For
Macintosh
Common Lisp
versions
3.1&4.0

Digitool

Macintosh Common Lisp
Reference

Digitool

030-1959-C
Developer Technical Publications
© Digitool, Inc. 1996

Digitool, Inc.

© 1996, Digitool, Inc. All rights
reserved.

No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any
form or by any means,
mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Digitool, Inc.,
except in the normal use of the
software or to make a backup
copy of the software. The same
proprietary and copyright
notices must be affixed to any
permitted copies as were affixed
to the original. This exception
does not allow copies to be made
for others, whether or not sold,
but all of the material purchased
(with all backup copies) may be
sold, given, or loaned to another
person. Under the law, copying
includes translating into another
language or format. You may use
the software on any computer
owned by you, but extra copies
cannot be made for this purpose.
Printed in the United States of
America.

MCL is a trademark of

Digitool, Inc.

One Main Street,

Cambridge, MA 02142
617-441-5000

The Apple logo is a registered
trademark of Apple Computer,
Inc. Use of the “keyboard” Apple
logo (Option-Shift-K) for
commercial purposes without
the prior written consent of
Apple may constitute trademark
infringement and unfair
competition in violation of
federal and state laws.

Apple Computer, Inc.

20525 Mariani Avenue
Cupertino, CA 95014-6299
408-996-1010

Apple, the Apple logo, the Apple
Developer Catalog (formerly
APDA), AppleLink, A/UX,
LaserWriter, Macintosh, and
MPW are trademarks of Apple
Computer, Inc.,, registered in the
United States and other
countries.

Balloon Help, Finder,

QuickDraw, and ToolServer are
trademarks of Apple Computer,
Inc.

Adobe, Acrobat and PostScript
are registered trademarks of
Adobe Systems Incorporated.
CompuServe is a registered
trademark of CompuServe, Inc.
Palatino is a registered
trademark of Linotype
Company.

Internet is a trademark of Digital
Equipment Corporation.

ITC Zapf Dingbats is a registered
trademark of International
Typeface Corporation.
Microsoft is a registered
trademark of Microsoft
Corporation.

UNIX is a registered trademark
of UNIX System Laboratories,
Inc.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects
in the manual or in the media on
which a software product is
distributed, Digitool will replace
the media or manual at no charge
to you provided you return the
item to be replaced with proof of
purchase to Digitool.

ALL IMPLIED WARRANTIES
ON THIS MANUAL,
INCLUDING IMPLIED
WARRANTIES OF
MERCHANTABILITY AND
FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN
DURATION TO NINETY (90)
DAYS FROM THE DATE OF
THE ORIGINAL RETAIL
PURCHASE OF THIS
PRODUCT.

Even though Digitool has
reviewed this manual,
DIGITOOL MAKES NO
WARRANTY OR
REPRESENTATION, EITHER
EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR
FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS

IS,” AND YOU, THE
PURCHASER, ARE
ASSUMING THE ENTIRE
RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL
DIGITOOL BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR
CONSEQUENTIAL
DAMAGES RESULTING
FROM ANY DEFECT OR
INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.
THE WARRANTY AND
REMEDIES SET FORTH
ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS,
ORAL OR WRITTEN, EXPRESS
OR IMPLIED. No Digitool
dealer, agent, or employee is
authorized to make any
modification, extension, or
addition to this warranty.

Some states do not allow the
exclusion or limitation of implied
warranties or liability for
incidental or consequential
damages, so the above limitation
or exclusion may not apply to
you. This warranty gives you
specificlegal rights, and you may
also have other rights which vary
from state to state.

Introduction:

Chapter 1:

Contents

Contents / 3

Figures and tables / 15

About This Book / 21
Documentation conventions / 22
Courier font / 22
Italics / 22
Definition formats / 22
Definition formats of CLOS generic functions / 24
The generic function initialize-instance / 25
Argument list punctuation / 25
Lisp syntax / 26

Editing in Macintosh Common Lisp / 29
The MCL editor / 31
The editing window / 32
Working with the editor / 33
Creating new windows and opening files / 33
Adding text to a file / 33
Saving text to files / 33
Multiple Panes / 34
The minibuffer / 35
The kill ring and the Macintosh Clipboard / 35
Multiple fonts / 36
Packages / 36
Mode lines / 37
An in-package expression / 37
A set-window-package expression / 38
Finding a window’s package / 38
Fred parameters / 38
Normalizing *next-screen-context-lines* / 40
Editing in Macintosh style / 41
Editing in Emacs style / 42

The Control and Meta modifier keys / 42
Disabling dead keys / 43
Fred commands / 43
Help, documentation, and inspection functions / 45
Movement / 46
Selection / 49
Insertion / 52
Deletion / 55
Lisp operations / 57
Window and file operations / 59
Undo commands / 60
Numeric arguments / 61
Incremental searching in Fred / 61
Performing an incremental search / 62
Making additional searches / 62
Backing up with the Delete key / 62
Terminating an incremental search / 63
Doing another incremental search / 63
Special incremental search keystrokes / 64
The Fred Commands tool / 65
The Listener Commands tool / 66
The List Definitions tool / 66
The Search Files tool / 67

Chapter 2:
Points and Fonts / 69
Points / 70
How Macintosh Common Lisp encodes points / 70
MCL functions relating to points / 71
Fonts / 74
Implementation of font specifications / 74
Implementation of font codes / 75
Functions related to font specifications / 76
Functions related to font codes / 80
System data / 87
Chapter 3:

Menus / 91
How menus are created / 93
A sample menu file / 93

Macintosh Common Lisp Reference

Chapter 4:

Chapter 5:

The menu-element class / 94
The menubar / 94
Menubar forms / 94
The built-in menus / 96
Menubar colors / 98
Menus / 100
MCL forms relating to menus / 100
MCL forms relating to elements in menus / 104
MCL forms relating to colors of menu elements / 106
Advanced menu features / 108
Menu items / 110
MCL forms relating to menu items / 111
MCL forms relating to menu item colors / 118
Window menu items / 120
Window menu item functions / 121
Window menu item class / 122
Updating the menubar / 123
The Apple menu / 124
Example: A font menu / 124

Views and Windows / 125
Views and Windows / 126
What simple views do / 126
What views do / 127
What windows do / 127
Class hierarchy of views / 128
Summary / 129
For more information / 130
MCL expressions relating to simple views and views / 130
Windows / 153
MCL functions for programming windows / 154
Advanced window features / 173
Supporting standard menu items / 178
Floating windows / 180

Dialog Items and Dialogs / 183
Dialogs in Macintosh Common Lisp / 185
Dialog items / 185

Contents

Dialog boxes / 185
A simple way to design dialogs and program dialog items / 186
Changes to dialogs in Macintosh Common Lisp as of version2 / 186
Dialog items / 188
MCL forms relating to dialog items / 189
Advanced dialog item functions / 198
Specialized dialog items / 202
Buttons / 202
Default buttons / 203
Static text / 205
Editable text / 206
Checkboxes / 212
Radio buttons / 213
Table dialog items / 216
Pop-up menu dialog items / 227
Scroll-bar dialog items / 228
Sequence dialog items / 234
User-defined dialog items / 236
Dialogs / 237
Modal dialogs / 238
Modeless dialogs / 239
Simple turnkey dialog boxes / 239
MCL forms relating to dialogs / 245

Chapter 6:
Color / 249
Color encoding in Macintosh Common Lisp / 250
MCL expressions governing color / 250
Operations on color windows / 257
Coloring user interface objects / 259
Part keywords / 260
Menu bar / 261
Menus / 261
Menu items / 261
Windows / 262
Dialog items / 262
Table dialog items / 262

Macintosh Common Lisp Reference

Chapter 7:

The Interface Toolkit / 263

The Interface Toolkit / 264

Loading the Interface Toolkit / 264

Editing menus with the Interface Toolkit / 265
Using the menu editing functionality / 265
Creating a new menu bar: Add New Menubar / 267
Getting back to the default menu bar: Rotate Menubars / 267
Deleting a menu bar: Delete Menubar / 268
Creating and editing menus: Add Menu / 268
Creating menu items / 268
Editing menu items / 269
Saving a menu bar / 270
Editing menu bar source code / 270

Editing dialogs with the Interface Toolkit / 271
Using the dialog-designing functionality / 272
Dialog-designing menu items / 272
Creating dialog boxes / 273
Adding dialog items / 275
Editing dialog items / 276

Chapter 8:

File System Interface / 279

Filenames, physical pathnames, logical pathnames, and namestrings / 280
Changes from earlier versions of Macintosh Common Lisp / 280
Printing and reading pathnames / 281

Pathname structure / 282
Macintosh physical pathnames / 283
Common Lisp logical pathnames / 283
Defining logical hosts / 284
Ambiguities in physical and logical pathnames / 284
More on namestrings and pathnames / 285

Creating and testing pathnames / 285
Parsing namestrings into pathnames / 288
The pathname escape character / 289

Loading files / 291

Macintosh default directories / 293

Structured directories / 295

Wildcards / 298

File and directory manipulation / 299

Contents

File operations / 302
Volume operations / 306
User interface / 308
Logical directory names / 310

Chapter 9:
Debugging and Error Handling / 313
Debugging tools in Macintosh Common Lisp / 314
Compiler options / 315
Fred debugging and informational commands / 317
Debugging functions / 320
Error handling / 327
Functions extending Common Lisp error handling / 328
Break loops and error handling / 329
Functions and variables for break loops and error handling / 332
Stack Backtrace / 334
Single-expression stepper / 337
Tracing / 338
The Trace tool / 339
Expressions used for tracing / 341
Advising / 346
The Inspector / 348
The Inspector menu / 349
Inspector functions / 350
The Apropos tool / 351
The Get Info tool / 353
The Processes tool / 355
Miscellaneous Debugging Macros / 355

Chapter 10:
Events / 359
Implementation of events in Macintosh Common Lisp / 360
How an event is handled / 360
MCL built-in event handlers / 361
Functions for redrawing windows / 369
Event information functions / 372
The event management system / 375
The cursor and the event system / 379
Event handlers for the Macintosh Clipboard / 383
MCL expressions relating to scrap handlers and scrap types / 384

8 Macintosh Common Lisp Reference

Chapter 11:

Chapter 12:

Chapter 13:

Chapter 14:

The Read-Eval-Print Loop / 387
Eval-Enqueue / 388

Apple Events / 391
Implementation of Apple events / 392
Applications and Apple Events / 392
Application class and built-in methods / 394
New application methods / 397
Standard Apple event handlers / 400
Defining new Apple events / 404
Installing Apple event handlers / 406
Installing handlers for queued Apple event replies / 407
Sending Apple events / 409

Processes | 411

Processes in Macintosh Common Lisp / 412
Process priorities / 413

Creating processes / 413

Process attribute functions / 415

Run and arrest reason functions / 418
Starting and stopping processes / 422
Scheduler / 424

Locks / 428

Stack groups / 433

Miscellaneous Process Parameters / 436

Streams / 437

Implementation of streams / 438

MCL expressions relating to streams / 438
Obsolete functions / 450

Programming the Editor / 451
Fred Items and Containers / 453
Fred windows and Fred views / 454
Fred dialog items / 454
Buffers and buffer marks / 455
Copying and deletion mechanism: The kill ring / 456

Contents

MCL expressions relating to buffer marks / 456
Using multiple fonts / 472
Global font specifications / 472
Style vectors / 473
Functions for manipulating fonts and font styles / 473
Fred classes / 478
Fred functions / 486
Functions implementing standard editing processes / 506
Multiple-level Undo / 508
Functions relating to Undo / 509
Working with the kill ring / 512
Functions for working with the kill ring / 513
Using the minibuffer / 514
Functions for working with the minibuffer / 514
Defining Fred commands / 516
Fred command tables / 517
Keystroke codes and keystroke names / 517
Command tables / 519
Fred dispatch sequence / 519
MCL expressions associated with keystrokes / 519

MCL expressions relating to command tables / 523

Chapter 15:
Low-Level OS Interface / 529
Interfacing to the Macintosh / 530
Macptrs / 531
Memory management / 532
Stack blocks / 533
Accessing memory / 534
Miscellaneous routines / 545
Strings, pointers, and handles / 545
Pascal VAR arguments / 549
The Pascal null pointer / 549
Callbacks to Lisp from the OS and other code / 550
Defpascal and Interrupts / 552

Chapter 16:
OS Entry Points and Records / 553
Entry Points and Records / 555
References to entry points and records / 555

10 Macintosh Common Lisp Reference

Chapter 17:

Loading and Calling Entry Points / 556
Calling entry points / 556
Traps in MCL 3.1 / 558
Shared Library Entry Points in MCL 4.0 / 559
Locating Entry Points in Shared Libraries / 560
Locating Shared Libraries / 561
Compile Time / Run Time Entry Location / 561
Defining Traps / 562
Examples of calling entry points / 564
Entry point types and Lisp types / 565
Records / 567
Installing record definitions / 567
The structure of records / 568
Defining record types / 568
Variant fields / 571
Creating records / 572
Creating temporary records with rlet / 572
Creating records with indefinite extent / 574
Accessing records / 576
Getting information about records / 583
Trap calls using stack-trap and register-trap / 586
Low-level stack trap calls / 586
Low-level register trap calls / 588
Macros for calling traps / 589
Notes on trap calls / 594
32-bit immediate quantities / 594

Boolean values: Pascal true and false / 594

Foreign Function Interface / 597
Accessing Foreign Code in MCL 4.0 and 3.1 / 598
Foreign Code in MCL 4.0 / 598
Defining foreign code entry points / 598
Foreign Code in MCL 3.1 / 600
Using the MCL 3.1 foreign function interface / 600
High-level Foreign Function Interface operations / 600
Argument specifications / 604
Result flags / 608
A Short example / 609
Low-level functions / 610

Contents

11

Calling Macintosh Common Lisp from foreign functions / 613
Extended example / 615

Appendix A:
Implementation Notes / 617
The Metaobject Protocol / 619
Metaobject classes defined in Macintosh Common Lisp / 619
Unsupported metaobject classes / 621
Unsupported Introspective MOP functions / 621
MCL functions relating to the Metaobject Protocol / 622
MCL class hierarchy / 633
Types and tag values / 633
Tags in MCL 3.1 / 633
Tags in MCL 4.0 / 634
Raw Object Access / 635
Reader macros undefined in Common Lisp / 636
Numeric arguments in pathnames / 636
Numbers / 636
Floating point numbers in MCL 4.0 / 638
Characters and strings / 640
Ordering and case of characters and strings / 641
The script manager / 642
Script manager utilities / 642
String lengths / 643
Arrays / 645
Default array contents / 645
Array element types and sizes / 645
Packages / 648
Additional printing variables / 649
Memory management / 650
Garbage collection / 650
Ephemeral garbage collection / 650
Guidelines for enabling the EGC / 651
EGCinMCL 3.1 / 651
Controlling the EGC / 652
Enabling the EGC programmatically / 653
Full garbage collection / 654
Garbage Collection Statistics / 654
Termination / 656
Termination in MCL 4.0 / 656

12 Macintosh Common Lisp Reference

Appendix B:

Appendix C:

Appendix D:

Termination in MCL 3.1 / 659
Macptrs and termination in MCL 3.1 / 660

Evaluation / 661
Compilation / 661

Tail recursion elimination / 662

Self-referential calls / 662

Compiler policy objects / 662
Listener Variables / 667
Patches / 668
Miscellaneous MCL expressions / 669

Workspace Images / 673
The Image Facility / 674
The Save Application tool / 674
The Save Image Command / 676
Forms Related to Images / 676
Removing Macintosh pointers / 679

SourceServer / 683
SourceServer / 684
Setting up SourceServer / 684
The SourceServer menu / 685
Notes / 686

QuickDraw Graphics / 687
QuickDraw in Macintosh Common Lisp / 688
Windows, GrafPorts, and PortRects / 688
Points and rectangles / 689
Window state functions / 691
Pen and line-drawing routines / 693
Drawing text / 701
Calculations with rectangles / 701
Graphics operations on rectangles / 706
Graphics operations on ovals / 709
Graphics operations on rounded rectangles / 712
Graphics operations on arcs / 715
Regions / 718

Calculations with regions / 721

Contents

13

Graphics operations on regions / 724
Bitmaps / 726
Pictures / 728
Polygons / 730

Miscellaneous procedures / 733

Appendix E:

MCL 4.0 CD Contents / 739

What is on the MCL 4.0 CD-ROM / 740
Highlights / 740
MCL 4.0 / 740
MCL 3.1 / 740
MCL 4.0 "Demo Version" / 740
MCL 4.0/3.1 Documentation / 741
MCL Floppy Disks / 741
Additional MCL Source Code / 741
Goodies from Digitool / 741
Goodies from MCL Friends / 742
User Contributed Code / 742
Developer Essentials / 742
Mail Archives & Other Docs / 742
Contents/Index / 742
On Location Indexes / 743

What is in the MCL 4.0 folder / 743
MCL 4.0 / 743
MCL Help and MCL Help Map.pfsl / 743
Examples Folder / 743
Interface Tools folder / 747
Library folder / 747
ThreadsLib / 748
pmcl-kernel, pmcl-library, and pmcl-compiler / 748

Index / 749

14 Macintosh Common Lisp Reference

Introduction:

Chapter 1:

Chapter 2:

Chapter 3:

Figures and tables

Contents / 3

Figures and tables / 15
About This Book / 21

Editing in Macintosh Common Lisp / 29

Figure 1-1 A Fred window / 32

Figure 1-2 A Fred window with multiple panes / 34

Table 1-1 Fred parameters / 39

Table 1-2 Fred commands for help, documentation, and inspection / 45
Table 1-3 Fred commands for movement / 47

Table 1-4 Fred commands for selection / 49

Table 1-5 Fred commands for insertion / 52

Table 1-6 Fred commands for deletion / 55

Table 1-7 Fred commands for Lisp operations / 57

Table 1-8 Fred commands for window and file operations / 59
Table 1-9 Fred commands for undoing commands / 60

Table 1-10 Fred commands for giving numeric arguments / 61

Table 1-11 Fred commands for searching / 64
Figure 1-3 The Fred Commands dialog box / 65
Figure 1-4 The Listener Commands dialog box / 66

Figure 1-5 The List Definitions dialog box / 67
Figure 1-6 The Search Files dialog box / 68
Figure 1-7 Dialog box after a successful search / 68

Points and Fonts / 69

Menus / 91
Table 3-1 Window menu items / 121

15

Chapter 4:

Views and Windows / 125

Chapter 5:

Figure 4-1 The class hierarchy of views from simple-view downward / 129

Dialog Items and Dialogs / 183

Table 5-1 Summary of changed dialog functions in Macintosh Common
Lisp / 187

Figure 5-1 Examples of tables used in dialog boxes / 216

Figure 5-2 Cell positions represented as points / 217

Figure 5-3 A modal dialog (Print Options on the Tools menu) / 237

Figure 5-4 A modeless dialog (List Definitions on the Tools menu) / 238

Figure 5-5 A message dialog box / 240
Figure 5-6 A yes-or-no dialog box / 242
Figure 5-7 A get-string-from-user dialog box / 243

Figure 5-8 A select-item-from-list dialog box / 245
Chapter 6:
Color / 249
Chapter 7:
The Interface Toolkit / 263
Figure 7-1 The Interface Toolkit menu on the menu bar / 265
Figure 7-2 Choosing Edit Menubar from the Design menu / 266
Figure 7-3 The Menubar Editor window / 266
Table 7-1 Menubar Editor window options / 267
Figure 7-4 A Menu Editor window showing a menu with no items / 268
Table 7-2 Menu editing options / 269
Figure 7-5 Editing items in the Menu Editor / 269
Table 7-3 Menu item editing options / 270
Table 7-4 Menu items and corresponding MCL codes / 271
Table 7-5 Dialog design menu items / 273
Figure 7-6 New Dialog dialog box / 274
Table 7-6 Seven types of dialog / 274
Table 7-7 Two attributes of dialog boxes / 275
Figure 7-7 Dragging an editable-text dialog item into an untitled dialog box
/ 275
Figure 7-8 Edit Dialog Items dialog box / 276
Table 7-8 Editable options in dialog items / 277
Table 7-9 Editable options in subclasses of dialog items / 278

16

Macintosh Common Lisp Reference

Chapter 8:

Chapter 9:

Chapter 10:

Chapter 11:

Chapter 12:

Chapter 13:

Chapter 14:

File System Interface / 279

Table 8-1
Table 8-2

Some namestrings parsed into pathnames / 289

Effect of escape characters / 290

Debugging and Error Handling / 313

Figure 9-1
Table 9-1
Table 9-2
Table 9-3
Figure 9-2
Figure 9-3
Figure 9-4
Figure 9-5
Figure 9-6
Table 9-4
Figure 9-7
Figure 9-8
Figure 9-9
Figure 9-10

MCL debugging tools / 314

Compiler options / 316

Fred debugging and informational commands / 318
Constructs and their documentation types / 324
Effects on the stack of break, abort, and continue / 329
Nesting of break loops / 331

Two ways to leave a break loop / 332

A Stack Backtrace dialog box / 335

The Trace dialog box / 340

Options in Inspector Central / 349

The Apropos dialog box / 352

The Get Info dialog box / 354

The Get Info modal dialog box / 354

The Processes Inspector window / 355

Events / 359

Apple Events [391

Processes [411

Streams / 437

Programming the Editor / 451

Table 14-1

Modifier bits in the keystroke code / 518

Figures and tables

17

Chapter 15:

Chapter 16:

Chapter 17:

Appendix A:

Appendix B:

Appendix C:

Appendix D:

Low-Level OS Interface / 529

OS Entry Points and Records / 553
Table 16-1 Pascal types and their equivalent MCL types / 566
Table 16-2 Predefined record field types and their lengths / 570

Foreign Function Interface / 597
Table 17-1 Foreign type defaults / 606

Implementation Notes / 617

Table A-1 Structure of metaobject classes defined in Macintosh Common
Lisp version2 / 619

Table A-2 Types of array element / 646

Table A-3 Theoretical limits on array length / 647

Table A-4 Additional printing variables / 649

Workspace Images / 673
Figure 1-10 The Save Application dialog box / 675

SourceServer | 683

QuickDraw Graphics / 687

Figure D-1 Location of point at upper-left corner of pixel / 689
Figure D-2 A PortRect / 690

Figure D-3 Multiple methods of passing rectangles / 692

Figure D-4 Attributes of a graphics pen / 694

Figure D-5 QuickDraw pen sizes / 696

Figure D-6 Pen pattern stored as a 64-bit block of memory / 697
Figure D-7 Effect of pen modes on pixels being drawn / 698

Figure D-8 Offset rectangle, with h equal to 4 and v equal to2 / 702
Figure D-9 Inset rectangle, with h equal to 4 and vequalto2 / 703
Figure D-10 ~ Rectangle resulting from the intersection of two others / 703
Figure D-11 Smallest rectangle completely enclosing two others / 704
Figure D-12 Point to angle, calculated from two rectangles / 705
Figure D-13 Rectangle framed in the current pen / 707

18 Macintosh Common Lisp Reference

Figure D-14 Effects of paint-rect and invert-rect / 708

Figure D-15 An oval within a rectangle / 709

Figure D-16 ~ Rounded rectangle / 712

Figure D-17 Framing anarc / 716

Figure D-18 Regions / 719

Figure D-19 A rectangle scrolled down and to the right / 728
Figure D-20 A framed polygon / 732

Figure D-21 Effect of map-point / 735

Figure D-22 Effect of map-rect / 736

Appendix E:
MCL 4.0 CD Contents / 739

Index / 749

Figures and tables 19

20 Macintosh Common Lisp Reference

Introduction:
About This Book

Contents
Documentation conventions / 22
Courier font / 22
Italics / 22
Definition formats / 22
Definition formats of CLOS generic functions / 24
The generic function initialize-instance / 25
Argument list punctuation / 25
Lisp syntax / 26

This introduction describes the syntax and notational conventions used in this
reference.

21

Documentation conventions

This manual follows specific conventions for fonts, notation, Lisp
syntax, and definition formats.

Courier font

In this manual, all MCL code appears in Courier font. When an MCL
interaction is shown, what you type appears in boldface Courier and
what MCL responds with is shown in regular Courier.

Courier font always represents exactly what is typed into and returned
by the program, with one exception. In the syntax of definitions, words
in Courier beginning with an ampersand (lambda list keywords)
indicate certain standard parts of the body of a definition. For example,
&key indicates that the items following it are keywords, &opt i onal
indicates that all arguments past that point are optional, and so on.

See Common Lisp: The Language for a full description of this syntax.

Italics

Italics indicate parameter names and place holders (words that you
replace on the screen with an actual value). For example, when using
the function my- f unct i on, you see the definition

ny-functi on my-arg &opt i onal more-info &ey : t est

Type the words ny- f uncti on and : t est as they appear, but
substitute some value for my-arg and more-info.

Definition formats

22

The same definition format is used for functions, methods, variables,
named constants, classes, macros, and special forms.

Macintosh Common Lisp Reference

Description

Description

Syntax

Description

Arguments

Example

The header indicates the name and type of the definition. In the case of
a function, for example, the first line indicates the name of the function
and the fact that it is a function. Its syntax appears below its name and
type; it is described; its parameters are defined; finally, in many cases,
it is used in an example.

A definition format always includes a description of the item being
defined; where appropriate, it also shows its syntax, includes a
description of its arguments, and gives an example of its use. Here are
some abridged examples of definition formats.

pop- up- menu [Class name]

This is the class of pop-up menus, built on the classes menu and di al og-
item

fred-defaul t-font-spec [Variable]

The *fr ed- def aul t - f ont - spec* variable specifies which font is used
when new Fred (editor) windows are opened. The initial value is
("Monaco" 9 :PLAIN).

W t h-f ocused- vi ew [Macro]

wi t h-f ocused- vi ew view { form} *

The wi t h- f ocused- vi ewmacro executes forms with the current
GrafPort set for drawing into view.

view A view installed in a window, or ni | . If ni | , the current
GrafPort is set to an invisible GrafPort.

form Zero or more forms to be executed with the current view
set.

Here is an example of using Wi t h- f ocused- vi ewto paint a round-
cornered rectangle within a window wi ndowl, using the Macintosh
trap #_Pai nt RoundRect :

(rlet ((r :rect :top 20 :left 20 :bottom 80 :right 60))
(with-focused-vi ew wi ndowl
(#_paintroundrect r 30 30)))

Introduction: About This Book 23

Syntax

Description

Arguments

fi nd-w ndow [Function]

f i nd-wi ndowtitle &opt i onal class

The f i nd- wi ndow function returns the frontmost window of the class
class for which a prefix of the window’s title is st r i ng- equal to title. If
no window has title as its title, ni | is returned.

title A string specifying the title of the window to search for.

class A class used to filter the result. (The &opt i onal in the
syntax means that this argument is optional.)

Definition formats of CLOS generic functions

Syntax

Description

Arguments

Example

Like a function, a CLOS generic function specifies a procedure, but the
generic function is specialized on the class of the instance to which it is
applied. Thus a generic function may have more than one primary
method. The provided methods of generic functions are listed in the
“Syntax” section of the definition. Their syntax includes a procedure for
matching the instance to a class.

set-vi ew position [Generic function]

set - vi ew posi tion (view si npl e-vi ew) h &optional v

The set - vi ew posi ti on generic function sets the position of the view
in its container.

The positions are given in the container’s coordinate system.

view A view or simple view, but not a window.

h The horizontal coordinate of the new position, or the
complete position (encoded as an integer) if v is nil or not
supplied.

v The vertical coordinate of the new position, or ni | if the

complete position is given by h.

This code sets the position of checkbox, a checkbox dialog item, in the
view ed.

? (setf checkbox (mmke-instance 'check-box-dialog-item)
#<CHECK- BOX- DI ALOG- | TEM #x4CF721>
? (set-view position checkbox #@20 20))

24 Macintosh Common Lisp Reference

1310740

The generic functioni ni ti al i ze-i nstance

The generic functioni ni ti al i ze-i nst ance, which is called by the
function that creates an instance, also typically has a number of
initialization arguments, which specify properties of the object instance
and their initial values. These are documented among the arguments.

(Note that the function you call to create an instance is make-
i nst ance; make-i nstancecallsi niti ali ze-instance.)

initialize-instance [Generic function]
Syntax initialize-instance (dialog-item di al og-item &rest
initargs

Description Theinitialize-instance primary method for di al og-item
initializes a dialog item.

Arguments dialog-item A dialog item.
initargs A list of keywords and default values used to initialize a
dialog item. The initargs keywords for all dialog items are:
viewsize

The size of the dialog item.

“view position
The position in the dialog box where the item will be
placed, in the coordinate system of its container.

Argument list punctuation

Macintosh Common Lisp follows the notational conventions of
Common Lisp. Argument lists use punctuation, such as parentheses,
braces, and brackets, in special ways:

» Brackets[] indicate that anything they enclose is optional. This means
that anything within them may appear once or not at all.

» Braces {} followed by an asterisk * mean that whatever they enclose
may appear any number of times or not at all; everything within the
braces is interpreted as a group.

Introduction: About This Book 25

Braces{ } followed by a plus sign + mean that whatever they enclose
may appear multiple times but must appear at least once.

A vertical bar | inside braces or brackets separates mutually exclusive
choices. The group may be composed of a set from one side of the bar
or from the other.

Double brackets [[]] indicate that any number of the enclosed
alternatives may appear, and in any order, but that each alternative
may be used at most once unless followed by an asterisk.

A downward arrow | precedes a syntactic variable that will be
subsequently defined.

Lisp syntax

26

Macintosh Common Lisp follows the syntactic conventions of Common
Lisp; the complete Common Lisp syntax is described in Chapter 22 of
the second edition of Common Lisp: The Language.

The following are some general characteristics of Lisp syntax:

An open parenthesis (also called left parenthesis) begins a list of items.
A close parenthesis (also called right parenthesis) ends a list of items.
Nested lists are enclosed in nested parentheses:

(like (these))

A single quote (also called acute accent or apostrophe) followed by an
expression form is an abbreviation for (quot e form) .

The expression’ f 00 means (quot e f 00) and the expression' (cons
"a 'b) means (quote (cons (quote a) (quote b))).

A semicolon signals a comment. The semicolon and all characters
following it up to the end of the line are ignored. A newline signals the
end of the comment:
(Here is Lisp code) ;Here is a coment,
; whi ch continues here.
(and here is Lisp code again)

Quotation marks, also called double quotes, surround character
strings:
“l'i ke this"

A backslash \, the escape character, causes the next character to be
treated as a letter rather than syntactically. For example, \ { indicates
the character for a left brace.

Vertical bars in pairs | | surround the name of a symbol with many
special characters. Surrounding some characters with vertical bars is
roughly equivalent to putting a backslash before each of the characters.

Macintosh Common Lisp Reference

= A number sign #, also called a hash mark, signals the beginning of a
complicated syntactic structure. The next character designates the
syntactic structure to follow. For example, #61001 means 1001 in
binary notation; #(f 00 bar baz) denotes a vector of three elements,
f 0o, bar, and baz; #\ Adenotes the character object A; #P" f 0o: bah"
indicates the pathname " f 0o: bah"; and #' function means
(functi on function) .

= Agraveaccent " (also called a backquote) is used together with commas
to describe templates. The backquote syntax represents a program that
will construct a data structure; commas are used within backquote
syntax.

= A colon is used to indicate the package of a symbol. For instance,
l'i sp:dial og-itemsize denotes the symbol di al og-item
si ze in the package named | i sp.

Introduction: About This Book 27

28 Macintosh Common Lisp Reference

Chapter 1:

Editing in Macintosh Common Lisp

Contents
The MCL editor / 31
The editing window / 32
Working with the editor / 33
Creating new windows and opening files / 33
Adding textto a file / 33
Saving text to files / 33
Multiple Panes / 34
The minibuffer / 35
The kill ring and the Macintosh Clipboard / 35
Multiple fonts / 36
Packages / 36
Mode lines / 37
An in-package expression / 37
A set-window-package expression / 38
Finding a window’s package / 38
Fred parameters / 38
Normalizing *next-screen-context-lines* / 40
Editing in Macintosh style / 41
Editing in Emacs style / 42
The Control and Meta modifier keys / 42
Disabling dead keys / 43
Fred commands / 43
Help, documentation, and inspection functions / 45
Movement / 46
Selection / 49
Insertion / 52
Deletion / 55
Lisp operations / 57
Window and file operations / 59
Undo commands / 60
Numeric arguments / 61

Incremental searching in Fred / 61

29

Performing an incremental search / 62
Making additional searches / 62
Backing up with the Delete key / 62
Terminating an incremental search / 63
Doing another incremental search / 63
Special incremental search keystrokes / 64

The Fred Commands tool / 65

The Listener Commands tool / 66

The List Definitions tool / 66

The Search Files tool / 67

This chapter describes tools available for editing in MCL. It discusses Fred, the
MCL text editor, as well as a number of additional tools which are helpful in
editing text.

Fred combines the standard Macintosh multiple-window text editor with
Emacs, the fully programmable editor that is a feature of most Lisp
implementations. “Fred” is an acronym for “Fred Resembles Emacs
Deliberately.”

If you are familiar with other Macintosh editors, you can begin editing in
Macintosh Common Lisp immediately. However, Fred is much more powerful
than most Macintosh editors. This chapter describes basic Fred concepts and
keyboard editing shortcuts.

Since Fred is written in Macintosh Common Lisp, it is completely
programmable. If you wish to change or extend it, you should read Chapter 14:
Programming the Editor.

30

The MCL editor

Fred combines a standard Macintosh editor with Emacs, the fully
programmable editor, optimized for Lisp programming, thatis a
feature of most Lisp implementations.

If you are familiar with other Macintosh editors, you can begin editing
in Macintosh Common Lisp immediately. However, Fred has many
more, and more powerful, features than the general run of Macintosh
editors, and it has special features for programming Lisp.

= Fred includes many specialized Lisp manipulation commands. For
example, you can select complete or partial symbolic expressions,
move from level to level of a symbolic expression, reindent them, get
their documentation and argument list, and inspect them, all with
simple keyboard commands.

Lisp expressions can be executed from Fred windows by pressing
Enter (that is, the Enter key on the numeric keypad, not the Return
key) with the cursor position at either end of a top-level expression.
You can also highlight an expression and press Command-E.

Placing the insertion point after a close parenthesis, or before an
open parenthesis, causes the matching parenthesis to blink. For
example, placing the insertion point after a close parenthesis causes
the matching open parenthesis to blink. This feature is very helpful
in balancing parentheses.

Double-clicking after a close parenthesis, or before an open
parenthesis, highlights to the matching parenthesis. For example,
double-clicking before an open parenthesis highlights forward to
the matching close parenthesis. This is another quick way to check
the balance of your parentheses.

Pressing Tab after a Return indents the new line appropriately.

Pressing Control-Meta-Q reindents the current expression in a
readable way.

Pressing Meta—close parenthesis moves the cursor into position for
typing the next expression.

Other Fred commands get information on the argument list of a
function or its documentation, inspect it, and edit its source file.
Most of these are available both on the “Tools” menu and as
keyboard commands.
s Fred has online documentation of its own commands. Choose Fred
Commands from the “Tools” menu to see a window of all Fred

commands.
» Fred supports right-to-left as well as left-to-right editing. For
information on using this feature, see the : | i ne-ri ght-p

initialization arguments of the f r ed- wi ndowand f r ed- di al og-
i t emclasses.

Chapter 1: Editing in Macintosh Common Lisp

31

= Since Fred is written in Macintosh Common Lisp, it is completely
programmable. For example, the file escape- key. | i sp in the MCL
Examples folder binds the Macintosh Escape key to Meta.

The editing window

Figure 1-1 describes the parts of an editor window. At the top, in the
title bar, is the pathname of the file contained in the window. The main
body of the window contains the text of the file which is being edited.
At the bottom of the window, the minibuffer displays the name of the
window’s package and other information.

= Figure1-1 A Fred window

Mark showing that the window has Window title showing pathname
been modified since the last save of edited file
E[I=————Thacks.lisp {0r. Johnson:MACL 2.0:}

defun double Crumber s

"doubles the argument, which should be a number”
(+ pumber number))

COMMON-L | SP-USER| Saving ®F7Dr. Johnson:MACL 2.0 :hacks. lisp [

Current Other minibuffer information
package

32 Macintosh Common Lisp Reference

Working with the editor

This section gives general information on using the editor.

Creating new windows and opening files

To create a new file, press Command-N or choose “New” from the
“File” menu. To open an already existing file, press Command-O or
choose “Open” from the “File” menu.

Adding text to a file

Fred works with a mouse and the keyboard, just like other Macintosh
text editors such as BBEdit. However, it understands Lisp and Lisp
formatting better than those text editors. Specific editing instructions
are given in the sections “Editing in Emacs style” on page 42 and “Fred
commands” on page 43.

Saving text to files

To save the contents of a window, you can use the Command-S
command or choose “Save” from the “File” menu. To save the contents
under another name, choose the “Save As...” command from the “File”
menu.

A small cross to the left of the filename in the title bar of a Fred window
indicates that the contents of the window have been altered since the
window was last saved. (See Figure 1-1.)

The “Windows” menu also displays a small cross to the left of the name
of any window whose contents have been modified and not saved.

0 Note: Fred stores files as text files, so they can be edited with other text
editors. However, if you use another editor on a Fred file containing
multiple fonts, the Fred font information will be corrupted.

Chapter 1: Editing in Macintosh Common Lisp

33

Multiple Panes

34

Fred windows can be split into multiple panes. Each pane can show a
different portion of the text file being edited in the window.

The scrollbars in a Fred window have “pane-splitters” next to them.
The pane splitter is a small black box. To create a new pane, click and
drag on one of the pane splitters. A single vertical line appears in the
window above the cursor. Drag it into the window while holding the
mouse button down. When the window roughly in half, release the
mouse button. The window now contains two individually scrollable
panes. You can also double-click on the pane-splitter to create two
panes of the same size.

When you have multiple-panes, the scroll-bar separating the panes will
be abutted by a control containing two black triangles. This control is
used to resize the panes. Click and drag the control to make the panes
the size that you want. If you make a pane so small that it would be
impractical to use it, the pane is removed. You can also remove a pane
by double-clicking on the pane resizing control.

Each of the panes in a Fred window is provides a different view into a
single file. To view more than one file using Fred, open each file into a
different Fred window.

Figure 1-2 A Fred window with multiple panes

S[=——"cr=————— Window 1

tzetf myg-—window (make-instance windogs
cwindow=title "Hindow 17 :luien.u—
E Csetf wview—1
tmake-instance
‘soral |ing-fred-w i
View-size #@(400 300>
‘h—pane-=splitter :left
‘bar—dragger wertical 2
Cadd—=subviews my-window wview—12

Csetf myg-window (make-instance
cwindow=title "Hindow 1"

tsetf view—1

tmake—instance

‘seral | ing-fred-wiem
iew-size #@0400 3007
‘h—pane-=splitter :left
‘bar—dragger wertical 1)

Cgdd-subviews my-window wiew-1

tsetf view—1
(make-instance
‘seral | ing-fred-uwien
iew-size #@0400 3000
h—pane-splitter :left
‘bar—dragger wertical 3 E
Cgdd-subviews my-window wiew-1

Macintosh Common Lisp Reference

The minibuffer

Each Fred window contains a minibuffer for conveying current
information to the user. The minibuffer is at the bottom of the window,
to the left of the horizontal scroll bar. (See Figures 2-1 and 2-2.)
Information displayed in the minibuffer includes the package
information for the window. This is the name of the window’s package,
if the window has one, or the value of the variable * package*.

Other information displayed in the minibuffer depends on what
Macintosh Common Lisp is doing. Many system commands cause
information to appear in the minibuffer.

In addition, you can set the text of the minibuffer yourself, as described
in Chapter 14: Programming the Editor.

The minibuffer is actually a separate pane in the window, and so it can
be resized. The up-and-down control in the horizontal (bottom)
scrollbar allows you to reshape the window’s minibuffer, to have more
space to view messages there. This is particularly useful if you normally
have *ar gl i st - on- space* set to true, since it allows you to view
long argument lists.

The kill ring and the Macintosh Clipboard

Macintosh Common Lisp supports both the standard Macintosh
Clipboard and an Emacs-style kill ring.

Only the traditional Macintosh commands Cut and Copy move text to
the Clipboard. Only the Macintosh command Paste moves text from the
Clipboard. The Clipboard contains only one edit at a time.

In contrast, the Fred kill ring is a circular list that stores and retrieves
multiple pieces of text. Fred’s kill-ring mechanism guarantees that
important text is not permanently lost through accidental deletion. It is
a far more powerful mechanism than the Clipboard.

Any command that deletes or copies text moves the text to the kill ring.
The Macintosh commands Cut, Copy, and Clear, as well as various
Fred commands, add text to the kill ring. In addition, any text deleted
by a side effect (that is, by typing or pasting when text in the window is
selected) is also moved to the kill ring. Successive deletions with no
intervening commands are concatenated into a single string in the kill
ring. Only white space and single characters deleted by a side effect are
not copied to the kill ring.

Chapter 1: Editing in Macintosh Common Lisp 35

The kill ring is stored as a circular list in the variable *ki | | ed-
strings*. You can retrieve any item from this list using the Fred
command keystrokes Control-Y and Meta-Y, described among the
Insertion commands in this chapter.

Fred commands that delete text do not place the text in the Clipboard,
and Fred text retrieval commands do not retrieve text from the
Clipboard. When you are cutting and pasting between Macintosh
Common Lisp and another Macintosh application, you should use the
Clipboard editing commands—Command-X, Command-C, and
Command-V—rather than the Fred commands.

Multiple fonts

Fred has a standard Macintosh multiple-font capability. Runs of
characters may be in different fonts, and the insertion font can be set
and changed.

Fred window fonts can be set programmatically, as described in
Chapter 14: Programming the Editor.They can also be set through
commands on the “Edit” menu.

Font information is retained during cut, copy, and paste operations.
You can disable this feature by setting the variable * past e- wi t h-
styles* tonil.

Note: If you use an editor other than Fred on a Fred file containing
multiple fonts, the Fred font information is corrupted.

Packages

Any Fred window can have an associated package. Expressions read
from the window are read in the window’s package. If the window
doesn’t have a package, then the value of the variable * package* is
used.

A new, empty Fred window has no associated package.

The package may be set in three ways: through a mode line at the start
of the text in the window, through an i n- package statement, and
through the generic function set - wi ndow- package. These three
methods are not interchangeable. The circumstances under which each
method can be used are described in this section.

36 Macintosh Common Lisp Reference

Mode lines

To give a new, empty Fred window a package, you can add a prototype
mode line by giving the Fred command Control-Meta-M. Then edit it to
suit and use the Fred command Control-Meta-Shift-M to reparse the
mode line and set the window package.

If present, the mode line must be the first nonempty line in the
window’s contents. It begins with one or more semicolons, followed by
- *- (and often by Mode: LI SP and a semicolon), followed by the
package declaration.

For example, the following mode line causes expressions in the window
to be read in the CCL package:

;-*- Mbde: Lisp; Package: CCL -*-

Here are possible package specifications and the forms to which they
are equivalent.

= Package: FOOis equivalentto (i n- package "FOQO').

= Package: (FOO isequivalent to (make- package "FQOO').

= Package: (FOO (bar baz)) isequivalent to (make- package
"FOO' :USE ' ("BAR' "BAZ"))).

= Package: (FOO &rest x) isequivalentto (apply #' make-package

"FOO' x).

If the package specified in the mode line exists, the window’s package
is set to that package. If it does not, the minibuffer indicates a new
package:

(New package FOO)

The first time the package is needed to read an expression in the buffer,

the package is created from the mode line specification, and the
window’s package is set to the created package.

Ani n- package expression

If there is no mode line, Fred looks for an i n- package form at the
beginning of the file. This form must be either the first form in the file
or the second form when the first form defines a package with

def package.

If there is an i n- package form but the package does not exist, the
window’s package is set to ni | and expressions read from the contents
of the window are read in the package that is the value of * package*.
If the package is being created with def package, you must make sure
that the value of * package* either is or uses the package " COMMON-
LI SP".

Once the package exists, use the Fred command Control-Meta-Shift-M
to parse the mode line and set the window package.

Chapter 1: Editing in Macintosh Common Lisp

37

0 Note: The search for the i n- package form ignores the read-time
conditionals #+ and #- .

A set -wi ndow package expression

If you don’t use either of the above methods, you can use the generic
function set - wi ndow package. The method for Fred windows takes
two arguments, a Fred window and a package or a symbol that names
a package.

Finding a window’s package

You can find the package associated with a Fred window by calling the
generic functionwi ndow- package, with the window as the argument,
or by looking in the minibuffer.

Fred parameters

The parameters in Table 1-1 can be used to control some of the behavior
of Fred.

38 Macintosh Common Lisp Reference

= Table1-1 Fred parameters

Variable Purpose

argl i st-on-space Displays in the minibuffer the argument list of a function
when a user types a space following an open parenthesis
and function name. (Does not parse; displays argument list
of any symbol name that follows an open parenthesis.)
Default is true; displays argument list for functions. If ni |,
does not display.

*cl ear - mini - buf f er * Specifies whether to clear the minibuffer after each Fred
command. If you operate with *ar gl i st - on- space*
true, you may wish to set this to ni | so that argument lists
persist long enough to use.

Default is true; text is cleared from minibuffer after any Fred
command is run. If ni | , text is cleared from minibuffer only
when being replaced by other text.

cont r ol - key- mappi ng Allows the command or command-shift key to be used as a
Control key. This option is most useful for Macintosh
keyboards with no Control key, determines which key
combination specifies MCL Control key. The variable
should have one of the following values:

ni |
give no special meaning to command or command-
shift.
. command- shi ft
command-shift maps to control and command is command.
. command
command maps to control and command-shift maps to
command.

Default is ni | .

fred- def aul t - f ont - spec Specifies which font is used when new Fred windows are
opened. The initial value is (" Monaco" 9 : PLAIN).

m ni - buf f er - f ont - spec Specifies the font used in minibuffers. The default value is
(" Monaco" 9) . Note that the size of minibuffers does not
increase even when a large point size is used.

(continued)

Chapter 1: Editing in Macintosh Common Lisp 39

= Table1-1 Fred parameters (continued)

Variable Purpose

next - screen- cont ext - | i nes

past e-wi t h-styl es

save- fred- wi ndow posi ti ons

*save- posi ti on- on-w ndow
cl ose*

This variable must be either an integer or a floating-point
number.

When it is an integer, it determines the number of context
lines to retain when Fred scrolls to the previous or next
screen. (Context lines are the lines from the previous screen
that are retained on the new screen.) This value is used by
various commands that scroll Fred windows. The default
value is 2.

When this variable is a floating-point number, it represents
the percentage of context lines to retain. The value must be
between 0.0 and 100.0.

Affects all commands that cause text to be pasted into a
window.

Default is true; style information is retained when text is
copied and pasted. If ni | , style information is discarded.

Affects whether window size, position, and current
selection of Fred windows are retained when files are saved
and later reopened.

Default is true; information is retained. If ni | , information is
discarded.

Determines when the editor saves information about the
size, position, beginning line, cursor position, and selection
of the Fred window.

Default is ni | ; when * save- f r ed- wi ndow posi ti ons*
is true, information is saved in the file’s resource fork when
the file is saved. If true, information is saved whenever the
window is closed.

Normalizing * next - scr een- cont ext - | i nes*

The next - scr een- cont ext - | i nes function is used to normalize
the Fred parameter * next - scr een- cont ext - | i nes* for a
particular screen height.

40 Macintosh Common Lisp Reference

Syntax

Description

Argument

Example

next - screen-context-1ines [Function |

next - scr een- cont ext - | i nes screen-height

The next - screen- cont ext - | i nes function returns the number of
lines of context to leave when scrolling a window.

screen-height ~ The window height in text lines.

This function could be defined as follows.
? (defun next-screen-context-lines (screen-height)
(let ((context *next-screen-context-Ilines*))
(if (floatp context)
(round (* context screen-height))
(if (and (fixnunp context)
(< 0 context screen-height))
cont ext

0))))

Editing in Macintosh style

Fred supports the standard set of Macintosh editing features and
conforms to Macintosh standards. The basic Macintosh editing
commands are available on the “Edit” menu, and their keyboard
equivalents are supported.

You can cut, copy, and paste text between different windows (including
the Listener) using Macintosh commands.

You can use almost any combination of MCL editing commands and
Macintosh commands. You do not have to worry about how you
combine them.

Chapter 1: Editing in Macintosh Common Lisp

41

Editing in Emacs style

Fred supports a full suite of keyboard commands for manipulating text.
Fred commands have been defined with care to conform to Emacs
conventions. The exceptions are primarily due to the Macintosh
standards and keyboard limitations.

The Control and Meta modifier keys

42

Emacs relies on two modifier keys to indicate command keystrokes. In
Emacs, these modifiers are called Control and Meta. In Macintosh
Common Lisp, various keystrokes may be used to invoke Control and
Meta sequences.

s The Emacs Control modifier is accessible through the Macintosh
Control key or through the Command key (on Macintosh keyboards

that don’t have a Control key). In all MCL documentation, whichever
key you are using to indicate Control is referred to as the Control key.
See the description of the variable *cont r ol - key- mappi ng* in the
preceding table for instructions on using the Command key to indicate
control.

To issue a Control command, hold down the Control key while you
press the letter of the command. For example, to enter Control-X, hold
down the Control key and press X. To enter Control-X Control-S (the
Emacs Save command), hold down the Control key and press X, then
continue to hold down the Control key and press S. To enter Control-X
H (the Emacs Select Entire Buffer command), hold down the Control
key and press X, then release the Control key and press H.

The Emacs Meta modifier is accessed through the Macintosh Option
key.

To issue a Meta command, hold down the Meta key while you press the
letter of the command. For example, to enter Meta-X, hold down the
Meta key and press X. This differs from some other implementations of
Emacs, in which you press and release the Meta key before pressing the
command letter.

If you would prefer to use the Escape key as a Meta key, load the file
escape- key. | i spinthe Examples folder. To issue a meta command,
press and release the escape key before you press the command letter.
The Option key remains a Meta key and works as it did before.

To insert a Macintosh Option character into Macintosh Common Lisp,
quote it: press Control-Q, then the character. For instance, you can
insert the bullet sign, normally the Option-8 keystroke, by pressing
Control-Q, then Option-8.

Macintosh Common Lisp Reference

Control-Q works only on the next character typed; if you want to type
a second Option character, press Control-Q again.

Disabling dead keys

The Macintosh keyboard supports dead keys. These are certain Option
keystrokes used to prefix other keystrokes. The initial keystroke does
not generate a character, but the second keystroke does. For example,
no character appears when you press Option-N on a Macintosh
English-language keyboard, but if you press A subsequently, you
generate the character a.

The dead key mechanism can interfere with the use of the Option key
as the Meta key modifier. You can get around this in one of two ways:

= You can install a second keyboard layout that does not support dead
keys. A number of freeware and shareware keyboard layouts are
available for this purpose. You can also make your own keyboard
layout by copying and editing the 'KCHR' resource. This resource type
is documented in Inside Macintosh.

If you install a keyboard layout that does not support dead keys, you

caninsert a dead-key keystroke in Macintosh Common Lisp by quoting
it. For example, you can generate the character & by pressing Control-
Q Control-N A.

= You can use the Escape key as a Meta key, as described in the previous
section. If you do this regularly, load escape- key. | i sp as part of
youri nit file.

Fred commands

The following Fred commands are defined in the initial MCL
environment. Files in the Examples folder include additional Fred
commands, and you can also write your own (as described in “Defining
Fred commands” on page 516). Many commands are case insensitive;
that is, you can press either Control-D or Control-Shift-D.

On the Apple Extended Keyboard, MCL editing uses the six named
keys—Help, Forward Delete, Home, End, Page Up, and Page Down—
in addition to the commands listed here.

Chapter 1: Editing in Macintosh Common Lisp

44

Macintosh Common Lisp also uses the mouse for editing, both in the
standard Macintosh way and in a few extended commands. For
example, Macintosh Common Lisp recognizes up to a quadruple
mouse click; it also recognizes mouse clicks in combination with
Control and Meta keys. These commands are documented below.

The term current expression, used in the following documentation,
denotes the text currently selected, if any. If no text is selected and the
insertion point is next to a parenthesis, the current expression is
between that parenthesis and the matching parenthesis—for example,
between a close parenthesis and the matching open parenthesis, or
between an open parenthesis and the matching close parenthesis. If no
text is selected and the insertion point is inside a symbol, the symbol is
the current expression. In other cases, there is no current expression.

Macintosh Common Lisp Reference

Help, documentation, and inspection functions

The keystrokes and functions in Table 1-2 give information about
Macintosh Common Lisp and its components.

= Table1-2 Fred commands for help, documentation, and inspection

Keystroke Function invokedPurpose

Control-? ed- hel p Brings up the Fred Commands window. This
window contains a list of all Fred keyboard
commands available in the global command
table. The list is regenerated each time the
window is created. The Fred Commands
window may be searched, saved, and printed.

Control-= ed- what - cur sor - Prints information about the current editor

posi tion

Meta-period ed-edi t-definition

(continued)

window to * st andar d- out put *.

Attempts to bring up the source code definition
for the symbol surrounding the insertion point.
If the symbol is defined from more than one
source file, the user is given a choice of
definitions. If the symbol is defined as a slot in
adef cl ass, Meta-period finds the approximate
location of the symbol. Search backward with
Control-R to find the location at which the
symbol is defined.

This function works for most forms that are
defined with *r ecor d- source-fil e* setto
t.

Chapter 1: Editing in Macintosh Common Lisp 45

= Table 1-2

Fred commands for help, documentation, and inspection (continued)

Keystroke Function invoked

Purpose

Command-Meta-click edit-definition

Attempts to bring up the source code definition
for the symbol on which the mouse clicks;
works like ed- edi t - defi ni ti on.

Prints the argument list of the function bound

to the symbol surrounding the insertion point.

Argument list is displayed in the minibuffer if
the value of * i ni - buf f er - hel p- out put *

is t ; otherwise, it is displayed in the

*st andar d- out put * stream. The ed-

ar gl i st function works for built-in functions
and macros, and for most functions and macros
defined with *save- | ocal - synbol s* or

f asl - save-| ocal - synbol s settot.

Opens a dialog box displaying the symbol
surrounding the insertion point and the
documentation string of the function bound to
that symbol. If no documentation string is
available, displays “No documentation
available.” This function works for built-in
functions and macros and for most forms
defined with *save- doc- st ri ngs* set to
true.

Inspects the current symbolic expression.

During editing, use the functions and keystrokes in Table 1-3 to move the
insertion point. Most of these movement commands can be modified by
the Shift key to establish or extend a selection; see Table 1-4.

Control-X ed-argli st

Control-A

Control-X ed- get - docunent at i on
Control-D

Control-X ed- i nspect - current -
Control-I sexp

Movement

46 Macintosh Common Lisp Reference

s Table1-3 Fred commands for movement

Keystroke Function invoked

Purpose

Control-B, « ed- backwar d- char

Control-F, - ed- f or war d- char
Meta-B, ed- backwar d- wor d
Meta- ~

Meta-F, ed- f or war d- wor d
Meta- -

Control-Meta-B, ed- backwar d- sexp
Control- «

Control-Meta-F, ed- f or war d- sexp

Control- -
Control-A ed- begi nni ng-of - i ne
Control-E ed-end-of -1i ne

Control-Meta-A ed-start-top-1evel -

sexp

Control-Meta-E ed- end-t op- | evel -

sexp

Control-P ed- previ ous-1ine

Control-N ed-next-1ine

Meta-V ed- pr evi ous- screen
(continued)

Chapter 1: Editing in Macintosh Common Lisp

Moves the insertion point back one character..

Moves the insertion point forward one
character.

Moves the insertion point back one word.

Moves the insertion point forward one word.

Moves the insertion point back one s-
expression.

Moves the insertion point forward one s-
expression.

Moves the insertion point to the beginning of
the line.

Moves the insertion point to the end of the line.

Moves the insertion point to the beginning of
the current top-level s-expression. Top-level
expressions are signaled by an open
parenthesis flush with the left margin.

Moves the insertion point to the end of the
current top-level s-expression. Top-level
expressions are recognized by having an open
parenthesis flush with the left margin.

Moves the insertion point up one line.
Moves the insertion point down one line.

Scrolls upward through the text by a
windowful and moves the insertion point to the
upper-left corner of the window. The number
of lines to be retained from the previous screen
after scrolling is determined by * next -
screen-context-lines*.

47

= Table1-3

Fred commands for movement (continued)

Keystroke

Function invokedPurpose

Control-V

Meta-<

Meta->

Meta-)

Control-Tab

Control-Meta-)

Control-Meta-(

Control-Meta-N,
Control-Meta-!

Control-Meta-P,
Control-Meta-1

Meta-M

48 Macintosh Common Lisp Reference

ed- next - screen

ed- begi nni ng- of -

buf f er

ed- end- of - buf f er

ed- nove- over - cl ose-

and-r ei ndent

ed- i ndent -
differently

ed-fwd- up-1i st

ed- bwd- up-11i st

ed-next-1ist

ed- previ ous- i st

ed- back-to-
i ndentation

Scrolls downward through the text by a
windowful and moves the insertion point to the
upper-left corner of the window. The number
of lines to be retained is determined by * next -
screen-context-1ines*.

Moves the insertion point to the beginning of
the buffer.

Moves the insertion point to the end of the
buffer.

Moves the insertion point over the next close
parenthesis and into position for typing the
next Lisp expression.

Reindents the line containing the insertion
point to an alternate indentation.

Moves the insertion point past the end of the
current s-expression. Used again, it moves the
insertion point up one level of the expression,
that is, past the close parenthesis at the next
higher level of the expression.;

Moves the insertion point to before the
beginning of the current s-expression. Used
again, it moves the insertion point up one level
of the expression, that is, to before the open
parenthesis at the next higher level of the
expression.;

Moves the insertion point in window past the
end parenthesis of the next s-expression at the
same level.;

Moves the insertion point to before the opening
parenthesis of the previous s-expression at the
same level.;

Moves the insertion point to the first non-
white-space character in its current line.

Selection

The keystrokes in Table 1-4 are used to select text. You can modify most
motion commands with the Shift key to select the region between the
original insertion point and the new insertion point.

In addition, you can use the mouse to select text, either through
multiple-clicks, or by clicking and dragging.

= Two clicks selects a word or parenthesized expression.

» Three clicks selects a line.

» Four clicks selects the entire window contents.

s Table1-4 Fred commands for selection
Keystroke Function invoked Purpose
Shift- — ed- backwar d-sel ect- Selects one character backward from the
char insertion point and moves the insertion point to
the left of that character.
Shift- - ed- f or war d- sel ect - Selects one character forward from the

Meta-Shift-

Meta-Shift- -

Control-Shift- —

(continued)

char

ed- backwar d- sel ect -
wor d

ed- f or war d- sel ect -
wor d

ed- backwar d- sel ect -
sexp

insertion point and moves the insertion point to
the right of that character.

Selects one word backward from the insertion
point and moves the insertion point to the left
of that word. If the insertion point is in the
middle of a word, selects the word.

Selects one word forward from the insertion
point and moves the insertion point to the right
of that word. If the insertion point is in the
middle of a word, selects the word.

Selects one symbolic expression backward from
the insertion point and moves the insertion
point to the left of that symbolic expression. If
the insertion point is in the middle of a word,
selects to the beginning of the word.

Chapter 1: Editing in Macintosh Common Lisp 49

= Table1-4

Fred commands for selection (continued)

Keystroke

Function invokedPurpose

Control-Shift- -

Control-Shift-A

Control-Shift-E

Control-Meta-H

Control-Meta-Space
bar

Control-X H

Shift-1,
Control-Shift-P

Shift-1,
Control-Shift-N

(continued)

ed- f or war d- sel ect -
sexp

ed- sel ect - begi nni ng-
of-1ine

ed- sel ect - end- of -
line

ed- sel ect -t op- | evel -
sexp

ed-sel ect-current -
sexp

sel ect-al |

ed- sel ect - previ ous-
l'ine

ed-sel ect-next-line

50 Macintosh Common Lisp Reference

Selects one symbolic expression forward from
the insertion point and moves the insertion
point to the right of that symbolic expression. If
the insertion point is in the middle of a word,
selects to the end of the word.

