
PowerLisp
Common Lisp Development Environment

Version 2.0

by Roger Corman
May 23, 1996

Copyright © 1996 Roger Corman
All rights reserved.

PowerLisp User Guide

Contents

Introduction .. 1
Licensing .. 3

Registering Your Copy of PowerLisp ... 5
How To Reach Us ... 5

Quick Start Tutorial ... 6
Files in this Release .. 10

Compiling the Libraries .. 11
Interactive Environment ... 12

Preferences .. 13
PowerEdit Text Editor... 14

PowerLisp 2.0 Editor Enhancements... 16
PowerLisp Compiler..17

68k Compiler... 17
PowerPC Compiler .. 17

PowerLisp Assembler .. 19
PowerLisp Disassembler ... 20
Linking and Debugging .. 21
Memory Usage.. 22
Operating System Issues ... 23
Common Lisp Implementation.. 24

Data Types... 25
Scope and Extent .. 26
Type Specifiers .. 26
Program Structure.. 26
Predicates .. 26
Control Structure .. 26
Declarations .. 27
Symbols.. 27
Packages .. 27
Numbers .. 27
Characters.. 27
Sequences .. 27
Lists .. 27
Hash Tables ... 28
Arrays .. 28
Strings .. 28
Structures... 29
The Evaluator ..29
Streams... 29
Input/Output ... 29
File System Interface .. 30

PowerLisp User Guide

Errors .. 30
Miscellaneous Features ... 30
Loop ... 31
Pretty Printing .. 31
CLOS .. 32
Conditions ... 33
Series .. 33

Non-standard Extensions.. 34
New Features.. 36

New Features in PowerLisp 2.0 ... 36
New Features in PowerLisp 1.2 ... 36

Troubleshooting ... 38
PowerLisp Startup Process ... 38
What To Do If PowerLisp Will Not Run ... 39

Notes .. 40

PowerLisp User Guide 1

Introduction

This document is intended to provide an introduction to PowerLisp 2.0, a Common Lisp
development environment for the Macintosh. PowerLisp consists of a Common Lisp interpreter,
native-code 680x0 and PowerPC compilers, 680x0 and PowerPC macro assemblers, 680x0 and
PowerPC disassemblers, incremental linker and multi-window text editor. It requires a
Macintosh with at least a 68020 processor and system 7.0 or later, or a Power Mac. About 3
megabytes of RAM are required to run it, and to do much with it you need more like 5 or 6
megabytes. Like any Common Lisp system, the more memory the better.

PowerLisp has the ability to run in the background. While executing a Common Lisp program,
the user may switch to another application as it continues to run.

PowerLisp 2.0 is a fat binary application, and will automatically run in native mode on a Power
Mac, as well as continuing to run on 68k Macintoshes. PowerLisp 2.0 includes compiled libraries
for both 68k Mac and Power Mac, and a PowerPC native code compiler and assembler are
included.

New to PowerLisp 2.0 includes CLOS support, the Common Lisp object-oriented programming
system. A number of other improvements and bug fixes have been included in PowerLisp 2.0.

PowerLisp User Guide 2

PowerLisp is extremely fast. All compiled PowerLisp functions execute as native 680x0 or
PowerPC instructions. The speed is comparable to other fully compiled languages.

PowerLisp programs execute in the background, while you are using the system. All editor
functionality is fully available while you are compiling or otherwise executing Common Lisp
programs. I do not know of another development environment on the Macintosh that can do this.
Of course, you can also use of a different application while your programs execute.

PowerLisp 2.0 is being released as shareware. I expect to release regular updates, which will
include new features and bug fixes. The frequency and scope of these will depend on the amount
of interest there is in the product. I encourage everyone who finds this product useful to send me
the shareware fee (see Licensing, below) and register your copy. Even if you don't elect to register
it, I appreciate correspondence via e-mail or otherwise letting me know what you think of it.

Thanks to Digital Press and Guy Steele Jr., Common Lisp documentation is now available from
within PowerLisp. A hierarchical menu structure allows browsing of the full text of Common
Lisp, the Language 2nd Edition. This text is distributed electronically along with PowerLisp. It is
also hooked into the Common Lisp documentation function.

Please check this product out. I believe it offers extraordinary value for the price. The primary
alternative for Lisp programming, Macintosh Common Lisp from Digitool, is an excellent
product. PowerLisp cannot compete on features or performance with Macintosh Common Lisp. It
is, however, one tenth the cost ($50 as opposed to $395). I feel there may be a niche for a low-cost,
small, easy-to-use product like this. Also, at least for the time being, PowerLisp is the only
PowerPC native common lisp that I know of. If you are using a Power Mac, and you like Lisp,
you will want to take PowerLisp for a spin!

I enjoy programming with PowerLisp, and I hope you will too.

Roger Corman

PowerLisp User Guide 3

Licensing

PowerLisp is distributed as shareware. The author of PowerLisp reserves the copyright to the
executable application, as well as the source code to the compiler, assembler and library
functions. A payment of $50 gives you the right to use one copy of PowerLisp. If you find this
program useful, please send a check for this amount to the address below (under Registering
Your Copy of PowerLisp). If you are a teacher, and are interested in using this for a class, the
standard license fee is $50.00 + $10.00 per student using PowerLisp. The $50.00 fee covers one
permanent license, while the $10.00 fees are good for the duration of the class only. Students who
wish to continue using PowerLisp may choose to register permanently at the student rate of
$30.00. Unlicensed copies of this system cannot be legitimately used in a class setting otherwise.

We have spent a considerable amount of time developing this program. We may elect to spend a
lot more time on it, but only if licensing fees received warrant it.

You may share this program with others. You may not redistribute it for profit, nor make any
changes to it, without the permission of the author.

Note: All registered users of PowerLisp 1.01, 1.1 or 1.2 automatically are registered users of
PowerLisp 2.0. Contact us via e-mail or telephone (see Registering your copy of PowerLisp,
below) to obtain your product registration code if you have registered and have not received
your code by mail.

PowerLisp User Guide 4

PowerLisp 2.0

License Price: $50.00 US
Student Price: $30.00 US

What You Get:

• On receipt of your check, we will forward you any the most up-to-date information we
have regarding bugs, new versions and features. We will keep you informed of new
versions and features as they become available. If possible, send an e-mail address, so
you can be added to the soon-to-be setup PowerLisp mailing list. We will also supply
you with a Product Registration Code which you may use to register your installed copy.
This will disable the startup registration dialog.

• If you send a list of requested additional features, we will do our best to implement them
as soon as possible.

• We will attempt to help with any problems you have and answer questions. We can only
offer limited phone support. The preferred method of contacting us is via e-mail or US
mail. We will answer all mail communications as soon as possible.

• If and when we decide to convert this to a commercial version (non-shareware) licensed
owners of the shareware version will be guaranteed a special arrangement. This would
likely be a free or at-cost license upgrade to the commercial version.

