
MAC ALMANAC II, VERSION 1.0 - 4 JUNE 1990
You may have wondered, as I have, why nobody has ever come up with any kind of comprehensive

listing of the Mac's ROM traps and global variables. So far, the lists in existence are scattered in many
widely varying sources. For example, Apple's Inside Macintosh contains ROM trap listings in both
alphabetical and numeric orders, but its global variable list is both incomplete and in alphabetic order
only. Having lists ordered by memory address helps make debugging with TMON and Macsbug much
easier. It also helps programmers using 68000 assembly language, such as myself.

Apple's official policy is that programmers should use the names of variables when writing their
programs. Their reasoning is that the use of names will prevent incompatibilities with future Macs
and/or system files. I don't follow that policy for two reasons. First, the only way to create
incompatibilities is for Apple to change the locations of some or all of the global variables in a future
release of system software. Doing this would immediately invalidate the entire Macintosh software
base, so I don't think Apple would seriously think of it. Secondly, encoding the actual addresses helps
debugging since my source code becomes closer to the object code. This is efficient because I only
have to look up variable names once when writing source code and eliminates multiple lookups when
debugging with Macsbug. Normally I use variable addresses in my source code and place variable
names in comment lines.

After struggling with the separated lists, I decided to improve my productivity by centralizing all that
information in a master file. This master file, MacAlmanac, has since helped me greatly. Its distribution
as PD (Public Domain) made sense, so others could benefit as well.

It would be a good idea to print this file in its entirety and three-hole punch it for placement in a
binder. This file has been reformatted for printing on the LaserWriter, and for completeness, the laser
font Times has been substituted for the screen font Geneva used in Almanac I. The master list will be a
time-saver for you, regardless of what development system you are using (Pascal, C, BASIC,
FORTRAN, Lisp, Forth, etc.). It will also help you if you disassemble bits of ROM code or other
hacker stuff.

Revision History:
VERSION DATE PAGES CHANGES
I 1.0 28 January 1987 26 Created, first release
I 1.1 12 May 1987 27 Added: Errors on Powerup
I 1.2 25 October 1987 29 Added: Traps & Keyboards
I 1.3 16 December 1987 29 Altered pages 19, 27, and 28
I 1.4 30 December 1987 29 Fonts table reorganized (Page 26)
I 1.5 18 April 1988 30 Added: new global variables
II 1.0 4 June 1990 32 Total rewrite of Almanac I, first rerelease

If you need to contact me, I can be reached at my home address:
James H. Olson
4515 Hurley Street
Philadelphia, PA 19120-4528
(215) 457-7114 (answering machine)

*** MAC ALMANAC IS IN THE PUBLIC DOMAIN ***
Apple, Macintosh, Mac, and ResEdit are trademarks registered to Apple Computer, Inc.

PAGE

PART 1
Global Variables in Memory Address Order

Simply, global variables on the Macintosh™ are variables that hold values that are independent of
any running program and don't usually change value when one program quits and another starts. These
variables are all assigned as a group to one or two large blocks of RAM located between location 0 (the
start of RAM) and the system and application areas of RAM. Each variable is assigned a specific
memory location. Values stored in these variables usually contain information such as the amount of
RAM installed in the Mac, the version of ROM, system, and Finder installed, mouse location, serial port
settings, and the like. Programs can read and write to any of these variables, and writes will have lasting
effects on the system (until changed again). Upon startup, and again if the Mac is reset, just about all
variables are initialized by the ROM startup code after any memory tests (see Part 6).

Since the Mac was introduced in 1984, Apple has encouraged people writing Mac software to read
and write to global variables by using their names. When language compilers see these names, they get
the equivalent addresses from an "include" file specified during the compilation process. The final
program only has the memory addresses. Also since 1984, Apple has made press announcements and
other talk about getting rid of global variables, or at least making major changes. This verbal noise was
particularly evident when Switcher™ (later MultiFinder™) was released. It turns out that changing
existing global variables would create a mass confusion big enough to jeopardize the entire Mac
product line. Because all existing Mac software (system, application, DA, INIT, etc.) depends on
globals, even if the software doesn't access globals directly, changing them would instantly invalidate
the entire Mac software base. Apple cannot arbitrarily change the locations of these variables without
creating problems with just about every Macintosh program on the market. Because of this restraining
effect, Apple only makes improves existing variables or adds new ones. A good example of this is the
variable BootDrive (located at $210). Under the original 64K ROM it contained the drive number
where the boot floppy was located. When HFS was introduced in 1986, BootDrive was changed to
hold the volume/directory reference number of the boot disk. This change made BootDrive more useful
now that hard disks are frequently used as the boot disk, yet remains compatible with floppies.

I have attempted to give the most complete listings possible, drawing from several sources. For
instance, Apple's Inside Macintosh gives only a partial listing of global variables in alphabetical order.
My list is in memory address order, which is better suited to debugging with MacsBug and other
monitor-like debuggers. The list also exposes "holes": locations Apple hasn't yet made public. While
compiling the list, I noticed some variables had more than one name. From what I can decipher, many
of these variables were used during the original development of the Macintosh before its release in
1984 and fell into disuse afterwards. Some even have strange names like "MonkeyLives" ($100) and
"MrMacHook" ($A2C). Microsoft even had a location named after it ($A78- now ApplScratch), and a
location was named after the infamous "Twiggy" 5.25-inch floppy disk drives on the original Lisa
(TwiggyVars, $128). Alternate names appear probably because Apple re-used these locations for new
variables while developing the 128K ROM. Another good example is ROM85. Under the old 64K
ROM, this was an non-public location that held -1. Under all newer ROMs, this location always holds a
positive value.

In the following list, old names from the 64K ROM are noted by a dot "•" in the left column before
their names. Note that certain sections of memory have special names declared. These area-designators
look like variables but are easy to pick out- their size fields contain hyphens. All locations that haven't
been made public are marked with "[????]".

 Variable Location Size Description
SysCom $100 - start of System communication area
MonkeyLives $100 word monkey lives if nonzero
ScrVRes $102 word screen vertical dots/inch
ScrHRes $104 word screen horizontal dots/inch
ScreenRow $106 word rowBytes of screen
MemTop $108 long ptr to end of RAM

PAGE

BufPtr $10C long ptr to end of jump table
StkLowPt $110 long lowest stack pointer value as measured in VBL task
HeapEnd $114 long ptr to end of application heap
TheZone $118 long ptr to current heap zone
UTableBase $11C long ptr to unit I/O table
MacJmp $120 long ptr to jump vector table used by MacsBug
DskRtnAdr $124 long temporary pointer used by Disk Driver

• TwiggyVars $128 long ptr to 'other' driver variables (Lisa 5.25" drive)
PollRtnAddr $128 long ptr to 'other' driver variables (Lisa 5.25" drive)
DskVerify $12C byte used by Mac 3.5" Disk Driver for read/verify
LoadTrap $12D byte trap before launch?
MmInOK $12E byte Initial Memory Manager checks ok?

• DskWr11 $12F byte try 1-1 disk writes?
CPUFlag $12F byte code for installed CPU: 0=68000, 1=68010, 2=68020, 3=68030
ApplLimit $130 long address of application heap limit
SonyVars $134 long ptr to Mac 3.5" Disk Driver variables
PWMValue $138 word current PWM value
PollStack $13A long address of SCC poll data start stack location
PollProc $13E long ptr to SCC poll data procedure
DskErr $142 word disk routine result code
SysEvtMask $144 word system event mask
SysEvtBuf $146 long ptr to system event queue element buffer
EventQueue $14A 10 event queue header
EvtBufCnt $154 word maximum #of events in SysEvtBuf minus 1
RndSeed $156 long random number seed
SysVersion $15A word System file version number (e.g. System 4.1=$0410)
SEvtEnb $15C byte 0 = SysEvent always returns FALSE
DSWndUpdate $15D byte GetNextEvent not to paint behind System error dialog?
FontFlag $15E byte font manager loop flag
Filler3 $15F byte 1 byte of filler
VBLQueue $160 10 VBL queue header
Ticks $16A long Tick count: time since system startup (tick=1/60 sec)
MBTicks $16E long tick count when mouse button was last pressed
MBState $172 byte current mouse button state
Tocks $173 byte Lisa sub-tick count
KeyMap $174 8 bitmap of the keyboard
KeypadMap $17C long bitmap for numeric keypad (uses 18 bits)
[????] $180 long <unknown location>
KeyLast $184 word ASCII code for last valid keycode
KeyTime $186 long tickcount when KEYLAST was received
KeyRepTime $18A long tick count when key was last repeated
KeyThresh $18E word threshold for key repeat
KeyRepThresh $190 word key repeat speed
Lv11DT $192 32 Level-1 secondary interrupt vector table
Lv12DT $1B2 32 Level-2 secondary interrupt vector table
UnitNtryCnt $1D2 word count of entries in unit table
VIA $1D4 long base address of 6522 VIA chip
SCCRd $1D8 long address of Z8530 SCC chip (used when reading the chip)
SCCWr $1DC long address of Z8530 SCC chip (used when writing the chip)
IWM $1E0 long base address of IWM chip (floppy drive controller)
scratch20 $1E4 20 general scratch area
SysParam $1F8 - System parameter RAM vars (PRAM info)
SPValid $1F8 byte validation: $A8 if last write to clock chip was good
SPATalkA $1F9 byte AppleTalk node ID for modem port
SPATalkB $1FA byte AppleTalk node ID for printer port
SPConfig $1FB byte serial-port-in-use flags for both ports
SPPortA $1FC word modem port configuration (baud, parity, bits)
SPPortB $1FE word printer port configuration (baud, parity, bits)

PAGE

SPAlarm $200 long alarm clock setting
SPFont $204 word font number of application font minus 1

• SPKbdPrint $206 word auto-key threshold/rate and printer connection
SPKbd $206 byte auto-key threshold and rate
SPPrint $207 byte printer connection

• SPVolClik $208 word speaker volume; double click and caret flash times
SPVolCtl $208 byte speaker volume
SPClikCaret $209 byte double click and caret flash times
SPMisc $20A byte reserved for future use
SPMisc2 $20B byte mouse tracking, startup floppy drive, menu blink
Time $20C long current date/time (seconds since midnight 1 JAN 1904)

• BootDrive $210 word drive number of boot drive
BootDrive $210 word working directory reference number of boot disk
JShell $212 word journaling shell state

• Filler3A $214 word negative of vRefNum last seen by Standard File Package
SFSaveDisk $214 word negative of vRefNum last seen by Standard File Package
KbdVars $216 - Keyboard manager variables
[????] $216 word <unknown location>
KbdLast $218 byte ADB address of keyboard last used
[????] $219 byte <unknown location>
JKybdTask $21A long ptr to keyboard VBL task hook
KbdType $21E byte keyboard model number
AlarmState $21F byte alarm clock: Bit7=parity, Bit6=beeped, Bit0=enable