Selects to the beginning of the line and moves
the insertion point to the beginning of the
selection.

Selects to the end of the line and moves the
insertion point to the end of the selection.

Selects the current top-level s-expression. Top-
level expressions are signaled by an open
parenthesis flush with the left margin.

Selects the current s-expression.

Selects the entire buffer and scrolls to the
beginning of the buffer.

Selects to the same point of the previous line
and moves the insertion point to before the
beginning of the selection. If it is not possible to
move the insertion point to the same column in
the previous line, it moves the insertion point to
the end of the previous line.

Selects to the same point of the next line and
moves the insertion point past the end of the
selection. If it is not possible to move the
insertion point to the same column in the next
line, Macintosh Common Lisp moves the
insertion point to the end of the next line.

= Table1-4

Fred commands for selection (continued)

Keystroke

Function invokedPurpose

Shift-Page Up,
Meta-Shift-V

Shift-Page Down,
Control-Shift-V

Control-Meta-Shift-P,
Control-Meta-Shift-1

Control-Meta-Shift-N,
Control-Meta-Shift-!

Control-X Control-X

ed- sel ect - pr evi ous-
screen

ed- sel ect - next -
screen

ed- sel ect - pr evi ous-
list

ed- sel ect-next -1i st

ed- exchange- poi nt -
and- nmar k

Chapter 1: Editing in Macintosh Common Lisp

Selects from the insertion point to the
corresponding line and column in the previous
screen, or, if this is not possible, to the end of the
corresponding line on the previous screen. It
moves the insertion point to before the
beginning of the selection.

Selects from the insertion point to the
corresponding line and column in the next
screen, or, if this is not possible, to the end of the
corresponding line on the next screen. It moves
the insertion point past the end of the selection.

Selects to the beginning of the previous list at
the same level and moves the insertion point to
before the open parenthesis of that list.

Selects to the end of the next list at the same
level and moves the insertion point past the
close parenthesis of that list.

Exchanges the positions of the insertion point
and the top mark. With an argument, the range
between the two is selected. For example,
Control-X Control-X exchanges the position of
the point and the mark; Control-1 Control-X
Control-X exchanges them and selects the
range between.

51

Insertion

The keystrokes in Table 1-5 are used to insert text and space.

s Table1-5 Fred commands for insertion
Keystroke Function invoked Purpose
Control-O ed-open-1ine Inserts a new line without moving the insertion

Control-Meta-O ed-split-line

Tab ed-indent-for-1lisp

Control-Meta-Q ed-i ndent - sexp

Control-Return ed- new i ne- and-

i ndent
Control-Y ed- yank
Meta-Y ed- yank- pop
(continued)

52 Macintosh Common Lisp Reference

point.

Splits the line in which the insertion point is
located, indenting so that the column in which
the characters are located does not change.

Reindents the current line. (To insert a tab,
press Control-Q followed by Tab.) If there is a
selection, the entire selection is reindented.

Reindents the current expression.

Inserts Return followed by Tab.

Inserts (yanks) the current kill ring string into
the buffer at the insertion point. If text is
selected, it is replaced with the inserted text.
This command keystroke is often used after Cut
or Copy (Control-W or Meta-W).

Performs a “rotating yank.” When Meta-Y is
first pressed, the first item in the kill ring is
inserted (yanked). If pressed immediately
again, Meta-Y removes the old insertion,
rotates the kill ring, and inserts the next item in
the kill ring. Repeatedly pressing Meta-Y
shows each item in the kill ring (you rotate
through the kill ring and eventually return to
the beginning). The kill ring remains rotated
until you perform another kill.

s Table1-5 Fred commands for insertion (continued)

Keystroke Function invoked

Purpose

Control -Q

Met a- " ed-i nsert - doubl e-
quot es

Met a- # ed-i nsert - shar p-
conment

Met a- (ed-i nsert - par ens

Met a- U ed- upcase- wor d

Met a- L ed- downcase-wor d

(continued)

Inserts the next keystroke quoted, allowing
access to the Macintosh optional character set
and other special characters. Thatis, for a single
keystroke following the pressing of Control-Q,
the Option key is not interpreted as a Meta
keystroke. For example, you insert the bullet
sign (normally the Option-8 keystroke) by
pressing the Control-Q and Meta-8. Pressing
only Meta-8 would cause Fred to look for a
command. Control-Q can also be used to insert
control characters such as tabs into buffers.

"non

Inserts the characters
point between them.

and puts the insertion

Inserts the characters #| | # and puts the
insertion point between the vertical bars.

Inserts a set of parentheses and puts the
insertion point between them.

Converts the rest of the current word or each
word in a selection to uppercase. For example,
if the insertion point is between the y and the u
of the word gi ddyup, pressing Meta-U
produces gi ddyUP. Repeatedly typing Meta-U
converts successive words to uppercase. Note
that Option-U is a dead key on English-
language keyboards; see “Disabling dead keys”
on page 43.

Converts the rest of the current word or each
word in a selection to lowercase. For example,
if the insertion point is between the E and the M
of the word EMACS, pressing Meta-L produces
Emacs. Repeatedly typing Meta-L converts
successive words to lowercase.

Chapter 1: Editing in Macintosh Common Lisp 53

s Table1-5 Fred commands for insertion (continued)

Keystroke

Function invoked

Purpose Deletion

Meta-C

Control-T

Meta-T

Control-Meta-T

Control-Space bar

Control-X Control-X

ed-capitalize-word

ed- t ranspose- char s

ed- t r anspose- wor ds
ed- t r anspose- sexps
ed- push/ pop- mar k-

ring

ed- exchange- poi nt -
and- mar k

54 Macintosh Common Lisp Reference

Capitalizes the first letter of the rest of the
current word or the first letter of each word in a
selection. For example, if the insertion point is
between the first and second ¢ of the word

Hi ccup, typing Meta-C produces Hi cCup.
Repeatedly typing Meta-C capitalizes
successive words.

Transposes the two characters surrounding the
insertion point unless the insertion point is at
the end of a line, in which case it transposes the
two characters to the left of the insertion point.
If there is a selection, the first character in the
selection is transposed with the character
before the selection.

Transposes the two words surrounding the
insertion point.

Transposes the two symbolic expressions
surrounding the insertion point.

Pushes the position of a mark onto the mark
ring. With an argument 7, it moves to the nth
mark position in the mark ring. If the mark ring
is empty, the function signals an error.

Exchanges the positions of the insertion point
and the top mark. With an argument, the range
between the two is selected. For example,
Control-X Control-X exchanges the position of
the point and the mark; Control-1 Control-X
Control-X exchanges them and selects the
range between.

Deletion

The keystrokes and functions in Table 1-6 are used to delete text and

spaces.

0 Note: The key in Delete, Meta-Delete, and Control-Meta-Delete is the
Delete key, not the Forward Delete key on the Apple Extended
Keyboard.

s Table1-6 Fred commands for deletion

Keystroke

Function invoked

Purpose

Delete

Meta-Delete

Control-Meta-Delete

Control-D,
Forward Delete
(extended keyboard)

Meta-D

Control-K

Control-Meta-K

(continued)

ed- r ubout - char

ed- r ubout - wor d

ed- ki I | - backwar d-
sexp

ed- del et e- char

ed- del et e-word

ed-kill-Iine

ed-ki | | -f orwar d- sexp

Deletes the character to the left of the insertion
point.

Deletes the word to the left of the insertion
point. If the insertion point is inside a word,
only the portion of the word to the left of the
insertion point is deleted.

Deletes the expression to the left of the insertion
point.

Deletes the character to the right of the insertion
point. (This is the Forward Delete key on the
Apple Extended Keyboard, not the Delete key
over the Return key.)

Deletes the word to the right of the insertion
point. If the insertion point is inside a word,
only the portion of the word to the right of the
insertion point is deleted.

Deletes the remainder of the line containing the
insertion point, adding it to the kill ring. If the
insertion point is at the end of a line, the
following carriage return is deleted.

Deletes the expression to the right of the
insertion point, adding it to the kill ring.

Chapter 1: Editing in Macintosh Common Lisp 55

s Table1-6 Fred commands for deletion (continued)

Keystroke Function invoked Purpose

Control-W ed-kill-region Deletes the current selection, adding it to the
kill ring.

Meta-W ed- copy- r egi on- as- Adds the current selection (or current

kill expression) to the kill ring without deleting it

from the buffer.

Control-X ed- del et e- f or war d- Deletes all white-space from the insertion point

Control-Space bar
Meta—Space bar

Meta-\

Control-Meta-;

whi t espace

ed- del et e- whi t espace

ed- del et e-
hori zont al -
whi t espace

ed-ki | | -comment

56 Macintosh Common Lisp Reference

to the next non-white-space character.
Replaces all spaces and tabs surrounding the
insertion point by a single space.

Deletes all white space characters to the left and
right of the insertion point.

Kills only the comment in the line containing
the insertion point. The insertion point may be
located anywhere in the line.

Lisp operations

The functions and keystrokes in Table 1-7 perform Lisp operations on
the current expression.

= Table1-7 Fred commands for Lisp operations
Keystroke Function invoked Purpose
Enter ed-eval -or-conpi l e- Executes or compiles the current expression.

Control-X Control-C

Control-X Control-E
Control-M

Control-X Control-M

Control-Meta-Shift-M
Control-X Control-R

(continued)

current - sexp

ed- eval - or - conpi | e-
t op- | evel - sexp

ed- eval - current - sexp

ed- macr oexpand- 1-
current - sexp

ed- macr oexpand-
current-sexp

add- nodel i ne

ed-r ead- current - sexp

Chapter 1: Editing in Macintosh Common Lisp

This key is not the Return key (which inserts a
carriage return and may cause an execution in
the Listener) but the key marked Enter in the
numeric keypad.

Executes or compiles the current selection or
the current top-level Lisp expression,
whichever is appropriate. The current top-level
Lisp expression is determined heuristically by
searching backward for an open parenthesis at
the start of a line.

Executes the current expression.

Macroexpands the current expression with
macr oexpand—4, repeatedly if necessary, until
the expression is no longer a macro. The result
of each call to macr oexpand- 1 is printed in
the Listener.

Macroexpands the current expression and
pretty-prints the result into the Listener. The
expansion is done as if by a call to

macr oexpand.

Adds a mode line.

Reads the current expression and pretty-prints
the result into the Listener. This command is
useful for checking read-time bugs, especially
for those expressions containing backquotes.

57

= Table1-7 Fred commands for Lisp operations (continued)

Purpose

Keystroke Function invoked
Meta-; ed- i ndent - conmrent
Control-X ; ed- set - conment -
col um
Control-Meta-; ed-ki | | - conment

58 Macintosh Common Lisp Reference

Inserts or aligns comments. If the line that
contains the insertion point of window or item
starts with one or more semicolons (which
indicate comments in Lisp), aligns the line with
the comment column (by default, column 40).

If there is no comment on the line containing
the insertion point, the function inserts a
semicolon at the comment column, followed by
a space, and moves the insertion point to the
comment column +2.

Sets the comment column to that of the current
insertion point.

Kills only the comment in the line containing
the insertion point. The insertion point may be
located anywhere in the line.

Window and file operations

The functions and keystrokes in Table 1-8 are used to save and select

text manipulated in windows.

= Table 1-8

Fred commands for window and file operations

Keystroke Function invoked

Purpose

Control-X Control-S w ndow save

Control-X Control-W wi ndow save- as

edit-select-file

Control-X Control-V

Control-Meta-L ed-1 ast-buffer

Saves the contents of the active Fred window to
its associated disk file. If no file is associated
with the window, the user is requested to
supply a filename.

Saves the contents of the active Fred window to
a file specified by the user.

Allows the user to select a text file and opens a
Fred window for editing that file. .

Switches the positions of the first and second
windows on the list of windows, so that the
second window becomes the active window.
Called again, it toggles their positions again. (It
switches away from Apropos, Inspector
Central, Search Files, and String Search, but not
back.)

Chapter 1: Editing in Macintosh Common Lisp 59

Undo commands

The Undo command undoes the effect of previous commands.
Functions and keystrokes associated with Undo are listed in Table 1-9.
Successive insertions or deletions, or multiple replacements via the
Search dialog, are considered a single command.

Each window has its own Undo history list.

= Table1-9 Fred commands for undoing commands

Keystroke Function invoked Purpose
Control-_ ed- hi st ory-undo Undoes a previous Fred command.
Control-Meta-_ ed-print-history Displays the Undo history list in the Listener.

60 Macintosh Common Lisp Reference

Numeric arguments

The keystrokes in Table 1-10 multiply the effect of any command to
which they can be applied. (They can always be applied to motion and

selection commands.)

= Table1-10 Fred commands for giving numeric arguments

Keystroke Function invoked

Purpose

ed- uni ver sal -
ar gunent

Control-U n

Control-n, Meta-n, ed- nuneri c- ar gunent

Control-Meta-n

The universal argument multiplies any Fred
keystroke command n number of times. The
argument 7 is optional. If a keystroke command
is entered instead of a number, 7 is taken to be
4. For example, to move down four lines, you
give the command Control-U Control-N. To
move down three lines, you give the command
Control-U 3 Control-N. (Entering a very large
number may result in an error.)

Turns a digit n into a numeric argument for the
subsequent command. For example, pressing
Meta-5 Control-N moves the insertion point
down five lines; pressing Meta-1 Meta-2
Control-N moves it down twelve lines.
(Entering a very large number may result in an
error.)

Incremental searching in Fred

Fred supports an Emacs-style incremental search. The incremental
search is invoked through the keystrokes Control-S (incremental search
forward) and Control-R (incremental search reverse).

The mechanism of incremental search is fairly complicated. However,
this complexity is necessary to make the incremental search easy to
perform (as well as powerful). If you have trouble following this
description, experiment with incremental searching. You should get the

hang of it easily.

Chapter 1: Editing in Macintosh Common Lisp

61

Performing an incremental search

When you first press Control-S in a Fred window, Fred displays the
prompt i - sear ch in the window’s minibuffer (or i - sear ch
rever se for Control-R). At this point, you can start typing the
characters in your search string.

If you type f , Fred immediately searches for the next occurrence of f
after the insertion point and selects it, scrolling through the text if
necessary to make it visible.

If you then type 0, Fred starts with the currently selected f and searches
for f 0. You can continue typing characters to add to the search string.
With each addition, Fred immediately searches for the next occurrence
of the string and selects the found text. The next occurrence may be a
simple extension of the previously found text, or it may occur later in
the buffer.

Making additional searches

Suppose you type f 00 and Fred finds the string in the buffer, but it is
not the right one. You want a later occurrence of f 00. Press Control-S a
second time to search for the next occurrence of f 00. You can continue
pressing Control-S to search for subsequent occurrences of the string.

When a search fails, you hear a beep, and the i - sear ch prompt
changes to Fai | i ng i - sear ch. A search may fail because there are
no more occurrences of the string or because you add a character to the
search string and that new string cannot be found in the buffer. In either
case, pressing Control-S again at this point causes the search to begin
again at the beginning of the buffer.

The behavior of Control-R is identical to that of Control-S except that
the search proceeds backward from the insertion point to the
beginning. When no further occurrences are found and you press
Control-R again, the search begins anew from the end of the buffer.

Backing up with the Delete key

62

Sometimes you may want to change the search string. For example, you
may mistakenly typef oot instead of f 0ol . Pressing the Delete key has
the effect of undoing the last keystroke in the search string. This deletes
the last character of the search string and, if necessary, resumes the
search at the buffer location where the insertion point was when you
typed the last character of the search string. Pressing Delete several
times removes additional characters from the search string and “moves
back” the search further.

Macintosh Common Lisp Reference

You can use the Delete key to undo the effects of Control-S and Control-
R in addition to the effects of adding characters to the search string. For
example, suppose you type f 00 and then press Control-S twice. At this
point, the insertion point will be located at the third occurrence of f 00
in the window (assuming there are three occurrences of f 00). If you
then press Delete, Fred reverses the effects of the last keystroke
(Control-S), returning to the second occurrence of f 00. Pressing Delete
again undoes the first Control-S, and the insertion point moves to the
first occurrence. Pressing Delete yet again undoes the letter o, and Fred
shows you the first occurrence of f 0 in the window.

If the last keystroke added a block of characters to the search string,
pressing Delete removes the entire block. (See Control-Q, Control-W,
and Control-Y in “Special incremental search keystrokes” on page 64.)

Terminating an incremental search

There are a number of ways to terminate an incremental search:

s Clicking the mouse button performs the indicated action and
terminates the incremental search.

» Pressing Escape terminates the incremental search, moving the
insertion point to the end of the selection (on incremental search) or
beginning of the selection (on incremental search reverse).

» Pressing Control-G terminates the search if there were no unfound
characters and returns the insertion point to its location before the

search began. If there were some unfound characters, these are deleted

from the search string, and the search can continue.

s Choosing a Fred command causes the command to be executed and
terminates the search.

s Choosing a menu command causes the command to be executed and

terminates the search.

Doing another incremental search

Fred keeps track of the last string used in an incremental search. When
you do another incremental search, this string appears in the minibuffer
as the default search string. This feature makes it easy to search several
windows for the same string.

When the default string appears, immediately press Control-S or
Control-R to search for the string. If you type anything else before
typing Control-S or Control-R, Fred deletes the default string and starts
a search for the new string.

Chapter 1: Editing in Macintosh Common Lisp

63

Special incremental search keystrokes

These keystrokes in Table 1-11 have special meanings in the context of

an incremental search.

= Table1-11 Fred commands for searching

Keystroke Function invoked

Purpose

Control-S ed-i -search-forward

Control-R ed-i -search-reverse

Delete

Control-G

Control-Q

Control-W

Control-Y

Control-S
Control-Y

Control-S
Control-W

Control-S
Control-Meta-W

Control-S
Meta-W

64 Macintosh Common Lisp Reference

Initiates a forward incremental search..
Initiates a reverse incremental search.

Deletes the last character typed and backs up
the search.

During a search that has found nothing, deletes
all unfound characters from the search string.
The search can then continue. During a
successful search, ends the incremental search
and returns the insertion point to its original
position.

Gets a character and inserts it quoted into the
search string. This is used to search for special

characters, such as Control-S, Return, or Tab.

Copies the word or selection following the
insertion point into the search string.

Copies the line following the insertion point
into the search string.

Appends the selection or rest of line to the
search string.

Appends the string from the insertion point to
the end of the current word to the search string.
Appends the string from the insertion point to
the end of the current s-expression to the search
string.

Ends the search.

The Fred Commands tool

The Fred Commands tool is accessed through the “Fred Commands”
command on the “Tools” menu. It lists all the Fred commands bound to
keys. (These commands are those in the command table stored in the

parameter *cont ab*).

The following figure shows the Fred Commands dialog box. The
Contains text edit field specifies a string contained by commands in the
scrolling-list. The Keystroke buttons and Key box are live controls that
specify a key sequence to show in the list.

The Keystroke button specifies a keystroke when you press the button
with your mouse or press a corresponding key on your keyboard. To
enter a character in the Key box, you must first click in the box, then

type a character from your keyboard.

s Figure1-3 The Fred Commands dialog box

E[I=———= Fred Commands

Function Keystroke

Contains: Key :

[Fubiout | [[ctrn [Meta
ED-RUEBOUT-CHAR shift-Ozlate A

]
Documentation
ED-RUBOUT—-CHAR Vi 43
[Gemeric Functiom =
deletes the character to the left of the insertion point. Bound to the —
Delete key (the one above the Return key, not the second Delete key @
on the Apple Extended Keyboard). ﬂ
[

Chapter 1: Editing in Macintosh Common Lisp 65

The Listener Commands tool

Figure 1-4

The editing commands available in the Listener are slightly different
from those available in other Fred windows. The Listener Commands
tool, accessed through the “Tools” menu, lists these differences. (The
commands it shows are those stored in *| i st ener - cont ab*).

The operation of this tool is the same as that of the Fred Commands
tool.

The Listener Commands dialog box

S[I=——— Listener Commands

Function Keystroke

Contains: Shift Key :

| insert | Ctr Meta
EO-SELF-IMSERT c—Feturn ey

=
Documentation
ED-SELF—INSERT Ww/aden - - Fiens 4
[Semeric Fumetiod =
inzerts the character bound to #current—character# -
into the buffer. This function should be called only fram @
within Fred commands; it checks for a prefix command, E
[&]

The List Definitions tool

66

The List Definitions tool is accessed through the “List Definitions”
command on the “Tools” menu. It displays a modeless dialog box (see
the following figure), that lists all the definitions in the top editor
window. Double-clicking on a selection or pressing the Go To
Definition button, scrolls the window to that definition. The Contains
text edit field in the dialog box acts as a filter for selecting only those
definitions containing a particular string.

Macintosh Common Lisp Reference

This tool sorts definitions in the order that they appear in the buffer or
alphabetically, depending on the setting of the Sort buttons. The
buttons at the bottom of the dialog box rescan the buffer and find the
highlighted definition.

When the active window is not an editor window, this command is
dimmed.

» Figure1-5 The List Definitions dialog box

=[0= Definitions in eval-server.lisp {HD:CCL

Contains: [streon |
Sort: w Buffer 1 Alphabetical
outp—stream 4
tstream—force—output Coutp-streamis |
tstream—tyo {outip-stream 23
istream—close :before (outp-streaml’

i
(oo permiion)

[

The Search Files tool

The Search Files tool is accessed through the “Search Files” command
on the “Tools” menu. It searches a set of files for a given string. This tool
displays the dialog box shown in the following figure. The In Pathname
text edit field specifies the set of files for the search. The Search For text
edit field specifies a string to locate in the files.

Chapter 1: Editing in Macintosh Common Lisp 67

68

Figure 1-6

Figure 1-7

The Search Files dialog box

S[=————— Search Files

Enter a pathname and a siring.
The pathname may contain wild-cards.

In Pathname |hume:euamples;*.lisp |

Search For |winduu.l—l:luse |M|

If the Search Files tool finds a file containing the specified string, the
tool displays the dialog box in the following figure. If you press the
Find It button in that dialog box, this tool opens the file in a Fred
window.

Dialog box after a successful search

=[I=——— Files containing "window-close"

HO:CCL2.0d17: examp |l es:compare. | isp

HO:CCLZ. 0417 :examples:picture—files. lisp
HO:CCL3.0d17: examples: progress—indicator. lisp
HO:CCLZ2.0d17:examp |l es: query-replace. | isp
HO:CCLZ. 0417 examp |l es: thermometer . | isp
HO:CCLZ . 0d17:examp les: tool server . | isp

HO:CCL3 . 0d17:examples :Uiew-Example. | isp

o>

i

(Fna1)

This tool accepts wildcard characters in the pathname specification.
Macintosh Common Lisp supports Common Lisp extended wildcards,
which are documented in Steele, pages 623627, and has a wildcard
specification system described in “Wildcards” on page 298 .

The Search Files tool spawns a process, so it is possible to have multiple
searches running at the same time. Because it uses Boyer-Moore search
the Boyer-Moore search algorithm, it is quite fast.

Macintosh Common Lisp Reference

Chapter 2:

Points and Fonts

Contents
Points / 70
How Macintosh Common Lisp encodes points / 70
MCL functions relating to points / 71
Fonts / 74
Implementation of font specifications / 74
Implementation of font codes / 75
Functions related to font specifications / 76
Functions related to font codes / 80
System data / 87

This chapter describes the MCL implementation of points and fonts. Points are

used for drawing into views; font specifications and font codes describe fonts.

Some allied MCL functions give useful data about your Macintosh system.
They are also described in this chapter.

You should read this if you are not already familiar with the MCL and
Macintosh implementations of these concepts.

69

Points

Points are used throughout Macintosh Common Lisp to represent two-
dimensional data. The most common use of points is in graphics
operations that require you to specify a width and a height (for
example, specifying the size of a window) or horizontal and vertical
coordinates (for instance, specifying the position of an item in a dialog
box).

How Macintosh Common Lisp encodes points

Points are graphics coordinates with an x component and a y
component. To save space, Macintosh Common Lisp encodes the x and
y components of a point into a single integer, known as the “encoded
form.” The low-order 16 bits hold the x coordinate and the high-order
16 bits hold the y coordinate. Both dimensions are signed.

Many Lisp functions that take a point as an argument can accept it as
two coordinates (h and v) or as a single integer holding both
coordinates. If a function takes more than one point, or has optional
arguments, the points must all be passed in encoded form.

Points are always returned as a single encoded integer.

The reader macro #@converts the subsequent list of two integers into a
point. This can be used for clarity in source code. For example, #@ 30
- 100) expands into - 6553570, an integer that represents the point
with a horizontal coordinate of 30 and a vertical coordinate of —100.

The integer that encodes the x and y coordinates of a point is
automatically converted to a bignum if a fixnum cannot accommodate
it. (For definitions of bignum and fixnum, see Common Lisp: The
Language.)

Except in cases where efficiency is paramount and the range is
guaranteed to be below 4096, you should always assume that graphics
points may be bignums. Because of this, eq can’t safely be used to
compare points; you must use eql as follows:

? (eq #@ 1800 7496) #@ 1800 7496))
NI L

? (eql #@ 1800 7496) #@ 1800 7496))
T

70 Macintosh Common Lisp Reference

MCL functions relating to points

Syntax
Description
Argument

Example

Syntax
Description
Argument

Example

Syntax
Description
Argument

Example

The following functions relate to points.

poi nt-string [Function]

poi nt - stri ng point
The poi nt - st ri ng function returns a string representation of point.

point A point.

? (point-string 4194336)

"#@32 64)"

? (viewposition (front-w ndow))

14417924

? (point-string (viewposition (front-w ndow)))
"#@4 220)"

poi nt - h

[Function]

poi nt - h point
The poi nt - h function returns the horizontal coordinate of point.

point A point.

2 (point-h 4194336)
32

poi nt -v [Function |

poi nt - v point
The poi nt - v function returns the vertical coordinate of point.

point A point.

Chapter 2: Points and Fonts 71

Syntax

Description

Arguments

Syntax

Description

Arguments

Examples

2 (point-v 4194336)
64

poi nt <= [Function]

poi nt <= point & est other-points

The poi nt <= function checks to see whether point and other-points are
ordered by nondecreasing size in both coordinates. If they are, or if there
is only one point, the function returns t ; otherwise, it returns ni | .

point A point, expressed as an integer.
other-points Zero or more other points, expressed as fixnums.
make- poi nt [Function |

make- poi nt 1 &optional v

The make- poi nt function returns a point constructed from horizontal
and vertical coordinates /1 and v.

h The horizontal coordinate of the point, or the complete
point (encoded as an integer) if vis ni | or not supplied.

v The vertical coordinate of the point. If vis ni | (the
default), I is assumed to be an entire point in encoded
form and is returned unchanged.

? (make-point 32 64)
4194336

? (make-point 32 nil)
32

? (nmake-point 32)

32

You can pass make- poi nt the two coordinates of a point, or you can
pass it a point as a single argument. In either case, it returns a point.
This makes make- poi nt very useful in processing optional argument
sets.

72 Macintosh Common Lisp Reference

Syntax

Description

Arguments

Example

Syntax

Description

Arguments

Example

? (make-point 40 50)

3276840

? (make-poi nt 3276840)
3276840

? (point-string 3276840)
"#@40 50) "

? (defun show- poi nt

(h &optional v)
(point-string (nmake-point h v)))
show- poi nt
? (show- poi nt 32 32)
"#@32 32)"
? (show- poi nt 3276840)
"#@40 50)"

add- poi nts [Function |

add- poi nt s pointl point2

The add- poi nt s function returns a point that is the result of adding
point-1 and point-2.

Points cannot be added with the standard addition function because of
possible overflow between the x and y components of the encoded form.
point-1 A point.

point-2 A point.

? (point-string (add-points #@10 10) #@50 100)))
"#@60 110)"

subtract - poi nts [Function |

subt r act - poi nt s pointl point2

The subt r act - poi nt s function returns a point that is the result of
subtracting point-2 from point-1.

Points cannot be subtracted with the standard subtraction function because of
possible overflow between the x and y components of the encoded form.

point-1 A point.
point-2 A point.

Chapter 2: Points and Fonts 73

? (point-string (subtract-points #@ 10 10)

#@3 4)))
"#@7 6)"

Fonts

There are two ways of representing fonts in Macintosh Common Lisp,
font specifications and font codes.

A font specification (font spec) is an atom or list of atoms specifying one
or more of the following: the font name, font size, font styles, font color
and transfer mode. They are more humanly readable than font codes.
They can be translated into font codes through the function f ont -
codes.

Font codes represent font information in a way that accesses the
Macintosh Font Manager directly. Since they don’t need to be
interpreted, they are significantly faster than font specifications. They
can be translated into font specifications explicitly through the function
f ont - spec.

The manner in which font information is encoded in font-codes is
described fully in Inside Macintosh.

Implementation of font specifications

74

The font name should be a string. It should correspond to a font
available in the System file. You can find out which fonts are available
by examining the *f ont - | i st * variable, described in the section
“System data” on page 87. Font names are not case sensitive.

The font size should be an integer, which is always in the range from 1
to 127. Because of an idiosyncrasy in the Macintosh Operating System,
a point size of 0 may appear to be the same value as a point size of 12.

The font style should be one or more of the following style keywords.
Multiple font styles are allowed. A : pl ai n font style implies the
absence of other font styles.

:plain : bol d : condense :extend
citalic ;outline : shadow :underline

Macintosh Common Lisp Reference

The transfer mode should be one of the following transfer-mode
keywords. These transfer modes are described in Appendix D:
QuickDraw Graphics.

: srcCopy isrcOr : srcXor :srcBic
:srcPat Copy :srcPatOr :srcPat Xor :srcPatBic

A font specification can have one of 256 colors. The colors are
represented by their index into the operating system’s 8-bit color table,
with the exception that color index 0 indicates the default foreground
color. The color in a font spec should be a list of the form (: col or x)
or (: col or-index y),where x is a 24-bit MCL color as returned by
meke- col or and y is an integer between 0 and 255 inclusive.

An error is signaled if more than one name, size, color, or transfer mode
is given in a single font specification.

The following are examples of legal font specifications:
"New Yor k"

"nEw YOr k"

(" Monaco" 9)

(" Monaco" :extend :shadow 57 : srcPat Copy)
: srcCopy

coutline

(12 :srcCopy)

("Monaco" 12 :bold (:color #. *red-color*))
(" Chicago" 9 (:color-index 5))

Implementation of font codes

Font codes are the four numbers used by the Macintosh computer to
represent fonts. These numbers are stored in GrafPort, CGrafPort, and
TERec records.

(defrecord grafport

(txFont integer)
(t xFace unsi gned- byt e)
(t xMode i nteger)
(txSize integer)

-)

Macintosh Common Lisp encodes these 64 bits of information as two
fixnums, the font-face code (ff) and the mode-size code (ms). (The field
t xFace is only 8 bits, but an alignment byte follows it in the record.)

Chapter 2: Points and Fonts

75

The font-face layout looks like this:

| t xFont | txFace | unused |

| t xMode | txSi ze |

Note that since MCL fixnums use only 29 bits, you get only 13 bits of the
16-bit t xFont and t xMbde fields.

You can find more about the meaning of these codes in the QuickDraw
information in Inside Macintosh. Macintosh Common Lisp provides
high-level functions to manipulate them for you.

Functions related to font specifications

Syntax

Description

Argument

Syntax
Description
Arguments

The following functions implement and use font specifications.

real -font [Function |

real -font &optional font-spec

Ther eal - f ont function returnst if font-spec corresponds to a font or
font size that actually exists in the system (in other words, that is not a
calculated font). Otherwise, the function returns ni | .

The font style and transfer mode are ignored by r eal - f ont . If font-spec is not
supplied, the font specification of the current GrafPort is used.

font-spec A font specification.

font - spec [Function |

f ont - spec ff-code ms-code
The f ont - spec function creates a font specification from font codes.

ff-code The font-face code. A font-face code is a 32-bit integer that
combines the encoded name of the font and its face (plain,
bold, italic, and so on).

76 Macintosh Common Lisp Reference

Example

Syntax

Description

Arguments

Example

Syntax

ms-code The mode-size code. A mode-size code is a 32-bit integer
that indicates the font mode (inclusive-or, exclusive-or,
complemented, and so on) and the font size.

Here is an example of translating between font codes and font
specifications.

The font-face and mode-size codes are the first two values returned by
f ont - codes:

? (font-codes ' ("Mnaco" 9 :srcor :plain))

262144

65545

- 256

-1

The function f ont - spec can regenerate the font specification from
them:

? (font-spec 262144 65545)

("Monaco" 9 :SRCOR : PLAIN)

string-wdth [Function |

string-w dth string &pti onal font-spec

The st ri ng- wi dt h function returns the width in pixels of string, as if it
were displayed in the font, size, and style of font-spec.

If font-spec is not supplied, the font specification of the current GrafPort is used.

See also f ont - codes- st ri ng-wi dt h on page 82.

font-spec A font specification.
string A string.

? (string-width "H there" '("Mnaco" 9 :PLAIN))
48

grafport-wite-string [Macro]

grafport-wite-string string start end

Chapter 2: Points and Fonts 77

Description ~ The gr af port-write-string macro draws the portion of string
between start and end to the current GrafPort, which is usually set up by
wi t h-f ocused- vi ewor wi t h- por t . Drawing begins at the pen
position. The macro expands into a call to the #_Dr awSt r i ng trap.

Arguments string A string.
start The beginning of the string to write.
end The end of the string to write.
Example

The generic function st r eam wr i t e- st ri ng could be written as
follows. (This version does not handle strings that contain newlines.)

? (defrmethod streamwite-string
((stream sinmple-view) string start end)
(wi th-font-focused-view stream
(grafport-wite-string string start end)))
STREAM WRI TE- STRI NG

font-info [Function |

Syntax font-info &optional font-spec

Description ~ Thef ont - i nf o function returns four values that represent (in pixels) the
ascent, descent, maximum width, and leading of font-spec.

The ascent is the distance from the baseline to the highest ascender of the font,
the descent is the distance from the baseline to the lowest descender of the font,
the maximum width is that of the widest character in the font, and the leading
is the suggested spacing between lines. Only the font and font-size aspects of
font-spec are used in the calculation. The font styles and transfer mode are not
significant.

If font-specis ni | or not supplied, the font specification of the current GrafPort
is used.

Argument font-spec A font specification.

78 Macintosh Common Lisp Reference

Example
? (defun line-height (font-nanme font-size)
(rmul ti pl e-val ue-bi nd (ascent descent maxw dth | eadi ng)
(font-info (list font-nane
font-size))

(decl are (ignore maxw dth)) ; W don't use this val ue.
(+ ascent descent |eading)))

LI NE- HEI GHT

? (line-height "new york" 12)

16

? (line-height "new york" 24)

32

? (line-height "times" 10)

12

vi ew f ont [Generic function |

Syntax vi ew f ont (view si npl e- vi ew)

vi ew f ont (window Wi ndow)
vi ew f ont (window f r ed- wi ndow)
vi ew f ont (window | i st ener)

Description ~ The vi ew-f ont generic function returns the font specification used for
drawing text in the window. Due to an idiosyncrasy of the Macintosh
computer, a font size of 0 points may appear as a font size of 12 points.

In the Listener, vi ew f ont removes boldface text, then calls the method of
w ndow.

In Fred windows, vi ew- f ont returns three values: the current font, the font
at the insertion point, and a Boolean value specifying whether all the selected
text is in the same font as the current font.

You should not write methods for this function; use vi ew- f ont - codes

instead.
Arguments view A view or simple view.

window A window, Fred window, or Listener window.

set - vi ew f ont [Generic function]
Syntax set - vi ewfont (view si npl e- vi ew) font-spec

Description ~ The generic function set - vi ew f ont sets the font of view to font-
spec.You should not write methods for this function; use set - vi ew
f ont - codes instead.

Chapter 2: Points and Fonts 79

Arguments view A simple view.

font-spec A font specification.

Functions related to font codes

Syntax

The following functions implement and use font codes.

f ont - codes [Function |

f ont - codes font-spec &opt i onal old-ff old-ms

Description The f ont - codes function creates font codes from a font specification. It

returns four values: the font-face code, the mode-size code, the ff-mask,
and the ms-mask. The two latter values are masks that tell which bits were
specified in the font-face and mode-size codes, respectively.

Arguments font-spec A font specification.

old-ff The old font/face code. A font/face code is a 32-bit
integer that combines the encoded name of the font and
its face (plain, bold, italic, and so on). If there is an old-ff,
its values are used if the new font specification specifies
no value for either the font name or its face. If old-ffis ni |
or unspecified, it defaults to 0.

old-ms The old mode-size code. A mode-size code is a 32-bit
integer that indicates the font mode (inclusive-or,
exclusive-or, complemented, and so on) and the font size.
If there is an old-ms, its values are used if the new font
specification specifies no value for either the font mode or
its size. If old-msis ni | or unspecified, it defaults to 65536
(the code for a mode of : SRCOR and a size of 0).

Examples
Here is an example of getting and reading font codes.
? (setq *print-base* 16)
10
? (font-codes '("Geneva" 9 :plain))
30000
10009
-100
FFFF
80 Macintosh Common Lisp Reference

Syntax

Description

Arguments

The t xFont value for Geneva is 3, the t xFace value for: pl ai nis0,
the t xSi ze value is 9, and the t xMbde value was not specified (hence
the ms-mask is #x FFFF) but defaults to 1.

Here is an example of using old font codes to modify the returned font
code:

? (font-codes ' ("Mnaco" 12 :BOLD))
262400

65548

- 65280

65535

? (font-codes ' ("Times" 15))
1310720

65551

- 65536

65535

? (font-codes ' ("Tinmes" 15) 262400 65548)
1310976

65551

- 65536

65535

? (font-spec 1310976 65551)
("Times" 15 : SRCOR : BOLD)

f ont-codes-info

font-codes-info ffms

The f ont - codes- i nf o function returns four values that represent (in
pixels) the ascent, descent, maximum width, and leading of the font
specified by ff and ms.

The ascent is the distance from the baseline to the highest ascender of the font,
the descent is the distance from the baseline to the lowest descender of the font,
the maximum width is that of the widest character in the font, and the leading
is the suggested spacing between lines. Only the font and font-size aspects of
font-spec are used in the calculation. The font styles and transfer mode are not

significant.
Vi The font/face code.
ms The mode/size code.

Chapter 2: Points and Fonts

[Function]

81

Example

? (setq *print-base* 10.)

10

? (multiple-value-bind (ff ms) (font-codes '("Geneva" 9))
(font-codes-info ff ns))

10

2

10

0

? (font-info '("Geneva" 9))

10

2

10

0

f ont - codes- | i ne- hei ght [Function |

Syntax font-codes-1ine-hei ght ffms

Description The function f ont - codes- | i ne- hei ght returns the line height for the
font specified by ff and ms.

Arguments ff A font/face code. A font/face code is a 32-bit integer that combines the
name of the font and its face (e.g., plain, bold, italic).
For more information see “Functions related to font
codes” on page 80.
msA mode/size code. A mode/size code is a 32-bit integer that indicates the
font mode (e.g., inclusive-or, exclusive-or, complemented)
and the font size.

Example

?2(mul tiple-value-bind(ff ms) (font-codes' ("courier" 12:plain))
(font-codes-line-height ff ns))

12
font-codes-string-w dth [Function |
Synt ax font-codes-string-w dth string ffms

Description ~ The functionf ont - codes- st ri ng- wi dt h returns the width in pixels of
string using the font specified by ff and ms.

82 Macintosh Common Lisp Reference

Arguments

Example

Syntax

Description

Arguments

Example

stringA character string.

ff A font/face code. A font/face code is a 32-bit integer that combines the
name of the font and its face (e.g., plain, bold, italic).
For more information, see “Functions related to font
codes” on page 80.

msA mode/size code. A mode/size code is a 32-bit integer that indicates the
font mode (e.g., inclusive-or, exclusive-or, complemented)
and the font size.

? (multiple-value-bind (ff ms) (font-codes '("courier" 12
:plain))

(font-codes-string-width "hello there" ff ns))

77

vi ew f ont - codes [Generic function |

vi ew f ont - codes (view si npl e- vi ew)
vi ew f ont - codes (item di al og-item
vi ew f ont - codes (window Wi ndow)

The vi ew- f ont - codes generic function returns two values, the font/
face code and mode/size code for view’s font.

view A simple view.
item A dialog item.
window A window.

? (setq w (make-instance 'w ndow
viewfont ' ("New York" 10 :bold)))
#<W NDOW " Unt it ed" #xDB5B39>
? (viewfont w
("New York" 10 : SRCOR : BOLD)
? (viewfont-codes w)
131328
65546
? (font-spec 131328 65546)
("New York" 10 : SRCOR : BOLD)

Chapter 2: Points and Fonts

83

Syntax

Description

Arguments

Example

set -vi ew f ont - codes [Generic function]

set - vi ew f ont - codes (view si npl e- vi ew) ffms &opt i ona
ff-mask ms-mask

set-view-font-codes (item dialog-item) ff ms &optional
ff-mask ms-mask

set-view-font-codes (window window) ff ms &optional
ff-mask ms-mask

The generic function set - vi ew- f ont - codes changes the view font
codes of view. The font/face code is changed only in the bits that are set in
ff-mask. The mode/size code is changed only in the bits that are set in ms-
mask. These masks default to passing all bits of ff and ms.

view A simple view.

item A dialog item.

window A window.

ff The font/face code. A font/face code is a 32-bit integer

that stores the encoded name of the font and its face
(plain, bold, italic, and so on). If there is no ff, the value of
ffissetto 0.

ms The mode/size code. A mode/size code is a 32-bit integer
that indicates the font mode (inclusive-or, exclusive-or,
complemented, and so on) and the font size. If there is no
ms, the value of ms is set to 0.

ff-mask A mask that allows set - vi ew f ont - codes to look
only at certain bits of the font/face integer. Fred dialog
items and Fred windows ignore this parameter; other
views and windows use it as a mask.

ms-mask A mask that allows set - vi ewf ont - codes to look
only at certain bits of the mode/size integer. Fred dialog
items and Fred windows ignore this parameter; other
views and windows use it as a mask.

? (font-codes ' ("Geneva" 9))
196608

65545

- 65536

65535

? (font-spec 196608 65545)
("Geneva" 9 :SRCOR : PLAIN)

? (set-viewfont-codes w 196608 65545 - 65536 65535)
196864

65545

? (viewfont w)

84 Macintosh Common Lisp Reference

Syntax

Description

Syntax

Description

Arguments

Syntax
Description

Argument

Syntax

("Geneva" 9 : SRCOR : BOLD)

? (set-viewfont-codes w 196608 65545)
196608

65545

? (viewfont w)

("Ceneva" 9 :SRCOR : PLAIN)

graf port-font-codes [Function]

graf port - font-codes

The gr af port - f ont - codes function returns two values, the font codes
of the current GrafPort.

set-graf port-font-codes [Function |

set -graf port-font-codes ffms&optional ff-mask ms-mask

The set - gr af port - f ont - codes function sets the font codes of the
current GrafPort.

ff The new font/face code, expressed as a fixnum.

ms The new mode/size code, expressed as a fixnum.

ff-mask A mask that allows set - gr af por t - f ont - codes to
look only at certain bits of the font/face integer.

ms-mask A mask that allows set - gr af port - f ont - codes to

look only at certain bits of the mode/size integer.

wpt r - f ont - codes [Function |

wpt r - f ont - codes wptr
The wpt r - f ont - codes function returns the font codes of wptr.

wptr A window pointer.

set-wptr-font-codes [Function |

set -wpt r - f ont - codes wptr ff ms &opt i onal ff-mask ms-mask

Chapter 2: Points and Fonts 85

Description

Arguments

Syntax

Description

Arguments

Examples

The set - wpt r - f ont - codes function sets the font codes of wptr to the
new font codes indicated by ff and ms.

wptr

i

ms

ff-mask

ms-mask

A window pointer.

The new font/face code, expressed as a fixnum.

The new mode/size code, expressed as a fixnum.

A mask that allows set - wpt r - f ont - codes to look
only at certain bits of the font/face integer.

A mask that allows set - wpt r - f ont - codes to look
only at certain bits of the mode/size integer.

nmer ge- f ont - codes

nmer ge- f ont - codes old-ff old-ms ff ms &opti onal ff-mask

ms-mask

The rer ge- f ont - codes function merges two font codes.

old-ff

old-ms

7

ms

ff-mask

ms-mask

The old font/face code, expressed as a fixnum. A font/
face code stores the encoded name of the font and its face
(plain, bold, italic, and so on). If there is no old-ff, the value
of old-ffis set to 0.

The old mode/size code, expressed as a fixnum. A mode/
size code indicates the font mode (inclusive-or, exclusive-
or, complemented, and so on) and the font size. If there is
no old-ms, the value of old-ms is set to 0.

The new font/face code, expressed as a fixnum

The new mode/size code, expressed as a fixnum.

A mask that allows mer ge- f ont - codes to look only at
certain bits of the font/face integer.

A mask that allows ner ge- f ont - codes to look only at
certain bits of the mode/size integer.

The function ner ge- f ont - codes could be written as follows:

(defun nerge-font-codes (ol d-ff-code ol d-ns-code ff-code mns-

code
&optional ff-mask ns- mask)
(val ues
(if ff-mask

(logior (logand ff-code ff-nmask)

(l ogand ol d-ff-code (lognot ff-mask)))

ff-code)
(i f ms-nmask

86 Macintosh Common Lisp Reference

[Function]

(1 ogi or (logand ns-code ns- mask)
(1 ogand ol d-ns-code (Il ognot ns-nask)))
ns-code)))

Here is an example of merging font codes. This example is in
hexadecimal.

(setf *print-base* 16)

10

? (font-codes ' ("Geneva" 9 :plain))
30000

10009

-100

FFFF

? (font-codes '(:bold :italic :notpatxor))
300

E0000

300

- 10000

? (merge-font-codes #x30000 #x10009 #x300 #xe0000 #x300 #x-
10000)

30300

E0009

? (font-spec #x30300 #xe0009)
("CGeneva" 9 : NOTPATXOR : | TALIC : BOLD)

Here is a more condensed version of the same merging.
? (multiple-value-bind (ff ms)
(font-codes ' ("Geneva" 9 :plain))
(rmul tipl e-val ue-bind (bin-ff bin-ns ff-nmask ns- mask)
(font-codes '(:bold :italic :notpatxor))
(rmul ti pl e-val ue-bi nd
(merged-ff nerged-ns)
(merge-font-codes ff ms bin-ff bin-ns
ff-mask ms- mask)
(font-spec nerged-ff nerged-ns))))
("Geneva" 9 : NOTPATXOR : | TALI C : BOLD)

System data

The following symbols are bound to useful Macintosh system data.

Chapter 2: Points and Fonts 87

Description

Description

Example

Description

Example

font-list [Variable |

The *f ont - | i st * variable contains a list of all the fonts installed in the
current Macintosh Operating System, sorted alphabetically.

pen- nodes [Variable |

The * pen- modes* variable contains a list of pen-mode keywords.

Macintosh traps (and pen-state records) encode pen modes as integers.
These integers match the zero-based numeric position of the keyword
in the * pen- modes* list. So, for example, the number of : srcor pen
mode could be coded as (posi ti on :srcor *pen-nodes*). The
inverse operation (turning a pen-mode integer into a keyword) can be
performed with the Common Lisp function el t .

? *pen- nodes*

(:srccopy :srcor :srcxor :srchic :notsrccopy :notsrcor
:notsrcxor :notsrchic :patcopy :pator :patxor :pathic
: not pat copy : not pat or : not pat xor : notpatbic)

? (position :srcor *pen-nodes*)

1

style-alist [Variable |

The *st yl e- al i st * variable contains an association list of font-style
keywords and numbers that the Macintosh computer uses to encode these
styles.

The Macintosh Operating System encodes styles as a byte, with each style
represented by a bit (this encoding allows multiple styles). You can derive a
byte to pass to the Macintosh computer by adding the numbers corresponding
to the styles listed here.

? *style-alist*

((:plain . 0)(:bold . 1)
(:italic . 2)(:underline . 4)
(:outline . 8)(:shadow . 16)
(:condense . 32)(:extend . 64))

88 Macintosh Common Lisp Reference

Description

Description

Description

Description

whi t e- patt er n [Variable |
bl ack- patt er n [Variable |
gray- pattern [Variable]
|ight-gray-pattern [Variable |
dar k- gray- pattern [Variable |

These variables hold Macintosh pen patterns. The patterns may be passed
to traps or used with QuickDraw calls.

screen-w dt h [Variable |
*screen- hei ght * [Variable |

These variables contain the width and height, in pixels, of the current
screen. On a Macintosh Plus or Macintosh SE computer, the width is 512
pixels and the height is 342 pixels. On a Macintosh II computer with
multiple screens, the values refer to the main screen.

pi xel s- per-inch-x [Variable |
pi xel s-per-inch-y [Variable |

These variables contain the number of pixels per inch on the Macintosh
computer screen in the horizontal and vertical directions. On a Macintosh
Plus or Macintosh SE computer, both values are 72. On other Macintosh
computers, the values vary according to the screen used. On a computer
with multiple screens, the values refer to the main screen.

* menubar - bot t on¥ [Variable |

The * menubar - bot t ont variable holds the vertical coordinate of the
first QuickDraw point below the menu bar. Itis provided so that windows
do not draw themselves in the area taken up by the menu bar, but use only
the area below the bottom of the menu bar.

Chapter 2: Points and Fonts 89

In Macintosh Common Lisp version 2, this variable is defined as (+ (%get -
word (% nt-to-ptr $MBarHei ght)) 18).Since 18 is the height of the
title bar of a window with the standard window definition function, this
variable has questionable utility for setting the position of any other type of
window.

90 Macintosh Common Lisp Reference

Chapter 3:

Menus

Contents

How menus are created 98
How menus are created / 93
A sample menu file / 93
The menu-element class / 94
The menubar / 94
Menubar forms / 94
The built-in menus / 96
Menubar colors / 98
Menus / 100
MCL forms relating to menus / 100
MCL forms relating to elements in menus / 104
MCL forms relating to colors of menu elements / 106
Advanced menu features / 108
Menu items / 110
MCL forms relating to menu items / 111
MCL forms relating to menu item colors / 118
Window menu items / 120
Window menu item functions / 121
Window menu item class / 122
Updating the menubar / 123
The Apple menu / 124
Example: A font menu / 124

Example: A font menu 135

This chapter discusses how menus and menu items are created in Macintosh
Common Lisp, how they are installed, and how you can customize them.

This chapter first discusses the class structure of menus and menu items, then
discusses the associated MCL functions in detail. It describes how to add colors
to menus and menu items, and discusses a specialized class, window menu
items.

If you are creating your own menus or customizing the MCL menus, you
should read this chapter.

A simple MCL application for editing menus is documented in Chapter 7: The
Interface Toolkit.

92 Macintosh Common Lisp Reference

How menus are created

In Macintosh Common Lisp, menus and menu items are instances of
CLOS classes. A menu is created from the class nenu. A menu item is
created from the class menu- i t em Both menus and menu items inherit
from a direct superclass, menu- el ement, which is an abstract class; it
isn’t instantiated directly.

Menus appear in the menubar, the list of menus visible at the top of the
screen. A menu is not visible until you use nenu—i nst al | to add it to
the menubar.

A menu is a list of menu items (which may themselves be menus).
Menus can be installed at the top level of the menubar or as items on
other menus, for implementing hierarchical menus.

Menus and menu items can be created at any time. They can exist, and
you can perform operations on them, without being installed on the
menubar. For example, menu items can be added to and removed from
menus, whether or not the menus are installed in the menubar.

Because of the requirements of the Macintosh Operating System, the
Apple menu is a special case; not all items can be removed from it, and
it cannot be removed from the menubar.

It is often desirable to separate items in a menu into groups by placing
a dotted line between the groups. A menu item whose title is the string

- " appears as a dotted line and cannot be selected.

A sample menu file

In the Examples folder distributed with your copy of Macintosh
Common Lisp, look at f ont - menus. | i sp for an annotated example
of how a typical menu is created. Load f ont - nenus. | i sp to see the
font menu in action.

Chapter 3: Menus

The nenu- el enent class

Description

The general behavior of menus and menu items is defined by the class
menu- el enent . Both menu and menu- i t eminherit from menu-

el enent, so any method defined for nenu- el enent is applicable to
menus and menu items.

menu- el enent [Class namel]

This is the class of menu elements, on which menus and menu items are
built. This class is not instantiated directly.

The menubar

Atany given point, a set of menu titles is displayed across the top of the
screen. This group forms the menubar.

At any time, only one menubar can be displayed. Other menubars can
be defined, however, and you can rotate among them.

You can use the generic function menu-i nst al | to install a menu in
the menubar and the function set - nenubar to change the entire
menubar.

Menubar forms

Description

The following MCL forms control menubars.

menubar [Class name]

The menubar class is built on st andar d- obj ect . Its single instance is
used to set the colors of parts of the menubar. It is not currently used for
any other purpose.

94 Macintosh Common Lisp Reference

Description

Syntax

Description

Example

Syntax

Description

Argument

Example

* menubar * [Variable |

The value of the * menubar * variable is the single instance of the
menubar class.

menubar [Function)

menubar

The nenubar function returns a list of the menus currently installed in the
menubar.

? (menubar)

(#<APPLE- MENU ""> #<MENU "Fil e"> #<MENU "Edit" > #<MENU
"Lisp"> #<MENU "Tool s"> #<MENU "W ndows" >)

set - nenubar [Function]

set - menubar new-menubar-list

The set - menubar function installs a new set of menus in the current
menubar.

First the menu- dei nst al | function is applied to each installed menu except
the Apple menu, and then the nenu-i nst al | function is applied to each
menu in new-menubar-list. The new-menubar-list may be empty, in which case
the menubar is simply cleared. The function returns new-menubar-list.

You can never remove the Apple menu. Even if you call
(set-nmenubar nil), the Apple menu remains in the menubar.

new-menubar-listA list of menus.

? (setq foo (nmenubar))

(#<Apple-Menu ""> ; No Apple character in this font.
#<Menu "Fil e">

#<Menu "Edit">

#<Menu "Lisp">

#<Menu "Tool s">

#<Menu "W ndows" >)

Chapter 3: Menus 95

; Assune a nmenu, MY- FROGS- MENU, whose title is "Tree Frogs":
? (set-nenubar (list (car foo) mnmy-frogs-nenu))

(#<Appl e- Menu "">

#<Menu "Tree Frogs">)

? (menubar)

(#<Appl e- Menu "">

#<Menu "Tree Frogs">)

fi nd- nenu [Function]

Syntax find-menu string

Description The f i nd- menu function returns the first menu in the menubar that has
string as its title. If no matching menu is found, it returns ni | .

Argument string A string giving the title of the menu to find.

Example
? (find-menu "Edit")
#<MENU "Edit">

The built-in menus

*def aul t - menubar * [Variable |

Description ~ The variable * def aul t - menubar * contains a list of the menus that are
installed when you first start Macintosh Common Lisp. You may use set -
menubar to restore the original menus after installing your own set of
menus.

Note that *def aul t - menubar * is simply a list of the menus present when
Macintosh Common Lisp starts up. It does not contain any code for initializing
these menus. If you destructively change the startup menus, then * def aul t -
menubar * will contain the changed menus. Calling (set - menubar

*def aul t - menubar *) will not undo those modifications.

Example

Here is an example of using * def aul t - nenubar *.
? (setq frogs (nenubar))

(#<Appl e-Menu "">
#<Menu "Tree Frogs">)

96 Macintosh Common Lisp Reference

Description

Description

Description

Description

? (set-nenubar *defaul t-nmenubar*)
(#<Appl e-Menu "">
#<Menu "File">
#<Menu "Edit">
#<Menu "Lisp">
#<Menu "Tool s">
#<Menu "W ndows" >)
? (set-nenubar frogs)
(#<Appl e- Menu "">
#<Menu "Tree Frogs">)

appl e- menu, *edit-nmenu*, *eval -nmenu*, *file-nmenu*,
| i sp-nmenu, *tools-nmenu*, and *w ndows- nenu*

appl e- nenu [Variable |

The variable * appl e- menu* contains the Apple menu from the initial
menubar. Because of the special handling of this menu by the Macintosh
OS, you should be very careful adding or removing commands from it.

fil e-nmenu [Variable |

The variable *f i | e- menu* contains the File menu from the initial
menubar.

edi t - nrenu [Variable |

The variable * edi t - menu* contains the Edit menu from the initial
menubar.

| i sp- menu [Variable |

The variable *| i sp- nenu* contains the Lisp menu from the initial
menubar.

Chapter 3: Menus 97

t ool s- nenu [Variable |

Description ~ The variable *t ool s- nenu* contains the Tools menu from the initial
menubar.

Wi ndows- menu [Variable |

Description ~ The variable *wi ndows- menu* contains the Windows menu from the
initial menubar. Because of MCL'’s special handling of this menu, you
should take care adding and removing menu-items from it.

Menubar colors

Menu titles in the menubar can be colored. You can set the background
color of the menubar, give menus and menu items a default color, and
specify a default background color for pull-down menus.

The following functions, defined on the class menubar, operate on

colors.
part - col or [Generic function]
Syntax part - col or (menubar menubar) part

Description ~ The part - col or generic function returns the color of part, a part of the
menubar. See Chapter 6: Color for a description of color encoding.

Arguments menubar The current menubar, the only instance of the class
menubar .
part A keyword specifying which part of the menubar should
be set. The four possible keywords have the following
effects:

:default-nmenu-title
The default color used for the titles of menus in the
menubar.
: def aul t - menu- backgr ound
The default color used for the background of the pull-
down menus accessed from the menubar.
cdefault-menu-itemtitle
The default color used for the titles of menu items.

98 Macintosh Common Lisp Reference

Example

Syntax

Description

Arguments

Example

Syntax

Description

Argument

Example

: menubar The background color of the menubar itself.

? (part-col or *menubar* : nenubar)
16777215

set-part-col or [Generic function]

set-part-col or :after (menubar menubar) part color

The set - par t - col or generic function sets the color of part, a part of the
menubar, to color.

menubar The current menubar, the only instance of the class
menubar .

part A keyword specifying which part of the menubar should
be set. The keywords are the same as for par t - col or.

color The new color, encoded as an integer. (See Chapter 6:
Color)

? (set-part-col or *nmenubar* :nmenubar *red-col or*)
14485510

part-color-1list [Generic function]

part-col or-1ist (menubar menubar)

The part - col or-1i st generic function returns a property list of
keywords and colors for all the parts of the menubar.

menubar The current menubar, the only instance of the class
nmenubar .

? (part-color-list *nenubar?*)

(: MENUBAR 14485510 : DEFAULT-| TEM Tl TLE O : DEFAULT- MENU-
BACKGROUND 16777215 : DEFAULT- MENU- Tl TLE 0)

Chapter 3: Menus

929

Menus

Menus contain sets of menu items. Menus can be added to the menubar,
or they can be added to other menus. When they are added to other
menus, they are treated as menu items; hierarchical menus are
implemented in this way.

MCL forms relating to menus

Description

Syntax

Description

Arguments

The following MCL forms control menus.

nmenu [Class name]

The class of menus, built on menu- el enent . All menus are instantiated
on the class menu or one of its subclasses. There are
no built-in subclasses of menu, but you can define subclasses.

initialize-instance [Generic function]

initialize-instance (menumenu) & est initargs

This generic function initializes the menu so that you can add menu items
to it and install it. (When instances are actually made, the function used is
make- i nst ance, which callsi ni ti al i ze-i nst ance; see the example
that follows.)

Theinitialize-instance function initializes the menu but does not add
it to the menubar. To add the menu, use the function menu-i nst al | .

menu A menu.
initargs A set of initialization arguments and values used for
initializing the menu:
cmenu-title
A string giving the title of the menu. The default is
"Untitled".
. menu-itens
A list of items to be added to the newly created menu.
: menu-col ors
A property list of menu parts and colors. The allowable
parts are given in the definition of set - part - col or.

100 Macintosh Common Lisp Reference

Example

: updat e- functi on
A function to be run when the menu item is updated. The
defaultis ni | .