PowerLisp User Guide 5

Registering Your Copy of PowerLisp

Send a check for $50.00 US (or $30 if you are a student) to:

Roger Corman
2124 Cummings Drive
Santa Rosa, CA 95404
USA

You may contact us by mail to the above address, or via e-mail or telephone (see below). Along
with the fee, be sure to send your address (and phone number if you don’t mind). Also we would
appreciate a mention of which version you have, what your system is like, and any comments
you have. A wish list of product improvements would also be welcome. Also, if possible, please
send an e-mail address where you would like PowerLisp update information to be sent.

How To Reach Us

The PowerLisp web site is at: http://www.crl.com/~rgcorman

This site will contain the most up-to-date release of PowerLisp and the most up-to-date
information.

America Online: PowerLisp

Internet E-mail: PowerLisp@aol.com
rgcorman@crl.com

Telephone: (707) 575-4024 (voice)
(707)528-7477 (fax)

PowerLisp User Guide 6

Quick Start Tutorial

This section is intended to briefly lead you through writing, running, compiling, and
disassembling a small Common Lisp program with PowerLisp.

1. Start PowerLisp by double-clicking the application icon.
It will take a few seconds as it loads the standard libraries. When it finishes, your
worksheet will be displayed, with the blinking text cursor. The message “Ready for
input” should appear in the status message area at the top of the worksheet. You should
regularly watch the status bar while programming within the Worksheet. It will often
display messages regarding the status of the Lisp evaluator.

2. Enter a PowerLisp expression.
Try typing:

(list-all-packages)

This command invokes the common lisp function which returns the packages loaded in
the system. To execute it, press the Enter key (not the Return key). In PowerLisp, the
Return key is only used for editing—to enter a new line into the text in the window. Only
the Enter key executes anything. In this case, the entire line of text that the cursor is
positioned on is read by the PowerLisp system and executed.

Note that you may use �-Return (hold down the Command key while pressing Return)
to simulate the Enter key if you prefer. Some keyboards do not have an Enter key, and so
may require this method.

After pressing Enter , the PowerLisp interpreter will output a list representing the
packages loaded in the system. All PowerLisp output is in bold-faced text. What you type
is in normal text.

PowerLisp User Guide 7

3. Create and execute a common lisp function.
Try typing:

(defun print-column (x)
"Prints the elements of a list in a column."
(dolist (i x)

(print i)))

While typing this function, use the Return key to end each line.

After the whole function has been entered, highlight the entire expression by clicking to
the left of the opening parenthesis and dragging to the right of the ending parenthesis.
After the whole expression is highlighted (all four lines) press Enter . The Lisp system
will read and execute the expression, and then return and display the name of the
defined function print-column.

Alternatively, since you are editing in Lisp mode, you may leave your text cursor
positioned immediately following the last close parenthesis if the function definition. You
should notice that the entire function definition is outlined. When you press Enter, the
outlined expression is first automatically highlighted then executed.

4. Execute the function.
Type:

(print-column '(see hear taste smell touch))

The print-column function you defined will cause the list elements to be printed
vertically in the worksheet (one element on each line). It is being executed by the
interpreter.

5. Get function documentation.
Type:

(documentation 'print-column 'function)

The system will display documentation that you defined for the function.

6. Compile the function.
Type:

(compile 'print-column)

If this is the first time you have requested the compiler, it may take a few seconds to load
the compiler and assembler. After loading the compiler, the system will compile the
function.

If the function compiles correctly, the system will print the name of the function.

PowerLisp User Guide 8

7. Execute the compiled function by repeating step 4 above.
It is not necessary to retype this line—just go to the previous line, highlight it and press
Enter . In PowerLisp, you should never have to retype anything!

The system should respond as in step 4.

8. Disassemble the function.
Type and execute the following line:

(disassemble 'print-column)

The system will display a dump of the machine instructions which comprise the function
print-column . You may or may not be interested in this. Compiled PowerLisp
functions always include code to check for the correct number of arguments (in this case,
one).

9. Time the function.
You can invoke PowerLisp’s high-resolution timer by executing the line:

(time (print-column '(see hear taste smell touch)))

The function will be executed as before, and will be followed by a message regarding the
amount of time elapsed during execution. You may compare this against the interpreted
version by re-executing the function definition from step 3 and executing the line above
again. You will see that as an interpreted function it executes slower.

10. Save the function you have defined.
Select the New command from the File menu. Name the new file print -
column.lisp .

Select PowerLisp Worksheet from the Window menu to return to the worksheet (or just
click on its window). Select the function definition (from step 3) by highlighting the
whole thing.

Execute the Copy command via the Edit menu or pressing � -C.

Select the file print-column.lisp from the Window menu or by clicking on its
window.

Execute the Paste command via the Edit menu or pressing � -V.

The function definition should be displayed in the print-column.lisp window.

Select Save from the File menu to save the file.

PowerLisp User Guide 9

Important Notes

• You may have any number of files open. As editor memory gets filled up, temporary files
may be created to store copies of the files you are editing. This helps prevent the number
of files you have open from affecting the amount of memory available to Lisp programs.

• There is no difference between the PowerLisp Worksheet and any other file.
Every open file may act as a worksheet. Lisp output will, however, be inserted into any
file which you use as a worksheet.

New to PowerLisp 2.0: The above statement is no longer completely correct. By default,
all Lisp output will now go to the Worksheet regardless of the window in which you
executed the command. If you prefer the old behavior, you may enable it by turning off
the Output Always Goes To Worksheet option in the Preferences dialog.

• If you are not using Lisp mode editing, you may enter common lisp expressions either a
line at a time, pressing Enter after each line, or by entering a complete expression and
then executing the entire thing at once. The latter is highly recommended. In the first
case, if you have not entered a complete Lisp expression (perhaps not closed a list), you
will see a prompt containing the number of open left parentheses in the message area at
the top of the editor window.

PowerLisp User Guide 10

Files in this Release

The application is called PowerLisp 2.0 . Double click on it to launch PowerLisp.
The documentation is in a Microsoft Word format file PowerLisp 2.0 Documentation .
A folder in the PowerLisp main folder is called Library . It contains libraries that PowerLisp
needs while running. These include the following lisp source files:

cl.lisp Portions of the PowerLisp standard library .
assembler_68k.lisp The PowerLisp 680x0 assembler .
compiler_68k.lisp The PowerLisp 680x0 compiler.
assembler_PPC.lisp The PowerLisp PowerPC assembler.
compiler_PPC.lisp The PowerLisp PowerPC compiler.
loop.lisp The Common Lisp Loop facility (MIT version).
backquote.lisp Optimized backquote facility (from CLTL2, Guy Steele).
defpackage.lisp The defpackage macro implementation.
describe.lisp A partial implementation of the describe function.
format.lisp Format function implementation.
graphics.lisp Some basic graphics routines (PowerLisp specific).
structures.lisp Defstruct macro implementation.
documentation.lisp Documentation function implementation.
clos.lisp Clos library (Closette implementation).
random.lisp Random implementation (CMU).
startup.lisp Run at startup, causes above libraries to load. This can never be

compiled. You may add startup code to the end of this file if you
wish.