• CurIOTrap $220 word current I/O trap being executed
MemErr $220 word Memory Manager error code
DiskVars $222 - Disk driver variables (60 bytes)
[????] $222 60 <unknown locations>
FlEvtMask $25E word mask of flushable events (FlushEvents)
SdVolume $260 byte Current speaker volume (bits 0 through 2 only)
SdEnable $261 byte Sound enabled?
SoundVars $262 - Sound driver variables (32 bytes)
SoundPtr $262 long pointer to 4-voice sound definition (SynthRec)
SoundBase $266 long ptr to free-form sound definition (SynthRec)
SoundVBL $26A 16 vertical retrace control element
SoundDCE $27A long pointer to Sound Driver's device control entry
SoundActive $27E byte sound is active?
SoundLevel $27F byte current amplitude in 740-byte sound buffer
CurPitch $280 word current value of COUNT in square-wave SynthRec
SoundLast $282 long address past last sound variable
[????] $286 long <unknown location>
[????] $28A long <unknown location>
ROM85 $28E word holds a positive value if 128K or later ROM in Mac
PortAUse $290 byte Port A usage: if zero, port available
PortBUse $291 byte Port B usage: if zero, port available
ScreenVars $292 - Screen driver variables (8 bytes)
[????] $292 long <unknown location>
[????] $296 long <unknown location>
JGNEFilter $29A long ptr to GetNextEvent filter procedure
Key1Trans $29E long ptr to keyboard translator procedure
Key2Trans $2A2 long ptr to numeric keypad translator procedure
SysZone $2A6 long starting address of system heap zone
ApplZone $2AA long starting address of application heap zone
ROMBase $2AE long base address of ROM (Trap Dispatcher)
RAMBase $2B2 long base address of RAM (Trap Dispatcher)
BasicGlob $2B6 long ptr to BASIC globals
DSAlertTab $2BA long ptr to system error alert table in use
ExtStsDT $2BE 16 External/status interrupt vector table
SCCASts $2CE byte SCC read register 0 last external/status interrupt - A

PAGE

SCCBSts $2CF byte SCC read register 0 last external/status interrupt - B
SerialVars $2D0 - async driver variables (16 bytes)
[????] $2D0 long <unknown location>
[????] $2D4 long <unknown location>
ABusVars $2D8 long ptr to AppleTalk variables
[????] $2DC long <unknown location>
FinderName $2E0 16 name of the shell, usually "Finder" (STRING[15])
DoubleTime $2F0 long double click interval in ticks
CaretTime $2F4 long caret blink interval in ticks
ScrDmpEnb $2F8 byte screen dump enable - zero disables FKEY processing
ScrDmpType $2F9 byte $FF dumps screen, $FE dumps front window (FKEY 4)
TagData $2FA - sector tag info for disk drivers (14 bytes)
[????] $2FA word <unknown location>
BufTgFNum $2FC long File tags buffer: file number
BufTgFFlg $300 word File tags buffer: flags (bit1=1 if resource fork)
BufTgFBkNum $302 word File tags buffer: logical block number
BufTgDate $304 long File tags buffer: last modification date/time
DrvQHdr $308 10 queue header of drives in system
PWMBuf2 $312 long ptr to PWM buffer 1 (or 2 if sound)
HpChk $316 long heap check RAM code

• MaskBC $31A long Memory Manager byte count mask
• MaskHandle $31A long Memory Manager handle mask
• MaskPtr $31A long Memory Manager pointer mask

Lo3Bytes $31A long holds the constant $00FFFFFF
MinStack $31E long minimum stack size used in InitApplZone
DefltStack $322 long default size of stack
MMDefFlags $326 word default zone flags
GZRootHnd $328 long root handle for GrowZone
GZRootPtr $32C long root pointer for GrowZone
GZMoveHnd $330 long moving handle for GrowZone
DSDrawProc $334 long ptr to alternate system error draw procedure
EjectNotify $338 long ptr to eject notify procedure
IAZNotify $33C long ptr to world swaps notify procedure
FileVars $340 - file system vars (184 bytes)
CurDB/CkdDB $340 word current dir block/used for searches

• FSCallAsync $342 word "One byte free"
NxtDB $342 word <no description available>
MaxDB $344 word <no description available>
FlushOnly $346 byte flag used by UnMountVol and FlushVol
RegRsrc $347 byte flag used by OpenRF and FileOpen
FLckUnlck $348 byte flag used by SetFilLock and RstFilLock
FrcSync $349 byte when set, all file system calls are synchronized
NewMount $34A byte used by MountVol to flag new mounts
NoEject $34B byte used by Eject and Offline
DrMstrBlk $34C word master directory block in a volume
HFS Globals $34E - HFS global variables (168 bytes)
FCBSPtr $34E long ptr to file control block buffer
DefVCBPtr $352 long ptr to default volume control block
VCBQHdr $356 10 volume control block queue header
FSQHdr $360 10 file I/O queue header
HFSVars $36A - Start of TFS variables (RAM version)
HFSStkTop $36A long Temp location of stack ptr during async calls
HFSStkPtr $36E long Temporary location of HFS stack ptr
WDCBsPtr $372 long Working Directory queue header
HFSFlags $376 byte Internal HFS flags

• SysCRefCnt $377 byte system cache usage count (#of vols)
CacheFlag $377 byte system cache usage count now used as cache flag
SysBMCPtr $378 long System-wide bitmap cache pointer

PAGE

SysVolCPtr $37C long System-wide volume cache pointer
SysCtlCPtr $380 long System-wide control cache pointer
DefVRefNum $384 word Default volume's VRefNum/WDRefNum
PMSPPtr $386 long ptr to list of directories on PMSP
HFSDSErr $392 word Final gasp - error that caused IOErr
HFSVarEnd $394 - End of HFS variable area
CacheVars $394 8 <no description available>
CurDirStore $398 word ID of last directory opened
[????] $39A word <unknown location>
CacheCom $39C long <no description available>
[????] $3A0 word <unknown location>
ErCode $3A2 word report errors here during async routines
Params $3A4 - File Mgr I/O ParamBlock (50 bytes)
[????] $3A4 50 <unknown locations>
FSTemp8 $3D6 8 used by Rename

• FSTemp4 $3DE word used by Rename and CkFilMod
FSIOErr $3DE word last I/O error
[????] $3E0 word <unknown location>
FSQueueHook $3E2 long ptr to hook to capture all FS calls
ExtFSHook $3E6 long ptr to command done hook
DskSwtchHook $3EA long ptr to hook for disk-switch dialog
ReqstVol $3EE long ptr to offline or external file system volume VCB
ToExtFS $3F2 long ptr to external file system
FSVarEnd $3F6 - end of file system variables
FSFCBLen $3F6 word size of file control block; contains -1 on 64K ROM Macs
DSAlertRect $3F8 8 rectangle for system error and disk-switch alerts

• DispatchTab $400 1024 OS & Toolbox trap dispatch table (64K ROM) (512 words)
OSDispTable $400 1024 OS trap dispatch table (128K and later ROM) (256 longs)

GRAFBEGIN $800 - graf (QuickDraw) global area
JHideCursor $800 long <no description available>
JShowCursor $804 long <no description available>
JShieldCursor $808 long <no description available>
JScrnAddr $80C long <no description available>
JScrnSize $810 long <no description available>
JInitCrsr $814 long <no description available>
JSetCrsr $818 long <no description available>
JCrsrObscure $81C long <no description available>
JUpdateProc $820 long <no description available>
LGrafJump $824 long <no description available>
GrafVar $824 - QuickDraw variables
ScrnBase $824 long base address of main screen
MTemp $828 long low-level interrupt mouse location
RawMouse $82C long un-jerked mouse coordinates
NMouse $830 long processed mouse coordinate
CrsrPin $834 8 cursor pinning rectangle
CrsrRect $83C 8 cursor hit rectangle
TheCrsr $844 68 cursor data, mask & hotspot
CrsrAddr $888 long address of data under cursor

• CrsrSave $88C 64 data under the cursor
CrsrSave $88C long ptr to data under the cursor
[????] $890 20 <unknown locations>
MainDevice $8A4 long handle to current main device
DeviceList $8A8 long handle to first element in device list
[????] $8AC long <unknown location>
QDColors $8B0 28 default QuickDraw colors
CrsrVis $8CC byte cursor visible?

PAGE

CrsrBusy $8CD byte cursor locked out?
CrsrNew $8CE byte cursor changed?
CrsrCouple $8CF byte cursor coupled to mouse?
CrsrState $8D0 word cursor nesting level
CrsrObscure $8D2 byte Cursor obscure semaphore
CrsrScale $8D3 byte cursor scaled?
[????] $8D4 word <unknown location>
MouseMask $8D6 long V-H mask for ANDing with mouse
MouseOffset $8DA long V-H offset for adding after ANDing
JournalFlag $8DE word journaling state
JSwapFont $8E0 long jump entry for FMSwapFont

• JFontInfo $8E4 long jump entry for FMFontMetrics
WidthListHand $8E4 long handle to a list of handles of recently-used width tables
JournalRef $8E8 word Journalling driver's refnum
[????] $8EA word <unknown location>
CrsrThresh $8EC word delta threshold for mouse scaling
JCrsrTask $8EE long address of CrsrVBLTask
GRAFEND $8F2 - End of graphics globals
WWExist $8F2 byte window manager initialized?
DExist $8F3 byte QuickDraw is initialized
JFetch $8F4 long ptr to fetch-a-byte routine for drivers
JStash $8F8 long ptr to stash-a-byte routine for drivers
JIODone $8FC long ptr to IODone routine for drivers

LoadVars $900 - Segment Loader variables (68 bytes)
CurApRefNum $900 word refNum of current application's resFile
LaunchFlag $902 byte Tells whether Launch or Chain was last called
[????] $903 byte <unknown location>
CurrentA5 $904 long current value of register A5
CurStackBase $908 long ptr to the base (beginning) of the stack
[????] $90C long <unknown location>
CurApName $910 32 name of current application (STRING[31])
SaveSegHandle $930 long handle to segment 0 (CODE 0)
CurJTOffset $934 word current jump table offset from register A5
CurPageOption $936 word current page 2 configuration (screen/sound buffers)
HiliteMode $938 word set to -1 if hilighting mode is on, 0 otherwise
LoaderPBlock $93A 10 param block for ExitToShell

• PrintVars $944 16 print code variables
• LastLGlobal $944 long address past last loader global