: hel p- spec
A value describing the Balloon Help for the menu. This
may be a string or one of a number of more complicated
specifications, which are documented in the file hel p-
manager . | i sp inyour Library folder. The default value
isnil.

? (setq food-nmenu (nake-instance 'nmenu
:nenu-title "Food"
:menu-colors '(:nenu-title #. *red-color*)))

#<MENU " Food" >

? (setq bar-nenu (meke-instance 'nenu
:nmenu-title "Bar"
:menu-colors '(:nenu-title #. *blue-color*)))

? (menu-title food-menu)

" Food"

? (menu-installed-p food-nenu)

NI L

Syntax

Description

Argument

Syntax

Description

; Not yet installed in the nenubar

menu-title [Generic function]

menu-titl e (menu menu)

The nenu-tit| e generic function returns the title of the menu as
a string.

menu A menu.

set-menu-title [Generic function]

menu-titl e (menu menu) new-title

The set - menu-ti t | e generic function sets the menu title to
new-title and returns new-title.

If the menu is installed, the change in title is immediately reflected in the
menubar.

Chapter 3: Menus 101

Arguments

Example

Syntax

Description

Argument

Example

Syntax

Description

Argument

Example

Syntax

menu A menu.
new-title A string.

? (menu-title food-nmenu)

" Food"

? (set-nenu-title food-nenu "Chi nese Menu")
" Chi nese Menu"

? (nenu-title food-nenu)

" Chi nese Menu"

nmenu-i nst al | [Generic function]

menu-i nstal | (menu menu)

The menu- i nst al | generic function adds the menu to the menubar at
the rightmost position. It returns t .

menu A menu.

? (menu-install food-nenu)
T

nmenu- dei nst al | [Generic function]

menu- dei nst al | (menu menu)

The menu- dei nst al | generic function removes a menu from the
menubar. It returns ni | .

You may reinstall the menu at a later time.

menu A menu.

? (menu-deinstall food-nenu)
NI L

menu-instal |l ed-p [Generic function]

menu-i nst al | ed- p (menu menu)

102 Macintosh Common Lisp Reference

Description

Argument

Example

Syntax

Description

Argument

Syntax

Description

Argument

Syntax

Description

Argument

The menu- i nst al | ed- p generic function returns t if the menu is
installed and ni | if the menu is not installed.

menu A menu.

? (menu-installed-p food-nenu)
NI L

menu- di sabl e [Generic function]

nmenu- di sabl e (menu menu)

The nenu- di sabl e generic function disables a menu. Its items may still
be viewed, but they cannot be chosen. The menu and its items appear
dimmed. This function has no effect if the menu is already disabled.

Menus can be enabled and disabled at any time. The effects are visible only
when the menu is installed in the current menubar.

menu A menu.

menu- enabl e [Generic function]

menu- enabl e (menu menu)

The nenu- enabl e generic function enables a menu, making it possible to
choose its items. This function has no effect if the menu is already enabled.

Menus can be enabled and disabled at any time. The effects are visible only
when the menu is installed in the current menubar.

menu A menu.

menu- enabl ed- p [Generic function]

nmenu- enabl ed- p (menu menu)

The nmenu- enabl ed- p generic function returns t if the menu is enabled
and ni | if the menu is disabled.

menu A menu.

Chapter 3: Menus 103

Syntax

Description

Argument

Syntax

Description

Argument

nmenu-styl e [Generic function]

menu- st yl e (menu menu)

The nenu- st yl e generic function returns the font style in which the
menu appears.

Stylesare: pl ain,: bol d,:italic,:shadow :outline, :underline,
: condense, and : ext end. The keyword : pl ai n indicates the absence of
other styles.

menu A menu.

nmenu- updat e- f uncti on [Generic function]

menu- updat e- f unct i on (menu menu)

The menu- updat e- f unct i on generic function returns the function that
is run when the menu is updated.

menu A menu.

MCL forms relating to elements in menus

Syntax

Description

Arguments

The following generic functions are used to add elements to menus,
remove elements from menus, find an element in a menu, and return
the elements in a menu. The element may be either a menu or a menu
item.

add- menu-i tens [Generic function]

add- nmenu-i t ens (menu menu) & est menu-items

The add- menu- i t ens generic function appends menu-items to the menu.
The new items are added to the bottom of the menu in the order specified.
The function returns ni | .

menu A menu.
menu-items Any number of menus and menu items to be added to the
menu.

104 Macintosh Common Lisp Reference

Example

Syntax

Description

Arguments

Example

Syntax

Description

Arguments

? (add-nenu-itenms food-menu

(rmake-instance 'nmenu-item
menu-itemtitle "Stir-Fried Beep"
menu-itemaction # (lanbda ()
(ed-beep)))
(make-instance 'nmenu-item
menu-itemtitle "Egg Foo Bar"
:nmenu-itemaction
(lanmbda ()
(get-string-fromuser
"How woul d you |ike your eggs?"))))

renove- menu-itens [Generic function]

renove- menu-it ens (menu menu) & est menu-items

Ther enpbve- menu- i t ens generic function removes menu-items from the
menu. The removed menu-items may be reinstalled later or installed in
other menus. It is not an error to attempt to remove an item that is not in
the menu. The r enbve- nenu-i t ens function returns ni | .

menu A menu.

menu-items Any number of menus and menu items to be removed
from the menu.

? (apply # renove-nenu-itens food-nenu
(menu-itens food-nenu))
NI L

menu-itens [Generic function]

menu- i t ens (menu menu) &opt i onal menu-item-class

The nmenu-i t ems generic function returns a list of the menu items
installed in the menu.

The menu items are listed in the order in which they appear in the menu.

menu A menu.

Chapter 3: Menus 105

Example

Syntax

Description

Arguments

Example

Syntax

Description

Argument

menu-item-class
The class from which the returned menu items inherit.
The default value is menu- el ement . Only those menu
items that inherit from menu-item-class are included in the
list that is returned.

? (menu-itens food-nenu)
(#<MENU- | TEM "Stir-Fried Beep">
#<MENU- | TEM "Egg Foo Bar">)

find-menu-item [Generic function]

fi nd- menu-it em(menu menu) title

The f i nd- nenu- i t emgeneric function returns the first menu item in the
menu whose name is title, which should be a string. If no menu item is
titled title, ni | is returned.

menu A menu.
title A string giving the name of the menu item to find.

? (find-nmenu-item food-nenu "Beep")

NI L

? (find-menu-item food-nmenu "Stir-Fried Beep")
#<MENU- | TEM "Stir-Fri ed Beep">

hel p- spec [Generic function]

hel p- spec (menu-element menu- el ement)

The hel p- spec generic function returns the text of the Balloon Help
associated with menu-element. If it has none, ni | is returned.

menu-element A menu or menu item.

MCL forms relating to colors of menu elements

Like the menubar, menus and parts of menus can be colored.

106 Macintosh Common Lisp Reference

Syntax

Description

Arguments

Example

Syntax

Description

Arguments

Example

Syntax

part - col or [Generic function]

part - col or (menu menu) part

The part - col or generic function returns the color of part, a part of the
menu. See Chapter 6: Color for a description of color encoding.

menu A menu.
part A keyword specifying a part of the menu. The three
possible keywords have the following meanings:
cnmenu-title
The color in which the title of the menu is displayed in the
menubar.
: menu- backgr ound
The color used for the background of the pull-down
menu.
.default-menu-itemtitle
The default color used for the titles of items in the menu.

? (part-color food-nenu :nmenu-title)
14485510

set-part-col or [Generic function]

set - part - col or (menu menu) part color

The set - par t - col or generic function sets the color of part, a part of the
menu specified by the arguments, and returns color.

menu A menu.

part A keyword specifying which part of the menu should be
set. The keywords are the same as for part - col or.

color The new color, encoded as an integer. (See Chapter 6:
Color.)

? (set-part-color food-nmenu :nmenu-title #. *orange-col or*)
16737282

part-color-1ist [Generic function]

part-col or-list (menumenu)

Chapter 3: Menus 107

Description

Argument

Example

The part - col or - | i st generic function returns a property list of part
keywords and colors for all the parts of the menu.

menu A menu.

? (part-color-list food-nmnmenu)
(: MENU-TI TLE 17630104)

Advanced menu features

Syntax

Description

Argument

Syntax

Description

The advanced menu programmer may find the following MCL forms
useful.

nmenu- updat e [Generic function]

menu- updat e (menu menu)

The menu- updat e generic function is called whenever the user clicks in
the menubar or presses a command-key equivalent. The menu- updat e
method for menus calls the menu’s menu- updat e- f unct i on on menu if
it has one; otherwise it calls menu- i t em updat e on each item in the
menu. This facility is provided so that menus and menu items can be
adjusted to the current program context before they are displayed. (For
example, an item may be checked or unchecked, enabled or disabled,
added, removed, or reordered.)

You can specialize menu- updat e, but you normally do not need to call it. (It
is called by the MCL run-time system.)

menu A menu.

nmenu- handl e [Generic function]

menu- handl e (menu menu)

If the menu is installed, the menu- handl e generic function returns the
handle to the menu’s menu record on the Macintosh heap. If the menu is
not installed, menu- handl| e returns ni | .

The menu handle can be useful when low-level operations are performed with
the Macintosh ROM. You should not modify this value.

108 Macintosh Common Lisp Reference

Argument

Example

Syntax

Description

Argument

Example

Description

Description

menu A menu.

? (menu- handl e food- nenu)
#<A Mac Handl e, Unl ocked, Size 34 #x6118EC>

menu-id [Generic function]

nmenu- i d (menu menu)

If the menu is installed, the nenu- i d generic function returns the unique
numeric ID of the menu, used by the Macintosh Operating System. If the
menu is not installed, this function returns ni | . If a menu is removed from
the menubar and later reinstalled, it may be given a different ID.

menu A menu.

? (nmenu-id food-menu)
12

menu-i d- obj ect-alist [Variable |

The * menu- i d- obj ect - al i st* variable contains an association list
mapping menu ID numbers (used by the Macintosh Operating System) to
MCL menu objects. You may wish to look at this list, but you should not
modify it.

menubar - fr ozen [Variable |

The *menubar - f r ozen* variable is typically bound to t while several
menu changes are made. Once the changes are complete, a call to dr aw-
menubar - i f draws the new menubar all at once. This mechanism can
prevent undue flickering of the menubar.

If the value of this variable is true, no menubar redrawing will occur.
If the value of this variable is ni | , the menubar will be redrawn.

If you use * menubar - f r ozen*, it is up to you to later call dr aw- menubar -
i f. The menubar is not redrawn automatically.

Chapter 3: Menus 109

Syntax

Description

dr aw nenubar -i f

dr aw nmenubar - i f

The dr aw- menubar - i f function redraws the menubar (by calling the

[Function)

trap #_Dr awMenuBar) if the value of * nenubar - f r ozen* is ni | . If the

value of * menubar - f rozen* isnotni | , no action is taken.

Menu items

Menu items form the bodies of menus. They are instances of the class
menu- i t em which is a subclass of nenu- el enent . Every menu item
is associated with some action, or occasionally with ni |, which means
the menu item does nothing.

When you create an instance of a menu item, you include a value for the
: Menu-i tem act i on initialization argument; that value should be a
function of no arguments. You can get that value with the accessor
function nenu-i t em acti on-f uncti on and change it with set -
nmenu-itemaction-function.

Whenever the user chooses a menu item (by either clicking it or
pressing a key equivalent), the current program is interrupted and the
menu item’s definition of the generic function menu-i t em acti on is
run. The default nenu-i t em acti on calls (nenu-item acti on-
functi on menu-item) and applies the result to no arguments.

You can specialize this behavior for your own menu items.

When nenu- i t em act i on returns, execution of the previous
program resumes. (The value returned by the call to menu-i t em
act i on is not used.)

Here is an example of a menu item definition with a simple value for
the : menu-i t em act i on initialization argument.

(MAKE- | NSTANCE ' MENU- | TEM
: MENU- | TEM TI TLE "Beep three tines"
: MENU- | TEM: ACTI ON
(LAMVBDA NI L
(ED- BEEP)
(ED- BEEP)
(ED- BEEP)))

110 Macintosh Common Lisp Reference

The menu-i t em acti on-f unct i on method is executed at interrupt
level, and further event processing is disabled while it is executed.
Therefore, if a menu item initiates a lengthy process, the process
shouldn’t be executed directly as a nenu- i t em act i on; instead, it
should be inserted into the normal read-eval-print loop using the
function eval - enqueue. For a complete description of eval -
enqueue, see Chapter 10: Events.

MCL forms relating to menu items

Description

Syntax

Description

Arguments

The following MCL forms are provided for programming menu items.

The forms specialized on menu- el enent can also be applied to menus
installed as hierarchical menus.

menu-item [Class name]

The menu- i t emclass, built on the class menu- el enent, is used to create
menu items.

initialize-instance [Generic function]

initialize-instance (menu-item menu-item & est initargs

Thei ni ti al i ze-i nst ance primary method for nenu- i t eminitializes
a menu item so that it can be installed in a menu. (When instances are
actually made, the function used is make- i nst ance, which calls
initialize-instance.)

menu-item A menu item.
initargs The initialization arguments for the menu item and their
initial values, if any:
:owner The menu in which the menu item is installed. The default
valueisnil .

menu-itemtitle
The title of the menu item. The default value is
"Untitled".

: conmand- key
If the value of :conmand- key is ni | , then the menu item
has no keyboard equivalent. If the value of :conmand-
key is a character, then that character key is the
equivalent.

Chapter 3: Menus 111

Example

Syntax

. menu-itemaction
The action performed when the menu item is selected.
This may be a function or a symbol with a function
binding. The accessors for this initialization argument are
menu-itemaction-functionandset-nenu-
itemaction-function.

. di sabl ed
If the value of :di sabl ed is true, the menu item is
disabled.

. menu-itemcolors
A property list of part keywords and colors. See the set -
part - col or method for menu items, described in “MCL
forms relating to menu item colors” on page 118.

. menu-item checked
The value of this keyword may be t, ni |, a character, or
a number indicating the check mark of the menu item.
The values have the same meanings as for the function
set-nmenu-item check- mark.

:style Akeyword or list of keywords indicating the font style of
the menu item. See the description of the function menu-
i tem styl e later in this section.

: updat e- functi on
A function to be run when the menu item is updated. The
default is ni | . The accessors of this argument are menu-
i tem update-functionandset-nmenu-item
updat e-functi on.

: hel p- spec
A value describing the Balloon Help for the menu item.
This may be a string or one of a number of more
complicated specifications, which are documented in the
file hel p- manager . | i sp in your Library folder. The
default valueis ni | .

? (setq yu-shiang-kitty-paws
(make-instance 'nmenu-item

:menu-itemtitle "Yu Shiang Kitty-Paws"

:hel p-spec "Prints a horrible pun.”

:menu-itemaction

(I ambda ()

(print "The paws that refreshes."))))

#<MENU- | TEM "Yu Shiang Kitty Paws">

menu-itemaction [Generic function]

menu-item acti on (menu-item menu-item

112 Macintosh Common Lisp Reference

Description

Argument

Syntax

Description

Argument

Syntax

Description

Arguments

Syntax

Description

Argument

Syntax

The menu- i t em act i on generic function is called whenever the user
chooses the menu item or presses the keyboard equivalent. The method
defined on menu- i t emcalls the function that is the value of menu- i t em
act i on of menu-item.

menu-item A menu item.

menu-itemacti on-function [Generic function]

menu-item action-function (menu-item menu-item

The menu-i tem acti on-functi on accessor function returns the
function that is the value of nenu-i t em act i on of menu-item.

menu-item A menu item.

set-menu-itemaction-function [Generic function]

set-nmenu-item action-function (menu-item menu-i t em new-
function

The set - nenu-it em acti on-f uncti on generic function sets the
value of menu-i t em acti on-functi on of menu-item to new-function
and returns new-function.

menu-item A menu item.

new-function ~ The new function associated with the menu item.

menu-itemtitle [Generic function]

menu-itemtitl e (menu-item menu-item

The menu-itemtitl e generic function returns the title of the menu
item as a string.

menu-item A menu item.

set-menu-itemtitle [Generic function]

set-nmenu-itemtitl e (menu-item menu- i t em new-title

Chapter 3: Menus 113

Description

Arguments

Example

Syntax

Description

Argument

Syntax

Description

Argument

Syntax

Description

The set - menu-i temtitl e generic function sets the title of the menu
item to new-title and returns new-title.

Ifmenu-itemtitleis"-", then the menu item appears as an unselectable
dotted line. Such items are useful for separating sets of items in a menu.

menu-item A menu item.
new-title A string, the new title of the menu.

? (menu-itemtitle hot-machine-item

"Hunan Lanbda"

? (set-nenu-itemtitle hot-machine-item"Szechuan Mac")
" Szechuan Mac"

? (menu-itemtitle hot-nmachine-item

" Szechuan Mac"

menu-itemdi sabl e [Generic function]

menu-it em di sabl e (menu-item menu- el enent)

The nenu-i t em di sabl e generic function disables menu-item so that it
cannot be chosen. The function has no effect if the menu item is already
disabled.

menu-item A menu item or menu; a menu element.

nmenu-i tem enabl e [Generic function]

menu- i t em enabl e (menu-item menu- el enent)

The menu- i t em enabl e generic function enables a menu item so that
the user can choose it. The function has no effect if the menu item is
already enabled.

menu-item A menu item or menu; a menu element.

nmenu-i t em enabl ed- p [Generic function]

menu-i t em enabl ed- p (menu-item menu- el enent)

The generic function nenu- i t em enabl ed- p returnst if the menu item
is enabled and ni | if the menu item is disabled.

114 Macintosh Common Lisp Reference

Argument

Syntax

Description

Argument

Syntax

Description

Arguments

Example

Syntax

menu-item A menu item or menu; a menu element.

conmand- key [Generic function]

conmand- key (menu-item menu- el enent)

The command- key generic function returns the keyboard equivalent of
the menu item. If there is no keyboard equivalent, the function returns
nil.

menu-item A menu item or menu; a menu element.

set - command- key [Generic function]

set - conmand- key (menu-item menu- el enent) character

The set - command- key generic function sets the keyboard equivalent of
the menu item to character, or to nothing if character is ni | .

To change the command key, call set - conmand- key again.

menu-item A menu item or menu; a menu element.

character The character to use as the keyboard equivalent. This
should be a character or ni | . If it is ni | , the menu item
has no keyboard equivalent. Characters used as
equivalents are usually uppercase.

This code sets the keyboard equivalent of yu- shi ang- ki t t y- paws to
Command-R:

? (set-conmmand- key yu-shiang-kitty-paws #\R)

NI L

Note that when you use this keyboard command, you do not need to

type the R as an uppercase letter; that is, you press Command-R, not
Command-Shift-R.

menu-it em check- mar k [Generic function]

nmenu- i t em check- mar k (menu-item menu-i t em

Chapter 3: Menus 115

Description

Argument

Syntax

Description

Arguments

Example

Syntax

Description

Argument

Example

The menu- i t em check- mar k generic function returns the character
currently used as a check mark beside the menu item, or ni | if the
command is not currently checked.

menu-item A menu item.

set - nenu-i t em check- mar k [Generic function]

set - menu-i t em check- mar k (menu-item menu-i t em
new-mark

The set - nenu- i t em check- mar k generic function sets the character to
be used as a check mark beside the menu item.

If new-mark is ni | , no check mark appears next to the command. If new-mark is
t, then a standard check-mark symbol (V) appears beside the command. If it is
a character or the ASCII value of a character, then the corresponding character
appears next to the menu item. The function returns new-mark.

menu-item A menu item.
new-mark A character, the ASCII value of a character, t, orni | .

Here is an example of putting a check mark beside the menu item yu-
shi ang- ki t t y- paws. (The reader macro for the check mark character
is #\ CheckMar k.)

? (set-nenu-item check-mark yu-shiang-kitty-paws t)
#\ CheckMar k

menu-itemstyle [Generic function]

menu- it em styl e (menu-item menu- el enent)

The nenu-i t em st yl e generic function returns the font style in which
the menu item appears.

Stylesare: pl ain,: bol d,:italic,:shadow :outline,:underline,
: condense, and : ext end. The keyword : pl ai n indicates the absence of
other styles.

menu-item A menu item or menu; a menu element.

? (menu-itemstyle yu-shiang-kitty-paws)
: PLAIN

116 Macintosh Common Lisp Reference

Syntax

Description

Arguments

Example

Syntax

Description

Argument

Syntax

Description

Argument

set-nenu-itemstyle [Generic function]

set-menu-item styl e (menu-item menu- el enent) new-styles

Theset - menu-i t em st yl e generic function sets the font style in which
the menu item appears.

Stylesare: pl ain,: bol d,:italic,:shadow :outline, :underline,
: condense, and : ext end. The keyword : pl ai n indicates the absence of
other styles.

menu-item A menu item or menu; a menu element.

new-styles A keyword or list of keywords. Allowable keywords are
:plain,:bold, :italic,:shadow, :outline,
:under | i ne,: condense, and : ext end. The keyword
: pl ai n indicates the absence of other styles.

? (set-nenu-itemstyle yu-shiang-kitty-paws
' (:shadow : underline))
(: SHADOW : UNDERLI NE)

nmenu-i t em updat e [Generic function]

nmenu-i t em updat e (menu-item menu-i t em

The generic function menu- i t em updat e is called when a user clicks a
menu if the menu does not have its own nenu- updat e- f uncti on. In
this case, menu- i t em updat e is called on each menu item in the menu.
The user normally does not need to call this function; it is called indirectly
by the MCL event system.

menu-item A menu item.

menu- it em updat e- functi on [Generic function]

menu- i t em updat e- f uncti on (menu-item menu-it em

The nmenu-i t em updat e- f unct i on generic function returns the
function that is the value of menu- i t em updat e- f unct i on for menu-
item.

menu-item A menu item.

Chapter 3: Menus 117

set - nenu-it em updat e- f uncti on [Generic function]

Syntax set - menu-i t em updat e- f unct i on (menu-item menu- i t em) new-
function

Description The generic function set - menu- i t em updat e- f unct i on sets the
function that is the value of nenu- i t em updat e- f unct i on of menu-
item.

Arguments menu-item A menu item.
new-function A function or a symbol naming a function.

Example

In this example, a check mark appears beside yu- shi ang- ki tty-
paws if Macintosh Common Lisp is running in the Eastern time zone.

? (set-nenu-itenupdate-function
yu- shi ang- ki tty- paws
#' (I anbda (yu-shiang-kitty-paws)
(set-nenu-item check-mark yu-shiang-kitty-paws
(= (ccl::get-tinme-zone) 5))))
#<Anonynous Function #x4704A6>

A more common use of set - menu-i t em updat e-functi onisina
menu of fonts. Only the font used in the active window is checked; the
others are unchecked. A check mark either appears beside or is
removed from the commands in the font menu after the menu- it em
updat e function, applied by each command, determines the font of the
active window.

MCL forms relating to menu item colors

The following functions control the coloring of the menu items.

part - col or [Generic function]

Syntax part - col or (menu-item menu- it em) part

Description ~ The part - col or generic function returns the color of the part of the
menu item specified by part. See Chapter 6: Color for a description of color
encoding.

Arguments menu-item A menu item.

118 Macintosh Common Lisp Reference

part A keyword specifying a part of the menu item. The three
possible keywords have the following effects:
citemtitle
The color used for the title of the menu item. This is also
the default color used for the keyboard equivalent and

check mark.

citemkey
The color used for the keyboard equivalent of the menu
item.

citem mark
The color used for the check mark beside the
menu item.

set-part-col or [Generic function]
Syntax set-part-col or (menu-item menu- i t em part color

Description The set - part - col or generic function sets the color of part to color and
returns color.

Arguments menu-item A menu item.

part A part of the menu item. The same keywords are used as
for part-col or.

color A color.
part-color-1list [Generic function]
Syntax part-col or-1ist (menu-item menu-item

Description The part-col or-1i st generic function returns a property list of part
keywords and colors for the colored parts of the menu item.

Argument menu-item A menu item.

Chapter 3: Menus

119

Window menu items

120

Macintosh Common Lisp provides a special class of menu items for
operating on the active window. These are window menu items. Many
menu items act only on the active window. Any window menu item
that does not apply to the active window should be disabled (for
example, Save should be disabled when the active window is the Search
dialog box). Window menu items provide an easy way to create menu
items that act on the active window. Window menu items are
automatically disabled when the active window is of the wrong type.

Every window menu item should have as its nenu-i t em act i on-
functi on a function, a generic function, or a symbol with a function
binding. This function should take one argument, a window. When a
window menu item is selected, its action function is called with the
active window as the argument.

If the action function is a generic function, then the menu item is
applicable only if the generic function has a method suitable for the
class of the front window. If the action function cannot legally be called
with the front window as its argument, the menu item is disabled.

For example, the Save command has as its menu-i t em act i on-
funct i on the function Wi ndow- save. If the active window has no
method for wi ndow save (for example, if the active window is the
Listener), then Save is disabled. If the class of the active window has a
method for wi ndow save (and if a subsidiary function, wi ndow-
needs- savi ng- p, returns true), then Save is enabled; choosing this
menu item causes the active window to perform wi ndow save.

The menu item may be affected by the context in which it is called; for
example, the Undo menu item may be renamed to reflect what action
will be undone (for instance, Undo Cut, Undo Typing, and so on).

Many of the built-in menu items in Macintosh Common Lisp, including
Save, Save As, Revert, Print, Cut, Copy, Paste, and Select All, are
window menu items. The Search menu item is not a window menu
item, because the Search dialog box can stay on the screen to search
whatever window is currently active.

Macintosh Common Lisp Reference

Window menu item functions

The menu items and their corresponding functions are given in Table 3-
1.

s Table3-1 Window menu items
Menu item Function
Close wi ndow cl ose
Save Wi ndow save
Save As... Wi ndow save- as
Save Copy As... wi ndow save- copy- as
Revert wi ndowr evert
Print... wi ndow har dcopy
Undo undo
Undo More undo- nor e
Cut cut
Copy copy
Paste past e
Clear cl ear
Select All sel ect-all
Execute Selection wi ndow eval - sel ecti on

Execute Buffer

List Definitions

wi ndow eval - whol e- buf f er

w ndow def s- di al og
If a window has a definition for one of these functions, then the
corresponding menu item is enabled when the window is active. If the

user chooses the menu item, the function is called on the active
window.

Some of these functions are internal to Macintosh Common Lisp.

Chapter 3: Menus

121

Window menu item class

The following definitions control the behavior of window menu items.

W ndow nenu-item [Class namel]

Description This is the class of window menu items.

initialize-instance [Generic function]

Syntax initialize-instance (window-menu-item Wi ndow nenu-i t en) & est
initargs

Description ~ Theinitialize-instance primary method for wi ndow nmenu-item
initializes a window menu item so that it may be installed in a menu.
(When instances are actually made, the function used is make- i nst ance,
which callsi ni tialize-instance.)

Arguments window-menu-item
A window menu item.
initargs The initialization arguments for the window menu item.

They are the same as for menu items:

cmenu-itemtitle
The title of the window menu item.

: conmand- key
If the value of : conmand- key is ni | , then the window
menu item has no keyboard equivalent. If the value of
: command- key is a character, then that character key is
the equivalent.

smenu-itemaction
The action performed when the window menu item is
selected. This may be either a function or a symbol with a
function binding. The accessors for this initialization
argument are menu-i t em acti on-functi onand
set-menu-itemaction-function.

. di sabl ed
If the value of ; di sabl ed is true, the window menu item
is disabled.

. menu-itemcolors
A property list of part keywords and colors.

122 Macintosh Common Lisp Reference

- menu-item checked
The value of this keyword may be t, ni |, a character, or
anumber indicating the check mark of the window menu
item. The values have the same meanings as for the
function set - menu-i t em check- mark.

:style Akeyword or list of keywords indicating the style of the
window menu item. See the description of the function
set-nmenu-itemstyle.

:updat e-functi on
A function to be run when the menu item is updated. The
defaultisni | .

: hel p- spec
A value describing the Balloon Help for the menu. This
may be a string or one of a number of more complicated
specifications, which are documented in the file hel p-
manager . | i sp in your Library folder. The default value
isnil.

The : menu-item acti on specified for a window menu item is used
in a special way. When the menu item is selected, the function is called
with the active window as the argument. The menu item is disabled
when the function is a generic function that has no method applicable
to the active window.

Updating the menubar

Macintosh Common Lisp provides a convenient mechanism for
updating the menubar to reflect the program state. The update routine
is run whenever the user clicks a menu title in the menubar or presses
a keyboard equivalent. The routine is run before a pull-down menu or a
menu item is chosen. In this way, the menus and menu items can be
changed before the user sees them.

The update routine is very simple: the generic function menu- updat e
is run on every installed menu. The default version of menu- updat e
runs Menu- i t em updat e on each of its menu items. You can
specialize update behavior for a menu or menu item by defining
auxiliary methods of menu- updat e or nenu- i t em updat e.

The menu- i t em updat e primary methods are not designed to do the
updating themselves, but rather callmenu- i t em updat e- f unct i on.
If you write an entirely new menu, you can write a method for menu-
updat e that handles all the menu items and not have to write any
menu- i t em updat e methods. An example appears in the file vi ew
exanpl e. | i sp in the Examples folder.

Chapter 3: Menus 123

The Apple menu

The Apple menu is treated differently from other menus. In particular,
the Apple menu can never be removed. Calling menu- dei nstal | on
the Apple menu does nothing. One implication of this is that the Apple
menu remains in the menubar even after you call (set - menubar
nil).

If you wish to create an application with its own About menu item in

the Apple menu, first remove all the menu items from the Apple menu

and then install your own. You begin with the expression

(apply # renmove-nenu-itens *appl e-menu* (nenu-itens *appl e-
menu*))

Don’t worry: the desk accessories won't be removed! Once you have

done this, you can add your own menu items to the Apple menu. Any
menu items added are automatically placed above the desk accessories.
Normally, an application has one About menu item and one blank line.

The Apple menu remains installed as you work on it.

Example: A font menu

124

The file f ont - nenus. | i sp, distributed with Macintosh Common
Lisp and available in your MCL Examples folder, contains an example
of code implementing a font menu. You can load this file to see how it
works.

Macintosh Common Lisp Reference

Chapter 4:

Views and Windows

Contents
Views and Windows / 126
What simple views do / 126
What viewsdo / 127
What windows do / 127
Class hierarchy of views / 128
Summary / 129
For more information / 130
MCL expressions relating to simple views and views / 130
Windows / 153
MCL functions for programming windows / 154
Advanced window features / 173
Supporting standard menu items / 178
Floating windows / 180

This chapter covers the implementation of views and windows in Macintosh
Common Lisp. Macintosh Common Lisp provides Macintosh windows and
dialog boxes as standard MCL classes. Macintosh Common Lisp also provides
facilities for you to create customized kinds of windows. The features of these
parts of the MCL system are described in this chapter.

The relationship of dialogs and dialog items to views and windows is
described in this chapter. They are defined in Chapter 5: Dialog Items and
Dialogs.

125

Views and Windows

To understand how Macintosh Common Lisp handles drawing and
display, it is necessary to know the relationship between the class
si npl e- vi ewand its subclasses.

The Macintosh Operating System draws and displays by means of
views. Views and their subclasses provide generalized drawing
rectangles, store information about them, and display them.

» The most generalized drawing and display class is si npl e- vi ew, the
class used for all views that do not have subviews.

= Asubclass of si npl e- vi ewis vi ew, which includes all the views that
contain subviews.

= The subclasses of vi ewinclude wi ndow and its subclasses.

Windows govern the relationship of views to the screen. Before a view
can draw itself, it must be contained in a window—a screen display
mechanism. Windows cannot be contained within windows.

Until you are used to it, this relationship can be confusing. In Macintosh
Common Lisp, the class Wi ndowis a subclass of vi ew, but instances of
views are contained within instances of windows.

Views and windows are implemented this way because views provide
a more generalized behavior than windows. Views know how to draw
themselves inside any coordinate system. Windows know how to draw
themselves inside a specialized coordinate system defined by the
screen. Windows also have additional behavior to perform event
handling.

Because windows have the more specialized behavior, they are a
subclass of views.

For many purposes the relationship between views and windows is
transparent; Wi ndowsimply calls the method for its superclass, vi ew.

What simple views do

Simple views have no subviews—no subordinate display objects. In
Macintosh Common Lisp, you say they contain no subviews. Thus they
can use simpler and faster drawing methods.

Simple views are drawn and clicked while focused to their container,
the view that contains them. Focusing on a view means installing the
GrafPort of view as the current GrafPort and setting the clip region and
origin so that drawing will occur in the coordinate system of view.

126 Macintosh Common Lisp Reference

For interface programming, the most important built-in subclass of
si npl e- vi ewis the class of dialog items, di al og-i tem

The class di al 0g- i t emis a subclass of si nmpl e- vi ewbecause dialog
items have no subviews. Dialog items are drawn while focused to the
dialog box or other window in which they are contained.

(Because dialog items have many specialized subclasses and methods,
they are described in a separate place, Chapter 5: Dialog Items and
Dialogs.)

What views do

Most graphics operations are defined on views. Views and the generic
functions associated with them determine the position of the view in its
coordinate system, its font, its relationship to mouse activity, and
whether or not the view is currently being drawn in.

Views have other views contained within them: for instance, a view can
contain simple views such as radio buttons or checkboxes.

Views draw their contents relative to their own coordinate system. Each
view has its own coordinate system, with the point (0, 0) in the upper-
left corner of its content area. The position of all the view’s subviews is
defined by this coordinate system.

For this reason, a view’s subviews are drawn after the view. For
example, a static-text item in a dialog box is drawn after the dialog box.

When a view draws itself inside its container, it uses the container’s
coordinate system and is clipped to the boundaries of its container. For
example, if a static-text item is too large to fit inside the boundaries of a
dialog box, only the part of the item that fits inside the dialog box is
drawn.

What windows do

Because windows are built on views, the distinction between a view
and a window is transparent for many purposes. You can simply work
with wi ndow, using both wi ndowand the vi ewoperations it inherits.

Window functions include closing a window and deallocating the
associated Macintosh data structures, positioning a window on screen,
sizing a window, showing and hiding windows, setting the layer of a
window, determining whether the window displays in color, and
ensuring that a window is on screen.

Chapter 4: Views and Windows 127

Events (such as keystrokes, presses of the mouse button, and activation
events) are usually handled by the top window and its views. Views
and windows can be redrawn, resized, activated, and so on, in response
to events.

Macintosh Common Lisp provides several subclasses of Wi ndow. These
include

» Fred windows, used by Fred, the editor. These windows have
functionality for editing text.

» Floating windows (whose class iswi ndoi d), a special class of window
that always appears in front of other windows. Floating windows are
typically used for creating tool palettes.

» Dialogs, in which you display information and initiate action in
structured ways. Dialog items may appear in any view or subclass of
view, not only in dialog boxes. The di al og class is preserved for
compatibility with earlier versions of Macintosh Common Lisp, but it
doesn’t exist in any functional sense.

Class hierarchy of views

128

Figure 4-1 shows the class hierarchy of views from si npl e- vi ew
downward.

= The class si npl e- vi ewis the parent of both vi ewand di al og-
item

» The class vi ewis the subclass of si npl e- vi ewthat defines the
behavior of all views with subviews.

s The class Wi ndowis a subclass of vi ew, and f r ed- wi ndowand
di al og (among others) are subclasses of wi ndow.

» The class di al og is simply wi ndow with slightly different default
initial arguments, and dialog items do appear inside it exclusively; the
class Wi ndowand its subclasses are usable as dialog boxes.

» Theclassdi al 0og-i t emis asubclass of si npl e- vi ewbecause dialog
items do not possess subviews.

The class di al og- i t emitself is abstract. The subclasses of di al og-
i t eminclude butt on-di al og-itemfred-dial og-itemand

t abl e- di al 0g- i t em(among others). It is these subclasses that
actually have instances.

Macintosh Common Lisp Reference

s Figure4-1 The class hierarchy of views from si npl e- vi ewdownward

si npl e-vi ew

5 L

3

vi ew di al og-item
d g 3 !
. Wi ndow button-dial og-item tabl e-di al og-item fred-dial og-item
is also di al og

J

fred-w ndow

Summary

To summarize:

Simple views have no subviews.

Views have subviews.

Views define graphics operations within other views.

Windows define screen operations.

Dialogs are windows with slightly different default values, good for

dialog boxes.

Fred windows have special methods to deal with, among other things,
the display and editing of Lisp code and text.

Dialog items are simple views since they have no subviews. They may
appear in any view or window. The class di al og- i t emis never
instantiated; only its subclasses have instances.

Note: A window instance contains zero or more views (that is, it
provides facilities to display zero or more views on screen), but the
wi ndow class is a subclass of the vi ew class.

Chapter 4: Views and Windows

129

For more information

Dialog items and dialogs are described in Chapter 5: Dialog Items and
Dialogs.

For information on the size, resolution, and other physical
characteristics of the display, see Chapter 2: Points and Fonts .

Information on using color is given in Chapter 6: Color .

The event-related behavior of windows and views is described in
Chapter 10: Events.

Information on drawing in views with QuickDraw is given in
Appendix D: QuickDraw Graphics.

MCL expressions relating to simple views and views

The following MCL forms are used to define and program simple views
and views.

si npl e-vi ew [Class name |

Description ~ The class si npl e- vi ewis the basic class of views, from which all views
inherit. A simple view does not have subviews and thus can be drawn
more easily. Views and dialog items are built on simple views.

initialize-instance [Generic function |

Syntax initialize-instance (view si npl e-vi ew) & est initargs

Description Theinitial i ze-i nst ance primary method for si npl e- vi ew
initializes a simple view so that it can be used. (When instances are
actually made, the function used is make- i nst ance, which calls
initialize-instance.)

Arguments view A simple view.

initargs Alist of keywords and values used to initialize the simple
view. The following keywords are available:

130 Macintosh Common Lisp Reference

Description

Syntax

Description

Arguments

Jwptr A pointer to a window record on the Macintosh heap.

This record can be examined or passed to Macintosh traps
that take a window pointer. The value is ni | if the view
is not contained in a window.

“view position

The position of the view in its container. The default is
(vi ew def aul t - posi ti on view) .

JViewsize

The size of the view. The default is
(vi ew def aul t - si ze view) .

: Vi ew ni ck- nanme

The nickname of the view. This keyword is used in
conjunction with vi ew- naned. The default valueisni | .

:vi ewfont

The font specification used by the view. The default is
ni | , which means that the view inherits its font from its
container.

: hel p- spec

A specification of a string for Balloon Help. The simplest
specification is a string. For a description of the other
possible : hel p- spec forms, see the file hel p-
manager . | i sp in your MCL Examples folder.

:Vi ew cont ai ner

A view. If this argument is specified and non-ni | , the
instantiation procedure calls set - vi ew cont ai ner to
make this argument the container of the view being
instantiated.

Vi ew [Class name |

The vi ewclass is the class of views that can include subviews. It is built
onsi npl e-vi ew.

initialize-instance [Generic function |

initialize-instance (viewvi ew)&rest initargs

Theini tial i ze-i nstance primary method forvi ewinitializes a view
so that it can be used. (When you make an instance, use make- i nst ance,
which callsi nitialize-instance.)

A view.

initargs A list of keywords and values used to initialize the view.

The following keywords are available:

Chapter 4: Views and Windows 131

Example

Swptr A pointer to a window record on the Macintosh heap.
This record can be examined or passed to Macintosh traps
that take a window pointer. The value is ni | if the view
is not contained in a window.

:Vvi ew position
The position of the view in its container. The default is
#@O0 0).

. viewsize
The size of the view. The default is #@ 100 100).

. Vi ew ni ck- name
The nickname of the view. This keyword is used in
conjunction with vi ew naned. The default valueisni | .

:viewfont
The font specification used by the view. The default is
ni | , which means that the view inherits its font from its
container.

:view scrol |l -position
The initial scroll position of the view. This corresponds to
the origin in a Macintosh GrafPort. The default value is
#@0 0).

: hel p- spec
A specification of a string for Balloon Help. The simplest
specification is a string. For a description of the other
possible : hel p- spec forms, see the file hel p-
manager . | i sp in your MCL Examples folder.

:vi ewcont ai ner
A view. If this argument is specified and non-ni | , the
instantiation procedure calls set - vi ew- cont ai ner to
make this argument the container of the view being
instantiated.

. Vi ew subvi ews
A list of the views that will be made subviews of view.

Here is an example of a view being instantiated.

? (setf ny-view (nmake-instance 'view
:view scrol |l -position #@ 20 30)
cviewfont ' ("Mnaco" 12)
:view container (setf win

(make-instance 'w ndow))))

#<VI EW #x43C6F1>
? (view subvi ews wi n)
#<VI EW #x43C6F1>

132 Macintosh Common Lisp Reference

Description

Description

Syntax

Description

Arguments

Example

*current-vi ew [Variable |

The *current - vi ew* variable is bound to the view where drawing
currently occurs. See f ocus- vi ewand wi t h- f ocused- vi ew.

*mouse- Vi ewr [Variable |

The * nouse- vi ew* variable is bound to the view that the mouse is over.
This variable is updated by the wi ndow updat e- cur sor generic
function.

The * nouse- vi ew* view is the one whose vi ew cur sor method decides
which cursor to select.

w t h-f ocused- vi ew [Macro]

wi t h-f ocused- vi ewview { form} *

The wi t h- f ocused- vi ewmacro executes forms with the current
GrafPort set for drawing into view. This involves setting the current
GrafPort and setting the origin and clip region so that drawing occurs in
view. When the forms exit (normally or abnormally), the old view is
restored.

view A view installed in a window, or ni | . If ni | , the current
GrafPort is set to an invisible GrafPort.

form Zero or more forms to be executed with the current view
set.

Here is an example of using Wi t h- f ocused- vi ewto paint a round-
cornered rectangle within a window wi ndowl, using the Macintosh
trap #_Pai nt RoundRect .

(def parameter *w* (nmmke-instance 'w ndow))
(rlet ((r :rect :top 20 :left 20 :bottom 80 :right 60))
(with-focused-vi ew *w*
(#_paintroundrect r 30 30)))

Chapter 4: Views and Windows 133

Syntax

Description

Arguments

Syntax

Description

Arguments

Example

f ocus-vi ew [Generic function]

focus-vi ew(view si npl e-vi ew) &opti onal font-view
focus-vi ew(viewnul |) &ptional font-view

The f ocus- vi ewfunction installs the GrafPort of view as the current
GrafPort and sets the clip region and origin so that drawing will occur in
the coordinate system of view.

The f ocus- vi ewfunction is not normally called directly. In general, wi t h-
f ocused- vi ewshould be used when drawing to views.

view A view installed in a window, or ni | . If ni | , the current
GrafPort is set to an invisible GrafPort.

font-view Aview orni | .If ni |, the font is unchanged. If non-ni |,
thevi ew f ont - codes of font-view are installed after the
rest of the focusing is completed. The defaultis ni | .
(See”“Implementation of font codes” on page 75 for
information on font codes.)

wi t h-font-focused-vi ew [Macro]

wi t h-font-focused-vi ewview { form} *

The macrowi t h-f ont - f ocused- vi ewfocuses on the font of view, then
callswi t h- f ocused- vi ew.

view A view installed in a window, or ni | . If ni | , the current
GrafPort is set to an invisible GrafPort.

form Zero or more forms to be executed with the current view
set.

Stream output operations on views always use wi t h- f ont -

f ocused- vi ew. Hence, you need to use wi t h-f ont - f ocused-

vi ewexplicitly only if you need to do lower-level output. Here is an
example.

(defvar *w* (mmke-instance 'w ndow))
(defvar *view (make-instance 'view
Vi ew contai ner *w*
cviewfont ' ("Tines" 12)
(viewsize (viewsize *w)
:view position #@0 0)))
(with-pstrs ((s "Hello there."))

134 Macintosh Common Lisp Reference

Syntax

Description

Argument

Syntax

Description

Arguments

Syntax

Description

(terpri *view)

(with-focused-view *vi ew
; This string will draw in the default font
(#_DrawString s))

(terpri *view)

(wi th-font-focused-view *vi ew
; This string will drawin tines 12 font.
(#_Drawstring s)))

Vi ew cont ai ner [Generic function |

Vi ew cont ai ner (view vi ew)

The vi ew- cont ai ner generic function returns the view’s containing
view.

view A view or subview, but not a window. Instances of
Wi ndow cannot have containers.

set - vi ew cont ai ner [Generic function]

set - vi ew cont ai ner (view Vi ew) new-container

The set - vi ew- cont ai ner generic function sets view’s containing view
to new-container. If view’s window is changed by giving it a new container,
renove- vi ew f r om wi ndowis called on view and the old window, and
instal | -vi ew i n-wi ndowis called on view and the new window.

view A view or subview, but not a window. Instances of
wi ndow cannot have containers. If set - vi ew
cont ai ner is called on a window, it signals an error.

new-container The new container of the view.

install-viewin-w ndow [Generic function]

i nstall-viewin-w ndow(view si npl e- vi ew) window
instal | -vi ew i n-w ndow (view vi ew) window

The generic functioni nst al | - vi ew i n- wi ndowinstalls view in the
window window.

Chapter 4: Views and Windows 135

Arguments

Syntax

Description

Argument

Syntax

Description

Arguments

Syntax

Description

Argument

This function performs initialization tasks that require the containing window.
It should never be called directly by user code. However, it may be shadowed.
Specialized versions of i nst al | - vi ew i n- wi ndowshould always perform
cal | - next - met hod.

view A view or subview, but not a window. Instances of
W ndow cannot have containers.
window A window.
renove-vi ew f rom w ndow [Generic function]

renmpve- vi ew f rom wi ndow (view si npl e- vi ew)
renove- vi ew f rom wi ndow (view vi ew)

The generic function r enove- vi ew f r om wi ndowremoves view from
its container. It should never be called directly by user code. However, it
may be shadowed. Specialized versions of r enbve- vi ew f rom wi ndow
should dispose of any Macintosh data the item uses (that is, data not
subject to garbage collection) and should always perform a cal | - next -
met hod.

view A view or subview, but not a window. Instances of
W ndow cannot have containers.

subvi ews [Generic function]

subvi ews (view vi ew) &opti onal subview-type

The subvi ews generic function returns the subviews of view. If subview-
type is present, only subviews matching that type are returned.

view A view.
subview-type A Common Lisp type specifier.

Vi ew subvi ews [Generic function]

Vi ew subvi ews (view Vi ew)

The vi ew- subvi ews generic function returns a vector containing all of
the view’s subviews. This vector should never be changed directly. It is
updated automatically by calls to set - vi ew- cont ai ner.

view A view.

136 Macintosh Common Lisp Reference

Syntax

Description

Arguments

Example

Syntax

Description

Arguments

Example

do- subvi ews [Macro]

do- subvi ews (subview-var view [subview-type]) { form}*

For each subview of view of the given subview-type, the macro do-
subvi ews executes form with subview-var bound to the subview.

subview-var A variable.

view A view.

subview-type A Common Lisp type specifier.
form Zero or more MCL forms.

Here is how do- subvi ews might be used to define a method on map-
subvi ews for vi ew.

? (defnmethod map-subviews ((view view) function
&optional subvi ewtype)
(i f subviewtype
(do-subvi ews (subvi ew view subvi ewtype)
(funcall function subview))
(do-subvi ews (subview vi ew)
(funcall function subview))))
#<STANDARD- METHOD MAP- SUBVI EW5 (VI EW T) >

map- subvi ews [Generic function |

map- subvi ews (view vi ew) function &opt i onal subview-type

For each subview of view of the given subview-type, the generic function
map- subvi ews calls function with the subview as its single argument.

view A view.
function A function.
subview-type A Common Lisp type specifier.

Here is how map- subvi ews might be used to define a method on
subvi ews for vi ew.

? (defnmethod subviews ((view view) &optional subviewtype)
(let ((result nil))
(flet ((f (subview) (push subviewresult)))
(decl are (dynami c-extent # f))
(map- subvi ews view # f subvi ewtype))

Chapter 4: Views and Windows 137

Syntax

Description

Arguments

Example

Syntax

Description

Arguments

Example

(nreverse result)))
#<STANDARD- METHCD SUBVI EWS (VI EW >

vi ew naned [Generic function |

Vi ew named name (view Vi ew)

The vi ew naned generic function returns the first subview of view whose
nickname is name. The subviews are searched in the order in which they
were added to view.

name Any object, but usually a symbol. Nicknames are
compared using eq.
view A view.

Here is an example of using vi ew- nanmed to find a button nicknamed
pear | i e in the dialog di al og1l.

? (viewnaned 'pearlie dialogl)
#<RADI O BUTTON- DI ALOG | TEM #x374BA9>

fi nd- naned- si bl i ng [Generic function |

fi nd- nanmed- si bl i ng (view si npl e- vi ew) name

The f i nd- naned- si bl i ng generic function performs a search in view’s
container and returns the first item in the container whose nickname is
name. For example, given a dialog item view, it performs a search in the
view that is view’s container to find another item with the nickname name.
The items are searched in the order in which they were added to view’s
container.

view A simple view.

name Any object, but usually a symbol. Nicknames are
compared using eq.

The generic function f i nd- named- si bl i ng might be implemented
as follows.

? (defrmethod find-naned-sibling ((view sinple-view) nane)
(let ((container (viewcontainer view)))
(and contai ner (view naned nanme container))))

138 Macintosh Common Lisp Reference

Syntax

Description

Arguments

Examples

Syntax

Description

Arguments

add- subvi ews [Generic function]

add- subvi ews (view vi ew) & est subviews

The add- subvi ews generic function sets the container of each of subviews
to view.

If any of the subviews are already owned by view, add- subvi ews does
nothing.

view A view.

subviews A view or simple view, but not a window; subviews must
be able to be contained within view.

This function could be defined as follows:
? (def et hod add-subviews ((view view) & est subviews)
(dolist (su subviews)
(set-view container su view)))
#<STANDARD- METHOD ADD- SUBVI EWs (VI EW >

The following code adds a checkbox to a window, then checks to see
whether it’s there:

? (setf bim (nmake-instance 'w ndow))

#<W NDOW "Untitl ed" #x4E42A9>

? (setf boxy (make-instance 'check-box-dialog-itenj)
#<CHECK- BOX- DI ALOG- | TEM #x4E5249>

? (add- subvi ews bi m boxy)

NI L

? (subviews bim

(#<CHECK- BOX- DI ALOG | TEM #x4E5249>)

renove- subvi ews [Generic function |

renove- subvi ews (view vi ew) & est subuviews

The r enove- subvi ews generic function removes each of subviews from
view.

If a subview is not in view, an error is signaled.

view A view.

subviews A view or simple view, but not a window; subviews must
be able to be contained within view.

Chapter 4: Views and Windows 139

find-clicked-subvi ew [Generic function]

Syntax find-clicked-subvi ew(view si npl e- vi ew) where
find-clicked-subvi ew(view vi ew) where
find-clicked-subvi ew(view nul |) where

Description The fi nd-cl i cked- subvi ewgeneric function returns the subview of
view that contains the point where in its click region. The method for nul |
searches all windows for a subview containing where in its click region.

This function is similar to f i nd- vi ew cont ai ni ng- poi nt, butfi nd-
cl i cked-subvi ewcalls poi nt-i n-cl i ck-regi on-p,andfi nd-

vi ew cont ai ni ng- poi nt callsvi ew cont ai ns- poi nt - p. The default
method of poi nt -i n-cl i ck-r egi on- p for views or simple views simply
calls vi ew cont ai ns- poi nt - p, but users can write methods to make
views invisible to mouse clicks.

Arguments view A view or subview.
where A point in the local coordinate system of the view’s
container.
Vi ew cor ners [Generic function]
Syntax vi ew cor ner s (view si npl e- vi ew)

Vi ew cor ner s (window wi ndow)

Description ~ The vi ew- cor ner s method for si npl e- vi ewreturns two points, the
upper-left and lower-right corners of view. The method for wi ndow
returns the view size.

Arguments view A simple view or subclass of si npl e- vi ew.
window A window.

Example

? (viewcorners (nake-instance 'view
tview position #@ 10 20)
cviewsize #@30 40)))

1310730

3932200

? (point-string 1310730)

"#@10 20)"

? (point-string 3932200)

"#@ 40 60)"

140 Macintosh Common Lisp Reference

Syntax

Description

Arguments

Syntax

Description

Arguments

Example

Syntax

i nval i dat e-corners [Generic function |

i nval i dat e- cor ners (view si npl e- vi ew) topleft bottomright
&opt i onal erase-p

The i nval i dat e- cor ner s generic function calls the Macintosh trap
#_1 nval Rgn on the rectangle formed by topleft and bottomright in view.

view A simple view.

topleft The upper-left corner of the rectangle to invalidate.
bottomright The lower-right corner of the rectangle to invalidate.
erase-p A value indicating whether or not to add the invalidated

rectangle to the erase region of view’s window. The
defaultis ni | .

i nval i dat e- vi ew [Generic function |

i nval i dat e- vi ew(view si npl e- vi ew) &opt i onal erase-p
i nval i dat e- vi ew(view vi ew) &opt i onal erase-p

Thei nval i dat e- vi ewgeneric function invalidates view by running
i nval i dat e- cor ner s on the region bounded by its
Vi ew corners.

view A view or simple view.

erase-p A value indicating whether or not to add the invalidated
region to the erase region of view’s window. The default is
nil.

For examples of the use of i nval i dat e- vi ew, see in your MCL
Examples folder the files vi ew- exanpl e. | i spandtext-edit-
dialog-itemlisp.

i nval i dat e-regi on [Generic function |

i nval i dat e- regi on (view si npl e- vi ew) region &opt i onal
erase-p

Chapter 4: Views and Windows 141

Description

Arguments

Syntax

Description

Arguments

Syntax

Description

Argument

Thei nval i dat e-r egi on generic function focuses on the view and calls
#_1 nval Rgn. If the value of erase-p is true, the function adds this region
to view’s window erase region; the next time Wi ndow- updat e- event -
handl er runs, it will be erased. If erase-p is ni | and the window was
created with the : er ase- anonynous- i nval i dat i ons initarg set to
true (the default), the function adds this region to the window’s explicit
invalidation region; wi ndow- updat e- event - handl er will not erase it.

The function i nval i dat e-r egi on is called by i nval i dat e- vi ewand
i nval i dat e- cor ner s, and indirectly by set - vi ew- posi ti on, set -
Vi ew si ze, and set - vi ew cont ai ner.

view A simple view.
region The region to invalidate. The region must be a Macintosh
region handle, that is, the result of (#_NewRgn) .
erase-p A value indicating whether or not to add the invalidated
view to the erase region of view’s window. The default is
nil.
val i dat e-cor ners [Generic function]

val i dat e- cor ner s (view si npl e- vi ew) topleft bottomright
val i dat e- cor ner s (view vi ew) topleft bottomright

Theval i dat e- cor ner s generic function erases the previous contents of
the rectangle formed by fopleft and bottomright and calls #_Val i dRgn on
the rectangle. It also removes the rectangle from the erase region of view’s
window

view A view or simple view.

topleft The upper-left corner of the view to invalidate.

bottomright The lower-right corner of the view to invalidate.

val i dat e-vi ew [Generic function]

val i dat e- vi ew (view si npl e- vi ew)
val i dat e- vi ew (view vi ew)

The val i dat e- vi ewgeneric function validates view by running
val i dat e- cor ner s on the region bounded by its vi ew- cor ner s.

view A view or simple view.

142 Macintosh Common Lisp Reference

Syntax

Description

Arguments

Syntax

Description

Argument

Examples

val i dat e-regi on [Generic function]

val i dat e-r egi on (view si npl e- vi ew) region

The val i dat e-r egi on generic function focuses on the view and calls
#_Val i dRgn, removing the region from view’s window erase region and
explicit invalidation region.

view A simple view.

region A region. The region must be a Macintosh region handle,
that is, the result of (#_NewRgn) .

wpt r [Generic function]

wpt r (view si npl e- vi ew)

The wpt r generic function holds the pointer to a window record on the
Macintosh heap. This record can be examined or the pointer passed to
Macintosh traps that require a window pointer.

This generic function returns a window pointer if the view is contained in a
window, or ni | if the view is not contained in a window.

All views contained in a given window have the same wpt r .

view A simple view or subclass of si npl e- vi ew.

Both a view and its subview have the same wpt r .

? (setf bim (make-instance 'w ndow))
#<W NDOW "Unt it ed" #x4E42A9>

? (setf boxy (nmake-instance 'check-box-dialog-iten)
#<CHECK- BOX- DI ALOG- | TEM #x4E5249>

? (add- subvi ews bi m boxy)

NI L

? (wptr boxy)

#<A Mac Zone Pointer Size 156 #x2C35B4>
? (wptr bim

#<A Mac Zone Pointer Size 156 #x2C35B4>

You can test if a view’s window has been closed by checking whether
the value of its wpt r slotisni | .

? (wi ndow cl ose bim
NI L

Chapter 4: Views and Windows 143

Syntax

Description

Argument

Example

Syntax

Description

Argument

Example

? (wptr bim
NI L

? (wptr boxy)
NI L

Vi ew Wi ndow [Generic function |

vi ew wi ndow (view si npl e- vi ew)

The vi ew- wi ndow generic function returns the window containing view,
or ni | if the view is not contained in a window. If view is a window,
Vi ew Wi ndowreturns the window.

view A simple view or subclass of si npl e- vi ew.

This code checks to determine that a simple view (a checkbox dialog
item) is contained in a window:

? (setf checkbox (make-instance 'check-box-dialog-item)
#<CHECK- BOX- DI ALOG- | TEM #x4CF721>

? (setf win (make-instance 'w ndow))

#<W NDOW " Unti t| ed" #x4CFBE9>

? (add-subvi ews wi n checkbox)

NI L

? (vieww ndow checkbox)

#<W NDOW " Unti tl ed" #x4CFBE9>

Vi ew position [Generic function |

Vi ew posi ti on (view si npl e- vi ew)

The vi ew posi t i on generic function returns the position of the view in
its container.

view A view or simple view.

This code returns the position of checkbox, a checkbox dialog item:

? (setf checkbox (make-instance 'check-box-dial og-item)
#<CHECK- BOX- DI ALOG- | TEM #x4CF721>

? (view position checkbox)

262148

144 Macintosh Common Lisp Reference

Syntax

Description

Arguments

Example

Syntax

Description

Argument

Syntax
Description
Argument

Example

set-view position [Generic function]
set - vi ew posi ti on (view si npl e-vi ew) h &optional v

The set - vi ew posi ti on generic function sets the position of the view
in its container.

The positions are given in the container’s coordinate system.

view A view or simple view.

h The horizontal coordinate of the new position, or the
complete position (encoded as a point) if vis ni | or not
supplied.

v The vertical coordinate of the new position, or ni | if the

complete position is given by .

This code sets the position of checkbox, a checkbox dialog item:

? (setf checkbox (mmke-instance 'check-box-dialog-item)
#<CHECK- BOX- DI ALOG- | TEM #x4CF721>

? (set-view position checkbox #@ 20 20))

1310740

? (point-string 1310740)

"#@20 20)"

vi ew def aul t - posi ti on [Generic function]

vi ew def aul t - posi ti on (view si npl e- vi ew)

The method of vi ew def aul t - posi ti on for si npl e- vi ewreturns
#@ 0 0) . This function is called to determine the default value of the
: Vi ew posi ti on initarg of view.

view A simple view or subclass of si npl e- vi ew.

Vi ewSi ze [Generic function |

Vi ew si ze (view si npl e-vi ew)
The vi ew- si ze generic function returns the size of the view.

view A simple view or subclass of si npl e- vi ew.