Additionally, compiled versions of these may exist along with these source files. They have the
same name, with a .fasl extension (68k binaries) or .ppcl (PowerPC binaries).

The Examples folder contains some PowerLisp source files you may want to refer to for
examples of PowerLisp functions. The file eliza.lisp is a rough version of the Eliza
program from Peter Norvig’s book. The examples are admittedly sparse. I intend to have some
good example programs in future versions. If you have written an interesting program with
PowerLisp, and you wouldn’t mind having it distributed with the releases, please send it to me.
The file closette-tests.lisp contains code from Art of the Metaobject Protocol, by Gregor
Kiczales, Jim des Rivieres and Daniel G. Bobrow. It contains many examples of using CLOS.

The PowerLisp Worksheet file is the file that normally gets loaded as the worksheet
when you launch PowerLisp. If you remove or delete this file, a new one will automatically be
created when you restart PowerLisp.

PowerLisp User Guide 11

Compiling the Libraries

Although compiled versions of the PowerLisp libraries should have been included with your
release, you may want to recreate them yourself.

A files compile-68k-libraries.lisp and compile-PPC-libraries.lisp
are included in the Library folder with this release. Execute the appropriate file to compile the
libraries. Give yourself as much memory as possible and be prepared to wait a while. If you like
you can switch to another application and let the libraries compile in the background. Of course,
you can recompile just a single library if you wish, by using the Common Lisp compile-file
function.

PowerLisp 2.0 does not support cross-compilation i.e. you cannot compile 68k libraries on a
Power Mac or PPC libraries on a 68k Macintosh.

If compilation is successful, new versions of the libraries with a .fasl (68k) or .ppcl (PPC)
extensions should show up in your Library sub-folder.

PowerLisp User Guide 12

Interactive Environment

PowerLisp is integrated with the PowerEdit text editor. The environment provides a “worksheet”
approach to Common Lisp development. It is specifically modeled on the MPW environment,
and also resembled the approach used by the Mathematica application.

Rather than having a window which emulates a console (e.g. the “Listener” in Macintosh
Common Lisp), the worksheet approach does not emulate a console. Any number of text
windows may be open, and any Common Lisp code in any open window may be executed at any
time. The user typically enters a Common Lisp function or expression, highlights the expression,
then presses the Enter key. Note that the Enter key is distinct from the Return key on the
Macintosh keyboard. The Return key is used in the editor to insert a new line. It will not cause
the PowerLisp system to interpret any text.

Note: You may use �-Return (hold down the Command key while pressing
Return) to simulate the Enter key if you prefer. Some keyboards do not have
an Enter key, and so may require this method.

For convenience, if no text is highlighted, the entire line of text that the text cursor is on will be
interpreted whenever the Enter key is pressed. This allows for a usage model which is similar to a
console (i.e. type a line, press Enter, type another line, press Enter). Like most Lisp consoles, until
a Lisp expression is completely entered, no evaluation takes place and no output is produced. If a
Lisp expression is only partially completed, the message area will display the message “Ready
for input .” followed by the number of open left parentheses. This indicates that you are in
the middle of executing an expression.

Pressing Enter after each line (partial expression input) should not be used when you are in the
editor’s Lisp mode, because Lisp mode will sometimes cause more than just the current line to be
executed.

After an entire Common Lisp expression is read, it is interpreted, and the resulting value is
output at the line immediately following the line that the text cursor is on.

New to PowerLisp 2.0: The above statement is no longer completely correct. By default, all Lisp
output will now go to the Worksheet regardless of the window in which you executed the
command. If you prefer the old behavior, you may enable it by turning off the Output Always
Goes To Worksheet option in the Preferences dialog.

Since Common Lisp code can be entered from anywhere in any window, a prompt is not very
useful. Output prompts also tend to get in the way of entering the next expression, as they can
inadvertently get sent back as part of the next expression. Therefore, by default, PowerLisp has
no prompt.

The worksheet approach allows you to very easily edit, execute, re-edit, and re-execute
expressions without unnecessary typing. I think you will come to appreciate it as much as I do.

PowerLisp User Guide 13

The front-most edit window contains a status line. This area, under the popup menus, is used by
the system to display messages about what it is doing. Unless the status line reads “Ready
for input ”, you should not attempt to execute a Common Lisp expression.

When a Common Lisp expression is being executed, you may execute editor commands, and
otherwise edit files. You may also switch to another application. In this case, the Common Lisp
processing will continue in the background. This is useful, for example, during a long compile. If
you attempt to edit a file (with PowerEdit, the PowerLisp editor), any text output by the
Common Lisp program will be directed to what was the current text insertion point at the time
the Enter key was pressed (to begin the execution). I think this is generally what you want. If you
are editing the same file in which the expression was executed, however, the PowerLisp output
will reset the insertion point whenever it outputs text. If you are going to edit files, you probably
should avoid editing the same file you are using to execute Common Lisp code.

Preferences
The amount of time PowerLisp spends executing Common Lisp programs vs. the amount of time
given up to background and editing tasks is now controllable from the Preferences dialog. By
selecting Most Cooperative, background tasks will run the smoothest, but Lisp programs may
run slower. On older Macs, or Macs with a lot of extensions, performance of Lisp programs may
be unacceptable. Least cooperative will give the least time to background and editing tasks,
allowing Lisp programs to run the fastest. Background tasks will only get called once a second,
which may not be acceptable. The default setting is in the middle between these extremes.

By default, all Lisp output will now go to the Worksheet regardless of the window in which you
executed the command. If you prefer the old behavior, you may enable it by turning off the
Output Always Goes To Worksheet option in the Preferences dialog.

Preferences setting must be explicitly saved, via the Save button on the Preferences dialog, or
they will revert back to their original settings next time you run PowerLisp.

PowerLisp User Guide 14

PowerEdit Text Editor

The PowerEdit text editor does not use TextEdit (the built in text editor in the Macintosh ROM). It
therefore is not restricted to text files of 32 kilobytes or less. In fact, it can easily handle text files
over a megabyte in size. PowerEdit does not need to keep the whole file in memory (any
unmodified portions are left on disk).

PowerEdit, unlike TextEdit, correctly handles tabs. Tabs can be set to 1, 4 or 8 spaces for the
document. Other tab settings can be added by using ResEdit to modify the Tabs popup menu
resource. Each text window gets its own tab setting. Tabs get saved in the resource fork of the file,
so that when the file is reopened the editor will remember the most recent setting.

The PowerEdit functions should be self-explanatory. Features include Undo, Find, Replace, Copy,
Cut, Paste, Select All, and Print. The Print feature is currently pretty rough. It doesn’t print
anything except the text of the file (no fancy formatting).

