
Mfil ~
=
=
=
"""

GRAPHICS AtlD SOOtlD
PROGRAMMltlG TECHtllQOES

FOR THE MAC

Dan Parks Sydow

M&T Books
A Division of MIS:Press, Inc.
A Subsidiary of Henry Holt and Company, Inc.
115West18th Street
New York, New York 10011

Copyright© 1995, by Dan Parks Sydow.

Printed in the United States of America

All rights reserved. No part of this book may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying,
recording, or by any information storage and retrieval system, without prior
written permission from the Publisher. Contact the Publisher for information
on foreign rights.

Limits of Liability and Disclaimer of Warranty

The Author and Publisher of this book have used their best efforts in preparing the
book and the programs contained in it. These efforts include the development,
research, and testing of the theories and programs to determine their effectiveness.

The Author and Publisher make no warranty of any kind, expressed or implied,
with regard to these programs or the documentation contained in this book. The
Author and Publisher shall not be liable in any event for incidental or consequential
damages in connection with, or arising out of, the furnishing, performance, or use
of these programs.

All products, names and services are trademarks or registered trademarks of their
respective companies.

Wayzata sound files and QuickTime movie distributed with permission of
Wayzata Technology. Screen snapshots of the Robot movie used with permission
of Wayzata Technology.

Library of Congress Cataloging-in-Publication Data

Graphics and sound programming for the Mac I by Dan Parks Sydow.
p. cm.

Indudes index.
ISBN 1-55851-442-2
1. Macintosh (Computer)-Programming. 2. Computer graphics.

3. Computer sound processing. I. Title.
IN PROCESS
006.6'765-dc20 95-40387

CIP

10987654321

Associate Publisher: Paul Farrell

Managing Editor: Cary Sullivan
Development Editor: Michael Sprague
Copy Edit Manager: Shari Chappell

Production Editor: Anne Incao
Technical Editor: Pete Ferrante
Copy Editor: Winifred Davis

Dedication
To Nadine and Taylor Ann

-Dan

Acknowledgments
Michael Sprague, Development Editor, M&T Books, for keeping things
rolling and on schedule.

Anne Incao, Senior Production Editor, M&T Books, for another fine
page layout effort.

Winifred Davis, Copy Editor, for making it appear that I really do
know how to write!

Peter Ferrante, Apple Computer, for another helpful technical review.

Carole McClendon, Waterside Productions, for making this book
happen.

Jeffery Garland, M.D., St. Joseph's Hospital, Milwaukee, Wisconsin,
for choosing medicine as your profession, and for bypassing convention!

Karen Heine, RN, St. Joseph's Hospital, Milwaukee, Wisconsin, for
providing help as both a professional and a person-Taylor's parents
will always remember you!

WttY Ttt1s BooK Is fOR Yoo ... 0

CHflPTEit 1 • lnmooua1on TO MAClnTOSH GitflPHICS Ano Souno 1

Graphics, Sound, and This Book ... 1
Sound Playing .. 2
Sound Recording ... 2
Speech ... 3
Animation4
QuickDraw GX5
QuickTime Movies5
QuickTime Musical Instruments .. 7
A Complete Example Program ... 8

Now .. 9

CHAPl'ER Z • Soono PLAY1nG•.•••.•.•.•.••...........•.•••.•..•.•.•.•.•...•..•..•.•.. 11

The Sound Manager .. 12
The Sound Manager Version 3.0 ... 12
Synchronous and Asynchronous Sound Play .. 13

Sound Resources .. 13
About Sound Resources ... 13
Playing a Sound Resource ... 15
Now, Really Playing a Sound Resource .. 16
Chapter Example: SoundResource ... 19

Sound Channels ... 22
Allocating and Disposing of a Sound Channel .. 22
Using a Sound Channel. ... 26
Chapter Example: SoundChannellntro .. 27

Sound Commands ... 29
About Sound Commands .. 30
Chapter Example: SoundCommands ... 34

Asynchronous Sound Play ... 36
An Approach to Playing a Sound Asynchronously 36
The Callback Command and Callback Routine 38
Installing the Callback Command in the Command Queue43
The Sound Callback Routine ... 46
Starting the Sound and Animation .. .52

vii

viii
Graphics and Sound Programming Techniques for the Mac

Performing Animation While a Sound Plays .. 56
Chapter Example: AsynchSndPlay .. 60

More Asynchronous Sound .. 70
Allowing User Input While a Sound Plays ... 70
Chapter Example: AsynchSndEvt .. 72
Sound Commands and Asynchronous Sound Play 76
SndDolmmediate() and Sound Volume .. 77
SndDolmmediate() and Sound Pitch ... 80
Chapter Example: MoreSndCommands .. 82

Summary ... 86

CHAPTER J • SooHD REco~o1na .. 87

Sound Input Devices ... 87
Recording a Sound to Memory .. 90

Sound Data and Memory ... 90
Allocating a Memory Block for Sound Data ... 93
Recording the Sound Data to Memory .. %
Chapter Example: SoundRecord ... 98

Playing Back a Recorded Sound .. 102
Using the Handle to the Recorded Sound ... 102
Chapter Example: SoundHandle .. 104

Saving a Recorded Sound to a snd Resource ... 107
The Format of Sound Data in Memory .. 107
Saving Sound Data to a snd Resource .. 108
Chapter Example: SaveSound ... 111
Sound Quality and Disk Storage Space ... 116

Summary ... 119

CHAPTEft, 4 • SPEECH •• 121

The Speech Manager ... 122
The Speech Manager and Speech Synthesizers 122
Voices and Speech Synthesizers ... 124
Checking for the Availability of the Speech Manager 125

Speaking a String ... 126
The SpeakString() Toolbox Function .. 126
Chapter Example: QuickSpeech ... 127
Speaking More Than One String .. 129
Chapter Example: WaitSpeech .. 131
User Input and Speech ... 131
Chapter Example: InputSpeech .. 132
Resource Strings and Speech ... 135

Contents
ix

Chapter Example: ResourceSpeech .. 137
Speech Channels .. 140

Allocating and Disposing of a Speech Channel.. 141
Using a Speech Channel. .. 143
Chapter Example: SpeechChannellntro ... 144

Voices ... 146
Specifying a Voice ... 146
Obtaining a Voice Description for a Voice .. 148
Chapter Example: Change Voice ... 152

Summary ... 159

CHAPTER 5 • f1"111AT1on ••••••••••.••••••••••••••••••••••••••••••••••.••••••••••••••.••••••• 161

Monochrome Animation and CopyBits() ... 162
Bit Images and BitMaps ... 162
BitMaps, Graphics Ports, and Windows .. 166
BitMaps and Graphics Ports Without Windows 168
Creating a New BitMap ... 176
Copying a BitMap ... 180
Chapter Example: CopyBitsB&W ... 185

Color Animation and GWorlds ... 192
Color Images and PixMaps .. 192
Pixel Maps, Color Graphics Ports, and the GWorld 193
Checking for the Availability of GWorlds ... 194
Creating a GWorld and its PixMap .. 195
Using GWorlds for Animation .. 198
CopyBits() and Color Animation .. 199
Chapter Example: GWorlds ... 216

Summary ... 225

CttflPTEtt 6 • Qu1cKDRAW CiX ... 227
About QuickDraw GX ... 228

Object and Shapes ... 228
QuickDraw vs. QuickDraw GX .. 229
Chapter Example: PoorMansQDGX .. 230

Readying a Program for QuickDraw GX ... 235
Checking for QuickDraw GX .. 235
Initializing QuickDraw GX .. 238
Terminating a QuickDraw GX Application .. 243
Chapter Example: QDGXIntro .. 244
Windows and QuickDraw GX .. 250
Chapter Example: QDGXWindow ... 252

x
Graphics and Sound Programming Techniques for the Mac

Graphic Shape Objects .. 254
Creating and Drawing a Shape Object... .. 255
Chapter Example: QDGXShape .. 259
Shape Object Properties ... 260
Shape Object Style Properties .. 262
Shape Object Ink Properties .. 262
Chapter Example: QDGXProperties ... 266
Shape Object Transform Properties .. 267
Chapter Example: QDGXMapping .. 267

Summary ... 271

CHAPTER 7 • Qu1cKT1ME MOVIES .. 273

The Movie Toolbox .. 274
Checking for QuickTime .. 276
Initializing the Movie Toolbox .. 277

Loading a Movie .. 278
Opening a Movie File ... 279
Loading a Movie from a File ... 281
Closing a Movie File ... 285

Displaying a Movie .. 285
Setting the Movie Graphics World-SetMovieGWorld() 286
Resizing the Display Window ... 286

Playing a QuickTime Movie ... 289
Preparing a Movie for Playing .. 289
Playing a Movie ... 290
Cleaning Up ... 291
Chapter Example: QuickPlay .. 291

Chapter Example: MovieDialog .. 294
The Movie Dialog Program .. 294
The MovieDialog Resources .. 296
The Movie Dialog Source Code Listing .. 300
Improving the MovieDialog Program ... 306

Chapter Example: SelectMovie .. 307
Movie Controllers .. 310

About Movie Controllers ... 310
Attaching a Movie Controller to a Movie .. 311
Movie Controllers and the Event Loop ... 314
Chapter Example: QuickController .. 317
Movie Controllers and Movie Looping ... 321
Chapter Example: MovieLooping .. 322

Chapter Summary .. 323

Contents
xi

CHAPTER 8 • OulCl<'flME MUSICAL lrtSTRUMEtm 325

About QuickTime Music326
The Note Allocator .. 326

Opening a Note Allocator Component .. 327
ToneDescription: Describing an Instrurnent ... 327
Describing a Note Channel .. 329
Opening a Note Channel ... 330
Playing a Note ... 331
Chapter Example: PlayNote .. 334
Chapter Example: PlayScale .. 336

Selecting an Instrument .. 337
Adding the Instrument Picker Dialog Box to a Program 339
Chapter Example: Picklnstrurnent ... 340
Chapter Example: PickAndPlay ... 344

Summary ... 347

CHAPTER 9 • flPPLICflTIOl'I: Qu1cl<'flME MOVIE EDITOR 349
Movie Editing ... 350

Movie Editing and the Movie Controller .. 350
Movie Toolbox Movie Editing Routines .. 351

Saving an Edited Movie .. 357
Saving a Movie with a "Save" Menu Item .. 357
Saving a Movie with a "Save As" Menu Item .. 358

Working with Multiple Movies ... 362
Window Records and Extra Window Data ... 362
Accessing the Application-Defined Window Structure 366

Example Program: FilmEdit ... 371
The FilmEdit Resources .. 372
Program Initialization .. 373
The Main Event Loop and Menus .. 376
The Main Event Loop and Movie Controllers .. 380
The Main Event Loop and Event Handling .. 381
The Application-Defined Window Structure .. 390
Updating Multiple Movies .. 395
The Movie Controller Action Filter Function ... 397
Handling Apple Menu Item Selections401
Handling the File Menu Open Item ... 401
Handling the File Menu Close Item ... 403
Handling the File Menu Save Item .. .404
Handling the File Menu Save As Item .. .405
Handling the File Menu Quit Item ... 406

xii
Graphics and Sound Programming Tczchniquczs for thcz Mac

Handling Edit Menu Item Selections .. .407
The FilmEdit Project File Organization .. .409

Summary ... 414

flPPEl'IDIX fl • CiEHE~flL MIDI IHSTRUMEtlT tlUMBE~S 417

flPPEnDIX B • THE AS WoRLD .. 425

Switching the Contents of AS .. .42S
Macintosh Memory, the AS World, and the AS Register426
Keeping Track of the Value in an Application's AS Register 428
Callback Routines and the AS Register430
The AsynchSndPlay Example Program .. .433

lnDEX •...•...••.............................. 439

Why This Book
Is for You

From the beginning, graphics and sound are what the Macintosh has
been all about. For the Macintosh user, applications that include pictures,
animation, movies, and sound have made working with computers fun.
For the programmer, however, things haven't always been so fun. Such
topics as pixel maps, asynchronous sound, and offscreen animation are
all new experiences for any anyone coming from a programming back­
ground that doesn't include graphical user interface programming. Even
those who have programmed the Mac for quite some time find these topics
bewildering. Documentation is often sketchy and example source code
hard to come by. Now, that's all changed.

This book provides detailed discussions, plenty of figures, slow walk­
throughs of source code listings, and short, straight-to-the-point examples
that will get all the fun and exciting multimedia features such as sound,
speech, and animation out of the books and into your own programs.

If you are:

• A programmer who has been hesitant to try to add graphics and
sound features to a program

• A programmer who has tried to understand such topics as off­
screen animation, and given up

xiii

xiv
Qraphia and Sound Programming Techniques for the Mac

• Someone who wants a single reference for all of the most popular
multimedia programming techniques

• A programmer looking for documentation on the newest Apple
software, such as QuickDraw GX and QuickTime Musical
Instruments

• A person who would like to know some of the basic game pro­
gramming techniques such as asynchronous sound, flicker-free
animation, and QuickTime movie-playing

... then this book is for you.

What You "eed
To get the most out of this book, you'll need an understanding of either the
C or C++ language. While you don't need to know advanced Macintosh
programming techniques, you should be familiar with the Macintosh
Toolbox and have programmed on the Macintosh.

Standalone, executable versions of each of the more than thirty example
programs can be found on this book's CD. You can test drive them even
if you don't own a compiler. To make changes to the code and recompile
it, you'll need an integrated development environment (IDE). That's the
fancy term for what used to be called a compiler. If you look on this book's
CD you'll find that M&T Books has supplied a few versions of each
example. Whether you have the THINK C, Symantec C++, or Metrowerks
CodeWarrior C/C++ compiler, there are project files, source code files,
and resource files that will work for you. There are also separate sets of
project files for owners of PowerPC Macs and owners of Macs with a
680xOCPU.

Because much of the code in the examples depends on Toolbox
routines not found in System 6, you should try compiling the examples
on a Mac that's running any version of System 7 or, soon, the Copland
operating system.

Because the book comes bundled with a CD, you'll of course need a
CD-ROM drive to access all the neat stuff on the CD. Or, you'll need to
find a friend or coworker with a CD-ROM drive. He or she can copy the
most important files from the CD to a few floppy disks for you.

Why This Book Is for Yoa

Source code, source code, source code. When learning programming
techniques, you can never get too much source code to study. As men­
tioned, the CD holds several versions of each of the more than 30 example
programs from the book-a different version for each of the most popular
compilers.

You'll find that the CD has a folder that holds sound files-a couple
dozen digitized sounds you can use in your own programs. There's also a
few QuickTime movies you can play or edit-including the talking robot
QuickTime movie pictured in Chapter 1.

Finally, there are numerous shareware and freeware programs on the
CD-all related to graphics and sound, of course. You'll find such goodies
as animation libraries, sound files converters, and a utility that turns
pictures into pixel patterns (PixPats) that you can use as a desktop pattern
or window background in your own programs.

xv

CttfiPTER 1

Introduction to
Macintosh Graphics

and Sound
Graphics and sound programming means multimedia. What exactly can
you expect to do with multimedia programming? If you skim through
this chapter before digging in, you'll get an overview of the many topics
covered in this book. Getting a hint of what's in store will start you
thinking-thinking about that game, instructional software, or movie,
graphics, or sound-editing utility that's just waiting to be developed!

Graphics. Sound. and This Book
The nine chapters that make up this book offer a wealth of exciting pro­
gramming topics and techniques-the next several pages summarize
what you'll find in the 400-plus pages that follow.

1

2
Graphics and Sound Programming Techniques for the Mac

Sound Playing
For a programmer, adding sound-playing features to applications that
run on a computer known for its multimedia capabilities should be
easy-and it is. A single Toolbox function will play a sound resource
that's tucked in your application's resource fork. But if you want to
play a sound while other action takes place-your programming efforts
need to increase. Chapter 2 shows you how to do the easy stuff, such as
playing a digitized sound-and the more difficult, such as playing a
digitized sound while animation takes place. Figure 1.1 shows the win­
dow from one of the example programs in Chapter 2. Here the cartoon
bear slides across ice as classical music plays.

New Window

FIGURE 1.1 Asynchronous sound-a Chapter 2 program
that plays music while animation takes place.

Sound Recording
If your application plays sounds, you might consider letting the user
record the sounds to play. You can let the user do so right from withln
your own application. Figure 1.2 shows the standard Record dialog box
that you can add to your programs-Chapter 3 examples show you how.

Speech

Chapter 1 • Introduction to Macintosh Graphics and Sound

a ~ ITO [I] <Jl»
Record Stop Pause Play

:10
0 seconds :45

(Cancel J

([Saue J]

FIGURE 1.2 The standard Record dialog box
that you can add to any of your programs.

If you want your program to speak, you can digitize voices, store them
in your application's resource fork, and then use the sound-playing
techniques described in Chapter 3 to play these sounds. That, however,
takes careful planning of the exact text that is to be spoken and requires
a lot of disk space. Instead, you'll want to store as text the words that
your program will speak, then rely on the Speech Manager to speak
that text. Text is easy to type into a program or resource, is easy to edit,
can be entered by the user, and takes up very little disk space. Figure 1.3
shows a practical use for speech. Here, the user is allowed to type in
different phrases for a character in a game.

I Surrender now and you maaay lluel IB
I It wlll take more than that to stop me. •

'--~~~~~~~I.II
'------~~-----' .
~-----~11

ZOrron
Allen foot liOfdlar

Enter~ text that lhe warrior
, :w111usedurjnglhegame. !cancel J

Enter up 1<> five phrases.

Tohearitphras&,cllckthe ~
speaker button ~

FIGURE 1.3 An example of a dialog box that takes advantage of the Speech Manager.

3

4
Graphics and Soond Programming Techniqoes for the Mac

Using the Speech Manager, your program will not only have the
ability to choose what to say, it will have the power to choose who will
say it. That's because your Mac hosts a number of voice synthesizers­
components that let your program speak in the voice of a child, an
adult-even a robot. Read Chapter 4 for a description of how to add
text-to-speech capabilities to your programs, and how to select from the
numerous available voices.

Animation
Smooth, flicker-free color animation. What Macintosh game would be
considered first-rate without it? If you've only experimented with moving
an object on the screen, you've probably encountered the dreaded prob­
lem of flicker. In Chapter 5, you'll see how to use offscreen bitmaps to add
smooth animation to any of your programs. Figure 1.4 shows how one of
the example programs from this chapter looks. Here, the balloon smoothly
glides across the background without flicker and without obscuring the
background. In fact, as the balloon moves you'll even be able to see the
background through the three clear, round panels in the balloon.

FIGURE 1.4 A Chapter 5 example program that displays flicker-free color animation.

Chapter 1 • Introduction to Macintosh Graphics and Sound

QoickDraw GX
QuickDraw has been the source of all Macintosh graphics for a decade.
Now there's a new QuickDraw-QuickDraw GX. This powerful, object­
oriented version of QuickDraw works in conjunction with the old, orig­
inal (but still useful) version-as shown in Figure 1.5. In Chapter 6,
you'll see how your program can get ready for, and take advantage of,
QuickDraw GX.

QuickDraw graphics port QuickDraw GX view port

GX

; i;:i- - New Window

D GX

FIGURE 1.5 QuickDraw GX adds a new type of port-the view port­

to the Mac's graphics programming environment.

QoickTime Movies
Chapter 5 shows you how to create your own animated sequences and
play them in an application. There is, of course, another way to achieve
animation. Chapter 7 tells you all about QuickTime movies-how
they're stored, how to open them, how to play them.

You're used to seeing QuickTime movies played in a window with a
movie controller attached to it-like the ones shown in Figure 1.6. But a

5

6
Graphics and Sound Programming Techniques for the Mac

movie can also be played within a dialog box, with or without a controller.
Figure 1.7 shows an example of a program that displays movies in an inset
area of such a dialog box. Chapter 7 explains just how this can be done.

FIGURE 1.6 QuickTime movies that use movie controllers.

Rtlantis
Challenger
Columbia
Discouery
Rpollo
Planets
Rstronauts
Spacewalks

Play Mouie 3€P
Clear 3€K

Discouer

FIGURE 1.7 A dialog box with an area devoted to movie display.

Chapter 1 •Introduction to Macintosh Graphics and Sound

QaickTime Masical lnstraments
For the musically inclined, creating tracks of cool-sounding music is no
problem. For the rest of us, a software package that includes more than
100 instruments and an interface that allows sounds from these instru­
ments to be easily added to a program would be a blessing. Consider
yourself saved-the QuickTime Musical Instruments extension is such a
package. Chapter 8 shows you how to use this new extension to select
instruments and then play music from them-within any of your appli­
cations. In that chapter, you'll also see how to display the Instrument
Picker dialog box shown in Figure 1.8. This dialog box provides an
interface that allows users of your program to choose the instruments
they want to hear.

Best Synt

I • 11

Instrument:

(Rbout ...)

No Instrument

'' I

Chromatic Percussion
Organ
Guitar
Bass
Strings & Orchestra
Ensemble
Brass
Reed
Pipe
Synth Lead
synth Pad
Sgnth £/"/"ect
Ethnic
Percussiue
Sound Effects

Drum Kits

FIGURE 1.8 The Instrument Picker dialog box
can be easily added to any of your programs.

7

8
Graphics and Sound Programming Techniques for the Mac

fi Complete Example Program
The first eight chapters contain a total of more than 30 example programs­
you'll find the listings in this book, the source files and projects on the
CD. These example programs are short, simple, and to the point. That
makes it easy for you to pull out the code you need for your own pro­
grams. If you're the type of programmer who also learns by seeing the
source code for a more complete program- such as one with multiple
window-handling capabilities, file editing, and menu items for opening
and saving files- then Chapter 9 is for you. This chapter provides a
complete walk-through of the source code for a QuickJime movie editing
program. The FilmEdit program allows the user to open multiple movie
files, play them one at a time or simultaneously, copy frames from one
movie to another, and save any changes that are made. Figure 1.9 shows
two different-size movies being played by FilmEdit.

FIGURE 1.9 The Chapter 9 FilmEdit program allows multiple,
different-size movies to be open at the same time.

Chapter 1 • Introduction to Macintosh Graphics and Sound

How ...
Now you know what's in store for you in the next several hundred pages.
You can jump to the chapter of interest right now, or read and learn from
cover to cover. Either way, now is the time to begin.

9

CHfiPTEit 2

Sound Playing
The Mac has always been known for its graphics abilities-but its sound­
playing powers are equally as impressive. In this chapter, you'll see
how to take advantage of the latest release of the Sound Manager to
add sound to any of your Mac applications.

Sounds can conveniently be stored as resources in the resource fork
of a Macintosh application. Here you'll see how to load and play such a
resource. You'll also learn how to allocate a sound channel in which to
play a sound. The topic of sound channels will be especially important
when you learn about asynchronous sound playing-the playing of a
sound while other action takes place. Because asynchronous sound
playing is such an important part of interesting and exciting applications
such as games and multimedia educational software, this topic is covered
in great detail. Here you'll see several examples of how to play a sound
while animation takes place. Finally, you'll discover how to alter features
of a sound, such as its volume and rate, as the sound plays.

11

12
Graphics and Sound Programming Techniques for the Mac

The Sound Manager
The Sound Manager is a set of system software routines that provide
programmers with the means of playing and altering existing sounds
and recording new sounds.

The Soond Manager Version 3.0
The original Macintosh system software didn't include a Sound
Manager-though there were a few sound-related Toolbox routines.
The Sound Manager didn't exist until version 6.0 of the system software
was released. With version 6.0.7 of the system software came an
improved Sound Manager (version 2.0), and version 7.5 included the
most powerful Sound Manager yet-version 3.0.

N 0 TE

Mac owners that haven't upgraded to System 7.5 can still use Sound
Manager 3.0. Instead of having it as an integral part of the system software,

however, a Mac owner running pre-System 7.5 software will need to obtain
the Sound Manager 3.0 extension and add it to the Extensions folder on his

or her computer.

Some of the Sound Manager routines covered in this chapter are avail­
able only to Mac owners who have version 3.0 (or, eventually, a higher
version) of the Sound Manager. You can determine the version of the
Sound Manager that is on the host machine by calling the Sound
Manager routine SndSoundManagerVersion(). Calling this function once
near the start of a program will provide the information necessary to
determine if your application can run on the user's Macintosh. You'll
find the code shown in the following snippet in each of the example
programs listed in this chapter.

NumVersion theSndMgrVers;

theSndMgrVers = SndSoundManagerVersion();

if (theSndMgrVers.majorRev < 3)
ExitToShell();

Chapter Z • Sound Playing

Rather than simply calling Exi tToShel l () when encountering an error, call

an application-defined error-handling routine.

SndSoundManagerVersion() returns a NumVersion-a data structure with
four fields of Sound Manager version information. Check the majorRev
field to see if it has a value of at least 3. If it does, the user has version 3.0
(or greater) of the Sound Manager.

Synchronous and Asynchronous Sound Play
The Sound Manager provides routines that allow your program to play
sounds either synchronously or asynchronously. Synchronous sound
play means that no other code will execute during the playing of the
sound. While this mode of sound play is the easiest to program, it has
the drawback of preventing on-screen action from taking place. If your
program requires nonsound-related action to take place as a sound
plays, you'll need to play sounds in an asynchronous mode. This chapter
describes both types of sound playing, starting with the easier synchronous
sound play.

Soond Resources
A digitized sound can conveniently be stored in the resource fork of an
application, where it is always available for playing by the application.

About Sound Resources
A sound resource has a resource type of s nd. Because all resource types
must consist of four characters, the sound resource type ends with a
blank space. Figures 2.1 and 2.2 show a sound resource in ResEdit and
Resorcerer, respectively.

13

14
Graphics and Sound Programming Techniques for the Mac

SoundResource.rsrc:

snds from SoundResourc:e.rsrc

snd Siz:e Name

9000 66421 "Po 1 ice Siren"

§IE§ snd "Police Siren" ID = 9000 fron
000000 0002 0000 0001 8050 DDDDDDAP
000008 0000 0000 OOOE 0000 DDDDDDDD
000010 0000 0001 0340 55EE DDDDDMUD

!:~!! 000018 8BA3 0001 034C 0001 Cif,DDDLDD
000020 0340 003C 8181 8181 DMD <AAAA
000028 8181 8181 8181 8181 AAAAAAAA
000030 8181 8181 8181 8181 AA AA AA AA :+
000038 8181 8181 8181 8181 AA AA AA AA \ii

FIGURE 2.1 A s n d sound resource, as viewed in ResEdit.

Sound Res o u re e. r·s re

Types: 1 'snd ' (Sound) Resource:

<DF > {} •' ! 65K ' 9000 •Police Siren• .Q '········ ... ····'
snd t-=-

~ snd 9000 «Po lice Siren • from Sound Resource .rsrc

Format: 12 I (Record l
Number of Synthesizers/Modifiers: NIA ._____

~ Number of Sound Commands: 1

~ (Sound Me Out!) (Silence!) (Cancel)

FIGURE 2.2 A snd sound resource, as viewed in Resorcerer.

NOTE

Chapter 2 • Sound Playing

You'll find that all of the snd resources shown in this book have a resource
ID greater than 8191. Apple reserves IDs in the range of 0 to 8191 for its

own system sound resources.

From the two previous figures you can see that there's not much you can
do to edit a sound resource-even with the aid of a graphical resource
editor. This isn't much of a drawback, though-digitized sounds of just
about any animal, person, or sound effect are available from a variety of
sources. If a sound doesn't quite meet your needs, it is possible to edit it
using a sound-editing application such as Macromedia's SoundEdit.

One source of sound resources is the software libraries of online
services such as CompuServe, America Online, and eWorld. You can also
buy a CD that contains a thousand or more sounds. Another option is to
create sounds yourself by plugging a sound digitizer into one of the ports
of your Mac. Finally, you can create them by using the Macintosh built­
in microphone.

NOTE

You can use the Sound control panel to record a sound using the Macintosh
microphone. If you'd like to give users of your program the power to record
and save sounds, you can do that too--the next chapter shows you how.

Playing a Sound Resource
Every Mac has a number of sound resources in its System file-each
system alert sound is a snd resource. If you include a call to the
Toolbox routine Sys Beep() in your source code, your program will play
whichever system alert sound is currently selected in the user's Sound
control panel.

SysBeep(1) ;

The value of the parameter to SysBeep() is unimportant. Any short

value used here will produce the same result-the system alert sound
will play a single time.

15

16
Graphics and Sound Programming Techniques for the Mac

The parameter to Sys Beep () used to determine the duration of the

system beep. That was back when the Mac only had a single system alert
sound-a simple beep. This now-useless parameter still exists for backwards

cumpatibility-older programs that made use of the duration parameter will

still work with newer system software.

tlow. Really Playing a Sound Resource
While playing the system alert a single time does qualify as playing a
sound resource, it's not what one generally thinks of when the time
comes to add sound-playing capabilities to a program. Instead, you'll
want your program to be able to play a sound resource that you've
selected and, typically, included as part of your project's resource file
(and, consequently, as a part of your program's resource fork). To do
that you'll rely on the Toolbox function SndPl ay(). Here's a snippet that
includes a call to Snd Play ():

Handle theHandle;
OSErr theError;

theHandl e = GetResource('snd ', 9000) ;
theError = SndPlay(nil, (SndListHandle)theHandle, false);

The first parameter to Sn d Pl a y () is a pointer to a sound channel. Sound
channels, described in more detail later in this chapter, are used by the
Sound Manager to store information about sounds. Passing a n i l pointer
as the first parameter tells the Sound Manager to handle the details of
allocating a sound channel.

If a sound is to be played in an altered form, such as at a different pitch
then the one at which it was recorded, you'll need to allocate your own
sound channel. If a sound is to be played asynchronously, you'll again
need to allocate your own sound channel. Both of these topics are covered
later in this chapter.

The second parameter to Sn d Pl a y C) is a handle to the s n d resource to
play. You can load a snd resource into memory and receive a generic
handle to this memory be calling the Toolbox function GetResource()-

Chapter Z • Sound Playing

as shown in the above snippet. This generic handle (type Handle) must
be typecast to a Sndl i stHandl e in the call to SndPl ay().

The third parameter to Sn d Pl a y () indicates whether the sound
should be played asynchronously or synchronously. A value of true
tells the Sound Manager to play the sound asynchronously, while a
value offal se means the sound should be played synchronously.

N 0 TE

Ah, but if only life were so simple. Just passing a value of true as the final
parameter to SndP l ay() isn't enough to play the sound asynchronously.
You also need to perform a few other steps, such as writing a callback routine.
These details are, of course, described later in the chapter.

Figure 2.3 shows that GetResource() loads snd resource data in memory
and SndPl ay() sends that data to the Mac's speaker or speakers.

GetResource ()

MySoundApp

100101010101
000001100101

SndPlay()

101010011001 1u ~-~"i1l
00110Hf11000
101100110101

0 0

FIGURE 2.3 A call to GetRes ource() loads sound resource data
into memory, while a call to SndPl ay ()plays that data.

Because the SndPl ay() routine may move memory, lock the handle that
leads to the sound data before calling Sn d Pl a y () . After the call to s n d Pl a y ()
has completed, unlock the handle. The following snippet is an improve­
ment over the previous one:

17

18
Cirophics and Sound Programming Techniques for the Mac

Handle theHandle;
OSErr theError;

theHandl e = GetResource('snd '. 9000) ;

Hlock(theHandle);
theError = SndPlay(nil. (SndlistHandle)theHandle, false);

HUnlock(theHandle);

Using SndPl ay() to play a snd resource is easy work. Simple enough,
in fact, that you probably understand how sound playback works with­
out the help of Figure 2.3. The SndPl ay() function's ease of use is exactly
why the figure has been included, though-to contrast the effort neces­
sary to play a sound synchronously with that needed to play a sound
asynchronously.

If your application will be playing more than one sound resource you'll
find it useful to define a sound-playing function. The application-defined
routine Pl aySoundResourceSynch (),which is shown below, accepts a
SndChannel Ptr and the ID of a snd resource as its two parameters.

You've seen that to play a sound synchronously you need only pass
a nil pointer to SndPl ay()-the Sound Manager then handles sound
channel allocation. The Pl aySoundResourceSynch() function gives you
the option of passing a value other than n i 1-just in case the sound is to
be played in a way that is different from the way it was recorded. For now,
simply pass nil as the first parameter to Pl aySoundResourceSynch().

Later in this chapter you'll use the same routine with a sound channel
pointer value other than n i l .

The Pl aySoundResourceSynch () routine loads the sound resource
with that ID, plays the sound, and then releases the memory that the
sound data occupies. If the attempt to load the sound resource fails, the
routine will return the Apple-defined constant resProbl em as the oper­
ating system error. If the resource loads successfully, but the call to
SndPl ay() fails, Pl aySoundResourceSynch() will return the error reported
by SndPl ay().

OSErr PlaySoundResourceSynch(SndChannelPtr theChannel.
short theResID)

{

Handle theHandle;

}

Chapter Z • Soand Playing

OSErr theError:

theHandle = GetResourceC 'snd ' theResID);

if C theHandle ~ nil)
{

return (resProblem);
}
else
{

}

HLockC theHandle);
theError = SndPlay(theChannel, CSndlistHandle)theHandle,

false);
HUnlockC theHandle);

ReleaseResourceC theHandle);

return C theError);

To play a sound resource, pass Pl aySoundResourceSynchC >a nil pointer
and the ID of a snd resource. As an example, consider the following
snippet. It plays snd resource 11500.

OSErr theError:

theError = PlaySoundResourceSynch(nil, 11500);
if (theError != noErr)

ExitToShel l C):

Chapter Example: SoundResource
The SoundResource program plays one sound resource, then quits.
Because the program doesn't display menus or a window, it requires only
a single resource-the police siren snd resource shown in Figure 2.4.

r:ll
NOTE

The siren sound used here was, incidently, copied from a CD of over 1000
royalty-free sounds. CDs such as this are available from the various Mac soft­
ware mail-order vendors.

19

20
Graphics and Sound Programming Techniques for the Mac

SoundResource.rsrc

<]))~ snds from SoundResource.rsrc

snd Size Name

9000 66421 "Police Siren"

§Im§ snd "Police Siren" ID = 9000 fron
000000
000008
000010
000018
000020
000028
000030
000038

0002 0000 0001 8oso aaaaaaAP
0000 0000 oooE 0000 aaaaaaaa
0000 0001 0340 56EE aaaaaMua
8BA3 0001 034C 0001 a~aaaLaa
0340 003C 8181 8181 DMD <AAAA
8181 8181 8181 8181 AAAAAAAA
8181 8181 8181 8181 AAAAAAAA
8181 8181 8181 8181 AAAAAAAA

FIGURE 2.4 The SoundResource project requires only one resource-a snd resource.

If you'd like to play other sounds, replace the siren sound resource in
the SoundResource.rsrc file with any other snd resource, then recompile
the project. To play several sounds, add the desired snd resources to the
project's resource file. Number the sound resources consecutively. Then
alter main() by wrapping the call to Pl aySoundResourceSynch() in a
loop. The following code is an example that plays three sound resources
(with IDs 9000, 9001 , and 9002) in a row. Listed first is the original code
from main C) , followed by the code that should replace the original version.

II Original version
theResID = kPoliceSirenResID;
theError = PlaySoundResourceSynch(nil, theResID);
if (theError != noErr)

ExitToShel l C);

II Looping version
theResID = kPoliceSirenResID;
for C i = O; i < 3; i++)
{

theError = Pl aySoundResourceSyn ch(nil, theRes ID) ;
if (theError != noErr)

ExitToShel l ();
++the Res ID;

Chapter 2 • Sound Playing

The source code listing for the SoundResource program follows.

#include <Sound.h>

void InitializeToolbox(void);
OSErr PlaySoundResourceSynch(SndChannelPtr. short):

1/define rPoliceSiren 9000

void main(void)
{

}

NumVersion
short
OS Err

theSndMgrVers;
theResID;
theError;

InitializeToolbox();

theSndMgrVers = SndSoundManagerVersion();
if (theSndMgrVers.majorRev < 3)

ExitToShell();

theResID = rPoliceSiren;
theError = PlaySoundResourceSynch(nil. theResID);
if (theError != noErr)

ExitToShell();

//~~~~~~~~~~~~~~~~~~~~~~

OSErr PlaySoundResourceSynch(SndChannelPtr theChannel.

{

Handle theHandle;
OSErr theError;

short theResID)

theHandle = GetResource('snd' theResID);

if (theHandle == nil)

21

zz

}

Graphics and Sound Programming Techniques for the Mac

{

}
return (resProblem);

else
{

}

Hlock(theHandle);
theError = SndPlay(theChannel, (SndlistHandle)theHandle,

false);
HUnlock(theHandle);

ReleaseResource(theHandle);

return (theError);

Sound Channels
Any sound data in memory has a corresponding sound channel that
holds a queue of sound-playing commands. When you call SndPl ay()
and pass a n i l pointer as the first parameter, the Sound Manager takes
care of the allocation of a sound channel. When your program is simply
to play a sound synchronously, letting the Sound Manager take care of
this task makes sense. If your program is to play a sound asynchro­
nously, or if it is going to alter the way in which the a sound is played,
your program needs access to the sound channel. In such cases, your
program must allocate the sound channel so that it can use that channel
at a later time.

Allocating and Disposing of a Sound Channel
To allocate a sound channel, use the Toolbox function SndNewChannel ().
This routine allocates memory for a new sound channel record (of the type
SndChannel) and returns a SndChannel Ptr-a pointer that points to a
sound channel record. A sound channel record is the data structure
used to represent a sound channel. Your program can allocate memory
for the sound channel record or, simply let the Sound Manager allocate
this memory as in the following snippet:

Chapter Z • Soand Playing

SndChannelPtr theChannel;
OSErr theError;

theChannel = nil;
theError = SndNewChannel(&theChannel, 0, 0, nil);

The first parameter to SndNewChannel <) is a pointer to a SndChannel Ptr.

If you pass a nil pointer as the first parameter (as shown above),
SndNewChannel <) will allocate the memory for a new sound channel
record and return a pointer to that record. As described later, you'll
then be able to use this pointer in subsequent sound-playing functions,
such as SndPl ay().

The second parameter to SndNewChannel <) is a constant that tells
the Sound Manager what type of sound data is to be played on the
new channel. Apple defines three constants that can be used here
(squareWaveSynth. waveTableSynth, and sampledSynth), but you're just
as well off if you pass a value of O so that the channel can be used for
any type of sound.

The third parameter to SndNewChannel ()supplies channel initialization
information based on the type of sound that will be played (for
instance, whether or not the sound is compressed). As was the case for
the second parameter, pass a value of O here if you are uncertain of the
exact type of sound that will be played from this channel.

The fourth parameter to SndNewChannel <) is a pointer to a callback
routine. A callback routine is an application-defined function that the
Sound Manager executes (as opposed to being invoked by your own
code) when a sound has finished playing on this channel. The callback
routine is useful only for the playing of asynchronous sounds. For syn­
chronous sound play, pass a n i l pointer.

When SndPl ay() is passed a nil pointer as its first parameter, the
Sound Manager takes care of allocating a sound channel and disposing
of that channel. When a sound channel is instead created by a call to
SndNewChannel (),your program is responsible for its disposal. A call to
the Toolbox function SndDi sposeChannel ()does that.

OSErr theError;

theError = SndDisposeChannel(theChannel. true);

23

24
Graphics and Sound Programming Techniques for the Mac

The first parameter to SndDi sposeChannel ()is a pointer to the sound
channel to release from memory. The second channel is a Boo l ea n

value that tells whether a currently playing sound should be stopped
(true) or whether SndDi sposeChannel () should wait until the sound
completes (false).

When a sound channel is created via a call to Sn d N ewe ha n n el () , a sound
channel record is allocated in memory, as is a pointer to that record. The
SndNewChanne l () function disposes of the sound channel record, but has no
effect on the pointer to it. After calling SndDi sposeChannel (),also call the
Toolbox function Di s pose Pt r () to release the memory occupied by the
sound channel pointer. Di sposePtr() accepts a generic pointer as its one
parameter, so you'll need to typecast the SndChannel Ptr to the Ptr type.
Figure 2.5 clarifies the allocation and deallocation of a sound channel.

OSErr theError;

theError = SndDi sposeChannel (theChannel, true) ;
DisposePtr((Ptr)theChannel);

SndNeWChannel ()
allocates a sound
channel record and a
pointer to that record

SndDisposeChannel()
disposes a sound channel
record, but not the pointer
toil

DisposePtr ()
disposes the pointer that
pointed to the now­
released sound channel

FIGURE 2 .5 After using a sound channel, you must deallocate
both the sound channel and the pointer that points to it.

Chapter 2 • Sound Playing

~
A couple of quick reminders. Macintosh memory is shown with smaller
addresses at the bottom of a figure. An object in memory starts at a lower
address and ends at a higher address. Together, these two facts mean that a
pointer to an object (which points to the start of an object), will appear to
point to the bottom of the object.

N 0 TE

You can combine the two memory disposal steps into one by writing a
function such as Di sposeOneSoundChannel ():

OSErr DisposeOneSoundChannel(SndChannelPtr theChannel)
{

}

OSErr theError:

theError = SndDisposeChannel(theChannel, true);
Di sposePtr((Ptr)theChannel) :

return (theError);

Now that you're aware of the fact that both a sound channel and its
pointer should be disposed of, the OpenOneSynchSoundChannel <) function
should make sense. This application-defined routine calls SndNewChannel <)

to allocate memory for a new sound channel, then returns a pointer to
that channel, as follows:

SndChannelPtr OpenOneSynchSoundChannel(void)
{

}

SndChannelPtr theChannel:
OSErr theError:

theChannel =nil;
theError = SndNewChannel(&theChannel. 0, o. nil);

if (theError != noErr)
{

}

DisposePtr((Ptr)theChannel);
theChannel = nil:

return (theChannel) :

25

26
Graphics and Sound Programming Techniques for the Mac

If the sound channel memory allocation succeeds, the pointer to the
sound channel will be returned to the calling routine. If the allocation
fails, OpenOneSynchSoundChannel C) disposes of the memory occupied by
the sound channel pointer and sets the pointer to n i l . If the calling routine
receives a n i l pointer rather than a valid sound channel pointer, it can
assume an error occurred. A typical call to OpenOneSynchSoundChannel C)

looks like this:

SndChannelPtr theChannel;

theChannel = OpenOneSynchSoundChannel();
if C theChannel == nil)

ExitToShellC);

~
NOTE

The name of the OpenOneSynchSoundChannel () function provides you

with a hint that at least one change will need to be made to the function's

code in order for it to allocate a sound channel that can be used for asyn­

chronous sound play.

Osing a Sound Channel
Once you've allocated a sound channel, you can use a pointer to it in
any routine that requires a SndChannel Ptr. For instance, rather than pass
nil as the first parameter to SndPl ayC), you can pass the newly allocated
sound channel pointer, as follows:

SndChannelPtr
Handle
OS Err

theChannel;
theHandle;
theError;

theChannel nil;
theError = SndNewChannelC &theChannel. 0, 0, nil);

II get handle to sound, lock it, then:
theError = SndPlay(theChannel, CSndlistHandle)theHandle, false);

If you're using the application-defined function Pl aySoundResourceSynch()

to load and play a snd resource, then the above code becomes:

theChannel = nil;
theError = SndNewChannel (&theChannel. o. o. nil) ;

Chapter Z • Sound Playing

theError = PlaySoundResourceSynch(theChannel. theResID);

How does passing SndPl ay() your own sound channel pointer differ
from passing SndPl ay() a ni 1 pointer and letting the Sound Manager
allocate a channel? In the above examples, there is no difference at all. But
then, the above snippets are for demonstrative purposes only. The differ­
ence comes into effect when you send sound commands to a sound chan­
nel, then play the sound. The sound commands get stored in a queue in
the sound channel record and are applied to sounds that are later played
on that channel. Sound commands are covered in the next section.

Chapter Example: SoundChannellntro
The SoundChannellntro program does just what the previous example,
SoundResource, did. It loads a snd resource into memory and uses a
call to SndPl ay() to play the sound data. The difference is that where
SoundResource let the Sound Manager allocate and dispose of a sound
channel (by passing ni 1 to SndPl ay(>), SoundChannelintro takes care of
the memory allocation and disposal. While this serves no real benefit in
this simple program, it does demonstrate a technique that you'll be
using in each of the several remaining examples in this chapter.

The OpenOneSynchSoundChannel() and DisposeOneSoundChannel() func­
tions found in Sound-Channellntro are identical to the versions developed
in this section. The Pl aySoundResourceSynch() function is an exact copy
of the version used in this chapter's SoundResource program.

#include <Sound.h>

void
SndChannelPtr
OS Err
OS Err

InitializeToolbox(void);
OpenOneSynchSoundChannel(void);
DisposeOneSoundChannel(SndChannelPtr);
PlaySoundResourceSynch(SndChannelPtr. short);

#define rPoliceSiren 9000

27

28
Graphics and Sound Programming Techniques for the Mac

void main(void
{

}

NumVersion
short
OS Err
SndChannelPtr

theSndMgrVers:
the Res ID:
theError:
theChannel:

InitializeToolbox();

theSndMgrVers = SndSoundManagerVersion();
if (theSndMgrVers.majorRev < 3)

ExitToShell();

theChannel = OpenOneSynchSoundChannel();
if (theChannel = nil)

ExitToShell ():

theResID = rPoliceSiren
theError = PlaySoundResourceSynch(theChannel, theResID);
if (theError != noErr)

ExitToShell();

theError = DisposeOneSoundChannel(theChannel);
if (theError != noErr)

ExitToShell();

''~~~~~~~~~~~~~~~~~~~~~~~~~~-

SndChannelPtr OpenOneSynchSoundChannel(void)
{

}

SndChannelPtr theChannel:
OSErr theError:

theChannel nil;
theError = SndNewChannel(&theChannel, 0, 0, nil);

if (theError != noErr)
{

}

Di sposePtr((Ptr)theChannel) :
theChannel = nil:

return (theChannel) :

Chapter Z • Sound Playing

OSErr DisposeOneSoundChannel(SndChannelPtr theChannel)
{

}

OSErr theError:

theError = SndDisposeChannelC theChannel. true);
DisposePtrC CPtr)theChannel) :

return C theError);

//~~~~~~~~~~~~~~~~~~~~~~~~~-

OSErr PlaySoundResourceSynchC SndChannelPtr theChannel,

{

}

short theResID)

Handle theHandle:
OSErr theError:

theHandle = GetResourceC 'snd' theResID):

if (theHandle == nil)
{

return (resProblem);
}

else
{

}

HLockC theHandle);
theError = SndPlay(theChannel, CSndlistHandle)theHandle,

false);
HUnlockC theHandle);

ReleaseResource(theHandle);

return (theError);

Sound Commands
When you call a Toolbox routine such as SysBeepC) or SndPl ay(), the Sound
Manager issues sound commands, or instructions, to play the desired sound.
Because Sys Beep() and SndPl aye) are high-level routines designed to shield

29

30
Gre1phics e1nd Sound Progre1mming Techniques for the He1c

the programmer from the complexity of sound play programming, the issu­
ing of these sound commands takes place behind the scenes, without
the programmer's intervention.

When you participate in the allocation of your program's own sound
channel (rather than allowing the Sound Manager to do all the work), you
gain the power to send sound commands of your choice to a sound chan­
nel. After you do that, any sounds played on that channel will be affected.

About Sound Commands
The SndChannel data type is used to keep track of information about a
sound channel. Of the several SndChannel fields, the most important is
the queue field. This data structure member holds the sound commands
that affect the playing of a sound played on a particular sound channel.
Figure 2.6 shows a sound channel pointer and a sound channel in memory,
with emphasis on the queue field of the sound channel.

SndChannelPtr

SndChannel

FIGURE 2.6 A channel's sound commands are kept in the

queue field of a SndChannel data structure.

Chapter Z • Sound Playing

Sound commands affect the way in which a sound is played. Apple
defines over two dozen constants, each representing one type of command.
For instance, the freqCmd sound command changes the frequency of vibra­
tion of the sound waves that make up a sound-in short, the pitch of the
sound changes.

To issue a sound command to a sound channel you'll first define the
command, then call the Toolbox routine SndDoCommandC). Each sound com­
mand is represented by a SndCommand data structure that looks like this:

struct SndCommand
{

} ;

unsigned short
short
long

cmd;
paraml;
param2;

The first field of the SndCommand holds the command number. The next
two fields hold command options. The purpose of the option fields vary
with the type of the command. For example, the frequency command
(freqCmd) ignores the value in the first options parameter and uses the
second options parameter to hold.the sound's frequency. As a second
example, consider the amplitude command, or ampCmd. For this com­
mand, the first options parameter holds the amplitude, or volume, of a
sound. This volume is expressed by a short in the range of 0 to 255. The
second options parameter is ignored. Coding to define a sound com­
mand that sets a channel to play a sound at approximately one-quarter
volume (65 being approximately one-fourth of the maximum amplitude
of 255) follows.

SndCommand theCommand;

theCommand.cmd = ampCmd;
theCommand.paraml 65;
theCommand.param2 = O;

Once a command is set up, it needs to be added to the queue of a sound
channel. To do this, call SndDoCommandC).

SndChannelPtr theChannel;
SndCommand theCommand;

31

32
Graphics and Sound Programming Techniques for the Mac

OS Err theError;

theError SndDoCommand(theChannel, &theCommand , false) ;

Figure 2.7 shows a sound channel in memory, with emphasis on the three
fields that make up a single command in the sound channel's sound
command queue.

The three fields of
one sound command

param2

paraml

cmd

FIGURE 2.7 Each sound command is made up of three fields.

After setting up a command, issue it to a sound channel by calling the
Toolbox function SndDoCommand().

SndCommand
OS Err

theError

theCommand;
theError;

SndDoCommand(theChannel. &theCommand. false) ;

The first parameter to SndDoCommandC) is the sound channel to which
the sound command should be queued. Before calling SndDoCommand()
you'll allocate a sound channel by making a call to SndNewChannel c), as
described earlier. The second parameter to SndDoCommand() is a pointer
to the command itself. Fill the three fields of the command, then pass it
to SndDoCommand ().

Chapter Z • Sound Playing

When a new sound channel is created, it has a queue capable of hold­
ing 128 sound commands. If you are concerned about the unlikely event
that your program may fill this queue, you can pass a value of fa 1 s e as
the last parameter to SndDoCommand(). This tells the Sound Manager to
wait for a free position if the queue is full. Passing a value of true tells the
Sound Manager instead to return an error-result code (queueFul 1).

If your program will be issuing the same command to more than
one channel, consider writing a function such as the application-defined
routine SetSoundAmpl itude(). When passed a sound channel and an
amplitude, this function fills the fields of a sound command, issues the
command to the channel (places it in the channel's queue), and returns a
result code indicating whether the operation was successful or not.

OSErr SetSoundAmplitude(SndChannelPtr theChannel. short theAmp
{

}

SndCommand theCommand;
OSErr theError;

theCommand.cmd = ampCmd;
theCommand.paraml = theAmp;
theCommand.param2 = O;

theError = SndDoCommand(theChannel. &theCommand, false);

return (theError);

It's important to keep in mind that in the above code, SndDoCommand()
doesn't actually play a sound at the new amplitude. The call to
SndDoCommand() only places the command in a channel's queue. You still
need to load a sound resource into memory and call SndPl ay() in order
to play a sound. When you do that, the sound will be played at the new
volume-provided you pass SndPl ay() the affected sound channel. The
following snippet shows how to play a sound at half volume (keeping
in mind that the ampCmd accepts a value in the range of O (off) to 255
(full volume). The SoundCommands example program that follows
demonstrates exactly how to use a sound channel.

SndChannelPtr theChannel;
OSErr theError;

33

]4
Graphics and Sound Programming Techniques for the Mac

II allocate a new sound channel here

theError = SetSoundAmplitude(theChannel. 127);

II load a sound resource here

II pass SndPlay() theChannel to play the sound here

Chapter Example: SoundCommands
SoundCommands is very similar to the previous example program,
SoundChannellntro. Both use the same application-defined routines to
allocate a new sound channel, play a sound resource, and deallocate the
channel when done. The only difference between the two programs is
that before SoundCommands plays the sound, it calls the application­
defined function SetSoundAmpl i tude() to set the amplitude of the new
sound channel.

The SoundCommands program plays a sound very quietly-the
siren sound will play at about one-fifth of the volume set in the Sound
control panel. To change the volume, try experimenting with the value
of the short variable theAmpl i tude. Keep in mind that the range of
theAmpl i tude should be from O to 255.

short theAmplitude;

theAmplitude = 50:
theError = SetSoundAmplitude(theChannel. theAmplitude);

The following listing omits the OpenOneSynchSoundChannel (),
Di sposeOne-SoundChanne l (), and Pl aySoundResourceSynch () functions.
If you'd like to see the listing for any of these functions, page back to
the listing for the SoundChannellntro example program.

II~~~~~~~~~~~~~~~~~~~~~~

#include <Sound.h>

void InitializeToolbox(void);

Chapter Z • Soand Playing

SndChannelPtr
OS Err

OpenOneSynchSoundChannelC void);
DisposeOneSoundChannelC SndChannelPtr):

OS Err PlaySoundResourceSynchC SndChannelPtr, short);
SetSoundAmplitudeC SndChannelPtr. short): OS Err

11~~~~~~~~~~~~~~~~~~~~~~~~~-

lldefine rPoliceSiren 9000

//~~~~~~~~~~~~~~~~~~~~~~~~~-

void main(void

{

}

NumVersion
short
OS Err
SndChannelPtr
short

theSndMgrVers:
theResID:
theError:
theChannel:
theAmplitude:

InitializeToolboxC>:

theSndMgrVers = SndSoundManagerVersion();
if C theSndMgrVers.majorRev < 3)

ExitToShell():

theChannel = OpenOneSynchSoundChannel():
if C theChannel ~ nil)

ExitToShell ():

theAmplitude = 50;
theError = SetSoundAmplitude(theChannel, theAmplitude);
if C theError != noErr)

ExitToShellC):

theResID = rPoliceSiren:
theError = PlaySoundResourceSynchC theChannel, theResID);
if (theError != noErr)

ExitToShell ():

theError = DisposeOneSoundChannelC theChannel):
if C theError != noErr)

ExitToShellC):

35

36
Graphics and .Soand Programming Techniques for the Mac

OSErr SetSoundAmplitudeC SndChannelPtr theChannel, short theAmp)
{

}

SndCommand theCommand;
OSErr theError;

theCommand.cmd = ampCmd;
theCommand.paraml = theAmp;
theCommand.param2 = 0:

theError = SndDoCommandC theChannel, &theCommand, false);

return (theError);

Asynchronous Sound Play
Asynchronous sound play allows both sound and animation to take place
at the same time. An understanding of how asynchronous sound play
works is paramount in creating exciting games and multimedia programs.

fin Approach to Playing a Sound Asynchronously
Before jumping into the complete code necessary for playing a sound
asynchronously, let's have a general introduction to asynchronous
sound play.

To play a sound resource asynchronously, you'll first allocate a riew
sound channel using SndNewChannel C). You'll then load the sound
resource to play and call SndPl ay() play it. While these two routines are
the same as the ones used to play a sound synchronously, the parame­
ters that you'll pass to them will not be the same.

Once a sound is playing, your program will enter a loop. In each pass
through the loop, a check will be made to see if the sound has finished
playing. If it hasn't finished, an action will be performed. Typically, this
action will be one step in an animation. For example, a digitized jet-engine

Chapter 2 • Soand Playing

sound could be loaded and a call to SndPl ay() could be made to start
playing the sound. In the body of the loop, a picture of an airplane
could be shifted one pixel to the left at each pass through the loop-as
long as the sound was still playing. The result would be an airplane flying
across the screen from right to left, accompanied by the roar of its engine.
When the sound stopped playing, the animation would also stop.

The following snippet shows, in general terms, how an animated
sequence that is accompanied by sound could be played from within
the main<) routine of a program. Later in this chapter you'll see how the
global variable gSoundPl ayi ng gets set. You'll also see the development
of Cl eanUpSoundlfFi ni shed()-the function that deallocates an open
sound channel when a sound is finished.

Boolean gSoundPlaying;

void main(void)
{

}

EventRecord theEvent;

II initializations, open window

while (gDone ~false)
{

}

WaitNextEvent(everyEvent, &theEvent, 15L, nil) ;

CleanUpSoundifFinished();

if (gSoundPlaying ~ true
MovePictureOnePixel();

switch (theEvent.what)
{

II handle mouseDown, keyDown, etc.
}

Figure 2.8 shows an overview of the steps necessary to play a sound
asynchronously. On the next several pages this general description will
be replaced with a more detailed look at these steps.

37

38
Graphics and Sound Programming Techniques for the Mac

1 ~-l Allocate a sound channel
!

;r can sndPlay o to'play
If a sound in the allocated
~sound channel

~YES

J
Continue animation

Deallocate sound channel

FIGURE 2.8 An overview of how sound and animation are carried out in unison.

The Callback Command and Callback Routine
The third parameter to the Toolbox function SndPl ay() specifies whether
the sound data referenced by the variable theHandl e should be played
asynchronously (true) or not (false). Earlier you saw that to play a sound
synchronously, you pass false for the third parameter-as in this call:

theError = SndPlayC theChannel. CSndlistHandle)theHandle, false);

Chapter 2 • Sound Playing

Specifying that a sound be played synchronously (as has been the
case up to this point) means that SndPl ay() will let the Sound Manager
take control of the Mac and play the sound from start to finish. No other
action can take place until SndPl ay() competes its execution. If, instead,
you pass a value of true as the third parameter to SndPl ay(), the routine
will be executed in an altogether different manner. Instead of seizing
control, the Sound Manager will share processor time with the rest of
your program. That makes it possible to have SndPl ay() play a sound
and, at the same time, have your program cycle through the loop
described on the previous pages.

Earlier, you learned that the loop body will perform a check to see if
a sound channel currently has a sound playing. The way to determine if
a sound is playing is to examine a flag variable that gets set by a callback
routine. Simply put, a callback routine is called when, and only when, a
sound has finished playing. The callback routine's purpose is to set a
global flag variable that indicates to the rest of the program that the
sound has indeed finished playing. It is the value of this global callback
flag variable that the loop repeatedly checks.

Figure 2.9 illustrates how a callback routine works. In this figure, it's
assumed that a cartoon police car moves from right to left as a siren
sound plays. When SndPl ay() is called to start the playing of the siren
sound resource, the program sets a flag variable to indicate that a sound
has started. In Figure 2.9, this flag is a global Boal ean variable named
gSoundPl ayi ng. As the sound plays, the program frequently checks the
value of gSoundPlaying. If the flag is still set to true, then the picture
boundaries are moved a little to the left and the picture is redrawn. In the
figure, this is done three times-in a real application, the check would be
performed many more times so that animation would appear smooth.

When SndPl ay() has finished, the Sound Manager will invoke the
callback routine. The callback routine will change the value of gSound­
Pl ayi ng from true to false. Then, when the loop again tests the value of
gSoundPl ayi ng, it will find that this flag is now false. That tells the loop
to stop performing the animation. The effect? When the sound stops,
the animation stops, too.

39

40
Graphics and Sound Programming Techniques for the Mac

SndPlay I l called
asynchronously,
gSoundPlaying
set to true

gSoundPlaying
ls true, move
picture to the left

gSoundPlaying
is true, move
picture to the left

gSoundPlaying
is true, move
picture to the left

FIGURE 2.9 Animation continues as long as a

sound's callback routine hasn't set a flag to false.

SndPlay () ends,
callback function
invoked­
gSoundPlaying
set to false

gSoundPlaying
is false, don't
move picture

It's important to note that while the callback routine is an application­
defined function, it isn't called directly by your code. Instead, the Sound
Manager will invoke it. Figure 2.9 implies that this code is different by
placing it at the top of the figure, while the code called directly by the
application <SndPl ay(> and the animation code) appears at the bottom
of the figure.

How is it that the Sound Manager-and not your own code­
invokes the callback routine? The answer lies within the sound channel
record. A sound channel is represented in memory by a SndChannel
data structure. You're familiar with the queue field of this structure-it
holds the sound commands for a given channel. The call Back field is
another member of the SndChannel structure. It holds a pointer to the

Chapter 2 • Sound Playing

channel's callback routine. Figure 2.10 labels a couple of the SndChannel
data structure fields and shows that the ca 11 Back field holds a pointer to
an application-defined callback routine in memory.

N 0 TE

~,
queue

~~
SndChannel

cal lBack

Callback routine

FIGURE 2.10 A sound channel used for asynchronous sound play
has a callback routine associated with it.

The sound channel's queue holds 128 sound commands. For simplicity, the

queue field in this and other figures shows a queue with room for only four

commands. As an aside, this isn' t entirely inaccurate-a programmer does

in fact have control over the size of the queue.

41

42
Graphics and Sound Programming Techniques for the Mac

When your application passes SndPl ay() a SndChannel Ptr, the Sound
Manager takes various sound-playing commands found in the snd
resource and places them in the sound channel's queue. Figure 2.11 shows
two such sound commands added to the queue. Because the exact type of
command is unimportant in this example, they're shown simply by the
generic name "play command" in the figure.

SndChannel

call Back

Callback routine

FIGURE 2.11 A sound channel about to play the sound data from a snd resource

After your program calls SndPl ay() it should add a call BackCmd sound
command to the sound channel's queue. Because SndPl ay() has started
the sound playing, this call BackCmd command will be the last sound
command in the queue. Figure 2.12 shows a call BackCmd in the queue.
Note that the callback command is the last entry in the queue-though
the queue isn't full. Also notice that the start of the queue is shown at
the lower end of the figure, corresponding to lower addresses.

Chapter 2 • Sound Playing

Callback routine

FIGURE 2.12 A callback command should be the last

sound command in a sound channel's queue.

Installing the Callback Command in the
Command Qoeoe
Recall that each sound command has three fields: the cmd field that
holds a command number indicating the type of command and two
option fields-pa raml and pa ram2-that hold information that varies
depending on the type of command.

For a callback sound command, the command type is call BackCmd.
With the call BackCmd command, the paraml and param2 fields are avail­
able for any purpose a particular application requires. For this chapter's
example, the pa raml field won't be needed and will simply be set to 0.

43

44
Graphics and Sound Programming Techniques for the Mac

The param2 command will be used when a program using this chapter's
asynchronous sound-playing technique is running on a 68K-based Mac.
Below is an application-defined function named Ins ta 11Ca11 backCommand ()
that is called after SndPl ay() starts. It's used to add, or install, a callback
sound command in the queue of the sound channel currently playing
the sound.

OSErr InstallCallbackCommand(SndChannelPtr theChannel)
{

}

OSErr theError;
SndCommand theCommand;

theCommand.cmd = callBackCmd;
theCommand.paraml = O;
theCommand.param2 = SetCurrentA5();

theError = SndDoCommand (theChannel , &theCommand, true) ;

return (theError);

The setting of the cmd field and the pa raml field of the sound command
is simple enough to follow. The assignment of the pa ram2 option field
may not seem as straightforward.

The call to the Toolbox function SetCurrentA5() sets the param2 field
to the value in the AS register. This value is a pointer to the section of
the application partition that holds the application's global variables.
By storing this pointer value in the sound-channel command queue, the
callback routine will have a backup value of this pointer should the AS
register contents be changed later on. Figure 2.13 illustrates that both
the AS register in the CPU and the pa ram2 field of the callback sound
command hold the same address.

Points to application global
variables stored in the AS
world above the stack

Chaptcir 2 • Sound Playing

11

FIGURE 2.13 The pa ram2 field of the callback command
holds the AS register pointer value.

The reason this pointer value is stored in the sound channel's queue has
to do with the nature of a callback routine. A callback routine isn't
invoked by a call from your code. Instead, it' s called by the system.
When it is called, other code may be executing. If this other code happens
to be a Toolbox function, the value in the AS register might not be a
pointer to the application's global variables. That's because a Toolbox
function has the power to save the AS register value, use and alter the
register's contents, and then restore the register to its initial condition.
Should a callback routine start executing whi le a Toolbox routine is

45

46
Graphics and Soand Programming Techniques for the Mac

executing (which is possible because a sound playing asynchronously
plays while other code executes), the callback routine will insert the
pa ram2 value (the saved AS value) in the AS register so that the callback
routine knows how to find the application's global variables.

If you already know about the AS register, read on. If you don't know
about the AS register, but feel the information in this very brief overview is
satisfactory, read on. If, however, you aren't satisfied with this discussion,

take a side trip to Appendix B-it provides all of the details about the AS

register and its importance when working with callback routines. Because the topics of
the AS register and the AS world are Macintosh memory topics, and not directly related

to graphics and sound, they've been relegated to an appendix.

The Install Call backCommand () function should be invoked just after an
asynchronous call to SndPl ay() is made. That has the effect of placing
the call BackCmd last in the sound channel's sound command queue.

the Error

theError

SndPlay(theChannel, (SndlistHandle)theHandle, true);

InstallCallbackCommand(theChannel);

At first glance it may seem that the above snippet plays the sound and
then, when the sound is finished, installs the callback routine. This isn't the
case. You're thinking back to synchronous sound play, where SndPl ay()

N ° T E started a sound, then took control until the sound was finished. No other

code executed until SndPl ay() completed. Remember, SndPl ay() is now playing
a sound asynchronously.That means SndPl ay() starts the sound, and then the program
carries on. In the above code, that means that the Instal 1Cal1 backCommand() routine

is invoked immediately after SndPl ay() is called-just after the sound starts playing,

but before the sound finishes.

The Sound Callback Routine
When a sound channel is to be used to play a sound synchronously, the
channel is allocated with the last parameter to SndNewChannel ()set to nil:

SndChannelPtr
OS Err

theChannel;
theError;

Chapter Z • Soand Playing

theChannel = nil;
theError = SndNewChannel(&theChannel. 0, 0, nil);

When a sound channel is to be used for asynchronous sound play, this
last parameter should instead be a universal procedure pointer (UPP) that
points to an application-defined callback routine. When SndNewChannel ()
is called in this manner, a callback routine becomes associated with the
sound channel named as the first parameter. That tells the Sound
Manager what routine to use as a sound's callback function. The follow­
ing code shows how a call to SndNewChannel <) looks when allocating a
sound channel for asynchronous play:

SndChannelPtr theChannel;
OSErr theError:
SndCallBackUPP theCallBackUPP;

theCallBackUPP = NewSndCallBackProc(SoundChannelCallback);

theChannel =nil;
theError = SndNewChannel(&theChannel. 0, 0, theCallBackUPP);

The SndCall BackUPP is an Apple-defined data type that turns out to be
nothing more than a Universal ProcPtr-a universal procedure pointer, or
UPP. The NewSndCa 11 BackProc() function is a Toolbox routine that,
when passed the name of an application-defined routine, creates a UPP
for that function. In the above snippet, the application-defined routine is
named SoundChannelCallback(). This UPP is then passed to SndNew­
Channel <).These steps are necessary so that the Sound Manager can have
a pointer to the callback function that you've written.

NOTE

Universal procedure pointer? Universal ProcPtr? UPP? These terms
aren't familiar to you? They should be. They're an important part of pro­
gramming the PowerPC. They all mean the same thing: a pointer that
points to a function. The UPP replaces the Pro c Pt r type that was used in

the past. The Apple universal header files use UPPs so that the same source code can
properly compile for both older 68K-based Macs and the newer Power PC-based Macs.

Finally, you'll need to write the application-defined callback routine.
The format of this function is as follows: the pascal keyword, a return

47

48
Graphics and Sound Programming Techniques for the Mac

type of void, the function name, and a SndChannel Ptr parameter and a
SndCommand parameter. An example follows.

pascal void SoundChannelCallback(SndChannelPtr theChannel.
SndCommand theCommand)

Generally, the only purpose of a callback routine is to let the rest of your
application know that an asynchronous sound has finished playing.
You can do that by defining a couple of global flag variables and setting
them to the appropriate value in the callback routine. This chapter's
example defines a Boolean named gCall backExecuted to let the program
know whether the callback routine has executed and a Boolean named
gSoundPl ayi ng to let the program know if a sound is currently playing.
A simple version of a callback routine follows.

pascal void SoundChannelCallback(SndChannelPtr theChannel,

{

}

gCallbackExecuted =true;
gSoundPlaying =false;

SndCommand theCommand)

The above version of SoundChannel Ca 11 back() is included here to demon­
strate just how little there is to a callback routine. But to make this function
usable, you need to surround the two assignment statements with some
utility code. As mentioned earlier, at the time the system invokes a callback
routine, there's no way to know what other code will be executing. If a
Toolbox function is being carried out, the callback routine should save
the value in the AS register (the Toolbox may be using this register for
its own purposes) and then set the AS register to a value that points to the
application global variables. Only then can the callback routine make
use of any application global variables. Finally, as the callback routine
ends it should restore the AS register to the condition it found it in. That
is, it should replace the contents of the AS register with whatever value
was in the register at the time the callback routine was invoked. That
allows the Toolbox function to finish executing after the callback routine
has finished.

To save the current value of the AS register and to change the value in
the register, call the Toolbox routine SetA5 <) :

Chapter 2 • Sound Playing

long theA5;

theA5 = SetA5(theCommand.param2);

Now you see why the call BackCmd that was placed in the sound channel
sound command queue set param2 to the application's AS value. By
saving the application's AS value early on, it's been preserved for use by
the callback routine. SetA5 () saves the current AS value (the one used
by the Toolbox routine that SoundChannelCallback() may be interrupt­
ing) in a variable named theA5. Then SetA5() sets the AS register to the
param2 value.

With the AS register pointing to the application's global variable
section in memory, the callback routine can access global variables:

gCallbackExecuted =true;
gSoundPlaying = false;

Before exiting, the callback routine should restore the AS register to the
condition it was in when the callback routine started. Another call to
SetA5(l does this. This time the parameter is the local variable theA5.
This variable holds the value AS had when the routine started. The
value returned by SetA5 (l is placed in variable theA5. Since the routine
is ending, this value is ignored.

theA5 = SetA5(theA5);

The following is a version of the callback routine that takes the AS register
into consideration:

pascal void SoundChannelCallback(SndChannelPtr theChannel,

{

}

SndCommand theCommand)

long theA5;

theA5 = SetA5(theCommand.param2);

gCallbackExecuted =true;.
gSoundPlaying =false;

theA5 = SetA5(theA5);

49

50
Graphics and Soand Programming Techniques for the Mac

Keeping track of the AS register can be a little tricky. Figure 2.14 may
clear things up a bit. The light-background snippets represent code in an
application, while the darker-background snippets represent the code for
a Toolbox routine. In the top snippet you can see that the application's AS
value is stored in the pa ram2 field of a sound command. If you follow
the arrow down you can see where this saved value will be used-in
the callback routine. Follow the arrows for each of the three saved AS
values to see where each is later used.

Figure 2.14 emphasizes that the callback routine is capable of inter­
rupting an executing Toolbox routine-that's the reason the AS register
value has to be stored and restored. In the figure, the hypothetical
Toolbox routine Tool boxFunc() is in the middle of executing when the
Sound Manager invokes the SoundChannel Cal 1 back() routine. When
SoundChannel Cal 1 back() completes, control returns to the Toolbox
routine-which then finishes up.

Figure 2.14 was lifted directly from Appendix B. Remember, if this AS topic is

giving you grief, take a diversion to that appendix now.

InstallCallbackCoomand(...
I

long theAS;

theAS = SetAS (theCommand. param2) ;

gCallbackEx:ecuted = true;
gSoundPlaying = false;

theAS = SetAS (theAS) ;

FIGURE 2.14 The AS value is initially saved so that it can be used
by the callback routine at a later time.

Chapter 2 • Sound Playing

Before you can say that the callback routine is complete, you have to
account for the fact that this code might be compiled on either a 68K
compiler of a PowerPC compiler. To do that, add a couple of lfi fndef
compiler directives to the routine. An lfi fndef directive tells the compiler
"if not defined, do the following ... " Use the powerc identifier after the
lfi fndef directive. If a 68K compiler is being used, powerc will not be
defined, and the code that follows will be compiled. If a PowerPC
compiler is being used, powerc will be defined and the code under the
lfi fndef will not be compiled.

lfi fndef powerc
theA5 = SetA5C theCommand.param2);

/fendi f

N 0 TE

Writing your code such that it compiles using either a 68K compiler or
a PowerPC compiler is a fact of life you should be dealing with. For a
more thorough reference to PowerPC programming, look at the M&T
book Programming the PowerPC or the PowerPC System Software version of
Inside Macintosh.

Because a native PowerPC application doesn't keep global variables in
an AS world, this is exactly the effect you want-the calls to SetA5 C)
will be skipped. The final version of the callback routine-complete
with AS code and /fi fndef directives-used in this chapter's example
program, follows.

pascal void SoundChannelCallbackC SndChannelPtr theChannel.

{

long theA5:

/lifndef powerc

SndCommand theCommand)

theA5 = SetA5C theCommand.param2);
/fendi f

gCallbackExecuted =true:
gSoundPlaying =false;

lfi fndef powerc
theA5 = SetA5C theA5);

51

52
Graphics and Sound Programming Techniques for the Mac

1/endif
}

Now that the 1/i fndef directive and PowerPC code have been mentioned,
it's time to point out that the Install Call backCommand() routine discussed
a little earlier should also include an 1/i fndef powerc directive. Rather
than always setting pa ram2 to the current AS value, check to see if the
code is being compiled on a 68K compiler or a PowerPC compiler. If
a 68K compiler is being used, make the call to SetCurrentA5(). If a
PowerPC compiler is being used, then the param2 field of the callback
command won't be used, and you can simply set param2 to 0. The new,
final version of I nsta 11Ca11 backCommand () follows:

OSErr InstallCallbackCommand(SndChannelPtr theChannel
{

}

OSErr theError;
SndCommand theCommand;

theCommand.cmd = callBackCmd;
theCommand.paraml = O;
1/ifndef powerc

theCommand.param2 = SetCurrentA5();
fie l se

theCommand.param2 = O;
fiend if

theError = SndDoCommand(theChannel, &theCommand, true) ;

return (theError);

Starting the Sound and Animation
Playing a sound asynchronously requires several main steps and a few
lesser ones. The six main steps used in this book's approach are as follows:

1. Allocate a new sound channel, specifying a callback routine for
that channel.

2. Load a sound resource into memory.

3. Set a global flag that states that a sound is playing.

Chapter 1 • Sound Playing

4. Call SndPl ay() to begin asynchronous sound play.

5. Install a call BackCmd sound command in the queue of the sound
channel that is playing the sound.

6. Within a loop, perform animation as the sound plays.

These six main steps can all be taken care of within a single application­
defined routine. The Pl aySoundResourceAsynch() function, which is used
in this chapter's asynchronous sound example program, needs only a
snd resource ID passed to it in order to start sound play.

N 0 TE

The Pl aySoundResourceAsynch () routine, and the application-defined
functions that it calls, can be used unchanged in many programs. The only
exception is the Ani mateWh i 1 eSoundPl ays () routine. This function will
be application-specific. That is, the animated action it performs while sound
plays will vary depending on your program's animation requirements.

short
SndChannelPtr
Handle

gSoundPlaying false;
gSoundChannel = ni 1;
gSoundHandle nil;

void PlaySoundResourceAsynch(short theResID)
{

OSErr theError;

gSoundChannel = OpenOneAsynchSoundChannel();
if (gSoundChannel == nil)

Exi tToShell ();

gSoundHandle = GetResource('snd · theResID);
if (gSoundHandle == nil)

ExitToShell();

DetachResource(gSoundHandle);
Hlock(gSoundHandle);

gSoundPlaying =true;

theError = SndPlay(gSoundChannel, (SndlistHandle)gSoundHandle,
true);

if (theError == noErr)
theError = InstallCallbackCommand(gSoundChannel);

53

54
Graphics and Sound Programming Techniques for the Mac

else
ExitToShel l C):

AnimateWhileSoundPlays();
}

The first of the five steps handled by Pl aySoundResourceAsynch(), the
allocation of a new sound channel, is taken care of in a call to the appli­
cation-defined function OpenOneAsynchSoundChannel C). This function is
very similar to the OpenOneSynchSoundChannel C) routine described earlier
in this chapter. The chief differences are that the new routine creates a
universal procedure pointer for a callback function, then passes that UPP
to the Toolbox routine SndNewChannel C). A brief description of creating a
UPP appears earlier in this chapter.

SndChannelPtr OpenOneAsynchSoundChannelC void)
{

}

SndChannel Ptr theChannel:
OSErr theError;
SndCallBackUPP theCallBackUPP;

theCallBackUPP = NewSndCallBackProc(SoundChannelCallback);

theChannel = ni 1 :
theError = SndNewChannel(&theChannel, 0, 0, theCallBackUPP);

if (theError != noErr)
{

}

DisposePtr(CPtr)theChannel) :
theChannel =nil:

return (theChannel) :

After the sound channel has been allocated, a call to Get Resource() handles
the second step-the loading of a sound resource into memory. After
loading the resource data, a call to DetachResourceC) is made. This
Toolbox routine detaches the sound resource from its resource file.
When a sound is played synchronously, this step isn't important-no
other action can take place. When a sound is played asynchronously,
almost anything can happen as the sound plays-including the closing

Chapter Z • Sound Playing

of a resource file. You'll want the sound resource detached from its file
in case this happens. By detaching the resource from the file in which it
hails from, you remove any dependency on the resource file.

The closing of a resource file isn't a random event-your code would have

to deliberately do that. In a small application, you'll know whether or not

this happens. A large application that keeps resources in separate resource
files, however, may have several calls to a routine that closes a resource file.

