, &wasAltered);

CloseMovieFile(theFileRefNum);

theWindow = GetNewCWindow(rMovieWindow, nil, (WindowPtr)-1L);
SetMovieGWorld(theMovie, (CGrafPtr)theWindow, nil);

GetMovieBox(theMovie, &theMovieBox);
OffsetRect(&theMovieBox, -theMovieBox.left, -theMovieBox.top);
SetMovieBox(theMovie, &theMovieBox);

SizeWindow(theWindow, theMovieBox.right, theMovieBox.bottom,
true);
ShowWindow(theWindow);

GoToBeginning0fMovie(theMovie);
StartMovie(theMovie);

do
{
MoviesTask(theMovie, 0);
}
while (IsMovieDone(theMovie) == false);
DisposeMovie(theMovie);
DisposeWindow(theWindow);

294

Graphics and Sound Programming Techniques for the Mac

}
/!

void InitializeAl1Toolboxes(void)
{
0SErr theError;
Tong theResult;
InitGraf(&qd.thePort);
InitFonts();
InitWindows();
InitMenus();
TEInit();
InitDialogs(OL);
FlushEvents(everyEvent, 0);
InitCursor();
theError = Gestalt(gestaltQuickTime, &theResult);
if (theError != noErr)
ExitToShell();

theError = EnterMovies();
if (theError != noErr)
ExitToShell();

Chapter Example: MovieDialog

The QuickPlay program played a movie in a fixed window and didn’t
use a movie controller. While the main purpose for creating a program of
such simplicity was to keep the source code listing of the first QuickTime
example brief and to the point, there are instances where an application
might display and play a movie without a movie controller. Examples
include a game that opens and plays a movie in response to some user
action, or a program that advertises a line of products and plays one of
several movies depending on which selection a user makes from a menu.

The MovieDialog Program

Before moving on to the topic of movie controllers, this section examines
a program that makes use of movies that are played without controllers.

Chapter 7 = QuickTime Movies

MovieDialog provides a practical example of how a multimedia program
might use movies without implementing movie controllers. It also demon-
strates how to play a movie within an area of a dialog box rather than sizing
a window to match the dimensions of a movie. When run, the MovieDialog
program opens a dialog box like the one pictured in Figure 7.9.

FIGURE 7.9 The dialog box that is opened by the MovieDialog program.

Clicking on the Apollo button plays a movie of the launching of one of
the Apollo rockets—as shown in Figure 7.10. Clicking on the Venus button
plays a movie of the Venus space probe. When a movie has finished
playing, its last frame remains in the movie-playing area of the dialog
box. To clear this area and return it to its original light gray state, click
the Clear button.

FIGURE 7.10 The MovieDialog dialog box, with a movie playing in it.

295

296

Graphics and Sound Programming Techniques for the Mac

The MovieDialog Resources

You'll create three resources for the MovieDialog project: a DLOG, a DITL, and
a PICT. Of most interest will be the picture resource—it provides the three-
dimensional look for the movie-playing area of the MovieDialog dialog box.
To create the picture, you can open one of the movies that will be used by
MovieDialog. A movie player such as Apple’s Movie Player or any one of
the example programs from this chapter will work for this task (you'll find
compiled versions of each chapter example on the CD that accompanies this
book). After opening a movie, you should perform a screen capture, or
screen dump. The resulting screen dump file can then be opened with a
graphics program—as shown in Figure 7.11. In this figure, you can also see
that the movie has been selected from within the movie window.

® File Edit Movie :

npo ===

FIGURE 7.11 A screen dump of a movie is opened in a
graphics program, and the movie is selected.

Now cut the movie and then clear, or erase, the rest of the window. Fill
this area with a light background color. This shaded background is only
necessary to provide a contrast for the white frame that will soon border
the movie on two sides. Next, paste the cut movie frame back into the
window. Then use your graphics program’s line tool to draw two white
lines and two dark-gray lines around the movie. In Figure 7.12, the pen
has been set to a width of four pixels before drawing the line. Then the
corners were touched up with a narrow pen-setting.

Chapter 7 = QuickTime Movies
297

FIGURE 7.12 A frame with a three-dimensional look is drawn around the movie.

Next, the movie again cut the movie frame from the window. Fill the
remaining white area with a light-gray color that will match the dialog
box background when the dialog box is laid out. The last step with the
graphics program is to select the picture and cut it from the window—
as is being done in Figure 7.13.

S e : Untitied-2

@|R|E|/ |7 |e-|S[3]0

FIGURE 7.13 The frame is selected and copied to the clipboard.

You'll need to know the exact size of the picture when placing it in the
DITL resource. Your graphics program may provide this information when

298

Graphics and Sound Programming Techniques for the Mac

a picture is selected from one of its windows. If not, you can use the
PictSize utility found on this book’s CD. When run, PictSize opens the
window shown in Figure 7.14 to display the size of the current contents
of the clipboard. If you've copied the picture from the graphics program,
it will still be in the clipboard. Simply double-click on the PictSize icon
to launch this handy utility. When you do that, PictSize will respond by
displaying the clipboard contents—in pixels.

EF=—— PictSize

EE| PictSize..

by Jason Anderson

Width: 249
Height: 188
Size: 5000 bytes

(Update Info)
(Make true PICT]

FIGURE 7.14 The PictSize utility provides the pixel dimensions
of any picture that is currently in the Clipboard.

If you're using System 7.5 or later, paste the picture in the Scrapbook. The
Scrapbook will give the picture’s size.

If you’ve been obtaining QuickTime movies from CD collections, or if you've
been using a digitizer and digitizing software to create your own movies,
you've noticed that QuickTime movies usually come in just a few sizes. That
means that when you select a topic, you should have a set of movies of equal

NOTE

dimensions—perfect for use with the method described here.

Next, launch your resource editor and paste the picture into it. Figure 7.15
shows the resources that make up the MovieDialog project—including
the PICT resource.

Earlier it was stated that you'll create three resources for the MovieDialog
project—yet Figure 7.15 shows four resources. The dctb resource is a dialog
color-table resource that is automatically created by the resource editor
when you add color to a dialog box.

Chapter 7 = QuickTime Movies
299

MaovieDialog.rsre

9

&

detb DITL DLOG PICT
=[E! PICTs from MovieDialog.rsre %ﬁé
i
=
[

FIGURE 7.15 The picture frame that was copied from the
graphics program is pasted into the project’s Resource file.

When you create the DITL that holds the dialog box items, you'll add this
picture as a Picture item. If you've noted the picture’s dimensions, you'll be
able to set the picture’s size properly in the DITL—as shown in Figure 7.16.

= DITL 1D = 128 from MovieD

FIGURE 7.16 A Picture item is added to a DITL resource,
and the ID of the item is set to that of the PICT resource.

The dialog box displayed in MovieDialog has a light-gray background.
If you wish, you can use your resource editor to give the entire dialog
box a matching background. In ResEdit, create a DLOG resource, then
click on the Custom button in DL0OG editor. Next, click on the Content

Graphics and Sound Programming Techniques for the Mac

300

box to display a palette of color choices as shown in Figure 7.17. Select a
color from this palette for the dialog box background.

If you use Resorcerer as your resource editor, create a new dialog box.
Select Set Dialog Info from the Dialog menu. In the Settings window that
opens, double-click on the Content dialog box in the Window Colors sec-

tion. That brings up the color-picker wheel that allows you to select a color
for the dialog box content area.

DLOG (D = 128 from MovuieDialog.rsrc =

o O O [| 2 N

@ Fiis o0 Basoura Window Color: () Default
@ Custom

Initially visible

Top:[40__| Heignt: [230 Ol lose tion
Lert:[40__| width: [380_|

FIGURE 7.17 ResEdit allows you to easily add color, or gray shading,
to the content area of a DLOG resource.

Because the dialog box that is displayed by MovieDialog won't need to be
resized—as was the case for a window that was to be the exact size of a
movie—you can set it to be initially visible.

The MovieDialog Source Code Listing

There isn’t anything unique about the dialog box displayed by MovieDialog—
the code that handles this dialog box is similar to code you've written for
any other program that displays a modal dialog box. The listing for
OpenDisplayDialog()—the routine that handles the dialog box—is provided
just ahead. Here’s an outline of what the function does:

declare variables

7s i
Chapter 7 = QuickTime Movies 301

open the dialog box
begin loop
call ModalDialog() to get number of a clicked-on item

case Apollo button item:
play Apollo movie

case Venus button item:
play Venus movie

case Clear button item:
clear movie display area

case Quit button item:
quit program

end loop

dispose of the dialog box

An application-defined routine named LoadAndRunMovie() handles a click
on either the Apollo or Venus button—the two movie-playing buttons.
That routine will be described in just a few pages. When a movie
finishes playing in MovieDialog, its last frame remains displayed in the
dialog box. If the user wishes to clear the movie-area, the Clear button
can be used.

jHdefine kMovieFramePicture 128 // resource ID of PICT
fHdefine kFrameButton 5 // item number of picture
DialogPtr theDialog;

short theType;

Handle theHandle;

Rect theRect;

PicHandle thePicture;

GetDialogItem(theDialog, kFrameButton,
&theType, &theHandle, &theRect);

thePicture = GetPicture(kMovieFramePicture);

DrawPicture(thePicture, &theRect);

The playing of a movie is handled by the program’s LoadAndRunMovie()
routine. Most of the code that makes up this function is similar to code

302

Graphics and Sound Programming Techniques for the Mac

seen in this chapter’s QuickPlay example. One thing that differs is the
determination of the rectangle in which a movie will play.

In QuickPlay, the movie rectangle is offset so that the upper left corner
of the movie is at point (0, 0). That places the movie in the upper left
corner of the window it will play in. The movie is the exact size of the
window, as planned. In MovieDialog, the movie won't be the same size
as the dialog box, and won't appear in the dialog box’s upper left corner.
The code that determines the placement of the movie in the dialog box
is shown below.

ftdefine kFramePixelSize 4 // pixel width of frame
ftdefine kFrameButton 5 // item number of picture
Movie theMovie;

Rect theMovieBox;

DialogPtr theDialog;

short theType;

Handle theHandle;

Rect theRect;

GetMovieBox(theMovie, &theMovieBox);
OffsetRect(&theMovieBox, -theMovieBox.left, -theMovieBox.top);
GetDialogItem(theDialog, kFrameButton,
&theType, &theHandle, &theRect);
OffsetRect(&theMovieBox, theRect.left + kFramePixelSize,
theRect.top + kFramePixelSize);

In the above snippet, the movie box is obtained with a call to GetMovieBox(),
and then offset so that its upper left corner appears at point (0, 0)—just
as was done in QuickPlay. If the movie was displayed at this point, it
would appear in the dialog box as shown in the top part of Figure 7.18.

Next, a call to GetDialogItem() is made to get the rectangle of the
PICT item. This is close to the area in which the movie should be displayed—
as shown in the middle part of Figure 7.18. This rectangle, however,
doesn’t take into account the frame of the picture.

Finally, the upper left corner of the movie box rectangle is offset
from point (0, 0). The offset amount equals the top and left boundaries of
the PICT rectangle, with the pixel size of the frame added. That results in
the movie being placed directly in the movie area of the picture—as
shown in the bottom part of Figure 7.18.

Chapter 7 = QuickTime Movies
303

If the rectangle used in the first call to OffsetRect () was used, the
movie would appear in the upper-left corner of the dialog box

If the rectangle returned by GetDialogItem() was used, the movie
wouldn't appear centered in the movie-area picture

The second call to of fsetRect () accounts for the size of the frame
that is a part of the movie-area picture

FIGURE 7.18 A movie is centered in the picture item of the dialog box.

The following is the source code listing for the MovieDialog program that
you'll find on this book’s CD.

//

J#include <Movies.h>

/1

void InitializeAl1Toolboxes(void);
void OpenDisplayDialog(void);
void LoadAndRunMovie(DialogPtr, Str255);

1L

jdefine rMovieWindow 128
fHdefine rMovieDialog 128
fkdefine kQuitButton 1
ffdefine kClearButton 2
ftdefine kApolloButton 3
Jkdefine kVenusButton 4
fidefine kFrameButton 5

Graphics and Sound Programming Techniques for the Mac

304
ftdefine kMovieFramePicture 128
fdefine kFramePixelSize 4
ftdefine kApolloMovieName “\p:Movie f:Apollo 3”
fHdefine kVenusMovieName “\p:Movie f:Venus Probe”
//

Boolean gAl1Done = false;

//
void main(void)
{
InitializeAl1Toolboxes();
OpenDisplayDialog();
}
//
void OpenDisplayDialog(void)
{
DialogPtr theDialog;
short theltem;
Boolean allDone = false;
short theType;
Handle theHandle;
Rect theRect;

PicHandle thePicture;

theDialog = GetNewDialog(rMovieDialog, nil, (WindowPtr)-1L);
ShowWindow(theDialog);
SetPort(theDialog);

while (allDone == fé]se)
{
ModalDialog(nil, &theltem);

switch (theltem)
{
case kApolloButton:
LoadAndRunMovie(theDialog, kApolloMovieName);
break;
case kVenusButton:
LoadAndRunMovie(theDialog, kVenusMovieName);
break;

case kClearButton:

Chapter 7 = QuickTime Movies
305

GetDialogItem(theDialog, kFrameButton,
&theType, &theHandle, &theRect);

thePicture = GetPicture(kMovieFramePicture);

DrawPicture(thePicture, &theRect);

break;

case kQuitButton:
allDone = true;
break;
}
}
DisposeDialog(theDialog);
}

//

void LoadAndRunMovie(DialogPtr theDialog, Str255 theMovieName)
{
OSErr theError;
FSSpec theFSSpec;
short theFileRefNum;
Movie theMovie;
short theMovieResID = 0;
Str255 theMovieResName;
Boolean wasAltered;
Rect theMovieBox;
short theType;
Handle theHandle;
Rect theRect;

theError = FSMakeFSSpec(0, OL, theMovieName, &theFSSpec);

theError = OpenMovieFile(&theFSSpec, &theFileRefNum, fsRdPerm);

theError = NewMovieFromFile(&theMovie, theFileRefNum,
&theMovieResID, theMovieResName,
newMovieActive, &wasAltered);

CloseMovieFile(theFileRefNum);
SetMovieGWorld(theMovie, (CGrafPtr)theDialog, nil);
GetMovieBox(theMovie, &theMovieBox);

OffsetRect(&theMovieBox, -theMovieBox.left, -theMovieBox.top);
GetDialogltem(theDialog, kFrameButton,
&theType, &theHandle, &theRect);
OffsetRect(&theMovieBox, theRect.left + kFramePixelSize,
theRect.top + kFramePixelSize);

Graphics and Sound Programming Techniques for the Mac

306

SetMovieBox(theMovie, &theMovieBox);
GoToBeginning0fMovie(theMovie);
StartMovie(theMovie);

do
{
MoviesTask(theMovie, 0);
}
while (IsMovieDone(theMovie) == false);
DisposeMovie(theMovie);

Improving the MovieDialog Program

MovieDialog uses a little shading to provide a three-dimensional effect
for the area of the dialog box that displays movies. For a more polished
look, this 3-D effect could be carried over to the buttons as well. Figure 7.19
shows how this dialog box might look if custom controls (CDEFs) were used
to create shaded, three-dimensional buttons.

Topics
Atlantis
Challenger
Columbia
Discovery
Apollo
Planets
Astronauts

| Spacewalks

Play Movie &P
Clear 8K

FIGURE 7.19 The simple MovieDialog program could be modified into a full-featured application.

Figure 7.19 also shows that a more sophisticated version of MovieDialog
could include a menu that lets the user select a general topic. Selecting a
topic would cause a change in the titles of the buttons in the dialog box.
The figure shows the buttons after the Discovery menu item is selected.

Chapter 7 = QuickTime Movies

One means of achieving this “button switch” would involve having a
different DITL resource for every topic. Selecting a topic from the menu
would cause the dialog box to display a different DITL.

If you need the details of implementing custom controls, and information
on creating a dialog box that uses multiple dialog item lists, refer to More
Mac Programming Techniques by Mé&T Books.

void PlayMovie(Movie theMovie)

{

GoToBeginningOfMovie(theMovie);

StartMovie(theMovie);

do

{

MoviesTask(theMovie, 0);

}

while (IsMovieDone(theMovie) == false);
}

To see an example of a shareware program that plays a movie within a
picture—as MovieDialog does—run the TheaterMaker program that is
included on this book’s CD.

NOTE

Chapter Example: SelectMovie

The QuickPlay and MovieDialog programs demonstrate how to open
and play a movie when the movie file’s name and location are known at
the time of compilation. Using FSMakeFSSpec() to create an FSSpec for a
movie file—as both these programs did—works fine for programs that
play movies from a predetermined group of movie files. Other programs,
however, will let the user select the movie to play. To do that your program
should use the Movie Toolbox routine StandardGetFilePreview(). The
result of calling this function is shown in Figure 7.20. In that figure you
can see that StandardGetFilePreview() displays a standard Open dialog
box. Beneath the dialog box list is a Show Preview checkbox that, when

307

308

Graphics and Sound Programming Techniques for the Mac

checked, expands the dialog box to display a small view of the first
frame of the movie (a thumbnail) that is highlighted in the dialog box list.

[e2 P01 quick Play Movie § ¥ | = Hard Disk

Ca=)

Preview

[Show Preview

FIGURE 7.20 The standard Open dialog box with a preview, or thumbnail, of a movie.

To allow the user to select a file to open, call StandardGetFilePreview()
in place of FSMakeFSSpec():

SFTypelist typelList = { MovieFileType, 0, 0, 0 };
StandardFileReply theReply;

StandardGetFilePreview(nil, 1, typelist, &theReply);

The first three StandardGetFilePreview() parameters describe the type
or types of files that are to be shown in the dialog box list. The first para-
meter holds a pointer to an optional filter function that aids in filtering
out files that should not be displayed. In general, StandardGetFile-
Preview() handles file filtering without the need for this function—so a
value of ni1 can be passed here. The second parameter specifies the number
of file types to list. If your application will only open movies, give this
parameter a value of 1. The third parameter is a list that indicates which
file types to display. For example, if StandardGetFilePreview() is to display
text files, the file list should contain the ‘TEXT" type. If both text files and
picture files are to be displayed, the list should contain an entry of ‘TEXT’
and an entry of ‘PICT’ (and the second parameter should be set to a value
of 2). To display movie files, the list should have an entry of ‘MooV’'—the
file type for QuickTime movie files. Apple defines the constant MovieFileType
to have a value of ‘MooV’, so you can use this constant to make it clear just
which type of file ‘MooV” refers to. To create a file type list, declare a vari-
able of type SFTypeList. To fill the list with up to four file types, enclose

Chapter 7 = QuickTime Movies

the types in braces. If less than four types are being assigned to the list, use
zeros—as is being done here:

SFTypelist typelist = { MovieFileType, 0, 0, 0 };
The above declaration is identical to this declaration:

SFTypelList typeList = { ‘MooV’, 0, 0, 0 };

The last parameter to StandardGetFilePreview() is a pointer to a standard file
reply structure. After the call to StandardGetFilePreview() has completed,
the StandardFileReply data structure will have all of its several members
filled. To determine if the user selected a file (as opposed to clicking on the
Cancel button), examine the sfGood member. If it has a value of true, the
user double-clicked on a file name or clicked once on a file name and then
clicked on the Open button. If sfGood is true, your code should proceed
with the opening of the movie file and with the loading of the movie. When
doing so, use the sfFile member of the StandardFileReply—it holds an
FSSpec for the file the user selected. Note that the File Manager takes care of
creating this FSSpec—your code doesn’t need to call FSMakeFSSpec().

The following snippet shows how a call to StandardGetFilePreview()
can be used to open a movie file. If the user presses the standard Open
file dialog box Cancel button, the code exits the program. Figure 7.21 shows
the changes that were made to the code of this chapter’s QuickPlay example
to turn that program into the SelectMovie program. In that figure, the
lines that have been commented out are from the QuickPlay program.

SFTypelist typelList = { MovieFileType, 0, 0, 0 };
StandardFileReply theReply;

StandardGetFilePreview(nil, 1, typelist, &theReply);
if (theReply.sfGood == true)

{
thekrror = OpenMovieFile(&theReply.sfFile, &theFileRefNum,
fsRdPerm);
theError = NewMovieFromFile(&theMovie, theFileRefNum,

&theMovieResID, theMovieResName,
newMovieActive, &wasAltered);

CloseMovieFile(theFileRefNum);

}

else

309

310

Graphics and Sound Programming Techniques for the Mac

ExitToShell();

%

A4
SFTypeList typeList = { MovieFileType, 0, 0, 0);
StandaxdFileReply theReply:

3 // theError = FSMakeFSSpec(0, 0, kMovieName, &theFSSpec):

> StandardGetFilePreview(nil, 1, typelList, &theReply):
if (theReply.sfGood == true)
R 9

theError = OpenMovieFile(&theReply.sfFile, &theFileRefNum, fsRdPerm):
theError = NewMovieFromFile(&theMovie, theFileRefNum,
h "

L, MovieResID, th
newMovieActive, &wasAltered):
cl ieFile(theFil i
}
7 op ieFile(pec, &thePil £
// th Ne ieFromFil ie, theFil

a // &theMovieResID, theMovieResName,
11 newMovieActive, &wasAltered);
/7 CloseM File(theFil H

@ Add two standard file variables

@ Replace pec () with st ilePreview()
@ Move movie file code into the “if user selected file” section

@ Replace the FSspec from FSMakeFSSpec () with one from StandardGetFilePreview()

FIGURE 7.21 Minimal changes to the QuickPlay source code
turn it into the SelectMovie source code.

Movie Controllers

Opening and playing a QuickTime movie can be a task initiated and
handled by the application—as you've seen in this chapter. Many pro-
grams, however, need to provide the user with the power to control the
playing of a movie. To make this happen, your program should make
use of movie controllers.

@About Movie Controllers

If you want your application to display a movie that can be controlled by
the user, it should make use of a movie controller. By using Apple’s stan-
dard movie controller, you'll be providing users of your program with an

Chapter 7 = QuickTime Movies

easily recognized—and easy to use—movie-playing tool. Figure 7.22 shows
a movie controller and its parts.

Slider Play bar

Speaker ‘ i Play Step ‘6

P
button button backward button forward button

FIGURE 7.22 The parts of a movie controller.

A movie controller can be attached to any open movie. Once attached,
the controller acts as a part of the window the movie is displayed in.
When the movie is moved on screen, the controller moves with it. The
Movie Toolbox provides numerous routines that allow you easily to
take advantage of the movie-playing and movie-editing powers of the
movie controller.

@ttaching a Movie Controller to a Movie

If a movie won't be using a movie controller, the act of opening and readying
the movie for playing can be summed up in the following ten steps:

Open a movie file.

Load the movie.

Close the movie file.

Open a window.

Set the movie’s graphics world to that of the window.
Get the movie box.

Offset the movie box rectangle.

Set the movie box to the new rectangle.

0PN U R W N e

Size the window.
10. Show the window.

3n

312

Graphics and Sound Programming Techniques for the Mac

If movie will be using a movie controller, the above script—with very
little modification—can be used. Steps 7 and 8 are shown in bold because
those two steps are the only ones that need to be replaced in order to
attach a controller to a movie.

In the QuickPlay example, you saw steps 7 and 8 implemented through
the use of the following two lines of code:

OffsetRect(&theMovieBox, -theMovieBox.left, -theMovieBox.top);
SetMovieBox(theMovie, &theMovieBox);

When adding a movie controller, the above two lines will be replaced by
the following:

theController = NewMovieController(theMovie, &theMovieBox,
mcTopLeftMovie);

MCGetControllerBoundsRect(theController, &theBoundsRect);

The first Movie Toolbox routine to call is NewMovieController(). This
routine creates a movie controller and attaches it to the movie named in
the first parameter.

The second parameter holds the size of the movie box. As before,
this rectangle is obtained from a call to the Movie Toolbox function
GetMovieBox (). The movie box is necessary so that NewMovieController()
can properly size the new controller so that the controller will have the
same width as the movie.

The last parameter to NewMovieController() is an Apple-defined
constant that tells the Movie Toolbox where the movie will be placed
within a window. This information allows the Movie Toolbox to determine
where the top of the controller should go. A value of mcTopLeftMovie
indicates that the movie will fit snugly into the top left corner of the
window. The use of this constant in this function call replaces the need
to call 0ffsetRect () and SetMovieBox()—steps 7 and 8 in the list of steps
necessary to ready a movie for playing.

The “mc” in the constant mcTopLeftMovie stands for “movie controller.”
The same applies to Movie Toolbox routines that begin with “MC”—such as
the MCGetControllerBoundsRect() function used above and described
just ahead.

NOTE

Chapter 7 = QuickTime Movies

When NewMovieController() finishes executing, a MovieController
variable will be returned. This MovieController can be used throughout
the program to access the controller. The following snippet shows a call
to NewMovieController().

MovieController theController;
Movie theMovie;
Rect theMovieBox;

theController = NewMovieController(theMovie, &theMovieBox,
mcTopLeftMovie);

Figure 7.23 illustrates the controller’s placement in the movie’s window.
The mcTopLeftMovie constant tells the Movie Toolbox that the movie will
go in the window’s upper left corner, and that the new controller should be
placed directly beneath the movie—regardless of the size of the window.
Remember, the initial size of the window that will hold the movie is
arbitrary and gives no indication of the final size of the window.

EW=——— Mouie

FIGURE 7.23 The mcTopLeftMovie constant dictates
that the movie will appear in the window’s upper left corner
and the controller will appear directly beneath the movie.

313

314

Graphics and Sound Programming Techniques for the Mac

After the call to NewMovieController(), call the Movie Toolbox routine
MCGetControllerBoundsRect().