Chapter 4: Views and Windows 145

Syntax
Description

Arguments

Syntax

Description

Argument

Syntax

Description

Argument

Syntax

This code returns the size of checkbox, a checkbox dialog item:
? (viewsize checkbox)
1048596

set-vi ewsize [Generic function]

set - vi ew si ze (view si npl e-vi ew) h &optional v

The set - vi ew si ze generic function sets the size of the view.

view A simple view or subclass of si npl e-vi ew.
h The width of the new size, or the complete size (encoded
as an integer) if vis ni | or not supplied.
v The height of the new size, or ni | if the complete size is
given by h.
vi ew def aul t - si ze [Generic function]

vi ew def aul t - si ze (view si npl e- vi ew)

The method of vi ew def aul t - si ze forsi npl e- vi ewreturns#@ 100
100) . This function is called to determine the default value of the : vi ew
Si ze initarg of view.

view A simple view or subclass of si npl e- vi ew.

vi ewscrol | -position [Generic function]

vi ew scrol | - position (viewsi npl e-vi ew)

Thevi ew scrol | - posi ti on generic function returns the current scroll
position of the view, which is the coordinate of the upper-left corner of the
view. This position corresponds to the origin of a Macintosh GrafPort.

view A simple view or subclass of si npl e- vi ew.

set-viewscroll-position [Generic function |

set-view scrol | -position (viewview) h&optional v
scroll-visibly

146 Macintosh Common Lisp Reference

Description

Arguments

Example

Syntax

Description

Argument

Syntax

Description

Arguments

The generic function set - vi ew- scrol | - posi ti on sets the position of
the view’s scroll position. It is usually called in response to a mouse click
in a scroll bar. The function returns ni | .

view A simple view or subclass of si npl e- vi ew.

h The horizontal coordinate of the new scroll position, or
the complete scroll position (encoded as a point) if v is
ni | or not supplied.

v The vertical coordinate of the new scroll position, or ni |
if the complete scroll position is given by h.

scroll-visibly ~ An argument specifying whether the scrolling is done
immediately. If true, the function calls#_Scr ol | Rect to
do the scrolling immediately. Otherwise, the function
invalidates the view so that it is redrawn the next time
wi ndow updat e- event - handl er is called.

? (setq foo (make-instance 'fred-w ndow))
#<FRED- W NDOW " New' #x438D21>
? (viewscroll-position foo)

0

? (set-viewscroll-position foo 20 20)

NI L

Vi ew ni ck- namre [Generic function |

Vi ew ni ck- name (view si npl e-vi ew)
Vi ew ni ck- name (view Vi ew)

Thevi ew ni ck- name generic function returns the nickname of the view.
The nickname is used in conjunction with vi ew- named.

view A view or simple view.

set - vi ew ni ck- nane [Generic function]

set - vi ew ni ck- name (view Vi ew) new-name

The set - vi ew ni ck- nane generic function sets the nickname of the
view to new-name and returns new-name.

view A view or simple view.
new-name A name, usually a symbol or string.

Chapter 4: Views and Windows

147

Syntax

Description

Arguments

Examples

Syntax

Description

fi nd- vi ew cont ai ni ng- poi nt [Generic function]

fi nd-vi ew cont ai ni ng- poi nt (view vi ew) h &optional v
direct-subviews-only

fi nd-vi ew cont ai ni ng- poi nt (viewnul |) h&optional v
direct-subviews-only

The generic function f i nd- vi ew cont ai ni ng- poi nt returns the view
containing the point specified by h and v. This may be the view or one of
its subviews.

The null method searches all windows for a view that contains the point. The
nul | class and its use are documented in Common Lisp: The Language, pages
780-783.

view A view.

h The horizontal coordinate of the point, or the complete
point if v is not supplied.

v The vertical coordinate of the point.

direct-subviews-only
If direct-subviews-only is ni | (the default), the most
specific view is returned; subviews are searched for
subviews, and so on. If true, then only the view or one of
its direct subviews is returned.

This code determines the subview of the window Wi n that contains the
point#@ 21 21).

? (find-viewcontaining-point win #@21 21))

#<CHECK- BOX- DI ALOG | TEM #x4CF721>

The following code returns the view that contains the mouse, when you
don’t know which window it’s over:

(find-view containing-point nil (view nbuse-position nil))

Vi ew cont ai ns-point-p [Generic function]

Vi ew cont ai ns- poi nt - p (view si npl e- vi ew) where
Vi ew cont ai ns- poi nt - p (window Wi ndow) where

The generic function vi ew cont ai ns- poi nt - p returns t if view
contains where; otherwise it returns ni | . The method for si npl e- vi ew
takes where in the coordinates of the parent view; the method for wi ndow
uses its own coordinates..

148 Macintosh Common Lisp Reference

Arguments

Syntax

Description

Arguments

Syntax

Description

Argument

Syntax

view A simple view or view.

window A window.

where The cursor position in the local coordinate system of the
view’s container when the mouse is clicked. If view is a
window, the cursor position in the window’s coordinate
system.

poi nt-in-click-region-p [Generic function]

poi nt-in-click-region-p (view si npl e-vi ew) where

The generic function poi nt - i n- cl i ck-regi on- p is called by vi ew
cl i ck-event - handl er to determine whether where is in view. The
default method calls vi ew cont ai ns- poi nt - p..

view A simple view or view.

where For a view, the cursor position of the view in the local
coordinate system when the mouse is clicked. For a
simple view, the cursor position of the simple view in the
local coordinate system of the view’s container when the
mouse is clicked.

vi ew act i vat e- event - handl er [Generic function]

Vi ew acti vat e- event - handl er (view si npl e-vi ew)
Vi ew acti vat e- event - handl er (view vi ew)

The generic function vi ew- act i vat e- event - handl er is called by the
event system when the window containing the view is made active.

The definition for si npl e- vi ewdoes nothing. The definition for vi ewcalls
vi ew acti vat e- event - handl er on each subview. Specialize this generic
function if your view needs to indicate visually that it is active.

view A simple view or view.

vi ew deact i vat e- event - handl er [Generic function]

vi ew deacti vat e- event - handl er (view si npl e-vi ew)
vi ew deacti vat e- event - handl er (view vi ew)

Chapter 4: Views and Windows 149

Description

Argument

Syntax

Description

Arguments

Example

The generic function vi ew deact i vat e- event - handl er is called by
the event system to deactivate a view. It is called when the window
containing the view is active and a different window is made active.

The definition for si npl e- vi ewdoes nothing. The definition for vi ewcalls
vi ew deact i vat e- event - handl er on each subview. Specialize this
generic function if your view needs to indicate visually that it has been
deactivated.

view A simple view or view.

vi ew cl i ck-event - handl er [Generic function |

vi ew cl i ck-event - handl er (view si npl e-vi ew) where

vi ew cl i ck-event - handl er (view vi ew) where

The generic function vi ew- cl i ck- event - handl er is called by the

event system when a mouse click occurs. The si npl e- vi ewmethod does
nothing. The vi ewmethod calls vi ew- convert - coor di nat es- and-

cl i ck on the first subview for which poi nt -i n-cl i ck-regi on-p
returnst .

The function vi ew- cl i ck- event - handl er scans subviews in the opposite
order as does vi ew dr aw- cont ent s. The first view added is the first one
drawn but the last one to be queried during clicking.

If you define any vi ew- cl i ck- event - handl er methods for wi ndow, they
must call cal | - next - net hod.

view A simple view or view.

where For a view, the mouse click position (the position when
the mouse is clicked) of the view in the local coordinate
system. For a simple view, the mouse click position of the
simple view in the local coordinate system of the view’s
container.

This function might be defined as follows, except that it does not do any
consing:
? (defrethod viewclick-event-handler-1 ((view view) where)

(dolist (subview (nreverse (subviews view)) view)

(if (point-in-click-region-p subview where)
(return
(vi ew convert - coordi nat es-and-cl i ck
subvi ew where view)))))

#<STANDARD- METHCD VI EW CLI CK- EVENT- HANDLER-1 (VIEWT) >

150 Macintosh Common Lisp Reference

Syntax

Description

Arguments

Syntax

Description

Argument

For further examples, see the files gr apher . | i sp, shapes-
code.lisp,thermoneter.lisp,andvi ew exanple.lispin
your MCL Examples folder.

vi ew convert - coor di nat es-and-cl i ck [Generic function]

Vi ew convert - coordi nat es- and- cl i ck (view si npl e-vi ew)
where container

Vi ew convert - coordi nat es- and- cl i ck (view vi ew) where
container

The generic function vi ew convert - coor di nat es- and- cl i ck runs
vi ew cl i ck- event - handl er on the cursor position within the view’s
container.

view A simple view or view.

where For a view, the mouse click position (the position when
the mouse is clicked) of the view in the local coordinate
system. For a simple view, the mouse click position of the
simple view in the local coordinate system of the view’s

container.
container The view’s container.
Vi ew dr aw cont ent s [Generic function |

vi ew dr aw cont ent s (view si npl e- vi ew)
Vi ew dr aw cont ent s (view Vi ew)

The generic function vi ew dr aw- cont ent s is called by the event
system whenever a view needs to redraw any portion of its contents.

The default si npl e- vi ewmethod does nothing. It should be shadowed by
views that need to redraw their contents. The default vi ewmethod calls
vi ew f ocus- and- dr aw- cont ent s on each of the view’s subviews.

When vi ew dr aw- cont ent s is called by the event system, the view’s clip
region is set so that drawing occurs only in the portions that need to be
updated. This normally includes areas that have been covered by other
windows and then uncovered.

view A simple view or view.

Chapter 4: Views and Windows 151

Syntax

Description

Arguments

Example

Syntax

Description

Arguments

vi ew f ocus- and- draw content s [Generic function]

vi ew f ocus- and- dr aw cont ent s (view si npl e- vi ew)
&opt i onal wisrgn cliprgn

vi ewf ocus- and- dr aw cont ent s (view vi ew) &opti onal visrgn
cliprgn

The generic function vi ew- f ocus- and- dr aw- cont ent s is used
whenever a view needs to be focused on before any portion of its contents
is redrawn. The method for vi ewfocuses on the view, then calls vi ew
dr aw- cont ent s if the visrgn and cliprgn region records overlap. The
method for si npl e- vi ewfocuses on the view’s container, then calls

vi ew draw cont ent s.

view A simple view or view.
visrgn, cliprgn Region records from the view’s wpt r .

The method of vi ew f ocus- and- dr aw- cont ent s for si npl e-
vi ewshows the use of the region record arguments.

(def net hod vi ewf ocus-and-draw contents
((view sinple-view) &optional visrgn cliprgn)
(wi th-focused-view (view contai ner view)
(when (regions-overlap-p visrgn cliprgn)
(viewdrawcontents view))))

The functionr egi ons- over | ap- p takes two arguments, which must
be pointers to Macintosh regions as returned by (#_NewRgn) . It
returns true if they have a nonempty intersection and ni | if they do
not.

convert - coordi nat es [Function |

convert - coor di nat es point source-view destination-view

The convert - coor di nat es function converts point from the coordinate
system of source-view to the coordinate system of destination-view.

The source view and destination view should be in the same view hierarchy
(that is, they should have a common container, or one should be contained in
the other).

point A point, encoded as an integer.
source-view A view in whose coordinate system point is given.

152 Macintosh Common Lisp Reference

destination-view
A view in whose coordinate system the return point is

given.
Example
Here is a way of defining vi ew- convert - coor di nat es- and-
cl i ck by means of convert - coor di nat es.
? (defmethod vi ew convert-coordi nat es-and-click
((view view) where container)
(view-click-event-handl er view
(convert-coordi nates where contai ner view)))
#<STANDARD- METHOD VI EW CONVERT- COORDI NATES- AND- CLI CK (VI EWT
T) >
Windows

Windows are a subclass of vi ew. Their behavior is specialized on that
of vi ew, and they inherit slots from vi ew. Windows may contain
subviews, but a window cannot be a subview. (If they could, windows
would attempt to display inside windows, and that is wrong: windows
display views.)

Windows are used to display information on the screen. Because
windows are views, graphics operations can also be performed on
them. For many applications, the distinction between a window and a
view is insignificant and you don’t need to worry about views at all.
You can simply work with windows, using both window and view
operations.

The base class of windows is Wi ndow. The features of Wi ndoware
common to all windows.

Macintosh Common Lisp also provides several subclasses of Wi ndow.
These include

» fred-w ndow, asubclass of windows used for text editing. The
functionality of Fred windows is discussed in Chapter 14:
Programming the Editor.

= W ndoi d, the class of floating windows. Floating windows always

appear in front of other windows. You generally use them to create tool

palettes. They are described in “Floating windows” on page 180.

Chapter 4: Views and Windows

153

= di al og. Thedi al og class exists for convenience. It is a subclass of the
wi ndow class and is identical except that its default window type is
: docunent instead of : docunent - wi t h- zoom its default title is
"Untitled D al og" instead of "Unti t| ed", its default size is
#@ 300 200) instead of *wi ndow- def aul t - si ze*, and its default
positionis' (:top 100) instead of *wi ndow- def aul t -
posi tion*.
You do not need to use the di al 0g class. You can use any window to
create a dialog box, and dialog items can appear in any window.

Dialogs are described in Chapter 5: Dialog Items and Dialogs.

MCL functions for programming windows

The following MCL functions are used for creating, reporting on, and
modifying windows.

W ndow [Class name]

Description The class Wi ndowis the class of windows, built on vi ew.

initialize-instance [Generic function |

Syntax initialize-instance (window w ndow) & est initargs

Description Theinitialize-instance primary method for wi ndowinitializes a
window so that it can be used. (You make an instance with make-
i nst ance, which callsi ni ti al i ze-i nstance.)

Arguments window A window.
initargs A list of keywords and values used to initialize the
window. The following keywords are available:
: Vi ew position
A point, keyword, or list giving the initial position of the
window. The default is the result of calling vi ew
def aul t - posi ti on on the window. For a description
of the list form of vi ew- posi ti on, see the generic
function set - vi ew posi t i on later in this section.

154 Macintosh Common Lisp Reference

;aut o-position
A keyword or nil,indicating an automatically
calculated position for the window. These keywords
correspond to the W ND and DLOGresource codes with
the same names.
ni | (same as: noAut oCent er)
> noAut oCent er
:al ert Posi ti onPar ent W ndow
: cent er Mai nScr een
. st agger Par ent W ndow
:al ert Posi ti onMai nScr een
: cent er Par ent W ndowScr een
. st agger Mai nScr een
:al ert Posi ti onPar ent W ndowScr een
: cent er Par ent W ndow
. st agger Par ent W ndowScr een.

(viewsize
A point giving the initial size of the window. The default
is the result of calling vi ew- def aul t - si ze on the
window.

. Vi ew ni ck- name
The nickname of the view. This keyword is used in
conjunction with vi ew- named. The default valueis ni | .

:view scroll-position
The initial scroll position of the view. This corresponds to
the origin in a Macintosh GrafPort. The default value is
#@0 0).

:vi ew subvi ews

A list of initial subviews for the window.
‘Wi ndow-title
A string specifying the title of the window. The default is
"Untitled".
W ndow show
If this argument is true (the default), a window is shown
when itis created. If ni | , the window is created invisibly.
See wi ndow showand wi ndow- hi de.
ew- f ont
The font specification used by the window. The default is
the result of calling vi ew- def aul t - f ont on the
window.
;Wi ndow- | ayer
Aninteger describing the layer in which the new window
will be created. By default this is O (the front window).
For details, see set - Wi ndow- | ayer, later in this section.
:color-p Ifni | (the default), the window is a normal window
created by the #_newW ndowtrap. If non-ni | , the
window is a color window, created by the
#_newCW ndowtrap.

Vv

Chapter 4: Views and Windows 155

156

;Wi ndowt ype
A keyword describing the type of window to be created.
The default is : docunment - wi t h- zoom This argument
should be one of the following keywords:
- docunent
: docunent - wi t h- gr ow
- docunent - wi t h-zoom
: doubl e- edge- box
. si ngl e- edge- box
: shadow edge- box
-t ool

:procid A number indicating the window definition ID (procID)
of the window to be created. This is an alternative to
specifying : wi ndow-t ype, for programmers who want
to use window definitions with nonstandard IDs.

: Wi ndowdo-first-click
A Boolean value determining whether the click that
selects a window is also passed to wi ndow- cl i ck-
event - handl er. The default valueisni | .

The click that selects an application in Multifinder is not
passed to the application unless either the window
clicked on is not the front window or the Get Front Clicks
bit is set in the application’s size resource.

: cl ose-box-p
A Boolean value determining whether the window will
have a close box. Close boxes aren’t available on all
windows.

swotr For use by advanced programmers, an argument used as
a pointer to a window record on the Macintosh heap.
Instead of creating a new window, i ni ti al i ze-
i nst ance builds a window object around the window
specified by : wpt r . This is useful when you want to
create the window yourself and integrate it with the MCL
window object system.

Macintosh Common Lisp Reference

Example

Syntax

Description

Arguments

. erase-anonynous-i nval i dati ons
An argument determining behavior when window is
refreshed. If the value of this initialization argument is
true (the default), any parts of the invalid region of
window that were not added by i nval i dat e-r egi on
are erased when window is refreshed. If this valueis ni | ,
no extra erasing is done. Since erasing draws the
background color and background pattern, and since
anonymous invalidation usually happens only because a
formerly covered part of the window is exposed, you
usually should use the default. (The function
i nval i dat e-r egi on is called by i nval i dat e-vi ew
and i nval i dat e- cor ner s, and indirectly by
set-vi ew position,set-viewsize, and
set - vi ew cont ai ner.)If your code invalidates parts
of a window without calling i nval i dat e-r egi on, for
example, by calling # | nval Rgn, you may notice
flickering on redraw if you use the default value of
. erase-anonynous-i nval i dati ons.

Here is an example of instantiating a window.

? (setq baz (make-instance 'w ndow
W ndowtitle "Bazw n"
tview position #@ 200 300)
"W ndowtype :tool
.color-p t))

#<W NDOW " Bazwi n" #x5DB8C9>

W ndows [Function |

wi ndows &key :class :include-invisibles :include-
wi ndoi ds

Thew ndows function returns a list of existing windows that are instances
of : cl ass. The list is ordered from front to back.

:cl ass A class used to filter output. Only windows that match
the value of : ¢l ass are included in the returned list. The
default is wi ndow, which includes all windows.

;i nclude-invisibles
If the value of this variable is true, invisible windows are
included in the list. If false (the default), invisible
windows are not included.

Chapter 4: Views and Windows

157

Syntax

Description

Arguments

Example

;i nclude-w ndoi ds

Examples

If the value of this variable is true, floating windows (the
class Wi ndoi d) are included in the list. If false (the
default), floating windows are not included. Floating
windows are also included if the value of the : ¢l ass
argument is Wi ndoi d.

Here are some examples of the use of Wi ndows.

? (wi ndows)

(#<LI STENER "Li stener" #x49EB31>
#<APROPOS- DI ALOG " Apr opos" #x532EF1>
#<FRED- W NDOW " New"' #x51CC61>)

? (w ndows :class 'fred-w ndow)

(#<LI STENER "Li stener" #x49EB31>
#<FRED- W NDOW " New" #x51CC61>)

? (wi ndows :class 'apropos-dial og)

(#<APROPOS- DI ALCG " Apr opos" #x532EF1>)

front-w ndow [Function |

front-w ndow &ey :class :include-invisibles
i ncl ude-wi ndoi ds

The f r ont - Wi ndowfunction returns the frontmost window satisfying the
arguments. If no windows satisfy the tests, ni | is returned.

:cl ass

A class used to filter output. The frontmost window that
is an instance of the value of : ¢l ass is returned. The
default is wi ndow, which includes all windows.

;i nclude-invisibles

If the value of this variable is true, the frontmost window,
visible or invisible, is returned. If false (the default), the
frontmost visible window is returned.

;i nclude-w ndoi ds

If the value of this variable is true, the frontmost window
or floating window is returned. If false (the default), the
frontmost window that is not a floating window is
returned.

? (front-w ndow)
#<L| STENER "Li stener" #x5204C9>

158 Macintosh Common Lisp Reference

Syntax

Description

Example

Syntax

Description

Arguments

Example

t ar get [Function]

t ar get

The t ar get function returns the second window on the list of windows;
it is equivalent to (second (w ndows)).

? (w ndows)

(#<LI| STENER "Li stener" #x49EB31>
#<APROPOS- DI ALOG " Apr opos" #x532EF1>
#<FRED- W NDOW " New' #x51CC61>)

? (target)

#<APROPOS- DI ALOG " Apr opos" #x532EF1>

map- W ndows [Function |

map-wi ndows function &ey :class :include-invisibles
;i nclude-w ndoi ds

The map- wi ndows function calls function, a function of one argument, on
each window that satisfies the keywords.

function A function of one argument.

:class A class used to filter output. The function function is
called only on windows that match the value of : cl ass.
The default is Wi ndow, which includes all windows.

include-invisibles
If the value of this variable is true, function is applied to
both visible and invisible windows that are instances of
: ¢l ass. If the value is false, function is applied only to
visible windows.

:incl ude-w ndoi ds
If the value of this variable is true, function is applied to
floating windows. If the value is false, it is not.

The following code provides a simple way to implement f r ont -
w ndowusing map- wi ndows:
? (defun sinple-front-w ndow
0
(let ((f # (lanbda (w)
(return-from sinple-front-w ndow w))))

Chapter 4: Views and Windows

159

(decl are (dynam c-extent f))
(map-w ndows f)))
SI MPLE- FRONT- W NDOW

fi nd-w ndow [Function |

Syntax find-w ndowtitle &opti onal class

Description The f i nd- wi ndow function returns the frontmost window of the class
class for which a prefix of the window’s title is st r i ng- equal to title. If
no window has title as its title, ni | is returned. (The cross that appears in
the title bar of modified Fred windows is ignored when comparing the

title.)
Arguments title A string specifying the title of the window to search for.
class A class used to filter the result. The frontmost window

that inherits from class is returned. The defaultis wi ndow.

Example
? (find-w ndow "Listener")
#<L| STENER " Li stener" #x5204C9>
? (find-w ndow 'listener)
#<L| STENER "Li stener" #x5204C9>
? (find-w ndow "lis")
#<L| STENER " Li stener" #x5204C9>
? (find-wi ndow "ist")
NI L
w ndow- cl ose [Generic function |
Syntax wi ndow- cl ose (window wi ndow)

Description ~ The wi ndow cl ose generic function closes the window. The associated
Macintosh data structures will be deallocated the next time the garbage
collector runs. This operation is the inverse of i ni ti al i ze-i nst ance.
When a window is closed, its state is lost and cannot be recovered.

The MCL event system calls wi ndow- cl ose when the user clicks a window’s
close box or chooses Close from the File menu.

Argument window A window.

Example

160 Macintosh Common Lisp Reference

Syntax

Description

Argument

Syntax

Description

Arguments

You can tell if a window has been closed by determining whether wpt r
called on the window returns ni | .

? (setq baz (mmke-instance 'w ndow
Wi ndowtitle "bazwi n"))
#<W NDOW " bazwi n" #x6143D1>
? (windowtitle baz)
" Bazw n"
? (wptr baz)
#<A Mac Zone Pointer Size 156 #x715930>
? (w ndow cl ose baz)

NI L
? (windowtitle baz)

"<No title>";the window s state is | ost
? (wptr baz)
NI L

Vi ew position [Generic function]

Vi ew posi ti on (window wi ndow)

The vi ew posi t i on generic function returns the position of the upper-
left corner of the window as a point.

window A window.

set-view position [Generic function]

set - vi ew posi ti on (window wi ndow) h &opti onal v

The set - vi ew posi ti on generic function moves the window and
returns the new position of the upper-left corner, expressed as a point.

For windows with title bars, such as document windows and tool windows,
the position is not the upper-left corner of the title bar but the upper-left corner
of the content area of the window.

window A window.

h The horizontal coordinate of the new position, or the
complete position.

This may also be a keyword or list specifying how to
center the window.

Chapter 4: Views and Windows 161

To center a window, specify the new position as the
keyword : cent er ed. If the positionis: cent er ed, the
window will be centered vertically and horizontally.

The position may also be a list of the form (reference
offset) , where reference is one of the keywords : t op,
:left,:bottomor:right, and offset is a number.
n If reference is : t op, the top of the window is offset
offset number of pixels from the top of the screen,
and the window is centered horizontally.

n If referenceis : bot t om the bottom of the window is
offset offset number of pixels from the bottom of the
screen, and the window is centered horizontally.

n If referenceis : | ef t, the left side of the window is
offset offset number of pixels from the left of the
screen, and the window is centered vertically.

n If referenceis : ri ght, the right side of the window
is offset offset number of pixels from the right of the
screen, and the window is centered vertically.

v The vertical coordinate of the new position, or ni | if the
complete position is given by h.

Examples

? (setq bim(make-instance 'w ndow

sview position #@50 50)))

#<W NDOW "Untitl ed" #x506829>

? (point-string (view position bin)

"#@50 50)"

? (set-viewposition bim#@ 100 100))

6553700

? (point-string (viewposition bim)

"#@ 100 100)"

Here is an example of the use of : cent er ed.

? (setq bim (make-instance 'w ndow

:view position :centered))

#<W NDOW "Untitl ed" #x509F59>

Vi ewSsi ze [Generic function |
Syntax Vi ew si ze (window Wi ndow)

Description ~ The vi ew si ze generic function returns returns the size of the window
as a point.

162 Macintosh Common Lisp Reference

Argument

Syntax

Description

Arguments

Syntax

Description

Argument

window A window.

set -vi ewsi ze [Generic function]

set - vi ew si ze (window wi ndow) i &opt i onal v

The set - vi ew si ze generic function sets the size of the window.

The upper-left corner of the window is anchored, and the lower-right corner
moves according to the new size. If both 1 and v are given, they should be the
new horizontal and vertical dimensions of the window. If the value of vis ni |
or not supplied, / is taken to be an encoded point holding both dimensions.

The new size is returned, expressed as a point.

window A window.
h The new width of the window, or both the width and
height (encoded as an integer point) if the value of v is
nil.
v The new height of the window, or ni | if the height and
width are both given by h.
wi ndow- si ze-parts [Generic function]

wi ndow- si ze- part s (window W ndow)
wi ndow- si ze- parts : bef or e (window wi ndow)

The wi ndow- si ze- part s generic function can be specialized to resize
the subviews of a window whenever the size of the window is changed.
This function is called directly or indirectly by the methods specialized on
window for the generic functionsi ni ti al i ze-i nstance, set-vi ew
si ze, w ndow zoont event - handl er, and wi ndow- gr ow event -
handl er.

The primary method for wi ndow does nothing. The : bef or e method for

wi ndowensures that the vi ew cl i p-r egi on and vi ew ori gi n of each of
the window’s subviews are recomputed the next time they are needed. The
method for f r ed- wi ndowresizes the horizontal and vertical scroll bars as
well as the main text area of the window.

window A window or Fred window.

Chapter 4: Views and Windows 163

Description

Description

Syntax

Description

Argument

Syntax

Description

Argument

W ndow- def aul t - posi ti on [Variable |

The default position of a newly opened window. The initial value is # @ 6
44) .

wi ndow def aul t - si ze [Variable |

The default size of a newly opened window. The initial value is #@ 502
150).

vi ew defaul t - position [Generic function |

vi ew def aul t - posi ti on (window wi ndow)

When a window is created, the vi ew- def aul t - posi ti on generic
function is called if no position is explicitly specified either as the : vi ew
posi ti on initialization argument to make- i nst ance or as a default
initialization argument in the class definition. The value returned is used
as the initial position of the window. It must be a valid position specifier,
either a point or a centering specifier as documented under set - vi ew
posi ti on. The system-supplied method specialized on Wi ndowreturns
the value of *wi ndow def aul t - posi ti on*.

window A window.

vi ew def aul t - si ze [Generic function]

vi ew def aul t - si ze (window Wi ndow)

When a window is created, the vi ew def aul t - si ze generic function is
called if no size is explicitly specified either as the : vi ewsi ze
initialization argument to make- i nst ance or as a default initialization
argument in the class definition. The value returned is used as the initial
size of the window. It must be a point. The system-supplied method
specialized on Wi ndow returns the value of *wi ndow- def aul t - si ze*.

window A window.

164 Macintosh Common Lisp Reference

Syntax

Description

Argument

Syntax

Description

Arguments

Syntax

Description

Argument

W ndowtitle [Generic function]

w ndow-ti tl e (windoww ndow)
w ndow-titl e (window f r ed- wi ndow)

The wi ndow-t i t | e generic function returns the window title as a string.
It ignores the crosses in the title bars of modified Fred windows.

window A window.

set-wi ndowtitle [Generic function |

set -wi ndowti t| e (window w ndow) new-title
set -wi ndowti t!| e (window f r ed- wi ndow) new-title

The set - wi ndow-ti t| e generic function sets the window title to new-
title. It ignores the crosses in the title bars of modified Fred windows.

window A window.
new-title A string to be used as the new title.
vi ew f ont [Generic function |

vi ew f ont (window Wi ndow)
vi ew f ont (window f r ed- wi ndow)
vi ew f ont (window | i st ener)

The vi ew- f ont generic function returns the font spec used for drawing
text in the window. Due to an idiosyncrasy of the Macintosh computer, a
font size of 0 points may appear as a font size of 12 points.

For the Listener, vi ew f ont changes: bol d to: pl ai ninthe resultofcal | -
next - met hod.

For Fred windows, vi ew f ont returns three values: the current font for
newly inserted characters; the font of the first character after the insertion
point, or of the first character in the selection if there is a selection; and a
Boolean value specifying whether all the selected text is in the same font as the
current font.

window A window, Fred window, or Listener window.

Chapter 4: Views and Windows 165

Syntax

Description

Arguments

Syntax

Description

Arguments

Example

vi ew def aul t - f ont [Generic function]

vi ew def aul t - f ont (window Wi ndow)
vi ew def aul t - f ont (view si npl e- vi ew)
vi ew def aul t - f ont (window | i st ener)

Ifa:vi ew font initialization argument is not specified when a view is
created, the generic functionvi ew def aul t - f ont is called to determine
its font.

The wi ndowmethod on vi ew def aul t - f ont returns the value of *f r ed-
def aul t - font - spec*. Thel i st ener method returns the value of

|i st ener-default-font-spec.Theinitial value of both these variables
is (" Monaco" 9 :PLAIN). Thesi npl e- vi ewmethod returns ni |,
meaning that the view inherits its font from its container.

Every window has a font spec associated with it, even if the window never
uses fonts.

window A window.
view A simple view.
set - vi ew f ont [Generic function |

set - vi ew f ont (window wi ndow) font-spec
set - vi ew f ont (window f r ed- wi ndow) font-spec
set - vi ew font (window | i st ener) font-spec

The set - vi ew f ont generic function sets the font spec of window to font-
spec.

window A window.

font-spec A font specifier. If font-spec doesn’t specify all four
components of a font spec, the missing components are
taken from the window’s current font. (See Chapter 2:
Points and Fonts for a complete description of font specs.)

Here is an example of setting a window font.

? (setf freddy (nmamke-instance 'fred-w ndow))
#<FRED- W NDOW " New' #x4A20A1>

? (viewfont freddy)

("Monaco" 9 : SRCOR : PLAIN)

NI L

NI L

? (set-viewfont freddy '(:bold 14))

(: BOLD 14)

166 Macintosh Common Lisp Reference

Syntax

Description

Arguments

Example

Syntax

Description

? (viewfont freddy)
("Monaco" 14 :SRCOR :BOLD)
NI L

NI L

For another example of the use of set - vi ew f ont, see the file f ont -
menus. | i sp in your MCL Examples folder.

vi ew f ont - codes [Generic function |

vi ew f ont - codes (view si npl e- vi ew)
vi ew f ont - codes (window Wi ndow)

Thevi ewf ont - codes generic function returns two values, the font-face
code and mode-size code for view’s font. (Font codes are a more efficient
way of encoding font specs; they are described in Inside Macintosh.)

view A simple view.
window A window.

? (setq w (make-instance 'w ndow
cviewfont ' ("New York" 10 :bold)))
#<W NDOW " Unt i t| ed" #xDB5B39>
? (viewfont w)
("New York" 10 : SRCOR : BOLD)
? (viewfont-codes w
131328
65546
? (font-spec 131328 65546)
(" New York" 10 : SRCOR : BOLD)

set - vi ew f ont - codes [Generic function |

set - vi ew f ont - codes (view si npl e- vi ew) ff ms &opt i onal
ff-mask ms-mask

set - vi ew f ont - codes (window wi ndow) ff ms &opt i onal
ff-mask ms-mask

The set - vi ew- f ont - codes generic function changes the view font
codes of view. The font-face code is changed only in the bits that are set in
ff-mask. The mode-size code is changed only in the bits that are set in ms-
mask. These masks default to passing all bits of ff and ms.

Chapter 4: Views and Windows 167

Arguments

Example

Syntax

Description

Arguments

For full details of font codes, see Inside Macintosh.

view A simple view.
window A window.
ff The font-face code. A font-face code is a 32-bit integer that

stores the encoded name of the font and its face (plain,
bold, italic, and so on). If there is no ff, the value of ffis set
to 0.

ms The mode-size code. A mode-size code is a 32-bit integer
that indicates the font mode (inclusive-or, exclusive-or,
complemented, and so on) and the font size. If there is no
ms, the value of ms is set to 0.

ff-mask A mask that allows set - vi ew f ont - codes to look
only at certain bits of the font-face integer. Only windows
use ff-mask; views ignore it.

ms-mask A mask that allows set - vi ew f ont - codes to look
only at certain bits of the mode-size integer. Only
windows use ms-mask; views ignore it.

? (font-codes ' ("Geneva" 9))

196608

65545

- 65536

65535

? (font-spec 196608 65545)

("CGeneva" 9 :SRCOR : PLAIN)

? (set-viewfont-codes w 196608 65545 - 65536 65535)
NI L

? (viewfont w)

(" Geneva" 9 : SRCOR : BOLD)

? (set-viewfont-codes w 196608 65545)
NI L

? (viewfont w)

("Geneva" 9 :SRCOR : PLAIN)

part-col or [Generic function |

part - col or (window w ndow) part

The part - col or generic function returns the color of the part of the
window indicated by part.

window A window.

168 Macintosh Common Lisp Reference

Syntax

Description

Arguments

Example

Syntax

Description

part A keyword specifying which part of the window should
be set. The five possible keywords have the following
meanings:
: cont ent The frames of : doubl e- edge- box windows; unused in
other windows.

cframe The outline of the window and the title bar of : t ool

windows.
D text The title of : docunment windows.
chilite Thelines in the title bar of : docunent windows.
(title-bar

The background of the title bar in : document windows
and the title in : t ool windows.

set-part-col or [Generic function]

set - part - col or (windoww ndow) part color

The set - part - col or generic function sets the part of the window
indicated by part to color and returns color, encoded as an integer. If color is
ni | , the default color is restored.

window A window.

part A keyword specifying a part of the window whose color
should be returned. The same are allowed as for part -
col or.

color A color, either symbolic or encoded as an integer.

? (setf fred (make-instance 'fred-w ndow))
#<FRED- W NDOW " New' #x4B4C79>
? (set-part-color fred :content *red-col or*)

14485510

? (set-part-color fred :frane 2078484)

2078484

part-color-1ist [Generic function]

part-col or-1list (windoww ndow)

The part - col or -1 i st generic function returns a property list of
keywords and colors for all the colored components of the window. The
same keywords apply as for part - col or . Components whose color has
not been set are not included.

Chapter 4: Views and Windows 169

Argument

Example

Syntax

Description

Argument

Syntax

Description

Argument

Syntax

Description

Argument

Syntax

window A window.

? (part-color-list fred)
(: FRAME 2078484 : CONTENT 14485510)

w ndow show [Generic function |

wi ndow show (window wi ndow)

Thew ndow showgeneric function makes a window visible on the screen
(assuming the window is not at an off-screen position).

window A window.

wi ndow- hi de [Generic function |

wi ndow- hi de (window wi ndow)

The wi ndow- hi de generic function makes a window invisible on the
screen.

window A window.

wi ndow shown- p [Generic function]

wi ndow shown- p (window wi ndow)

The wi ndow shown- p generic function returns true if the window is
visible, and false if it is hidden.

window A window.

W ndow ensur e- on- scr een [Generic function |

wi ndow- ensur e- on- scr een (window wi ndow) &opt i onal default-
position default-size

170 Macintosh Common Lisp Reference

Description

Arguments

Syntax

Description

Argument

Syntax

Description

Argument

Syntax

The generic function wi ndow- ensur e- on- scr een ensures that the
window is entirely visible on one or more of the Macintosh screens. It may
overlap two screens, but if it is not entirely visible, as determined by

W ndow- on- scr een- p, it is moved to the position default-position. If it is
still not entirely visible, its size is changed to default-size.

This function is useful when window positions are saved and restored on
Macintosh computers with different screen configurations.

If you hold down the shift key while selecting a window from the Windows
menu, W NdOW ensur e- on- scr een is called on it.

window A window.

default-position
The position to which the window is moved if it needs to
be. The default default-position is the value of * wi ndow-
defaul t-position*.

default-size The default size of the window. The default default-size is
the value of *wi ndow def aul t - si ze*.

W ndow on- screen-p [Generic function |

wi ndow on-screen-p (window wi ndow)

The wi ndow on- scr een- p generic function returns t if all of window is
on the screen, ni | otherwise.

window A window.

wi ndow acti ve-p [Generic function]

wi ndow active-p (window w ndow)

The wi ndow- act i ve- p generic function returns t if window is the active
window, ni | otherwise.

Except when Macintosh Common Lisp is not the active application, it returns
t for all floating windows and for the frontmost non-floating visible window.

window A window.

wi ndow- | ayer [Generic function |

wi ndow | ayer (windoww ndow) &opt i onal include-invisibles

Chapter 4: Views and Windows 171

Description ~ The wi ndow- | ayer generic function returns the number of windows in
front of window. Floating windows are counted.

Arguments window A window.

include-invisibles
A Boolean value specifying whether or not to include
invisible windows in the count. The default valueis ni | ,
indicating that Wi ndow- | ayer counts only visible

windows.
set - wi ndow | ayer [Generic function]
Syntax set - wi ndow- | ayer (window wi ndow) new-layer &pt i onal include-
invisibles
set - wi ndow- | ayer (window w ndoi d) new-layer &pt i onal include-
invisibles

Description The set - wi ndow- | ayer generic function changes the layer of the
window to new-layer. Floating windows are counted.

To make a window the frontmost window that is not a floating window, set its
layer to *w ndoi d- count *.

You can use set - wi ndow | ayer to move a regular window in front of a
floating window. Once other events occur, however, the floating window
moves back to the front.

Arguments window A window.
windoid A floating window.
new-layer A nonnegative integer indicating how many windows

should be in front of window. If new-layer is equal to or
greater than the number of windows on screen, window is
moved all the way to the back. If the value of new-layer is
0, window is moved to the front.

include-invisibles
A variable specifying whether the layering should take
invisible windows into account. If the value of include-
invisibles is false (the default), invisible windows are
ignored. If it is true, invisible windows are counted.

W ndow- sel ect [Generic function |
Syntax w ndow- sel ect (window wi ndow)

wi ndow- sel ect (window wi ndoi d)
w ndow- sel ect (window nul 1)

172 Macintosh Common Lisp Reference

Description

Argument

The wi ndow sel ect generic function brings a window to the front,
activates it, and shows it if it is hidden. The previously active window is
deactivated.

window A window.

Advanced window features

Syntax

Description

Argument

Syntax

Description

Argument

Example

The following operations are useful for advanced programmers
working with windows.

w ndow zoom posi tion [Generic function]

wi ndow zoom posi ti on (window wi ndow)

The wi ndow zoom posi t i on generic function returns the zoom
position of a window, that s, its position after the user clicks the zoom box.
This value is either the last value given to set - wi ndow zoom

posi ti on for window or the value returned by calling wi ndow-

def aul t - zoom posi ti on on window.

window A window.

wi ndow def aul t - zoom posi ti on [Generic function |

wi ndow def aul t - zoom posi ti on (window wi ndow)

The wi ndow- def aul t - zoom posi ti on generic function determines
the default zoom position of a window, that is, its new position after the
user clicks the zoom box.

window A window.

See the example under the definition of set - wi ndow zoom
posi tion.

Chapter 4: Views and Windows 173

Description

Syntax

Description

Arguments

Example

W ndow- def aul t - zoom posi ti on [Variable |

The *wWi ndow- def aul t - zoom posi ti on* variable stores the default
zoom position of a window, that is, its new position after the user clicks
the zoom box.

This variable and * Wi ndow- def aul t - zoom si ze* are initialized at startup
to make a zoomed window fill the screen containing the menu bar with a 3-
pixel border all around.

set - W ndow zoont posi ti on [Generic function |

set - wi ndow zoom posi ti on (window wi ndow) i &opt i onal v

The set - wi ndow- zoom posi t i on generic function sets the zoom
position of a window, that is, its new position after the user clicks the
zoom box, and returns the new position, encoded as an integer.

window A window.

h The horizontal coordinate of the new position, or the
complete position (encoded as an integer) if vis ni | or
not supplied.

v The vertical coordinate of the new position, or ni | if the

complete position is given by h.

Here is an example of setting the zoom position of a class of windows
and of an instance.

? (defclass ny-w ndow cl ass (w ndow) ())
#<STANDARD- CLASS MY- W NDOW CLASS>
? (defmet hod wi ndow def aul t-zoom position
((w ny-w ndow- cl ass))
#@ 10 50))

#<STANDARD- METHOD W NDOW DEFAULT- ZOOM POSI TI ON (MY- W NDOW
CLASS) >

? (defvar *w* (make-instance 'ny-w ndow cl ass))
*W

? (set-w ndow zoom position *w #@ 20 60))
3932180

174 Macintosh Common Lisp Reference

Syntax

Description

Argument

Syntax

Description

Argument

Description

Syntax

Description

Arguments

W ndow zoom Si ze [Generic function]

w ndow zoom si ze (window Wi ndow)

The wi ndow zoom si ze generic function returns the zoom size of a
window, that is, its size after the user clicks the zoom box. This value is
either the last value given to set - wi ndow- zoom si ze for window or the
value returned by calling wi ndow- def aul t - zoom si ze on window.

window A window.

w ndow- def aul t - zoom si ze [Generic function |

wi ndow- def aul t - zoom si ze (window Wi ndow)

The generic function wi ndow- def aul t - zoom si ze determines the
default zoom size of a window, that is, its new size after the user clicks the
zoom box. The provided method returns the value of *wi ndow-

def aul t - zoom si ze*.

window A window.

Wi ndow def aul t - zoom si ze [Variable |

The *wi ndow def aul t - zoom si ze* variable stores the default zoom
size of a window, that is, its new size after the user clicks the zoom box.

This variable and *W ndow def aul t - zoom posi ti on* are initialized at
startup to make a zoomed window fill the screen containing the menu bar with
a 3-pixel border all around.

set - wi ndow zoont si ze [Generic function]

set - wi ndow zoom si ze (window wi ndow) h &opt i onal v

The generic function set - wi ndow- zoom si ze sets the zoom size of a
window, thatis, its new size after the user clicks the zoom box, and returns
the new size, encoded as an integer.

window A window.

Chapter 4: Views and Windows 175

Syntax

Description

Argument

Example

Syntax

Description

Argument

Syntax

h The horizontal coordinate of the new position, or the
complete position (encoded as an integer) if v is ni | or
not supplied.

v The vertical coordinate of the new position, or ni | if the
complete position is given by h.

W ndow gr ow- r ect [Generic function |

wi ndow gr owr ect (window wi ndow)

The wi ndow gr ow- r ect generic function returns a rectangle record
whose upper-left and lower-right components determine the minimum
and maximum sizes to which window can be resized with the mouse.

The window can still assume other sizes when the user clicks the zoom box,
and other sizes can be set with the function set - vi ew si ze.

window A window.

(let ((r (windowgrowrect (target))))
(format t "(~S, ~§) (~S, ~9)"

(pref r :rect.top)
(pref r :rect.left)
(pref r :rect.bottom
(pref r :rect.right)))
wi ndow dr ag- r ect [Generic function]

wi ndow dr ag- r ect (window wi ndow)

The wi ndow dr ag-r ect generic function returns a rectangle record
whose value constrains how window can be moved with the mouse.
Whenever the pointer moves outside this rectangle, the gray window
outline disappears, indicating that the user is out of bounds.

window A window.

Vi eW cur sor [Generic function |

vi ew- cur sor (view si npl e- vi ew) point
vi ew- cur sor (window wi ndow) point

176 Macintosh Common Lisp Reference

Description

Arguments

Syntax

Description

Argument

Syntax

Description

Argument

Example

The vi ew cur sor generic function returns the cursor shape to display
when the mouse is at point, a point in view. It is called by wi ndow-
updat e- cur sor as part of the defaultwi ndow nul | - event - handl er.

Specialize the vi ew cur sor generic function to change your view’s cursor to
one of the following predefined cursors or to a user-defined cursor.

arrow cursor
The standard north-northwest arrow cursor.

i-beam cursor
The I-beam shape used when the cursor is over an area of
editable text.

wat ch- cursor
The watch-face shape shown during time-consuming
operations, when event processing is disabled.

view A simple view.

window A window.

point The position of the cursor, expressed as a point.

W ndow- cur sor [Generic function]

wi ndow cur sor (window Wi ndow)

The wi ndow cur sor generic function returns the current cursor of
window. The system-supplied vi ew cur sor method for wi ndow calls
wi ndow cur sor to determine the cursor of window.

window A window.

wi ndow obj ect [Function |

w ndow- obj ect wptr

The wi ndow obj ect function returns the window object pointed at by
wptr.

wptr A macptr to a window record..

? (wi ndow object (wptr (target)))
#<FRED- W NDOW " New' #x454909>

Chapter 4: Views and Windows 177

Syntax

Description

Arguments

Wi t h- port [Macro |

Wi t h- port grafport { form} *

The wi t h- por t macro executes form with grafport as the current GrafPort.
Upon exit, the previously current GrafPort is restored. The form is
executed within the special form wi t hout - i nt errupt s.

This macro is a very low-level way of binding the QuickDraw GrafPort. It is
not recommended for general use; instead use wi t h- f ocused- vi ew.

grafport A GrafPort, usually the wpt r of a window.

form Zero or more Lisp forms to be executed with the GrafPort
set to grafport. These usually include direct calls to
QuickDraw routines.

Supporting standard menu items

Many of the menu items in the default MCL menu bar operate on the
top window. These menu items are instances of the class Wi ndow-
menu- i t em (See Chapter 3: Menus.) These commands can work in
any window if the class of the window has an appropriate method.

The menu items and their corresponding functions are as follows:

Close wi ndow cl ose

Save w ndow save

Save As... w ndow save- as

Save Copy As... wi ndow save- copy- as
Revert wi ndow revert

Print... wi ndow har dcopy
Undo undo

Undo More undo- nor e

Cut cut

Copy copy

Paste past e

Clear cl ear

Select All sel ect-all

Execute Selection wi ndow eval - sel ecti on
Execute Buffer wi ndow eval - buf f er
List Definitions wi ndow- def s-di al og

178 Macintosh Common Lisp Reference

Syntax

Description

Argument

Syntax

Description

Arguments

If the class of the active window has a method definition for one of these
functions, then the corresponding menu item is enabled. If the user
chooses the menu item, the function is called on the active window.
Enabling of items on the Edit menu is controlled by the generic function
wi ndow can- do- oper at i on, described later in this section.

wi ndow needs- savi ng- p [Generic function]

wi ndow needs- savi ng- p (window wi ndow)

The wi ndow needs- savi ng- p generic function determines whether the
Save menu item in the File menu should be enabled for windows that have
a definition of Wi ndow- save.

The Save menu item is enabled if the class of the active window has a method
definition for Wi ndow- save, unless the window has a method definition for
wi ndow needs- savi ng- p and a call towi ndow needs- savi ng- p returns
ni | . If the window has a method definition for Wi ndow needs- savi ng- p,

then Save is enabled only if a call to wi ndow needs- savi ng- p returns true.

window A window.

wi ndow can- do- oper ati on [Generic function |

wi ndow- can- do- oper at i on (viewf r ed- m Xi n)operation &pt i onal
menu-item

w ndow- can- do- oper at i on (window wi ndow) operation &opt i onal
menu-item

The wi ndow can- do- oper at i on generic function returns a Boolean
value indicating whether view can perform operation. (This is a more
general replacement for the older MCL function wi ndow can- undo- p,
which could check only for Undo.) If the value returned is true, the menu
item for operation is enabled; otherwise, it is disabled.

The wi ndow can- do- oper at i on method for Wi ndowreturnst if there is a
method for operation defined for the class of window that is more specific than
the built-in method defined for the class wi ndow. Otherwise wi ndow can-
do- oper at i on returns the result of calling wi ndow can- do- oper ati on
on the current key handler of window, if there is one. If not, it returns ni | .

The method for f r ed- m Xi n returnst if the operation is meaningful for the
current state of the Fred window or Fred dialog item.

view A Fred window or Fred dialog item.
window A window.

Chapter 4: Views and Windows

179

Example

operation A symbol specifying one of the standard editing
operations: cut, cl ear, copy, past e, sel ect-al |,
undo, or undo- nor e.

menu-item The corresponding Edit menu item.

? (wi ndow can- do-operation *top-listener* 'paste)
T

Floating windows

Description

Syntax

Description

Arguments

Floating windows are a subclass of windows that appear frontmost on
the screen. (That is, they always “float to the top.”) Floating windows
are generally used for creating tool palettes.

Floating windows respond to clicks, handle act i vat e and

deact i vat e events, and respond to keystroke events. See the file
wi ndoi d- key- events. | i sp in the MCL Examples folder for
commented sample code.

These expressions are used in defining and counting floating windows.

wi ndoi d [Class name |

The class wi ndoi d is the class of floating windows, built on Wi ndow.
Floating windows may be mixed in with other window classes, such as
dialog boxes. In this case, Wi ndoi d should appear first in the inheritance
path.

initialize-instance [Generic function |

initialize-instance (windoid wi ndoi d) & est initargs

Theinitialize-instance primary method for wi ndoi d initializes a
floating window.

windoid A floating window.

initargs A list of keywords and values used to initialize the
floating window. No special keywords are used. The
following keywords have default values:

180 Macintosh Common Lisp Reference

viewsize
The default value of the size of the floating window is
#@ 115 150).

:wi ndowdo-first-click
The value of this initialization argument determines
whether the click that selects a window is also passed to
vi ewcl i ck-event - handl er . For all floating
windows, the default value of this variable is true.

The click that selects an application in Multifinder is not
passed to the application unless either the clicked
window is not the front window or the Get Front Clicks
bit is set in the application’s size resource.

*Wi ndoi d- count * [Variable |

Description ~ The *wi ndoi d- count * variable contains the number of visible floating
windows currently in the MCL environment.

Chapter 4: Views and Windows 181

182 Macintosh Common Lisp Reference

Chapter 5:
Dialog Items and Dialogs

Contents
Dialogs in Macintosh Common Lisp / 185
Dialog items / 185
Dialog boxes / 185
A simple way to design dialogs and program dialog items / 186
Changes to dialogs in Macintosh Common Lisp as of version2 / 186
Dialog items / 188
MCL forms relating to dialog items / 189
Advanced dialog item functions / 198
Specialized dialog items / 202
Buttons / 202
Default buttons / 203
Static text / 205
Editable text / 206
Checkboxes / 212
Radio buttons / 213
Table dialog items / 216
Pop-up menu dialog items / 227
Scroll-bar dialog items / 228
Sequence dialog items / 234
User-defined dialog items / 236
Dialogs / 237
Modal dialogs / 238
Modeless dialogs / 239
Simple turnkey dialog boxes / 239
MCL forms relating to dialogs / 245

This chapter describes the dialog functionality and the built-in dialog item
classes in Macintosh Common Lisp.

183

184

The dialog functionality is very flexible in Macintosh Common Lisp. Dialog
items display information and may initiate an action when clicked by the user.
In Macintosh Common Lisp, dialog items can appear in any window. They are
built from the class di al 0g- i t em which is not used directly; you specialize
it and use the subclasses. In turn, di al og- i t emis built from the class

si npl e- vi ew, since dialog items have no subviews. Built-in subclasses of

di al og-i t eminclude radio buttons, checkboxes, and editable-text fields, as
well as pop-up menus, scroll bars, and tables in dialog boxes.

You should read this chapter if you are programming specialized types of
dialog items.

Before reading this chapter, you should be familiar with the MCL
implementation of views and windows, described in Chapter 5, “Views and
Windows.” The subclass of di al 0g- i t emthat supports editable textisf r ed-
di al og- it em documented in Chapter 14, “Programming the Editor.”

Macintosh Common Lisp Reference

Dialogs in Macintosh Common Lisp

In the standard Macintosh interface, actions are performed by dialog
items within dialog boxes. Macintosh Common Lisp supports this
functionality and makes it more generalized.

Dialog items

Instead of setting up a specialized class for dialog boxes and alerts,
Macintosh Common Lisp defines any structured communication as
simply a collection of dialog items in a window. You can add dialog
items to any view or window, or you can write specialized classes based
onw ndow, in which dialog items may appear.

Therefore, for creating dialog functionality the important class is
di al og-item

Built-in MCL dialog items include buttons, radio buttons, checkboxes,
tables, editable text, scroll bars, pop-up menus, and static text. They are
discussed in “Dialog items” on page 185.

In addition, the sample files in the Examples and Library folders
contain code for kinds of dialog items. Of course, you can also define
your own classes of dialog items.

Dialog boxes

Dialog boxes initiate and control well-defined actions in a structured
way. You use them whenever you want the user to do something
complex in which the range of response is predictable or needs to be
controlled. The Print Options dialog box is a good example; it includes
text fields, which the user fills in, and a defined set of choices that are
represented by radio buttons and checkboxes.

Alerts query an action, displaying a message such as “Are you sure you
want to reformat your hard disk?” They request the user to confirm
explicitly before proceeding, or to cancel.

Chapter 5: Dialog Items and Dialogs 185

MCL dialogs are unspecialized subclasses of Wi ndow, provided for
backward compatibility with earlier versions of Macintosh Common
Lisp. They have methods for all wi ndowand vi ewoperations, but no
methods of their own. Display, for instance, works the same way in
dialogs as in all other windows. Dialogs are only one of the places you
can use dialog items.

Macintosh Common Lisp provides four predefined standard dialog
boxes for alerts and user responses, discussed in “Simple turnkey
dialog boxes” on page 239.

You can write standard Macintosh dialog boxes quite easily, while the
same functionality also adapts well to other uses. For example, you can
create a hypertext system that includes text, graphics, and dialog items,
or an interactive forms manager, or a spreadsheet, all using largely the
same code.

A simple way to design dialogs and program dialog items

MCL contains a dialog design tool, part of the Interface Toolkit, that
works like a simple paint system. You can choose buttons and fields
from a palette and move them into a new dialog. You can set their
default states and actions. This tool is supplied as source code so it can
be customized; you’ll find it in the Interface Tools folder supplied with
your copy of Macintosh Common Lisp. Its operation is described in
Chapter 7: The Interface Toolkit.

Changes to dialogs in Macintosh Common Lisp as of version 2

186

If you have used an earlier version of Macintosh Common Lisp, you
will find that the implementation of dialogs has changed substantially,
making them more flexible to use and easier to program.

» The di al og class, which is a subclass of wi ndow, exists only for
compatibility. No methods are specialized on it and it adds no slots.

= Dialog items may now be added to all views.
= Some functions have changed to reflect the new definition of di al og.
= All new functions are CLOS generic functions.

The file ol d- di al og- hooks. | i sp, distributed in the Examples
folder that is part of Macintosh Common Lisp, contains code defining
the old dialog functions in terms of the new ones. You should find it

quite easy, however, to port your old dialog code to Macintosh
Common Lisp version 2.

Macintosh Common Lisp Reference

Table 5-1 summarizes the functions that have changed.

= Table5-1

Summary of changed dialog functions in Macintosh Common Lisp

old New

add-di al og-i tens

add- sel f-to-di al og

buf f er - char - f ont

buf f er-repl ace- f ont

buf f er - set - f ont

cat ch- abort

catch-error
catch-error-quietly

col or - wi ndow ni Xxi n
:dialog-itemcolors

di al og-itemdefaul t-size
di al og-itemdi al og
(set-)dialog-itemfont

di al og-it em ni ck- nane
(set-)dial og-itemsize
(set-)dial og-itemposition
ed- ski p- f wd- wsp&comrent s
fi nd- narmed- di al og-itens

i tem naned

mar kp

: par ent keyword to windows,
etc.

renove-di al og-i temns
renove-sel f-fromdi al og

wi ndow- (de) acti vat e-
event - handl er

w ndow- buf f er

add- subvi ews

instal | -vi ewin-w ndow

buf f er - char - f ont - spec

buf f er-repl ace- f ont - spec
buf f er - set - f ont - spec

use restart-case

use handl er - case

ignore-errors

:color-p initialization argunent
ipart-color-list intialization argurent
vi ew def aul t - si ze

Vi ew cont ai ner

(set-)viewfont

vi ew ni ck- nane

(set-)viewsize
(set-)viewposition

buf f er - ski p- f wd- wsp&omment s

vi ew narred, find- naned-si bling
vi ew named

buf fer-mark-p

: cl ass keyword

renpve- subvi ews
renpve-vi ew fr om wi ndow

vi ew (de) acti vat e- event - handl er

fred- buffer

Chapter 5: Dialog Items and Dialogs

187

wi ndow- cl i ck-event - vi ew cl i ck- event - handl er
handl er

wi ndow- f ont vi ew f ont

wi ndow hpos fred- hpos

wi ndow- | i ne-vpos fred-1ine-vpos

wi ndow nouse- posi tion Vi ew nmouse- posi tion
(set-)w ndow position (set-)view position
(set-)w ndowsize (set-)viewsize

Wi ndow- st art - mark fred-display-start-mark
wi ndow- updat e fred-update

Wi ndow- vpos fred-vpos

Dialog items

Dialog items do two things: appear within a view, and perform actions.
Generally speaking, a dialog item inherits its display behavior from

si npl e- vi ewor from its class; its default methods are also
determined at the class level. You can add specific action at the instance
level.

The base class from which all other dialog items inherit is di al og—
i t em This class is not meant to be instantiated directly. Instead, itis the
superclass from which more specific classes of dialog items are built.

The dialog item subclasses provided by Macintosh Common Lisp are
button-di al og-item
check- box-di al og-item
edi tabl e-text -di al og-item
fred-dial og-item
radi o- butt on-di al og-item
sequence- di al og-i t em(a subclass of t abl e- di al og-item
static—text-dial og—item

t abl e-di al og-item

188 Macintosh Common Lisp Reference

The class f r ed- di al og- i t emis discussed in Chapter 14:
Programming the Editor. The others are discussed in this chapter.

In addition, you can use sample files in your MCL Examples and
Library folders to make several other kinds of dialog items, including
scroll bars, icons, and pop-up menus, and of course you can create your
own subclasses of di al og-item

MCL forms relating to dialog items

Description

Syntax

Description

Arguments

The following MCL expressions are used in creating dialog items.

di al og-item [Class name]]

The class di al 0g- i t emprovides the basic functionality shared by all
dialog items. It is built on si npl e- vi ew.

initialize-instance [Generic function]

initialize-instance (dialog-item di al og-item &rest
initargs

Theinitialize-instance primary method for di al og-item
initializes a dialog item. (When instances are actually made,

the function used is make- i nst ance, which callsi niti al i ze-

i nst ance.)

dialog-item A dialog item.
initargs A list of keywords and default values used to initialize a
dialog item. The initargs keywords for all dialog items are
as follows:
viewsize

The size of the dialog item. If not specified or ni | , this

value is calculated so that the item’s di al og-item

t ext is visible. If the specified value is too small, the item

is clipped when it is drawn. The default value is ni | .
:vi ew cont ai ner

The dialog box or other view that contains

the item.

Chapter 5: Dialog Items and Dialogs 189

190

: Vi ew position
The position in the dialog box where the item will be
placed, in the coordinate system of its container. If this
argument is not specified or is specified as ni | , the first
available position large enough to hold the item is used. If
no space is large enough, the dialog item is placed in the
upper-left corner of the dialog.

:vi ew ni ck- nane
The nickname of the dialog item. This feature is used in
conjunction with vi ew- named. The default valueis ni | .

- vi ewfont
The font in which the text of the dialog item appears. If
ni | , the window font is used.

. dial og-itemtext
The text of the dialog item. The initial value
isnil.