After the resource is detached from its file, a call to HLock() locks the
resource data in memory. This is in preparation for the call to SndPl ay().
Unlike the synchronous sound-playing function developed earlier, there
is no call to HUnlock() in the asynchronous sound-playing function.
When a sound is playing asynchronously, it can be interrupted by the
user before SndPl ay() finishes. That means that the call to HUnl ock()
shouldn't follow the call to SndPl ay(). Instead, it should appear in a
function that is called repeatedly from within a loop-the same loop
that will be performing any actions that take place while the sound
plays. That loop will be discussed a little later.

Just before the sound is played, a global flag should be set to show
the rest of the program that a sound is playing. This is the third of the
six steps listed above.

gSoundPlaying =true;

The next step is the actual playing of the sound-finally! A call to
SndPl aye), with the last parameter set to true, starts a sound playing
asynchronously. The first parameter to SndPl ay() is the SndChannel Ptr
that was returned by the call to OpenOneAsynchSoundChannel C) function
that was made earlier in Pl aySoundResourceAsynchC).

theError = SndPlay(gSoundChannel. (SndlistHandle)gSoundHandle,
true);

Just after SndPl ay() is invoked, the fifth of the six steps-the adding of
the callback sound command to the sound command queue of the sound
channel that is playing the sound-is performed. The application-defined
routine Install Call backCommand(), described earlier, takes care of this.

55

56
Graphics and Sound Programming Techniques for the Mac

theError = InstallCallbackCommand(gSoundChannel);

Figure 2.15 adds a few concise comments to the Pl aySoundResourceAsynch()
routine to sum up the tasks that this important function handles.

Load a sound
resource into
memory

Free snd from
dependency on
the resource file

Set flag to alert
the rest of the
program that a
sound is playing

Play the sound
asynchronously

Open a sound channel and tell
the Sound Manager which
callback routine by the channel

void PlaySoundResourceAsynch (
(

OSErr theError;

theResID)

gSoundChannel = OpenOneAsynchSoundchannel () ;
if C gSoundChannel == nil)

ExitToShell ();

gSoundHandle = GetResource ('snd ' , theResID) ;
if (gSoundHandle == nil)

IDci tToShell I) ;

OetachResource (gSoundHandle) ;
HLock (gSoundHandle) ;

gSoundPlaying = true;

theError = SndPlay (gSoundChannel, (SndListH ...

if (theError == noErr)
theError = InstallcallbackCornmand(gSound ...

else
ExitToShell ();

AnimateWhileSoundPlays () ;

Perform animation Add the callback command
while the sound plays to the sound channel queue

FIGURE 2.15 The Pl aySoundResourceAsynch () routine performs
the steps necessary to run an animation as a sound plays.

The last step is to enter a loop that performs some on-screen action while
the sound plays. The application-defined routine AnimateWhi 1 eSoundPl aysC)
holds that loop.

Performing Animation While a Soand Plays
After Pl aySoundResourceAsynch C) makes a call to SndPl ayC) to start a
sound playing, Ani mateWhi 1 eSoundPl ays () is called to perform the ani­
mation that will accompany the sound. It's important to keep in mind
that when SndPl ay() is called asynchronously, the Sound Manager does

Chapter Z • Sound Playing

not take control of the program. Instead, the code that follows the call to
SndPl ayC) executes as the sound plays. That means that just after the sound
starts, Ani mateWhil eSoundPl ays () will be called. A typical version of this
routine follows.

void AnimateWhileSoundPlays(void)
{

}

Boolean loopDone =false;

while C loopDone == false)
{

}

CleanUpSoundifFinished();

if C gSoundPlaying == true
MovePictureOnePixel();

else
loopDone = true;

At each pass through the whi 1 e loop in Ani mateWhi 1 eSoundPl ays C), a call
is made to an application-defined routine named Cl eanUpSoundif­
Fi ni shed C). The purpose of this routine is to dispose of the sound channel
when the sound is finished. Because an application can't predict when a
playing sound will end, it needs to call this function frequently. When
the sound does finish, the Sound Manager will invoke the sound channel's
callback routine. The callback function will set the global Boo 1 ean flag
variable gCa 11 backExecuted to true. When Cl eanUpSound I fFi ni shed()
notices this, the function unlocks the sound handle (which had been
locked just before SndPl ay() started to play the sound}, releases the sound
resource data from memory, and disposes of the sound channel. The func­
tion also sets the gCal 1 backExecuted to false so that if Cl eanUpSoundif­
Fi ni shed() gets called again, the function won't try to dispose of the now
nonexistent sound channel.

void CleanUpSoundifFinishedC void)
{

OSErr theError;

if (gCallbackExecuted ==true)

57

58

}

Graphia and Sound Programming Techniques for the Mac

{

}

HUnlock(gSoundHandle);
ReleaseResource(gSoundHandle);
gSoundHandle =nil;

theError = DisposeOneSoundChannel(gSoundChannel);
if (theError != noErr)

ExitToShell();

gSoundChannel = nil;
gCallbackExecuted =false;

The job of Ani mateWhil eSoundPl ays () is to perform the action that
accompanies the sound. To determine if the sound is playing, the routine
checks the value of the global flag gSoundPl ayi ng. Recall that this
Boolean variable is set to true when SndPl ay() is called, and set to
false in the callback routine. When the sound finishes playing, the
Sound Manager will interrupt Ani mateWhil eSoundPl ays C) to execute the
callback routine. When the callback function finishes, AnimateWhi 1 e­
SoundPl ays () will resume. At that time gSoundPl ayi ng will be fa 1 se,
and the loop-and the animation-will end.

As long as gSoundPl ayi ng is true, the animation will continue. In this
example, that animation consists of a picture being moved one pixel to
the left-the application-defined function Move Pi ctureOnePi xel C) does
that. The asynchronous sound example that appears later in this chapter
describes this routine. Once the callback routine is invoked and
gSoundPl ayi ng is toggled to fa 1 se, the local variable 1 oopDone gets set to
true and the loop, animation, and the Ani mateWhi 1 eSoundPl ays () func­
tion, end.

Figure 2.8, located back near the start of the asynchronous-sound
section of this chapter, gave a broad overview of how a sound is played
asynchronously. Figure 2.16 updates Figure 2.8 by filling in the names
of the functions that handle the basic sound-playing tasks.

Chapter 2 • Sound Playing

r,,,, ,,,,.,,u .. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,, •• ,,,,,,,,,,,,,,,,,,,,,,,,,,,.,,,,,,,,,,~

~ CleanUpSoundifFinished ()

~I Dem~ sound~nel I I
~ ~
~ .. ,.. ... J

FIGURE 2.16 The application-defined functions that make

asynchronous sound play possible.

Before finishing off with an example program, let's look at the answer
to a question you may have regarding the disposing of the sound channel.
To determine when to dispose of the channel, Cl eanUpSoundlfFi ni shed()
is called from within the while loop found in Ani mateWhi l eSoundPl ays ().
Rather than calling this routine at every pass through the loop, perhaps
it could be called just a single time-when the global gSoundPl ayi ng flag
becomes false:

while loopDone == false)
{

if gSoundPlaying == true
MovePictureOnePi xel() ;

59

60

}

Graphics and Sound Programming Techniques for the Mac

else
{

}

CleanUpSoundlfFinished();
loopDone = true;

While this approach will work in some instances, it will fail in others.
Consider a version of AnimateWhil eSoundPl ays <) that doesn't stop anima­
tion as soon as the sound finishes. In the following snippet, animation
might take place even after the sound has stopped. If the sound has
finished, but the picture hasn't reached the edge of the window, the
animation continues. In this instance, the sound channel will inadver­
tently remain open even though the sound has finished.

while (loopDone ==false)
{

}

if ((gSoundPlaying ==true) I I (gAtEdge ==false))
MovePictureOnePixel();

else
{

}

CleanUpSoundlfFinished();
loopDone = true;

Instead of calling Cl eanUpSound I fFi n i shed once, as is done above, call it
each pass through the loop-as shown earlier.

Chapter Example: flsynchSndPlay
The AsynchSndPlay example program is a simple demonstration of
asynchronous sound play. When you start the program you'll see an
empty window. Pressing any key starts a cartoon bear sliding on a block
of ice across the window from right to left. Figure 2.17 shows the bear in

Chapter Z • Sound Ploying

the window. As the bear moves, you'll hear classical music playing.
When the animation stops a short time later, the music will stop as well.
You can replay the sound by again pressing any key. When you do, the
bear will start moving from the point at which he stopped. And, of
course, the music will again play as the bear moves. To quit the program,
wait until the animation and sound stop, then click the mouse button.

~
N 0 TE

New Window

FIGURE 2.17 The AsynchSndPlay program displays
a picture that moves while a sound plays.

Why is a cartoon polar bear sliding along to the music of the 18th-century

composer George Frideric Handel? Who cares! What's important here is

that while a sound is playing, other action is taking place on the screen.

That's the definition of asynchronous sound-a technique you'll need to

master if you're going to write multimedia programs or games.

The AsynchSndPlay project requires three resources: a PICT, a snd , and a
WIND. Figure 2.18 shows the resource IDs of each. You can replace the
picture or the sound with resources of your own-just make sure to give
the PICT an ID of 128 and the snd an ID of 9000, in order to match the
numbers used in the source code.

61

62
Graphics and Sound Programming Techniques for the Mac

AsynchSndPlay.rsrc

PICT snd WIND

Pl Ch from AsynchSndPlay.rsrc

snds from RsynchSndPlay.rsrc
Siz:e Name

9000 140842

!Q. Size

128 29

FIGURE 2.18 The three resources used in the

AsynchSndPlay program, as viewed in ResEdit.

Most of the routines that make up the AsynchSndPlay program have
been described in this chapter. Before presenting the source code listing,
a quick look is in order for the few routines that haven't yet been covered.
The main<) function is shown below, with an explanation following.

void main(void)
{

NumVersion
Event Record

theSndMgrVers;
theEvent;

InitializeToolbox();

theSndMgrVers = SndSoundManagerVersion();
if (theSndMgrVers.majorRev < 3)

ExitToShell ();

OpenDisplayWindow();
LoadAndSetupPicture();

}

Chapter 2 • Sound Playing

while (gDone ==false)
{

}

WaitNextEvent(everyEvent, &theEvent, 15L, nil) ;

switch (theEvent.what
{

}

case mouseDown:
gDone = true:
break;

case keyDown:
PlaySoundResourceAsynch(rMusicSound);
break:

After initializing the Toolbox and verifying that the user has Sound
Manager version 3.0 or later, main<) calls the application-defined routines
Open Di spl ayWi ndow() and LoadAndSetupPi cture() to open a window
and load the PI CT resource into memory. A handle to the picture is
stored in the global variable gThePi cture, and the starting boundaries of
the picture are stored in the global rectangle variable gTheRect.

void OpenDisplayWindow(void)
{

}

WindowPtr theWindow:

theWindow = GetNewWindow(rDisplayWindow, nil, (WindowPtr)-lL);
ShowWjndow(theWindow);
SetPort(theWindow);

//~~~~~~~~~~~~~~~~~~~~~~~~~-

void LoadAndSetupPicture(void)
{

short theWidth;
short theHeight:
short left = 475:
short top = 10;

gThePicture = GetPicture(rBearPicture):
gTheRect = (**gThePicture).picFrame;
theWidth = gTheRect.right - gTheRect.left:

63

64

}

Graphics and Sound Programming Techniques for thcz Mac

theHeight = gTheRect.bottom - gTheRect.top;
SetRect(&gTheRect, left, top, left + theWidth, top +
theHeight);

The picture handle and boundary rectangle are stored in global variables
so that their values will be retained as the program runs. When it comes
time to move the picture one pixel to the left, Move Pi ctureOnePi xel <)
simply offsets the variable gTheRect one pixel, then calls DrawPi cture():

void MovePictureOnePixel(void
{

}

OffsetRect(&gTheRect, -1, 0);
DrawPicture(gThePicture, &gTheRect);

N 0 TE

For smoother animation you'll use graphic worlds rather than moving a
picture: That topic is described in Chapter 5.

To play a sound and run the animation, a user of AsynchSndPlay press­
es any key. A keystroke causes a key Down event to occur, which is picked
up by Wa itNextEvent (). In response to the key Down event, main<) calls
Pl aySoundResourceAsynch () to start the sound and animation.

Now, the complete source code listing for AsynchSndPlay follows
below. As you look over the listing, keep in mind that many of the routines
can be used "as is" in your own programs that will take advantage of
asynchronous sound. In particular, in their present form SoundChannel -
Cal 1 back(), Instal 1Cal1 backCommand(), Cl eanUpSoundlfFi ni shed(), and
Pl aySoundResourceAsynch() may all meet your needs.

#include <Sound.h>

pascal void
OS Err
void

SoundChannelCallback(SndChannelPtr, SndCommand);
InstallCallbackCommand(SndChannelPtr);
CleanUpSoundlfFinished(void);

Chapter Z • Sound Playing

void
void
void
void
void
void
SndChannelPtr
OS Err

PlaySoundResourceAsynch(short);
AnimateWhileSoundPlays(void);
InitializeToolbox(void);
OpenDisplayWindow(void);
LoadAndSetupPicture(void);
MovePictureOnePixel(void);
OpenOneAsynchSoundChannel(void):
DisposeOneSoundChannel(SndChannelPtr);

#define
//define
//define

rMusicSound
rDisplayWindow
rBearPicture

short
Boolean
SndChannelPtr
Handle
Boolean
PicHandle
Re ct

gSoundPlaying
gCallbackExecuted
gSoundChannel
gSoundHandle
gDone
gThePicture:
gTheRect;

void main(void)
{

NumVersion theSndMgrVers;
EventRecord theEvent:

InitializeToolbox();

9000
128
128

false;
=false;
= nil;

nil;
false;

theSndMgrVers = SndSoundManagerVersion();
if (theSndMgrVers.majorRev < 3)

Exi tToShel l ();

OpenDisplayWindow();
LoadAndSetupPicture();

while (gDone ==false
{

WaitNextEvent(everyEvent, &theEvent, 15L, nil) ;

switch (theEvent.what)

65

66

}

Gl'Clphla and Soand Programming Techniques for the Mac

{

}
}

case mouseDown:
gDone = true:
break:

case keyDown:
PlaySoundResourceAsynch(rMusicSound);
break:

//~~~~~~~~~~~~~~~~~~~~~~~~~-

void PlaySoundResourceAsynch(short theResID)
{

}

OSErr theError:

gSoundChannel = OpenOneAsynchSoundChannel();
if (gSoundChannel ~ nil)

ExitToShell():

gSoundHandle = GetResource('snd ' theResID) :
if (gSoundHandl e == ni 1)

ExitToShell();

DetachResource(gSoundHandle);
Hlock(gSoundHandle);

gSoundPlaying = true;
theError = SndPlay(gSoundChannel, (SndlistHandle)gSoundHandle,

true) :

if (theError ~ noErr)
theError = InstallCallbackCommand(gSoundChannel);

else
ExitToShell();

AnimateWhileSoundPlays();

//~~~~~~~~~~~~~~~~~~~~~-

void AnimateWhileSoundPlays(void)
{

}

Boolean loopDone = false;

while (loopDone == false)
{

}

CleanUpSoundlfFinished();

if (gSoundPlaying ==true
MovePictureOnePixel();

else
loopDone =true;

Chapter Z • Soand Playing

//~~~~~~~~~~~~~~~~~~~~~~~~~-

void CleanUpSoundlfFinished(void)
{

}

OSErr theError;

if (gCallbackExecuted ==true
{

}

HUnlock(gSoundHandle);
ReleaseResource(gSoundHandle);
gSoundHandle = nil:

theError = DisposeOneSoundChannel(gSoundChannel);
if (theError != noErr)

ExitToShel l ();

gSoundChannel =nil;
gCallbackExecuted =false;

//~~~~~~~~~~~~~~~~~~~~~~~~~-

OSErr InstallCallbackCommand(SndChannelPtr theChannel)
{

OSErr theError;
SndCommand theCommand;

theCommand.cmd = callBackCmd;
theCommand.paraml = O;
Iii fndef powerc

theCommand.param2 = SetCurrentA5();
//else

67

68

}

Graphics and Sound Programming Techniques for the Mac

theCommand.param2 = 0;
ttend if

theError = SndDoCommand(theChannel, &theCommand, true);

return (theError);

pascal void SoundChannelCallback(SndChannelPtr theChannel,

{

}

SndCommand theCommand)

long theA5;

th fndef powerc
theA5 = SetA5(theCommand.param2);

tfendif

gCallbackExecuted =true;
gSoundPlaying = false;

tti fndef powe re
theA5 = SetA5(theA5);

ttendif

//~~~~~~~~~~~~~~~~~~~~~~~~~~-

SndChannelPtr OpenOneAsynchSoundChannel(void)
{

SndChannelPtr
OS Err
SndCallBackUPP

theChannel;
theError;
theCa 11 BackUPP;

theCallBackUPP = NewSndCallBackProc(SoundChannelCallback);

theChannel = nil;
theError = SndNewChannel(&theChannel, 0, 0, theCallBackUPP);

if (theError != noErr)
{

}

DisposePtr((Ptr)theChannel);
theChannel = nil;

return (theChannel) ;

Chapter Z • Sound Playlng

}

//~~~~~~~~~~~~~~~~~~~~~~~~~-

OSErr DisposeOneSoundChannel(SndChannelPtr theChannel)
{

}

OSErr theError:

theError = SndDisposeChannel(theChannel. true);
DisposePtr(CPtr)theChannel);

return (theError);

//~~~~~~~~~~~~~~~~~~~~~~

void OpenDisplayWindow(void)
{

}

WindowPtr theWindow;

theWindow = GetNewWindow(rDisplayWindow, nil. CWindowPtr)-lL);
ShowWindow(theWindow);
SetPort(theWindow);

//~~~~~~~~~~~~~~~~~~~~~~~~~-

void LoadAndSetupPicture(void)
{

}

short theWidth;
short theHeight:
short left = 475:
short top = 10;

gThePicture = GetPicture(rBearPicture);
gTheRect = (**gThePicture).picFrame:
theWidth = gTheRect.right - gTheRect.left:
theHeight = gTheRect.bottom - gTheRect.top;
SetRect(&gTheRect, left, top, left + theWidth, top +
theHeight);

//~~~~~~~~~~~~~~~~~~~~~~~~~-

void MovePictureOnePixel(void
{

OffsetRect(&gTheRect, -1, 0);

69

70
Graphics and Sound Programming Techniques for the Mac

DrawPicture(gThePicture, &gTheRect);
}

More Asynchronous Sound
Not only can a sound be played while animation takes place, but that
sound can have its characteristics altered while the animation continues.

Allowing Oser Input While a Sound Plays
In the Ani mateWhi l eSoundPl ays () function of last section's Asynch­
SndPlay program, a loop was used to move a picture across a window
as a sound played. While looping is a powerful programming device, it
can have one serious drawback: for the entire time that a loop executes,
it takes control of a program and locks out the user. This may be an
acceptable practice for programs that run on certain machines, but it runs
counter to the notion of how an event-driven program should operate.

While a loop generally does take control of a program, it doesn't
have to. You already know that fact from working with the event loop
of any Mac program. The call that is at the heart of an event loop­
WaitNextEvent()-makes it possible for the user to constantly interact
with the program. By looking for,-and processing-keyboard and
mouse events, WaitNextEvent() allows the user to set the course of
action for a program.

Typically, a Macintosh programmer will include just a single call to
WaitNextEvent() in a program-the call that appears in the event loop.
This is done because one call is usually adequate-not because there is
a restriction on the number of times WaitNextEvent() can appear in a
program. When it makes sense to use an additional call to WaitNext­
Event () , a program should do so. As you may have guessed, this makes
perfect sense for last section's AsynchSndPlay program.

Adding a call to WaitNextEvent() in the AnimateWhileSoundPlays()

function allows the function to watch for user-input. One likely scenario
is that the user may want to stop the asynchronous sound from playing
before it's finished. The following new version of AnimateWhil eSound-

Chapter 2 • Sound Playing

Plays () responds to a key Down event by calling a new application-defined
routine named StopSoundPl ayi ng() and then setting the loop-ending
local Boolean variable 1 oopDone to true.

void AnimateWhileSoundPlays(void)
{

}

Event Record
Boolean

theEvt;
loopDone = false;

while (loopDone == false)
{

}

CleanUpSoundifFinished();

if (gSoundPlaying ==true
MovePictureOnePixel();

else
loopDone = true;

WaitNextEvent(everyEvent, &theEvt. 15L, nil) ;

switch (theEvt.what
{

}

case keyDown:
StopSoundPlaying();
loopDone =true;
break;

StopSoundPl ayi ng() sets the global flags gCal l backExecuted to true and
gSoundPlaying to false. Then the CleanUpSoundifFinished() function is
called to dispose of the sound channel.

void StopSoundPlaying(void
{

}

if (gSoundChannel != nil
{

}

gCallbackExecuted =true;
gSoundPlaying =false;

CleanUpSoundifFinished();

71

72
Graphia and Sound Programming Techniques for the Mac

The StopSoundPl ayi ng() is called by the application-not by the
Sound Manager (as the callback routine is). Because the application is
terminating the sound early, the Sound Manager doesn't get the chance to
issue the callback command. That's why the StopSoundPl ayi ng() routine
has to "artificially" set gCallbackExecuted to true. When CleanUpSound­
I fFi n is hed <) begins to execute, it will note that this flag is true and will
dispose of the sound channel.

Because the keyDown-handing code in AnimateWhileSoundPlays() sets
the l oopDone flag to true, the loop will end regardless of the value of
gSoundPl ayi ng. However, StopSoundPl ayi ng() makes no assumptions about
the routine that calls it. It sets gSoundPl ayi ng to false in case the calling
function relies on this flag to end the loop.

Having a keystroke as the event that triggers some action makes for a clear,

easy-to-follow example. Your program can apply the same event-handling
principle in a more complex way. For example, your animation routine
could respond to mouseDown events in the menu bar rather than keyDown

events. Then, rather than pressing a key, the user could stop a sound by making a Stop

Sound menu selection from a Sound menu.

Chapter Example: flsynchSndEvt
The AsynchSndEvt program that you'll find on the CD in this chapter's
folder of examples is almost identical to the AsynchSndPlay example.
Once again a polar bear slides to the classical music of Handel. The
difference is that AsynchSndEvt uses the new version of AnimateWhi le­
SoundPl ays () and the StopSoundPl ayi ng() routine. That allows the user
to stop a sound that is playing by pressing any key. Another keystroke
will restart the sound from the beginning.

As you look over the AsynchSndEvt source code, take note of the fact
that there are two calls to WaitNextEvent(). As always, one call appears
in the event loop. When ever a sound isn't playing, this is the call to
WaitNextEvent() that processes events. When a sound isn't playing the
program responds to keyDown and mouseDown events in main(). Once a
sound is playing, the program will be in the while loop of Animate­
Whil eSoundPl ays(). That means that when a sound is playing, it is the call

Chapter Z • Sound Playing

to WaitNextEvent() in AnimateWhil eSoundPl ays() that processes events.
When a sound is playing, only key Down events will be processed.

II main() handles events when a sound isn't playing.
II A click of the mouse quits the program, a press of a
II key plays a sound asynchronously.

void main(void)
{

}

while (gDone ~ false)
{

}

WaitNextEvent(everyEvent, &theEvent, 15L, nil);

switch (theEvent.what
{

}

case mouseDown:
gDone = true;
break;

case keyDown:
PlaySoundResourceAsynch(ksnd resourceID);
break;

II AnimateWhileSoundPlays() handles events during sound play.
·II Mouse clicks are ignored, a press of a key stops the sound.

void AnimateWhileSoundPlays(void)
{

EventRecord theEvt;
Boolean loopDone = false;

while (loopDone ==false)
{

WaitNextEvent(everyEvent, &theEvt, 15L, nil);

switch (theEvt.what
{

case keyDown:
StopSoundPlaying();

73

74
Graphics and Sound Programming Techniquczs for thcz Mac

loopDone true:
break:

}
}

}

There's one final addition to the AsynchSndEvt source code that is worthy
of note. The Pl aySoundResourceAsynchC) routine now starts with a check
to verify that gSoundChannel isn't nil:

void PlaySoundResourceAsynch(short theResID)
{

}

OSErr theError:

if C gSoundChannel != nil
StopSoundPlaying();

II rest of routine is the same as the previous version

The AsynchSndEvt program won't ever make use of this addition, but
it is a useful one nonetheless. If you ever make a change to the program
such that it stops and restarts a sound in response to pressing a key,
StopSoundPlaying() will be called from within PlaySoundResource­
Asynch().Consider the following version of AnimateWhileSoundPlays().
It has two lines of key Down-handling code commented out, and one new
line in their place.

void AnimateWhileSoundPlays(void)
{

EventRecord theEvt:
Boolean loopDone = false:

while C loopDone ==false)
{

CleanUpSoundifFinished():

if (gSoundPlaying == true
MovePictureOnePixel();

else
loopDone =true;

WaitNextEventC everyEvent. &theEvt, 15L, nil) :

switch (theEvt.what
{

case keyDown:
II StopSoundPlaying();
II loopDone =true;

Chapter 2 • Sound Playing

PlaySoundResourceAsynch(ksnd resourceID); II NEW
break;

}
}

}

In the above version of AnimateWhi 1 eSoundPl ays(), a keystroke will call
Pl aySoundResourceAsynch (). Because a sound is already playing, a
sound channel is already allocated, and a pointer to it is held in the
global SndChannel Ptr variable gSoundChannel. When AnimateWhi 1 e­

SoundPl ays () calls Pl aySoundResourceAsynch (), the test of the value of
gSoundChannel will reveal that this variable is not a ni 1 pointer, and the
current sound should thus be stopped:

void PlaySoundResourceAsynch(short theResID)
{

OSErr theError;

if (gSoundChannel != nil
StopSoundPlaying();

What would happen if the above test of gSoundChannel wasn't made?
PlaySoundResourceAsynch() would go on to allocate a new sound channel
and place a pointer to it in gSoundChannel. Because the original sound
would be playing in a channel pointed to by gSoundChannel. this would
result in the very troubling situation.

As a test, alter the AsynchSndEvt source code to match this new
example: comment out the StopSoundPl aying() call and the 1 oopDone

assignment under the keyDown case section in AnimateWhi 1 eSound­

P 1 ay s () . If you do that, then recompile and run the project, you'll find
that when a sound is playing, the sound stops, then restarts, each time a
key is pressed.

75

76
Graphics and Sound Programming Techniques for the Me1c

Sound Commands and fisynchronous Sound Play
The Toolbox function SndDoCommandC) adds a sound command to the
sound command queue of a sound channel. You've used this routine to
add a callback command to the sound channel that is playing a sound
asynchronously. As Figure 2.19 shows, a call to SndPl ay() starts issuing
the commands in a queue to the speaker-starting with the first command
in the queue (shown lower in memory). The figure also shows that a call
to SndDoCommandC) adds a sound command to the end of a queue.

SndPlay ()
00

SndDoComrnan d ()

FIGURE 2.19 A call to SndDoCommand ()adds a command to a sound channel queue.

The Toolbox includes a second routine that works with sound com­
mands-SndDolmmedi ate(). Like SndDoCommand(), SndDolmmedi ate()
accepts a sound channel pointer and a sound command as parameters.
Unlike SndDoCommand(), SndDolmmedi ate() issues a sound command
directly to the sound hardware of a Mac. The sound channel sound com­
mand queue is bypassed entirely. Figure 2.20 shows Snd Dolmmedi ate()
sending a command to change the amplitude, or volume, of a sound
that is currently playing.

Chapter 2 • Sound Playing

l.
Snd Play() SndDoirrunediate ()

FIGURE 2.20 A call to SndDolmmediate() immediately processes a sound channel.

When combined with asynchronous sound, a routine that immediately
affects a sound channel is a powerful programming tool. When a program
starts a sound, a call to SndDolmmedi ate() lets the user change a character­
istic of the sound as it plays.

SndDolmmediate() and Sound Volume
SndDolmmedi ate() works with a variety of sound commands, one of which
is the ampCmd sound command introduced earlier in this chapter. In this
chapter's SoundCommands example program, you saw the ampCmd used
in a call to SndDoCommandC). Recall that the ampCmd varies the amplitude, or
volume, of a sound. For the amplitude command the cmd field is ampCmd,
the pa raml field is the desired amplitude, and the pa ram2 field is unused.
The paraml field has a range of 0 to 255, with 0 turning the sound off and
255 setting the sound to 100 percent of the sound level currently set by the
user in the user's Sound control panel. The following snippet will change
the volume of a playing sound to one-half its current volume. As soon as
the call to SndDolmmedi ate() is made, the sound playing on theChannel will

77

78
Graphics and Sound Programming Techniques for the Mac

drop in volume by 50 percent (because a paraml value of 127 is approxi­
mately one half of the maximum paraml value of 255).

SndChannelPtr
SndCommand

theChannel;
theCommand;
theError; OS Err

theCommand.cmd = ampCmd;
theCommand.paraml = 127;
theCommand.param2 = O;

theError = SndDolmmediate(theChannel. &theCommand);

Keep in mind that the amplitude is in relation to the sound level set by the
user in the user's Sound control panel. Thus a single pa raml value will
generate different volumes, depending on how loud the user has set the

NOTE volume of the Mac's speaker. For instance, don't assume that a half volume

setting of 127 will always play a sound at half the maximum level that a Mac can deliver.

If the user has his or her Sound control-panel sound level set to 1, the sound will play
at a volume midway between 0 and 1 on the Sound control-panel scale--and that's a

very quiet sound.

This chapter's next example program uses a routine named SetSound­
Ampl itude() to change the volume of a sound. Pass SetSoundAmpl itude()
a sound channel pointer and the new amplitude, and the function will
immediately change the volume of whatever sound is currently playing
on the sound channel pointed to by the SndChannel Ptr parameter.

OSErr SetSoundAmplitude(SndChannelPtr theChannel. short theAmp
{

}

SndCommand
OS Err

theCommand;
theError;

theCommand.cmd = ampCmd;
theCommand.paraml = theAmp;
theCommand.param2 = O;

theError = SndDolmmediate(theChannel. &theCommand);

return (theError);

~
NOTE

Chapter 2 • Sound Playing

This same routine, with one change, appears much earlier in this chapter-in

the SoundCommands example program. There, a call to SndDoCommand()

was used in place of SndDolmmediate().

Earlier you saw how to add event handling to the loop that performs the
animation accompanying a sound that is playing asynchronously. The
following snippet shows how that technique could be expanded upon.
In the following example, a key Down event is handled by first determining
which particular key was pressed by the user. If the key was the minus
key on the numeric keypad of the keyboard, SetSoundAmpl i tude() is
called to tum the sound volume down to half volume. If any other key is
pressed, the sound and animation are stopped-just as they were in the
previous example program, AsynchSndEvt.

void AnimateWhileSoundPlays(void)
{

while loopDone ~false)
{

WaitNextEvent(everyEvent, &theEvt, 15L, nil) :

switch (theEvt.what
{

case keyDown:
theChar = theEvt.message & charCodeMask;
switch (theChar)
{

case ' - ':
theError = SetSoundAmplitude(gSoundChannel, 127);
if (theError != noErr)

Exi tToShel 1 <):
break:

default:
StopSoundPlaying();
loopDone =true:
break:

79

80
Graphics and Sound Programming Techniques for the Mac

}
}

}

break:

The MoreSndCommands example program that appears a little later
provides a complete version of the above An i ma teWh i l eSound Plays ()

snippet.

SndDolmmediate() and Sound Pitch
Your application can use SndDoimmedi ate() to change the rate of play of a
sound. The rateCmd sound command allows the frequency of a playing
sound to be lowered or raised. A lower frequency corresponds to a
lower pitch, and produces a lower sound-like a bass drum. A higher
frequency corresponds to a higher pitch, and generates a higher
sound-as in a violin. The rateCmd also alters the duration of a sound.
A lower rate not only lowers the sound's frequency, it also slows the
sound down. A higher rate increases the sound's frequency and speeds
up the sound.

The rate command requires a cmd field of rateCmd, a pa raml field that
is unused, and a pa ram2 field that is a hexadecimal 1 ong value. A
param2 value of OxOOOlOOOO plays a sound at 22 kHz-the rate at which
most sampled sounds are recorded. Other rates all use this 22 kHz
value as a base. That is, to play a sound at twice its normal rate, or 44
kHz, use Ox00020000 for the param2 value. A value of Ox00030000 plays
a sound at 66 kHz. To slow a sound to 11 kHz, set pa ram2 to Ox00008000.

If your hexadecimal skills are a little rusty, here's why Ox00008000 is one­
half of OxOOOlOOOO.

OxOOOlOOOO in decimal is (1) x (16xl 6 x16 x16), or 65. 536.
Ox00008000 in decimal is (8) x (16x16x16),or 32,768.

The following snippet will change the rate of a playing sound to 66 kHz.

SndChannel Ptr theChannel;
SndCommand theCommand;
OSErr theError;

theCommand.cmd = rateCmd;
theCommand.paraml = 0;
theCommand.param2 = Ox00030000;

Chapter 2 • Sound Playing

theError = SndDolmmediate(theChannel, &theCommand);

The MoreSndCommands example program found on this book's CD
includes a routine named SetSoundRate(). Pass SetSoundRate() a sound­
channel pointer and a 1 ong variable (in hexadecimal), and the function
will immediately change the rate of the playing sound.

OSErr SetSoundRate(SndChannelPtr theChannel, long theRate)
(

SndCommand
OS Err

theCommand;
theError;

theCommand.cmd = rateCmd;
theCommand.paraml = O;
theCommand.param2 = theRate;

theError = SndDolmmediate(theChannel, &theCommand);

return C theError);

As was done for the amplitude of a sound, the sound's rate can be con­
trolled by the user from the event-handling section of the animation
loop. In the following snippet, pressing the f key (for "fast") will set the
sound that is playing to 66 kHz.

void AnimateWhileSoundPlays(void)
(

while (loopDone ==false)
{

81

82
Graphics and Sound Programming Techniques for the Mac

}

WaitNextEvent(everyEvent, &theEvt. 15L, nil) :

switch (theEvt.what
{

}

case keyDown:
theChar = theEvt.message & charCodeMask:
switch (theChar)
{

case 'f':
theError = SetSoundRate(gSoundChannel •

Ox00030000);
if (theError != noErr

Exi tToShel 1 ():
break:

default:

}

break;

StopSoundPlaying();
loopDone = true:
break;

Chapter Example: MoreSndCommands
The MoreSndCommands example program represents the final return
of the sliding bear and Handel's 7th Symphony. This version of the sliding­
bear program gives the user the ability to vary both the amplitude and
rate of the classical score that accompanies the bear's slide.

To change the amplitude of the sound, the SetSoundAmpl itude()
routine developed on the preceding pages is used. The changing of the
sound's rate is handled by another function you've recently seen­
SetSoundRate().

Once again, it's the call to WaitNextEvent() in the loop of Animate­
Whi 1 eSoundPl ays() that makes it possible for the user to gain control of
the sound. If the event is a keyDown event, AnimateWhileSoundPlays()
will begin by determining which key was pressed. If the key was the +

Chapter 2 • Soand Playlng

or - key on the numeric keypad, the sound's amplitude will change.
Pressing the - key lowers the amplitude by 30 on the scale of o to 255.
Repeatedly pressing the - key will continually lower the volume of the
sound until the level approaches o . Pressing the + key raises the ampli­
tude 30. Before lowering or raising the volume, a check is made to ensure
that the amplitude will not go out of the paraml range of O to 255. Here's
the amplitude-related case sections used in AnimateWhi l eSoundPl ays C >:

case '+':
if (theAmplitude <= 225)

theAmplitude += 30;
theError = SetSoundAmplitudeC gSoundChannel. theAmplitude >:
if (theError != noErr)

ExitToShell ():
break;

case ' - ':
if (theAmplitude >= 30)

theAmplitude -= 30:
theError = SetSoundAmplitude(gSoundChannel, theAmplitude);
if (theError != noErr)

ExitToShell();
break:

The user can change the rate of play of the sound by pressing one of
three keys. The f key (for "fast') sets the sound playing at 66 kHz. This
increased rate will produce sound that is played very fast. The s key
(for "slow") sets sound play to 11 kHz-resulting in a sound that plays
at half its normal speed. Pressing the p key (for "play") plays the sound
at its normal 22 kHz rate. Here's a snippet that shows the case sections
for these three keystrokes:

lfdefine
I/define
lfdefine
lfdefine

case 'p':

kll kHz Freq Rate
k22kHzFreqRate
k44kHzFreqRate
k66kHzFreqRate

Ox00008000
OxOOOlOOOO
Ox00020000
Ox00030000

theError. = SetSoundRate(gSoundChannel, k22kHzFreqRate);
if (theError != noErr)

ExitToShell ():
break:

8J

84
Graphia and Sound Programming Techniques for the Mac

case 's':
theError = SetSoundRateC gSoundChannel, kllkHzFreqRate);
if C theError != noErr)

ExitToShell ();
break;

case 'f':
theError = SetSoundRateC gSoundChannel, k66kHzFreqRate);
if C theError != noErr)

ExitToShell C);
break:

AnimateWhil eSoundPl ays(), shown below, holds the code that differs
from the AsynchSndEvt program. To see the full listing for the
MoreSndCommands program, refer to the MoreSndCommands.c
source-code file found on the included CD.

void AnimateWhileSoundPlaysC void
{

Event Record
Boolean
char

theEvt:
loopDone = false:
theChar:

OS Err
short

theError:
theAmplitude = 255:

while loopDone ==false)
{

CleanUpSoundlfFinished():

if C gSoundPlaying == true
MovePictureOnePixel();

else
loopDone =true;

WaitNextEventC everyEvent, &theEvt, 15L, nil);

switch C theEvt.what
{

case keyDown:
theChar = theEvt.message & charCodeMask:
switch C theChar)
{

case '+':

}
}

}

Chapter Z • Sound Playing

if (theAmplitude <= 225)
theAmplitude += 30:

theError = SetSoundAmplitude(gSoundChannel,
theAmplitude);
if (theError != noErr

ExitToShell();
break:

case'-':
if (theAmplitude >= 30)

theAmplitude -= 30:
theError = SetSoundAmplitude(gSoundChannel,

theAmplitude);
if (theError != noErr

ExitToShell();
break:

case 'p':
theError = SetSoundRate(gSoundChannel,
k22kHzFreqRate);
if C theError != noErr

ExitToShell ():
break:

case 's':
theError = SetSoundRate(gSoundChannel,
kllkHzFreqRate);
if C theError != noErr

ExitToShel 1 ():
break:

case 'f':
theError = SetSoundRate(gSoundChannel ,
k66kHzFreqRate);
if C theError != noErr

ExitToShell();
break:

default:

}

break:

StopSoundPlaying();
loopDone =true:
break:

85

86
Graphics and Sound Programming Techniques for the Mac

Summary
Version 3.0 of the Sound Manager provides you, the programmer, with the
routines necessary to play and alter sounds. Before adding sound-playing
capabilities to your program, you'll want to call SndSoundManager­
Ve rs i on<) to verify that the user has this version of the Sound Manager
as part of his or her system software.

Sounds can conveniently be stored as s n d resources in the resource
fork of a Macintosh application. To load a sound into memory, call
GetResource(). To play the loaded sound, call SndPl ay(). For simple
synchronous sound play, you can let the Sound Manager take care of
the allocation of a sound channel from which a sound is played. For the
more complex asynchronous sound play (sound playing that allows
other action, such as animation, to take place), your program will
become involved.

Playing a sound asynchronously requires that a callback routine be
associated with the sound channel from which the sound will be played.
The callback routine gets invoked by the Sound Manager when the
asynchronous sound finishes playing. The purpose of this function is to
set a flag variable that indicates to the rest of the program that the
sound has finished playing.

CttfiPTER 3

Sound Recording
The Sound Manager, described in Chapter 2, is the set of Toolbox routines
that provides your programs with the capabilities to play sounds through
either the Mac's built-in speakers or a pair of external speakers. Sound
Manager routines such as SndDoCommandC) and SoundDoimmedi ate() allow
your programs to alter the way in which a sound is played.

The Sound Input Manager-the topic of this chapter-is the set of
Toolbox routines that gives your applications the power to record sounds.
The most important of these routines is the one that displays and controls
the standard Sound Recording dialog box. By including this dialog box in
your program, you provide a standard interface that is recognizable to the
user. Once the user records a sound using this dialog box, your program
can play the sound back at any time or save it to a sound resource in a
resource file. Each of these topics is covered in this chapter.

Sound Input Devices
From the very oldest Macintosh to the most current model, each has had
a built-in speaker. That means that your program doesn't have to check

87

88
Graphics and Sound Programming Techniques for thcr Mac

for the presence of sound-playing hardware before it plays a sound. The
same is not true for sound recording. While all current Macs come with
built-in sound recording capabilities, many older models don't. So before
your program attempts to record a sound, it should first make a check to
verify that the host computer does indeed have a sound input device. For
this task you can use a short application-defined routine such as the
IsSoundinputAvai 1 abl eC) function described below. An example of a call
to this function is shown here:

Boolean soundinputPresent;

soundinputPresent = IsSoundinputAvailable();
if (soundinputPresent == false)

ExitToShel 1 C);

Here's a look at IsSoundinputAvailable(), followed by a description of
how this function determines whether an input device is available.

Boolean IsSoundinputAvailable(void)
{

OS Err
1 ong
Boolean

theError;
theResult;
i nputAvai 1;

theError =Gestalt(gestaltSoundAttr, &theResult);
if C theError != noErr)

Exi tToShel 1 C);

inputAvail = theResult & C 1 << gestaltHasSoundinputDevice);
if (inputAvail > O)

return (true);
else

return (false);

I sSound I nputAva i lab le () calls the Toolbox routine Gestalt () to request
system information. By passing the Apple-defined constant gesta l tSoundAttr
as the first parameter (the selector code), IsSoundinputAvailable() is
requesting information about the host machine's sound capabilities.
This information is returned by the system in the response parameter-the
long variable theResul t.

Chapter 3 • Sound Recording

With gestaltSoundAttr as the selector code, Gestalt() returns several
pieces of sound-related information. Each piece of information occupies
just a single bit in the filled-in variable theResult. To get the one piece of
information of importance here (whether a sound input device is avail­
able on the user's Mac), you'll need to perform some bit-shifting. That's
what the shift-left operator (<<) is used for in IsSoundlnputAvailable().
If the bit in question (gestaltHasSoundlnputDevice) is turned on, then
sound input is available, and a value of true should be returned to the
calling function.

The I sSound I nputAva i lab le() routine checks to see only if there is a
sound input device available-it makes no attempt to determine what
type of microphone is present. Because the sound recording Toolbox
routine you'll use to record sounds works with any microphone, the
detail of what kind of microphone is connected to a Mac is unimportant
to your application.

If a user has more than one sound input device on his or her Macintosh,
only one will be current at any time. The user makes this choice using the
Sound control panel. Figure 3.1 shows the Sound control panel for a Mac
that has two sound input devices : a built-in microphone and a
MacRecorder sound digitizer connected to one of the ports. Your application
won't have to check to see which of these devices is in use-your program
will simply verify that there is a device, then it will go ahead and allow
sound recording.

Sound

··I Sound In

Choose a source for recording :

'°
MaoRecorder

[Options.. . J

FIGURE 3.1 The Sound Input screen of the Sound control panel.

89

90
Graphics and Sound Programming Techniques for the Mac

Recording a Sound to Memory
The Sound Input Manager makes it easy for you to add sound recording
capabilities to any of your Mac applications. It only takes a call to the
Toolbox routine SndRecord() to display the standard Sound Recording
dialog box pictured in Figure 3.2. Once this dialog box is on the screen,
the Toolbox and the Sound Input Manager will handle the user's
actions-whether they involve recording, pausing, stopping, or playing
back a sound.

[!] ~ @] [EJ <J
Rooord Stop P aus• Play

:OD
0 seoonds :46

(Cancel J

([~lllH~ J]

FIGURE 3.2 The standard Sound Recording dialog box.

Sound Data and Memory
When your program uses the SndRecord() routine to allow the user to
record a sound, the sound data will be recorded to memory. Before calling
SndRecord(), your program will allocate a block of heap memory in
which to hold this data. In allocating this block, your program will obtain
a handle to this block. Figure 3.3 shows a section of an application heap
that holds a block of memory for sound data and a Sndl i stHandl e that
references the block (via a master pointer, as is the case with all handles).

Chapter 3 • Sound Recording

Memory block
for sound data

~"""'"""""""'"'""""'""""!ii] SndListHandle

Master pointer

FIGURE 3.3 The data for a recorded sound is held

in a block of memory referenced by a handle.

When it comes time to allow the user to record a sound, your program
will call SndRecord() to display the standard Sound Recording dialog
box. When the user clicks the Record button in this dialog box, the Sound
Input Manager will route incoming sound from the sound input device
(such as the built-in microphone) to the block of memory that has been
allocated for the sound data. Figure 3.4 illustrates this.

91

92
Graphics and Sound Programming Tczchniquczs for thcz Mac

F

a~OTim
Record Slop Pause Play

• I ~,,,,- "~~ ~--,~

0 seconds :12 ,,-
F

~$c::> 0011010
1 01100110101

~

:i~'.@ ~:{=_,.,,
-

El
-· ""'

]
FIGURE 3.4 The standard Sound Recording dialog box sends

recorded sound data to a block of heap memory.

The Sound Recording dialog box records a sound directly to memory.
The more memory you have available to record to, the more sound data
you can record. More data translates to a longer sound. A small block
will allow a sound of only a few seconds in length to be recorded; a
large block can hold several minutes of recorded sound. The larger the
memory block, the longer the sound that the user is allowed to record.
The question that arises is this: How large a block should your program
allocate for the sound data? The answer: As large a block as can be
spared by your application. That answer, of course, begs another ques­
tion: How can you tell how much memory your application has to
spare? The answer to that question is provided by the Toolbox function
PurgeSpace().

Chapter 3 • Sound Recording

Allocating a Memory Block for Sound Data
You know the total amount of heap space that will be given to your
application-that figure is set up in your Symantec or Metrowerks compiler
environment. Figure 3.5 shows the Project panel of the Metrowerks
Code Warrior Preferences dialog box. Here, a project has set the resulting
application's heap size to 1 megabyte. From this 1024 KB of memory will
come the block that will hold recorded sound data.

N 0 TE

N 0 TE

If you're using a Symantec compiler, you'll use the Set Project Type menu
item in the Project i;nenu to set the application heap size.

Apply ID open project.

Project Type: I Application

Application Info:----------,

File Name I SoundRecord68K

'SIZE' Flags~

ii '~
Aoom Paths iO' [,-Fa-c-lo-ry-S-el-ti-ng~s) [Rel'ert Panel) [Cancel Jl(OK Jl

The largest
block of free
memory is
based on the
size of the
application's
heap

FIGURE 3.5 Metrowerks owners use the Preferences dialog box
to set an application's heap size.

Both the Symantec and Metrowerks compilers provide a default heap size
of 384 KB. Now that you know sound data will be saved directly into this

heap memory, you'll probably want to increase the heap size of any projects
you're creating that include sound-recording capabilities.

93

94
Graphics and Sound Programming Techniques for the Mac

A sound data memory block must occupy contiguous heap memory,
that is, the block must occupy adjacent free bytes. Because there will be
other objects in the application heap besides the sound data block, and
because these blocks may break up the available free memory into small
blocks of unknown sizes, your program shouldn't make assumptions
about the part of the heap that it can reserve for the sound data block. If
you've set your application heap size to 1 MB, there's no guarantee that
a block anywhere near that size will be free. Instead, just before allocating
the block, your program should call the Toolbox function PurgeSpace()

to check on the availability of free RAM:

long theTotalHeap;
long theContigMem;

PurgeSpace(&theTotalHeap, &theContigMem);

Contrary to its name, PurgeSpace() doesn't purge, or deallocate, any
memory. Instead, a call to this function tells your application how much
free space would exist if the heap were to be purged. After a call to
PurgeSpace(), the first parameter will hold the total free space (in bytes)
in the heap if the heap were to be purged. The second parameter will
hold the size of the largest contiguous block of memory (in bytes) that
will exist in the heap if the heap is purged. Because the sound data
must reside in a contiguous block, it is the value of the second parameter
that is of interest to your program.

To make sure that your application has access to all of the available appli­
cation heap, call the Toolbox routine MaxAppl Zone(l near the start of the
program. The SoundRecord program listed later in this chapter provides
an example.

Figure 3.6 provides an example of the information returned by a call to
PurgeSpace(). This figure shows part of the Metrowerks MW Debug
window both before and after a call is made to PurgeSpace(). Before the
call, the variable theConti gMem has a random value that doesn't reflect
the free memory space. After the call, the variable theContigMem has a
value (1,035,972 bytes) close to the 1 MB partition size (1,048,576 bytes)
this example application program is given.

N 0 TE

Chapter 3 • Sound Recording

If you're using a Symantec compiler, your debugger window will look dif­

ferent. This example is straightforward enough, however, that Figure 3.6
should suffice-you shouldn't have to follow along in your own compiler.

' -;

.:

PurgeSpoce< &theTotalHeap, &theContigMern >; ·1r
theSound = (SndLlslHandle>NewHandle(theConligMl.11! J- kHeo,>Res<>rve >; ri1i!

soundRecord68'0

theContigMem
~ theCorner

theError
P. theSound

theTotalHesp

! 1035972
! Ox008C440E
l- 7536
! oxo oac4426
: 1035972

PurgeSpace(&theTotalHeap, &lheContigMem >;

theSound = <SndlislHand1e)NewHondle(lheConligMem - kHeopReserve >;

lheError = SndAecord< n i I , theCorner , s i Bes tQua I i ty, & theSound) ;

:i) ra h1rn < theError) ;

ri~> line: 63 I Source ,..T<:l

FIGURE 3.6 The Metrowerks debugger shows how Purge Sp ace ()
returns the amount of available heap memory.

After calling PurgeSpace(), call the Toolbox function NewHandl e() to allocate
a block for the sound data. The size of the block should be the theConti gMem
value returned by PurgeSpace(), minus some number of bytes that you'd
like to keep reserved for your program's use. If a contiguous block this size
isn't available, NewHandl eC) will purge the heap to free up the necessary
amount of memory. The following snippet determines the amount of free
contiguous memory, then allocates a block that is 75 KB less than that
amount. The handle that is returned by the call to NewHandl e() is typecast to
the Sndl i stHandl e data type before being assigned to the variable theSound.

#define kHeapReserve 75 * 1024

SndlistHandle theSound;
long theTotalHeap;

95

96
Graphics and Sound Programming Techniques for the Mac

long theContigMem:

PurgeSpace(&theTotalHeap, &theContigMem);

theSound = (SndlistHandle)NewHandle(theContigMem - kHeapReserve);

How large a reserve should you keep in the heap? That depends. If your
program will immediately save or play the recorded sound and then purge
its data from memory, the reserve can be small-less than the 75 KB used

N ° T E in the above snippet. If the sound data will remain in memory for a longer
period of time, the reserve should be larger-during an extended period of its execution,
your program won't want to dedicate most of the heap to a single sound.

Recording the Sound Data to Memory
After allocating a block of memory in which to hold sound data, call
SndRecord() to post the standard Sound Recording dialog box. Before
doing so, make sure that the Soundlnput.h universal header file is
included in your source code:

#include <Soundlnput.h>

SndlistHandle theSound;
OSErr theError;
Point theCorner = { 50, 20 };

theError SndRecord(nil, theCorner, siBestQuality, &theSound);

The first parameter to SndRecord <) is a pointer to an optional filter
function. If used, this function specifies how the dialog box will handle
user actions (such as keystrokes and mouse clicks). The SndRecord()
routine handles sound recording, pausing, stopping, and playing, so
your program most likely will not benefit from a filter function. If that is
the case, pass a n i 1 pointer here.

The second parameter to SndRecord() determines the screen place­
ment of the standard Sound Recording dialog box. Because the dialog
box is always the same size, you need only specify the left and top coor­
dinates (as a Point variable) in order for the dialog box to be positioned

Che1pter 3 • Sound Recording

properly. In the above snippet, the top of the dialog box will appear 50
pixels from the top of the screen and the left side will appear 20 pixels from
the left of the screen.

The third parameter to SndRecord() is used to tell the Sound Input
Manager at which quality level to record incoming data. Use one of the three
Apple-defined constants-siGoodQuality, siBetterQuality, or siBest­
Qua 1 i ty-for this parameter. Your choice of quality value, along with
the size of the sound data memory block, determines the duration of the
sound that can be recorded. The lower the recording quality, the longer
the sound that can be recorded. This is the result of compression of the
sound data. A lower-quality sound has compression performed on it.
Compression conserves memory but sacrifices sound quality.

For voice recording you'll generally use s i GoodQua 1 i ty. For sounds
that have a critical need to be recorded at the highest quality, use
si BestQual ity. The si BetterQual ity records sounds that are a quality and
storage compromise between si GoodQual ity and si BestQual i ty.

NOTE

Near the end of this chapter you'll find a short study of how these three

sound qualities affect both recording length and disk storage space.

The final parameter to SndRecord() is the pointer to the block of memory
that is to be devoted to holding the new sound data. The following snippet
sets up the memory block, then displays the standard Sound Recording
dialog box.

SndlistHandle
OS Err
Point
1 ong
1 ong

theSound;
theError;
theCorner = { 50, 20 };
theTotalHeap;
theContigMem;

PurgeSpace(&theTotalHeap, &theContigMem);

theSound = (SndlistHandle)NewHandle(theContigMem - kHeapReserve);

theError = SndRecord(nil. theCorner, siBestQuality, &theSound);

97

98
Graphics and Soand Programming Tcrchniqacrs for the Mac

Chapter Example: SoundRecord
The SoundRecord program does nothing more than display the standard
Sound Recording dialog box. Figure 3.7 shows this dialog box as it looks
recording a sound.

a [!] @J m <J>»
Record Stop Pause Play

:10
0 seconds :45

[C11ncel J

([S11ue D

FIGURE 3.7 The standard Sound Recording dialog box
after the Record button has been clicked.

You can press the Record button and speak into the built-in microphone
on your Mac to record a sound. Press the Stop button to end recording,
then press the Play button to play the sound back. You can do this as often
as you wish; the dialog box won't be dismissed until you press either the
Cancel or Save button.

Once the standard Sound Recording dialog box is posted, all of its
functionality is handled by the SndRecord() function. This routine will
maintain control of the program until either the Cancel or Save button is
clicked by the user. When that happens, the program ends. SoundRecord
won't save a recorded sound. To do that, you'll need to add calls to a
few Resource Manager functions. A description of how to save a
recorded sound and an example program that does it appear later in
this chapter.

The SoundRecord program carries out its few tasks from main<) , the
listing of which follows.

void main(void)
{

NumVersion
OS Err
Boolean

theSndMgrVers;
theError;
soundlnputPresent;

InitializeToolbox();

}

Chapter 3 • Sound Recording

MaxApplZone();

theSndMgrVers = SndSoundManagerVersion();
if (theSndMgrVers.majorRev < 3)

ExitToShell ();

soundlnputPresent = IsSoundlnputAvailable();
if (soundlnputPresent == false)

ExitToShel l ();

theError = RecordSoundToMemory();
if (theError == userCanceledErr)

ExitToShell();

When your application is launched, its heap size isn't set to the size you
specified when you built the application with your development envi­
ronment. Instead, the heap starts out small and grows "on demand." As
your program requests memory blocks, the heap expands to meet those
demands. If you make a call to PurgeSpace<} early in a program, you'll
see that this function returns only a small value as the available heap
memory-not the large amount of free heap RAM that you might
expect it to return. To set your application's heap to its maximum size,
call the Toolbox routine MaxApp l Zone<) early in your program. After ini­
tializing the Toolbox, the main<) function of the SoundRecord program
calls MaxAppl Zone(). Later, when PurgeSpace() is called, the true largest
free block size will be reported.

It's a good idea to call MaxApp l Zone () in all your Mac programs, not just
ones that work with sound. Call the function once, just after initializing
the Toolbox.

After initializing the Toolbox and expanding the heap to its maximum
size, main () verifies that Sound Manager 3.0 or later is present on the
user's machine, as discussed in Chapter 2. Next, the application-defined
routine IsSoundlnputAvai l able() is called to make sure that a sound
input device is connected to the user's Macintosh. Finally, an application­
defined function named RecordSoundToMemory() is called. A close examina­
tion of this function will reveal that it consists of the sound recording
code discussed earlier in this chapter, including the call to SndRecord().

99

100
Graphics and Sound Programming Techniques for the Mac

If the user clicks the Cancel button in the standard Sound Recording
dialog box that SndRecord() posts, the RecordSoundToMemory() routine
will return the Apple-defined result code of userCancel edErr. The
RecordSound program chooses to exit if this happens; your program
will handle the user's decision not to record a sound in a way that is
appropriate to the purpose of your application. As mentioned, if the user
clicks the Save button, the dialog is dismissed and no action is taken.

#include <Sound.h>
#include <Soundlnput.h>

void
Boolean
OS Err

InitializeToolbox(void);
IsSoundinputAvailable(void);
RecordSoundToMemory(void);

/!define kHeapReserve

void main(void)
{

75 * 1024

NumVersion theSndMgrVers;
OSErr theError;
Boolean soundlnputPresent;

InitializeToolbox();

MaxApplZone();

theSndMgrVers = SndSoundManagerVersion();
if (theSndMgrVers.majorRev < 3)

ExitToShel 1 ();

soundlnputPresent = IsSoundlnputAvailable();
if (soundlnputPresent == false)

Exi tToShel 1 ();

theError = RecordSoundToMemory();
if (theError == userCanceledErr)

Exi tToShel l ();

Chapter 3 • Sound Recording

Boolean IsSoundlnputAvailable(void)
{

}

OSErr theError;
long theResult;
Boolean inputAvail;

theError = Gestalt(gestaltSoundAttr, &theResult);
if (theError != noErr)

ExitToShell();

inputAvail = theResult & (1 << gestaltHasSoundlnputDevice);
if (inputAvail > 0)

return (true);
else

return false);

//~~~~~~~~~~~~~~~~~~~~~~~~~~-

OSErr RecordSoundToMemory(void)
{

SndlistHandle
OS Err
Point
long
long

theSound;
theError;
theCorner = { 50, 20 };
theTotalHeap;
theContigMem;

PurgeSpace(&theTotalHeap, &theContigMem);

theSound = (SndlistHandle)NewHandle(theContigMem - kHeapReserve);

theError = SndRecord(nil, theCorner, siBestQuality, &theSound);

ReleaseResource((Handle)theSound);

return (theError);

101

102
Graphics and Sound Programming Techniques for the Mac

Playing Back a Recorded Sound
Once a sound has been recorded to memory, your program can play it
back at any time. This section of the chapter is short for good reason; in
Chapter 2, you learned how to play a sound that is stored in memory.

Osing the Handle to the Recorded Sound
In the SoundRecord example just described, the application-defined
function RecordSoundToMemory() declared a local Sndl i stHandl e vari­
able named theSound. After a call to SndRecord(), this variable held a
handle to whatever sound the user recorded. Because the handle to the
sound data was a local variable, when the dialog box was. dismissed any
reference to the sound data in memory was lost. This wasn't a concern
for the SoundRecord program-it only allowed the user to play back a
recorded sound via the Play button of the standard Sound Recording
dialog box. A more likely case is that your application will want to pre­
serve the sound handle so that the user's sound can either be played
back after the Sound Recording dialog box has been dismissed or saved
to disk as a snd resource.

In this section's SoundHandle program, the sound handle will be
declared outside of RecordSoundToMemory() and passed to this routine.
When the routine ends, the sound handle value will be a valid reference
to the recorded sound data in memory. At any point in the program the
sound can be played by passing this handle to the Toolbox routine
SndPl ay(). Here's how a call to the new version of RecordSoundToMemory()

would look:

OSErr theError;
SndlistHandle theSound;

theError = RecordSoundToMemory(&theSound);
if (theError == userCanceledErr

ExitToShell();

Note that the address of the variable theSound is passed so that changes
to theSound made by RecordSoundToMemory() will be preserved after the
function has completed. The new version of RecordSoundTo-Memory()
follows the same steps as the old version: the largest contiguous block of

Chapter 3 • Sound ltecording

free heap memory is determined, a block that size (less a reserve) is allo­
cated, and a call to SndRecord(l is made.

OSErr RecordSoundToMemory(SndlistHandle *theSound l
{

OS Err
Point
long
long

theError;
theCorner = { 50, 20 };
theTotalHeap;
theContigMem;

PurgeSpace(&theTotalHeap, &theContigMem);

*theSound = (SndlistHandle)NewHandle(theContigMem -
kHeapReserve);

theError = SndRecord(nil, theCorner, siBestQuality, theSound);

return (theError);

Take note of two subtle changes to RecordSoundToMemory ().Because the

address of a Sndl i stHandl e is passed as a parameter, this line from the old

version of the function:

theSound = CSndlistHandle)NewHandleC theContigMem - kHeapReserve);

becomes:

*theSound = (SndlistHandle)NewHandle(theContigMem - kHeapReserve);

The new version of the function must dereference theSound (which is now a pointer to

a Sndl i stHandl e rather than a Sndl i stHandl e) before using it here. Conversely, in

the call to SndRecord(), theSound is passed as the last parameter, rather than

&theSound-as was the case in the previous version of RecordSoundToMemory(). The

last parameter to SndRecord () must be a pointer to Snd Li stHandl e. In this new version

of RecordSoundToMemory(), that's what theSound is.

The new version of RecordSoundToMemory() doesn't release the sound
handle, as the old version did. Instead, the sound data is kept in memory
for later use. Now that the sound data is in memory and the program
has a handle to that memory, the sound data can be played at any time.
You can pass the handle to an application-defined routine designed for

103

104
Graphics and Sound Programming Techniques for the Mac

that purpose. When your application is through playing the sound, it can
free up the memory occupied by the sound data by calling Rel ease­
ResourceC). The following snippet calls a routine that plays the sound
referenced by the passed sound handle and then releases the memory
that handle references.

theError = PlaySoundSynchFromHandle(theSound);
if C theError != noErr)

ExitToShel 1 C);

ReleaseResource((Handle)theSound);

The Pl aySoundSynchFromHandl eC) is similar to the Chapter 2 routine
Pl aySoundResourceSynchC). That routine had additional code that
loaded a snd resource into memory. Because the standard Sound
Recording dialog box has provided a handle to a sound in memory,
there's no need for this new routine to load a sound.

OSErr PlaySoundSynchFromHandle(SndlistHandle theHandle
{

}

OSErr theError;

if (theHandle !=nil)
{

}

Hlock(CHandle)theHandle);
theError=SndPlay(nil, theHandle. false);

HUnlock(CHandle)theHandle);

return C theError);

Your application could, of course, use the asynchronous sound playing
techniques discussed in Chapter 2 to play the sound while other action
takes place on screen, if there is a need to do so.

Chapter Example: SoundHandle
When you run the SoundHandle example program, you'll see the same
thing you witnessed when you ran SoundRecord: the standard Sound

Chapter 3 • Sound Recording

Recording dialog box. Like that program, SoundHandle allows you to
use this dialog box to record and play back your own sounds. Again,
like SoundRecord, clicking the Cancel button terminates the program.
The one difference between SoundHandle and SoundRecord comes
when you click on the Save button. Doing that dismisses the dialog box,
then plays the recorded sound one more time; this is something that
SoundRecord couldn't do. In that program, once the Sound Recording
dialog box was dismissed the recorded sound could not be accessed.
Here, in SoundHandle, the handle to the sound data is preserved after
the Sound Recording dialog box is dismissed, and consequently, the
sound data can be accessed at any time.

You've probably noticed that the source code for Initial i zeToo l box ()­
a routine used in every program in this book-isn't provided in every
source code listing. You should be familiar with that very basic routine by

N ° r E now. To save a little ink, the SoundHandle listing and the listing for the

next example don't include the source for Is Sound I nputAva i lab le ().You'll find that
listing in the SoundRecord example earlier in this chapter.

#include <Sound.h>
#include <Soundlnput.h>

void
Boolean
OS Err
OS Err

InitializeToolbox(void);
IsSoundinputAvailable(void);
RecordSoundToMemory(SndlistHandle *);
PlaySoundSynchFromHandle(SndlistHandle);

//define kHeapReserve 75 * 1024

//~~~~~~~~~~~~~~~~~~~~~~~~~~-

void main(void
{

NumVersion
OS Err
SndlistHandle

theSndMgrVers;
theError;
theSound;

105

106
Graphics and Sound Programming Techniques for the Mac

Boolean soundinputPresent;

InitializeToolbox();

MaxApplZone();

theSndMgrVers = SndSoundManagerVersion();
if (theSndMgrVers.majorRev < 3)

Exi tToShel l C);

soundinputPresent = IsSoundinputAvailable();
if (soundinputPresent == false)

Exi tToShel l ();

theError = RecordSoundToMemory(&theSound);
if (theError == userCanceledErr)

ExitToShell ();

theError = PlaySoundSynchFromHandle(theSound);
if (theError != noErr)

Exi tToShel l ();

ReleaseResource((Handle)theSound);

OSErr RecordSoundToMemory(SndlistHandle *theSound)
{

OS Err
Point
long
long

theError;
theCorner = { 50, 20 };
theTotalHeap;
theContigMem;

PurgeSpace(&theTotalHeap, &theContigMem);

*theSound = CSndlistHandle)NewHandleC theContigMem -
kHeapReserve);

theError = SndRecord(nil. theCorner, siBestQuality, theSound);

return (theError);

OSErr PlaySoundSynchFromHandle(SndlistHandle theHandle)

OSErr theError;

if (theHandle != nil
{

Hlock(<Handle)theHandle);

ChC1pter 3 • Sound Recording

theError = SndPlay(nil, theHandle, false);
HUnlock((Handle)theHandle);

return (theError);
}

Saving a Recorded Sound to a
snd Resource
Your application may want to play a user-recorded sound, but not right
away. Rather than keep the sound data (which may be quite memory­
intensive) in the heap, your program can save the sound to a resource
and then release the memory the sound data occupies. When it comes
time to play the sound, the sound resource data can be loaded back into
memory in preparation for a call to SndPl ay().

Some programs may allow a user to record sounds and save them
as sound resources in a separate resource file-possibly for use by other
programs. Here again your application can make use of the fact that
saving sound data from memory to disk is an easy task.

The format of Sound Data in Memory
When the standard Sound Recording dialog box is used to record a
sound, the sound's data ends up in a block of memory. Conveniently, the
sound data is stored in the format that matches a snd resource. As you've
seen, that makes it possible (and very easy) to play back the sound data
using a call to SndPl ay(). Likewise, having the sound data already in the
format of a snd resource makes it possible (and, again, easy) to save the
sound data as a snd resource in a resource file. Figure 3.8 emphasizes the
fact that sound data in memory matches the layout of snd resource data.

107

108
Graphics and Sound Programming Techniques for the Moc

10101'0.010000
1 00001101011
011010101001
001101010010
1011,00110101

Recorded sound
data in memory is
in the format of a
snd resource

~~] SndListHandle

Master pointer

FIGURE 3.8 When sound data is saved to memory,

it is done so in the format of a s n d resource.

Saving Sound Data to a snd Resource
Saving sound data to a snd resource involves three steps, each of which
corresponds to a Resource Manager Toolbox call:

1. Call Cur Res File() to get the file reference number of the current
resource file .

2. Call Add Resource() to add the sound data to the resource map
in memory.

3. Call Upda teRes File C) to add the sound data to a resource in a
resource file .

Here's a snippet that uses the above three routines:

SndlistHandle
OS Err

the Sound ;
theError;

Chapter 3 • Sound Recording

short theResourceFileRef;

theResourceFileRef = CurResFile();

AddResou rce ((Hand 1 e) theSound. 'snd ' 9000. "\ pNew Sound") ;

UpdateResFile(theResourceFileRef);

The Toolbox routine CurResFi 1 e() returns a short value that is a file
reference number to the current resource file. If your program hasn't
explicitly opened any resource files, then the resource fork of your
application will be considered the current resource file. This reference
number will be used in a subsequent call to UpdateResFi 1 e().

To add a resource to the resource map-the map in memory that serves
as a guide to resources on disk-call the Toolbox function AddResource():

AddResource((Handle)theSound, 'snd •• 9000, "\pNew Sound");

The first parameter to AddResource() is a handle to the data in memory
that is to be saved as a resource. The second parameter is the four­
character resource type that the data is to be saved to. The third parameter
is the resource ID that should be given to the saved resource. The final
parameter is the name that should be given to the resource. Note that
this isn't the name of a file; it is the name that will be given to the individ­
ual resource in the file it is saved to.

The call to Add Resource() adds the new resource to the resource map
in memory; it doesn't add the new resource to the resource file
on disk. To do that, call the Toolbox routine UpdateResFi 1 e(). Pass this
routine the reference number that was obtained in the earlier call to
Cur Res File().

UpdateResFile(theResourceFileRef);

The above steps are the minimum steps necessary to save sound data in
memory to a snd resource in a resource file. The application-defined func­
tion SaveSoundFromMemoryToResource() uses those steps and a few others
to ensure a proper saving of the resource to file.

//define kSndResIDMaxReserved 8191

long SaveSoundFromMemoryToResource(SndlistHandle theSound)

109

110

}

<iraphics and Sound Programming Techniques for the Mac

1 ong
OS Err
short

theRes ID;
theError;
theResourceFileRef;

theResourceFileRef = CurResFile();

do
{

the Res ID = Uni queID(• snd ') ;
} while (theResID <= kSndResIDMaxReserved);

AddResource((Handle)theSound, 'snd •• theResID, "\pNew Sound");
theError = ResError();
if (theError != noErr)

ExitToShel 1 ();

UpdateResFile(theResourceFileRef);
theError = ResError();
if (theError != noErr

Exi tToShel 1 ();

return (theResID);

After obtaining a reference number to the current resource file, SaveSound­
FromMemoryToResource() calls the Toolbox routine Uni queID() to select
an ID that will be given to the resource that is about to be created. While
your program could select the ID itself, doing so would provide no
guarantee that a resource of the type being saved, with that same ID,
doesn't already exist. The Uni queID() function searches open resource
files (including the current one) for resources of the type specified in the
parameter passed to it. It takes note of the IDs of all such resources and
returns an ID that is not used.

Calling UniqueID() a single time would be adequate for coming up
with an ID that is unique for the snd resource to be created. However,
it wouldn't ensure that the ID was out of the range that Apple reserves
for its own system sound resources-0 through 8191. That's why
SaveSoundFromMemoryToResou rce () calls Unique ID () .from within a loop.
When Uni queID() returns a value outside this range, a valid ID is con­
sidered to be found and the loop ends.

Chapter 3 • Sound Recording

After an ID is selected, AddResource() and UpdateResFi 1 e() are called
in the manner described before the SaveSoundFromMemoryToResource()

listing. Following each call, the Toolbox function Res Error() is called
to verify that no error occurred. If an error did occur, the SaveSound­

FromMemoryToResource() function handles the error by simply exiting
the program.

When SaveSoundFromMemoryToResource() has completed, the ID of
the new sound resource is returned to the calling function. That allows
the rest of the program to use this new sound resource. Any time the
program wants to use the new sound resource, it should pass this ID to
GetResource() to load the snd data to memory.

Chapter Example: SaveSound
Like the previous two programs in this chapter, SaveSound displays the
standard Sound Recording dialog box to allow the user to record a new
sound. Unlike the other two programs, SaveSound provides the dialog
box with a functional Save button. When the user clicks Save, the dialog
box will be dismissed and the new recording will be saved to the
resource fork of the SaveSound application.

Before the program exits, the newly recorded sound will be played.
This is done simply to prove that the sound data was in fact saved to a
s n d resource. Consider this snippet, taken from main () :

theNewSoundID = SaveSoundFromMemoryToResource(theSound);

ReleaseResource((Handle)theSound);
theSound = nil;

theError = PlaySoundResourceSynch(theNewSoundID);

The above code saves sound data to a resource. SaveSoundFromMemory­

ToResource() returns the new resource's ID to the variable theNewSoundID.

Then main (> releases the sound data, and, just to make sure that the
program can't access that data in memory, sets theSound to ni 1. Next,
the application-defined routine Pl aySoundResourceSynch () is called.
This function was lifted directly from Chapter 2. When passed the ID of

111

112
Graphics and Sound Programming Techniques for the Mac

a sound resource, Pl aySound Re sou rceSynch () calls Get Resource () to
load the resource to memory and then calls SndPl ay() to play the sound
data. Purging the sound data from memory and then loading the snd
resource and playing the user-recorded sound provides proof that the
user-recorded sound data was properly saved as a snd resource in the
application's resource fork.

You can verify that SoundSave always gives a new snd resource a
unique ID when it writes sound data to its resource fork. To do this, use
your compiler to build a stand-alone version of SoundSave. Then, from
the Finder, double-click on the SoundSave icon to run the program.
Record and save a sound. After clicking the Save button, the program
will quit. Next, from the Finder again, run SoundSave. Record a sound
and save it. Now run your resource editor (ResEdit or Resorcerer). Use
it to open the SoundSave application (don't open the SoundSave.rsrc
file, open the SoundSave application). If you look at the snd resources
in the application you'll find the two resources created from running
the program twice-one resource per execution of SoundSave. Notice
that the snd resources have different IDs and that both have IDs greater
than 8191. Figure 3.9 shows a look at SoundSave using ResEdit.

SoundSaoe68K

oilHOIJ 1 .. .:.1
0101 I IOI
(1(11(11(101

~
.J!i:iR(i:i(I) 0111) 101(1

<])~ CHP Dl_.2 (11)(11 11 l(l
!=ME oil (l 1(11) (l(IO(l

. ...
CODE DATA SIZE snd

§Ii' · snds from SoundSaue68K Iii~

~ .!Q. Size Name

15691 84522 "New Sound" ~
16976 146474 "New Sound"

. '& •
FIGURE 3.9 The SoundSave program will save a new sound

to its own resource fork each time the program runs.

NOTE

Chapter 3 • Soand Recording

You don't have to have your application save the sound resource to the applica­

tion's resource fork, of course. You can save it to any open resource file. The

SaveSound example saves the sound resource to its own fork to keep the source
code listing focused on the process of creating a snd resource rather than on

resource file management techniques. If your program will be used over a network, it
slwuldn't write data to its own resource fork. It should instead save the sound resource to a
new or existing resource file. For information on working with multiple resource files, refer
to the M&T book More Mac frogramming Techniques or the More Macintosh Toolbox volume of
Inside Macintosh. These books show you how to create a new resource file, open it, write to it,
save the changes, close it, and, at a later time, reopen the file and read it. After reading about

these techniques, combine them with this book's technique for saving a sound resource.

#include <Sound.h>
#include <Soundlnput.h>

void
Boolean
OS Err
long
OS Err

InitializeToolbox(void);
IsSoundinputAvailable(void);
RecordSoundToMemory(SndlistHandle *);
SaveSoundFromMemoryToResource(SndlistHandle);
PlaySoundResourceSynch(short);

//define
//define

kHeapReserve
kSndResIDMaxReserved

75 * 1024
8191

void main(void
{

NumVersion
OS Err
SndlistHandle
long
Boolean

theSndMgrVers:
theError:
theSound:
theNewSound ID:
soundinputPresent;

InitializeToolbox();

MaxApplZone();

113

114
Graphics and Sound Programming Techniques for the Mac

theSndMgrVers = SndSoundManagerVersion();
if (theSndMgrVers.majorRev < 3)

ExitToShell();

soundinputPresent = IsSoundinputAvailable();
if (soundinputPresent == false)

ExitToShell();

theError = RecordSoundToMemory(&theSound);
if (theError == userCanceledErr)

ExitToShell ();

theNewSoundID = SaveSoundFromMemoryToResource(theSound);

ReleaseResource((Handle)theSound);
theSound =nil;

theError = PlaySoundResourceSynch(theNewSoundID);
if (theError != noErr)

ExitToShel l ();

OSErr RecordSoundToMemory(SndListHandle *theSound)
{

}

OS Err
Point
long
long

theError;
theCorner = { 50, 20 };
theTotalHeap;
theContigMem;

PurgeSpace(&theTotalHeap, &theContigMem);

*theSound = (SndlistHandle)NewHandle(theContigMem -
kHeapReserve);

theError = SndRecord(nil, theCorner, siBestQuality, theSound);

return (theError);

//~~~~~~~~~~~~~~~~~~~~~~

long SaveSoundFromMemoryToResource(SndlistHandle theSound)
{

long the Res ID;
OSErr theError;

}

short theResourceFileRef;

theResourceFileRef = CurResFile();

do
{

theResID = Unique!D('snd ');

Chapter 3 • Sound Recording

} while C theResID <= kSndResIDMaxReserved);

AddResource(CHandle)theSound, 'snd ', theReslD, "\pNew Sound");
theError = ResError();
if (theError != noErr)

ExitToShell();

UpdateResFileC theResourceFileRef);
theError = ResError();
if C theError != noErr

ExitToShel l C):

return (theResID);

//~~~~~~~~~~~~~~~~~~~~~~~~~~-

OSErr PlaySoundResourceSynch(short theResID)
{

}

Handle theHandle;
OSErr theError;

theHandle = GetResource('snd ' theResID) ;

if (theHandle == nil)
{

return (resProblem);
}

else
{

}

Hlock(theHandle);
theError = SndPlay(nil, (SndlistHandle)theHandle, false);

HUnlock(theHandle);

ReleaseResourceC theHandle);

return (theError);

115

116
Graphics and Sound Programming Techniques for the Mac:

Sound Quality and Disk Storage Space
When your application calls SndRecord() to display the standard Sound
Recording dialog box, the dialog box will display the amount of time
that the user can use to record a single sound. Figure 3.10 illustrates this.