The Window menu maintains a list of all open text files. You can use it to navigate between files
when you have a lot of files open.

Scrolling
PowerEdit uses an improved (slightly different) way of scrolling than most Macintosh text
editors. While you drag the scrollbar thumb, the file scrolls. Normally, in other editors, the text
window does not scroll until after you release the thumb. I worked hard to get this scrolling to
work this way, and am very pleased with the result. The only downside I can see is that it may be
a bit sluggish on slower Macs. I plan to have an option to revert to “normal” scrollbar behavior in
a future version.

Font and Size Pulldowns
Each text window may have a different font and character size associated with it. This
information is not currently saved with the file. The editor uses fractional widths internally to
support non-monospaced font editing. Typically monospaced fonts work best for programming,
however. The default font is Monaco, 9 pt . The font and font size selected are “remembered”
by information in the resource fork of the file.

Document Preferences
A resource of type ‘ MPSR’ is added to the resource fork of any text file which is created or
viewed by PowerEdit. It contains the user settings for the window position and size, the tab
setting, and the font and font size. It is compatible with the method that MPW uses to save this
information, so that it is convenient to alternate between PowerEdit and MPW.

Common Lisp Support in PowerEdit

PowerLisp User Guide 15

PowerEdit includes some features which make it particularly useful for Common Lisp
programming. For one thing, all PowerLisp interpreter output (which is sent to standard output)
is printed in a bold version of the font you have selected. This serves to distinguish between your
input and the interpreter’s output. The editor stores and remembers text style information. The
PowerLisp system ignores this information, however. All text, bold or otherwise, looks the same
to the interpreter.

An additional Lisp support feature involves the highlighting of parenthesized expressions. If the
window is in Lisp Mode, and the text cursor is next to a parenthesized expression (a left or a right
parenthesis which is balanced) the entire expression is highlighted by an outline. This is difficult
to explain but relatively easy to demonstrate. Just turn on Lisp Mode from the popup menu, and
enter a Common Lisp expression with several levels of parentheses.

Lisp Mode is automatically turned on by the editor for any file with a .lisp extension on the
filename. You can explicitly turn it on or off any time from the popup menu.

In Lisp Mode, when a parenthesized Lisp expression is outlined, pressing Enter will execute the
entire expression, rather than just the current line. To make it obvious, the whole expression gets
highlighted for a fraction of a second before executing it.

When the cursor is placed next to a lisp expression (highlighting it), double clicking will select the
entire expression, which is very useful for cutting and pasting lisp expressions.

Line Wrap Mode

Line Wrap mode works much better in 2.0 than it did in any previous version but still has some
bugs that show up when editing text. It is also rather slow on certain machines. You may turn on
this mode, via a checkbox to the left of the status line. I find it occasionally useful to turn this
mode on when browsing unformatted Lisp output (which may otherwise produce vary long
lines). Line Wrap mode is now compatible with Lisp mode (unlike with previous versions).

Formatting

When you save a file which has bold or italicized text in it, the text attributes get stored in a
resource of the file. This causes the bold text to be bold when you later load the file (it saves this
attribute). You may use the edit menu commands Bold, Italics and Plain to control the text
attributes of text in a file. These attributes are entirely ignored by the Lisp interpreter.

Lisp Mode

In the Lisp mode of the editor, when a parenthesized Lisp expression is outlined, pressing Enter
will execute the entire expression, rather than just the current line. To make it obvious, the whole
expression gets highlighted for a fraction of a second before executing it.

When the cursor is placed next to a lisp expression (highlighting it), double clicking will select the
entire expression, which is very useful for cutting and pasting lisp expressions.

PowerLisp 2.0 Editor Enhancements
• Lisp output goes to the Worksheet by default, regardless of which window you execute a

lisp expression from.

PowerLisp User Guide 16

• The amount of memory allocated to the editor was increased in PowerLisp 2.0, which
makes editing large files a little smoother.

• A bug that showed up on the display when dragging to off the right or left side of the
window (invoking auto-scrolling) has been fixed.

• Several bugs relating to using Lisp mode and line wrap mode together have been fixed.
A few screen anomalies (such as vertical bars) will still show up occasionally in line wrap
mode, however.

Lisp mode has been improved. As several of you noted, it seems logical that when a Lisp
expression is outlined, pressing Enter should execute the entire expression, rather than just the
current line. I have implemented this. To make it obvious, the whole expression gets highlighted
for a fraction of a second before executing it.

Another problem several people had was getting buried in open parentheses. When you are
entering expressions, and have not closed enough levels of parentheses, the system seems frozen.
To make it clearer, the editor now shows the number of open parentheses in the message bar. I
think this helps.

When you save a file which has bold or italicized text in it, the text attributes get stored in a
resource of the file. This causes the bold text to be bold when you later load the file (it saves this
attribute). You may use the edit menu commands Bold, Italics and Plain to control the text
attributes of text in a file. These attributes are entirely ignored by the Lisp interpreter.

PowerLisp User Guide 17

PowerLisp Compiler

68k Compiler
The PowerLisp 68k compiler is a full 680x0 native code compiler. This means that a function, once
compiled, executes as direct machine instructions. This allows the compiled lisp functions to
execute very fast. It is distinct from the intermediate code that some Lisp systems produce.

The compiler can be invoked on a single function, with the compile function, or on a source
file with the compile-file function. The first time you call either of these functions, the
compiler and assembler modules are loaded into memory. This can take from 5 to 20 seconds
depending on your system. After loading, compiling is quick. A function typically takes less than
one second to compile.

When the compile-file function is used, a binary file of machine code is produced. This file
is of type ‘FASL’ and typically has the extension .fasl . Binary files are typically about 3
times as large as the source files they originate from, but that is only because of the relatively
inefficient way that all the symbol information is stored in the binary file. PowerLisp 1.1 compiled
files are about 40% smaller than 1.01 compiled files (and still compatible with 1.01 files). They
need to store a lot of symbol information so that all the addresses can automatically be updated
correctly when the file is loaded in another system or at a later date. Once loaded, compiled code
is relatively space efficient. When compiled code segments are no longer needed, the garbage
collector will correctly discard them.

The entire compiler is written in Common Lisp. A couple of support functions had to be added in
C++ because there is no support for packed arrays of short integers, but all the significant stuff is
in the file compiler.lisp which is included in this release. The compiler directly generates
68000 assembler code, which it then passes off to the assembler to create the function. I could
improve the compiler performance somewhat by assembling as it goes, but I have found the
intermediate step useful for debugging the compiler.

The compiler generates code which generally behaves exactly like interpreted code, only faster. I
typically see a 5 to 30 times speed improvement when I compile something. In terms of
debugging, there are some differences between interpreted and compiled code. In at least one
case, compiled code is more correct than interpreted (in the case of returning multiple values).
Some special forms are not yet implemented in the compiler.