MovieController theController;
Rect theBoundsRect;

MCGetControllerBoundsRect(theController, &theBoundsRect);

When passed a MovieController variable, the MCGetControllerBoundsRect ()
function returns the rectangle that bounds both the movie and controller.
In the QuickPlay program, the window was sized to match the bound-
aries of the movie box. Now, with a controller attached, the window must
be set to a size large enough to hold both the movie box and the controller
area beneath the movie box. The rectangle variable theBoundsRect repre-
sents the size that the window should be resized to:

SizeWindow(theWindow, theBoundsRect.right, theBoundsRect.bottom,
true);

Movie Controllers and the Event Loop

For simplicity, many of the short example programs in this book don’t have
an event loop. To add an event loop to one of these programs, you could
first declare a couple of new variables:

Boolean allDone = false;
EventRecord theEvent;

Next, include the following code near the end of main():

while (allDone == false)
{
WaitNextEvent(everyEvent, &theEvent, 15L, nil);

switch (theEvent.what)

{
case keyDown:
allDone = true;
break;
}

Chapter 7 = QuickTime Movies

While the this event loop looks for only a press of a key, it satisfies the
requirements of a basic event loop: it makes a call to WaitNextEvent(),
examines the what field of the returned event, and then responds to the
type of event that occurred.

The structure of the above event loop is perfect for handling most
event types, such as a click of the mouse button. Occasionally, though, a
program will need to respond to a single event type in different ways. A
movie with a movie controller is one such situation. When the user clicks
the mouse button, the way in which the mouseDown event is handled
depends on whether the cursor was over a movie controller or over some
other part of the Mac interface. Before entering the loop’s switch state-
ment, your event loop should determine if an event is controller-related.
If it is, the event should be handled—if the controller’s Play button was
clicked, the movie should play; if the Step forward button was clicked,
the movie should advance a single frame, and so forth. After that, the
event can be considered handled and the switch statement can be skipped
during this pass through the event loop. The following version of the
event loop adds a few comments to show how, in general terms, a movie
controller event should be handled.

Boolean allDone = false;
EventRecord theEvent;
MovieController theController;

while (allDone = false)
{
WaitNextEvent(everyEvent, &theEvent, 15L, nil);
// if the event is controller-related, handle it here
// if the event was controller-related, event was handled:
// skip the following code this pass through the while Toop
{
switch (theEvent.what)

{
case keyDown:
allDone = true;
break;
}

315

316

Graphics and Sound Programming Techniques for the Mac

To determine if an event is controller-related, call the Movie Toolbox
routine MCIsPlayerEvent (). When passed a movie controller and an
event, this function determines if the event involves the movie controller.
If it did, a value of 1 is returned. If it didn’t, a value of 0 is returned.
Here’s a call to MCIsPlayerEvent():

MovieController theController;
EventRecord theEvent;
Boolean isControllerkvent;

isControllerEvent = MCIsPlayerEvent(theController, &theEvent);

The controller will be the MovieController returned by a previous call
to NewMovieController(). The event will be the EventRecord returned by
a call to WaitNextEvent().

The return type for MCIsPTayerEvent() is actually ComponentResult,
which is defined to be a 1ong. Since the returned values of 1 and 0 match the
definitions for true and false, you can use the returned value asa Boolean.

NOTE

The MCIsPlayerEvent() function is one of the most important and powerful
Movie Toolbox routines. Not only does it provide feedback as to whether
an event was controller related—it also handles that event, if it was. If the
user clicks on the Speaker, Play, Step backward, or Step forward button,
or clicks and drags the slider, MCIsP1ayerEvent () will perform the appro-
priate action. Your code will not need to call any other routines to handle
these user actions. The calls that are necessary to play a movie that
doesn’t have a controller (StartMovie(), MoviesTask(), and IsMovieDone())
are no longer necessary for a movie that uses a controller.

The following snippet provides a look at a simple event loop that is
capable of handling movie controller events. Notice that the switch
statement will only be executed if MCIsPlayerEvent() returns a value of
false—that is, only if MCIsPlayerEvent() finds that the event isn’t con-
troller-related and returns a value of 0.

Boolean allDone = false;
EventRecord theEvent;

Chapter 7 = QuickTime Movies

MovieController theController;
Boolean isControllerkEvent;

while (allDone == false)

{
WaitNextEvent(everyEvent, &theEvent, 15L, nil);
isControllerEvent = MCIsPlayerEvent(theController, &theEvent);
if (isControllerEvent == false)
{
switch (theEvent.what)
{
case keyDown:
allDone = true;
break;
}
}
}

If you've ever included a modeless dialog box in a program, you've done
something similar to the above. Before entering the main() switch statement,
your program called DialogEvent() and DialogSelect() to determine
if an event occurred in a modeless dialog box. If it did, additional code (an
application-defined routine, most likely) handled the event and the switch statement
was skipped.

NOTE

Chapter Example: QuickController

The QuickController source code has much in common with the
QuickPlay code. The change are, of course, controller-related—as described
in the preceding text. When you run QuickController, you'll again see
the Robot movie. This time, however, it will have a movie controller
attached to it—as shown in Figure 7.24. You can use the controller to
change the sound volume, play the movie, or step through it. When
finished, press any key to quit.

3

318

Graphics and Sound Programming Techniques for the Mac

FIGURE 7.24 The Robot movie, as viewed in the

QuickController example program.

the value of the kMovieName constant to that of the new movie file,
rebuilding the program, and then placing the movie in the folder with the
QuickController application

As always, you can use any movie in place of the supplied one by changing
‘

NOTE

When QuickController starts, the program opens a movie and attaches
a controller to the movie. Before the user gets a chance to interact with
the program, the movie controller has a value (it points to the data that
makes up the controller). In your programs, this won’t be the case.
Typically, a user will select a menu item to open a movie. Before that,
the MovieController variable won’t point to any valid data. Because the
MovieController is used in the main event loop, this could cause prob-
lems—at each pass through the event loop your code will be passing
MCIsPlayerEvent() a controller variable that doesn’t point to valid data:

isControllerEvent = MCIsPlayerEvent(theController, &theEvent);

To remedy this problem, assign the controller variable a value of ni1
when it is declared and when a movie is closed. In other words, if no
movie is on the screen, then no controller is, either—and the variable

Chapter 7 = QuickTime Movies

theController should reflect that fact. The following snippet introduces
the Movie Toolbox function DisposeMovieController() and shows how
to properly assign values to theController.

MovieController theController = nil;
// theController gets a value when NewMovieController() is called
// when it’s time to close the movie, use the following code:

DisposeMovieController(theController);
theController = nil;

DisposeMovie(theMovie);
DisposeWindow(theWindow);

Next, test the value of theController before calling MCIsPlayerEvent(). If
the MovieController variable has a value of ni1, no movie is open and
any event that occurs cannot be controller-related. If the MovieController
variable has a value other than ni1, then the variable points to valid con-
troller data and MCIsPlayerEvent() should be called to see if any event is
controller-related.

if (theController = nil)
isControllerEvent = false;
else
isControllerEvent = MCIsPlayerEvent(theController, &theEvent);

The following is the source code listing for QuickController. You'll find
that most of the code is identical to the code used in the preceding text.

/!

f#finclude <Movies.h>

//

void InitializeAl1Toolboxes(void);

//

fidefine rMovieWindow 128
ftdefine kMovieName “\pRobot”

1/

319

320

Graphics and Sound Programming Techniques for the Mac

void main(void)

{

0SErr theError;

FSSpec theFSSpec;

short theFileRefNum;
Movie theMovie;

short theMovieResID = 0
Str255 theMovieResName;
Boolean wasAltered;
WindowPtr theWindow;

Rect theMovieBox;

Rect theBoundsRect;
MovieController theController = nil;
EventRecord theEvent;

Boolean isControllerEvent;
Boolean allDone = false;

InitializeAl1Toolboxes();

theError = FSMakeFSSpec(0, 0, kMovieName, &theFSSpec);
theError = OpenMovieFile(&theFSSpec, &theFileRefNum, fsRdPerm);
theError = NewMovieFromFile(&theMovie, theFileRefNum,
&theMovieResID, theMovieResName,
newMovieActive, &wasAltered);

CloseMovieFile(theFileRefNum);

theWindow = GetNewCWindow(rMovieWindow, nil, (WindowPtr)-1L);

SetMovieGWorld(theMovie, (CGrafPtr)theWindow, nil);

GetMovieBox(theMovie, &theMovieBox);

theController = NewMovieController(theMovie, &theMovieBox,
mcTopLeftMovie);

MCGetControllerBoundsRect(theController, &theBoundsRect);

SizeWindow(theWindow, theBoundsRect.right,
theBoundsRect.bottom, true);
ShowWindow(theWindow);

while (allDone == false)
{
WaitNextEvent(everyEvent, &theEvent, 15L, nil);
if (theController == nil)
isControllerEvent = false;
else
isControllerEvent = MCIsPlayerEvent(theController,
&theEvent);

Chapter 7 = QuickTime Movies

if (isControllerEvent == false)

{
switch (theEvent.what)
{
case keyDown:
allDone = true;
break;
}
}

}

DisposeMovieController(theController);
theController = nil;

DisposeMovie(theMovie);
DisposeWindow(theWindow);

Movie Controllers and Movie Looping

When a new movie controller is created, MCIsPlayerEvent() handles
mouse clicks that occur on that movie controller in a predictable manner.
A click on the Play button plays the movie one time, for instance. In
general, these default actions will be appropriate for your applications.
Occasionally, though, you'll want to change how MCIsPlayerEvent()
handles certain events. The Movie Toolbox routine MCDoAction() gives
your program the ability to do just that.

The MCDoAction() function acts on one specific controller—the controller
that is passed in the routine’s first parameter. The second parameter—
the action parameter—specifies what action should be affected. Apple
defines several constants that specify different actions. The third parameter
is a pointer to additional information. The nature of this additional infor-
mation varies with the action being passed to MCDoAction().

Movie looping is one of the most common reasons for using
MCDoAction(). Passing the Apple-defined constant mcActionSetLooping
as the second parameter and a pointer to the value true as the third
parameter tells MCDoAction() to turn looping on for the controller
named in the first parameter. Here’s an example:

MovieController theController;

MCDoAction(theController, mcActionSetLooping, (Ptr)true);

321

322

Graphics and Sound Programming Techniques for the Mac

Calling MCDoAction() won’t immediately start the movie looping.
Instead, it sets the controller’s Play button to looping mode. From that
point on, a mouse click on the controller’s Play button will cause the movie
in the controller’s window to play repeatedly until the user again clicks the
Play button.

To return a movie controller’s Play button to its original state, again
call MCDoAction() with an action parameter of mcActionSetLooping. This
time, pass a pointer to a value of false:

MCDoAction(theController, mcActionSetLooping, (Ptr)false);

QuickTime allows a movie controller to loop through a movie in palin-
drome mode. Palindrome looping means that the movie will first play
forward, then backward. This back-and-forth playing pattern will
repeat until the user again clicks on the controller’s Play button. The
following is a snippet that sets a controller to palindrome mode:

MCDoAction(theController, mcActionSetLoopIsPalindrome, (Ptr)true);

Turning palindrome looping off is as simple as turning normal looping off:

MCDoAction(theController, mcActionSetLoopIsPalindrome,
(Ptr)false);

Chapter Example: Movielooping

The MovieLooping example demonstrates just how easy it is to add looping
to a movie. The source code for MovieLooping is identical to that of the
QuickController program except for the addition of a single line of code.
If you compare the source code listings for the two programs, you'll find
that the MovieLooping code has the following line after the controller is
created, whereas the QuickController listing doesn’t:

MCDoAction(theController, mcActionSetLooping, (Ptr)true);

The call to MCDoAction() doesn’t have to appear immediately after a new
controller is created. As long as a valid MovieController is passed in as
the first parameter, MCDoAction() can be used at any point in a program.
For instance, if your program includes a Looping menu item in a Movies
menu, you can call MCDoAction() in response to this item being selected.

Chapter 7 » QuickTime Movies

Chapter Summary

The Movie Toolbox is the set of Toolbox routines that enable you to add
movie-related features to a Mac program. Before making use of this
Toolbox, you should call Gestalt() to verify that the user of your pro-
gram has QuickTime installed on his or her computer. If QuickTime is
present, make sure to initialize the Movie Toolbox by making a call to the
EnterMovies() routine.

A QuickTime movie resides in a QuickTime movie file. Before a movie
can be played, the file in which the movie is must be opened and the movie
must be loaded into memory. After that, your program needs to open a
standard color window in which the movie will be displayed. After the
window is resized to match the dimensions of the movie that will appear
in it, the movie can be displayed and then played. To play the movie, call
the MoviesTask() function repeatedly until the movie has finished.

If your program is to give control of movie playing to the user, attach
a movie controller to an open movie. After that, call MCIsPlayerEvent()
from the program’s main event loop. This powerful Movie Toolbox
routine will handle a mouse click on any of the buttons that make up a
movie controller.

323

CHAPTER 8

QuickTime Musical
Instraments

If you have System 7.5 or later on your Macintosh, your programs can
make use of QuickTime and QuickTime Musical Instruments. Chapter 7
supplied you with all the information you need to add movie-playing
capabilities to your programs. It is now time to add music-playing
capabilities as well.

In this chapter, you'll see how the QuickTime Musical Instruments
extension—and the Toolbox functions designed to work with this system
software—makes it easy to add music and sound effects to any of your
programs. And unlike storing digitized sounds in your application’s
resource fork, you'll find that using the QuickTime Musical Instruments
to play sounds adds very little extra size to your application.

Here, you'll see that—with just a few Toolbox calls—you can play
sounds from any of 128 predefined instruments—the standardized MIDI
(Musical Instrument Digital Interface) instruments that other programs
have used for years. These MIDI instruments don’t just allow you to play
crystal-clear music from such instruments as a grand piano, acoustic guitar,

325

326

Graphics and Sound Programming Techniques for the Mac

or tenor saxophone—many of these “instruments” allow you to add great
special effects and synthesized noises such as seashore noise, the whir
of a helicopter, and telephone rings to your programs.

@bout QuickTime Mausic

The QuickTime Music Architecture, or QMA, is the QuickTime Musical
Instruments system software extension used in conjunction with the
QuickTime extension and the host of new music-related routines that
you can add to any of your programs.

QMA consists of three software components, each corresponding to
a level of access to the devices that are used to create sound. The three
components, or layers, are described here.

Tune Player The top layer that provides timing for sequences—the
instruments and notes of a musical composition.

Note Allocator The next level down from the Tune Player. This layer
is responsible for playing individual notes on specitic synthesizer
devices. :

Music Component The lowest layer. The Music Component provides
routines that allow access to the settings of synthesizer devices.

If your application is to set up a complex musical score, it will make use
of the Tune Player. If your program only needs to play a note or notes
from one of the many available instruments, the Note Allocator can be
used. The Music Component layer is normally used only by the other
layers—a program should seldom or never need to make use of it
directly. This chapter deals with the Note Allocator. By using this one
QMA component, you can quickly and easily add a wide variety of
sounds to any program.

The Note Allocator

The Note Allocator is the midlevel QuickTime Music Architecture com-
ponent that is used to play individual musical notes. This component

Chapter 8 = QuickTime Masical Instruments

makes it possible for your application to play a wide variety of instru-
ments and music with just a few Toolbox calls.

Opening a Note @Allocator Component

A program that makes use of the QuickTime Music Architecture must
open an instance of a Note Allocator component before even a single note
can be played. To do this, call the Toolbox function OpenDefaultComponent ().
This routine isn’t QMA-specific—it is used to open any type of compo-
nent. You'll find its definition in the Components.h universal header file.

NoteAllocator gNoteAllocatorComp;

gNoteAllocatorComp = OpenDefaultComponent(kNoteAllocatorType, 0);

The first parameter to OpenDefaultComponent() is the component type.
Supply the Apple-defined constant kNoteAllocatorType (which is
defined to be ‘nota’, for Note Allocator) to tell OpenDefaultComponent()
to open a Note Allocator component. The second parameter is a compo-
nent subtype—pass 0 here.

OpenDefaultComponent() returns a Note Allocator component. Save a
reference to this component in a variable of type NoteAlTocator. The above
snippet stores the component in the global variable gNoteAllocatorComp.

ToneDescription: Describing an Instrament

After opening an instance of a Note Allocator component, a note chan-
nel needs to be opened. When your program requests a note channel, it
will supply specific information about the music that will be played
from that channel. Some of this information will be about the instru-
ment type that will be used to produce the sound that emanates from
the channel. Apple defines the ToneDescription data structure to hold
this instrument information:

struct ToneDescription

{
0SType synthesizerType;
Str3l synthesizerName;

327

328

Graphics and Sound Programming Techniques for the Mac

Str3l instrumentName;
long instrumentNumber;
long gmNumber;

};

The first field of the ToneDescription structure is a number that specifies
the type of synthesizer that should be used. A synthesizer is a software
or hardware device used to create sound. Each synthesizer has its own
Music Component—a low-level component that serves as the software
interface to the synthesizer. The QuickTime Music Architecture includes
a built-in synthesizer.

The second field of ToneDescription is the name of the synthesizer
specified in the first field. If the built-in synthesizer is used, this field
will be filled in with the string “Macintosh Built In.”

The instrumentName field of the structure holds the name of the
instrument that will be used to generate a sound. This field will hold
one of the strings listed in Appendix A.

The fourth field holds a number that represents the instrument to be
used. This field will have a value in the range of 1 to 128. These numbers
correspond to the instruments listed in Appendix A. The value of this
field will usually match the value in the gmNumber field.

The gmNumber field holds one of the 128 General MIDI Instrument
numbers shown in Appendix A. Your program can open an Instrument
Picker dialog box (discussed later) that allows the user to select an
instrument by name. If that happens, the gmNumber field will be filled in
with the matching instrument number from Appendix A. If instead your
program specifies an instrument to play, your program will supply a
gmNumber value in the range of 1 to 128. If your program supplies a
number outside of this range, the QMA will select a valid number, place
that value in the instrumentNumber field, and use that instrument.

To fill in a ToneDescription, first declare a ToneDescription variable:

ToneDescription gToneDesc;

Next, fill in the five fields. You can supply zeros in the first three fields and
a General MIDI Instrument number in the fourth and fifth fields. The fol-
lowing snippet creates a ToneDescription for the Xylophone instrument:

Chapter 8 = QuickTime Masical Instruments

329

ToneDescription gToneDesc;

gToneDesc.synthesizerType = 0;
gToneDesc.synthesizerName[0] = 0;
gToneDesc.instrumentName[0] = 0;
gToneDesc.instrumentNumber = 14;
gToneDesc.gmNumber = 14;

In preparation for the opening of a note channel and the playing of a
note, you can write a short application-defined routine like the Initialize-
Instrument() function shown here. It opens a Note Allocator component,
then sets the fields of a ToneDescription.

NoteAllocator gNoteAllocatorComp;
ToneDescription gToneDesc;

void InitializeInstrument(void)

{
gNoteAllocatorComp = OpenDefaultComponent(‘nota’, 0);

gToneDesc.synthesizerType = 0;
gToneDesc.synthesizerName[0] = 0;
gToneDesc.instrumentName[0] = 0;
gToneDesc.instrumentNumber = 15;
gToneDesc.gmNumber = 15;

Describing a Note Channel

The ToneDescription defines the instrument that will be used to play a
note. There are a couple of other attributes that are needed before a note
channel can be opened. The NoteRequest data structure defines the
information needed to define a note channel:

struct NoteRequest

{
long polyphony;
Fixed typicalPolyphony;
ToneDescription tone;

}:

330

Graphics and Sound Programming Techniques for the Mac

The first field of the NoteRequest structure is the channel’s polyphony.
In music, polyphony has to do with the combining of melodies—as in a
harmony. The polyphony field holds the maximum number of notes, or
voices, that can be played at one time by the channel.

The typicalPolyphony field of the NoteRequest structure is used by
the Note Allocator to help it return a note channel that best satisfies the
information in the rest of the NoteRequest structure. Pass a value of
0x00010000 for this Fixed field type.

The final NoteRequest field is a ToneDescription like the one
described earlier. The ToneDescription tells the Note Allocator what
type of instrument will be used in the note channel.

The following snippet fills in a NoteRequest for use in opening a
new note channel. The tone field is filled in with the ToneDescription
global variable discussed earlier—gToneDesc.

NoteRequest theNoteRequest;

theNoteRequest.polyphony = 4;
theNoteRequest.typicalPolyphony = 0x00010000;
theNoteRequest.tone = gToneDesc;

Opening a Note Channel

Finally, it’s time to open a new note channel. A call to NANewNoteChannel()
does that:

NoteAllocator gNoteAllocatorComp;
NoteChannel theNoteChannel;
NoteRequest theNoteRequest;
ComponentResult theError;

theError = NANewNoteChannel(gNoteAllocatorComp, &theNoteRequest,
&theNoteChannel);

The first parameter to NANewNoteChannel() is an instance of a Note
Allocator component. This is the NoteAllocator returned by the call to
the Toolbox function OpenDefaultComponent().

Chapter 8 = QuickTime Musical Instruments

The second parameter to NANewNoteChannel() is a variable of type
NoteRequest. The third field of this NoteRequest structure should hold
the filled-in ToneDescription that specifies the type of General MIDI
Instrument that is to be used with the channel.

After opening a new note channel, NANewNoteChannel() returns in
the third parameter a NoteChannel with the qualities described in the
NoteRequest structure.

If you haven't already realized it, the leading “NA” in a function name tells
you the function is Note Allocator-related.

After opening a new note channel, notes and music can be played—as
you'll see just ahead.

When through with a note channel, your application can dispose of
it using the NADisposeNoteChannel() function. Pass this routine both the
instance of the Note Allocator component and the NoteChannel that
were the first and third parameters in the call to NANewNoteChannel().

NoteAllocator gNoteAllocatorComp;
NoteChannel theNoteChannel;
ComponentResult theError;

theError = NADisposeNoteChannel(gNoteAllocatorComp, theNoteChannel);

Playing a Note

With a note channel open, it’s time to play some music. A call to
NAPTayNote() does that. The following snippet plays a middle C note from
whatever instrument, and at whatever polyphony, was specified in the
NoteRequest structure passed to NANewNoteChannel():

NoteAllocator gNoteAllocatorComp;
NoteChannel theNoteChannel;
short thePitch;

Tong thelong;

331

332

Graphics and Sound Programming Techniques for the Mac

thePitch = 60;
NAPTayNote(gNoteAllocatorComp, theNoteChannel, thePitch, 127);

The first parameter to NAPTayNote() is the instance of the Note Allocator
component returned by OpenDefaultComponent() and used in the call to
NANewNoteChannel (). The second parameter to NAPTayNote() is the note
channel from which to play the music.

Skipping the third parameter for a moment, the value in the fourth
parameter specifies the velocity of the note. The velocity refers to how
hard a key on a keyboard would be struck to produce this note on a
piano. Simplistically, the velocity is the note’s volume. A value of 0 pro-
duces silence, while a value of 127 produces maximum volume.

Back to the third NAPTayNote() parameter. This value is the pitch, or
frequency, of the note. The value of 60 produces a middle C note. This
parameter should have a value in the range of 0 to 127. Each of these
128 pitch values corresponds to a MIDI key number. If you're familiar
with music, you know that pitch is related to a particular key. Figure 8.1
shows how the possible pitch values of 0 through 127 correspond to the
C keys of each of the eleven octaves of a piano.

Key names

0 12 24 36 48 60 72 84 96 108 120 127

l| Five-octave standard IDI key numbe!
keyboard range " ey nubers

FIGURE 8.1 Piano keys each have a key name and a MIDI key, or note, value.

Don’t confuse the MIDI note values of 0 to 127 that correspond to piano
keys with the General MIDI Instrument numbers (listed in Appendix A),
which have a range of 1 to 128. Any one of the 128 MIDI instruments can
play any of the 128 MIDI notes.

Chapter 8 = QuickTime Mausical Instruments

Each pitch value corresponds to a MIDI note value. Each MIDI note
value corresponds to a note in the scale of a particular octave. Figure 8.1
shows the MIDI note values related to the keys of a piano and to the C
notes in the scales of the octaves. Table 8.1 shows the MIDI note values
related to each note in all of the octaves. For example, specifying a pitch of
37 will produce a C# note in the scale of the fourth octave. The highlighted
pitch values 36 through 96 are the pitch values that fall into the range of
the standard five-octave keyboard.

Table 8.1 A MIDI note value corresponds to a scale value in a particular octave.

A At B c c# D D# E F F# © G#
Octave 1 0 1 2 3 4 5 6 7 8
Octave 2 9 10 11 12 13 14 15 16 17 18 19 20
Octave 3 21 22 23 24 25 26 27 28 29 30 31 32
Octave 4 | 33 34 35 36 37 38 39 40 41 42 43 44
Octave 5 45 46 47 48 49 50 51 52 53 54 55 56
Octave 6 57 58 59 60 61 62 63 64 65 66 67 68
Octave 7 69 70 71 72 73 74 75 76 77 78 79 80
Octave 8 81 82 83 84 85 86 87 88 89 90 91 92
Octave 9 93 94 95 96 197 98 99 100 101 102 103 104
Octave 10 105 106 107 108 109 110 111 112 113 114 115 116
Octave 11 117 118 119 120 121 122 123 124 125 126 127

When NAPlayNote() is called, a note specified by the pitch is played on
the instrument specified by the setup of the note channel. As long as the
velocity value is nonzero, this note will play indefinitely—NAP1ayNote()
includes no provision for setting the duration of the note. To stop the
note, again call NAP1ayNote(). This time, use a velocity of 0. If you make
the second call to NAP1ayNote() immediately after the first call, the note
will stop immediately. To set a duration, add a delay between the two
calls to NAP1ayNote(). You can use the Toolbox function Delay() to
accomplish this task—as shown in this snippet:

333

334

Graphics and Sound Programming Techniques for the Mac

NoteAllocator gNoteAllocatorComp;
NoteChannel theNoteChannel;
short thePitch;

Tong thelong;

thePitch = 60;

NAPlayNote(gNoteAllocatorComp, theNoteChannel, thePitch, 127);
Delay(10, &thelong);
NAPTayNote(gNoteAllocatorComp, theNoteChannel, thePitch, 0);

The first parameter to Delay() specifies the length of the delay in ticks—
sixtieths of a second. The above snippet causes the note to play for ten
sixtieths, or one sixth, of a second: Similarly, a first parameter of 60 would
play the note for one second while a first parameter of 180 would play
the note for three seconds. The second parameter to Delay() is a pointer
to a Tong variable. Delay() returns the number of ticks that have taken
place from the time of the computer’s startup to the call to Delay()—a
value that you won’t be concerned with.