[!] ~ @] [E] <l
Record Stop Pause Play

:00
0 s&oonds :46

[Cancel J

([~·w•' JI

Maximum length of a single recording

FIGURE 3.10 The standard Sound Recording dialog box specifies

the amount of time available for a single sound recording.

The time displayed in this dialog box is dependent on two factors. The
first is the size of the memory block to which the sound data will be saved.
Recall that this memory block is set up with a call to NewHandle(), and
the handle returned by this function is passed as the fourth parameter
to SndRecord():

OS Err
Point
long
long

theError;
theCorner = { 50, 20 };
theTotalHeap;
theContigMem;

PurgeSpace(&theTotalHeap, &theContigMem);

*theSound = (SndlistHandle)NewHandle(theContigMem - kHeapReserve);

theError = SndRecord(nil. theCorner, siBestQuality, theSound);

Chapter 3 • Sound Recording

The second factor used to determine the maximum duration of the
sound that can be recorded is the quality at which the sound is recorded.
The third parameter to SndRecord() can be one of three Apple-defined con­
stants, each of which represents a different sound-quality recording level:

theError = SndRecord(nil. theCorner. siBestQuality, theSound);
theError = SndRecord(nil, theCorner, siBetterQuality, theSound);
theError = SndRecord(nil, theCorner, siGoodQuality, theSound);

The higher the quality, the less time that is allotted for the recording.
The primary reason for this is compression. A lower-quality sound uses
compression during sound recording. This has the advantage of allowing
a longer sound to fit in the same amount of memory and the disadvantage
of decreasing the quality of the sound.

To provide a rough idea of the differences in sound time and quality
that the three recording quality constants provide, you can run a simple
test using the source code for the SoundSave example program. First,
build a version of SoundSave using the following call to SndRecord():

theError = SndRecord(nil. theCorner, siBestQuality, theSound);

Next, run the newly created SoundSave program. Take note of the amount
of time that can be used to record a sound; this time appears in the standard
Sound Recording dialog box. In the top section of Figure 3.11 you can see
that in one test this time was 46 seconds. Now record a 10-second
sound; a 10-second clip of music will work fine. Click the Save button
to save the sound and exit the SoundSave application. Open the
SoundSave program using your resource editor. Examine the snd
resource that was added to the application's resource fork. In the top
section of Figure 3.11 you can see that in one test the 10-second sound
takes up approximately 200 KB of disk space.

117

118
Grc1phlcs and Sound Programming Techniques for the Mac

theError = SndRecord (nil, theCorner, siBestQuality , theSoundl ;

[!]~@J[IJ ~ fr;om SoundSoue68K ·
Rf.cord Stop P41.!R Pbel

-- I 0:10 I 5691 2 I 7642 "New Sound"
O stcOl'lds :46

theError = SndRecord(nil. theCorner, siBetterQuaJ.ity, thesound);

• I 0:10
a mimJtu 2:16

theError = SndRecord(nil, theCorner, siOoodQuality, theSoundl;

[!]~@] [}] ~
R~ord Stop P.aw;• Plav

0:10
minutes 4:32

FIGURE 3.11 Changing the sound recording quality affects both the amount of time
available for sound recording and the size of a recorded sound.

Now repeat the previous test-this time using the siBetterQual ity sound
quality in place of s i BestQua l i ty:

theError = SndRecord(nil, theCorner, siBetterQuality, theSound);

Leave the application heap size at whatever value it was set at for the
first test (the SoundSave project comes with the heap size set to 1024 KB,
or 1 MB). After changing the one line of code, build a new version of
SoundSave. Run the stand-alone application and again note the time
that is allotted to sound recording. In Figure 3.11 you can see that with
siBetterQuality, the time increased from 46 seconds to 2 minutes and
16 seconds. Note that the size of the memory block used to hold the
sound remained approximately the same between the running of the
two versions of SoundSave.

After recording another 10-second sound (using the same 10-second
music clip), Figure 3.11 shows that the size of the saved snd resource
dropped from about 200 KB to about 70 KB.

Chapter 3 • Sound ttcrcording

The same test was repeated one last time with a sound quality of
s i Good Quality. The result was a recording time of 4 minutes and 32
seconds. The snd resource size turned out to be about 35 KB.

What observation can you make from this test? This isn't a scientific
test designed for accuracy. Instead, it provides a general feel for how the
recording quality affects recording times. A more important observation,
however, might be that this real-world test resulted in time values that
closely match the compression used for the three sound qualities. The
s i BestQua l i ty quality, which uses no compression, allowed a 46-second
recording. The si BetterQual ity quality, which uses 3:1 compression,
allowed a 136-second recording-very close to three times the 46-second
siBestQuality time. The siGoodQuality, which uses 6:1 compression,
allowed a 272-second recording-very close to six times the 46-second
s i BestQua l i ty time.

Summary
The Sound Manager gives your program the ability to play sounds. The
Sound Input Manager gives your application the ability to record
sounds. Before your program attempts to record a sound it should verify
that the user's Mac has a sound input device. Generally, this device will
be the built-in microphone.

The Sound Input Manager Toolbox routine that you'll become most
familiar with is SndRecord(). This function posts the standard Sound
Recording dialog box. For the duration that this dialog box is on the
screen, SndRecord() controls your program. This powerful Toolbox routine
takes care of user mouse clicks in the dialog box. These actions include
recording, pausing, stopping, and playing sounds.

You can use Resource Manager functions to save a recorded sound
that is in memory to a resource file that resides on the user's hard disk.

119

CHfiPTEit 4

Speech
In Chapter 2, you saw how the Sound Manager allows sounds to be
played, while in Chapter 3 you read how the Sound Input Manager
allows sounds to be recorded. Together, these two managers can be
used to record and play back digitized speech. But there is a far easier
way to add speech capabilities to your Mac applications. The Speech
Manager includes functions that allow your program to turn text into
spoken words. Whether the text comes from a string that is hard-coded
into your source code, one that is read in from a string resource, or one
that is entered in a dialog's Edit box by the user, the Speech Manager
knows how to turn those characters into speech that emits from the
user's audio hardware.

Besides being an easier way to add new speech phrases to a program,
using text and the Speech Manager to generate speech offers additional
advantages to using digitized sound resources. One advantage is the
savings in disk "real estate." Whereas a single digitized sentence may
often require over 100 MB of disk storage, the same sentence stored as
text will need only a couple of dozen bytes of disk space-one byte per
character in the sentence. A second advantage to using the Speech Manager

121

lZZ
Graphics and Sound Programming Techniques for the Mac

rather than digitized speech is the voice option. While the digitized
speech comes in one voice only-the voice in which it was originally
recorded-speech generated from text can be spoken in any number of
different-sounding voices.

In this chapter, you'll see exactly how to easily tum text into speech
by using the Speech Manager and sound synthesizers. You'll also learn
about the topics covered in the preceding paragraphs: speaking text
from strings that you include in your source code or in resources, or that
are supplied by the user. You'll also see how to generate speech in a variety
of voices-including speech that sounds like that spoken by a robot.

The Speech Manager
In Chapter 3, you saw that the Sound Input Manager uses the Sound
Manager to access the audio hardware connected to a user's Macintosh.
In this chapter, you'll see that the Speech Manager does the same.

The Sound Manager can be used to play sounds-either from sound
resources or sound files-through the Macintosh speakers. With the
assistance of the Speech Manager, the Sound Manager can also speak
words that originate as text. The use of the Sound Manager by the
Speech Manager is transparent to the user and to the programmer. For
that reason, there's no need to worry if you've skipped Chapter 2 of this
book-you won't need information from that chapter in order to under­
stand the topics covered in this chapter.

The Speech Manager and Speech Synthesizers
The Speech Manager is used to allow a program to generate synthesized
speech-speech that results from the conversion of text to spoken sound.
The Speech Manager itself doesn't perform the conversion, however.
Instead, this manager passes text to a speech synthesizer and relies on this
synthesizer's built-in dictionaries and sets of pronunciation rules in order
to pronounce the text properly. The Speech Manager is capable of using
different synthesizers to speak text. Figure 4.1 shows several extensions
found in the Extensions folder of the System Folder-including the Speech
Manager extension and the MacinTalk Pro speech synthesizer extension.

Chapter 4 • Spvvch

EHtensions ·
59items 307.9 MBindb k 16.3 MB eveileble

li} [§] ~
Quickli me™ Musicel Inst ruments Qui cklime .. Mecint03 h Oreg end Drop

~ ~ LJ
Speech Me nege r MacinTalk Pro Voices

~
¢ 1.1!1F '' •jij'S[& • !"i~f~tiL'c ,Jfil' ,,, Ii

FIGURE 4.1 The Speech Manager and the MacinTalk Pro speech

synthesizer are both system software extensions.

After the speech synthesizer applies its pronunciation rules to the text
that the Speech Manager passes it, the synthesizer passes the converted
data to the Sound Manager for output to the Mac's audio hardware.
Figure 4.2 shows the path that text takes to become speech. In the
figure, the data is passed to the MacinTalk Pro speech synthesizer for
processing- but a different synthesizer could be used instead.

~
~ _____ Speech
~ Manager

~r.==j ===ilt=~=====u
D ~1 0

Q i
Speech
synthesizer

---- Speakers

00

FIGURE 4.2 The Speech Manager uses a speech synthesizer
and the Sound Manager to generate speech from text.

123

124
Graphics and Sound Programming Techniques for the Mac

Figure 4.2 shows the text that is to be spoken as words in a text file. The
text doesn't have to appear in a document, though. As you'll see in this
chapter, it can also be entered into an Edit box in a dialog box by the user, it
can be a string resource, or it can be hard-coded into an application.

Voices and Speech Synthesizers
If you look back at Figure 4.1, you'll see that the figure provides a hint that
there's more software involved in speech generation than what is
shown in Figure 4.2. The Macintosh allows text to be spoken in different
voices. A voice is information held in a data structure. This information
specifies different qualities of speech that result in the speech having
characteristics such as that of a old man, a young woman, a small boy, or
even a robot. If your application doesn't specify a particular voice, text
will be spoken using the system-default voice.

Voices are designed for specific speech synthesizers. Figure 4.3 shows
several voice files found in the Voices folder in the Extensions folder of
the System Folder. The three voice files at the bottom of Figure 4.3 are
used by the MacinTalk synthesizer. The three voice files at the top of the
figure are used by the speech synthesizer that comes built into the
Speech Manager extension.

Earlier, it was stated that the Speech Manager doesn't actually speak.

Instead, it routes text to a speech synthesizer. A synthesizer is a code compo­
nent in a resource file or the resource fork of a file. A speech synthesizer can

N o T E appear anywhere in the System Folder-including within the Speech

Manager itself. The resource fork of the Speech Manager extension includes a speech

synthesizer-used with some voices-that guarantees that a Mac with the Speech
Manager will always have at least one speech synthesizer as well. If you removed the
synthesizer code from the Speech Manager, you'd still have a functional Speech Manager.

NOTE

Chapter 4 • Speech

liiil Uoices
21 items 302. 9 MB in disk

~ ~ ~ .
Albert Bad Ne\./S Bahh

FIGURE 4.3 Voice files can be found in a folder the System Folder­
usuall yin the Extensions folder.

The Extensions folder of your Mac shou~d already have the Speech
Manager, MacinTalk Pro, and the Voices folder in it-they're all added as
part of your System install. If they're not there, look on your system disks
or CD. For System 7.5, search for the Install Speech icon. Launch the

installer, click the Continue button, then select Custom Install from the pop-up menu.

Check the Text-to-Speech Software checkbox and click the Install button.

Checking for the Availability of the Speech Manager
Macintosh computers don't have built-in speech capabilities-they need
the Speech Manager software. Before your program attempts to speak
text, it should first call Gestalt () to verify that the host computer has this
system software extension. As was done for sound recording in Chapter
3, you can use a short application-defined routine to make this check. The
following snippet makes a call to a function named Is S peec hA v a i l ab l e () .

Boolean speechPresent;

speechPresent = IsSpeechAvailable();
if (speechPresent ==false)

ExitToShel l C);

125

126
Graphics and Sound Programming Techniques for the Mac

The IsSpeechAvail able() function makes a call to Gestalt() with a
selector code of gestaltSpeechAttr. Like the gestaltSoundAttr selector
code used in Chapter 3, this selector returns more than one piece of
information in the response parameter. To extract the information you
need, use the left shift operator on the gesta l tSpeechMgrPresent bit and
perform a logical AND on the shifted value and response parameter. If
the bit in question (gestal tSpeechMgrPresent) is turned on, then the
Speech Manager is present and a value of true should be returned to
the calling routine.

Boolean IsSpeechAvailable(void)
{

}

OSErr
long
Boolean

theError:
theResult:
speechAvail:

theError =Gestalt(gestaltSpeechAttr. &theResult);
if (theError != noErr)

ExitToShell ():

speechAvail = theResult & (1 << gestaltSpeechMgrPresent);
if (speechAvail > 0)

return (true);
else

return false);

Speaking a String
If your application requires only simple speech generation-such as the
speaking of a string using the system, or default, voice, then the
SpeakStri ng() Toolbox function may be all your program needs.

The SpeakString () Toolbox function
The Speech Manager provides a very simple means of generating
speech-the SpeakString() function. To use SpeakString(), pass in a
Pascal string-as shown in the following snippet. SpeakStri ng() will have

Chapter 4 • Speech

the Speech Manager generate the speech for the string and broadcast the
speech through the Mac's speakers. Note that the snippet includes the
Speech.h universal header file-as should any code that makes use of
speech functions.

#include <Speech.h>

OSErr theError;

theError = SpeakString("\pYes, it's really this easy!");

The string that gets passed to SpeakString(>can also be a variable. The
following snippet gives the same results as the above code:

OSErr theError;
OSErr theString = "\pYes, it's really this easy!";

theError = SpeakString(theString);

After calling SpeakStri ng(), you can compare the returned OS Err value to
the Apple-defined constant no Err to verify that the call was successful:

theError = SpeakString(theString);
if (theError != noErr)

ExitToShell();

Chapter Example: QuickSpeech
QuickSpeech is the simplest example of generating speech. The program
begins by initializing the Toolbox and then calling the application-defined
IsSpeechAvai 1 able() to determine if the user's Macintosh has the Speech
Manager extension. This function is identical to the version developed
earlier in this chapter.

When it is known that the Speech Manager is present, QuickSpeech
calls SpeakStri ng() to speak a single string.

#include <Gestalt.h>
#include <Speech.h>

127

128
Graphics and Sound Programming Techniques for the Mac

void InitializeToolbox(void);
Boolean IsSpeechAvailable(void);

void main(void)
{

}

OSErr theError;
Boolean speechPresent;

InitializeToolbox(};

speechPresent = IsSpeechAvailable();
if (speechPresent ~ false)

Exi tToShel l ();

theError = SpeakString("\pTesting 1 2 3 Testing 123);
if (theError != noErr)

ExitToShell();

//~~~~~~~~~~~~~~~~~~~~~~~~~~-

Boolean IsSpeechAvailable(void)
{

}

OSErr
long
Boolean

theError;
theResult;
speechAvai l:

theError =Gestalt(gestaltSpeechAttr, &theResult);
if (theError != noErr)

ExitToShell ();

speechAvail = theResult & (1 << gestaltSpeechMgrPresent);
if (speechAvail > 0)

return (true);
else

return false);

//~~~~~~~~~~~~~~~~~~~~~~~~~~-

void InitializeToolbox(void
{

InitGraf(&qd.thePort);

}

InitFonts():
InitWindows();
InitMenus ():
TEI nit():
InitDialogs(OL);
FlushEvents(everyEvent, O);
InitCursor():

Speaking More Than One String

Chapter 4 • Spach

In Chapter 2, you saw that by the use of the SndPl ay() Toolbox function,
the Sound Manager can produce sound asynchronously. The Speech
Manager can also produce asynchronous sound. In fact, asynchronously
generated speech is the norm for the Speech Manager.

Asynchronous speech means that before the call to SpeakString()
completes, control will be returned to your program-and the code fol­
lowing the call to SpeakStri ng() will execute. This asynchronous speech
generation must be taken into account if your program is to speak more
than one string. Consider the following incorrect example:

theError = SpeakString("\pThis is string #1.");

theError = SpeakString("\pThis is the second string.");

Rather than speak two strings one after the other, the Speech Manager will
generate speech for both strings at almost the same time-an undesirable
result. To force the Speech Manager to generate synchronous speech-one
string spoken after the other, use the Speech Busy () Toolbox function.

After the first call to SpeakStri ng(), use Speech Busy() in a "do nothing"
while loop. Because Spea kStri ng () generates speech asynchronously,
the while loop will be executed almost immediately after the call to
SpeakStri ng(). SpeechBusy() will return a value of true if speech is
taking place, fa l s e if it isn't. That means that as long as the first call to
Sp ea kSt ring () is still executing, SpeechBusy () will keep returning a
value of true. The result will be that the program will remain at the
while loop until the first SpeakString() completes. Only then will
SpeechBusy() return a value offal se, sending the program on to the

129

130
Graphics and Sound Programming Techniques for the Mac

second call to SpeakStri ng(). Here's the snippet that corrects the pre-
ceding wrong example: ·

theError = SpeakString("\pThis is string #1.");

while (SpeechBusy() ==true)

theError = SpeakString("\pThis is the second string."):

Saying that SpeechBusy() returns a value of true or false is a simplifi­
cation. SpeechBusy () doesn't actually return a Boo 1 ean value. It returns
the number of active speech channels. While the details of speech channels
aren't discussed until later in this chapter, this brief discussion will intro­

duce them. The SpeakStri ng () function automatically opens a speech channel to use
in speaking a string, and then closes the channel when finished speaking. If
Speech Busy () is called while Spea kSt ring () is speaking text, Speech Busy () will
return a value of 1 (or more than 1 if other speech channels are also active). This nonzero
value correlates to true-and means the while statement will continue to cycle through
the "do nothing" loop.

This next snippet does the same task as the preceding one-it just adds a
little error-checking.

theError = SpeakString("\pThis is string #1.");
if (theError != noErr)

Exi tToShel l ():

while (SpeechBusy() ==true)

theError = SpeakString("\pThis is t~e second string.•);
if (theError != noErr

ExitToShell();

Chapter 4 • Speech

Chapter Example: WaitSpeech
WaitSpeech demonstrates how to include a call to SpeechBusy() so that
two strings can be called one after the other. When WaitSpeech runs, it
will say the phrase "This is string number 1. This is the second string."

void main(void)
{

}

Str255 theString = "\pThis is the second string.";
OSErr theError;
Boolean speechPresent;

InitializeToolbox();

speechPresent = IsSpeechAvailable();
if (speechPresent == false)

Exi tToShel l ();

theError = SpeakString("\pThis is string #1.");
if (theError != noErr)

ExitToShell();

while (SpeechBusy() ==true

theError = SpeakString(theString);
if (theError != noErr)

Exi tToShel l ();

User Input and Speech
SpeakString() will speak the text of a string no matter where the string
comes from. If your program needs to generate speech based on text
provided by the user, SpeakStri ng() may again be your solution.

131

132
Graphics and Sound Programming Techniques for the Mac

Your applications can obtain user-entered strings just as they always
have-by displaying a dialog box that contains one or more edit boxes.
After the user enters text and dismisses the dialog box, call the Toolbox
function GetDialogitem() to get a handle to an edit box. Then pass that
handle to the Toolbox function GetDialogitemText() to retrieve the text
from that edit box. Finally, save the string so that it can be spoken later,
or immediately use the retrieved text as the parameter in a call to
SpeakStringC). The following snippet performs these tasks in order to
speak the text found in an Edit box with a dialog item number of 3.

/Fdefine kPhraseEdit 3

DialogPtr theDialog;
short theType;
Handle theHandle;
Re ct theRect;
Str255 theString;
OS Err theError;

GetDialogltem(theDialog, kPhraseEdit, &theType, &theHandle,
&theRect);

GetDialogltemText(theHandle, theString);
theError = SpeakString(theString);

Chapter Example: lnputSpeech
The InputSpeech program allows the user to enter text into the Edit box
item of a dialog box. When the user clicks on the Speak button, the pro­
gram retrieves the text and speaks it. By repeatedly clicking the Speak
button, the user can have the computer speak the phrase as many times
as desired. Figure 4.4 shows the InputSpeech dialog box.

Enter a word or sentence to speak:

I speak me!

Speak ~

FIGURE 4.4 The dialog box displayed by the InputSpeech program.

Chapter 4 • Speech

The InputSpeech project requires just two resources: a DLOG and a DITL.
The DITL, with the item number of each item shown, appears in Figure 4.5.

lnputSp!!eth.nrc

!! . ~ L DITL DLOG

~!.':.>from lnputSp~ech~r~-
!Q. Size Name

128 112 l
L18 Din ID - 128 from lnputspeech.rsrc

!Enter a word or sentence to speak: ~

llspeak me! ~I

[Speak gj [Quit~ _.

FIGURE 4.5 The DI TL resource used by the InputSpeech program.

InputSpeech checks for the availability of the Speech Manager, then
opens a dialog box. When the user clicks on DITL item number l, the
text from item number 3 (kPhraseEdi t) is obtained and sent to the speaker
via a call to SpeakStri ng():

GetDialogltem(theDialog, kPhraseEdit,
&theType, &theHandle, &theRect);

GetDialogitemText(theHandle, theString);
theError = SpeakString(theString);
if (theError != noErr)

ExitToShel 1 ();
break;

The technique used in the InputSpeech program can easily be expanded
to provide user-input for a program with a more sophisticated interface.
Figure 4.6 shows one possible example. Here, the user-entered phrases
can be played back immediately-as in InputSpeech-and can be
saved. Clicking the Done button would save each phrase as a string in a
global array of strings. That would allow the program to play back the
strings at any time.