PowerPC Compiler

When running native, PowerLisp automatically loads and executes the PowerPC compiler
(compiler_ppc.lisp & compiler.ppcl) in response to a compilation request. This
compiler generates PowerPC machine code which conforms to Apple's PowerPC runtime
architecture specification. When PowerLisp is running native on a Power Mac, 68k compiled lisp
files (.fasl) cannot be used. Although theoretically possible to do so, by invoking the 68k emulator

PowerLisp User Guide 18

via the mixed mode manager, the time spent in mode switching would probably be prohibitively
expensive.

Compiled PowerPC code is stored in files with a .ppcl extension. By running PowerLisp on a
Power Mac, and compiling your lisp code to native Power Mac code, you will get the best
performance possible from PowerLisp.

PowerLisp 2.0 Modifications

The special forms flet and labels are now supported by the compiler.

PowerLisp User Guide 19

PowerLisp Assembler

The assembler was designed primarily to service the compiler. It is, however, useful in its own
right. It could be used as a vehicle for accessing toolbox calls and other system services which are
not otherwise provided. Little support for this is included, however, in the current release.

68k
Not all 68000 instructions are implemented, although the most common ones are. The complete
source to the assembler is included with this release, in the file assembler_68k.lisp . The
assembler is written in Common Lisp, and all assembler instructions are implemented as macros
in the assembler package. These macros automatically expand into the machine code for the
instruction when expanded by the assembler in the appropriate context. This simple design
allows the easy addition of assembler macros. Many sample macros can be seen in the assembler
source. 68000 instructions which are not implemented could be added by anyone who wanted to
take the time. I plan to expand the assembler and add a foreign function interface.

PowerPC
Not all PowerPC instructions are implemented, although the most common ones are. The
complete source to the assembler is included with this release, in the file
assembler_ppc.lisp . The above comments (regarding the 68k assembler) apply to the
PowerPC assembler as well.

PowerLisp User Guide 20

PowerLisp Disassembler

The disassemble function can be used to disassemble a compiled function to examine its
machine code. It will disassemble functions which have been compiled by the Lisp compiler, as
well as built-in functions which have been compiled by the C++ compiler. It isn’t fancy, but it is
pretty useful. For compiled Common Lisp functions, the disassembler is good at displaying the
names of called functions (targets of jsr instructions). Compiled C++ functions often call
functions which the disassembler does not know about, so you may get some incorrect function
names. Normally you will only be disassembling compiled Common Lisp functions.

The PowerLisp 2.0 disassembler will disassemble PowerPC code when running on a Power Mac,
or 68k code when running on a 68k Macintosh.

PowerLisp User Guide 21

Linking and Debugging

PowerLisp features an incremental linker which immediately link in functions when they are
compiled or loaded. Whenever a function is replaced by a new function, whether compiled or
interpreted, all compiled branches to that function are correctly routed to the new function. This
is done via a distributed jump table which is managed by the linker. Interpreted functions have a
jump table entry which will cause a branch into the interpreter whenever a compiled function
tries to call them. The interpreter can then, based on call stack information, determine which
function was intended, and then evaluate it. If that function is later compiled, a direct jump to it
replaces the interpreter branch.

Debugging facilities are rudimentary. Some non-standard functions are included which will trace
the evaluation call stack or the compiled function call stack. Unfortunately there is not a single
integrated function which will trace both.

While a Common Lisp program is executing, the call stack may in fact have an interpreted lisp
function, which calls a compiled lisp function, which calls a compiled C++ function, which calls
an interpreted Lisp function, ad nauseam. This situation is quite common, in fact. Debugging is a
little easier if all the functions you are debugging are compiled, or all are interpreted.

Trace and untrace functions are useful for interpreted code. They are not of much value for
compiled code. I use the non-standard functions address and exec-address a lot to get
addresses which I can then examine in MacsBug.

A function called error-stack is included to help with debugging. If your program aborts
with an error message, you may immediately invoke this:

(error-stack)

This will print a processor dump of the top ten stack frames when the error occurred. This works
better for compiled-code than for interpreted code, because all the functions on the processor
stack will be interpreter functions in interpreted mode (as opposed to your functions). It still will
print useful information, however.

To see the interpreter stack, you may use the function dump-lisp-stack . This must be
invoked prior to an error occurring, however. Typically you can put it into the code of an
interpreted function. When that function executes, the call to dump-lisp-stack will cause
the top interpreter stack frames to get displayed, along with the associated lexical environments.

PowerLisp User Guide 22

Memory Usage

Like most Lisp systems, PowerLisp likes to have quite a bit of memory. Garbage collection will be
invoked frequently if you are short on memory, and that will cause performance to suffer.

At startup, PowerLisp sets aside enough memory to hold the application’s code segments in
memory, as well as some memory for operating system overhead such as windows, resources,
etc. Approximately 300k bytes of RAM are set aside for the editor to hold text. About 25% of the
remaining memory is given to the stack. This allows a large amount of recursion without
overflowing the stack. The rest is allocated as a large non-relocatable block which is then
managed by the PowerLisp memory manager.

The PowerLisp memory manager allocates about 50% of the heap to Lisp nodes. These are each
10 bytes in size (12 bytes on Power Macs), and consist of two pointers and flag and type bits.
They are used to store cons cells, integers, floating point numbers, ratios, and characters. Other
Lisp data types require larger blocks. All larger items and variable sized memory blocks are
allocated by the other 50% of the heap. This strategy has proven to provide good performance.
Fixed size cons nodes can be allocated very quickly. The garbage collector only keeps track of
these nodes, or objects which are referenced by these nodes.

In a typical scenario:

PowerLisp partition size: 4096K bytes (4 megabytes)
System use: 600K
Editor heap: 300K
Stack: 800K
Nodes: 1200K (around 125,000 nodes)
Variable sized heap objects: 1200K (used by Lisp system)

Variable sized heap objects include compiled Lisp code, vectors, arrays, text editor data
structures, packages and hash tables.

Memory Requirements

PowerLisp 2.0 requires at least a 4 megabyte partition. However, 5 megabytes is a more
reasonable minimum. If you want to use the compiler, you will need at least a 5 megabyte
partition. A larger partition is recommended, or else you will wait on the garbage collector a lot
while compiling. 6 megabytes is a good size for moderate projects.

PowerLisp User Guide 23

Operating System Issues

PowerLisp runs only with Macintosh operating systems 7.0 or later. PowerLisp multitasks
cooperatively with other applications, so that programs can continue running in the background
while PowerLisp programs are executing. PowerLisp programs can also run in the background
while you are running other applications.

PowerLisp supports the standard four Apple Events: Launch, Open, Print and Quit. It is therefore
high-level event aware. It is 32-bit clean, and makes use of as much memory as you choose to
give it.

PowerLisp is fully compatible with system 7.5.