Chapter Example: PlayNote

This chapter’s first example uses QuickTime Musical Architecture func-
tions to play the sound of a helicopter for 5 seconds. The setting of the
ToneDescription field gmNumber to a value of 126 in the application-
defined InitializeInstrument() function specifies that the Helicopter
General MIDI Instrument should be used. To change the sound, refer to
Appendix A. Select any of the 128 MIDI instrument numbers, set
gmNumber to that value, and recompile and run the program.

You can slow the helicopter sound down or speed it up by changing
the value of the pitch in the PlayMusicFromNoteChannel() function.
Choose a value in the range of 0 to 127. Lower values slow the heli-
copter blade down; higher values speed it up.

You can change the length which the sound plays by changing the
value of the first parameter in the Delay() function called from
PlayMusicFromNoteChannel().

/1!

#finclude <QuickTimeComponents.h>

Chapter 8 = QuickTime Masical Instruments 335

1/

void InitializeToolbox(void);
void InitializeInstrument(void);
void PlayMusicFromNoteChannel(void);

//

NoteAllocator gNoteAllocatorComp;
ToneDescription gToneDesc;

/1

void main(void)

{
InitializeToolbox();

InitializeInstrument();

PlayMusicFromNoteChannel();
}

/!

void Initializelnstrument(void)

{
gNoteAllocatorComp = OpenDefaultComponent(kNoteAllocatorType, 0);

gToneDesc.synthesizerType = 0;
gToneDesc.synthesizerName[0] = 0;
gToneDesc.instrumentName[0] = 0;
gToneDesc.instrumentNumber = 126;
gToneDesc.gmNumber = 126;

}

//

void PlayMusicFromNoteChannel(void)

{
NoteRequest theNoteRequest;
NoteChannel theNoteChannel;
short thePitch;
ComponentResult theError;
long thelLong;

theNoteRequest.polyphony = 4;
theNoteRequest.typicalPolyphony = 0x00010000;
theNoteRequest.tone = gToneDesc;

Graphics and Sound Programming Techniques for the Mac

336

theError = NANewNoteChannel(gNoteAllocatorComp, &theNofeRequest,
&theNoteChannel);
thePitch = 60;

NAPlayNote(gNoteAllocatorComp, theNoteChannel, thePitch, 127);
Delay(300, &thelong);
NAPlayNote(gNoteAllocatorComp, theNoteChannel, thePitch, 0);

theError = NADisposeNoteChannel(gNoteAllocatorComp,
theNoteChannel);
}

/1

void InitializeToolbox(void)
{
InitGraf(&qd.thePort);
InitFonts();
InitWindows();
InitMenus();
TEInit();
InitDialogs(OL);
FlushEvents(everyEvent, 0);
InitCursor();

Chapter Example: PlayScale

The PlayScale program is very similar to the PlayNote example you just
experimented with. One of the differences is in the instrument used to
play the sound. In PlayScale, the gmNumber is set to 1, which selects the
Acoustic Grand Piano instrument (again, refer to Appendix A).

void Initializelnstrument(void)
{
gNoteAllocatorComp = OpenDefaultComponent(kNoteAllocatorType, 0);

gToneDesc.synthesizerType = 0;
gToneDesc.synthesizerName[0] = 0;
gToneDesc.instrumentName[0] = 0;
gToneDesc.instrumentNumber = 1;

Chapter 8 = QuickTime Masical Instruments

gToneDesc.gmNumber = 1;
}

More important than the change to the InitializeInstrument() function
is the change to PlayMusicFromNoteChannel(). In PlayScale, the calls to
NAPTayNote() and Delay() have been placed in the body of a for loop. At
each pass through the loop, the pitch is incremented by a value of 1. The
effect is that of running your finger from left to right across the shaded
piano keys in Figure 8.1.

for (thePitch = 36; thePitch <= 96; thePitch++)

{
NAPlayNote(gNoteAllocatorComp, theNoteChannel, thePitch, 127);
Delay(10, &thelong);
NAPlayNote(gNoteAllocatorComp, theNoteChannel, thePitch, 0);
}

The remainder of the PlayScale code is identical to that of the PlayNote pro-
gram. You can refer to this book’s CD for the complete source code listing.

Selecting an Instrument

The QuickTime Music Architecture provides a powerful and easy to
implement means of both experimenting with MIDI instruments and of
allowing users of your programs to select the MIDI instrument to use.
Figure 8.2 shows the Instrument Picker dialog box that your program
can open with a single Note Allocator function call.

B e e LT

Select an instrument:

Best

Cotogory: (T msirament)

Instrument: | |

LI
o

FIGURE 8.2 The Pick Instrument dialog box.

337

Graphics and Sound Programming Techniques for the Mac

338

Clicking on the synthesizer pop-up menu in the Instrument Picker
dialog box displays a list of synthesizers to choose from. As shown in
Figure 8.3, Apple supplies one synthesizer with the QuickTime Musical
Instruments extension—third-party synthesizers may be available. You
can leave this menu at the Best Synthesizer item to let the QMA select
the best choice.

Select an instrument:

Best Synthesizer

Macintosh Built In
Instrument:|_Acoustic 6rand Piano |

L ALIELE,

FIGURE 8.3 The synthesizer pop-up menu in the Pick Instrument dialog box.
As shown in Figure 8.4, the Category pop-up menu allows you to select

a category of instruments. Selecting a category determines the contents
of the next pop-up menu, the Instrument menu.

No Instrument
Select an inst

Guitar

Bass

Strings & Orchestra
Ensemble
Brass

Reed

Pipe

Synth Lead
Synth Pad
Synth £ifect
Ethnic
Percussive
Sound Effects

Drum Kits

FIGURE 8.4 The Category pop-up menu in the Pick Instrument dialog box.

Ch 8 » QuickTime Mausical Instr ts
apter ckTime Masical Instrumen 339

After selecting an instrument category, select a particular instrument
from that category by using the Instrument pop-up menu—shown in
Figure 8.5.

Select an instrument:

Best Synthesizer
Category:
ficoustic Grand Piano

Bright Acoustic Fieno
Flectric 6rend Pieno

Honkytonk Fiana

Lhorused Fieno

I Clavinet ! t x_)

FIGURE 8.5 The Instrument pop-up menu in the Pick Instrument dialog box.

Once you've selected an instrument, click on any key of the Instrument
Picker keyboard. If you click on a key and hold the mouse button down,
the note will play until you release the mouse button. You can also hold the
mouse button down and move the cursor across the keys to play any num-
ber of notes in a single mouse-click.

Adding the Instrument Picker Dialog Box
to a Program

The Instrument Picker dialog box is great for experimenting with all of
the one hundred-plus MIDI instruments. When added to one of your
own programs, it serves to quickly and easily show off the capabilities of
the QuickTime Musical Instruments extension.

A single Toolbox call displays the Instrument Picker dialog box and
handles all of its functionality. The following snippet makes use of the
powerful NAPickInstrument() function.

NoteAllocator gNoteAllocatorComp;

ToneDescription gToneDesc;

ComponentResult theResult;

Str31 thePrompt = “\pPick an instrument:”;

340

Graphics and Sound Programming Techniques for the Mac

theResult = NAPickInstrument(gNoteAllocatorComp, nil, thePrompt,
&gToneDesc, 0, 0, 0, 0);

The first parameter to NAPickInstrument() is the Note Allocator compo-
nent that was returned in the call to OpenDefaultComponent (). The second
parameter holds an optional filter function—the above snippet simply
sets this parameter to ni1. The third parameter holds a string that will be
displayed in the dialog box—refer to Figure 8.5 to see the placement of
this string. The fourth parameter to NAPickInstrument() is a pointer to a
ToneDescription variable. Unlike the ToneDescription variables used in
preceding example programs, the one used here does not need to be
initialized. Instead, the NAPickInstrument() function will fill the fields of
this variable based on the user’s instrument selection.

The last four parameters to NAPickInstrument() can each be set to 0.
The fifth parameter can be used to hold a flag that limits the user’s
instrument choices. Passing the Apple-defined constant kPickDontMix
will dim the last menu item in the Category pop-up menu—the Drum
Kits item. Refer to Figure 8.4 to see this item. Passing the Apple-defined
constant kPickSameSynth will dim all synthesizer items in the synthesiz-
er menu except for the Best Synthesizer item.

The sixth parameter is used to hold a reference constant—the above
snippet sets this value to 0. The seventh and eighth parameters are
reserved by Apple and must be set to 0.

Chapter Example: Pickinstrument

The PickInstrument example program displays the Pick Instrument dialog
box. You can experiment with this dialog box to your heart’s content—it
won’t be dismissed until you click either the Cancel or OK button.

After initializing the Macintosh Toolbox, PickInstrument calls the
application-defined InitializeInstrument() function to set the instrument
number to 0. A value of 0 in the gmNumber field of the ToneDescription
structure means that the Category pop-up menu will display a No
Instrument item, the Instrument pop-up menu will be disabled, and the
dialog box keyboard will be disabled as well. That should be an indication
to the user that a selection from the Category menu is in order. Once a

Chapter 8 = QuickTime Musical Instruments

341

selection other than No Instrument is made, the rest of the dialog box
will become enabled.

void InitializeInstrument(void)
{
gNoteATlocatorComp = OpenDefaultComponent(kNoteAllocatorType, 0);

gToneDesc.synthesizerType = 0;
gToneDesc.syntkr ~izerName[0] = 0;
gToneDesc.insti .entName[0] = 0;
gToneDesc.instrumentNumber = 0;
gToneDesc.gmNumber = 0;

To demonstrate that NAPickInstrument() fills in the ToneDescription struc-
ture that is passed as the fourth parameter, turn your compiler’s debugging
option on. If you break at the end of the InitializeInstrument() function
you'll see that the gToneDesc fields have been filled as expected—Figure 8.6
shows this using the Metrowerks debugger.

P gMoteAllocatorComp i0x00970000
i~ eTRREDSEEER 0x00sE0 1 F2
| synthesizerType i0

synthesizerName i™\p”
instrumentName i"\p”
instrumentNumber :0
gmNumber i0

void Initializelnstrument(void >
{ o
- gNotefl locatorComp = OpenDefaul tComponent(‘nota’, 0 EE

- gToneDesc.synthesizerType = 0;
- gToneDesc.synthesizerName (0] = 0;
- gToneDesc. instrumentName (01 = O;
- gToneDesc. instrumentNumber = 0;
- gToneDesc. gmNumber = 0;
o }

Line: 52 | Source v [4

FIGURE 8.6 The fields of the ToneDescription structure are initialized to 0.

Next, set a breakpoint after the call to NAPickInstrument()—as shown in
Figure 8.7. When this breakpoint is reached you’ll find that the fields of

Graphics and Sound Programming Techniques for the Mac

342

the gToneDesc ToneDescription structure have been filled—including
both the MIDI name and number of the instrument selected by the user.

e

4 Pic

nstrntﬁSK

P gNoteAllocatorComp 00970000 [
~ [TGECESEIREE 0x00AE01F2
synthesizerType |
synthesizerName
instrumentName
instrumentNumber
gmMumber

void Initializelnstrument(void)
{
- gNoteAl locatorComp = OpenDefaul tComponent(‘nota’, O

gToneDesc. synthesizerType = 0;
gTonelesc.synthesizerNamel(0] = 0;
- gToneDesc. instrumentName[0] = 0;
- gToneDesc. instrumenthumber = 0;

gToneDesc. gmNumber = O;
»)

®

Line:52 | Source v (Gl

FIGURE 8.7 The NAPickInstrument() function will change
the values of the fields of the ToneDescription structure.

The following very short listing is the entire source code listing for the
PickInstrument program. Notice that when NAPickInstrument() is called,
no new note channel needs to be allocated. NAPickInstrument() handles
the creation and disposal of the note channel it uses to play music.

/!

#include <QuickTimeComponents.h>

/]

void InitializeToolbox(void);
void InitializelInstrument(void);

/1

NoteAllocator gNoteAllocatorComp;
ToneDescription gToneDesc;

Chapter 8 = QuickTime Masical Instruments

343
//
void main(void)
{
ComponentResult theResult;
Str3l thePrompt = “\pSelect an instrument:”;

InitializeToolbox();
InitializeInstrument();

theResult = NAPickInstrument(gNoteAllocatorComp, nil, thePrompt,
&gToneDesc, 0, 0, 0, 0);
if (theResult != noErr)

ExitToShell();

}

//

void Initializelnstrument(void)

{
gNoteAllocatorComp = OpenDefaultComponent(kNoteAllocatorType, 0);
gToneDesc.synthesizerType = 0;
gToneDesc.synthesizerName[0] = 0;
gToneDesc.instrumentName[0] = 0;
gToneDesc.instrumentNumber = 0;
gToneDesc.gmNumber = 0;

}

//

void InitializeToolbox(void)
{
InitGraf(&gd.thePort);
InitFonts();
InitWindows();
InitMenus();
TEInit();
InitDialogs(OL);
FlushEvents(everyEvent, 0);
InitCursor();

344

Graphics and Sound Programming Techniques for the Mac

Chapter Example: PickAndPlay

The last example program in this chapter adds to the PickInstrument pro-
gram you just looked over. When you run PickAndPlay, you'll again see
the Pick Instrument dialog box. If you select an instrument and then click
the OK button, the dialog box will be dismissed and a series of notes from
the selected instrument will be played. The P1ayMusicFromNoteChannel()
routine used in this chapter’s PlayScale example takes care of this task.
You'll find that this version of P1ayMusicFromNote-Channel() is identical to
the previous version—it’s a direct copy and paste from PlayScale.

PlayScale demonstrates that while the Pick Instrument dialog box
may sidetrack the user for quite a while, this dialog box is more than a
simple diversion. It allows your application to let the user choose the
instrument to be used. This dialog box also allows your program to save
the user’s instrument selection for later use. By having a global variable
for the ToneDescription parameter that is passed to NAPickInstrument(),
your program can recall the user’s instrument selection at any time.

If the user clicks the Cancel button rather than the OK button,
PickAndPlay assumes that the user doesn’t want the selection saved. If
the user doesn’t make an instrument selection, the program again
assumes that no music is to be played. In both cases, PickAndPlay
exits—your program will handle a Cancel hit or a nonselection in a
more graceful manner.

theResult = NAPickInstrument(gNoteAllocatorComp, nil, thePrompt,
&gToneDesc, 0, 0, 0, 0);

if ((gToneDesc.instrumentNumber == 0) || (theResult != noErr))
ExitToShell1();

else
PlayMusicFromNoteChannel();

The above snippet will exit the program if the user clicks the Pick Instrument
dialog box Cancel button—the variable theResult will have a value of
userCanceledErr. If your program needs to know if this button was
clicked, make a comparison using the following Apple-defined constant:

if (theResult == userCanceledErr)
// handle user canceled instrument choice

Chapter 8 = QuickTime Masical Instraments

Now that you're familiar with the fields of the ToneDescription struc-
ture and how they can be initialized, the application-defined Initialize-
Instrument() function has been redesigned. It now calls the Toolbox
function NAStuffToneDescription().

Rather than filling in the fields of gToneDesc one at a time—as was done
in previous examples—a single call to NAStuffToneDescription() is now
used. When passed a Note Allocator component and a gmNumber value in its
first two parameters, this function fills in the fields of the ToneDescription
variable passed as the third parameter. InitializeInstrument() now
accepts a single parameter—the General MIDI Instrument number of the
instrument to initialize the ToneDescription structure to. Here’s the new
InitializeInstrument() function, along with a call to it.

fidefine kMIDInoInstrument 0
long thelnstrument = kMIDInoInstrument;
Initializelnstrument(thelnstrument);

void InitializeInstrument(long thelnstrument)

{
ComponentResult theResult;
gNoteAllocatorComp = OpenDefaultComponent(kNoteAllocatorType, 0);
theResult = NAStuffToneDescription(gNoteAllocatorComp,
thelnstrument, &gToneDesc);
}

The MIDI instrument that is passed to InitializeInstrument() in the
form of a gmNumber value will be the instrument that appears in the
Instrument pop-up menu of the Pick Instrument dialog box when the dia-
log box opens. Try changing the value passed to InitializeInstrument()
to verify that it has this effect.

1/

f#include <QuickTimeComponents.h>

//

void InitializeToolbox(void);
void InitializeInstrument(long);

345

346

Graphics and Sound Programming Techniques for the Mac

void PlayMusicFromNoteChannel(void);

/1

jidefine kMIDInoInstrument 0
//

NoteAllocator gNoteAllocatorComp;
ToneDescription gToneDesc;

//

void main(void)

{
ComponentResult theResult;
Str3l thePrompt = “\pSelect an instrument:”;
Tong thelnstrument = kMIDInoInstrument;

InitializeToolbox();
Initializelnstrument(thelnstrument);

theResult = NAPickInstrument(gNoteAllocatorComp, nil, thePrompt,
&gToneDesc, 0, 0, 0, 0);

if ((gToneDesc.instrumentNumber = 0) || (theResult != noErr))

ExitToShell1();
else
PlayMusicFromNoteChannel();
}
//

void InitializeInstrument(long thelnstrument)
{
ComponentResult theResult;

gNoteAllocatorComp = OpenDefaultComponent(kNoteAllocatorType, 0);
theResult = NAStuffToneDescription(gNoteAllocatorComp,

thelnstrument, &gToneDesc);
}

/1

void PlayMusicFromNoteChannel(void)
{
NoteRequest theNoteRequest;

Chapter 8 = QuickTime Masical Instruments

347
NoteChannel theNoteChannel;
short thePitch;
ComponentResult theError;
Tong thelong;

theNoteRequest.polyphony = 4;
theNoteRequest.typicalPolyphony = 0x00010000;
theNoteRequest.tone = gToneDesc;

theError = NANewNoteChannel(gNoteAllocatorComp, &theNoteRequest,
&theNoteChannel);

for (thePitch = 36; thePitch <= 96; thePitch++)

{
NAPTayNote(gNoteAllocatorComp, theNoteChannel, thePitch, 127);
Delay(10, &thelong);
NAPlayNote(gNoteAllocatorComp, theNoteChannel, thePitch, 0);
}

theError = NADisposeNoteChannel(gNoteAllocatorComp,
theNoteChannel);

}
/1

void InitializeToolbox(void)
{
InitGraf(&qd.thePort);
InitFonts();
InitWindows();
InitMenus();
TEInit();
InitDialogs(OL);
FlushEvents(everyEvent, 0);
InitCursor();

Summary

System 7.5 includes an extension called QuickTime Musical Instruments.
This system software—and the new Movie Toolbox functions that work
with this system software—make it simple to add quality music and
sound effects to any Mac program.

348

Graphics and Sound Programming Techniques for the Mac

To play a musical note, your program first needs to open a Note
Allocator component. A call to OpenDefaultComponent() takes care of
this. Next, your program should create and fill in a ToneDescription
structure that describes the type of instrument that will be used to play
the music. After that, a NoteRequest structure needs to be filled in. One of
the three fields of this structure is the ToneDescription that was created
earlier. Finally, a new note channel needs to be allocated using the
NANewNoteChannel() function. After that, your application is ready to
use the NAPTayNote() function to play one or more notes.

To display the standard Pick Instrument dialog box, your program
should call NAPickInstrument(). This powerful routine opens the dialog
box and handles all user action in it—including opening a new note
channel for the user-selected instrument.

CHAPTER 9

Application: QuickTime
Movie Editor

Each example program in the previous nine chapters was a short, simple
application written with one purpose: to provide a working demonstration
of the topic that appeared just before the program. The code listings for
those programs are meant to serve as sources from which you can select
code snippets to paste and modify in the source file of your own, larger
graphics and sound application. While having the individual pieces of a
puzzle can be helpful, it is also nice to have a complete puzzle to serve
as a model. Enter the FilmEdit program.

In this chapter, you'll see the development of a QuickTime movie
editor named FilmEdit. You'll see how the QuickTime topics presented
in Chapter 7 can be applied to a program that uses menus and supports
multiple movie windows. FilmEdit is a full-blown Mac application that
can serve as a sort of framework for your own program. Much of the
code is written to be reusable “as is,” or with only slight modification.
And, of course, much of the code is written to demonstrate techniques
presented in this book.

349

350

Graphics and Sound Programming Techniques for the Mac

As you read about FilmEdit, you'll see the general technique of
creating a program that supports any number of open windows—even
different types of windows. You'll also see the more specific technique of
implementing all of the Edit menu items so that they work on Quick-
Time movies. You'll also learn how to save a movie that has been edited—
either to the same file from which the movie came or to a new file.

Movie Editing

Your application might allow users to play movies, but not make
changes to them. Before you place that limitation on the user, consider
that the Movie Toolbox makes the addition of movie-editing capabilities
to an application a very simple task.

Movie Editing and the Movie Controller

When a movie has a movie controller attached to it, the user can use the
Step forward and Step backward buttons to move to any frame in that
movie. If a program implements Copy and Cut commands, they can be
used on whichever frame is currently being displayed. If the Shift key
is held down while the slider is moved (or either of the Step buttons are
clicked), a selection of a number of frames can be made. When that’s
done, the Play bar highlights the selection (see Figure 9.1) and Copy
and Cut commands apply to all the frames within the selection.

Selected part of a movie track is highlighted

FIGURE 9.1 A movie controller and its parts.

You may recall that when a movie file is opened, you provide some
level of read or write permission for the movie in that file. In past exam-
ples, the level has been set to read-only—fsRdPerm. To allow editing of a
movie to take place, instead open the movie’s file with a permission

Chapter 9 = fApplication: QuickTime Movie Editor

level of read and write—fsRdWrPerm. The following snippet makes the
necessary change to the call to OpenMovieFile().

OSErr theError;
FSSpec theFSSpec;
short theFileRefNum;

theError = OpenMovieFile(&theFSSpec, &theFileRefNum, fsRdWrPerm);

You'll need to use only a handful of Movie Toolbox routines to be able to
create an Edit menu that works as well for movie frames as it does for text
and graphics. The first of these functions is MCEnableEditing(). When a con-
troller is created, it initially doesn’t support editing. Calling MCEnable-
Editing() gives the controller the permission it needs to allow editing.

MovieController theController;

MCEnableEditing(theController, true);

The first parameter to MCEnableEditing() is the controller attached to
the movie to edit. The second parameter is a Boolean value that tells the
Movie Toolbox whether to enable editing (true) or disable editing
(false) for this movie controller.

Enabling editing for a movie controller (and thus for a movie) is a one-
time task. Once the movie file has been opened with a write permission
level and the movie’s controller has had editing enabled, editing func-
tions performed on the movie will work properly.

Movie Toolbox Movie Editing Routines

The Movie Toolbox holds editing routines that take care of the work
involved in editing a movie. Each routine requires a controller as a
parameter. By specifying a controller, you also specify the movie that is
to receive the editing.

To cut the current frame or current selection of a movie, call the Movie
Toolbox function MCCut ().

MovieController theController;
Movie theTempMovie;

theTempMovie = MCCut(theController);

351

352

Graphics and Sound Programming Techniques for the Mac

The movie controller is the only parameter MCCut () needs. After
removing the current selection, MCCut() returns it to your program as a
Movie. You'll need this movie as a parameter to another Movie Toolbox
routine, PutMovieOnScrap(). The Movie Toolbox doesn’t take the liberty
of automatically placing the cut movie to the clipboard, or scrap. Doing
so would overwrite the existing contents of the scrap—something every
application may not want to do. To place the cut movie on the scrap,
follow a call to MCCut () with a call to PutMovieOnScrap():

MovieController theController;
Movie theTempMovie;

theTempMovie = MCCut(theController);
PutMovieOnScrap(theTempMovie, movieScrapOnlyPutMovie);

PutMovieOnScrap() gives you the option of placing the cut movie on the
scrap and overwriting whatever is already there, or adding the cut
movie to whatever is currently on the scrap. To overwrite the current
contents of the scrap, pass the Apple-defined constant movieScrapOnly-
PutMovie as the second parameter to PutMovieOnScrap(). To add the cut
movie to whatever is already on the scrap, use the Apple-defined constant
movieScrapDontZeroScrap.

Because movies can be quite large, your application is through with
one, dispose of it. As you've seen, that’s what the example applications
have done by calling the Movie Toolbox routine DisposeMovie(). In the
above snippet, you saw that a Movie variable named theTempMovie held
the cut movie. Make sure to free the memory occupied by this temporary
movie by disposing of it:

theTempMovie = MCCut(theController);
PutMovieOnScrap(theTempMovie, movieScrapOnlyPutMovie);
DisposeMovie(theTempMovie)

To copy the current selection of a movie, make a call to the Movie
Toolbox routine MCCopy (). Then, as was done for cutting a part of a
movie, call PutMovieOnScrap() to store the copied movie to the scrap.
Then, again as was done for cutting a movie, dispose of the temporary
movie by making a call to DisposeMovie().

MovieController theController;
Movie theTempMovie;

Chapter 9 = fipplication: QuickTime Movie Editor

theTempMovie = MCCopy(theController);
PutMovieOnScrap(theTempMovie, movieScrapOnlyPutMovie);
DisposeMovie(theTempMovie)

After cutting or copying a part of a movie, the user should be able
either to paste this movie from the scrap to a different spot in the same
movie or a different existing movie, or to form a new movie altogether.
To paste, call the Movie Toolbox routine MCPaste().

MovieController theController;

MCPaste(theController, nil);

MCPaste() will paste to the current frame of the active window of a pro-
gram. And, this function can be written such that it will paste any movie
there—not just the movie on the scrap. The second parameter to MCPaste()
is the movie to paste. If you pass a value of ni1, as shown above, MCPaste()
will use the contents of the scrap in the paste. If you specify a particular
Movie variable as the second parameter, MCPaste() will instead use that
movie in the paste, and ignore the contents of the scrap.