:di al og-item handl e
For advanced programmers, this option specifies the
handle of the dialog item. See the description of the
di al og-i t em handl e generic function on page 199.
This option is used only for creating specialized
subclasses of dialog items. The handle is usually allocated
by thei nstal | - vi ew- i n-w ndowmethod. Its initial
valueisnil.

: di al og-i tem enabl ed-p
The state (enabled or disabled) of the item. Disabled items
are dimmed, and their actions are not run when the user
clicks them.

;part-color-1list
A property list of colors to which the parts of the dialog
item should be set. The four possible keywords
are: f r ane, the outline of the dialog item; : t ext , its text;
: body, its body; and: t hunb, its scroll box. (The scroll
box is the white box that slides inside the scroll bar; scroll
bars are the only dialog items that can have them.)

:di al og-itemaction
The action run when the dialog item is selected. The value
of this keyword should be a function or a symbol with a
global function definition. It is called with a single
parameter, the dialog item.

: hel p- spec
A value describing the Balloon Help for the item. This
may be a string or one of a number of more complicated
specifications, which are documented in the file hel p-
manager . | i sp in your Library folder. The default value
isnil.

Macintosh Common Lisp Reference

Syntax

Description

Arguments

Syntax

Description

Arguments

Example

Jwptr A pointer to a window record on the Macintosh heap.
This record can be examined or passed to Macintosh traps
that take a window pointer. The valueis ni | if the item is
not contained in a window.
di al og-itens [Generic function]

di al og-itens (viewvi ew) &opti onal item-class must-be-enabled

The di al og- i t ens generic function returns a list of the dialog items in

view.
view

item-class

must-be-enabled

A view.

If the value of item-class is specified and non-ni | , then
only dialog items matching item-class are returned. The
default valueis ni | .

If the value of must-be-enabled is true, then only dialog
items that are enabled are returned. The default value is
nil.

make- di al og-item [Function)

make- di al og-

i t emclass position size text &opt i onal action & est

attributes

The make- di al 0g- i t emfunction creates a dialog item using nake-

i nst ance.

class

position

size

text
action
attributes

The class of the dialog item.

The position of the dialog item with respect to its
container.

The size of the dialog item.

The text included within the dialog item.

The action associated with the dialog item.

One or more attributes belonging to the dialog item. The
number and nature of these depend on the type of dialog
item.

This function could be defined as follows:
? (defun nake-dial og-item (class position size text

&optional action & est attributes)

(apply #' make-instance cl ass

:view position position

Chapter 5: Dialog Items and Dialogs 191

jViewsize size

:dial og-itemtext text
:dialog-itemaction action
attributes))

di al og-itemaction [Generic function]

Syntax di al og-item acti on (item di al og-item

Description ~ The generic function di al og-i t em acti on is called whenever the user
clicks a dialog item. The method for di al og- i t emcalls item’s di al og-
item action-function,ifitisnotni | . Otherwise, it does nothing.

The di al og-i t em act i on function is normally called when the mouse
button is released, not when it is pressed.

If an item is disabled, its action is not run.

Since di al og-item acti on is usually called by vi ewcl i ck- event -
handl er as a result of event processing, event processing is ordinarily
disabled while the di al og-i t em act i on function is running. This means
that other dialog items cannot be selected during the action. To avoid locking
out other event processing, you can use eval - enqueue to insert forms into
the read-eval-print loop. For details, see Chapter 10: Events.

Argument item A dialog item.
di al og-itemaction-function [Generic function]
Syntax di al og-itemaction-function (itemdi al og-item

Description The generic function di al og-it em acti on-functi on returns the
value set by the : di al og-it em act i on initialization argument or the
set-di al og-itemaction-function generic function. Unless it is
ni |, this function is called with a single argument, item, by the di al og-
i tem acti on method for di al og-item

This generic function is called by the vi ew- cl i ck- event - handl er method
for di al og-i t emwhen the user clicks a
dialog item.

Argument item A dialog item.

192 Macintosh Common Lisp Reference

Syntax

Description

Arguments

Syntax

Description

Arguments

Syntax

Description

Arguments

Syntax

Description

set-dial og-itemaction-function [Generic function]

set-di al og-itemaction-function (itemdi al og-item
new-function

The generic function di al 0og- it em acti on-functi on sets the value it
accesses.

item A dialog item.

new-function A function of one argument or a symbol that has a global
function binding oris ni | .

vi ew cl i ck-event - handl er [Generic function]

vi ew click-event - handl er (item di al og-i t em) where

The generic function vi ew cl i ck- event - handl er is called by the
event system when the user clicks the dialog item. The method for

di al og-it emcallsitem’s di al og-item action-functi on with item
as the single argument. If item’s di al og-i tem acti on-functi onis
ni |, nothing is done.

item A dialog item.
where The cursor position. It is ignored.
vi ew f ocus- and- draw content s [Generic function]

vi ew f ocus- and- dr aw cont ent s (item di al og-i t em
&opt i onal visrgn cliprgn

The method for dialog items of the generic function vi ew- f ocus- and-
dr aw- cont ent s focuses on the container of the dialog item, then calls
vi ew-draw cont ent s.

item A dialog item.

visrgn, cliprgn Region records from the view’s wpt r . They are ignored.

Vi ewSi ze [Generic function]

vi ew si ze (item di al og-item

The method for dialog items of the generic function vi ew- si ze returns
the size of the dialog item as a point.

Chapter 5: Dialog Items and Dialogs 193

Argument

Syntax

Description

Arguments

Example

Syntax

Description

Argument

Syntax

Description

item A dialog item.

set -vi ew si ze [Generic function]

set-vi ew si ze (item di al og-itemh &optional v

The method for dialog items of the generic function set - vi ew si ze
changes the size of the dialog item to the width and height represented by
h and v, and returns the new size.

item A dialog item.

h Horizontal position.

v Vertical position. If v is ni | , h is assumed to represent a
point.

? (add-subvi ews my-w ndow
(setf eddie
(make-instance 'editable-text-dialog-item))

NI L

? (point-string (viewsize eddie))

"#@6 17)"

? (set-viewsize eddie #@ 300 20))

1311020

di al og-itemtext [Generic function]

di al og-itemtext (itemdial og-item

The generic function di al 0g-i t em t ext returns the string of text
associated with the dialog item.

item A dialog item.

set-dial og-itemtext [Generic function]

set-dial og-itemtext (itemdial og-itemn text

The generic function set - di al 0g-i t em t ext sets the text associated
with the dialog item to text and returns text.

194 Macintosh Common Lisp Reference

Arguments

Syntax

Description

Argument

Syntax

Description

Arguments

Syntax

Description

Argument

The text of a dialog item has a different meaning for each class of dialog item.
It is the text of static-text and editable-dialog text items. It is the label displayed
inside buttons and to the right of radio buttons and checkboxes.

If you prefer to put text in a different location, set the text to the empty string
and use a separate static-text item to place the text where you would like it.

Tables do not display their dialog item text.

item A dialog item.
text A string to be used as the new text of the dialog item.
vi ew f ont [Generic function]

vi ewfont (item di al og-i tem

The generic function vi ew f ont returns, as a font spec, the font used by
item, or ni | if item does not have its own font. (If item does not have its
own font, it uses its container’s font.)

item A dialog item.

set - vi ew f ont [Generic function]

set-vi ewfont (item di al og-it em new-font

The generic function set - vi ew- f ont sets the font of the dialog item to
new-font.

item A dialog item.

new-font A font specifier. If ni |, the dialog item uses the font of its
window.

vi ewf ont - codes [Generic function]

vi ew f ont - codes (item di al og-item

The generic functionvi ew- f ont - codes returns two values, the font-face
code and mode-size code for item’s font. (Font codes, an efficient way of
encoding font specs, are described in Inside Macintosh and in
“Implementation of font codes” on page 75)

item A dialog item.

Chapter 5: Dialog Items and Dialogs 195

Syntax

Description

Arguments

Syntax

Description

Arguments

Syntax

Description

set -vi ew f ont - codes [Generic function]

set - vi ew font - codes (item di al og-i t em ffms &opt i onal
ff-mask ms-mask

The generic function set - vi ew- f ont - codes changes the view font
codes of item.

item A dialog item.

ff The font/face code. A font/face code is a 32-bit integer
that stores the encoded name of the font and its face
(plain, bold, italic, and so on).

ms The mode/size code. A mode/size code is a 32-bit integer
that indicates the font mode (inclusive-or, exclusive-or,
complemented, and so on) and the

font size.

ff-mask A mask that instructs set - vi ew f ont - codes to look
only at certain bits of the font/face integer.

ms-mask A mask that instructs set - vi ew f ont - codes to look

only at certain bits of the mode/size integer.

part - col or [Generic function]

part - col or (item di al og-item part

The generic function par t - col or returns the color of the part indicated
by part.

item A dialog item.

part A keyword specifying which part of the dialog item
should be set. The four possible keywords are: f r arre,
the outline of the dialog item; : t ext, its text; : body, its
body; and: t hunb, its scroll box. (The scroll box is the
white box that slides inside the scroll bar; scroll bars are
the only dialog items that can have them.)

set-part-col or [Generic function]

set-part-col or (item di al 0g- it em) part new-color

The generic function set - par t - col or sets the color of part of the dialog
item, as specified by the arguments, and returns new-color.

196 Macintosh Common Lisp Reference

Arguments

Syntax

Description

Argument

Syntax

Description

Argument

Syntax

Description

If you create a new class of dialog items, you may want to define vi ew dr aw
cont ent s to pay attention to these values.

In addition to the keywords specified by part, individual cells in table dialog
items can have colors. See the method on set - part - col or fort abl e-
di al og-item

item A dialog item.
part A keyword specifying a part of the dialog
item. The same keywords are allowed as for
part-col or.
new-color A color, encoded as an integer.
part-color-1list [Generic function]

part-col or-list (itemdi al og-item

The generic function par t - col or - | i st returns a list of part keywords
and colors for all the colored components of the dialog item. Components
whose color has not been set are not included.

item A dialog item.

di al og-itemenabl e [Generic function]

di al og-item enabl e (item di al og-item

The generic functiondi al 0g- i t em enabl e enables the dialog item. The
item is not dimmed, and its action is run when the user clicks it. The
function returns ni | .

item A dialog item.

di al og-item di sabl e [Generic function]

di al og-item di sabl e (item di al og-item

The generic function di al 0g-i t em di sabl e disables the dialog item.
The dialog item is dimmed; clicks in the item are ignored, and the action
of the item is never run. Disabling a checkbox does not alter its status as
checked, and disabling a radio button does not alter its status as clicked
(you may want to remove the check or click explicitly). The function
returns ni | .

Chapter 5: Dialog Items and Dialogs 197

Argument item A dialog item.

di al og-item enabl ed-p [Generic function]

Syntax di al og-item enabl ed- p (item di al og-item

Description The generic function di al og-i t em enabl ed- p returnst if the dialog
item is enabled, and ni | if it is disabled.

Argument item A dialog item.

Advanced dialog item functions

The following functions can be defined for user-created classes of
dialog items. They can also be shadowed in specialized classes of the
predefined dialog items. For general use of dialog items, you do not
need to use the following functions.

Several sample files demonstrate the use of dialog items. In your MCL
Examples folder, t ext - edi t - di al 0og-item | i sp shows how to
implement dialog items if you do not want to make Fred a part of your
implementation. In the Library folder, gr aphi c-items. | i sp,
scrol | -bar-dialog-items.lisp,andscrolling-fred-

di al og-item | i spimplement several specialized types of dialog

items.
install-viewin-w ndow [Generic function]
Syntax i nstall-viewin-w ndow(item di al og-it em window

Description ~ The generic function i nst al | - vi ew i n- wi ndowis called by set -
vi ew cont ai ner when an item becomes part of a view.

This function performs initialization tasks that require the containing window.
It should never be called directly by user code. However, it may be shadowed.
Specialized versions of i nst al | - vi ew i n-wi ndowshould always perform
cal | - next - met hod.

The default method sets the size of the dialog item if it does not already have
one, and finds an empty position for the dialog item if it does not already have
a position.

198 Macintosh Common Lisp Reference

Arguments

Syntax

Description

Argument

Syntax

Description

Argument

Syntax

Description

Arguments

item A dialog item.
window The window to which the dialog item is being added.

renove-vi ew f rom w ndow [Generic function]

renove- vi ew f r om wi ndow (item di al og-item

The generic function r enove- vi ew- f rom wi ndowis called when a
dialog item is removed from a view by a call to set - vi ew cont ai ner.
It should never be called directly by user code. However, it may be
shadowed. Specialized versions of r enmove- vi ew f r om wi ndowshould
dispose of any Macintosh data the item uses (that is, data not subject to
garbage collection) and should always perform a cal | - next - met hod.

item A dialog item.

di al og-item handl e [Generic function]

di al og-item handl e (item di al og-item

The generic function di al og- i t em handl e retrieves the handle
associated with item. Dialog items are often associated with handles to
Macintosh data structures, such as control records. By convention, this
handle is stored in the location referenced by di al og-i t em handl e and
modified by set - di al og-i t em handl e. The handle is usually ni |
when the dialog item is not contained in a window. It is generally set by
instal | -viewin-w ndowand is reset toni | by renove-vi ew
from w ndow.

item A dialog item.

set-di al og-i tem handl e [Generic function]

set - di al og-item handl e (item di al og-i t em) handle

The generic function set - di al 0og-i t em handl e sets the dialog item
handle associated with item to a new handle.

item A dialog item.
handle A handle to a Macintosh data structure.

Chapter 5: Dialog Items and Dialogs 199

Syntax

Description

Argument

Syntax

Description

Argument

Syntax

vi ew act i vat e- event - handl er [Generic function]

vi ew act i vat e- event - handl er : around (item di al og-item

The generic function vi ew- act i vat e- event - handl er is called when
the window containing the dialog item is activated.

If the appearance of the dialog item needs to change to indicate that it is
active, this is the method that should make that change. For example, Fred
dialog items change their highlighting from a pixelwide box to a solid
rectangle and scroll bars make their arrows and scroll box visible.

The vi ew act i vat e- event - handl er generic function is called by set -
vi ew cont ai ner if the window in which the newly installed view appears is
active.

item A dialog item.

vi ew deact i vat e- event - handl er [Generic function]

vi ew deact i vat e- event - handl er (item di al og-item

The generic function vi ew- deact i vat e- event - handl er is called
when the window containing the dialog items is deactivated.

If the appearance of the dialog item needs to change to indicate that it is not
active, this is the method that should make that change. For example, Fred
dialog items change their highlighting from a solid rectangle to a 1-pixel-wide
box and scroll bars become an empty rectangle.

The vi ew deact i vat e- event - handl er generic function is called by set -
vi ew cont ai ner if the window in which the newly installed view appears is
not active.

item A dialog item.

vi ew def aul t -si ze [Generic function]

vi ew def aul t - si ze (item di al og-item

200 Macintosh Common Lisp Reference

Description

Argument

Syntax

Description

Argument

Syntax

Description

Arguments

Examples

The generic function vi ew def aul t - si ze is called by the default
version of i nstal | - vi ew i n-w ndow. It is called for dialog items that
are not given an explicit size. The di al 0g- i t emmethod of vi ew

def aul t - si ze calculates a size according to the font and text of the
dialog item and the width correction associated with the class of the dialog
item. (See the documentation of di al og-item w dt h-correction.)

item A dialog item.

di al og-itemw dth-correction [Generic function]

di al og-item w dt h-correction (item di al og-i tem

The generic function di al og-i t em wi dt h-correcti on returns an
integer representing the number of pixels of white space added to the left
and right of the text of a dialog item. The default method for di al og-

i t emreturns 0. Users can write methods for di al og-i tem wi dt h-
corr ect i on if they wish to specialize it for their own classes of dialog
items.

item A dialog item.

wi t h-focused-di al og-i tem [Macro]

wi t h- f ocused- di al og-item (item &pti onal container)
&body body

The macrowi t h- f ocused- di al 0g- i t emexecutes body with the
drawing environment set up in the coordinate system of container and the
font of item. This is the correct environment for calling vi ew- dr aw
cont ent s on a dialog item. When the body exits (normally or
abnormally), the old drawing environment is restored.

item A dialog item (or any simple view).

container The view focused on whose coordinate system body will
run.

body Forms to be executed with the specified drawing
environment.

The macrowi t h- f ont - f ocused- vi ewcould be defined as follows.
(defrmacro with-font-focused-view (view &ody body)
(let ((viewsym (gensym))
“(let ((,viewsym,view)
(with-focused-dial og-item (view view) , @ody))))

The macro vi ew f ocus- and- dr aw cont ent s for di al og-i tem
could be defined as follows.

Chapter 5: Dialog Items and Dialogs 201

(def net hod vi ewfocus-and-drawcontents ((itemdial og-item
&opt i onal

visrgn cliprgn)
(decl are (ignore visrgn cliprgn))
(wi th-focused-dialog-itemitem
(viewdrawcontents item))

Specialized dialog items

Button, static text, editable text, checkboxes, radio button, tables,
sequences, and user-defined dialog items fall into the category of
specialized dialog items.

The initialization argument keywords documented for the di al og-
i t emclass are applicable to all dialog items. Only the additional
keywords that are specific to each specialized dialog item are
documented in the following sections.

Buttons

Description

Syntax

Button dialog items are rounded rectangles that contain text. The
following MCL expressions operate on button dialog items.

but ton-di al og-item [Class name]

This is the class used to make buttons. Clicking a button usually has an
immediate result. Buttons are generally given a function for di al og-
itemaction-functionviathe:dial og-itemaction
initialization argument.

initialize-instance [Generic function]

initialize-instance (item button-dial og-item &rest
initargs

202 Macintosh Common Lisp Reference

Description Theinitial i ze-i nst ance primary method for but t on- di al og-
i t eminitializes a button dialog item. (When instances are actually made,
the function used is make-i nst ance, which callsi niti al i ze-
i nst ance.)
Arguments item A button dialog item.
initargs A list of keywords and values used to initialize the
button. These are its special initargs keywords (in
addition to those for di al og-it em):
-defaul t-button
An argument specifying whether the button is made the
default button. If this value is ni | (the default), the
button is not made the default button. Note that if the
dialog has a default button and : al | ow r et ur ns is true
for the current key handler, then the Return key will be
handled by the key handler rather than the default
button.
:border-p
An argument specifying whether the button has a border.
If this value is true (the default), the button has a border.
Example
? (setq pearl (make-instance 'button-dialog-item
:default-button t))
#<BUTTON- DI ALOG | TEM #x42C699>
press-button [Generic function]
Syntax pr ess- but t on (button but t on- di al og-item
Description ~ The pr ess- but t on generic function highlights button, then calls the
di al og-item acti on method for button.
Argument button A button dialog item.
Default buttons

Default buttons are a convenient subclass of button dialog items; they
serve as the default button. A dialog may have one default button. This
button has a bold border and usually may be selected by one of the
keystrokes Return or Enter.

The following MCL expressions operate on default-button dialog items.

Chapter 5: Dialog Items and Dialogs

203

Description

Syntax

Description

Arguments

Syntax

Description

Argument

Syntax

def aul t - butt on-di al og-i tem [Class name]

The def aul t - but t on- di al og-i t emclass is the class of default
buttons, a subclass of but t on- di al og-item

initialize-instance [Generic function]

initialize-instance (item defaul t-button-dial og-item
&r est initargs

Theinitialize-instance primary method for def aul t - but t on-
di al og- i t eminitializes a default-button dialog item. (When instances
are actually made, the function used is make- i nst ance, which calls
initialize-instance.)

item A default-button dialog item.

initargs A list of keywords and values used to initialize the
button. This class has no additional initargs keywords, but
has two default values:
. dial og-itemtext
The default value of this initialization argument is " OK" .
:defaul t-button
The default value of this initialization argument is true.

def aul t - button [Generic function]

def aul t - but t on (window wi ndow)

The def aul t - but t on generic function returns the current default
button, or ni | if the window has no default button. The default button is
the button whose action is run when the user presses Return or Enter. It is
outlined with a heavy black border.

If carriage returns are allowed in the current editable-text item, they are sent to
that item rather than to the default button.

window A window.

set -def aul t - button [Generic function]

set - def aul t - but t on (window Wi ndow) new-button

204 Macintosh Common Lisp Reference

Description

Arguments

Syntax

Description

Argument

The set - def aul t - but t on generic function changes the default button
according to the value of new-button and returns new-button.

If carriage returns are allowed in the current editable-text item, they are sent to
that item rather than to the default button.

window A window.

new-button The button that should be made the default button, or
ni |, indicating that there should be no default button.

defaul t-button-p [Generic function]

def aul t - but t on- p (item button-dial og-item

The def aul t - but t on- p generic function returns true if item is the
default button in the vi ew- wi ndow of item. Otherwise it returns ni | .

item A button dialog item.

Static text

Description

Syntax

The next two entries define and initialize the class of static-text dialog
items.

static-text-dialog-item [Class name]

This is the class of static-text dialog items. Static text may be positioned
anywhere in a dialog window to supply additional information to the
user. The text appears in the window’s font unless otherwise specified.
Clicking text does not generally initiate an action, but it may.

Depending on the amount of text and the size of the item, the text may wrap
to fit in its area. If the size is not specified, a size that accommodates the text
without wrapping is used.

initialize-instance [Generic function]

initialize-instance (item static-text-dialog-item
&r est initargs

Chapter 5: Dialog Items and Dialogs 205

Description Theinitial i ze-i nst ance primary method for st ati c-t ext -
di al og- i t eminitializes a static-text dialog item. (When instances are
actually made, the function used is make- i nst ance, which calls
initialize-instance.)
Arguments item A static-text dialog item.
initargs A list of keywords and values used to initialize the static-
text dialog item. The subclass st at i c-t ext - di al og-
i t emdoes not have any additional keyword arguments
beyond those for di al og-item
Editable text
The following entries pertain to the class of editable-text dialog items.
edi tabl e-text-dial og-item [Class name]
Description This is the class of editable-text dialog items, a subclass of f r ed- di al og-

i t em Its superclasses include f r ed- mi xi n and key- handl er - mi xi n.
The class adds no new initialization arguments, and there is only one
method specialized on the class, vi ew- def aul t - f ont .

The user can give standard Macintosh commands to edit the text of such items.
For instance, the user can select, cut, copy, and paste the text of editable-text
dialog items.

Editable text is usually surrounded by a box, although this feature may be
disabled.

At any given time, there is only one current editable-text dialog item. This is
the item with a blinking cursor or a highlighted selection. User typing is
directed to this item by a call to vi ew- key- event - handl er . Pressing the
Tab key makes the next editable-text dialog item current, cycling back to the
first after the last. The current editable-text dialog item can be determined by
calling cur r ent - key- handl er and can be changed by calling

set - current - key- handl er.

The text of an edi t abl e- t ext - di al 0g-i t emcan be accessed by calling
di al og-itemtext and changed by calling set - di al og-itemtext.

When an editable text item is created, the initial text is specified using the

:di al og-itemtext initialization argument.

To refer unambiguously to an editable-text dialog item, you can give it a
nickname.

206 Macintosh Common Lisp Reference

TipThe file t ext - edi t - di al og-i tem | i sp, in your Examples folder, provides an

Syntax

Description

Arguments

Syntax

Description

Arguments

implementation of the class edi t abl e-t ext - di al 0og-i t emusing
the Macintosh TextEdit Manager. If your application does not require
full Fred editing capability in editable text, you may wish to use t ext -
edi t - di al og-i t eminstead of edi t abl e-t ext-di al og-item
Most of the built-in MCL dialogs containing editable text items
instantiate these items as edi t abl e- t ext - di al og-i t emrather than
asfred-dial og-itemlIf your application needs to use built-in
dialogs but does not need Fred editing capability within those dialogs,
you can redefine the class edi t abl e-t ext - di al og-i t emtobe a
subclass of t ext - edi t - di al og-item

initialize-instance [Generic function]

initialize-instance (item editabl e-text-dialog-item
&r est initargs

Theinitialize-instance primary method for edi t abl e-t ext -

di al og- i t eminitializes an editable-text dialog item. (When instances are

actually made, the function used is make- i nst ance, which calls

initialize-instance.)

item An editable-text dialog item.

initargs A list of keywords and values used to initialize the
editable-text dialog item. It has no new initialization
arguments beyond those it inherits from f r ed- di al og-
item

vi ew key- event - handl er [Generic function]

vi ew key- event - handl er (item f r ed- m xi n) char

The generic function vi ew key- event - handl er examines the current
keystroke and determines what is to be done with it.

The method for f r ed- mi xi n binds the *cur r ent - keyst r oke* variable to
the keystroke of the current event and runs the Fred command associated with
the keystroke.

item An editable-text dialog item.

char Any keystroke. If char is a carriage return, this function is
called only if al | ow r et ur ns- p is true for the item.

Chapter 5: Dialog Items and Dialogs 207

Description

Syntax

Description

Arguments

Syntax

Description

Arguments

Syntax

Description

key-handl er-m xin [Class name]

The class key- handl er - m xi n should be mixed into any class that
handles key events. The class f r ed- di al 0g- i t emincludes key-
handl er - mi xi n.

key- handl er-p [Generic function]

key- handl er - p (item di al og-i tem
key- handl er - p (key-handler key- handl er - mi Xi n)

The key- handl er - p generic function checks to see whether item is a key
handler. When key- handl er - p is called on an instance of a class one of
whose superclasses is key- handl er - m xi n, the function returns t
unless the key handler is disabled. The method for di al og- i t emreturns
nil.

item A dialog item.

key-handler An object one of whose superclasses is
key- handl er - m xi n.

exi t - key-handl er [Generic function]

exi t - key- handl er (item key- handl er - m xi n) new-text-item

The generic function exi t - key- handl er is called when an editable-text
dialog item that is the current key handler is about to be exited. At this
point, it is still the current key handler, but soon it won’t be. If the function
returnst (as the method for key- handl er - m xi n does), new-text-item is
made the new key handler. If it returns ni | , item remains the cur r ent -
key- handl er.

item An editable-text dialog item.
new-text-item The editable-text dialog item about to be made current.

ent er - key- handl er [Generic function]

ent er - key- handl er (item key- handl er - m xi n) old-text-item

The generic function ent er - key- handl er is called when a key handler
such as an editable-text dialog item has just been made current.

208 Macintosh Common Lisp Reference

Arguments

Example

The method for key- handl er - mi xi n doesn’t do anything; it is a hook on
which you can specialize behavior. For example, you can set another dialog
item as the current key handler, as in the example.

item An editable-text dialog item.

old-text-item The previously current editable-text item in the dialog.
Thisis ni | the first time an editable-text item is added to
a dialog.

Here is an example of entering and exiting fields by polling through the
key handlers ent er - key- handl er and exi t - key- handl er. The
dialog f 00 contains two editable-text dialog items, Changi ng and
Checki ng. Checki ng is a simple instance of edi t abl e-t ext -

di al og-i t em Changi ng is an instance of a subclass, changer -

t ext - i t em which has methods for ent er - key- handl er and

exi t - key- handl er . These methods do all the work.

If you edit the text of Changi ng, the exi t - key- handl er method for
changer - t ext - i t embrings up a message when the next item is
clicked. If you edit the text of Checki ng, the ent er - key- handl er
method for changer - t ext - i t emreturns ni | and Checki ng
remains the cur r ent - key- handl er until the original text is restored.

This example is available as the file check- and- change. | i sp in the
Examples folder distributed as part of Macintosh Common Lisp.

;; Checking is a sinple editable-text-dialog-item

(setq Checking (make-instance 'editabl e-text-dialog-item
:dialog-itemtext "Click here to check"
view position #@ 16 16)))

;; changer-text-itemis a new subcl ass
(defclass changer-text-item (editable-text-dialog-item ()
(:default-initargs :dialog-itemtext
"Change ne and see what happens"))

;; changer-text-item has nethods for enter-key-handl er
;; and exit-key-handl er
(def met hod exit-key-handl er
((changer-text-item changer-text-item) next-iten)
(declare (ignore next-item)
(unless (equal p (dial og-itemtext changer-text-item
"Change ne and see what happens")
(nmessage-di al og "You changed ne! "))

t)

(def met hod ent er - key- handl er

Chapter 5: Dialog Items and Dialogs 209

Syntax

Description

Argument

Syntax

Description

Arguments

Syntax

Description

Argument

((changer-text-item changer-text-iten) ol d-text)
(unless (equal p (dialog-itemtext Checking)
"Cick here to check")
(set-current-key-handl er
(vi ew-wi ndow changer-text-item old-text)))

(setq foo (make-instance 'dialog))
(setq Changi ng (rmake-instance 'changer-text-item
:view position #@ 10 100)

sdrawoutline nil))

(add- subvi ews foo Checki ng Changi ng)

all owreturns-p [Generic function]

al | owreturns-p (itemkey-handl er-m xi n)

The generic function al | ow-r et ur ns- p returns true if carriage returns
are allowed in the editable-text dialog item. Otherwise, it returns false.

item An editable-text dialog item.

set-all owreturns [Generic function]

set - al | owr et urns (item key-handl er-m xi n) value

The generic function set - al | ow r et ur ns sets whether carriage returns
are allowed in the editable-text dialog item.
item An editable-text dialog item.

value If value is true, carriage returns are allowed. Ifitisni |,
they are not.

all owtabs-p [Generic function]

al | owt abs- p (item key- handl er - ni xi n)

The al | owt abs- p generic function returns true if tabs are allowed in
the editable-text dialog item. Otherwise, it returns false.

item An editable-text dialog item.

210 Macintosh Common Lisp Reference

set-al |l owt abs [Generic function]

Syntax set-al | owtabs (item edi tabl e-text-dial og-iten) value

Description The set - al | owt abs generic function sets whether tabs are allowed in
the editable-text dialog item.

Arguments item An editable-text dialog item.
value If value is true, tabs are allowed. If itis ni | , they are not.
cut [Generic function]
copy [Generic function]
past e [Generic function]
cl ear [Generic function]
undo [Generic function]
undo- nor e [Generic function]
sel ect-al | [Generic function]
Syntax cut (window Wi ndow)

copy (window wi ndow)

past e (window wi ndow)

cl ear (window wi ndow)

undo (window wi ndow)

undo- nor e (window W ndow)
sel ect-al | (windoww ndow)

Description These generic functions are each specialized on the wi ndowclass (as well
asonfred-m xi n, described inChapter 14: Programming the Editor).
Each generic function calls the same generic function on the current key
handler of window, if there is one. The methods applicable tof r ed- mi xi n
perform the operation.

Argument window A window whose first direct superclass is f r ed- m xi n,
which provides editing capability.

Chapter 5: Dialog Items and Dialogs 211

Checkboxes

Description

Syntax

Description

Arguments

Syntax

Description

Argument

Checkboxes are small squares that toggle an X mark on and off when
clicked. The following class and functions govern the behavior of
checkboxes.

check- box-di al og-i tem [Class namel]

The check- box- di al og-i t emclass is the class of checkbox dialog
items.

initialize-instance [Generic function]

initialize-instance (dialog-item check- box-di al og-item
&r est initargs

Theinitialize-instance primary method for check- box-

di al og-i t eminitializes a checkbox dialog item. (When instances are
actually made, the function used is make- i nst ance, which calls
initialize-instance.)

item A checkbox dialog item.

initargs A list of keywords and values used to initialize the
checkbox. The additional initialization argument
keyword for checkboxes is
: check- box-checked- p
This keyword specifies whether the item is initially
checked. Its value is true if the item is checked and ni | if
it is not. Its default valueis ni | .

di al og-itemaction [Generic function]

di al og-itemaction (item check-box-di al og-item

The check- box- di al 0og-i t emprimary method for di al og-item
act i on toggles the state of the box from unchecked to checked or vice
versa, then calls cal | - next - met hod.

item A checkbox dialog item.

212 Macintosh Common Lisp Reference

Syntax

Description

Argument

Syntax

Description

Argument

Syntax

Description

Argument

check- box- check [Generic function]

check- box- check (item check- box- di al og-item

The check- box- check generic function places an X in the checkbox. The
function merely places an X in the box; it does not run the action of the
dialog item.

item A checkbox dialog item.

check- box-uncheck [Generic function]

check- box- uncheck (item check- box- di al og-item

The check- box- uncheck generic function removes the X from the
checkbox. The function merely removes the X from the box; it does not run
the action of the dialog item. The function returns ni | .

item A checkbox dialog item.

check- box- checked- p [Generic function]

check- box- checked- p (item check- box- di al og-item

The check- box- checked- p generic function returnst if there is an X in
the checkbox and ni | otherwise. The function merely reports on the state
of the box; it does not run the action of the dialog item.

item A checkbox dialog item.

Radio buttons

Radio buttons are small circles that contain a black dot when they are
selected (“pushed”). Radio buttons occur in clusters, and only one
button in a cluster may be pushed at a time. Clicking a radio button
unpushes the previously pushed one. The following class and functions
govern the behavior of radio buttons.

Chapter 5: Dialog Items and Dialogs 213

radi o- button-di al og-i tem [Class name]

Description ~ Ther adi o- but t on- di al 0g- i t emclass is the class of radio-button

Syntax

dialog items.

initialize-instance [Generic function]

initialize-instance (itemradi o-button-di al og-item
&r est initargs

Description Theinitial i ze-i nst ance primary method for r adi o- but t on-

di al og- i t eminitializes a radio-button dialog item. (When instances are
actually made, the function used is make- i nst ance, which calls
initialize-instance.)

Arguments item A radio-button dialog item.

Syntax

initargs A list of keywords and values used to initialize a radio

button. The initargs keywords, in addition to those for
di al og-itemare

. radi o-button-cluster
The cluster to which the radio button belongs. Only one
button from a given cluster can be pushed at a time.
Whenever the user clicks a button, the function r adi o-
but t on- unpush is applied to all other buttons having
the same value for r adi o- but t on- cl ust er. To check
to see whether two buttons are in the same cluster, use
eq. The default cluster is 0.

: radi o- button-pushed-p
This keyword determines whether the radio button is
initially pushed. The default value is ni | .

radi o- but t on-cl ust er [Generic function]

radi o-button-cluster (itemradi o-button-dial og-item)

Description Ther adi o- but t on- cl ust er generic function returns the cluster of item

as an integer.

Argument item A radio-button dialog item.

214

Macintosh Common Lisp Reference

Syntax

Description

Arguments

Syntax

Description

Argument

Syntax

Description

Argument

Syntax

Description

Argument

pushed- r adi o- but t on [Generic function]

pushed- r adi o- but t on (window wi ndow) &opt i onal cluster

The pushed- r adi o- but t on generic function returns the pushed radio
button from the specified cluster. The value ni | is returned if there is no
such cluster or if all the radio buttons in a cluster

are disabled.
window A window.
cluster The cluster of radio buttons to search. Radio button

clusters are numbered, starting with 0. The default is 0.

r adi o- but t on- push [Generic function]

r adi o- but t on- push (item r adi o- but t on-di al og-item

The r adi o- but t on- push generic function pushes a radio button and
unpushes the previously pushed one. The function merely toggles the
states of the two radio buttons; it does not run any action. The function
returns ni | .

item A radio-button dialog item.

r adi o- but t on- unpush [Generic function]

r adi o- but t on- unpush (item r adi o- butt on-di al og-item)

Ther adi o- but t on- unpush generic function unpushes the radio button
and returns ni | .

item A radio-button dialog item.

radi o- but t on- pushed- p

[Generic function]

radi o- button-pushed-p (itemradi o- button-di al og-item

The r adi o- but t on- pushed- p generic function returns t if the radio
button is pushed and ni | if it is not. The default value
isnil.

item A radio-button dialog item.

Chapter 5: Dialog Items and Dialogs 215

Table dialog items

216

Table dialog items are tables within a window. They allow the user to
view a set of items and select items from the set. These tables may be
one- or two-dimensional (see Figure 5-1). Two-dimensional tables look
like spreadsheets. One-dimensional tables look like the file selection
boxes displayed after a user chooses the Save as command. Each item
in a table takes up one cell, and there is an 8 KB limit on the total

number of cells a table may have.

Table dialog items are implemented using the Macintosh List Manager
(but are not called “lists” to avoid confusion with Lisp lists).

Figure 5-1 Examples of tables used in dialog boxes

foo CaSe foo
bar i bar
baz 1234 baz
bim (+54) bim
quuy Jij quuy

&

Two-dimensional table dialog item with
horizontal scroll bar

add-points
subtract-points
inval-dialog-item
exrist-default
with-clip-rect
dialog-item
(list :handle)
dialog
dialog-item
control-dialog-item
button-dialog-item

One-dimensional table dialog item arranged
vertically with vertical scroll bar

Macintosh Common Lisp Reference

bbb

One-dimensional table dialog item
arranged vertically with no scroll bar

One-dimensional table dialog item arranged
horizontally with horizontal scroll bar

= Figure 5-2

Description

All the functions used with other dialog items (such asvi ew- si ze and
Vi ew posi ti on) work for tables, except that the text of table dialog
items is not shown.

Table dialog items are rectangles with a series of cells (see Figure 5-2).
Your program can access information about table dialog items, such as
the cells that are selected, the position of any cell, and the contents of
any cell.

A cell is referenced by a point, encoding the horizontal and vertical
indices of the cell within the table.
Cell positions represented as points

#2(00) #e(10) #2200 #&(30) .

#@(01) #&(11) #2(21) #2(31) #@[u 0)
#@(02) #@(12) #@(22) #2(32) #@m 1
#@(03) #a@(13) #@(23) #2(33) #@m 2)
#a(04) #e(l4) #2024 #e(34) #@‘“ 3)
#@(05) #e(15 #=(25) #@(35) #@m 4
#2(06) #e(l6) #2260 #e(36) #@“] 3)
#2007 #e(17) #2(27) #2(37) #@m 6)
#2(08) #a@(18 #=(28) #2(38) #@[u 7)
#2(09) #2(19) #2(29) #z(30) #33 g;

[#2(00) #2010 #e(20) #=(30 #=(40)]

t abl e-di al og-item [Class name]

The t abl e- di al 0g-i t emclass provides the base functionality for all
types of table dialog items. You should not directly instantiate this class,
but should create subclasses from it.

The common uses of table dialog items are provided by sequence dialog items,
described “Sequence dialog items” on page 234. However, you may want to
implement your own subclass of table dialog items with specialized behavior.
The file ar r ay- di al og-i tem | i sp in your MCL Examples folder
implements a class of tables displaying multidimensional arrays.

Chapter 5: Dialog Items and Dialogs 217

Syntax

initialize-instance [Generic function]

initialize-instance (item tabl e-di al og-item
&r est initargs &key :tabl e-di nensi ons :sel ection-type
:table-print-function :table-vscrollp :table-hscrollp
:growicon-p :cell-fonts :cell-size
: vi si bl e-di mensi ons

Description Theinitial i ze-i nst ance primary method fort abl e- di al og-

i t eminitializes a table dialog item. (When instances are actually made,
the function used is make- i nst ance, which callsi niti al i ze-

i nstance.)
Arguments item A table dialog item.
initargs The initialization arguments for the menu item and their

218

initial values, if any. These are its special initargs
keywords (in addition to those for di al og-i t em):

: tabl e- di mensi ons
The horizontal and vertical dimensions of the table in
number of cells, expressed as a point. The default value is
#@O0 0).Due to a limitation of the Macintosh List
Manager, no table dialog item may have more than 8192
(8 KB) cells.

:sel ection-type
This keyword determines whether the table dialog item
allows single or multiple selections, and whether multiple
selections must be contiguous. Possible keywords are
:singl e, :contiguous,and: disjoint.The default
valueis: si ngl e.

oNote: To get a :di sj oi nt selection, you must hold down
the Command key as you select items. To get a
: cont i guous selection, hold down the Shift key.

:tabl e-print-function
The function used by dr aw- cel | - cont ent s to print the
contents of the cell. The default value is #' pri nc. If
given, this should be a function of two arguments, the
value to be printed and the stream.

:tabl e-vscrollp
This keyword determines whether the table dialog item
has a vertical scroll bar. The default is to include a scroll
bar if one is needed in order to view the entire table.
:tabl e-hscrollp
This keyword determines whether the table dialog item
has a horizontal scroll bar. The default is to include a
scroll bar if one is needed in order to view the entire table.

Macintosh Common Lisp Reference

Syntax

Description

Arguments

Syntax

Description

. growicon-p
The value passed as the Has Gr ow parameter to the
#_LNewtrap wheni nstal | - vi ew- i n- wi ndowcreates
the table. The default valueisni | .

:cell-fonts
A property list of cells and font specs. See the description
of set - cel | - f ont, later in this section.

.cell-size
Horizontal and vertical dimensions of the cells in the table
dialog item. The default value is ni | , meaning that the
cell size is computed to be big enough to accommodate
the values of all the cells.

:vi si bl e-di nensi ons
The visible dimensions of the table. The default value is
ni |, meaning that the visible dimensions of the table are
calculated and the entire table is visible.

cell-contents [Generic function]

cel |l -contents (itemt abl e-di al og-item h &opti onal v

The cel | - cont ent s generic function returns the contents of the cell
specified by h and v. The method for t abl e- di al og-i t emreturnsni | .

The cel | - cont ent s method should be specialized by subclasses of t abl e-
di al og-itemItis called by dr aw-cel | - cont ent s.

item A table dialog item.
h Horizontal index.
v Vertical index. If the value of vis ni | , h is assumed to

represent a point.

r edr aw cel | [Generic function]

redraw cel | (itemt abl e-di al og-itemh &optional v

The r edr aw cel | generic function redraws the contents of cell. When a
single cell changes, calling this function explicitly is much more efficient
than redrawing the entire table dialog item.

Redrawing the cell involves three operations:

1. Setting the dialog’s clip rectangle so that drawing is restricted to
the cell.

2. Moving the pen to a position 3 pixels above the bottom of the cell
and 3 pixels to the right of the left edge of the cell.

Chapter 5: Dialog Items and Dialogs 219

Arguments

Syntax

Description

Arguments

Syntax

Description

Arguments

3. Callingdraw-cell-contents.

item A table dialog item.
h Horizontal index.
v Vertical index. If the value of vis ni | , i is assumed to

represent a point.

drawcel | -contents [Generic function]

draw cel | -contents (itemt abl e-di al og-itemh
&opti onal v

The dr aw- cel | - cont ent s generic function draws the contents of cell. It
may be shadowed to provide a specialized display. This function should
not be called directly. It should be called only by r edr aw- cel | , which
prepares the window for the drawing.

The default method of dr aw- cel | - cont ent s shows the printed
representation of the cell contents (using the function stored in the function cell
of : tabl e-print-functi on, which defaults to pri nc). If the contents are
too long to fit in the cell, an ellipsis is added at the end.

The dr aw- cel | - cont ent s function may be shadowed to provide
specialized drawing (for example, to create a table of icons or patterns). In
many cases, however, you don’t need to redefine dr aw- cel | - cont ent s;
you can often achieve the desired results with a functionin : t abl e- pri nt -
function.

item A table dialog item.
h Horizontal index.
v Vertical index. If the value of vis ni | , & is assumed to

represent a point.

hi ghl i ght -t abl e-cel | [Generic function]

hi ghl i ght -t abl e-cel | (itemt abl e-di al og-it em cell rect
selectedp

The hi ghl i ght - t abl e- cel | generic function highlights cell. This
function may be shadowed to provide a specialized display. The

hi ghl i ght -t abl e- cel | function should not be called directly. It is
automatically called by the vi ew- cl i ck- event handler for t abl e-
di al og-item

item A table dialog item.
cell The cell to be drawn.

220 Macintosh Common Lisp Reference

Syntax

Description

Argument

Syntax

Description

Arguments

Syntax

Description

Argument

Syntax

rect The bounding rectangle of cell.

selectedp The state (selected or unselected) of the cell. If the value of
selectedp is true, the cell is selected. If it is ni |, the cell is
unselected.

t abl e- di nensi ons [Generic function]

t abl e- di nensi ons (itemt abl e-di al og-item

The t abl e- di mensi ons generic function returns a point indicating the
number of cells horizontally and vertically in the table dialog item.

item A table dialog item.

set -t abl e- di nensi ons [Generic function]
set -t abl e- di nensi ons (itemt abl e-di al og-item#
&optional v

The set - t abl e- di nensi ons generic function sets the number of cells
horizontally and vertically according to / and v.

There is an 8 KB limit on the total number of cells.

item A table dialog item.
h Horizontal number of cells.
v Vertical number of cells. If the value of visni | , his

assumed to represent a point.

vi si bl e-di nensi ons [Generic function]

vi si bl e-di nensi ons (item t abl e- di al og-item

The vi si bl e- di mensi ons generic function returns a point indicating
the number of cells visible in the horizontal and vertical dimensions.

item A table dialog item.

set - vi si bl e-di nensi ons [Generic function]

set - vi si bl e-di nensi ons (item t abl e- di al og-itemh
&optional v

Chapter 5: Dialog Items and Dialogs 221

Description

Arguments

Syntax

Description

Argument

Syntax

Description

Arguments

Syntax

Description

Arguments

The set - vi si bl e- di mensi ons generic function resizes the table so
that & cells are visible per row and v cells are visible per column. The new
dimensions are returned as a point.

item A table dialog item.
h Horizontal number of cells.
v Vertical number of cells. If the value of vis ni | , his

assumed to represent a point.

Thecel | - si ze and set - cel | - si ze functions that follow provide
an alternative to vi ew si ze for specifying the size of a table dialog
item.

cell-size [Generic function]

cel |l -si ze (itemt abl e-di al og-item

The cel | - si ze generic function returns the size of a cell in the table
dialog item. All the cells have the same size.

item A table dialog item.

set-cell-size [Generic function]

set-cel |l -size (itemt abl e-di al og-i tem h &optional v

The set - cel | - si ze generic function sets the cell size according to h and
v and returns the new size as a point.

item A table dialog item.
h Horizontal size (width).
v Vertical size (height). If the value of vis ni | , I is assumed

to represent a point.

cel |l -font [Generic function]

cel |l -font (itemt abl e-di al og-itemh &optional v

The cel | - f ont generic function returns the font used by a cell (specified
by hand v) or ni | if the cell uses the font of the dialog item.

item A table dialog item.
h Horizontal index.

222 Macintosh Common Lisp Reference

Syntax

Description

Arguments

Syntax

Description

Arguments

Syntax

Description

Arguments

v Vertical index. If the value of vis ni | , h is assumed to
represent a point.

set-cel | -font [Generic function]

set-cel | -font (itemt abl e- di al og-i t em cell font-spec

The set - cel | - f ont generic function sets the font of cell to

font-spec.

item A table dialog item.

cell A cell in the table dialog item, encoded as a point.

font-spec A font spec.

part - col or [Generic function]

part - col or (itemt abl e- di al og-it em part

The part - col or method fort abl e- di al og- i t emreturns the color of
the part of the table dialog item indicated by part.

item A table dialog item.

part A keyword. In addition to the keywords allowed for
dialog items, part may be a point indicating a cell.

set-part-col or [Generic function]

set-part-col or (itemtabl e-di al og-it em part color

The set - part - col or method for t abl e- di al 0g-i t emsets the color
of part of the table dialog item, as specified by the arguments, and returns
color.

item A table dialog item.

part In addition to the keywords allowed for dialog items, part
may be an integer indicating a cell. The default cell-
drawing routine draws the contents of the cell in the color
you have specified.

color A color, encoded as a point.

Chapter 5: Dialog Items and Dialogs 223

Syntax

Description

Arguments

Syntax

Description

Arguments

Syntax

Description

Arguments

Syntax

cel | -sel ect [Generic function]

cel | -sel ect (itemt abl e-di al og-item & &opti onal v

The cel | - sel ect generic function selects the cell specified by / and v.
Previously selected cells are not affected.

item A table dialog item.
h Horizontal index.
v Vertical index. If the value of vis ni | , i is assumed to

represent a point.

cel | - desel ect [Generic function]

cel | -desel ect (itemt abl e-di al og-itemh &optional v

Thecel | - desel ect genericfunction deselects the cell specified by i and
v.

item A table dialog item.
h Horizontal index.
v Vertical index. If the value of v is ni | , ki is assumed to

represent a point.

cell -selected-p [Generic function]

cel | -sel ected- p (itemt abl e- di al og-itemh &opti onal v

The cel | - sel ect ed- p generic function returnst if the cell specified by
h and v is selected. Otherwise, it returns ni | .

item A table dialog item.
h Horizontal index.
v Vertical index. If the value of vis ni | , h is assumed to

represent a point.

sel ected-cel |l s [Generic function]

sel ect ed- cel | s (itemt abl e-di al og-i tem

224 Macintosh Common Lisp Reference

Description

Argument

Syntax

Description

Arguments

Syntax

Description

Argument

Syntax

Description

Arguments

The sel ect ed- cel | s generic function returns a list of all the cells
selected in the table dialog item. Each cell is represented by a point. If no
cells are selected, ni | is returned.

item A table dialog item.

scrol |l -to-cell [Generic function]

scroll-to-cell (itemt abl e-di al og-item h &optional v

The scrol | -to-cel | generic function causes the table dialog item to
scroll so that the cell specified by & and v is in the upper-left corner.

item A table dialog item.
h Horizontal index.
v Vertical index. If the value of vis ni | , h is assumed to

represent a point.

scrol | -position [Generic function]

scrol | -position (itemtabl e-di al og-item

The scrol | - posi ti on generic function returns the cell indices of the
cell in the upper-left corner of the table dialog item. (This is not a position
in window coordinates but indicates which cell is in the upper-left corner.)

item A table dialog item.

cell -position [Generic function]

cel | -position (itemt abl e-di al og-itemh &optional v

The cel | - posi ti on generic function returns the position of the upper-
left corner of the cell if the cell is visible. It returns ni | if the cell is not
currently visible. The position returned is in the coordinate system of the
item’s container.

item A table dialog item.
h Horizontal index.
v Vertical index. If the value of vis ni | , h is assumed to

represent a point.

Chapter 5: Dialog Items and Dialogs 225

Syntax

Description

Arguments

Syntax

Description

Argument

Syntax

Description

Argument

Syntax

Description

Argument

poi nt -t o-cel | [Generic function]

poi nt-to-cel | (itemtabl e-di al og-itemh&optional v

The poi nt -t o- cel | generic function returns the cell enclosing the point
represented by h and v, or ni | if the point is not within a cell.

item A table dialog item.
h Horizontal position.
v Vertical position. If the value of v is ni | , 11 is assumed to

represent a point.

tabl e-hscrol |l p [Generic function]

t abl e-hscrol | p (itemt abl e-di al og-item

The t abl e- hscrol | p generic function returns t if item has a horizontal
scroll bar and ni | otherwise.

item A table dialog item.

tabl e-vscrol |l p [Generic function]

tabl e-vscrol | p (itemt abl e-di al og-i tem

The t abl e- vscr ol | p generic function returns t if item has a vertical
scroll bar and ni | otherwise.

item A table dialog item.

tabl e-print-function [Generic function]

tabl e-print-function (itemt abl e-di al og-item

Thet abl e- pri nt - f unct i on generic function returns the function used
by dr aw- cel | - cont ent s to print the contents of the cell.

item A table dialog item.

226 Macintosh Common Lisp Reference

Pop-up menu dialog items

Description

Syntax

Description

Arguments

A pop-up menu dialog item is a menu within a dialog box or other view
containing dialog items. The Commands menu in Inspector windows is

an example of a pop-up menu. For other examples, look at the file
CCL: |'i brary; pop-up-nenu. lisp.

The following MCL expressions govern the behavior of pop-up menus.

pop- up- menu

The class pop- up- menu is the class of pop-up menus, built on nenu.

[Class name]

initialize-instance [Generic function]

initialize-instance (menu pop-up-menu)&r est initargs

Theinitialize-instance primary method for pop- up- nenu
initializes a pop-up menu. (When instances are actually made, the

function used is make- i nst ance, whichcallsi niti al i ze-i nst ance.)

menu A pop-up menu.

initargs A set of initial arguments and values used for initializing

the pop-up menu:
cdefault-item
An integer identifying the default item that will be

selected from the menu. The default is 1. The first item is

1, not O.
:aut o- updat e- def aul t

An argument specifying how defaults are handled. If true
(the default), each time an item is selected from the pop-
up menu, it becomes the default. Otherwise, the default

item remains fixed.

citemdi spl ay

An argument specifying whether the menu item or its
value is displayed. If the value is : sel ecti on (the
default), displays the default menu item. Otherwise the
valueitselfis displayed asif by (f ormat t "~a" wvalue) .

S menu-itens

A list of items to be added to the newly created pop-up
menu.

Chapter 5: Dialog Items and Dialogs

227

Example

. Menu- co

ors

A property list of menu parts and colors. The allowable
parts are given in the definition of set - part - col or.
For details, see “Menubar colors” on page 98 and Chapter
6: Color.

:di al og-itemtext
The text of the pop-up menu. The default valueis"".If a
value is specified and is not " ", this becomes a label for
the pop-up menu, which is displayed to the left of the box
for the : i t em di spl ay.

. dial og-itemaction
The di al og-i t em act i on generic function is not
called by vi ew- cl i ck- event - handl er for a pop-up
menu.

: hel p- spec

A value describing the Balloon Help for the item. This
may be a string or one of a number of more complicated
specifications, which are documented in the file hel p-
manager . | i sp in your Library folder. The default value
isnil.

See the file pop- up- menu. | i sp in your MCL Library folder.

Scroll-bar dialog items

Description

Syntax

A scroll-bar dialog item is a dialog item that is a scroll bar. The
following MCL expressions govern the behavior of scroll-bar dialog
items.

scrol | -bar-di al og-item

The scrol | - bar - di al 0g-i t emclass is the class of scroll-bar dialog
items.

initialize-instance

initialize-instance (item scroll-bar-dialog-item

&r est initargs

228 Macintosh Common Lisp Reference

[Class name]

[Generic function]

Description

Arguments

Theinitialize-instance primary method for scrol | - bar -

di al og- i t eminitializes a scroll-bar dialog item. (When instances are
actually made, the function used is make- i nst ance, which calls
initialize-instance.)

For full information on scroll bars, see Inside Macintosh.

A scroll-bar dialog item.

initargs A set of initial arguments and values used for initializing

the scroll-bar dialog item:

sdirection
The direction of the scroll bar. Valid values are
chorizontal and: verti cal (the default).

: max The maximum setting of the scroll bar. This value must be
an integer; it defaults to 100.

:mn The minimum setting of the scroll bar. This value must be
an integer; it defaults to 0.
: page-si ze

The amount the setting of the scroll bar will change when
the user clicks the gray area above or below the scroll box.
The default value is 5.

:scroll-size
The amount the setting of the scroll bar will change when
the user clicks one of the arrows at its two ends. The
default value is 1.

:setting The initial setting of the scroll bar.

:track-thunmb-p
An argument specifying behavior during scrolling. If
true, the scroll box is moved and scr ol | - bar - changed
is called as the user drags the scroll box. Otherwise, an
outline is dragged and the scrolling does not actually
happen until the user releases the mouse button. The
default valueis ni | .

-scrollee
An argument specifying what it is that the scroll bar
scrolls. The default value is ni | .

. pane-splitter
An argument specifying the position of a pane splitter. If
thescrollbaris: verti cal ,avalueof: t op meansabove
the scroll bar and any other non-ni | value means below
it. If the scroll bar is : hori zont al , a value of : | ef t
means to the left of the scroll bar and any other non-ni |
value means to the right of it. If ni |, there is no pane
splitter. The default value is ni | .

Chapter 5: Dialog Items and Dialogs

229

Syntax
Description

Argument

Syntax

Description

Arguments

Syntax

Description

Argument

Syntax

Description

: hel p- spec
A value describing the Balloon Help for the item. This
may be a string or one of a number of more complicated
specifications, which are documented in the file hel p-
manager . | i sp in your Library folder. The default value
isnil.

scrol | -bar-1ength [Generic function]

scrol | -bar-1ength (itemscrol | -bar-di al og-item
The scrol | - bar - | engt h generic function returns the length of item.

item A scroll-bar dialog item.

set-scroll-bar-length [Generic function]

set-scrol | -bar-1ength (itemscrol | -bar-dial og-item
new-length

Theset - scrol | - bar - | engt h generic function sets the length of item to
new-length.
item A scroll-bar dialog item.

new-length The new length of item.

scrol | - bar - max [Generic function]

scrol | - bar - max (item scrol | -bar-di al og-item

The scrol | - bar - max generic function returns the maximum setting of
item.

item A scroll-bar dialog item.

set -scrol | - bar - max [Generic function]

set-scrol |l -bar-max (itemscrol | -bar-di al og-item
new-value

Theset - scrol | - bar - max generic function sets the maximum setting of
item to new-value.

230 Macintosh Common Lisp Reference

Arguments

Syntax

Description

Argument

Syntax

Description

Arguments

Syntax

Description

Argument

Syntax

Description

Argument

item A scroll-bar dialog item.

new-value The new maximum setting of iter.

scroll-bar-mn [Generic function]

scrol | -bar-m n (itemscrol | -bar-di al og-item

The scrol | - bar - m n generic function returns the minimum setting of
item.

item A scroll-bar dialog item.

set-scroll-bar-mn [Generic function]

set-scrol | -bar-nin(itemscrol |l -bar-dial og-item
new-value

Theset - scrol | - bar - m n generic function sets the minimum setting of
item to new-value.
item A scroll-bar dialog item.

new-value The new minimum setting of item.

scrol | - bar - page-si ze [Generic function]

scrol | - bar-page-si ze (item scrol | -bar-di al og-i tem

The scrol | - bar - page- si ze generic function returns the page size of
item.

item A scroll-bar dialog item.

scrol |l -bar-scroll -size [Generic function]

scrol | -bar-scroll-size(itemscrol | -bar-dial og-itemn

The scrol | - bar-scrol | -si ze generic function returns the scroll size
of item.

item A scroll-bar dialog item.

Chapter 5: Dialog Items and Dialogs 231

Syntax

Description

Argument

Syntax

Description

Arguments

Syntax

Description

Argument

Syntax

Description

Arguments

scrol |l -bar-scroll ee [Generic function]

scrol | -bar-scrol |l ee (itemscrol | -bar-di al og-item

The scrol | - bar - scrol | ee generic function retrieves the scrollee of
item (that is, what item is scrolling).

item A scroll-bar dialog item.

set-scroll-bar-scroll ee [Generic function]

set-scroll-bar-scrollee (itemscroll-bar-dial og-item
new-scrollee

The set - scrol | - bar - scrol | ee generic function sets the scrollee of
item (that is, what item is scrolling) to new-scrollee.
item A scroll-bar dialog item.

new-scrollee The new scrollee of item.

scrol |l -bar-setting [Generic function]

scrol | -bar-setting (itemscrol | -bar-dial og-item

The scrol | - bar - set ti ng generic function returns the current setting
of item.

item A scroll-bar dialog item.

set-scroll-bar-setting [Generic function]

set-scroll-bar-setting(itemscrol |l -bar-dial og-item
new-setting

The set - scrol | - bar - set ti ng generic function sets the setting of item
to new-setting. It does not call di al og-item acti on.
item A scroll-bar dialog item.

new-setting The new setting of item.

232 Macintosh Common Lisp Reference

Syntax

Description

Argument

Syntax

Description

Arguments

Syntax
Description

Argument

Syntax

scrol | -bar-track-thunb-p [Generic function]

scrol | -bar-track-thunb-p (item scrol | -bar-di al og-item

The scrol | - bar -t rack-t hunb- p generic function returns a value
indicating the behavior of item when the scroll box is dragged. If true, the
scroll box moves and the function scr ol | - bar - changed is called as the
user drags the scroll box. If ni | , only an outline of the scroll box moves
and scrolling does not occur until the user releases the mouse button. The
default valueis ni | .

item A scroll-bar dialog item.

set-scroll-bar-track-thunb-p [Generic function]

set-scroll-bar-track-thunb-p (item scrol | - bar-di al og-
item) value

The set -scrol | - bar -t rack-t hunb- p generic function sets the value
controlling the behavior of item when the scroll box is dragged. If true, the
scroll box moves and the function scr ol | - bar - changed is called as the
user drags the scroll box. If ni | , only an outline of the scroll box moves
and scrolling does not occur until the user releases the mouse button.

item A scroll-bar dialog item.
value A Boolean value. If item does not have a scroll box, the
valueisni | .
scrol | -bar-w dth [Generic function]

scrol | -bar-wi dt h (item scrol | -bar-di al og-item
The scrol | - bar - w dt h generic function returns the width of item.

item A scroll-bar dialog item.

set-scrol |l -bar-w dth [Generic function]

set-scrol |l -bar-w dth (itemscrol | -bar-dial og-itemn
new-width

Chapter 5: Dialog Items and Dialogs 233

Description ~ The set - scrol | - bar - wi dt h generic function sets the width of item to

new-width.
Arguments item A scroll-bar dialog item.

new-value The new width of item.

scrol | - bar-changed [Generic function]
Syntax scrol | - bar - changed (scrollee t) (scroll-bart)

Description ~ The scrol | - bar - changed generic function is called by the di al 0g-
i tem acti on method for scrol | - bar - di al og-i t emif the di al og-
i tem action-functi on specified by the : di al og-itemaction
initialization argument is ni | . The scrollee argument is the value of
(scroll-bar-scroll ee scroll-bar) , as set by set - scrol | - bar -
scrol | ee or the: scrol | ee initialization argument for scroll-bar. The
default method does nothing.