133

134
Graphics and Sound Programming Techniques for the Mac

lc...:s=••=••=•d=••....cn=ow'-'o=nd'-'y=ou'--"m=••=•"-'Y l=l•=•I _ ___, •

I It will take more than that to stop me. •
~~~~~~~~~~ II 
~---~• 

Zcrron 
Allen loot soldia 

Enter Ille 1ext Iha! lhe warrior 
will use clJrtng the game. 
Enter up1D 1"3 ~ases. 

To hear a pirase, dick Ile 
sp3'ker tllt1Dn 

FIGURE 4.6 An example of implementing speech into an application. 

4fodefine 
#define 
#define 
4fodefine 

rSpeechDialog 
kSpeakButton 
kQuitButton 
kPhraseEdit 

128 
1 
2 
3 

void main( void ) 
{ 

} 

Boolean speechPresent; 

InitializeToolbox(); 

speechPresent = IsSpeechAvailable(); 
if ( speechPresent ~false ) 

ExitToShell (): 

OpenSpeechDialog(); 

/! ___________________________ ~ 

void OpenSpeechDialog( void ) 
{ 



} 

DialogPtr 
short 
Boolean 
short 
Handle 
Re ct 
Str255 
OS Err 

theDialog; 
the Item; 
allDone =false; 
theType; 
theHandle; 
theRect; 
theString; 
theError; 

Che1pter 4 • Speech 

theDialog = GetNewDialog( rSpeechDialog, nil, (WindowPtr)-lL ); 
ShowWindow( theDialog ); 
SetPort( theDialog ); 

while ( all Done== false 
{ 

} 

Modal Dialog( nil, &theltem ); 

switch ( theltem ) 
{ 

} 

case kSpeakButton: 
GetDialogltem( theDialog, kPhraseEdit, 

&theType, &theHandle, &theRect ); 
GetDialogitemText( theHandle, theString ); 
theError = SpeakString( theString ); 
if ( theError != noErr ) 

Exi tToShel 1 (); 
break; 

case kQuitButton: 
allDone =true; 
break; 

DisposeDialog( theDialog ); 

Resource Strings and Speech 
Up to this point you've seen that Sp ea kSt ring () uses strings that were 
hard-coded into a program and strings that were obtained from a dialog 
box Edit box item. You can also use SpeakString() with strings that are 
saved as resources in a string list resource-a STRil resource. 

135 



136 
Graphics and Sound Programming Techniques for the Mac 

Figure 4.7 shows a few of the many strings held in the resource file of 
a program that is used to keep inventory of a computer store's computer 
wares. When an employee checks to see if a particular computer model is 
in stock, the inventory will load two of the strings from the STR# resource 
and then call SpeakStri ng() twice to speak a phrase such as "Power Mac 
6100 slash 66 is back ordered." 

~~ STR# ID= 128 from Computerlnuentory.rsrc ~ 
'I> 

NumS t r ings 67 

1) ***** 
The 3tr i ng Ii. in stock 

2) ***** 
The str ing Ii s out of s tock [:;: 

" 3) ***** h 
Ii. 11 

The st ri ng back ordered 

4) ***** ·~ti 

The string I Power Mac 6 100/66 ~I 
5) ***** I 
Th e st r ing I Power Moc 7100/80 I 6) ***** Ii 

FIGURE 4.7 An example of a STR# resource. 

The source code listing could include a #define directive for each string in 
the STR# resource: 

#define 
#define 
#define 
#define 
#define 
#define 

rStringlist 
kinStockStrindex 
kOutStockStrlndex 
kBackOrderStockStrindex 
kPowerMac6100_66Strlndex 
kPowerMac7100_80Strlndex 

128 
1 
2 
3 
4 
5 

When it comes time to speak the on-hand status of a computer, call the 
Toolbox routine GetindStri ng() to load the string from the string resource 
to memory. Then call SpeakStri ng( )-as shown in the following snippet. 

short theStringindex ; 

theStringindex = kPowerMac7100_80Strindex; 



Chapter 4 • Speech 

GetlndString( theString, rStringlist, theStringlndex ); 
theError = SpeakString( theString ); 

Since the preceding example relies on calling SpeakString() twice to 
generate one sentence from two strings, it's important to keep in mind 
the asynchronous nature of the Speech Manager. In the following snippet 
the SpeechBusy() function is called so that the two phrases will be spoken 
one after the other. 

theStringlndex = kPowerMac7100_80Strlndex; 

GetlndString( theString, rStringlist, theStringindex ); 
theError = SpeakString( theString ); 

while ( SpeechBusy() ==true ) 

theStringlndex = kBackOrderStockStrlndex; 

GetlndString( theString, rStringlist, theStringindex ); 
theError = SpeakString( theString ); 

Chapter Example: ResourceSpeech 
The ResourceSpeech example displays a dialog box with three buttons in 
it-as shown in Figure 4.8. Clicking on the Speak Short String button 
causes the phrase "Correct" to be spoken. Clicking on the Speak Long 
String button results in the phrase "Congratulations, that's correct" to 
be spoken. 

Speak Short String 

Speak Long String 

Quit 

Figure 4.8 The dialog box displayed by the ResourceSpeech program. 

Figure 4.9 shows the resource file for the ResourceSpeech project, with 
emphasis on the dialog item numbers of the file's one DITL resource. 

137 



138 
Graphics and Sound Programming Tczchniquczs for thcz Mac 

Figure 4.10 shows the resource file's one STR4/ resource and the two 
strings it holds. 

ResourceSpeec.h.rsrc 

DITL DLOG 

Dills from Resourc:eSp1 
Size N.ame 

128 84 l 
~illli D ITL ID = 128 from Re ~ 

'---

[ Speak Short String LOR 

[ Speak Long String laj 

[ Quit Laj 
.... 

FIGURE 4.9 The D IT L resource used by the ResourceSpeech program. 

::Iii= STR# ID = 128 from ResourceSpeech.rsrc 

NumStrings 2 

1) ***** 
The string ._I c_or_r_ec_t ________ _, 

2) ***** 
The string fcongratulations, that's correct 

3) ***** 

FIGURE 4.10 The STR1/ resource used by the ResourceSpeech program. 

ResourceSpeech begins by checking the host Mac for speech capabilities, 
then opens the program's dialog box. A click on either Speak button 
results in a call to Get I ndSt ring () with the appropriate STR# index, and 
then a call to Speak St r i n g ( ) . The following code executes when the 
Speak Short String button (DITL item number 1, or kSpeakShortButton) 
gets clicked: 



Chapter 4 • Spnch 

GetindString( theString, rStringlist, kShortStrindex ); 
theError = SpeakString( theString ); 
if ( theError != noErr ) 

ExitToShel l (): 

The following is the source code listing for the ResourceSpeech example. 

1fdefine 
1fdefine 
1fdefine 
//define 
//define 
1fdefine 
//define 

rSpeechDialog 
kSpeakShortButton 
kSpeaklongButton 
kQuitButton 
rStringlist 
kShortStrindex 
klongStrindex 

128 
1 
2 
3 

128 
1 
2 

''~~~~~~~~~~~~~~~~~~~~~~~~~-

void main( void ) 
{ 

Boolean speechPresent; 

InitializeToolbox(); 

speechPresent = IsSpeechAvailable(); 
if C speechPresent == false ) 

ExitToShell(); 
OpenSpeechDialog(); 

void OpenSpeechDialog( void 
{ 

DialogPtr 
short 
Boolean 
Str255 
OS Err 

theDi a·l og; 
the!tem; 
allDone =false; 
theString; 
theError; 

theDialog = GetNewDialog( rSpeechDialog, nil. (WindowPtr)-lL ); 
ShowWindow( theDialog ); 
SetPort( theDialog ); 

while C allDone == false 

139 



140 
Graphics and Sound Programming Tcrchniqucrs for thcr Mac 

{ 

} 

ModalDialog( nil, &theltem ); 

switch ( theltem ) 
{ 

} 

case kSpeakShortButton: 
GetindString( theString, rStringList, kShortStrlndex ); 
theError = SpeakString( theString ); 
if ( theError != noErr ) 

ExitToShell (); 
break; 

case kSpeaklongButton: 
GetindString( theString, rStringlist, klongStrlndex ); 
theError = SpeakString( theString ); 
if ( theError != noErr ) 

Exi tToShell (); 
break; 

case kQuitButton: 
allDone =true; 
break; 

DisposeDialog( theDialog ); 

Speech Channels 
In Chapter 2, you saw that whenever sound data is processed by the 
Sound Manager, a sound channel is involved. Processing speech is 
similar-whenever text is spoken from the Macintosh speakers, a 
speech channel is involved. When you call SpeakString( ), the Speech 
Manager takes care of allocating a speech channel. The Speech Manager 
is also responsible for using that same channel to produce the speech 
and disposing of the speech channel when speech has finished. When 
you call SpeakStri ng( ), you'll notice that the speech is always spoken 
in the same voice-the system default voice. If your application needs 
to use a different voice, it should allocate its own speech channel and 
use that channel when generating speech. Since SpeakString() doesn't 



Chapter 4 • Speech 

have a provision for using an application-specified speech channel, you'll 
use the SpeakText() Toolbox function when using your own channel. 

Allocating and Disposing of a Speech Channel 
To allocate a speech channel, use the Toolbox routine NewSpeechChannel < ). 
This function allocates memory for a new speech channel record-a 
structure of type SpeechChannel Record. NewSpeechChannel () then 
returns a SpeechChannel-a pointer to the new speech channel record. 
The following snippet allocates a new speech channel. 

SpeechChannel theChannel: 
OSErr theError; 

theError ~ NewSpeechChannel( nil. &theChannel ); 

The first parameter to NewSpeechChannel () is a pointer to a voice specifi­
cation data structure. As you'll see later in this chapter, this data structure 
corresponds to the voice that is to be used for speech generated through 
this one speech channel. Using a nil pointer as this first parameter-as 
done here-tells the Speech Manager to use the system default voice. 

The second parameter to NewSpeechChannel () is a pointer to a speech 
channel. When NewSpeechChannel () finishes executing, this parameter 
will hold a newly allocated speech channel. You'll use this speech channel 
in subsequent calls to SpeakText( ). 

A variable of type Speech Ch an n el is generally referred to as a speech 
channel-even though it is a pointer to a SpeechChannel Record. That's 
because your application won't ever directly use a SpeechChannel Record-

N o T E it's used internally by the Speech Manager. If you look at the definition of 
the SpeechChannel Record data type, you'll see that it consists of nothing more than a 
single 4-byte field that serves as a pointer to other data: 

struct SpeechChannelRecord 
{ 

long data[l]; 
} ; 

141 



142 
Graphics and Sound Programming Tcrchniquczs for the Mac 

After using a speech channel to speak text, you'll need to deallocate 
the memory it occupies. To do that, call the Toolbox function Dispose­

SpeechChannel ().The only parameter required by Di sposeSpeechChannel <) 

is the identification of speech channel to dispose. 

OSErr theError: 

theError = DisposeSpeechChannel( theChannel ); 

You might recall from Chapter 2 that when a sound channel is disposed of, 
both the sound channel data structure and the sound channel pointer were 

disposed of: 
N o T E the Error = SndDi sposeChannel ( theChannel, true ) ; 

DisposePtr( (Ptr)theChannel ); 

For a speech channel, you need only call Di sposeSpeechChanne l ().That call 
will deallocate both the SpeechChannel and the SpeechChannel Record. 

If you write a routine to open a new speech channel, include a call to 
Di sposeSpeechChannel ()in the event that the call to NewSpeechChannel () 

returns an error. The application-defined function OpenOneSpeechChannel () 

will be used in the remaining examples in this chapter: 

SpeechChannel OpenOneSpeechChannel( void ) 
{ 

} 

SpeechChannel theChannel; 
OSErr theError; 

theError = NewSpeechChannel( nil. &theChannel ); 

if ( theError != noErr ) 
{ 

} 

theError = DisposeSpeechChannel( theChannel ); 
theChannel = nil; 

return ( theChannel ) ; 

If the speech channel memory allocation goes smoothly, the sound 
channel will be returned to the calling routine. If the allocation fails, 



Chapter 4 • Spach 

OpenOneSpeechChannel C) disposes of the memory occupied by the 
speech channel and sets the pointer to nil. If the calling routine receives 
a n i 1 pointer instead of a valid speech channel, the calling function will 
assume an error occurred. Here's a call to OpenOneSpeechChannel C ): 

SpeechChannel theChannel: 

theChannel - OpenOneSpeechChannel(): 
if C theChannel = ni 1 ) 

ExitToShell(); 

Using a Speech Channel 
After allocating a speech channel, use the channel in a call to SpeakTextC ). 

Rather than speak a single string, SpeakTextC) speaks text from a buffer. 
The second parameter to SpeakTextC) is a pointer to the first byte in the 
buffer, while the third parameter is the number of bytes to be spoken 
from that buffer. The first parameter is the speech channel to use. The 
following is an example that allocates a new speech channel, calls 
SpeakTextC) to speak a sentence, then deallocates the speech channel. 

OS Err 
SpeechChannel 
Str255 

theError: 
theChannel: 
theString = "\pUsing my own speech channel": 

theChannel = OpenOneSpeechChannel(): 

theError = SpeakTextC theChannel, CPtr)(theString + 1), 
theStri ng[O] ) : 

while ( SpeechBusy() ==true ) 

theError = DisposeSpeechChannelC theChannel >: 

r:lJ 
NOTE 

Like SpeakString( ), SpeakTextC l generates asynchronous speech. So 

it's important that you call Speech Busy () in a loop before disposing of the 
speech channel that SpeakTextC) uses. Remember, the code that follows the 
call to SpeakText () will execute before Sp ea kText () completes talking. 

In the above snippet, the variable theStri ng is considered the text buffer. 
The first byte to speak from that buffer is the second byte of the string, 

143 



144 
Graphics and Sound Programming Techniques for the Mac 

not the first-the first byte of a Pascal-formatted string holds the length 
of the string. In C, an array name serves as a pointer to the array. Adding 
to the array name adds to the address of the start of the array. With that 
in mind, theStri ng holds the address of the start of the string, while 
the St r i n g + 1 holds the address of the next byte in the string-the first 
character in the string. Finally, because SpeakTextC) requires a generic 
pointer to a buffer, the string variable needs to be typecast to type Pt r. 

The last parameter to SpeakTextC) is the number of bytes that 
should be used from the buffer. As mentioned, the first byte of a Pascal­
formatted string holds the length of the string. For this reason, it is the 
value of the first byte of theStri ng that should be used here. 

The above example speaks one string of text-just as earlier examples 
that used SpeakStri ng() did. The only difference is that this new example 
required the extra work of allocating a new sound channel and then 
disposing of that channel. At first glance, that doesn't seem much of an 
improvement over the SpeakStringC) way of generating speech. The 
advantage to this new method doesn't show up in the above snippet­
or in the SpeechChannellntro program presented next. Instead, the 
small amount of extra work pays off in the following section when a 
speech channel and SpeakText() are used together to speak a string 
using a voice other than the system default voice. 

Chapter Example: SpeechChannellntro 
The SpeechChannellntro program ties together the snippets from this 
section an presents them in a simple program that opens a new speech 
channel, speaks a sentence using that channel, and then disposes of 
the channel. 

void 
Boolean 
SpeechChannel 

InitializeToolboxC void ); 
IsSpeechAvailable( void ); 
OpenOneSpeechChannel( void ); 

void main( void ) 



{ 

} 

OS Err thef;rror: 
speech Present: 
theChannel : 

Chapter 4 • Speech 

Boolean 
SpeechChannel 
Str255 theString = "\pUsing my own speech channel": 

InitializeToolbox(); 

speechPresent = IsSpeechAvailable(); 
if ( speechPresent == false ) 

ExitToShell(); 

theChannel = OpenOneSpeechChannel(); 
if ( theChannel == nil ) 

ExitToShel l (); 

theError = SpeakText( theChannel. (Ptr)(theString + 1), 
theString[OJ ) : 

if ( theError != noErr ) 
ExitToShel l (): 

while ( SpeechBusy() ==true 

theError = DisposeSpeechChannel( theChannel ); 
if ( theError != noErr ) 

ExitToShel l (): 

//~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

SpeechChannel OpenOneSpeechChannel( void ) 
{ 

} 

SpeechChannel theChannel; 
OSErr theError: 
theError = NewSpeechChannel( nil, &theChannel ); 

if ( theError != noErr ) 
{ 

} 

theError = DisposeSpeechChannel( theChannel ); 
theChannel = nil; 

return ( theChannel ) : 

145 



146 
Graphics and Sound Programming Techniques for the Mac 

Voices 
One of the primary reasons for creating a speech channel is so that you 
can associate a particular voice with the text that is to be spoken. 
Without an application-defined speech channel, your application must 
settle for the system-default voice used by the Sp ea kSt ring () function. 

Specifying a Voice 
Voices are stored as files in the System Folder of a user's Macintosh-as 
are speech synthesizers used with the voices. While you might know 
which voices and which synthesizers are present on your Mac, you 
have no way of knowing what users of your application might have on 
their computers. That means that rather than specifying one particular 
voice, your program should specify one or more characteristics the 
desired voice should have. After that, your program should cycle 
through the voices that are available on the user's machine. When a 
voice that has characteristics matching the desired ones is found, that 
voice should be associated with the channel that is to be used to speak a 
buff er of text. 

Each voice has a VoiceDescription data structure that holds infor­
mation about that voice. The following snippet shows that structure: 

struct VoiceDescription 
{ 

} ; 

long 
VoiceSpec 
long 
Str63 
Str255 
short 
short 
short 
short 
short 
long 

length; 
voice; 
version; 
name; 
comment; 
gender: 
age; 
script; 
language; 
region; 
reserved[4]; 



Chapter 4 • SPffCh 

Of most interest in selecting a voice will be the gender and age fields 
of the Voi ceDescri pti on structure. The gender field will always have a value 
matching one of three Apple-defined constants: 

en um 
{ 

} ; 

kNeuter = 0, 
kMale = 1, 
kFemale = 2 

The kMa le and kFema le gender values are self-explanatory. The other, 
kNeuter, is used to describe a voice that is robotic-sounding. If your pro­
gram wants to see if a voice generates speech in a male voice, it should 
include a snippet similar to the following: 

VoiceDescription theVoiceDesc; 

II get a voice description for a voice 

II now check to see if the voice has characteristics matching 
II the desired ones: 
if ( theVoiceDesc.gender == kMale ) 

II voice matches. use it to generate speech 

The above snippet uses a comment in place of one important step: obtain­
ing a voice description structure for a voice. That topic will be covered in 
the next section. 

The age field of the VoiceDescription structure yields the approximate 
age that a speaker of this voice would have. If you'd like to generate speech 
using a voice that sounds as if it were that of a teenager, you might have a 
test such as the following: 

if ( ( theVoiceDesc.age > 12 ) && ( theVoiceDesc.age < 20 ) ) 
II voice matches, use it to generate speech 

If you'd like the voice to be that of a teenage male, combine the above 
two tests: 

147 



148 
Graphics and Sound Programming Techniques for the Mac 

if theVoiceDesc.gender ~ kMale ) 
if ( ( theVoiceDesc.age > 12 ) && ( theVoiceDesc.age < 20 ) ) 

II voice matches, use it to generate speech 

Obtaining a Voice Description for a Voice 
To begin a search for a voice that matches your program's specifications, 
call the Toolbox function CountVoi ces ( ): 

OSErr theError; 
short theNumVoices; 

theError = CountVoices( &theNumVoices ); 

As its name implies, CountVoi ces () searches the user's system to find 
all available voices, counts them, and returns the total in the parameter. 
This returned value should then be used as the index in a for loop. The 
purpose of the loop is to examine each voice in tum, searching for one 
that has characteristics matching the program's needs-such as a voice 
of a middle-aged man. 

for ( thelndex = 1; thelndex <= theNumVoices; thelndex++ ) 
{ 

II examine each voice until a middle-aged man match is found 
} 

Within the loop body, getting a Voi ceDescri pt ion for a voice is a two-step 
process. First, a Voi ceSpec is needed. The Voi ceSpec is used to provide a 
unique reference to each voice. The Voi ceSpec data structure consists of 
two fields: an identification number of the speech synthesizer for which 
the voice was created and an identification number of the voice itself. 
Any number of voices can share the same speech synthesizer ID, but 
each voice of these voices with the same synthesizer ID will have a 
voice ID that is unique. To get a Voi ceSpec for a voice, call the Toolbox 
function Get I ndVoi ce (): 

OSErr theError; 
short the Index; 
VoiceSpec theVoiceSpec; 

theError = GetindVoice( thelndex, &theVoiceSpec ); 



Chapter 4 • Spczczch 

The first parameter to GetlndVoi ceC) is an index that tells which 
voice is of interest. This parameter must have a value no less than 1, for 
the first voice, and no greater than the total number of voices currently 
present in the user's system-as reflected in the value returned by 
Count Vo i c es C ) . The following shows how the voice-searching loop is 
shaping up: 

OS Err 
short 
short 
VoiceSpec 

theError; 
theNumVoices; 
the Index; 
theVoiceSpec; 

theError = CountVoicesC &theNumVotces ); 

for ( thelndex = 1; thelndex <= theNumVoices; thelndex++ 
{ 

theError = GetlndVoice( thelndex, theVoiceSpec ); 
II examine the voice specified by theVoiceSpec 

} 

A voice description can be obtained by making a call to the Toolbox 
function GetVoi ceDescri pti on C): 

theError = GetVoiceDescriptionC theVoiceSpec, &theVoiceDesc, 
sizeofC theVoiceDesc ) ); 

The first parameter to GetVoiceDescription() is the VoiceSpec for the 
voice of interest. The Voi ceSpe is the one returned by the preceding call to 
GetlndVoiceC ). The second parameter is a pointer to a variable of type 
VoiceDescription. After the call to GetVoiceDescriptionC) is complete, 
this data structure will be filled with information about the voice specified 
by the VoiceSpec. The final parameter to GetVoiceDescription() is the 
number of bytes in a Voi ceDescri pti on data structure. Use the si zeof() 
function to get this value. 

At this point, enough is known about a voice to make a decision as to 
whether it is one that matches the program's needs. An updated version 
of the voice-checking loop follows. 

OS Err 
short 
short 

theError; 
theNumVoices; 
the Index; 

149 



150 
Graphics and Soand Programming Techniques for the Mac 

VoiceSpec 
VoiceDescription 

theVoiceSpec; 
theVoiceDesc; 

theError = CountVoices( &theNumVoices ); 

for ( thelndex = l; thelndex <= theNumVoices; thelndex++ 
{ 

} 

theError GetlndVoice( thelndex. theVoiceSpec ); 

theError GetVoiceDescription( theVoiceSpec, &theVoiceDesc, 
sizeof( theVoiceDesc ) ); 

II compare fields of the VoiceDescription with the desired 
II voice characteristics to see if this voice is a match 

II if voice matches, exit loop 
II else loop again and check the next indexed voice 

This loop can be included in a function that is used to return the Voi ceSpec 
for a voice that fits a certain requirement. Consider as an example the 
GetVoi ceSpecBasedOnGender() routine listed below. When passed a 
pointer to a Voi ceSpec and a gender value, the function loops until it 
finds a voice of the specified gender. When it does, the loop is exited 
and the function returns the Voi ceSpec of the voice. Notice that because 
the Voi ceSpec is passed in as a pointer, the parameters to GetlndVoi ce() 
change from: 

theError = GetlndVoice( thelndex, &theVoiceSpec ); 

to the following: 

theError = GetlndVoice( thelndex, theVoiceSpec ); 

The same applies to the first parameter to GetVoi ceDescri pti on(). If the 
function cycles through all of the voices that are available on the user's 
Mac, and a match is never found, the function returns a value of 
kNoMatchi ngVoi ceErr. This is an application-defined constant that tells 
the caller that no matching voice was found. It is then up to the caller to 
determine how to proceed. 



Chapter 4 • Spach 

I/define kNoMatchingVoiceErr -999 

OSErr GetVoiceSpecBasedOnGenderC VoiceSpec *theVoiceSpec, 

{ 

} 

short theGender ) 

OSErr theError; 
short theNumVoices; 
short the Index; 
VoiceDescription theVoiceDesc; 

theError = CountVoicesC &theNumVoices ); 
if C theError != noErr ) 

return C theError ); 

for ( thelndex = l; thelndex <= theNumVoices; thelndex++ 
{ 

} 

theError = GetlndVoiceC thelndex, theVoiceSpec ); 
if ( theError != noErr ) 

return ( theError ); 

theError = GetVoiceDescription( theVoiceSpec, &theVoiceDesc, 
sizeof( theVoiceDesc ) ); 

if ( theError != noErr ) 
return C theError ); 

if ( theVoiceDesc.gender == theGender ) 
return C noErr ); 

return ( kNoMatchingVoiceErr ); 

The following indicates how an application would call GetVoi ceSpec­
BasedOnGender() to obtain a Voi ceSpec for a robotic voice: 

OS Err 
short 
VoiceSpec 

theError; 
theGender; 
theVoiceSpec; 

theGender = kNeuter; 
theError = GetVoiceSpecBasedOnGender( &theVoiceSpec, theGender ); 

Once a Voi ceSpec is obtained, it can be used in a call to NewSpeechChannel () 
to open a speech channel: 

151 



152 
Graphics and Sound Programming Techniques for the Mac 

theError = NewSpeechChannel( &theVoiceSpec, &theChannel ); 

After the channel is open, text generated from it will use the robotic 
voice. Calls to SpeakText( ), SpeechBusy( ), and Di sposeSpeechChannel () 
follow the opening of the new speech channel: 

theError = SpeakText( theChannel. CPtr)(theString + 1), 
theString[OJ ); 

while ( SpeechBusy() ==true ) 

theError = DisposeSpeechChannel( theChannel ); 

If your application will use voices, you'll want to replace the applica­
tion-defined function OpenOneSpeechChannel <) with a routine that 
includes a Voi ceSpec as a parameter. Then, rather than opening the 
speech channel with a first parameter of ni 1, use the passed Voi ceSpec: 

SpeechChannel OpenOneSpeechChannelVoice( VoiceSpec theVoiceSpec ) 
{ 

} 

SpeechChannel theChannel; 
OSErr theError; 
theError = NewSpeechChannel( &theVoiceSpec, &theChannel ); 
if ( theError != noErr ) 
{ 

} 

theError = DisposeSpeechChannel( theChannel ); 
theChannel = ni 1; 

return ( theChannel ) ; 

Chapter Example: ChangeVoice 
The Change Voice program opens a dialog box like the one shown in 
Figure 4.11. This dialog box allows the user to set the voice to that of a 
young boy, a woman, a robot, or the system-default voice. After setting 
the voice, a click on the Play Speech button results in a spoken sentence 
using the selected voice. Change Voice speaks the same sentence regardless 
of the voice selected. 



Click on o "Set Uoice" button, 
then click on the Ploy button ... 

___ Set Uoice __ _ 

Boy: 5-10 yeors 

Womon: 30-50 yeors 

[ Robot: 011er 500 yeors J 

Oefoult 

Ploy Speech 

Quit 

Chapter 4 • Spach 

FIGURE 4.11 The dialog box displayed by the Change Voice program. 

ChangeVoice relies on an application-defined function named Get­
Voi ceSpecBasedOnAgeGender( ). This routine is very similar to the 
GetVoi ceSpecBasedOnAgeGender() function developed a couple of pages 
back. The difference between the two functions is that the new routine 
looks for a voice that meets two requirements rather than one-the new 
function loops until a voice of the specified gender and specified age 
range is found. The following snippet executes in response to a click on 
the Boy: 5-10 years button. 

OSErr theError; 
short theAgelo; 
short theAgeHi; 
short theGender; 
VoiceSpec theVoiceSpec; 
theGender = kMale; 
theAgelo = 5; 
theAgeHi = 10; 
theError = GetVoiceSpecBasedOnAgeGender( &theVoiceSpec, theAgelo, 

theAgeHi. theGender ); 

153 



154 
Graphics and Sound Programming Techniques for the Mac 

The ChangeVoice project uses two resources: a DLOG and a DITL. The 
dialog items are shown in the DITL pictured in Figure 4.12. Following the 
figure are the application-defined constants used to represent the D IT L 
and its items. 

LhangeUoice.rsrc 

El - llal 
OITL OLOG 

D ITl.s fr l'h l 

'-I ID lill!lUU'ltJD. ,.1:z1J;from Chan_!l_e .~ 

126 l~lick on a "Set Uoice" butto~::J 
then click on the Play button ••• 

I Set Uoice 111 

[ Boy: 5-1 o years ~ 
[ Woman: 30-50 years~ 

[ Robot: 01.1er 500 yearSij 

[ Default ~ 
[ 8] 

[ Play Speech ~ 
~ _. 

FIGURE 4.12 The DI TL resource used by the Change Voice program. 

//define 
#define 
//define 
#define 
#define 
//define 
//define 

rSpeechDialog 
kPlaySpeechButton 
kSetSpeechYoungBoyButton 
kSetSpeechMiddleAgeWomanButton 
kSetSpeechRobotButton 
kSetSpeechDefaultButton 
kQuitButton 

128 
1 
2 
3 
4 
5 
6 

One point of interest in the code is the manner in which the program 
gets a Voi ceSpec for the system-default voice: 

OS Err 
VoiceSpec 

theError; 
theDefaultVoiceSpec; 



Chapter 4 • Spac:h 

VoiceDescription theVoiceDesc; 

theError = GetVoiceDescription( nil, &theVoiceDesc, 
sizeof( theVoiceDesc ) ); 

theDefaultVoiceSpec = theVoiceDesc.voice; 

The GetVoi ceDescri pt ion () function is usually called with a Voi ceSpec as 
the first parameter. If, instead, a value of nil is passed, a Voi ceDescri pti on 
for the system-default voice will be returned. So far, you've seen the 
gender and age fields of this structure. Among the many other fields in 
this structure is the voice field. This field is a Voi ceSpec structure for the 
voice being described. By assigning the voice field to a Voi ceSpec variable, 
the program can at any time speak text in the system-default voice by 
opening a new speech channel with theDefaul tVoi ceSpec as the first 
parameter to a call to OpenSpeechChannel ( ). 

void InitializeToolbox( void ); 
Boolean 
SpeechChannel 
void 
OS Err 

IsSpeechAvailable( void ); 
OpenOneSpeechChannelVoice( VoiceSpec ); 
OpenSpeechDialog( void ); 
GetVoiceSpecBasedOnAgeGender( VoiceSpec * short, 

f/:define 
//define 
f/:define 
//define 
//define 
//define 
//define 
//define 

rSpeechDialog 
kPlaySpeechButton 
kSetSpeechYoungBoyButton 
kSetSpeechMiddleAgeWomanButton 
kSetSpeechRobotButton 
kSetSpeechDefaultButton 
kQuitButton 
kNoMatchingVoiceErr 

void main( void ) 
{ 

Boolean speechPresent; 
InitializeToolbox(); 
speechPresent = IsSpeechAvailable(); 
if ( speechPresent ==false ) 

short, short ) ; 

128 
1 
2 
3 
4 
5 
6 

-999 

155 



156 

} 

Graphics and Sound Programming Techniques for the Mac 

ExitToShell(); 
OpenSpeechDialog(); 

//~~~~~~~~~~~~~~~~~~~~~~~~~~-

void OpenSpeechDialog( void ) 
{ 

DialogPtr 
short 
Boolean 
OS Err 
SpeechChannel 
Str255 
Minnesota 
short 
short 
short 

right?"; 

VoiceSpec 
VoiceSpec 
VoiceDescription 

theDialog; 
the Item; 
all Done = false; 
theError; 
theChannel; 
theString "\pMilwaukee, that's in 

theAgelo; 
theAgeHi; 
theGender; 
theDefaultVoiceSpec; 
theVoiceSpec; 
theVoiceDesc; 

theDialog = GetNewDialog( rSpeechDialog, nil, CWindowPtr)-lL ); 
ShowWindow( theDialog ); 
SetPort( theDialog ); 

theError = GetVoiceDescription( nil. &theVoiceDesc, 
sizeof( theVoiceDesc ) ); 

theDefaultVoiceSpec = theVoiceDesc.voice; 
theVoiceSpec = theDefaultVoiceSpec; 
while ( allDone ==false ) 
{ 

Modal Dialog( nil, &theltem ); 

switch ( theltem ) 
{ 

case kSetSpeechYoungBoyButton: 
theGender kMale; 
theAgelo = 5; 
theAgeHi = 10; 
theError = GetVoiceSpecBasedOnAgeGender( &theVoiceSpec, 

theAgelo, 
theAgeHi, 
theGender ); 

break; 



} 

case kSetSpeechMiddleAgeWomanButton: 
theGender kFemale; 
theAgelo = 30; 
theAgeHi = 50; 

Ch<1pter 4 •Speech 

theError = GetVoiceSpecBasedOnAgeGender( &theVoiceSpec, 
theAgeLo, 
theAgeHi , 
theGender ); 

break; 

case kSetSpeechRobotButton: 
theGender = kNeuter; 
theAgelo = 500; 
theAgeHi = 10000; 
theError = GetVoiceSpecBasedOnAgeGender( &theVoiceSpec, 

theAgelo, 
theAgeHi , 
theGender ); 

break; 

case kSetSpeechDefaultButton: 
theVoiceSpec = theDefaultVoiceSpec; 
break; 

case kPlaySpeechButton: 
theChannel = OpenOneSpeechChannelVoice( theVoiceSpec ); 
if ( theChannel ==nil ) 

ExitToShell(); 
theError = SpeakText( theChannel. (Ptr)(theString + 1), 

theString[OJ ); 
while ( SpeechBusy() ==true ) 

theError = DisposeSpeechChannel( theChannel ); 
if ( theError != noErr ) 

ExitToShel l (); 
break; 

case kQuitButton: 
allDone =true; 
break; 

if theError 
{ 

kNoMatchingVoiceErr ) 

SysBeep( 0 ); 
theVoiceSpec = theDefaultVoiceSpec; 

} 

157 



158 

} 

Graphics and Soand Programming Techniques for the Mac 

} 

else if ( theError != noErr ) 
ExitToShell(); 

DisposeDialog( theDialog ); 

//~~~~~~~~~~~~~~~~~~~~~-

OSErr GetVoiceSpecBasedOnAgeGender( VoiceSpec 
short 
short 
short 

*theVoiceSpec, 
theAgeLo, 
theAgeHi , 
theGender 

{ 

} 

OS Err theError; 
theNumVoices; 
thelndex: 
theVoiceDesc; 

short 
short 
VoiceDescription 

theError = CountVoices( &theNumVoices ); 
if ( theError != noErr ) 

return ( theError ); 

for ( thelndex = 1: thelndex <= theNumVoices: thelndex++ 
{ 

} 

theError = GetindVoice( thelndex, theVoiceSpec ); 
if ( theError != noErr ) 

return ( theError ); 
theError = GetVoiceDescription( theVoiceSpec, &theVoiceDesc, 

sizeof( theVoiceDesc ) ); 
if ( theError != noErr ) 

return ( theError ); 

if ( (theVoiceDesc.age >= theAgeLo) && 
(theVoiceDesc.age <= theAgeHi) ) 

if ( theVoiceDesc.gender == theGender 
return ( noErr ); 

return kNoMatchingVoiceErr ); 

//~~~~~~~~~~~~~~~~~~~~~~~~~~-

SpeechChannel OpenOneSpeechChannelVoice( VoiceSpec theVoiceSpec 
) 

{ 

SpeechChannel theChannel: 



} 

Chapter 4 • Speech 

OSErr theError; 
theError = NewSpeechChannel( &theVoiceSpec, &theChannel ); 
if ( theError != noErr ) 
{ 

} 

theError = DisposeSpeechChannel( theChannel ); 
theChannel = nil; 

return ( theChannel ) ; 

Summary 
The Speech Manager is a system software extension that, with the aid of 
speech synthesizers and the Sound Manager, converts text into speech. 
Speech Manager functions, such as SpeakString() and SpeakText( ), 
allow your program to generate speech from any string. 

To generate speech using the system-default voice, just call Speak -
String() with a string as the lone parameter. To generate speech using 
other voices-a man, a woman, a child, or a robot-call SpeakText() 
instead. SpeakText() requires that your application first create a sound 
channel from which the speech will be played. 

159 



CHfiPTEit 5 

Animation 
Everybody wants to do animation. It's the first thing a new programmer 
wants to do after figuring out how to write "Hello World" to a window, 
and it's what a number-crunching engineer wants to do for fun. 
Animation is easy-if you're content with the annoying flicker that 
accompanies the animated objects produced by repeatedly drawing a 
picture to a window. If you want slick, smooth, flicker-free animation, a 
little extra work is in order. 

The extra work involved in generating professional-looking animated 
effects comes from gaining an understanding of a single Toolbox function­
C op y Bits Cl. In this chapter you'll see how to use this powerful function 
in conjunction with offscreen bitmaps and offscreen graphics worlds to 
create both black-and-white and color animation. You'll find out how 
Copy Bi ts ( l is used to move an object across any background- without 
obscuring that background, and without the noticeable screen flicker 
seen in some programs. 

If you're interested in programming games, this chapter and Chapter 2 
will help you reach that goal. If you combine the color animation tech-

161 



162 
<iraphia and Sound Programming Techniques for the Mac 

niques found in this chapter with the sound-playing techniques pro­
vided in Chapter 2, you'll be well on your way to writing the next great 
Macintosh game. 

Monochrome Animation and CopyBits() 
Understanding the Toolbox function CopyBits() is a must for any pro­
grammer interested in producing smooth animation. As its name implies, 
Copy Bi ts () copies a bit image-a collection of bits-from one location 
to another. In this section Copy Bits C ) will be used on monochrome 
images. Later, this same function will be used to generate color animation. 

Bit Images and BitMaps 
A graphical image can be thought of as having two representations. The 
first, and most obvious, is the screen representation-the image as it 
appears visually. The second is its representation in memory. For mono­
chrome images, each screen pixel that makes up an image on the screen 
has a corresponding bit in memory used to keep track of the state of the 
pixel. If an image pixel appears black, its corresponding bit in memory 
has a value of 1, or "on." If an image pixel appears white, its corre­
sponding memory bit has a value of O, or "off." 

The above discussion implies that a pixel is not the same as a bit. That's true. 

In discussions that deal less specifically with graphical images, though, you 
may see the words interchanged. 

To form a graphical image, bits are grouped together in a data structure 
known as a Bi tMap-represented by the Bi tMap data structure: 

struct BitMap 
{ 

} ; 

Ptr baseAddr; 
short rowBytes; 
Rect bounds; 



ChGpter 5 • flnimGtion 

While graphical images vary in size, each BitMap data structure is 
always the same size. That's possible because the BitMap data type 
doesn't actually hold the Bi tMap bit information. Instead, this data resides 
elsewhere in memory. The first field of a BitMap (the baseAddr field) is a 
pointer to the first byte of this data. 

The second field of a BitMap specifies how many bytes appear in a 
single row of the graphical image. For alignment purposes, all images 
are held in rows that have a byte length divisible by 2. Consider the bit 
image shown in Figure 5.1. The letter "T" that this image forms is seven 
bits across at its widest point. Yet the bit image is 16 bits, or two bytes, 
across. Whether this image had a width of 1 bit, 16 bits, or any value in 
between, it would occupy two bytes across. For the example shown in 
Figure 5.1, the rowBytes field of the BitMap data structure representing 
this image would have a value of 2, for two bytes across. 

t 
9 

rows 

t 

FIGURE 5.1 The Bi tMap data structure keeps track of 
the number of bytes in a bit image. 

The third field of the BitMap is a rectangle that specifies the boundaries 
of the image. This rectangle encompasses the image without taking into 
consideration any byte padding. Again referring to Figure 5.1, the 
image would have a bounding rectangle seven pixels across and nine 
pixels vertically. The values that make up the bounding rectangle may 
or may not be normalized (use the point (0, 0) as a reference point). 
Thus for the image in Figure 5.1, the bounding rectangle could have 
coordinates such as the following: 

163 



164 
Graphics and Sound Programming Tczchniquczs for thcz Mac 

bounds.left 30 
bounds.right 37 
bounds.top 50 
bounds.bottom 59 

By keeping track of the number of bytes in a row and the coordinates of 
an image, the size in bytes of an image can be determined. Using the 
following equation makes the image in Figure 5.1occupy18 bytes. 

image byte size= rowBytes * ( bounds.bottom - bounds.top ) 

In C, a BitMap is referenced using a pointer. In Figure 5.2, you can see 
that a pointer to a BitMap is used to access a BitMap data structure. The 
BitMap data structure in turn references the BitMap data in another part 
of memory. Figure 5.2 shows the bit values in the bit image memory, 
along with the image that those bit values would form. 

bounds 

rowBytes 

baseAddr 

• BitMap (pointer to a BitMap ) 

FIGURE 5.2 The baseAddr field of a Bi tMap 

points to the actual bit image in memory. 



Chapter 5 • Animation 

The individual bits that make up the bit image appear to form an upside­
down "T" in Figure 5.2. As you look at this figure (and all others in this book), 
keep the Macintosh memory-addressing convention in mind: smaller, or lower, 

N ° T E addresses are shown at the bottom of a figure. That's why a figure shows a 
pointer pointing to what appears to be the bottom of an object in memory. This ''bottom" 
is actually the start of the object. 

Once again, it is important to remember the distinction between bits and 
pixels. An image that exists in a Bi tMa p structure exists as bit values in mem­
ory-it doesn't appear in a window. A program can have several images 
stored in BitMaps, and each of these images will be invisible to the user. Not 
until an image is drawn to a window's port does it become visible. 

You've just seen that a Bi tMap holds a graphic image. But how does 
this "invisible" BitMap image contribute to animation? The answer lies 
in the number of BitMaps used to create an animated effect. Offscreen 
animation works in the following way. Your program will allocate 
memory for three BitMaps. A window will be opened, which will add a 
fourth Bi tMap. As you'll see on the next pages, a window always has its 
own Bi tMap. To draw a single frame from an animated sequence, your 
program will make use of each of these four BitMaps. One BitMap will 
be used to hold a background picture, a second will be used to hold a 
foreground picture, and a third will be used as a mixture Bi tMa p-it will 
hold a BitMap that is the combined image of the foreground BitMap 
overlaid upon the background Bi tMap. It is this mixture Bi tMap that will 
be copied to the final Bi tMap-the one that holds the contents of the open 
window. Figure 5.3 illustrates. 

165 



166 
Graphics and Sound Programming Tczchniquczs for thcz Mac 

Background bitmap 

Merge bitmap 

Window bitmap 

Foreground bitmap 

~ 
~ 

~o 

FIGURE 5.3 Smooth animation is produced by combining 

a foreground with a background offscreen. 

Because BitMap images are simply bits in memory, the blending of the 
Bi tMa ps is invisible to the user-it takes place "behind the scene." To 
create animation, the coordinates of the foreground Bi tMap are slightly 
moved, the foreground and background BitMaps are again combined to 
form the merge Bit Map, and this new merge Bi t Map is again copied to 
the window. The result? The flicker that is apparent with other types of 
animation doesn't exist. That's because the mixing of the Bi tMaps takes 
place in memory- not in the window. 

BitMaps. Graphics Ports. and Windows 
When you create a new window, whether by a call to GetNewWi ndow() or 
NewWi ndow( ), the Window Manager allocates memory for a Wi ndowRecord 



Chapter 5 • Animation 

data structure and returns a WindowPtr to your program. A WindowPtr is a 
pointer to the first field in that structure-the port field. A Wi ndowRecord is 
a data structure consisting of several fields that hold descriptive informa­
tion about a window. The first field, the port field, is of type Graf Port . 

Figure 5.4 shows a Wi ndowRecord in memory. 

N 0 TE 

To emphasize the topic being discussed, only select fields of the Wi ndowRecord 

data structure will be shown-and these fields will not be to scale with the 

entire Wi ndowRecord structure. This applies to other data structures pictured 

in figures as well. 

· ~ .. r 

WindowRecord 

~ 
Graf Port 

I: 

WindowPtr 

FIGURE 5.4 A Wi ndowPtr points to the first field in a 

Wi ndowRecord-a field of type Graf Port. 

A Graf Port is a data structure that consists of several fields. The second 
field in a Graf Port is the portBits field, which is of type BitMap. The 
Graf Port of a Wi ndowRecord holds information about the drawing envi­
ronment of the window (such as the font that text will be displayed in), 
while the BitMap of a Wi ndowRecord holds the bit image representing the 

167 



168 
Graphics and Sound Programming Techniques for the Mac 

contents of the window. Figure 5.5 shows the Bi tMap and Graf Port of a 
Wi ndowRecord. 

N 0 TE 

FIGURE 5.5 A Graf Port contains a field of type Bi tMap. 

From earlier discussions you'll recall that a graphics port's Bi tMap field 
doesn't hold the Bi tMa p image itself, but rather, a pointer to the bit image 
that is elsewhere in memory. Exactly where in memory the bit image ends 
up is of no concern to you. 

BitMaps and Graphics Ports Without Windows 
The preceding text and figures have shown that both a Bi tMap and a 
graphics port are a part of a window-they're fields of a Wi ndowRecord 

data structure. But each can also exist on its own. That is, you can allocate 



Chapter 5 • Animation 

memory for a BitMap or Graf Port without creating a new window. This is 
exactly what you'll do when performing offscreen animation. Figure 5.6 
shows a section of memory after a GrafPtr variable has been declared 
and set to point at memory allocated for a Graf Port. As shown in the 
figure, this new graphics port will be used to hold an image that will 
serve as a background over: which animation will take place. 

Grafptr (points to the background bitmap) 

Graf Port (holds the background bitmap) 

1XindowRecord 

Graf Port ; ~~ 
~ .· . . 

FIGURE 5.6 A Graf Ptr variable is used to access a Graf Port drawing environment. 

Figure 5.6 shows what memory might look like for a program that opens 
a window (pointed to by a Wi ndowPtr variable) and also creates an addi­
tional graphics port (pointed to by a Graf Ptr variable). In the figure, the 
graphics port that isn't a part of the Wi ndowRecord is assumed to hold a 
Bi tMa p that will be used to hold the background of the off screen· drawing. 
This graphics port is pointed to by a Graf Ptr variable. 

169 



170 
Gl'Clphics and Sound Programming Techniques for the Mac 

Both the Bi tMap data type and the Graf Port data type will be of 
interest to you when performing offscreen animation. As mentioned, 
you'll use four bitmaps (each represented by a BitMap data structure) 
when performing animation. Rather than just allocating BitMap data 
structures, you'll instead allocate GrafPort data structures. A Graf Port 
includes a Bi tMap as one of its fields-and it has the additional benefit of 
keeping track of the drawing environment for that BitMap structure. 
That means, for instance, you could use the picture from a PI CT resource 
as a background BitMap, then set the font for the BitMap's Gra'fPort and 
draw a string of text that will become a part of that picture. 

Figure 5.7 shows this same area of memory after another Graf Port is 
allocated. This one will be used to hold a foreground image. 

Graf Ptr (points to the background bitmap) 

Graf Ptr (points to the foreground bitmap) 

Graf Port (holds the foreground bitmap) 

Graf Port (holds the background bitmap) 

"wwmmr 

~:JWindowRecord 

Graf~ort 
~ 

WindowPtr (will hold the merge bitmap) 

FIGURE 5.7 An application can create more than one Graf Port. 



Chapter 5 • Animation 

Figure 5.8 shows memory after another graphics port is allocated. The 
Bi tMap associated with this graphics port will be used to hold the result of 
combining two bitmaps. 

Gra f Ptr (points to the background bitmap) 

Gra f Ptr (points to the merge bitmap) 

Graf Ptr (points to the foreground bitmap) 

Graf Port (holds the foreground bitmap) 

Gra f Port (holds the merge bitmap) 

Grafport (holds the background bitmap) 

WindowRecord 

Graf Port 

WindowPtr (will hold the merge bitmap) 

FIGURE 5.8 For animation, three Graf Ports­

and three Graf Ptr pointers-will be used. 

Allocating a Graf Port, and the Bi tMap that accompanies it, reserves 
memory for these data structures-but doesn't place any image in the 
area of memory reserved for the Bi tMap. To do that, you'll make the new 
Graf Port the active port and draw to it. In Figure 5.9, the graphics port 
used to hold a background has been drawn to. In this example assume 
that a picture of a gray rectangle was loaded from a PI CT resource and 
drawn to the graphics port. 

171 



172 
Graphics and Sound Programming Techniques for the Mac 

Graf Ptr (points to the background bitmap) 

' 

"'1¥T 

_;,;,_ 

Background bitmap 

r~ 
~ 

FIGURE 5.9 A Graf Port can be used to hold the background 

over which an object will move. 

Next, the graphics port that will be used to hold the image resulting 
from the merging of a background image and a foreground image is 
sized to match the background Bi tMap. Nothing is drawn to this BitMap 

at this time. Then the graphics port that is used to hold a foreground 
image is drawn to. Figure 5.10 illustrates. 



r:21 
N 0 TE 

Chapter 5 • Animation 

la\; • Foreground bitmap 

··· ·············· ··· ······-······ . . . . . . . . . . . . . . . . . . . . . . 

······-··· ······················ 
Merge bitmap 

Background bitmap 

FIGURE 5.10 Three offscreen graphics ports are used to hold 

a foreground, background, and combined image. 

Each Graf Ptr in Figure 5.10 leads to a Graf Port. Each Graf Port has a 

field that is a Bi tMap. Each Bi tMap has a baseAddr field that points to an 

area in memory that holds the actual bit image. 

173 



174 
CirC1phics C1nd Sound Progrqmming Techniques for the HClc 

To create a single scene, or frame, for animation, the background 
Bi tMap is copied to the merge Bi tMap. Then the foreground Bi tMap is copied 
to that same merge BitMap-directly over the background. The result is 
shown in Figure 5.11. 

11 

, [ I ~ 
I ~ 

~ 

I~~ 

I~ 
~ Merge bitmap 

~ 

~ 
Background bitmap 

FIGURE 5.11 The merge Bi tMap is created by copying a background 

Bi tMap and a foreground Bi tMap to a single graphics port. 

Now, with the combining of the background and foreground taken care of­
and taken care of in memory rather than in a window-the completed 
scene is copied to the Bi tMap that holds the contents of the window. 
Figure 5.12 illustrates. 



Chapter 5 • Animation 

Window bitmap 

FIGURE 5.12 The combined Bi tMap is copied to a window. 

The preceding steps show how a single frame appears in a window­
but how does this lead to animation? The copying of the background 
and foreground to the merge Bi t Map, and then the copying of the merge 
BitMap to the window, take place within a loop. After the merge BitMap 
is copied to the window Bi t Map, the coordinates of the foreground 
BitMap get changed slightly. Then the merging of the BitMaps, and the 
blasting of this merged Bi tMap to the window, are repeated. The result is 
that the image appears to have moved slightly. And, best of all, no 
noticeable flicker has taken place. 

175 



176 
Graphics and Sound Programming Techniques for the Mac 

Creating a "ew BitMap 
The BitMap that accompanies a window gets created during the call to 
NewWi ndow() or GetNewWi ndow( )-your program doesn't need to be con­
cerned with its allocation. The other three BitMaps needed for offscreen 
drawing, however, need to be created explicitly by your application. 

To allocate the memory for a Bi tMap data structure, make a call to 
the Toolbox routine New Pt r ( ) . Pass the size of the Bi tMa p structure as the 
only parameter, and typecast the resulting generic pointer to a pointer 
that points to a Bi tMap: 

BitMap *theBitMapPtr; 

theBitMapPtr = (BitMap *)NewPtr( sizeof( BitMap ) ); 

The above statement allocates a block of memory the size of a BitMap 
structure, but doesn't provide values for any of the three fields of this 
data structure. Those values are dependent on the graphic image that is 
to be stored in the BitMap. As a refresher, here's another look at the 
BitMap data structure definition: 

struct BitMap 
{ 

} ; 

Ptr baseAddr; 
short rowBytes; 
Rect bounds; 

Begin by getting the bounding rectangle of the image that is to be 
stored in the new Bi tMa p. For instance, if the image is saved as a PI CT 
resource, load the PICT and find its framing rectangle from the pi cFrame 
field of the Picture structure that defines the picture. You can call the 
Toolbox routine OffsetRect() to ensure that the rectangle has a left 
coordinate of 0 and a top coordinate of 0-as done in this snippet: 

PicHandle thePicture; 
Rect theRect; 

thePicture = GetPicture( 128 ); 

theRect = (**thePicture).picFrame; 
OffsetRect( &theRect, - theRect.left, - theRect.top ); 



Chapter 5 • Animation 

The bounds field of a BitMap holds the bounding rectangle of the 
image. Use the Bi tMap pointer to access the bounds field, and set it to the 
bounding rectangle for the picture that is to be stored: 

theBitMapPtr->bounds = theRect; 

Determining the value that is to be stored in the rowBytes field requires 
a little work. You can get the number of bits in a row by simply looking 
at the width the picture's bounding rectangle: 

theRect.right - theRect.left 

Unfortunately, the rowBytes field is a byte value, not a bit value. And 
there is the byte padding to consider-rowBytes is always a multiple of 
two bytes. You can be assured that the image's rowBytes value includes 
the necessary padding, as follows. Begin by taking the bounding rectangle 
width and adding 7 to it, then divide by 8. This returns the number of 
bytes needed, without concern for padding. Adding 7 forces the division 
to return the correct byte value. For instance, if an image is 10 pixels 
wide, dividing by 8 would yield a byte value of 1 (the remainder gets 
truncated, or dropped). By adding 7, the 10 pixel width becomes 17, and 
division by 8 gives a 2-byte row value-as desired. 

BitMap *theBitMapPtr; 
Rect theRect; 

theBitMapPtr->rowBytes = (theRect.right - theRect.left + 7) I 8; 

Now it's time to consider the padding. To do this, divide the rowBytes 
value by 2 and examine the remainder (use the C modulus operator,%, 
to rehirn the remainder of an integer division). If rowBytes isn't an even 
value, increment it by 1 so that it is even: 

if ( ( theBitMapPtr->rowBytes % 2 ) != 0 
theBitMapPtr->rowBytes++; 

The following snippet shows how rowBytes can be calculated: 

BitMap 
Re ct 
short 

*theBitMapPtr; 
theRect; 
theTest; 

177 



178 
Graphics and Sound Programming Techniques for the Mac 

theBitMapPtr->rowBytes = (theRect.right - theRect.left + 7) I 8; 
theTest = theBitMapPtr->rowBytes I 2; 
if ( ( 2 * theTest ) != theBitMapPtr->rowBytes ) 

theBitMapPtr->rowBytes++; 

The last BitMap field to fill is the baseAddr field-the address at which the 
bit image will be stored. When memory is allocated for a Bi tMap structure, 
the memory for the BitMap itself isn't allocated. To do that, you'll need 
the byte size of the image. The rowBytes field tells how many bytes 
across the image is. This value multiplied by the bit height of the image 
gives the image size in bytes. For an example, refer back to Figure 5.1. 
Use the following code to verify that the graphic image in that figure 
requires an 18-byte bitmap. 

short theimageHeight; 
short theimageByteSize; 

theimageHeight = theRect.bottom - theRect.top; 
thelmageByteSize = theBitMapPtr->rowBytes * theimageHeight; 

With the size of the image calculated, allocate memory for the bitmap. 

theBitMapPtr->baseAddr = NewPtr( theimageByteSize ); 

Rather than using the BitMap directly, it will be accessed through a 
graphics port. This allows graphics environment information to be 

. saved along with the BitMap if desired. It also makes writing to the 
Bi tMap easy-Toolbox calls like Set Port() work on graphics ports. The 
allocation of a graphics port follows: 

GrafPtr theGrafPtr; 

theGrafPtr = (GrafPtr)NewPtr( sizeof( GrafPort ) ); 

To initialize the fields of the new graphics port, call the Toolbox function 
Open Port(). This call has the additional benefit of making the new graphics 
port the current port-something that needs to be done before a BitMap 
can be paired with the new port: 

BitMap *theBitMapPtr; 

OpenPort( theGrafPtr ); 
SetPortBits( theBitMapPtr ); 



Chapter 5 • Animation 

One of the fields of a graphics port is a Bi tMa p. Creating a new graph­
ics port doesn't associate the new Bi tMap that you've just created with the 
new graphics port. The call to the Toolbox function SetPortBits () does 
that. It matches the Bi tMap that is passed to it to whichever port is current. 

At this point, the new Bi tMa p is ready to be drawn to. Because you'll 
want to perform the above steps three times-once for each of the three 
offscreen Bi tMaps used in the animation-you'll want to turn the above 
steps into a function. The MakeNewBitMapAndSetPort() function accepts a 
pointer to a rectangle that holds the boundaries of a graphic image. The 
function then creates a new BitMap, creates a new graphics port, ties the 
two together, makes the graphics port current, and then returns a pointer 
to the new port. 

The MakeNewBitMapAndSetPort() function uses the coordinates of the 
passed-in rectangle, but doesn't make any changes to them. So the function 
doesn't need a pointer to the rectangle. Yet that's what gets passed to it. 

Macintosh C parameter-passing conventions state that a parameter that is 
greater than four bytes in size should be passed by reference-that is, as a pointer. A 

Rect variable is larger than four bytes, so it should be passed as a pointer. 

GrafPtr MakeNewBitMapAndSetPort( Rect *theRectPtr ) 
{ 

BitMap 
short 
short 
GrafPtr 

*theBitMapPtr: 
theimageHeight: 
thelmageByteSize; 
theGrafPtr: 

theBitMapPtr = (BitMap *)NewPtr( sizeof( BitMap ) ); 
if ( theBitMapPtr == nil ) 

ExitToShel l (); 

theBitMapPtr->bounds = *theRect; 

theBitMapPtr->rowBytes = (theRect->right - theRect->left + 7) I 8; 
if ( ( theBitMapPtr->rowBytes % 2 ) != 0 ) 

theBitMapPtr->rowBytes++; 

thelmageHeight = theRect->bottom - theRect->top; 
theimageByteSize = theBitMapPtr->rowBytes * thelmageHeight; 
theBitMapPtr->baseAddr = NewPtr( thelmageByteSize ); 
if ( theBitMapPtr->baseAddr ==nil ) 

ExitToShel l (): 

179 



180 

} 

Graphics and Sound Programming Techniques for the Mac 

theGrafPtr = (GrafPtr)NewPtr( sizeof( GrafPort ) ); 
if ( theGraf Ptr = ni 1 ) 

ExitToShell(); 

OpenPort( theGrafPtr ); 

SetPortBits( theBitMapPtr ); 

return( theGrafPtr ); 

Before calling MakeNewBitMapAndSetPort( ), obtain the bounding rectangle 
of the image that is to be drawn to the new BitMap. Then call the function. 
MakeNewBitMapAndSetport() will return a pointer to the new graphics 
port that holds the new Bi tMap. MakeNewBi tMapAndSetPort() makes this 
graphics port the current one, so any drawing that takes place will end 
up in the new Bi tMa p. If you're using a picture as the graphics image, the 
following snippet will draw that picture to the new Bi tMap. Remember, 
the drawing sets bit values in memory-it doesn't affect what the user 
sees in any open windows. 

GrafPtr theBackGrafPtr; 
PicHandle theBackPicture: 
Rect theRect: 

theBackPicture = GetPicture( 128 ); 

theRect = (**theBackPicture).picFrame; 
OffsetRect( &theRect, - theRect.left, - theRect.top ); 

theBackGrafPtr = MakeNewBitMapAndSetPort( &theRect ): 
DrawPicture( theBackPicture, &theRect ); 

Copying a BitMap 
After using a function like MakeNewBitMapAndSetport to create three 
BitMaps-one for the foreground image, one for the background image, 
and one to hold the combination of the other two-your program will 
need to copy images from one BitMap to another. As you've certainly 
surmised, Copy Bits ( ) is the Toolbox function that handles this chore. 

As part of the offscreen animation process, the background BitMap 
must be copied to the merge Bi tMap. Here's the Copy Bi ts() call that takes 
care of that task: 



GrafPtr theBackGrafPtr; 
GrafPtr theMergeGrafPtr; 

Chclptcrr 5 • Animation 

CopyBits( &(theBackGrafPtr->portBits), 
&(theMergeGrafPtr->portBits), 
&(theBackGrafPtr->portBits.bounds). 
&CtheMergeGrafPtr->portBits.bounds). 
srcCopy, 
nil ) ; 

At first glance, the six parameters to CopyBits() may make the function 
call seem a little imposing. This needn't be the case, though, as each 
parameter serves an easily understood purpose. Once you understand 
one call to CopyBits( ), all others will quickly be understood. The above 
snippet places each parameter on a separate line so that you can quickly 
see where one ends and the next begins. 

The first parameter is the Bi tMap that is to be copied-the source 
Bi tMap. The port Bi ts field of a graphics port is a Bi tMap. In the above 
example, theBackGraf Ptr is the Graf Ptr returned by a call to the appli­
cation-defined routine MakeNewBitMapAndSetPort( ). When that function 
created a BitMap, it associated it with a graphics port. Associated means 
that the function set the graphics port's portBi ts field to this Bi tMap. 

The second parameter to CopyBi ts () is the Bi tMap that is to be copied 
to-the destination BitMap. Again, the GrafPtr and BitMap used in the 
above snippet are the result of calling MakeNewBi tMapAndSetPort( ). 

The third parameter is the bounding rectangle of the source Bi tMap. 
Recall that the MakeNewBitMapAndSetport() routine placed the graphic 
image's bounding rectangle in the bounds field of the newly created 
BitMap, then put that BitMap in the portBits field of the newly created 
graphics port. The fourth parameter is the bounding rectangle of the 
destination BitMap. Because the first four parameters are all greater than 
four bytes in size, each is passed using the & operator. 

The fifth parameter to CopyBits() specifies a copy mode. The mode 
tells CopyBi ts () how the bits of the source image should be placed over 
the bits of the destination image. Using the Apple-defined constant 
srcCopy tells CopyBits() to stamp the source image over the destination 
image, obscuring anything under the source. Because the above snippet 
is copying the background Bi tMap to the destination Bi tMap, whatever 
currently lies at the destination should be covered by the background 

181 



182 
Graphics and Sound Programming Techniques for the Mac 

BitMap. If CopyBits() is being used in an animation loop, then the 
merge Bi tMap will hold the most recent frame of an animation. The 
background Bi tMap is now used to "erase" this frame-as shown in 
Figure 5.13. The next step (shown in the next snippet) will be to copy 
the foreground Bi tMap to the merge Bi tMap. 

The final parameter to CopyBits() is a RgnHandle that serves as a 
clipping mask. This mask will alter how the resulting image is clipped 
in the destination rectangle. Pass nil here to ignore this clipping mask. 

Before CopyBits () 

Background bitmap Merge bitmap 

After CopyBits () 

Background bitmap Merge bitmap 

FIGURE 5.13 The background Bi t Map is being used to erase 

what is about to become the previous scene in an animation. 

The previous snippet copied the background Bi tMap to the merge Bi tMap. 
The following snippet copies the foreground BitMap to the merge BitMap. 
Here, four of the six parameter values will change from the preceding 
call to CopyBits( ). 

Graf Ptr 
Graf Ptr 
short 
short 
Re ct 

theForeGrafPtr; 
theMergeGrafPtr; 
forelmageWidth; 
foreimageHeight; 
theRect; 



Chapter 5 • Animation 

SetRect( &theRect, 15, 15 , 15 + forelmageWidth, 15 + forelmageHeight ); 

CopyBits( &CtheForeGrafPtr->portBits), 
&CtheMergeGrafPtr->portBits), 
&CtheForeGrafPtr->portBits.bounds), 
&theRect, 
srcOr. 
n i l ) ; 

In the above snippet, the source Bi tMap is now theForeGrafPtr->portBits 
rather than theBackGrafPtr->portBi ts . The source-bounding rectangle is 
now theForeGrafPtr ->portBi ts. bounds rather than theBackGrafPtr->port­
Bi ts. bounds. The destination rectangle is now one that defines where 
the foreground image should be drawn-Figure 5.14 shows two examples. 
In the top part of this figure, the left top corner of the foreground Bi tMap 
is set to appear at point (15, 15). In the bottom part of the figure, the left 
top corner is set to appear at point (65, 15). 

Set Rec t ( &theRect, 15 , 15, 55, 55 ) ; 
CopyBits( . .. ) ; 

la\\ 6 G 
Foreground bitmap Merge bitmap 

Set Rect( &theRect, 65, 15, 105, 50 ) ; 
CopyBits( .. . ) ; 

~ 6 c> 
Foreground bitmap Merge bitmap 

FIGURE 5.14 The destination rectangle defines where the foreground 

Bi tMa p will be placed against the background Bi tMa p . 

183 



184 
Graphics and Sound Programming Techniques for the Mac 

Finally, the copy mode parameter to CopyBits () will now be s re Or 
rather than srcCopy. Using a mode of srcOr tells CopyBits() to copy only 
the black bits of the source Bi tMap to the destination Bi tMap. Where white 
bits appear in the source image, CopyBits () will allow destination bits 
to show through. Figure 5.15 illustrates. 

Before CopyBits ( l 

:r1: ~ ;········; 
· ··- - ·---·~ 

Foreground bitmap Merge bitmap 

After CopyBits () 

Forearound bitmap Merge bitmap 

FIGURE 5.15 Using the srcOr copy mode tells CopyB i ts () 
to copy only black bits from the source Bi tMap. 

Back in Figure 5.12 you saw the background Bi tMap being copied to the 

merge Bi tMap . In Figure 5.15, you see the foreground Bi tMap being 

copied to the merge Bi tMa p. These two steps follow one another to create 
N 0 TE a single frame in an animation. Notice that if these steps took place in a 

window-ra ther than in memory-the user would see flicker as the background 
Bi tMap covered the previous frame. 



Chapter 5 • Animation 

After the foreground image has been added to the merge Bi tMap, the 
merge Bi tMap is ready for display in a window. Another call to Copy Bi ts () 
takes care of this: 

GrafPtr theMergeGrafPtr; 
WindowPtr theWindow; 

CopyBits( &(theMergeGrafPtr->portBits), 
&(theWindow->portBits), 
&(theMergeGrafPtr->portBits.bounds), 
&(theWindow->portRect), 
srcCopy, 
nil ) ; 

In this third call to CopyBits() the source BitMap is theMergeGraf­
Ptr->portBi ts and the destination BitMap is the BitMap of the window that 
will display the animation-thew; ndow->portBi ts. Back in Figure 5.5, you 
saw that a WindowPtr points to the GrafPort field of a WindowRecord, and 
that the Graf Port field holds a BitMap field. 

The source rectangle in this call to CopyBits () is the bounding rec­
tangle of the merge BitMap: theMergeGrafPtr->portBits.bounds. The 
destination rectangle is the contents of the window-defined by the 
portRect field of the window's Graf Port. 

The image that is in the window just before this call to Copy Bi ts () is 
about to become the previous frame of the animation. That means that the 
merge BitMap that is now being copied to the window should obscure the 
contents of the window. Using the Apple-defined constant s recopy does that. 

Chapter Example: CopyBitsB&W 
The CopyBitsB&W program demonstrates how the Copy Bi ts ()function 
can be used to create smooth, flicker-free black-and-white animation. 
When the program runs, the user sees a small toothbrush moving up 
and down over a large set of teeth. A click of the mouse button ends the 
program. Figure 5.16 shows how CopyBitsB&W looks when running. 

185 



186 
<iraphic:s and Sound Programming Techniques for the Mac: 

N 0 TE 

New Window 

FIGURE 5.16 The CopyBitsB&W program in action. 

Dental students, dentists, and orthodontists-take note. The next edition of 

this book might use a Copy Bi ts ()example that also includes flossing. 

Figure 5.17 shows the two PICT resources used in the CopyBitsB&W pro­
ject. PICT 128, of course, serves as the background image and PICT 129 
becomes.the foreground image. 

::Ii PICTs from Cop BitsB&W.rsrc 

128 129 

FIGURE 5.17 The two PICT resources used in the CopyBitsB&W project. 



N 0 TE 

Chapter 5 • Animation 

Notice that the two PI CT resources are grayscale images. When you run 
the CopyBitsB&W program, however, the images will appear in mono­
chrome-the gray pixels will appear white. Later in this chapter, you'll see 

how to use Copy Bi ts ()with images with a greater pixel depth. 

CopyBitsB&W uses all of the techniques described earlier in this chapter. 
First, three Bi tMaps are created using the same application-defined 
MakeNewBitMapAndSetport() routine that you saw several pages back. 
Each time this function is called, a new BitMap is created and a pointer 
to the Graf Port that holds that Bi tMap is returned. 

Figure 5.18 shows the three Bi tMaps in memory. In the figure, you 
can see that the background and foreground BitMaps have been copied 
to the merge BitMap, and the merge BitMap is being copied to the win­
dow BitMap. 

th eBackGraf Ptr 

the MergeGraf Ptr 

eForeGraf Ptr I ~ 7 

"' 
..:£ 

F' 

-"> 

(' !~'. ............. , 
i~ .. ,\. i . . . 

0
: : 
' ' ' ' ' ' ' ' . ' 

: ......... .. ... ~ .. :: ............. ] 

th c 
~ ·· ···········-···················· 

'""'> 
:~,: : ,- ' •k ~- : 
: : 
' ' ' ' ' . : : 
' ' ' ' 

t .. ............ ~--~--------------1 
-= ,., ~Iii'""" Window 

~l 
> 

theWindow 

FIGURE 5.18 The CopyBitsB&W program uses three off 
screen Bi tMaps to produce flicker-free animation. 

187 



188 
Graphics and Sound Programming Techniques for the Mac 

The initial placement of the toothbrush is determined just after the 
toothbrush PICT is loaded into memory. The bounding rectangle for the 
picture is found and stored in the Rect variable theRect. Those coordinates 
are then used to determine the picture's width and height. After that, 
the coordinates are changed to match the desired starting location for 
the brush. When the program runs, the top left comer of the brush will 
initially appear at point (135, 50) of the window. The code that sets up 
the foreground BitMap rectangle follows: 

Re ct 
short 
short 
short 
short 

theRect; 
theWidth; 
theHeight; 
left= 135; 
top = 50: 

theWidth = theRect.right - theRect.left; 
theHeight = theRect.bottom - theRect.top; 
SetRect( &theRect, left, top, left+ theWidth, top+ theHeight ); 

Animation is carried out from within a whi 1 e loop. A counter in the loop 
body ensures that the brush moves down 50 pixels, then up 50 pixels, 
over and over. At passes 1 through 50 of the loop, the brush moves down. 
At passes 51 through 100, the brush moves up. At pass 101, the cycle 
starts anew. The count variable is set back to 1 and the top is incremented 
for the start of the downward brush stroke. The following snippet outlines 
the animation loop. 

short count = O; 

while 
{ 

++count; 

if ( count <= 50 ) 
++top; 

else if ( ( count > 50 ) && ( count <= 100 ) ) 
-top; 

else 
{ 

} 

count 1; 
++top; 



Chapter 5 • Animation 

II copy background BitMap to merge BitMap 

SetRect( &theRect, left, top, left+ theWidth, top+ theHeight ); 

II copy foreground BitMap to merge BitMap 

II copy merge BitMap to window BitMap 
} 

Now, the complete listing of CopyBitsB&W follows: 

//define 
//define 
//define 

rDisplayWindow 
rBackPicture 
rForePicture 

128 
128 
129 

II~~~~~~~~~~~~~~~~~~~~~~~~~-

void InitializeToolbox( void ); 
GrafPtr MakeNewBitMapAndSetPort( Rect * ); 

void main( void ) 
{ 

WindowPtr 
Graf Ptr 
Graf Ptr 
Graf Ptr 
PicHandle 
PicHandle 
Re ct 
short 
short 
short 
short 
short 

theWindow; 
theBackGrafPtr: 
theForeGrafPtr: 
theMergeGrafPtr; 
theBackPicture; 
theForePicture; 
theRect; 
theWidth: 
theHeight; 
left = 135: 
top = 50; 
count = O; 

InitializeToolbox(); 

HideCursor(); 

theBackPicture = GetPicture( rBackPicture ); 
if ( theBackPicture ~ nil ) 

ExitToShell(); 

189 



190 
Graphia and Sound Programming Techniques for the Mac 

theRect = (**theBackPicture).picFrame; 
OffsetRect( &theRect, - theRect.left. - theRect.top ); 

theWidth = theRect.right - theRect.left; 
theHeight = theRect.bottom - theRect.top; 

theWindow = GetNewWindow( rDisplayWindow, nil. (WindowPtr)-lL ); 
SizeWindow( theWindow. theWidth, theHeight. true ); 
ShowWindow( theWindow ); 

theBackGrafPtr = MakeNewBitMapAndSetPort( &theRect ); 
DrawPicture( theBackPicture, &theRect ); 

theMergeGrafPtr = MakeNewBitMapAndSetPort( &theRect ); 

theForePicture = GetPicture( rForePicture ); 
if ( theBackPicture == nil ) 

ExitToShell (); 

theRect = (**theForePicture).picFrame; 

theWidth = theRect.right - theRect.left; 
theHeight = theRect.bottom - theRect.top; 
SetRect( &theRect, left. top, left+ theWidth, top+ theHeight ); 

theForeGrafPtr = MakeNewBitMapAndSetPort( &theRect ); 
DrawPicture( theForePicture. &theRect ); 

while ( !Button() 
{ 

++count; 

if ( count <= 50 ) 
++top; 

else if ( ( count > 50 ) && count <= 100 ) ) 
-top; 

else 
{ 

} 

count l; 
++top; 

CopyBits( &(theBackGrafPtr->portBits). 
&(theMergeGrafPtr->portBits), 
&(theBackGrafPtr->portBits.bounds), 
&CtheMergeGrafPtr->portBits.bounds), 
srcCopy, 



} 
} 

Chapter 5 • Animation 

n i 1 ) ; 

theRect = theForeGrafPtr->portBits.bounds; 

SetRect( &theRect, left, top, left+ theWidth, top+ theHeight ); 

CopyBits( &(theForeGrafPtr->portBits), 
&(theMergeGrafPtr->portBits), 
&(theForeGrafPtr->portBits.bounds), 
&theRect, 
srcOr, 
nil ) ; 

CopyBits( &(theMergeGrafPtr->portBits), 
&<theWindow->portBits), 
&<theMergeGrafPtr->portBits.bounds), 
&(theWindow->portRect), 
srcCopy, 
nil ) ; 

//~~~~~~~~~~~~~~~~~~~~~~ 

GrafPtr MakeNewBitMapAndSetPort( Rect *theRectPtr ) 
{ 

BitMap 
short 
short 
Graf Ptr 

*theBitMapPtr; 
thelmageHeight; 
thelmageByteSize; 
theGrafPtr; 

theBitMapPtr = (BitMap *)NewPtr( sizeof( BitMap ) ); 
if ( theBitMapPtr == nil ) 

ExitToShell (); 

theBitMapPtr->bounds = *theRectPtr; 

theBitMapPtr->rowBytes = 
(theRectPtr->right 

if ( ( theBitMapPtr->rowBytes % 2 
theBitMapPtr->rowBytes++; 

- theRectPtr->left + 7) I 8; 
!= 0 ) 

thelmageHeight = theRectPtr->bottom - theRectPtr->top; 
thelmageByteSize = theBitMapPtr->rowBytes * thelmageHeight; 
theBitMapPtr->baseAddr = NewPtr( thelmageByteSize ); 
if ( theBitMapPtr->baseAddr == nil ) 

ExitToShell (); 

191 



192 
Graphics and Sound Programming Techniques for the Mac 

} 

theGrafPtr = (GrafPtr)NewPtr( sizeof( GrafPort ) ); 
if ( theGrafPtr == nil ) 

ExitToShell (): 

OpenPort( theGrafPtr ); 
SetPortBits( theBitMapPtr ); 

return( theGrafPtr ); 

Color Animation and GWorlds 
Monochrome is boring. Color is cool. If you're like most programmers, 
you might have skipped the preceding section that dealt with black­
and-white animation and jumped right to this section. If you did, 
please, go back and read it now. That section's in-depth discussion of 
offscreen animation, and its example program that uses CopyBits ( ), 
provides much of the background for the topics presented in the 
remainder of this chapter. 

Color Images and PixMaps 
Earlier you saw that the Bi tMap is used to keep track of a monochrome 
graphical image. A reminder of what the BitMap data structure looks 
like follows: 

struct BitMap 
{ 

} ; 

Ptr baseAddr; 
short rowBytes: 
Rect bounds; 

For color images, a pixel map is used. The Pi xMap data structure is used 
to keep track of a color image. Color images require more data, and the 
Pi xMap data structure reflects that fact. 

struct PixMap 
{ 



Chapter 5 • Animation 

Ptr baseAddr; 
short rowBytes; 
Re ct bounds; 
short pmVersion; 
short packType; 
long packSize; 
Fixed hRes; 
Fixed vRes; 
short pixel Type; 
short pixel Size; 
short cmpCount; 
short cmpSize; 
long planeBytes; 
CTabHandle pmTable; 
long pmReserved; 

} ; 

As you look at the Pi xMap definition, you'll notice that its first three 
fields are the same as the three fields that make up the Bi tMap data 
structure. Like the Bi tMap, the Pi xMap doesn't hold the data that makes up 
an image. Instead, it holds a pointer to that data, along with additional 
descriptive information. 

Pixel Maps. Color Graphics Ports. and the GWorld 
QuickDraw uses a Graf Port and a BitMap to display the black-and-white 
contents of window. Color QuickDraw uses a CGraf Port and a Pi xMap to 
display the color contents of a window. In your study of monochrome 
animation, you saw that Bi tMaps and Graf Ports can exist without 
windows-they can be created off screen. For monochrome animation, 
you created three offscreen Graf Ports (accessed through Graf Ptr vari­
ables), each of which held a BitMap. You'll use a similar approach for 
color animation. Instead of creating GrafPorts, however, you'll create 
CGrafPorts (accessed through CGraf Ptr variables), each of which will 
hold a pixel map. 

Because color graphics ports are complex structures, Apple has 
defined a special environment that makes working with the CGraf Port 
and the PixMap easier. The offscreen graphics world, or GWorld, exists to 
simplify working with offscreen color images. The GWorld is based on 
the CGraf Port-the first field of a GWorld is a color graphics port. When 

193 



194 
Graphics and Soand Programming Techniques for the Mac 

you work with a GWorld, your program will use a GWorl dPtr. This 
pointer points to the first field of the GWorld, the CGraf Port field. 

After the color graphics port, remaining fields of the GWorld data 
structure are private-you won't find them listed in the universal header 
files. Because there is no GWorld data structure to point to, a GWorl dPtr 
is defined to be a CGraf Ptr: 

typedef CGrafPtr GWorldPtr: 

Keeping the contents of a GWorld private is all right with you, the pro­
grammer-a graphics world is supposed to provide you with a simple 
interface for working with offscreen color images. As such, there is no 
need for your program to manipulate individual GWorld fields. Toolbox 
routines will handle those tasks. 

Checking for the Availability of GWorlds 
Before using color graphics worlds, verify that the user's machine 
supports this feature of Color QuickDraw. As you've seen in previous 
chapters, calling a simple application-defined routine that returns a 
Boolean value works well. In this chapter, that function is AreGWorlds­
Avai 1 able(): 

Boolean graphicsWorldsPresent: 

graphicsWorldsPresent = AreGWorldsAvailable(); 
if ( graphicsWorldsPresent == false ) 

Exi tToShel l (): 

The AreGWorl dsAvai 1 able() function makes a call to Gestalt() with a 
selector code of gestaltQuickdrawFeatures. Like some other selector 
codes, the gestaltQuickdrawFeatures selector returns more than one 
piece of information in the response parameter. To extract the needed 
information, use the left shift operator on the gestal tHasDeepGWorl ds 
bit and perform a logical AND on the shifted value and response para­
meter. If the bit in question-gestal tHasDeepGWorl ds is turned on, then 
color graphics worlds are supported and a value of true should be 
returned to the calling routine. 



Boolean AreGWorldsAvailable( void ) 
{ 

OS Err 
long 
Boolean 

theError; 
the Result; 
WO r 1 dA v ail ; 

Chapter S • Animation 

theError =Gestalt( gestaltQuickdrawFeatures, &theResult ); 
if ( theError != noErr ) 

ExitToShel 1 (); 

worldAvail = theResult & C 1 << gestaltHasDeepGWorlds ); 
if ( worldAvail > 0 ) 

return ( true ); 
else 

return false ); 
} 

Creating a GWorld and its PixMap 
The Toolbox function NewGWorl dC) is used to create a color offscreen graph­
ics world. Before calling NewGWorl d C) your program should establish the 
size of the pixel map that the graphics world will use to hold a pixel image. 
Typically, a graphics world will be the size of a picture that will be used 
as a moving object in an animation. The following snippet sets a global 
Rect variable to the size of a picture stored in a PICT resource. To ensure 
that the rectangle has its top left coordinate at point (0, 0), OffsetRect C) 
is called. 

#define rForePicture 128 

Rect gGWorldPixMapRect; 
PicHandle theForePicture; 

theForePicture = GetPictureC rForePicture ); 
gGWorldPixMapRect = C**theForePicture).picFrame; 
OffsetRect( &gGWorldPixMapRect, - gGWorldPixMapRect.left, 

- gGWorldPixMapRect.top ); 

Next, NewGWorldC) is called to create a new graphics world-as shown 
in this snippet: 

GWorldPtr gForeGWorldPtr; 

195 



196 
Graphics and Soand Programming Techniques for the Mac 

theError = NewGWorld( &gForeGWorldPtr, 0, &gGWorldPixMapRect, 
nil, nil, noNewDevice ); 

When NewGWo r 1 d ( ) has completed execution, the first parameter will hold 
a pointer to a newly created graphics world. The remaining parameters 
supply NewGWorl dC) with information about some of the properties the 
new GWorld should be created with. 

The second parameter to N ewGWo r 1 d < > is the pixel depth for the off­
screen world. The pixel depth is the number of bits used to hold color 
information about a single pixel. Passing a value of O tells NewGWorl d() 
to determine the pixel depth to use. If only one monitor is in use, 
NewGWorl d() will then use the pixel depth of that monitor. If more than 
one monitor is in use, NewGWorl d( > will determine which monitor, or 
monitors, the rectangle used as the third parameter is found. The pixel 
depth of the screen with the greatest pixel depth will then be used. 

The third parameter is the bounding rectangle to be used for the 
pixel map that is a part of the new graphics world. The fourth parameter 
to NewGWorl d( >is a handle to a color table. Passing a ni 1 value here (and 
a value of O as the second parameter) tells NewGWo r 1 d ( ) to use the color 
table of the monitor used to determine the pixel depth. 

The fifth parameter specifies which graphics device should be used. 
Passing a value of ni 1 here tells NewGWorl d () to use the GDevi ce structure 
of the monitor used to determine the pixel depth. 

The final parameter to NewGWorldC >allows your program to supply 
optional information about the new graphics world. Passing the Apple­
defined constant noNewDevice tells NewGWorld() to not create a new 
GDevi ce structure. 

When working with an offscreen graphics world, you'll often be 
accessing the graphics world's pixel map. Because the internals of the 
GWorld are private, the Toolbox provides a function that returns this 
pixel map to your program. That means your code won't have to worry 
about where in the GWorld structure the Pi xMap field is located. You can 
call the Toolbox function GetGWorldPixMap() to get a PixMapHandle to a 
graphics world Pi xMap: 

PixMapHandle gForePixMap; 

gForePixMap = GetGWorldPixMap( gForeGWorldPtr ); 



Chapter 5 • Animation 

Pass GetGWorl dPi xMapC) a pointer to a graphics world and the function 
will return a handle to that graphics world's pixel map. Figure 5.19 shows 
what happens when GetGWorl dPi xMapC) is called. In the figure, you can see 
that a GWorld contains a Pi xMapHandl e as one of its fields. Like any handle, 
the Pi xMapHandl e points to a master pointer, which in turn points to the 
desired structure. GetGWorl dPi xMapC) takes care of determining where 
the GWorld Pi xMapHandl e points to, and returns this value to your program. 
Your program can store this information in a local or global Pi xMapHandl e 

variable. As your program executes, this variable should be used to 
access the GWorld's pixel map. 

J PixMapHandle 

Master pointer 

FIGURE 5.19 GetGWorl dPi xMap() returns a handle to a GWorld's pixel map. 

A Pi xMapHandl e points to a master pointer. The master pointer points to a 

Pi xMap. The Pi xMap has a baseAddr field that points to an area in memory 

that holds the actual pixel image. Figure 5.19 doesn't show where the 

baseAddr field leads-it just shows the pixel map you'll find at whatever 

location bas eAdd r references. 

197 



198 
Graphics and Sound Programming Techniques for the Mac 

<Ising CiWorlds for Animation 
The pixel map that is a part of a graphics world is used in color animation 
much as the Bi tMap is used in monochrome animation. Figure 5.20 shows 
that an animation uses four pixel maps: three of the pixel maps are from 
GWorlds, while the fourth holds the contents of a color window . 

• ~----. ~ ~nd pixel map 

:- ·: 
: = =~~~~'i\'I 

Window pixel map 

PixMapHandles 

Master pointers 

FIGURE 5.20 Color animation uses three offscreen pixei maps. 

Figure 5.20 hints that in this book color animation will employ a different 
strategy than was used for black-and-white animation. For monochrome 



Chapter 5 • Animation 

animation, the background and merge offscreen BitMaps were the same 
size as the window that was to display the animation. For color animation, 
all three offscreen pixel maps will be the size of the offscreen foreground 
pixel map-that means that each of the offscreen pixel maps will be 
smaller-usually much smaller-than the window pixel map that displays 
the animation. Because there's much more data for the Mac to keep track 
of in the display of color than there is in the display of black and white, 
this approach will keep the animation moving quickly. 

CopyBits () and Color Animation 
You saw earlier that one way to perform monochrome animation was to 
save the entire background to a merge Bi tMap, then overlay the fore­
ground Bi tMap onto the merge Bi tMap, and then copy this combined 
BitMap to the animation window Bi tMap. For color animation, a few 
extra steps are necessary. 

Over the next several pages you'll see how the CopyBits() Toolbox 
function can be used to move an object a single pixel from left to right 
in a window. While this may not seem like a lofty goal, keep in mind 
that once you understand how the object moves smoothly across this 
short distance, you'll know everything you need to about animation­
further movement of the object is done by simply looping through the 
code described here. 

Figure 5.21 shows what the animation window looks like for the 
example that will be examined next. In this window, a very small framed 
rectangle (six pixels by five pixels) moves across a background that 
includes several vertical lines. The movement of this object will be illus­
trated in several figures-each of which includes enlarged views of the 
four pixel maps used in the animation. Figure 5.21 gives you an idea of 
how a pixel map will be shown in the figures. · 

199 



200 
Graphics and Sound Programming Tczchniquczs for thcz Mac 

Animation window 

'11!i~ Window ~ 

11 ~ 1 I 
' 

l l l 
Enlarged view of a section of the above window 

FIGURE 5.21 The figures used to clarify the following example 

will include an enlarged view of an area of a window. 

Before stepping through the copying of pixel maps, the GWorlds and 
Pi xMa pHandl es have to be set up. The following global variables will be 
used in the upcoming example: 

GWorldPtr 
GWorldPtr 
GWorldPtr 
PixMapHandle 
Pi xM apHandle 
PixMapHandle 
Re ct 
Re ct 
WindowPtr 

gForeGWorldPtr; 
gBackGWorldPtr; 
gMergeGWorldPtr; 
gForePixMap; 
gBackPixMap; 
gMergePixMap; 
gGWorldPixMapRect; 
gWindowPixMapRect; 
gDisplayWindow; 

The three GWo r 1 d Pt r variables will be used in calls to NewGWo r 1 d C ) to create 
three new graphics worlds. After that, the Pi xMapHandle variables 
(obtained from calls to Get GWo r l ct Pi xM a p C ) ) will be used to access the off-



Chapter 5 • Animation 

screen pixel maps. The gGWorl dPi xMapRect variable establishes the size 
of each of the three offscreen pixel maps. This rectangle will have a top 
left point of (0, 0), and its coordinates won't change as the program 
runs. The gWi ndowPi xMapRect will be the same size as the pixel map rec­
tangle-but it won't be normalized to (0, 0) . And its coordinates will 
change. This rectangle will be used to hold the coordinates of a rectangle 
in the animation window. The rectangle will be the area involved in the 
animation at any given moment. See Figure 5.22 for clarification. 

Animation window 

,.[fil~ Window~ 

(30, 40~~ar~ed ~~.~ o'._.r:_a_~ of the_w~n~_o_".' 

I·-··- -t-_, 
l-l-+-11-f-- 1--t-' 

..... -··- 1-- -·- - ···-- ··- ---·· 

1--t--C 
1--t-' 
;-r 

'--'---'---' __ -'---9 ... t----'t-'--""!:ii.."'-'<J'i\i '--'--. 

(38, 47) 

FIGURE 5.22 A global Re ct variable will be used 

to keep track of a rectangle in the animation window. 

In Figure 5.22, the solid-framed rectangle that will be the moving object 
has not yet been drawn to the window. Instead, the window at the top 
of the figure shows two dashed rectangles . These rectangles won't 
appear in the animation-they're shown merely as a reference to where 
the animation will be taking place. The larger rectangle represents the area 
of the window that will be shown in an enlarged view in the following 
figures. The inner rectangle represents the area of the window that the 

201 



202 
Graphics and Sound Programming Techniques for the Mac 

program will be working with. This rectangle serves two purposes. 
First, the area in this rectangle will be copied to preserve the current 
background. Second, this is the area in which the merge pixel map will 
be drawn-notice that this rectangle is the same dimensions as the off­
screen pixel maps. As the animation moves to the right, one pixel at a 
time, the coordinates of this rectangle will change, one pixel at a time. 

Near the start of the program, the GWorlds and PixMapHandles are 