PowerLisp User Guide 24

Common Lisp Implementation

The Common Lisp implementation in this release of PowerLisp is lacking in a number of ways,
which I will detail below. As you probably are aware, Common Lisp consists of a huge number of
functions and data types. Rather than wait a couple more years to release this, I have tried to
include the most useful features of the language. As a very rough estimate, I believe this release
implements about 95% of Common Lisp as specified in the first edition of Guy Steele’s Common
Lisp: The Language., 2nd edition.

I would like to build a reference of what is included, because it would include a huge number of
functions and features. Because of time constraints, however, I will have to base this document
more on what is missing from Common Lisp: The Language. While a number of things are not
currently implemented, it is still a very useful system.

The following section of this document covers the PowerLisp language implementation, roughly
in the order in which they are covered in Guy Steele’s Common Lisp: The Language, Second
Edition.

In this document, I will refer to Guy Steele’s Common Lisp: The Language, the first edition, as
CLTL1. The second edition of the reference will be referred to as CLTL2.

PowerLisp User Guide 25

Data Types
Characters
Symbols
Lists
Functions
Text strings
Packages
Hash tables
Read tables
Random States
These data types are all implemented according to the language specification.

Numbers
Integers, floating-point and ratios are implemented. PowerLisp 1.1 includes complex numbers
and bignums (large integers). Integers are stored in 32 bits, floating-point in 64 bits and ratios
consist of two integers. Only one size of floating point number is provided. Large integers may be
any size up to your memory limitations.

Arrays
Generalized arrays, bit vectors and character strings are supported.
Bit vectors and generalized arrays may be multi-dimensional, up to 7 dimensions. Character
strings may only be single-dimensioned (vectors).
Arrays of specific types (packed arrays of integers, for example) are not supported, but this
should largely be transparent to Common Lisp programs.

Streams
Streams are implemented, with a few limitations.

Pathnames
Pathnames are just text strings currently—no “system independent” path name object is
supported. Pathname strings can represent full path names, or partial path names relative to the
default directory. They must be in Macintosh format, which uses colons rather than slashes to
separate directory names.

Examples of paths:

"VolumeName:My Directory:My File" ; full path
"My File" ; in current directory
":My Subdirectory:My File" ; in subdirectory of current
"::MyFile" ; in parent directory (one level up)

Random States
The random number package is fully implemented using the CMU library. This results in much
better randomness than the previous implementation. The random states are now readable.

PowerLisp User Guide 26

Structures
Structures are implemented according to the language standard. Some of the
options are not supported yet, however. List-based structures are not supported. In PowerLisp
1.1 code which uses structures will compile correctly.

Objects
CLOS is now included with PowerLisp. See the section on CLOS for more information.

Scope and Extent
PowerLisp adheres to the Common Lisp specification.

Type Specifiers
The Common Lisp type system conforms to CLTL2. No optimizations are currently done based
on type declarations.

Program Structure
This area of the language is more or less complete. This includes functions, both interpreted and
compiled, special forms, macros (interpreted and compiled), special variables, constants, etc. All
special forms are correctly recognized.

All defining constructs (defun , defmacro , defstruct , defconstant , etc.) allow the
inclusion of a documentation string. This string gets stored on the property list of the symbol, and
can be accessed as specified by the language.

Compiled and interpreted functions can be freely intermixed in the call stack, and compiled
functions are incrementally linked into the system as soon as they are compiled or read.

Predicates
Implemented.

Control Structure
Most of this chapter is implemented, with a few exceptions. Compiler macros and the
compiler-let form are not implemented. Some of the features which are new in CLTL2 are
not implemented.

Declarations

PowerLisp User Guide 27

Declarations are mostly allowed but ignored by PowerLisp. In future versions of the compiler,
faster code generation should be possible by paying attention to declarations. Violations of
declarations are also ignored.

In PowerLisp 1.1 and later, special declarations are significant, and are correctly interpreted
and compiled.

Symbols
Implemented.

Packages
Implemented.

In PowerLisp 1.1 and later, defpackage and the remaining package functions and macros
have been included. There may still be some problems with the way shadowing symbols are
handled, and user interaction with the shadowing facility is not supported (load time querying to
resolve ambiguities).

Numbers
PowerLisp includes most of the numeric functionality specified in CLTL2. Some math functions
will give an error when they encounter a large integer or complex number. The byte are now
implemented in PowerLisp 2.0. The boole function is not implemented.

Characters
All chars are standard-chars.

Sequences
These functions are pretty complete. All sequence operations can be applied to lists, vectors, bit
vectors and character strings.

Lists
Implemented.

Hash Tables
Implemented. Hash Tables are used internally by the package system.

PowerLisp User Guide 28

Arrays
Partially implemented. Arrays can be up to seven dimensions. Some key arguments to make-
array are not implemented. PowerLisp 2.0 has much improved array functionality over
previous versions, and most array features.

Strings
Mostly implemented. A few of these functions need to be implemented still.

PowerLisp User Guide 29

Structures
Structures can be defined and are correctly added to the type system. Some key arguments to
defstruct and some slot options are not implemented yet. PowerLisp 2.0 handles structures
much better, more efficiently and implements more of the standard functionality than did
previous versions.

The Evaluator
This is the Common Lisp interpreter. Top level run-time loop features such as +, ++, +++ and * ,
** , *** are now implemented.

Streams
Partially implemented. This area is still a little weak and is a high priority for improvement. The
most important features are there, however. PowerLisp 1.2 adds support for specification of read,
write or read/write access when file streams are created with the open function.

Input/Output
The Lisp reader is implemented as specified, which is not easy in an event-driven environment!
Read macros can be defined, and are used internally for many things (check out the standard
library and compiler source code).

Options to the format function are partially implemented. This needs some work still. A
number of other features described in this chapter are not yet implemented.

PowerLisp 2.0 supports more format options than previous versions.

PowerLisp User Guide 30

File System Interface
As mentioned above, pathnames are just character strings currently. I intend to change this soon,
so that a pathname object contains an FSSpec internally but can still be specified by a path
string. Using strings for pathnames is compatible with Common Lisp.

Some Macintosh-specific functions are available:

(set-file-creator my-open-file "ROSA")
(set-file-type my-open-file "EPSF")

These functions can be used to set the type and creator of any open file. An error is signaled if
you try to call these functions on other types of streams.

File wildcard specifiers are not yet supported.

Errors
Errors are implemented as exceptions (as thrown by the throw special form). They are typically
caught at the top level. Continuable errors are not yet implemented (for want of a debugger).

In general, all Lisp functions, both compiled and interpreted, signal errors whenever the wrong
number or type of arguments is passed to them.

Miscellaneous Features

Compiler
The compiler is covered in a separate section.

Documentation
The documentation facility is fully implemented.

Debugging tools
While compiled and interpreted functions peacefully coexist at run-time, their behavior as
regards debugging is significant. The macros trace and untrace are implemented for
interpreted, but not compiled code. That is, you can compile a function which calls trace , but
only the interpreted function calls will actually be traced.

The step function is not implemented. There is no real interactive debugger. This should be
improved in a future release.