Writingascr ol | - bar - changed method is an easy way to cause user mouse
clicks on a scroll-bar dialog item to update another view.

Arguments scrollee A scroll-bar scrollee; what is scrolled by the dialog item.
scroll-bar A scroll bar.

Sequence dialog items

A sequence dialog item is a table dialog item that displays the elements
of a sequence, either row by row or column by column. The following
class and functions govern the behavior of sequence dialog items.

sequence-di al og-item [Class namel]

Description ~ The sequence- di al 0g- i t emclass is the class of sequence dialog items,
used for displaying the elements of a sequence. It is a subclass of t abl e-
di al og- i t em Each instance has an associated sequence. The elements of
the sequence are displayed in a table dialog item, in a single row or
column, or in multiple rows and columns. The table dialog item has
multiple rows and columns only if the length of the sequence is greater
than : sequence-wr ap- | engt h.

234 Macintosh Common Lisp Reference

Syntax

Description

Arguments

Syntax

Description

Argument

Syntax

initialize-instance [Generic function]

initialize-instance (item sequence-di al og-item) &r est
initargs

Theinitialize-instance primary method for sequence- di al og-
i t eminitializes a sequence dialog item. (When instances are actually
made, the function used is make-i nst ance, which callsi niti al i ze-
i nstance.)

item A sequence dialog item.

initargs A list of keywords and values used to initialize the

sequence. These are the initargs keywords in addition to
those used for t abl e- di al og-item

: t abl e- sequence
The sequence to be associated with the table dialog item.
This argument must be specified by the user.

. sequence- or der
This keyword determines whether the sequence will fill
the table dialog item row by row or column by column.
The value of this keyword should be either : verti cal
or: horizont al . The defaultis : verti cal .

. sequence-w ap-1 ength
The number of elements allowed in a row or column
before the table dialog item wraps to the next row or
column. This number overrides the :t abl e-
di mensi ons argument.

t abl e- sequence [Generic function]

t abl e- sequence (item sequence-di al og-i tem

The t abl e- sequence generic function returns the sequence associated
with the dialog item.

item A sequence dialog item.

set -t abl e- sequence [Generic function]

set -t abl e- sequence (item sequence-di al og-item
new-sequence

Chapter 5: Dialog Items and Dialogs 235

Description

Arguments

Syntax

Description

Arguments

Syntax

Description

Arguments

The set - t abl e- sequence generic function sets the sequence associated
with the dialog item to new-sequence, resets the dimensions of the table
dialog item and the scroll bars, and redisplays the dialog item.

item A sequence dialog item.

new-sequence The sequence to be associated with the sequence dialog
item. The elements of this sequence are displayed in the
cells of the sequence dialog item.

cel | -t o-i ndex [Generic function]

cel | -t o-i ndex (item sequence-di al og-i tem h &optional v

Thecel | -t 0- i ndex generic function returns an index into the sequence
associated with the dialog item, corresponding to the cell whose indices in
the table are h and v. If there is no such cell, it returns ni | .

This index is suitable for passing to the Common Lisp function el t .

item A sequence dialog item.
h Horizontal index.
v Vertical index. If the value of vis ni | , k is assumed to

represent a point.

i ndex-to-cell [Generic function]

i ndex-to-cel | (item sequence-di al og-iten) index

The i ndex-to-cel | generic function returns a cell in the dialog item.
The cell corresponds to the indexth element of the table’s sequence.

item A sequence dialog item.
index An index to the sequence (zero based, as would be passed
toelt).

User-defined dialog items

You can easily add new classes of dialog items to the classes predefined
in Macintosh Common Lisp.

236 Macintosh Common Lisp Reference

New classes of dialog items may be specializations of the types of
dialog items listed in this chapter or specializations of the class

di al og- i t em Functions that you may wish to define for classes
inheriting from di al og- i t emare listed in “Advanced dialog item
functions” on page 198.

For a commented example of how to implement your own class of
dialog item, see the file scrol | i ng-fred-dial og-itemlispin
the Library folder distributed with Macintosh Common Lisp.

Dialogs

= Figure 5-3

A dialog may be either modal or modeless.

s The user must exit from a modal dialog before performing any other
actions. The Print Options dialog box (Figure 5-3) is an example of a
modal dialog.

» If the dialog is modeless, other actions can occur while the dialog is still
on the screen. The List Definitions dialog box (Figure 5-4) is an example
of a modeless dialog.

How the dialog is used determines whether it is modal or modeless.
Instance values do not determine its mode.

A modal dialog (Print Options on the Tools menu)

Window type :double-edge-box Editable text R;déoc?lﬁg?s
L1 *PRINT-PRETTY* *PRINT-LENGTH* *PRINT-CASE*
+ — + .
B *PRINT-ARRAY *PRINT-LEUEL* @ :UPCASE
] *PRINT-CIRCLE™* {73 :DOWNCASE
[*PRINT-STRUCTURE* PRINT-BASE® (3 :CAPITALIZE

<] *PRINT-ESCAPE* *PRINT-RIGHT-MRARGIN*

B *PRINT-GENSYM*

[] *PRINT-RADIH* [0Kk |

Checkboxes Static text Default button

Chapter 5: Dialog Items and Dialogs

Button

237

» Figure5-4 A modeless dialog (List Definitions on the Tools menu)
Title
Close box ——— 1 Definitions in Dialog-Editor.Lisp {...1:
guide—grawi tu
window-type-r-b
frame—window-r-H
bax—window-r-b .
Table with dialog—edi tor | Vertical
vertical scroll bar #prototype—diolog-i tems* scroll bar
#ourrent—item—palettet
item—palette-size
*#item—palette-positiond
item—palettie
Selected cell j gz t=windou—tups
get-vertical-guides
get—horizontal-guides
Cinitialize-instance around Cwindow)?
Cwindow—update—cursor around Cwindow L)
@ Buffer Order Go To Def
Radio buttons .
inacluster <—— Alphabetical Order — Buttons
(Filter: ™" |
Modal dialogs
A modal dialog is activated by calling the npdal —di al og generic
function on the dialog. The dialog is displayed and made the active
window. All subsequent user events are processed by the dialog; illegal
events produce a beep, and legal events cause the action of the selected
dialog item to be performed. The dialog continues to intercept all events
until r et ur n- f r om nodal - di al og is called. This macro causes the
dialog to be closed or hidden and supplies one or more values to be
returned from the call to nodal - di al 0g. Modal dialogs may be
nested. Command-period can always be pressed to exit one or more
modal dialogs.
Some predefined modal dialogs are documented in “Simple turnkey
dialog boxes” on page 239.
238 Macintosh Common Lisp Reference

Modeless dialogs

A modeless dialog is available for use whenever it is visible. Like any
window that is not active, a modeless dialog becomes the active
window when it is clicked. If a modeless dialog box is the active
window, then appropriate user events trigger the actions of its items.

Unless otherwise specified, all the text in a dialog (that is, the text of all
the items) appears in the window’s current font. The desired font
should be set before the dialog is made visible (using set - vi ew- f ont
or the : vi ew f ont initialization argument). A special font may be
specified for certain dialog items; the rest of the items appear in the
window’s current font.

Simple turnkey dialog boxes

Syntax

Description

Argument

Example

Macintosh Common Lisp provides four predesigned dialogs for use by
applications.

Three of the following dialog boxes provide facilities for dynamic
nonlocal exiting (Common Lisp throwing and catching). Clicking
Cancel causes at hr ow- cancel to the nearest cat ch- cancel . If this
throw is not caught, clicking Cancel causes a return to the top level (or
if it occurs during event processing, the execution of the interrupted
program resumes). Common Lisp throw and catch are described in
Common Lisp: The Language.

t hr ow- cancel

t hrow cancel &optional wvalue-form

The t hr ow cancel macro throws the value of value-form to the most
recent outstanding cat ch- cancel .

value-formA value.

? (catch-cancel
(1 oop
(throw cancel 'foo0)))
FOO

Chapter 5: Dialog Items and Dialogs

[Macro]

239

Syntax

Description

Argument

Syntax

Description

Arguments

Example

240

Figure 5-5

cat ch- cancel [Macro]

cat ch- cancel { form} *

The cat ch- cancel macro sets up a cancel catch and evaluates form. It
returns the value of the last form if there was no cancel throw. Otherwise,
it returns the symbol : cancel .

form Zero or more Lisp forms.

nmessage- di al og [Function]

message- di al og message &ey :ok-text :size :position

The nessage- di al og function displays a dialog box containing the
string message and a single button. The function returns t when the user
clicks this button or presses Return or Enter.

message A string to be displayed as the message in the dialog box.

: ok- t ext The text to be displayed in the button. The default button
textis OK. If the textis too long, this string is clipped (that
is, the button is not enlarged to accommodate the longer
string). You can set the size with the : si ze keyword.

:size The size of the dialog box. The default size is
#@ 335 100) . A larger size provides more room for text.

:position The position of the dialog box. The default position is the
top center of the screen.

? (message-dialog "CGet along, little dogies"
:ok-text "G ddyap!" :size #@250 75))
T

Figure 5-5 shows a message dialog box.

A message dialog box

Get along, little dogies

Macintosh Common Lisp Reference

Syntax

Description

Arguments

Example

The file i con-di al og-item | i sp in your Examples folder includes
a variation of this dialog box containing the standard Macintosh alert
icons Stop, Note, and Caution. The file gr aphi c-i t ens. | i spinyour
Library folder shows how to implement generalized graphic items in
dialog boxes.

y-or-n-dial og [Function)

y-or-n-di al og message &ey :size :position :yes-text
:no-text :cancel-text :hel p-spec

The y- or - n- di al og function displays a dialog box containing Yes, No,
and Cancel buttons. The display of the dialog box is modal.

If the user clicks the Yes button, the function returns t . If the user clicks the No
button, the function returns ni | . If the user clicks the Cancel button, at hr ow-
cancel occurs. The default button is the Yes button.

message A string to be displayed as the message in the dialog box.
:size The size of the dialog box. The default size is
#@ 318 145).

:position The position of the dialog box. The default position is the
top center of the screen.

yes-text The text to be displayed in the Yes button. The default is
Yes. This is the default button of the dialog box.

: no- t ext The text to be displayed in the No button. The default text
is No.

. cancel - t ext
The text to be displayed in the Cancel button. The default
textis Cancel .If this argumentis ni | instead of a string,
no Cancel button will appear in the dialog box.

: hel p-spec A value describing the Balloon Help for the item. This
may be a string or one of a number of more complicated
specifications, which are documented in the file hel p-
manager . | i sp inyour Library folder. The default value
isnil.

Typing the initial character of the text of a button activates it. For

example, typing Y activates the Yes button, whereas typing Nactivates

the No button. In the following example, typing Ractivates the Cancel
button.

? (y-or-n-dialog "Please turn ny landlord into a frog."
:cancel -text "Ri bbet")

Figure 5-6 shows a yes-or-no dialog box.

Chapter 5: Dialog Items and Dialogs 241

= Figure5-6 A yes-or-no dialog box

Syntax

Description

Arguments

Please turn my landlord into a frog.

get-string-fromuser

get-string-fromuser message &ey :size :position
cinitial-string :ok-text :cancel-text :nodel ess
:wi ndowtitle :action-function
cal |l ow enpty-strings

The get - string-from user function displays a dialog prompting the
user for a string, which it returns. The display of the dialog can be modal
or modeless. If the value of : nndel ess is true, the dialog has a close box
and no cancel button. If itis ni | , there is a cancel button and no close box.
If the cancel button is clicked, at hr ow cancel occurs.

message
1 size

. position

A string to be displayed as the message in the dialog box.
The size of the dialog box. The default size is
#@ 335 100).

The position of the dialog box. See the Human Interface
Guidelines: The Apple Desktop Interface for the default
position for this dialog box.

sinitial-string

: ok-t ext

:cancel -t ext

: nodel ess

The default string to be displayed in the dialog box.

The string to be displayed in the default button. If the user
clicks this button (or presses Return), get - st ri ng-

f rom user returns the current string. The default value
is " OK".

The string to be displayed in the Cancel button. The
cancel button is omitted if the value of: nodel ess is true.

An argument specifying whether the dialog box display is
modal or modeless. The default is ni | , meaning that it is
modal.

242 Macintosh Common Lisp Reference

[Function]

If : nodel ess is specified as true, the get - st ri ng-
from user function returns the window it creates
immediately, without waiting for the user to interact with
it. The act i on- f unct i on is called when the user clicks
the default button or presses the Return or Enter key. The
default value is a function that returns the string.

‘Wi ndow-title
The title of the window. The defaultis " ".

-action-function
If the : nodel ess argument s true, this argument should
be a function of one argument. It is called with the string
that the user types each time the user clicks the default
button or presses the Return or Enter key. The default
value is a function that returns the string.

;al |l ow enpty-strings
An argument specifying whether the OK button is
enabled when the editable-text box contains no text. The
default value is ni | , meaning that the user must type
something in the editable-text box to enable the OK
button.

Example
? (get-string-fromuser "Enter a string."
cinitial-string "A string.")
? (get-string-fromuser "Enter a string."
:ok-text "Return it")

Figure 5-7 shows a dialog box that prompts the user for a string.

= Figure5-7 Aget-string-fromuser dialogbox

Enter a string.

select-itemfromli st [Function)

Syntax select-itemfromlist list &ey :w ndowtitle
:table-print-function :selection-type
caction-function :nodel ess :default-button-text

Chapter 5: Dialog Items and Dialogs 243

Description

Arguments

Example

The sel ect-item fromli st function displays a dialog box
containing a default button and a table that contains the elements of list.
The function returns a list of the items selected by the user in reverse order,
orni | if the user chooses the default button. If the value of : nodel ess is
ni | (the default), the dialog has a cancel button; if the user clicks Cancel,
athrow cancel occurs.

list

A list containing the items to be displayed in the table.

W ndowtitle

The message displayed at the top of the dialog box.

:tabl e-print-function

The print function used by the table in the dialog box. The
defaultis pri nc. You can use this argument to customize
the dialog box. For example, you could pass a print
function that prints only the first element of lists. (See the
documentation of this keyword in “Table dialog items”
on page 216.)

:sel ection-type

The type of selection allowed by the table. This should be
:singl e, :contiguous,or: disjoint. The default
value is : si ngl e.

:action-function

: nodel ess

An argument specifying a function to call when the
default button is chosen. The function should take one
argument, a list of selected items. The default act i on-
functi on returns a list of selected items.

An argument specifying whether the dialog box display is
modal or modeless. The default is t , meaning that it is
modeless.

If : nodel ess is specified as true, the sel ect-item
fromli st function returns the window it creates
immediately, without waiting for the user to interact with
it. The act i on- f unct i on is called when the user clicks
the default button or presses the Return or Enter key.

:def aul t - button-text

A string to appear in the default button. The default value
is " OK".

To make a disjoint selection, you must hold down the Command key as
you click the selections.

? (select-itemfromlist '(cat dog bear)

:windowtitle "Aninmals"
:selection-type :disjoint)

. Click the itens CAT and BEAR

(BEAR CAT)

244 Macintosh Common Lisp Reference

Figure 5-8 is a modal dialog box that displays a list of items.

= Figure5-8 Aselect-itemfromlist dialogbox

Animals
506 kil
EEAR
]
n

MCL forms relating to dialogs

The following functions, variables, and macros are useful in
programming dialogs (that is, to program instances of vi ewor wi ndow
that contain dialog items). Remember that any view or window can
contain dialog items, which simply act as subviews within the view,
and that any generic function that acts on views or windows can act on
ones containing dialog items.

di al og [Class name]

Description The di al og class is included for compatibility with earlier versions of
Macintosh Common Lisp. No methods in Macintosh Common Lisp
version 2 are specialized on di al 0g, and it adds no slots.

Instances of vi ewor its subclasses can contain a list of dialog items, as you see
in the following example, where dialog items appear in a window.

Example
? (setq dialogl (nake-instance 'w ndow
:wi ndowtype :docunent-with-zoom
wi ndowtitle "Button Dial og"
;view position '(: TOP 60)
tview size #@ 300 150)
cviewfont '("Chicago" 12 : SRCOR : PLAIN)

Chapter 5: Dialog Items and Dialogs 245

Syntax

Description

:view ni ck-nane ' button-dial og
:vi ew subvi ews
(1ist
(setq pearl button
(make-di al og-item ' radi o- button-dial og-item
#@ 15 28)
#@ 118 16)
"Pear| Button"
(lanbda (item
item
(print "How el egant!"))
:view nick-nane 'pearlie
cviewfont ' ("Chicago" 0 : SRCCOPY : PLAIN)))
(setq flashbutton
(make-di al og-item ' radi o- button-dial og-item
#@ 15 70)
#@ 217 16)
"Fl ashy Plastic Button"
(lanbda (item
item
(print "How tacky!"))
:vi ew ni ck-nane ' flash
cviewfont ' ("Chicago" 0 : SRCCOPY : SHADOW)))))

nodal - di al og [Generic function]

modal - di al og (dialog Wi ndow)&opt i onal close-on-exit eventhook

The nodal - di al og generic function displays dialog modally. That is, it
makes dialog the active window, displays it, and then intercepts
subsequent user events until ar et ur n-f r om nodal - di al og is
executed. The function returns the value(s) supplied by r et ur n-f r om
nodal - di al og.

If close-on-exit is true (the default), the window is closed on exit; otherwise, it is
hidden.

Closing the dialog box automatically prevents the accumulation of numerous
hidden windows during development. Modal dialog boxes may be nested.

ou Note: The body of npdal - di al og is unwind protected, and so any
throw past nodal - di al og will close or hide the window, as
appropriate.

246 Macintosh Common Lisp Reference

Arguments

Syntax

Description

Arguments

window
close-on-exit

eventhook

A window.

An argument determining whether the window should
be closed or simply hidden when the call to nodal -

di al og returns. If this argument is true, the window is
closed. If it is false, the window is hidden but not closed.
The defaultist .

A hook. The function nodal - di al og binds

event hook in order to intercept all event processing;
this hook is provided so that you can perform any special
event processing while the modal dialog is on the screen.
The value of eventhook should be a function of no
arguments, or a list of functions of no arguments.
Whenever nodal - di al og looks for events, it calls the
functions in eventhook until one of them returns anon-ni |
result. If all of them return ni | , nodal - di al og
processes events as it normally would. Otherwise, it
assumes that the hook function handled the event.

The variable * cur r ent - event * is bound to an event
record for the current event when each hook function is
called.

The default value of eventhook is ni | .

return-from nodal - di al og

return-from nodal - di al og values

The macro r et ur n- f r om nodal - di al og causes one or more values to
be returned from the most recent call to nodal - di al og.

The dialog is hidden or closed according to the value of close-on-exit that
was passed to the call to nodal - di al 0g. (Any throw past the nodal -
di al og call also causes the dialog box to be hidden or closed.) If the
dialog box is only hidden, its contents remain intact and it continues to
take up memory until the wi ndow- ¢l ose function is explicitly called.

values

. cl osed

: cancel

Any values. The following two values have special
meanings:

If a dialog that is used modally has a close box and the
window is closed, r et ur n- f rom nodal - di al og is
called with the value : cl osed.

If the user selects the cancel button, r et urn-from
modal - di al og is called returning : cancel . The
function nodal - di al og then performs at hr ow
cancel .

Chapter 5: Dialog Items and Dialogs

[Macro]

247

nodal - di al og- on-t op [Variable]

Description The *nodal - di al 0g- on-t op* variable is true when a modal dialog is
the frontmost window. It is bound during the event processing done by
the nodal - di al og function. Its value is used by the MCL window
system code to determine the behavior of floating windows. This value
should not be modified by the user, but can be used to determine whether
a modal dialog is being processed.

find-dial og-item [Generic function]

Syntax find-dial og-item(dialog di al 0g) string

Description The fi nd- di al og- i t em generic function returns the first item in the
view whose di al og-i t em t ext is the same as string (using equal p for
the comparison). The items are searched in the order in which they were
added to the view.

This function may yield unexpected results in views with editable-text items.
If the user types text identical to the text of another item, the editable-text item
may be returned instead of the desired item. For this reason, f i nd- di al og-
i t emis best used during programming and debugging sessions.

To identify items in a dialog, you should use nicknames and the functions
vi ew naned and f i nd- named- si bl i ng.

Arguments dialog A view or window containing dialog items.
string A string against which to compare the text of the dialog
items.

248 Macintosh Common Lisp Reference

Chapter 6:

Color

Contents
Color encoding in Macintosh Common Lisp / 250
MCL expressions governing color / 250
Operations on color windows / 257
Coloring user interface objects / 259
Part keywords / 260
Menu bar / 261
Menus / 261
Menu items / 261
Windows / 262
Dialog items / 262
Table dialog items / 262

This chapter describes the implementation of color in Macintosh Common
Lisp.

Macintosh Common Lisp includes high-level tools for handling colors. There
are functions for encoding and decoding colors (much as points are encoded
and decoded), and there are tools for setting the colors of user interface
components (windows, menus, and so on).

You should read this chapter before programming color into your application.

For a complete description of color operations on the Macintosh computer, see
Inside Macintosh.

249

Color encoding in Macintosh Common Lisp

The Macintosh stores colors as 48-bit red-green-blue (RGB) values, with
16 bits each for the red, green, and blue components. Because current
hardware generally supports a maximum of 24 bits of color, Macintosh
Common Lisp encodes colors as fixnums with 8 bits each for red, green,
and blue (and 5 bits unused). Therefore, creating a color encoding does
not allocate memory.

If your application requires more than 24 bits of color, you can redefine
the color encoding and decoding operations.

Although they are stored as 8-bit values when encoded in a color,
decoded components are expressed as 16-bit values. This allows
compatibility with some Macintosh tools (such as the Color Picker).
Unfortunately, it also means that the low 8 bits of each color component
are lost when the color is encoded and decoded. For example, consider
the following expressions, in which the red component of two colors
differs in the low 8 bits. Encoding and decoding loses information:

? (make-col or 32256 14000 27323) ;; #$7E00=32256
8271466

? (eql 32256 (color-red 8271466))

T

? (make-col or 32333 14000 27323) ;; #$7E4D=32333
8271466

? (equal 32333 (color-red 8271466))

NI L

To compare colors for equality as they are actually displayed on the
current display device, use the function r eal - col or - equal .

? (real -col or-equal (rmake-col or 32256 14000 27323)
(make- col or 32333 14000 27323))
T

MCL expressions governing color

This section describes the MCL expressions that govern color.

250 Macintosh Common Lisp Reference

Description

Syntax

Description

Arguments

Example

Syntax

Description

col or - avai | abl e [Variable |

The *col or - avai | abl e* variable returns a value indicating whether
the Macintosh computer on which Macintosh Common Lisp is running
supports Color QuickDraw.

If the value of this variable is non-ni | , then the Macintosh computer supports the
Color QuickDraw command set. If 32-bit QuickDraw is available, its value is
32.

If the value of this variable is ni | , then Color QuickDraw is not available.

This variable should never be changed by a program.

make- col or [Function |

meke- col or red green blue

The make- col or function returns an encoded color, with components
red, green, and blue. The components should be in the range 0-65535. Each
component is stored with an accuracy of +255.

red The red component of the color. This should be an integer
in the range 0-65535.
Qreen The green component of the color. This should be an

integer in the range 0-65535.

blue The blue component of the color. This should be an
integer in the range 0-65535.

Note that the color components change value as they are encoded and
decoded.

? (make-col or 32333 14000 27323)
8271466

? (col or-val ues 8271466)

32256

13824

27136

col or-red [Function |

col or - r ed color

The col or - r ed function returns the red component of color as an integer
in the range 0-65535.

Chapter 6: Color 251

Argument

Example

Syntax

Description

Argument

Example

Syntax

Description

Argument

Example

Syntax

color A color.

? (color-red 8271466)

32256

? (color-red *purple-col or*)

17920

col or-green [Function |

col or - gr een color

The col or - gr een function returns the green component of color as an
integer in the range 0-65535.

color A color.

? (col or-green 8271466)

13824

? (col or-green *purple-col or*)

0

col or - bl ue [Function |

col or - bl ue color

The col or - bl ue function returns the blue component of color as an
integer in the range 0-65535.

color A color.

? (col or-blue 8271466)

27136

? (col or-blue *purple-color*)

42240

col or -val ues [Function |

col or - val ues color

252 Macintosh Common Lisp Reference

Description

Argument

Example

Syntax

Description

Arguments

Example

Syntax

Description

Arguments

The col or - val ues function returns three values corresponding to the
red, green, and blue components of color.

color A color.

? (col or-val ues 8271466)
32256
13824
27136

real - col or - equal [Function |

real - col or - equal colorl color2

Ther eal - col or - equal function returns true if colorl and color2 are
displayed as the same color on the current display device. Otherwise it
returns false.

This function may return different results for the same arguments, depending
on the current configuration of the computer running Macintosh Common
Lisp. For information on the algorithm used to map RGB colors into Macintosh
color-table entries, see Inside Macintosh.

color1 A color.

color2 Another color.

? (real -col or-equal (make-color 32256 14000 27323)
(make-col or 32333 14000 27323))
T

color-to-rgb [Function |

col or -t o-rgb color &opt i onal rgb

The col or - t 0- r gb function returns a Macintosh RGB record describing
the same color as color. RGB records are allocated on the Macintosh heap
and are therefore not subject to garbage collection. They must be explicitly
deallocated with a call to di spose-record or#_Di sposPt r. For this
reason, it is recommended that the macro wi t h- r gb be used instead
whenever possible.

Most Color QuickDraw traps receive colors in the form of RGB records.

color A color.

Chapter 6: Color

253

rgb A macptr to an RGB record. The record may be combined
with color to produce the returned record. (For
information on macptrs see Chapter 15: Low-Level OS
Interface.)

Example
? (color-to-rgh 8271466)
#<A Mac Zone-Pointer Size 6 #x611930>
? (print-record * :rgbcolor)
#<Record : RGBCOLCR : RED 32256 : GREEN 13824 :BLUE 27136>
But it is preferable to use wi t h-r gb:
? (let ((color 8271466))
(when *col or-avai | abl e*
(with-rgb (rec color)
(print-record rec :rgbcolor))))
#<Record : RGBCOLCR : RED 32256 : GREEN 13824 :BLUE 27136>
r gb-to-col or [Function |
Syntax r gb-to-col or rgb-record

Description Given an RGB record, the r gb-t 0- col or function returns a
corresponding color encoded as an integer.

Most Color QuickDraw traps receive colors in the form of RGB records.

Argument rgb-record An RGB color record stored on the Macintosh heap.
Example
? (make-record :rgbcol or
:red 1000
:green 2000
: bl ue 3000)

#<A Mac Zone-Pointer Size 6 #x611940>

? (rgb-to-color *) ;*=the |ast val ue returned
198411

? (col or-val ues *)

768

1792

2816

254 Macintosh Common Lisp Reference

Syntax

Description

Arguments

Example

Syntax

Description

Arguments

wi t h-rgb

Wi t h-r gb (wvariable color) { form} *

The wi t h- r gb macro evaluates form with variable bound to an RGB record
corresponding to the color color. When the body of the macro exits, the
RGB record is automatically disposed of.

Most Color QuickDraw traps receive colors in the form of RGB records.

variable

color

form

A symbol bound to an RGB record for the duration of the
macro. This position in the macro call is not evaluated.

A color encoded as an integer. This position in the macro
call is evaluated.

Zero or more forms to be executed with variable bound to
an RGB record containing color.

This macro is useful because it saves the trouble of having to allocate
RGB records explicitly. (Remember, RGB records are allocated on the
Macintosh heap, and so they are not subject to garbage collection.)

? (defrmethod set-fore-color ((w ndow wi ndow) col or)
(when *col or-avail abl e*
(with-rgb (rec color)
(with-port (wptr w ndow)

(#_rgbforecolor :ptr rec)))))

#<Met hod SET- FORE- COLOR (W NDOW T) >

[Macro |

user - pi ck- col or

user - pi ck-col or &ey :color :pronmpt :position

The user - pi ck- col or function displays the standard Macintosh Color
Picker at : posi ti on, set to color : col or, with prompt : pr onpt . It
returns the selected color if the user clicks OK or throws to the tag

: cancel if the user clicks Cancel.

:col or

: pronpt

i position

The default color to bring up in the dialog box. The
default is * bl ack- col or *.

The prompt to display in the dialog box. The default is
"Pick a color".

The position of the Color Picker on screen. The default is
calculated by Macintosh Common Lisp.

Chapter 6: Color

[Function]

255

bl ack-col or [Variable |

whi t e-col or [Variable |
pi nk-col or [Variable |
red-col or [Variable |
or ange-col or [Variable |
yel | owcol or [Variable |
green-col or [Variable |
dar k- gr een- col or [Variable |
| i ght-bl ue-col or [Variable |
bl ue-col or [Variable |
pur pl e-col or [Variable |
*pbr own- col or * [Variable |
tan-col or [Variable |
| i ght -gray-col or [Variable |
gray-col or [Variable |
dar k- gray-col or [Variable |

Description ~ These variables contain colors corresponding to the 16 colors available by

default on a Macintosh computer with a 16-color monitor.

bl ack-r gb [Variable |
whi t e-r gb [Variable |

Description ~ These variables contain RGB records for black and white.

256

Macintosh Common Lisp Reference

Operations on color windows

Syntax

Description

Arguments

Example

Syntax

Description

Arguments

The following operations are used to set the foreground and
background colors of windows. If the computer display does not
support colors, the colors do not appear. However, they remain
associated with the windows, and if the same window is moved to a
color monitor, they appear in the proper colors.

Windows created with an omitted or null : col or - p initarg can
display only eight colors. Specify : col or - p as true to use the full range
of colors supported by the hardware.

set -fore-col or [Generic function]

set - f or e- col or (window wi ndow) color

The set - f or e- col or generic function sets the foreground color of the
window to color and returns ni | . Future drawing in the window appears
in this color; when the window is redrawn, all drawing appears in this
color.

window A window.

color A color.

? (setq nmywin (nmake-instance 'fred-w ndow))
#<FRED- W NDOW " New' #x4BEE99>

? (set-fore-color * *blue-col or*)

NI L

set - back- col or [Generic function |

set - back- col or (window wi ndow) color &pt i onal redisplay-p

The set - back- col or generic function sets the background color of the
window to color and returns ni | .

window A window.
color A color.
redisplay-p If the value of this is true (the default), this function

invalidates the window, forcing a redrawing. The
displayed background color does not change unless the
window is redrawn.

Chapter 6: Color 257

Example
? (set-back-color mywin *yell owcol or* t)

NI L
w t h-fore-col or [Macro]
Syntax Wi t h-fore-col or color { form} *

Description ~ The wi t h-f or e- col or macro sets the foreground color of the window
to color and executes form. When the body of the macro exits, the old
foreground color is restored.

This macro should be used only with a port set. That is, it should be used
within the dynamic extent of a call towi t h- port or wi t h- f ocused- vi ew.

If Color QuickDraw is not present or color is ni |, the color is not set.

Arguments color A color.
form Zero or more forms to be executed with the foreground
color set.
Example

? (setq my-neww n (nake-instance 'fred-w ndow))
#<FRED- W NDOW " New' #x4D1399>
? (defrmethod type-in-color ((view view) color string)
(with-focused-view vi ew
(wi th-fore-col or color
(princ (format nil "~s" string) view))))
#<STANDARD- METHOD TYPE-IN-COLOR (MIEWT T) >
? (type-in-color ny-neww n *blue-color* "H there")

NI L
W t h- back- col or [Macro |
Syntax wi t h- back- col or color { form} *

Description The wi t h- back- col or macro sets the background color of the window
to color and executes form. When the body of the macro exits, the old
background color is restored.

This macro should be used only with a port set. That is, it should be used
within the dynamic extent of a call towi t h- port or wi t h- f ocused- vi ew.

If Color QuickDraw is not present or color is ni |, the color is not set.

Arguments color A color.

258 Macintosh Common Lisp Reference

form Zero or more forms to be executed with the background
color set.

Coloring user interface objects

Syntax

Description

Arguments

Syntax

Description

Arguments

Methods on the following functions are used for setting the colors of
user interface objects such as windows, dialog items, menus, and menu
items. This section assumes some familiarity with the use of these
classes.

For each class, a set of keywords identifies the parts that can be colored.
The keywords for the different classes are given in the next section,
“Part Keywords.”

If a user defines a new class of dialog items, the generic function vi ew
dr aw- cont ent s can be defined to use the colors of the parts of the
dialog item.

part-col or [Generic function]

part - col or object part

The part - col or generic function returns the color of the part of object
indicated by part.

object A user interface object. Built-in methods are defined for
wi ndow, di al og-i t em menubar, menu, and nenu-
item

part A keyword associated with the class of object. The part

keywords are described in the next section.

set-part-col or [Generic function |

set - part-col or object part color

Theset - part - col or generic function sets the part of object indicated by
part to color and returns color, encoded as an integer. If color is ni | , the
default color is restored.

object A user interface object. Built-in methods are defined for
wi ndow, di al og- it em nenubar, nenu, and nmenu-
item

Chapter 6: Color

259

Syntax

Description

Argument

Example

part A keyword associated with the class of object. The part
keywords are described in the next section.

color A color.

part-color-1ist [Generic function |

part-col or-1ist object

The part - col or-1i st generic function returns a property list of
keywords and colors for all the colored components of object. The same
keywords apply as for part - col or . Components whose color has not
been set are not included.

object A user interface object. Built-in methods are defined for
wi ndow, di al og-it em nenubar, nenu, and nmenu-
item

Here is an example of the use of part keywords with these functions:
? (setf w (make-instance 'w ndow))

#<W NDOW " Untit| ed" #x3E9229>

? (part-color w:content)

NI L

? (set-part-color w:content *blue-color?*)
212

? (part-color w :content)

212

? (part-color-list w

(: CONTENT 212)

Part keywords

You can perform color operations on six objects: menu bars, menus,
menu items, windows, dialog items, and table dialog items. This section
presents the keywords that identify which parts of certain objects can
be colored.

260 Macintosh Common Lisp Reference

Menu bar

To perform color operations on the menu bar, use the value of the
variable * menubar *, which contains the one instance of the class
menubar . You can color the menu bar’s titles and its background using
the following keywords:

cdefault-nmenu-title
The default color used for the titles of menus in the
menu bar.

. def aul t - nenu- backgr ound
The default color used for the background of the
menus in the menu bar.

cdefault-nenu-itemtitle
The default color used for the titles of menu items in
the menu bar.

: menubar The background color of the menu bar.

Menus

You can color three parts of menus.

:menu-title
The color used for the title of the menu.

. menu- backgr ound
The color used for the background of the menu.

cdefault-nmenu-itemtitle
The default color used for the titles of menu items in
the menu.

Menu items

You can color three parts of menu items.

itemtitle
The color used for the title of the menu item.

citem key
The color used for the command key of the menu item.

citemnark
The color used for the check mark beside the menu
item.

Chapter 6: Color

261

Windows

Dialog items

The window part keywords correspond to different features in
different types of windows, because the Macintosh Toolbox uses
window color records differently for different window types. You can
color windows using these keywords.

: cont ent The color used for the background of the
window.
cframe The color used for the outline of the window

and the title bar of :tool windows.

text The color used for the title of :document
windows.
chilite The color used for the lines in the title bar of

: docunent windows.

ctitle-bar
The color used for the background of the title bar in
:document windows and the title in : t ool windows.

These part keywords work for built-in dialog items (although not all
dialog items have all of these features). You may wish to use the part
colors in the vi ew dr aw- cont ent s method for dialog item classes
you define.

cfrane The color used for the outline of the dialog
item.

:text The color used for the text of the dialog item.

: body The color used for the body of the dialog item.

:thumb The color used for the scroll box of the dialog

item. (Scroll bars are the only built-in dialog item that
have a scroll box.)

Table dialog items

The color of individual table cells can be set and accessed. Simply use
the cell coordinates as the part keyword. For example, (set - part -
col or ny-table #@0 0) 212) sets the cell in the upper-left corner
of the table to blue (which is encoded as 212).

These colors are used only by the default dr aw- cel | - cont ent s
function. If you define your own dr aw- cel | - cont ent s, you must
use part - col or to access and install the color when you draw the
cell.;

262 Macintosh Common Lisp Reference

Chapter 7:

The Interface Toolkit

Contents
The Interface Toolkit / 264
Loading the Interface Toolkit / 264
Editing menus with the Interface Toolkit / 265
Using the menu editing functionality / 265
Creating a new menu bar: Add New Menubar / 267
Getting back to the default menu bar: Rotate Menubars / 267
Deleting a menu bar: Delete Menubar / 268
Creating and editing menus: Add Menu / 268
Creating menu items / 268
Editing menu items / 269
Saving a menu bar / 270
Editing menu bar source code / 270
Editing dialogs with the Interface Toolkit / 271
Using the dialog-designing functionality / 272
Dialog-designing menu items / 272
Creating dialog boxes / 273
Adding dialog items / 275
Editing dialog items / 276
The Interface Toolkit is an application built on top of Macintosh Common Lisp.
It is provided as source code in the Interface Tools folder distributed with

Macintosh Common Lisp; you can examine and modify it for your own use. It
is also useful for building interfaces, and that aspect of it is documented here.

The Interface Toolkit does two things: edits menus and menu bars, and creates
and edits dialog boxes. In addition, it prints source code for everything it
creates.

You do not need to be familiar with the MCL implementation of menus and
dialog boxes before using the Interface Toolkit. However, you should read
Chapter 3: Menus, Chapter 4: Views and Windows, and Chapter 5: Dialog
Items and Dialogs before working with the source code generated by the
interface toolkit.

263

The Interface Toolkit

The Interface Toolkit, built on top of Macintosh Common Lisp, is an
example of a simple MCL application.

It does the following:
» [t creates menu bars and populates them with menus.
= It creates and edits dialogs and dialog items.

» For everything it prototypes, it is able to print source code to a file.
When you have developed something in the Interface Toolkit, you can
save your work to a Fred file, then edit it.

The Interface Toolkit is supplied as source code in the Interface Tools
folder. You are free to examine and modify this source code, to use this
source code in developing your own applications, and to include it, as
is or modified, within your applications.

Loading the Interface Toolkit

Perform these steps to load the Interface Toolkit.

1. Open the file make-i ft. | i sp and execute its contents.
In the Listener, choose Open from the File menu.
Select the file make-i ft. | i sp from the Interface Tools folder.

Execute its contents by choosing Execute Buffer from the Lisp
menu.

2. Type the following to the Listener, or execute it in a Fred
window:

(ift::load-ift)
This function loads the files that make up the Interface Toolkit.

Now your menu bar has one additional menu, the Design menu (Figure
7-1).

264 Macintosh Common Lisp Reference

» Figure 7-1 The Interface Toolkit menu on the menu bar

% File Edit Eval Tools Windows Design

Editing menus with the Interface Toolkit

In the Interface Toolkit you can edit the default menu bar or another
menu bar to contain any menus you want. You can add menus to a
menu bar and remove them. In the same way, you can add menu items
to a menu or remove menu items from a menu. You can use menu items
from the menus on the standard menu bar or make your own menu
items.

You edit both menus and menu items by double-clicking them and
specifying their attributes in an edit window.

More than one menu bar may be active, and you may edit more than
one menu bar at once. You can cut and paste menus among menu bars,
including the default menu bar, just as you would cut and paste text
from one buffer to another.

At any time, you can generate source code for a menu or for the entire
menu bar.

Using the menu editing functionality

After you load the Interface Toolkit, choose Edit Menubar, the first
menu item on the Design menu (Figure 7-2). With this menu item you
will edit menus and the menu bar.

Chapter 7: The Interface Toolkit 265

= Figure 7-2

Choosing Edit Menubar from the Design menu

Design
Jdit Menubar

+ Use Dialogs
Design Dialogs
N Biabag..

Bl Horizaaial bhaige
feded Heriioal fuide

Bt fialag

Frind Binfog Sauroe..

When you choose Edit Menubar from the Design menu, the Interface
Toolkit creates two windows, a small floating window and an editor

window titled “Menubar Editor”.

The floating window contains the standard editor commands Cut,
Copy, Paste, and Clear. You can use this floating window to cut, copy,
paste, and clear in situations where you don’t have a working Edit

menu.

The Menubar Editor window, shown in Figure 7-3, contains an editable

list of the items in the current menu bar.

» Figure 7-3 The Menubar Editor window

266

=[] Menubar Editor
% i Add Menu]
File
Edit rMenubar Dperations —
Eval [Rotate Menubars |
Tools
Windows [Add New Menubar |
Design [Delete Menubar |
Chinese Menu Iy¥

|Menuhar Colors

[Print Menubar Source |

The Menubar Editor window also contains the options listed in Table 7-

1.

Macintosh Common Lisp Reference

= Table7-1 Menubar Editor window options

Option

Effect

Add Menu

Rotate Menubars

Add New Menubar

Delete Menubar

Menubar Colors

Print Menubar Source

Adds a new, empty menu named “Untitled” to the current menu bar
(the one visible in the Menubar Editor’s editable list and at the top of the
screen).

If more than one menu bar is active, makes the next menu bar the current
menu bar. If only one menu bar is active, this command does nothing.

Adds anew, empty menu bar named “Untitled” to the active menu bars.
The new menu bar initially contains only the Apple menu.

Deletes the current menu bar. The next active menu bar becomes the
current menu bar.

Sets the colors of the menu bar.

Creates a new Fred window containing the source code for the current
menu bar.

Creating a new menu bar: Add New Menubar

To create a new menu bar, choose Add New Menubar from the
Menubar Editor window. A new menu bar appears in the Menubar
Editor window and at the top of the screen. This new menu bar initially
contains only the Apple menu.

You can create any number of new menu bars.

Getting back to the default menu bar: Rotate Menubars

To get to another menu bar or back to the default menu bar, choose
Rotate Menubars from the Menubar Editor window.

Chapter 7: The Interface Toolkit 267

Deleting a menu bar: Delete Menubar

To delete a menu bar, choose Delete Menubar from the Menubar Editor
window. This command deletes the currently installed menu bar and
removes it from the rotation.

Creating and editing menus: Add Menu

To create a menu, choose Add Menu from the Menubar Editor. The
name of the new menu, “Untitled”, appears in the editable list and in
the menu bar at the top of the screen.

You can change the name of any menu by choosing it and editing its
text. To edit a menu, double-click its name in the list.

Creating menu items

268

Figure 7-4

Double-clicking the name of a menu creates a new Menu Editor
window for menu items, as shown in Figure 7-4. This window contains
an editable list of menu items, which will be empty if the menu is new,
and the options listed in Table 7-2.

A Menu Editor window showing a menu with no items

[[[D=——= "lUntitled" Menu

Menu Items:

*[Add Menu 1tem |

Command Keg I:l

[Bienisips
O ehes & viark

[»enu liem Bolon |

Colors
[Menu Colors |

<3

Pty Hamm Oolors

[Print Menu Source |

Macintosh Common Lisp Reference

= Table 7-2

Menu editing options

Option

Effect

Add Menu Item

Menu Colors

Print Menu Source

Adds a new, empty menu item named “Untitled” to the current menu.

There are three classes of menu items: menu- i t em a menu item that

represents a command; menu, a menu item that opens a menu; and

wi ndow- menu- i t em a window menu item. (See Chapter 3: Menus.)

The menu- i t emclass defaults to nenu- i t em To change it, edit the

menu item source code.

You can add further classes by editing the Interface Toolkit source code.

Sets the colors for parts of the menu.

Opens a new Fred window and prints the source code for the menu to it.

Editing menu items

Figure 7-5

When you add menu items to a menu, you can edit them by double-

clicking them, as in Figure 7-5.

Double-clicking a menu item lets you set the features listed in Table 7-3.

Editing items in the Menu Editor

E[I=———=="Untitled" Menu

Menu ltems:

[Add Menu Item

Untitled 3
Named Item a0
Untitled
Untitled 3

L3

[Print Menu Source

Command Keg:lEI
[Jnisabled

] Check Mark

[Menu Item Action

)

Colors

[Menu Colors

[Menu Item Colors

Chapter 7: The Interface Toolkit

269

= Table7-3 Menu item editing options

Option

Effect

Command key
Disabled
Check Mark

Menu Item Action

Menu Item Colors

Specifies the command key, if any, associated with the menu item.
Specifies whether the menu item is disabled. The default is ni | .
Specifies whether the menu item has a check mark beside it. The default
isnil.

Brings up a Fred window in which you can write or edit code for the

menu item action.

Sets the menu item colors.

Saving a menu bar

When you are satisfied with your menu bar, choose Print Menu Source
to create source code. Edit your source code as you like, then save it to
a file for future use.

The definitions of some menu items in the standard menu bar must be
edited. See the next section.

Editing menu bar source code

The Menu Editor is able to print source code for a menu item only if it
has access to the source code of the action function of the menu item. If
itdoesn’t, it puts"Can' t find definition" in the place of the
action function source code. You can then edit the code, putting in the
real action function definition.

The source code for an action function is available if it was entered

directly

from the menu editor or loaded from a source file with * save-
definitions*

settot.

It is not available if the menu was loaded from a f asl file unless the
fasl file was compiled with a true value for the : save-
defini tions argument to conpi l e-file.

270 Macintosh Common Lisp Reference

The source code for the action functions of some of the built-in menu
items is not available. For example, if you print the source code for the
File menu, you need to edit the definition of the New menu item. The
definition should make an instance of whatever kind of window you
want New to use; for example, if New opens a Fred window, as it does
in Macintosh Common Lisp, the definition you add is (make-

i nstance 'fred-w ndow).

You should also delete | NTERFACE- TOOLS: : Wfrom the argument list
of the anonymous function.

If you are customizing your MCL menu bar, you may also need to edit
the definitions in Table 7-4.

= Table7-4 Menu items and corresponding MCL codes

Menu item MCL code

New Appropriate code to make an instance of the desired type of window.
Load File (1 oad (choose-fil e-dial og))

Compile File (conpile-file (choose-file-dialog:button-string "Conpile"))
Break (br eak)

Restarts (ccl::choose-restart)

Edit Menubar (interface-tools:: edit-nenubar)

Editing dialogs with the Interface Toolkit

The Interface Toolkit includes a quick interface designer for dialogs.
With it you can create a blank dialog box with any set of attributes you
want. Then, from a palette of buttons, radio buttons, checkboxes,
editable-text dialog items, tables, and static text, you can drag in dialog
items. You can edit them by double-clicking them. In an edit window
you can specify the attributes of the dialog item, such as color, font, and
associated action.

Chapter 7: The Interface Toolkit 271

Note: You can edit the palette to add your own items by editing its
source code in the file i t em def s. | i sp, in the Interface Tools folder.

At any time you can generate source code for the dialog box and its
items.

Note: When Design Dialogs is checked on the Interface Toolkit’s special
Design menu, all dialog boxes are editable, including the Search/
Replace dialog box, the Environment dialog box, and so on. To use
dialog boxes rather than edit them, choose Use Dialogs from the Design
menu. (If you are in the middle of editing a dialog box, your edits will
not disappear; the box will simply become usable.)

Using the dialog-designing functionality

First load the Interface Toolkit according to the directions in “Loading
the Interface Toolkit” on page 264.

You see a new menu bar at the top of your screen, containing a Design
menu. It should look like the one in Figure 7-2.

Dialog-designing menu items

272

The Interface Toolkit menu contains eight items, seven of which relate
to dialog design (see Table 7-5).

Macintosh Common Lisp Reference

= Table7-5 Dialog design menu items

Option

Effect

Edit Menubar

Use Dialogs

Design Dialogs

New Dialog...

Add Horizontal Guide

Add Vertical Guide

Edit Dialog

Creates an editor window for the menu bar. This functionality is
discussed in “Editing menus with the Interface Toolkit” on page 265.

Allows you to use dialog boxes in your MCL environment. Choosing
this menu item automatically disables Design Dialogs, discussed next.
These two menu items are the on/off stages of a single toggle. Turning
on one turns off the other. When you first load the Dialog Designer, Use
Dialogs is enabled. When you are using ordinary MCL dialogs, make
sure Use Dialogs is enabled.

Allows you to design dialogs in your MCL environment. Choosing this
menu item automatically disables Use Dialogs and makes all dialogs
editable, but not usable. (As long as you are in the Interface Toolkit, you
can switch back and forth between these modes at will.)

Brings up a dialog box in which you can specify the type and attributes
of a new dialog box. This menu item is discussed in the next section,
“Creating Dialog Boxes.”

Adds a dotted horizontal guideline to the dialog box. This guideline
becomes invisible when you choose Use Dialogs. This menu item is
enabled only when you are creating or editing a dialog box.

Adds a dotted vertical guideline to the dialog window. This guideline
becomes invisible when you choose Use Dialogs. This menu item is
enabled only when you are creating or editing a dialog box.

Allows you to specify the title and position of the window that contains
the dialog items. This menu item is enabled only when you are creating
or editing a dialog box.

Creating dialog boxes

To create a dialog box, first make sure that a check appears next to
Design Dialogs. Then choose New Dialog from the Design menu. The
system displays a dialog box (Figure 7-6) in which you select the type
and attributes of the dialog box you want to create.

Chapter 7: The Interface Toolkit 273

= Figure 7-6 New Dialog dialog box

S5elect Dialog Window Options:

i@ Document i_Single Edge Box
i Document with Grow i_ Double Edge Box
) Document with Zoom iy Shadow Edge Box
i Tool

[<] Include Close Box

[Color Window [0K |

Table 7-6 lists the seven possible types of dialog.

= Table7-6 Seven types of dialog

Option Effect
Document This is the default. Creates a dialog box with square corners and the title
“Untitled Dialog.” By default, a document dialog box includes a close
box.

Document with Grow Creates a document dialog box with a size box.
Document with Zoom Creates a document dialog box with a size box and a zoom box.

Tool Creates a dialog box with rounded edges, a solid title bar, and the title
“Untitled Dialog.” By default, it also includes a close box.

Single Edge Box Creates a box with square corners, no title, and no close box. (You must
put a close button within a dialog of this type.) Its edge is a single line.

Double Edge Box Creates a box with square corners, no title, and no close box. Its edge is
a double line.

Shadow Edge Box Creates a box with square corners, no title, and no close box. Its edge is
shadowed.

Two attributes are available (see Table 7-7).

274 Macintosh Common Lisp Reference

= Table7-7 Two attributes of dialog boxes

Option Effect
Include Close Box Includes a close box in your dialog window. The default value is true.
Color Window Builds your dialog on top of a Macintosh CW ndowRecor d record.
Adding dialog items

Whenever you change from the Use Dialogs menu item to the Design
Dialogs menu item, you open a palette of dialog items. If you don’t see
this palette, choose Use Dialogs, then choose Design Dialogs again. The
palette will appear.

The palette contains one of each type of dialog item: a table, a radio
button, a checkbox, a field of editable text, some static text, and a
button. In Figure 7-7, the palette appears to the right of the new dialog
box.

Add dialog items to your dialog box by dragging them from the palette.
The original dialog item will remain on the palette, and a copy with the
title “Untitled” will appear in your dialog box. Figure 7-7 shows an

editable-text dialog item being dragged from the palette to the dialog.

= Figure 7-7 Dragging an editable-text dialog item into an untitled dialog box

S[=——= Untitled Dialog

Untitled I1] ") Radio Button
2 O Check Box
Edit Tent |
_______ oo Static Tent [Button)

Chapter 7: The Interface Toolkit 275

Place dialog items in the dialog box by dragging them. If you want to
move the item only vertically or only horizontally, hold down Shift
when you drag the box.

To help you place the dialog items, you can add vertical or horizontal
guidelines to your dialog box. Click Add Vertical Guide or Add
Horizontal Guide in the Design menu. You can select and drag a guide
to place it. If you place a dialog item with an edge near a guide, it
automatically aligns with the guide.

To resize the display space of any item, first click the item once. Handles
(small black boxes) appear around the item. Click the pointer on any of
these handles, then drag the item by its handle until you are satisfied
with the size.

Editing dialog items

276

Figure 7-8

Edit a dialog item by double-clicking it. A dialog box opens. The dialog
box varies with the kind of dialog item being edited. Figure 7-8 shows
a typical example.

Edit Dialog Items dialog box

S[J=—— Editor for "Untitled"
Dialog-item-text:
Untitled [Allow Returns
[Allow Tabs

B Oraw outline

i® Enabled Disabled
[Set Item Action |
[Set Item Font |
[Set Item Name |

|Set Color |

[Print Item Source |

Table 7-8 lists the options available for editing dialog items.

Macintosh Common Lisp Reference

= Table7-8 Editable options in dialog items

Option Effect

Dialog-item-text Indicates di al 0g-i t em t ext, the label or text the user sees. After you
edit this text, you may have to change the size of the dialog item.

Enabled /Disabled Sets whether the item is enabled or disabled. The default is enabled.

Set Item Action Sets the code for the action performed by the dialog item.

Set Item Font Sets the item font. The default is Chicago 12.

Set Item Name Associates a nickname with the item.

Set Color Colors one or more parts of the dialog item. You can color the frame,

text, body, and thumb.

Print Item Source Prints the dialog item source code to a new Fred window.

Most dialog item subclasses also allow you to edit special parameters
associated with the subclass (see Table 7-9).

Chapter 7: The Interface Toolkit 277

= Table 7-9

Editable options in subclasses of dialog items

Subclass and option

Effect

Radio buttons

Radio Button
Pushed

Set Item cluster

Buttons
Default Button
Edit-text dialog items

Allow Returns

Allow Tabs

Draw Outline
Checkboxes
Checkbox Checked

Tables
Set Cell Size
Horizontal Scroll Bar
Vertical Scroll Bar
Set Table Sequence
Set Wrap Length

Orientation

278

Indicates whether or not the radio button is selected when the dialog box
is first displayed. The default is ni | .

Allows you to move the radio button to a new cluster. Radio button
clusters are numbered sequentially, starting with 0. To set the button’s
cluster, enter a new number.

Indicates whether this is the default button. The default valueis ni | .

Indicates whether carriage returns are allowed in the Edit Text field. The
default valueis ni I .

Indicates whether pressing the Tab key inserts a tab in the buffer or
selects the next key handler in the dialog box. The default, ni |, selects
the next key handler.

Indicates whether an outline is drawn around the dialog item.

Indicates whether or not the checkbox is checked. The default value is
nil.

Allows you to set a new default size for table cells.
Adds a horizontal scroll bar to the table.

Adds a vertical scroll bar to the table.

Sets the sequence in which items appear in the table.

Sets the maximum length a line of text can attain before wrapping to the
next line occurs. The default value is ni | ; that is, lines are not wrapped.

Determines whether the orientation of the table is vertical or horizontal.
The default is vertical.

Macintosh Common Lisp Reference

Chapter 8:

File System Interface

Contents
Filenames, physical pathnames, logical pathnames, and namestrings / 280
Changes from earlier versions of Macintosh Common Lisp / 280
Printing and reading pathnames / 281
Pathname structure / 282
Macintosh physical pathnames / 283
Common Lisp logical pathnames / 283
Defining logical hosts / 284
Ambiguities in physical and logical pathnames / 284
More on namestrings and pathnames / 285
Creating and testing pathnames / 285
Parsing namestrings into pathnames / 288
The pathname escape character / 289
Loading files / 291
Macintosh default directories / 293
Structured directories / 295
Wildcards / 298
File and directory manipulation / 299
File operations / 302
Volume operations / 306
User interface / 308
Logical directory names / 310

This chapter describes filename specification and the functions for
manipulating the Macintosh File System. It does not document all Common
Lisp file system features, but refers to Common Lisp: The Language where
appropriate.

You should read this chapter to familiarize yourself with the specification of
filenames in Macintosh Common Lisp. It is particularly important if you will
deal with other file systems and must translate between them and the file
system of Macintosh Common Lisp.

You should be familiar with Chapter 23 of the second edition of Common Lisp:

The Language, which discusses the Common Lisp file system features.

279

Filenames, physical pathnames, logical pathnames, and namestrings

The file system interface provides a way of dealing with references to
file systems when code may be running on multiple platforms. MCL
code must deal with the file system requirements of the Macintosh
Operating System and, if the code is meant to be ported, with those of
any other operating system on which it is intended to run. Macintosh
Common Lisp specifies filenames by means of pathnames, which can
be specified as namestrings.

A filename is a means of specifying a particular file or directory in a file
system. You can represent a filename as either a Lisp object (a
pathname) or a string (a namestring). Internally, Macintosh Common
Lisp always uses pathnames and converts namestrings to pathnames
before using them.

= A pathname is a structured Lisp object. It represents a filename as a set
of components that can be manipulated in an implementation-
independent way. A pathname is not necessarily the name of a file; it is
a specification, perhaps partial, of how to access a file.

A single filename may be represented by two or more quite different
pathnames, and the existence of a pathname does not guarantee that
the file it specifies exists.

» There are two kinds of pathnames:

A physical pathname indicates the physical components of the
pathname.

Alogical pathname structure has one or more logical components.
Logical components may be translated to their physical
counterparts.

= A namestring is a string that names a file in any one of three syntaxes:
Macintosh physical syntax, Common Lisp logical pathname syntax, or
MCL logical directory syntax. (MCL logical directory syntax is now
deprecated and is likely to disappear in a future release.)

The following sections discuss Macintosh physical syntax and
Common Lisp logical pathname syntax. MCL logical directory syntax
is described in “Logical directory names” on page 310.

Changes from earlier versions of Macintosh Common Lisp
If you have used versions of Macintosh Common Lisp prior to version

2.0, you should note an important change in the implementation of the
file system.

280 Macintosh Common Lisp Reference

As of version 2.0, Macintosh Common Lisp version uses logical hosts,
bringing it into compliance with the file system interface design
described in Chapter 23 of Common Lisp: The Language. This can be
somewhat confusing, since the old MCL-specific system of logical
directories is very similar to the new Common Lisp system of logical
hosts. Under earlier versions of Macintosh Common Lisp, " CCL" (for
example) was defined as a logical directory, and you could test for the
presence of a file like this:

? (probe-file "ccl; MCL hel p")

In Macintosh Common Lisp version 2, " CCL" is defined as a logical
host, and the syntax is very slightly different:

? (probe-file "ccl:MCL hel p")

If your application requires it, you can reproduce the old behavior by
defining the logical directory yourself:

? (def-logical-directory "cc
(full-pathnane "ccl:"))

0 Note: The MCL functionality previously called “logical pathnames”
refers to the MCL-specific system of logical directories and is now
called “logical directory names.” The logical pathname functionality
discussed in this chapter refers to the file system interface design
described in Chapter 23 of Common Lisp: The Language.

Printing and reading pathnames

Common Lisp now specifies that pathnames be printed and read using
the #P syntax.

In Macintosh Common Lisp, pathnames are printed using the Common
Lisp #P reader macro (see Common Lisp: The Language, pages 537 and
556), as shown in this example:

? (make-pathnane :directory "hd" :name "foo")
#P" hd: f 00"

Macintosh Common Lisp also has a numeric argument that specifies
one of four possible unusual conditions in the pathname. .

#1P means that the type is : unspeci fi c.

#2P means that the nameis"".

#3P means that the type is : unspeci fi ¢ and the nameis"".
#4P means that the namestring represents a logical pathname.