PrintErr $944 word Print Manager error code
[????] $946 14 <unknown locations>

• CoreEditVars $954 12 core edit variables
LastPGlobal $954 long address of last printer global
[????] $958 long <unknown location>
[????] $95C long <unknown location>
scrapVars $960 - Scrap Manager variables (32 bytes)

• scrapInfo $960 long scrap length
scrapSize $960 long scrap length
scrapHandle $964 long handle to RAM scrap
scrapCount $968 word count changed by ZeroScrap
scrapState $96A word scrap state: tells if scrap exists in RAM or on disk
scrapName $96C long pointer to scrap file name (normally "Clipboard File")
scrapTag $970 16 scrap file name (STRING[15])
scrapEnd $980 - End of scrap vars
ToolGBase $980 - base address of toolbox globals
ToolVars $980 - toolbox variables
RomFont0 $980 long handle to system font

PAGE

• ApFontID $984 word resource ID of application font
ApFontID $984 word font number of application font
GotStrike $986 byte Do we have the strike?
FMDefaultSize $987 byte default size

• CurFMInput $988 long ptr to QuickDraw FMInput record
CurFMFamily $988 word current font family
CurFMSize $98A word current font size
CurFMFace $98C byte current font face
CurFMNeedBits $98D byte boolean telling whether it needs strike
CurFMDevice $98E word current font device
CurFMNumer $990 long current numerator of scale factor
CurFMDenom $994 long current denominator of scale factor
FMgrOutRec $998 long ptr to QuickDraw FontOutput record
FOutError $998 word Font Manager error code
TFOutFontHandle$99A long handle to font bits
FOutBold $99E byte bolding factor
FOutItalic $99F byte italic factor
FOutULOffset $9A0 byte underline offset
FOutULShadow $9A1 byte underline halo
FOutULThick $9A2 byte underline thickness
FOutShadow $9A3 byte shadow factor
FOutExtra $9A4 byte extra horizontal width
FOutAscent $9A5 byte height above baseline
FOutDescent $9A6 byte height below baseline
FOutWidMax $9A7 byte maximum width of character
FOutLeading $9A8 byte space between lines
FOutUnused $9A9 byte unused (padding) byte -must have even number
FOutNumer $9AA long point for numerators of scale factor
FOutDenom $9AE long point for denominators of scale factor
FMDotsPerInch $9B2 long h,v dotsPerInch (resolution) of current device
FMStyleTab $9B6 24 style heuristic table given by device
ToolScratch $9CE 8 scratch area
WindowList $9D6 long ptr to Z-ordered linked list of windows
SaveUpdate $9DA word Enable update events?
PaintWhite $9DC word erase windows before update event?
WMgrPort $9DE long ptr to window manager's grafport
DeskPort $9E2 long ptr to Desk grafPort (Whole screen)
OldStructure $9E6 long handle to saved structure region
OldContent $9EA long handle to saved content region
GrayRgn $9EE long handle to rounded-corner region drawn as the desktop
SaveVisRgn $9F2 long handle to temporarily saved visRegion
DragHook $9F6 long ptr to user hook called during dragging
scratch8 $9FA 8 general scratch area
TempRect $9FA 8 scratch rectangle

OneOne $A02 long holds the constant $00010001
MinusOne $A06 long holds the constant $FFFFFFFF
TopMenuItem $A0A word pixel value of top of scrollable menu
AtMenuBottom $A0C word flag for menu scrolling
IconBitmap $A0E 14 scratch bitmap used for plotting things
MenuList $A1C long handle to current menuBar list structure
MBarEnable $A20 word menuBar enable for desk acc's that own the menu bar
CurDeKind $A22 word window kind of deactivated window
MenuFlash $A24 word flash feedback count
TheMenu $A26 word resource ID of hilited menu
SavedHandle $A28 long handle to data under a menu

• MrMacHook $A2C long Mr. Macintosh hook
MBarHook $A2C long ptr to MenuSelect hook called before menu is drawn

PAGE

MenuHook $A30 long ptr to user hook called during MenuSelect
DragPattern $A34 8 pattern used to draw outlines of dragged regions
DeskPattern $A3C 8 pattern used for the desktop
DragFlag $A44 word implicit parameter to DragControl
CurDragAction $A46 long ptr to implicit actionProc for dragControl
FPState $A4A 6 floating point state
TopMapHndl $A50 long handle to map of most recently opened resource file
SysMapHndl $A54 long handle to map of System resourc file
SysMap $A58 word reference number of System resource file
CurMap $A5A word reference number of current resource file
ResReadOnly $A5C word Read-only flag
ResLoad $A5E word Auto-load feature
ResErr $A60 word Resource Manager error code
TaskLock $A62 byte re-entering SystemTask
FScaleDisable $A63 byte disable font scaling?
CurActivate $A64 long ptr to window slated for activate event
CurDeactive $A68 long ptr to window slated for deactivate event
DeskHook $A6C long ptr to hook for painting the desk
TEDoText $A70 long ptr to textEdit doText proc hook
TERecal $A74 long ptr to textEdit recalText proc hook

• MicroSoft $A78 12 ApplScratch - for Seattle font
ApplScratch $A78 12 application scratch area
GhostWindow $A84 long ptr to window never to be considered frontmost
CloseOrnHook $A88 long ptr to hook for closing desk ornaments
ResumeProc $A8C long ptr to Resume procedure (System error dialog)
SaveProc $A90 long address of Save failsafe procedure
SaveSP $A94 long Safe stack ptr for restart or save
ANumber $A98 word resID of last alert
ACount $A9A word number of times last alert was called (0 through 3)
DABeeper $A9C long ptr to current beep routine
DAStrings $AA0 16 paramText substitution strings (4 handles)
TEScrpLengt $AB0 long textEdit Scrap Length
TEScrpHandl $AB4 long handle to textEdit Scrap
AppPacks $AB8 32 Handles to PACK resources (ID's from 0 to 7)
SysResName $AD8 20 name of system resource file (STRING[19])
AppParmHandle $AEC long handle to hold application parameters
DSErrCode $AF0 word last (or current) system error alert ID
ResErrProc $AF2 long ptr to Resource Manager error procedure
TEWdBreak $AF6 long ptr to default word break routine
DlgFont $AFA word current font number for dialogs and alerts
LastTGLobal $AFC long address of last global

The contents of memory locations from $B00 on up depend on the ROM version installed.
• 64K ROM Macs: these Macs have a single trap dispatch table located at $400 through $7FF. The system

heap begins at $B00, leaving no room for additional globals.
• 128K and later ROM: the original trap dispatch table at $400 through $7FF was converted for use by the

Operating System, and a second trap dispatch table for Toolbox traps was created at $C00.
Its length is 2K on the Mac Plus and SE, and 4K on the SE/30 and II series. The intervening

space from $B00 through $BFF was reserved for new global variables. Note that some
globals were defined within the trap table, with addresses above $C00. While I do not
understand why Apple did this, the effect is that a few table entries have been pre-empted,
reducing the table's capacity. As explained in the Trap Dispatcher section below, each A-trap
expects a routine address to be stored in the trap table. Since some of these locations were
used for globals, the affected A-traps cannot be used (more on this later).

• HeapStart $B00 - start of the System Heap on 64K ROM Macs
TrapAgain $B00 long use 4 bytes here for another trap
[????] $B04 word <unknown location>

PAGE

ROMMapHndl $B06 long handle to ROM resource map
PWMBuf1 $B0A long ptr to PWM buffer
BootMask $B0E word needed during boot
WidthPtr $B10 long ptr to global width table
AtalkHk1 $B14 long ptr to Appletalk hook 1
AtalkHk2 $B18 long ptr to Appletalk hook 2
[????] $B1C long <unknown location>
[????] $B20 word <unknown location>
HWCfgFlags $B22 word hardware configuration flags (two names for this global)
SCSIFlag $B22 word SCSI configuration word (bit 15=1 if SCSI installed)
[????] $B24 6 <unknown locations>
WidthTabHandle $B2A long handle to global width table
[????] $B2E 6 <unknown locations>
BtDskRfn $B34 word boot drive driver reference number
BootTmp8 $B36 8 temporary space needed by StartBoot
[????] $B3E byte <unknown location>
T1Arbitrate $B3F byte holds $FF if Timer T1 up for grabs
[????] $B40 20 <unknown locations>
MenuDisable $B54 long resID and menuItem of last chosen menu item
[????] $B58 40 <unknown locations>
<switched vars> $B80 - switched variables (128 bytes)
RMGRHiVars $B80 - RMGR variables (32 bytes)
[????] $B80 14 <unknown locations>
RomMapInsert $B9E byte flag: insert map to the ROM resources
TmpResLoad $B9F byte temp SetResLoad state for calls using ROMMapInsert
IntlSpec $BA0 long international software installed if not -1
[????] $BA4 word <unknown location>
SysFontFam $BA6 word if nonzero, the font # for system font
SysFontSize $BA8 word if nonzero, the system font size
MBarHeight $BAA word pixel height of menu bar
[????] $BAC long <unknown location>
NewUnused $BC0 word formerly FlEvtMask
LastFOND $BC2 long handle to last family record used
[????] $BC4 48 <unknown locations>
FractEnable $BF4 byte enables fractional widths if not zero
[????] $BF5 byte <unknown location>
[????] $BF6 10 <unknown locations>
ToolDispTable $C00 2048 Toolbox trap dispatch table (Mac Plus & SE)
ToolDispTable $C00 4096 Toolbox trap dispatch table (Mac II series and SE/30)
HeapStart $1400 - start of system heap (Mac Plus & SE)
HeapStart $1C00 - start of system heap (Mac II series and SE/30)

PAGE

Locations defined within the trap dispatch tables:

JADBProc $6B8 long ptr to ADBReInit pre-/post-processing routine
MMU32Bit $CB2 byte current address mode
TheGDevice $CC8 long handle to current active device
AuxWinHead $CD0 long auxiliary window list header
JVBLTask $D28 long jump vector to DoVBLTask routine
SynListHandle $D32 long handle to synthetic font list
MenuCInfo $D50 [??] menu color info table header
DTQueue $D92 10 deferred task queue header
JDTInstall $D9C long jump vector to DTInstall routine
HiliteRGB $DA0 [??] default hilighting color

These variables pre-empt the following A-traps (in same order as lost above): A0AE (unassigned), A82C (Pack10),
A832 (unassigned), A834 (SetFScaleDisable), A94A (SetMFlash), A954 (NewControl), A964 through A968
(SetMinCtl, SetMaxCtl, TestControl, DragControl, TrackControl). Note that many of these traps are assigned to ROM
calls that have existed since 1984. After checking these locations myself, they appear to be set up for these traps, not as
global variables. Until I can verify the accuracy of my source list, treat this group of variables with extreme caution.