set up. The following application-defined function performs these 
tasks. CreateGWorldsAndPixMaps() loads the picture that will serve as 
the foreground into memory. When created in a paint or draw program, 
this picture should be created with a one-pixel-wide white border­
you'll see why as the example progresses. CreateGWorl dsAndPi xMaps () 
uses the size of this picture to establish the size of the pixel maps used 
by the three graphics worlds-which are created next. Handles to the pixel 
maps are then obtained by calling the Toolbox function GetGWorl dPi xMap() 
three times. Finally, the foreground GWorld is made the current port 
and the picture is drawn to it. 

void CreateGWorldsAndPixMaps( void ) 
{ 

PicHandle theForePicture; 
QDErr theError: 

theForePicture = GetPicture( rForePicture ); 
if ( theForePicture == nil ) 

ExitToShell (): 

gGWorldPixMapRect = C**theForePicture).picFrame: 
OffsetRect( &gGWorldPixMapRect, - gGWorldPixMapRect.left, 

- gGWorldPixMapRect.top ); 

theError = NewGWorld( &gForeGWorldPtr, 0, &gGWorldPixMapRect, 
nil. nil . noNewDevi ce ) : 

theError = NewGWorld( &gBackGWorldPtr, 0, &gGWorldPixMapRect, 
nil • nil, noNewDevi ce ) : 

theError = NewGWorld( &gMergeGWorldPtr, 0, &gGWorldPixMapRect, 
nil. nil. noNewDevi ce ) : 

gForePixMap = GetGWorldPixMap( gForeGWorldPtr ); 
gBackPixMap = GetGWorldPixMap( gBackGWorldPtr ); 
gMergePixMap = GetGWorldPixMap( gMergeGWorldPtr ); 

SetGWorld( gForeGWorldPtr. nil ) : 



Chapter 5 • Animation 

DrawPicture( theForePicture, &gGWorldPixMapRect ); 

Each of the next several figures will include four pixel maps-as shown 
in Figure 5.23. The three pixel maps on the left of the figure are the off­
screen pixel maps that are each a part of an offscreen graphics world. 
For each of these pixel maps, the entire pixel map is shown-seven 
rows of eight pixels. The larger pixel map on the right of the figure 
represents a part of the window pixel map. Since the traveling rectangle 
will only be shown moving a single pixel from left to right, only a part 
of the window pixel map is needed to demonstrate what's going on. 

Foreground pixel map 

Merge pixel map 

Part of the animation window pixel map 

............. L.L .. 
Background pixel map 

FIGURE 5.23 The next several figures will use this format 
to display the contents of pixel maps. 

The object that will be traveling across the window is first drawn to the 
offscreen foreground pixel map. Drawing that normally takes place in a 
window can be directed to an offscreen graphics world by first calling 
SetGWorl d( ). Because a pointer to a graphics world is also a pointer to a 
color graphics port, subsequent calls to QuickDraw routines like 
DrawPi cture() will result in drawing taking place off screen-as shown 

203 



204 
Graphics and Sound Programming Techniques for the Mac 

in Figure 5.24. As mentioned, when the picture was copied from the 
paint program in which it was created, a border of white pixels was 
included. The foreground pixel map includes this border. 

(O,O·-i-············-l---l 
! I ; 

:+ ::: :tl:: .. ~ .. •1 
Merge pixel map 

~i?=i·~ 
Background pixel map 

Part of the animation window pixel map 

SetGWorld ( gForeGWorldPtr, nil ) ; 
OrawPicture ( theForePicture, 

&gGWorld?ixMapRect ); 

FIGURE 5.24 A picture can be drawn to an offscreen 
pixel map using a call to DrawPi cture(). 

Animation will take place from within a loop. Before starting the loop­
and before the object is first drawn to the window-the area of the window 
that is to hold the object is preserved. A simple application-defined routine 
named Prep a reForAni mat ion () handles this chore. 

void PrepareForAnimation( void ) 
{ 

gWindowPixMapRect = gGWorldPixMapRect; 
OffsetRect( &gWindowPixMapRect, 30, 40 ); 

CopyBits( &(gDisplayWindow->portBits), (BitMap *)(*gBackPixMap), 
&gWindowPixMapRect, &gGWorldPixMapRect, srcCopy, nil ); 

CopyBits( (BitMap *)(*gBackPixMap), (BitMap *)(*gMergePixMap), 



Chapter 5 • Animation 

&gGWorldPi xMapRect , &gGWorldPixMapRect, srcCopy, nil ); 

PrepareForAnimati on() begins by setting the coordinates of the window 
rectangle. First, gWindowPixMapRectC) is set to the size of the pixel map 
rectangles-gGWorldPixMapRect. That gives the rectangle coordinates of 
(0, 0, 8, 7). A call to OffsetRect() moves this rectangle to the onscreen 
location where the animation is to start. This example starts the animation 
in a rectangle at coordinates (30, 40, 38, 47). Figure 5.25 shows how the 
examples pixel maps look at this point. 

(O,O.i 
1- -
! --· 

r -
! [ 

Foreground pixel map 

Merge pixel map 

Background pixel map 

r-i-·- ·-· ...... r.... ··-T····· -···r··- ............. ! 
(30, 40) ~R--JJ_t-+-___ -+-+-+-H 

i ± --i ---- --j 
1 
1 

J 

Part of the animation window pixel map 

gWindowPixMapRect = gGWorldPixMapRect; 
OffsetRect ( &gWindowPixMapRect, 30, 40 ) ; 

FIGURE 5.25 A rectangle is set up in the animation window. 

Prepa reF o rAn i mat ion ( ) makes two calls to CopyB it s ( ) . The first call saves 
the gWi ndowPi xMapRect area to the offscreen background pixel map-as 
shown in Figure 5.26. From this chapter's introduction to CopyBits ( ), 
you'll recall that the first and second parameters to this function must 
each be a pointer to a BitMap. For color animation, though, you'll be 
working with the Pi xMap data type. That means that some typecasting 

205 



206 
Graphics and Sound Programming Tczchniquczs for thcz Mac 

will be in order. In this first call to CopyBits( ), the source pixel map is 
the window's pixel map. Because gDi spl ayWi ndow has been declared to 
be a Wi ndowPtr, no typecasting is needed here-the port Bi ts field of the 
Graf Port that a Wi ndowPtr points to is defined to be a Bi tMap. The destina­
tion pixel map gBackPi xMap, though, needs to be typecast. Dereferencing 
this Pi xM apHandl e once provides its pointer. Using (Bi tMap *)to typecast 
the result satisfies CopyBi ts C). 

CopyBits( &CgDisplayWindow->portBits), CBitMap *)(*gBackPixMap), 
&gWindowPixMapRect, &gGWorldPixMapRect. srcCopy, nil ); 

(0,0·i-- ·_ 

I I 

I- I-

Foreground pixel map 

Merge pixel map 

(0, 0) 
i I ~F- - -fT 

I J_ 
I I +- -H 

FF 1--f-- -t-i 

u I 

Background pixel map 

rM-rM-- !­
(30, i-40f-) HH-a+--

Part of the animation window pixel map 

CopyBits ( & (gOisplayWindow->portBits) , 
(BitMap *) (*gBackPixMap), 
&gWindowPixMapRect, 
&gGWorldPixMapRect, 
srcCopy, nil ) ; 

FIGURE 5.26 The contents of the animation window rectangle 

are copied to the offscreen background pixel map. 

The second call to Copy Bits C) copies the offscreen background pixel 
map to the offscreen merge pixel map-as shown in Figure 5.27. Recall 
that the rectangle gGWorl dPi xMa pRect has (and will have throughout the 
program) coordinates of (0, 0, 8, 7). 



Che1pter 5 • flnime1tion 

CopyBits( (BitMap *)(*gBackPixMap), (BitMap *)(*gMergePixMap), 
&gGWo r l d Pi xMa p Re ct. &gGWo r l d Pi xMa p Re ct. s recopy. nil ) ; 

Foreground pixel map (0,0-
Btil§ 

Merge pixel map 

(O , ~.l)T_ ------ - -------

h -- . -
l~~ ·-· - ~- -~ - · 

Background pixel map 

.... - +- ++ 

f- - --- 1- - -t- I- - - -- -] 

1 j 
!--+-+--- --1-

Part of the animation window pixel map 

Copy Bits( (BitMap "') (*gBackPix:Map), 
(BitMap *) (*gMergePi xMap), 
&gGWo r ldPixMapRect, 
&gGWorldPixMapRect, 
srcCopy , nil I ; 

FIGURE 5.27 The contents of the offscreen background pixel map 

are copied to the offscreen merge pixel map. 

The remainder of the animation is handled from within a loop. Each pass 
through the loop executes a function that calls CopyBi ts () five times. A 
typical version of this application-defined function follows: 

void AnimateOneFrame( void ) 
{ 

Rect theTempRect; 

theTempRect - gGWorldPixMapRect; 
OffsetRect( &theTempRect, 1, Q ); 

CopyBits( (BitMap *)(*gForePixMap), (BitMap *)(*gMergePixMap), 
&gGWorl dPi xMapRec~, &theTempRect. transparent. nil ) ; 

CopyBits( (BitMap *)(*gMergePixMap), &(gDisplayWindow->portBits), 
&gGWorldPixMapRect, &gWindowPixMapRect, srcCopy, nil ); 

207 



208 

} 

Graphics and Soand Programming Techniques for the Mac 

OffsetRect( &gWindowPixMapRect, 1. 0 ); 

CopyBitsC &(gDisplayWindow->portBits), CBitMap *)(*gMergePixMap), 
&gWindowPixMapRect, &gGWorldPixMapRect, srcCopy, nil ); 

theTempRect = gGWorldPixMapRect; 
OffsetRect( &theTempRect, -1, 0 ); 

CopyBits( CBitMap *)(*gBackPixMap), CBitMap *)(*gMergePixMap), 
&gGWorldPixMapRect, &theTempRect, srcCopy, nil ); 

CopyBits( CBitMap *)(*gMergePixMap), CBitMap *)(*gBackPixMap), 
&gGWorldPixMapRect, &gGWorldPixMapRect, srcCopy, nil ); 

The AnimateOneFrame() function begins by setting up a temporary rectangle 
that is shifted one pixel in the direction of the animation movement­
one pixel to the right. A temporary Re ct variable is used so that gGWo r l d -
Pi xMapRect retains its normalized coordinates. The gGWorl dPi xMapRect 
rectangle was used to define offscreen pixel maps that have a top left 
coordinate of (0, 0). In CopyB its C ) calls it will serve as a reference that 
can be used to grab any pixel map (which exists in a pixel map that has 
(0, 0) as its top left point). For that reason, gGWorl dPi xMapRect should 
preserve its original coordinates. 

Rect theTempRect; 

theTempRect = gGWorldPixMapRect; 
OffsetRect( &theTempRect, 1, 0 ); 

CopyBits( CBitMap *)(*gForePixMap), CBitMap *)(*gMergePixMap), 
&gGWorldPixMapRect, &theTempRect, transparent. nil ); 

The Copy Bi ts C) call copies the offscreen foreground pixel map to the 
offscreen merge pixel map. gGWorl dPi xMapRect is used as the source rectan­
gle, so the entire foreground pixel map is copied. The shifted temporary 
rectangle is used as the destination, so the foreground will appear in the 
merge pixel map shifted one pixel to the right-as shown in Figure 5.28. 
The rightmost column of foreground pixels will be cut off. That's all 



Chapter 5 • Animation 

right, since the foreground picture was intentionally created with an 
"empty" one pixel border. The Apple-defined constant transparent is 
used as the copy mode. This mode tells CopyBits () to ignore any white 
pixels in the source pixel map. 

~ 
N 0 TE 

For black-and-white BitMap copying, the srcOr copy mode was used to 

ignore white pixels. For color copying, use transparent instead. This mode 

actually tells Copy Bi ts () to ignore all source pixels that don't match the 

destination background color. This background is usually-but not 
always-white. Color windows may have a nonwhite background. 

, ..• 
Foreground pixel map 

'" ltllD 
Merge pixel map 

Background pixel map 

(30,,4q) +-l-f-1111--t-m..-_L+
1

-tl--l-+--
1
Hi_

1 

-!-++--1-j 
_[ I 

_i ' 

Part of the animation window pixel map 

theTempRect = gGWorldPixMapRect; 
OffsetRect ( &theTempRect, 1, 0 l : 
CopyBits( (BitMap •) (*gForePixMap), 

(BitMap *) (*gMergePixMap), 
&gGWorldPixMapRect, 
&theTempRect, 
transparent, nil ) ; 

FIGURE 5.28 The contents of the offscreen foreground pixel map are shifted 

on pixel to the right, then copied to the offscreen merge pixel map. 

The next call to Copy Bi ts ()blasts the offscreen pixel map to the window­
as shown in Figure 5.29. Since this is the first rectangle object to be drawn 
to the window, no movement will be noticed. The next pass through the 

209 



210 
Graphics and Sound Programming Techniques for the Mac 

loop will provide proof that this call to Copy Bi ts () shifts the object one 
pixel to the right. 

CopyBits( (BitMap *)(*gMergePixMap), &Cg Di splayWindow->portBits), 
&gGWorldPixMapRect, &gWindowPixMapRect, srcCopy, nil ); 

,,. 
Foreground pixel map 

Merge pixel map 

''II 
Background pixel map 

Part of the animation window pixel map 

CopyBits ( (BitMap *) (*gMergePixMap), 
& ( gDisplayWindow->portBi ts) , 
&gGWorldPixMapRect. 
&gWindowPixMapRect, 
srcCopy, ni 1 ) ; 

FIGURE 5.29 The contents of the offscreen merge pixel map 

are copied to the rectangle in the animation window. 

There are three calls to CopyB its () remaining in the An i mateOneFrame () 
function. Preparation for the next frame of animation- one that will be 
drawn one pixel to the right of the one that was just copied to the 
window- begins with the first call. First, the global rectangle variable 
gWi ndowPi xMapRect-the rectangle that keeps track of where in the 
window animation is taking place-is offset by a single pixel. Compare 



Chapter 5 • Animation 

Figure 5.30 to Figure 5.29 to see that the window rectangle does indeed 
enclose an area one pixel to the right of the previous area. 

OffsetRect( &gWindowPixMapRect, 1. 0 ); 

Foreground pixel map (00. 
Merge pixel map 

(0,0.) 
' . 
. 

Part of the animation window pixel map 

OffsetRect ( &gWi ndowPixMapRect, 1, 0 ) ; 

Background pixel map 

FIGURE 5.30 After the object is drawn to the window, 

the window rectangle is shifted one pixel to the right. 

A call to Copy Bits ( ) copies the newly enclosed area of the window to the 
offscreen merge pixel map. Figure 5.31 illustrates. As you'll soon see, 
this step is necessary in order to preserve the new pixels that are now in 
the window rectangle- the rightmost column of pixels. 

CopyBits( &(gDisplayWindow->portBits). (BitMap *)(*gMergePixMap), 
&gWindowPi xMapRect, &gGWorldPixMapRect, srcCopy, nil ); 

211 



212 
Graphics and Sound Programming Techniques for the Mac 

Foreground pixel map 

Merge pixel map 

(0,0··-· --· 
! I 
t 

L -
Background pixel map 

Part of the animation window pixel map 

CopyBits ( & (OisplayWindow- >portBits), 
(BitMap *) (*gMergePix.Map), 
&gWindowPixMapRect, 
&gGWorldPixMapRect, 
srcCopy, nil ) ; 

FIGURE 5.31 The contents of the animation window rectangle 

are copied to the offscreen merge pixel map. 

Once again, the temporary rectangle is set to match the coordinates of 
the offscreen pixel map rectangle. Titis time, though, the temporary rectan­
gle is then shifted one pixel to the left rather than one pixel to the right. 
A call to CopyBi ts () then copies the offscreen background pixel map to the 
offscreen merge pixel map. As Figure 5.32 shows, this has the effect of 
stamping over almost the entire pixel map that was just copied from the 
window to the merge pixel map. Almost is the key word in that last 
sentence. Since the destination rectangle has been shifted one pixel to the 
left, the rightmost column of pixels in the merge pixel map will be pre­
served. That's the only reason the pixel map was copied from the window 
to the merge pixel map in the previous step-to save this one column. 



Chapter 5 • Animation 

What this latest CopyBits() does is to create a merge pixel map that 
holds the background that appears in the window rectangle. Note that 
he contents of the offscreen merge pixel map is the same as the window 
pixel map-minus the black rectangle. 

theTempRect = gGWorldPixMapRect; 
OffsetRect( &theTempRect, -1, 0 ); 

CopyBits( (BitMap *)(*gBackPixMap), (BitMap *)(*gMergePixMap), 
&gGWorldPixMapRect, &theTempRect, srcCopy, nil); 

(00. 
Foreground pixel map 

(0,0111) 
-

-

Merge pixel map 

(0,0-

9ila 
Background pixel map 

Part of the animation window pixel map 

theTempRect = gGWorldPixMapRect ; 
OffsetRect ( &theTempRect, -1, O ) ; 
CopyBits( (BitMap *) (*gBackPixMap), 

(BitMap *) (*gMergePixMap), 
&gGWorldPixMapRect, 
&theTempRect, 
srcCopy , nil ) : 

FIGURE 5.32 The contents of the offscreen background pixel map are shifted 
one pixel to the left and then copied to the offscreen merge pixel map. 

213 



214 
Graphics and Sound Programming Techniques for the Mac 

Now, the rebuilt window background that is in the offscreen merge 
pixel map is copied to the offscreen background pixel map-as shown in 
Figure 5.33. There it will be saved for, and used in, the next pass through 
the animation loop. 

CopyBits( (BitMap *)(*gMerge Pi xMap), (BitMap *)(*gBackPixMap), 
&gGWorldPixMapRect, &gGWorldPixMapRect, srcCopy, nil ); 

(0,0.) 

' 

. 

Foreground pixel map 

Merge pixel map 

Background pixel map 

(31,40) . 

+-

Part of the animation window pixel map 

CopyBits ( (BitMap * ) I *gMer gePixMap) , 
(BitMap *) (*gBackPi xMap), 
&gGWorldPixMapRect, 
&gGWorldPixMapRect, 
srcCopy , ni 1 I ; 

FIGURE 5.33 The offscreen merge pixel map is saved by 
storing it in the offscreen background pixel map. 



Chapter 5 • Animation 

That completes one pass through the animation loop. The next pass 
through the loop will begin with the offscreen foreground pixel map get­
ting copied to the offscreen merge pixel map. Again, transparent mode 
will be used. The next step will be to send the contents of the offscreen 
merge pixel map to the window. In this example, the rectangle will then 
appear to move one pixel to the right. Figure 5.34 shows the first step of 
the next pass through the loop, while Figure 5.35 shows the second step. 

(0, 0.) 

-

Foreground pixel map 

Merge pixel map 

Background pixel map 

(31 , 40) 

Part of the animation window pixel map 

theTempRect ; gGWorldPixMapRect; 
OffsetRect( &theTempRect, 1, 0 ) ; 
CopyBits( (BitMap *) (*gForePi xMap), 

(BitMap *) (*gMergePixMap), 
&gGWor ldPixMapRect, 
& theTempRec t, 
transparent, nil); 

FIGURE 5.34 The contents of the offscreen foreground pixel map are shifted 

one pixel to the right and then copied to the offscreen merge pixel map. 

215 



216 
Graphics and Sound Programming Techniques for the Mcie 

Foreground pixel map 

Merge pixel map 

Background pixel map 

Part of the animation window pixel map 

CopyBits( (BitMap *) (*gMergePixMap), 
&(gDisplayWindow->portBits), 
&gGWorldP i xMapRect , 
&gWindowPixMapRect, 
srcCopy, nil ) ; 

FIGURE 5.35 The contents of the offscreen merge pixel map 

are copied to the animation window. 

Calls to AnimateOneFrame() continue for as long as the animation runs­
each call moves the rectangle object one pixel to the right. 

Chapter Example: GWorlds 
The GWorlds example program opens a large, color window that holds 
the picture shown in Figure 5.36. As the program runs, a multicolored 
hot-air balloon moves horizontally across the window, from left to right. 
When the balloon reaches the right edge of the window, it starts back to 
the left. Because the GWorlds program uses offscreen graphics worlds, 
the animation is flicker-free. To quit the program, click the mouse button. 



Ch<1pter 5 • flnim<1tion 

FIGURE 5.36 The result of running the GWorld program. 

The GWorlds project requires a single WIND resource and two PICT 
resources-the PICTs are shown in Figure 5.37. The pixels that make up 
the three circles in the balloon picture were drawn in white to demon­
strate that the background picture can be made to show through parts 
of a foreground picture. Not evident in the figure is the fact that the bal­
loon picture has a one-pixel-wide white border surrounding it. Figure 5.38 
shows the balloon picture pasted against a black background so that 
you can see the area that this picture occupies. 

GUJorld.s.rsrc 

PICT WIND 

FIGURE 5.37 The two PICT resources used in the GWorlds project. 

217 



218 
Graphics and Sound Programming Techniques for the Mac 

FIGURE 5.38 The foreground picture is framed by white pixels. 

The GWorlds example program uses the routines developed in this 
chapter: AreGWorl dsAvai l able(), CreateGWorl dsAndPi xMaps( ), Prepare ­
ForAn i mat ion C), and An i mateOne Frame C). In all cases, these routines are 
identical to-or very similar to-the versions you're familiar with. 

The earlier discussions of animation used an object that moved in 
just one direction. In the GWorlds example program, the balloon moves 
both to the right and to the left. To determine in which direction the 
balloon should move, the program adds a short routine named Determine­
Ani mat i onDi rect ion (). 

#define kXincrement 1 

short gCurrentXIncrement kXincrement; 

void DetermineAnimationDirection( void ) 
{ 

Rect theRect; 

theRect = gWindowPi xMapRect; 

OffsetRect( &theRect, gCurrentXIncrement, O ); 

if ( theRect.right > gDisplayWindow- >portRect.right 
gCurrentXIncrement = - kXincrement; 

else if ( theRect.left < gDisplayWindow->portRect.left 
gCurrentXIncrement = + kXincrement; 



Chapter 5 • Animation 

Determi neAnimati onDi recti on() is called from AnimateOneFrame( ). 
That means that before each movement of the balloon, its direction is 
determined. The global variable gCurrentXIncrement holds the current 
number of pixels in which the balloon should move at each pass through 
the animation loop. This variable is initialized to a value of kXi ncrement, 
or 1. When the balloon reaches the right edge of the window, its time for 
the balloon to travel from right to left. The variable -gCurrentXIncrement 
then gets set to -kXincrement, or -1. When the balloon then reaches the 
left edge, gCurrentXIncrement gets set back to 1. At any point in 
between, gCurrentXIncrement keeps whatever value it currently has. 

The constant kXi ncrement establishes the number of pixels that the 
balloon moves at each pass through the animation loop. A value of 1 
moves the balloon at a moderate pace. To speed things up, try changing 
the value of kXi ncrement to 2. 

The balloon picture used in the GWorld program is set up for a k Xi n creme n t 
value of 1-the picture has a one pixel wide white border. If you change 
kXi ncrement to 2, change the picture border to two white pixe~therwise 

N ° r E one pixel of the balloon will get cut off as the balloon travels across the 
screen. You can easily add this border by cutting PI CT 129 from the project's resource 
file and pasting it into a paint program. Then select the balloon, allowing for two extra 
pixels on each side. Copy the picture and paste it back into the resource project. Make 
sure that the new balloon picture has an ID of 129 before closing the resource file. 

Before using CopyBits( ), the example program makes calls to the Toolbox 
routines RGBForeCol or() and RGBBackCol or() to set the foreground color 
to black and the background color to white. Apple suggests doing this to 
avoid unwanted coloring of images. An application-defined routine 
named SetForeAndBackCol ors () accomplishes this by declaring two 
RGBCol or variables and by then setting one to white and one to black. 

A Pi xMap is accessed using a Pi xMapHandl e. Because objects referenced 
by handles can move in memory, your application should call the Toolbox 
routine LockPixel s() before calling CopyBits( ). This function will ensure 
that a pixel map won't move in memory. After CopyBits <),call Unlock­
Pi xel s ( ). Lock Pixels () and Unl ockPi xel s () should be called for both the 
source and destination pixel maps. For simplicity, the example program 
doesn't nest each call to Copy Bi ts<) with lock and unlock calls. Instead, 

219 



220 
Graphics and Sound Programming Techniques for the Mac 

it just locks each pixel map at the start of the program and unlocks 
them as the program ends. 

When your program is finished with an offscreen graphics world, 
call the Toolbox function Di sposeGWorl d(). Pass this routine a GWorl dPtr 
to the graphics world that is to be disposed of. 

Now, the much-awaited listing for the program that produces smooth, 
flicker-free color animation follows: 

#include <ODOffscreen.h> 

void 
void 
Boolean 
void 
void 
void 
void 
void 

InitializeToolbox( void ); 
OpenDisplayWindow( void ); 
AreGWorldsAvailable( void ); 
SetForeAndBackColors( void ); 
CreateGWorldsAndPixMaps( void ); 
PrepareForAnimation( void ); 
AnimateOneFrame( void ); 
DetermineAnimationDirection( void ); 

''~~~~~~~~~~~~~~~~~~~~~~~~~-

/fdefine 
/fdefine 
/fdefine 
/fdefine 

WindowPtr 
short 
GWorldPtr 
GWorldPtr 
GWorldPtr 
PixMapHandle 
PixMapHandle 
PixMapHandle 
Re ct 
Re ct 

rBackPicture 
rForePicture 
rDisplayWindow 
kXincrement 

128 
129 
128 

1 

gDisplayWindow: 
gCurrentXIncrement = kXincrement: 
gForeGWorldPtr: 
gBackGWorldPtr; 
gMergeGWorldPtr: 
gForePixMap; 
gBackPixMap; 
gMergePixMap; 
gWindowPixMapRect: 
gGWorldPixMapRect: 



void main( void ) 
{ 

Boolean graphicsWorldsPresent; 
oolean pixelslocked; 

InitializeToolbox(): 

HideCursor(): 

Chapter 5 • Animation 

graphicsWorldsPresent = AreGWorldsAvailable(); 
if ( graphicsWorldsPresent ==false ) 

ExitToShell (); 

} 

SetForeAndBackColors(): 

OpenDisplayWindow(); 

CreateGWorldsAndPixMaps(): 

pixelslocked = LockPixels( gForePixMap ); 
if ( pixelslocked ==false ) 

ExitToShel 1 (): 

pixelslocked = LockPixels( gBackPixMap ); 
if ( pixelslocked == false ) 

ExitToShell (): 

pixelslocked = LockPixels( gMergePixMap ); 
if ( pixelslocked == false ) 

ExitToShell (); 

PrepareForAnimation(); 

while ( !Button() ) 
AnimateOneFrame(); 

UnlockPixels( gForePixMap ); 
UnlockPixels( gBackPixMap ); 
UnlockPixels( gMergePixMap ): 

DisposeGWorld( gForeGWorldPtr ); 
DisposeGWorld( gBackGWorldPtr ); 
DisposeGWorld( gMergeGWorldPtr ); 

//~~~~~~~~~~~~~~~~~~~~~~ 

Boolean AreGWorldsAvailable( void ) 

221 



222 

{ 

} 

Graphla and Sound Programming Techniques for the Mac 

OS Err 
1 ong 
Boolean 

theError; 
theResult: 
worl dAvai 1: 

theError =Gestalt( gestaltQuickdrawFeatures. &theResult ); 
if ( theError != noErr ) 

ExitToShel 1 (): 

worldAvail = theResult & ( 1 << gestaltHasDeepGWorlds ); 
if ( worl dAvail > 0 ) 

return (true ); 
else 

return false ); 

''~~~~~~~~~~~~~~~~~~~~~~~~~~-

void SetForeAndBackColors( void 
{ 

} 

RGBColor theBlackColor: 
RGBColor theWhiteColor: 

theBlackColor.red = OxOOOO; 
theBlackColor.green = OxOOOO; 
theBlackColor.blue = OxOOOO; 

theWhiteColor.red = OxFFFF: 
theWhiteColor.green = OxFFFF; 
theWhiteColor.blue = OxFFFF; 

RGBForeColor( &theBlackColor ); 
RGBBackColor( &theWhiteColor ); 

''~~~~~~~~~~~~~~~~~~~~~~~~~-

void OpenDisplayWindow( void 
{ 

PicHandle theBackPicture: 
Rect theRect: 

theBackPicture = GetPicture( rBackPicture ); 
if ( theBackPicture == nil ) 

Exi tToShell (): 

theRect = (**theBackPicture).picFrame; 
OffsetRect( &theRect, - theRect.left, - theRect.top ); 



} 

Chapter 5 • Animation 

gDisplayWindow = GetNewCWindow( rDisplayWindow, nil, 
CWindowPtr)-lL ); 

ShowWindow( gDisplayWindow ); 
SetPortC gDisplayWindow ); 

DrawPictureC theBackPicture. &theRect ); 

//~~~~~~~~~~~~~~~~~~~~~~~~~~-

void CreateGWorldsAndPixMaps( void ) 
{ 

} 

PicHandle 
OD Err 

theForePicture; 
theError; 

theForePicture = GetPicture( rForePicture ); 
if ( theForePicture == nil ) 

ExitToShel 1 C); 

gGWorldPixMapRect = C**theForePicture).picFrame; 
OffsetRectC &gGWorldPixMapRect. - gGWorldPixMapRect. left. 

- gGWorldPixMapRect.top ); 

theError = NewGWorldC &gForeGWorldPtr. 0, &gGWorldPixMapRect, 
nil, nil, noNewDevice ); 

theError NewGWorldC &gBackGWorldPtr. 0, &gGWorldPixMapRect. 
ni 1. ni 1. noNewDevi ce ) ; 

theError NewGWorld( &gMergeGWorldPtr, 0, &gGWorldPixMapRect, 
ni 1. ni 1. noNewDevi ce ) ; 

gForePixMap = GetGWorldPixMapC gForeGWorldPtr ); 
gBackPixMap = GetGWorldPixMapC gBackGWorldPtr ); 
gMergePixMap = GetGWorldPixMapC gMergeGWorldPtr ); 

SetGWorl d( gForeGWorl dPtr. ni 1 ) ; 

DrawPicture( theForePicture, &gGWorldPixMapRect ); 

//~~~~~~~~~~~~~~~~~~~~~~~~~~-

void PrepareForAnimationC void ) 
{ 

gWindowPixMapRect = gGWorldPixMapRect; 
OffsetRectC &gWindowPixMapRect. 0, 25 ); 

CopyBits( &CgDisplayWindow->portBits), (BitMap *)(*gBackPixMap), 
&gWindowPixMapRect, &gGWorldPixMapRect, srcCopy, nil ); 

223 



224 

} 

Graphics and Sound Programming Techniques for the Mac 

CopyBits( (BitMap *)(*gBackPixMap), (BitMap *)(*gMergePixMap), 
&gGWorldPixMapRect, &gGWorldPixMapRect, srcCopy, nil ); 

//~~~~~~~~~~~~~~~~~~~~~~~~~-

void AnimateOneFrame( void ) 
{ 

} 

Rect theTempRect; 

DetermineAnimationDirection(); 

theTempRect = gGWorldPixMapRect; 
OffsetRect( &theTempRect, gCurrentXIncrement, 0 ); 

CopyBits( (BitMap *)(*gForePixMap), (BitMap *)(*gMergePixMap), 
&gGWorldPixMapRect, &theTempRect, transparent, nil ); 

CopyBits( (BitMap *)(*gMergePixMap), &(gDisplayWindow->portBits), 
&gGWorldPixMapRect, &gWindowPixMapRect, srcCopy, nil ); 

OffsetRect( &gWindowPixMapRect, gCurrentXIncrement, 0 ); 

CopyBits( &(gDisplayWindow->portBits), (BitMap *)(*gMergePixMap), 
&gWindowPixMapRect, &gGWorldPixMapRect, srcCopy, nil ); 

theTempRect = gGWorldPixMapRect; 
OffsetRect( &theTempRect, -gCurrentXIncrement, 0 ); 

CopyBits( (BitMap *)(*gBackPixMap), (BitMap *)(*gMergePixMap), 
&gGWorldPixMapRect, &theTempRect, srcCopy, nil ); 

CopyBits( (BitMap *)(*gMergePixMap), (BitMap *)(*gBackPixMap), 
&gGWorldPixMapRect, &gGWorldPixMapRect, srcCopy, nil ); 

//~~~~~~~~~~~~~~~~~~~~~~~~~-

void DetermineAnimationDirection( void ) 
{ 

Rect theRect; 

theRect = gWindowPixMapRect; 

OffsetRect( &theRect, gCurrentXIncrement, 0 ); 

if ( theRect.right > gDisplayWindow->portRect.right 
gCurrentXIncrement = - kXincrement; 

else if ( theRect.left < gDisplayWindow->portRect.left 



Chapter 5 • Animation 

gCurrentXIncrement = + kXincrement; 
} 

//~~~~~~~~~~~~~~~~~~~~~~~~~-

void InitializeToolbox( void 
{ 

} 

InitGraf( &qd.thePort ); 
InitFonts(); 
InitWindows(); 
InitMenus(); 
TEinit(); 
InitDialogs( OL ); 
FlushEvents( everyEvent, 0 ); 
InitCursor(); 

Summary 
To produce flicker-free black-and-white animation, you need to use off­
screen BitMaps and the Copy Bi ts<) function. Your program will begin by 
creating three BitMaps offscreen-in memory, rather than in a window. 
Your program can then apply a foreground object to a background picture 
out of the sight of the user. After merging the object with the background, 
the combined result can be drawn to the screen. By repeatedly performing 
these steps offscreen, the flicker that would normally be noticeable to the 
user now takes place in memory. 

Color animation is performed in much the same way as monochrome 
animation is. Both types of animation rely on the Copy Bi ts () function 
and offscreen drawing areas. Color animation uses offscreen pixel maps 
rather than the offscreen BitMaps used in black-and-white animation. 
Because keeping track of color images is more complicated than keeping 
track of monochrome images, Apple provides the programmer with the 
offscreen graphics world-or GWorld. A GWorld is a color environment 
created specifically to support the offscreen preparation of complex 
color images. 

225 



CttfiPTER 6 

QuickDraw GX 
For over a decade, QuickDraw has been the drawing environment of 
the Macintosh-and it still is. But now there is another QuickDraw­
QuickDraw GX. This new version doesn't replace the original 
QuickDraw-it supplements it. Programs can still use only the original 
QuickDraw, or they can use both the old and the new together in a single 
application. In this chapter, you'll see how that's possible. 

QuickDraw GX is a system extension that adds the power of the 
new QuickDraw to a Macintosh computer. It is also the set of function 
calls that allow the programmer to exploit this powerful new object-based 
graphics environment. In this chapter you'll see how to make your 
application ready for QuickDraw GX. You'll learn how to check for the 
presence of the QuickDraw GX extension, then to initialize it, and ready 
q. window for QuickDraw GX drawing. 

227 



228 
Graphics and Soand Programming Techniques for the Mac 

QuickDraw GX relies on objects. Every shape or string of text that is 
drawn is a shape-with its own set of properties, such as color and fill 
pattern. In this chapter, you'll learn about some of the many different 
QuickDraw shape objects. You'll read up on how to create them, modify 
their properties, and draw them to a window. 

About QuickDraw CiX 
QuickDraw GX is a system extension that adds new drawing, typogra­
phy, and printing capabilities to the Macintosh. QuickDraw GX is also 
an extensive set of functions ready to be integrated into Mac programs 
by Mac developers. 

Object and Shapes 
QuickDraw GX relies heavily on objects. Each shape that is drawn using 
QuickDraw GX functions is its own object, with its own set of properties. 
A shape has a type, such as a line, rectangle, or picture. The shape's prop­
erties further define what a particular shape will look like. Frame width, 
color, and fill pattern are all shape properties. 

~ 
NOTE 

C language programmers-don't let this mention of objects alarm you. While 
the QuickDraw GX API (application programming interface) is a natural in 
object-oriented C++ programs, it works just as well in C projects-as will be 
demonstrated by the example programs found in this chapter. 

A QuickDraw GX shape, or object, is defined by a private data structure. 
This means that the inner workings of a shape's structure are unknown 
to an application. Such a "black box" approach relieves the programmer 
from trying to decipher the complexities of QuickDraw GX shape 
objects. Instead, the programmer only has to become familiar with the 
set of QuickDraw GX functions that exist to make object access possible. 
Just as a Mac programmer comes to know the fundamental and important 
Toolbox functions, so too will the Mac QuickDraw GX programmer 
gain insight into the QuickDraw GX functions that make shape creation, 
modifying, and drawing possible. 



Chapter 6 • QulckDraw GX 

There are seven Inside Macintosh volumes devoted to QuickDraw GX 

programming. This chapter will of course only touch on the topics presented 
in the more than 3500 pages that comprise those books. Consider this chapter 

an introduction to the vast world of QuickDraw GX programming. 

Graphics programming is memory-intensive. Keeping track of the many 
properties of a shape-or of hundreds or thousands of shapes-requires 
a well thought-out memory management scheme. The Apple designers 
of QuickDraw GX have provided just such a memory model. First, an 
application that makes use of QuickDraw GX gains an extra partition of 
memory-one devoted just to QuickDraw GX. Second, a programmer 
who works with QuickDraw GX does not have to be nearly as knowl­
edgeable or concerned with pointers and handles as the programmer 
who works with other areas of Macintosh programming. That's because 
QuickDraw GX doesn't return pointers or handles to objects. Instead, 
QuickDraw GX uses a single object-reference value to identify and 
work with an object. It is this reference value that your program will 
use when calling QuickDraw GX functions. 

QuickDraw vs. QuickDraw GX 
QuickDraw uses a state-based architecture. That is, the current state of the 
drawing environment determines how an image will be drawn. Consider 
the following QuickDraw call: 

Line( 100, 0 ); 

By looking at the above call, you know that the line that is drawn will be 
100 pixels in length. Unknown, however, are the other properties of the 
line-for example, its thickness. The thickness of the line is determined 
by the last call made to PenSi zeC ). A call to PenSi zeC) effects the thickness 
of every line that gets drawn subsequent to the call. 

QuickDraw GX uses an object-based architecture. That is, a graphics 
shape, such as a line, is represented by an object. An object holds all of the 
information necessary to draw a shape. In QuickDraw GX, the thickness 
of a line is unaffected by a call to PenSi zeC ). Instead, the thickness of the 
line is held as information that is a part of the line object. 

229 



230 
Graphics and Sound Programming Techniques for the Mac 

The object-based architecture used by QuickDraw GX has the impor­
tant advantage of freeing images from a dependency on the current state 
of the drawing environment. This means that all of the properties of a 
graphics shape are self-contained. This scheme becomes significant when it 
is time to update a graphics shape-the shape essentially can redraw itself. 

Chapter Example: PoorMansQDGX 
This chapter's first example program, PoorMansQDGX, doesn't use 
QuickDraw GX. Instead, it exists to give you an appreciation for the 
power of QuickDraw GX, and for some insight into the reduction in 
programming effort that this graphics extension provides. 

If you like the idea of an object-based architecture-a system that 
frees you from keeping track of the current graphics environment-you 
don't have to use QuickDraw GX. Instead, you can write your own 
classes and member functions to define shapes that hold their own 
graphics information. For instance, a line shape could be defined by its 
starting point, its end point, and its thickness. The following Li neObject 
class defines such a class. 

class LineObject 
{ 

} : 

private: 
short thickness; 
short xBegin; 
short yBegin: 
short xEnd; 
short yEnd; 

public: 
void SetlineSize( short ); 
void SetlineCoordinates( short. short, short. short ); 
void Drawl i ne( void ) : 

To create a line object, declare a pointer to a Li neObject, then use the 
C++ new operator: 

LineObject *theline; 

theline = new LineObject; 



Chapter 6 • QoickDraw <iX 

To give the line a thickness, invoke the object's Setl i neSi ze() member 
function. Here the line is being set to a thickness of 5: 

theline->SetlineSize( 5 ); 

The Setl i neSi ze() member function is simple enough-it just sets the 
thickness data member to the value passed to it: 

void lineObject :: SetlineSize( short width 
{ 

this->thickness =width; 
} 

To set the line object's window coordinates, invoke the Setl i ne­
Coordi nates () member function: 

theline->SetlineCoordinates( 20, 50, 120, 50 ); 

The Setl i neCoordi nates () function uses the four passed-in values to set 
the beginning point and ending point of the line: 

void lineObject :: SetlineCoordinates( short xl, short yl, 
short x2, short y2 ) 

{ 

} 

this->xBegin = xl; 
this->yBegin = yl; 
this->xEnd = x2; 
this->yEnd = y2; 

Finally, to draw the line, call the Drawl i ne () member function: 

theline->Drawline(); 

Drawl i ne () uses three Toolbox functions to set the graphics pen size and 
then draw the line. The result of this example is shown in Figure 6.1. 

void lineObject :: Drawline( void ) 
{ 

} 

PenSize( this->thickness, this->thickness ); 
MoveTo( this->xBegin, this->yBegin ); 
lineTo( this->xEnd, this->yEnd ); 

231 



232 
Graphics and Sound Programming Techniques for the Mac 

New Window 

FIGURE 6.1 The result of running the PoorMansQDGX program. 

Now, take a look at how QuickDraw GX works with a line object. Don't 
worry about the details of the following code snippets-those details 
will appear later in this chapter. First, declare a shape variable: 

gxShape thelineShape; 

Though the variable name implies that the shape object is to be a line, 
the gxShape data type can be used for any kind of shape. A call to the 
QuickDraw GX function GXNewShape() establishes the shape type: 

thelineShape = GXNewShape( gxlineType ); 

To set the thickness property of the new line object, call another 
QuickDraw GX function. The ff ( ) function that is used as a parameter 
allows you to pass a short value in place of the Fixed data type that 
QuickDraw GX works with: 

GXSetShapePen( thelineShape, ff(5) ); 

To set the coordinates for the line, declare a variable that was designed 
for just such a purpose. When declaring the gxl i ne variable you can set 
the starting point (20, 50) and the ending point (120, 50) for the line: 

gxline thelineGeometry = { {ff(20), ff(50)}, {ff(l20), ff(50)} }; 

Now apply the values in the gxL i ne variable to the shape object: 

GXSetline( thelineShape, &thelineGeometry ); 



Chapter 6 • OuickDraw GX 

Finally, draw the line shape: 

GXDrawShape( thelineShape ); 

For ease of reading, the following snippet groups together the QuickDraw 
GX code shown separately above: 

gxShape thelineShape; 
gxline thelineGeometry = { {ff(20), ff(50)}, {ff(120), ff(50)} }; 

thelineShape = GXNewShape( gxlineType ); 

GXSetShapePen( thelineShape, ff(5) ); 

GXSetline( thelineShape, &thelineGeometry ); 

GXDrawShape( thelineShape ); 

You can see from the above snippet that creating a QuickDraw GX 
shape isn't difficult. Setting a shape's properties isn't difficult either­
you rely on QuickDraw GX functions to do the work. Notice also that 
while you can easily set the properties of a line object, nowhere in the 
above code is it clear what the internal structure of a line looks like. As 
mentioned, QuickDraw GX data structures are private. You don't need 
to know the internal details of how QuickDraw GX defines a line object, 
and you don't have to directly access any of the line object's fields-the 
QuickDraw GX functions do that for you. 

The following is the listing for the PoorMansQDGX program. As 
you look over the source code, consider that the Li neObj ect class can be 
used to create a line with only a couple of properties: thickness and 
location. If the Li neObject was to match the QuickDraw GX version of a 
line object, it would have to include code for many other properties. 

class LineObject 
{ 

private: 
short thickness; 
short xBegin; 
short yBegin; 
short xEnd; 

233 



234 
Graphics and Sound Programming Techniques for the Mac 

} ; 

short 

public: 
void 
void 
void 

yEnd; 

SetlineSize( short ); 
SetlineCoordinates( short, short, short, short ); 
Drawline( void ); 

//~~~~~~~~~~~~~~~~~~~~~~~~~~-

void LineObject :: SetlineSize( short width ) 
{ 

this->thickness =width; 
} 

void LineObject SetlineCoordinates( short xl, short yl, 
short x2, short y2 ) 

} 

this->xBegin 
this->yBegin 
this->xEnd 
this->yEnd 

= xl; 
= yl; 
= x2; 
= y2; 

void LineObject :: Drawline( void ) 
{ 

} 

PenSize( this->thickness, this->thickness ); 
MoveTo( this->xBegin, this->yBegin ); 
LineTo( this->xEnd, this->yEnd ); 

void main( void ) 
{ 

WindowPtr 
LineObject 

theWindow: 
*theline; 

InitGraf( &qd.thePort ); 
InitFonts(); 
InitWindows(); 

theWindow = GetNewWindow( 128, nil, CWindowPtr)-lL ); 
SetPort( theWindow ); 

theline = new LineObject; 



} 

Chapter 6 • QuickDraw GX 

theline->SetlineSize( 5 ); 
theline->SetlineCoordinates( 20, 50, 120, 50 ); 
theline->Drawline(); 

while C !Button() ) 

iteadying a Program for QuickDraw GX 
QuickDraw GX may one day be built into the system of every Macintosh­
just as QuickDraw is. When that happens, all Mac users will be able to 
enjoy the advantages of programs that use the sophisticated drawing 
features of QuickDraw GX. But for now, programs that make use of 
QuickDraw GX functionality can make no assumptions about the user's 
machine. Instead, a QuickDraw GX program should check for the pres­
ence of the QuickDraw GX extension at application startup. Further, if 
QuickDraw GX is present, this same application should make sure to 
perform the proper initializations. 

Checking for QoickDraw GX 
Before using any of the multitude of QuickDraw GX features, your pro­
gram should verify that the user of your application indeed has the 
QuickDraw GX extension installed and enabled on his or her Macintosh. 
As usual, when checking for the presence of a system feature on the host 
machine your program should call the Toolbox function Gestalt(). 

Other examples of calls to Gest a 1 t ( ) appear in the check for sound 
recording capabilities (Chapter 3), and in the check for the presence of the 

QuickTime extension (Chapter 7). 

To make a QuickDraw GX information request to the Toolbox, call 
Gest a 1t C ) two times-with a different selector code at each call. The 
QuickDraw GX extension consists of two parts: a graphics part and a 
printing part. That the extension consists of two parts is invisible to 

235 



Z36 
Graphics and Sound Programming Techniques for the Mac 

both you and user, and one part will never be present without the other. 
Knowing that, you'd be correct in assuming that checking for either 
part should be enough to determine if the extension is available. Why 
make both checks? The answer has to do with version numbers. 

Each call to Gestalt C) returns two pieces of information: the pres­
ence of the part (in the OS Err return value) and the part version number 
(in the response parameter). While the examples in this book don't 
examine the part versions, your code might. In the future, your pro­
gram may rely on some special feature of QuickDraw GX graphics or 
QuickDraw GX printing-a feature only available in a particular ver­
sion of one part or the other. In that case, you'll be able easily to add a 
check of the part version number. 

In the first of two calls to Gestal tC ), pass the Apple-defined selector 
code gesta 1 tGra phi cs Version. In return, Gestalt C) determines if the 
graphics part of the QuickDraw GX extension is installed and enabled. 
If it is, Gestal tC) returns an OS Err value of noErr. If the graphics part 
isn't found, Gest a 1 t C) will return a value other than noErr. That means 
your code should examine the returned OSErr value to determine if 
your program can continue. 

OSErr theError; 
long theResult; 

theError =Gestalt( gestaltGraphicsVersion, &theResult ); 
if C theError != noErr ) 

ExitToShel l (); 

In the second call to Gestalt(), pass the Apple-defined selector code 
gesta ltGXPri nti ngMgrVers ion. Gestalt C) will then return an OS Err value 
of no Err if the printing part of QuickDraw GX is available: 

theError =Gestalt( gestaltGXPrintingMgrVersion, &theResult ); 
if C theError != noErr ) 

ExitToShell(); 



Chapter 6 • QuickDraw GX 

In the unlikely event that you do need to check a version number, examine 
the value returned in theResul t. The fourth digit holds the version. Thus 
version 1.0 would be returned as OxOOOlOOOO. Because the last four digits 

N ° T E aren't guaranteed to each be zero, do not assume that they will be. In other 
words, version 1 could be returned as Ox00018000. You'll want to set up your test 
using >= rather than =: 

if ( theResult = OxOOOlOOOO II don't use== in this test! 

Your application may be one that uses normal QuickDraw commands for 
much of its drawing, and QuickDraw GX commands only occasionally. 
In that situation, your program might not want to terminate if QuickDraw 
GX isn't on the user's machine. Instead, it could set a global flag and 
then examine this flag before calling any QuickDraw GX routines: 

Boolean gQuickOrawGXPresent: 

if ( gQuickOrawGXPresent == true 
II enable menu item that uses QuickDraw GX routines 

else 
II disable menu item that uses QuickDraw GX routines 

The global flag can be set near the start of your program's execution by 
calling an application-defined routine that performs the two calls to 
Gestalt(): 

Boolean gQuickDrawGXPresent: 

gQuickDrawGXPresent = IsQuickDrawGXAvailable(); 

Your application-defined function should look like the I sQui ckDrawGX­
A v a i l ab l e ( ) function shown below. 

Boolean 
{ 

OS Err 
long 

IsQuickDrawGXAvailable( void 

theError: 
theResult; 

237 



238 

} 

Graphics and Sound Programming Techniques for the Mac 

theError =Gestalt( gestaltGraphicsVersion, &theResult ); 
if ( theError != noErr ) 

return ( false ); 

theError =Gestalt( gestaltGXPrintingMgrVersion, &theResult ); 
if ( theError != noErr ) 

return ( false ); 

return ( true ); 

Initializing QuickDraw CiX 
Once your application has verified that the QuickDraw GX extension is 
present, it will need to perform a few steps necessary to initialize of 
QuickDraw GX. The first of these steps is the allocation of a graphics 
client heap. 

When a Macintosh application is launched, it gets loaded into a section 
of memory reserved for the application's own private use. This area, 
called the application partition, is composed of the application stack, the 
application heap, and a free area of memory between the stack and 
heap. It is from this free pool that both the stack and the heap obtain 
extra memory when either needs to grow in size. 

The memory model that includes the application partition applies 
both to applications that use QuickDraw GX and to those that don't. 
Additionally, an application that uses QuickDraw GX reserves another 
area in memory. This section of memory, called the graphics client heap, is 
then used exclusively by QuickDraw GX to hold your application's 
QuickDraw GX objects. 

Your application will request that QuickDraw GX allocate a graphics 
client heap from temporary memory as part of the QuickDraw GX 
initialization process. QuickDraw GX will then find and reserve a suit­
ably sized area and claim it as the graphics client heap for your pro­
gram. Figure 6.2 shows the memory layout for an application that uses 
QuickDraw GX. 



Chapter 6 • OuickDraw GX 

Stack 

Free memory 

Heap 

FIGURE 6.2 Memory model of a Macintosh application that uses QuickDraw GX. 

QuickDraw GX defines a graphics client object, of type gxGraphi cs Client, 
to keep track of the information in a graphics client heap. When initializing 
QuickDraw GX, your program should call the GXNewGraphi csCl i ent() to 
create such an object: 

4tdeflne kGXClientHeapSizeBytes 150 * 1024 

gxGraphicsClient gGXClient: 

gGXClient = GXNewGraphicsClient( nil. kGXClientHeapSizeBytes, OL ); 

The first parameter to GXNewGraphi cs Client() is a pointer to a particular 
area in memory in which the graphics client .heap should be placed. 
Your program should pass a nil pointer here to let QuickDraw GX have 
control of where the graphics client heap will be allocated. 

The second parameter to GXNewGraphi cs Client() is the size of the 
graphics client heap, in bytes. The above snippet uses the application­
defined constant kGXCl i entHeapSi zeBytes to request a 150 KB heap­
a block of memory large enough for a small or moderate-size program. 

239 



240 
Graphics and Sound Programming Techniques for the Mac 

NOTE 

NOTE 

To accurately determine the graphics client heap size-requirements for 
your application, use Apple's GraphicsBug debugger. GraphicsBug works 
in conjunction with MacsBug or the high-level debugger of your choice. 

A program can skip the call to GXNewGraphi cs Client(). If it does so, 
QuickDraw GX will still set up a graphics client heap-but it will always 
give that heap a size of 600 KB. Since your application could very well use less 
or more heap memory, it is always best to have the application determine 
the graphics client heap size via the call to GXNewGra phi cs Client (). 

The last parameter to GXNewGraphi cs Client C) is a single 1 ong value that 
holds a set of flags that allow your program to provide additional client 
heap specifications to QuickDraw GX. At this writing, only one flag is 
defined-a flag that indicates whether QuickDraw GX has permission 
to increase the graphics client heap size as needed (pass O L) or whether 
the heap must be left at the size specified in the second parameter to 
GXNewGraphi cs Client () (pass 1 L, or the Apple-defined constant 
gxStati cHeapCl i ent). 

A call to GXNewGraphicsClient() creates a graphics client object to 
keep track of the graphics client heap, but it doesn't allocate the memory 
for the heap. A call to GXEnterGraphi cs () uses the information supplied 
in the preceding call to GXNewGraphi cs Client() to allocate a graphics client 
heap and perform any necessary initializations. 

GXEnterGraphics(): 

r2I 
NOTE 

A program that skips the call to GXNewGraphi cs Client() can also skip the 
call to GXEnterGraphi cs ()as well. QuickDraw GX will then setup a default 
600 KB graphics client heap. As mentioned in the preceding note, though, 
having the application specify the heap size is the preferred method. 

One of the advantages to calling GXNewGraphi cs Client() and GXEnter­
Graphi cs() is that you get to select the size of the graphics client heap. 
Another advantage is that you get to determine if enough memory was 
available for the allocation of the heap. After calling GXEnterGraphi cs(), 
call GXGetGraphi cs Error () to see if the call to GXEnterGraphi cs () sue-



Chapter 6 • QuickDraw GX 

ceeded. You can compare the returned error value to the following 
Apple-defined error out_of _memory: 

gxGraphicsError theGXgraphicsError: 
theGXgraphicsError = GXGetGraphicsError( nil ); 
if ( theGXgraphicsError == out_of_memory ) 

ExitToShell(); 

QuickDraw GX graphics routines don't return errors. Instead, they return 
a n i 1 pointer as the function result. To check for an error, follow the 
QuickDraw GX call with a call to GXGetGraphi cs Error(). Although you 
can use the GXGetGraphi csError() function to determine if an error 
occurred after any QuickDraw GX call, it generally makes sense to do so 
only after GX calls that allocate blocks of memory. 

The QuickDraw GX error-handling scheme is similar to the one used to 
handle resource errors. After calling a Resource Manager routine (such as 
FSpCreateResFi le(), Add Resource(), or GetResource( )), you can call 
Res Error() to determine if an error occurred. Here's an example: 

theRefNum = FSpOpenResFile( theFSSpec, fsRdWrPerm ): 
theError = ResError(); 
if ( theError != noErr 

II handle the error here 

The following snippet shows how the preceding GX calls can be used to 
create a graphics client heap, allocate a block of memory for that heap, 
and then verify that the allocation was successful. 

I/define kGXClientHeapSizeBytes 150 * 1024 

gxGraphicsClient gGXClient: 

gxGraphicsError theGXgraphicsError: 
OSErr theGXprintError: 

gGXClient = GXNewGraphicsClient( nil, kGXClientHeapSizeBytes, OL ): 

GXEnterGraphics(); 
theGXgraphicsError = GXGetGraphicsError( nil ): 
if ( theGXgraphicsError == out_of_memory ) 

ExitToShel 1 (); 

241 



242 
Graphics and Sound Programming Techniques for the Mac 

As mentioned earlier, QuickDraw GX consists of two parts: a graphics 
part and a printing part. After setting up your application's graphics 
client heap, the graphics initialization is complete. Now you should ini­
tialize the printing part of QuickDraw GX. To do that, make a call to 
GXInitPrinting(): 

OSErr theGXprintError; 

theGXprintError = GXInitPrinting(); 

Some QuickDraw GX printing routines don't return errors. Instead, a 
printing routine call can be followed with a call to GXGetJobError( ). 
Other printing routines, however, do return an error-an OS Err. As you've 
just seen, GXInitPrinting() is such a routine. If GXInitPrinting() 
returns noErr, the initialization was successful. Any other value means 
that the initialization failed. The following snippet shows the check you 
should make after calling GXIni tPri nti ng( ): 

OSErr theGXprintError; 

theGXprintError = GXInitPrinting(); 
if ( theGXprintError != noErr ) 

Exi tToShel l (): 

You can wrap all of the QuickDraw GX initialization calls into one func­
tion such as the application-defined InitializeOuickDrawGX() routine 
shown below. 

#define kGXClientHeapSizeBytes 

gxGraphicsClient gGXClient; 

void InitializeQuickDrawGX( void ) 
{ 

150 * 1024 

gxGraphicsError theGXgraphicsError; 
OSErr theGXprintError; 

gGXClient = GXNewGraphicsClient( nil, kGXClientHeapSizeBytes, OL ); 

GXEnterGraphics(); 
theGXgraphicsError = GXGetGraphicsError( nil ); 
if ( theGXgraphicsError == out_of_memory ) 

Exi tToShel l (); 



} 

theGXprintError = GXInitPrinting(); 
if C theGXprintError != noErr ) 

ExitToShel l C); 

Chapter 6 • QuickDraw GX 

At the start of your program, perform the usual Toolbox initializations. 
Then make a call to the application-defined function IsQui ckDrawGX­
A v a i l ab l e C ) to check for the availability of QuickDraw GX. If present, 
go ahead and initialize QuickDraw GX. If not present, exit or, if your 
program allows it, carry on but avoid calls to QuickDraw GX functions. 
The following snippet is similar to code used in each of this chapter's 
example programs. 

InitializeToolbox(); 

gQuickDrawGXPresent = IsQuickDrawGXAvailable(); 
if C gQuickDrawGXPresent =true 

InitializeQuickDrawGXC); 
else 

II exit, or carry on without using GX routines 

Terminating a QaickDraw CiX Application 
When the user chooses to terminate your application, respond by "clean­
ing up" QuickDraw GX. Unsurprisingly, the steps involved in exiting 
QuickDraw GX are related to the steps involved in initializing it. 

If your application initializes printing using GXInitPrinting( )-as 
shown in this chapter-it must exit the printing part of QuickDraw GX 
by calling GXExitPrinting(). Like GXInitPrinting(), GXExitPrinting() 
returns an OSErr value. Since your application is exiting at the time 
G X Ex i t P r i n t i n g C ) is being called, it needn't check for an error. 

OSErr theGXprintError; 

theGXprintError = GXExitPrinting(); 

To allocate the memory for a graphics client heap, your application 
called (either explicitly or implicitly) GXEnterGraphicsC ). To deallocate 
this block of memory, call GXExi tGraphi cs C ), as follows: 

243 



244 
Cire1phics e1nd Soand Progre1mmlng Techniques for the Me1c 

GXExitGraphics(); 

Finally, dispose of the graphics client object that was used to keep track of 
the graphics client heap. A call to GXDi sposeGraphi cs Client() handles this 
task. The one parameter to this function is the gxGraphi cs Client type vari­
able returned by GXNewGraphi cs Client() at QuickDraw GX initialization: 

GXDisposeGraphicsClient( gGXClient ); 

When combined into a single "clean up and exit" routine, your Quick­
Draw GX exit calls should look like the ones shown in the application­
defined function Cl eanUpQui ckDrawGXandQui t ( ): 

OSErr theGXprintError; 

theGXprintError = GXExitPrinting(); 

GXExitGraphics(); 

GXDisposeGraphicsClient( gGXClient ); 

Notice that the calls to exit QuickDraw GX are in an order opposite those 
that initialize QuickDraw GX. This order is important-make sure that 
printing is deallocated before the graphics client object, and make sure that 
GXDi s poseGra phi cs Client () is the last QuickDraw GX function called. 

Initializing QuickDraw GX: 

GXNewGraphicsClient() 
GXEnterGraphics() 
GXInitPrinting() 

Exiting QuickDraw GX: 

GXExitPrinting() 
GXExitGraphics() 
GXDisposeGraphicsClient() 

II create graphics client object 
II allocate graphics client heap 
II initialize printing 

II exit printing 
II deallocate graphics client heap 
II dispose of graphics client object 

Chapter Example: QDGXlntro 
The QDGXIntro example demonstrates how to properly initialize 
QuickDraw GX at the start of a program and how to correctly exit 



Chapter 6 • OuickDraw GX 

QuickDraw GX at the end of a program. In between, QDGXIntro opens a 
window that displays a message that tells whether or not QuickDraw GX is 
in the user's Extensions folder and enabled. Figure 6.3 shows that window. 

N 0 TE 

New Window 

QuickDraw GX is present and enabled 

FIGURE 6.3 The result of running the QDGXIntro program. 

To see the message that says "QuickDraw GX not present or not enabled", 

either move the QuickDraw GX extension out of the Extensions folder and 

reboot or uncheck it using the Extensions Manager control panel and 

reboot. Then run QDGXIntro again. 

QDGXIntro uses the application-defined IsQui ckDrawGXAvai 1 able() 
function to determine if QuickDraw GX is present. If it is, the application­
defined function In it i a 1 i zeQu i c kDrawGX () routine is called to create the 
graphics client heap and initialize printing. If QuickDraw GX isn't avail­
able, this initialization routine is skipped. After that, a simple function that 
opens a window and writes a message to it is called. Awhile loop that 
responds only to a click of the mouse button is used as a simple event loop. 
The program's ma i n ( ) function follows: 

void main( void ) 
{ 

InitializeToolbox(); 

gQuickDrawGXPresent = IsQuickDrawGXAvailable(); 
if ( gQuickDrawGXPresent == true ) 

InitializeQuickDrawGX(); 

OpenDisplayWindow(); 

245 



246 

} 

Graphla and Soand Programming Techniques for the Mac 

while gDone ~ false 
{ 

} 

if Button() ) 
{ 

} 

if ( gQuickDrawGXPresent ~ true 
CleanUpQuickDrawGXandQuit(); 

else 
CleanUpAndQuit(); 

At the click of the mouse button, the global flag gQui ckDrawGXPresent is 
checked to see which of two clean-up routines should be called. If 
QuickDraw GX is present, a routine that performs both QuickDraw GX 
clean up and standard memory disposal tasks is called, as shown below: 

void CleanUpQuickDrawGXandQuit( void ) 
{ 

} 

OSErr theGXprintError: 

if ( gDisplayWindow !=nil ) 
DisposeWindow( gDisplayWindow ); 

GXExitGraphics(): 

GXDisposeGraphicsClient( gGXClient ): 

gDone = true: 

If QuickDraw GX isn't present, a routine that handles only traditional 
memory management is called: 

void CleanUpAndQuit( void ) 
{ 

} 

if ( gDisplayWindow !=nil 
DisposeWindow( gDisplayWindow ): 

gDone = true: 

You'll want to spend a few extra minutes examining the QDGXIntro 
source code listing. That's because almost all of the code in this example 



Chapter 6 • OaickDraw GX 

will be reused in the remaining four example programs in this chapter. 
Because the next four examples will add to the code used here, only the 
new code will be shown in the remaining listings. 

Boolean 
void 
void 
void 
void 
void 

#define 

IsQuickDrawGXAvailable( void ); 
InitializeToolbox( void ); 
InitializeQuickDrawGX( void ): 
OpenDisplayWindow( void ); 
CleanUpAndQuit( void ); 
CleanUpQuickDrawGXandQuit( void ): 

kGXClientHeapSizeBytes 150 * 1024 

gxGraphicsClient 
Boolean 
WindowPtr 
Boolean 

gGXClient: 
gQuickDrawGXPresent; 
gDisplayWindow =nil: 
gDone = false: 

void main( void ) 
{ 

InitializeToolbox(); 

gQuickDrawGXPresent = IsQuickDrawGXAvailable(): 
if ( gQuickDrawGXPresent == true 

InitializeQuickDrawGX(); 

OpenDisplayWindow(); 

while gDone ==false 
{ 

} 

if Button() ) 
{ 

} 

if C gQuickDrawGXPresent == true 
CleanUpQuickDrawGXandQuit(); 

else 
CleanUpAndQuit(): 

247 



248 
Graphics and Sound Programming Techniques for the Mac 

} 

//~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

4Boolean IsQuickDrawGXAvailable( void ) 
{ 

} 

OSErr theError; 
long theResult; 

theError =Gestalt( gestaltGraphicsVersion, &theResult ); 
if ( theError != noErr ) 

return ( false ); 

theError =Gestalt( gestaltGXPrintingMgrVersion, &theResult ); 
if ( theError != noErr ) 

return ( false ); 

return ( true ); 

//~~~~~~~~~~~~~~~~~~~~~~~~~~-

void InitializeQuickDrawGX( void ) 
{ 

gxGraphicsError theGXgraphicsError; 
OSErr theGXprintError; 

gGXClient = GXNewGraphicsClient( nil, kGXClientHeapSizeBytes, OL ); 

GXEnterGraphics(); 
theGXgraphicsError = GXGetGraphicsError( nil ); 
if ( theGXgraphicsError == out_of_memory ) 

Exi tToShel l (); 

theGXprintError = GXInitPrinting(); 
if ( theGXprintError != noErr ) 

ExitToShel l (); 

void OpenDisplayWindow( void ) 
{ 

gDisplayWindow = GetNewCWindow( 128, nil, (WindowPtr)-lL ); 
ShowWindow( gDisplayWindow ); 
SetPort( gDisplayWindow ); 
MoveTo( 20, 20 ); 



Chapter 6 • QuickDraw GX 

if ( gQuickDrawGXPresent ~true ) 
Drawstring( "\pQuickDraw GX is present and enabled" >: 

else 
Drawstring( "\pQuickDraw GX not present or not enabled" >: 

} 

//~~~~~~~~~~~~~~~~~~~~~~~~~-

void CleanUpQuickDrawGXandQuit( void ) 
{ 

} 

OSErr theGXprintError: 

if ( gDisplayWindow !=nil ) 
DisposeWindow( gDisplayWindow >: 

theGXprintError = GXExitPrinting(): 

GXExitGraphics(); 

GXDisposeGraphicsClient( gGXClient >: 

gDone = true: 

//~~~~~~~~~~~~~~~~~~~~~~~~~-

void CleanUpAndQuit( void ) 
{ 

} 

if ( gDisplayWindow !=nil ) 
DisposeWindow( gDisplayWindow ): 

gDone = true: 

//~~~~~~~~~~~~~~~~~~~~~~~~~-

void InitializeToolbox( void 
{ 

InitGraf( &qd.thePort >: 
InitFonts(): 
InitWindows(): 
InitMenus(): 
TEinit(): 
InitDialogs( OL >: 
FlushEvents( everyEvent, 0 >: 
InitCursor(); 

} 

249 



250 
Graphics and Sound Programming Techniques for the Mac 

Windows and QuickDraw GX 
In the standard QuickDraw drawing environment, drawing takes place 
in a graphics port. After opening a window using GetNewCWi ndow() (or 
GetNewWindow(), NewWindow(), or NewCWindow<>), your program calls 
Setport() to ensure that subsequent QuickDraw drawing commands 
target the new window: 

WindowPtr gDisplayWindow; 

gDisplayWindow = GetNewCWindow( 128, nil. (WindowPtr)-lL ); 
SetPort( gDisplayWindow ); 

In the QuickDraw GX environment, drawing takes place in a standard 
window-but in a view port rather than a graphics port. When using 
QuickDraw GX, your program will still execute the above code. Now, how­
ever, there'll be an additional function call-a call to GXNewWi ndowVi ewPort( ): 

WindowPtr 
gxViewPort 

gDisplayWindow; 
gWindowViewPort: 

gDisplayWindow = GetNewCWindow( 128, nil, (WindowPtr)-lL ); 
SetPort( gDisplayWindow ); 

gWindowViewPort = GXNewWindowViewPort( gDisplayWindow ); 

The GXNewWi ndowVi ewPort() function creates a new view port object and 
attaches, or associates, it with a window. Now the same window has a 
graphics port and a view port, and can thus accept both standard 
QuickDraw commands and new QuickDraw GX commands. Figure 6.4 
illustrates. In this figure SetRect() and Fi 11 Rect() calls have been 
made to draw a rectangle in the window. QuickDraw GX typography 
calls have been made to draw text to the window as well. While these 
two objects can be thought of as existing in two planes, the outcome is 
that they appear together in the window. 



Chapter 6 • QuickDraw GX 

QuickDraw graphics port QuickDraw GX view port 

GX 

~!Si = New Window ;::;:__ 

D GX 

FIGURE 6.4 A single window can support both a 

QuickDraw graphics port and a QuickDraw GX view port. 

After a window has been given a view port, QuickDraw GX shapes can be 
drawn to that window. A shape can be created using the GXNewShape() 
function, paired with a view port using GXSetShapeVi ewPort( ), and then 
drawn to that view port using GXDrawShape( ). Shapes, and these 
QuickDraw GX functions, are covered later in this chapter. For now, the 
following snippet provides an overview of the process of drawing a 
shape to a window. 

WindowPtr gDisplayWindow; 
gxViewPort gWindowViewPort; 

gDisplayWindow = GetNewCWindow( 128, nil, (WindowPtr)-lL ); 
SetPort( gDisplayWindow ); 

gWindowViewPort = GXNewWindowViewPort( gDisplayWindow ); 

251 



252 
<iraphics and Sound Programming Techniques for the Mac 

II GXNewShape() - create a shape 

II GXSetShapeViewPorts() - pair a shape with a view port 

II GXDrawShape() - draw the shape 

When a window that holds a view port closes, the view port should be 
disposed of along with the window. Before calling Di sposeWi ndow( ), call 
GX Dispose Vi ewPo rt< ) . Pass the g x Vi ewPo rt object that was created by 
the earlier call to GXNewWi ndowVi ewPort <). 

WindowPtr gDisplayWindow; 
gxViewPort gWindowViewPort; 

GXDisposeViewPort( gWindowViewPort ); 
DisposeWindow( gDisplayWindow ); 

Chapter Example: QDGXWindow 
QDGXWindow, like QDGXIntro, opens a window and writes a message 
to it. A click of the mouse closes the window and ends the program. 
Figure 6.5 shows the QDGXWindow. 

New Window 

Ready for shapes! 

FIGURE 6.5 The result of running the QDGXWindow program. 

QDGXWindow doesn't draw any QuickDraw GX shapes. Instead, the 
program serves as an example of how to ready a window for QuickDraw 
GX, and how to properly dispose of the window. 

The QDGXWindow program adds one global variable to those used in 
the QDGXIntro example-a gxVi ewPort variable named gWi ndowVi ewPort: 



gxGraphicsClient 
Boolean 
WindowPtr 
gxViewPort 
Boolean 

gGXClient; 
gQuickDrawGXPresent; 
gDisplayWindow =nil; 
gWindowViewPort; 
gDone =false; 

Chapter 6 • QulckDraw GX 

The main ( ) function of QDGXWindow differs from that of QDGXIntro 
in that QuickDraw GX is now required. If it isn't present, the program 
will call ExitToShell <) to terminate. Because QuickDraw GX must be 
present, the event loop now doesn't check to see if QuickDraw GX clean 
up should be performed upon quitting. Instead, a mouse click always 
results in a call to Cl eanUpQui ckDrawGXandQuit( ). Each of the remaining 
programs in this chapter work the same way. 

void main( void ) 
{ 

} 

InitializeToolbox(); 

gQuickDrawGXPresent = IsQuickDrawGXAvailable(); 
if ( gQuickDrawGXPresent == true ) 

InitializeQuickDrawGX(); 
else 

ExitToShell (); 

OpenDisplayWindow(); 

while ( gDone == false 
{ 

} 

if ( Button() ) 
CleanUpQuickDrawGXandQuit(); 

Open Di spl ayWi ndow() now includes a call to GXNewWi ndowVi ewPort() to 
create a new view port object and to attach that object to the program's 
window. The function also includes a few commented lines to hint at 
the code that will appear in the next example program. 

void OpenDisplayWindow( void ) 
{ 

gDisplayWindow = GetNewCWindow( 128, nil. <WindowPtr)-lL ); 
ShowWindow( gDisplayWindow ); 
SetPort( gDisplayWindow ); 

253 



254 
Grc1phla and Sound Progrc1mming Techniques for the Mac 

MoveTo( 20, 20 ); 
Drawstring( "\pReady for shapes!• ); 

gWindowViewPort = GXNewWindowViewPort( gDisplayWindow ); 

II GXNewShape() - create a shape 

II GXSetShapeViewPorts() - pair a shape with a view port 

II GXDrawShape() - draw the shape 

} 

The CleanUpQuickDrawGXandQuit() function now includes a call to 
GXDi sposeVi ewPort( )-as shown below. 

void CleanUpQuickDrawGXandQuit( void 
{ 

} 

OSErr theGXprintError; 

if ( gDisplayWindow !=nil 
{ 

} 

GXDisposeViewPort( gWindowViewPort ); 
DisposeWindow( gDisplayWindow ); 

theGXprintError = GXExitPrinting(); 

GXExitGraphics(); 

GXDisposeGraphicsClient( gGXClient ); 

gDone = true; 

Graphic Shape Objects 
There are several types of objects that QuickDraw GX works with. Of 
these object types, it is the shape object with which you'll become the 
most familiar with. A shape object can be used to create, display, and 
manipulate lines, rectangles, polygons, bit maps, pictures, text, and more. 



Chapter 6 • OuickDraw GX 

Creating and Drawing a Shape Object 
The GXNewShapeC) function is used to create a new shape object. GXNewShapeC) 
accepts the type of shape to create as the single parameter and returns a 
gxShape-a new shape object. The shape type can be any of the following 
Apple-defined constants: 

gxEmptyType 
gxPointType 
gxlineType 
gxCurveType 
gxRectangleType 
gxPolygonType 
gxPathType 
gxBitmapType 
gxTextType 
gxGlyphType 
gxLayoutType 
gxFullType 
gxPictureType 

Before calling GXNewShapeC ), declare a gxShape variable to hold the returned 
shape. Then pass GXNewShapeC) one of the shape types listed above. 

gxShape thelineShape; 

thelineShape = GXNewShapeC gxlineType ); 

When you create a new shape, QuickDraw GX assigns default values to 
each of the shape's properties-the characteristics that define a shape. 
You can use QuickDraw GX functions to change any or all of a shape's 
properties. In all cases, you'll want to change the shape geometry property­
the property that defines the space the shape occupies. QuickDraw GX 
uses a struct to define a shape's geometry. For a line, the struct is named 
gxl i ne and looks like this: 

struct gxline 
{ 

} ; 

struct gxPoint first; 
struct gxPoint last; 

255 



256 
Graphics and Sound Programming Techniques for the Mac 

As a second example, QuickDraw GX uses a gxRectangl e struct that 
looks like the following: 

struct gxRectangle 
{ 

} ; 

Fixed 
Fixed 
Fixed 
Fixed 

left; 
top; 
right; 
bottom; 

The line's geometry structure uses two fields of type gxPoi nt to define a 
line. Each gxPoi nt field consists of two Fixed values. The rectangle's 
geometry structure uses four Fixed values as well. The Fixed data type 
is easy for QuickDraw GX to work with, but not so easy for humans to 
use. For this reason, QuickDraw GX defines the ff() macro that is used to 
convert an integral number such as a short to a number in Fixed format. 
Whenever a QuickDraw GX routine requires that a parameter be of 
type Fixed, you can use a short-provided you use the ff() macro. 

The Fixed data type is defined to be a long. But the Macintosh doesn't 
interpret the Fixed in the same way that it does along. A number in Fixed 
format holds a whole, or integer part, and a fractional part. QuickDraw GX 

makes extensive use of the Fixed format because manipulating Fixed 
numbers is quicker than manipulating floating-point, or float numbers. 

To set up a new geometry for a new shape, declare a shape geometry 
variable that matches the shape's type. For a line object, declare a 
gxl i ne variable. For a rectangle object, declare a gxRectangl e variable. 
When you declare the variable, initialize its fields. Recall that for a line, 
the gxLine structure requires the line's first and last points. For a line 
that is to start at (50, 100) and end at (300, 60), declare a shape geometry 
variable as shown below. Figure 6.6 shows the line that would be 
defined by the following geometry. 

gxline thelineGeometry = { {ff(50), ffClOO)}, {ff(300), ff(60)} }; 



Chapter 6 • OuickDraw GX 

300 
(ff(300), ff(60)) 

( 300, 60) 
New Window 

(50, 100) 

{ff(50), ff(100)) 50 

FIGURE 6.6 The geometry of a line specifies the line's end points 

Each shape has its own geometry-setting function: a line's geometry is set 
by GXSetl i ne(), a rectangle's geometry is set by GXSetRectangl e( ), and so 
forth. For the line shape, after declaring and initializing the geometry 
variable, you'll call GXSet Line() to match the geometry to the shape 
object. The first parameter to GXSetl i ne() is the shape whose geometry is 
being set. The second parameter is a pointer to the geometry. 

GXSetline( thelineShape, &thelineGeometry ); 

The following snippet shows the complete code needed to create a line 
shape object and to set the shape geometry property of that line: 

gxShape thelineShape; 
gxline thelineGeometry = { {ff(50), ff(100)}. {ff(300), ff(60)} }; 

thelineShape = GXNewShape( gxlineType ); 
GXSetline( thelineShape, &thelineGeometry ); 

To draw a shape, call the GXDrawShape() function. Before doing so, though, 
you'll need to tell QuickDraw GX where the shape should be drawn. 
Just as QuickDraw needs to know which graphics port to draw an 
image to, QuickDraw GX needs to know which view port to draw a 
shape to. The GXSetShapeVi ewPorts () function is used for this task. A 
call to GXSetShapeViewPorts() follows: 

257 



258 
Graphics and Sound Programming Techniques for the Mac 

gxViewPort theWindowViewPort; 
gxShape thelineShape; 

GXSetShapeViewPorts( thelineShape, 1, theWindowViewPort ); 

The first parameter to GXSetShapeVi ewPorts () is the gxShape shape 
object that is to be drawn. The second parameter tells how many view 
ports should be associated with the object named in the first parameter. 
The third parameter holds the view port, or view ports, to associate 
with the shape. While you'll generally name a single view port as the 
third parameter, you can supply a list of view ports. 

After assigning a view port to the shape object, call GXDrawShape() 
to draw the shape to the view port: 

gxShape thelineShape; 

GXDrawShape( thelineShape ); 

The following snippet demonstrates how to create a line shape object, set 
its geometry, and then draw that shape to a view port. 

gxViewPort 
gxShape 
gxline 

theWindowViewPort; 
thelineShape; 
thelineGeometry = { {ff(50), ff(100)}, {ff(300), ff(60)} }; 

theLineShape = GXNewShape( gxlineType ); 
GXSetline( thelineShape, &thelineGeometry ); 

GXSetShapeViewPorts( thelineShape, 1. &theWindowViewPort ); 

GXDrawShape( thelineShape ); 



Chapter 6 • QuickDraw CiX 

Chapter Example: QDGXShape 
The QDGXShape program draws the same line the was described on 
the previous pages-Figure 6.7 shows the window you'll see when you 
run the p rogram. 

New Window 

FIGURE 6.7 The result of running the QDGXShape program. 

QDGXShape adds one more global variable to the ones used in the pre­
ceding program. The gL i neShape variable will hold the line shape object. 

gxGraphicsClient 
Boolean 
WindowPtr 
gxViewPort 
Boolean 
gxShape 

gGXClient; 
gQuickDrawGXPresent; 
gDisplayWindow =nil; 
gWindowViewPort; 
gDone = false; 
gLineShape; 

The application-defined CreateGXL i neShape() function is used to create . 
the new line shape object and to set the geometry of that object. 

259 



260 
Graphics and Sound Programming Techniques for the Mac 

void CreateGXLineShape( void ) 
{ 

} 

gxline thelineGeometry = { {ff(50), ff(100)}, {ff(300), ff(60)} }; 

glineShape = GXNewShape( gxLineType ); 
GXSetline( glineShape, &theLineGeometry ); 

CreateGXL i neShape() is called from Open Di spl ayWi ndow( ). When CreateGX­
L i neShape() returns, the global line shape object gets drawn to a view port: 

void OpenDisplayWindow( void ) 
{ 

gDisplayWindow = GetNewCWindow( 128, nil, (WindowPtr)-lL ); 
ShowWindow( gDisplayWindow ); 
SetPort( gDisplayWindow ); 

gWindowViewPort = GXNewWindowViewPort( gDisplayWindow ); 

CreateGXLineShape(); 

GXSetShapeViewPorts( gLineShape. 1, &gWindowViewPort ); 

GXDrawShape( glineShape ); 

Shape Object Properties 
All shape objects have nine properties. The shape type, shape geometry, 
and shape fill are the three properties that define the shape itself. For 
example, a rectangle shape object would, of course, be a shape type of 
rectangle. QuickDraw GX uses the shape constant gxRectangl eType to 
denote a shape that is a rectangle. A rectangle object's shape geometry is 
the coordinates of the rectangle. QuickDraw GX uses a gxRectangl e 
struct to hold these four values. A rectangle's fill could be any of a 
number of fill types. For instance, QuickDraw GX would use the fill 
constant gxSol i dFi 11 as the shape fill for a rectangle drawn as a solid. 
Figure 6.8 shows these three important shape properties. 



60 

§!§ ___ New Window 

40 .. .. . ... . ............... : 

Shape fill 
gxSolidFill 

Shape type 
gxRectangleType 

Chapter 6 • OuickDraw GX 

·· ··· ·· ·········· ........ 110 

1 ~O ~ Shape geometry 
~ struct gxRe ctangle 

{ 
Fixed l e ft ; 
Fixed top; 
Fixed r ight; 
Fixed bot tom; 

FIGURE 6.8 The three shape properties that define a shape. 

Each shape object has a style property, ink property, and transform 
property. These three properties are used to modify the look of a shape. 
Each of these three properties is actually an object- a supporting object. 
Supporting objects don't need to be explicitly created by your program. 
When your application creates a new shape, three new supporting 
objects are also created. Your program doesn't have to keep track of a 
shape's supporting objects-the shape will know how to reference them 
as needed. 

A shape's style property is used to vary such characteristics as the 
shape's pen width and pattern. The ink property of a shape is used to 
set the shape's color and its transfer mode- the way in which the shape 
covers the background it is set against. The transform property of a 
shape is used to change the mapping of a shape- that is, to scale, skew, 
or rotate the shape. 

The remaining three shape properties are the object-related properties: 
the shape attributes, owner count, and tag list. The shape-attributes property 

261 



262 
Graphia and Sound Programming Techniques for the Mac 

holds information such as whether or not the shape is locked in memory. 
The owner- count property tells how many references exist to the shape. 
The tag list property is used if you need to attach application-specific 
information to an object. 

Shape Object Style Properties 
The style property is one of the three supporting objects for a shape {the 
other two being the ink property and the transform property). When a 
shape is to be drawn, QuickDraw GX first looks at the shape's style object. 

Like a shape object, a style object has a set of properties of its own. 
Of these properties, you'll find the pen width the most familiar. To change 
the thickness of the lines that frame an object, call GXSetShapePen( ). The 
first parameter to GXSetShapePen() is the shape object that the pen 
affects, while the second parameter is the new width, or thickness, of 
the pen. Because the second parameter should be in Fixed notation, use 
the ff() macro when passing the new width. The following snippet 
changes the pen width of the theL i neShape: 

gxShape thelineShape; 

GXSetShapePen( thelineShape, ff(15) ); 

After the above snippet executes, any calls to GXDrawShape( thel i neShape 
will result in a line with a thickness of 15 pixels being drawn. 

The details of the supporting objects can be found in the more than 650 
pages of the QuickDraw GX Objects volume of Inside Macintosh-one of the 
seven QuickDraw GX Inside Macintosh books. 

Shape Object Ink Properties 
The ink property is another of the three supporting objects for a shape. 
The ink object lets you add color and transfer mode information to a 
shape. To set the color property of an ink object, begin by declaring a 
gxCo lo r variable: 

gxColor theRedColor; 



Chapter 6 • QuickDraw GX 

As shown below, the gxCol or structure consists of three members. 

struct gxColor 
{ 

gxColorSpace space; 
gxColorProfile profile; 
union 
{ 

} element; 
} ; 

The first gxCol or member is the space field. This member specifies the 
color space-or color system-used to define the color for a shape. For 
Macintosh programmers, the most common example of a color space is 
the RGB space. RGB (for red, green, blue) is used by Color QuickDraw. 
Other color space examples are CMYK and the indexed color space. The 
gxCol orSpace data type defines the different color spaces-a few of 
which are shown here: 

enum gxColorSpaces { .... gxRGBSpace, .... gxGraySpace, ... }; 

To set the color space of a gxCol or variable, use one of the gxCol orSpace 
constants. As mentioned, RGB is the most commonly used space: 

gxColor theRedColor; 

theRedColor.space = gxRGBSpace; 

The second gxCol or member is the profile field. This field holds infor­
mation used in color-matching when switching devices (monitors). If 
you set this field to n i l, QuickDraw GX will use its default color profile: 

theRedColor.profile =nil; 

The last gxCol or member is the element field. The element field holds 
one specific color. In the gxCol or structure, the element field is defined 
as a uni on. Drawing on your C background you'll recall that a structure 
field that is a union is one that can have different data types, but only 
one type at any given time. The following is the complete definition of 
the element field of gxCol or. 

263 



264 
Graphics and Sound Programming Techniques for the Mac 

union 
{ 

struct gxCMYKColor cmyk; 
struct gxRGBColor rgb; 
struct gxRGBAColor rgba; 
struct gxHSVColor hsv: 
struct gxHLSColor hl s; 
struct gxXYZColor xyz; 
struct gxYXYColor yxy; 
struct gxLUVColor luv; 
struct gxLABColor lab: 
struct gxYIQCol or yiq; 
gxColorValue gray: 
struct gxGrayAColor graya; 
unsigned short pixel16; 
unsigned 1 ong pixel32: 
struct gxlndexedColor indexed; 
gxColorValue component[4J: 

} element: 

If your shape object is using the RGB space for its color space, then it 
should use the rgb union member for the element field of the gxCol or 
variable. In the above definition, you can see that the rgb field is of the 
type gxRGBCol or: 

struct gxRGBColor 
{ 

} ; 

gxColorValue red: 
gxColorValue green: 
gxColorValue blue: 

The gxCol orVal ue type holds a value in the range of OxOOOO to OxFFFF. A 
value of OxOOOO represents the least intense level of a color, while OxFFFF 
represents the most intense level. To create a bright red color using the 
RGB space, use the following code: 

theRedColor.element.rgb.red = OxFFFF: 
theRedColor.element.rgb.green = OxOOOO; 
theRedColor.element.rgb.blue = OxOOOO; 



Chapter 6 • QuickDraw <iX 

If you aren't familiar with RGB colors, experiment with the Color Picker. 
This utility, pictured in Figure 6.9, can be found in the Color control panel 

of System 7.1 . You can click on a color on the color wheel and the corre-
N 0 TE sponding red, green, and blue values will be shown at the bottom left of the 

Color Picker. In Figure 6.9, the color red has been selected. If you know how to convert 

decimal to hexadecimal, you'll know that 65535 in decimal is OxFFFF in hexadecimal. If 

you don't want to make the conversion, you can use the decimal values in your code. 

Append an L to each value to force the compiler to recognize the numbers as 4-byte longs: 

theRedColor.element.rgb.red 
theRedColor.element.rgb.green 
theRedColor.element .rgb.blue 

Choose a highlight color: 

Hue 0 III 
Saturation 65535 III 
Brightness 65535 III 

"'"I'"" 1~ Green 0 . III 
Blue O III 

65535L; 
OL; 
OL; 

( Cancel ) n OK J) 

FIGURE 6.9 Apple's Color Picker can be used to find the RGB values of a color. 

Once a color has been set up, assign it to a shape using the GXSetShape­
Co l or C ) function: 

gxColor 
gxShape 

theRedColor; 
thelineShape; 

GXSetShapeColorC thelineShape, &theRedColor); 

265 



266 
Graphics and Sound Programming Techniques for the Mac 

The following snippet shows how to assign a gxColor variable a 
color of red using the RGB color space, and then how to associate that 
color with a shape. 

gxColor theRedColor; 
gxShape thelineShape; 

theRedColor.space = gxRGBSpace; 
theRedColor.profile =nil; 
theRedColor.element.rgb . red 
theRedColor.element.rgb.green = 
theRedColor . element . rgb . blue = 

OxFFFF; 
OxOOOO; 
OxOOOO; 

GXSetShapeCo l or( thelineShape, &theRedColor); 

Chapter Example: QDCiXProperties 
The QDGXProperties program uses the gxShape variable thel i neShape 
introduced in the previous program, QDGXShape. Here, the style property 
object and ink property object of the shape are altered to create a line 
shape that is 15 pixels wide and purple. Figure 6.10 shows the line­
though, of course, you'll have to trust that the line is indeed purple. 

New Window 

FIGURE 6.10 The result of running the QDGXProperties program. 

All of the code that differs from the QDGXShape program is found in 
the application-defined CreateGXL i neShape() function. In this function, a 
gxCo lo r variable is declared, then set to the RGB color space. The color purple 
is achieved by mixing a moderate amount of red (in hexadecimal, Ox8000 is 
one half of OxFFFF) with a moderate amount of blue. No green is .used. 



void CreateGXLineShape( void ) 
{ 

Chapter 6 • OuickDraw GX 

gxline thelineGeometry = { {ff(50), ff(l00)}, {ff(300), 
ff ( 60)} } ; 

gxColor thePurpleColor; 

gLineShape = GXNewShape( gxlineType ); 
GXSetline( gLineShape. &thelineGeometry ); 

thePurpleColor.space = gxRGBSpace; 
thePurpleColor.proftle =nil; 
thePurpleColor.element.rgb.red = Ox8000; 
thePurpleColor.element.rgb.green = OxOOOO; 
thePurpleColor.element.rgb.blue = Ox8000; 

GXSetShapePen( glineShape. ff(l5) ); 
GXSetShapeColor( gLineShape. &thePurpleColor ); 

Shape Object Transform Properties 
The style property and the ink property are two of the three supporting 
obj~cts used with a shape. The third and final supporting object is the 
transform property object. As its name indicates, a transform object holds 
information that transforms a shape in some way. Scaling, rotating, skew­
ing, and adding perspective are a few of the uses of the transform object. 

Mapping is a general term used to describe some transforms. The 
mapping property of a transform object holds a matrix. QuickDraw GX 
multiplies the values in this matrix with the coordinates of a shape to 
transform the shape into a new one. 

Chapter Example: QDGXMapping 
The QDGXMapping program introduces a new shape-the rectangle 
shape. It also demonstrates how to use a transform property-scaling. 
Figure 6.11 shows a window with the program's original rectangle to 
the right, and a scaled version to the left. 

267 



268 
Graphics and Sound Programming Techniques for the Mac 

New Window 

FIGURE 6.11 The result of running the QDGXMapping program. 

All shapes-regardless of type-begin as a gxShape variable. In QDGX­
Shape you saw that was the case for a line object. Here, you'll see that it 
holds true for a rectangle shape: 

gxShape gRectShape; 

The particular shape type of a gxShape is determined when GXNewShape() 
is called. QDGXMapping uses a short application-defined routine to 
create a rectangle object and define that object's geometry. 

void CreateGXRectangleShape( void ) 
{ 

gxRectangle theRectGeometry = { ff(200), ff(40), ff(320), ff(l20) }; 

gRectShape = GXNewShape( gxRectangleType ); 
GXSetRectangle( gRectShape, &theRectGeometry ); 