All other numeric arguments are illegal.

Chapter 8: File System Interface 281

With this convention, Macintosh Common Lisp avoids the potential
loss of information when converting between a pathname and a

namestring:

(make- pat hnane : nane
#P"foo0.1isp"
(make- pat hnane : name
#P"f 00"

(make- pat hnane : nane
#1P"f 00"

(make- pat hnane : nane
#P" . lisp"
(make- pat hnane : name
#2P" . 1isp"

(make- pat hnane : nane
#pP""

(make- pat hnane : nane
#1p""

(make- pat hnane : name
#2pP""

(make- pat hnane : nane
#3P""

"foo" :type "lisp")

"foo" :type nil)

"foo" :type :unspecific)

nil :type "lisp")

ctype "lisp")
nil :type nil)
nil :type :unspecific)

ctype nil)

:type :unspecific)

0 Note: The numeric argument #1Pis not a part of Common Lisp and may
be removed in future releases of Macintosh Common Lisp.

Pathname structure

282

Common Lisp pathnames (Lisp data objects of type pat hnane) have
six components: host , devi ce, di r ect ory, nane, t ype, and

ver si on.

Macintosh Common Lisp Reference

Macintosh physical pathnames

On a Macintosh computer, filenames have only three components:
directory,fil enanme, and an optional t ype. Macintosh filenames
can be translated into Common Lisp pathname structures; when they
are, the host , devi ce, and ver si on components of the pathname are
;unspecific.

The Macintosh physical pathname syntax has the following
components:

[:1 {directory:}* [mname] [. typel

A Macintosh physical pathname may have multiple colons. The
component of the string preceding its first delimiter does not name a
logical host.

? (make-pathnane :directory "Styl e&Design: d ossary:"
:name "frontmatter")
#P" St yl e&Desi gn: A ossary: frontmatter"

Common Lisp logical pathnames

Common Lisp logical pathname syntax has the following components:
[host:] [;] {directory;}* [name] [.type [. version]]

In logical pathname syntax, the host and directory components are

indicated by the characters to the left of the last colon or semicolon.

Logical pathnames can be distinguished from physical pathnames by
the following tests:

s The first delimiter between components is a colon.

s The first delimiter is the only colon.

» The string preceding the first delimiter names a defined logical host.
For example, the following is a Common Lisp logical pathname because
the first delimiter between pathname components is a colon, it is the

only colon, and " CCL", the string preceding the first delimiter, names a
defined logical host:

"CCL: I nterface Tool s; My Menus; custom nmenu. | isp”

Chapter 8: File System Interface 283

Defining logical hosts

By defining logical hosts, Macintosh Common Lisp is able to exchange
logical pathnames conveniently and portably. When a logical host is a
different file system, for example, one in which the length of filenames
is restricted, logical hosts and logical pathname translations provide a
necessary layer of abstraction. Logical hosts are also useful when
moving software from one machine to another.

Macintosh Common Lisp will recognize a logical host only after it has

been defined. To define a logical host, you create and execute a set f

form to set| ogi cal - pat hnane-tr ansl ati ons for the relevant

host. You should do this for every file system with which you will

interact. Here is a very simple example:

? (setf (Il ogical-pathname-translations "honme")
T(("x*;rox" | (merge-pat hnames tFxox *

(mac-default-directory)))))

When Macintosh Common Lisp is run, two logical hosts are set up
automatically:

s Thehost"ccl " is set to the directory holding the MCL application.

s Thehost" hone" is set to the directory holding the document that was
launched with Macintosh Common Lisp.

After you define a logical host, you can inspect it by clicking Inspect on
the Tools menu, then clicking Logical Hosts. This displays a list of all
the logical hosts used and generated by Macintosh Common Lisp.

Note: For a full discussion of logical pathname namestrings and their
syntax, see Common Lisp: The Language, pages 628—-629. For information
on the philosophy and use of | ogi cal - pat hnane-transl ati ons,
see pages 636—637.

Ambiguities in physical and logical pathnames

284

In Macintosh Common Lisp, the colon is both the host delimiter in
logical pathname syntax and the device/ directory delimiter in physical
pathname syntax. This can cause ambiguity. For example, in the

namestring " bar : f 0o. | i sp", " bar" can be either a logical host or a
top-level physical directory.

If you have both a top-level physical directory and a logical host with
the same name, there is a possibility of ambiguity. For this reason it is
advisable not to give a physical device and a logical host the same
name.

Macintosh Common Lisp Reference

If you have a name conflict, you should do one of the following;:
= Rename one.

s Use the special escape character, #\ d (Option-D) to quote the colon
after the directory name of the physical pathname; this indicates that
the pathname is physical. The escape character is documented in “The
pathname escape character” on page 289.

s Create the physical pathname with the function

(meke- pat hname :directory ' (:absol ute namestring))

» where namestring is the namestring of the physical directory.

More on namestrings and pathnames

Types may be specified as part of the filename; for instance, you
generally specify the type of an uncompiled file of Lisp source code by
giving it the type . | i sp, and compiled source code by giving it the
type. fasl .

All functions that accept pathnames as arguments also accept
namestrings, converting them to pathnames before using them. It is
seldom necessary to use (pat hname " hd: f 00"). Instead, you can use
"hd: f 00" . However, if the pathname is going to be parsed repeatedly,
you should use the pat hnane syntax; that is, the value of *def aul t -
pat hnane- def aul t s* should be a pathname, not a string. (See the
documentation of * def aul t - pat hnane- def aul t s* in Common
Lisp: The Language.)

The Common Lisp function par se- nanest r i ng converts a
namestring to a pathname. The Common Lisp function namestri ng
converts a pathname to a string. You can create a pathname directly by
specifying its components using the Common Lisp function nake-
pat hnane.

Creating and testing pathnames

Common Lisp provides several functions to create pathnames and to
test whether an object is a pathname. You can create a pathname
directly, merge a pathname with default components, and retrieve
components of a pathname.

Chapter 8: File System Interface

285

Syntax

Description

Arguments

Full documentation of most of these functions appears in Chapter 23,
“File System Interface,” of Common Lisp: The Language, and they are not
redocumented here. Only the following function shows special
behavior in Macintosh Common Lisp.

make- pat hnane [Function |

make- pat hname &key :host :device :directory :nane
:type :version :defaults :case

The Common Lisp function make- pat hname constructs and returns a
pathname. After the components specified by the : host, : devi ce,
:directory,:nane,:type, and: ver si on arguments are filled in,
missing components are taken from the : def aul t s argument. The
Macintosh Operating System does not support hosts, devices, or versions,
so Macintosh Common Lisp recognizes only logical hosts. In Common
Lisp, a logical host is a string that has been defined as a logical pathname
host using set f and | ogi cal - pat hname-transl ati ons. (See page
632 of Common Lisp: The Language for a discussion of how this is done.)

: host Specifies the host component. The : host argument
determines whether a pathname is physical or logical. If
the : host argumentis: unspeci fi c, or if it is omitted
and the : def aul t s argument is a physical pathname,
then a physical pathname is created. Otherwise the
: host argument must be ni | or a string, and a logical
pathname is created.

: devi ce Specifies the device component. Because the Macintosh
computer does not support devices, this argument is
ignored and pat hnane- devi ce always returns
;unspecific.

:directory Specifies the directory component. The value of the

;directoryargumentisnil, :wild, :wld-
i nferiors, string, or list.

nil Specifies that the directory component should be taken
from the defaults.

cwild Specifies the wildcard " *".

‘wild-inferiors
Specifies the wildcard " **" .

string A string, which may be a wildcard or empty, and which
may end in a colon or semicolon. Unless the : host
argument is a logical host, Macintosh Common Lisp
interprets a string argument with colons or semicolons as
a Macintosh-syntax directory namestring.

list A list beginning with either : absol uteor: rel ati ve
followed by the individual directory component strings.

286 Macintosh Common Lisp Reference

: namne
ni |

‘wild
string

(type

ni |

‘wild
string

Jversion

ni |

Specifies the name component. The value of the : nane
argumentisni |, :wild, orstring.

Specifies that the name component should be taken from
the defaults.

The wildcard " *" .

A string, which may be a wildcard or empty. Quoted
colons are allowed in the : name component, but they
cause an error when they are passed to the Macintosh File
System.

Specifies the type component. Its valueisni | , : wi | d, or
string.

Specifies that the type component should be taken from
the defaults.

The wildcard " *".

A string, which may be a wildcard or empty. Quoted
colons are allowed in the : t ype component, but they
cause an error when they are passed to the Macintosh File
System.

Ignored unless the : host argument is a logical host. For
logical pathnames, the value of the : ver si on argument
maybenil,:unspecific,:wld,:newest,ora
positive integer.

Specifies that the version component should be taken
from the default.

sunspecific

‘wild
: newest
integer

cdefaul ts

. case

Indicates whether the version number is unspecified.
The wildcard " *" .
The newest version.

A positive integer representing the version number.
Currently Macintosh Common Lisp allows only O.

Specifies which defaults to use. The default value of the

: def aul t s argument is a pathname whose host
component is the same as the host component of

def aul t - pat hnane- def aul t s and whose other
components are all ni | .

Determines how character case is treated. The value of

: case may be: common or: | ocal . A full description of
: case is given in Common Lisp: The Language, starting on
page 617.

Full documentation of make- pat hnane is given in Common Lisp: The
Language, on page 643.

Chapter 8: File System Interface

287

Parsing namestrings into pathnames

288

The MCL pathname parser uses the following rules to break
namestrings into their components.

Unspecified components are given the value ni | . Neither defaults nor
logical directory names are merged at parse time, with the exception of
the : host component of *def aul t - pat hnane- def aul t s*. The
function ner ge—pat hnames merges one pathname with another by
replacing ni | components of its first argument with corresponding
components of its second argument. The function f ul | - pat hnane
performs the logical-to-physical pathname translation.

The : di r ect ory component is identified as the characters from the
end of the host component to the last colon or semicolon. The colon is
the standard Macintosh separator character for directories. The
semicolon is the separator for logical directory names. A directory
name that begins with a colon is relative to the Macintosh default
directory.

The : nane component is identified as the characters that follow the
directory component until either the end of the string or the beginning
of the type component. The period between the name and the type
component is only a separator and is not part of the : name component.
To make a name containing a period, use the escape character (see the
next section, “The Pathname Escape Character”). To specify a file that
has an empty string as its name, use a single period after the directory
separator character.

The : t ype component is composed of the characters from the name
component to either the version component or the end of the string.

The : ver si on component, if present, is always either . newest or 0.
It is the last component before the end of the string.

Table 8-1 contains some examples of namestring-to-pathname parsing.

Macintosh Common Lisp Reference

= Table81 Some namestrings parsed into pathnames

Pathname components

Namestring Host Directory Name Type
"hd:foo.lisp" (:absolute "hd") "foo" "lisp"
"hd:" (:absolute "hd") nil nil
"hd:." (:absolute "hd") " nil
"foo" (:relative) "foo" nil
"foo" nil "foo" nil
"foo." nil "foo" nil
"foo.fasl" nil "foo" "fasl"
"hd:sub-dir:foo.text" (:absolute "hd" "sub-dir") "f00" "text"
"sys:bar;foo.lisp" "sys" (:absolute "bar") "foo" "lisp"

The pathname escape character

If you need to use a colon, semicolon, period, or asterisk as part of a
pathname, quote it with the special escape character, #\ 0 (Option-d).
This escape character works very much like the backslash character in
strings. Any character preceded by a d loses any special meaning.

0 Note: Asterisks must be quoted in physical pathnames, because
Common Lisp mandates that functions such as t r uenane and open
must signal an error if given a wild pathname.

Table 8-2 illustrates the quoting mechanism in pathnames.

Chapter 8: File System Interface 289

= Table8-2 Effect of escape characters
Pathname components

Namestring Directory Name Type
"hd: foo.lisp" (:absolute "hd") "foo" "lisp"
"hd: food. | i sp" (: absolute "hd") "food. lisp" nil
":fodoo. " (:relative) "foo0." ni
", ccl o; foo" (:relative) "ccl 0; f 00" nil
"ccl ; f odoo" (:absolute(:logical "ccl)) "f 0000" nil
"hd: fo\"o.lisp" (:absolute "hd") "fo\"o" "lisp"

Only the needed escape characters are retained (for example, the “0”

before the “0” in the third line is removed, but the “9” before the period

is retained). Of course, this mechanism is meant to work only for the

MCL additions; you can specify a filename that includes a colon, but

you cannot open such a file, because Macintosh computers do not

accept filenames that contain colons.

0 Note: The escape characters are not part of the true name. They are

included only in the Lisp representation of the pathname, not in the

Macintosh system’s representation of the pathname.

The nake- pat hname function attempts to insert the appropriate

escape characters in components that need them. The user need only

insert escape characters in front of semicolons that are part of directory

components, and in front of the character d. Here are some examples of

the use of make- pat hnane.

? (make-pathnanme :directory "Hd:" :nanme "foo" :type "lisp")

#P"Hd: foo.1isp"

? (nake-pathnane :directory ni

:name "foo"
:type "fasl")
#P"foo.fasl"
? (make-pathnane :directory nil :nane "foo."

290

#P"fo000. . fasl"
? (make- pat hnane

#P"hd; food. . |l i sp”

:directory "hd;
:name "foo."
:type (pathnane-type

;type "fasl")

. 1 sp-pat hnanme))

Macintosh Common Lisp Reference

Loading files

Description

Description

Description

Syntax

Description

Arguments

The following functions and variables govern the loading of files. For
Common Lisp functions governing the loading of files, see Section 23.4,
“Loading Files,” starting on page 657 of Common Lisp: The Language.

. i sp- pat hnane [Variable]

The *. | i sp- pat hname* variable contains the file type for MCL source
code files. The initial value of this variable is #P" . | i sp".

* . fasl - pat hname* [Variable |

The *. f asl - pat hname* variable contains the file type for MCL
compiled files. The initial value of this variable is #P" . f asl ".

pat hnane-transl ati ons- pat hnane [Variable |

The * pat hname- t r ansl at i ons- pat hnanme* variable contains a
pathname whose host is : ccl and whose type is the string " pat hnane-
translations”.

require [Function |

requi re module &opt i onal pathname

The r equi r e function was once a Common Lisp function but is now
specific to Macintosh Common Lisp. It attempts to load the files in module
if they have not already been loaded.

module The name of the module.

pathname A pathname or list of pathnames indicating the files
contained in the module.

There are three ways to tell r equi r e how to look for a module:

s If pathname is given, it should be a pathname or a list of pathnames
whose files should be loaded in order, left to right.

Chapter 8: File System Interface 291

Syntax

Description

Argument

» If pathname is not given, r equi r e first looks in the variable * nodul e-
file-alist*,whichisbound toan association list. In this association
list, the car of each element should be a module name, and the cdr of
each element should be a pathname or list of pathnames making up the
module. The r equi r e function loads all the files listed. Initially,
modul e-file-alist isempty. Here is how to add something to
modul e-file-alist.

? (push " (my-system . ("ny-sys;definitions.fasl"
"my-sys; actions.fasl"))
nodul e-file-alist?)

» If the module is not registered in * nodul e-fil e-al i st*,require
looks for a file with the same name as the module name in the locations
specified by the variable * modul e- sear ch- pat h*. The * rodul e-
sear ch- pat h* variable should be bound to a list of pathnames, each
specifying the directory and possibly a file type (the name component
is ignored and replaced by the name of the module). If no file type is
given, both *. | i sp- pat hnane* and *. f asl - pat hname* are
looked for, and the more recent file is used.

For example, (push "ccl:misc;" *nodul e-search- pat h*)
causes (require 'tools) tolook for the file
ccl:msc;tools.fasl orccl:misc;tools.|isp, whereas
(push "ccl:msc;.fasl" *nodul e-sear ch-pat h*) causes
(require 'tools) tolookforccl:msc;tools. fasl before
searching for other versions of the tools file. The initial value of
nodul e- sear ch- pat h is (#4P"ccl : " #4P"hone: "
#4P"ccl:library;" #4P"ccl:exanples;").

Macintosh Common Lisp keeps a list of files currently being loaded.
This helps ensure that files requiring each other do not cause infinitely
recursive calls tor equi r e.

For documentation of the state of r equi r e, see Common Lisp: The
Language, pages 277-278.

provi de [Function |

provi de module

The pr ovi de function was once part of Common Lisp but is now specific
to Macintosh Common Lisp. It adds a new module name to the list of
modules maintained in the variable * mbdul es*, indicating that the
module module has been provided.

For documentation of the state of pr ovi de, see Common Lisp: The Language,
pages 277-278.

module The name of the module.

292 Macintosh Common Lisp Reference

Macintosh default directories

Syntax

Description

Example

Syntax

Description

The Macintosh Operating System maintains a default directory of its
own. Any namestring that begins with a colon or semicolon is relative.
The directory component of a relative pathname is appended to the
directory component of * def aul t - pat hname- def aul t s* before
accessing the file system. If the resulting pathname is still relative, then
the value of mac- def aul t - di rect ory is used.

Note: Desk accessories and other background processes may change the
default directory without notice. If you must access the Macintosh
default directory, you should set it just before accessing it, or
(preferably) specify a directory explicitly in file system calls.

The Macintosh default directory is initially the directory containing
Macintosh Common Lisp.

mac-defaul t-directory [Function |

mac- defaul t-directory

The function nac- def aul t - di r ect or y returns the Macintosh default
directory.

? (mac-defaul t-directory)
#P" Bi gTowel : CCL: "

set-mac-default-directory [Function |

set - mac- def aul t - di r ect ory pathname

The function set - nac- def aul t - di r ect or y sets the Macintosh default
directory to the directory component of pathname.

If the directory component of a pathname is empty, the Macintosh computer
looks for the directory in the Macintosh default directory. To ensure that the
Macintosh default directory is not used, specify the directory component of the
pathname. (One way to do this is by specifying a merge with some other
default.)

Chapter 8: File System Interface 293

Argument

Example

Syntax

Description

Argument

Example

Syntax

The default directory returned by nmac- def aul t - di r ect or y can change at
any time; set it explicitly just before using it, or (preferably) specify a directory
explicitly in file system calls.

pathname A pathname, string, or stream associated with a file. If the
directory specified by the pathname exists, set - nac-
def aul t - di r ect ory sets the Macintosh default
directory to the directory component of pathname. If it
does not exist, set - mac- def aul t - di r ect ory returns
ni | and the Macintosh default directory is not changed.

? (set-nmac-default-directory #P'Bi gTowel : CCL Test:")
#P"Bi gTowel : CCL Test:"

nmac- nanmest ri ng [Function |

mec- namest ri ng pathname

The mac- nanest r i ng function translates pathname from a logical to a
physical pathname. If pathname is a logical pathname or a string describing
a logical pathname, it is translated to a physical pathname. If pathname
contains MCL logical directories, they are expanded. The function returns
the physical pathname as a namestring. The function then prepares
pathname for passing to the Macintosh File Manager by verifying that the
namestring contains no wildcards or quoted colons and by removing all
quoting. If pathname contains wildcards or quoted colons, an error is
signaled.

pathnameA pathname or a string.

? (mac-nanestring "ccl:exanpl es; dial og-editor.lisp")
"hd: nyccl : exanpl es: di al og-editor.|isp"

mac-di rect ory- nanestring [Function |

mac- di r ect or y- nanest r i ng pathname

294 Macintosh Common Lisp Reference

Description

Argument

Syntax

Description

Argument

The function mac- di r ect or y- nanest ri ng turns pathname into a
namestring, expands all logical directories into physical directories, then
prepares it for passing to the Macintosh File Manager by verifying that the
namestring contains no wildcards or quoted colons and by removing all
quoting. If pathname contains wildcards or quoted colons, an error is
signaled. It returns only the directory component of the pathname as a
string.

pathnameA pathname, string, or stream.

mac-fil e-namestring [Function |

mac-f il e- nanest ri ng pathname

The function mac- f i | e- namest ri ng turns pathname into a namestring,
then prepares it for passing to the Macintosh File Manager by verifying
that the namestring contains no wildcards or quoted colons and by
removing all quoting. If pathname contains wildcards or quoted colons, an
error is signaled. It returns only the part of the string excluding the
directory specification (that is, the filename and file type).

pathnameA pathname, string, or stream.

Structured directories

Syntax

Common Lisp provides a portable format for specifying directories,
discussed in Common Lisp: The Language, starting on page 620.
Macintosh Common Lisp follows that format, with the exception that
the symbols : up and : back are equivalent in the current Macintosh
File System.

The following function extends the Common Lisp function
directory.

directory [Function |

di rectory pathname &ey :directories :files
:directory-pat hnanes :test :resolve-aliases

Chapter 8: File System Interface

295

Description

Arguments

Syntax

Description

Argument

The di r ect or y function takes a pathname as its argument and returns a
list of pathnames, one for each file in the file system that matches the given
pathname.

You can use di r ect or y with any of the wildcards described in the next
section. When you use wildcards, this function returns a list of the true names
of all matching files in all matching directories. If no files match the specified
pathname, di rect ory returnsni | .

pathname A value. If the directory specified by the pathname exists,
di rect ory returns a list of pathnames of files included
in that directory. If it does not, di r ect ory returns ni | .

-directories
An argument specifying whether to include directories in
the returned list. The default value is ni | .

files An argument specifying whether to include files in the
returned list. The default value is true.

. di rect ory- pat hnanmes
An argument specifying whether to represent directory
pathnames in the returned list as directories or files
(f 0oo: baz: orf 0o: baz). The default value is true, which
means that they are represented as directories.

:test A test function to be applied to each matching pathname.
The : t est argument is called only if all the other
conditions are satisfied.

:resol ve-aliases
An argument specifying whether to resolve aliases. If the
value of : resol ve-al i ases is: show- al i as, then
aliases are resolved but the pathname returned contains
the name of the alias rather than the name of the target.
Any other non-ni | value causes aliases to be resolved
and the pathname returned to be that of the target. The
default valueis ni | .

directoryp [Function |

di rectoryp pathname

The di r ect or yp function returns the true name of the directory if
pathname names a directory, ni | if it names an ordinary file; otherwise it
signals an error. (For true names, see Common Lisp: The Language under the
functiont r uenane.)

pathname A pathname or string.

296 Macintosh Common Lisp Reference

Syntax

Description

Arguments

Example

Syntax

ful | - pat hnane [Function |

ful | - pat hname pathname-or-namestring &ey : no-err or

The f ul | - pat hnane function returns a pathname whose logical
components are all translated into physical components. If the function is
called on a namestring, the namestring is first converted into a Lisp
pathname. It can translate both Common Lisp logical pathnames and
MCL logical directories (described in “Logical directory names” on

page 310). The pathname is merged with * def aul t - pat hnane-
defaul ts*.

This function was formerly called expand- | ogi cal - namestri ng.

pathname-or-namestring
A pathname or namestring.

:no-error If the value of : no-error ist (the default) and there is
no physical directory for a logical directory in pathname,
Macintosh Common Lisp returns ni | . If the value of
: no-error isni |, Macintosh Common Lisp signals an
error.

This example creates a logical-to-physical mapping and gets its full

pathname.

;Create the | ogical to physical mapping:

? (setf (logical-pathname-translations "msc")
"((**;**" "hdiccl-msci ¥ x o *")))

NI L

;Load the file "hd:ccl-msc: hacks. |isp"

? (load "m sc: hacks.lisp")

; Loadi ng "hd: ccl -m sc: hacks. lisp"..

#P"hd: ccl - m sc: hacks. i sp"

? (full-pathnane "m sc: hacks.lisp")
"hd: ccl - m sc: hacks. | isp"
? (full-pathnane "M SC. hacks. lisp")
"hd: ccl - m sc: hacks. | isp"

; Note case insensitivity.

di rect ory- pat hname- p [Function]

di rect ory- pat hname- p pathname

Chapter 8: File System Interface

297

Description ~ The di r ect or y- pat hname- p function returns a Boolean value: t if
pathname is a pathname specifying a directory, ni | if itis not. A pathname
is a directory pathname if its name is ni | or the empty string and its type
isnil or:unspecified.

Argument pathname A pathname, string, or stream.

Example
? (directory-pat hname-p "ccl:foo;")

T
? (directory-pat hname-p "ccl:foo")
NI L
? (directory-pat hname-p "hd: ccl:")
T
? (directory-pathnane-p "hd:ccl:init.lisp")
NI L
Wildcards

Macintosh Common Lisp supports two forms of wildcards. One is
extended wildcards as specified in Common Lisp: The Language, pages
623-627. Extended wildcards do not depend on a specific wildcard
syntax. If you plan to port your code over multiple file systems, use the
Common Lisp extended wildcards.

You can also use the simpler wildcard system described here, which is
compatible with previous versions of Macintosh Common Lisp.

The wildcards are used in the following ways:

= One asterisk matches zero or more characters in a component.

= One asterisk in place of a directory component matches one directory
level.

» Two asterisks used in place of a directory match zero or more
subdirectories at all levels of the parent directory.

» Two asterisks used in place of the filename components match any
number of components that are left.

The following examples assume the existence of a mounted disk with

the name " hd" .

m (directory "hd:*:" :files nil :directories t) returnsa
list of all subdirectories directly under " hd: ".

s (directory "hd:**") returns a list of files under " hd: ".

298 Macintosh Common Lisp Reference

» (directory "**:**:" :directoriest :files nil) returns
a list of all the subdirectories at all levels in all the devices known to the
machine.

= (directory "**:**") returns a list of all the files at the top level in
all the devices known to the machine.

» (directory "hd:*.lisp") returns alist of all the files in the top
level of " hd: " that are of type "I i sp”.

s (directory "**:ccl:*:*:prin*12.**") returns a list of all the
files in any device that start with the letters " pri n" and end in " 12"
and are two levels below a directory named " ccl : ".

File and directory manipulation

Syntax

Description

Arguments

Syntax

The functions in this section operate on both directories and files. A
directory operation is performed if the filename component is empty
(that is, if the pathname ends in a colon or semicolon); otherwise, a file
operation is performed.

The functions operate on Lisp pathnames, strings, and streams.

del ete-file [Function |

del ete-fil e pathname &ey :if-does-not - exi st

This extension of the Common Lisp function del et e- fi | e deletes the
specified pathname.

pathname A pathname.

i f-does-not - exi st
A keyword that can take the value ni | or: error.If
pathname does not exist and the value of : i f - does- not -
exi st isni | (the default), Macintosh Common Lisp
returns ni | . If itis : er r or, Macintosh Common Lisp
signals an error.

create-file [Function |

create-file pathname&key :if-exists :mac-file-type : mac-
file-creator

Chapter 8: File System Interface 299

Description

Arguments

Syntax

Description

Arguments

The creat e- fi | e function creates an empty file or a directory named
pathname and returns the t r uenane of the created file or directory. If
necessary, cr eat e- f i | e creates missing intermediate directories.

The: mac-fil e-typeand: mac-fil e-creator keywords are case
sensitive. The values of these keywords must be os-types. An os-type is a four-
character string or keyword that is case sensitive.

pathname A pathname.

;i f-exists A keyword that determines what to do if the file already
exists. If pathname already exists and the value of : i f -
exi stsis: error (the default), Macintosh Common
Lisp signals an error. If its value is ni | , Macintosh
Common Lisp does nothing and returns ni | . If it is
:overwriteor: super sede, then Macintosh Common
Lisp overwrites or replaces the previous file and returns
the new file.

mac-file-type
The os-type of the new file. The default is : TEXT.
Directories do not have Macintosh types.

:mac-file-creator
The creator of the new file. The defaultis : CCL2.
Directories do not have Macintosh creators.

open [Function]

open filename &ey :direction :el enment-type
cif-exists :if-does-not-exist :external -formt
:mac-file-creator :fork

The Common Lisp function open opens a stream to the file specified by
filename, which may be a string, a pathname, a logical pathname, or a
stream. Two new keywords, : mac-fil e-creator and:fork,
distinguish the MCL implementation from Common Lisp’s; the keyword
arguments : di rectionand:if-exi sts caneach take an additional
value. The additional MCL keywords and values are documented next.

:direction A pathname or string. This keyword can now take the
value : shar ed in addition to : i nput, : out put, :i o,
and : pr obe. The value : shar ed is the same as: i 0
except that more than one stream can be open to a file at
the same time. It defaults to : i nput .

300 Macintosh Common Lisp Reference

Syntax

Description

Arguments

Example

;i f-exists Theaction to take when the direction is : out put or:i o
and the file already exists. This argument can take the
value : di al og in addition to the values : append,

S error,:new version,:renamg,:renanme-and-
del ete,:overwite,:supersede, andnil . The
defaultis: error. The values : di al og, : r enane, and
: new ver si on cause a dialog box to request
confirmation if the file already exists.

»external -format
A four-character string to store as the Macintosh file type.
Its value defaults to : def aul t, in which case the
Macintosh file type is : TEXT.

smac-file-creator
The Macintosh file creator. It defaults to : CCL2.

:fork An argument specifying whether to open the data fork or
the resource fork. It may have the value : dat a (the
default) or : r esour ce.

renane-file [Function |

rename-fil e old-pathname new-pathname &key :if-exists

The Common Lisp function r enane- f i | e renames the specified old-
pathname. The new name is the result of merging new-pathname with old-
pathname. Both arguments may be a string, stream, or Lisp pathname. If
new-pathname is an open stream associated with a file, then the stream
itself and the file associated with it are affected.

If successful, the r enane- f i | e function returns three values. The first value
is the renamed old-pathname. The second value is the true name of the old-
pathname before it was renamed. The third value is the true name of the old-
pathname after it was renamed. An error is signaled if the renaming operation
is not successful.

old-pathname The old pathname of the file or directory.
new-pathname — The new pathname of the file or directory.

;i f-exists Akeyword that determines what to do if the file already
exists. If new-pathname already exists and the value of
cif-existsis:error (the default), Macintosh
Common Lisp signals an error. If its value is ni |,
Macintosh Common Lisp returns ni | . If it is
;overwriteor: super sede, then Macintosh Common
Lisp overwrites or replaces the previous file and returns
the new file.

Chapter 8: File System Interface 301

Syntax

Description

Arguments

? (renane-file "hd:doc:file system notes"
"Bi gTowel : m sc: renanmed notes")

#P"Bi gTowel : mi sc: renaned fil e system not es”
#1P"hd: doc: fil e system notes"
#1P"Bi gTowel : m sc:renaned file system notes

file-create-date
file-wite-date
set-file-create-date
set-file-wite-date
fil e-create-date pathname
file-wite-date pathname

set-fil e-create-dat e pathname time
set-file-wite-date pathname time

[Function]
[Function]
[Function]

[Function]

These functions report on or modify the creation and modification dates

of files. The f i | e- cr eat e- dat e function returns the time when the

volume, directory, or file specified by pathname was created. The f i | e—
wr i t e—dat e function returns the time when the volume, directory, or file

specified by pathname was last modified. The corresponding set -

functions change these parameters.

pathname A pathname, string, or stream.

time A time, given in the Common Lisp universal time format.
(The Common Lisp universal time format is described in

Common Lisp: The Language, on page 703.)

File operations

Syntax

The following functions operate on files only. These functions, in
conjunction with the di r ect or y function, provide the needed

flexibility for operating on directories.

copy-file

copy-fil e old-pathname new-pathname &ey :if-exists :fork

302 Macintosh Common Lisp Reference

[Function]

Description

Arguments

Example

Syntax

Description

Argument

The copy- f i | e function copies the file to a file corresponding to the
pathname specified by merging new-pathname with old-pathname.
Arguments may be either strings, Lisp pathnames, or streams. If new-
pathname does not have a filename component, then the filename of old-
pathname is used.

If successful, the copy- f i | e function returns three values. The first value is

the new pathname with the filename component filled in. The second value is
the true name of the file before it was copied. The third value is the true name
of the copied file. An error is signaled if the copying operation is not successful.

old-pathname The old pathname of the file.
new-pathname The new pathname of the file.
;i f-exists If new-pathname already exists and the value of : i f -
exi stsis: error (the default), Macintosh Common
Lisp signals an error. If its value is ni | , Macintosh
Common Lisp returns ni | . Ifitis: overwrite or
: super sede, then Macintosh Common Lisp overwrites
or replaces the previous file and returns the new file.
:fork The type of fork. This value can be : bot h, : dat a, or
: resour ce. The default is : bot h.

? (copy-file "BigTowel : m sc:renaned notes”
"Bi gTowel : CCL Doc: copy")

#P" Bi gTowel : CCL Doc: copy"
#1P"Bi gTowel : ni sc: renanmed not es”
#1P" Bi gTowel : CCL Doc: copy"

| ock-file [Function]
unl ock-file [Function |
file-1ocked-p [Function |

| ock-fil e pathname
unl ock-fi | e pathname
file-1ocked- p pathname

These functions allow you to manipulate the software lock that prevents
modifications to a particular file. The f i | e- | ocked- p function returns
ni | if the file is not locked.

If a file is locked, opening it creates a read-only buffer. You can look at the file
but you cannot modify it.

pathname A pathname, string, or stream.

Chapter 8: File System Interface 303

mac-file-type [Function]

mac-fil e-creator [Function |

set-mac-file-type [Function |

set-mac-fil e-creator [Function |
Syntax mac-fil e-type pathname

mac-fil e-creat or pathname
set-mac-fil e-type pathname os-type
set-mac-fil e-creator pathname os-type

Description Every Macintosh file has two parameters specifying the type of the file and
the application that created the file. These parameters, called os-types, are
specified by four-character keywords or symbols that are case sensitive.

The mac-fil e-type and mac-fil e-creator functions return keywords
indicating the type and creator parameters of pathname.

Theset-mac-fil e-typeandset-mac-fil e-creator functions
destructively modify the type or creator of pathname. The new type or creator
is returned as a keyword.

Arguments pathname A pathname, string, or stream.

os-type The parameters specifying the type of the file and the
application that created it. The os-type parameter may be
a string of four characters or a four-character keyword.
Files created by Macintosh Common Lisp have the creator
: CCL2 and the type :TEXT or : FASL. The os-type
arguments are case sensitive and may contain spaces.

open-fil e-streans [Variable |

Description ~ The *open-fi | e- streans* variable is bound to a list of all streams
open to disk files. The user should not change this variable. It is updated
automatically by file stream operations.

file-resource-size [Function]

Syntax fil e-resource-size path

Description Returns the size in bytes of the resource fork of the file whose pathname is
path.

304 Macintosh Common Lisp Reference

Syntax

Description

Syntax

Description

Syntax

Description

Syntax

Description

fil e-data-size [Function)

fil e-data-sizepath

Returns the size in bytes of the data fork of the file whose pathname is path.

file-all ocated-resource-size [Function)

file-allocated-resource-size path

Returns the number of bytes allocated for the resource fork of the file
whose pathname is path.

file-all ocated-data-size [Function)

file-allocated-data-size path

Returns the number of bytes allocated for the data fork of the file whose
pathname is path.

file-info [Function]

file-infopath

Returns six values for the file whose pathname is path: create-date,
modify-date, resource length, data length, allocated resource length,
allocated data length.

Chapter 8: File System Interface 305

Volume operations

Syntax

Description

Argument

Example

Syntax

Description

Argument

Volume operations take as an argument either an integer (the volume
number) or a pathname or string. If the argument is a pathname or
string, only the volume component (the root directory) is used. Volume
numbers are unique negative integers assigned to each mounted
volume. Volumes numbers change from session to session and may
change if a volume is unmounted and remounted. Within these limits,
volume numbers allow a program to distinguish between multiple
volumes with the same name. The volume number 0 is used to specify
the default volume. If a string is used to specify a volume, it must
contain a colon.

Drive numbers are positive integers denoting physical devices.

The following functions signal an error if the number or pathname
given as an argument does not correspond to a mounted volume.

vol une- nunber [Function |

vol ume- nunber volume

The vol ume- nunber function returns the volume reference number of
volume. If volume is a valid volume number, it is simply returned.

volume An integer, pathname, or string representing a volume.

See the example under dr i ve- name.

ej ect - di sk [Function |

ej ect - di sk volume

The ej ect - di sk function ejects volume if possible. It is not possible to
eject hard disks. If successful, ej ect - di sk returns the true name of
volume; otherwise, it signals an error. It does not unmount the volume.

volume A volume number, drive number, pathname, or string
representing a volume.

306 Macintosh Common Lisp Reference

Syntax

Description

Argument

Syntax

Description

Argument

Syntax

Description

Argument

Syntax

ej ect &unnount - di sk [Function |

ej ect &unnount - di sk volume

The function ej ect &unnount - di sk ejects and unmounts volume if
possible. If successful, ej ect &unnount - di sk returns the true name of
volume; otherwise, it signals an error. It is not possible to eject hard disks.

volume A volume number, drive number, pathname, or string
representing a volume.

di sk-ej ected-p [Function |

di sk-ej ect ed- p volume

The di sk- ej ect ed- p functionreturnst if the volume is ejected and ni |
otherwise. It signals an error if the specified volume is not mounted. The
pr obe—f i | e function can be used to check whether a volume is mounted.

volume A volume number, drive number, pathname, or string
representing a volume.

hf s-vol une-p [Function |

hf s- vol une- p volume

The hf s- vol une- p function returnst if volume uses the Hierarchical File
System (HFS) and ni | if it uses the Macintosh File System (MFS). Most
current Macintosh computers use only HFS devices, with the exception of
floppy disks.

The HFS and MFS file systems are described in Inside Macintosh.

volume A pathname or string representing a volume.

fl ush-vol une [Function |

f1 ush-vol une volume

Chapter 8: File System Interface 307

Description

Argument

Syntax

Description

Argument

Example

Syntax

Description

Argument

Some file system manipulations are buffered for execution at a later time.
The f | ush- vol une function ensures that all buffered file manipulations
to a specified volume are performed. The f | ush—vol une function
returns the name of the volume affected.

volume A pathname or string representing a volume.

dri ve- name [Function |

dri ve- nane number

The dr i ve- nanme function returns the name of the drive whose drive
number or volume number is number.

number A fixnum. A positive number is a drive number; a
negative number, a volume number.

? (vol une- nunber #P"'Dr. Johnson:")
-1

? (vol une- nunber -1)

-1

? (drive-nane -1)

#P"Dr. Johnson:"

dri ve- nunmber [Function |

dri ve- nunber pathname

The dri ve- nunber function returns the drive number of the drive
indicated by pathname.

pathname A pathname or string.

User interface

The following functions let the user choose or set a pathname to a file
or directory.

308 Macintosh Common Lisp Reference

Syntax

Description

Arguments

Syntax

Description

Arguments

choose-fil e-dial og [Function |

choose-file-dialog & ey :nac-file-type :directory
:button-string

The choose-fi | e-di al og function displays the standard Macintosh
SFCet Fi | e dialog box, allowing you to select a file for reading. Unless
the dialog is canceled, this function returns a pathname.

mac-file-type
An os-type parameter or list of os-type parameters. If
specified, only files with the given Macintosh file type are
displayed in the dialog box. Os-types are case sensitive.

:directory A pathname or string. Specifies the directory shown
when the dialog box first appears. It defaults to the last
directory shown by the Choose File dialog box or Choose
New File dialog box.

;button-string
A string. Specifies the text that appears in the button that
opens the chosen file. The default is Open.

choose-new-fil e-di al og [Function |

choose-new-fil e-dial og &ey :directory : pronpt :button-
string

The choose- new-fi | e- di al og function displays the standard
Macintosh SFPut Fi | e dialog box, allowing you to specify a destination
file for writing. An alert dialog box requests confirmation if an existing file
is chosen. Unless canceled, it returns a pathname.

:directory Specifies the directory shown when the dialog box first
appears. It defaults to the last directory shown by the
Choose File dialog box or Choose New File dialog
box.The filename component of : di r ect ory is used as
the default filename in the editable-text item of the dialog
box.

: pronpt Specifies the text to display above the area in which the
user types the filename. If supplied, : pr onpt should be
a string. The default prompt is As....

“button-string
Specifies the text that appears in the button that opens the
file. The default is Save.

Chapter 8: File System Interface

309

Syntax

Description

Argument

Syntax

Description

Syntax

Description

Argument

choose-di rectory-di al og [Function]

choose-directory-di al og & ey :directory

The function choose- di r ect or y- di al og displays a variation of the
standard Macintosh Sf Get Fi | e dialog box. Unless canceled, it returns a
directory pathname.

:directory Specifies the directory shown when the dialog box first
appears. It defaults to the last directory shown by the
choose-fil e-di al og, choose-new-fil e-dial og,
or choose-di rect ory-di al og dialog box.

choose-file-default-directory [Function |

choose-file-default-directory

The function choose-fi | e-def aul t - di r ect ory returns the
namestring of the last directory selected by the choose- fi | e- di al og,
choose-new-fil e-di al og, or choose-di rect or y- di al og dialog
box. Initially, this is the directory that is the translation of " horre: " .

set-choose-file-default-directory [Function |

set - choose-fil e-defaul t-directory pathname

The functionset - choose-fi | e-def aul t - di r ect ory sets the default
directory used by the choose-fi | e- di al og, choose-new-fil e-

di al og, or choose-di r ect or y- di al og dialog box to pathname. It
returns pathname.

pathname A pathname or string.

Logical directory names

If you are new to Macintosh Common Lisp, you do not need to read this
section.

310 Macintosh Common Lisp Reference

Description

Syntax

Description

Previous versions of Macintosh Common Lisp provided a facility,
called logical pathnames, that is now called logical directory names. It
is not connected with the new Common Lisp logical pathname facility.
You can still use logical directory names; however, they will probably
go away in future releases of Macintosh Common Lisp. For your new
code, you should use Common Lisp logical pathnames.

Logical directory names serve as variables in a pathname string. Their
goal is to allow code with embedded pathname information to run
under different directory hierarchies.

Unlike physical directories, which end with colons, logical directory
names end with semicolons.

Because of the use of a semicolon as the directory delimiter in MCL
logical directories, a namestring containing semicolons but no host will
not parse to a Common Lisp logical pathname. However, if it is merged
with a logical pathname, the result is a logical pathname.

? (ccl::1ogical-pathnane-p (pathnanme "blotz;blitz;"))
NI L
? (ccl::1ogical-pathnane-p

(mer ge- pat hnanes
(pathnane "blotz;blitz;")
(pat hnane "ccl:")))

T
The following MCL functions and variables govern logical directory

names.
| ogi cal -directory-alist [Variable]

The* | ogi cal - di rect ory- al i st * variable contains an association list
that maps between logical and physical pathnames.

This variable was formerly called *| ogi cal - pat hnane- al i st*.

def-logical-directory [Function |

def -1 ogi cal - di rectory logical-directory-name physical-pathname

The function def - | ogi cal - di r ect ory defines a new logical directory
name and adds it to *| ogi cal —di r ect or y—al i st *. It returns the new
value of *| ogi cal —di rect ory-al i st *.

To remove a logical pathname from the environment, call def - | ogi cal -
di r ect ory with a physical-pathname of ni | .

Chapter 8: File System Interface 311

This function was formerly called def - | ogi cal - pat hnane.

Arguments logical-directory-name
A logical directory name.
physical-pathname
The physical pathname associated with logical-directory-
name. It may contain logical components.

312 Macintosh Common Lisp Reference

Chapter 9:

Debugging and Error Handling

Contents
Debugging tools in Macintosh Common Lisp / 314
Compiler options / 315
Fred debugging and informational commands / 317
Debugging functions / 320
Error handling / 327
Functions extending Common Lisp error handling / 328
Break loops and error handling / 329
Functions and variables for break loops and error handling / 332
Stack Backtrace / 334
Single-expression stepper / 337
Tracing / 338
The Trace tool / 339
Expressions used for tracing / 341
Advising / 346
The Inspector / 348
The Inspector menu / 349
Inspector functions / 350
The Apropos tool / 351
The Get Info tool / 353
The Processes tool / 355
Miscellaneous Debugging Macros / 355

This chapter discusses debugging tools in Macintosh Common Lisp. These
tools include compiler options, Fred commands, debugging functions, error-
signaling functions, functions to break or cancel operations, backtrace,
facilities to step through a program, trace functions, and an advise function. In
addition, any part of any MCL object can be inspected and, when appropriate,
edited within the Inspector.

You should read this chapter to familiarize yourself with the debugging
environment in Macintosh Common Lisp.

313

314

Debugging tools in Macintosh Common Lisp

Macintosh Common Lisp provides several tools to help programmers
examine and debug functions, source code, and environments:

The Tools menu contains most of these tools and the Fred Commands
window; the other tools are available through MCL expressions.

MCL debugging tools form an integrated whole, allowing you to look
at your code from a variety of perspectives. Figure 9-1 shows the MCL
debugging tools and their relationships. From each of the listed
windows you can examine code in the windows they point to.

compiler options to retain information useful for later programming

a set of Fred commands

debugging functions

a set of functions for signaling errors and aborting operations (these

functions may optionally enter a break loop)

a break-loop facility, which interrupts a program and allows you to

look at the stack and examine dynamic values before returning

a Stack Backtrace
a single-expression stepper
a trace function

an Inspector

Figure 9-1 MCL debugging tools

List Definitions
“Go to definition” I Edit Deflnltlons Apropos
Search Files
“Select file to edit” I —p Inspector

4

et

Documentation I

Here is what the various components of Figure 9-1 do.

Macintosh Common Lisp Reference

Stack
Backtrace

s The Apropos window accepts one or two strings and a number of
options and finds all definitions containing the strings and matching
the options.

s The Stack Backtrace window examines the state of the stack during a

break loop.

s The Documentation window brings up documentation for Common
Lisp and MCL symbols.

s The Inspector window allows you to examine all the components of
any data object.

» The Edit Definitions window accepts the name of a definition and finds
its source code.

» The List Definitions window lists all definitions in the current buffer
and allows you to pick one for editing.

» Search Files lets you search files for the presence of a string.

When available, code is always the best documentation. Two keyboard
commands are often used to examine code.

= Pressing Meta-period when the insertion point is within or next to an
expression in code allows you to examine its source code. You can
examine the source code of many MCL expressions.

= Pressing Control-Meta and clicking an expression acts like pressing
Meta-period but also allows you to examine expressions within
Inspector windows.

Compiler options

The MCL compiler can optionally retain information useful for later
programming. It can also provide useful debugging information at
compile time. The behavior of the compiler is regulated by the global
variables listed in Table 9-1.

Chapter 9: Debugging and Error Handling

315

= Table9-1 Compiler options

Variable Purpose

f asl - save- defi ni ti ons Provides a default value for the :save-definitions keyword
argument to compile-file; determines whether lambda
expressions are saved in the compiled file.

Default is ni | ; lambda expressions are not saved in the
compiled file and are not available when the file is loaded.
If true, lambda expressions are saved. Compiled functions
without lambda expressions cannot be stepped.

f asl - save- doc- stri ngs Provides a default value for the : save- doc-stri ngs
keyword argument toconpi | e-fi | e; determines whether
documentation strings are saved in the compiled file.
Default is ni | ; documentation strings are not saved and are
not available when the file is loaded. If true, documentation
strings are saved in the compiled file and are available
through the Inspector and the docunent at i on function
(bound to the keyboard command Control-X Control-D).

f asl - save- | ocal - synbol s Provides a default value for the : save-| ocal - synbol s
keyword argument to conpi | e-fi | e.
Default is ni | ; local symbols are not saved in the compiled
file. If true, local symbols are saved in the compiled file and
are available when the file is loaded. Generally increases
. fasl file size by about 15-20 percent.

record-source-file Determines whether compiler records source file of
definitions. The definition contains a pointer to the source
file. You can retrieve the definition by pressing Meta-period
when the insertion point is next to the symbol name.
Default is true; compiler records source file of all definitions.
Meta-period retrieves source code. If ni | , no record is kept,
and Meta-period cannot retrieve source code.

save- defini tions Determines whether compiled functions can be
uncompiled.

Default is ni | ; lambda expressions are not retained;
functions cannot be stepped through. If true, lambda
expressions are retained; functions can be stepped through.

(continued)

316 Macintosh Common Lisp Reference

= Table9-1 Compiler options (continued)

Variable Purpose

save- doc- stri ngs Determines whether documentation strings are retained.

Default is ni | ; documentation strings are discarded. This
can save memory. If true, documentation strings are
retained.

save-| ocal - synbol s Determines whether names of arguments and local
variables are saved when functions are compiled.

Default is ni | ; information is discarded. If true, information
is retained, and *ar gl i st - on- space* and backtrace
will show actual argument names.

war n-i f - redef i ne Helps prevent accidental redefinition of a function defined
somewhere else.

Default is true; compiler issues a warning whenever a
function, macro, or variable is redefined from a new file. If
ni |, compiler does not issue warnings when user functions
are redefined (but does when built-in functions are
redefined).

*war n-i f - redef i ne- ker nel * Helps prevent accidental redefinition of a built-in function.

Default is true; compiler signals a continuable error
whenever a built-in function is redefined. If ni | , compiler
does not signal an error when built-in functions are
redefined. Use with caution.

Fred debugging and informational commands

Several Fred command keystrokes help the programmer get
information about MCL expressions and the MCL environment.

Remember that you access Meta commands by pressing the Option key.
You access Control commands by pressing the Control key (if your
keyboard has one) or by pressing Command or Command-Shift.

Several of these commands are on the Tools menu; those menu items
are listed in Table 9-2.

Chapter 9: Debugging and Error Handling 317

= Table9-2 Fred debugging and informational commands

Purpose Keystroke/menu itemEffect

Display Fred Control-?, Brings up the Fred Commands window. This

commands Fred Commands window contains a list of all Fred keyboard

on Tools menu commands available in the global command

table. The list is regenerated each time the
window is created. The Fred Commands
window may be searched, saved, and printed.

Edit definition Meta-period, Attempts to bring up the source code definition

Get argument list
information

(continued)

318 Macintosh Common Lisp Reference

Control-Meta-click,
Edit Definition
on Tools menu

Control-X
Control-A

for the symbol surrounding the insertion point.
If the symbol is defined in more than one source
file, the user is given a choice of definitions. If
the symbol is defined as a slot in a def cl ass,
Meta-period finds the approximate location of
the symbol. Search backward with Control-R to
find the location at which the symbol is defined.
This function works for most forms that are
defined with *r ecor d- source-fil e* setto
t.

Prints the argument list of the function bound

to the symbol surrounding the insertion point.

Argument list is displayed in the minibuffer if
the value of * mi ni - buf f er - hel p- out put *

is t ; otherwise, it is displayed in the

*st andar d- out put * stream. The ed-

ar gl i st function works for built-in functions
and macros, and for most functions and macros
defined with *save- | ocal - synbol s* or

f asl - save-| ocal - synbol s settot.

= Table9-2 Fred debugging and informational commands (continued)

Purpose Keystroke/menu itemEffect

Getdocumentationfor Control-X Opens a dialog box displaying the symbol

current expression Control-D, surrounding the insertion point and the
Documentation documentation string of the function bound to
on Tools menu that symbol. If no documentation string is

available, displays “No documentation
available.” This function works for built-in
functions and macros and for most forms
defined with *save-doc-strings® set to true.

Inspect current Control-X Inspects the current symbolic expression.

expression Control-1

Macroexpand current ~Control-X Macroexpands the current expression with

expression Control-M macr oexpand and pretty-prints the result to
*st andar d- out put *.

Macroexpand current Control-M Macroexpands the current expression

expression repeatedly repeatedly with macr oexpand- 1 until the

result is no longer a macro call and pretty-
prints the result to * st andar d- out put *.

Print information Control-= Prints information about the current Fred
about active window window to * st andar d- out put *.

Read current Control-X Prints the result of reading the current symbolic
expression Control-R expression. This is useful for tracking read-time

bugs, particularly in expressions containing
backquotes.

Here are some examples of using these Fred keyboard equivalents.

To perform macroexpansion with Control-X Control-M:
? (defmacro foo (x vy)
(+x,y))
FOO
? (defmacro bar (z)
“(foo ,z ,2))

BAR
? (foo 10 20); Control -X Control -M
(+ 10 20)

Chapter 9: Debugging and Error Handling 319

? (bar 10); Control -X Control -M
(+ 10 10)

To perform macroexpansion with Control-M:

? (foo 10 20); Control -M
(+ 10 20)

? (bar 10); Control -M
(foo 10 10)
(+ 10 10)

To read the current expression with Control-X Control-R:
(print (2 ,(+ 3 4) 6));<c-x c-r>
(print (cons 2 (cons (+ 3 4) '(6))))

#@2 2);<c-x c-r>
131074

Debugging functions

Syntax

Description

The following functions and variables are useful when programming.
They provide information on the MCL programming environment and
aid in testing and tracking functions.

apr opos [Function]

apr opos string-or-symbol &opt i onal package

The apr opos function finds all interned symbols whose print names
contain string as a substring and prints the name, function definition, and
global value of each symbol. The value ni | is returned. The result is
printed to * st andar d- out put *.

The apr opos function is not case sensitive.

The functionality of apr opos is also available through Apropos on the Tools
menu. In the Apropos dialog box, you can type a symbol name or part of a
symbol name. The Apropos dialog box displays a scrollable list of symbol
names. Double-clicking one brings up an Inspector window for that symbol.

320 Macintosh Common Lisp Reference

Arguments

Example

Syntax

Description

Arguments

Example

string-or-symbol
Any string or symbol.

package A package within which to search for string-or-symbol.
When package is ni |, all packages are searched.

? (apropos 'bitmp)

Bl TMAP

$BlI TMAP. TOPLEFT, Val ue: 6

$BI TMAP. TOP, Val ue: 6

$BlI TMAP. LEFT, Val ue: 8

_ SCRNBI TMAP, Def: MACRO FUNCTI ON, Val ue: 43059
$AFPBI TMAPERR, Val ue: -5004

$I CONBI TMAP, Val ue: 2574

: BI TMAP, Val ue: :BI TMAP

Note: If a symbol is given, it is interned (that is, a symbol is created and
installed in the current package) and therefore the symbol always
appears in the output of apr opos. So, for example, typing (apr opos
"i-just-made-this-up) retrieves (i -j ust-made-this-up).
This can confuse new programmers who are using apr opos to check
on the existence of a symbol. As you would expect, the Apropos dialog
box does not intern strings typed into it as symbols; however, after a
previously nonexistent symbol is interned with apr opos, the Apropos
dialog box will find it.

apropos-1|i st [Function]

apropos- | i st string-or-symbol &opt i onal package

The apr opos- | i st function returns a list of all symbols whose print
names contain string-or-symbol as a substring.

If a symbol is given, it is interned and therefore always appears in the list
returned by apr opos- | i st. So, for example, typing (apr opos-1ist '
made-t hi s- up-t 00) retrieves (i - made-t hi s- up-to0).

The apr opos- | i st function is not case sensitive.

string-or-symbol
Any string or symbol.

package A package within which to search for string-or-symbol.
When package is ni | , all packages are searched.

? (apropos-list 'bitnap)

Chapter 9: Debugging and Error Handling 321

(: BI TMAP $I CONBI TMAP $AFPBI TMAPERR _SCRNBI TMAP $BI TMAP. LEFT
$BI TMAP. TOP $BI TMAP. TOPLEFT BI TMAP)
? (setq make-syns (apropos-list 'bitmap))
(: BI TMAP $I CONBI TMAP $AFPBI TMAPERR _SCRNBI TMAP $BI TMAP. LEFT
$BI TMAP. TOP $BI TMAP. TOPLEFT BI TMAP)
? (setq make-syns (sort make-synms #' string<
i key #' synbol - nane))
(SAFPBI TMAPERR $BI TMAP. LEFT $BI TMAP. TOP $BI TMAP. TOPLEFT
$1 CONBI TMAP : Bl TMAP BI TMAP _ SCRNBI TMAP)
? (pprint make-syns)
(SAFPBI TMAPERR
$BI TMAP. LEFT
$BI TMAP. TOP
$BI TMAP. TOPLEFT
$1 CONBI TVAP
: BI TMAP
Bl TMAP
_SCRNBI TIVAP)

argli st [Function]

Syntax ar gl i st symbol &opt i onal include-bindings use-help-file

Description ~ The ar gl i st function returns two values, the argument list of symbol and
how the list was computed. The second value can be one of : defi ni ti on,
:decl aration,: anal ysi s, : unknown, or ni | . The value
: def i ni ti on means that *save- def i ni ti ons* was true when the
function was compiled; the value : decl ar at i on means that either the
argument list was found in the MCL Help file or you declared the argument
listwith (setf (arglist symbol) arglist) . Thevalue: anal ysi s means
that the argument list was computed from information stored with the
function; : unknown means that the symbol was bound to a function, but no
argument list information could be determined; and ni | means that the
symbol was not bound to a function.

Arguments symbol A symbol.
include-bindings
Avalue. If this value is specified and true, then the default

values of optional and keyword parameters are included,
if known.

use-help-file A Boolean value. If true (the default), the argument list is
taken from the MCL Help file. If ni |, the argument list is
computed directly from information stored within the
function. (This parameter is useful if you suspect that the
MCL Help file may be incorrect.)

322 Macintosh Common Lisp Reference

Syntax

Description

Arguments

Example

docurrent ati on [Generic function]

docurent ati on (x t hi ng) &opti onal doc-type

The generic function docunent at i on returns the documentation string
of doc-type for x. If x is a method object, a class object, a generic function
object, a method combination object, or a slot-description object, doc-type
may not be supplied, or an error is signaled. If x is a symbol or a list of the
form (set f symbol) , doc-type must be supplied. See Table 9-3 for the
documentation type that should be supplied for various MCL constructs.

Documentation strings can be changed with the Common Lisp generic
function (set f document ati on), documented on page 842 of Common Lisp:
The Language.

Documentation strings are retained only if the value of * save- doc-
strings* is true when the definition occurs. If no documentation string is
available, docunent at i on returnsni | .

X A method object, class object, generic function object,
method combination object, slot-description object,
symbol, or list of the form (set f symbol) .

doc-type One of the symbols var i abl e, functi on, structure,
type, orsetf.

? (docunentation 'viewdraw contents 'function)

"The event systemcalls this generic function whenever a vi ew
needs to redraw any portion of its contents. For a view, the
function is applied focused on the view, for a sinple view,
it is focused on the view s container."

? (docunentation 'w ndow 'type)

"The wi ndow cl ass, fromwhich all w ndow objects inherit.
Wndows in turn inherit fromview Al w ndows are streans.”

Table 9-3 lists the values of doc-type that should be supplied with
various MCL constructs.

Chapter 9: Debugging and Error Handling 323

» Table9-3 Constructs and their documentation types

Construct Documentation type

Function function

Generic function function

Special form function

Macro function

Variable vari abl e

Constant vari abl e

def struct structure structure

Class object type

Type specifier type

def setf definition setf

defi ne-set f - met hod definition set f

Method combination met hod- conbi nat i on
edit-definition-p [Function]

Syntax edi t-definition-pname&optional type specializers qualifiers

Description The function edi t - def i ni ti on- p returns source file information for a
symbol, method, or function.

It returns five values: a list of definition types and source file names where the
definition occurs (the first file in the list is the one containing the most recent
definition); the name of name; the definition type found (one of f uncti on,
met hod, st ruct ur e, cl ass, and so on); a list of its method qualifiers, such
as(:before),(:after),or(:around),and alistof the method specializer
classes. If name is not the name of a method, the two last valuesareni | andt.

Arguments name A symbol, method, or function.

type The type of definition desired. Allowable values are any
data type that can have a source file: for example,
function, met hod, structure,cl ass, or
vari abl e. The default value, t, finds whatever exists.

specializers A list of specializer classes for a method. Giving this
argument a non-ni | value forces the value of the type
argument to be ' net hod.

qualifiers A list of qualifiers for a method, for example,
(:before),(:after),or(:around).The default
value is t , which finds a method with any qualifier.