PAGE

PART 2A
MC68000-series Microprocessor Exception Errors

$00 reset: initial stack pointer $3C uninitialized interrupt
$04 reset: initial program counter $40-5F [reserved by Motorola]
$08 bus error $60 spurious interrupt
$0C address error $64 level 1 interrupt - VIA (SY6522)
$10 illegal instruction $68 level 2 interrupt - SCC (Z8530)
$14 zero divide $6C level 3 interrupt - VIA and SCC together
$18 CHK bounds check failed $70 level 4 interrupt - debug switch interrupt
$1C TRAPV overflow trap $74 level 5 interrupt - debug switch and VIA
$20 priveleged instruction $78 level 6 interrupt - debug switch and SCC
$24 trace mode $7C level 7 interrupt - debug switch, VIA, SCC
$28 $Axxx Trap dispatcher $80-BF TRAP instruction vectors
$2C $Fxxx coprocessor instructions $C0-FF [reserved by Motorola]
$30-3B [reserved by Motorola] $100-3FF user interrupt vectors (Mac global vars)

PART 2B
Macintosh™ System Errors

NOTE: Certain MC68000 exceptions listed in part A will generate equivalent system errors.

1 bus (illegal hardware address) 18 PACK 1 not found (reserved)
2 address 19

PACK 2 not found (Disk Initialization)
3 illegal instruction 20 PACK 3 not found (Standard File)
4 zero divide 21 PACK 4 not found (Floating-point)
5 CHK bounds check failed 22 PACK 5 not found (Transcendental)
6 TRAPV overflow trap 23 PACK 6 not found (International Utils)
7 privileged instruction 24 PACK 7 not found (Binary/Decimal)
8 trace mode 25 out of memory
9 line 1010 trap (A-trap) 26 segment loader: can't start application
10 line 1111 trap (F-trap) 27 "System" resource file map was clobbered
11 miscellaneous hardware exception 28 stack overran the application heap
12 unimplemented core routine (bad trap) 30 "Please insert the disk: " alert
13 uninstalled interrupt (debug switch) 31 wrong disk (switch disk alert)
14 IO core 40

"Welcome to Macintosh" alert
15 segment loader: no such CODE resource 41 "Can't load the Finder" alert
16 floating point 42 "You may turn off your Macintosh" alert
17 PACK 0 not found (List Manager) 32767 General system error

The following system errors are reported under all ROM versions except the original 64K ROM:
32 Memory Manager: current zone is inconsistent
33 Memory Manager: value of ZcbFree is negative
51 Slot Manager: unserviceable slot interrupt
81 SANE: bad opcode passed to FP68K routine
84 Menu Manager: menu resource has been purged
85 Menu Manager: can't find menu bar
86 Menu Manager: hierarchical menu error
99 HFS stack overflowed

PAGE

PART 2C
Toolbox and Operating System Errors

The errors in this section are generated by the various Mac system routines, either at the Operating
System level or at the higher Toolbox level. These errors are then passed to the program (application,
DA, INIT, etc.) which called the system routine. It is up to the program to handle these errors.

Printing Manager Error

128 iPrAbort Printing Manager: user aborted printing

Slot Manager Initialization Errors

14 sdmPriInitErr initialize error: installed cards
13 sdmPRAMInitErr initialize error: Slot PRAM
12 sdmSRTInitErr initialize error: Slot Resource Table
11 sdmInitErr initialize error: SDM
10 sdmJTInitErr initialize error: SDM Jump Table
3 siInitSPTblErr initialize error: slot priority table
2 siInitVBLQsErr initialize error: slot VBL queues
1 siInitSDTblErr initialize error: slot interrupt dispatch table

SCSI Manager Errors

10 scComplPhaseErr SCSIComplete failed; bus not in status phase
9 scBusTOErr bus timed out before data was ready for SCSI "blind" operations

SCSIRBlind and SCSIWBlind
8 scSequenceErr current operation was started out of proper sequence
7 scMgrBusyErr SCSI Manager busy when SCSIGet was called
6 scCompareErr SCSI Manager busy when SCSIGet was called
5 scPhaseErr bus in wrong phase for attempted operation
4 scBadparmsErr bad parameter or TIB opcode
3 scArbNBErr arbitration failed during SCSIGet; bus busy
2 scCommErr communications error (operations timeout)

Miscellaneous Errors

1 evtNotEnb event type not defined in system event mask
0 noErr the operation was completed normally
-1 qErr queue element not found during deletion
-1 iPrSavPFil Printing Manager: saving spool file
-2 vTypErr invalid queue element
-3 corErr [obsolete] core routine number out of range
-4 unimpErr [obsolete] unimplemented core routine
-8 seNoDB no debugger installed to handle debugger traps

Color Manager Errors

-9 iTabPurgErr [no description available] generated by: Color2Index/ITabMatch
-10 noColMatch [no description available] generated by: Color2Index/ITabMatch
-11 qAllocErr [no description available] generated by: MakeITable
-12 tblAllocErr [no description available] generated by: MakeITable
-13 overRun [no description available] generated by: MakeITable
-14 noRoomErr [no description available] generated by: MakeITable
-15 seOutOfRange [no description available] generated by: SetEntry

PAGE

-16 seProtErr [no description available] generated by: SetEntry
-17 i2CRangeErr [no description available] generated by: SetEntry

-18 gdBadDev [no description] generated by: SetEntry
-19 reRangeErr [no description] generated by: SetEntry
-20 seInvRequest [no description] generated by: SetEntry
-21 seNoMemErr [no description] generated by: SetEntry

Device Manager Errors

-17 controlErr driver can't handle control calls
-18 statusErr driver can't handle status calls
-19 readErr driver can't handle read calls
-20 writErr driver can't handle write calls
-21 badUnitErr driver refnum isn't in unit table
-22 unitEmptyErr driver refnum unit table entry is an empty (zero) handle
-23 openErr R/W permission conflicts with open permission
-23 openErr couldn't open RAM serial driver (64K ROM)
-24 closeErr [obsolete]
-25 dRemovErr tried to remove an open driver
-26 dInstErr DrvrInstall couldn't find driver in resource file
-27 abortErr IO call aborted by KillIO
-27 iIOAbort Printing Manager: I/O abort error
-28 notOpenErr driver not open
-29 unitTblFullErr unit table full
-30 dceExtErr dce extension error

File System Errors

-33 dirFulErr MFS directory full
-34 dskFulErr disk full
-35 nsvErr no such volume
-36 ioErr I/O error
-37 bdNamErr bad name (name is zero-length or contains a colon)
-38 fnOpnErr file not open
-39 eofErr end of file reached during a read
-40 posErr tried to position before start of file
-41 memErr [obsolete] memory full on open
-42 tmfoErr too many files open
-43 fnfErr file not found
-44 wPrErr disk is locked (hardware)
-45 fLckdErr file is locked
-46 vLckdErr disk is locked (software)
-47 fBsyErr file busy (delete); one or more files are open
-48 dupFNErr file with same name & version# already exists
-49 opWrErr file already open with write permission
-50 paramErr error in user parameter list (plus other errors)

File Manager: no such disk (and no default disk exists)
Disk Driver: bad positioning information
Disk Init Package: bad drive number

-51 rfNumErr refnum specifies a nonexistent access path
-52 gfpErr error during Get file position call (GetFPos)
-53 volOffLinErr volume not online (was ejected)
-54 permErr tried to open a locked file for writing
-55 volOnLinErr volume already in drive
-56 nsDrvErr no such drive (specified drive number not in drive queue)
-57 noMacDskErr not a Mac diskette; disk doesn't have Mac directory

PAGE

-58 extFSErr volume belongs to an external file system
-59 fsRnErr rename ran into problems
-60 badMDBErr bad master directory block - reinit the disk!
-61 wrPermErr access path doesn't allow writing

Font Manager Errors

-64 fontDecError error during font declaration
-65 fontNotDeclared font not declared
-66 fontSubErr font substitution occured

Disk Errors (range: -64 through -84 inclusive)

-64 lastDskErr last of the low-level disk errors (in reverse order)
-64 noDriveErr drive not installed/connected
-65 offLinErr operation requested for an offline disk
-66 noNybErr couldn't find 5 nibbles in 200 tries (blank disk)
-67 noAdrMkErr couldn't find address mark
-68 dataVerErr read-verify compare failed
-69 badCksmErr address mark checksum didn't check
-70 badBtSlpErr bad address mark bit slip nibbles
-71 noDtaMkErr couldn't find a data mark header
-72 badDCksum bad data mark checksum
-73 badDBtSlp bad data mark bit slip nibbles
-74 wrUnderrun write underrun occurred
-75 cantStepErr step handshake failed (drive fault)
-76 tk0BadErr can't find track 0
-77 initIWMErr unable to initialize IWM (disk controller chip)
-78 twoSideErr tried to read 2nd side on a single sided drive
-79 spdAdjErr unable to correctly adjust 400K drive speed
-80 seekErr track number bad on address mark (drive fault)
-81 sectNFErr sector not found on track
-82 fmt1Err can't find sector 0 after track format
-83 fmt2Err can't get enough sync
-84 verErr track failed to verify
-84 firstDskErr first of the low-level disk errors (in reverse order)

Clock Chip Errors

-85 clkRdErr unable to read clock
-86 clkWrErr time written did not verify
-87 prWrErr Parameter RAM written didn't verify
-88 prInitErr InitUtil found the PRAM uninitialized (status not $A8)

Device Driver Errors

-89 rcvrErr [obsolete] SCC receiver error (framing, parity, OR)
-90 breakRecd [obsolete] Break received (SCC)

AppleTalk Errors

-91 ddpSktErr DDP socket error: socket already active; not a known socket; socket table
full; all dynamic socket numbers in use

-92 ddpLenErr DDP datagram or ALAP data too long
-93 noBridgeErr no such bridge
-94 lapProtErr ALAP protocol errors, attach or detach
-95 excessCollsns ALAP too many (over 32) collisions or line sensed in use

PAGE

-97 portInUse driver open error: port is already in use
-98 portNotCf driver open error: port not configured for this connection

Memory Manager Errors (not available on 64K ROM)

-99 memROZErr hard error in read-only zone
-99 memROZWarn soft error in read-only zone

Scrap Manager Errors

-100 noScrapErr no scrap exists
-102 noTypeErr no data of that type in scrap

Memory Manager Errors

-108 memFullErr not enough room in heap zone
-109 nilHandleErr NIL (zero) master pointer (handle is empty)
-110 memAdrErr [obsolete] address was odd or out of range
-111 memWZErr attempt to operate on a free block
-112 memPurErr attempt to purge a locked or non-purgable block
-113 memAZErr [obsolete] address in zone check failed
-114 memPCErr [obsolete] pointer check failed
-115 memBCErr [obsolete] block check failed
-116 memSCErr [obsolete] size check failed
-117 memLockedErr block is locked