The time macro is implemented, and uses the Mac’s Time Manager to produce microsecond
timings accurate to about 20 microseconds. This is very useful for performance tuning.

The describe function is only partially implemented (symbols are well supported). I intend to
improve it.

The inspect function is not implemented yet.

PowerLisp User Guide 31

The room function can be used to determine how much memory is available. See below for more
information about memory usage. Another function gc invokes the garbage collector. Usually
you should call it before calling room to get an accurate result.

The ed function is implemented for editing files:

(ed filename)

causes the PowerEdit editor to open the file filename for editing. This is identical to using the
Open command from the editor.

The functions dribble and apropos are not implemented.

Environmental Inquiries

These are not yet implemented.

Loop
The complete Loop facility is provided courtesy of the publicly available source code from MIT.
This has been tested and run both in interpreted and compiled mode and seems to work fine. It
has not been tested thoroughly, however.

Loop macros tend to expand into huge Common Lisp expressions, which execute slowly in
interpreted mode but compile into pretty tight, fast code. It is like a language unto itself, and
rather interesting.

The first time the system encounters a loop macro, it loads the loop package. This takes a few
seconds. Subsequent uses of loop will not demonstrate this delay.

Pretty Printing
A simple pretty printing function is now included with PowerLisp. The fully cusomizable pretty
printing functionality proposed in CLTL2 is not implemented.

PowerLisp User Guide 32

CLOS
This had been added in PowerLisp 2.0. It is based on the Closette implementation in the book The
Art of the Metaobject Protocol by Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow. The
source to this implementation is included (in the file clos.lisp in the library folder). This
implementation of CLOS is a subset of the full CLOS specification (as described in CLTL2). The
following limitations apply (according to Chapter 1, section 1.1 of the book):

All the essential features of full CLOS are included: classes, which inherit
structure and behavior from one or more classes, instances of classes, which are
created, initialized and manipulated; generic functions, whose behavior depends
on the classes of the arguments supplied to them; and methods which define the
class-specific behavior and operations of generic functions. The major restrictions
of the simplified dialect include:

No class redefinition. Full CLOS allows the definition of a class to be changed;
the changes are propagated to its subclasses and to extant instances. The subset
does not allow classes to be redefined.

No method redefinition. Full CLOS allows methods to be redefined, with the
new definition completely replacing the old one. The subset does not allow
methods to be redefined.

No forward-referenced superclasses. Full CLOS allows classes to be references
before they are defined. One class can be defined in terms of another before the
second has been defined. These forward references are not permitted in the
subset.

Explicit generic function definitions. Full CLOS allows the definition of a
generic function to be inferred from the method definitions. The subset requires
that a generic function be explicitly introduced with a defgeneric form before
any methods are defined on it.

Standard method combination only. Full CLOS provides a powerful mechanism
for user control of method combination. The subset defines only simple "demon"
combination (primary, before- and after- methods).

No eql specializers. Full CLOS allows methods to be specialized not only to
classes, but also to individual objects. The subset restricts method specialization
to classes.

No slots with :class allocation. Full CLOS supports slots allocated in each
instance of a class, and slots which are shared across all of them. The subset
defines only per-instance slots.

Types and classes not fully integrated. Full CLOS closely integrates Common
Lisp types and CLOS classes. It is possible to define methods specialized to
primitive classes (e.g. symbol) and structure classes (defined with defstruct).
The subset defines classes for the primitive Common Lisp types but not for
structure classes.

Minimal syntactic sugar. A number of convenience macros and special forms are
not included in the subset. These include with-slots, generic function,
generic-flet and generic-labels.

PowerLisp User Guide 33

The book is highly recommend if you want to work with CLOS. The file clos-tests.lisp,
included with PowerLisp 2.0 in the examples folder, contains most of the code samples from the
book, and is useful for seeing how CLOS works.

Conditions
Not implemented (CLTL2 feature).

Series
Not implemented (CLTL2 feature).

PowerLisp User Guide 34

Non-standard Extensions

Here are some non-standard functions and variables which are included in PowerLisp and which
you may find useful.

top-level [variable]
This should normally be bound to the top-level read-eval-print loop.

address object [function]
Returns the machine address of the lisp object that is its argument.

exec-address compiled-function [function]
Returns the machine execution address of a compiled function. If a symbol which has a compiled-
function associated with it is passed, that symbol’s jump table address (maintained by the
incremental linker) is returned. Note that this is different from the address of the function, but
normally just represents a jump instruction to the other address. This function is useful for
debugging compiled code (in combination with a debugger like MacsBug).

function-definition function [function]
Returns the lambda expression of an interpreted function. This function is superseded by the
ANSI Common Lisp function function-lambda-expression , which is implemented in
PowerLisp 1.1 and later, and returns the lambda expression as the first of three return values.

gc [function]
Explicitly invokes the garbage collector. This is more or less a standard language extension, but is
not required by the standard. Use it before calling the room function for a more accurate
estimate of space remaining.

package-hash-table package [function]
Returns the hash table used by the passed package. This is sometimes useful.

print-function interpreted-function [function]
Prints the passed function.

quit [function]
stop [function]
Exits interpreter. You probably never want to call these. Just exit the program instead (using
menu Quit command).

hash-table-misses hash-table [function]
Provides statistics on hash-table effectiveness. Returns the number of times a hash-table lookup
attempt has “missed” (failed).

hash-table-hits hash-table [function]

PowerLisp User Guide 35

Provides statistics on hash-table effectiveness. Returns the number of times a hash-table lookup
attempt has “hit” (succeeded).

set-file-type file-stream type-string [function]
Sets the Finder type for the open file. Signals an error if a stream which is not a file is passed to it.

Example:
(setq f (open "myfile"))
(set-file-type f "EPSF") ; sets the file's type to 'EPSF'

set-file-creator file-stream creator-string [function]
Sets the Finder creator for the open file. Signals an error if a stream which is not a file is passed to
it.

Example:
(setq f (open "myfile"))
(set-file-creator f "ROSA") ; set the file's creator to 'ROSA'

dump-lisp-stack [function]
This function prints a trace of the evaluator stack. It will only include information on evaluated
function calls (not compiled functions).

%stack-trace [function]
This function returns a list of information on each processor stack frame. This is useful when
debugging compiled functions. Evaluated function calls will show up as calls to the interpreter.

stack-trace [variable]
After any error, this global variable is automatically left bound to a list of stack frames that were
in effect at the time of the error (as obtained with %stack-trace). This is very useful. Use the
expression:

(error-stack)

after an error to see the stack trace.

error-stack [function]
This function may be used to print a dump of the processor stack state at the time the last error
was encountered. This function can be used instead of the expression listed above.

PowerLisp User Guide 36

New Features

New Features in PowerLisp 2.0
The biggest new feature in PowerLisp 2.0 is the addition of CLOS support. See the section on
CLOS for details.

A Preferences dialog has been added. It lets you control how much time is given to background
processes while Lisp programs are running. It also lets you choose between having output all go
to the Worksheet vs. output will go to the window that last executed a Lisp command.