Crea teGX Reeta ngl eS ha pe ( ) is called from Open Dis p 1 ayWi ndow( ) . Once 
the rectangle shape is created, Open Di sp l ayWi ndow() calls GXDrawShape() to 
draw it to a window. Figure 6.12 shows the coordinates of this rectangle. 

gWindowViewPort = GXNewWindowViewPort( gDisplayWindow ); 

CreateGXRectangleShape(); 

GXSetShapeViewPorts( gRectShape, 1. &gWindowViewPort ); 

GXDrawShape( gRectShape ); 



Chaptczr 6 • QuickDraw <iX 

200 

New Window 

40 ------ -··---··· ······-········· ········ ···· ·---·· ······: 

...... ...... 120 

320 

FIGURE 6.12 The geometry of a rectangle 
the first time it is drawn using GXDrawS ha pe () _ 

After drawing the rectangle, OpenDi spl ayWi ndow () calls the application­
defined function Seal eGXRectangl eShape() to scale the rectangle to one-half 
its original size. This is accomplished using the QuickDraw GX function 
G XS cal e Sh ape C ) . Here's the prototype for that function: 

void GXScaleShape( gxShape 
Fixed 
Fixed 
Fixed 
Fixed 

target, 
hScale, 
vScale, 
xOffset, 
yOffset ) 

Pass GXScal eShapeC) an object and this QuickDraw GX function will 
transform the shape by applying a mapping matrix to it. The second 
and third parameters determine the scaling factor for the shape. For 
instance, a value of one half for hScale would tell GXSca leShapeC) to 
reduce the horizontal geometry of a shape to one-half its current value. 
Because GXScal eShape() accepts Fixed values, you can't d irectly pass a 
value of one half. Instead, use the QuickDraw GX Fi xedDi vi de() function 
to create a Fixed format value equal to one half: 

Fixed theHorizScale; 

theHorizScale = FixedDivide( ff(l), ff(2) ); 

269 



270 
Graphics and Sound Programming Techniques for the Mac 

The first parameter to Fi xed Di vi de() is the numerator, the second 
parameter is the denominator. Use the ffC) macro to pass these values as 
Fi xed numbers. Several more examples that use Fi xe dDi vi de() follows: 

theHorizScale = Fi xed Divide( ff(l), ff(4) ); II ll4th original 

theHorizScale = Fi xedDivide( ff(3), ff(l) ); II triple original 

Finally, the fourth and fifth parameters to GXScal eShapeC) are x and y off­
sets. The following function uses GXScal eShapeC) to scale the gRectShape 
rectangle to one-half its original size. After Open Di spl ayWi ndowC) calls this 
function, it again calls GXDrawShapeC) to again draw the rectangle shape 
object. The result is shown in Figure 6.13. 

void ScaleGXRectangleShapeC void ) 
{ 

Fi xed 
Fi xed 
Fi xed 
Fi xed 

theHorizScale; 
theVertScale; 
theXOffset = ff( O) ; 
theYOffset = ff(O); 

theHorizScale = Fi xedD ivide( ff(l), ff(2) ); 
theVertScale = Fi xed Divide( ff(l), ff(2) ); 

GXScaleShape( gRectShape, theHorizScale, theVertScale, 
theXOffset, theYOffset ); 

100 

New Window 

20 ------ _________ _____ __________ : 

-- --- -- -------- 60 

160 

FIGURE 6.13 The geometry of a rectangle the second time 

it is drawn using GXDrawShape( )_ 



Chapter 6 • QaickDraw GX 

In Figure 6.13, notice that along with being reduced in size by a factor 
of two, the location of the shape has changed from its original position. 
That's because GXScaleShape() changes the geometry of the shape. The 
rectangle's original coordinates were set as follows: 

gxRectangle theRectGeometry = { ff(200), ff(40), ffC320), ffC120) }; 

ff a rectangle shape had its geometry set using the new scaled values, the 
initialization would look like the following: 

gxRectangle theScaleGeometry = { ff(100), ff(20), ff(160), ff(60) }; 

Summary 
QuickDraw GX is a system software extension that adds new, powerful 
graphics functionality to the Macintosh. The new QuickDraw GX supple­
ments rather than replaces the older QuickDraw. 

In QuickDraw GX, shapes are objects. A shape can be as simple as a 
line and as complex as a bit-mapped image. In both cases, the shape is rep­
resented by an object. A new shape object is created using the QuickDraw 
GX function GXNewShapeC ). The shape can be drawn using the QuickDraw 
GX function GXDrawShapeC ). Before doing so, call GXSetShapeVi ewPortC) to 
match the shape with a QuickDraw GX view port. 

A shape has properties that define the shape itself and allow the shape 
to be modified. The shape type, geometry, and fill provide a description 
of the type of a shape. The style, ink, and transform properties hold 
information that modifies the look of a shape. 

271 



CttfiPTEit 1 

QuickTime Movies 
Apple's QuickTime system extension allows programmers to easily add 
movie-playing capabilities to any Macintosh applications. By adding 
little more than a page's worth of source code to a project, you can 
bring an ordinary, unassuming application to life. And with a little 
extra effort, you can further tum that same application into a multimedia 
showpiece. The dynamic content that movies add to your program 
make the incorporation of QuickTime a surefire way to hook users on 
your application. 

In this chapter, you'll learn all about the Movie Toolbox-the set of 
movie-related Toolbox routines that enable you to add movie-playing 
and movie-editing features to any of your programs. You will also get 
an introduction to the basic Movie Toolbox routines that are used to 
open movie files, play movies, and add a movie controller to a movie._ 
In Chapter 9, you'll read about additional routines that are all you need 
to add movie-editing and movie-saving features to a program. 

273 



274 
Graphics and Sound Programming Techniques for the Mac 

A movie controller is the thin, three-dimensional control panel that 
appears at the bottom of a window that displays a QuickTime movie. 
As you peruse this chapter, you will learn the details of creating a 
movie controller, attaching it to a movie window, and implementing the 
buttons that appear on that controller. 

The Movie Toolbox 
QuickTime isn't an application that a Mac user runs-it's a system soft­
ware extension. An .extension is code that extends the power of the 
Macintosh. In order to access this code, Apple supplies an application 
programming interface (API), to it. Just as Macintosh Toolbox is the API 
that allow programmers to access Apple's graphical user interface code, 
so is the Movie Toolbox the API that allows programmers to access 
QuickTime code. When you know how to use the Macintosh Toolbox, 
you'll be able to have your application open and then automatically 
play a movie (as shown in Figure 7.1), display a movie in an area of a 
dialog box (as shown in Figure 7.2), or attach a movie controller to a 
movie to give the user the ability to control movie playing (as shown in 
Figure 7.3). In this chapter, you'll see explanations and source code 
examples that work with movies in each of these ways. 

FIGURE 7.1 A QuickTirne movie displayed in a wi11dow without a movie controller. 



Chapter 7 • QuickTime Movies 

FIGURE 7.2 A QuickTime movie displayed in an area of a dialog box. 

FIGURE 7.3 QuickTime movies displayed in windows that have movie controllers. 

The original Macintosh Toolbox routines allow a programmer to add 
hundreds of interface features-a functional menu bar, multiple windows, 
a File Selection dialog box-to any application. The Movie Toolbox is noth­
ing more than another set of routines available to aid in the programming 
of the Mac. While the Movie Toolbox doesn't contain several thousand 
routines as the Macintosh Toolbox does, it does contain enough functions 
to allow a programmer to incorporate any movie-related feature into 
any program. 

275 



276 
Graphics and Sound Programming Techniques for the Mac 

Checking for Quicklime 
Before playing a movie, your program should verify that the user of your 
application has the QuickTime extension installed on his or her Macintosh. 
To handle this task, you'll rely on the Toolbox function Gest a 1 t ( ) . 

If you haven't used Ges ta 1 t ( ) in the past, you should have! This powerful 
function exists to supply your program with a wealth of information about 
the hardware and system software found on a user's machine. When 
passed one of the dozens of Apple-defined selector codes as the first 

parameter, Gest a 1 t() returns information about the user's Mac in the second parame­
ter-the response parameter. To learn more about the available selector codes for 
Gest a 1 t ( ) , scroll through the Gestalt.h universal header file. 

To request QuickTime information, pass Ges ta 1 t ( ) the Apple-defined 
selector code gestaltQuickTime. In return, Gestalt() will determine if 
the QuickTime extension is installed in the user's Extensions folder. If it 
is, Gestalt() returns an OS Err value of no Err. If QuickTime isn't found, 
Gestalt() will return a value other than noErr. That means your code 
should examine the returned OS Err value to determine if your program 
can continue. 

#include <Gestalt.h> 

OSErr theError; 
long theResult; 

theError =Gestalt( gestaltQuickTime, &theResult ); 

if ( theError != noErr 
ExitToShell(); 

While a general check for the availability of QuickTnne will usually suffice, 
there may be times when your program needs to know if some minimum 
version of QuickTime is present. If, for instance, your program makes 
use of a new Movie Toolbox function that only became available with 
the release of QuickTime 2.0.1, you'll want to verify that the user has 
that version or a more recent one. If that's the case, examine the value of 
the response parameter-Gestalt() will have placed the QuickTime 
version number in that variable. 



Chapter 1 • Quicklime Movies 

Gestalt() embeds the QuickTime version number in the upper two 
bytes of the four-byte response parameter, and does so in a hexadecimal 
format. If the user has QuickTime 1.0, the upper bytes of theResul twill 
be OxOlOO. If the user has version 1.6.1, the upper bytes will be Ox0161. 
As an example of version testing, consider the following snippet. If 
your application makes use of some new movie-related feature not 
found in QuickTime before version 2.0.1, your program can check to see 
if the user at least has that version, as follows: 

if C theResult < Ox02010000 
Exi tToShel l (): 

Always search for a minimum version value-not an exact value. For 
instance, don't check for QuickTime 1.6.l like this: 

NOTE 
if ( theResult ~ Ox01610000 l II don't use~ in this test! 

Only the first four digits are version-related. The last four digits aren't 
guaranteed to each be zero. If the user does have version 1.6.1, theResul t could be 

returned as Ox01618000. In that event, the above test would fail. 

Initializing the Movie Toolbox 
Once your program has verified that QuickTime is present, the Movie 
Toolbox needs to be initialized. A single function call takes care of this 
chore. The Movie Toolbox function EnterMovies() reserves an area of 
memory that the Movie Toolbox will use to hold information about 
your application. Like many of the Movie Toolbox routines you'll 
encounter, EnterMoviesC) returns an OSErr value to let your program 
know if the call was executed successfully. 

#include <Movies.h> 

OSErr theError: 

theError = EnterMovies(); 

if C theError != noErr 
ExitToShell(); 

277 



278 
Graphics and Sound Programming Techniques for the Mac 

The function prototypes for all of the Movie Toolbox routines can be 
found in the Movies.h universal header file-so include that header file 
in every project that makes use of QuickTime. 

Before checking for QuickTnne or initializing the Movie Toolbox, your 
program should perform the familiar Macintosh Toolbox initializations 
required of all Mac applications. If you use a standard initialization rou­
tine like the application-define Initial i zeTool box() function found 
throughout this book, consider appending to that routine the QuickTime 
check and Movie Toolbox initialization. Since two Toolboxes are now 
being initialized (and in the future, perhaps more), you might want to 
rename your standard initialization routine to something more appropriate 
than InitializeToolbox(). 

void InitializeAllToolboxes( void ) 
{ 

} 

OSErr theError: 
long theResult: 

InitGraf( &qd.thePort ); 
InitFonts(); 
InitWindows(); 
InitMenus(); 
TEI nit(); 
InitDialogs( OL ); 
FlushEvents( everyEvent, 0 ); 
InitCursor(); 

theError =Gestalt( gestaltOuickTime, &theRe~ult ); 
if ( theError != noErr ) 

ExitToShell (): 

theError = EnterMovies(); 
if ( theError != noErr ) 

ExitToShell(); 

Loading a Movie 
When a Macintosh program needs to display a picture that is in a picture 
file (a file of type 'p I CT'), it first opens the file, then loads the picture data 



Chapter 1 • Quicklime Movies 

into memory. Once the data is in memory, the application can access it 
whenever it needs to-typically, to draw the picture to a window. The dis­
play of text from a text file (a file of type 'TEXT') follows a similar course of 
action. So it should come as no surprise that the playing of a QuickTrme 
movie, which resides in a QuickTrme movie file (a file of type 'MooV'), also 
involves the steps of opening a file and loading data into memory. 

Opening a Movie File 
A QuickTime movie is stored in a QuickTime movie file. Before an 
application can play a movie, the file in which the movie resides must 
be opened. The Movie Toolbox function OpenMovi eFi l eC) takes care of 
this job. 

OSErr theError; 
FSSpec theFSSpec; 
short theFileRefNum; 

theError = OpenMovieFile( &theFSSpec, &theFileRefNum, fsRdPerm ); 

The first of the three parameters to OpenMovi eFi le() is the file system 
specification for the movie file to open. After the file has been opened, 
OpenMovi eFi le() fills the second parameter with a file reference number. 
Subsequent calls to some other Movie Toolbox routines will rely on this 
reference number. The final parameter to 0 pen Mo vi e Fil e ( ) is a permis­
sion level for the opened file. Programs that will play a movie-but 
won't allow changes to the movie-should use the Apple-defined 
fsRdPerm constant here. Programs that will allow movie editing should 
use the Apple-defined constant fsRdWrPerm. 

If you've worked with Macintosh files in the past, you know about 
the FSSpec data type. To let a Toolbox routine know where to find a par­
ticular file, you provide the routine with three pieces of information 
about the file: a reference number to the volume (the drive) that the file 
is on, the file's parent directory (the folder the file is in), and the file's 
name (as displayed on the desktop). Conveniently, all of this informa­
tion can be stored in a single data structure-the FSSpec. 

If at the time you write a program, you know the location and name of 
a file that is to be opened, you can call the Toolbox routine FSMakeFSSpec() 

279 



280 
Graphics and Sound Programming Techniques for the Mac 

to create an FSSpec for a file. If, instead, your application will let the user 
select a file using the standard Open dialog box, you'll rely on that dialog 
box to create an FSSpec for the file the user selects. For simplicity, 
FSMakeFSSpec() will be used in this chapter's first example program. 
Later in the chapter, the standard Open dialog box will be used. 

The following snippet creates an FSSpec for a file named Charlie­
Chaplin. The file is assumed to be in the same folder as the application 
that will be opening it. 

OSErr theError; 
FSSpec theFSSpec; 

theError = FSMakeFSSpec( 0, 0, "\pCharlieChaplin", &theFSSpec ); 

The first FSMakeFSSpec() parameter is a volume reference number. A 
value of 0 tells FSMakeFSSpec() that the volume is the default, or startup, 
drive. The second parameter is the parent directory of the file. A value 
of 0 tells FSMakeFSSpec() that the parent directory is the same folder as 
the one that houses the application. Because the third parameter is the 
name of the file. Because FSMakeFSSpec() expects the file name to be in 
the form of a Pascal string, include the leading "\p" characters-as 
shown above. The final parameter is a pointer to an FSSpec variable. 
After FSMakeFSSpec() uses the first three parameters to create the file 
system specification, the function will return the newly created FSSpec 
in this last parameter. 

If your program will keep a collection of movie files in a subdirectory-a 
folder within the application folder-you can still use FSMa ke FSSpec ( ) 
to create the FSSpec. To do so, include the name of the subdirectory in 
the file name. Including a folder name with the file name makes the file 
name a partial pathname-the name now includes information regarding 
the path to the file. This is done by prefacing the file name with the 
folder name. Include a colon before both the folder name and the file 
name. The following snippet again creates an FSSpec for the CharlieChaplin 
movie file. This time it's assumed that the file is kept in a subdirectory 
named Movie Files f. 

OS Err 
FSSpec 
Str255 

theError; 
theFSSpec; 
theFileName = "\p:Movie Files f:CharlieChaplin"; 



Chapter 7 • Quicklime Movies 

theE r ror = FSMake FSSpec( 0 , 0, t heFil eName, &theFSSpec ); 

Figure 7.4 shows the pathnames for a few different folder scenarios that 
each use the CHARLIECHAPLIN movie file . In each case it is assumed that 
both the volume reference number and the parent directory are set to 0 
in the call to FSMa ke FSSpec (). 

§ID~ M Rpp t ~fiii-
32 items 220.4 MB in 

~ 
My App 

11 \pCharlie Chaplin 11 

My App f 
2 items 220.4 MB in 

~ II 
My App Movi e Files f 

1----Hili:i§ Mouie Files t 11~ 
'--I 31 items 220.4 MB in 

El 
Charli eCha pli n fo 

~::::~~!iW!!i:li!-k\Miiii,iill!iL<> la 
11 \pMovie Files f:CharlieChaplin 11 

MyApp t 
2 items 220.4 MB in 

:i:llml1!m 
Movi e Fil es I 

~ 
My App 

Mot•ie Files f 
220.4 MB in 

II 
Silent Films I 

§Ill§ Silent Films f §1!9 
11 items 220.4 MB i n 

11 \pMovie Fi l es / :Silent Films f : CharlieChapl in" 

FIGURE 7.4 Movie names for a movie file located 

in three different folder arrangements. 

Loading a Movie from a file 
A Macintosh QuickTime movie file (a file of type 'Moo V') consists of a 
moov resource in the movie file's resource fork and movie data in the 
movie file's data fork. The moo v resource holds information about the 
format of a movie-information such as the duration of the movie and 
how many tracks the movie has. The moov resource doesn't, however, 
contain the data that makes up the movie itself. That information is 
held in the movie file 's data fork. Figure 7.5 shows the resource fork of a 
movie file. It also shows a ResEdit Get Info window that gives infor-

281 



282 
Graphics and Soand Programming Techniques for the Mac 

mation about the movie file. By examining this window, you can see 
that the vast majority of a movie file's byte size is in the file's data fork. 

NOTE 

LharlieChaplin 

II') 
moov 

-· Info f11r c.harnethaPl.in -

File: I CharlieChaplin I D Locked 

Type: I MoolJ I Creator:~ 
D File Locked D Resources Locked File In Use: Yes 
D Printer Driuer MultiFinder Compatible File Protected: No 

Created: !Thu, Jun 22, 1995 I Time:J7:11:20PM I 
Modified: I Sat, Jun 24, 1995 I Time: 15:56:59 PM I 

Size: 2774 bytes in resource fork 
1631 on bytes in data fork 

Finder Flags: @ 7.H 0 6.0.H 

0Has BNDL 0 No INITs Label: I None •I 
D Shared [8J lnited D lnuisible 

D Stationery ORlias D Use Custom Icon 

FIGURE 7.5 The resource fork of a movie file holds a moov resource, 
while the data fork holds the movie data itself. 

A movie's data can even be held in a file, or files, other than the QuickTime 

movie file that holds the movie's moov resource. If that is the case, then the 

data fork holds references to the location of the movie's data. 

After opening a movie file with a call to OpenMov i e File C ) , the movie 
needs to be loaded into memory. A call to the Movie Toolbox routine 
NewMov i eFromFi le C ) accomplishes this. The NewMov i e FromFi le C ) function 
doesn't load all of the movie data into memory-the data for a large 
movie can easily exceed the amount of free RAM a user has. Instead, 
some data will be loaded, along with references to the location of other 
data. To a programmer, the most important aspect of NewMovi eFromFi l eC) 
is that this routine handles the data loading without any help-that 



Chapter 1 • OulckTime Movies 

is, you'll never have to be concerned with the format of either the 
moov resource or the data in the data fork. Here's how a call to 
NewMovi eFromFi le() looks: 

OS Err 
short 
Movie 
short 
Str255 
Boolean 

theError: 
theFileRefNum: 
theMovie: 
theMovieResID = O; 
theMovieResName; 
wasAltered: 

theError = NewMovieFromFile( &theMovie, theFileRefNum, 
&theMovieReslD, theMovieResName, 
newMovieActive, &wasAltered ); 

After the call to NewMovi eFromFi le(> is complete, the first parameter will 
hold an identifier to the loaded movie. This identifier, of the data type 
Movie, will be useful in subsequent Movie Toolbox function calls. While 
the data in memory may not consist of all of the data that makes up a 
movie, the loading of the data and references is still referred to as "creating 
a movie." Likewise, a variable of the type Movie-used to identify the data 
and data references-is referred to as "a movie." 

To load a movie into memory, NewMovi eFromFi le() needs two pieces 
of information: the file that the movie is in and the ID of the moov 
resource in that file. The file that holds the movie can be identified by the 
file reference number returned by the call to the Toolbox routine that 
precedes the call to NewMovi eFromFi le( )-the routine OpenMovi eFi le(). 
This reference number is the second parameter to NewMovieFromFile( ). 
Because it is possible to keep more than one moov resource in a single 
movie file, a moov resource ID is also needed. If you specify a resource 
ID of 0, NewMovi eFromFi le() will load the first moov resource in the specified 
file. If there is only one moov resource, a value of 0 will of course tell 
NewMovi eFromFi le( l to load that resource. 

Besides supplying an identifier to the movie, NewMovi eFromFi le(> 
returns three other pieces of information. However, in most instances, 
your program will ignore this returned information. To begin, the third 
parameter will be the ID of the moov resource that was used. If a value of 0 
was used at the start of call, that value will be overwritten by the 

283 



284 
Graphics and Sound Programming Techniques for the Mac 

resource ID at the completion of the call. The second piece of information 
provided by NewMovi eFromFil eC) can be found in the fourth parameter. 
Here, you'll find the name of the moov resource. Notice that this is the name 
of the moov resource, not the name of the QuickTime movie file. The 
final returned information can be found in the last parameter. This 
Boolean value will tell you whether NewMovieFromFile() had to make any 
changes to the data references that were a part of the data in the data fork. 

The only routine not yet described is the fifth one-newMovi eActi ve 
in the above example. This parameter holds a flag that provides supple­
mental information to NewMovieFromFileC ). Here, you'll want to pass 
the Apple-defined constant newMovi eActi veto activate the new movie­
a movie needs to be active in order for it to be played. 

The Toolbox call to create an FSSpec for a movie file and the Movie 
Toolbox function calls used to open a movie file and load the file's movie 
can be called one after another. The following snippet illustrates this. 

OS Err 
FSSpec 
short 
Movie 
short 
Str255 
Boolean 

theError; 
theFSSpec; 
theFileRefNum; 
theMovie; 
theMovieResID = O; 
theMovieResName; 
wasAltered; 

theError = FSMakeFSSpec( 0, 0, •\pCharlieChaplin", &theFSSpec ); 
theError = OpenMovieFile( &theFSSpec, &theFileRefNum, fsRdPerm ); 
theError = NewMovieFromFileC &theMovie, theFileRefNum, 

&theMovieResID, theMovieResName, 
newMovieActive, &wasAltered ); 

All three of the above function calls return an OSErr value. For brevity, 
no error-checking is shown. In actuality, you'd want to check the value 
of theError after each function call and either exit upon an error-as 
shown below-or, more likely, post an alert displaying an error message-­
as described in Appendix E. 

theError = FSMakeFSSpec( 0, 0, •\pCharlieChaplin", &theFSSpec ); 
if C theError != noErr ) 

ExitToShell (); 



Chapter 7 • QuickTime Movies 

Closing a Movie File 
If your application doesn't allow the user to edit the frames that make 
up a movie, the opened movie file can be closed immediately after the 
file's movie has been loaded. After a call to NewMovieFromFile( ), your 
program has the movie's data-or references to all of the movie data­
in memory. That means that the application knows where to find the 
movie's data. It also means the movie file no longer needs to be open. A 
call to the Movie Toolbox function Cl oseMovi eFi le() will handle the 
closing of the file. 

short theFileRefNum; 

CloseMovieFile( theFileRefNum ); 

As its only parameter, Cl oseMovi eFi le() requires the reference number 
to the open file. This is the same reference number returned by OpenM­
ovi eFi le() and used in the call to NewMovi eFromFi le(). 

As you'll see later in this chapter, if a program allows movie editing, 
and the editing changes are to be saved, the program should keep the 
movie file open so that the changes can be written to the file. 

Displaying a Movie 
After loading a movie, a window in which to display the movie needs to 
be opened. There is no special "movie type" of window for this purpose­
just call either of the Toolbox functions GetNewCWi ndow() or 
NewCWi ndow() to open a color window. While a QuickTime movie-even 
a color movie-can be displayed in a window opened with a call to 
GetNewWi ndow() or NewWi ndow( ), QuickTime is more efficient at displaying 
a movie if a color window is used. 

#define rMovieWindow 128 

WindowPtr theWindow; 

theWindow = GetNewCWindow( rMovieWindow, nil. (WindowPtr)-lL ); 

285 



286 
Graphics and Sound Programming Techniques for the Mac 

Setting the Movie Graphics World­
SetMovieGWorld () 
At this point, a movie is loaded and a window is open-but there's no link 
between the window and the movie that is to appear in it. As the movie 
plays, you'll of course want to make sure it's playing in the window it is 
meant to appear in. To pair the window to a movie, call SetMov i eGWo r 1 d ( ) . 

This Movie Toolbox function sets the pixel-display coordinate system of 
theMovi e to the same system used by theWi ndow. 

Movie theMovie; 
WindowPtr theWindow; 

SetMovieGWorld( theMovie, (CGrafPtr)theWindow, nil ); 

The first parameter to SetMovieGWorld() is the movie returned by NewM­

ovi eFromFi 1 e( ). The second parameter can be a pointer to either a graphics 
port, a color graphics port, or a graphics world-the SetMovi eGWor 1 d ( ) function 
can work with any of these types. In the above snippet, the Wi ndowPtr variable 
is typecast to a color graphics port. The third parameter to SetMovieGWorl d() is 
a handle to the movie's graphics device structure. Using ni 1 for this parameter 
tells SetMovi eGWorl d() that the current device should be used. 

No, you can't just go casting a variable of one data type to any data type 

and expect things to work out all right. The above cast is valid because a 

CGraf Ptr and a Wi ndowPtr both point to the same data structure-a 

N ° r E Graf Port. If you recall that a Wi ndowPtr points to a Wi ndowRecord, you 

might question that statement. Keep in mind that the first field of a Wi ndowRecord is a 

Graf Port-so that a Wi ndowPtr can be thought of as pointing to either a Wi ndowRecord 

or a Graf Port. 

Resizing the Display Window 
If you use a call to GetNewCWi ndow() to load the information for the win­
dow that will display a movie, you of course need to define a WIND 

resource. When you do, set the window to any size you wish-but make 
sure to uncheck the Initially visible checkbox if using ResEdit, or the 



Chapter 7 • Quicklime Movies 

Visible checkbox if using Resorcerer. The window's initial size is unim­
portant because your application will resize the window to match the 
size of the movie that is to be displayed in the window. The window's 
initial invisibility is important so that this resizing takes place out of sight 
of the user. 

Your program will rely on one Toolbox routine and two Movie Toolbox 
routines to resize a window to the size of a movie. First, a call to the Movie 
Toolbox function GetMovi eBox( l should be made to determine the size of a 
frame of the movie that is to be displayed. Pass GetMovi eBox( l the Movie 
variable that was returned by NewMovi eFromFi le( l and a pointer to a rec­
tangle. GetMovi eBox( l will measure the size of a frame from the movie and 
place those dimensions in the Re ct variable: 

Movie theMovie; 
Rect theMovieBox; 

GetMovieBox( theMovie, &theMovieBox ); 

At this point, the temptation may arise to set the window size to the dimen­
sions held in the Rect variable theMovi eBox. Before doing that, a couple 
of more steps are necessary. First, the Toolbox routine OffsetRect( l 
should be called. While GetMov i eBox ( l will provide the dimensions of a 
movie, it does so indirectly. For instance, the four fields of the Rect variable 
could have values similar to these: 

theMovieBox.left 40 
theMovieBox.right 240 
theMovieBox.top 100 
theMovieBox.bottom 235 

As shown in Figure 7.6, the above values yield a movie that is 200 pixels 
in width and 135 pixels in height. To get the variable theMovi eBox to 
reflect these dimensions, however, the rectangle should be offset by the 
left and top values: 

Rect theMovieBox; 

OffsetRect( &theMovieBox, -theMovieBox.left, -theMovieBox.top ); 

287 



288 
Graphics and Sound Programming Techniques for the Mac 

40 240 

~ 200 Ir; a j? 

100 

i 
135 

235 ~ 
FIGURE 7.6 A movie's moviebox holds the movie's pixel dimensions, 

but these values may not have an origin point of (0, 0). 

After the offset, the four fields of theMovi eBox variable used in the preceding 
example will have the following values: 

theMovieBox.left 0 
theMovieBo x.right 200 
theMovieBox.top 0 
theMovieBox.bottom 135 

Next, call the Movie Toolbox routine SetMovi eBoxC) to make these new, 
offset values the boundaries for the rectangle that defines the size of the 
movie. The following is a snippet that adjusts a movie's boundaries. 

Movie theMovie; 
Rect theMovieBox; 

GetMovieBox( theMovie, &theMovieBox ); 
OffsetRectC &theMovieBox, -theMovieBox.left, -theMovieBox.top ); 
SetMo vieBox( theMovie, &theMovieBox ); 

After the above calls, the movie rectangle, or movie box, has been 
adjusted-but these changes don't apply to the window that is to dis­
play the movie. To do that, call the Toolbox function Si zeWi ndowC) . Pass 
Si zeWi ndowC) the window to resize, along with the right and bottom 
coordinates of the movie's rectangle. In the above example, that would be 



Chapter 7 • OaickTime Movies 

theWi ndow, 200, and 135. The last parameter to Si zeWi ndowC) is a Boolean 
value that indicates whether or not an update event should be generated. 

WindowPtr theWindow; 
Rect theMovieBox; 

SizeWindowC theWindow, theMovieBox.right, theMovieBox.bottom, true ); 

At this point, the window is properly sized to match the dimensions of 
the movie that will be displayed in it. And, because the window was 
invisible, the user didn't see the window resizing take place. Now it's 
time to display the window in preparation for the display of the movie. 

WindowPtr theWindow; 

ShowWindowC theWindow ); 

Playing a Quicklime Movie 
A movie can be played directly by your application-without any user 
intervention-or it can display a movie controller that gives the user 
full control of movie playing. In this section, you'll see how to play a 
movie using the first method. Later in this chapter, you'll read about 
playing movies using a movie controller. 

Preparing a Movie for Playing 
When you create a new movie, or edit an existing one, you save the 
movie to file. When a movie is saved, the current frame is also saved. 
Consider the following scenario. You paste a frame into the middle of a 
movie using a program such as Apple's Movie Player. Then you save 
the edited movie and close it. The next time that movie is opened, it will 
be opened to the frame at which the movie was saved. To open a movie 
and guarantee that the movie will be rewound to the first frame, call the 
Movie Toolbox function GoToBegi nni ngOfMovi e (). The only parameter 
this function needs is the name of the movie to rewind. 

Movie theMovie; 

GoToBeginningOfMovieC theMovie ); 

289 



290 
Graphia and Sound Programming Techniques for the Mac 

After rewinding the movie, call the Movie Toolbox routine Start­
Movi e( ). Contrary to its name, this function doesn't actually start the 
movie playing. Instead, it readies the movie for playing by making the 
movie active and setting the movie's playback rate. Pass StartMovie() 
the movie that is to be played. 

Movie theMovie; 

StartMovie( theMovie ); 

Playing a Movie 
To play a movie your program should call the Movie Toolbox routine 
MoviesTask( ). This function doesn't play a movie from start to finish, 
however. Instead, it processes only a small part of the movie, updating the 
display of the movie by drawing a frame. That means that Movi esTask( > 

needs to be called repeatedly until the movie has completed playing. You 
can use another Movie Toolbox routine to determine when a movie has 
finished. When passed a Movie variable, IsMovi eDone() returns a Boal ean 
value that tells whether or not that movie has finished playing. 

Movie theMovie; 

do 
{ 

} 
MoviesTask(theMovie, 0); 

while ( IsMovieDone( theMovie ) ~false ); 

The first parameter to Movi esTask() is the movie to service. A single call 
to MoviesTask() is capable of servicing more than one movie. If more 
than one movie is open on the screen, rather than pass a movie your 
application should pass a value of n i 1 as the first parameter. That tells 
the Movie Toolbox to service every active movie on the screen. 

The second parameter to Mo vi es Task< ) is the number of milliseconds 
that your application is willing to give the Movie Toolbox for its task of 
servicing movies. If one active movie is open, the Movie Toolbox will 
spend no more than this time servicing that movie. If more than one 
active movie is open, then the Movie Toolbox will service as many of 
those movies as it can, in the time specified by this second parameter. 



Ch<1pter 7 • Quicklime Movies 

To make sure that all active movies get serviced, pass a value of 0 as this 
second parameter- that tells the Movie Toolbox to service each active 
movie once. 

Cleaning Op 
When your application has finished with a movie, release the memory 
occupied by both the movie and the window the movie is displayed in. 
A call to the Movie Toolbox routine DisposeMo vie() frees the movie 
memory, while a call to the Toolbox function Di sposeMovi e () deallocates 
the window memory. 

DisposeMovie( theMovie ); 
DisposeWindow( theWindow ); 

Chapter Example: QuickPlay 
This chapter's first example program demonstrates the basics of QuickTrme 
movie playing. When you run the QuickPlay program, a window will 
open and a short clip from a silent movie will play in the window. The 
movie has a sound track, so you'll hear a musical score play as the 
movie runs. When the movie ends, the program will end too. Figure 7.7 
shows the QuickPlay window and a frame from the movie. 

FIGURE 7.7 The Robot movie, as viewed in the QuickPlay example program. 

291 



292 
Graphics and Sound Programming Techniques for the Moc 

The type of window that the movie plays in·is established in a WIND 
resource-the only resource used by the QuickPlay project. Figure 7.8 
shows this resource. Notice in the figure that the resource size of the 
window-100 pixels by 100 pixels-has no correlation to the size of the 
window as displayed in the program. Also note that the Initially visible 
checkbox is not checked. The source code listing for QuickPlay needs no 
walk-through-all of the code has been discussed at length in this chapter. 

JBll?jfrn11r"' ~ ailit..1,i&iU!Jl!i!J!il!!i WIND ID • 128 from QulckPle .rsrc 

Top:~ Height:~ 

Left:~ Width:~ 

Color: ® Default 
O Custom 

O I nltlolly ulslble 

l8J Close boH 

FIGURE 7.8 The WIND resource for the window that will display the Robot movie. 

N 0 TE 

If you'd like QuickPlay to play a different QuickTime movie, change the 
kMovi eName constant from "\pRobot" to the name of the movie you want 

the program to play. Next, build (make) a new QuickPlay application from 

the QuickPlay project. Finally, before running the QuickPlay program, 
make sure that the movie is in the same folder as the QuickPlay application. 

#include <Mo vie s .h > 

void InitializeAllToolboxes( void ); 

#define 
#define 

rMovieWindow 
kMovieName "\pRobot" 

128 



void main( void ) 
{ 

OS Err 
FSSpec 
short 
Movie 
short 
Str255 
Boolean 
WindowPtr 
Re ct 

theError; 
theFSSpec; 
theFileRefNum; 
theMovie; 
theMovieResID = O; 
theMovieResName; 
wasAltered; 
theWindow; 
theMovieBox; 

InitializeAllToolboxes(); 

Chapter 1 • Quicklime Movies 

the Error 
the Error 
) ; 

theError 

FSMakeFSSpec( 0, 0, kMovieName, &theFSSpec ); 
OpenMovieFile( &theFSSpec, &theFileRefNum, fsRdPerm 

NewMovieFromFile( &theMovie, theFileRefNum, 
&theMovieResID, theMovieResName, 
newMovieActive, &wasAltered ); 

CloseMovieFile( theFileRefNum ); 

theWindow = GetNewCWindow( rMovieWindow, nil, (WindowPtr)-lL ); 
SetMovieGWorld( theMovie, (CGrafPtr)theWindow, nil ); 

GetMovieBox( theMovie, &theMovieBox ); 
OffsetRect( &theMovieBox, -theMovieBox.left, -theMovieBox.top ); 
SetMovieBox( theMovie, &theMovieBox ); 

SizeWindow( theWindow, theMovieBox.right, theMovieBox.bottom, 
true ); 

ShowWindow( theWindow ); 

GoToBeginningOfMovie( theMovie ); 

StartMovie( theMovie ); 

do 
{ 

} 
MoviesTask(theMovie, 0); 

while ( IsMovieDone( theMovie ) ==false ); 
DisposeMovie( theMovie ); 
DisposeWindow( theWindow ); 

293 



294 
Graphics and Sound Programming Techniques for the Mac 

} 

//~~~~~~~~~~~~~~~~~~~~~~~~~ 

void InitializeAllToolboxes( void ) 
{ 

} 

OSErr theError: 
long theResult: 
InitGraf( &qd.thePort ); 
InitFonts(): 
In itWi ndows () : 
InitMenus(); 
TEI nit(): 
InitDialogs( OL ); 
FlushEvents( everyEvent, 0 ); 
InitCursor(); 
theError =Gestalt( gestaltQuickTime, &theResult ); 
if C theError != noErr ) 

ExitToShel l C): 

theError = EnterMovies(): 
if ( theError != noErr ) 

ExitToShell(): 

Chapter Example: MovieDialog 
The QuickPlay program played a movie in a fixed window and didn't 
use a movie controller. While the main purpose for creating a program of 
such simplicity was to keep the source code listing of the first QuickTime 
example brief and to the point, there are instances where an application 
might display and play a movie without a movie controller. Examples 
include a game that opens and plays a movie in response to some user 
action, or a program that advertises a line of products and plays one of 
several movies depending on which selection a user makes from a menu. 

The MovieDialog Program 
Before moving on to the topic of movie controllers, this section examines 
a program that makes use of movies that are played without controllers. 



Chapter 7 • Quicklime Movies 

MovieDialog provides a practical example of how a multimedia program 
might use movies without implementing movie controllers. It also demon­
strates how to play a movie within an area of a dialog box rather than sizing 
a window to match the dimensions of a movie. When run, the MovieDialog 
program opens a dialog box like the one pictured in Figure 7.9. 

- - -

FIGURE 7.9 The dialog box that is opened by the MovieDialog program. 

Clicking on the Apollo button plays a movie of the launching of one of 
the Apollo rockets-as shown in Figure 7.10. Clicking on the Venus button 
plays a movie of the Venus space probe. When a movie has finished 
playing, its last frame remains in the movie-playing area of the dialog 
box. To clear this area and return it to its original light gray state, click 
the Clear button. 

( Apollo ) 

( Uenus ) 

Clear 

Quit 

FIGURE 7.10 The MovieDialog dialog box, with a movie playing in it. 

295 



296 
Graphics and Sound Programming Techniques for the Mac 

The MovieDialog Resources 
You'll create three resources for the MovieDialog project: a DLOG, a DITL, and 
a PICT. Of most interest will be the picture resource--it provides the three­
dimensional look for the movie-playing area of the MovieDialog dialog box. 
To create the picture, you can open one of the movies that will be used by 
MovieDialog. A movie player such as Apple's Movie Player or any one of 
the example programs from this chapter will work for this task (you'll find 
compiled versions of each chapter example on the CD that accompanies this 
book). After opening a movie, you should perform a screen capture, or 
screen dump. The resulting screen dump file can then be opened with a 
graphics program-as shown in Figure 7.11. In this figure, you can also see 
that the movie has been selected from within the movie window. 

FIGURE 7.11 A screen dump of a movie is opened in a 

graphics program, and the movie is selected. 

Now cut the movie and then clear, or erase, the rest of the window. Fill 
this area with a light background color. This shaded background is only 
necessary to provide a contrast for the white frame that will soon border 
the movie on two sides. Next, paste the cut movie frame back into the 
window. Then use your graphics program's line tool to draw two white 
lines and two dark-gray lines around the movie. In Figure 7.12, the pen 
has been set to a width of four pixels before drawing the line. Then the 
corners were touched up with a narrow pen-setting. 



Chapter 7 • Quicklime Movies 

FIGURE 7.12 A frame with a three-dimensional look is drawn around the movie. 

Next, the movie again cut the movie frame from the window. Fill the 
remaining white area with a light-gray color that will match the dialog 
box background when the dialog box is laid out. The last step with the 
graphics program is to select the picture and cut it from the window­
as is being done in Figure 7.13. 

FIGURE 7.13 The frame is selected and copied to the clipboard. 

You'll need to know the exact size of the picture when placing it in the 
DITL resource. Your graphics program may provide this information when 

297 



298 
Graphics and Sound Programming Techniques for the Mac 

a picture is selected from one of its windows. If not, you can use the 
PictSize utility found on this book's CD. When run, PictSize opens the 
window shown in Figure 7.14 to display the size of the current contents 
of the clipboard. If you've copied the picture from the graphics program, 
it will still be in the clipboard. Simply double-click on the PictSize icon 
to launch this handy utility. When you do that, PictSize will respond by 
displaying the clipboard contents-in pixels. 

=Iii · Pl~tSize 

Wid\h: 249 

Height: 188 

Size : 5000 by \es 

Update Info 

Make true PICT 

FIGURE 7.14 The PictSize utility provides the pixel dimensions 
of any picture that is currently in the Clipboard. 

If you're using System 7.5 or later, paste the picture in the Scrapbook. The 

Scrapbook will give the picture's size. 

If you've been obtaining QuickTime movies from CD collections, or if you've 
been using a digitizer and digitizing software to create your own movies, 

you've noticed that QuickTime movies usually come in just a few sizes. That 
means that when you select a topic, you should have a set of movies of equal 
dimensions-perfect for use with the method described here. 

Next, launch your resource editor and paste the picture into it. Figure 7.15 
shows the resources that make up the MovieDialog project-including 
the PI CT resource. 

Earlier it was stated that you'll create three resources for the MovieDialog 
project-yet Figure 7.15 shows four resources. The dctb resource is a dialog 
color-table resource that is automatically created by the resource editor 
when you add color to a dialog box. 



Chapter 7 • QuickTime Movies 

Mo11ieDialog.rsrc 

~ ~ ra:a ~Ji 
-

dctb DITL DLOG PICT 

~Im PICTs from MouieDialo .rsrc 

128 

FIGURE 7.15 The picture frame that was copied from the 
graphics program is pasted into the project's Resource file. 

When you create the DITL that holds the dialog box items, you'll add this 
picture as a Picture item. If you've noted the picture's dimensions, you'll be 
able to set the picture's size properly in the DITL- as shown in Figure 7.16. 

FIGURE 7.16 A Picture item is added to a DITL resource, 
and the ID of the item is set to that of the PI CT resource. 

The dialog box displayed in MovieDialog has a light-gray background. 
If you wish, you can use your resource editor to give the entire dialog 
box a matching background. In ResEdit, create a DLOG resource, then 
click on the Custom button in DLOG editor. Next, click on the Content 

299 



300 
Graphics and Sound Programming Techniques for the Mac 

box to display a palette of color choices as shown in Figure 7.17. Select a 
color from this palette for the dialog box background. 

N 0 TE 

If you use Resorcerer as your resource editor, create a new dialog box. 

Select Set Dialog Info from the Dialog menu. In the Settings window that 

opens, double-dick on the Content dialog box in the Window Colors sec­

tion. That brings up the color-picker wheel that allows you to select a color 

for the dialog box content area. 

n rR Ol06 ID • t 28 from MouieDialo .rsrc 

Top:~ Height: @D 
Left:~ Width:~ 

D Close boH 

Frame: l!!!!!I 

Highl ight: • 

FIGURE 7.17 ResEdit allows you to easily add color, or gray shading, 

to the content area of a D LOG resource. 

Because the dialog box that is displayed by MovieDialog won't need to be 
resized- as was the case for a window that was to be the exact size of a 
movie-you can set it to be initially visible. 

The MovieDialog Source Code Listing 
There isn't anything unique about the dialog box displayed by MovieDialog­
the code that handles this dialog box is similar to code you've written for 
any other program that displays a modal dialog box. The listing for 
0 pen Di s pl ay O i al og ( )- the routine that handles the dialog box-is provided 
just ahead. Here's an outline of what the function does: 

declare variables 



open the dialog box 

begin loop 

Chapter 1 • Quicklime Movies 

call ModalDialog() to get number of a clicked-on item 

case Apollo button item: 
play Apollo movie 

case Venus button item: 
play Venus movie 

case Clear button item: 
clear movie display area 

case Quit button item: 
quit program 

end loop 

dispose of the dialog box 

An application-defined routine named LoadAndRunMovi e() handles a click 
on either the Apollo or Venus button-the two movie-playing buttons. 
That routine will be described in just a few pages. When a movie 
finishes playing in MovieDialog, its last frame remains displayed in the 
dialog box. If the user wishes to clear the movie-area, the Clear button 
can be used. 

1/:define 
1/:define 

DialogPtr 
short 
Handle 
Re ct 
PicHandle 

kMovieFramePicture 
kFrameButton 

theDialog; 
theType; 
theHandle: 
theRect: 
thePicture; 

128 
5 

II resource ID of PICT 
II item number of picture 

GetDialogitem( theDialog, kFrameButton, 
&theType, &theHandle, &theRect ); 

thePicture - GetPicture( kMovieFramePicture ); 
DrawPicture( thePicture, &theRect ); 

The playing of a movie is handled by the program's LoadAndRunMov i e () 
routine. Most of the code that makes up this function is similar to code 

301 



302 
Graphics and Sound Programming Techniques for the Mac 

seen in this chapter's QuickPlay example. One thing that differs is the 
determination of the rectangle in which a movie will play. 

In QuickPlay, the movie rectangle is offset so that the upper left comer 
of the movie is at point (0, 0). That places the movie in the upper left 
comer of the window it will play in. The movie is the exact size of the 
window, as planned. In MovieDialog, the movie won't be the same size 
as the dialog box, and won't appear in the dialog box's upper left comer. 
The code that determines the placement of the movie in the dialog box 
is shown below. 

1fdeftne 
1fdeftne 

Movie 
Re ct 
DialogPtr 
short 
Handle 
Re ct 

kFramePixelSize 
kFrameButton 

theMovie; 
theMovieBox; 
theDialog; 
theType; 
theHandle; 
theRect; 

4 
5 

GetMovieBox( theMovie, &theMovieBox ); 

II pixel width of frame 
II item number of picture 

OffsetRect( &theMovieBox, -theMovieBox.left, -theMovieBox.top ); 
GetDialogltem( theDialog, kFrameButton, 

&theType, &theHandle, &theRect ); 
OffsetRect( &theMovieBox, theRect.left + kFramePixelSize, 

theRect.top + kFramePixelSize ); 

In the above snippet, the movie box is obtained with a call to GetMov i eBox < ) , 
and then offset so that its upper left comer appears at point (0, 0)-just 
as was done in QuickPlay. If the movie was displayed at this point, it 
would appear in the dialog box as shown in the top part of Figure 7.18. 

Next, a call to GetDialogltem<) is made to get the rectangle of the. 
P I CT item. This is close to the area in which the movie should be displayed­
as shown in the middle part of Figure 7.18. This rectangle, however, 
doesn't take into account the frame of the picture. 

Finally, the upper left corner of the movie box rectangle is offset 
from point (0, 0). The offset amount equals the top and left boundaries of 
the PI CT rectangle, with the pixel size of the frame added. That results in 
the movie being placed directly in the movie area of the picture-as 
shown in the bottom part of Figure 7.18. 



Chapter 7 • OuickTime Movies 

If the rectangle used in the first call to OffsetRect () was used, the 
movie would appear in the upper-left corner of the dialog box 

If the rectangle returned by Ge t Dialogitem( l was used, the movie 
wouldn't appear centered in the movie-area picture 

The second call to OffsetRect ( J accounts for the size of the frame 
that is a part of the movie-area picture 

FIGURE 7.18 A movie is centered in the picture item of the dialog box. 

The following is the source code listing for the MovieDialog program that 
you'll find on this book's CD. 

#include <Movies.h> 

void InitializeAllToolboxes( void ); 
void OpenDisplayDialog( void ); 
void LoadAndRunMovie( DialogPtr, Str255 ); 

#define rMovieWindow 128 
#define rMovieDialog 128 
#define kQuitButton 1 
#define kClearButton 2 
#define kApolloButton 3 
#define kVenusButton 4 
//define kFrameButton 5 

303 



304 
Graphics and Sound Programming Techniques for the Mac 

/fdefine 
/fdefine 
/fdefine 
//define 

kMovieFramePicture 
kFramePixelSize 
kApolloMovieName 
kVenusMovieName 

Boolean gAllDone = false: 

void main( void ) 
{ 

} 

InitializeAllToolboxes(); 
OpenDisplayDialog{); 

128 
4 

"\p:Movie f:Apollo 3• 
"\p:Movie f :Venus Probe· 

//~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

void OpenDisplayDialog( void ) 
{ 

DialogPtr 
short 
Boolean 
short 
Handle 
Re ct 
PicHandle 

theDialog; 
the Item: 
allDone =false: 
theType; 
theHandle; 
theRect: 
thePicture: 

theDialog = GetNewDialog( rMovieDialog, nil. (WindowPtr)-lL ); 
ShowWindow( theDialog ); 
SetPort( theDialog ); 

while ( allDone ~ false 
{ 

Modal Dialog( nil. &theltem ); 

switch ( theltem ) 
{ 

case kApolloButton: 
LoadAndRunMovie( theDialog, kApolloMovieName ); 
break; 

case kVenusButton: 
LoadAndRunMovie( theDialog, kVenusMovieName ); 
break: 

case kClearButton: 



} 

} 
} 

Chapter 7 • Quicklime Movies 

GetDialogitem( theDialog, kFrameButton, 
&theType, &theHandle, &theRect ); 

thePicture = GetPicture( kMovieFramePicture ); 
DrawPicture( thePicture, &theRect ); 
break; 

case kQuitButton: 
all Done = true; 
break; 

DisposeDialog( theDialog ); 

''~~~~~~~~~~~~~~~~~~~~~~~~~~-

void LoadAndRunMovie( DialogPtr theDialog, Str255 theMovieName ) 
{ 

OS Err 
FSSpec 
short 
Movie 
short 
Str255 
Boolean 
Re ct 
short 
Handle 
Re ct 

theError; 
theFSSpec; 
theFileRefNum: 
theMovie; 
theMovieResID = O; 
theMovieResName; 
wasA ltered; 
theMovieBox; 
theType; 
theHandle; 
theRect; 

theError = FSMakeFSSpec( 0, OL, theMovieName, &theFSSpec ); 
theError = OpenMovieFile( &theFSSpec, &theFileRefNum, fsRdPerm ); 
theError = NewMovieFromFile( &theMovie, theFileRefNum, 

&theMovieResID, theMovieResName, 
newMovieActive, &wasAltered ); 

CloseMovieFile( theFileRefNum ); 

SetMovieGWorld( theMovie, CCGrafPtr)theDialog, nil); 

GetMovieBox( theMovie, &theMovieBox ); 

OffsetRect( &theMovieBox, -theMovieBox.left, -theMovieBox.top ); 
GetDialogltem( theDialog, kFrameButton, 

&theType, &theHandle, &theRect ); 
OffsetRect( &theMovieBox, theRect.left + kFramePixelSize, 

theRect.top + kFramePixelSize ); 

105 



306 

} 

Graphics and Sound Programming Techniques for the Mac 

SetMovieBox( theMovie. &theMovieBox ); 

GoToBeginningOfMovie( theMovie ); 

StartMovie( theMovie ); 

do 
{ 

} 
MoviesTask(theMovie, 0); 

while ( IsMovieDone( theMovie 
DisposeMovie( theMovie ); 

false ); 

Improving the MovieDialog Program 
MovieDialog uses a little shading to provide a three-dimensional effect 
for the area of the dialog box that displays movies. For a more polished 
look, this 3-D effect could be carried over to the buttons as well. Figure 7.19 
shows how this dialog box might look if custom controls (CDEFs) were used 
to create shaded, three-dimensional buttons. 

Atlantis 
Challenger 
Columbia 
Discouery 
Apollo 
Planets 
Rstronauts 
Spacewalks 

Play Maule :M:P 
Clear :!CK 

~ Discouer -

FIGURE 7.19 The simple MovieDialog program could be modified into a full-featured application. 

Figure 7.19 also shows that a more sophisticated version of MovieDialog 
could include a menu that lets the user select a general topic. Selecting a 
topic would cause a change in the titles of the buttons in the dialog box. 
The figure shows the buttons after the Discovery menu item is selected. 



Chapter 7 • Quicklime Movia 

One means of achieving this "button switch" would involve having a 
different DI TL resource for every topic. Selecting a topic from the menu 
would cause the dialog box to display a different DITL. 

If you need the details of implementing custom controls, and information 

on creating a dialog box that uses multiple dialog item lists, refer to More 
Mac Programming Techniques by M&T Books. 

void PlayMovie( Movie theMovie ) 
{ 

} 

GoToBeginningOfMovie( theMovie ); 

StartMovie( theMovie ); 

do 
{ 

MoviesTask(theMovie, 0); 

while ( IsMovieDone( theMovie false ); 

To see an example of a shareware program that plays a movie within a 

picture-as MovieDialog does-run the TheaterMaker program that is 
included on this book's CD. 

Chapter Example: SelectMovie 
The QuickPlay and MovieDialog programs demonstrate how to open 
and play a movie when the movie file's name and location are known at 
the time of compilation. Using FSMakeFSSpec() to create an FSSpec for a 
movie file-as both these programs did-works fine for programs that 
play movies from a predetermined group of movie files. Other programs, 
however, will let the user select the movie to play. To do that your program 
should use the Movie Toolbox routine Stand a rd Get Fil ePrevi ew( ). The 
result of calling this function is shown in Figure 7.20. In that figure you 
can see that Standa rdGetFi l ePrevi ew() displays a standard Open dialog 
box. Beneath the dialog box list is a Show Preview checkbox that, when 

307 



308 
Graphics and Sound Programming Tczchniquczs for thcz Mac 

checked, expands the dialog box to display a small view of the first 
frame of the movie (a thumbnail) that is highlighted in the dialog box list. 

Preuiew 
la POI Quick Play Mouie f ...- I =Ham Oisk 

[ Eject 

[ Oesktop ) • [ Cancel ) 

[ Update ) '--------~O fi Open )J 
181 Show Preuiew 

FIGURE 7.20 The standard Open dialog box with a preview, or thumbnail, of a movie. 

To allow the user to select a file to open, call StandardGetFilePreview() 
in place of FSMa ke FSSpec < ) : 

SFTypeL i st 
StandardFileReply 

typelist = { MovieFileType, 0, 0, 0 }; 
theReply; 

StandardGetFilePreview( nil. 1, typelist, &theReply ); 

The first three StandardGetFilePreview() parameters describe the type 
or types of files that are to be shown in the dialog box list. The first para­
meter holds a pointer to an optional filter function that aids in filtering 
out files that should not be displayed. In general, StandardGetFile­
Previ ew() handles file filtering without the need for this function-so a 
value of n i l can be passed here. The second parameter specifies the number 
of file types to list. If your application will only open movies, give this 
parameter a value of 1. The third parameter is a list that indicates which 
file types to display. For example, if StandardGetFi l ePrevi ew() is to display 
text files, the file list should contain the 'TEXT' type. If both text files and 
picture files are to be displayed, the list should contain an entry of ·TEXT· 
and an entry of ·PI CT· (and the second parameter should be set to a value 
of 2). To display movie files, the list should have an entry of 'MooV'-the 
file type for QuickTJrn.e movie files. Apple defines the constant Mo vi eFi l eType 
to have a value of 'MooV ·,so you can use this constant to make it clear just 
which type of file · MooV · refers to. To create a file type list, declare a vari­
able of type SFTypeL i st. To fill the list with up to four file types, enclose 



Chapter 1 • Quicklime Movies 

the types in braces. If less than four types are being assigned to the list, use 
zeros-as is being done here: 

SFTypeList typelist = { MovieFileType, 0, 0, 0 }: 

The above declaration is identical to this declaration: 

SFTypelist typelist = { 'MooV', 0, 0, 0 }: 

The last parameter to StandardGetFi 1 ePrevi ewe> is a pointer to a standard file 
reply structure. After the call to StandardGetFil ePrevi ew() has completed, 
the StandardFileReply data structure will have all of its several members 
filled. To determine if the user selected a file (as opposed to clicking on the 
Cancel button), examine the sfGood member. If it has a value of true, the 
user double-clicked on a file name or clicked once on a file name and then 
clicked on the Open button. If sfGood is true, your code should proceed 
with the opening of the movie file and with the loading of the movie. When 
doing so, use the sfFil e member of the Standard Fil eReply-it holds an 
FSSpec for the file the user selected. Note that the File Manager takes care of 
creating this FSSpec-your code doesn't need to call FSMakeFSSpec( ). 

The following snippet shows how a call to StandardGetFi 1 ePrevi ewe) 
can be used to open a movie file. If the user presses the standard Open 
file dialog box Cancel button, the code exits the program. Figure 7.21 shows 
the changes that were made to the code of this chapter's QuickPlay example 
to tum that program into the SelectMovie program. In that figure, the 
lines that have been commented out are from the QuickPlay program. 

SFTypeList typelist = { MovieFileType, 0, 0, 0 }; 
StandardFileReply theReply; 

StandardGetFilePreviewC nil, l, typelist, &theReply ): 

if C theReply.sfGood == true 
{ 

} 

theError = OpenMovieFile( &theReply.sfFile, &theFileRefNum, 
fsRdPerm ) ; 
theError = NewMovieFromFileC &theMovie, theFileRefNum, 

&theMovieResID, theMovieResName, 
newMovieActive, &wasAltered ); 

CloseMovieFileC theFileRefNum >: 

else 

309 



310 

{ 

} 

Graphics and Sound Programming Techniques for the Mac 

ExitToShell <): 

2 

SFTypeList typeList = { MovieFileType, 0, 0, 0 } ; 
StandardFileReply theReply; 

II theError = FSMakeFSSpec(O, O, kMovieName, &theFSSpec); 

StandardGetFilePreview(niL 1, typeList, &theReply); 

if ( theReply. sfGood == true l 
{ 

theError = OpenMovieFile(&theReply.sfFile, &theFileRefNum, faRdPerm); 
theError = NewMovieFromFile(&theMovie, theFileRefNum, 

&theMovieResID, theMovieResNa.me, 
newHovieActive, &wasAltert!d); 

CloseMovieFile ftheFileRefNum) ; 

/I theError = OpenMovieFile(&theFSSpec, &theFileRefNum, fsRd.Perm); 
/I tbeError = NewMovieFromFile(&theMovie, theFileRefNum, 
// &theMovieReaID, theMovieResName, 
/ / newMovieActive, &wasAlteredl; 
11 CloseMovieFile(theFileRefNum); 

(!) Add two standard file variables 

@ Replace FSMakeFSSpec () with StandardGet~ilePreview() 
@ Move movie file code into the Mif user selected me· section 

@ Replace the FSSpec from FSMakeFSSpec (I with one from StandardGetFilePreview() 

FIGURE 7.21 Minimal changes to the QuickPlay source code 
tum it into the SelectMovie source code. 

Movie Controllers 
Opening and playing a QuickTime movie can be a task initiated and 
handled by the application-as you've seen in this chapter. Many pro­
grams, however, need to provide the user with the power to control the 
playing of a movie. To make this happen, your program should make 
use of movie controllers. 

flboat Movie Controllers 
If you want your application to display a movie that can be controlled by 
the user, it should make use of a movie controller. By using Apple's stan­
dard movie controller, you'll be providing users of your program with an 



Chapter 7 • OuickTime Movies 

easily recognized-and easy to use-movie-playing tool. Figure 7.22 shows 
a movie controller and its parts. 

Slider Play bar 

~ D 
IN~1rrlilti$!!$1111& 11 = i!P;n;mm nu11umm 

Speaker~ ~Play Step 0 ~Step 
button button backward button forward button 

FIGURE 7.22 The parts of a movie controller. 

A movie controller can be attached to any open movie. Once attached, 
the controller acts as a part of the window the movie is displayed in. 
When the movie is moved on screen, the controller moves with it. The 
Movie Toolbox provides numerous routines that allow you easily to 
take advantage of the movie-playing and movie-editing powers of the 
movie controller. 

Attaching a Movie Controller to a Movie 
If a movie won't be using a movie controller, the act of opening and readying 
the movie for playing can be summed up in the following ten steps: 

1. Open a movie file. 

2. Load the movie. 

3. Close the movie file. 

4. Open a window. 

5. Set the movie's graphics world to that of the window. 

6. Get the movie box. 

7. Offset the movie box rectangle. 

8. Set the movie box to the new rectangle. 

9. Size the window. 

10. Show the window. 

311 



312 
Graphics and Sound Programming Techniques for the Mac 

If movie will be using a movie controller, the above script-with very 
little modification-can be used. Steps 7 and 8 are shown in bold because 
those two steps are the only ones that need to be replaced in order to 
attach a controller to a movie. 

In the QuickPlay example, you saw steps 7 and 8 implemented through 
the use of the following two lines of code: 

OffsetRect( &theMovieBox, -theMovieBox.left. -theMovieBox.top ); 
SetMovieBox( theMovie, &theMovieBox ); 

When adding a movie controller, the above two lines will be replaced by 
the following: 

theController = NewMovieController( theMovie. &theMovieBox. 
mcTopleftMovie); 

MCGetControllerBoundsRect( theController, &theBoundsRect ); 

The first Movie Toolbox routine to call is NewMovieController(). This 
routine creates a movie controller and attaches it to the movie named in 
the first parameter. 

The second parameter holds the size of the movie box. As before, 
this rectangle is obtained from a call to the Movie Toolbox function 
GetMovi eBox( ). The movie box is necessary so that NewMovi eControl l er() 

can properly size the new controller so that the controller will have the 
same width as the movie. 

The last parameter to NewMovi eControl l er() is an Apple-defined 
constant that tells the Movie Toolbox where the movie will be placed 
within a window. This information allows the Movie Toolbox to determine 
where the top of the controller should go. A value of mcTopleftMovi e 
indicates that the movie will fit snugly into the top left corner of the 
window. The use of this constant in this function call replaces the need 
to call OffsetRect () and SetMovi eBox <)-steps 7 and 8 in the list of steps 
necessary to ready a movie for playing. 

The "me" in the constant mcTopleftMovi e stands for "movie controller." 
The same applies to Movie Toolbox routines that begin with "MC"-such as 
the MCGetControl l erBoundsRect() function used above and described 
just ahead. 



Chapter 7 • Quicklime Movies 

When NewMovieController() finishes executing, a MovieController 
variable will be returned. This Movi eControl l er can be used throughout 
the program to access the controller. The following snippet shows a call 
to NewMovi eControl l er(). 

MovieController theController; 
Movie theMovie; 
Rect theMovieBox; 

theController NewMovieController( theMovie, &theMovieBox, 
mcTopleftMovie ); 

Figure 7.23 illustrates the controller's placement in the movie's window. 
The mcTopleftMovi e constant tells the Movie Toolbox that the movie will 
go in the window's upper left comer, and that the new controller should be 
placed directly beneath the movie-regardless of the size of the window. 
Remember, the initial size of the window that will hold the movie is 
arbitrary and gives no indication of the final size of the window. 

Mouie 

------ ---------- ---- -------- -- -- ---- ---- --------- .. 

········································l 1nBm!l1!1M.!l\!il!llil!l!!Im 

FIGURE 7.23 The me Top LeftMov i e constant dictates 
that the movie will appear in the window's upper left corner 

and the controller will appear directly beneath the movie. 

313 



314 
Graphics and Sound Programming Techniques for the Mac 

After the call to NewMovi eControl l er(), call the Movie Toolbox routine 
MCGetControllerBoundsRect(). 

MovieController theController; 
Rect theBoundsRect; 

MCGetControllerBoundsRect( theController. &theBoundsRect ); 

When passed a Movi eControl l er variable, the MCGetControl l erBoundsRect() 
function returns the rectangle that bounds both the movie and controller. 
In the QuickPlay program, the window was sized to match the bound­
aries of the movie box. Now, with a controller attached, the window must 
be set to a size large enough to hold both the movie box and the controller 
area beneath the movie box. The rectangle variable theBoundsRect repre­
sents the size that the window should be resized to: 

SizeWindow( theWindow, theBoundsRect.right, theBoundsRect.bottom, 
true ); 

Movie Controllers and the Event Loop 
For simplicity, many of the short example programs in this book don't have 
an event loop. To add an event loop to one of these programs, you could 
first declare a couple of new variables: 

Boolean allDone =false; 
EventRecord theEvent; 

Next, include the following code near the end of main ( ) : 

while ( allDone == false ) 
{ 

WaitNextEvent( everyEvent. &theEvent, 15L, nil ) ; 

switch ( theEvent.what 
{ 

} 

case keyDown: 
a 11 Done = true; 
break; 



Chapter 7 • Quicklime Movies 

While the this event loop looks for only a press of a key, it satisfies the 
requirements of a basic event loop: it makes a call to WaitNextEvent(), 
examines the what field of the returned event, and then responds to the 
type of event that occurred. 

The structure of the above event loop is perfect for handling most 
event types, such as a click of the mouse button. Occasionally, though, a 
program will need to respond to a single event type in different ways. A 
movie with a movie controller is one such situation. When the user clicks 
the mouse button, the way in which the mouseDown event is handled 
depends on whether the cursor was over a movie controller or over some 
other part of the Mac interface. Before entering the loop's switch state­
ment, your event loop should determine if an event is controller-related. 
If it is, the event should be handled-if the controller's Play button was 
clicked, the movie should play; if the Step forward button was clicked, 
the movie should advance a single frame, and so forth. After that, the 
event can be considered handled and the switch statement can be skipped 
during this pass through the event loop. The following version of the 
event loop adds a few comments to show how, in general terms, a movie 
controller event should be handled. 

Boolean allDone =false; 
EventRecord theEvent; 
MovieController theController; 

while C allDone == false ) 
{ 

Wait Next Event ( everyEvent, &the Event, 15 L, nil ) : 
II if the event is controller-related, handle it here 
II if the event was controller-related, event was handled: 
II skip the following code this pass through the while loop 

{ 

} 

switch ( theEvent.what 
{ 

} 

case keyDown: 
allDone =true; 
break; 

315 



316 
Graphics and Sound Programming Techniques for the Mac 

To determine if an event is controller-related, call the Movie Toolbox 
routine MCisPl ayer Event(). When passed a movie controller and an 
event, this function determines if the event involves the movie controller. 
If it did, a value of 1 is returned. If it didn't, a value of 0 is returned. 
Here's a call to MC Is Pl ayer Event (): 

MovieController theController; 
EventRecord theEvent: 
Boolean isControllerEvent: 

isControllerEvent = MCisPlayerEvent( theController, &theEvent ); 

The controller will be the MovieController returned by a previous call 
to NewMovi eControl l er(). The event will be the Event Record returned by 
a call to WaitNextEvent( ). 

The return type for MCisPl ayerEvent() is actually ComponentResul t, 
which is defined to be along. Since the returned values of 1 and 0 match the 
definitions for true and false, you can use the returned value as a Boolean. 

The MCisPl ayerEvent() function is one of the most important and powerful 
Movie Toolbox routines. Not only does it provide feedback as to whether 
an event was controller related-it also handles that event, if it was. If the 
user clicks on the Speaker, Play, Step backward, or Step forward button, 
or clicks and drags the slider, MCisPl ayerEvent() will perform the appro­
priate action. Your code will not need to call any other routines to handle 
these user actions. The calls that are necessary to play a movie that 
doesn't have a controller (StartMovi e( ), Movi esTask( ), and IsMovi eDone()) 
are no longer necessary for a movie that uses a controller. 

The following snippet provides a look at a simple event loop that is 
capable of handling movie controller events. Notice that the switch 
statement will only be executed if MCisPl ayer Event() returns a value of 
false-that is, only if MCisPl ayer Event() finds that the event isn't con­
troller-related and returns a value of 0. 

Boolean 
Event Record 

allDone =false; 
theEvent: 



Chapter 7 • OuickTime Movies 

MovieController 
Boolean 

theController: 
isControllerEvent: 

while ( allDone ~false ) 
{ 

} 

WaitNextEvent( everyEvent, &theEvent, 15L, nil ) : 

isControllerEvent = MCisPlayerEvent( theController, &theEvent ); 

if ( isControllerEvent == false 
{ 

} 

switch ( theEvent.what 
{ 

} 

case keyDown: 
allDone =true: 
break: 

If you've ever included a modeless dialog box in a program, you've done 
something similar to the above. Before entering the ma i n ( ) switch statement, 
your program called Di al ogEvent () and Di al ogSe l ect ( ) to determine 

N ° T E if an event occurred in a modeless dialog box. If it did, additional code (an 
application-defined routine, most likely) handled the event and the switch statement 
was skipped. 

Chapter Example: QuickController 
The QuickController source code has much in common with the 
QuickPlay code. The change are, of course, controller-related-as described 
in the preceding text. When you run QuickController, you'll again see 
the Robot movie. This time, however, it will have a movie controller 
attached to it-as shown in Figure 7.24. You can use the controller to 
change the sound volume, play the movie, or step through it. When 
finished, press any key to quit. 

317 



318 
Graphics and Sound Programming Tczchniquczs for the Mac 

N 0 TE 

FIGURE 7.24 The Robot movie, as viewed in the 
QuickController example program. 

As always, you can use any movie in place of the supplied one by changing 

the value of the kM o vie Na me constant to that of the new movie file, 

rebuilding the program, and then placing the movie in the folder with the 

QuickController application 

When QuickController starts, the program opens a movie and attaches 
a controller to the movie. Before the user gets a chance to interact with 
the program, the movie controller has a value (it points to the data that 
makes up the controller). In your programs, this won't be the case. 
Typically, a user will select a menu item to open a movie. Before that, 
the Movi eControl l er variable won't point to any valid data. Because the 
Movi eControl l er is used in the main event loop, this could cause prob­
lems-at each pass through the event loop your code will be passing 
MCisPl ayer Event() a controller variable that doesn't point to valid data: 

isControllerEvent = MCisPlayerEvent( theController, &theEvent ); 

To remedy this problem, assign the controller variable a value of nil 
when it is declared and when a movie is closed. In other words, if no 
movie is on the screen, then no controller is, either-and the variable 



Chapter 1 • OaickTimv Movies 

theControl l er should reflect that fact. The following snippet introduces 
the Movie Toolbox function DisposeMovieController() and shows how 
to properly assign values to theControl l er. 

MovieController theController =nil; 

II theController gets a value when NewMovieController() is called 

II when it's time to close the movie, use the following code: 

DisposeMovieController( theController ); 
theController =nil; 
DisposeMovie( theMovie ); 
DisposeWindow( theWindow ); 

Next, test the value of theControl l er before calling MCisPl ayerEvent( ). If 
the MovieController variable has a value of nil, no movie is open and 
any event that occurs cannot be controller-related. If the Movi eControl l er 
variable has a value other than n i 1, then the variable points to valid con­
troller data and MCisPl ayer Event() should be called to see if any event is 
controller-related. 

if ( theController ==nil ) 
isControllerEvent =false; 

else 
isControllerEvent = MCisPlayerEvent( theController. &theEvent ); 

The following is the source code listing for QuickController. You'll find 
that most of the code is identical to the code used in the preceding text. 

#include <Movies.h> 

void InitializeAllToolboxes( void ); 
II~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

#define 
//define 

rMovieWindow 
kMovieName 

128 
"\pRobot" 

319 



320 
Graphics and Soand Programming Techniques for the Mac 

void main( void ) 
{ 

OS Err 
FSSpec 
short 
Movie 
short 
Str255 
Boolean 
WindowPtr 
Re ct 
Re ct 
MovieController 
Event Record 
Boolean 
Boolean 

theError; 
theFSSpec; 
theFileRefNum: 
theMovie; 
theMovieResID = 0 
theMovieResName: 
was Altered; 
theWindow; 
theMovieBox: 
theBoundsRect; 
theController =nil; 
theEvent; 
isControllerEvent; 
allDone =false: 

InitializeAllToolboxes(); 

theError = FSMakeFSSpec( 0, 0, kMovieName, &theFSSpec ); 
theError = OpenMovieFile( &theFSSpec, &theFileRefNum, fsRdPerm ): 
theError = NewMovieFromFile( &theMovie, theFileRefNum, 

&theMovieResID, theMovieResName. 
newMovieActive, &wasAltered ): 

CloseMovieFile( theFileRefNum ); 
theWindow = GetNewCWindow( rMovieWindow, nil, (WindowPtr)-lL ); 
SetMovieGWorld( theMovie, (CGrafPtr)theWindow, nil ); 
GetMovieBox( theMovie, &theMovieBox ); 
theController = NewMovieController( theMovie, &theMovieBox, 

mcTopleftMovie); 

MCGetControllerBoundsRect( theController, &theBoundsRect ); 

SizeWindow( theWindow. theBoundsRect.right. 
theBoundsRect.bottom, true ); 

ShowWindow( theWindow ); 

while ( allDone == false ) 
{ 

WaitNextEvent( everyEvent, &theEvent, 15L, nil ) ; 
if ( theController == nil ) 

isControllerEvent =false; 
else 

isControllerEvent = MCisPlayerEvent( theController, 
&theEvent ); 



} 

} 

if ( isControllerEvent ~false 
{ 

} 

switch ( theEvent.what 
{ 

} 

case keyDown: 
allDone = true; 
break; 

Chapter 7 • Quicklime Movies 

DisposeMovieController( theController ); 
theControl l er = ni 1; 
DisposeMovie( theMovie ); 
DisposeWindow( theWindow ); 

Movie Controllers and Movie Looping 
When a new movie controller is created, MCisPl ayerEvent() handles 
mouse clicks that occur on that movie controller in a predictable manner. 
A click on the Play button plays the movie one time, for instance. In 
general, these default actions will be appropriate for your applications. 
Occasionally, though, you'll want to change how MCisPl ayer Event() 
handles certain events. The Movie Toolbox routine MCDoAct ion ( ) gives 
your program the ability to do just that. 

The MCDoAct ion ( ) function acts on one specific controller-the controller 
that is passed in the routine's first parameter. The second parameter­
the action parameter-specifies what action should be affected. Apple 
defines several constants that specify different actions. The third parameter 
is a pointer to additional information. The nature of this additional infor­
mation varies with the action being passed to MCDoAct ion ( ) . 

Movie looping is one of the most common reasons for using 
MCDoAction( ). Passing the Apple-defined constant mcActionSetLooping 
as the second parameter and a pointer to the value true as the third 
parameter tells MCDoAct ion() to turn looping on for the controller 
named in the first parameter. Here's an example: 

MovieController theController: 

MCDoAction( theController, mcActionSetlooping, (Ptr)true ); 

321 



JZZ Gl'Clphics and Sound Programming Techniques for the Mac 

Calling MCDoAct ion () won't immediately start the movie looping. 
Instead, it sets the controller's Play button to looping mode. From that 
point on, a mouse click on the controller's Play button will cause the movie 
in the controller's window to play repeatedly until the user again clicks the 
Play button. 

To return a movie controller's Play button to its original state, again 
call MCDoActi on() with an action parameter of mcActi onset Looping. This 
time, pass a pointer to a value offal se: 

MCDoAction( theController, mcActionSetlooping, (Ptr)false ); 

QuickTime allows a movie controller to loop through a movie in palin­
drome mode. Palindrome looping means that the movie will first play 
forward, then backward. This back-and-forth playing pattern will 
repeat until the user again clicks on the controller's Play button. The 
following is a snippet that sets a controller to palindrome mode: 

MCDoAction( theController, mcActionSetloopisPalindrome, (Ptr)true ); 

Turning palindrome looping off is as simple as turning normal looping off: 

MCDoAction( theController, mcActionSetLoopisPalindrome, 
(Ptr)false ); 

Chapter Example: Movielooping 
The MovieLooping example demonstrates just how easy it is to add looping 
to a movie. The source code for MovieLooping is identical to that of the 
QuickController program except for the addition of a single line of code. 
If you compare the source code listings for the two programs, you'll find 
that the MovieLooping code has the following line after the controller is 
created, whereas the QuickController listing doesn't: 

MCDoAction( theController. mcActionSetlooping, (Ptr)true ); 

NOTE 

The call to MCDoAct ion () doesn't have to appear immediately after a new 
controller is created. As long as a valid Movi eControl l er is passed in as 
the first parameter, MCDoAct ion () can be used at any point in a program. 
For instance, if your program includes a Looping menu item in a Movies 
menu, you can call MCDoAct ion () in response to this item being selected. 



Chapter 7 • OuickTime Movies 

Chapter Summary 
The Movie Toolbox is the set of Toolbox routines that enable you to add 
movie-related features to a Mac program. Before making use of this 
Toolbox, you should call Gestalt() to verify that the user of your pro­
gram has QuickTime installed on his or her computer. If QuickTime is 
present, make sure to initialize the Movie Toolbox by making a call to the 
Ente rMov i es ( ) routine. 

A QuickTrme movie resides in a QuickTime movie file. Before a movie 
can be played, the file in which the movie is must be opened and the movie 
must be loaded into memory. After that, your program needs to open a 
standard color window in which the movie will be displayed. After the 
window is resized to match the dimensions of the movie that will appear 
in it, the movie can be displayed and then played. To play the movie, call 
the Movi esTask() function repeatedly until the movie has finished. 

If your program is to give control of movie playing to the user, attach 
a movie controller to an open movie. After that, call MCisPl ayerEvent() 

from the program's main event loop. This powerful Movie Toolbox 
routine will handle a mouse click on any of the buttons that make up a 
movie controller. 

323 



CHfiPTEit 8 

OuickTime Musical 
Instruments 

If you have System 7.5 or later on your Macintosh, your programs can 
make use of QuickTime and QuickTime Musical Instruments. Chapter 7 
supplied you with all the information you need to add movie-playing 
capabilities to your programs. It is now time to add music-playing 
capabilities as well. 

In this chapter, you'll see how the QuickTime Musical Instruments 
extension- and the Toolbox functions designed to work with this system 
software-makes it easy to add music and sound effects to any of your 
programs. And unlike storing digitized sounds in your application's 
resource fork, you'll find that using the QuickTime Musical Instruments 
to play sounds adds very little extra size to your application. 

Here, you'll see that-with just a few Toolbox calls-you can play 
sounds from any of 128 predefined instruments-the standardized MIDI 
(Musical Instrument Digital Interface) instruments that other programs 
have used for years. These MIDI instruments don't just allow you to play 
crystal-clear music from such instruments as a grand piano, acoustic guitar, 

325 



326 
Graphia and Sound Programming Techniques for the Mac 

or tenor saxophone-many of these "instruments" allow you to add great 
special effects and synthesized noises such as seashore noise, the whir 
of a helicopter, and telephone rings to your programs. 

About QuickTime Music 
The QuickTime Music Architecture, or QMA, is the QuickTime Musical 
Instruments system software extension used in conjunction with the 
QuickTime extension and the host of new music-related routines that 
you can add to any of your programs. 

QMA consists of three software components, each corresponding to 
a level of access to the devices that are used to create sound. The three 
components, or layers, are described here. 

Tune Player The top layer that provides timing for sequences-the 
instruments and notes of a musical composition. 
Note Allocator The next level down from the Tune Player. This layer 
is responsible for playing individual notes on specific synthesizer 
devices. 

Music Component The lowest layer. The Music Component provides 
routines that allow access to the settings of synthesizer devices. 

If your application is to set up a complex musical score, it will make use 
of the Tune Player. If your program only needs to play a note or notes 
from one of the many available instruments, the Note Allocator can be 
used. The Music Component layer is normally used only by the other 
layers-a program should seldom or never need to make use of it 
directly. This chapter deals with the Note Allocator. By using this one 
QMA component, you can quickly and easily add a wide variety of 
sounds to any program. 

The note Allocator 
The Note Allocator is the midlevel QuickTime Music Architecture com­
ponent that is used to play individual musical notes. This component 



Chapter 8 • Quicklime Musical Instruments 

makes it possible for your application to play a wide variety of instru­
ments and music with just a few Toolbox calls. 

Opening a "ote Allocator Component 
A program that makes use of the QuickTime Music Architecture must 
open an instance of a Note Allocator component before even a single note 
can be played. To do this, call the Toolbox function OpenDefaul tComponent(). 
This routine isn't QMA-specific-it is used to open any type of compo­
nent. You'll find its definition in the Components.h universal header file. 

NoteAllocator gNoteAllocatorComp; 

gNoteAllocatorComp = OpenDefaultComponent( kNoteAllocatorType, 0 ); 

The first parameter to OpenDefaul tComponent() is the component type. 
Supply the Apple-defined constant kNoteA 11 ocatorType (which is 
defiried to be ·not a·, for Note Allocator) to tell Open Def au ltComponent ( ) 
to open a Note Allocator component. The second parameter is a compo­
nent subtype-pass O here. 

OpenDefaultComponent() returns a Note Allocator component. Save a 
reference to this component in a variable of type NoteA 11 ocator. The above 
snippet stores the component in the global variable gNoteA 11 ocatorComp. 

ToneDescription: Describing an Instrument 
After opening an instance of a Note Allocator component, a note chan­
nel needs to be opened. When your program requests a note channel, it 
will supply specific information about the music that will be played 
from that channel. Some of this information will be about the instru­
ment type that will be used to produce the sound that emanates from 
the channel. Apple defines the ToneDescri pt ion data structure to hold 
this instrument information: 

struct ToneDescription 
{ 

OSType synthesizerType; 
Str31 synthesizerName: 

327 



328 
Graphics and Sound Programming Techniques for the Mac 

Str31 instrumentName; 
long instrumentNumber; 
long gmNumber; 

} ; 

The first field of the ToneDescri pti on structure is a number that specifies 
the type of synthesizer that should be used. A synthesizer is a software 
or hardware device used to create sound. Each synthesizer has its own 
Music Component-a low-level component that serves as the software 
interface to the synthesizer. The QuickTime Music Architecture includes 
a built-in synthesizer. 

The second field of ToneDescri pt ion is the name of the synthesizer 
specified in the first field. If the built-in synthesizer is used, this field 
will be filled in with the string "Macintosh Built In." 

The instrumentName field of the structure holds the name of the 
instrument that will be used to generate a sound. This field will hold 
one of the strings listed in Appendix A. 

The fourth field holds a number that represents the instrument to be 
used. This field will have a value in the range of 1to128. These numbers 
correspond to the instruments listed in Appendix A. The value of this 
field will usually match the value in the gmNumber field. 

The gmNumber field holds one of the 128 General MIDI Instrument 
numbers shown in Appendix A. Your program can open an Instrument 
Picker dialog box (discussed later) that allows the user to select an 
instrument by name. If that happens, the gmNumber field will be filled in 
with the matching instrument number from Appendix A. If instead your 
program specifies an instrument to play, your program will supply a 
gmNumber value in the range of 1 to 128. If your program supplies a 
number outside of this range, the QMA will select a valid number, place 
that value in the i nstrumentNumber field, and use that instrument. 

To fill in a ToneDescri pti on, first declare a ToneDescri pti on variable: 

ToneDescription gToneDesc; 

Next, fill in the five fields. You can supply zeros in the first three fields and 
a General MIDI Instrument number in the fourth and fifth fields. The fol­