File System Errors (not available on 64K ROM)

-120 dirNFErr directory not found
-121 tmwdoErr too many working directories open
-122 badMovErr tried to move into offspring
-123 wrgVolTypErr tried to do an HFS operation on a nonHFS volume
-124 volGoneErr Server volume has been disconnected
-126 mBarNFnd Menu Manager: MBDF not found
-127 hMenuFindErr could not find Hierarchical menu's parent (MenuKey)
-127 fsDSIntErr internal file system fault

 Color Quickdraw & Color Manager Errors

-150 cMatchErr Color2Index failed to find an index
-151 cTempMemErr failed to allocate memory for temporary structures
-152 cNoMemErr failed to allocate memory for structure
-153 cRangeErr range error on colorTable request
-154 cProtectErr colorTable entry protection violation
-155 cDevErr invalid graphics device type
-156 cResErr invalid resolution for MakeITable

Resource Manager Errors

-192 resNotFound resource not found
-193 resFNotFound resource file not found
-194 addResFailed AddResource failed
-195 addRefFailed [obsolete] AddReference failed
-196 rmvResFailed RmveResource failed
-197 rmvRefFailed [obsolete] RmveReference failed

Resource Manager Errors (not available on 64K ROM)

PAGE

-198 resAttrErr attribute prohibits the operation
-199 mapReadErr resource map is garbled

Sound Manager Errors

-200 noHardware supporting hardware for selected synthesizer doesn't exist
-201 notEnoughHardware no more channels for selected synthesizer
-203 queueFull queue is full
-204 resProblem problems encountered while loading resource
-205 badChannel bad channel queue length
-206 badFormat bad handle to 'snd ' resource

Slot Manager Errors

-290 smSDMInitErr SDM could not be initialized.
-290 smSRTInitErr Slot Resource Table could not be initialized.
-290 smPRAMInitErr Slot Resource Table could not be initialized.
-290 smPriInitErr Cards could not be initialized.
-300 smEmptySlot No card in slot
-301 smCRCFail CRC check failed for declaration data
-302 smFormatErr bad FHeader format in declaration ROM
-303 smRevisionErr bad revison number in declaration ROM
-304 smNoDir Directory offset is zero
-305 smLWTstBad Long Word Test field was not $5A932BC7.
-306 smNosInfoArray SDM couldn't obtain memory for the sInfo array
-307 smResrvErr Reserved field not zero (fatal error)
-308 smUnExBusErr Unexpected bus error occurred
-309 smBLFieldBad bad ByteLanes field
-310 smFHBlockRdErr FHeader block couldn't be read
-311 smFHBlkDispErr FHeader block couldn't be deleted (disposed of)
-312 smDisposePErr _DisposPointer error
-313 smNoBoardsRsrc No Board sResource.
-314 smGetPRErr Error occured during _sGetPRAMRec (See SIMStatus)
-315 smNoBoardId No Board ID
-316 smIntStatVErr The InitStatus_V field was negative after primary init
-317 smIntTblVErr Slot Resource Table initialization failed
-318 smNoJmpTbl SDM jump table could not be created
-319 smBadBoardId bad Board ID, re-init the PRAM record
-320 smBusErrTO BusError timeout
-330 smBadRefId Reference ID not found in List
-331 smBadsList ID's in sList aren't in ascending order
-332 smReservedErr Reserved field not zero
-333 smCodeRevErr Code revision is wrong (sExec)
-334 smCPUErr CPU field is wrong (sExec)
-335 smsPointerNil sPointer is zero: no sList specified
-336 smNilsBlockErr Nil (zero-length) sBlock error
-337 smSlotOOBErr Slot out of bounds error
-338 smSelOOBErr Selector out of bounds error
-339 smNewPErr _NewPointer error
-340 smBlkMoveErr _BlockMove error
-341 smCkStatusErr bad slot status (InitStatus_A,V)
-342 smGetDrvrNamErr Error occured during _sGetDrvrName.
-343 smDisDrvrNamErr Error occured during _sDisDrvrName.
-344 smNoMoresRsrcs No more sResources
-345 smsGetDrvrErr Error occurred during _sGetDrvr
-346 smBadsPtrErr Bad sPointer was passed to an SDM routine
-347 smByteLanesErr bad byteLanes value was passed to an SDM routine
-348 smOffsetErr Offset was too big

PAGE

-349 smNoGoodOpens No opens were successful in the loop.
-350 smSRTOvrFlErr sResource table overflowed
-351 smRecNotFnd Record not found in the sResource table

Slot Manager Error

-360 slotNumErr bad slot number

AppleTalk Errors

-1024 nbpBuffOvr NBP buffer overflow
-1025 nbpNoConfirm NBP name not confirmed
-1026 nbpConfDiff NBP name confirmed for different socket
-1027 nbpDuplicate NBP duplicate name found
-1028 nbpNotFound NBP name does not exist
-1029 nbpNISErr NBP names information socket error
-1066 aspBadVersNum Server cannot support this ASP version
-1067 aspBufTooSmall Buffer too small
-1068 aspNoMoreSess No more sessions on server
-1069 aspNoServers No servers at that address
-1070 aspParamErr Parameter error
-1071 aspServerBusy Server cannot open another session
-1073 aspSessClosed Session closed
-1073 aspSizeErr Command block too big
-1074 aspTooMany Too many clients (server error)
-1075 aspNoAck No ACK on attention request (server err)
-1096 reqFailed ATPSndRequest failed: retry count exhausted
-1097 tooManyReqs ATP too many concurrent requests
-1098 tooManySkts ATP too many responding sockets
-1099 badATPSkt ATP bad responding socket
-1100 badBuffNum ATP bad sequence number
-1101 noRelErr ATP no release received
-1102 cbNotFound ATP control block does not exist
-1103 noSendResp ATPAddRsp issued before ATPSndRsp
-1104 noDataArea too many active ATP calls
-1105 reqAborted request was aborted

Application Errors (range: -2000 through -2999 inclusive)

reserved for use by the current application

AppleTalk Errors

-3101 buf2SmallErr DDP datagram or ALAP frame too big for buffer
-3102 noMPPErr MPP driver not installed
-3103 cksumErr DDP bad checksum
-3104 extractErr NBP tuple doesn't exist in buffer
-3105 readQErr socket or protocol type bad or doesn't exist in table
-3106 atpLenErr ATP response message too long
-3107 atpBadRsp bad response from ATPRequest
-3108 recNotFnd ABRecord doesn't exist
-3109 sktClosedErr async call aborted before completion: socket was closed

Printing Manager Errors (occur with Laserwriters)

-4096 [no name declared] no free Connect Control Blocks available
-4097 [no name declared] bad connection refNum
-4098 [no name declared] request already active

PAGE

-4099 [no name declared] write request too big
-4100 [no name declared] connection just closed
-4101 [no name declared] printer closed or does not exist

AppleTalk Errors

-5000 afpAccessDenied [no description available]
-5001 afpAuthContinue [no description available]
-5002 afpBadUAM [no description available]
-5003 afpBadVersNum [no description available]
-5004 afpBitmapErr [no description available]
-5005 afpCantMove [no description available]
-5006 afpDenyConflict [no description available]
-5007 afpDirNotEmpty [no description available]
-5008 afpDiskFull [no description available]
-5009 afpEofError [no description available]
-5010 afpFileBusy [no description available]
-5011 afpFlatVol [no description available]
-5012 afpItemNotFound [no description available]
-5013 afpLockErr [no description available]
-5014 afpMiscErr [no description available]
-5015 afpNoMoreLocks [no description available]
-5016 afpNoServer [no description available]
-5017 afpObjectExists [no description available]
-5018 afpObjectNotFound [no description available]
-5019 afpParmErr [no description available]
-5020 afpRangeNotLocked [no description available]
-5021 afpRangeOverlap [no description available]
-5022 afpSessClosed [no description available]
-5023 afpUserNotAuth [no description available]
-5024 afpCallNotSupported [no description available]
-5025 afpObjectTypeErr [no description available]
-5026 afpTooManyFilesOpen
[no description available]
-5027 afpServerGoingDown [no description available]
-5028 afpCantRename [no description available]
-5029 afpDirNotFound [no description available]
-5030 afpIconTypeError [no description available]

_SysEnvirons Errors

-5500 envNotPresent returned by glue - _SysEnvirons trap does not exist
-5501 envBadVers Version non-positive; no information was returned
-5502 envVersTooBig Version bigger than _SysEnvirons routine can handle

PAGE

PART 3A
Macintosh™ Trap Dispatcher

The Trap Dispatcher is the part of the Macintosh Operating System that routes system calls to the
actual routines. The Trap Dispatcher has been revised two times since its initial release, totaling 3
versions. The earliest version was part of the original 64K ROM shipped with the 128K and 512K
Macs. The first revision appeared in the Mac Plus 128K ROM and the second (and last) revision
appeared in all later Mac models.

The Trap Dispatcher takes advantage of a special feature of the 68000 microprocessor called
unimplemented instructions . These instructions, like all other 68000 instructions, are 16 bits long (2
bytes) and can be represented by four hex digits. Unimplemented instructions always begin with the
hex digits A or F and can contain anything in the last 3 digits. Whenever the 68000 gets such an
instruction, it automatically performs a trap . The 68000 fetches an address from a memory location
predetermined by Motorola and then jumps to that address. The Mac ROM startup code automatically
stores the starting location of the Trap Dispatcher into this specific memory location when the system is
powered up or rebooted (the Trap Dispatcher itself is also located in the ROM). Unimplemented
instructions are called A-traps or F-traps, depending on the first hex digit of the instruction.

Motorola reserved all F-traps for math coprocessor instructions, and allowed the OEM, i.e. Apple,
free use of A-traps. Apple in turn built the whole Macintosh Operating System around A-traps. All
system calls were numbered and were split into two broad categories, called Toolbox Traps and
Operating System (OS) Traps. Each system call was issued its own A-trap, or trap word, containing its
own trap (system call) number. Apple built the Trap Dispatcher to handle A-traps on the Macintosh.

Since any A-trap causes the 68000 to invoke the Trap Dispatcher, the Trap Dispatcher must decode
the last 3 digits of the A-trap to figure out which system call to execute. The diagram below shows how
the Trap Dispatcher decodes A-traps:

Trap word bits are defined as follows.
Bits 15 through 12 are set to the binary pattern 1010 (hexdecimal A) for all traps.
Bit 11 determines the trap's category: 1 for Toolbox traps and 0 for Operating System traps.
For OS traps, bits 10 and 9 are used for flags, whose meanings depend on the routine being

called. For Toolbox traps, bit 10 is the auto-pop bit. If it is set, the Trap Dispatcher will remove, or
"pop", the return address from the top of the stack and throw it out. It will then pop the stack again and
use that address as the return address. This feature supports languages such as Lisa Pascal that always
JSR'd to a table of trap words (instead of inserting the trap words inline with the code).