Passing a value of nil as the second parameter in MCPaste() will allow
your program to paste the contents of the clipboard to the selected movie—
whether the clipboard contains a movie, a picture, or text.

NOTE

Most programs that include a functioning Edit menu have a Clear
menu item in that menu. This item cuts the current selection, but
doesn’t save it to the scrap. Not saving it allows the user to remove
selected frames while still preserving whatever is already on the
Clipboard. You can clear the current selection by calling the Movie
Toolbox routine MCClear(). MCClear() cuts the current selection but
doesn’t return the cut movie to your application—thereby saving the
you the effort of disposing of the movie.

MovieController theController;

MCClear(theController);

Adding an Undo menu item to your application’s Edit menu is easy
with the Movie Toolbox. Just call MCUndo() to undo the most recently
performed editing operation:

353

354

Graphics and Sound Programming Techniques for the Mac

MovieController theController;

MCUndo(theController);

Compared to the implementation of the other editing operations,
adding a Select All menu item to an Edit menu requires a little extra
effort. Before selecting an entire movie, your program needs to be made
aware of the movie’s length. Timing information for a movie can be
saved in a data structure of type TimeRecord:

struct TimeRecord

{
CompTimeValue value;
TimeScale scale;
TimeBase base;
1

Movie time is measured on a scale. Applications have the freedom of
setting the scale to a unit of measurement of their choice. A unit value
of 1 means that a time coordinate system of seconds is used. A unit
value of 60 means that a time coordinate system of sixtieths of a second
is used. Thus a movie with a running time of 2 seconds would be of
length 2 in the seconds scale and length 120 in the sixtieths of a second
scale. The second field of TimeRecord holds the scale for a movie. You
can find out what time scale a movie is in by calling the Movie Toolbox
routine GetMovieTimeScale(). The returned value can be placed in the
scale field of a TimeRecord:

TimeRecord theTimeRecord;
Movie theMovie;

theTimeRecord.scale = GetMovieTimeScale(theMovie);

The first member of the TimeRecord is used to hold a specific point in
time of a movie. For instance, if a movie was 2 seconds in length, and its
time scale was in sixtieths of a second, then the duration of the movie
would be 120 and the midpoint of the movie would be at a time value
of 60. In order to hold very large time values, the TimeRecord uses two
32-bit integers to hold a single time. The value field itself is thus com-
posed of two fields. The hi field holds the high-order 32 bits of the

Chapter 9 = fApplication: QuickTime Movie Editor

value and the 1o field holds the low-order 32 bits. To set the current value
of a movie to its start, you’d set both the hi and 10 fields of the value to 0:

TimeRecord theTimeRecord;

theTimeRecord.value.hi = 0;
theTimeRecord.value.lo = 0;

To set a TimeRecord value field to the end of a movie, call the Movie
Toolbox routine GetMovieDuration(). This function returns a long value
that can be stored in the lower 32 bits of the value field:

Movie theMovie;
TimeRecord theTimeRecord;

theTimeRecord.value.lo = GetMovieDuration(theMovie);
The maximum value of a 32-bit Tong is over 4 billion, so that even the

value representing the duration of a very long movie should fit in the low-
order 32 bits of the value field.

NOTE

The third and final field of a TimeRecord holds a movie’s time base. The
base field holds a single value that encapsulates a movie’s play direc-
tion and speed—its rate. Because editing takes place on a movie that isn’t
playing, the base value can be set to 0:

TimeRecord theTimeRecord;

theTimeRecord.base = 0;

After filling a TimeRecord scale with a movie’s scale, and then setting
the value and base to 0, call MCDoAction() to tell the movie’s controller
that this location is to be used as the start of the edit selection. Recall
that MCDoAction() accepts a variety of second parameter constants that
act on the controller passed as the first parameter. The third parameter
holds a pointer to data that varies with the type of action that is to be
performed. You'll pass a pointer to the TimeRecord, as follows:

MovieController theController;
TimeRecord theTimeRecord;

355

356

Graphics and Sound Programming Techniques for the Mac

Movie theMovie;

theTimeRecord.value.hi = 0;
theTimeRecord.value.lo = 0;
theTimeRecord.base = 0;

theTimeRecord.scale = GetMovieTimeScale(theMovie);
MCDoAction(theController, mcActionSetSelectionBegin, &theTimeRecord)

The start of the selection is made by passing MCDoAction() the Apple-
defined action constant mcActionSetSelectionBegin. The end of the
selection is made by again calling MCDoAction()—this time with an
action constant of mcActionSetSelectionEnd. Before doing this, call
GetMovieDuration() to change the value field of the TimeRecord from
the beginning of the movie (value = 0) to of the end of the movie:

MovieController theController;
TimeRecord theTimeRecord;
Movie theMovie;

theTimeRecord.value.lo = GetMovieDuration(theMovie);
MCDoAction(theController, mcActionSetSelectionDuration,
&theTimeRecord);

The following snippet shows the complete code for setting a movie’s
edit selection to the entire movie. When the code completes, the entire
Play bar of the movie’s controller will be highlighted.

MovieController theController;
TimeRecord theTimeRecord;
Movie theMovie;

theTimeRecord.value.hi = 0;
theTimeRecord.value.lo = 0;
theTimeRecord.base = 0;

theTimeRecord.scale = GetMovieTimeScale(theMovie);

MCDoAction(theController, mcActionSetSelectionBegin,
&theTimeRecord);

theTimeRecord.value.lo = GetMovieDuration(theMovie);

MCDoAction(theController, mcActionSetSelectionDuration,
&theTimeRecord);

Chapter 9 = Application: QuickTime Movie Editor

Saving an Edited Movie

If your application allows movie editing, it should also provide the
means for the user to save any changes that were made to a movie.
Providing Save and Save As menu items in the File menu of your
application will allow the user to do just that.

Saving a Movie with a “Save” Menu item

In Chapter 7, you saw how a QuickTime movie-playing program used
the Movie Toolbox routine OpenMovieFile() to load a movie from a
movie file. There, the fsRdPerm permission level was used. For applica-
tions that allow movie editing, you'll need to open a movie file with the
fsRdWrPerm permission constant. In Chapter 7, you also saw that after a
movie was loaded into memory, the file from which the movie came
was closed. If your program is going to save changes made to a movie,
you'll want instead to keep the movie file open—the changes will need to
be written to the file. The following snippet uses the standard Open dialog
box to get an FSSpec for a movie, OpenMovieFile() to open the movie file,
and NewMovieFromFile() to load into memory the file’s movie. Notice that
the call to OpenMovieFile() uses the fsRdWrPerm constant, and that the
snippet doesn’t make a call to CloseMovieFile(). The snippet also checks
both returned 0SErr values to ensure that no errors have occurred.

0SErr theError;

SFTypelist typeList = { MovieFileType, 0, 0, 0 };
StandardFileReply theReply;

Movie theMovie;

short theFileRefNum;

short theMovieResID;

Str255 theMovieResName;

Boolean wasAltered;

StandardGetFilePreview(nil, 1, typelList, &theReply);
if (theReply.sfGood == false)
return;

theError = OpenMovieFile(&theReply.sfFile, &theFileRefNum,
fsRdWrPerm);

357

358

Graphics and Sound Programming Techniques for the Mac

if (theError != noErr)
ExitToShell();

theError = NewMovieFromFile(&theMovie, theFileRefNum,
&theMovieResID, theMovieResName,
newMovieActive, &wasAltered);
if (theError != noErr)
ExitToShell();

If a user of your program makes editing changes to a movie and then
selects Save from the File menu, your program will only need to call
one Movie Toolbox routine—UpdateMovieResource():

Movie theMovie;
short theFileRefNum;
short theMovieReslID;

UpdateMovieResource(theMovie, theFileRefNum, theMovieResID, nil);

Pass UpdateMovieResource() the movie to save to disk in the first para-
meter. Pass the reference number of the file that the movie is to be saved
to as the second parameter. The third parameter is the movie resource
ID of the movie’s moov resource. Looking at the above two snippets you
can see that these second and third parameters—theFileRefNum and
theMovieResID—come from the calls to OpenMovieFile() and
NewMovieFromFile(). The fourth parameter to UpdateMovieResource() is
a pointer to a new name for the movie’s moov resource. If you're content
with the current name, pass a value of nil here. Notice that this is the
name of the moov resource, not the name of the QuickTime movie file.

Saving a Movie with a "Save As” Menu Item

If the user has made changes to a movie and wants to save the edited
version as a new movie, you should provide a Save As menu item in
your application. Before describing the Movie Toolbox routine that helps
you do this, a quick look at QuickTime movie file formats is in order.

Chapter 9 = Application: QuickTime Movie Editor

QuickTime movies are capable of having data spread out among
more than one file. In such a case, the moov resource of the QuickTime
movie file holds the information about which file or files contain the
movie’s data. While this resolution of data dependencies goes unnoticed
by the user (who can simply double-click on the one movie file to run it),
it necessitates that all of the data files be present on the user’s machine.
That can cause a problem for the user if he or she copies the movie file
to a disk for use on a different machine. When the user attempts to run
the movie on that machine, the movie won’t run because the supporting
data files aren’t present. Instead, the user will see an alert like the one
shown in Figure 9.2.

Searching for movie data in file “Liftoff”.

FIGURE 9.2 Data from a single movie can be spread across more than one movie file.

Why spread a single movie across multiple files? If several versions of a
single movie are being made, than this method will save disk space. One
large version will hold the entire movie. Smaller version could contain
only selected frames from the larger movie. Each smaller version would
then consist of only references to the frames from the large movie—not
the frames themselves. Consider a large movie named Liftoff. If the
Liftoff movie is edited so that it contains only half the number of frames
as the original version, it can be saved to a file that is considerably
smaller than half the size of the original. If, on the other hand, the copy
is saved as a self-contained—or flattened—movie, it will be much larger.
Figure 9.3 shows how Apple’s MoviePlayer program provides the user
with the option of saving a file in either format.

359

Graphics and Sound Programming Techniques for the Mac

360
B virtorr [&] = Hard Disk
A vormasave reates | New rte nome:
raamove na | [uirort copy | (CCancer

= @ Save normally (allowing dependencies)
Estimated file size: 2K

(O Make movie self-contained
Estimated file size: 719K

A self-contained
save creates a larger
flattened file, but the file
is not dependent on the
original movie file

FIGURE 9.3 Programs can be written to allow movies
to be saved with dependencies or flattened.

If you want your application to allow users to save movies, you should
let them save movies in a flattened format. That way, the user can copy
his or her movies to a disk without thought of whether or not the entire
movie has been copied.

In response to a request to save a movie to a new file, your program
should display the standard Save dialog box. A call to the Toolbox rou-
tine StandardPutFile() takes care of this:

StandardFileReply theReply;
StandardPutFile(“\pSave as:”, “\pUntitled”, &theReply);

The first parameter to StandardPutFile() is the prompt that the user
will see in the Save dialog box. The second parameter is the default file
name that will be placed in the dialog box when it opens. The user, of
course, is free to change this default name to a file name of his or her
choice. The last parameter is a StandardFileReply variable that will be
filled in by the Toolbox after the user clicks on the Save button in the
Save dialog box.

After checking the sfGood field of the StandardFileReply to verify
that the user did in fact click on the Save button, call the Movie Toolbox

Chapter 9 = Aipplication: QuickTime Movie Editor

routine FlattenMovie() to create a new flattened movie file that holds
the movie’s moov resource and all of the movie’s data. Here’s a typical
call to FlattenMovie():

Movie theMovie;

FlattenMovie(theMovie, flattenAddMovieToDataFork,
&theReply.sfFile, ‘TVOD’, smSystemScript,
createMovieFileDeleteCurFile, nil, nil);

The first parameter to FlattenMovie() is the movie to save. The second
parameter is a flag that tells the Movie Toolbox where to put the movie’s
data. Use the Apple-defined constant flattenAddMovieToDataFork to add
the data to the data fork and the moov resource to the resource fork.

The third parameter to FlattenMovie() is a pointer to the file system
specification for the movie file that will be created. This FSSpec was
returned by the call to StandardPutFile().

The fourth parameter is the creator that will be associated with the
file. If you want a double-click on your movie file to launch your appli-
cation, supply your application’s creator type here. In the above snippet
the creator ‘TVOD" is the creator of Apple’s MoviePlayer movie-playing
application.

For an application file, the creator is a four-character string that identifies
the program to the Finder. For a data file, the creator string generally
matches the creator string of the application that created the data file. For
instance, Apple’s MoviePlayer program has a creator of ‘TVOD’. Movies
created by MoviePlayer have this same creator. That lets the Finder know the relationship
between applications and files.

NOTE

The fifth parameter to FlattenMovie() specifies the script for the movie.
Scripts define the way the Finder displays a file’s name. You can use the
Apple-defined constant smSystemScript.

After the script specification comes a flag that tells whether or not to
delete an existing file. If the file to be saved is given the same name as a
file that already exists, delete the existing file and replace it with a new one
by using the Apple-defined constant createMovieFileDeleteCurfile.

361

362

Graphics and Sound Programming Techniques for the Mac

The next-to-last parameter to FlattenMovie() is a pointer to a short that
holds the resource ID for the new moov resource. Passing a value of nil
for this parameter tells the Toolbox to assign a unique resource ID to the
new moov resource. In the above snippet, a new, empty file is being cre-
ated—so this parameter is unimportant. Finally, the eighth parameter is
a pointer to a string that holds the name of the new moov resource.
Passing a value of ni1 means that no name will be given to the resource.
As in the call to UpdateMovieResource(), this string is the name of the
moov resource, not the name of the QuickTime movie file.

Working with Multiple Movies

A program that displays and plays a movie with little or no user-inter-
vention—such as the MovieDialog example in Chapter 7—may not
require more than a single movie to be on the screen at one time.
Programs that give the user more control of movie playing, such as a
movie editor—will. For such programs you'll need to implement a mul-
tiple window-handling strategy. That way, when the user has two or
more movie windows open, selecting Cut will cut a frame from the cor-
rect movie, selecting Close will close the correct movie window, and
pressing the Play button on more than one movie controller will cause
each movie to play at the same time.

In this section, you'll see a technique that provides for the proper
handling of any number of open movie windows—the maximum num-
ber of open movies is limited only by the amount of free memory on the
user’s Macintosh. This multiple-window technique is one you can
apply to any Macintosh program that opens more than one window at
a time—it’s not just for applications that use QuickTime.

Window Records and Extra Window Data

The Macintosh data type WindowRecord is a data structure that holds
information about a window—information such as the size of the window
and what the window frame looks like. The Macintosh data type WindowPtr
serves as a pointer to the first field of a WindowRecord. This first field is

Chapter 9 = fipplication: QuickTime Movie Editor

the GrafPort member of the WindowRecord. The GrafPort itself is a data
structure. It consists of several fields that describe the drawing environ-
ment of a window. These GrafPort fields are of the most interest to a
programmer—information such as the font to be used in the display of
text and the dimensions of lines to be drawn can be found in the
GrafPort fields.

Usually, a programmer doesn’t need to access any information from
a WindowRecord other than that found in the fields of its GrafPort. That’s
why—by definition—a WindowPtr variable is allowed access only to the
GrafPort, and not to the remainder of the WindowRecord. Occasionally,
though, a programmer may need access to another field of a WindowRecord.
The Macintosh data type WindowPeek exists for that purpose. Like the
WindowPtr, the WindowPeek points to the start of a WindowRecord—to the
GrafPort field. Unlike the WindowPtr, the WindowPeek is defined so that a
variable of the WindowPeek type is free to access any field of a
WindowRecord. Figure 9.4 summarizes this.

WindowRecord

= |

GrafPort

{ windowPtr
(to access GrafPort)

WindowPeek
(to access WindowRecord)

FIGURE9.4 A WindowPtr is used to access only
the GrafPort field of a WindowRecord, while a WindowPeek
is used to access any field of a WindowRecord.

363

364

Graphics and Sound Programming Techniques for the Mac

An object such as a structure is placed in memory starting at a lower
address and progressing towards a higher address. Because Macintosh
memory is pictured with lower-numbered addresses at the bottom of
memory, an object in memory appears to be “upside down.” That is, the
first field of a structure is at the bottom of the structure.

Every window that your program opens has its own WindowRecord in
memory—it’s created by a call to the Toolbox function GetNewWindow()
or GetNewCWindow(). This same function call also returns a WindowPtr to
your program—a pointer to the GrafPort of this WindowRecord. Because
each window has a WindowRecord and a WindowPtr, these two data types
provide a good basis for tying additional data to each window.

Consider an application that is to make use of two types of windows—
one type that shows a QuickTime movie and another that displays a
picture. You might want to have this window-type information accompany
every window open on the screen. To keep track of this new data, your
program should define a data structure that consists of a WindowRecord
and this new data, as follows:

typedef struct

{
WindowRecord theWindRecord;
short theWindType;

} BigWindRecord, *BigWindRecordPeek;

The above struct definition creates a new application-defined data
type—a type named BigWindRecord. It also defines a data type that serves
as a pointer to a structure of this type—a type named BigWindRecordPeek.
Because a structure is placed in memory one field after another, a
BigWindRecord structure would appear in memory as shown in Figure 9.5.
The first of the two BigWindRecord members is theWindRecord—an entire
WindowRecord (which includes a GrafPort as its first field). Above that
would be the next member of the BigWindRecord—the short theWindType.
As shown, a variable of type BigWindRecordPeek would have access to the
entire BigWindRecord structure.

Chapter 9 = Application: QuickTime Movie Editor 365

NOTE

7

NOTE

An application-defined window structure will usually contain more infor-
mation than just a WindowRecord and a window-type field. Later, you'll
see that this chapter’s FilmEdit program defines a window structure that
consists of six fields.

theWindType

BigWindRecord
theWindRecord

BigWindRecordPeek
(to access BigWindRecord)

FIGURE 9.5 The fields of the application-defined BigWindRecord

struct are accessed through a BigWindRecordPeek.

The two fields of the BigWindRecord shown in Figure 9.5 aren’t shown to
scale. A WindowRecord itself consists of many fields, and would occupy
considerably more memory than the 2-byte theWindType field. You can
assume that the remainder of the memory figures in this chapter are not

drawn to scale.

The first part of the multiple window-handling scheme is now established:
define a data structure that has a WindowRecord as a first member and any
other window data as additional members. When defining this data struc-
ture, also define a data type that points to a structure of this type.

366

Graphics and Sound Programming Techniques for the Mac

Accessing the Application-Defined Window Structure

If you've followed closely, you may have noticed one important fact. A
WindowPtr, a WindowPeek, and a BigWindRecordPeek all point to the same
thing—the start of a WindowRecord. The difference among the three types is
not what they point to, but how far into memory each is allowed to access.
The WindowPtr can access only a GrafPort, the WindowPeek can access the
entire WindowRecord, and a BigWindRecordPeek can access the WindowRecord
and the data that lies beyond it—the other field of the BigWindRecord
structure. Figure 9.6 illustrates.

BigWindRecord

WindowRecord

GrafPort
=l

WindowPtr
(to access Grafport)

WindowPeek
] (to access WwindowRecord)

{ BigWindRecordPeek
(to access BigWindRecord)

FIGURE 9.6 The different pointer types can access different structures.

The BigWindRecord data type is application-defined—the Toolbox doesn’t
know anything about this type. That means that when you open a new
window you can’t immediately get a BigWindRecordPeek pointer to it.
Instead, you'll first get a WindowPtr to a window, then typecast that point-
er to a BigWindRecordPeek. This will be possible because a WindowPtr and
a BigWindRecordPeek point to the same data structure—a WindowRecord.

The BigWindRecordPeek just happens to be able to access information
beyond the WindowRecord.

Begin by calling GetNewCWindow() to open a window and receive a
WindowPtr to the window. In the past, you've probably let the Window

Chapter 9 = Application: QuickTime Movie Editor

Manager reserve memory for a WindowRecord by passing a value of
nil as the second parameter to GetNewCWindow(). Here, you'll tell the
Window Manager how much memory to reserve by first setting up a
pointer to an area of memory the size of a BigWindRecord data structure.
When you open the window, use this pointer as the second parameter.
The way to do that follows:

WindowPtr theWindow;
Ptr theWindowStorage;

theWindowStorage = NewPtr(sizeof(BigWindRecord));
theWindow = GetNewCWindow(128, theWindowStorage, (WindowPtr)-1L);

After the above snippet executes, a program will have a WindowPtr that
points to a color window. More accurately, theWindow will point to a
WindowRecord. Note that even though enough memory was reserved for a
BigWindRecord, the variable theWindow can only access the WindowRecord—
that’s the limitation of a WindowPtr. To access fields of data beyond the
WindowRecord, declare a BigWindRecordPeek variable and then typecast the
WindowPtr variable to a BigWindRecordPeek:

BigWindRecordPeek theBigPeek;
theBigPeek = (BigWindRecordPeek)theWindow;

Now, the variable theBigPeek can be dereferenced to access the second
member of the BigWindRecord data structure. In the following snippet, a
value of 2 is being assigned to theWindType field. Figure 9.7 shows how
memory would look after this assignment takes place.

BigWindRecordPeek theBigPeek;
theBigPeek = (BigWindRecordPeek)theWindow;
theBigPeek->theWindType = 2;

If you prefer dereferencing with the dot operator, the above code could be
written as follows:

BigWindRecordPeek theBigPeek;

theBigPeek = (BigWindRecordPeek)theWindow;
(*theBigPeek).theWindType = 2;

367

Graphics and Sound Programming Techniques for the Mac

368

5; theWindType

|

BigWindRecord

theWindRecord H

- theBigPeek

FIGURE 9.7 Dereferencing theBigPeek allows access to the WindType field.

Figure 9.7 shows the result of setting the value of a BigWindRecord data
structure member. This value can be retrieved by again typecasting. If
your program wants to know the type of a window, it should get a
WindowPtr to that window, typecast that pointer to a BigWindRecordPeek,
and then examine the theWindType field of the BigWindRecord. Usually
your program will want information about the active window. The
Toolbox routine FrontWindow() can be used to get a WindowPtr to that
window—as shown below:

WindowPtr theWindow;
BigWindRecordPeek theBigPeek;
short theCurrentWindowType;

theWindow = FrontWindow();
theBigPeek = (BigWindRecordPeek)theWindow;
theCurrentWindowType = theBigPeek->theWindType;

Assuming memory is as pictured in Figure 9.7, after the above snippet
executes theCurrentWindowType will have a value of 2. The variable
theCurrentWindowType can then be used to determine how the window
should be handled:

Chapter 9 = Application: QuickTime Movie Editor

switch (theCurrentWindowType)
{
case 1:
// handle type 1 window
break;
case 2:
// handle type 2 window
break;
}

For clarity, your code can define a constant for each window type your
program uses. For instance, if a program has a type of window that
plays a QuickTime movie and another that displays a picture, the above
snippet might become:

ftdefine kMovieWindowType 1
fidefine kPictureWindowType 2
switch (theCurrentWindowType)

{

case kMovieWindowType:
// handle QuickTime movie window
break;

case kPictureWindowType:
// handle picture window
break;
}

An application will access data from the window structure frequently. For
instance, every time a new window is opened, the window’s theWindType
field will need to be set to the window’s type. And every time a window
needs to be updated, the application will need to retrieve the value in
this theWindType field in order to determine how the window should be
updated. To eliminate redundant code, you'll want to define a routine
that sets the value of the window-type field and another routine that
gets the value from that field. The routine that sets the theWindType
member follows:

void SetWindowType(WindowPtr theWindow, short type)
{

369

370

Graphics and Sound Programming Techniques for the Mac

!
BigWindRecordPeek theBigPeek;

theBigPeek = (BigWindRecordPeek)theWindow;
theBigPeek->theWindType = type;
}

After making a call to GetNewCWindow() to create a new window, the
window’s type can be set by making a call to SetWindowType():

fdefine kMovieWindowType 1

WindowPtr theWindow;

SetWindowType(theWindow, kMovieWindowType);

To get a window’s type, a routine like GetWindowType () should be defined:
short GetWindowType(WindowPtr theWindow)

{ o
BigWindRecordPeek theBigPeek;
theBigPeek = (BigWindRecordPeek)theWindow;
return (theBigPeek->theWindType);

}

Every time some action takes place involving a window, your application
will want to determine the window’s type before handling the action.
Consider a mouse click in a window’s close box. If the window holds
a QuickTime movie, you'll want to dispose of the movie, the movie con-
troller, and the window. If the window is of a type that doesn’t hold a
movie, then there will be no movie and no controller to dispose of. The
following is a snippet that uses the GetWindowType() function to test a
window’s type before closing the window.

if (GetWindowType(theWindow) == kMovieWindowType)
{
DisposeMovieController(theController);
DisposeMovie(theMovie);
DisposeWindow(theWindow);
}
else
{

}

DisposeWindow(theWindow);

Chapter 9 = Application: QuickTime Movie Editor

As you'll see a little later, most application’s that use an application-
defined window structure define that structure to hold several pieces of
information about a window—not just the window’s type as has been
done for this current example. Such application’s should then define a
“set” and “get” routine for each window data field that follows the
WindowRecord in the window structure definition.

Example Program: FilmEdit

FilmEdit is a program that serves as a demonstration of this chapter’s
multiple window-handling technique. It also shows how all of the items
in an Edit menu can be made to work on movie selections. FilmEdit
allows the user to cut or copy frames from a movie and paste these
frames back into a different location in that same movie. FilmEdit also
allows the user to open a second window and paste the frames into that
movie. After editing is finished, the user can save an altered movie
using the File menu Save or Save As menu items.

In response to the user choosing Open from the File menu, FilmEdit
displays the standard Open dialog box—as shown in Figure 9.8. After
opening a movie, the user is free to again select Open to open another
QuickTime movie. As shown in Figure 9.9, movies don’t have to be the
same size. If you run the FilmEdit program and experiment with it,
you’ll see that editing operations can be performed on different-size
movies. That is, you can copy a frame or frames from a large movie and
paste them into a smaller movie, or vice versa.