lowing snippet creates a ToneDescri pti on for the Xylophone instrument: 



Chapter 8 • Quicklime Musical Instruments 

ToneDescription gToneDesc; 

gToneDesc.synthesizerType = 0; 
gToneDesc.synthesizerName[OJ = O; 
gToneDesc.instrumentName[OJ = 0; 
gToneDesc.instrumentNumber = 14; 
gToneDesc.gmNumber = 14; 

In preparation for the opening of a note channel and the playing of a 
note, you can write a short application-defined routine like the Initial i ze -
Instrument() function shown here. It opens a Note Allocator component, 
then sets the fields of a ToneDescri pti on. 

NoteAllocator gNoteAllocatorComp; 
ToneDescription gToneDesc; 

void Initializelnstrument( void ) 
{ 

} 

gNoteAllocatorComp = OpenDefaultComponent( 'nota'. 0 ); 

gToneDesc.synthesizerType = 0; 
gToneDesc.synthesizerName[OJ = O; 
gToneDesc.instrumentName[OJ = O; 
gToneDesc.instrumentNumber = 15; 
gToneDesc.gmNumber = 15; 

Describing a tlote Channel 
The ToneDescription defines the instrument that will be used to play a 
note. There are a couple of other attributes that are needed before a note 
channel can be opened. The NoteRequest data structure defines the 
information needed to define a note channel: 

struct NoteRequest 
{ 

long polyphony; 
Fixed typical Polyphony; 
ToneDescription tone; 

} ; 

329 



330 
Graphics and Sound Programming Techniques for the Mac 

The first field of the Note Request structure is the channel's polyphony. 
In music, polyphony has to do with the combining of melodies-as in a 
harmony. The polyphony field holds the maximum number of notes, or 
voices, that can be played at one time by the channel. 

The typi ca 1Po1 yphony field of the Note Request structure is used by 
the Note Allocator to help it return a note channel that best satisfies the 
information in the rest of the NoteRequest structure. Pass a value of 
OxOOOlOOOO for this Fixed field type. 

The final NoteRequest field is a ToneDescription like the one 
described earlier. The ToneDescri pt ion tells the Note Allocator what 
type of instrument will be used in the note channel. 

The following snippet fills in a NoteRequest for use in opening a 
new note channel. The tone field is filled in with the ToneDescri pti on 
global variable discussed earlier-gToneDesc. 

NoteRequest theNoteRequest; 

theNoteRequest.polyphony = 4; 
theNoteRequest.typicalPolyphony = OxOOOlOOOO; 
theNoteRequest.tone = gToneDesc; 

Opening a "ote Channel 
Finally, it's time to open a new note channel. A call to NANewNoteChannel () 
does that: 

NoteA 11 ocator 
NoteChannel 
NoteRequest 
ComponentResult 

gNoteAllocatorComp; 
theNoteChannel ; 
theNoteRequest; 
theError; 

theError = NANewNoteChannel( gNoteAllocatorComp, &theNoteRequest, 
&theNoteChannel ) ; 

The first parameter to NANewNoteChannel () is an instance of a Note 
Allocator component. This is the NoteAllocator returned by the call to 
the Toolbox function OpenDefaul tComponent( ). 



Chapter 8 • OuickTime Musical Instruments 

The second parameter to NANewNoteChannel C) is a variable of type 
NoteRequest. The third field of this NoteRequest structure should hold 
the filled-in ToneDescri pt ion that specifies the type of General MIDI 
Instrument that is to be used with the channel. 

After opening a new note channel, NANewNoteChannel C) returns in 
the third parameter a NoteChannel with the qualities described in the 
NoteRequest structure. 

If you haven't already realized it, the leading "NA" in a function name tells 
you the function is Note Allocator-related. 

After opening a new note channel, notes and music can be played-as 
you'll see just ahead. 

When through with a note channel, your application can dispose of 
it using the NADi sposeNoteChannel C) function. Pass this routine both the 
instance of the Note Allocator component and the NoteChannel that 
were the first and third parameters in the call to NANewNoteChannel C ). 

NoteAllocator 
NoteChannel 
ComponentResult 

gNoteAllocatorComp; 
theNoteChannel; 
theError; 

theError = NADisposeNoteChannelC gNoteAllocatorComp, theNoteChannel ); 

Playing a tlote 
With a note channel open, it's time to play some music. A call to 
NAPl ayNoteC) does that. The following snippet plays a middle C note from 
whatever instrument, and at whatever polyphony, was specified in the 
NoteRequest structure passed to NANewNoteChannel C ): 

NoteAllocator 
NoteChannel 
short 
long 

gNoteAllocatorComp; 
theNoteChannel; 
thePitch; 
thelong; 

331 



331 
Graphics and Soand Programming Techniques for the Mac 

thePitch = 60: 

NA Pl ayNote( gNoteA 11 ocatorComp. theNoteChannel • thePitch. 127 ) : 

The first parameter to NA Pl ayNote C > is the instance of the Note Allocator 
component returned by OpenDefaultComponentC > and used in the call to 
NANewNoteChannel C ). The second parameter to NAPl ayNote() is the note 
channel from which to play the music. 

Skipping the third parameter for a moment, the value in the fourth 
parameter specifies the velocity of the note. The velocity refers to how 
hard a key on a keyboard would be struck to produce this note on a 
piano. Simplistically, the velocity is the note's volume. A value of 0 pro­
duces silence, while a value of 127 produces maximum volume. 

Back to the third NAPl ayNoteC > parameter. This value is the pitch, or 
frequency, of the note. The value of 60 produces a middle C note. This 
parameter should have a value in the range of 0 to 127. Each of these 
128 pitch values corresponds to a MIDI key number. If you're familiar 
with music, you know that pitch is related to a particular key. Figure 8.1 
shows how the possible pitch values of 0 through 127 correspond to the 
C keys of each of the eleven octaves of a piano. 

Key names 

0 12 24 36 48 60 72 84 96 108 120 127 

m Five-octave standard 
[fl keyboard range 

MIDI key numbers 

FIGURE 8.1 Piano keys each have a key name and a MIDI key, or note, value. 

r=2J 
NOTE 

Don't confuse the MIDI note values of 0 to 127 that correspond to piano 
keys with the General MIDI Instrument numbers (listed in Appendix A), 
which have a range of 1 to 128. Any one of the 128 MIDI instruments can 
play any of the 128 MIDI notes. 



Chapter 8 • QalckTime Muslcal Instruments 

Each pitch value corresponds to a MIDI note value. Each MIDI note 
value corresponds to a note in the scale of a particular octave. Figure 8.1 
shows the MIDI note values related to the keys of a piano and to the C 
notes in the scales of the octaves. Table 8.1 shows the MIDI note values 
related to each note in all of the octaves. For example, specifying a pitch of 
37 will produce a C# note in the scale of the fourth octave. The highlighted 
pitch values 36 through 96 are the pitch values that fall into the range of 
the standard five-octave keyboard. 

Table 8.1 A MIDI note value corresponds to a scale value in a particular octave. 

OCt&'Ve 1 

OCta"Ve 2 

OCta"Ve 3 

OCt&"Ve 4 

OCta"Ve 5 

OCt&"Ve 6 

OCta"Ve 7 

OCta"Ve 8 

OCta"Ve 9 

OCta"Ve 10 

OCta"Ve 11 

A A#B C C#I) l)#B I' !'#G G# 

0 1 2 3 4 5 6 7 8 

9 10 11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 31 32 

33 34 35 J 36 37 38 39 40 41 42 43 44 

45 46 47 48 49 50 51 52 53 54 55 56 

57 58 59 60 61 62 63 64 65 66 67 68 

69 70 71 72 73 74 75 76 77 78 79 80 

81 82 83 84 85 86 87 88 89 90 91 92 

93 94 95 96 J 97 98 99 100 101 102 103 104 

105 106 107 108 109 110 111 112 113 114 115 116 

117 118 119 120 121 122 123 124 125 126 127 

When NAPl ayNote() is called, a note specified by the pitch is played on 
the instrument specified by the setup of the note channel. As long as the 
velocity value is nonzero, this note will play indefinitely-NAPl ayNote() 
includes no provision for setting the duration of the note. To stop the 
note, again call NAPl ayNote( ). This time, use a velocity of 0. If you make 
the second call to NAPl ayNoteC) immediately after the first call, the note 
will stop immediately. To set a duration, add a delay between the two 
calls to NAPlayNote(). You can use the Toolbox function Delay() to 
accomplish this task-as shown in this snippet: 

]]] 



334 
Graphics and Sound Programming Techniques for the Mac 

NoteAllocator 
NoteChannel 
short 
long 

thePitch = 60; 

gNoteAllocatorComp; 
theNoteChannel; 
thePitch; 
thelong; 

NAPlayNote( gNoteAllocatorComp, theNoteChannel. thePitch, 127 ); 
Delay( 10, &thelong ); 
NAPlayNote( gNoteAllocatorComp, theNoteChannel. thePitch, 0 ); 

The first parameter to Del ay C ) specifies the length of the delay in ticks­
sixtieths of a second. The above snippet causes the note to play for ten 
sixtieths, or one sixth, of a second: Similarly, a first parameter of 60 would 
play the note for one second while a first parameter of 180 would play 
the note for three seconds. The second parameter to Del ay C ) is a pointer 
to a long variable. Delay C ) returns the number of ticks that have taken 
place from the time of the computer's startup to the call to Delay( )-a 
value that you won't be concerned with. 

Chapter Example: Play"ote 
This chapter's first example uses QuickTime Musical Architecture func­
tions to play the sound of a helicopter for 5 seconds. The setting of the 
ToneDescription field gmNumber to a value of 126 in the application­
defined Initializelnstrument() function specifies that the Helicopter 
General MIDI Instrument should be used. To change the sound, refer to 
Appendix A. Select any of the 128 MIDI instrument numbers, set 
gmNumber to that value, and recompile and run the program. 

You can slow the helicopter sound down or speed it up by changing 
the value of the pitch in the Pl ayMu sic F romN ot eC ha n n el ( ) function. 
Choose a value in the range of 0 to 127. Lower values slow the heli­
copter blade down; higher values speed it up. 

You can change the length which the sound plays by changing the 
value of the first parameter in the Delay C) function called from 
PlayMusicFromNoteChannel(). 

#include <OuickTimeComponents.h> 



Chapter I • Quicklime Musical Instruments 

void InitializeToolbox( void ); 
void Initializeinstrument( void ); 
void PlayMusicFromNoteChannel( void ); 

NoteAllocator gNoteAllocatorComp: 
ToneDescription gToneDesc: 

void main( void ) 
{ 

InitializeToolbox(); 

Initializeinstrument(); 

PlayMusicFromNoteChannel(); 
} 

//~~~~~~~~~~~~~~~~~~~~~~ 

void Initializeinstrument( void ) 
{ 

} 

gNoteAllocatorComp = OpenDefaultComponent( kNoteAllocatorType, 0 ); 

gToneDesc.synthesizerType = 0: 
gToneDesc.synthesizerName[OJ = O: 
gToneDesc.instrumentName[OJ = O: 
gToneDesc.instrumentNumber = 126: 
gToneDesc.gmNumber = 126: 

//~~~~~~~~~~~~~~~~~~~~~~~~~~-

void PlayMusicFromNoteChannel( void 
{ 

Note Request 
NoteChannel 
short 
ComponentResult 
long 

theNoteRequest: 
theNoteChannel : 
thePitch; 
theError; 
thelong; 

theNoteRequest.polyphony = 4: 
theNoteRequest.typicalPolyphony = OxOOOlOOOO; 
theNoteRequest.tone = gToneDesc; 

335 



336 

} 

Graphics and Sound Programming Techniques for the Mac 

theError = NANewNoteChannel( gNoteAllocatorComp, &theNoteRequest, 
&theNoteChannel ) ; 

thePitch = 60; 

NAPlayNote( gNoteAllocatorComp, theNoteChannel, thePitch, 127 ); 
Delay( 300, &thelong ); 
NAPlayNote( gNoteAllocatorComp, theNoteChannel, thePitch, 0 ); 

theError = NADisposeNoteChannel( gNoteAllocatorComp, 
theNoteChannel ) ; 

//~~~~~~~~~~~~~~~~~~~~~~~~~-

void InitializeToolbox( void 
{ 

InitGraf( &qd.thePort ); 
InitFonts(); 
In itWi ndows ( ) ; 
InitMenus(); 
TEinit(); 
InitDialogs( OL ); 
FlushEvents( everyEvent, 0 ); 
InitCursor(); 

Chapter Example: PlayScale 
The PlayScale program is very similar to the PlayNote example you just 
experimented with. One of the differences is in the instrument used to 
play the sound. In PlayScale, the gmNumber is set to 1, which selects the 
Acoustic Grand Piano instrument (again, refer to Appendix A). 

void Initializelnstrument( void ) 
{ 

gNoteAllocatorComp = OpenDefaultComponent( kNoteAllocatorType, 0 ); 

gToneDesc.synthesizerType = 0; 
gToneDesc.synthesizerName[OJ = O; 
gToneDesc.instrumentName[OJ = O; 
gToneDesc.instrumentNumber = 1; 



Chapter 8 • Quicklime Musical Instruments 

gToneDesc.gmNumber l; 
} 

More important than the change to the Initial i zelnstrument() function 
is the change to Pl ayMusi cFromNoteChannel ( ). In PlayScale, the calls to 
NAPl ayNote() and Delay() have been placed in the body of a for loop. At 
each pass through the loop, the pitch is incremented by a value of 1. The 
effect is that of running your finger from left to right across the shaded 
piano keys in Figure 8.1. 

for ( thePitch = 36; thePitch <= 96; thePitch++ ) 
{ 

} 

NAPlayNote( gNoteAllocatorComp, theNoteChannel, thePitch, 127 ); 
Delay( 10, &thelong ); 
NAPlayNote( gNoteAllocatorComp, theNoteChannel. thePitch, 0 ); 

The remainder of the PlayScale code is identical to that of the PlayNote pro­
gram. You can refer to this book's CD for the complete source code listing. 

Selecting an Instrument 
The QuickTime Music Architecture provides a powerful and easy to 
implement means of both experimenting with MIDI instruments and of 
allowing users of your programs to select the MIDI instrument to use. 
Figure 8.2 shows the Instrument Picker dialog box that your program 
can open with a single Note Allocator function call. 

Select an instrument: 

Best S ntheslzer 

Category: I No Instrument I 
m mm•••••m••mm•••1 

ilHn,mrmrnmnmnmmn1 

FIGURE 8.2 The Pick Instrument dialog box. 

337 



338 
Graphics and Sound Programming Tczchniqaczs for thcz Mac 

Clicking on the synthesizer pop-up menu in the Instrument Picker 
dialog box displays a list of synthesizers to choose from. As shown in 
Figure 8.3, Apple supplies one synthesizer with the QuickTime·Musical 
Instruments extension-third-party synthesizers may be available. You 
can leave this menu at the Best Synthesizer item to let the QMA select 
the best choice. 

Select an instrument: 

l Macintosh Built In 1 
I nstrument:1 Acoustic Grand Piano J 

1n 1 ml n1m1n1m 1n 1m1 n1m1 

FIGURE 8.3 The synthesizer pop-up menu in the Pick Instrument dialog box. 

As shown in Figure 8.4, the Category pop-up menu allows you to select 
a category of instruments. Selecting a category determines the contents 
of the next pop-up menu, the Instrument menu. 

No Instrument 

... 
Chromatic Percussion 
Organ 
Guitar 
Bass 
Strings IT Orchestra 
Ensemble 
Brass 
Reed 
Pipe 
Synth Lead 
Synth Pad 
Sgnth Effect 
Ethnic 
Percussiue 
Sound Effects 

Drum Kits 

FIGURE 8.4 The Category pop-up menu in the Pick Instrument dialog box. 



Chapter 8 • Quicklime Musical Instruments 

After selecting an instrument category, select a particular instrument 
from that category by using the Instrument pop-up menu-shown in 
Figure 8.5. 

Select an instrument: 

Best Synthesizer 1-------~ 

Category: I Piano I 
Rcoustic 6rand Piano 
Bright Rr.ous-t/r. Plano 
£/er.trir. firand Piano 
Honk!lfonk Piano 
Rhodes Piono 
Chorused Piano 

Clauinet 

FIGURE 8.5 The Instrument pop-up menu in the Pick Instrument dialog box. 

Once you've selected an instrument, click on any key of the Instrument 
Picker keyboard. If you click on a key and hold the mouse button down, 
the note will play until you release the mouse button. You can also hold the 
mouse button down and move the cursor across the keys to play any num­
ber of notes in a single mouse-click. 

Adding the Instrument Picker Dialog Box 
to a Program 
The Instrument Picker dialog box is great for experimenting with all of 
the one hundred-plus MIDI instruments. When added to one of your 
own programs, it serves to quickly and easily show off the capabilities of 
the QuickTime Musical Instruments extension. 

A single Toolbox call displays the Instrument Picker dialog box and 
handles all of its functionality. The following snippet makes use of the 
powerful NAPi cklnstrument() function. 

NoteAllocator 
ToneDescription 
ComponentResult 
Str31 

gNoteAllocatorComp; 
gToneDesc; 
theResult; 
thePrompt = "\pPick an instrument:"; 

339 



340 
Graphics and Sound Programming Techniques for the Mac 

theResult = NAPicklnstrument( gNoteAllocatorComp, nil. thePrompt, 
&gToneDesc. 0, 0, 0, 0 ); 

The first parameter to NAPi cklnstrument() is the Note Allocator compo­
nent that was returned in the call to OpenDefaul tComponent( ). The second 
parameter holds an optional filter function-the above snippet simply 
sets this parameter to nil. The third parameter holds a string that will be 
displayed in the dialog box-refer to Figure 8.5 to see the placement of 
this string. The fourth parameter to NAPi cklnstrument() is a pointer to a 
ToneDescri pti on variable. Unlike the ToneDescri pti on variables used in 
preceding example programs, the one used here does not need to be 
initialized. Instead, the NAPi cklnstrument() function will fill the fields of 
this variable based on the user's instrument selection. 

The last four parameters to NAPi cklnstrument() can each be set to 0. 
The fifth parameter can be used to hold a flag that limits the user's 
instrument choices. Passing the Apple-defined constant kPi ckDontMi x 
will dim the last menu item in the Category pop-up menu-the Drum 
Kits item. Refer to Figure 8.4 to see this item. Passing the Apple-defined 
constant kPi ckSameSynth will dim all synthesizer items in the synthesiz­
er menu except for the Best Synthesizer item. 

The sixth parameter is used to hold a reference constant-the above 
snippet sets this value to o. The seventh and eighth parameters are 
reserved by Apple and must be set to 0. 

Chapter Example: Picklnstrument 
The Pick.Instrument example program displays the Pick Instrument dialog 
box. You can experiment with this dialog box to your heart's content-it 
won't be dismissed until you click either the Cancel or OK button. 

After initializing the Macintosh Toolbox, Picklnstrument calls the 
application-defined Initial i zelnstrument() function to set the instrument 
number to 0. A value of 0 in the gmNumber field of the ToneDescri pt ion 
structure means that the Category pop-up menu will display a No 
Instrument item, the Instrument pop-up menu will be disabled, and the 
dialog box keyboard will be disabled as well. That should be an indication 
to the user that a selection from the Category menu is in order. Once a 



Chapter 8 • Quicklime Musical Instruments 

selection other than No Instrument is made, the rest of the dialog box 
will become enabled. 

void InitializeinstrumentC void ) 
{ 

gNoteAllocatorComp = OpenDefaultComponentC kNoteAllocatorType, 0 ); 

} 

gToneDesc . synthesizerType = O; 
gToneDesc.syntr - izerName[OJ = O; 
gToneDesc.inst1 2ntName[OJ = O; 
gToneDesc.instrumentNumber = 0; 
gToneDesc.gmNumber = O; 

To demonstrate that NAPi ckinstrumentC) fills in the ToneDescri pti on struc­
ture that is passed as the fourth parameter, turn your compiler's debugging 
option on. If you break at the end of the In it i a l i z e I n st rumen t C ) function 
you'll see that the gToneDesc fields have been filled as expected-Figure 8.6 
shows this using the Metrowerks debugger. 

§Iii 

main 
I 

vo id 
- · ( 

0 Ox00970000 
v OxOOAE01 F2 

synthesi ze rT ype 0 
synthesi ze rName '"\p" 
i nstrument Na me "\p" 
i nstrumentNumber 0 
gmNumber !o 

0 

Init ia l ize lnstrument< vo id ) 

- gNoteAI l occitorComp = OpenDefaul tComponen t< 

- . 
- j 

gToneDesc . synthes i zer Type = 0 ; 
gToneOesc . syn thes i z erName CO J = O; 
gToneDesc . ins trumen t Nome[OJ = O; 
gToneOesc. instrumentNumber = O; 
gToneDesc . gmNumber = O; 

T o Line: 52 Sour ce 

Iii 
0 

FIGURE 8.6 The fields of the Tone Des c r i pt i on structure are initialized to 0. 

Next, set a breakpoint after the call to NAPi ckinstrumentC )-as shown in 
Figure 8.7. When this breakpoint is reached you'll find that the fields of 

341 



342 
Graphics and Sound Programming Techniques for the Mac 

the gToneDesc ToneDescri pt ion structure have been filled-including 
both the MIDI name and number of the instrument selected by the user. 

Pickl nstrument68K 

main {} t> gNoteAllocatorComp 

I lllllil&iiilfiiititl v Ox OOAEO 1 f 2 

-: 
- ' 
- i 

synthesizerType ! 0 
synthesizerName ! "\p" 
i nstrumentName ! "\p" 
i nstrumentNumber ! O 
gmNumber !o 

vo id I n it i a I i ze I nstl""ument< vo id ) 
{ 

gNoteA I I occi l or"Comp = OpenDefcu I tComponent< 

gToneOesc . synthesizerType = O; 
gToneOesc. synthes i zerNome [0 J = O; 
gToneOesc. instrumentNameCOl = O; 
gToneOesc . instrumentNumber = O; 
gToneOesc . gmNumber = O; 

T o Line: 52 Source 

FIGURE 8.7 The NAP i ck Instrument ( ) function will change 
the values of the fields of the ToneDesc ri pt ion structure. 

The following very short listing is the entire source code listing for the 
Picklnstrument program. Notice that when NAPi ckinstrument() is called, 
no new note channel needs to be allocated. NAPickinstrument() handles 
the creation and disposal of the note channel it uses to play music. 

#include <QuickTimeComponents.h> 

void InitializeToolbox( void ); 
void Initializeinstrument( void ); 

NoteAllocator gNoteAllocatorComp; 
ToneDescription gToneDesc; 



Chapter 8 • Quicklime Musical Instruments 

void main( void ) 
{ 

} 

ComponentResult theResult: 
Str31 thePrompt - "\pSelect an instrument:": 

InitializeToolbox(); 

Initializelnstrument(}; 

theResult = NAPicklnstrument( gNoteAllocatorComp, nil, thePrompt, 
&gToneDesc, 0, 0, 0, O ); 

if ( theResult !- noErr 
ExitToShell(); 

//~~~~~~~~~~~~~~~~~~~~~-

void Initializelnstrument( void ) 
{ 

} 

gNoteAllocatorComp = OpenDefaultComponent( kNoteAllocatorType, 0 ); 

gToneDesc.synthesizerType = 0; 
gToneDesc.synthesizerName[OJ - O; 
gToneDesc.instrumentName[OJ = O; 
gToneDesc.instrumentNumber = 0; 
gToneDesc.gmNumber = O; 

//~~~~~~~~~~~~~~~~~~~~~~~~~-

void InitializeToolbox( void 
{ 

} 

InitGraf( &qd.thePort ); 
InitFonts(); 
InitWindows(); 
InitMenus(); 
TEinit(); 
InitDialogs( OL ); 
FlushEvents( everyEvent, 0 ); 
InitCursor(); 



344 
Grc1phics and Sound Progrc1mming Techniques for the Mac 

Chapter Example: PickAndPlay 
The last example program in this chapter adds to the Picklnstrument pro­
gram you just looked over. When you run Pick.AndPlay, you'll again see 
the Pick Instrument dialog box. If you select an instrument and then click 
the OK button, the dialog box will be dismissed and a series of notes from 
the selected instrument will be played. The Pl ayMusi cFromNoteChannel () 
routine used in this chapter's PlayScale example takes care of this task. 
You'll find that this version of Pl ayMusi cFromNote-Channel ()is identical to 
the previous version-it's a direct copy and paste from PlayScale. 

PlayScale demonstrates that while the Pick Instrument dialog box 
may sidetrack the user for quite a while, this dialog box is more than a 
simple diversion. It allows your application to let the user choose the 
instrument to be used. This dialog box also allows your program to save 
the user's instrument selection for later use. By having a global variable 
for the ToneDescri pt ion parameter that is passed to NA Pi cklnstrument( ), 
your program can recall the user's instrument selection at any time. 

If the user clicks the Cancel button rather than the OK button, 
Pick.AndPlay assumes that the user doesn't want the selection saved. If 
the user doesn't make an instrument selection, the program again 
assumes that no music is to be played. In both cases, PickAndPlay 
exits-your program will handle a Cancel hit or a nonselection in a 
more graceful manner. 

theResult = NAPicklnstrument( gNoteAllocatorComp, nil, thePrompt, 
&gToneDesc, 0, 0, 0, 0 ); 

if ( ( gToneDesc.instrumentNumber == 0 ) I I ( theResult != noErr ) ) 
ExitToShel l (); 

else 
PlayMusicFromNoteChannel(): 

The above snippet will exit the program if the user clicks the Pick Instrument 
dialog box Cancel button-the variable theResul twill have a value of 
userCancel edErr. If your program needs to know if this button was 
clicked, make a comparison using the following Apple-defined constant: 

if ( theResult == userCanceledErr ) 
II handle user canceled instrument choice 



Chapter 8 • Quicklime Musical Instruments 

Now that you're familiar with the fields of the ToneDescri pti on struc­
ture and how they can be initialized, the application-defined Initial i ze­
I n st rument () function has been redesigned. It now calls the Toolbox 
function NAStuffToneDesc ri pt ion (). 

Rather than filling in the fields of gToneDesc one at a time-as was done 
in previous examples-a single call to NAStuffToneDescri pt ion () is now 
used. When passed a Note Allocator component and a gmNumber value in its 
first two parameters, this function fills in the fields of the ToneDescription 
variable passed as the third parameter. Initial i zelnstrument() now 
accepts a single parameter-the General MIDI Instrument number of the 
instrument to initialize the ToneDescription structure to. Here's the new 
Initial i zelnstrument() function, along with a call to it. 

#define kMIDinolnstrument 0 

long thelnstrument = kMIDinolnstrument; 

Initializelnstrument( thelnstrument ); 

void Initializelnstrument( long thelnstrument 
{ 

ComponentResult theResult; 

gNoteAllocatorComp = OpenDefaultComponent( kNoteAllocatorType, O ); 

theResult = NAStuffToneDescription( gNoteAllocatorComp, 
thelnstrument, &gToneDesc ); 

} 

The MIDI instrument that is passed to Initializelnstrument() in the 
form of a gmNumber value will be the instrument that appears in the 
Instrument pop-up menu of the Pick Instrument dialog box when the dia­
log box opens. Try changing the value passed to Initial i zelnstrument() 
to verify that it has this effect. 

#include <OuickTimeComponents.h> 

void InitializeToolbox( void ); 
void Initializelnstrument( long ); 

345 



346 
Ciraphia and Sound Programming Techniques for the Mac 

void PlayMusicFromNoteChannelC void); 

11~~~~~~~~~~~~~~~~~~~~~~~~~-

f/define kMIDinoinstrument 0 

//~~~~~~~~~~~~~~~~~~~~~~~~~-

NoteAllocator 
ToneDescription 

gNoteAllocatorComp; 
gToneDesc; 

void main( void ) 
{ 

} 

ComponentResult theResult: 
Str31 thePrompt - "\pSelect an instrument:": 
long thelnstrument = kMIDinoinstrument; 

InitializeToolbox(); 

Initializelnstrument( thelnstrument ); 

theResult = NAPickinstrumentC gNoteAllocatorComp, nil, thePrompt, 
&gToneDesc, 0, 0, 0, 0 ); 

if C ( gToneDesc.instrumentNumber ==- 0 ) I I ( theResult != noErr ) ) 
ExitToShell (): 

else 
PlayMusicFromNoteChannel(); 

//~~~~~~~~~~~~~~~~~~~~~~~~~-

void Initializelnstrument( long thelnstrument ) 
{ 

ComponentResult theResult; 

gNoteAllocatorComp = OpenDefaultComponent( kNoteAllocatorType, 0 ); 

theResult = NAStuffToneDescription( gNoteAllocatorComp, 
thelnstrument. &gToneDesc ); 

} 

//~~~~~~~~~~~~~~~~~~~~~~~~~-

void PlayMusicFromNoteChannel( void 
{ 

NoteRequest theNoteRequest; 



} 

NoteChannel 
short 
ComponentResult 
long 

Chapter 8 • QuickTime Musical Instruments 

theNoteChannel ; 
thePitch; 
theError; 
thelong; 

theNoteRequest.polyphony = 4; 
theNoteRequest.typicalPolyphony = Ox00010000; 
theNoteRequest.tone = gToneDesc; 

theError = NANewNoteChannel( gNoteAllocatorComp, &theNoteRequest, 
&theNoteChannel ) ; 

for ( thePitch = 36; thePitch <= 96; thePitch++ ) 
{ 

} 

NAPlayNote( gNoteAllocatorComp, theNoteChannel, thePitch, 127 ); 
Delay( 10, &thelong ); 
NAPlayNote( gNoteAllocatorComp, theNoteChannel, thePitch, 0 ); 

theError = NADisposeNoteChannel( gNoteAllocatorComp, 
theNoteChannel ) ; 

//~~~~~~~~~~~~~~~~~~~~~~~~~-

void InitializeToolbox( void 
{ 

} 

InitGraf( &qd.thePort ); 
InitFonts(); 
InitWindows(); 
InitMenus(); 
TEI nit(); 
InitDialogs( OL ); 
FlushEvents( everyEvent. 0 ); 
InitCursor(); 

Summary 
System 7.5 includes an extension called QuickTime Musical Instruments. 
This system software-and the new Movie Toolbox functions that work 
with this system software-make it simple to add quality music and 
sound effects to any Mac program. 

347 



348 
Graphics and Sound Programming Techniques for the Mac 

To play a musical note, your program first needs to open a Note 
Allocator component. A call to OpenDefaultComponent() takes care of 
this. Next, your program should create and fill in a ToneDescri pt ion 

structure that describes the type of instrument that will be used to play 
the music. After that, a NoteRequest structure needs to be filled in. One of 
the three fields of this structure is the ToneDescri pti on that was created 
earlier. Finally, a new note channel needs to be allocated using the 
NANewNoteChannel () function. After that, your application is ready to 
use the NAPl ayNote <) function to play one or more notes. 

To display the standard Pick Instrument dialog box, your program 
should call NAPi cklnstrument( ). This powerful routine opens the dialog 
box and handles all user action in it-including opening a new note 
channel for the user-selected instrument. 



CHAPTER 9 

Application: QuickTimcz 
Movie Editor 

Each example program in the previous nine chapters was a short, simple 
application written with one purpose: to provide a working demonstration 
of the topic that appeared just before the program. The code listings for 
those programs are meant to serve as sources from which you can select 
code snippets to paste and modify in the source file of your own, larger 
graphics and sound application. While having the individual pieces of a 
puzzle can be helpful, it is also nice to have a complete puzzle to serve 
as a model. Enter the FilmEdit program. 

In this chapter, you'll see the development of a QuickTime movie 
editor named FilmEdit. You'll see how the QuickTime topics presented 
in Chapter 7 can be applied to a program that uses menus and supports 
multiple movie windows. FilmEdit is a full-blown Mac application that 
can serve as a sort of framework for your own program. Much of the 
code is written to be reusable "as is," or with only slight modification. 
And, of course, much of the code is written to demonstrate techniques 
presented in this book. 

349 



350 
Graphics and Sound Programming Techniques for the Hae 

As you read about FilmEdit, you'll see the general technique of 
creating a program that supports any number of open windows-even 
different types of windows. You'll also see the more specific technique of 
implementing all of the Edit menu items so that they work on Quick­
Time movies. You'll also learn how to save a movie that has been edited­
either to the same file from which the movie came or to a new file. 

Movie Editing 
Your application might allow users to play movies, but not make 
changes to them. Before you place that limitation on the user, consider 
that the Movie Toolbox makes the addition of movie-editing capabilities 
to an application a very simple task. 

Movie Editing and the Movie Controller 
When a movie has a movie controller attached to it, the user can use the 
Step forward and Step backward buttons to move to any frame in that 
movie. If a program implements Copy and Cut commands, they can be 
used on whichever frame is currently being displayed. If the Shift key 
is held down while the slider is moved (or either of the Step buttons are 
clicked), a selection of a number of frames can be made. When that's 
done, the Play bar highlights the selection (see Figure 9.1) and Copy 
and Cut commands apply to all the frames within the selection. 

Selected part of a movie track is highlighted 

FIGURE 9.1 A movie controller and its parts. 

You may recall that when a movie file is opened, you provide some 
level of read or write permission for the movie in that file. In past exam­
ples, the level has been set to read-only-fs Rd Perm. To allow editing of a 
movie to take place, instead open the movie's file with a permission 



Chapter 9 • flppllcation: Quicklime Movie Editor 

level of read and write-fsRdWrPerm. The following snippet makes the 
necessary change to the call to Open Mo vi eFi 1 e (). 

OSErr theError; 
FSSpec theFSSpec; 
short theFileRefNum: 

theError = OpenMovieFile( &theFSSpec, &theFileRefNum, fsRdWrPerm ); 

You'll need to use only a handful of Movie Toolbox routines to be able to 
create an Edit menu that works as well for movie frames as it does for text 
and graphics. The first of these functions is MCEnabl eEditi ng( ). When a con­
tI-oller is created, it initially doesn't support editing. Calling MCEnabl e­
Ed i ti n g C ) gives the controller the permission it needs to allow editing. 

MovieController theController: 

MCEnableEditing( theController, true ); 

The first parameter to MCEnabl eEdi ting() is the controller attached to 
the movie to edit. The second parameter is a Boal ean value that tells the 
Movie Toolbox whether to enable editing (true) or disable editing 
(false) for this movie controller. 

Enabling editing for a movie controller (and thus for a movie) is a one­
time task. Once the movie file has been opened with a write permission 
level and the movie's controller has had editing enabled, editing func­
tions performed on the movie will work properly. 

Movie Toolbox Movie Editing Routines 
The Movie Toolbox holds editing routines that take care of the work 
involved in editing a movie. Each routine requires a controller as a 
parameter. By specifying a controller, you also specify the movie that is 
to receive the editing. 

To cut the current frame or current selection of a movie, call the Movie 
Toolbox function MCCut( ). 

MovieController theController: 
Movie theTempMovie; 

theTempMovie = MCCut( theController ): 

151 



352 
Graphia and Sound Programming Techniques for the Mac 

The movie controller is the only parameter MCCutC) needs. After 
removing the current selection, MCCutC) returns it to your program as a 
Movie. You'll need this movie as a parameter to another Movie Toolbox 
routine, PutMovieOnScrapC ). The Movie Toolbox doesn't take the liberty 
of automatically placing the cut movie to the clipboard, or scrap. Doing 
so would overwrite the existing contents of the scrap-something every 
application may not want to do. To place the cut movie on the scrap, 
follow a call to MCCut() with a call to PutMovi eOnScrapC ): 

MovieController theController: 
Movie theTempMovie: 

theTempMovie = MCCut( theController ); 
PutMovieOnScrapC theTempMovie, movieScrapOnlyPutMovie ); 

PutMovi eOnScrapC) gives you the option of placing the cut movie on the 
scrap and overwriting whatever is already there, or adding the cut 
movie to whatever is currently on the scrap. To overwrite the current 
contents of the scrap, pass the Apple-defined constant movieScrapOnly­
PutMovi e as the second parameter to PutMovi eOnScrapC ). To add the cut 
movie to whatever is already on the scrap, use the Apple-defined constant 
movieScrapDontZeroScrap. 

Because movies can be quite large, your application is through with 
one, dispose of it. As you've seen, that's what the example applications 
have done by calling the Movie Toolbox routine Di sposeMovi eC ). In the 
above snippet, you saw that a Movie variable named theTempMovi e held 
the cut movie. Make sure to free the memory occupied by this temporary 
movie by disposing of it: 

theTempMovie = MCCutC theController ); 
PutMovieOnScrapC theTempMovie, movieScrapOnlyPutMovie ); 
DisposeMovie( theTempMovie ) 

To copy the current selection of a movie, make a call to the Movie 
Toolbox routine MCCopyC ). Then, as was done for cutting a part of a 
movie, call PutMovi eOnScrap() to store the copied movie to the scrap. 
Then, again as was done for cutting a movie, dispose of the temporary 
movie by making a call to Di sposeMovi eC ). 

MovieController theController: 
Movie theTempMovie: 



Chapter 9 • Application: QuickTime Movie Editor 

theTempMovie = MCCopy( theController ); 
PutMovieOnScrap( theTempMovie, movieScrapOnlyPutMovie ); 
DisposeMovie( theTempMovie ) 

After cutting or copying a part of a movie, the user should be able 
either to paste this movie from the scrap to a different spot in the same 
movie or a different existing movie, or to form a new movie altogether. 
To paste, call the Movie Toolbox routine MC Paste(). 

MovieController theController; 

MCPaste( theControl l er. nil ) ; 

MCPaste() will paste to the current frame of the active window of a pro­
gram. And, this function can be written such that it will paste any movie 
there-not just the movie on the scrap. The second parameter to MCPaste() 
is the movie to paste. If you pass a value of nil, as shown above, MCPaste() 
will use the contents of the scrap in the paste. If you specify a particular 
Movie variable as the second parameter, MCPaste() will instead use that 
movie in the paste, and ignore the contents of the scrap. 

Passing a value of ni 1 as the second parameter in MCPaste() will allow 

your program to paste the contents of the clipboard to the selected movie­
whether the clipboard contains a movie, a picture, or text. 

Most programs that include a functioning Edit menu have a Clear 
menu item in that menu. This item cuts the current selection, but 
doesn't save it to the scrap. Not saving it allows the user to remove 
selected frames while still preserving whatever is already on the 
Clipboard. You can clear the current selection by calling the Movie 
Toolbox routine MCClear(). MCClear() cuts the current selection but 
doesn't return the cut movie to your application-thereby saving the 
you the effort of disposing of the movie. 

MovieController theController; 

MCClear( theController ); 

Adding an Undo menu item to your application's Edit menu is easy 
with the Movie Toolbox. Just call MCUndo() to undo the most recently 
performed editing operation: 

353 



354 
Graphia and Soand Programming Techniques for the Mac 

MovieController theController: 

MCUndo( theController ); 

Compared to the implementation of the other editing operations, 
adding a Select All menu item to an Edit menu requires a little extra 
effort. Before selecting an entire movie, your program needs to be made 
aware of the movie's length. Timing information for a movie can be 
saved in a data structure of type Ti me Record: 

struct TimeRecord 
{ 

} ; 

CompTimeValue 
Timescale 
TimeBase 

value: 
scale: 
base; 

Movie time is measured on a scale. Applications have the freedom of 
setting the scale to a unit of measurement of their choice. A unit value 
of 1 means that a time coordinate system of seconds is used. A unit 
value of 60 means that a time coordinate system of sixtieths of a second 
is used. Thus a movie with a running time of. 2 seconds would be of 
length 2 in the seconds scale and length 120 in the sixtieths of a second 
scale. The second field of TimeRecord holds the scale for a movie. You 
can find out what time scale a movie is in by calling the Movie Toolbox 
routine GetMovi eTimeScal e(). The returned value can be placed in the 
sea 1 e field of a Ti me Record: 

TimeRecord theTimeRecord: 
Movie theMovie: 

theTimeRecord.scale = GetMovieTimeScale( theMovie ): 

The first member of the TimeRecord is used to hold a specific point in 
time of a movie. For instance, if a movie was 2 seconds in length, and its 
time scale was in sixtieths of a second, then the duration of the movie 
would be 120 and the midpoint of the movie would be at a time value 
of 60. In order to hold very large time values, the TimeRecord uses two 
32-bit integers to hold a single time. The value field itself is thus com­
posed of two fields. The hi field holds the high-order 32 bits of the 



Chapter 9 • flppllcation: OalckTime Movie Editor 

val ue and the lo field holds the low-order 32 bits. To set the current value 
of a movie to its start, you'd set both the hi and lo fields of the val ue to 0: 

TimeRecord theTimeRecord: 

theTimeRecord.value.hi = O: 
theTimeRecord.value.lo = O; 

To set a TimeRecord value field to the end of a movie, call the Movie 
Toolbox routine GetMovi eDurati on C ). This function returns a long value 
that can be stored in the lower 32 bits of the value field: 

Movie theMovie: 
TimeRecord theTimeRecord: 

theTimeRecord.value.lo = GetMovieDuration( theMovie ); 

~ 
NOTE 

The maximum value of a 32-bit 1 ong is over 4 billion, so that even the 
value representing the duration of a very long movie should fit in the low­
order 32 bits of the v a 1 u e field. 

The third and final field of a TimeRecord holds a movie's time base. The 
base field holds a single value that encapsulates a movie's play direc­
tion and speed-its rate. Because editing takes place on a movie that isn't 
playing, the base value can be set to O: 

TimeRecord theTimeRecord; 

theTimeRecord.base = 0; 

After filling a TimeRecord scale with a movie's scale, and then setting 
the value and base to 0, call MCDoActi on C > to tell the movie's controller 
that this location is to be used as the start of the edit selection. Recall 
that MCDoAction( >accepts a variety of second parameter constants that 
act on the controller passed as the first parameter. The third parameter 
holds a pointer to data that varies with the type of action that is to be 
performed. You'll pass a pointer to the TimeRecord, as follows: 

MovieController theController; 
TimeRecord theTimeRecord; 

355 



356 
Grc1phics and Sound Programming Techniques for the Mac 

Movie theMovie; 

theTimeRecord.value.hi = O: 
theTimeRecord.value.lo = 0: 
theTimeRecord.base = O; 

theTimeRecord.scale = GetMovieTimeScale( theMovie >: 
MCDoAction( theController, mcActionSetSelectionBegin, &theTimeRecord) 

The start of the selection is made by passing MCDoAct ion C > the Apple­
defined action constant mcActi onSetSel ecti onBegi n. The end of the 
selection is made by again calling MC DoAct ion ( >-this time with an 
action constant of mcActionSetSelectionEnd. Before doing this, call 
GetMovi eDurati on() to change the value field of the TimeRecord from 
the beginning of the movie (val ue = O) to of the end of the movie: 

MovieController 
Time Record 
Movie 

theController; 
theTimeRecord: 
theMovie: 

theTimeRecord.value.lo = GetMovieDuration( theMovie ): 
MCDoActionC theController, mcActionSetSelectionDuration, 

&theTimeRecord ): 

The following snippet shows the complete code for setting a movie's 
edit selection to the entire movie. When the code completes, the entire 
Play bar of the movie's controller will be highlighted. 

MovieController 
TimeRecord 
Movie 

theController: 
theTimeRecord: 
theMovie: 

theTimeRecord.value.hi = 0: 
theTimeRecord.value.lo = O: 
theTimeRecord.base = 0: 

theTimeRecord.scale = GetMovieTimeScale( theMovie ): 
MCDoAction( theController, mcActionSetSelectionBegin, 

&theTimeRecord ): 
theTimeRecord.value.lo = GetMovieDuration( theMovie ): 
MCDoAction( theController, mcActionSetSelectionDuration, 

&theTimeRecord ): 



Chapter 9 • Application: Quicklime Movie Editor 

Saving an Edited Movie 
If your application allows movie editing, it should also provide the 
means for the user to save any changes that were made to a movie. 
Providing Save and Save As menu items in the File menu of your 
application will allow the user to do just that. 

Saving a Movie with a usave•• Menu Item 
In Chapter 7, you saw how a QuickTime movie-playing program used 
the Movie Toolbox routine OpenMov i e File ( ) to load a movie from a 
movie file. There, the fsRdPerm permission level was used. For applica­
tions that allow movie editing, you'll need to open a movie file with the 
fsRdWrPerm permission constant. In Chapter 7, you also saw that after a 
movie was loaded into memory, the file from which the movie came 
was closed. If your program is going to save changes made to a movie, 
you'll want instead to keep the movie file open-the changes will need to 
be written to the file. The following snippet uses the standard Open dialog 
box to get an FSSpec for a movie, OpenMovi eFil e() to open the movie file, 
and NewMovi eFromFi le() to load into memory the file's movie. Notice that 
the call to OpenMovi eFi le() uses the fsRdWrPerm constant, and that the 
snippet doesn't make a call to CloseMovieFile( ). The snippet also checks 
both returned OS Err values to ensure that no errors have occurred. 

OS Err 
SFTypeL i st 
StandardFileReply 
Movie 
short 
short 
Str255 

Boolean 

theError; 
typelist = { MovieFileType, 0, 0, 0 }; 
theReply; 
theMovie; 
theFileRefNum; 
theMovieResID; 
theMovieResName; 

wasAltered; 

StandardGetFilePreview( nil. 1, typelist, &theReply ); 
if ( theReply.sfGood == false ) 

return; 

theError = OpenMovieFile( &theReply.sfFile, &theFileRefNum, 
fsRdWrPerm ) ; 

357 



358 
Graphics and Sound Programming Techniques for thcz Mac 

if ( theError != noErr ) 
ExitToShell (); 

theError = NewMovieFromFile( &theMovie, theFileRefNum, 
&theMovieResID, theMovieResName, 
newMovieActive, &wasAltered ); 

if ( theError != noErr 
ExitToShell(); 

If a user of your program makes editing changes to a movie and then 
selects Save from the File menu, your program will only need to call 
one Movie Toolbox routine-UpdateMovi eResourceC ): 

Movie theMovie; 
short theFileRefNum; 
short theMovieResID; 

UpdateMovieResourceC theMovie, theFileRefNum, theMovieResID, nil ); 

Pass UpdateMovi eResourceC) the movie to save to disk in the first para­
meter. Pass the reference number of the file that the movie is to be saved 
to as the second parameter. The third parameter is the movie resource 
ID of the movie's moov resource. Looking at the above two snippets you 
can see that these second and third parameters-the Fi 1 eRefNum and 
theMovieResID-come from the calls to OpenMovieFile() and 
NewMovi eFromFi le(). The fourth parameter to UpdateMovi eResourceC) is 
a pointer to a new name for the movie's moov resource. If you're content 
with the current name, pass a value of nil here. Notice that this is the 
name of the moov resource, not the name of the QuickTime movie file. 

Saving a Movie with a usave fis•• Menu Item 
If the user has made changes to a movie and wants to save the edited 
version as a new movie, you should provide a Save As menu item in 
your application. Before describing the Movie Toolbox routine that helps 
you do this, a quick look at QuickTime movie file formats is in order. 



Chapter 9 • flppllcatlon: QulckTime Movie Editor 

QuickTime movies are capable of having data spread out among 
more than one file. In such a case, the moov resource of the QuickTime 
movie file holds the information about which file or files contain the 
movie's data. While this resolution of data dependencies goes unnoticed 
by the user (who can simply double-click on the one movie file to run it), 
it necessitates that all of the data files be present on the user's machine. 
That can cause a problem for the· user if he or she copies the movie file 
to a disk for use on a different machine. When the user attempts to run 
the movie on that machine, the movie won't run because the supporting 
data files aren't present. Instead, the user will see an alert like the one 
shown in Figure 9.2. 

Searching for mouie d11t11 in file "Liftoff". 

Stop 

FIGURE 9.2 Data from a single movie can be spread across more than one movie file. 

Why spread a single movie across multiple files? If several versions of a 
single movie are being made, than this method will save disk space. One 
large version will hold the entire movie. Smaller version could contain 
only selected frames from the larger movie. Each smaller version would 
then consist of only references to the frames from the large movie-not 
the frames themselves. Consider a large movie named Liftoff. If the 
Liftoff movie is edited so that it contains only half the number of frames 
as the original version, it can be saved to a file that is considerably 
smaller than half the size of the original. If, on the other hand, the copy 
is saved as a self-contained-or flattened-movie, it will be much larger. 
Figure 9.3 shows how Apple's MoviePlayer program provides the user 
with the option of saving a file in either format. 

359 



]60 
Graphics and Sound Programming Techniques for the Mac 

A normal save creates 
a small file, but the file 
is dependent on the 
original movie file 

A self-contained 
save creates a larger 
flattened file, but the Ille 
is not dependent on the 
original movie file 

I a Quicklime f ,. I CJ=HanlDisk 

I 1:.; ... :1 I 
[ Desktop ] 

New file name: I[ Saue )I 
J._u_n_of_f _co--'py"---~' [ Cancel ] 

® Saue normally (allowing dependencies) 
EsUmated fUe size: 2K 

O Make moule self-contained 
Estimated filit size: 719K 

FIGURE 9.3 Programs can be written to allow movies 
to be saved with dependencies or flattened. 

If you want your application to allow users to save movies, you should 
let them save movies in a flattened format. That way, the user can copy 
his or her movies to a disk without thought of whether or not the entire 
movie has been copied. 

In response to a request to save a movie to a new file, your program 
should display the standard Save dialog box. A call to the Toolbox rou­
tine StandardPutFi le() takes care of this: 

StandardFileReply theReply; 

StandardPutFile( "\pSave as:", "\pUntitled", &theReply ); 

The first parameter to St and a rd Put Fil e () is the prompt that the user 
will see in the Save dialog box. The second parameter is the default file 
name that will be placed in the dialog box when it opens. The user, of 
course, is free to change this default name to a file name of his or her 
choice. The last parameter is a StandardFileReply variable that will be 
filled in by the Toolbox after the user clicks on the Save button in the 
Save dialog box. 

After checking the sfGood field of the Standard Fil eReply to verify 
that the user did in fact click on the Save button, call the Movie Toolbox 



Chapter 9 • Application: OuickTime Movie Editor 

routine Fl attenMovi e() to create a new flattened movie file that holds 
the movie's moov resource and all of the movie's data. Here's a typical 
call to Fl attenMovi e( ): 

Movie theMovie; 

FlattenMovie( theMovie, fiattenAddMovieToDataFork, 
&theReply.sfFile, 'TVOD', smSystemScript, 
createMovieFileDeleteCurFile, nil, nil ); 

The first parameter to Fl attenMovi e() is the movie to save. The second 
parameter is a flag that tells the Movie Toolbox where to put the movie's 
data. Use the Apple-defined constant fiattenAddMovi eToDataFork to add 
the data to the data fork and the moov resource to the resource fork. 

The third parameter to Fl attenMovi e() is a pointer to the file system 
specification for the movie file that will be created. This FSSpec was 
returned by the call to StandardPutFi le(). 

The fourth parameter is the creator that will be associated with the 
file. If you want a double-click on your movie file to launch your appli­
cation, supply your application's creator type here. In the above snippet 
the creator 'TV OD· is the creator of Apple's MoviePlayer movie-playing 
application. 

N 0 TE 

For an application file, the creator is a four-character string that identifies 
the program to the Finder. For a data file, the creator string generally 
matches the creator string of the application that created the data file. For 
instance, Apple's MoviePlayer program has a 'creator of 'TVOD'. Movies 

created by MoviePlayer have this same creator. That lets the Finder know the relationship 
between applications and files. 

The fifth parameter to Fl attenMovi e() specifies the script for the movie. 
Scripts define the way the Finder displays a file's name. You can use the 
Apple-defined constant smSy stern Script. 

After the script specification comes a flag that tells whether or not to 
delete an existing file. If the file to be saved is given the same name as a 
file that already exists, delete the existing file and replace it with a new one 
by using the Apple-defined constant createMovi eFil eDel eteCurFi le. 

361 



362 
Graphics and Sound Programming Techniques for the Mac 

The next-to-last parameter to Fl attenMovi e() is a pointer to a short that 
holds the resource ID for the new moov resource. Passing a value of nil 

for this parameter tells the Toolbox to assign a unique resource ID to the 
new moov resource. In the above snippet, a new, empty file is being cre­
ated-so this parameter is unimportant. Finally, the eighth parameter is 
a pointer to a string that holds the name of the new moov resource. 
Passing a value of nil means that no name will be given to the resource. 
As in the call to UpdateMovieResource( ), this string is the name of the 
moov resource, not the name of the QuickTime movie file. 

Working with Multiple Movies 
A program that displays and plays a movie with little or no user-inter­
vention-such as the MovieDialog example in Chapter 7-may not 
require more than a single movie to be on the screen at one time. 
Programs that give the user more control of movie playing, such as a 
movie editor-will. For such programs you'll need to implement a mul­
tiple window-handling strategy. That way, when the user has two or 
more movie windows open, selecting Cut will cut a frame from the cor­
rect movie, selecting Close will close the correct movie windoyv, and 
pressing the Play button on more than one movie controller will cause 
each movie to play at the same time. 

In this section, you'll see a technique that provides for the proper 
handling of any number of open movie windows-the maximum num­
ber of open movies is limited only by the amount of free memory on the 
user's Macintosh. This multiple-window technique is one you can 
apply to any Macintosh program that opens more than one window at 
a time-it's not just for applications that use QuickTime. 

Window Records and Extra Window Data 
The Macintosh data type Wi ndowRecord is a data structure that holds 
information about a window-information such as the size of the window 
and what the window frame looks like. The Macintosh data type Wi ndowPt r 

serves as a pointer .to the first field of a Wi ndowRecord. This first field is 



Chapter 9 • flppllcation: Quicklime "ovi• Editor 

the Graf Port member of the Wi ndowRecord. The Graf Port itself is a data 
structure. It consists of several fields that describe the drawing environ­
ment of a window. These Graf Port fields are of the most interest to a 
programmer-information such as the font to be used in the display of 
text and the dimensions of lines to be drawn can be found in the 
Graf Port fields. 

Usually, a programmer doesn't need to access any information from 
a Wi ndowRecord other than that found in the fields of its Graf Port. That's 
why-by definition-a Wi ndowPtr variable is allowed access only to the 
Graf Port, and not to the remainder of the Wi ndowRecord. Occasionally, 
though, a programmer may need access to another field of a Wi ndowRecord. 
The Macintosh data type Wi ndowPeek exists for that purpose. Like the 
Wi ndowPtr, the Wi ndowPeek points to the start of a Wi ndowRecord-to the 
Graf Port field. Unlike the Wi ndowPtr, the Wi ndowPeek is defined so that a 
variable of the W i n d ow Peek type is free to access any field of a 
Wi ndowRecord. Figure 9.4 summarizes this. 

FIGURE 9.4 A Wi ndowPtr is used to access only 
the Graf Port field of a Wi ndowRecord, while a Wi ndowPeek 

is used to access any field of a Wi ndowRecord. 

363 



364 
Grc1phlcs and Sound Programming Techniques for the Mac 

r2l 
NOTE 

An object such as a structure is placed in memory starting at a lower 
address and progressing towards a higher address. Because Macintosh 
memory is pictured with lower-numbered addresses at the bottom of 
memory, an object in memory appears to be "upside down." That is, the 
first field of a structure is at the bottom of the structure. 

Every window that your program opens has its own Wi ndowRecord in 
memory-it's created by a call to the Toolbox function GetNewWi ndow() 
or GetNewCWi ndow (). This same function call also returns a Wi ndowPt r to 
your program-a pointer to the Graf Port of this WindowRecord. Because 
each window has a Wi ndowRecord and a Wi ndowPtr, these two data types 
provide a good basis for tying additional data to each window. 

Consider an application that is to make use of two types of windows­
one type that shows a QuickTime movie and another that displays a 
picture. You might want to have this window-type information accompany 
every window open on the screen. To keep track of this new data, your 
program should define a data structure that consists of a Wi ndowRecord 
and this new data, as follows: 

typedef struct 
{ 

WindowRecord theWindRecord: 
short theWindType; 

} BigWindRecord, *BigWindRecordPeek: 

The above struct definition creates a new application-defined data 
type-a type named Bi gWi ndRecord. It also defines a data type that serves 
as a pointer to a structure of this type-a type named Bi gWi ndRecordPeek. 
Because a structure is placed in memory one field after another, a 
Bi gWi ndRecord structure would appear in memory as shown in Figure 9.5. 
The first of the two Bi gWi ndRecord members is theWi ndRecord-an entire 
Wi ndowRecord (which includes a Graf Port as its first field). Above that 
would be the next member of the Bi gWi ndRecord-the short theWi ndType. 
As shown, a variable of type Bi gWi ndRecordPeek would have access to the 
entire Bi gWi ndRecord structure. 



N 0 TE 

N 0 TE 

Chapter 9 • Application: QuickTime Movie Editor 

An application-defined window structure will usually contain more infor­

mation than just a Wi ndowRecord and a window-type field . Later, you'll 

see that this chapter's FilmEdit program defines a window structure that 
consists of six fields. 

theWindRecord 

BigWindRecordPeek 
(to access Big\rJindRecord ) 

FIGURE 9.5 The fields of the application-defined Bi gWi nd Re co rd 
struct are accessed through a Bi gWi ndRecordPeek. 

The two fields of the Bi gWi ndRecord shown in Figure 9.5 aren't shown to 
scale. A Wi ndowRecord itself consists of many fields, and would occupy 

considerably more memory than the 2-byte theWi ndType field. You can 
assume that the remainder of the memory figures in this chapter are not 
drawn to scale. 

The first part of the multiple window-handling scheme is now established: 
define a data structure that has a Wi ndowRecord as a first member and any 
other window data as additional members. When defining this data struc­
ture, also define a data type that points to a structure of this type. 

365 



366 
Graphics and Sound Programming Techniques for the Mac 

Accessing the fipplication-Deftned Window Structure 
If you've followed closely, you may have noticed one important fact. A 
WindowPtr, a WindowPeek, and a BigWindRecordPeek all point to the same 
thing-the start of a Wi ndowRecord. The difference among the three types is 
not what they point to, but how far into memory each is allowed to access. 
The Wi ndowPtr can access only a Graf Port, the Wi ndowPeek can access the 
entire Wi ndowRecord, and a Bi gWi ndRecordPeek can access the Wi ndowRecord 
and the data that lies beyond it-the other field of the BigWindRecord 
structure. Figure 9 .6 illustrates. 

14 •• ,,,,.,,.,. 11.,"'···•···'''r>~ 

,.,.,,, ·'P''''''m sigwtndRecora 

WindowRe.:ro ~ .. ··• "::Rort ~ • .=::!JdJ .. · .... ' 

Window Peek 
(to access WindowRecord) 

BigWindRecordPeek 
(to access BigWindRecord) 

FIGURE 9.6 The different pointer types can access different structures. 

The Bi gWi ndRecord data type is application-defined-the Toolbox doesn't 
know anything about this type. That means that when you open a new 
window you can't immediately get a Bi gWi ndRecordPeek pointer to it. 
Instead, you'll first get a Wi ndowPtr to a window, then typecast that point­
er to a Bi gWi ndRecordPeek. This will be possible because a Wi ndowPtr and 
a Bi gWi ndRecordPeek point to the same data structure-a Wi ndowRecord. 
The Bi gWi ndRecordPeek just happens to be able to access information 
beyond the Wi ndowRecord. 

Begin by calling GetNewCWi ndow() to open a window and receive a 
Wi ndowPtr to the window. In the past, you've probably let the Window 



Chapter 9 • Application: Quicklime Movie Editor 

Manager reserve memory for a Wi ndowRecord by passing a value of 
nil as the second parameter to GetNewCWindow( ). Here, you'll tell the 
Window Manager how much memory to reserve by first setting up a 
pointer to an area of memory the size of a Bi gWi ndRecord data structure. 
When you open the window, use this pointer as the second parameter. 
The way to do that follows: 

WindowPtr theWindow: 
Ptr theWindowStorage; 

theWindowStorage = NewPtr( sizeof( BigWindRecord ) ); 
theWindow = GetNewCWindow( 128, theWindowStorage, (WindowPtr)-lL ); 

After the above snippet executes, a program will have a WindowPtr that 
points to a color window. More accurately, theWi ndow will point to a 
Wi ndowRecord. Note that even though enough memory was reserved for a 
Bi gWi ndRecord, the variable theWi ndow can only access the Wi ndowRecord­
that's the limitation of a WindowPtr. To access fields of data beyond the 
Wi ndowRecord, declare a Bi gWi ndRecordPeek variable and then typecast the 
Wi ndowPtr variable to a Bi gWi ndRecordPeek: 

BigWindRecordPeek theBigPeek; 

theBigPeek = (BigWindRecordPeek)theWindow; 

Now, the variable theBi gPeek can be dereferenced to access the second 
member of the Bi gWi ndRecord data structure. In the following snippet, a 
value of 2 is being assigned to theWi ndType field. Figure 9.7 shows how 
memory would look after this assignment takes place. 

BigWindRecordPeek theBigPeek: 

theBigPeek - CBigWindRecordPeek)theWindow: 
theBigPeek->theWindType = 2: 

r21 
NOTE 

If you prefer dereferencing with the dot operator, the above code could be 
written as follows: 

BigWindRecordPeek theBigPeek; 

theBigPeek = CBigWindRecordPeek)theWindow: 
C*theBigPeek).theWindType = 2; 

367 



368 
Graphics and Sound Programming Tczchniquczs for thcz Mac 

BigWindRecord 

theWindRecord 

theBigPeek 

FIGURE 9.7 Dereferencing theBi gPeek allows access to the Wi ndType field . 

Figure 9.7 shows the result of setting the value of a Bi gWi ndRecord data 
structure member. This value can be retrieved by again typecasting. If 
your program wants to know the type of a window, it should get a 
Wi ndowPtr to that window, typecast that pointer to a Bi gWi ndRecordPeek, 

and then examine the theWi ndType field of the Bi gWi ndRecord. Usually 
your program will want information about the active window. The 
Toolbox routine FrontWindow () can be used to get a Wi ndowPtr to that 
window-as shown below: 

WindowPtr theWindow; 
BigWindRecordPeek theBigPeek; 
short theCurrentWindowType; 

theWindow = FrontWindow(); 
theBigPeek = (BigWindRecordPeek)theWindow ; 
theCurrentWindowType = theBigPeek->theWindType; 

Assuming memory is as pictured in Figure 9.7, after the above snippet 
executes theCurrentWi ndowType will have a value of 2. The variable 
theCurrentWi ndowType can then be used to determine how the window 
should be handled: 



Chapter 9 • Application: OaickTime Movie Editor 

switch ( theCurrentWindowType 
{ 

} 

case 1: 
II handle type 1 window 
break: 

case 2: 
II handle type 2 window 
break; 

For clarity, your code can define a constant for each window type your 
program uses. For instance, if a program has a type of window that 
plays a QuickTime movie and another that displays a picture, the above 
snippet might become: 

#define 
#define 
switch 
{ 

kMovieWindowType 
kPictureWindowType 

theCurrentWi ndowType · ) 

1 
2 

case kMovieWindowType: 

} 

II handle QuickTime movie window 
break; 

case kPictureWindowType: 
II handle picture window 
break: 

An application will access data from the window structure frequently. For 
instance, every time a new window is opened, the window's theWi ndType 
field will need to be set to the window's type. And every time a window 
needs to be updated, the application will need to retrieve the value in 
this theWi ndType field in order to determine how the window should be 
updated. To eliminate redundant code, you'll want to define a routine 
that sets the value of the window-type field and another routine that 
gets the value from that field. The routine that sets the theWi ndType 
member follows: 

void SetWindowType( WindowPtr theWindow, short type ) 
{ 

369 



370 

} 

Graphics and Soand Programming Technlqaes for the Mac 

BigWindRecordPeek theBigPeek; 

theBigPeek = (BigWindRecordPeek)theWindow: 
theBigPeek->theWindType = type; 

After making a call to GetNewCWi ndow() to create a new window, the 
window's type can be set by making a call to SetWi ndowType( ): 

//define kMovieWindowType 1 

WindowPtr theWindow: 

SetWindowType( theWindow, kMovieWindowType ); 

To get a window's type, a routine like GetWi ndowType() should be defined: 

short GetWindowType( WindowPtr theWindow 
{ 

} 

BigWindRecordPeek theBigPeek; 

theBigPeek = (BigWindRecordPeek)theWindow: 
return ( theBigPeek->theWindType ); 

Every time some action takes place involving a window, your application 
will want to determine the window's type before handling the action. 
Consider a mouse click in a window's close box. If the window holds 
a QuickTime movie, you'll want to dispose of the movie, the movie con­
troller, and the window. If the window is of a type that doesn't hold a 
movie, then there will be no movie and no controller to dispose of. The 
following is a snippet that uses the GetWi ndowType() function to test a 
window's type before closing the window. 

if ( GetWindowType( theWindow ) == kMovieWindowType 
{ 

} 

DisposeMovieController( theController ); 
DisposeMovie( theMovie ); 
DisposeWindow( theWindow ); 

else 
{ 

DisposeWindow( theWindow ); 
} 



Choptvr 9 • Application: OuickTimv Moviv Editor 

As you'll see a little later, most application's that use an application­
defined window structure define that structure to hold several pieces of 
information about a window-not just the window's type as has been 
done for this current example. Such application's should then define a 
"set" and "get" routine for each window data field that follows the 
Wi ndowRecord in the window structure definition. 

Example Program: filmEdit 
FilmEdit is a program that serves as a demonstration of this chapter's 
multiple window-handling technique. It also shows how all of the items 
in an Edit menu can be made to work on movie selections. FilmEdit 
allows the user to cut or copy frames from a movie and paste these 
frames back into a different location in that same movie. FilmEdit also 
allows the user to open a second window and paste the frames into that 
movie. After editing is finished, the user can save an altered movie 
using the File menu Save or Save As menu items. 

In response to the user choosing Open from the File menu, FilmEdit 
displays the standard Open dialog box-as shown in Figure 9.8. After 
opening a movie, the user is free to again select Open to open another 
QuickTime movie. As shown in Figure 9.9, movies don't have to be the 
same size. If you run the FilmEdit program and experiment with it, 
you'll see that editing operations can be performed on different-size 
movies. That is, you can copy a frame or frames from a large movie and 
paste them into a smaller movie, or vice versa. 

Preuiew 

• I Create ) 

la ro1 Film Edit f ... 1 

~ Robot(small) 

=Hard Disk 

Eject 

Desktop 

Cancel 

~-------~{) j[ Open JI 
18J Show Preuiew 

FIGURE 9.8 The Open menu item brings up the standard Open dialog box. 

371 



372 
Graphics and Sound Programming Techniques for the Mac 

FIGURE 9.9 FilmEdit allows multiple windows to be open. 

The filmEdit Resources 
The FilmEdit project requires three resource types. To display a movie, a 
WIND is required. As you saw in Chapter 7, the size of the window defined 
by the WIND is unimportant. For the menus, three MENU resources are needed­
they're shown in Figure 9.10. To define the order in which these menus 
will appear in the menu bar, a single MBAR resource is needed. Figure 9.11 
shows the MBAR. 

FilmEdit .rnc 

if~·- o -··-
---==:-

MBAR MENU WINO 

MENUs from FllmEdlt.rsrc _ 

Im 
Open •. . 3€0 
Close i!llW 
Soue i!llS Cut i!llH 

I _ 

Co py i!llC 
Paste i!llU 
Clear 
Select Rll i!llR 

Soue As .. . 

Quit i!ll Q 

·······-··--····--·····-··-······-·····- ........ 0 
128 129 130 lli 

FIGURE 9.10 The MENU resources for the FilmEdit project. 



Chapter 9 • Application: Quicklime Movie Editor 

............ -·-·----------·--·-·----··-·---·-------
MBRAs from Filmfdil.rsrc 

JQ. Slze Name 

12B B I 
l§IBl MBRR ID - 128 from FllmEdlt.rsrc 

'-1 ~ • o f me nus 3 

I) ***** 
Menu res ID 1128 I 
2) ***** 
Menu r es I 0 1129 I 
3) ***** 
Menu res I 0 I 130 I 
4) ***** 

tzy 
1ii1 

FIGURE 9.11 The MBAR resource for the FilmEdit project. 

Program Initialization 
Most Macintosh applications share a great deal of similar code-the 
code that implements the graphical interface and handles events. 
FilmEdit is no different. Much of the FilmEdit code can be reused-with 
very little modification-in other applications. This "generic" source 
code has been grouped into three source files in the FilmEdit project: 
Globals.c, Initialize.c, and Generic.c. Later in this chapter, there'll be 
more mention of the FilmEdit project's file organization. 

The starting point of FilmEdit is, of course, main C). This routine 
initializes the Toolbox and Movie Toolbox, sets up the program's menu bar, 
and then enters the program's event loop. The following is the complete 
listing of ma i n C ) . Figure 9 .12 shows the function- calling chain for ma i n ( ) . 

void main( void ) 
{ 

InitializeAllToolboxes ( ); 

SetUpMenuBar(); 

Eventloop() ; 

373 



374 
Gr<1phics <1nd Sound Progr<1mming Techniques for the Me1c 

r lt InitializeAllToolboxes() 

~IJ ~-~~i-n~()~1~1.._._~-S-et_u~ __ en_us_ar_(_l~_, 

~l~, ~___,,.,,~~~en~t~Lo~op_(_)~------. 
FIGURE 9.12 Application-defined routines called by ma i n ( ) . 

I ni ti al i zeA 11 Tool boxes C) is similar to the version developed in Chapter 7. 
It does, however, have a couple of additions that can be used in any 
Mac program. After initializing the Toolbox, the Toolbox function 
MoreMasters C) is called twice to allocate extra master pointers. These 
calls aren't strictly necessary-the system would call MoreMasters C) on its 
own if the need ever arose for more master pointers. But by explicitly call­
ing MoreMasters () early in the life of a program, Initial i zeA l lToo l boxes () 
ensures that these nonrelocatable blocks of pointers will appear low in 
the heap-and that reduces the likelihood of fragmentation. The second 
addition to InitializeAllToolboxes() is a call to the Toolbox function 
MaxAppl Zone() . This call expands the application heap to the application 
heap limit, thereby reducing the potential for heap fragmentation later 
on in the program. 

void InitializeAllToolboxes( void ) 
{ 

OS Err 
long 

theError; 
theResult; 

InitGraf( &qd.thePort ); 
InitFonts(); 
InitWindows(); 
InitMenus(); 
TEinit(); 
InitDialogs( OL ); 
FlushEvents( everyEvent, 0 ); 



} 

InitCursor(); 
MoreMasters(); 
MoreMasters(); 
MaxApplZone(); 

Chapter 9 • Application: OuickTime Movie Editor 

theError =Gestalt( gestaltOuickTime, &theResult ); 
if ( theError != noErr ) 

ExitToShell (): 
theError = EnterMovies(); 
if ( theError != noErr ) 

ExitToShell (): 

After initializations take place, the FilmEdit menu bar is set up. The 
SetUpMenuBar() function, shown below, uses the application-defined 
constants rMenuBar and mAppl e. These constants, defined in the Defines.h 
header file, are used to hold the IDs of the project's MBAR resource and the 
Apple menu's MENU resource. SetUpMen uBa r () doesn't do anything 
fancy-it just makes several Toolbox calls to load the menu bar, add the 
Apple menu items, and then draw the menu bar. 

//:define 
//:define 

rMenuBar 
mApple 

128 
128 

void SetUpMenuBar( void ) 
{ 

} 

Handle theMenuBar: 
MenuHandle theAppleMenu: 

theMenuBar = GetNewMBar( rMenuBar ); 
SetMenuBar( theMenuBar ); 
DisposeHandle( theMenuBar ); 

theAppleMenu = GetMHandle( mApple ); 
AddResMenu( theAppleMenu. 'DRVR' ); 

DrawMenuBar(): 

375 



376 
Graphics and Sound Programming Techniques for the Mac 

The Main Event Loop and Menus 
The last routine called from main() is Eventloop(). This event loop is 
similar to the one developed in Chapter 7-with a couple of notable 
exceptions. Here's the event loop-changes to it are discussed after 
the listing. Figure 9.13 provides an overview of the function calls 
Eventloop() makes. 

void Eventloop(. void 
{ 

} 

EventRecord theEvent; 
Boolean isControllerEvent; 

while ( gDone ~false ) 
{ 

} 

WaitNextEvent( everyEvent, &theEvent, 0, nil); 

AdjustAllMenus(); 

isControllerEvent = UpdateAllOpenMovies( theEvent ); 

if ( isControllerEvent ~false 
{ 

} 

switch ( theEvent.what 
{ 

} 

case activateEvt: 
HandleActivateEvent( theEvent ); 
break; 

case updateEvt: 
HandleUpdateEvent( theEvent ); 
break; 

case keyDown: 
HandleKeyDownEvent( theEvent ); 
break; 

case mouseDown: 
HandleMouseDownEvent( theEvent ); 
break; 



Chapter 9 • fipplication: QuickTime Movie Editor 

HandleActivateEvent() 

HandleUpdateEvent() 

l~andleKeyDown~v~-t () J 

FIGURE 9.13 Application-defined routines called by Eventloop () . 

The event loop used in Chapter 7 was used in the very simple Quick­
Controller example. Because that program didn't support menus, the 
event loop had no provision for updating, or adjusting, menu items. 
The Film.Edit event loop does. At every pass through the event loop, the 
application-defined routine Adj ustA 11 Menus C) is called. The numerous 
"m" and "i" constants, such as mFile and iClose, are all application­
defined constants found in the project's Defines.h file. 

void AdjustAllMenus( void ) 
{ 

WindowPtr 
MovieController 
MenuHandle 

theWindow; 
theController ; 
theMenu; 

theWindow = FrontWindow(); 

if ( theWi ndow == nil ) 
{ 

theMenu = GetMHandle( mFile ); 
Disableltem( theMenu, iClose ); 
Disableltem( theMenu, iS ave ); 
Di sableltem( theMenu , i SaveAs ); 

theMenu = GetMHandle( mEdit ); 

377 



378 

} 

Graphics and Soand Programming Techniqaes for the Mac 

Disableltem( theMenu, iUndo ) : 
Disableltem( theMenu, iCut ) : 
Di sabl eltem( theMenu, i Copy ) ; 

Disableltem( theMenu, iPaste ); 
Disableltem( theMenu, i Cl ear ) : 
Disableltem( theMenu, iSelectAll ) ; 

else 
{ 

} 

theMenu = GetMHandle( mFile ); 
Enableltem( theMenu, iClose ); 
Enableltem( theMenu, iSave ); 
Enableltem( theMenu. iSaveAs ); 

theMenu = GetMenuHandle( mEdit ); 
if ( GetWindowType( theWindow ) ~ kMovieWindowType ) 
{ 

} 

theController = GetWindowController( theWindow ); 
MCSetUpEditMenu( theController, 0, theMenu ); 
Enableltem( theMenu, iSelectAll ); 

else 
{ 

} 

Enableltem( theMenu, iUndo ); 
Enableltem( theMenu, iCut ); 
Enableltem( theMenu, iCopy ); 
Enableltem( theMenu, iPaste ); 
Enableltem( theMenu, iClear ); 
Enableitem( theMenu, iSelectAll ); 

AdjustA 11 Menus ()checks to see if there is an open window on the screen. 
If there isn't, the routine dims the menu items that are not applicable to a 
windowless screen. If a window is open, the appropriate menu items are 
enabled. If a window is open, Adj ustA 11 Menus () makes one other 
check-to see if the front window is a QuickTime movie window. If it is, 
AdjustA 11 Menus() relies on the Movie Toolbox function MCSetUpEditMenu() 
to adjust the Edit menu. 



NOTE 

Chapter 9 • Application: Quicklime Movie Editor 

Why check for the type of window, when FilmEdit only supports one 

type-the kMovi eWi ndowType? Perhaps, in a future release, FilmEdit will 
make use of other application-defined window types. If that happens, 
changes to the source code will be minimal. 

This handy function will enable the Cut, Copy, Paste, and Clear items. 
If there is something to undo, the Undo item will also be enabled. 
Further, MCSetUpEditMenu() will append additional text to the Undo 
menu item to add clarity to the item. For instance, if the last editing 
action performed with a movie's controller was a Cut, then the Undo 
item will be enabled and its text will change to Undo Cut. If the last 
action was a Paste, the item will again be enabled, but this time its text 
will change to Undo Paste. Figure 9.14 illustrates how the File and Edit 
menus look after they are adjusted. 

Undo #:Z 
il€11J --···-····-·········-·---

Saue il€S Cut #:H 
Saue Rs .•. Copy #:C 

Paste full! 
Quit :1€Q Clear 

Select All :#:R 

FilmEdit menus when no windows are open 

Open ••• 000 
Close OOID 
Saue oos 
Saue Rs •.. 

Quit OOQ 

MCSetUpEditMenu() 
adds the appropriate 
Undo message 

Undo Cut OOZ 

Cut 
Copy 
Paste 
Clear 

OOH 
ooc 
oou 

Select All OOR 

FilmEdit menus when a QuickTime movie window is open 

FIGURE 9.14 The AdjustAl l Menus ()function enables 

and disables File and Edit menu items. 

379 



380 
Graphics and Sound Programming Tczchniquczs for thcz Mac 

As you can see from Adj us tA 11 Menus ( ) , the basic FilmEdit source code 

isn't completely generic. What if you were adapting the FilmEdit source 
code for a project that didn't play movies? You could leave 

N ° 1 E Adj us tA 11 Men us () as it is. If a program doesn't use movie windows, 
GetWi ndowType() will never return a window type of kMovi eWi ndowType-and the 
MCSetUpEdi tMenu () function will thus never get called. In general, you can leave any 

movie-specific code in the listings provided that: 

1. The code executes only if a check of a window reveals that the 
window is a movie window. 

2. You #include the Movies.h universal header file so that the 
linker recognizes Movie Toolbox calls. 

Another approach would be to simply cut out or comment out the if 
section and leave just the six Ena bl eitem() calls that are now found 
under the else. 

The Main Event Loop and Movie Controllers 
Menu adjustment is one trick that the Chapter 7 event loop didn't per­
form. The other difference between this chapter's event loop and that 
found in Chapter 7 examples is in the updating of QuickTime movie 
windows. The Chapter 7 examples allowed only one movie to be open 
at a time. To determine if MCisPl ayerEvent() should be called to update 
a movie, those examples checked to see if the Movi eControl l er variable 
theControl l er had a value other than nil: 

if ( theController == nil ) 
isControllerEvent =false; 

else 
isControllerEvent = MCisPlayerEvent( theController, &theEvent ); 

In FilmEdit, MCisPl ayer Event() can't just be called a single time. That's 
because MCisPl ayerEvent() updates only a single controller-the one 
passed to it in the first parameter. Because FilmEdit allows multiple 
movies to be open, there is the potential for MCisPl ayer Event() to be called 
more than one time at each pass through the event loop. Eventloop() calls 
an application-defined routine named UpdateA 11 Open Mo vi es () to do the 
work of determining how many movie windows are open, and then call-



Chapter 9 • Application: QulckTime Movie Editor 

ing MCisPl ayer Event() for each. When UpdateA 11 OpenMovi es() completes, 
it will return a Boo 1 ea n value that indicates whether the event was handled. 

isControllerEvent = UpdateAllOpenMovies( theEvent ); 

The details of UpdateAllOpenMovies() are discussed a little later in this 
chapter. 

Again, what about adapting this code to a project that doesn't use 

QuickTime? Just remove or comment out the i sControl 1 er Event 

variable and the call to U pd at eA 11 Ope nMov i es ( ) . Then remove the 

if ( i sControl l er Event == false ) test so that the switch statement 

always gets executed. 

The Main Event Loop and Event Handling 
FilmEdit watches for activate, update, key-down, and mouse-down 
events. An activate event is handled by Handl eActi vateEvent() routine­
without help from any other application-defined routines. If the window 
turns out to be a movie window, the window's controller is retrieved 
from the window structure and passed to MC Act i vat e ( ) . This Movie 
Toolbox routine activates or deactivates a movie controller. Passing a 
value of true as the last parameter to MCActi vate() indicates that the 
event was an activate event. A value of fa 1 se tells the routine that the 
event was a deactivate event. You should perform an AND operation 
on the modifiers field of the event record and the Apple-defined 
constant acti veFl ag to get this information. 

void HandleActivateEvent( EventRecord theEvent 
{ 

WindowPtr theWindow; 
Boolean isActivateEvent; 
MovieController theController: 

theWindow = CWindowPtr)theEvent.message; 
SetPort( theWindow ); 
isActivateEvent = ( theEvent.modifters & activeFlag ) != O; 

if ( GetWindowType( theWindow ) == kMovieWindowType ) 
{ 

381 



382 

} 

Graphics and Sound Programming Techniques for the Mac 

} 

theController = GetWindowController( theWindow ); 
MCActivate( theController, theWindow. isActivateEvent ); 

Like an activate event, an update event is simple to handle. The rou­
tine's source code listing follows: 

void HandleUpdateEvent( EventRecord theEvent ) 
{ 

WindowPtr theWindow; 

theWindow = (WindowPtr)theEvent.message; 
BeginUpdate( theWindow ); 

EraseRect( &(theWindow->portRect) ); 
II update "nonQuickTime· window here 

EndUpdate( theWindow ); 
} 

Recall that movie windows are updated by calls to MCisPl ayer Event()­
not by the event loop switch statement. For this reason, when an update 
event occurs in a QuickTime movie window, Handl eUpdateEvent() won't 
be called. Smee FilmEdit doesn't use any window types except the movie 
type, Handl eUpdateEvent() will never get called. Nonetheless, the routine 
is included for the sake of expansion. If FilmEdit is ever upgraded to 
make use of a second type of window, then the code is in place for the 
handling of an update to that window. Assuming that a window type 
that displayed pictures was added to FilmEdit, Handl eUpdateEvent() 
might be changed as follows: 

void HandleUpdateEvent( EventRecord theEvent ) 
{ 

} 

WindowPtr theWindow; 

theWindow = (WindowPtr)theEvent.message; 
BeginUpdate( theWindow ); 

EraseRect( &(theWindow->portRect) ); 
if ( GetWindowType( theWindow ) == kPictureWindowType 

UpdatePictureTypeWindow( theWindow ); 
EndUpdate( theWindow ); 



Chapter 9 • Application: Quicklime Movie Editor 

Activate events and update events are completely handled by 
Handl eActi vateEvent C) and Handl eUpdateEvent C), respectively. A mouse 
down event, on the other hand, may require the involvement of other 
application-defined routines besides the Handl eMouseDownEvent() func­
tion. For instance, if the mouse click occurs in the menu bar, application­
defined routines will be called to determine which menu and which 
menu item were involved. 

A key-down event is examined in Handl eKeyDownEvent C) routine to 
see if the Command key is involved. If it is, the key press is treated as a 
menu selection-the same application-defined routine that handles a 
mouse-down event in the menu bar is invoked. Figure 9.15 provides an 
overview of the application-defined routines that get called by key-down 
and mouse-down events. 

se lee t the. wind;,,w ~· ] 

FIGURE 9.15 Application-defined routines called by 

Handl eKeyDownEvent() and Handl eMou seDown Event( ). 

The following is the listing for the Handl eKeyDownEvent() function. This 
routine determines which character is represented by the pressed key. Then 
it determines if the Command key was pressed during the keystroke. If 
it was, the application-defined Handl eMenuChoi ce() routine is called to 
treat the keystroke as a menu selection. 

void HandleKeyDownEvent( EventRecord theEvent ) 
{ 

383 



384 

} 

Graphics and Soand Programming Techniques for the Mac 

short theChar; 
long theMenuAnditem; 

theChar = theEvent.message & charCodeMask: 

if ( ( theEvent.modifiers & cmdKey ) != 0 ) 
{ 

} 

if ( theEvent.what != autoKey ) 
{ 

theMenuAnditem = MenuKey( theChar ); 
HandleMenuChoice( theMenuAnditem ); 

The Handl eMouseDownEvent() takes care of mouse clicks that occur in the 
menu bar, in a window's close box, or in a window's drag bar. Very little 
of the Handl eMouseDownEvent() code is specific to movie windows. 
Remember, MCisPl ayer Event() handles events-including mouse clicks­
that occur in a movie's controller. If a mouse click occurs elsewhere over 
a movie window-such as in the window's drag bar-the click is treated 
as a normal mouse down event rather than a movie controller event. If 
the mouse click occurs in a window's close box, a check needs to be 
made to determine if the window holds a movie. If it does, then the 
application-defined routine Cl oseMovi eAndFil e() is called to dispose of 
the movie, the movie controller, and the window. Cl oseMovi eAndFil e() 
also decrements the global variable gWi ndowCount. This variable is one of 
only two global variables used by FilmEdit-the other is gDone. The 
gWi ndowCount variable keeps track of the total number of windows that 
are open at any given time. 

void HandleMouseDownEvent( EventRecord theEvent ) 
{ 

WindowPtr 
short 
1 ong 

theWindow; 
thePart; 
theMenuAnditem; 

thePart = FindWindow( theEvent.where, &theWindow ); 

switch ( thePart ) 
{ 

case inMenuBar: 
theMenuAnditem = MenuSelect( theEvent.where ); 



} 
} 

Chapter 9 • Application: Quicklime Movie Editor 

HandleMenuChoice( theMenuAnditem ); 
break: 

case inGoAway: 
if ( TrackGoAway( theWindow, theEvent.where ) ) 
{ 

} 

if ( GetWindowType( theWindow ) != kMovieWindowType 
{ 

DisposeWindow( theWindow ); 
-gWindowCount: 

else 
CloseMovieAndFile( theWindow ); 

break; 

case i nDrag: 
DragWindow( theWindow, theEvent.where, 

&qd.screenBits.bounds ); 
break; 

case inContent: 
SelectWindow( theWindow ); 
break; 

If a mouse click occurs in the menu bar, or if a key is pressed in conjunction 
with the Command key, Handl eMenuChoi ce() gets called. This routine, 
shown below and in Figure 9.16, serves as nothing more than a branching 
station. A separate application-defined routine exists for the handling of 
each menu. As you can see from the listing, Handl eMenuChoi ce() can be 
used for any project that uses the three standard menus. 

void HandleMenuChoice( long theMenuAnditem ) 
{ 

short theMenu; 
short theMenuitem: 

if ( theMenuAnditem != 0 ) 
{ 

theMenu = HiWord( theMenuAnditem ); 
theMenuitem = LoWord( theMenuAnditem ); 

switch ( theMenu ) 

385 



386 

} 

Graphics and Sound Programming Tczchniquczs for thcz Mac 

case mApple: 
HandleAppleChoice( theMenuitem ); 
break; 

case mFile: 
HandleFileC hoice( theMenuitem ); 
break; 

case mEdit: 
HandleEditChoice( theMenuitem ); 
break; 

HiliteMenu(O); 

HandleAppleChoice() 

FIGURE 9.16 Application-defined routines called by Hand l eMen uChoi ce ( ) . 

Like Handl eMenuChoi ce( ), each of the three routines that handle a menu 
selection is nothing more than a branch point. And, again, like Handle ­
MenuChoi ce( ), these three routines can be used as-is in many other 
projects. The listing for the routine that handles a click in the Apple menu 
follows. Its calling chain is shown in Figure 9.17. 

void HandleAppleChoice( short theMenuitem ) 
{ 

switch ( theMenuitem 
{ 

case iAbout: 
HandleAppleMenuAboutitem(); 
break; 



} 
} 

Chapter 9 • Application: OoickTime Movie Editor 

default: 
HandleAppleMenuDefaultitem( theMenultem ); 
break; 

I HandleAppleCh~ice () -1 ~ 
HandleAppleMenuDefaultit~( i ) 

FIGURE 9.17 Application-defined routines called by Handl eAppl eChoi ce( ). 

The File and Edit menus are handled in a manner similar to the Apple 
menu: the menu item is determined, then a routine written to handle 
just that item is invoked. 

void HandleFileChoice( short theMenuitem ) 
{ 

switch ( theMenultem 
{ 

case iOpen: 
HandleFileMenuOpenltem(); 
break; 

case iClose: 
HandleFileMenuCloseitem(); 
break; 

case iSave: 
HandleFileMenuSaveitem() ; 
break; 

case iSaveAs: 
HandleFileMenu SaveAsitem(); 
break; 

case iQuit: 
HandleFileMenuQuitltem(); 
break; 

387 



388 
Graphics and Sound Programming Techniques for the Mac 