Bit 9 is a reserved bit in Toolbox trap words in the 64K and 128K ROMs. Apple added the bit to
the trap number on all later ROMs.

Bit 8 is used by OS traps to preserve the 68000's register A0 across a system call. If the bit is 0,
register A0 is saved before the system call begins execution and restored after it finishes. If the bit is 1,
register A0 is not saved and restored (allows OS routines that resturn a value in A0 to work).

Bits 7 through 0 comprise all or part of the trap number for all traps.

PAGE

PART 3B
Macintosh™ Traps

With the exception of the original 64K ROM found in 128K and 512K Macintoshes, all Mac
ROM sets are based on the 128K ROM found in the Mac 512KE and Plus. The ROMs in all later
Mac models contain some additions not in the 128K ROM. These additions are marked by asterisk (*)
to the left of their name. Apple has tried to retrofit these additional traps into older Macs (that don't have
them in ROM) by using the System software to install them in RAM, one reason newer systems are so
huge. However, Apple excluded certain goups of traps from the retrofit process. A good example is
Color QuickDraw, which is available only on Macs that have it in ROM (SE/30 and II series).

While Apple has made many additions to the ROM trap set, only two traps have been removed.
Existing only in the original 64K ROM, the obscure Resource Manager traps AddReference and
RemoveReference never found much use, leading Apple to declare them "obsolete" and not include
them in all later ROMs. These routines haven't been supported since 1985 and should not be used (in
the list these two routines are marked with a black dot "•"). In fact, they were described only in the 3-
ring binder and phone book editions of Inside Macintosh and weren't included in the final release.

All ROM traps are given in 68000 assembly language format. Traps in boldface are bundles of
several subroutines. Listings of the subroutines follow the general list. Be aware that some trap names
differ from their high-level language counterparts. The reason: the original Lisa assembler limited trap
names to 8 significant letters (including the initial underscore), and would thus see the two names
_UnloadSeg and _UnloadScrap as representing the same trap. Changing the spelling of one of the two
traps resolves the name conflict (thus, _UnloadSeg becomes _UnlodeScrap). In the MDS and MPW
assemblers, Apple increased the character limit to 31. While the new limit would eliminate all conflicts,
Apple made the misspelled names permanent.

For a detailed description of the trap word mechanism, see Part 3A.

 Trap name........... Trap Trap name........... Trap Trap name........... Trap
* _ADBOp $A07C • _AddReference $A9AC _Allocate $A010
* _ADBReInit $A07B _AddResMenu $A94D * _AllocCursor $AA1D
* _AddComp $AA3B _AddResource $A9AB _AngleFromSlope $A8C4

_AddDrive $A04E * _AddSearch $AA3A _AppendMenu $A933
_AddPt $A87E _Alert $A985 * _AttachVBL $A071

_BackColor $A863 _BitClr $A85F _BitTst $A85D
_BackPat $A87C _BitNot $A85A _BitXor $A859

* _BackPixPat $AA0B _BitOr $A85B _BlockMove $A02E
_BeginUpdate $A922 _BitSet $A85E _BringToFront $A920
_BitAnd $A858 _BitShift $A85C _Button $A974

* _CalcCMask $AA4F * _CloseCPort $A87D * _CopyPixMap $AA05
_CalcMask $A838 _CloseDeskAcc $A9B7 * _CopyPixPat $AA09
_CalcMenuSize $A948 _CloseDialog $A982 _CopyRgn $A8DC
_CalcVBehind $A90A _ClosePgon $A8CC _CouldAlert $A989
_CalcVis $A909 _ClosePicture $A8F4 _CouldDialog $A979
_CautionAlert $A988 _ClosePort $A87D _Count1Resources $A80D
_Chain $A9F3 _CloseResFile $A99A _Count1Types $A81C
_ChangedResource $A9AA _CloseRgn $A8DB * _CountADBs $A077

* _CharExtra $AA23 _CloseWindow $A92D _CountMItems $A950
_CharWidth $A88D _CmpString $A03C _CountResources $A99C
_CheckItem $A945 * _Color2Index $AA33 _CountTypes $A99E
_CheckUpdate $A911 _ColorBit $A864 _Create $A008
_ClearMenuBar $A934 _CompactMem $A04C _CreateResFile $A9B1

PAGE

_ClipAbove $A90B _Control $A004 _CurResFile $A994
_ClipRect $A87B _CopyBits $A8EC
_Close $A001 _CopyMask $A817

PAGE

 Trap name........... Trap Trap name........... Trap Trap name........... Trap
_Date2Sec $A9C7 * _DisposCIcon $AA25 _DragWindow $A925
_Delay $A03B _DisposControl $A955 _Draw1Control $A96D

* _DelComp $AA4D * _DisposCTable $AA24 _DrawChar $A883
_Delete $A009 _DisposDialog $A983 _DrawControls $A969
_DeleteMenu $A936 * _DisposGDevice $AA30 _DrawDialog $A981

* _DelMCEntries $AA60 _DisposHandle $A023 _DrawGrowIcon $A904
_DelMenuItem $A952 _DisposMenu $A932 _DrawMenuBar $A937

* _DelSearch $AA4C * _DisposPixMap $AA04 _DrawNew $A90F
_DeltaPoint $A94F * _DisposPixPat $AA08 _DrawPicture $A8F6
_Dequeue $A96E _DisposPtr $A01F _DrawString $A884
_DetachResource $A992 _DisposRgn $A8D9 _DrawText $A885
_DialogSelect $A980 _DisposWindow $A914 _DrvrInstall $A03D
_DiffRgn $A8E6 * _DoVBLTask $A072 _DrvrRemove $A03E
_DisableItem $A93A _DragControl $A967 * _DTInstall $A082

* _DispMCEntries $AA63 _DragGrayRgn $A905
* _DisposCCursor $AA26 _DragTheRgn $A926

_Eject $A017 _Enqueue $A96F _EraseRect $A8A3
_Elems68K $A9EC _EqualPt $A881 _EraseRgn $A8D4
_EmptyHandle $A02B _EqualRect $A8A6 _EraseRoundRect $A8B2
_EmptyRect $A8AE _EqualRgn $A8E3 _ErrorSound $A98C
_EmptyRgn $A8E2 _EraseArc $A8C0 _EventAvail $A971
_EnableItem $A939 _EraseOval $A8B9 _ExitToShell $A9F4
_EndUpdate $A923 _ErasePoly $A8C8

_FillArc $A8C2 _Fix2Long $A840 _Frac2X $A845
* _FillCArc $AA11 _Fix2X $A843 _FracCos $A847
* _FillCOval $AA0F _FixAtan2 $A818 _FracDiv $A84B
* _FillCPoly $AA13 _FixDiv $A84D _FracMul $A84A
* _FillCRect $AA0E _FixMul $A868 _FracSin $A848
* _FillCRgn $AA12 _FixRatio $A869 _FracSqrt $A849
* _FillCRoundRect $AA10 _FixRound $A86C _FrameArc $A8BE

_FillOval $A8BB _FlashMenuBar $A94C _FrameOval $A8B7
_FillPoly $A8CA _FlushEvents $A032 _FramePoly $A8C6
_FillRect $A8A5 _FlushFile $A045 _FrameRect $A8A1
_FillRgn $A8D6 _FlushVol $A013 _FrameRgn $A8D2
_FillRoundRect $A8B4 _FMSwapFont $A901 _FrameRoundRect $A9B0
_FindControl $A96C _FontMetrics $A835 _FreeAlert $A98A
_FindDItem $A984 _ForeColor $A862 _FreeDialog $A97A
_FindWindow $A92C _FP68K $A9EB _FreeMem $A01C
_Fix2Frac $A841 _Frac2Fix $A842 _FrontWindow $A924

_Get1IxResource $A80E * _GetGDevice $AA32 _GetOSEvent $A031
_Get1IxType $A80F _GetHandleSize $A025 _GetPattern $A9B8
_Get1NamedResource $A820 _GetIcon $A9BB _GetPen $A89A
_Get1Resource $A81F * _GetIndADB $A078 _GetPenState $A898

* _GetADBInfo $A079 _GetIndResource $A99D _GetPicture $A9BC
_GetAppParms $A9F5 _GetIndType $A99F _GetPixel $A865

* _GetAuxCtl $AA44 _GetItem $A946 * _GetPixPat $AA0C
* _GetAuxWin $AA42 * _GetItemCmd $A84E _GetPort $A874
* _GetBackColor $AA1A _GetIText $A990 _GetPtrSize $A021
* _GetCCursor $AA1B _GetItmIcon $A93F _GetResAttrs $A9A6

PAGE

* _GetCIcon $AA1E _GetItmMark $A943 _GetResFileAttrs $A9F6
_GetClip $A87A _GetItmStyle $A941 _GetResInfo $A9A8

* _GetCPixel $AA17 _GetKeys $A976 _GetResource $A9A0
 Trap name........... Trap Trap name........... Trap Trap name........... Trap

_GetCRefCon $A95A * _GetMainDevice $AA2A _GetRMenu $A9BF
* _GetCTable $AA18 _GetMaxCtl $A962 _GetScrap $A9FD

_GetCTitle $A95E * _GetMaxDevice $AA27 _GetString $A9BA
_GetCtlAction $A96A * _GetMCEntry $AA64 * _GetSubTable $AA37
_GetCtlValue $A960 * _GetMCInfo $AA61 _GetTrapAddress $A146
_GetCursor $A9B9 _GetMenuBar $A93B * _GetVideoDefault $A080

* _GetCVariant $A809 _GetMHandle $A949 _GetVol $A014
* _GetCWMgrPort $AA48 _GetMinCtl $A961 _GetVolInfo $A007
* _GetDefaultStartup $A07D _GetMouse $A972 _GetWindowPic $A92F
* _GetDeviceList $AA29 _GetNamedResource $A9A1 _GetWMgrPort $A910

_GetDItem $A98D _GetNewControl $A9BE _GetWRefCon $A917
_GetEOF $A011 * _GetNewCWindow $AA46 _GetWTitle $A919
_GetFileInfo $A00C _GetNewDialog $A97C * _GetWVariant $A80A
_GetFName $A8FF _GetNewMBar $A9C0 _GetZone $A11A
_GetFNum $A900 _GetNewWindow $A9BD _GlobalToLocal $A871
_GetFontInfo $A88B * _GetNextDevice $AA2B _GrafDevice $A872

* _GetForeColor $AA19 _GetNextEvent $A970 _GrowWindow $A92B
_GetFPos $A018 * _GetOSDefault $A084