A registration screen has been added at startup. If you have registered, you can disable it by
entering your name and product registration code in the Registration dialog. Contact Roger
Corman to receive your code if you have already registered.

In PowerLisp 2.0, structures, arrays and strings are all stored more efficiently. Arrays and strings
are more consistent and more closely adhere to the Common Lisp standard.

The Common Lisp variables +, ++, *, **, etc. are now properly bound during top loop execution
as specified in the Common Lisp standard.

A number of other Common Lisp functions which were missing are now implemented (I am
sorry to not be more specific here). Overall, PowerLisp 2.0 is much closer to the CLTL2
specification than any previous version of PowerLisp.

A serious bug which prevented PPC compiled code from working on certain Power Macs (related
to the memory setup) has now been fixed. This generally caused a crash during startup on
affected machines. The fix was released last summer as PowerLisp 1.2.1d. These changes are now
included in PowerLisp 2.0.

New Features in PowerLisp 1.2
The most important new feature of PowerLisp 1.2 is native Power Mac execution and
compilation. For 68k users, the new tagged pointer architecture allows much better handling of
integers, which reduces memory requirements and improves speed. Future versions of
PowerLisp should gain even more from this new architecture.

A number of bugs have been fixed, and new functions implemented. The most important bug fix
has to do with floating point number comparisons, which now work correctly. My apologies to
those of you who scratched your heads over this one. It was actually a one character typo in a
routine called by all the comparison operators.

The open function pays attention for whether files are read-only, write-only, etc. This mat cause
some of your code to break if it relied on PowerLisp 1.1's default to read/write permission. Read-
only is not the default, as per the Common Lisp standard.

Printing of symbols and strings now correctly pays attention to the *print-escape*
variable.

PowerLisp User Guide 37

The documentation function is enhanced for version 1.2. Asking for documentation for a
Common Lisp symbol now automatically brings up the appropriate text from Guy Steele's book
Common Lisp the Language (thanks to Digital Press for allowing electronic distribution). Also,
this book as well as PowerLisp documentation can be browsed from a hierarchical
Documentation menu.

PowerLisp User Guide 38

Troubleshooting

PowerLisp Startup Process
When PowerLisp launches, it first boots the kernel, which sets up all the internal heaps and data
structures, including initializing symbols in the symbol tables, and loading necessary code. Once
the kernel is successfully started, the file stdlib.lisp is searched for in the Library folder,
which is expected to be a subfolder of the folder the application was launched from. This file
normally contains code which will allow compiled lisp files to be loaded (the kernel does not
have this feature built in), and then proceeds to load all the file cl.lisp . This file loads a
number of other startup files as well. Compiled versions of these files are searched for first
(.fasl or .ppcl extension) but if these are not found the loader will attempt to load copies of
these files with a .lisp extension. Any files with a .lisp extension will run interpretively,
and therefore somewhat slower, than the compiled files.

If anything goes wrong during the startup process, the system will not be left in a stable state. It
may appear to perform correctly, but will likely crash on the first evaluation error (the evaluator
error handler gets set up relatively late in the boot process). Generally you will get some type of
error message in the Worksheet if anything went wrong during startup.

A typical problem is that not enough memory is available to load all the modules that need to be
loaded. If you get a message that says Can't copy compiled function this actually
means you are low on memory. Other low memory messages are less cryptic.

PowerLisp User Guide 39

What To Do If PowerLisp Will Not Run
Some users have reported that PowerLisp freezes during startup, giving them no error message.
There was a known bug in PowerLisp 1.2, fixed in 2.0, which cause a crash during startup on
Macs with virtual memory turned on (including RamDoubler) or Macs with >32 megs of RAM. A
development fix (PowerLisp 1.2.1d) was released to fix this problem, but some users still seem to
have problems. If you have problems running PowerLisp, here are some things to try.

• Increase the amount of memory available. The minimum that is specified in the Get
Info box may not be enough to start up on every Macintosh configuration. Increase this by
one or two megabytes and try again. If you are then able to start PowerLisp, you can
experiment with the value to get the right minimum for your system. If you are low on
memory, try using RamDoubler (from Connectix) or Macintosh Virtual Memory (from the
Memory Control Panel). It is not recommended that you run PowerLisp in a partition larger
than the physical RAM in your system. If you try this, performance will probably not be
good!

• Remove the compiled libraries. If increasing memory doesn't help, you can try running
interpretively. You do this by moving all the .fasl (on 68k) or .ppcl (on Power Mac) files
from the library folder. Put them in a different folder for safekeeping. Then restart
PowerLisp. Normally this will allow PowerLisp to run, although performance will be slower.

• Run emulated on Power Mac. Another option, for Power Mac users, is to run PowerLisp in
68k emulated mode. You can do this by using ResEdit to edit a copy of PowerLisp 2.0. Do not
modify your original. In ResEdit, open the PowerLisp 2.0 application. Delete the 'cfrg'
resource. Save the application, and restart it. This will cause PowerLisp to run emulated,
using the compiled .fasl 68k libraries. Performance may be better than running
interpreted (above). If you try this, please do not redistribute this modified copy of
PowerLisp.

• Disable extensions. If none of the above works, try rebooting your Macintosh with the shift
key held down. This will disable extensions. See if this allows you to run PowerLisp.

If none of the above works, please put together a mail message containing whatever information
about your system you can, as well as the version of PowerLisp you are using, and send a
message to PowerLisp@aol.com . We cannot guarantee we will be able to help non-registered
users, but if at all possible we will try to contact you with some advice. In any case, your
messages will help us track down problems and fix them in later releases.

PowerLisp User Guide 40

Notes

I would like to thank my wife, Frances, for her assistance with this documentation and for her
patience and encouragement.

I would also like to thank Guy Steele Jr., whose books Common Lisp: The Language, both
editions, are a constant source of assistance and amusement (in the most positive sense).
PowerLisp 2.0 also includes the optimized backquote facility from the second edition, as well as
some other functions from the book.

Jim Bisso has been a valuable resource to me and helped with PowerLisp development.

Peter Norvig's text Paradigms of Artificial Intelligence Programming: Case Studies in Common
Lisp taught me a lot about the language and his many sample programs were useful in
debugging the interpreter and compiler. I highly recommend it to anyone learning Common
Lisp.

Acknowledgments to MIT for their Loop facility source code, which I have included with this
package.

Acknowledgments to CMU for their Random facility source code, which I have included with
this package.

Acknowledgments to Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow, for their excellent
book The Art of the Metaobject Protocol. The source code from this book is the basis for the
PowerLisp 2.0 CLOS capability.

Thanks to Ken Long for his improved color icons, which are included in the released version of
PowerLisp 1.2.

Thanks to MetroWerks, for building the best C++ programming environment I have ever used:
CodeWarrior. The PowerLisp environment and kernel are compiled using CodeWarrior.