Preview

<3 PO1 Film Edit f ¥ > Hard Disk
Desktop

I Open I

obot(small)

X Show Preview

FIGURE 9.8 The Open menu item brings up the standard Open dialog box.

3n

Graphics and Sound Programming Techniques for the Mac

372

- New Window ===—2———

FIGURE 9.9 FilmEdit allows multiple windows to be open.

The FilmEdit Resources

The FilmEdit project requires three resource types. To display a movie, a
WIND is required. As you saw in Chapter 7, the size of the window defined
by the WIND is unimportant. For the menus, three MENU resources are needed—
they’re shown in Figure 9.10. To define the order in which these menus
will appear in the menu bar, a single MBAR resource is needed. Figure 9.11
shows the MBAR.

FilmEdit.rsre
MBAR MENU WIND
B =———— MENUs from FilmEditisrec @]
Lf e S ey ST)]
i Open... %0 Undo %2
e Close W
! save %S cut %H
i Save fis... Copy ®C
Paste ®U
Quit %0 Clear
Select All_ %A
128 v 129 : 130 EI
]

FIGURE 9.10 The MENU resources for the FilmEdit project.

Chapter 9 = Application: QuickTime Movie Editor

MBARs from FilmEdil.rsrc
2} Size Name
128 8 |
Eai___ MBAR ID = 128 from FilmEdit.rsrc %
— 4
% of menus 3]
1) koK
Menu res 1D |128
2) Hkkkk
Menu res D 129
3) kkkkk
Menu res 10 130
4) FHRkK
=
[65]

FIGURE 9.11 The MBAR resource for the FilmEdit project.

Program Initialization

Most Macintosh applications share a great deal of similar code—the
code that implements the graphical interface and handles events.
FilmEdit is no different. Much of the FilmEdit code can be reused—with
very little modification—in other applications. This “generic” source
code has been grouped into three source files in the FilmEdit project:
Globals.c, Initialize.c, and Generic.c. Later in this chapter, there’ll be
more mention of the FilmEdit project’s file organization.

The starting point of FilmEdit is, of course, main(). This routine
initializes the Toolbox and Movie Toolbox, sets up the program’s menu bar,
and then enters the program’s event loop. The following is the complete
listing of main(). Figure 9.12 shows the function- calling chain for main().

void main(void)

{
InitializeAl1Toolboxes();

SetUpMenuBar();

EventLoop();
}

313

374

Graphics and Sound Programming Techniques for the Mac

FIGURE 9.12 Application-defined routines called by main().

InitializeAl1Toolboxes() is similar to the version developed in Chapter 7.
It does, however, have a couple of additions that can be used in any
Mac program. After initializing the Toolbox, the Toolbox function
MoreMasters() is called twice to allocate extra master pointers. These
calls aren’t strictly necessary—the system would call MoreMasters() on its
own if the need ever arose for more master pointers. But by explicitly call-
ing MoreMasters() early in the life of a program, InitializeAl1Toolboxes()
ensures that these nonrelocatable blocks of pointers will appear low in
the heap—and that reduces the likelihood of fragmentation. The second
addition to InitializeAl1Toolboxes() is a call to the Toolbox function
MaxApp1Zone(). This call expands the application heap to the application
heap limit, thereby reducing the potential for heap fragmentation later
on in the program.

void InitializeAl1Toolboxes(void)
{

0SErr theError;

long theResult;

InitGraf(&qd.thePort);
InitFonts();

InitWindows();

InitMenus();

TELniTC) s

InitDialogs(OL);
FlushEvents(everyEvent, 0);

Chapter 9 = Application: QuickTime Movie Editor

InitCursor();

MoreMasters();
MoreMasters();
MaxApplZone();

theError = Gestalt(gestaltQuickTime, &theResult);
if (theError != noErr)
ExitToShel1();
theError = EnterMovies();
if (theError != noErr)
ExitToShell();
}

After initializations take place, the FilmEdit menu bar is set up. The
SetUpMenuBar() function, shown below, uses the application-defined
constants rMenuBar and mApp1e. These constants, defined in the Defines.h
header file, are used to hold the IDs of the project’s MBAR resource and the
Apple menu’s MENU resource. SetUpMenuBar() doesn’t do anything
fancy—it just makes several Toolbox calls to load the menu bar, add the
Apple menu items, and then draw the menu bar.

jtdefine rMenuBar 128
fdefine mApple 128
void SetUpMenuBar(void)
{

Handle theMenuBar;

MenuHandle theAppleMenu;

theMenuBar = GetNewMBar(rMenuBar);
SetMenuBar(theMenuBar);
DisposeHandle(theMenuBar);

theAppleMenu = GetMHandle(mApple);
AddResMenu(theAppleMenu, °‘DRVR’);

DrawMenuBar();

375

376

Graphics and Sound Programming Techniques for the Mac

The Main Event Loop and Menus

The last routine called from main() is EventLoop(). This event loop is
similar to the one developed in Chapter 7—with a couple of notable
exceptions. Here’s the event loop—changes to it are discussed after
the listing. Figure 9.13 provides an overview of the function calls
EventLoop() makes.

void EventLoop(void)

{
EventRecord theEvent;
Boolean isControllerkEvent;
while (gDone == false)
{
WaitNextEvent(everyEvent, &theEvent, 0, nil);
AdjustAl1Menus();
isControllerEvent = UpdateAl10penMovies(theEvent);
if (isControllerEvent == false)
{
switch (theEvent.what)
{
case activateEvt:
HandleActivateEvent(theEvent);
break;
case updateEvt:
HandleUpdateEvent(theEvent);
break;
case keyDown:
HandleKeyDownEvent(theEvent);
break;
case mouseDown:
Hand1leMouseDownEvent(theEvent);
break;
}
}
}

Chapter 9 = Application: QuickTime Movie Editor

FIGURE 9.13 Application-defined routines called by EventLoop().

The event loop used in Chapter 7 was used in the very simple Quick-
Controller example. Because that program didn’t support menus, the
event loop had no provision for updating, or adjusting, menu items.
The FilmEdit event loop does. At every pass through the event loop, the
application-defined routine AdjustAl1Menus() is called. The numerous
“m” and “i” constants, such as mFile and iClose, are all application-

defined constants found in the project’s Defines.h file.

void AdjustAllMenus(void)

{
WindowPtr theWindow;
MovieController theController;
MenuHandle theMenu;

theWindow = FrontWindow();

if (theWindow == nil)

{
theMenu = GetMHandle(mFile);
Disableltem(theMenu, iClose);
Disableltem(theMenu, iSave);
Disableltem(theMenu, iSaveAs);

theMenu = GetMHandle(mEdit);

3717

Graphics and Sound Programming Techniques for the Mac

378

DisableItem(theMenu, iUndo);
Disableltem(theMenu, iCut);
Disableltem(theMenu, iCopy);
Disableltem(theMenu, iPaste);
Disableltem(theMenu, iClear);
Disableltem(theMenu, iSelectAll);

}

else

{

theMenu = GetMHandle(mFile);
Enableltem(theMenu, iClose);
EnablelItem(theMenu, iSave);

Enableltem(theMenu, iSaveAs);

theMenu = GetMenuHandle(mEdit);
if (GetWindowType(theWindow) == kMovieWindowType)

{
theController = GetWindowController(theWindow);
MCSetUpEditMenu(theController, 0, theMenu);
Enableltem(theMenu, iSelectAll);
}
else
{
EnablelItem(theMenu, iUndo);
Enableltem(theMenu, iCut);
Enableltem(theMenu, iCopy);
Enableltem(theMenu, iPaste);
Enableltem(theMenu, iClear);
Enableltem(theMenu, iSelectAll);
}

}

AdjustAl1Menus () checks to see if there is an open window on the screen.
If there isn’t, the routine dims the menu items that are not applicable to a
windowless screen. If a window is open, the appropriate menu items are
enabled. If a window is open, AdjustAl1Menus() makes one other
check—to see if the front window is a QuickTime movie window. If it is,
AdjustAl1Menus() relies on the Movie Toolbox function MCSetUpEditMenu()
to adjust the Edit menu.

Chapter 9 = Application: QuickTime Movie Editor

Why check for the type of window, when FilmEdit only supports one
type—the kMovieWindowType? Perhaps, in a future release, FilmEdit will
make use of other application-defined window types. If that happens,
changes to the source code will be minimal.

This handy function will enable the Cut, Copy, Paste, and Clear items.
If there is something to undo, the Undo item will also be enabled.
Further, MCSetUpEditMenu() will append additional text to the Undo
menu item to add clarity to the item. For instance, if the last editing
action performed with a movie’s controller was a Cut, then the Undo
item will be enabled and its text will change to Undo Cut. If the last
action was a Paste, the item will again be enabled, but this time its text
will change to Undo Paste. Figure 9.14 illustrates how the File and Edit
menus look after they are adjusted.

Open... 30 tUndo #2

Close ®W

Save #S Cut ®H

Save fis... Copy #C
Paste Y

Quit 80 Clear
Select Al %A

FilmEdit menus when no windows are open

MCSetUpEditMenu ()
adds the appropriate
Undo message

Open... %0 Undo Cut 382
Close W
Save 8 Cut 38H
Save As... Copy $8C
Paste 38U
Quit 80 Clear
Select Al 38A

FilmEdit menus when a QuickTime movie window is open

FIGURE 9.14 The AdjustAl1Menus () function enables
and disables File and Edit menu items.

379

380

Graphics and Sound Programming Techniques for the Mac

As you can see from AdjustAl1Menus(), the basic FilmEdit source code
isn’t completely generic. What if you were adapting the FilmEdit source
code for a project that didn’t play movies? You could leave
AdjustAlTMenus() as it is. If a program doesn’t use movie windows,
GetWindowType() will never return a window type of kMovieWindowType—and the
MCSetUpEditMenu() function will thus never get called. In general, you can leave any
movie-specific code in the listings provided that:

NOTE

1. The code executes only if a check of a window reveals that the
window is a movie window.

2. You #include the Movies.h universal header file so that the
linker recognizes Movie Toolbox calls.

Another approach would be to simply cut out or comment out the if
section and leave just the six Enableltem() calls that are now found
under the else.

The Main Event Loop and Movie Controllers

Menu adjustment is one trick that the Chapter 7 event loop didn’t per-
form. The other difference between this chapter’s event loop and that
found in Chapter 7 examples is in the updating of QuickTime movie
windows. The Chapter 7 examples allowed only one movie to be open
at a time. To determine if MCIsPlayerEvent() should be called to update
a movie, those examples checked to see if the MovieController variable
theController had a value other than ni1:

if (theController == nil)
isControllerEvent = false;
else
isControllerEvent = MCIsPlayerEvent(theController, &theEvent);

In FilmEdit, MCIsP1ayerEvent() can’t just be called a single time. That's
because MCIsPlayerEvent() updates only a single controller—the one
passed to it in the first parameter. Because FilmEdit allows multiple
movies to be open, there is the potential for MCIsPT1ayerEvent() to be called
more than one time at each pass through the event loop. EventLoop() calls
an application-defined routine named UpdateA110penMovies() to do the
work of determining how many movie windows are open, and then call-

Chapter 9 = fipplication: QuickTime Movie Editor

ing MCIsPlayerEvent() for each. When UpdateA110penMovies() completes,
it will return a Boo1lean value that indicates whether the event was handled.

isControllerEvent = UpdateAll0penMovies(theEvent);

The details of UpdateAl10penMovies() are discussed a little later in this
chapter.

Again, what about adapting this code to a project that doesn’t use
QuickTime? Just remove or comment out the isControllerEvent
variable and the call to UpdateAl110penMovies (). Then remove the
if (isControllerEvent == false) test so that the switch statement
always gets executed.

The Main Event Loop and Event Handling

FilmEdit watches for activate, update, key-down, and mouse-down
events. An activate event is handled by HandleActivateEvent() routine—
without help from any other application-defined routines. If the window
turns out to be a movie window, the window’s controller is retrieved
from the window structure and passed to MCActivate(). This Movie
Toolbox routine activates or deactivates a movie controller. Passing a
value of true as the last parameter to MCActivate() indicates that the
event was an activate event. A value of false tells the routine that the
event was a deactivate event. You should perform an AND operation
on the modifiers field of the event record and the Apple-defined
constant activeFlag to get this information.

void HandleActivateEvent(EventRecord theEvent)
{
WindowPtr theWindow;
Boolean isActivateEvent;
MovieController theController;

theWindow = (WindowPtr)theEvent.message;
SetPort(theWindow);
isActivateEvent = (theEvent.modifiers & activeFlag) != 0;

if (GetWindowType(theWindow) == kMovieWindowType)
{

381

382

Graphics and Sound Programming Techniques for the Mac

theController = GetWindowController(theWindow);
MCActivate(theController, theWindow, isActivateEvent);

}

Like an activate event, an update event is simple to handle. The rou-
tine’s source code listing follows:

void HandleUpdateEvent(EventRecord theEvent)

{
WindowPtr theWindow;

theWindow = (WindowPtr)theEvent.message;
BeginUpdate(theWindow);
EraseRect(&(theWindow->portRect));
// update “nonQuickTime” window here
EndUpdate(theWindow);
}

Recall that movie windows are updated by calls to MCIsPlayerEvent()—
not by the event loop switch statement. For this reason, when an update
event occurs in a QuickTime movie window, HandleUpdateEvent () won't
be called. Since FilmEdit doesn’t use any window types except the movie
type, HandleUpdateEvent () will never get called. Nonetheless, the routine
is included for the sake of expansion. If FilmEdit is ever upgraded to
make use of a second type of window, then the code is in place for the
handling of an update to that window. Assuming that a window type
that displayed pictures was added to FilmEdit, Hand1eUpdateEvent()
might be changed as follows:

void HandleUpdateEvent(EventRecord theEvent)

{
WindowPtr theWindow;

theWindow = (WindowPtr)theEvent.message;
BeginUpdate(theWindow);
EraseRect(&(theWindow->portRect));
if (GetWindowType(theWindow) == kPictureWindowType)
UpdatePictureTypeWindow(theWindow);
EndUpdate(theWindow);

Chapter 9 = Application: QuickTime Movie Editor

Activate events and update events are completely handled by
HandleActivateEvent() and HandleUpdateEvent(), respectively. A mouse
down event, on the other hand, may require the involvement of other
application-defined routines besides the HandleMouseDownEvent() func-
tion. For instance, if the mouse click occurs in the menu bar, application-
defined routines will be called to determine which menu and which
menu item were involved.

A key-down event is examined in HandleKeyDownEvent() routine to
see if the Command key is involved. If it is, the key press is treated as a
menu selection—the same application-defined routine that handles a
mouse-down event in the menu bar is invoked. Figure 9.15 provides an
overview of the application-defined routines that get called by key-down
and mouse-down events.

FIGURE 9.15 Application-defined routines called by
Hand1eKeyDownEvent () and HandleMouseDownEvent().

The following is the listing for the Hand1eKeyDownEvent () function. This
routine determines which character is represented by the pressed key. Then
it determines if the Command key was pressed during the keystroke. If
it was, the application-defined HandleMenuChoice() routine is called to
treat the keystroke as a menu selection.

void HandleKeyDownEvent(EventRecord theEvent)
{

383

Graphics and Sound Programming Techniques for the Mac

384
short theChar;
Tong theMenuAndItem;
theChar = theEvent.message & charCodeMask;
if ((theEvent.modifiers & cmdKey) != 0)
{
if (theEvent.what != autoKey)
{
theMenuAndItem = MenuKey(theChar);
Hand1eMenuChoice(theMenuAndItem);
}
}
}

The Hand1eMouseDownEvent () takes care of mouse clicks that occur in the
menu bar, in a window’s close box, or in a window’s drag bar. Very little
of the Hand1eMouseDownEvent() code is specific to movie windows.
Remember, MCIsP1ayerEvent() handles events—including mouse clicks—
that occur in a movie’s controller. If a mouse click occurs elsewhere over
a movie window—such as in the window’s drag bar—the click is treated
as a normal mouse down event rather than a movie controller event. If
the mouse click occurs in a window’s close box, a check needs to be
made to determine if the window holds a movie. If it does, then the
application-defined routine CloseMovieAndFile() is called to dispose of
the movie, the movie controller, and the window. CloseMovieAndFile()
also decrements the global variable gWindowCount. This variable is one of
only two global variables used by FilmEdit—the other is gDone. The
gWindowCount variable keeps track of the total number of windows that
are open at any given time.

void HandleMouseDownEvent(EventRecord theEvent)

{
WindowPtr theWindow;
short thePart;
long theMenuAndItem;

thePart = FindWindow(theEvent.where, &theWindow);

switch (thePart)
{
case inMenuBar:
theMenuAndItem = MenuSelect(theEvent.where);

Chapter 9 = Application: QuickTime Movie Editor

HandleMenuChoice(theMenuAndItem);
break;

case inGoAway:
if (TrackGoAway(theWindow, theEvent.where))

{
if (GetWindowType(theWindow) != kMovieWindowType)
{
DisposeWindow(theWindow);
—gWindowCount;
}
else
CloseMovieAndFile(theWindow);
}
break;

case inDrag:
DragWindow(theWindow, theEvent.where,
&qd.screenBits.bounds);
break;

case inContent:
SelectWindow(theWindow);
break;

}

If a mouse click occurs in the menu bar, or if a key is pressed in conjunction
with the Command key, Hand1eMenuChoice() gets called. This routine,
shown below and in Figure 9.16, serves as nothing more than a branching
station. A separate application-defined routine exists for the handling of
each menu. As you can see from the listing, Hand1eMenuChoice() can be
used for any project that uses the three standard menus.

void HandleMenuChoice(long theMenuAndItem)
{ .

short theMenu;

short theMenultem;

if (theMenuAndItem != 0)

{
theMenu = HiWord(theMenuAndItem);
theMenultem = LoWord(theMenuAndItem);

switch (theMenu)

385

Graphics and Sound Programming Techniques for the Mac

386

case mApple:
Hand1eAppleChoice(theMenultem);
break;

case mFile:
HandleFileChoice(theMenultem);
break;

case mEdit:
HandleEditChoice(theMenultem);
break;
i
HiTiteMenu(0);

FIGURE 9.16 Application-defined routines called by Hand1eMenuChoice().

Like HandleMenuChoice(), each of the three routines that handle a menu
selection is nothing more than a branch point. And, again, like Handle-
MenuChoice(), these three routines can be used as-is in many other
projects. The listing for the routine that handles a click in the Apple menu
follows. Its calling chain is shown in Figure 9.17.

void HandleAppleChoice(short theMenultem)
{
switch (theMenultem)
{
case iAbout:
Hand1eAppleMenuAboutItem();
break;

Chapter 9 = fApplication: QuickTime Movie Editor 387

default:
HandleAppleMenuDefaultItem(theMenultem);
break;

FIGURE 9.17 Application-defined routines called by HandTeAppleChoice().

The File and Edit menus are handled in a manner similar to the Apple
menu: the menu item is determined, then a routine written to handle
just that item is invoked.

void HandleFileChoice(short theMenultem)
{
switch (theMenuItem)
{
case iOpen:
HandleFileMenuOpenItem();
break;

case iClose:
HandleFileMenuCloseltem();
break;

case iSave:
HandleFileMenuSaveltem();
break;

case iSaveAs:
HandleFileMenuSaveAsItem();
break;

case iQuit:
HandleFileMenuQuitItem();
break;

Graphics and Sound Programming Techniques for the Mac

388

Giving each specific menu item its own routine makes it easy to keep appli-
cation-specific code separate from the more general event-handling code.
FilmEdit has a separate source code file named FileMenu.c that holds the
five File menu routines shown above and in Figure 9.18. The same applies
for Apple menu routines, which can be found in the AppleMenu.c file,
and Edit menu routines, which are located in EditMenu.c.

FIGURE 9.18 Application-defined routines called by Hand1eFileChoice().

As mentioned, each Edit menu item selection is handled by its own rou-
tine—as shown in the Hand1eEditChoice() listing and in Figure 9.19.

void HandleEditChoice(short theMenultem)

{
switch (theMenultem)

{
case iUndo:
HandleEditMenuUndoItem();
break;

case iCut:
HandleEditMenuCutItem();
break;

case iCopy:

Chapter 9 = Application: QuickTime Movie Editor

HandleEditMenuCopyItem();
break;

case iPaste:
HandleEditMenuPasteltem();
break;

case iClear:
HandleEditMenuClearItem();
break;

case iSelectAll:
HandleEditMenuSelectAllItem();
break;

=={>| HandlerditMenuselectalllt

FIGURE 9.19 Application-defined routines called by HandTeEditChoice().

A single menu selection, such as Cut from the Edit menu, sets off a chain
of application-defined function calls—as shown in Figure 9.20. If the
FilmEdit code were to be adapted for use in another program that uses the
Cut menu item, only the body of the Hand1eEditMenuCutItem() function
would need to be modified.

389

390

Graphics and Sound Programming Techniques for the Mac

@ ' ' This function contains

code specific to the
FilmEdit application

FIGURE 9.20 Application-defined routines called
when Cut is selected from the Edit menu.

The Application-Defined Window Struacture

FilmEdit uses the multiple window-handling technique developed in
this chapter. Recall that this technique is centered around an applica-
tion-defined window structure. The following structure is the one used
by FilmEdit. Figure 9.21 shows how a BigWindRecord structure looks in
memory.

typedef struct

{
WindowRecord theWindRecord;
short theWindType;
short theFileReference;
short theMovieResourcelD;
Movie theMovie;

MovieController theController;

} BigWindRecord, *BigWindRecordPeek;

Chapter 9 = Application: QuickTime Movie Editor

theController

theMovie
theMovieResourcelID |

theFileReference
BigWindRecord
theWindType 1

theWindrRecord

theBigPeek

FIGURE 9.21 The FilmEdit version of a BigWindRecord.

The FilmEdit version of the BigWindRecord structure begins with a
WindowRecord and a field that holds the window’s type—the two fields
you saw in this chapter’s introduction to this structure. Next comes two
fields that will come in handy when saving a movie. Recall that when a
movie is to be saved, a call is made to UpdateMovieResource():

UpdateMovieResource(theMovie, theFileRefNum, theMovieResID, nil);

UpdateMovieResource() depends on the file’s reference number and the
movie’s resource ID in order to write a movie to a file. When a movie is
opened and loaded into memory, these two values can be written to the
movie window’s structure using application-defined “set” routines:

SetWindowFileReference(theWindow, theFileRefNum);
SetWindowMovieResourceID(theWindow, theMovieResID);

39

392

Graphics and Sound Programming Techniques for the Mac

Later, when it is time to save the movie, these values can be retrieved
from the window’s structure using application-defined “get” routines:

short theFileRefNum;
short theMovieResID;

theFileRefNum GetWindowFileReference(theWindow);
theMovieResID = GetWindowMovieResourceID(theWindow);
UpdateMovieResource(theMovie, theFileRefNum, theMovieResID, nil);

(]

The last two fields in the BigWindRecord are used to keep track of the
movie and the movie controller associated with a window. Like the file
reference number and movie resource ID fields, the movie and controller
field values can be set right after a QuickTime movie window is opened
and a controller is attached to the movie:

SetWindowMovie(theWindow, theMovie);
SetWindowController(theWindow, theController);

Once a movie and a controller are associated with a window, either or both
can be retrieved from the window structure when needed. For instance, if
a QuickTime movie window is being closed, its movie and controller
should be disposed of. In the following snippet, the Toolbox routine
FrontWindow() is used to determine which window is to be closed. Once the
window is known, its movie and controller can be found.

WindowPtr theWindow
MovieController theController;
Movie theMovie

theWindow = FrontWindow()

theController = GetWindowController(theWindow)
DisposeMovieController(theController);

theMovie = GetWindowMovie(theWindow);
DisposeMovie(theMovie);

Chapter 9 = fipplication: QuickTime Movie Editor

DisposeWindow(theWindow);

Figure 9.22 shows what memory might look like after a new QuickTime
movie window has been opened. Notice that the theMovie and the-
Controller fields hold addresses. This is because variables of type Movie
and MovieController are identifiers, or pointers, to movie and controller
data in memory.

For programs that use different types of windows, the BigWindRecord
should be modified to include fields that pertain to each window type. For
example, a program that has a QuickTime window and a picture window
might have two additional fields in the BigWindRecord. As shown below,
the new version of the structure can now keep track of a handle to a picture and a title
for the picture. A QuickTime movie window (as determined by the theWindType field)
would simply ignore these last two fields. A picture window (again, as determined by
theWindType) would ignore the theMovieResourceID, theMovie, and
theController fields. If the program allowed picture windows to be saved to disk, then
a picture window could use theFileReference field to keep track of an open *PICT’
file—just as a QuickTime movie uses this field to keep track of an open ‘MooV "’ file.

NOTE

typedef struct

{
WindowRecord theWindRecord;
short theWindType;
short theFileReference;
short theMovieResourcelD;
Movie theMovie;
MovieController theController;
PicHandle thePicture;
Str255 thePictName;

} BigWindRecord, *BigWindRecordPeek;

393

394

Graphics and Sound Programming Techniques for the Mac

theéontrgilé;
theMovie

. | theMovieResourceID i
theFileReference

BigWindRecord
theWindType

theWindRecord

- | theBigPeek

FIGURE 9.22 A BigWindRecord after a QuickTime movie window is opened.