Giving each specific menu item its own routine makes it easy to keep appli­
cation-specific code separate from the more general event-handling code. 
FilmEdit has a separate source code file named FileMenu.c that holds the 
five File menu routines shown above and in Figure 9.18. The same applies 
for Apple menu routines, which can be found in the AppleMenu.c file, 
and Edit menu routines, which are located in EditMenu.c. 

Han1leFileMenu~enit;emJ l "I 

HandleFileMenuCloseit em () 

l[ HandleFileChoice () ] ~ ~~>I i HandleFileMenuSaveit~•(): ] 

l _HandleFileMenuSaveAsi t em( ) ] 

HandleFileMenuQuit~tem () 
rl i 

FIGURE 9.18 Application-defined routines called by Handle Fil eChoi ce ( ) . 

As mentioned, each Edit menu item selection is handled by its own rou­
tine-as shown in the Handl eEdi tChoi ce() listing and in Figure 9.19. 

void HandleEditChoice( sh ort theMenuitem ) 
{ 

switch ( theMenultem 
{ 

case iUndo : 
HandleEditMenuUndoitem(); 
brea k; 

case iCut: 
HandleEditMenuCutitem(); 
break; 

case iCopy : 



Chapter 9 • Application: Quicklime Movie Editor 

HandleEditMenuCopyitem(); 
break; 

case iPaste: 
HandleEditMenuPasteitem(); 
brea k; 

case iClear: 
HandleEditMenuClearitem(); 
break; 

case iSelectAll: 
HandleEditMenuSelectAllitem(); 
break; 

I HandleEditChoice () ·-i $ 

HandleEdi tMenuUndoI tern () 

HandleEditMenuCutitem() 1 

~ 1 

HandleEditMenuPasteitem(l 

HandleEditMenuClearitem() ] 

I HandleEditMenuSelectAllitem ( )· 1 

FIGURE 9.19 Application-defined routines called by Hand l eEd i t Ch oi ce ( ) . 

A single menu selection, such as Cut from the Edit menu, sets off a chain 
of application-defined function calls-as shown in Figure 9.20. If the 
FilmEdit code were to be adapted for use in another program that uses the 
Cut menu item, only the body of the Handl eEditMenuCutitem() function 
w ould need to be modified. 

389 



390 
Graphics and Sound Programming Techniques for the Mac 

EventLoop () ] 

HandleMouseDownEvent() 
) 1 

HandleMenuChoice ( ) J 
~ 

Hand\eEditChoice() ] 

fll This function contains 
"'fl ~h code specific to the 

""""",,,,--,.,.-,..,,,,""""~=~"""""91/ FilmEdit application 

Ha.~dleEdit:MenuCutitem()~ 

FIGURE 9.20 Application-defined routines called 
when Cut is selected from the Edit menu. 

The Application-Defined Window Structure 
FilmEdit uses the multiple window-handling technique developed in 
this chapter. Recall that this technique is centered around an applica­
tion-defined window structure. The following structure is the one used 
by FilmEdit. Figure 9.21 shows how a Bi gWi ndRecord structure looks in 
memory. 

typedef struct 
{ 

WindowRecord 
short 
short 
short 
Movie 
MovieController 

theW i ndRecord; 
theW indType; 
theF i leReference; 
theMovieResourceID; 
theMovie; 
theController; 

BigWindRecord, *B igWindRecordPeek; 



Chapter 9 • Application: Quicklime Movie Editor 

f7 
theController 

theMovie 

fl' )8 . 
I theMovieResourceID 

theFileReference ... ~· BigW i ndRecord 
theWindType 

-
I 
I 

theWindH.ecord 

~~ 

~ theBigPeek 

FIGURE 9.21 The FilrnEdit version of a Bi gWi ndRe co rd. 

The FilmEdit version of the Bi gWi ndRecord structure begins with a 
Wi ndowRecord and a field that holds the window's type-the two fields 
you saw in this chapter's introduction to this structure. Next comes two 
fields that will come in handy when saving a movie. Recall that when a 
movie is to be saved, a call is made to UpdateMovi eResource( ): 

UpdateMovieResource( theMovie, theFileRefNum, theMovieResID, nil ); 

UpdateMovieResourceC) depends on the file 's reference number and the 
movie's resource ID in order to write a movie to a file . When a movie is 
opened and loaded into memory, these two values can be written to the 
movie window's structure using application-defined "set" routines: 

SetWindowFileReference( theWindow. theFileRefNum ); 
SetWindowMovieResourceIDC theWindow. theMovieResID ); 

391 



392 
Graphics and Soand Programming Techniques for the Mac 

Later, when it is time to save the movie, these values can be retrieved 
from the window's structure using application-defined "get" routines: 

short theFileRefNum; 
short theMovieResID; 

theFileRefNum = GetWindowFileReference( theWindow ); 
theMovieResID = GetWindowMovieResourceIDC theWindow ); 
UpdateMovieResource( theMovie, theFileRefNum. theMovieResID. nil ); 

The last two fields in the Bi gWi ndRecord are used to keep track of the 
movie and the movie controller associated with a window. Like the file 
reference number and movie resource ID fields, the movie and controller 
field values can be set right after a Quicklime movie window is opened 
and a controller is attached to the movie: 

SetWindowMovie( theWindow. theMovie ); 
SetWindowController( theWindow, theController ); 

Once a movie and a controller are associated with a window, either or both 
can be retrieved from the window structure when needed. For instance, if 
a QuickTime movie window is being closed, its movie and controller 
should be disposed of. In the following snippet, the Toolbox routine 
FrontWi ndow() is used to determine which window is to be closed. Once the 
window is known, its movie and controller can be found. 

WindowPtr theWindow 
MovieController theController; 
Movie theMovie 

theWindow = FrontWindow() 

theController = GetWindowController( theWindow 
DisposeMovieController( theController ); 

theMovie = GetWindowMovie( theWindow ); 
DisposeMovie( theMovie ); 



Chapter 9 • Application: Quicklime Movie Editor 

DisposeWindow( theWindow ); 

Figure 9.22 shows what memory might look like after a new QuickTime 
movie window has been opened. Notice that the theMovi e and the­
Control l er fields hold addresses. This is because variables of type Movie 
and Mov i eCont ro 11 er are identifiers, or pointers, to movie and controller 
data in memory. 

For programs that use different types of windows, the Bi gWi ndRecord 
should be modified to include fields that pertain to each window type. For 
example, a program that has a QuickTime window and a picture window 
might have two additional fields in the Bi gWi ndRecord. As shown below, 

the new version of the structure can now keep track of a handle to a picture and a title 
for the picture. A QuickTime movie window (as determined by the theWi ndType field) 
would simply ignore these last two fields. A picture window (again, as determined by 
theWindType) would ignore the theMovieResourceID, theMovie, and 
theContro 11 er fields. If the program allowed picture windows to be saved to disk, then 
a picture window could use the Fil eReference field to keep track of an open 'PICT' 
file-just as a QuickTime movie uses this field to keep track of an open 'MooV' file. 

typedef struct 
{ 

WindowRecord 
short 
short 
short 
Movie 
MovieController 
PicHandle 
Str255 

theWindRecord: 
theWindType; 
theFileReference: 
theMovieResourceID; 
theMovie: 
theController: 
thePicture; 
thePictName: 

} BigWindRecord, *BigWindRecordPeek: 

393 



394 
Graphics and Sound Programming Tczchniquczs for thcz Mac 

theMovie 

theMovieResourceID 

theF i le Reference 
BigWindRecord 

theWindType 

theWindRecord 

theBigPeek 

FIGURE 9.22 A Bi gWi ndRecord after a QuickTime movie window is opened. 

Earlier in this chapter it was suggested that your application should 
define a "set" and "get" routine for each data item being stored in a 
window structure. You've already seen SetWi ndowType() and 
GetWi ndowType() for the first item-theWi ndType. FilmEdit defines similar 
routines for the other four private data items-the data items that belong 
to one window and that can be accessed only through a Wi ndowPtr type­
cast to a Bi gWi ndRecordPeek. The routines follow for setting a window's 
movie controller and for retrieving that same information. 

void SetWindowController( WindowPtr theWindow, 
MovieController theController 

BigWindRecordPeek theBigPee k; 

theBigPeek = (BigWindRecordPeek)theWindow; 
theBigPeek->theController = theController; 

MovieController GetWindowController( WindowPtr theWindow ) 



{ 

} 

Chapter 9 • Application: Quicklime Movie Editor 

BigWindRecordPeek theBigPeek; 

theBigPeek = CBigWindRecordPeek)theWindow; 
return C theBigPeek->theController ); 

NOTE 

You can get a movie window's movie at any time by calling the application­
defined GetWi ndowMovi e() function. Alternatively, if you know a window's 

controller, you can use the Movie Toolbox routine MCGetMovi e() to get the 
window's movie: 

MovieController theController; 
Movie theMovie; 

theMovie = MCGetMovie( theController ); 

Opdating Multiple Movies 
In the FilmEdit event loop, you saw that an application-defined routine 
named UpdateA 11 OpenMovi es C) was responsible for taking care of the 
updating of QuickTime movies: 

isControllerEvent = UpdateAllOpenMovies( theEvent ); 

UpdateA 11 OpenMovi es C) begins by setting the variable theWi ndow to the 
front window on the screen. Then the function cycles through a for loop, 
checking each open window to see if it is a QuickTrme movie window. H a 
window is a movie window, UpdateAllOpenMovies() calls MCisPlayer­

Event( ). H MCisPl ayer Event() handles the event, the function is considered 
over and it returns a value of true (for event handled). If MCisPl ayer Event() 

doesn't handle the event, then this current event didn't affect the con­
troller. UpdateA 11 OpenMovi es C) then looks at the next window that is 
open on the screen. This looping takes place until the movie controller 
at which the event is directed is found. If no open window has a con­
troller, or if the event doesn't pertain to any window with a controller, 
the event is not controller-related and UpdateA 11 OpenMovi es C) returns a 
value of false (for event not handled). The following is an outline of 
what takes place in the UpdateA 11 Open Mo vi es C) function. 

395 



396 
Graphics and Soand Programming Techniques for the Mac 

set window to front window 
begin loop 

begin if window is QuickTime window 
get movie controller 
call MCisPlayerEvent() for that controller 
if event handled 

return( true) 
end if 
determine next open window 

end loop 
return( false) 

You can see in the above outline that UpdateA 11 OpenMovi es<) ''bails out" of 
the loop once the event is handled by MCisPl ayerEvent( ). If you consider 
the case of a movie that is playing, this makes sense----MCisPlayerEventO 
updates the playing movie and the event is considered handled. What 
about the case when two movies are playing at the same time? The code 
still exits after one movie is updated. UpdateA 11 OpenMovi es<) only handles 
one event-the event that is passed to it. The second movie will get updated 
at the next pass through the event loop, and thus at the next call to 
UpdateA 11 OpenMovi es<). The UpdateA 11 OpenMovi es () code follows: 

Boolean UpdateAllOpenMovies( EventRecord theEvent ) 
{ 

int 
WindowPtr 
WindowPeek 
Mo vi eContro 11 er 
Boolean 

i ; 
theWindow; 
theWindPeek: 
theController: 
eventWasHandled: 

theWindow = FrontWindow(): 

for (i = 0: i < gWindowCount: i++) 
{ 

if ( GetWindowType( theWindow ) == kMovieWindowType ) 
{ 

} 

theController = GetWindowController( theWindow ); 
eventWasHandled = MCisPlayerEvent( theController, &theEvent): 
if ( eventWasHandled == 1 ) 

return ( true >: 

theWindPeek = ((WindowPeek)theWindow)->nextWindow: 
theWindow = CWindowPtr)theWindPeek: 



Chapter 9 • Application: QuickTime Movie Editor 

} 

return ( false); 

In order to get a pointer to each open window, UpdateA 11 OpenMovi es() 
relies on the Wi ndowRecord field of a window structure. The Apple-defined 
Wi ndowRecord contains several fields-one of which is the nextWindow 
field. This Wi ndowRecord member holds a pointer to the next window. The 
first window pointer is obtained by making a call to FrontWi ndow(). After 
that, the next window is found by casting the window pointer to a 
Wi ndowPeek. Recall that a Wi ndowPtr can access only the Graf Port member 
of a Wi ndowRecord. The Wi ndowPeek, on the other hand, can access any 
member. Figure 9.23 illustrates this. 

---= Window -

llJindow 

FIGURE 9.23 The nextWi ndow field of a window's Wi ndowRecord 
can be used to find the next open window. 

The Movie Controller Action Filter function 
A movie controller can make use of an optional action filter function. 
Whenever an action takes place that involves the controller, the controller 

397 



J98 
Graphia and Sound Programming Techniques for the Mac 

will call the filter function. Your application will never directly call the 
filter function-it is always the controller itself that calls the routine. 

Routines called by the system rather than by an application should be a 
familiar concept to you. If you've worked with user items in dialog boxes, 
recall that the drawing procedure used to update a user item in a dialog 

N ° T E box is called by the system. Chapter 2 of this book provides another example: 
the callback routine used during asynchronous sound play is called by the system, not 
an application. 

An action filter is defined using the following format. First comes the 
pascal identifier, then a return type of Boal ean. Next comes the action 
filter function name-any name of your choosing. Next come the four 
parameters. The first is the movie controller that received the action. 
The second is the action itself. The third and fourth parameters hold 
additional information about the action-your action filter function may 
or may not need this information. 

pascal Boolean SizeChangeMCActionFilter( 
MovieController theController, 
short theAction, 
void *theParams. 
long theRefCon ) 

Because an action filter can be written to handle different types of 
actions, the filter should use a switch statement. The following filter, 
used in FilmEdit, responds to one action-the changing of a controller's 
size. When a controller's size changes, so must the controller's window 
size. When looking for this action, use the Apple-defined mcAct ion -
ControllerSizeChanged. 

pascal Boolean 

{ 

SizeChangeMCActionFilter( 
MovieController 
short 
void 
long 

Rect theBoundsRect; 

theContro 11 er. 
theAction, 

*theParams. 
theRefCon ) 



} 

short 
short 

theWidth; 
theHeight; 

Chapter 9 • fippllcatlon: OulckTime Movie Editor 

switch ( theAction 
{ 

} 

case mcActionControllerSizeChanged: 
MCGetControllerBoundsRect( theController, &theBoundsRect ); 
theWidth = theBoundsRect.right - theBoundsRect.left; 
theHeight = theBoundsRect.bottom - theBoundsRect.top; 
SizeWindow( (WindowPtr)theRefCon, theWidth, theHeight, true ); 
break; 

return false; 

mcActionControllerSizeChanged is by far the most common action 

used in a filter, but it isn't the only action that a controller can respond to. 
Inside Macintosh: Sound lists others. 

When the action filter gets called with a controller size-change action, 
the filter will call MCGetControl l erBoundsRect() to determine the new 
size of the window in which the movie and controller appear. This routine 
returns the rectangle in which the newly sized controller and movie will 
appear. The window's new width and height can then be found from 
this rectangle. Next, a call to Si zeWi ndow() resizes the window. 

One typical scenario that involves a resizing controller is during a paste 

operation. If the user copies a frame from a large movie and pastes that 
frame into a smaller movie, QuickTime will automatically enlarge the small 

N o T E movie to the size of the pasted frame. When the movie (and window) size 

change, so must the controller size. When the user performs the paste, the system will 
call the controller's action filter function to resize the window. 

An action filter should return a value offal se if further action processing 
is to be left to the controller. If the action filter has performed all necessary 
processing, return a value of true. In general, you'll want to return a 
value of fa l s e in case the controller has any additional tasks that it 
might routinely perform for a given action. 

399 



400 
Graphia and Sound Programming Techniques for the Mac 

If a controller is to make use of an action filter, it needs to become 
aware of this application-defined routine. After creating a new con­
troller with the NewMovi eControl l er() Movie Toolbox function, call 
MCSetActionFilterWithRefCon(): 

MCSetActionFilterWithRefCon( theController, 
NewMCActionFilterWithRefConProc( SizeChangeMCActionFilter ), 

Clong)theWindow ); 

The first parameter is the controller to which the action filter should be 
associated. The second parameter is a pointer to that filter function. 
Before the Power Macs, a parameter such as this would have been 
passed as a ProcPtr. Now, a universal procedure pointer (UPP) should 
be used. Fortunately, creating a UPP for a filter function is painless­
when passed the name of a filter function, the Movie Toolbox routine 
NewMCActi on Fi lterWi thRefConProc() creates the necessary UPP. 

NOTE 

The universal procedure pointer, or UPP, is an important part of writing 
code that will compile using both a 68K and a PowerPC compiler. 

The third parameter to MCSetActionFilterWithRefCon() is of type long 
and serves as a link between the filter function and the movie window. 
This scheme works for two reasons. First, variable theWi ndow is a pointer, 
or 4-byte address-the same size as along. Second, no two windows 
share the same Wi ndowPtr value (two Wi ndowPtrs may have the same 
value, but that only means they both point to the same window). Because 
a Wi ndowPtr is a unique value, its value can be used to associate a window 
with an action routine. 

If you look back at the definition of Si zeChangeMCActi on Filter(), you'll 
see that the last parameter to this routine is a long named theRefCon. This 
is the same long that was used in the call to MCSetActi on Fil terWi thRefCon( ). 
When the system calls the movie controller action filter function, it 
passes this value so that the filter knows which window is involved in 
the action. In the action filer, theRefCon is used in resizing the window­
after first typecasting it back to a Wi ndowPt r: 

SizeWindow( CWindowPtr)theRefCon, theWidth, theHeight, true ); 



Chapter 9 • Application: QaickTime Movie Editor 

Handling Apple Menu Item Selections 
FilmEdit uses just a few lines of code to handle menu item selections 
from the Apple menu. for simplicity, a click in the About item results in a 
single playing of the system alert sound-you can go the more traditional 
route of displaying an alert or dialog box with program information. 

void HandleAppleMenuAboutitem( void ) 
{ 

SysBeep( 1 ) ; 
} 

A selection from any of the other Apple menu items results in that item 
being launched. FilmEdit uses the same code that has always been used 
in the past to open desk accessories. 

void HandleAppleMenuDefaultitem( short theMenuitem ) 
{ 

} 

Str255 theAppleMenultemName; 
short theAppleMenultemNumber; 
MenuHandle theAppleMenu; 
theAppleMenu = GetMHandle( mApple ); 
Getitem( theAppleMenu, theMenuitem, theAppleMenuitemName ); 
theAppleMenuitemNumber = OpenDeskAcc( theAppleMenuitemName ); 

Handling the file Mena Open Item 
An Open selection from the File menu results in a posting of the standard 
Open dialog box. After the user makes a file selection, the movie in that 
file is opened. Because FilmEdit allows a movie to be saved back to disk 
at any time, the movie's file is left open. Next, memory for a structure 
the size of a Bi gWi ndRecord is reserved, and then a window is opened 
and its data stored in that memory. Next, the action filter function is asso­
ciated with the new movie by calling MCSetActionFilterWithRefCon(). 
After that, the window and controller-bounding rectangle is found and 
the window is resized to match that rectangle. 

After the window is open, Handl eFi 1 eMenuOpenltem() stores the movie 
type, the movie itself, the controller, the open ·Moo V • file reference number, 

401 



40Z 
Gl'Clphla and Soand Programming Techniques for the Mac 

and the moov resource ID number in the window's Bi gWi ndRecord data 
structure. Finally, the open window count is incremented. 

void HandleFileMenuOpenltem( void 
{ 

SFTypelist 
StandardFileReply 
OS Err 
short 
Movie 
short 
Str255 
Boolean 
WindowPtr 
Ptr 
Re ct 
Re ct 
MovieController 

typelist = { MovieFileType, 0, 0, 0 }: 
theReply: 
theError: 
the Fil eRefNum, 
theMovie: . 
theMovieResID = 0: 
theMovieResName: 
was Altered: 
theWindow: 
theWindowStorage: 
theMovieBox: 
theBoundsRect: 
theController: 

StandardGetFilePreview( nil. l, typelist, &theReply ): 

if ( theReply.sfGood ==false ) 
return: 

theError = OpenMovieFile< &theReply.sfFile, 
&theFileRefNum, fsRdWrPerm >: 

if ( theError != noErr ) 
ExitToShell (): 

theError = NewMovieFromFile( &theMovie, theFileRefNum, 
&theMovieResID. theMovieResName, 
newMovieActive. &wasAltered ): 

if < theError != noErr ) 
ExitToShell(): 

theWindowStorage = NewPtr( sizeof ( BigWindRecord ) >: 
theWindow = GetNewCWindow( rMovieWindow. theWindowStorage, 

(WindowPtr)-lL ); 

SetMovieGWorld( theMovie, (CGrafPtr)theWindow, nil ): 

GetMovieBox< theMovie, &theMovieBox >: 

theController = NewMovieController( theMovie, &theMovieBox, 
mcTopleftMovie): 



} 

Chapter 9 • Application: OuickTime Movie Editor 

MCSetActionFilterWithRefCon( theController, 
NewMCActionFilterWithRefConProc( SizeChangeMCActionFilter ), 

(long)theWindow ); 

MCGetControllerBoundsRect( theController, &theBoundsRect ); 

SizeWindow( theWindow, theBoundsRect.right, 
theBoundsRect.bottom, true ); 

ShowWindow( theWindow ); 

MCEnableEditing( theController, true ); 

SetWindowType( theWindow, kMovieWindowType ); 
SetWindowMovie( theWindow, theMovie ); 
SetWindowController( theWindow, theController ); 
SetWindowFileReference( theWindow, theFileRefNum ); 
SetWindowMovieResourceID( theWindow, theMovieResID ); 

++gWindowCount; 

Handling the file Menu Close Item 
Selecting Close from the File menu results in a call to HandleFileMenu­
Cl oseltem( ). This routine determines which window is frontmost, then 
calls the application-defined function Cl oseMovi eAndFi le() to close that 
window. 

void HandleFileMenuCloseitem( void ) 
{ 

} 

WindowPtr theWindow; 

theWindow = FrontWindow(); 
CloseMovieAndFile( theWindow ); 

cl os eMov i eAnd File() calls three application-defined "get" routines to 
retrieve data about the frontmost window. First, the reference number of 
the ·Moo v • file that holds the movie is obtained. Recall that this movie file 
remains open as long as its movie is in memory. With the movie window 
about to close, it's time to close the file. The Movie Toolbox routine 
Cl oseMovi eFi le() does that. Next, the movie's controller is retrieved and 

403 



404 
Graphics and Sound Programming Techniques for the Mac 

disposed of, then the movie is retrieved and disposed of. Then the memory 
for the window itself is deallocated. The Di sposeMovi eControll er() and 
Di sposeMovi e( > routines are Movie Toolbox functions described in 
Chapter 7. Finally, the global variable gWi ndowCount is decremented. 

void CloseMovieAndFile( WindowPtr theWindow 
{ 

} 

MovieController 
Movie 
short 

theController: 
theMovie: 
theFileRefNum: 

theFileRefNum - GetWindowFileReference( theWindow >: 
CloseMovieFile( theFileRefNum >: 

theController = GetWindowController( theWindow >: 
DisposeMovieController( theController ); 
theMovie = GetWindowMovie( theWindow >: 

DisposeMovie( theMovie >: 
DisposeWindow( theWindow ); 

-gWindowCount: 

Handling the file Mena Save Item 
The Save menu item is handled as described earlier in this chapter: A call 
to the Movie Toolbox function UpdateMovi eResourceC) saves the movie 
named in the first parameter to the file and resource specified in the second 
and third parameters. The fourth parameter of n i 1 tells the function that 
the moov resource should not be given a new name. 

void HandleFileMenuSaveltem( void ) 
{ 

WindowPtr theWindow: 
Movie theMovie: 
short theFileRefNum; 
short theMovieReslD; 



} 

Chapter 9 • flppllcatlon: Quicklime Movie Editor 

theWindow = FrontWindow(); 

if ( GetWindowType( theWindow ) == kMovieWindowType ) 
{ 

} 

theMovie = GetWindowMovie( theWindow); 
theFileRefNum = GetWindowFileReference( theWindow ); 
theMovieResID = GetWindowMovieResourceID( theWindow ); 
UpdateMovieResource( theMovie, theFileRefNum, theMovieResID, 

ni 1 ) : 

Handling the file Menu Save fls Item 
Like the Save menu item, the Save As item is handled as discussed earlier 
in this chapter: A call to the Movie Toolbox function Fl attenMovi e() saves 
a movie to a new file. The parameters to this call to Fl attenMovi e() are 
identical to the ones used in this chapter's earlier discussion of 
Fl attenMovi e( ). 

After the movie is saved to a new file, Handl eFi 1 eMenuSaveAsitem() 
calls the Toolbox function SetWTi tl e() to change the movie window's title 
to the name the user has selected for the movie. 

void HandleFileMenuSaveAsitem( void ) 
{ 

StandardFileReply theReply; 
WindowPtr theWindow: 
Movie theMovie; 

StandardPutFile( •\pSave as:", •\pUntitled", &theReply ); 

if ( theReply.sfGood == false 
return; 

theWindow = FrontWindow(); 

theMovie = GetWindowMovie( theWindow ); 

405 



406 

} 

Graphics and Soand Programming Techniques for the Mac 

FlattenMovieC theMovie, ftattenAddMovieToDataFork. 
&theReply.sfFile, 'TVOD'. 0, 
createMovieFileDeleteCurFile, nil, nil ); 

SetWTitleC theWindow, theReply.sfFile.name ); 

Handling the file Mena Quit Item 
Many programs handle the Quit menu item by simply setting a global 
variable (such as the FilmEdit Boolean variable gDone) to true to end the 
main event loop and thus end the program. FilmEdit does that, but it 
also does a little cleanup work. 

In this chapter's section on updating movie windows, you saw that 
the Toolbox function FrontWi ndowC) could be used to get a pointer to the 
first, or front, window on the screen. Then the nextWi ndow field of the 
first window's Wi ridowRecord could be used to obtain a pointer to the next 
open window. This same technique is used by HandleFileMenuQuitltemO. 
This routine uses a for loop to get a Wi ndowPtr to each open window. For 
each window that is of type kMovi eWi ndowType, the application-defined 
function Cl oseMovi eAndFi l eC) is called to close the movie's file and dis­
pose of the memory occupied by the movie, controller, and window. 

void HandleFileMenuQuitltemC void ) 
{ 

int 
int 
WindowPtr 
WindowPeek 
WindowPtr 

i ; 
theNumWindows: 
theWindow; 
theWindPeek; 
theNextWindow; 

theNumWindows = gWindowCount: 
theWindow = FrontWindow(); 

for Ci = 0: i < theNumWindows; i++) 
{ 

theWindPeek = CCWindowPeek)theWindow)->nextWindow: 
theNextWindow = CWindowPtr)theWindPeek: 
if ( GetWindowTypeC theWindow ) == kMovieWindowType 

CloseMovieAndFile( theWindow ); 
theWindow = theNextWindow: 



} 

Chapter 9 • flppllcatlon: QuickTime Movie Editor 

} 
gDone true: 

True enough-all of the FilmEdit windows will be of type kMovi eWi ndow­
Type. But if you're thinking of adding some functionality to FilmEdit, this 
check should remind you that other windows will be closed in a different 

N ° T E manner. In particular, there'll be no movie or controller memory to deallo-
cate. If your version of FilmEdit will also support, say, a picture window, then you 
might add an e 1 se to the if statement-as shown below. The application-defined routine 
Cl osePi ctureWi ndow() would handle any memory deallocation particular to this 
picture type of window (such as calling Rel easeResource() to release the memory 
occupied by a PI CT resource). 

if ( GetWindowType( theWindow ) ~ kMovieWindowType ) 
CloseMovieAndFile( theWindow ); 

else 
ClosePictureWindow( theWindow ); 

Handling Edit Mena Item Selections 
Each Edit menu item is handled by a short application-defined function. 
Each begins by calling FrontWi ndow<) to acquire a pointer to the front­
most window-the window in which the editing operation is to take 
place. After that, the window's movie controller is obtained through a 
call to the movie controller "get" function-GetWindowController( ). 
Next, the appropriate Movie Toolbox function is called. The handling of 
the Undo menu item by the Handl eEdi tMenuUndoitem() routine is typical 
of the Edit menu routines. 

void HandleEditMenuUndoitem( void 
{ 

WindowPtr 
MovieController 

theWindow; 
theController; 

theWindow = FrontWindow(); 
theController = GetWindowController( theWindow ); 

MCUndo( theController ); 

407 



408 
Graphics and Sound Programming Techniques for the Mac 

The Cut, Copy, Paste, and Clear menu items are all handled as discussed 
earlier in this chapter. 

void HandleEditMenuCutitemC void 
{ 

} 

WindowPtr theWindow; 
MovieController theController; 
Movie theTempMovie; 
theWindow = FrontWindow(); 
theController = GetWindowControllerC theWindow ); 

theTempMovie = MCCut( theController ); 
PutMovieOnScrap( theTempMovie, movieScrapOnlyPutMovie ); 
DisposeMovieC theTempMovie ); 

//~~~~~~~~~~~~~~~~~~~~~~~~~~-

void HandleEditMenuCopyitemC void 
{ 

} 

WindowPtr theWindow; 
MovieController theController; 
Movie theTempMovie; 

theWindow = FrontWindow(); 
theController = GetWindowControllerC theWindow ); 

theTempMovie = MCCopyC theController ); 
PutMovieOnScrapC theTempMovie, movieScrapOnlyPutMovie ); 
DisposeMovieC theTempMovie ); 

//~~~~~~~~~~~~~~~~~~~~~~~~~~-

void HandleEditMenuPasteitemC void ) 
{ 

WindowPtr theWindow: 
MovieController theController; 

theWindow = FrontWindow(); 
theController = GetWindowControllerC theWindow ); 

MCPasteC theControl l er, nil ) : 
} 



Chapter 9 • Application: OalckTime Movie Editor 

void HandleEditMenuClearltem( void ) 
{ 

} 

WindowPtr theWindow: 
MovieController theController; 

theWindow = FrontWindow(); 
theController = GetWindowController( theWindow ); 
MCClear( theController ); 

Handling of the Select All menu item relies on setting the values of the 
fields of a TimeRecord-as discussed earlier in this chapter. 

void HandleEditMenuSelectAllltem( void ) 
{ 

} 

WindowPtr 
MovieController 
TimeRecord 
Movie 

theWindow; 
theController: 
theTimeRecord: 
theMovie: 

theWindow = FrontWindow(); 
theController = GetWindowController( theWindow ); 
theMovie = GetWindowMovie( theWindow ); 

theTimeRecord.value.hi = 0; 
theTimeRecord.value.lo = O: 
theTimeRecord.base = O: 

theTimeRecord.scale = GetMovieTimeScale( theMovie ); 
MCDoAction( theController, mcActionSetSelectionBegin, 

&theTi meRecord): 

theTimeRecord.value.lo = GetMovieDuration( theMovie ); 
MCDoAction( theController, mcActionSetSelectionDuration, 

&theTimeRecord ); 

The FilmEdit Project file Organization 
Up to this point, the source-code for each of the example programs in 
this book has appeared in a single source-code file. While appropriate 

409 



410 
Graphics and Sound Programming Techniques for the Mac 

for a small example, a single-source code file isn't typical of real-world 
Mac projects. The FilmEdit example is large enough that its source code 
can be divided into several files. Figure 9.24 shows that the FilmEdit 
project consists of eight source-code files. 

lnitia lize .c 
Generic.c 

·;,;;;····iiij)j)liCation Source 
'w'indReoord Access .c 
MovieUtilities .c 
App leMenu .c 
FileMenu.c 
EditMenu.c 

·v···R·e·s·o·u·rces 
f;JmEd;t .rsrc 

·v .. Iibraries 
.t.'.l;o.".Q!Ol,!!~ 

10 file(s) 

FIGURE 9.24 The Metrowerks version of the FilmEdit 

project lists the eight source-code files. 

Only for purposes of organization, the eight files have been placed into 
two groups. The first group holds the files that consist of the generic, or 
framework, code of FilmEdit. The global variables and routines found 
in the Globals.c, Initialize.c, and Generic.c files could be used in just 
about any other project. 

The FilmEdit project uses three header files to make the tfdefi nes, 
data type, and global variables known to other files. If a function in any 
source file needs to be aware of any of this application-defined informa­
tion, the source file should include the appropriate header file or files. 
For instance, routines in the Generic.c file include code that makes 
reference to many of the /!defines, the Bi gWi ndRecord structure, and both 
of the global variables. For that reason, you'll find that Generic.c has 
the following lines near the top of the file: 

#include "Defines.h" 
#include "DataTypes.h" 
#include "Globals.h" 



Chapter 9 • flppllcation: Quicklime Movie Editor 

Figure 9.25 shows the preceding /Ii ncl ude directives in the Generic.c 
file. Notice also that because code in Generic.c makes use of Movie Toolbox 
functions, Generic.c also includes the Movies.h universal header file. 

#define kMoviewin 
#define rMovieWin 
#define rMenuBar 
#define mApple 
#define iAbout 
#define mFile 
#define iOpen 
#define iClose 
#define iSave 

typedef struct 
{ extern Boolean gDone; 

WindowRecord extern short gWindowCount; 
short 
short 
short 
Movie 
MovieController 

'--..,.._,,,,_.._-! } BigWindRecord, 

• . 
. 

#include <Movies.h> 

#include "Defines.hN 
#include "DataTypes.h" 
#include "Globals.h" 

void main ( void ) 
{ 

InitializeAllToolboxes (); 

SetUpMenuBar ( ) ; 

EventLoop () ; 

FIGURE 9.25 Any source-code file can be ma~e aware of 

//defines, data types, and global variables. 

In Figure 9.25, you'll notice that the global variables in Globals.h are 
defined using the extern keyword. The extern keyword is necessary here 
because your compiler will not allow the same variable to be declared 
more than one time. Without the use of the extern keyword, the compil­
er would view each appearance of a variable as a declaration. And 
because several source code files include the Globals.h file, there are 
several appearances of each variable. Variables do have to be declared 
once, however, and the Globals.c file takes care of this. Figure 9.26 
shows that this file is where the global variables are declared and ini­
tialized. Because this file is a source file rather than a header file, it has 
been added to the project along with all of the other .c files. If you make 
additions to the FilmEdit project, make sure to add each new global variable 

411 



412 
Graphics and Sound Programming Techniques for the Mac 

to both the Globals.c and Globals.h files. 

Boolean gDone = false; 
short gWindoWCount = O; 

FIGURE 9.26 The Globals.c file holds the global variable definitions. 

Aside from Globals.c, each of the other seven source-code files also has 
its own header file. This is necessary in order to make the functions in 
each file known to the code in all other files. Thus each .h header file 
holds the function prototypes-which serve as public interfaces-for 
each routine in the comparably named .c source file. Figure 9.27 shows 
the header files for the Initialize.c and Generic.c source files. 

void InitializeAllToolboxes( void ) ; 
void SetUpMenuBar( void); 

void EventLoop( void); 
void AdjustAllMenus ( void ) ; 

void HandleMouseDownEvent( EventRecord); 
void HandleKeyDownEvent( EventRecord ) ; 
void HandleActivateEvent( EventRecord ); 
void HandleUpdateEvent( EventRecord ); 

void HandleMenuChoice( long ) ; 
void HandleAppleChoice( short); 
void HandleFileChoice( short); 
void HandleEditChoice( short); 

FIGURE 9.27 The public interfaces for the Initialize.c and Generic.c source code files. 



Chapter 9 • flppllcatlon: OuickTime Movie Editor 

Initialize.c and Generic.c hold the reusable code for the FilmEdit 
project. The remaining five source files hold application-specific code. 
Figure 9.28 shows the header files for the menu-handling code found in 
the AppleMenu.c, FileMenu.c, and EditMenu.c source-code files. Note 
that there is one routine for each menu item-as discussed earlier. 

void HancUeAppleMenuAboutitem( void ) ; 
void HandleAppleMenuDefaultitem( short ) ; 

void HandleFileMenuOpenitem( void); 
void HandleFileMenuCloseitem( void); 
void HandleFileMenusaveitem( void ) ; 
void HandleFileMenuSaveAsitem( void ) ; 
void HandleFileMenuQuititem( void ) ; 

void HandleEditMenuUndoitem( void); 
void HandleEditMenuCutitem( void); 
void HandleEditMenuCopyitem( void); 
void HandleEditMenuPasteitem( void); 
void HandleEditMenuClearitem( void); 
void HandleEditMenuSelectAllitem( void); 

FIGURE 9.28 The public interfaces for the AppleMenu.c, 

FileMenu.c, and EditMenu.c source code files. 

The MovieUtilities.c file holds three routines that work with movie 
windows. Figure 9.29 shows the public interfaces for these three functions. 
The WmdRecordAccess.c file holds the source code for the "get" and "set" 
routines that are used to access the fields of data in the Bi gWi ndRecord 

structure. Besides the Wi ndowRecord field, the Bi gWi ndRecord consists of 
five other members. You can see from the WindRecordAccess.h header 
file that there is a "get" and "set" routine defined for each of these 
five members. 

413 



414 
Graphics and Sound Programming Techniques for the Mac 

long UpdateAllOpenMovies ( EventRecord ) ; 
void CloseMovieAndFile ( WindowPtr ) ; 
pascal Boolean SizeChangeMCActionFilter ( MovieController, 

short, void *, long ) ; 

#include <Movies.h> 

void SetWindowType ( WindowPtr, short ) ; 
void SetWindowFileReference ( WindowPtr, short ) ; 
void SetWindowMovieResourceID ( WindowPtr, short ) ; 
void SetWindowMovie ( WindowPtr, Movie ) ; 
void SetWindowController ( WindowPtr, MovieController ) ; 

short GetWindowType ( WindowPtr ) ; 
short GetWindowFileReference ( WindowPtr ) ; 
short GetWindowMovieResourceID ( WindowPtr ) ; 
Movie GetWindowMovie { WindowPtr ) ; 
MovieController GetWindoWController ( WindowPtr ) ; 

FIGURE 9.29 The public interfaces for the MovieUtilities.c 
and WindRecordAccess.c source code files. 

Summary 
Your QuickTime application can easily support movie editing by using 
Movie Toolbox routines. The MCCut() and MCCopy() functions are used in 
response to Cut and Copy choices from the Edit menu. PutMovi eon Scrap() 
adds the cut or copied section of a movie to the clipboard. MCPasteC) is 
used when Paste is selected from the Edit menu. MCCl ear C ) is used when 
the Clear menu item is selected. This function cuts a selected part of a 
movie and doesn't save the cut selection. Any of these actions can be 
undone-when the user chooses Undo from the Edit menu, call MC Undo C). 

If your application allows the user to edit a movie, then it should also 
allow the user to save the changes made in an editing session. To over­
write the previous version of a movie, call the Movie Toolbox function 
UpdateMovieResourceC ). To save the new version to its own new file, 
call the Movie Toolbox function Fl attenMovi e( ). 

Many example programs use a single window to demonstrate the topic 
at hand. Real world applications, however, allow multiple windows to be 



Chapter 9 • flpplication: QulckTlme Movie Editor 

open at any time. To keep track of each wmdow, your application should 
define a window structure. The first member of this structure should be a 
Wi ndowRecord. The remaining members can be used to hold any applica­
tion-specific window information. When an event occurs, call the Toolbox 
function FrontWi ndow() to receive a Wi ndowPtr to the window to which the 
event applies. Then use that pointer to access the data for that window. 

415 



fiPPEfiDIX fi 

General MIDI 
Instrument numbers 

The QuickTirne Musical Instruments system software extension is capable 
of playing sounds generated by any of the 128 predefined General MIDI 
Instruments. Each instrument has both a number and a name. Refer to 
Chapter 8 for information about using these instruments from within 
your applications. 

1 Acoustic Grand Piano 

2 Bright Acoustic Piano 

3 Electric Grand Piano 

4 Honky-tonk Piano 

417 



418 
Graphics and Sound Programming Techniques for the Mac 

5 Rhodes Piano 

6 Chorused Piano 

7 Harpsichord 

6 Chorused Piano 

8 Clavin et 

9 Celesta 

10 Glockenspiel 

11 Music Box 

12 Vibraphone 

13 Marimba 

14 Xylophone 
~ 

15 Tubular bells 

16 Dulcimer 

17 Draw Organ 

18 Percussive Organ 
' 

19 Rock Organ 
-,- --:;:-

20 Church Organ 

21 Reed Organ 

22 Accordion 

23 Harmonica 

24 Tango Accordion 

25 Acoustic Nylon Guitar 

26 Acoustic Steel Guitar 



Appendix A • Gener<1I MIDI Instrument rtumbers 
419 

27 Electric Jazz Guitar 

28 Electric clean Guitar 

29 Electric Guitar muted 

30 Overdriven Guitar 

31 Distortion Guitar 

32 Guitar Harmonics 

33 Wood Bass 
..!'... 

34 Electric Bass Fingered 

35 Electric Bass Picked 

36 Fretless Bass ,., 

37 Slap Bass 1 

38 Slap Bass 2 

39 Synth Bass 1 
..!'... -"'-

40 Synth Bass 2 

41 Violin 

42 Viola _c. 

43 Cello 

44 Contrabass 

45 Tremolo Strings 

46 Pizzicato Strings 

47 Orchestral Harp 

48 Timpani < 

49 Acoustic String Ensemble 1 



420 
Graphics and Sound Programming Techniques for the Mac 

50 Acoustic String Ensemble 2 
~1 

51 Synth Strings 1 

52 Synth Strings 2 

53 AahChoir 
..;;. -

54 Ooh Choir 

55 Synvox 

56 Orchestra Hit 

57 Trumpet 

58 Trombone 

59 Tuba 

60 Muted Trumpet 

61 French Hom 

62 Brass Section 

63 Synth Brass 1 

64 Synth Brass 2 

65 Soprano Sax 

66 Alto Sax 

67 Tenor Sax 

68 Baritone Sax 

69 Oboe 

70 English Hom 
-~~ 

71 Bassoon 
_::C_ 

72 Clarinet 



Appendix fl • General MIDI Instrument rtumbvrs 
421 

73 Piccolo 

74 Flute 

75 Recorder 

76 Pan Flute 

77 Bottle blow 

78 Shakuhachi 

79 Whistle 

80 Ocarina 

81 Square Lead 

82 Saw Lead 

83 Calliope 

84 Chiffer 

85 Synth Lead 5 

86 Synth Lead 6 

87 Synth Lead 7 

88 Synth Lead 8 

89 Synth Pad 1 

90 Synth Pad 2 

91 SynthPad3 

92 SynthPad4 

93 SynthPad5 

94 SynthPad 6 

95 Synth Pad 7 



4ZZ 
Graphics and Sound Programming Techniques for the Mac 

96 SynthPad 8 

97 Ice Rain 

98 Soundtracks 

99 Crystal 

100 Atmosphere 

101 Bright 

102 Goblin 

103 Echoes 
..!. .. ,, 

104 Space 

105 Sitar 

106 Banjo 

107 Shamisen 

108 Ko to 

109 Kalimba 

110 Bagpipe 

111 Fiddle 

112 Shanai 

113 Tinkle bell 

114 Ago go 

115 Steel Drums 
-=-

116 Woodblock 

117 Taiko Drum 

118 Melodic Tom 



Appendix A • General MIDI Instrument numbers 
423 

119 Synth Tom 

120 Reverse Cymbal 

121 Guitar Fret Noise 

122 Breath Noise 

123 . Seashore 

124 Bird Tweet 

125 Telephone Ring 

126 Helicopter 

127 Applause 

128 Gunshot 
~ 



fiPPEtlDIX B 

The AS World 
For the typical Macintosh programmer, the AS world and the AS register 
are topics that arise only occasionally. Because of this, many programmers 
ignore the details of how the Mac works with the central processing 
unit's AS register. You'll gain a greater understanding of Macintosh 
code if you don't follow this trend and instead take a careful look at what 
goes on in this important register. 

Discussion of the AS register and the AS world are important only 
to programs that will be running on 68K-based Macs. PowerPC-based 
computers don't have an AS world. Because it's most likely that your 
application will be written such that it can run on both older 68K-based 
Macs and the newer PowerPC-based computers, the topic of the AS world 
isn't entirely dated-and shouldn't be ignored. 

Switching the Contents of fi5 
The CPU's AS register holds a pointer that tells an application where to 
find its own global variables. When a Toolbox routine executes, the system 
may alter the contents of the AS register. When the Toolbox routine has 
completed, the application needs to again have access to the AS register-

425 



426 
Graphics and Sound Programming Techniques for the Mac 

with its original value back in it. Because of this, some scheme is necessary 
so that both an application and the system can share this single register. 

Macintosh Memory. the AS World. 
and the fl5 Register 
When an application is launched, the system locates a free area in RAM 
in which to hold part or all of the application. This section of RAM is 
called an application partition. Each currently executing program has 
its own partition. An application partition is composed of an AS world, 
a stack, a heap, and an area of free memory between the stack and 
heap-as shown in Figure B.l. 

Application partition 

FIGURE B.1 The memory layout of an application partition. 

An application's stack holds local variables and function parameters. The 
application heap holds objects such as resource data, executable code, and 
data structures created by the program. The free space that lies between 
the stack and the heap serves as a pool of RAM available for use by both 
the stack and the heap. One of the purposes of the AS world is to hold an 
application's global variables. The AS world, and the CPU's AS register, are 
the central topics of this appendix. 



flppendix B • The fl5 World 

The memory model shown in Figure B.1 is a simplification of an appli­
cation partition in that it doesn't show any details of the AS world. The AS 
world holds data that is fixed in size for the duration of a program's run­
ning. Global variables meet this criteria-the number and size of them is 
fixed when a program launches. 

In Figure B.2 you can see that a section of the AS world is devoted to an 
application's global variables. The figure also shows one address in the AS 
world, and that same address in the AS register in the central processing 
unit. The address that separates the AS world's application global variable 
section from the AS world data above it is referred to as the current AS, and 
is represented in code by the system global variable CurrentA5. 

N 0 TE 

The address shown in Figure B.2, Ox00464000, has no particular signifi­

cance-it was randomly selected for this figure just to give you something 

concrete to refer to. The actual address of the boundary between the global 

variables and other AS world data depends entirely on where in RAM the 

operating system places an application partition when a program is launched. Once a pro­
gram is launched this address is stored in the system global variable named CurrentA5. 

The rest of the 
AS world data ~ 

Ox00464000 ~ 

Application 0 
global variables 

CPU 

AS register 

I Ox00464000 

~ =-

·-

- ~~ 

~ 
AS world 

dl 
'=lil 

Stack 

.=:::!il 

l 
Heap 

~ 

FIGURE B.2 The AS register holds the address of the section of the 
AS world that holds an application's global variables. 

427 



428 
Graphics and Sound Programming Techniques for the Mac 

Like Figure B.l, Figure B.2 is a simplification of Macintosh memory. The 
AS world actually consists of a jump table, application parameters, 
QuickDraw global variables, and a pointer to those QuickDraw variables. 

N o T E For this discussion, though, only the application global variables section of 

the AS world is of importance. For a more complete discussion of Macintosh memory, 

including the stack, the heap, and the AS world, refer to the M&T book Macintosh 
Programming Techniques or the Memory volume of the Inside Macintosh series of books. 

When a program accesses an application global variable, it has to first 
find the variable in the AS world. It does so by using the current AS 
address in the AS register as a base address, then subtracting some offset 
value to move to the particular global variable. 

The address in the AS register is the address of the boundary between the 

AS global variables and other AS data-it's not the address of the start of 

the AS globals. Because smaller addresses appear lower in figures, the 
global variables appear at addresses smaller than the boundary address in 

the AS register. 

Keeping Track of the Value in an 
flpplication•s AS Register 
When a program launches, the address that separates the application's 
global variable space from the rest of the application's AS world data­
CurrentA5-is stored in the AS register. If this address remained steadfast 
in this register for the duration of the program's execution, things 
would be very simple from a programmer's standpoint-one would 
never have to be concerned about the contents of this register. The AS 
register, however, doesn't retain its value for the duration of the program. 
That, in fact, is the entire reason this appendix exists. Fortunately, the 
Macintosh operating system takes care of most of the work of keeping 
track of the AS register for you. 

There are some situations when the operating system needs to make 
use of the AS register. Because your application needs the contents of this 
register, a conflict arises as to how this one register can be shared by both 
your application and the operating system. To resolve this dilemma, the 



Appendix B • The AS World 

operating system always takes the necessary step of preserving the cur­
rent contents of the AS register before altering the contents for its own use. 
When the operating system is finished with the AS register, it places the 
saved address back in the register. Then it's safe for your application to 
again refer to the register's value to find its own global variables. 

Figure B.3 shows what happens to the AS register when a Toolbox 
routine is called by your program. Some Toolbox functions use the AS 
register for their own purposes. When a routine does, it stores the original 
contents of the AS register, changes the contents as it executes, and then 
finally restores the contents of the AS register-as described above . 

... 
ToolboxFunc () ; 

.. . 
ToolboxFunc () ; 

CPU CPU CPU CPU 

AS register AS register 

I Ox00542000 I Ox00542000 

FIGURE B.3 Application code and Toolbox code cooperate 

by saving and restoring the AS register value. 

In the leftmost code snippet of Figure B.3, an application is making a call 
to a hypothetical Toolbox routine named Tool boxFunc( ). The importance 
of this example lies not in which Toolbox routine gets called, but rather 
that a Toolbox routine is called. The snippet that appears second from 
the left in the figure shows that when the Toolbox routine starts executing, 
it saves the value in the AS register. This is the address of the application's 
global variables in the application's AS world-CurrentA5. As the Toolbox 

429 



430 
Graphics and Soand Programming Techniques for the Mac 

routine executes, it makes use of the AS register-note that in the CPU 
pictured under the second snippet from the left, the contents of AS have 
now changed. In the third snippet from the left you can see that the Tool­
box routine has completed and that the Tool boxFuncC > code has now 
restored the saved, original contents of the AS register. Finally, in the 
rightmost snippet you can see that, as the application code again executes, 
it once more can rely on the AS register to supply it with the address of its 
own global variables. 

Callback Roatines and the fl5 Register 
The particulars of how an application accesses an application global 
variable are usually unimportant to the programmer-you simply make 
an assignment statement like the ones that follow: 

short gTotalScore = O: 

++gTotalScore: 

The AS register and the AS world become important to you when your 
application uses a callback routine (sometimes referred to as a completion 
routine). An example of such a program appears in the AsynchSndPlay 
asynchronous sound playing example found in Chapter 2 of this book. A 
callback routine is invoked by the system-not by your program. Exactly 
when a callback routine will be executed is unknown. For instance, in the 
asynchronous sound example the callback routine executes when a sound 
is done playing. Because asynchronous sound play allows other actions to 
take place as a sound is playing, you have no way of predetermining 
exactly what code will be executing at the time a sound completes. 

If your program invokes a callback routine when a Toolbox routine 
happens to be executing, the callback routine will not be able to access 
any of your program's global variables. That's because some Toolbox 
routines use the AS register for their own purposes-as you saw back in 
Figure B.3. When such a Toolbox function is being executed, the value 
in the AS register may not represent the address of the application's 
global variable section in the AS world. 



Appendix B • The A5 World 

If a callback routine is to be able to access application global vari­
ables, it needs to know the original value of the AS register. The 
approach to making this possible is to save the CurrentA5 value before 
the callback routine is invoked. Then, once the callback routine is called, 
it should save the value in AS-just in case the operating system is in 
the middle of executing a Toolbox routine that is using AS. After saving 
AS, the callback routine should set the AS register to the previously 
saved AS value. At that point it is safe for the callback routine to access 
application global variables. When the callback routine is about to exit, 
it should restore the AS register contents to the value that was in the 
register at the time the callback routine started. That will let the Toolbox 
routine continue to use AS. 

Don't be alarmed if you feel that it's hard to follow all of the AS 
switching-things are a little complicated. Thankfully, the above kind of 
code interruption isn't too common. The step-by-step list below, along 
with Figure B.4, should help make sense of how the AS register is used 
by both an application and the system. As you read the following steps, 
follow along in Figure B.4. 

1. Application is executing. 

2. Application saves its CurrentA5 value. 

3. Toolbox routine begins executing. 

4. Toolbox routine saves application AS, then uses and alters AS. 

S. Callback routine begins executing while Toolbox routine is still 
executing. 

6. Callback routine saves whatever value the Toolbox has placed 
in AS. 

7. Callback routine sets AS to the application AS saved in Step 2. 

8. Callback routine safely accesses application global variables. 

9. Callback routine restores Toolbox AS value saved in Step 6. 

10. Toolbox routine continues, and completes, executing. 

11. Toolbox routine restores application AS value saved in Step 4. 

431 



432 
Graphics and Sound Programming Techniques for the Mac 

Saved value 

Ox00400000 

Saved value 

Ox00400000 

AS register Saved value 

I oxoo400000 Ox00700000 

AS register 

AS register 

I Ox00700000 

AS register 

I Ox00400000 

FIGURE B.4 The Toolbox saves the AS value when it starts executing, 
as does the callback routine when it executes. 

The top snippet of Figure B.4 is from an application's source code. Here 
the value in the AS register (Ox00400000) is saved for use later in the pro­
gram. The arrow that starts at this first snippet ends at the point that this 
saved value is used. In the second snippet from the top of the figure you 
see that a Toolbox routine has been called and is executing. The first thing 
the Toolbox routine does is save the contents of the AS register 
(Ox00400000), then the routine uses the AS register for its own purpose. In 
the course of running AS, the value in the register changes (to Ox00700000). 

As the Toolbox code is executing, a callback routine is invoked (per­
haps a sound has just finished playing and its callback routine was 
invoked). When this happens, the callback routine saves the contents of 
the AS register-as shown in the third snippet from the top of Figure 
B.4. When the callback routine finishes, control will return to the Toolbox 
routine so that it too can finish. Here you see that the callback routine 
first preserves the value (Ox00700000) left in the AS register by the 
Toolbox function. The callback routine then sets AS to the CurrentA5 

value (O x00400000) saved back in the very top snippet. Now the callback 
routine has access to application global variables. When finished, the 



Appendix B • The fl5 World 

callback routine restores AS to the value (Ox00700000) it had when the 
callback took control-the value left in AS by the Toolbox function. 

When the callback routine completes, the interrupted Toolbox routine 
gets to finish. The callback routine properly restored the AS register con­
tents to the value (Ox00700000) that the Toolbox routine was using when 
it got interrupted, so that the Toolbox routine immediately takes up 
where it left off. When its finished, it restores the AS register contents to 
the value (Ox00400000) that was in AS when the Toolbox routine first 
started to execute back in the second snippet from the top of the figure. 

The flsynchSndPlay Example Program 
In Chapter 2 you saw that the AsynchSndPlay program uses a callback 
routine. By looking at some of the AsynchSndPlay source code, you'll 
be able to see an example of the theory discussed on the previous pages. 

The AsynchSndPlay program saves the AS register value by calling 
the Toolbox routine SetCurrentA5 () from the application-defined routine 
Install Call backCommand( ). SetCurrentA5() sets the AS register to the 
value of the system global variable CurrentA5. This action isn't important 
here because, at this point, the AS register already has this value. The 
real reason for calling SetCurrentA5() here is to take advantage of another 
task this function performs. Before setting the AS register to CurrentA5, 
the function returns the current value in AS. The effect is the same as 
examining the system global variable CurrentA5 and placing that value 
in the param2 field of theCommand. 

OSErr InstallCallbackCommand( SndChannelPtr theChannel ) 
{ 

} 

OSErr theError; 
SndCommand theCommand; 
duty 
theCommand.cmd = callBackCmd; 
theCommand.paraml = O; 
theCommand.param2 = SetCurrentA5(); 

theError = SndDoCommand( theChannel, &theCommand, true); 

return ( theError ); 

433 



434 
Gre1phics e1nd Sound Progre1mming Techniques for the Me1c 

N 0 TE 

If you look at the AsynchSndPlay source code you'll see that the Inst a 11 -
Ca 11 ba c kComma nd ( ) routine includes an /fi fndef powe re conditional direc­

tive. When the AsynchSndPlay source code is compiled with a PowerPC 
compiler, this directive eliminates the call to Set Cu rrentA5 () and replaces 

it with a simple assignment statement that sets pa ram2 to 0. This is done because 

PowerPC-based Macs don't have an AS world, and don't need to go through the effort 

of preserving the value of the AS register. For easier reading (and because this appendix 
deals only with 68K code), this directive has been eliminated from this example. 

By saving the AS value in a sound command parameter and then calling 
SndDoCommand( ), the AS value ends up in the queue of a sound channel. 
Figure B.5 shows how the call to SetCurrentA5() achieves the first step 
from Figure B.4. 

SetCurrentA5 () achieves this 

FIGURE B.5 A callback command saves the application's 

AS value in one of its three fields-pa ram2 . 

When AsynchSndPlay finishes playing a sound, the program's callback 
routine is called. SoundChanne l Ca 11 back() is shown below. 

pascal void SoundChannelCallback( SndChannelPtr theChannel. 

{ 

} 

SndCommand theCommand ) 

long theA5; 

theA5 = SetA5( theCommand.param2 ); 

gCallbackExecuted =true; 
gSoundPlaying = false; 

theA5 = SetA5( theA5 ); 



Appendix B • The fl5 World 

As in the Install Call backCommand() function, the AsynchSndPlay 
source code listing found in Chapter 2 uses the 4/:i fndef powe re directive. 
If you look back at that chapter you'll see that the SoundChannel Call back() 
routine includes two #i fndef powerc conditional directives. When the 

AsynchSndPlay source code is compiled with a PowerPC compiler, these directives 

effectively eliminate the two lines of code that set the AS register. Because PowerPC­
based Macs don't have an AS world, that's the desired effect. Again, for easier reading, 

these directives have been eliminated from this example. 

For the sake of this example, assume that when the callback routine is 
called, the AsynchSndPlay program happens to be in the middle of exe­
cuting a Toolbox routine. That means that AS may have been altered. 
The callback routine too makes this assumption, and saves whatever 
value is in AS before setting this register to the saved application AS 
value. To do so, the Toolbox function SetA5 C ) is called. The SetA5 C ) 
function sets the AS register to whatever value is passed to it. Before 
doing this, however, it returns the current value in AS, which is saved in 
the local variable theA5. Figure B.6 reminds you that it is a call to SetA5 C) 
that saves the AS value being used by the Toolbox. 

theA5 = SetA5 ( theCornmand. param2) 
achieves this 

FIGURE B.6 When a callback routine starts, it saves the AS register value 

that was set by the interrupted Toolbox routine. 

After saving the Toolbox-supplied value of AS, the callback routine sets 
AS to the application AS value that's been stored in the param2 parameter 
of the callBackCmd sound command. Remember, until it sets up AS, the 
callback routine cannot access application global variables. That's why the 
application AS value was initially saved in the sound channel queue. The 

435 



436 
Graphics and Sound Programming Techniques for the Mac 

callback routine has access to the passed-in sound command (which isn't 
a global variable). Figure B.7 shows this second purpose of calling the 
SetA5 ( ) Toolbox function (the first being to save the Toolbox-set AS value). 

~ 
theAS = Set:AS ( theComrnand. param2 l 
achieves this 

Figure B.7 After saving the AS value set by the Toolbox, 
a callback routine changes AS to the application AS value. 

The call to SetA5 C) has now saved the AS value used by the Toolbox, 
and set AS to the AS world pointer value used by the application. Now 
it's safe for the application's callback routine to access application global 
variables. Figure B.8 shows that the callback routine does in fact use 
two global variables. 

111 Ox004000 oJO 

With AS set to CurrentAS, 
it's now possible to do this 

FIGURE B.8 Once the callback routine has set AS to the original 
application AS value, the callback routine can access global variables. 

When the callback routine has finished, it restores the AS register to the 
value that was present when the callback function started-the value that 



Appendix B • The fl5 World 

was in AS when the Toolbox function was executing. As shown in Figure 
B.9, another call to SetA5 ( ) does this. This time, the parameter to SetA5 () is 
the local variable theA5. Recall that the last call to SetA5 () returned the 
Toolbox-set AS value to the variable theA5. Because the callback routine is 
ending, the value returned by SetA5 () (which is saved in theA5) is ignored. 

~The line t heAS = SetAS ( t heASI 
sets AS back to the value it had when 
the callback routine was entered 

FIGURE B.9 Before exiting, a callback routine restores the AS register 

to the state it was in when the callback routine started. 

Figure B.10 recaps how the AsynchSndPlay callback routine fits the AS­
switching pattern presented in the appendix. 

InstallCallbackCommand ( . . 
I 

theCommand.cmd = callBackCJl\d; 
theCom:nand. paraml "' 0 ; 
theCommand . param2 = SeccurrentAS ( ) ; 

SoundChannelCallback ( SndChannelPtr theChannel, 
Sndcommand theCommand J 

long theAS ; 

theAS = SetA5 ( theCommand . param2 ) ; 

gCallbackExecu ted = t rue; 
gSoundPlaying = false ; 

theAS = Set.AS ( theAS ) ; 

FIGURE B.10 The Chapter 2 AsynchSndPlay example program 

uses the AS-saving scheme described in this appendix. 

437 



A 
AS register 

SetAS(), 48-49 
SetCurrentAS(), 44, 52 
sound playing and, 44-46, 425-437 

America 448, as source of sounds, 13 
amplitude (volume), 31, 34, 77-80 
animation 

color, 187-225 
combining bitmaps for, 174-175 
flicker-free, 166 
general technique, 165-166 
grayscale, 187 
introduced, 4 
loop, 188-189, 204-205, 207 
monochrome, 162-192 
PICT, looping, 70 
sound and, 39-40, 56-60 
see also CopyBits() 

API, 228, 274 
Apple-defined constants 

createMovieFileDeleteCurFile, 361 
fsRdPerm, 350 
fsRdWrPerm, 279, 350 
gestaltGraphicsYersion, 236 
gestaltGXPrintingMgrVersion, 236 
gestaltHasDeepGWorlds, 194 
gestaltHasSoundinputDevice, 89 
gestaltQuickdrawFeatures, 194 
gestaltQuickTime, 276 
gestaltSoundAttr, 89 
gestaltSpeechAttr, 126 
gestaltSpeechMgrPresent, 126 
gxSolidFill, 260 
gxStaticHeapC!ient, 240 
kFemale, 147 

kMale, 147 
kNeuter, 147 
mcActionControllerSizeChanged, 398-399 
mcActionSetLooping, 321-322 
mcActionSetLooplsPalindrome, 322 
mcActionSetSelectionBegin, 356 
mcActionSetSelectionEnd, 356 
mcTopLeftMovies, 312-313 
movieScrapDontZeroScrap, 352 
movieScrapOnlyPutMovie, 352 
newMovieActive, 284 
queueFull 
resProblem, 18, 22 
sampledSynth, 23 
siBestQuality, 97, 117-119 
siBetterQuality, 97, 117-119 
siGoodQuality, 97, 117-119 
smSystemScript, 361 
squareWaveSynth,23 
srcCopy, 181, 185 
srcOr, 184 
transparent, 209 
userCanceledErr, 100 
waveTableSynth, 23 

application 
heap,238 
partition, 238 

application programming interface, 228, 274 
asynchronous sound playing 

439 

68K Macs and, 44, 47 
amplitude (volume), 31, 34, 77-80 
animation and, 56-60 
callback routine, 23 
defined, 11, 13, 36 
DetachResource(), 54 
general technique, 36-38, 52-53 
GetResource(), 54 



440 
Graphics and Sound Programming Techniques for the Mac 

HLock(),55 
HUnlock(), 55 
NewSndCallBackProc(), 47 
pitch (rate), 80-84 
PowerPC and, 51-52 
SetA5(), 48-49 
SndDoCommand(), 76 
SndDolmmediate(), 76-82 
SndNewChannel(), 36 
SndPlay(), 17, 36 
sound channels and, 22-26 
terminating, 58, 70-75 
universal procedure pointer (UPP) and, 47 
WaitNextEvent(), 70-72 

AsynchSndEvt example program, 72-75 
AsynchSndPlay example program, 60-70 

B 
BigWindRecord application-defined data type, 

364, 390-395 
bit image, 

defined, 162 
see also BitMap data type 

bitmap 
defined, 162 
see also BitMap data type 

BitMap data type 
allocating, 170, 176 
baseAddr field, 163, 178 
bounds field, 163-164, 176-177 
combining for animation, 169-175 
copying, 180-185 
defined, 162 
fields of, 162, 176 
GrafPort, attaching to, 178-179 
padding, bytes, 163 
PixMap comparison,193 
portBits GrafPort field, 167-168 
representation in memory, 164-165 
rowBytes field, 163-164, 177-178 
SetPort(), 178 
size of, 163, 164 
windows and, 176 

bits vs. pixels, 162, 165 
buffer, text, 143 
callback routine 

c 

defined,23,39 
callback flag, 39-41 

CDEF resource, 306-307 
CGrafPort data type 

defined, 193 
offscreen graphics world and, 193-194 

CGrafPtr data type, 193, 286 
ChangeVoice example program, 152-159 

Color Picker, 265 
Command-key handling, 383 
CompuServe, as source of sounds, 13 
Copy Bits() 

clipping mask, 182 
color animation and, 187-225 
copy mode, 181, 184, 185, 209 
destination bitmap, 181 
grayscale animation and, 187 
introduced, 161, 180 
LockPixels(), 219-220 
monochrome animation and, 162-192 
parameters, 181-182 
PixMaps and, 205-216 
RGBBackColor(), 219 
source bitmap, 181 
srcCopy Apple-defined constant, 181, 185 
srcOr Apple-defined constant, 184 
transparent Apple-defined constant, 209 
UnlockPixels(), 219-220 

CopyBitsB&W example program, 185-192 

D 
DITL resource, 296-300 
DLOG resource, 296-300 

E 
event-handling, 381-390 
eWorld, as source of sounds, 13 
example programs 

AsynchSndEvt, 72-75 
AsynchSndPlay, 60-70 
ChangeVoice, 152-159 
CopyBitsB&W, 185-192 
FilmEdit, 371-415 
GWorlds, 216-225 
MoreSndCommands, 82-85 
MovieDialog, 294-307 
MovieLooping, 322 
PickAndPlay, 344-347 
Picklnstrument, 340-343 
PlayNote, 334-336 
PlayScale, 336-337 
QDGXIntro, 244-249 
QDGXMapping, 267-271 
QDGXProperites, 266-267 
QDGXShape, 259-260 
QDGXWindow, 252-254 
QuickController, 317-321 
QuickPlay, 291-294 
QuickSpeech, 127-129 
ResourceSpeech, 137-140 
SaveSound, 111-115 
SoundChannellntro, 27-29 
SoundCommands, 34-36 
SoundHandle, 104-107 



F 

SoundRecord, 98-101 
SoundResource, 19-22 

file organization, 409-414 
FilmEdit example program, 371-415 

(i 
games 

animation in, 4, 161 
ideas for, 3 
speech and, 3, 133-134 

gestaltHasSoundlnputDevice Apple-defined 
constant, 89 

gestaltSoundAttr Apple-defined constant, 89 
GrafPort data type 

allocating, 178 
defined, 167 
drawing to, 171 
multiple windows and, 363 
OpenPort(), 178 
PICT resources and, 171 
portBits field, 167-168 
representation in memory, 169-175 
SetPortBits(), 178 

GrafPtr data type, 169, 178 
graphics worlds 

introduced, 64 
seeGWorlds 

GWorldPtr data type, 193-194 
GWorlds 

animation technique, 198-199 
AreGWorldsAvailable(), 194-195 
creating, 195-197, 202 
defined, 193-194 
DisposeGWorld(), 220 
DrawPicture(), 203-204 
gestaltHasDeepGWorlds Apple-defined 

constant, 194 
gestaltQuickdraw Features Apple-defined 

constant, 194 
GetGWorldPixMap(), 196-197, 200 
NewGWorld(), 195-196 
PICT resources and, 217-218 
pixel depth, 196 
PixMapHandle data type, 196, 200 
presence of, 194 
private data structure, 194 
QuickTime movies and, 286 
representation in memory, 197 
SetGWorld(), 203 

GWorlds example program, 216-225 

H 
Handel, George Frideric, 

polar bear, strange relationship with, 61 

Index 

heap,238,240 
hexadecimal conversion, 80 

#ifndef directive, 51-52 

K 
keyDown event, sound and, 64, 71, 72, 79, 82 
kHz,80-84 

M 
MacRecorder sound digitizer, 89 
master pointer, 90 
memory 

address order, 25, 165 
allocation for sound, 90 
availability of,92 
blocks, contiguous, 94 
PurgeSpace(), 92 
sound requirements, 96 

menu bar, 375 
menus, 376-380 
microphone, built-in, 89 
MIDI (Musical Instrument Digital Interface), 

325,328 
MoreSndCommands example program, 82-85 
mouseDown event, sound and, 72 
MovieDialog example program, 294-307 
movie editing 

clearing, 353 
clipboard and, 352 
copying, 352-353 . . 
createMovieFileDeleteCurF1le Apple-defined 

constant, 361 
creator of movie, 361 
cutting, 351-352 
data dependencies, 359 
DisposeMovie(), 352 
flattened movie, 359-360 
FlattenMovie(), 361 
fsRdPerm Apple-defined constant, 350 
fsRdWrPerm Apple-defined constant, 350 
GetMovieTimeScale(), 354 
mcActionSetSelectionBegin Apple-defined 

constant, 356 
mcActionSetSelectionEnd Apple-defined 

constant, 356 
MCClear(), 353 
MCCopy(), 352-353 
MCCut(), 351-352 
MCDoAction(), 356 
MCEnableEditing(), 351 
MCPaste(), 353 
MCSetUpEditMenu(), 378-379 
MCUndo(), 353-354 
moov resource, 359 

441 



442 
Graphics and Sound Programming for the Mac 

Movie data type, 352 
movie controller and, 350-351 
movieScrapDontZeroScrap Apple-defined 

constant, 352 
movieScrapOnl y Pu tMovie Apple-defined 

constant, 352 
pasting, 353 
PutMovieOnScrap(), 352 
saving changes, 357-362 
scrap and, 352 
select all, 354-356 
smSystemScript Apple-defined constant, 361 
StandardFileReply data type, 360 
StandardPutFile(), 360 
TimeRecord data type, 354-356 
undoing, 353-354 
UpdateMovieResource(), 358 

MovieLooping example program, 322 
Movie Player application, 361 
Movie Toolbox 

defined, 273-275 
see also QuickTime movies 
see also Toolbox functions 

Musical Instrument Digital Interface, 325 

" numeric keypad, 83 

0 
objects, see QuickDraw GX 
offscreen animation, see animation 
offscreen graphics world, see GWorlds 
orthodontists, future treat for, 186 

p 
partial pathnames, 280 
partitions, memory, 238 
pathnames, 279-281 
PickAndPlay example program, 344-347 
Picklnstrument example program, 340-343 
PICT resource, 296-300 
PictSize shareware program, 298 
pitch (rate), 80-84 
pixel depth of monitor, 196 
pixel image, 

defined, 192 
see also PixMap data type 

pixel maps 
defined, 192 
locking, 219 
LockPixels(), 219-220 
UnlockPixels(), 219-220 
see also PixMap data type 

pixels vs. bits, 162, 165 
PixMap data type 

BitMap comparison,193 
creating, 196-197,202 
defined, 192 
fields of, 192 
size of, 201 

PlayNote example program, 334-336 
PlayScale example program, 336-337 
Point data type, 96 
port Window Record field, 167-168 
PowerPC Macintosh, code compatible with, 51-52 
project file organization, 409-414 
properties, see QuickDraw GX 
Ptr data type 

Q 
QDGXIntro example program, 244-249 
QDGXMapping example program, 267-271 
QDGXProperites example program, 266-267 
QDGXShape example program, 259-260 
QDGXWindow example program, 252-254 
QMA (QuickTime Musical Architecture), 326 
QuickController example program, 317-321 
Quick Draw 

QuickDraw GX and, 229-230 
state-based architecture, 229 

QuickDraw GX 
colors, adding to shapes, 262-266 
disabling extension, 245 
DisposeWindow(), 252 
errors, 240-241 
ff() macro, 232, 256, 262 
Fixed data type, 232, 256 
FixedDivide(), 269-270 
Gestalt(), 235-238 
gestaltGraphics Version Apple-defined 

constant, 236 
gestaltGXPrintingMgrVersion Apple-defined 

constant, 236 
graphics client heap, 238-241 
graphics part, 235-236, 242 
graphics ports, 250-252 
gxColor data type, 262-266 
gxColorSpaces data type, 263 
gxColorValue data type, 264 
GXDisposeGraphicsClient(), 244 
GXDisposeViewPort(), 252 
GXDrawShape(), 232, 251 
GXEnterGraphics(), 240 
GXExitGraphics(), 243 
GXExitPrinting(), 243 
GXGetGraphicsError(), 240 
GXGetJobError(), 242 
gxGraphicsClient data type, 239 
GXInitPrinting(), 242-243 
gxLine data type, 232 
GXNewGraphicsClient(), 239-240 



GXNewShape(), 232, 251, 255, 257 
GXNewWindowViewPort(), 250, 252-253 
gxPoint data type, 255-256 
gxRectangle data type, 256 
gxRGBColor data type, 264 
GXScaleShape(), 269-270 
GXSetLine(), 232, 257 
GXSetShapeColor(), 265-266 
GXSetShapePen(), 232, 262 
GXSetShapeViewPort(), 251, 257-258 
gxShape data type, 232, 255 
gxSolidFill Apple-defined constant, 260 
gxStaticHeapClient Apple-defined 

constant, 240 
gxViewPort data type, 252 
handles and, 229 
initializing, 238-243 
ink property, 261 
introduced, 5, 227-228 
lsQuickDrawGXAvailable(), 237-238, 243, 245 
line coordinates, 232 
line shape, 255-258 
mapping, 267 
memory model, 229 
object-based architecture, 229 
object-reference values, 229 
objects and shapes, 228, 254 
owner count property, 261 
parts of, 235-236, 242 
pen setting, 232 
pointers and, 229 
preparing program for, 235-244 
presence of, 235-238 
printing part, 235-236, 242 
properties, general, 228, 260-266 
properties, specific 

ink property, 261, 262-266 
owner count property, 261 
shape attributes property, 261 
shape fill property, 261 
shape geometry property, 260 
shape type property, 260 
style property, 261, 262 
tag list property, 261 
transform property, 261 

RGB color space, 263, 266 
shape attributes property, 261 
shape fill property, 261 
shape geometry property, 255-256 
shape geometry property, 260 
shapes 

constants, Apple-defined, 255 
creating, 232, 255-258 
introduced, 228 
objects and, 228, 254 

simulating, 230-235 
state-based architecture, 229 

style property, 261 
supporting objects, 261 
tag list property, 261 
terminating, 243-244 
transform property, 261 
transforms, 267 

Inda 

view ports, 250-252, 257-258 
QuickPlay example program, 291-294 
QuickSpeech example program, 127-129 
QuickTime extension 

Gestalt(), 276-277 
Gestalt.h universal header file, 276 
gestaltQuickTime Apple-defined constant, 276 
initializing, 277-278 
introduced, 273 
Movies.h universal header file, 278 
presence of, 276-277 
versions of, 276-277 
see also QuickTime movies 

QuickTime movies 
action filter function, 397-400 
action parameter, 321 
altering playing of, 321 
CloseMovieFile(), 285 
closing, 285 
data dependencies, 359 
dialog box, playing within, 294-307 
displaying, 285-289 
DisposeMovie(), 291 
DisposeWindow(), 291 
disposing of, 291 
EnterMovies(), 277-278 
event loop and, 314-317 
flattened movie, 359-360 
FSMakeFSSpec(), 279-281, 284, 307 
fsRdWrPerm Apple-defined constant, 279 
FSSpec data type, 279-281, 284, 307 
GetMovieBox(), 287, 312 
GoToBeginningOfMovie(), 289 
graphics world, 286 
introduced, 5-6, 273 
IsMovieDone(), 290 
loading, 278-279, 281-284 
looping, 321-322 
mcActionControllerSizeChanged Apple-

defined constant, 398-399 
mcActionSetLooping Apple-defined constant, 

321-322 
mcActionSetLooplsPalindrome Apple-defined 

constant, 322 
MCActivate(), 381 
MCDoAction(), 321-322 
MCGetControllerBoundsRect(), 312-314 
MCGetControllerBoundsRect(), 399 
MCisPlayerEvent(), 316-317, 318-319, 380, 

395-397 
MCSetActionFilterWithRefCon(), 400, 401 

443 



444 
Graphics and Sound Programming for thv Mac 

mcTopLeftMovie Apple-defined constants, 
312-313 

MooV movie file type, 279, 281, 308-309, 401 
moov resource, 281, 359, 402 
Movie data type, 283 
movie controller 

attaching to movie, 311-314 
event loop and, 314-317 
introduced, 274, 310-311 
main event loop and, 380-381 
parts of, 311 

MovieController data type, 313, 318 
MoviesTask(), 290 
Movie Toolbox, 274-275 
multiple-movie playing, 362-371 
NewCWindow(), 285-286 
newMovieActive Apple-defined constant, 284 
NewMovieController(), 312-313 
NewMovieFromFile(), 282-284 
NewWindow(), 285 
obtaining, 298 
opening, 279-281, 307-310 
OpenMovieFile(), 279, 283 
palindrome looping, 322 
playing, 289-291 
resizing window, 286-289 
selecting, 307-310 
SetMovieGWorld(), 286 
Size Window(), 288 
standard file reply structure, 309 
StandardGetFilePreview(), 307-310 
StartMovie(), 290 
timing of, 354-355 
updating, 395-397 
visibility, 286-287 
WIND resource and, 286-287 
see also movie editing 
see also QuickTime extension 

QuickTime Musical Architecture, 326 
QuickTime Musical Instruments 

component, Note Allocator, 327 
Instrument Picker dialog box, 337-340 
instruments 

categories of, 338 
description, code 327-329 
selecting, 337-339 

introduced, 7, 325 
list of, 417-423 
MIDI and, 325, 328 
MIDI notes vs MIDI instruments, 332 
\1usic Component, 326 
-.JADisposeNoteChannel(), 331 
!ANewNoteChannel(), 330-332 
'APicklnstrument{}, 339-340, 341-342 
APlayNote{}, 331-334 
ite Allocator, 326-327 
·e channel, 329-331 

NoteRequest data type, 329 
OpenDefaultComponent{}, 330, 332 
pitch of note, 332-333 
playing note, 331-334 
polyphony, 330 
QMA, 326 
QuickTime Musical Architecture, 326 
scale, playing, 336-337 
synthesizers, 338 
ToneDescription data type, 327-329 
Tune Player, 326 

QuickTime Musical Instruments extension, 
introduced, 325 

R 
ResEdit 

DLOG resources and, 299-300 
QuickTime movies and, 287, 292 
sounds and, 13-14 

Resorcerer 
DLOG resources and, 299-300 
QuickTime movies and, 287 
sounds and, 13-14 

resource files 
AddResource(}, 108-109 
application fork, vs., 113 
closing, 54-55 
CurResFile(), 108-109 
memory map, 109 
saving sound to, 108-111 
UniqueID(), 110 
UpdateResFile(), 108-109 

resource map, 109 
ResourceSpeech example program, 137-140 
response parameter, Gestalt(), 88 
resProblem Apple-defined constant, 18, 22 
RgnHandle data type, 182 

s 
sampledSynth Apple-defined constant, 23 
sampling rates, 80-84 
SaveSound example program, 111-115 
selector code, Gestalt(), 88 
shapes, see QuickDraw GX 
sizeof(), 149 
snd resource type 

ID, assigning, 110, 112 
saving sound to, 108-111 

SndChannel data type 
callBack field, 40 
defined, 30 
queue field, 30, 40 

SndChanne!Ptr data type, 18, 22, 30 
SndCommand data type 

cmd field, 31, 43-44 
defined, 31 



fields of, 31, 43 
paraml field, 31, 43-44 
param2 field, 31, 43-46 

SndListHandle data type, 17, 90, 95, 102-103 
sound 

amplitude (volume), 31, 34, 77-80 
kHz, 80-84 
pitch (rate), 80-84 
sampling rates, 80-84 

sound callback routine 
defined,48 
SndNewChannel(), 46 
synchronous sound and lack of, 46 

sound channel 
allocating, 22-26 
callback routine, 40-41 
defined,22 
DisposePtr(), 24 
disposing, 22-26, 57-60 
introduced, 11, 16 
memory representation, 32, 41 
record,27 
SndDisposeChannel(), 23-25 
SndNewChannel(), 22-24 
sound command queue, 30, 32 

sound channel record, 27 
sound command queue 

bypassing, 76 
callback command, adding, 55-56 
installing commands in, 43-46, 76 
introduced, 27 
operation of, 40-43 
queue field, 30 
queueFull Apple-defined constant 
see also SndCommand data type 

sound commands 
ampCmd command, 31-32, 77-80 
callBackCmd command, 42-46 
defined,29 
freqCmd command, 31 
issuing, 76 
memory representation, 32 
setting up, 31-32 
SndDoCommand(), 31-34, 76 
SndPlay(), 76 
sound channel and, 30 
see also SndCommand data type 

Sound control panel, 15, 34, 78, 89 
sound digitizer, 15 
sound input devices 

introduced, 87-88 
lsSoundinputAvailable(), 88, 99 
presence of, 88 

Sound Input Manager 
features of, 90-91 
introduced, 87 

Sound Manager 

defined, 12 
SndSoundManagerVersion() 
speech and, 122 
System 7.5 and, 12 
version of, 12-13, 63, 99 

sound playing 
AS register and, 44-46, 425-437 
introduced, 2, 11 

sound recording 
AddResource(), 108-109 
CurResFile(), 108-109 
disk space for, 97, 116-119 
handles and, 102-104 
introduced, 2 
MaxApplZone(), 94, 99 
memory, directly to, 92 
NewHandle(), 95, 116 
playing back, 102-104 
PurgeSpace(), 92, 94-95 
quality of, 97, 116-119 
ReleaseResource(), 104 

Index 

resource, saving as, 107-111 
siBestQuality Apple-defined constant, 

97, 117-119 
siBetterQuality Apple-defined constant, 

97, 117-119 
siGoodQuality Apple-defined constant, 

97, 117-119 
SndRecord(), 90, 96-97 
time length of sound, limitation on, 92, 96 
UniquelD(), 110 
UpdateResFile(), 108-109 

Sound Recording dialog box, 91, 98 
sound resources 

defined, 13 
detaching, 54-55 
digitized sounds and, 13,15 
GetResource(), 16-17 
ID range, 15 
loading to memory, 16-17 
locking, 55 
playing, 15-19 
resource IDs, 15 
snd resource type, 13-14 
SndPlay(), 16-19 
sources of, 13 

sound queue, see sound command queue 
SoundChannellntro example program, 27-29 
SoundCommands example program, 34-36 
SoundHandle example program, 104-107 
Soundlnput.h universal header file, 96 
SoundRecord example program, 98-101 
SoundResource example program, 19-22 
speech 

asynchronous, 129, 143 
digitized sound, vs., 121 
gestaltSpeechAttr Apple-defined constant, 

445 



446 
Graphics and Sound Programming for the Mac 

gestaltSpeechMgrPresent Apple-defined 
constant, 126 

GetlndString(), 136-137 
introduced, 3 
IsSpeecMvailable(), 125-126, 127 
resource text for, 135-138 
SpeakString(), 126-127, 129-130 
SpeechBusy(), 129. 143 
STR# resources and, 135 
string, speaking, 126-127, 129-130 
synchronous, 129-130 
synthesized, 122 
user-entered text for, 131-133 
voices, 122 

speech channel, 
allocating, 141 
buffer, speaking text from, 143 
DisposeSpeechChannel(), 142 
disposing of, 142 
introduced, 130 
NewSpeechChannel(), 141-142 
pointer to, 141 
SpeechText(), 140-141, 143-144 
voices and, 140 

Speech Manager 
audio hardware and, 122 
installing, 125 
introduced, 121 
presence of, 125-126 
synthesized speech and, 122 
synthesizer, built-in,124 
System 7.5 and, 125 

speech synthesizer 
defined, 124 
dictionaries and, 122 
introduced, 122 
MacinTalk Pro, 122-124 
pronunciation rules, 123 

Speech.h universal header file, 127 
SpeechChannel data type, 141 
SpeechChannelRecord data type, 141-142 
squareWaveSynth Apple-defined constant, 23 
stack, 238 
string, format of, 144 
synchronous sound playing 

T 

defined, 13 
SndPlay(), 38-39 

Toolbox functions 
AddResource(), 108-109 
AreGWorldsAvailable(), 194-195 
CloseMovieFile(), 285 
CountVoices(), 148-149 
CurResFile(), 108-109 
Delay(), 333-334 

DetachResource(), 54 
DialogEvent(), 317 
DialogSelect(), 317 
DisposeGWorld(), 220 
DisposeMovie(), 291, 352 
DisposePtr(), 24 
DisposeSpeechChannel(), 142 
DisposeWindow(), 252, 291 
DrawPicture(), 203-204 
EnterMovies(), 277-278 
ff() macro, 232, 256, 262 
FillRect(), 250 
FixedDivide(), 269-270 
FlattenMovie(), 361 
FSMakeFSSpec(), 279-281, 284, 307 
Gestalt(), 88, 235-238, 276-277 
GetDialogltem(), 132, 302 
GetDialogltemText(), 132 
GetGWorldPixMap(), 196-197, 200 
GetlndString(), 136-137 
GetlndVoice(), 148 
GetMovieBox(), 287, 312 
GetMovieTimeScale(), 354 
GetNewCWindow(), 364 
GetResource(), 16-17, 54 
GetVoiceDescription(), 149 
GoToBeginningOfMovie(), 289 
GXDisposeGraphicsClient(), 244 
GXDisposeViewPort(), 252 
GXDrawShape(), 232, 251 
GXEnterGraphics(), 240 
GXExitGraphics(), 243 
GXExitPrinting(), 243 
GXGetGraphicsError(), 240 
GXGetJobError(), 242 
GXInitPrinting(), 242-243 
GXNewGraphicsClient(), 239-240 
GXNewShape(), 232, 251, 255, 257 
GXNewWindowViewPort(), 250, 252-253 
GXScaleShape(), 269-270 
GXSetLine(), 232, 257 
GXSetShapeColor(), 265-266 
GXSetShapePen(), 232, 262 
GXSetShapeViewPort(), 251, 257-258 
HLock(),55 
HUnlock(), 55 
IsMovieDone(), 290 
Line(), 229 
LockPixels(), 219-220 
MaxApp!Zone(), 94, 99, 374 
MCActivate(), 381 
MCClear(), 353 
MCCopy(), 352-353 
MCCut(), 351-352 
MCDoAction(), 321-322, 356 
MCEnableEditing(), 351 



MCGetControllerBoundsRect(), 312-314, 399 
MCisPlayerEvent(), 316-317, 318-319, 380, 

395-397 
MCPaste(}, 353 
MCSetActionFilterWithRefCon(), 400, 401 
MCSetUpEditMenu(), 378-379 
MCUndo(), 353-354 
MoreMasters(), 375 
MoviesTask(), 290 
NADisposeNoteChannel(), 331 
NANewNoteChannel(), 330-332 
NAPicklnstrument(), 339-340, 341-342 
NAPlayNote(), 331-334 
NewCWindow(), 285-286 
NewGWorld(), 195-196 
New Handle(), 95, 116 
NewMovieController(), 312-313 
NewMovieFromFile(), 282-284 
NewSndCallBackProc(), 47 
NewSpeechChannel(), 141-142 
NewWindow(), 285 
OpenDefaultComponent(), 330, 332 
OpenMovieFile(), 279, 283 
OpenPort(), 178 
PenSize(), 229 
PurgeSpace(), 92, 94-95 
PutMovieOnScrap(), 352 
ReleaseResource(), 104 
RGBBackColor(), 219 
SetA5(), 48-49 
SetCurrentA5(), 44, 52 
SetGWorld(), 203 
SetMovieGWorld(), 286 
SetPort(), 178 
SetPortBits(), 178 
SetRect(), 250 
SetWTitle(), 405 
SizeWindow(), 288 
SndDisposeChannel(), 23-25 
SndDoCommand(), 31-34, 76 
SndDolmmediate(), 76-82 
SndNewChannel(), 22-24, 36, 46, 54 
SndPlay(), 16-19, 36, 38-39, 76 
SndRecord(), 90, 96-97 
SndSoundManagerVersion() 
SpeakString(), 126-127, 129-130 
SpeechBusy(), 129. 143 
SpeechText(), 140-141, 143-144 
StandardGetFilePreview(), 307-310 
StartMovie(), 290 
SysBeep(), 15 
UniquelD(), 110 
UnlockPixels(), 219-220 
UpdateMovieResource(), 358 
UpdateResFile(), 108-109 
WaitNextEvent(), 70-72union data type, 

263-264 

(I 
universal procedure pointer (UPP) 

movie action filters and, 400 
NewSndCallBackProc(), 47 
SndNewChannel(), 54 
sound playing and, 47 

Index 

userCanceledErr Apple-defined constant, 100 

v 
voice synthesizers, 4 
voices 

CountVoices(), 148-149 
data structure, 124 
GetlndVoice(), 148 
GetVoiceDescription(), 149 
introduced,122,124 
kFemale Apple-defined constant, 147 
kMale Apple-defined constant, 147 
kNeuter Apple-defined constant, 147 
male, 147-148 
robot, 147 
selecting, 146-152 
synthesizer ID, 148-149 
system-default, 124, 140 
teenager, 147-148 
voice ID, 148-149 

Voices folder, 124 
VoiceDescription data type 

age field, 147 
defined, 146 
fields of, 146-147 
gender field, 147 

VoiceSpec data type, 148-150 

w 
waveTableSynth Apple-defined constant, 23 
window storage, 367 
window structure, application-defined, 364 
Window Peek data type, 366 
WindowPtr data type, 167-168, 206 
WindowRecord data type, 166-168, 362-365 

447 



About the CD 

The CD in the back of this book contains all the sample code ·discussed in 
both Metrowerks CodeWarrior and Symantec C++ projects. On the CD, 
you'll find a folder titled "M&T Graphics & Sound Examples." Inside this 
folder are the projects divided into folders for each compiler. The projects 
are further divided by chapter so you can find them easily. 

Having a CD-ROM allows for a great deal more material for really the 
same price. As such, you're getting not only about 60M of programming 
examples and sample programs, but we've also included a folder titled 
"Goodies." Inside, you'll find some sample sounds, graphics, movies, and 
some shareware graphics toolkits. Don't let the shareware title bother you. 
These are tools you will probably find very useful. And, if you do, please 
pay the registration fees. Someone worked very hard to create these for you. 





• 

>- Color QuickDraw 

>- QuickDraw GX 

>- QuickTime Movies 

>- QuickTime Musical 
Instruments 

>- Graphics Worlds and 
Animation 

>- Writing Power Mac­
Compatible Code 

>- The AS world 

ISBN 1-55851-442-2 

• 781558 11 ~423 ~~r~~ 