324 Macintosh Common Lisp Reference

Example

Description

Syntax

Description

Syntax

Description

Syntax

? (edit-definition-p 'pop-up-mnmenu)

((CLASS . "ccl:library; pop-up-nmenu.lisp"))
POP- UP- MENU

T

NI L

T

? (edit-definition-p 'viewdraw contents 'method ' (basic-
editabl e-text-dialog-item :after)

NI L

VI EW DRAW CONTENTS

METHCD

(BASI C- EDI TABLE- TEXT- DI ALOG | TEM

: AFTER

*hel p- out put * [Variable)

The * hel p- out put * variable specifies the stream to which
documentation string and argument list information is printed when
accessed through Fred keyboard commands or the Inspector. This variable
is initially bound to * st andar d- out put *.

print-call-history [Function]

print-call-history

The function pri nt - cal | - hi st ory writes a full Stack Backtrace to
debug-i o.

sel ect - backtrace [Function]

sel ect - backtrace

The function sel ect - backt r ace opens a Stack Backtrace window if it is
meaningful to backtrace. If there is no context for backtracing, the function
signals an error.

room [Function]

room &opt i onal detailed-p

Chapter 9: Debugging and Error Handling 325

Description

Argument

Example

Syntax

Description

The r oomfunction prints information on the amount of space available in
the Lisp operating system.

detailed-p A value indicating how much information to print. If this
value is ni | —the default—minimal information is
printed. If it is non-ni | , more detailed information is
printed.
? (room
There are at |east 1356752 bytes of avail abl e RAM
Total Size Free Used
Mac Heap: 540576 (527K) 132600 (129K) 407976
(399K)
Li sp Heap: 2097152 (2048K) 1224152 (1195K) 849016
(829K)
(Static): 458752 (448K)
St acks: 218100 (212K)

? (roomt)
There are at | east 1344548 bytes of avail abl e RAM

Total Size Free Used
Mac Heap: 540576 (527K) 132604 (129K) 407972
(399K)
Li sp Heap: 2097152 (2048K) 1211944 (1183K) 860736
(840K)
(Static): 458752 (448K)
St acks: 218100 (212K)
Mar kabl e obj ects: 777112 (758K) dynami c, 212776 (207K)
static.
| mredi at e obj ects: 83624 (81K) dynami c, 242992 (237K)
static.
i nspect [Function]

i nspect thing

The i nspect function inspects thing.

326 Macintosh Common Lisp Reference

Macintosh Common Lisp supports the Common Lisp i nspect function with
a window-based Inspector. In addition to calling the i nspect function, there
are two other ways of invoking the Inspector directly: choosing Inspect from
the Tools menu, or giving the keyboard equivalent, Control-X Control-I. In
addition, double-clicking a symbol name from the Apropos dialog box, or
choosing a symbol and clicking the Inspect button, invokes the Inspector on
that symbol.

Argument thing Any Lisp data object.
Example
? (inspect 'w ndows)
#<| NSPECTOR- W NDOW " W NDOWG" #x467281>
t op-inspect-form [Function)
Syntax top-inspect-form
Description Thet op- i nspect - f or mfunction returns the form being inspected by
the active Inspector window.
Example
? (top-inspect-form
W NDOWS
For full details on the Inspector, see “The Inspector” on page 348.
Error handling

Macintosh Common Lisp uses the Common Lisp condition system,
which reconceptualizes and adds to Common Lisp’s previous error-
detection and error-handling capabilities.

A condition is an interesting situation that has been detected and
announced within a program. An error is a condition from which the
program cannot continue normally, but requires some sort of
intervention, either by program control or from the user.

Chapter 9: Debugging and Error Handling

327

Most MCL error-handling functions now follow the definitions of those
functions given in Common Lisp: The Language, Chapter 24, “Errors,”
and Chapter 29, “Conditions.” (Note that pages 886-887 of Common
Lisp: The Language supersede the earlier discussion of er r or and
cerror in Chapter 24 of the same book.) MCL extensions to those
functions are described next.

Functions extending Common Lisp error handling

Syntax

Description

Syntax

Description

The following functions extend the Common Lisp condition system.

abort - break [Function]

abort - br eak

If the current read loop is waiting for input, the Common Lisp function
abort calls the non-Common Lisp function abor t - br eak, which
decrements the abort level by 1. If there is input in the current read loop,
the Common Lisp function abor t calls the abor t restart.

cancel [Function]

cancel

The cancel function throws to the nearest catch-cancel. (Described in
“Simple turnkey dialog boxes” on page 239.) This function is generally
called when the user clicks Cancel in a modal dialog box.

For information on the syntax of Common Lisp t hr owand cat ch, see
Common Lisp: The Language, in particular page 192.

328 Macintosh Common Lisp Reference

Break loops and error handling

At any point during an MCL program, program execution may be
suspended and control passed to a break loop. A break loop behaves
like the top-level read-eval-print loop. However, when you enter a
break loop you do not exit your program and return control to the top
level (as abor t does). Instead, a break loop suspends your program
and allows interaction on top of your program. From a break loop, you
can resume the program or return to the top level.

Figure 9-2 shows the execution stack of Macintosh Common Lisp.
Newer items are added to the bottom. The diagrams show that break
loops add new areas to the stack, but abor t and cont i nue remove
areas from the stack. New items are added to the bottom.

Figure 9-2 Effects on the stack of br eak, abor t, and cont i nue

read-eval-print loop

read-eval-print loop | read-eval-print loop
User code in execution ﬂbor t
read-eval-print loop read-eval-print loop
User code in execution User code suspended
br eak

User code resumed

break loop

Within a break loop, the MCL question mark prompt is replaced by a
number and an angle bracket. Expressions can be executed, just as they
are in the normal Listener loop. Because the break loop runs on top of
the interrupted program, all global variables have the values they had
when the interrupted program was suspended, as the following code
shows.

New user code ﬂmi nue
In execution

Chapter 9: Debugging and Error Handling 329

330

? *print-case*

: downcase

? *| oad-ver bose*

t

? (defun show specials ()

(let ((*print-case* :upcase)
(*I oad- ver bose* nil))
(break)
(print "Now we have continued.")
t))
show- speci al s
? (show- speci al s)
>Br eak:
> Wil e executing: SHOW SPECI ALS
> Type Command-/ to continue, Command-. to abort.
> |f continued: Return from BREAK
See the Restarts...nenu itemfor further choices.
1 > *print-case*
- UPCASE
1 > *| oad-ver bose*
NI L
1 > (continue)
Conti nui ng. ..
"Now we have continued."
t
? *print-case*
: downcase

Break loops retain the dynamic environment of the interrupted
program (that is, the values of global variables), but they do not retain
the lexical environment of the interrupted program. For this reason,
forms that you type into the break loop do not have access to the lexical
variables of the interrupted program, as shown in the following code.
(You can look at the lexical variables with the Stack Backtrace,
described in “Stack Backtrace” on page 334.)

? (defun double (num
(unl ess (numberp num
(break))
(+ num nunj)
DOUBLE
? (doubl e 5)
10
? (double "ten)
>Br eak:
> Wil e executing: DOUBLE

Macintosh Common Lisp Reference

> Type Command-/ to continue, Comand-. to abort.
> | f continued: Return from BREAK
See the Restarts...menu item for further choices.

1
>
>
>
>

2 > (abort-break)

> num

Error: Unbound variable: NUM

Wi | e executing: SYMBOL- VALUE

Type Conmand-/ to continue, Conmand-. to abort.
If continued: Retry getting the value of NUM
See the Restarts...menu item for further choices.

Aborted

1 > (abort-break)

Abort ed

Break loops may be nested; that is, you can enter a break loop from a
break loop, and so on. The current level is indicated by the number in
the Listener prompt (see Figure 9-3).

Figure 9-3 Nesting of break loops

read-eval-print loop

User code suspended

break loop 1

New user code
suspended

break loop 2

? (break)
> Break:

> Type Command-/ to continue, Conmmand-. to abort.
1 > (break)
> Break:

> Type Conmmand-/ to continue, Command-. to abort.
2 >

You can enter a break loop explicitly by calling the function br eak or
cerror.In addition, if the value of * br eak- on- err or s* is true,
Macintosh Common Lisp enters a break loop whenever an error is
signaled. If the value of * br eak- on- war ni ngs* is true, Macintosh
Common Lisp enters a break loop whenever war n is called. These
functions and variables are described in “Functions and variables for
break loops and error handling” on page 332.

Break is also available as a command on the Lisp menu.

Chapter 9: Debugging and Error Handling

331

There are two ways to leave a break loop: by calling cont i nue and by
calling abor t (see Figure 9-4). Calling cont i nue resumes the program
from the point at which it was interrupted. Calling abor t returns to the
previous read loop. This may be the top-level loop or a prior break loop.
In the case of abor t, the suspended program is not resumed.

Abort and Continue are available as commands on the Lisp menu. You
can also invoke abor t at any point by pressing Command-period.
Within a break loop, you can invoke cont i nue by pressing Command-
slash (Command-/).

= Figure 9-4 Two ways to leave a break loop

abort read-eval-print loop

read-eval-print loop

User code suspended

break loop

read-eval-print loop

conti nue

User code resumed

Functions and variables for break loops and error handling

The following functions and variables control break loops and error
handling.

br eak [Function]

Syntax break &optional format-string & est arguments

Description ~ The br eak function prints the message specified by format-string and
arguments and enters a break loop. It returns ni | when continued.

The br eak function can also be invoked through the Lisp menu. This provides
a convenient method for suspending a program at any point of execution.

332 Macintosh Common Lisp Reference

Arguments

Syntax

Description

Argument

Description

Description

If br eak is called during the dynamic extent of a call tow t hout -

i nterrupts, no action is taken.

format-string A f or mat control string used to construct the break
message.

arguments Zero or more f or mat arguments used to construct the
break message.

conti nue [Function]

conti nue &opti onal condition

The cont i nue function resumes execution of the code suspended by the
most recent call to br eak or cer r or . If there have been no calls to br eak
orcerror,conti nue simply returns to the top level. If condi ti on is
present, the restart for condition is invoked.

condition A condition.

br eak- on-errors [Variable)

The * br eak- on- er r or s* variable determines whether Macintosh
Common Lisp enters a break loop when an error is signaled. The default
value is true.

If the value of this variable is true, then Macintosh Common Lisp enters a break
loop when an error is signaled.

If the value of this variable is ni | , then errors simply cause a return to the read-
eval-print loop.

br eak- on- war ni ngs [Variable)

The * br eak- on- war ni ngs* variable determines whether Macintosh
Common Lisp enters a break loop when a warning is issued. The default
valueisnil .

If the value of this variable is true, then Macintosh Common Lisp enters a break
loop when a warning is issued.

If the value of this variable is ni | , then warnings do not interrupt program flow.

Chapter 9: Debugging and Error Handling 333

Description

Description

backt r ace- on- br eak [Variable]

The *backt r ace- on- br eak* variable determines whether Macintosh
Common Lisp displays the Stack Backtrace whenever it enters a break
loop. The default valueisni | .

If the value of this variable is true, then Macintosh Common Lisp displays the
Stack Backtrace window.

If the value of this variable is ni | , then you must choose Backtrace from the Tools
menu to see the Stack Backtrace dialog box.

error-print-circle [Variable]

In break or error loops, *pri nt - ci r cl e* is set to the value of *er r or -
print-circle*. Theinitial valueist.

Stack Backtrace

Beyond pri nt - cal | - hi st ory, which prints a backtrace to * debug-
i 0*, Macintosh Common Lisp provides a Stack Backtrace dialog box.

When inside a break loop, the Stack Backtrace command lets you
examine the state of the suspended program. To see the Stack Backtrace
dialog box, choose Backtrace from the Tools menu when you are in a
break loop.

The Stack Backtrace shows the functions awaiting return values as well
as the local variables of these functions (if the functions were compiled
with *save- | ocal - synbol s* set to true). You can easily access and
set the values in a stack frame. Finally, information on the program
counter and stack frame address is given.

Certain internal functions are not shown in the Stack Backtrace by
default. You can control this behavior, and the set of functions
considered internal.

The Stack Backtrace dialog box shows two tables. The upper table
shows the functions that are pending on the stack. The lower table is
initially blank. When you single-click any function in the upper table,
the lower table displays that function’s stack frames. You can edit
values in the lower table (but do so with caution).

334 Macintosh Common Lisp Reference

Below the tables are three pieces of information about the frame: the
number of values in the frame, the memory address of the frame, and
the program counter within the function where execution has been
suspended. The memory address is useful for low-level system
debugging. You can use the program counter with di sassenbl e to
locate the point of a break within a function.

Figure 9-5 and the code that follows it show editing in the Stack
Backtrace dialog box.

= Figure 9-5 A Stack Backtrace dialog box

SI=—————— Backtrace
Commands

SYMBEOL-UALUE
CHEAP-ELAL— IH-EHU | RONMENT
TOPLEVEL-EVAL
READ-LOOF- | MTERMAL

RERO-LOOP

TOPLEVEL-LOOP

Arohymous Function #x127752E
RUM-PROCESS— N1 T IAL-FORM
Anonymaous Function #=11F7S6E

L
1l

|

treguireds O

T

HIL

| STEMER-P# (SAUED-SPECIALY T
#EUAL-OUEUE* CSAUED-SPECIAL» MIL

sunzoloNgaseN =0
I E]

|

Size: 3 values PC: 136 Address: #:1A0ECZE

Here is the code that produced the Stack Backtrace dialog box in Figure
9-5.
? (defun foo (x vy)
(let ((z 10))

(br eak)

(+xvy 2)))
f oo
? (foo 10 20)
> Break:
> Type Command-/ to continue,
Comand-. to abort.

Single-click f 00, then edit within the Stack Backtrace window:

Chapter 9: Debugging and Error Handling 335

Syntax

Description

Argument

Syntax

Description

1 > (local 1)

20

1 > (setf (local 1) 50)
50

1 > (continue)

Conti nui ng. ..

70

This only works if the value of * conpi | e- def i ni ti ons* was true
when f 00 was compiled. Otherwise, the result is still 40.

Double-clicking a function in the top table causes the function object to
be inspected, giving you access to edi t - defini tion,

document ati on, argl i st, di sassenbl e, and unconpi | e-
function.

Because Macintosh Common Lisp supports tail recursion, any function
that makes a tail-recursive call will not appear in the backtrace. To ease
debugging, you can disable tail recursion with compiler declarations.

The stack frame in the lower table shows the names of local variables, if
these were retained at compile time. If these were not retained, the
parameters are listed as required, optional, keyword, or rest. You can
use the | ocal macro to access the values of these frames. In addition,
you can double-click a value to inspect it.

| ocal [Macro]

| ocal indicator

The macro | ocal returns the value in the current stack frame of the slot
given by indicator. This macro can be used only when a Stack Backtrace
dialog box is visible and when a frame is selected.

indicator A symbol or number indicating a slot in the stack frame.
A symbol can be used if the frame includes local symbol
names and if the symbol is unique in the frame.
Otherwise, a number giving the position in the frame
should be used.

set -1 ocal [Macro]

set - | ocal indicator new-value

The set - | ocal macro changes the value at the specified indicator to new-
value.

336 Macintosh Common Lisp Reference

Arguments

Description

You can use set - | ocal (or| ocal with set f)to modify a value in a stack
frame. Modify these values with caution, however, because the compiler may
have made assumptions based on the initial values.

indicator A symbol or number indicating a slot in the stack frame.
A symbol can be used if the frame includes local symbol
names and if the symbol is unique in the frame.
Otherwise, a number giving the position in the frame
should be used.

new-value The new value of the indicator.

i nspector:: *backtrace-hi de-internal -functions-p*
[Variable]

i nspector:: *backtrace-internal -functions* [Variable)

Ifi nspector:: *backtrace- hi de-i nternal -functions-p*is

true (the default), internal stack frames are not shown in the Backtrace.

i nspector:: *backtrace-internal -functions* contains a list of
functions considered to be “internal”. You may add functions to and remove
them from this list.

Single-expression stepper

The single-expression stepper allows you to examine a single form,
expression by expression.

The st ep macro can be used on compiled functions only if their
uncompiled definitions have been retained. If there is no uncompiled
definition for a function, it is treated as an atomic unit as it is evaluated.
A compiled function call is executed as a whole rather than being
evaluated form by form. (This is how the st ep macro treats built-in
functions.)

Function definitions are retained if the function is compiled with the
save-definitions variablesettot orif a file is compiled with the
fasl - save-defi ni ti ons variable set to t . If the function was
compiled with *save- defi ni ti ons* settoni |, it must be
recompiled or reloaded with * conpi | e- def i ni ti ons* set toni |
before it can be evaluated.

Chapter 9: Debugging and Error Handling 337

Because evaluation occurs in a null lexical environment, st ep is
usually called only from the top level. If it is called from within a
function, it does not have access to the local environment in which it
was called. However, internal stepping can be invoked through the
t r ace macro, described in “Tracing” on page 338.

It is not generally possible to step through code that requires the use of
wi t hout -i nt errupts or code that uses the Macintosh graphics
interface.

step [Macro]
Syntax st ep form
Description ~ The st ep macro evaluates form expression by expression, under user
control.
Argument form Any Lisp form.
step-print-1|evel [Variable]
step-print-1ength [Variable]
Description The *step-print-1evel * and *st ep- pri nt - | engt h* variables are
used to set the values of *pri nt - | evel * and *pri nt - | engt h* during
step evaluation.
Tracing

Tracing is useful when you want to find out why a function behaves in
an unexpected manner, perhaps because incorrect arguments are being
passed.

Tracing causes actions to be taken when a function is called and when
it returns. The default tracing actions print the function name and
arguments when the function is called and print the values returned
when the function returns.

Other actions can be specified. These include entering a break loop
when a function is entered or exited, or stepping the function. Trace
actions may be conditional.

338 Macintosh Common Lisp Reference

Several functions can be traced at one time.

When a traced function is traced again, the new trace actions replace the
former ones. When a traced function is redefined by evaluation in a
buffer, the trace actions are transferred from the old definition to the
new definition. When a traced function is redefined while loading a file,
the function is untraced and a warning is issued.

Macros and special forms cannot be traced. Functions that are compiled
inline cannot be traced (see Common Lisp: The Language, pages 229-230).
Note that, by default, self-recursive calls are compiled as inline
branches. To effectively trace a function with self-recursive calls, you
should declare it not inline.

Tracing is available both through the Trace menu-item on the Tools
menu, and through a number of Lisp macros and functions.

The Trace tool

The Trace tool is an interactive interface to the MCL trace mechanism.

This tool calls the t r ace macro. The argument to the t r ace function is
the string in the Name text edit field. The following figure shows the

dialog box for the Trace tool.

Chapter 9: Debugging and Error Handling 339

» Figure 9-6 The Trace dialog box

340

S[I=——— Trace Function —"a0"—rn——J
Function
Name: |I.Llil'll:|DI.Ll-[:|DSE |
Speciﬂlizers:EI |
Qualifier: | :After v|
Package: | COMMON-LISP-USER w |
Action
On Entry: | Print Name & Args v |
On Exit: | Print Name & Ualues w |
Step: | No v|
s
%
[] [Untrace Al w]
E

The Specializers type-in pop-up menu specifies a parameter specializer
for the function; the Qualifier pop-up menu specifies an auxiliary
method qualifier, which is one of None, : before,: after, or

: ar ound; the Package pop-up menu specifies the package that defines
the function.

The On Entry and On Exit pop-up menus specify different courses of
actions. Items in the On Entry menu are Print Name and Args, Break, or
No Action; items in the On Exit menu are Print Name and Values,
Break, or No Action. The Step pop-up menu specifies whether the
function should be stepped, or simply executed.

Untrace removes the trace from the most recently traced function.

Untrace All pops up a list of all functions currently being traced and the
item Untrace Al l. You may select the function from which to
remove the trace, or remove all traces.

Macintosh Common Lisp Reference

Expressions used for tracing

Syntax

Description

Arguments

The following macros, functions and variables are used to invoke and

control tracing.

trace

trace {spec| (

spec { option modifier}) }

The t r ace macro encapsulates the function or method specified by each
spec, causing the actions specified by the options. When no options are
specified, the default actions print arguments on entry and values on exit.

[Macro]

Invoking (t r ace) without arguments returns a list of the functions currently
being traced. If no functions are currently being traced, (t r ace) returnsni | .

spec

option

s before

cprint

: br eak

lisp-function

cafter

Dprint

The specification of the function to be traced. This is either
a symbol that is the name of a function or generic
function, or an expression of the form (set f symbol) , or
a specific method of a generic function in the form

(: met hod symbol { qualifiers} (specializer

{ specializer} *)) .

An option that specifies an action to be performed. The
following options and their modifiers are supported:
Specifies the action to be taken before the traced function
is called. The: bef or e keyword must be followed by a
modifier:

Prints the name and arguments to the function before the
function is called.

Prints the name and arguments to the function and enters
a break loop before the function is called. You can
examine the Stack Backtrace, perform operations in the
Listener, and continue if desired.

If the : bef or e option is a function, it is called before the
traced function is called. The arguments to lisp-function
are the name of the traced function and the arguments
passed to the traced function.

Specifies the action to be taken after the traced function
returns. This keyword must be followed by a modifier,
which should be one of the following;:

Prints the name of the function and the returned values.

Chapter 9: Debugging and Error Handling

341

Examples

: break

Prints the name of the function and the returned values,
and enters a break loop. You can examine the Stack
Backtrace, perform operations in the Listener, and
continue if desired.

lisp-function

step

If the : af t er option is a function, it is called after the
traced function returns. The arguments are the name of
the traced function and the values returned by the traced
function.

Specifies whether the traced function should be stepped
when it is run. For this option to be effective, the function
needs to have been compiled with the variable * save-
definitions* settot orloaded with *conpi | e-
definitions* settonil.Inaddition, stepping will not
work if the most recent definition comes from a . f asl
file unless the file was compiled with *f asl - save-
definitions* setto true.

The : st ep keyword must be followed by a modifier,
which is either t or a function whose arguments are the
name of the traced function and the arguments passed to
the traced function. If itist or if the function returns non-
ni |, then the traced function is stepped; otherwise it is
run without stepping.

342

Here is an example of tracing the function f act .
? (defun fact (num
(declare (notinline fact))
(if (= numO0)
1
(* num (fact (- num1)))))
FACT
? (trace fact)
NI L
? (fact 5)
Cal ling (FACT 5)
Cal I'i ng (FACT 4)
Cal ling (FACT 3)
Cal ling (FACT 2)
Cal l'ing (FACT 1)
Cal ling (FACT 0)
FACT returned 1
FACT returned 1
FACT returned 2
FACT returned 6

Macintosh Common Lisp Reference

Syntax

FACT returned 24
FACT returned 120
120

Here are some examples of the syntax of t r ace and their results. This
prints before but not after.

? (trace (fact :before :print))
? (fact 5)
Cal ling (FACT 5)
Cal ling (FACT 4)
Cal l'ing (FACT 3)
Cal ling (FACT 2)
Cal ling (FACT 1)
Cal l'ing (FACT 0)
120

This example breaks before and prints after.
? (trace (fact :before :break
cafter :print))

This example breaks on entry with an odd argument.
? (trace (fact :before
(lanbda (func &rest args)
"only break if nunber is odd"
(if (evenp (car args))
(format t "~&Calling ~s~%
(cons func args))
(break "on calling ~s"
(cons func args))))))

This example breaks before an instance of the class f 00 is initialized.
? (trace ((:nethod initialize (foo)) :before :break))

This example steps through the function.
? (trace (fact :step t))

This example steps through even invocations of the function.
? (trace (fact :step

(lambda (name &rest args)

(decl are (ignore nane))

(evenp (car args)))))

untrace [Macro]

unt r ace { spec}

Chapter 9: Debugging and Error Handling 343

Description

Argument

Description

Description

Example

Description

The unt r ace macro stops each spec from being traced. Notices will not be
printed when the function enters or returns. The macro returns a list of the
functions that are no longer being traced.

If no specs are specified, all traced functions are untraced.

If you untrace a function that wasn’t traced in the first place, no action is taken.

spec The specification of the function to be untraced. This is
either a symbol that is the name of a function or generic
function, or an expression of the form (set f symbol) , or
a specific method of a generic function in the form
(: met hod symbol { qualifiers} (specializer { specializer})) .

*trace-print-|evel * [Variable]
trace-print-Iength [Variable]
The*trace-print-1level * and*trace-print-I|ength* variables

are used to set the values of *pri nt -1 evel * and *pri nt - | engt h*
during trace operations.

*trace-| evel * [Variable]

The *trace- | evel * variable specifies the depth of calls to the traced
function. Each time the traced function is called, this number is
incremented. Each time the traced function returns, it is decremented.

This example begins stepping f act after the first five calls.

? (trace (fact :step
(lambda (nurber &rest args)
(decl are (ignore nunmber args))
(> *trace-level* 5))))

FACT

*trace- nax-i ndent * [Variable]

The *t r ace- max- i ndent * variable specifies the maximum number of
spaces to indent trace output. (Normally, trace output
is indented one space for each level of nesting.) The default value is 40.

344 Macintosh Common Lisp Reference

Syntax

Description

Description

Example

trace-tab [Function)

trace-tab

The t r ace- t ab function outputs the appropriate number of spaces and
vertical bars in *t r ace- out put *, given the current value of *t r ace-
level *.

trace- bar-frequency [Variable)

The *t r ace- bar - f r equency* variable determines whether and how
often vertical bars are printed in trace output. If the value of *t r ace-

bar - f requency* isni | (the default value), no vertical bars are printed.

? (trace fact)
nil
? (setq *trace-bar-frequency* 2)
2
? (fact 5)
Calling (fact 5)
| Calling (fact 4)
| Calling (fact 3)
| |Calling (fact 2)
| | Calling (fact 1)
| | |Calling (fact 0)
| | |fact returned 1
| | fact returned 1
| |fact returned 2
| fact returned 6
| fact returned 24
fact returned 120
120
? (setq *trace-bar-frequency* nil)
nil
? (fact 3)
Calling (fact 3)
Calling (fact 2)
Calling (fact 1)
Calling (fact 0)
fact returned 1
fact returned 1
fact returned 2
fact returned 6
6

Chapter 9: Debugging and Error Handling

345

Advising

Syntax

Description

Arguments

The advi se macro can be thought of as a more general version of

t race. It allows code that you specify to run before, after, or around a
given function, for the purpose of changing the behavior of the
function. Each piece of added code is called a piece of advice. Each piece
of advice has a unique name, so that you can have multiple pieces of
advice on the same function, including multiple : before, : after,
and : ar ound pieces of advice.

The unique : nanme and the : when keyword serve to identify the piece
of advice. A later call to advi se with the same values for the : name
and : when keywords replaces the existing piece of advice, but a call
with different values does not.

advi se

advi se spec form & ey when name define-if-undefined

The advi se macro adds a piece of advice to the function or method
specified by spec according to form.

spec The specification of the function on which to put the
advice. This is either a symbol that is the name of a

function or generic function, or an expression of the form
(set f symbol), or a specific method of a generic function

in the form (: met hod symbol { qualifiers} (specializer
{ specializer})) .
form A form to execute before, after, or around the advised

function. The form can refer to the variable arglist that is
bound to the arguments with which the advised function

was called. You can exit from form with (r et urn).
name A unique name that identifies the piece of advice.

when An argument that specifies when the piece of advice is
run. There are three allowable values. The default is

: bef or e, which specifies that form is executed before the

advised function is called. Other possible values are
: af t er, which specifies that form is executed after the

advised function is called, and : ar ound, which specifies

that form is executed around the call to the advised
function. You should use (: do-i t) in form to indicate
invocation of the original definition.

346 Macintosh Common Lisp Reference

[Macro]

Examples

Syntax

Description

Arguments

define-if-undefined
An argument that determines whether to define the
advised function if it is undefined. The defaultis ni | , in
which case an error is signaled if the function is
undefined.

Here are some examples of the use of advi se.

The function f 00, already defined, does something with a list of
numbers. The following code uses a piece of advice to make f 00 return
zero if any of its arguments is not a number. Using : ar ound advice,
you can do the following:

(advise foo (if (sone #' (lanbda (n)
(not (nunberp n)))
arglist)
0
(:do-it))
:when :around :name :zero-if-not-numns)

To do the same thing using a : bef or e piece of advice:
(advise foo (if (sone #' (lanbda (n)
(not (numberp n)))
arglist)
(return 0))
:when :before :name :zero-if-not-nuns)

unadvi se [Macro]

unadvi se spec &ey when name

The unadvi se macro removes the piece or pieces of advice for everything
matching spec, when, and name. When the value of specist and the values
of when and name are ni | , unadvi se removes every piece of advice;
when spec is t , when is ni | , and name is non-ni | , unadvi se removes all
pieces of advice with the given name.

spec The specification of the function for which pieces of
advice are to be removed. This is either a symbol that is
the name of a function or generic function, or an
expression of the form (set f symbol) , or a specific
method of a generic function in the form (: et hod
symbol { qualifiers} (specializer { specializer})) .

when The specification of the when value for the piece of advice
tobe removed. The allowable values are the same as those
for advi se.

Chapter 9: Debugging and Error Handling 347

name The unique name of the piece of advice to be removed.

advi sedp [Macro]

Syntax advi sedp spec & ey when name

Description The advi sedp macro returns a list of existing pieces of advice that match
spec, when, and name. When the value of specist and the values of when
and name are ni | , advi sedp returns all existing pieces of advice.

Arguments spec The specification of the function to check for pieces of
advice. This is either a symbol that is the name of a
function or generic function, or an expression of the form
(set f symbol), or a specific method of a generic function
in the form (: met hod symbol { qualifiers} (specializer

{ specializer})) .

when The specification of the when value for the piece of advice
to be removed. The allowable values are the same as those
for advi se.

name A unique name that identifies the piece of advice.

The Inspector

Macintosh Common Lisp supports the Common Lisp i nspect
function with a window-based Inspector.

The Inspector lets you look quickly at any component of one or more
data objects. For instance, you can use it to look at the current state of
the system data. Double-click any form or component of a form in an
Inspector window to bring up a window with a definition of the form
or component; double-click any item in that window to bring up its
definition, and so on.

Because objects are editable in Inspector windows, you can change the
state of system data and other components on the fly. You should be
careful about doing so, however; it is generally safe to change the value
of a global variable in the Inspector, but you should use the standard
interface functions to change the values associated with object
keywords.

348 Macintosh Common Lisp Reference

To see the Inspector, choose Inspect from the Tools menu.You can also
call i nspect on a Lisp object or use the keystroke command Control-
X Control-I. If you have an extended keyboard, you can also press the
Help key. When you choose Apropos from the Tools menu and double-
click a symbol name, Macintosh Common Lisp creates an Inspector
window containing information about that symbol.

The Inspector menu
The Inspector menu-item on the Tools menu has a number of sub-

menus. These submenus and their actions are described in the
following table.

= Table9-4 Options in Inspector Central

Inspector option Effect
Record Types Displays a window that lists all record types.
Record Field Types Displays a window that lists all record field types.
Inspector Help Displays a window giving brief help on Inspector commands.
Inspector History Lists all Lisp objects that have been inspected. Double-clicking one of

them creates an Inspector window showing its definition. To begin
keeping a history, evaluate the form shown in the initial window.

Disk Devices Displays a window listing the names of all currently active devices.

Logical Hosts Displays an Inspector window listing all logical hosts and their physical
equivalents.

Packages Displays an Inspector window that inspects the list returned by the
Common Lisp function (| i st - al | - packages).

package Displays a window that inspects the value of the Common Lisp variable
package.

r eadt abl e Displays a window that inspects the value of the Common Lisp variable

r eadt abl e.

Chapter 9: Debugging and Error Handling 349

Inspector functions

Syntax
Description
Argument

Example

Syntax

Description

Description

The following functions are used with the Inspector.

i nspect [Function]

i nspect thing
The i nspect function inspects thing.

thing Any Lisp data object.

? (defun foo (x vy)
(let ((z 10))
(break)
(+ xy 2)))
FOO
? (inspect 'foo)
#<| NSPECT- DI ALOG " Synbol : FOO' #x5DE9F9>

t op-inspect-form [Function]

top-inspect-form

The t op- i nspect - f or mfunction returns the form being inspected by
the active Inspector window, or ni | if there are no active Inspector
windows.

i nspect or - di sassenbl y [Variable]

The *i nspect or - di sassenbl y* variable specifies whether the
Inspector displays a disassembly when you inspect a function.

If the value of this variable is true, the Inspector displays a disassembly.

If the value of this variable is ni | (the default), no disassembly is displayed.

350 Macintosh Common Lisp Reference

@ [Variable]

Description ~ The @variable is bound to the last object that was cut or copied. It is used
primarily to communicate values between an Inspector window and the
Listener.

The Apropos tool

The Apropos tool performs apr opos on a user specified string. The
Name scrolling-list displays all symbols of a specified type that
apr opos found containing the string.

The Type pop-up menu specifies the symbol's type. Items in the Type
pop-up menu are Function, Variable, Class, Macro, and All. Only
symbols with values of that type will be shown.

Items in the Package pop-up menu limit your request to symbols in
particular packages.

The boolean operators And, Or, and Not allow you to display symbols
which contain the specificed combinaton of two strings.

The Specializers type-in pop-up menu specifies a parameter specializer
for the symbol. The Qualifier pop-up menu specifies an auxiliary
method qualifier with options None, : bef ore,: af t er,and : ar ound.

Chapter 9: Debugging and Error Handling 351

» Figure 9-7 The Apropos dialog box

SI=———— HApropos
Type: | Function v |
Package: | CCL v | Apropos
Contains: |ulin|:|uu.l—|:|use | Inspect
(_fnd]| |
MName:
Callers
1 1MDOH-CLOSE N
W I HNOOW-CLOSE-EVENT-HANOLER; —
W IMDOW-CLOSE- | HTERNAL
WINDOW-CLOSE-K | LLS-PROCESS—F
WIMDOK-CLOSE-M I CELY Methods
i
Specializers:lE“listener |
Qualifier: | None |

[5]

The buttons in the Apropos dialog box have the following functions:
Apropos Performs apr opos on a string in the Contains text edit field.

Inspect Displays an Inspector window for the symbol highlighted in the Name
scrolling-list.

Source Attempts to find the source code for the definition of the symbol
highlighted in the Name scrolling-list. If the symbol was defined when
the value of the variable *r ecor d- sour ce-fi | e* was true, the
source code file is known.

Callers Displays a list of functions that call the symbol highlighted in the Name
scrolling-list, and allows you to select and edit a caller.

Doc Displays the documentation string for the symbol highlighted in the
Name scrolling-list, if a documentation string is available.
Documentation strings are available if the symbol was defined when
the value of *save- doc- st ri ngs* was true and if the symbol
definition contains a documentation string. Documentation strings are
also available for all the external symbols in the COMMON- LI SP and CCL
packages if the MCL Help file is present in the folder containing the
MCL application.

352 Macintosh Common Lisp Reference

Methods

Displays a list of methods that specialize on the class selected in the name

scrolling-list. This button is enabled only when a class is selected. A
dialog box contains the list of methods and a Find It button. Double-
clicking on a method in the list or pressing the Find It button opens a
Fred window containing the source code for the method.

The Get Info tool

The Get Info tool shows information about a symbol. The information
shown depends on the item chosen in the Show pop-up menu.

A symbol is entered in the Name text edit field. The Package pop-up
menu limits the search for the symbol to particular packages. The
Specializers type-in pop-up menu shows the classes on which the
symbol is defined and specifies parameter specializers for the symbol.
The Qualifier pop-up menu specifies an auxiliary method qualifier
using the option None, : before, : af ter, or: ar ound.

The Show pop-up menu allows you to choose exactly what information
you want to see about the symbol, Definition(s), Applicable Methods,
Callers, Documentation, and Inspector. The items Definition(s),
Applicable Methods, and Callers display the relevant source code in a
Fred window if you double-click on an item in the list or press the Find
It button. The Documentation and Inspector items display a
documentation string and an Inspector window, respectively.

The following figure shows the Get Info dialog box.

Chapter 9: Debugging and Error Handling

353

» Figure 9-8 The Get Info dialog box

S=————— et Info §|

Name: |winduu.l—cluse |

Specializers:E"listener |

Qualifier: | None |
Package: | CCL |
Show: | Definitionis) |
<:AROUMD C(LISTEMER?> "l1-listener.lisp focl:11;}" [

=

Get Info Find Def

[

The buttons on the bottom have the following functions:
Get Info Displays the information requested about the symbol.

Remove Def Removes the binding from the symbol in memory. The symbol's name in
the display is marked with an X to indicate that it is now unbound. The
definition of the symbol in the source file is not affected.

Find Def Displays the definition of the symbol from the source file.

The Get Info tool also finds user-defined symbols in Fred windows. If
Get Info cannot find the symbol, it asks if you want to search your Fred
windows for the symbol, as shown in the following figure.

» Figure 9-9 The Get Info modal dialog box

No source file information for
(MY-LINDOLY (FRED-LDINDOLWY T T)).
Search fred windows?

354 Macintosh Common Lisp Reference

The Processes tool

= Figure 9-10

The Processes tool displays information about all existing Macintosh
Common Lisp processes. After selecting this item, an Inspector window
appears on your screen. The Inspector window lists the name, state,
priority, idle status, and utilization of each process.

The Processes Inspector window

S=———————————— Prolessps =——— [0|=
Commands
Hoame State Priority Idle ® Utilization |4~
pol ler Suspended 1] 2. 252 g.0 =]
timet Suspended u] 2. 38s ar.?
Listensr 1 Suspended u] 2,259 0.7 T

Listensar I nput a 2. 48=s 0.3
lnitial Funihig 1 0.00s av.2]
The % Uti | i zati on column shows cumulative values since process
run times were cleared. The Cl ear run ti mes item in the Inspector's
Commands menu resets the values in the % Ut i | i zat i on column.

The Initial process includes time spent in other applications.

For more information on multiple processes in Macintosh Common
Lisp, see Chapter 12: Processes.

Miscellaneous Debugging Macros

Syntax

Description

The following macros are useful for testing and optimizing code and for
tracing program flow.

tine
time form

The t i me macro executes form, prints the duration of execution (with a
special note on garbage collection time, if any), and returns the value
returned by form. The t i me macro is useful for testing and optimizing
code.

Chapter 9: Debugging and Error Handling

[Macro]

355

Argument

Example

Syntax

Description

form Any Lisp form. The form should not be quoted.

? (defun make-numlist (positive-nunber &aux result)
"“returns a list of nunbers between 0 and
posi tive-nunber - 1"
(dotinmes (x positive-nunber)
(setq result (append result (list x))))
; APPEND i s inefficient here.
result)
MAKE- NUMLI ST

? (time (make-numist 100))
(MAKE- NUMLI ST 100) took 449 ticks (7.483 seconds) to run
O that, 444 ticks (7.400 seconds) was spent in GC

(0123456789 10 11 12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99)
? (defun nake-faster-numist (positive-nunber &aux result)
"returns the sane |list nore quickly"
(dotimes (x positive-nunber)
(setq result (cons x result)))
;This is nmore efficient.
(nreverse result))
MAKE- FASTER- NUMLI ST
? (time (make-faster-nunmist 100))
(make-faster-nunist 100) took O ticks (0.000 seconds) to run
(0123456789 10 11 12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99)

print-db [Macro]

print-db {form}*

The pri nt - db macro is equivalent to pr ogn, except that each form is
printed as it is evaluated. The form itself and the result of evaluating form
are both printed (unless form is a string, in which case it is printed only
once). The value of the last form is returned.

If multiple forms are given, they are printed on separate lines. Printed output
is sent to *er r or - out put *, which makes the Listener the active window
before printing. Like pr ogn, pri nt - db returns the value of the last form.

356 Macintosh Common Lisp Reference

The pri nt - db macro is useful for tracing program flow and for checking the
values of variables at various points in a program.

Argument form Any Lisp form.

Chapter 9: Debugging and Error Handling 357

358 Macintosh Common Lisp Reference

Chapter 10:

Events

Contents
Implementation of events in Macintosh Common Lisp / 360
How an event is handled / 360
MCL built-in event handlers / 361
Functions for redrawing windows / 369
Event information functions / 372
The event management system / 375
The cursor and the event system / 379
Event handlers for the Macintosh Clipboard / 383
MCL expressions relating to scrap handlers and scrap types / 384
The Read-Eval-Print Loop / 387
Eval-Enqueue / 388

This chapter explains how Macintosh Common Lisp processes events. It
describes built-in handlers and functions that give event-related information.
It discusses the MCL event management architecture. Finally, it describes two
processes involved in event management: updating the cursor and accessing
the Macintosh Clipboard.

You should read this chapter to understand or program events and event
handlers in Macintosh Common Lisp.

If you are creating handlers for Apple events, you should read this chapter and
then read Chapter 11: Apple Events.

359

Implementation of events in Macintosh Common Lisp

Users generate events as a way of directing program flow. Typical
events are keystrokes and mouse clicks. Events interrupt a program
and often require a response. Whenever possible, Macintosh programs
should be event driven.

Macintosh Common Lisp automatically handles events in a separate
process. When a user generates an event, the current program is
interrupted and an event handler handles the event. Program execution
does not resume until the event-handling function returns. Further
event processing is also deferred until the event-handling function
returns. For this reason, the computer may not respond to user actions
until the event handling is finished.

Many user programs do not need to handle events explicitly. For those
programs that do, several different event-handling methods are
available. In order of increasing complexity these are

» defining methods associated with specific types of events in a view
» defining all methods associated with a view

» defining a hook procedure that has first priority in processing all
events

» disabling all background event processing, and handling events with
an event loop

Most programming languages for the Macintosh computer support
only the last, and most difficult, method of event handling. MCL
programs rarely need to do anything more complex than the first
method.

Programs can be initiated from within an event handler; create a
separate process or use the function eval - enqueue, which lets an
event initiate a process with event processing enabled.

How an event is handled

360

The MCL event system gets each event from the Macintosh Operating
System in turn and binds * cur r ent - event * to it. The event system
then determines the type of the event and calls the appropriate event-
handling function on the relevant view. If the event is a mouse click, the
relevant view is the view in which the click occurred. If the event is a
keystroke, the relevant view is the active (frontmost) window.

Macintosh Common Lisp Reference

Functions that end with “—event —handl er ” should be called only by
the event system.

Many of the default event-handling methods do nothing, although they
are called whenever an event of the appropriate type is processed.
These handlers exist so that they may be shadowed by any subclass of
vi ewthat needs to process events of that type.

Some event handlers defined on views do nothing more than invoke
the same event handler on each subview. In this way nested views and
subviews are processed.

Event-handling functions assume that the * cur r ent —event * variable
is bound to a valid event record (see “Chapter 16: OS Entry Points and
Records”). They may also call the current-event information functions
(listed in “Event information functions” on page 372), which depend on
*current - event * being bound.

MCL built-in event handlers

Syntax

Description

The following are standard event handlers in Macintosh Common Lisp.

vi ew cl i ck-event - handl er [Generic function]
vi ew cl i ck- event - handl er (view si npl e- vi ew) where

vi ewcl i ck-event - handl er (view vi ew) where

vi ewcl i ck-event - handl er (window-or-item f r ed- m Xi n) where

vi ew cl i ck- event - handl er (item di al og-i t em) where

\'
\'
\'

ew cl i ck-event - handl er (itemt abl e- di al og-i t em) where
ew cl i ck-event - handl er (item scrol | - bar - di al og-i t em) where
ew cl i ck- event - handl er (menu pop- up- menu) where

The generic function vi ew- cl i ck- event - handl er is called by the
event system on the window containing the view whenever the user clicks
a view or subview.

The vi ew cl i ck- event - handl er function is not called when the user
clicks the title bar, close box, zoom box, or size box of a window. The method
for si npl e- vi ewdoes nothing. Specialized windows provided by the
system, such as Fred windows, have special behavior.

If you define any window methods, they must call cal | - next - met hod.

Chapter 10: Events 361

Arguments view A simple view, view, or subview, such as a window or
dialog item.
window-or-item
A Fred window or Fred dialog item.

item A dialog item, table dialog item, or scroll-bar dialog item.
menu A pop-up menu.
where The cursor position when the user clicks, expressed in

local window coordinates.

Example

The following code displays the cursor coordinates whenever the user
clicks ny- wi ndow. (As a subclass of vi ew, wi ndowinherits the vi ew
cli ck-event-handl er method for vi ew.)

? (defclass ny-w ndow (w ndow) ())

#<STANDARD- CLASS MY- W NDOWN>

? (defmethod vi ew click-event-handl er
((wi ndow ny-w ndow) where)
(print (point-string where)))
#<Met hod VI EW CLI CK- EVENT- HANDLER (My- W NDOW T) >

? (make-instance ' my-w ndow)
#<MY- W NDOW " Unti t| ed" #x410891>

vi ew key- event - handl er [Generic function]

Syntax vi ew key- event - handl er (view si npl e- vi ew) char
vi ew key- event - handl er (window wi ndow) char
vi ew key- event - handl er (item f r ed- di al og-i t em char
vi ew key- event - handl er (window-or-item f r ed- mi xi n)
current-character

Description The methods of the generic function vi ew- key- event - handl er
examine the current keystroke and determine what is to be done with it.

The method for si npl e- vi ewcalls ed- beep. The method for wi ndow
determines whether the key indicates the selection of a default button or
indicates a change of the current key handler, then selects the button or passes
the keystroke to the appropriate key handler. The method for f r ed- mi xi n
binds the * cur r ent - keyst r oke* variable to the keystroke of the current
event and runs the Fred command associated with the keystroke. The method
for f red- di al og-it emcalls cal | - next - met hod inside wi t h- f ocused-
vi ewand w t h-fore-col or.

Arguments view A simple view.

362 Macintosh Common Lisp Reference

Syntax

Description

Arguments

Syntax

Description

window A window or Fred window.
item A Fred dialog item.
char The current keystroke character.
window-or-item
A Fred window or Fred dialog item.

vi ew act i vat e- event - handl er [Generic function]

vi ew acti vat e- event - handl er (view si npl e- vi ew)

vi ew act i vat e- event - handl er (view vi ew)

vi ew act i vat e- event - handl er (window wi ndow)

vi ew act i vat e- event - handl er (window-or-item fred-m xi n)

vi ew acti vat e- event - handl er (itemt abl e- di al og-i tem

vi ew acti vat e- event - handl er (item scrol | -bar-di al og-item

The generic function vi ew act i vat e- event - handl er is called by the
event system when the window containing the view is made active. The
method for vi ewcalls vi ew act i vat e- event - handl er on each
subview. The method for si npl e- vi ewdoes nothing.

The method for wi ndowincludes highlighting the window and drawing the
size box (if there is one).

view A simple view, view, or subview such as a dialog item.

window A window or Fred window.

item A Fred dialog item, table dialog item, or scroll-bar dialog
item.

window-or-item
A Fred window or Fred dialog item.

vi ew deact i vat e- event - handl er [Generic function]

vi ew deact i vat e- event - handl er (view si npl e- vi ew)

vi ew deact i vat e- event - handl er (view vi ew)

vi ew deact i vat e- event - handl er (window wi ndow)

vi ew deact i vat e- event - handl er (window-or-item fr ed-m xi n)

vi ew deact i vat e- event - handl er (itemt abl e-di al og-item

vi ew deact i vat e- event - handl er (item scrol | - bar-di al og-item

The generic function vi ew deact i vat e- event - handl er is called by
the event system to deactivate a view. It is called when the window
containing the view is active and a different window is made active.

Chapter 10: Events 363

Arguments

Description

Syntax

Description

Argument

Syntax

Description

Argument

Syntax

The method for vi ewsimply calls vi ew- deact i vat e- event - handl er on
each subview. The method for wi ndowincludes removing the highlight and
erasing the size box (if there is one).

view A simple view, view, or subview such as a window or
dialog item.
window A window or Fred window.
item A Fred dialog item, table dialog item, or scroll-bar dialog
item.
key- handl er-m xi n [Class name]

The class key- handl er - m xi n should be mixed into any class that
handles key events. The class f r ed- di al 0g- i t emincludes key-
handl er - mi xi n.

key- handl er-1|i st [Generic function]

key- handl er-1i st (view si npl e-vi ew)

Thekey- handl er - | i st generic function returns the list of key handlers
associated with view.

view A simple view or dialog item.

current - key- handl er [Generic function]

current - key- handl er (window w ndow)

The cur r ent - key- handl er generic function returns the current key
handler of window.

window A window.

set - current - key- handl er [Generic function]

set - current - key- handl er (window wi ndow) item &opt i onal
select-all

364 Macintosh Common Lisp Reference

Description

Arguments

Syntax

Description

Arguments

Syntax

Description

Arguments

Syntax

Description

The generic function set - cur r ent - key- handl er sets the current key
handler of window to item. If item is not already the current key handler and
select-all is true, set - cur r ent - key- handl er selects all of the window.

window A window.

item A key handler. If item is not a key handler, the function
signals an error.

select-all This variable determines whether the entire text of the
key handler is highlighted when it is first selected. The
default is t ; that is, all the text is highlighted and can be
manipulated at once.

add- key- handl er [Generic function]

add- key- handl er (view si npl e- vi ew) &pt i onal window

The generic function add- key- handl er adds a key handler to view. It is
called by i nstal | - vi ew-i n-w ndowwhen the view installed is a
subclass of key- handl er - m xi n. If window has no current key handler,
view becomes the current key handler.

view A simple view or dialog item.

window A window to which to add the key handler. The default
value is (vi ew wi ndow view) .

renove- key- handl er [Generic function]

renove- key- handl er (view si npl e- vi ew) &opt i onal window

The generic functionr enpbve- key- handl er removes akey handler from
awindow. Itis called by the method of r enpve- vi ew f r om wi ndowfor
key- handl er - m xi n.

view A simple view or dialog item.

window A window from which to remove the key handler. The
default value is (vi ew wi ndow view) .

change- key- handl er [Generic function]

change- key- handl er (view vi ew)

The generic function change- key- handl er changes the key handler of
view to the next key handler on key- handl er - i st of view.

Chapter 10: Events 365

Argument

Syntax

Description

Arguments

Syntax

Description

Arguments

Syntax

Description

view A simple view or dialog item.

key- handl er-p [Generic function]

key- handl er - p (item di al og-item
key- handl er - p (key-handler key- handl er - mi xi n)

The key- handl er - p generic function checks to see whether item is a key
handler. When key- handl er - p is called on an instance of a class one of
whose superclasses is key- handl er - m xi n, the function returns t
unless the key handler is disabled. The method for di al og- i t emreturns
nil.

item A dialog item.
key-handler A key handler.

key-handl er-idl e [Generic function]

key- handl er - i dl e (view si npl e- vi ew) &opt i onal dialog
key- handl er-i dl e (item f r ed- di al 0og-item &opt i onal dialog

The key- handl er - i dl e generic function is called periodically via the
defaultwi ndow nul | - event - handl er function to allow a key handler
to blink a cursor or perform other periodic activities.

The method for f r ed- di al 0g-i t emblinks the insertion point and matches
parentheses. The method for si npl e- vi ewdoes nothing.

view A simple view.
item A Fred dialog item.
dialog An argument allowing a dialog to be specified. In system-

supplied methods, this argument is ignored.

w ndow nul | - event - handl er [Generic function]

wi ndow- nul | - event - handl er (window wi ndow)
wi ndow- nul | - event - handl er (windowt)

The generic function wi ndow nul | - event - handl er is called on the
top window (if there is one) whenever the system is idle. It updates the
cursor, runs system tasks, and forces output from *t er mi nal -i o*.If
there is no top window, the unspecialized method simply updates the

cursor..

366 Macintosh Common Lisp Reference

Argument

Syntax

Description

Argument

Syntax

Description

Argument

Syntax

Description

Argument

window A window.

w ndow- sel ect - event - handl er [Generic function]

wi ndow- sel ect - event - handl er (window wi ndow)

The generic function wi ndow- sel ect - event - handl er is called
whenever the user clicks an inactive window. The wi ndow- sel ect -
event - handl er function may be specialized, for example, to make a
window unselectable.

window A window.

wi ndow key- up- event - handl er [Generic function]

wi ndow key- up- event - handl er (window wi ndow)

The generic function wi ndow- key- up- event - handl er is called
whenever a key is released after being pressed. The method for wi ndow
does nothing.

Every key pressed by the user actually generates two events: one when the key
is pressed and another when the key is released.

The default Macintosh event mask filters out key-up events. To allow key-up
events, call #_Set Event Mask with an appropriate mask. Note that you must
reset the event mask before exiting Lisp. For details on event masks, see
Macintosh Technical Note 202 and Inside Macintosh.

window A window.

wi ndow nmouse- up- event - handl er [Generic function]

wi ndow nouse- up- event - handl er (window wi ndow)

The wi ndow nouse- up- event - handl er generic function is called
whenever the user releases the mouse button. The method for wi ndow
does nothing.

window A window.

Chapter 10: Events 367

Syntax

Description

Arguments

Syntax

Description

Arguments

Syntax

Description

Arguments

wi ndow gr ow event - handl er [Generic function]

wi ndow gr ow event - handl er (window wi ndow) where

The generic function wi ndow gr ow- event - handl er is called by the
event system whenever the user clicks a window’s grow box. The method
for wi ndow calls #_G owW ndow, then calls set - vi ew si ze on the
window and the new size.

window A window.

where The position in screen coordinates of the cursor when the
mouse button was pressed down.

wi ndow- dr ag- event - handl er [Generic function]

wi ndow- dr ag- event - handl er (window wi ndow) where

The generic function wi ndow dr ag- event - handl er is called by the
event system whenever a window needs to be dragged. It calls

Setdipand# O i pAbove on the region of the window, copies the
contents of the region to the new location of window, and calls set - vi ew
posi ti on on the window and the new position of the upper-left corner
of the window.

window A window.

where The position in screen coordinates of the cursor when the
mouse button was pressed down.

w ndow zoom event - handl er [Generic function]

wi ndow zoom event - handl er (window wi ndow) message

The generic function wi ndow zoom event - handl er is called by the
event system when the user clicks the window’s zoom box. It executes the
Toolbox calls to zoom the window, then calls Wi ndow- si ze- parts.

The function Wi ndow- si ze- par t s should be specialized if you want to
change the contents of a window whenever the window changes size.

window A window.

message Aninteger, #$i nZoonmQut if the window should move to
the window’s zoom position and size and #$i nZoom n if
the window should move to the position and size it had
before zooming out.

368 Macintosh Common Lisp Reference

Syntax

Description

Argument

Syntax

Description

Argument

w ndow- cl ose- event - handl er [Generic function]

wi ndow- cl ose- event - handl er (window Wi ndow)

The generic function wi ndow cl ose- event - handl er is called by the
event system whenever a window needs to be closed. In the method for
wi ndow, if the Meta key was pressed when the command was given, the
command closes all windows in the class of window. If the Control key was
pressed, window is hidden. Otherwise, Wi ndow- cl ose is called on
window.

window A window.

w ndow do-first-click [Generic function]

w ndow- do-first-click (windoww ndow)

The generic functionwi ndow do- f i r st - cl i ck determines whether the
click that selects a window is also passed to vi ewcl i ck- event -

handl er . The default value is ni | , meaning that the click that selects a
window generates no further action.

You can give a window instance or subclass of Wi ndowits own value for
w ndowdo-first-click.

window A window.

Functions for redrawing windows

Syntax

Whenever a window is created or uncovered, an update event is posted
for the window. The next time events are processed, Macintosh
Common Lisp recognizes the update event and calls Wi ndow-

updat e- event - handl er.

The following functions relate to redrawing windows.

wi ndow updat e- event - handl er [Generic function]

wi ndow updat e- event - handl er (window wi ndow)

Chapter 10: Events 369

Description The generic function Wi ndow updat e- event - handl er is called by the
event system whenever any portion of the window needs to be redrawn.
The window version calls #_Begi nUpdat e to make the Vi sRgn field of
the GrafPort the portion that needs to be redrawn, calls vi ew- dr aw
cont ent s, and then calls #_EndUpdat e to restore the GrafPort Vi SRgn
field.

Because event processing occurs asynchronously, Wi ndow- updat e- event -
handl er may not be called until a moment after a window is created or
uncovered. (In the default environment, this may take up to one-third of a
second; see event -t i cks in “The event management system” on page 375.)
This means that anything drawn in the window immediately after it is created
or uncovered may be erased when wi ndow updat e- event - handl er is first
called.

To fix this problem, simply call event - di spat ch before drawing in the
window. The function event - di spat ch forces the processing of any
pending events. Note that it is necessary to call event - di spat ch only when
drawing occurs soon after a window is created or uncovered.

You should not specialize this function except to note that the window has
been updated. To get special drawing behavior, you should instead specialize
vi ew draw cont ent s.

Argument window A window.
vi ew dr aw content s [Generic function]
Syntax vi ew dr aw cont ent s (view si npl e- vi ew)

vi ew dr aw cont ent s (view Vi ew)

vi ew dr aw cont ent s (window-or-item f r ed- m xi n)

vi ew dr aw cont ent s (item f red- di al og-i tem

vi ew dr aw cont ent s (item t abl e- di al og-item)

vi ew dr aw cont ent s (item scrol | -bar-di al og-item
vi ew dr aw cont ent s (item stati c-text-dial og-item
vi ew dr aw- cont ent s (menu pop- up- menu)

Description The generic function vi ew- dr aw- cont ent s is called whenever a view
needs to redraw any portion of its contents. The vi ewmethod for vi ew
dr aw- cont ent s erases the area in the window’s erase region (for new
windows, this is the entire content area) and then calls vi ew dr aw-
cont ent s on each subview. You can specialize this function so that a
user-defined view can be redrawn when portions of it are covered and
uncovered.

When vi ew dr aw- cont ent s is called by the event system, the view’s clip
region is set so that drawing occurs only in the portions that need to be
updated. This normally includes areas that have been covered by other
windows and then uncovered.

370 Macintosh Common Lisp Reference

Arguments

Examples

view A view or a simple view.
window A window.
item A dialog item.
window-or-item
A Fred window or Fred dialog item.
menu A pop-up menu.

The following code creates a window that always has a circle drawn in

it:

? (require 'quickdraw)

" QUI CKDRAW

? (setq foo (make-instance 'w ndow))

#<W NDOW " Unti t| ed" #x4A3BD9>

? (defnethod vi ewdraw contents ((w ndow (eql foo)))
(pai nt-oval wi ndow 10 10 100 100))

VI EW DRAW CONTENTS

(Note that the circle is drawn only after the first time the window is
covered
and uncovered.)

To add an area (rectangle or region) to the invalid region, call the trap
#_I nval Rect or#_I nval Rgn. Calling these traps forces the posting
of an update event for the window. For this reason, calling these traps
from inside vi ew dr aw- cont ent s or wi ndow- updat e- event -
handl er can lead to an infinite loop.

If you want to invalidate several areas before the update is performed,
surround the calls to#_| nval Rect and #_I| nval Rgn with the special
form wi t hout - i nt er rupt s, which temporarily suspends updates.

The following call will force the redrawing of the entire window. It
doesn’tneed wi t hout - i nt er r upt s because there is only one call to
#_1 nval Rect . If there were several calls to#_| nval Rect,wi t hout -
i nt errupts would postpone updating until the end.
(with-port wptr
(#_invalrect :ptr (rref wptr w ndow portrect)))

The vi ew dr aw- cont ent s function is not strictly an event handler,
since it may be called at any time, not only during event processing. For
example, you can use vi ew- dr aw- cont ent s to implement the
redrawing that occurs during scrolling, or you can use it to implement
a generalized printing mechanism. (For an example, see the file

scrol i ng-w ndows. | i sp in your Examples folder.)

Chapter 10: Events

371

Syntax

Description

Argument

W ndow dr aw- gr ow- i con [Generic function]

wi ndow dr aw gr ow- i con (window Wi ndow)

The generic function wi ndow- dr aw- gr ow- i con is called when the size
box in the lower-right corner of a window must be redrawn. You may
need to call this function explicitly if you draw over the size box.

When a window is inactive (that is, not the frontmost window), wi ndow-
dr aw gr ow i con erases the inside of the size box.

window A window.

Event information functions

Syntax

Description

Argument

Example

The following functions give event-related information. To bypass
these functions, programs can simply examine * cur r ent - event *
during event handling. (See “Chapter 16: OS Entry Points and
Records,” for techniques used in examining records.)

Vi ew nmpuse- posi tion [Generic function]

Vi ew nouse- posi ti on (view si npl e- vi ew)
Vi ew nouse- posi tion (viewnul |)

The generic function vi ew- nouse- posi t i on returns the cursor position
as a point expressed in the view’s local coordinates. The point is returned
as an integer (for a description of points, see “Chapter 2: Points and
Fonts”). This function may be called at any time, not just during event
processing.