_HandAndHand $A9E4 _HideDItem $A827 _HLock $A029
_HandleZone $A126 _HidePen $A896 _HNoPurge $A04A
_HandToHand $A9E1 _HideWindow $A916 _HomeResFile $A9A4
_HClrRBit $A068 * _HiliteColor $AA22 _HPurge $A049
_HFSDispatch $A260 _HiliteControl $A95D _HSetRBit $A067
_HGetState $A069 _HiliteMenu $A938 _HSetState $A06A
_HideControl $A958 _HiliteWindow $A91C _HUnlock $A02A
_HideCursor $A852 _HiWord $A86A

* _Index2Color $AA34 _InitPort $A86D * _InternalWait $A07F
_InfoScrap $A9F9 * _InitProcMenu $A808 _InvalRect $A928
_InitAllPacks $A9E6 _InitQueue $A016 _InvalRgn $A927
_InitApplZone $A02C _InitResources $A995 _InverRect $A8A4

* _InitCport $AA01 _InitUtil $A03F _InverRgn $A8D5
_InitCursor $A850 _InitWindows $A912 _InverRoundRect $A8B3
_InitDialogs $A97B _InitZone $A019 _InvertArc $A8C1
_InitFonts $A8FE _InsertMenu $A935 * _InvertColor $AA35

* _InitGDevice $AA2E _InsertResMenu $A951 _InvertOval $A8BA
_InitGraf $A86E _InsetRect $A8A9 _InvertPoly $A8C9
_InitMenus $A930 _InsetRgn $A8E1 _IsDialogEvent $A97F
_InitPack $A9E5 _InsMenuItem $A826

* _KeyTrans $A9C3 _KillIO $A006 _KillPoly $A8CD
_KillControls $A956 _KillPicture $A8F5

_Launch $A9F2 _LoadSeg $A9F0 _LongMul $A867
_Line $A892 _LocalToGlobal $A870 _LoWord $A86B
_LineTo $A891 _LodeScrap $A9FB
_LoadResource $A9A2 _Long2Fix $A83F

PAGE

 Trap name........... Trap Trap name........... Trap Trap name........... Trap
* _MakeITable $AA39 _MaxMem $A11D _MountVol $A00F
* _MakeRGBPat $AA0D _MaxSizeRsrc $A821 _Move $A894

_MapPoly $A8FC _MeasureText $A837 _MoveControl $A959
_MapPt $A8F9 * _MenuChoice $AA66 _MoveHHi $A064
_MapRect $A8FA _MenuKey $A93E _MovePortTo $A877
_MapRgn $A8FB _MenuSelect $A93D _MoveTo $A893
_MaxApplZone $A063 _ModalDialog $A991 _MoveWindow $A91B
_MaxBlock $A061 _MoreMasters $A036 _Munger $A9E0

* _NewCDialog $AA4B * _NewGDevice $AA2F _NewPtr $A11E
_NewControl $A954 _NewHandle $A122 _NewRgn $A8D8

* _NewCWindow $AA45 _NewMenu $A931 _NewString $A906
_NewDialog $A97D * _NewPixMap $AA03 _NewWindow $A913
_NewEmptyHandle $A066 * _NewPixPat $AA07 _NoteAlert $A987

_ObscureCursor $A856 _Open $A000 _OpenResFile $A997
_Offline $A035 * _OpenCport $AA00 _OpenRF $A00A
_OffsetPoly $A8CE _OpenDeskAcc $A9B6 _OpenRFPerm $A9C4
_OffsetRect $A8A8 _OpenPicture $A8F3 _OpenRgn $A8DA
_OfsetRgn $A8E0 _OpenPoly $A8CB _OSEventAvail $A030

* _OpColor $AA21 _OpenPort $A86F

_Pack0 $A9E7 _PaintArc $A8BF _PlotIcon $A94B
_Pack1 $A9E8 _PaintBehind $A90D * _PopUpMenuSelect $A80B
_Pack2 $A9E9 _PaintOne $A90C _PortSize $A876
_Pack3 $A9EA _PaintOval $A8B8 _PostEvent $A02F
_Pack4 $A9EB _PaintPoly $A8C7 _PPostEvent $A12F
_Pack5 $A9EC _PaintRect $A8A2 * _ProtectEntry $AA3D
_Pack6 $A9ED _PaintRgn $A8D3 _Pt2Rect $A8AC
_Pack7 $A9EE _PaintRoundRect $A8B1 _PtInRect $A8AD
_Pack8 $A816 _ParamText $A98B _PtInRgn $A8E8
_Pack9 $A82B _PenMode $A89C _PtrAndHand $A9EF
_Pack10 $A82C _PenNormal $A89E _PtrToHand $A9E3
_Pack11 $A82D _PenPat $A89D _PtrToXHand $A9E2
_Pack12 $A82E * _PenPixPat $AA0A _PtrZone $A148
_Pack13 $A82F _PenSize $A89B _PtToAngle $A8C3
_Pack14 $A830 _PicComment $A8F2 _PurgeMem $A04D
_Pack15 $A831 _PinRect $A94E _PurgeSpace $A062
_PackBits $A8CF * _PlotCIcon $AA1F _PutScrap $A9FE

* _QDError $AA40

_Random $A861 _RectRgn $A8DF * _RGBForeColor $AA14
_RDrvrInstall $A04F _ReleaseResource $A9A3 * _RGetResource $A80C
_Read $A002 _RelString $A050 • _RmveReference $A9AE
_ReadDateTime $A039 _Rename $A00B _RmveResource $A9AD

* _RealColor $AA36 _ResError $A9AF _RsrcMapEntry $A9C5
_RealFont $A902 * _ReserveEntry $AA3E _RsrcZoneInit $A996
_ReallocHandle $A027 _ResrvMem $A040 _RstFilLock $A042
_RecoverHandle $A128 * _RestoreEntries $AA4A
_RectInRgn $A8E9 * _RGBBackColor $AA15

PAGE

 Trap name........... Trap Trap name........... Trap Trap name........... Trap
* _SaveEntries $AA49 * _SetGDevice $AA31 _ShowPen $A897

_SaveOld $A90E _SetHandleSize $A024 _ShowWindow $A915
_ScalePt $A8F8 _SetItem $A947 * _Shutdown $A895

* _ScriptUtil $A8B5 * _SetItemCmd $A84F * _SIntInstall $A075
_ScrollRect $A8EF _SetIText $A98F * _SIntRemove $A076
_SCSIDispatch $A815 _SetItmIcon $A940 _SizeControl $A95C
_Secs2Date $A9C6 _SetItmMark $A944 _SizeRsrc $A9A5
_SectRect $A8AA _SetItmStyle $A942 _SizeWindow $A91D
_SectRgn $A8E4 _SetMaxCtl $A965 _SlopeFromAngle $A8BC

* _SeedCFill $AA50 * _SetMCEntries $AA65 * _SlotManager $A06E
_SeedFill $A839 * _SetMCInfo $AA62 * _SlotVInstall $A06F
_SelectWindow $A91F _SetMenuBar $A93C * _SlotVRemove $A070
_SelIText $A97E _SetMFlash $A94A _SpaceExtra $A88E
_SendBehind $A921 _SetMinCtl $A964 _StackSpace $A065

* _SetADBInfo $A07A _SetOrigin $A878 _Status $A005
_SetAppBase $A057 * _SetOSDefault $A083 _StdArc $A8BD
_SetApplLimit $A02D _SetPBits $A875 _StdBits $A8EB

* _SetCCursor $AA1C _SetPenState $A899 _StdComment $A8F1
* _SetClientID $AA3C _SetPort $A873 _StdGetPic $A8EE

_SetClip $A879 _SetPt $A880 _StdLine $A890
* _SetCPixel $AA16 _SetPtrSize $A020 _StdOval $A8B6
* _SetCPortPix $AA06 _SetRecRgn $A8DE _StdPoly $A8C5

_SetCRefCon $A95B _SetRect $A8A7 _StdPutPic $A8F0
_SetCTitle $A95F _SetResAttrs $A9A7 _StdRect $A8A0
_SetCtlAction $A96B _SetResFileAttrs $A9F7 _StdRgn $A8D1

* _SetCtlColor $AA43 _SetResInfo $A9A9 _StdRRect $A8AF
_SetCtlValue $A963 _SetResLoad $A99B _StdText $A882
_SetCursor $A851 _SetResPurge $A993 _StdTxMeas $A8ED
_SetDateTime $A03A _SetStdProcs $A8EA _StillDown $A973

* _SetDefaultStartup $A07E _SetString $A907 _StopAlert $A986
* _SetDeskCPat $AA47 _SetTrapAddress $A047 _StringWidth $A88C
* _SetDeviceAttribute $AA2D * _SetVideoDefault $A081 * _StripAddress $A055

_SetDItem $A98E _SetVol $A015 _StuffHex $A866
_SetEmptyRgn $A8DD * _SetWinColor $AA41 _SubPt $A87F

* _SetEntries $AA3F _SetWindowPic $A92E * _SwapMMUMode $A05D
_SetEOF $A012 _SetWRefCon $A918 _SysBeep $A9C8
_SetFileInfo $A00D _SetWTitle $A91A _SysEdit $A9C2
_SetFilLock $A041 _SetZone $A01B * _SysEnvirons $A090
_SetFilType $A043 _ShieldCursor $A855 _SysError $A9C9
_SetFontLock $A903 _ShowControl $A957 _SystemClick $A9B3
_SetFPos $A044 _ShowCursor $A853 _SystemEvent $A9B2
_SetFScaleDisable $A834 _ShowDItem $A828 _SystemMenu $A9B5
_SetGrowZone $A04B _ShowHide $A908 _SystemTask $A9B4

_TEActivate $A9D8 _TEInit $A9CC * _TEStyleNew $A83E
_TEAutoView $A813 _TEInsert $A9DE _TEUpdate $A9D3
_TECalText $A9D0 _TEKey $A9DC _TextBox $A9CE
_TEClick $A9D4 _TENew $A9D2 _TextFace $A888
_TECopy $A9D5 _TEPaste $A9DB _TextFont $A887
_TECut $A9D6 _TEPinScroll $A812 _TextMode $A889
_TEDeactivate $A9D9 _TEScroll $A9DD _TextSize $A88A
_TEDelete $A9D7 _TESelView $A811 _TextWidth $A886

PAGE

* _TEDispatch $A83D _TESetJust $A9DF _TickCount $A975
_TEDispose $A9CD _TESetSelect $A9D1 _TrackBox $A83B

* _TEGetOffset $A83C _TESetText $A9CF _TrackControl $A968
 Trap name........... Trap Trap name........... Trap Trap name........... Trap

_TEGetText $A9CB _TestControl $A966 _TrackGoAway $A91E
_TEIdle $A9DA * _TestDeviceAttribute $AA2C

_UnionRect $A8AB _UnlodeScrap $A9FA _UpdtDialog $A978
_UnionRgn $A8E5 _UnmountVol $A00E _UprString $A054
_Unique1ID $A810 _UnpackBits $A8D0 _UseResFile $A998
_UniqueID $A9C1 _UpdateResFile $A999
_UnloadSeg $A9F1 _UpdtControl $A953

_ValidRect $A92A _VInstall $A033
_ValidRgn $A929 _VRemove $A034

_WaitMouseUp $A977 _WriteParam $A038
_Write $A003 _WriteResource $A9B0

_X2Fix $A844 _X2Frac $A846 _XorRgn $A8E7

_ZeroScrap $A9FC _ZoomWindow $A83A

Below is a list of all system traps which represent multiple routines. These traps decide which
routine to execute by looking for a routine number either on the stack (stack-based) or in register D0
(register-based). All traps with the exception of InternalWait expect the routine number to be passed as
a 16-bit unsigned word. InternalWait looks for a 32-bit routine number. To call an individual routine,
the routine number must be either pushed on the stack or placed in register D0 (following the method
expected by its parent trap). Note that all Macintosh Packages (PACK) are stack-based.