Earlier in this chapter it was suggested that your application should
define a “set” and “get” routine for each data item being stored in a
window structure. You've already seen SetWindowType() and
GetWindowType() for the first item—theWindType. FilmEdit defines similar
routines for the other four private data items—the data items that belong
to one window and that can be accessed only through a WindowPtr type-
cast to a BigWindRecordPeek. The routines follow for setting a window’s
movie controller and for retrieving that same information.

void SetWindowController(WindowPtr theWindow,
MovieController theController)

{
BigWindRecordPeek theBigPeek;
theBigPeek = (BigWindRecordPeek)theWindow;
theBigPeek->theController = theController;
}

MovieController GetWindowController(WindowPtr theWindow)

Chapter 9 = fipplication: QuickTime Movie Editor

{
BigWindRecordPeek theBigPeek;
theBigPeek = (BigWindRecordPeek)theWindow;
return (theBigPeek->theController);

}

You can get a movie window’s movie at any time by calling the application-
defined GetWindowMovie() function. Alternatively, if you know a window’s
controller, you can use the Movie Toolbox routine MCGetMovie() to get the

window’s movie:

MovieController theController;
Movie theMovie;

theMovie = MCGetMovie(theController);

Updating Multiple Movies

In the FilmEdit event loop, you saw that an application-defined routine
named UpdateAl10penMovies() was responsible for taking care of the
updating of QuickTime movies:

isControllerEvent = UpdateAl10penMovies(theEvent);

UpdateAl10penMovies() begins by setting the variable theWindow to the
front window on the screen. Then the function cycles through a for loop,
checking each open window to see if it is a QuickTime movie window. If a
window is a movie window, UpdateAl110penMovies() calls MCIsPlayer-
Event (). If MCIsP1ayerEvent() handles the event, the function is considered
over and it returns a value of true (for event handled). If MCIsPT1ayerEvent()
doesn’t handle the event, then this current event didn’t affect the con-
troller. UpdateAl110penMovies() then looks at the next window that is
open on the screen. This looping takes place until the movie controller
at which the event is directed is found. If no open window has a con-
troller, or if the event doesn’t pertain to any window with a controller,
the event is not controller-related and UpdateAl110penMovies() returns a
value of false (for event not handled). The following is an outline of
what takes place in the UpdateA110penMovies() function.

395

Graphics and Sound Programming Techniques for the Mac

396

set window to front window
begin loop
begin if window is QuickTime window
get movie controller
call MCIsPlayerEvent() for that controller
if event handled
return(true)
end if
determine next open window
end loop
return(false)

You can see in the above outline that UpdateAl10penMovies() “bails out” of
the loop once the event is handled by MCIsPlayerEvent(). If you consider
the case of a movie that is playing, this makes sense—MCIsPlayerEvent()
updates the playing movie and the event is considered handled. What
about the case when two movies are playing at the same time? The code
still exits after one movie is updated. UpdateA110penMovies () only handles
one event—the event that is passed to it. The second movie will get updated
at the next pass through the event loop, and thus at the next call to
UpdateAl10penMovies(). The UpdateAl10penMovies () code follows:

Boolean UpdateAll0OpenMovies(EventRecord theEvent)

{
int i;
WindowPtr theWindow;
WindowPeek theWindPeek;
MovieControllier theController;
Boolean eventWasHandled;

theWindow = FrontWindow();

for (i = 0; i < gWindowCount; i++)
{
if (GetWindowType(theWindow) == kMovieWindowType)
{
theController = GetWindowControlier(theWindow);
eventWasHandled = MCIsPlayerEvent(theController, &theEvent);
if (eventWasHandled == 1)
return (true);
}
theWindPeek = ((WindowPeek)theWindow)->nextWindow;
theWindow = (WindowPtr)theWindPeek;

Chapter 9 = Application: QuickTime Movie Editor

}
return (false);

}

In order to get a pointer to each open window, UpdateAl10penMovies()
relies on the WindowRecord field of a window structure. The Apple-defined
WindowRecord contains several fields—one of which is the nextWindow
field. This WindowRecord member holds a pointer to the next window. The
first window pointer is obtained by making a call to FrontWindow(). After
that, the next window is found by casting the window pointer to a
WindowPeek. Recall that a WindowPtr can access only the GrafPort member
of a WindowRecord. The WindowPeek, on the other hand, can access any
member. Figure 9.23 illustrates this.

fEi=——— Window %

Window

FIGURE 9.23 The nextWindow field of a window’s WindowRecord
can be used to find the next open window.

The Movie Controller Action Filter Function

A movie controller can make use of an optional action filter function.
Whenever an action takes place that involves the controller, the controller

397

398

Graphics and Sound Programming Techniques for the Mac

will call the filter function. Your application will never directly call the
filter function—it is always the controller itself that calls the routine.

Routines called by the system rather than by an application should be a
familiar concept to you. If you've worked with user items in dialog boxes,

recall that the drawing procedure used to update a user item in a dialog
box is called by the system. Chapter 2 of this book provides another example:
the callback routine used during asynchronous sound play is called by the system, not
an application.

NOTE

An action filter is defined using the following format. First comes the
pascal identifier, then a return type of Boolean. Next comes the action
filter function name—any name of your choosing. Next come the four
parameters. The first is the movie controller that received the action.
The second is the action itself. The third and fourth parameters hold
additional information about the action—your action filter function may
or may not need this information.

pascal Boolean SizeChangeMCActionFilter(
MovieController theController,

short theAction,
void *theParams,
Tong theRefCon)

Because an action filter can be written to handle different types of
actions, the filter should use a switch statement. The following filter,
used in FilmEdit, responds to one action—the changing of a controller’s
size. When a controller’s size changes, so must the controller’s window
size. When looking for this action, use the Apple-defined mcAction-
ControllerSizeChanged.

pascal Boolean SizeChangeMCActionFilter(
MovieController theController,

short theAction,
void *theParams,
long theRefCon)

Rect theBoundsRect;

Chapter 9 = fipplication: QuickTime Movie Editor

short theWidth;
short theHeight;

switch (theAction)

{
case mcActionControllerSizeChanged:

MCGetControllerBoundsRect(theController, &theBoundsRect);
theWidth = theBoundsRect.right - theBoundsRect.left;
theHeight = theBoundsRect.bottom - theBoundsRect.top;
SizeWindow((WindowPtr)theRefCon, theWidth, theHeight, true);
break;

}

return false;

mcActionControllerSizeChanged is by far the most common action
used in a filter, but it isn't the only action that a controller can respond to.
Inside Macintosh: Sound lists others.

NOTE

When the action filter gets called with a controller size-change action,
the filter will call MCGetControllerBoundsRect() to determine the new
size of the window in which the movie and controller appear. This routine
returns the rectangle in which the newly sized controller and movie will
appear. The window’s new width and height can then be found from
this rectangle. Next, a call to SizeWindow() resizes the window.

One typical scenario that involves a resizing controller is during a paste
operation. If the user copies a frame from a large movie and pastes that

frame into a smaller movie, QuickTime will automatically enlarge the small

NOTE

movie to the size of the pasted frame. When the movie (and window) size
change, so must the controller size. When the user performs the paste, the system will
call the controller’s action filter function to resize the window.

An action filter should return a value of false if further action processing
is to be left to the controller. If the action filter has performed all necessary
processing, return a value of true. In general, you'll want to return a
value of false in case the controller has any additional tasks that it
might routinely perform for a given action.

399

400

Graphics and Sound Programming Techniques for the Mac

If a controller is to make use of an action filter, it needs to become
aware of this application-defined routine. After creating a new con-
troller with the NewMovieController() Movie Toolbox function, call
MCSetActionFilterWithRefCon():

MCSetActionFilterWithRefCon(theController,
NewMCActionFilterWithRefConProc(SizeChangeMCActionFilter),
(Tong)theWindow);

The first parameter is the controller to which the action filter should be
associated. The second parameter is a pointer to that filter function.
Before the Power Macs, a parameter such as this would have been
passed as a ProcPtr. Now, a universal procedure pointer (UPP) should
be used. Fortunately, creating a UPP for a filter function is painless—
when passed the name of a filter function, the Movie Toolbox routine
NewMCActionFilterWithRefConProc() creates the necessary UPP.

The universal procedure pointer, or UPP, is an important part of writing
code that will compile using both a 68K and a PowerPC compiler.

The third parameter to MCSetActionFilterWithRefCon() is of type 1ong
and serves as a link between the filter function and the movie window.
This scheme works for two reasons. First, variable theWindow is a pointer,
or 4-byte address—the same size as a 1ong. Second, no two windows
share the same WindowPtr value (two WindowPtrs may have the same
value, but that only means they both point to the same window). Because
a WindowPtr is a unique value, its value can be used to associate a window
with an action routine.

If you look back at the definition of SizeChangeMCActionFilter(), you'll
see that the last parameter to this routine is a long named theRefCon. This
is the same 1ong that was used in the call to MCSetActionFilterWithRefCon().
When the system calls the movie controller action filter function, it
passes this value so that the filter knows which window is involved in
the action. In the action filer, theRefCon is used in resizing the window—
after first typecasting it back to a WindowPtr:

SizeWindow((WindowPtr)theRefCon, theWidth, theHeight, true);

Chapter 9 = Application: QuickTime Movie Editor

Handling Apple Menu Item Selections

FilmEdit uses just a few lines of code to handle menu item selections
from the Apple menu. for simplicity, a click in the About item results in a
single playing of the system alert sound—you can go the more traditional
route of displaying an alert or dialog box with program information.

void HandleAppleMenuAboutItem(void)

{
SysBeep(1);
}

A selection from any of the other Apple menu items results in that item
being launched. FilmEdit uses the same code that has always been used
in the past to open desk accessories.

void HandleAppleMenuDefaultItem(short theMenultem)

{
Str2b5 theAppleMenultemName;
short theAppleMenultemNumber;
MenuHandle theAppleMenu;
theAppleMenu = GetMHandle(mApple);
GetItem(theAppleMenu, theMenultem, theAppleMenultemName);
theAppleMenultemNumber = OpenDeskAcc(theAppleMenultemName);

Handling the File Menu Open Item

An Open selection from the File menu results in a posting of the standard
Open dialog box. After the user makes a file selection, the movie in that
file is opened. Because FilmEdit allows a movie to be saved back to disk
at any time, the movie’s file is left open. Next, memory for a structure
the size of a BigWindRecord is reserved, and then a window is opened
and its data stored in that memory. Next, the action filter function is asso-
ciated with the new movie by calling MCSetActionFilterWithRefCon().
After that, the window and controller-bounding rectangle is found and
the window is resized to match that rectangle.

After the window is open, Hand1eFileMenuOpenItem() stores the movie
type, the movie itself, the controller, the open “MooV" file reference number,

401

402 Graphics and Sound Programming Techniques for the Mac

and the moov resource ID number in the window’s BigWindRecord data
structure. Finally, the open window count is incremented.

void HandleFileMenuOpenItem(void)

{
SFTypeList typelist = { MovieFileType, 0, 0, 0 };
StandardFileReply theReply;
OSErr theError;
short theFileRefNum,
Movie theMovie; .
short theMovieResID = 0;
Str255 theMovieResName;
Boolean wasAltered;
WindowPtr theWindow;
Ptr theWindowStorage;
Rect theMovieBox;
Rect theBoundsRect;

MovieController theController;
StandardGetFilePreview(nil, 1, typelList, &theReply);

if (theReply.sfGood == false)
return;

theError = OpenMovieFile(&theReply.sfFile,
&theFileRefNum, fsRdWrPerm);
if (theError != noErr)
ExitToShell();

theError = NewMovieFromFile(&theMovie, theFileRefNum,
&theMovieResID, theMovieResName,
newMovieActive, &wasAltered);
if (theError != noErr)
ExitToShell();

theWindowStorage = NewPtr(sizeof (BigWindRecord));
theWindow = GetNewCWindow(rMovieWindow, theWindowStorage,
(WindowPtr)-1L);

SetMovieGWorld(theMovie, (CGrafPtr)theWindow, nil);
GetMovieBox(theMovie, &theMovieBox);

theController = NewMovieController(theMovie, &theMovieBox,
mcTopLeftMovie);

Chapter 9 = fipplication: QuickTime Movie Editor

MCSetActionFilterWithRefCon(theController,
NewMCActionFilterWithRefConProc(SizeChangeMCActionFilter),
(Tong)theWindow);

MCGetControllerBoundsRect(theController, &theBoundsRect);

SizeWindow(theWindow, theBoundsRect.right,
theBoundsRect.bottom, true);
ShowWindow(theWindow);

MCEnableEditing(theController, true);

SetWindowType(theWindow, kMovieWindowType);
SetWindowMovie(theWindow, theMovie);
SetWindowController(theWindow, theController);
SetWindowFileReference(theWindow, theFileRefNum);
SetWindowMovieResourceID(theWindow, theMovieResID);

++gWindowCount;

Handling the File Menu Close Item

Selecting Close from the File menu results in a call to HandleFileMenu-
Closeltem(). This routine determines which window is frontmost, then
calls the application-defined function CloseMovieAndFile() to close that
window.

void HandleFileMenuCloseltem(void)

{
WindowPtr theWindow;

theWindow = FrontWindow();
CloseMovieAndFile(theWindow);
}

CloseMovieAndFile() calls three application-defined “get” routines to
retrieve data about the frontmost window. First, the reference number of
the ‘MooV’ file that holds the movie is obtained. Recall that this movie file
remains open as long as its movie is in memory. With the movie window
about to close, it’s time to close the file. The Movie Toolbox routine
CloseMovieFile() does that. Next, the movie’s controller is retrieved and

403

404

Graphics and Sound Programming Techniques for the Mac

disposed of, then the movie is retrieved and disposed of. Then the memory
for the window itself is deallocated. The DisposeMovieController() and
DisposeMovie() routines are Movie Toolbox functions described in
Chapter 7. Finally, the global variable gWindowCount is decremented.

void CloseMovieAndFile(WindowPtr theWindow)
{

MovieController theController;

Movie theMovie;

short theFileRefNum;

theFileRefNum = GetWindowFileReference(theWindow);
CloseMovieFile(theFileRefNum);

theController = GetWindowController(theWindow);
DisposeMovieController(theController);
theMovie = GetWindowMovie(theWindow);

DisposeMovie(theMovie);
DisposeWindow(theWindow);

—gWindowCount;

Handling the File Menu Save Item

The Save menu item is handled as described earlier in this chapter: A call
to the Movie Toolbox function UpdateMovieResource() saves the movie
named in the first parameter to the file and resource specified in the second
and third parameters. The fourth parameter of ni1 tells the function that
the moov resource should not be given a new name.

void HandleFileMenuSaveltem(void)

{
WindowPtr theWindow;
Movie theMovie;
short theFileRefNum;

short theMovieResID;

Chapter 9 = fipplication: QuickTime Movie Editor

theWindow = FrontWindow();

if (GetWindowType(theWindow) == kMovieWindowType)
{ N
theMovie = GetWindowMovie(theWindow):
theFileRefNum = GetWindowFileReference(theWindow);
theMovieResID = GetWindowMovieResourceID(theWindow);
UpdateMovieResource(theMovie, theFileRefNum, theMovieResID,
nil J);

Handling the File Menu Save fis Item

Like the Save menu item, the Save As item is handled as discussed earlier
in this chapter: A call to the Movie Toolbox function FlattenMovie() saves
a movie to a new file. The parameters to this call to FlattenMovie() are
identical to the ones used in this chapter’s earlier discussion of
FlattenMovie().

After the movie is saved to a new file, Hand1eFileMenuSaveAsItem()
calls the Toolbox function SetWTitle() to change the movie window’s title
to the name the user has selected for the movie.

void HandleFileMenuSaveAsItem(void)

{
StandardFileReply theReply;
WindowPtr theWindow;
Movie theMovie;

StandardPutFile(“\pSave as:”, “\pUntitled”, &theReply);

if (theReply.sfGood == false)
return;

theWindow = FrontWindow();

theMovie = GetWindowMovie(theWindow);

405

406

Graphics and Sound Programming Techniques for the Mac

FlattenMovie(theMovie, flattenAddMovieToDataFork,
&theReply.sfFile, °‘TVOD’, O,
createMovieFileDeleteCurFile, nil, nil);

SetWTitle(theWindow, theReply.sfFile.name);
}

Handling the File Menu Quit Item

Many programs handle the Quit menu item by simply setting a global
variable (such as the FilmEdit Boolean variable gDone) to true to end the
main event loop and thus end the program. FilmEdit does that, but it
also does a little cleanup work.

In this chapter’s section on updating movie windows, you saw that
the Toolbox function FrontWindow() could be used to get a pointer to the
first, or front, window on the screen. Then the nextWindow field of the
first window’s WinidowRecord could be used to obtain a pointer to the next
open window. This same technique is used by Hand1eFileMenuQuitItem().
This routine uses a for loop to get a WindowPtr to each open window. For
each window that is of type kMovieWindowType, the application-defined
function CloseMovieAndFile() is called to close the movie’s file and dis-
pose of the memory occupied by the movie, controller, and window.

void HandleFileMenuQuitItem(void)
{
int i
int theNumWindows;
WindowPtr theWindow;
WindowPeek theWindPeek;
WindowPtr theNextWindow;

theNumWindows = gWindowCount;
theWindow = FrontWindow();

for (i = 0; i < theNumWindows; i++)
{
theWindPeek = ((WindowPeek)theWindow)->nextWindow;
theNextWindow = (WindowPtr)theWindPeek;
if (GetWindowType(theWindow) == kMovieWindowType)
CloseMovieAndFile(theWindow);
theWindow = theNextWindow;

Chapter 9 = Application: QuickTime Movie Editor

}
gbone = true;

Type. But if you're thinking of adding some functionality to FilmEdit, this

7 True enough—all of the FilmEdit windows will be of type kMovieWindow-
check should remind you that other windows will be closed in a different

NOTE manner. In particular, there’ll be no movie or controller memory to deallo-

cate. If your version of FilmEdit will also support, say, a picture window, then you
might add an else to the if statement—as shown below. The application-defined routine
ClosePictureWindow() would handle any memory deallocation particular to this
picture type of window (such as calling ReleaseResource() to release the memory
occupied by a PICT resource).

if (GetWindowType(theWindow) == kMovieWindowType)
CloseMovieAndFile(theWindow);

else
ClosePictureWindow(theWindow);

Handling Edit Menu Item Selections

Each Edit menu item is handled by a short application-defined function.
Each begins by calling FrontWindow() to acquire a pointer to the front-
most window—the window in which the editing operation is to take
place. After that, the window’s movie controller is obtained through a
call to the movie controller “get” function—GetWindowController().
Next, the appropriate Movie Toolbox function is called. The handling of
the Undo menu item by the Hand1eEditMenuUndoItem() routine is typical
of the Edit menu routines.

void HandleEditMenuUndoItem(void)

{
WindowPtr theWindow;
MovieController theController;

theWindow = FrontWindow();
theController = GetWindowController(theWindow);

MCUndo(theController);

407

Graphics and Sound Programming Techniques for the Mac

408

}

The Cut, Copy, Paste, and Clear menu items are all handled as discussed
earlier in this chapter.

void HandleEditMenuCutItem(void)

{
WindowPtr theWindow;
MovieController theController;
Movie theTempMovie;

theWindow = FrontWindow();
theController = GetWindowController(theWindow);

theTempMovie = MCCut(theController);
PutMovieOnScrap(theTempMovie, movieScrapOnlyPutMovie);
DisposeMovie(theTempMovie);

}

//

void HandleEditMenuCopyItem(void)

{
WindowPtr theWindow;
MovieController theController;
Movie theTempMovie;

theWindow = FrontWindow();
theController = GetWindowController(theWindow);

theTempMovie = MCCopy(theController);
PutMovieOnScrap(theTempMovie, movieScrapOnlyPutMovie);
DisposeMovie(theTempMovie);

}

//

void HandleEditMenuPasteltem(void)
[WindowPtr theWindow;

MovieController theController;

theWindow = FrontWindow();
theController = GetWindowController(theWindow);

MCPaste(theController, nil);

Chapter 9 = Application: QuickTime Movie Editor

409

//
void HandleEditMenuClearItem(void)
{

WindowPtr theWindow;

MovieController theController;

theWindow = FrontWindow();

theController = GetWindowController(theWindow);

MCClear(theController);
}

Handling of the Select All menu item relies on setting the values of the
fields of a TimeRecord—as discussed earlier in this chapter.

void HandleEditMenuSelectAll1Item(void)
{
WindowPtr theWindow;
MovieController theController;
TimeRecord theTimeRecord;
Movie theMovie;

theWindow = FrontWindow();
theController = GetWindowController(theWindow);
theMovie = GetWindowMovie(theWindow);

theTimeRecord.value.hi = 0;
theTimeRecord.value.lo 0;
theTimeRecord.base = 0;

theTimeRecord.scale = GetMovieTimeScale(theMovie);
MCDoAction(theController, mcActionSetSelectionBegin,
&theTimeRecord);

theTimeRecord.value.lo = GetMovieDuration(theMovie);
MCDoAction(theController, mcActionSetSelectionDuration,
&theTimeRecord);

The FilmEdit Project File Organization

Up to this point, the source-code for each of the example programs in
this book has appeared in a single source-code file. While appropriate

410

Graphics and Sound Programming Techniques for the Mac

for a small example, a single-source code file isn't typical of real-world
Mac projects. The FilmEdit example is large enough that its source code
can be divided into several files. Figure 9.24 shows that the FilmEdit
project consists of eight source-code files.

FilmEdit.p
- File iy Code Data Bk |
v Generic Source 1K 4 o [K3
Globals.c 0 4 A
Initialize.c 190 [x] B
Generic.c 1326 0 @B .
7 Application Source 2K 34 « =
WindRecordAccess.c 450 [} e B}
MovieUtilities.c 362 0 e @
AppleMenu.c 122 0 - @
FileMenu.c 804 34 « @
EditMenu.c 588 0 B
< Resources 1] [1] =}
FilmEdit.rsrc n/a n/a =
<7 Libraries 30K (1] [
Mac0S.lib 31554 0 [
k8
.10 file(s) 34K 38 i@

FIGURE 9.24 The Metrowerks version of the FilmEdit
project lists the eight source-code files.

Only for purposes of organization, the eight files have been placed into
two groups. The first group holds the files that consist of the generic, or
framework, code of FilmEdit. The global variables and routines found
in the Globals.c, Initialize.c, and Generic.c files could be used in just
about any other project.

The FilmEdit project uses three header files to make the #defines,
data type, and global variables known to other files. If a function in any
source file needs to be aware of any of this application-defined informa-
tion, the source file should include the appropriate header file or files.
For instance, routines in the Generic.c file include code that makes
reference to many of the #defines, the BigWindRecord structure, and both
of the global variables. For that reason, you'll find that Generic.c has
the following lines near the top of the file:

f#tinclude “Defines.h”
f#finclude “DataTypes.h”
f#finclude “Globals.h”

Chapter 9 = Application: QuickTime Movie Editor

Figure 9.25 shows the preceding #include directives in the Generic.c
file. Notice also that because code in Generic.c makes use of Movie Toolbox
functions, Generic.c also includes the Movies.h universal header file.

2N
#define kMovieWin
#define rMovieWin typedef struct
#define rMenuBar { extern Boolean gDone;
#define mApple wWindowRecord extern short gWindowCount;
#define iAbout short
#define nFile short
#define iOpen ShOI_“t
f#define iClose Movie
#define iSave MovieController

} BigWindRecord,

#include <Movies.h>

#include "Defines.h”
#include "DataTypes.h”
#include "Globals.h®

void main(void)

InitializeAllToolboxes();
SetUpMenuBar () ;

EventLoop();
}

FIGURE 9.25 Any source-code file can be made aware of
fdefines, data types, and global variables.

In Figure 9.25, you'll notice that the global variables in Globals.h are
defined using the extern keyword. The extern keyword is necessary here
because your compiler will not allow the same variable to be declared
more than one time. Without the use of the extern keyword, the compil-
er would view each appearance of a variable as a declaration. And
because several source code files include the Globals.h file, there are
several appearances of each variable. Variables do have to be declared
once, however, and the Globals.c file takes care of this. Figure 9.26
shows that this file is where the global variables are declared and ini-
tialized. Because this file is a source file rather than a header file, it has
been added to the project along with all of the other .c files. If you make
additions to the FilmEdit project, make sure to add each new global variable

&N

412

Graphics and Sound Programming Techniques for the Mac

to both the Globals.c and Globals.h files.

Boolean gDone false;
short gWindowCount = 0;

non

FIGURE 9.26 The Globals.c file holds the global variable definitions.

Aside from Globals.c, each of the other seven source-code files also has
its own header file. This is necessary in order to make the functions in
each file known to the code in all other files. Thus each .h header file
holds the function prototypes—which serve as public interfaces—for
each routine in the comparably named .c source file. Figure 9.27 shows
the header files for the Initialize.c and Generic.c source files.

void InitializeAllToolboxes(void);
void SetUpMenuBar(void);

void EventLoop(void);
void AdjustAllMenus(void);

void HandleMouseDownEvent(EventRecord);
void HandleKeyDownEvent (EventRecord);
void HandleActivateEvent(EventRecord);
void HandleUpdateEvent(EventRecord);

void HandleMenuChoice(long);

void HandleAppleChoice(short);
void HandleFileChoice(short);
void HandleEditChoice(short);

FIGURE 9.27 The public interfaces for the Initialize.c and Generic.c source code files.

Chapter 9 = fipplication: QuickTime Movie Editor

Initialize.c and Generic.c hold the reusable code for the FilmEdit
project. The remaining five source files hold application-specific code.
Figure 9.28 shows the header files for the menu-handling code found in
the AppleMenu.c, FileMenu.c, and EditMenu.c source-code files. Note

that there is one routine for each menu item—as discussed earlier.

void HandleAppleMenulAboutItem(void);
void HandleAppleMenuDefaultItem(short);

void
void
void
void
void

HandleFileMenuOpenItem(void);
HandleFileMenuCloseItem(void);
HandleFileMenusSavelItem(void);
HandleFileMenuSaveAsItem(void);
HandleFileMenuQuitItem(void);

void
void
void
void
void
void

HandleEditMenuUndoItem(void);
HandleEditMenuCutItem(void);

HandleEditMenuCopyItem(void);
HandleEditMenuPasteItem(void);
HandleEditMenuClearItem(void);
HandleEditMenuSelectAllItem(void);

FIGURE 9.28 The public interfaces for the AppleMenu.c,
FileMenu.c, and EditMenu.c source code files.

The MovieUtilities.c file holds three routines that work with movie
windows. Figure 9.29 shows the public interfaces for these three functions.
The WindRecordAccess.c file holds the source code for the “get” and “set”
routines that are used to access the fields of data in the BigWindRecord
structure. Besides the WindowRecord field, the BigWindRecord consists of
five other members. You can see from the WindRecordAccess.h header
file that there is a “get” and “set” routine defined for each of these

five members.

413

414

Graphics and Sound Programming Techniques for the Mac

long UpdateAllOpenMovies (EventRecoxd);

void CloseMovieAndFile(WindowPtr);

pascal Boolean SizeChangeMCActionFilter(MovieController,
short, void *, long);

#include <Movies.h>

void SetWindowType(WindowPtr, short);

void SetWindowFileReference(WindowPtr, short);

void SetWindowMovieResourceID(WindowPtr, short);
void SetWindowMovie({ WindowPtr, Movie);

void SetWindowController(WindowPtr, MovieController);

short GetWindowType(WindowPtr);

short GetWindowFileReference(WindowPtr);

short GetWindowMovieResourceID(WindowPtr);
Movie GetWindowMovie(WindowPtr);
MovieController GetWindowController(WindowPtr);

FIGURE 9.29 The public interfaces for the MovieUtilities.c
and WindRecord Access.c source code files.

Summary

Your QuickTime application can easily support movie editing by using
Movie Toolbox routines. The MCCut () and MCCopy() functions are used in
response to Cut and Copy choices from the Edit menu. PutMovieOnScrap()
adds the cut or copied section of a movie to the clipboard. MCPaste() is
used when Paste is selected from the Edit menu. MCClear() is used when
the Clear menu item is selected. This function cuts a selected part of a
movie and doesn’t save the cut selection. Any of these actions can be
undone—when the user chooses Undo from the Edit menu, call MCUndo().

If your application allows the user to edit a movie, then it should also
allow the user to save the changes made in an editing session. To over-
write the previous version of a movie, call the Movie Toolbox function
UpdateMovieResource(). To save the new version to its own new file,
call the Movie Toolbox function FlattenMovie().

Many example programs use a single window to demonstrate the topic
at hand. Real world applications, however, allow multiple windows to be

Chapter 9 - Application: QuickTime Movie Editor

open at any time. To keep track of each window, your application should
define a window structure. The first member of this structure should be a
WindowRecord. The remaining members can be used to hold any applica-
tion-specific window information. When an event occurs, call the Toolbox
function FrontWindow() to receive a WindowPtr to the window to which the
event applies. Then use that pointer to access the data for that window.

415

APPENDIX 4

General MIDI
Instrament Numbers

The QuickTime Musical Instruments system software extension is capable
of playing sounds generated by any of the 128 predefined General MIDI
Instruments. Each instrument has both a number and a name. Refer to
Chapter 8 for information about using these instruments from within
your applications.

- Acoustic Grand Piano

Bright Acoustic Piano

Electric Grand Piano

webo o] =

- Honky-tonk Piano

417

Graphics and Sound Programming Techniques for the Mac

418
5 Rhodes Piano
6 Chorused Piano
7 Harpsichord
6 Chorused Piano
8 Clavinet
9 Celesta
10 Glockenspiel
11 Music Box
12 Vibraphone
13 Marimba
14 Xylophone
15 Tubular bells
16 Dulcimer
17 Draw Organ
18 Percussive Organ
19 Rock Organ
20 Church Organ
21 Reed Organ
22 Accordion
23 Harmonica
24 Tango Accordion
25 Acoustic Nylon Guitar
26 Acoustic Steel Guitar

@ppendix @ = General MIDI Instrument Numbers

419

o l_ Electric]gigg Guitar ‘

28 Electric clean Guitar
29 Electric Guitar muted
30 | /LOverdriyéﬁ Cuitar.

Sk . Distortionaitar

32 Guitar Harmonics

32 | WoodBaes

34 | Electric I;a_s—s- Fingered -

95 Electric Bass Picked
%5 [Fretless Bass . —

a7 _ Slap Bass'; .

38 Slap Bass 2

30 I_ Synth Bass_l _

40 Synth Bass 2 '

41 Violin

42 - Viola

43 Cello -

44 Contrabass

45 | Tremolo Strings .

46 Pizzicato Strings .

47 Orchestral Harp

48 Timpani ,

49 Acoustic String Ensemble 1

Graphics and Sound Programming Techniques for the Mac

420
50 Acoustic String Ensemble 2
51 Synth Strings 1
52 Synth Strings 2
85 Aah Choir
54 Ooh Choir -
55 Synvox
56 Orchestra Hit
57 Trumpet
58 Trombone
55 Tuba
60 Muted Trumpet
61 French Horn
62 Brass Section
63 Synth Brass 1
64 Synth Brass 2
65 Soprano Sax
66 Alto Sax
67 Tenor Sax
68 Baritone Sax
69 Oboe
70 English Horn
71 Bassoon
72 Clarinet

Appendix @ = General MIDI Instrument Numbers

73 Piccolo

74 Flute

75 | Recorder

76 Pan Flute

77 Bottleblow
78 Shakuhachi

79 Whistle

80 Ocarina

81 Square Lead
82 Saw Lead

83 Calliope

84 Chiffer

85 Synth?Lead 5
86 Synth Lead 6
87 Synth Lead 7
88 Synth Lead 8
89 Synth Pad 1

90 SynthPad2
1 Synth Pad 3

92 Synth Pad 4

93 Synth Pad 5

94 Synth Pad 6

95 Synth Pad 7

421

Graphics and Sound Programming Techniques for the Mac

422

Synth Pad 8

| IceRain

- . 'Soundtracks

Crys;-a;l ' —
Atmosphere
Bright

~ Goblin ‘

| - Echoes

e

Sitar

Banjo

Shamisen

| Koto

Kalimba

Bagpipe

Fiddle

Shanai

Tinkle bell

Agogo

Steel Drums

Woodblock

Taiko Drum

Melodic Tom

Appendix @ = General MIDI Instrument Numbers

423

19 | synthTom

120 Reverse{Cymbal

‘ 121 ,,l‘j"iGuitar?iFret Noisfé“

122 | Breath Noise
123 ; Z}T‘:Seashofe*

124 Bird Tweet

125 L Telephone Ring
126 : Helicopter

127 | Applause

128 | Gunshot

APPENDIX B
The A5 World

For the typical Macintosh programmer, the A5 world and the A5 register
are topics that arise only occasionally. Because of this, many programmers
ignore the details of how the Mac works with the central processing
unit’s A5 register. You'll gain a greater understanding of Macintosh
code if you don’t follow this trend and instead take a careful look at what
goes on in this important register.

Discussion of the A5 register and the A5 world are important only
to programs that will be running on 68K-based Macs. PowerPC-based
computers don’t have an A5 world. Because it’s most likely that your
application will be written such that it can run on both older 68K-based
Macs and the newer PowerPC-based computers, the topic of the A5 world
isn’t entirely dated—and shouldn’t be ignored.

Switching the Contents of A5

The CPU’s A5 register holds a pointer that tells an application where to
find its own global variables. When a Toolbox routine executes, the system
may alter the contents of the A5 register. When the Toolbox routine has
completed, the application needs to again have access to the A5 register—

425

426

Graphics and Sound Programming Techniques for the Mac

with its original value back in it. Because of this, some scheme is necessary
so that both an application and the system can share this single register.

Macintosh Memory, the A5 World,
and the A5 Register

When an application is launched, the system locates a free area in RAM
in which to hold part or all of the application. This section of RAM is
called an application partition. Each currently executing program has
its own partition. An application partition is composed of an A5 world,
a stack, a heap, and an area of free memory between the stack and
heap—as shown in Figure B.1.

Free Application partition
space

q

4

FIGURE B.1 The memory layout of an application partition.

An application’s stack holds local variables and function parameters. The
application heap holds objects such as resource data, executable code, and
data structures created by the program. The free space that lies between
the stack and the heap serves as a pool of RAM available for use by both
the stack and the heap. One of the purposes of the A5 world is to hold an
application’s global variables. The A5 world, and the CPU’s A5 register, are
the central topics of this appendix.

Appendix B = The A5 World

The memory model shown in Figure B.1 is a simplification of an appli-
cation partition in that it doesn’t show any details of the A5 world. The A5
world holds data that is fixed in size for the duration of a program’s run-
ning. Global variables meet this criteria—the number and size of them is
fixed when a program launches.

In Figure B.2 you can see that a section of the A5 world is devoted to an
application’s global variables. The figure also shows one address in the A5
world, and that same address in the A5 register in the central processing
unit. The address that separates the A5 world’s application global variable
section from the A5 world data above it is referred to as the current A5, and
is represented in code by the system global variable CurrentA5.

cance—it was randomly selected for this figure just to give you something
concrete to refer to. The actual address of the boundary between the global
variables and other A5 world data depends entirely on where in RAM the
operating system places an application partition when a program is launched. Once a pro-
gram is launched this address is stored in the system global variable named CurrentA5.

7 The address shown in Figure B.2, 0x00464000, has no particular signifi-

NOTE

The rest of the
A5 world data 2

|

A5 world

0x00464000 ===y

L

Application
it Stack

global variables

FIGURE B.2 The A5 register holds the address of the section of the
A5 world that holds an application’s global variables.

427

428

Graphics and Sound Programming Techniques for the Mac

Like Figure B.1, Figure B.2 is a simplification of Macintosh memory. The
A5 world actually consists of a jump table, application parameters,
QuickDraw global variables, and a pointer to those QuickDraw variables.
For this discussion, though, only the application global variables section of
the A5 world is of importance. For a more complete discussion of Macintosh memory,
including the stack, the heap, and the A5 world, refer to the M&T book Macintosh
Programming Techniques or the Memory volume of the Inside Macintosh series of books.

NOTE

When a program accesses an application global variable, it has to first
find the variable in the A5 world. It does so by using the current A5
address in the A5 register as a base address, then subtracting some offset
value to move to the particular global variable.

The address in the A5 register is the address of the boundary between the
A5 global variables and other A5 data—it’s not the address of the start of
the A5 globals. Because smaller addresses appear lower in figures, the
global variables appear at addresses smaller than the boundary address in
the A5 register.

Keeping Track of the Value in an
Application’s A5 Register

When a program launches, the address that separates the application’s
global variable space from the rest of the application’s A5 world data—
CurrentA5—is stored in the A5 register. If this address remained steadfast
in this register for the duration of the program’s execution, things
would be very simple from a programmer’s standpoint—one would
never have to be concerned about the contents of this register. The A5
register, however, doesn't retain its value for the duration of the program.
That, in fact, is the entire reason this appendix exists. Fortunately, the
Macintosh operating system takes care of most of the work of keeping
track of the A5 register for you.

There are some situations when the operating system needs to make
use of the A5 register. Because your application needs the contents of this
register, a conflict arises as to how this one register can be shared by both
your application and the operating system. To resolve this dilemma, the

Appendix B = The A5 World

operating system always takes the necessary step of preserving the cur-
rent contents of the A5 register before altering the contents for its own use.
When the operating system is finished with the A5 register, it places the
saved address back in the register. Then it’s safe for your application to
again refer to the register’s value to find its own global variables.

Figure B.3 shows what happens to the A5 register when a Toolbox
routine is called by your program. Some Toolbox functions use the A5
register for their own purposes. When a routine does, it stores the original
contents of the A5 register, changes the contents as it executes, and then
finally restores the contents of the A5 register—as described above.

ToolboxFunc () ; G

[b

ToolboxFunc () ;
7> S

25 register

[0x00542000

FIGURE B.3 Application code and Toolbox code cooperate
by saving and restoring the A5 register value.

In the leftmost code snippet of Figure B.3, an application is making a call
to a hypothetical Toolbox routine named ToolboxFunc(). The importance
of this example lies not in which Toolbox routine gets called, but rather
that a Toolbox routine is called. The snippet that appears second from
the left in the figure shows that when the Toolbox routine starts executing,
it saves the value in the A5 register. This is the address of the application’s
global variables in the application’s A5 world—CurrentA5. As the Toolbox

429

430

Graphics and Sound Programming Techniques for the Mac

routine executes, it makes use of the A5 register—note that in the CPU
pictured under the second snippet from the left, the contents of A5 have
now changed. In the third snippet from the left you can see that the Tool-
box routine has completed and that the ToolboxFunc() code has now
restored the saved, original contents of the A5 register. Finally, in the
rightmost snippet you can see that, as the application code again executes,
it once more can rely on the A5 register to supply it with the address of its
own global variables.

Callback Routines and the A5 Register

The particulars of how an application accesses an application global
variable are usually unimportant to the programmer—you simply make
an assignment statement like the ones that follow:

short gTotalScore = 0;

++gTotalScore;

The A5 register and the A5 world become important to you when your
application uses a callback routine (sometimes referred to as a completion
routine). An example of such a program appears in the AsynchSndPlay
asynchronous sound playing example found in Chapter 2 of this book. A
callback routine is invoked by the system—not by your program. Exactly
when a callback routine will be executed is unknown. For instance, in the
asynchronous sound example the callback routine executes when a sound
is done playing. Because asynchronous sound play allows other actions to
take place as a sound is playing, you have no way of predetermining
exactly what code will be executing at the time a sound completes.

If your program invokes a callback routine when a Toolbox routine
happens to be executing, the callback routine will not be able to access
any of your program’s global variables. That’s because some Toolbox
routines use the A5 register for their own purposes—as you saw back in
Figure B.3. When such a Toolbox function is being executed, the value
in the A5 register may not represent the address of the application’s
global variable section in the A5 world.

@Appendix B = The A5 World

If a callback routine is to be able to access application global vari-
ables, it needs to know the original value of the A5 register. The
approach to making this possible is to save the CurrentA5 value before
the callback routine is invoked. Then, once the callback routine is called,
it should save the value in A5—just in case the operating system is in
the middle of executing a Toolbox routine that is using A5. After saving
A5, the callback routine should set the A5 register to the previously
saved A5 value. At that point it is safe for the callback routine to access
application global variables. When the callback routine is about to exit,
it should restore the A5 register contents to the value that was in the
register at the time the callback routine started. That will let the Toolbox
routine continue to use A5.

Don’t be alarmed if you feel that it’s hard to follow all of the A5
switching—things are a little complicated. Thankfully, the above kind of
code interruption isn’t too common. The step-by-step list below, along
with Figure B.4, should help make sense of how the A5 register is used
by both an application and the system. As you read the following steps,
follow along in Figure B.4.

Application is executing.

Application saves its CurrentA5 value.

Toolbox routine begins executing.

Toolbox routine saves application A5, then uses and alters A5.

ANl A

Callback routine begins executing while Toolbox routine is still
executing.

6. Callback routine saves whatever value the Toolbox has placed
in A5.

7. Callback routine sets A5 to the application A5 saved in Step 2.

8. Callback routine safely accesses application global variables.

9. Callback routine restores Toolbox A5 value saved in Step 6.

10. Toolbox routine continues, and completes, executing.

11. Toolbox routine restores application A5 value saved in Step 4.

431

Graphics and Sound Programming Techniques for the Mac

432

Saved value

0x00400000

Saved value

0x00400000

Saved value

0x00700000

A5 register

A5 register

FIGURE B.4 The Toolbox saves the A5 value when it starts executing,
as does the callback routine when it executes.

The top snippet of Figure B.4 is from an application’s source code. Here
the value in the A5 register (0x00400000) is saved for use later in the pro-
gram. The arrow that starts at this first snippet ends at the point that this
saved value is used. In the second snippet from the top of the figure you
see that a Toolbox routine has been called and is executing. The first thing
the Toolbox routine does is save the contents of the A5 register
(0x00400000), then the routine uses the A5 register for its own purpose. In
the course of running A5, the value in the register changes (to 0x00700000).

As the Toolbox code is executing, a callback routine is invoked (per-
haps a sound has just finished playing and its callback routine was
invoked). When this happens, the callback routine saves the contents of
the A5 register—as shown in the third snippet from the top of Figure
B.4. When the callback routine finishes, control will return to the Toolbox
routine so that it too can finish. Here you see that the callback routine
first preserves the value (0x00700000) left in the A5 register by the
Toolbox function. The callback routine then sets A5 to the CurrentA5
value (0x00400000) saved back in the very top snippet. Now the callback
routine has access to application global variables. When finished, the

Appendix B = The A5 World

callback routine restores A5 to the value (0x00700000) it had when the
callback took control—the value left in A5 by the Toolbox function.

When the callback routine completes, the interrupted Toolbox routine
gets to finish. The callback routine properly restored the A5 register con-
tents to the value (0x00700000) that the Toolbox routine was using when
it got interrupted, so that the Toolbox routine immediately takes up
where it left off. When its finished, it restores the A5 register contents to
the value (0x00400000) that was in A5 when the Toolbox routine first
started to execute back in the second snippet from the top of the figure.

The AsynchSndPlay Example Program

In Chapter 2 you saw that the AsynchSndPlay program uses a callback
routine. By looking at some of the AsynchSndPlay source code, you'll
be able to see an example of the theory discussed on the previous pages.

The AsynchSndPlay program saves the A5 register value by calling
the Toolbox routine SetCurrentA5() from the application-defined routine
InstallCallbackCommand(). SetCurrentA5() sets the A5 register to the
value of the system global variable CurrentA5. This action isn’t important
here because, at this point, the A5 register already has this value. The
real reason for calling SetCurrentA5() here is to take advantage of another
task this function performs. Before setting the A5 register to CurrentA5,
the function returns the current value in A5. The effect is the same as
examining the system global variable CurrentA5 and placing that value
in the param2 field of theCommand.

0SErr InstallCallbackCommand(SndChannelPtr theChannel)
{
OSErr theError;
SndCommand theCommand;
duty
theCommand. cmd
theCommand.paraml
theCommand.param2

callBackCmd;
0;
SetCurrentA5();

mnn

theError = SndDoCommand(theChannel, &theCommand, true);

return (theError);

433

434

Graphics and Sound Programming Techniques for the Mac

CallbackCommand() routine includes an #ifndef powerc conditional direc-
tive. When the AsynchSndPlay source code is compiled with a PowerPC
compiler, this directive eliminates the call to SetCurrentA5() and replaces
it with a simple assignment statement that sets param2 to 0. This is done because
PowerPC-based Macs don’t have an A5 world, and don’t need to go through the effort
of preserving the value of the A5 register. For easier reading (and because this appendix
deals only with 68K code), this directive has been eliminated from this example.

If you look at the AsynchSndPlay source code you'll see that the Install-
A

NOTE

By saving the A5 value in a sound command parameter and then calling
SndDoCommand (), the A5 value ends up in the queue of a sound channel.
Figure B.5 shows how the call to SetCurrentA5() achieves the first step
from Figure B.4.

SetCurrentas () achieves this

FIGURE B.5 A callback command saves the application’s
Ab5 value in one of its three fields—param2.

When AsynchSndPlay finishes playing a sound, the program'’s callback
routine is called. SoundChannelCallback() is shown below.

pascal void SoundChannelCallback(SndChannelPtr theChannel,
SndCommand theCommand)
{

long theA5;
theA5 = SetA5(theCommand.param2);

gCallbackExecuted = true;
gSoundPlaying = false;

theAS = SetA5(theA5);

Appendix B = The A5 World

As in the InstallCallbackCommand() function, the AsynchSndPlay
source code listing found in Chapter 2 uses the #ifndef powerc directive.
If you look back at that chapter you'll see that the SoundChanne1Callback()
routine includes two #ifndef powerc conditional directives. When the
AsynchSndPlay source code is compiled with a PowerPC compiler, these directives
effectively eliminate the two lines of code that set the A5 register. Because PowerPC-
based Macs don’t have an A5 world, that’s the desired effect. Again, for easier reading,
these directives have been eliminated from this example.

For the sake of this example, assume that when the callback routine is
called, the AsynchSndPlay program happens to be in the middle of exe-
cuting a Toolbox routine. That means that A5 may have been altered.
The callback routine too makes this assumption, and saves whatever
value is in A5 before setting this register to the saved application A5
value. To do so, the Toolbox function SetA5() is called. The SetA5()
function sets the A5 register to whatever value is passed to it. Before
doing this, however, it returns the current value in A5, which is saved in
the local variable theA5. Figure B.6 reminds you that it is a call to SetA5()
that saves the A5 value being used by the Toolbox.

theAS5 = SetAS5 (theCommand.param2)
achieves this

FIGURE B.6 When a callback routine starts, it saves the A5 register value
that was set by the interrupted Toolbox routine.

After saving the Toolbox-supplied value of A5, the callback routine sets
AS5 to the application A5 value that’s been stored in the param2 parameter
of the callBackCmd sound command. Remember, until it sets up A5, the
callback routine cannot access application global variables. That’s why the
application A5 value was initially saved in the sound channel queue. The

435

Graphics and Sound Programming Techniques for the Mac

436

callback routine has access to the passed-in sound command (which isn’t
a global variable). Figure B.7 shows this second purpose of calling the
SetA5() Toolbox function (the first being to save the Toolbox-set A5 value).

i theAS = SetAS5 (theCommand.param2)
achieves this

Figure B.7 After saving the A5 value set by the Toolbox,
a callback routine changes A5 to the application A5 value.

The call to SetA5() has now saved the A5 value used by the Toolbox,
and set A5 to the A5 world pointer value used by the application. Now
it’s safe for the application’s callback routine to access application global
variables. Figure B.8 shows that the callback routine does in fact use
two global variables.

With A5 set to Currentas,
it's now possible to do this

FIGURE B.8 Once the callback routine has set A5 to the original
application A5 value, the callback routine can access global variables.

When the callback routine has finished, it restores the A5 register to the
value that was present when the callback function started—the value that

@Appendix B = The @5 World
i 437

was in A5 when the Toolbox function was executing. As shown in Figure
B.9, another call to SetA5() does this. This time, the parameter to SetA5() is
the local variable theA5. Recall that the last call to SetA5() returned the
Toolbox-set A5 value to the variable theA5. Because the callback routine is
ending, the value returned by SetA5() (which is saved in theA5) is ignored.

[ox00400000 |

i [>Qxbovooo<}f¥i;"

The line theA5 = SetAS5 (theAS5)
sets A5 back to the value it had when
the callback routine was entered

FIGURE B.9 Before exiting, a callback routine restores the A5 register
to the state it was in when the callback routine started.

Figure B.10 recaps how the AsynchSndPlay callback routine fits the A5-
switching pattern presented in the appendix.

InstallCallbackCommand (...

(
theCommand. cmd = callBackCmd;
theCommand.paraml = 0;

theCommand.param2 = SetCurrentAS5();

SoundChannelCallback(SndChannelPtr theChannel,
SndCommand theCommand)

{
long theAS;

- f; theAS = SetA5(theCommand.param2);
gCallbackExecuted = true;
gSoundPlaying = false;

==> theAS5 = SetAS5(theAS5);
}

FIGURE B.10 The Chapter 2 AsynchSndPlay example program
uses the A5-saving scheme described in this appendix.

INDEX

ﬂ kMale, 147
) kNeuter, 147
A5 register mcActionControllerSizeChanged, 398-399
SetA5(), 48-49 mcActionSetLooping, 321-322
SetCurrentA5(), 44, 52 mcActionSetLooplsPalindrome, 322
sound playing and, 44-46, 425-437 mcActionSetSelectionBegin, 356
America 448, as source of sounds, 13 mcActionSetSelectionEnd, 356
amplitude (volume), 31, 34, 77-80 mcTopLeftMovies, 312-313
animation movieScrapDontZeroScrap, 352
color, 187-225 movieScrapOnlyPutMovie, 352
comblmng bitmaps fOI', 174-175 newMovieActive, 284
flicker-free, 166 queueFu]]
general technique, 165-166 resProblem, 18, 22
grayscale, 187 sampledSynth, 23
introduced, 4 siBestQuality, 97, 117-119
loop, 188-189, 204-205, 207 siBetterQuality, 97, 117-119
monochrome, 162-192 siGoodQuality, 97, 117-119
PICT, looping, 70 smSystemScript, 361
sound and, 39-40, 56-60 squareWaveSynth, 23
see also CopyBits() srcCopy, 181, 185
API, 228, 274 srcOr, 184
Apple-defined constants transparent, 209
createMovieFileDeleteCurFile, 361 userCanceledErr, 100
fsRdPerm, 350 waveTableSynth, 23
fsRdWrPerm, 279, 350 application
gestaltGraphicsVersion, 236 heap, 238
gestaltGXPrintingMgrVersion, 236 partition, 238
gestaltHasDeepGWorlds, 194 application programming interface, 228, 274
gestaltHasSoundInputDevice, 89 asynchronous sound playing
gestaltQuickdrawFeatures, 194 68K Macs and, 44, 47
gestaltQuickTime, 276 amplitude (volume), 31, 34, 77-80
gestaltSound Attr, 89 animation and, 56-60
gestaltSpeechAttr, 126 callback routine, 23
gestaltSpeechMgrPresent, 126 defined, 11, 13, 36
gxSolidFill, 260 DetachResource(), 54
gxStaticHeapClient, 240 general technique, 36-38, 52-53
kFemale, 147 GetResource(), 54

439

440

Graphics and Sound Programming Techniques for the Mac

HLock(), 55

HUnlock(), 55

NewSndCallBackProc(), 47

pitch (rate), 80-84

PowerPC and, 51-52

SetA5(), 48-49

SndDoCommand(), 76

SndDolmmediate(), 76-82

SndNewChannel(), 36

SndPlay(), 17, 36

sound channels and, 22-26

terminating, 58, 70-75

universal procedure pointer (UPP) and, 47

WaitNextEvent(), 70-72
AsynchSndEvt example program, 72-75
AsynchSndPlay example program, 60-70

BigWindRecord application-defined data type,
364, 390-395

bit image,
defined, 162
see also BitMap data type

bitmap
defined, 162
see also BitMap data type

BitMap data type
allocating, 170, 176
baseAddr field, 163, 178
bounds field, 163-164, 176-177
combining for animation, 169-175
copying, 180-185
defined, 162
fields of, 162, 176
GrafPort, attaching to, 178-179
padding, bytes, 163
PixMap comparison,193
portBits GrafPort field, 167-168
representation in memory, 164-165
rowBytes field, 163-164, 177-178
SetPort(), 178
size of, 163, 164
windows and, 176

bits vs. pixels, 162, 165

buffer, text, 143

callback routine
defined, 23, 39
callback flag, 39-41

C

CDEEF resource, 306-307
CGrafPort data type

defined, 193

offscreen graphics world and, 193-194
CGrafPtr data type, 193, 286
ChangeVoice example program, 152-159

Color Picker, 265
Command-key handling, 383
CompuServe, as source of sounds, 13
CopyBits()
clipping mask, 182
color animation and, 187-225
copy mode, 181, 184, 185, 209
destination bitmap, 181
grayscale animation and, 187
introduced, 161, 180
LockPixels(), 219-220
monochrome animation and, 162-192
parameters, 181-182
PixMaps and, 205-216
RGBBackColor(), 219
source bitmap, 181
srcCopy Apple-defined constant, 181, 185
srcOr Apple-defined constant, 184
transparent Apple-defined constant, 209
UnlockPixels(), 219-220
CopyBitsB&W example program, 185-192

D

DITL resource, 296-300
DLOG resource, 296-300

event-handling, 381-390

eWorld, as source of sounds, 13

example programs
AsynchSndEvt, 72-75
AsynchSndPlay, 60-70
ChangeVoice, 152-159
CopyBitsB&W, 185-192
FilmEdit, 371-415
GWorlds, 216-225
MoreSndCommands, 82-85
MovieDialog, 294-307
MovieLooping, 322
PickAndPlay, 344-347
PickInstrument, 340-343
PlayNote, 334-336
PlayScale, 336-337
QDGXIntro, 244-249
QDGXMapping, 267-271
QDGXProperites, 266-267
QDGXShape, 259-260
QDGXWindow, 252-254
QuickController, 317-321
QuickPlay, 291-294
QuickSpeech, 127-129
ResourceSpeech, 137-140
SaveSound, 111-115
SoundChannellntro, 27-29
SoundCommands, 34-36
SoundHandle, 104-107

Index

b4

SoundRecord, 98-101
SoundResource, 19-22

F

file organization, 409-414
FilmEdit example program, 371-415

games
animation in, 4, 161
ideas for, 3
speech and, 3, 133-134
gestaltHasSoundInputDevice Apple-defined
constant, 89
gestaltSoundAttr Apple-defined constant, 89
GrafPort data type
allocating, 178
defined, 167
drawing to, 171
multiple windows and, 363
OpenPort(), 178
PICT resources and, 171
portBits field, 167-168
representation in memory, 169-175
SetPortBits(), 178
GrafPtr data type, 169, 178
graphics worlds
introduced, 64
see GWorlds
GWorldPtr data type, 193-194
GWorlds
animation technique, 198-199
AreGWorldsAvailable(), 194-195
creating, 195-197, 202
defined, 193-194
DisposeGWorld(), 220
DrawPicture(), 203-204
gestaltHasDeepGWorlds Apple-defined
constant, 194
gestaltQuickdrawFeatures Apple-defined
constant, 194
GetGWorldPixMap(), 196-197, 200
NewGWorld(), 195-196
PICT resources and, 217-218
pixel depth, 196
PixMapHandle data type, 196, 200
presence of, 194
private data structure, 194
QuickTime movies and, 286
representation in memory, 197
SetGWorld(), 203
GWorlds example program, 216-225

H

Handel, George Frideric,
polar bear, strange relationship with, 61

heap, 238, 240
hexadecimal conversion, 80

#ifndef directive, 51-52

keyDown event, sound and, 64, 71, 72, 79, 82
kHz, 80-84

MacRecorder sound digitizer, 89
master pointer, 90
memory
address order, 25, 165
allocation for sound, 90
availability of,92
blocks, contiguous, 94
PurgeSpace(), 92
sound requirements, 96
menu bar, 375
menus, 376-380
microphone, built-in, 89
MIDI (Musical Instrument Digital Interface),
325,328
MoreSndCommands example program, 82-85
mouseDown event, sound and, 72
MovieDialog example program, 294-307
movie editing
clearing, 353
clipboard and, 352
copying, 352-353
createMovieFileDeleteCurFile Apple-defined
constant, 361
creator of movie, 361
cutting, 351-352
data dependencies, 359
DisposeMovie(), 352
flattened movie, 359-360
FlattenMovie(), 361
fsRdPerm Apple-defined constant, 350
fsRdWrPerm Apple-defined constant, 350
GetMovieTimeScale(), 354
mcActionSetSelectionBegin Apple-defined
constant, 356
mcActionSetSelectionEnd Apple-defined
constant, 356
MCClear(), 353
MCCopy(), 352-353
MCCut(), 351-352
MCDoAction(), 356
MCEnableEditing(), 351
MCPaste(), 353
MCSetUpEditMenu(), 378-379
MCUndo(), 353-354
moov resource, 359

442

Graphics and Sound Programming for the Mac

Movie data type, 352
movie controller and, 350-351
movieScrapDontZeroScrap Apple-defined
constant, 352
movieScrapOnlyPutMovie Apple-defined
constant, 352
pasting, 353
PutMovieOnScrap(), 352
saving changes, 357-362
scrap and, 352
select all, 354-356
smSystemScript Apple-defined constant, 361
StandardFileReply data type, 360
StandardPutFile(), 360
TimeRecord data type, 354-356
undoing, 353-354
UpdateMovieResource(), 358
MovieLooping example program, 322
Movie Player application, 361
Movie Toolbox
defined, 273-275
see also QuickTime movies
see also Toolbox functions
Musical Instrument Digital Interface, 325

numeric keypad, 83

0

objects, see QuickDraw GX

offscreen animation, see animation
offscreen graphics world, see GWorlds
orthodontists, future treat for, 186

(4

partial pathnames, 280
partitions, memory, 238
pathnames, 279-281 .
PickAndPlay example program, 344-347
PickInstrument example program, 340-343
PICT resource, 296-300
PictSize shareware program, 298
pitch (rate), 80-84
pixel depth of monitor, 196
pixel image,
defined, 192
see also PixMap data type
pixel maps
defined, 192
locking, 219
LockPixels(), 219-220
UnlockPixels(), 219-220
see also PixMap data type
pixels vs. bits, 162, 165
PixMap data type

BitMap comparison,193

creating, 196-197, 202

defined, 192

fields of, 192

size of, 201
PlayNote example program, 334-336
PlayScale example program, 336-337
Point data type, 96
port WindowRecord field, 167-168
PowerPC Macintosh, code compatible with, 51-52
project file organization, 409-414
properties, see QuickDraw GX
Ptr data type

Q

QDGXIntro example program, 244-249
QDGXMapping example program, 267-271
QDGXProperites example program, 266-267
QDGXShape example program, 259-260
QDGXWindow example program, 252-254
QMA (QuickTime Musical Architecture), 326
QuickController example program, 317-321
QuickDraw

QuickDraw GX and, 229-230

state-based architecture, 229
QuickDraw GX

colors, adding to shapes, 262-266

disabling extension, 245

DisposeWindow(), 252

errors, 240-241

ff() macro, 232, 256, 262

Fixed data type, 232, 256

FixedDivide(), 269-270

Gestalt(), 235-238

gestaltGraphicsVersion Apple-defined

constant, 236
gestaltGXPrintingMgrVersion Apple-defined
constant, 236

graphics client heap, 238-241

graphics part, 235-236, 242

graphics ports, 250-252

gxColor data type, 262-266

gxColorSpaces data type, 263

gxColorValue data type, 264

GXDisposeGraphicsClient(), 244

GXDisposeViewPort(), 252

GXDrawShape(), 232, 251

GXEnterGraphics(), 240

GXExitGraphics(), 243

GXExitPrinting(), 243

- GXGetGraphicsError(), 240

GXGetJobError(), 242

gxGraphicsClient data type, 239

GXInitPrinting(), 242-243

gxLine data type, 232

GXNewGraphicsClient(), 239-240

Index

443

GXNewShape(), 232, 251, 255, 257
GXNewWindow ViewPort(), 250, 252-253
gxPoint data type, 255-256
gxRectangle data type, 256
gxRGBColor data type, 264
GXScaleShape(), 269-270
GXSetLine(), 232, 257
GXSetShapeColor(), 265-266
GXSetShapePen(), 232, 262
GXSetShapeViewPort(), 251, 257-258
gxShape data type, 232, 255
gxSolidFill Apple-defined constant, 260
gxStaticHeapClient Apple-defined
constant, 240
gxViewPort data type, 252
handles and, 229
initializing, 238-243
ink property, 261
introduced, 5, 227-228
IsQuickDrawGXAvailable(), 237-238, 243, 245
line coordinates, 232
line shape, 255-258
mapping, 267
memory model, 229
object-based architecture, 229
object-reference values, 229
objects and shapes, 228, 254
owner count property, 261
parts of, 235-236, 242
pen setting, 232
pointers and, 229
preparing program for, 235-244
presence of, 235-238
printing part, 235-236, 242
properties, general, 228, 260-266
properties, specific
ink property, 261, 262-266
owner count property, 261
shape attributes property, 261
shape fill property, 261
shape geometry property, 260
shape type property, 260
style property, 261, 262
tag list property, 261
transform property, 261
RGB color space, 263, 266
shape attributes property, 261
shape fill property, 261
shape geometry property, 255-256
shape geometry property, 260
shapes
constants, Apple-defined, 255
creating, 232, 255-258
introduced, 228
objects and, 228, 254
simulating, 230-235
state-based architecture, 229

style property, 261
supporting objects, 261
tag list property, 261
terminating, 243-244
transform property, 261
transforms, 267
view ports, 250-252, 257-258
QuickPlay example program, 291-294
QuickSpeech example program, 127-129
QuickTime extension
Gestalt(), 276-277
Gestalt.h universal header file, 276
gestaltQuickTime Apple-defined constant, 276
initializing, 277-278
introduced, 273
Movies.h universal header file, 278
presence of, 276-277
versions of, 276-277
see also QuickTime movies
QuickTime movies
action filter function, 397-400
action parameter, 321
altering playing of, 321
CloseMovieFile(), 285
closing, 285
data dependencies, 359
dialog box, playing within, 294-307
displaying, 285-289
DisposeMovie(), 291
DisposeWindow(), 291
disposing of, 291
EnterMovies(), 277-278
event loop and, 314-317
flattened movie, 359-360
FSMakeFSSpec(), 279-281, 284, 307
fsRAWrPerm Apple-defined constant, 279
FSSpec data type, 279-281, 284, 307
GetMovieBox(), 287, 312
GoToBeginningOfMovie(), 289
graphics world, 286
introduced, 5-6, 273
IsMovieDone(), 290
loading, 278-279, 281-284
looping, 321-322
mcActionControllerSizeChanged Apple—
defined constant, 398-399
mcActionSetLooping Apple-defined constant,
321-322
mcActionSetLooplsPalindrome Apple-defined
constant, 322
MCActivate(), 381
MCDoAction(), 321-322
MCGetControllerBoundsRect(), 312-314
MCGetControllerBoundsRect(), 399
MClIsPlayerEvent(), 316-317, 318-319, 380,
395-397
MCSetActionFilterWithRefCon(), 400, 401

Graphics and Sound Programming for the Mac

mcTopLeftMovie Apple-defined constants,
312-313
MooV movie file type, 279, 281, 308-309, 401
moov resource, 281, 359, 402
Movie data tvpe, 283
movie controller
attaching to movie, 311-314
event loop and, 314-317
introduced, 274, 310-311
main event loop and, 380-381
parts of, 311
MovieController data type, 313, 318
MoviesTask(), 290
Movie Toolbox, 274-275
multiple-movie playing, 362-371
NewCWindow(), 285-286
newMovieActive Apple-defined constant, 284
NewMovieController(), 312-313
NewMovieFromFile(), 282-284
NewWindow(), 285
obtaining, 298
opening, 279-281, 307-310
OpenMovieFile(), 279, 283
palindrome looping, 322
playing, 289-291
resizing window, 286-289
selecting, 307-310
SetMovieGWorld(), 286
SizeWindow(), 288
standard file reply structure, 309
StandardGetFilePreview(), 307-310
StartMovie(), 290
timing of, 354-355
updating, 395-397
visibility, 286-287
WIND resource and, 286-287
see also movie editing
see also QuickTime extension

QuickTime Musical Architecture, 326
QuickTime Musical Instruments

component, Note Allocator, 327
Instrument Picker dialog box, 337-340
instruments
categories of, 338
description, code 327-329
selecting, 337-339
introduced, 7, 325
list of, 417-423
MIDI and, 325, 328
MIDI notes vs MIDI instruments, 332
Music Component, 326
NVADisposeNoteChannel(), 331
IANewNoteChannel(), 330-332
"APickInstrument(), 339-340, 341-342
APlayNote(), 331-334
rte Allocator, 326-327
‘e channel, 329-331

NoteRequest data type, 329
OpenDefaultComponent(), 330, 332
pitch of note, 332-333
playing note, 331-334
polyphony, 330
QMA, 326
QuickTime Musical Architecture, 326
scale, playing, 336-337
synthesizers, 338
ToneDescription data type, 327-329
Tune Player, 326

QuickTime Musical Instruments extension,

introduced, 325

R

ResEdit
DLOG resources and, 299-300
QuickTime movies and, 287, 292
sounds and, 13-14
Resorcerer
DLOG resources and, 299-300
QuickTime movies and, 287
sounds and, 13-14
resource files
AddResource(), 108-109
application fork, vs., 113
closing, 54-55
CurResFile(), 108-109
memory map, 109
saving sound to, 108-111
UniquelD(), 110
UpdateResFile(), 108-109
resource map, 109
ResourceSpeech example program, 137-140
response parameter, Gestalt(), 88
resProblem Apple-defined constant, 18, 22
RgnHandle data type, 182

S

sampledSynth Apple-defined constant, 23
sampling rates, 80-84
SaveSound example program, 111-115
selector code, Gestalt(), 88
shapes, see QuickDraw GX
sizeof(), 149
snd resource type

ID, assigning, 110, 112

saving sound to, 108-111
SndChannel data type

callBack field, 40

defined, 30

queue field, 30, 40
SndChannelPtr data type, 18, 22, 30
SndCommand data type

cmd field, 31, 43-44

defined, 31

Index

fields of, 31, 43
paraml field, 31, 43-44
param2 field, 31, 43-46
SndListHandle data type, 17, 90, 95, 102-103
sound
amplitude (volume), 31, 34, 77-80
kHz, 80-84
pitch (rate), 80-84
sampling rates, 80-84
sound callback routine
defined, 48
SndNewChannel(), 46
synchronous sound and lack of, 46
sound channel
allocating, 22-26
callback routine, 40-41
defined, 22
DisposePtr(), 24
disposing, 22-26, 57-60
introduced, 11, 16
memory representation, 32, 41
record, 27
SndDisposeChannel(), 23-25
SndNewChannel(), 22-24
sound command queue, 30, 32
sound channel record, 27
sound command queue
bypassing, 76
callback command, adding, 55-56
installing commands in, 43-46, 76
introduced, 27
operation of, 40-43
queue field, 30
queueFull Apple-defined constant
see also SndCommand data type
sound commands
ampCmd command, 31-32, 77-80
callBackCmd command, 42-46
defined, 29
freqCmd command, 31
issuing, 76
memory representation, 32
setting up, 31-32
SndDoCommand(), 31-34, 76
SndPlay(), 76
sound channel and, 30
see also SndCommand data type
Sound control panel, 15, 34, 78, 89
sound digitizer, 15
sound input devices
introduced, 87-88
IsSoundInputAvailable(), 88, 99
presence of, 88
Sound Input Manager
features of, 90-91
introduced, 87
Sound Manager

defined, 12
SndSoundManagerVersion()
speech and, 122
System 7.5 and, 12
version of, 12-13, 63, 99
sound playin
AS5 register and, 44-46, 425-437
introduced, 2, 11
sound recording
AddResource(), 108-109
CurResFile(), 108-109
disk space for, 97, 116-119
handles and, 102-104
introduced, 2
MaxApplZone(), 94, 99
memory, directly to, 92
NewHandle(), 95, 116
playing back, 102-104
PurgeSpace(), 92, 94-95
quality of, 97, 116-119
ReleaseResource(), 104
resource, saving as, 107-111
siBestQuality Apple-defined constant,
97,117-119
siBetterQuality Apple-defined constant,
97,117-119
siGoodQuality Apple-defined constant,
97,117-119
SndRecord(), 90, 96-97
time length of sound, limitation on, 92, 96
UniquelD(), 110
UpdateResFile(), 108-109
Sound Recording dialog box, 91, 98
sound resources
defined, 13
detaching, 54-55
digitized sounds and, 13,15
GetResource(), 16-17
ID range, 15
loading to memory, 16-17
locking, 55
playing, 15-19
resource IDs, 15
snd resource type, 13-14
SndPlay(), 16-19
sources of, 13
sound queue, see sound command queue
SoundChannellntro example program, 27-29
SoundCommands example program, 34-36
SoundHandle example program, 104-107
SoundInput.h universal header file, 96
SoundRecord example program, 98-101
SoundResource example program, 19-22
speech
asynchronous, 129, 143
digitized sound, vs., 121
gestaltSpeechAttr Apple-defined constant,

445

446

Graphics and Sound Programming for the Mac

gestaltSpeechMgrPresent Apple-defined

constant, 126
GetIndString(), 136-137
introduced, 3
IsSpeechAvailable(), 125-126, 127
resource text for, 135-138
SpeakString(), 126-127, 129-130
SpeechBusy(), 129. 143
STR# resources and, 135
string, speaking, 126-127, 129-130
synchronous, 129-130
synthesized, 122
user-entered text for, 131-133
voices, 122

speech channel,
allocating, 141
bulffer, speaking text from, 143
DisposeSpeechChannel(), 142
disposing of, 142
introduced, 130
NewSpeechChannel(), 141-142
pointer to, 141
SpeechText(), 140-141, 143-144
voices and, 140
Speech Manager
audio hardware and, 122
installing, 125
introduced, 121
presence of, 125-126
synthesized speech and, 122
synthesizer, built-in,124
System 7.5 and, 125
speech synthesizer
defined, 124
dictionaries and, 122
introduced, 122
MacinTalk Pro, 122-124
pronunciation rules, 123
Speech.h universal header file, 127
SpeechChannel data type, 141

SpeechChannelRecord data type, 141-142
squareWaveSynth Apple-defined constant, 23

stack, 238
string, format of, 144
synchronous sound playing
defined, 13
SndPlay(), 38-39

T

Toolbox functions
AddResource(), 108-109
AreGWorldsAvailable(), 194-195
CloseMovieFile(), 285
CountVoices(), 148-149
CurResFile(), 108-109
Delay(), 333-334

DetachResource(), 54
DialogEvent(), 317
DialogSelect(), 317
DisposeGWorld(), 220
DisposeMovie(), 291, 352
DisposePtr(), 24
DisposeSpeechChannel(), 142
DisposeWindow(), 252, 291
DrawPicture(), 203-204
EnterMovies(), 277-278

ff() macro, 232, 256, 262
FillRect(), 250

FixedDivide(), 269-270
FlattenMovie(), 361
FSMakeFSSpec(), 279-281, 284, 307
Gestalt(), 88, 235-238, 276-277
GetDialogltem(), 132, 302
GetDialogltemText(), 132
GetGWorldPixMap(), 196-197, 200
GetIndString(), 136-137
GetIndVoice(), 148
GetMovieBox(), 287, 312
GetMovieTimeScale(), 354
GetNewCWindow(), 364
GetResource(), 16-17, 54
GetVoiceDescription(), 149
GoToBeginningOfMovie(), 289
GXDisposeGraphicsClient(), 244
GXDisposeViewPort(), 252
GXDrawShape(), 232, 251
GXEnterGraphics(), 240
GXExitGraphics(), 243
GXExitPrinting(), 243
GXGetGraphicsError(), 240
GXGetJobError(), 242
GXInitPrinting(), 242-243
GXNewGraphicsClient(), 239-240
GXNewShape(), 232, 251, 255, 257

GXNewWindowViewPort(), 250, 252-253

GXScaleShape(), 269-270
GXSetLine(), 232, 257
GXSetShapeColor(), 265-266
GXSetShapePen(), 232, 262
GXSetShapeViewPort(), 251, 257-258
HLock(), 55

HUnlock(), 55
IsMovieDone(), 290

Line(), 229

LockPixels(), 219-220
MaxApplZone(), 94, 99, 374
MCActivate(), 381
MCClear(), 353

MCCopy(), 352-353
MCCut(), 351-352
MCDoAction(), 321-322, 356
MCEnableEditing(), 351

Index

MCGetControllerBoundsRect(), 312-314, 399
MClIsPlayerEvent(), 316-317, 318-319, 380,
395-397
MCPaste(), 353
MCSetActionFilterWithRefCon(), 400, 401
MCSetUpEditMenu(), 378-379
MCUndo(), 353-354
MoreMasters(), 375
MoviesTask(), 290
NADisposeNoteChannel(), 331
NANewNoteChannel(), 330-332
NAPickInstrument(), 339-340, 341-342
NAPIlayNote(), 331-334
NewCWindow(), 285-286
NewGWorld(), 195-196
NewHandle(), 95, 116
NewMovieController(), 312-313
NewMovieFromFile(), 282-284
NewSndCallBackProc(), 47
NewSpeechChannel(), 141-142
NewWindow(), 285
OpenDefaultComponent(), 330, 332
OpenMovieFile(), 279, 283
OpenPort(), 178
PenSize(), 229
PurgeSpace(), 92, 94-95
PutMovieOnScrap(), 352
ReleaseResource(), 104
RGBBackColor(), 219
SetA5(), 48-49
SetCurrentA5(), 44, 52
SetGWorld(), 203
SetMovieGWorld(), 286
SetPort(), 178
SetPortBits(), 178
SetRect(), 250
SetWTitle(), 405
SizeWindow(), 288
SndDisposeChannel(), 23-25
SndDoCommand(), 31-34, 76
SndDolmmediate(), 76-82
SndNewChannel(), 22-24, 36, 46, 54
SndPlay(), 16-19, 36, 38-39, 76
SndRecord(), 90, 96-97
SndSoundManagerVersion()
SpeakString(), 126-127, 129-130
SpeechBusy(), 129. 143
SpeechText(), 140-141, 143-144
StandardGetFilePreview(), 307-310
StartMovie(), 290
SysBeep(), 15
UniquelD(), 110
UnlockPixels(), 219-220
UpdateMovieResource(), 358
UpdateResFile(), 108-109
WaitNextEvent(), 70-72union data type,
263-264

universal procedure pointer (UPP)
movie action filters and, 400
NewSndCallBackProc(), 47
SndNewChannel(), 54
sound playing and, 47

userCanceledErr Apple-defined constant, 100

v

voice synthesizers, 4

voices
CountVoices(), 148-149
data structure, 124
GetIndVoice(), 148
GetVoiceDescription(), 149
introduced, 122, 124
kFemale Apple-defined constant, 147
kMale Apple-defined constant, 147
kNeuter Apple-defined constant, 147
male, 147-148
robot, 147
selecting, 146-152
synthesizer ID, 148-149
system-default, 124, 140
teenager, 147-148
voice ID, 148-149

Voices folder, 124

VoiceDescription data type
age field, 147
defined, 146
fields of, 146-147
gender field, 147

VoiceSpec data type, 148-150

W

waveTableSynth Apple-defined constant, 23
window storage, 367

window structure, application-defined, 364
WindowPeek data type, 366

WindowPtr data type, 167-168, 206
WindowRecord data type, 166-168, 362-365

hL&7

@boaut the CD

The CD in the back of this book contains all the sample code discussed in

both Metrowerks CodeWarrior and Symantec C++ projects. On the CD,

you'll find a folder titled “M&T Graphics & Sound Examples.” Inside this

folder are the projects divided into folders for each compiler. The projects
are further divided by chapter so you can find them easily.

Having a CD-ROM allows for a great deal more material for really the
same price. As such, you're getting not only about 60M of programming
examples and sample programs, but we’ve also included a folder titled
“Goodies.” Inside, you'll find some sample sounds, graphics, movies, and
some shareware graphics toolkits. Don’t let the shareware title bother you.
These are tools you will probably find very useful. And, if you do, please
pay the registration fees. Someone worked very hard to create these for you.

R
Graphics and Sound Programming Techniques

Macintosh programmers have to learn about
windows, menus, and dialog boxes. But what they
really want is to learn about the exciting video

and audio tricks that have always separated the » Color QuickDraw
Macintosh from other home computers. Graphics ;
and Sound Programming Techniques covers all of > QuickDraw GX
the fun and interesting topics programmers need s .
an understanding of before they can write games, > QuickTime Movies
multimedia software, and truly complete applications. 2

» QuickTime Musical
Inside, you'll find techniques on all of the latest, Instruments
cutting-edge Apple software extensions including
QuickDraw GX, QuickTime Musical Instruments, » Graphics Worlds and
and the Speech Manager. You'll get tips on how Animation
to make the most of these tools and practical
programming solutions you can incorporate into » Writing Power Mac-
your code today. On the CD-ROM for the book, Compatible Code

you'll get all the code discussed in the book—
including CodeWarrior and Symantec C++ projects— R gl LTV RV [l
plus sound and video clips to test your
programs on!

Dan Parks Sydow is one of the premier programming authors for the
Macintosh. His books include Programming the Power PC, Macintosh
Programming Techniques, More Mac Programming Techniques, and
most recently, Metrowerks CodeWarrior Programming.

Cover art © Will Crocker, The Image Bank

Cover design by Gary Szczecina CEIE 539'23
— ISBN 1-55851-442-2 cﬂ
I Level | 90000
-
| Beginnevntermediate |
C++ Programming |
9%781558"514423

Macintosh |