_PACK 0 - $A9E7 LIST MANAGER Stack-based

NOTE: First appeared in System 3.2

LActivate 0 LDelRow 36 LNextCell 72
LAddColumn 4 LDispose 40 LRect 76
LAddRow 8 LDoDraw 44 LScroll 80
LAddToCell 12 LDraw 48 LSearch 84
LAutoScroll 16 LFind 52 LSetCell 88
LCellSize 20 LGetCell 56 LSetSelect 92
LClick 24 LGetSelect 60 LSize 96
LClrCell 28 LLastClick 64 LUpdate 100
LDelColumn 32 LNew 68

_PACK 1 - $A9E8 Reserved

_PACK 2 - $A9E9 DISK INITIALIZATION Stack-based

DIBadMount 0 DILoad 2 DIVerify 8
DIFormat 6 DIUnload 4 DIZero 10

_PACK 3 - $A9EA STANDARD FILE Stack-based
 SFGetFile 2 SFPPutFile 3

SFPGetFile 4 SFPutFile 1

PAGE

PAGE

_PACK 4 - $A9EB FLOATING-POINT MATH Stack-based
NOTE: The Standard Apple Numerics Environment (SANE) declares a second name for this trap: _FP68K. SANE

also requires the data type of routine parameters; this is accomplished by setting certain high bits of the routine number
(and altering the 16-bit value). The numbers listed below, with all high bits clear, will work for 80-bit extended-
precision floating- point parameters. See the Apple Numerics Manual for more information.

FOABS 15 FOLOGB 26 FOGETENV 3
FOADD 0 FOMUL 4 FOSETHV 5
FOB2D 11 FONEG 13 FOSETXCP 21
FOCLASS 28 FONEXT 19 FOSQRT 18
FOCMP 8 FOPROCENTRY 23 FOSUB 2
FOCPX 10 FOPROCEXIT 25 FOTESTXCP 27
FOCPYSGN 17 FOREM 12 FOTTI 22
FOD2B 9 FORTI 20 FOX2Z 16
FODIV 6 FOSCALB 24 FOZ2X 14
FOGETHV 7 FOSETENV 1

_PACK 5 - $A9EC TRANSCENDENTAL FUNCTIONS Stack-based
NOTE: SANE declares a second name for this trap: _Elems68K. Also, SANE treats these routines

in the same manner as FP68K / Pack4. See the Apple Numerics Manual for more information.
FOANNUITY 49174 FOEXP1X 12 FORANDX 32
FOATANX 30 FOEXP21X 14 FOSINX 24
FOCOMPOUND 49172 FOLNX 0 FOTANX 28
FOCOSX 26 FOLN1X 4 FOXPWRI 32784
FOEXPX 8 FOLOG21X 6 FOXPWRY 32786
FOEXP2X 10 FOLOG2X 2

_PACK 6 - $A9ED INTERNATIONAL UTILITIES Stack-based

IUDatePString 14 IUMagIDString 12 IUSetIntl 8
IUDateString 0 IUMagString 10 IUTimePString 16
IUGetIntl 6 IUMetric 4 IUTimeString 2

_PACK 7 = $A9EE BINARY/DECIMAL CONVERSION Stack-based
NOTE: SANE declares a second name for this trap: _DecStr68K, and uses routines 2, 3, and 4. No high bits are

required by SANE for these routines, unlike packages 4 and 5.
CStr2Dec 4 NumToString 0 StringToNum 1
Dec2Str 3 PStr2Dec 2

_HFSDispatch = $A260 Register-based

CloseWD 2 GetFCBInfo 8 SetCatInfo 10
CatMove 5 GetWDInfo 7 SetVolInfo 11
DirCreate 6 LockRng 16 UnlockRng 17
GetCatInfo 9 OpenWD 1

_SCSIDispatch = $A815 Stack-based

SCSICmd 3 * SCSIMsgOut 13 SCSISelect 2
SCSIComplete 4 SCSIRBlind 8 SCSIStat 10
SCSIGet 1 SCSIRead 5 SCSIWBlind 9
SCSIInstall 7 SCSIReset 0 SCSIWrite 6

* SCSIMsgIn 12 * SCSISelAtn 11

* _InternalWait $A07F basis unknown
NOTE: This trap was listed in Inside Macintosh without an accompanying description.

PAGE

SetTimeout 0 GetTimeout 1

PAGE

* _ScriptUtil $A8B5 stack-based [long]
NOTE: Routine number expected to be a 32-bit long integer on stack

smChar2Pixel 22 smFontScript 0 smMeasureJust 32
smCharByte 16 smGetEnvirons 8 smPixel2Char 20
smCharType 18 smGetScript 12 smSetEnvirons 10
smDrawJust 30 smHiliteText 28 smSetScript 14
smFindWord 26 smIntlScript 2 smTranslit 24
smFont2Script 6 smKybdScript 4

* _Shutdown $A895 Stack-based

ShutDwnInstall 3 ShutDwnRemove 4
ShutDwnPower 1 ShutDwnStart 2

* _SlotManager $A06E Register-based

InitPRAMRecs 37 sFindsRsrcPtr 48 sReadByte 0
InitSDec1Mgr 32 sFindStruct 6 sReadDrvrName 25
InitsRsrcTable 41 sGetBlock 5 sReadInfo 16
sCalcsPointer 44 sGetcString 3 sReadLong 2
sCalcStep 40 sGetDriver 45 sReadPBSize 38
sCardChanged 34 sNextRsrc 20 sReadPRAMRec 17
sCkCardStatus 24 sNextTypesRsrc 21 sReadStruct 7
sdeleteSRTRec 49 sOffsetData 36 sReadWord 1
sDisposePtr 23 sPrimaryInit 33 sRsrcInfo 22
sExec 35 sPtrToSlot 46 sSearchSRT 42
sFindDevBase 27 sPutPRAMRec 18 sUpdateSRT 43
sFindsInfoRecPtr 47 sReadFHeader 19

PAGE

PART 4
Unit Table Entries (Device Driver)

0 [reserved] 8 .BOut (Printer port async out)
1 hard disk driver (MacXL/HD20) 9 .MPP (AppleTalk)
2 .Print 10 .ATP (AppleTalk)
3 .Sound 11 [reserved]
4 .Sony (disk driver) 12-26 desk accessories in System file
5 .AIn (Modem port async in) 27-31 desk accessories in application files
6 .AOut (Modem port async out) 32-39 SCSI drivers 0-7
7 .BIn (Printer port async in) 40-47 [reserved]

PART 5
Font Numbers for Apple® Screen Fonts

Font Font No. Res ID Font Font No. Res ID
Chicago 0 0 [reserved] 13 1664
application font 1 128 [reserved] 14 1792
New York 2 256 [reserved] 15 1920
Geneva 3 384 [reserved] 16 2048
Monaco 4 512 [reserved] 17 2176
Venice 5 640 [reserved] 18 2304
London 6 768 [reserved] 19 2432
Athens 7 896 Times Roman 20 2560
San Francisco 8 1024 Helvetica 21 2688
Toronto 9 1152 Courier 22 2816
Seattle 10 1280 Symbol 23 2944
Cairo 11 1408 Taliesin 24 3072
Los Angeles 12 1536 [reserved] 25 3200

NOTES:
1. Font numbers 0-127 are reserved for future Apple fonts.
2. Font numbers 128-383 are reserved for vendor assignments.
3. Font numbers 384-511 available for use by anyone.
4. Old copies of Apple's Font/DA Mover (older than version 3.x) will not handle fonts that have negative resource

ID's (i.e. font numbers 256 and up), affecting half the font numbers reserved for vendors and
all of the general-use font numbers.

PAGE

PART 6
Power-up/Reset Memory Tests

When the Mac is first turned on, it performs several internal tests before displaying the insert disk
icon. Although Apple never published details about these tests, this information was leaked to the public
soon after the Mac's introduction in 1984.

Every time the Mac performs a cold start, usually when power is first applied (or even after a bad
system crash), the boot code in the ROM executes 5 memory tests. The first one is a ROM self-test,
and the remaining four test the RAM. If any of these tests fail, obviously the Mac in question will need
logic board repairs. To help their technicians diagnose the trouble, Apple distributed a diagram similar
to the one above.

The diagram was released for the first Mac motherboard, used in the old 128K and 512K Macs. To
the best of my knowledge, Apple has not released diagrams for Macs built with SIMM RAM modules
(Mac Plus and all later models). But I do understand that Apple used a chip-numbering system for
SIMMs similar to the one used for the soldered-in RAM chips of the original motherboards.

The sad-Mac screen is used to report memory test failures on all Mac models. The sad-Mac screen
itself is generated by the System Error Handler when it doesn't have the normal system error box
loaded (such as before the Mac can boot, or after a bad enough crash). Below the sad-Mac icon are 6
hexadecimal digits which describe the system error.

For memory test failures, the first two hex digits always report the test number. The second pair of
digits represent the chips in row 'G' on the motherboard (see diagram), and the last pair of digits
describe row 'H'. Starting from the left, each bit corresponds to a particular chip. If the chip is bad, the
bit is set to '1', otherwise the bit is zero.

For system errors, the first pair of hex digits will always be a 0F. The last four digits represent the
error code (which will be the normal system error ID code converted into hex). The table below lists
both the 0F and its associated error IDs (listed as processor errors):

Test Number and Description Error Code
01 ROM test failed (meaningless)
02 Memtest - Bus subtest Identity of suspected bad RAM chip(s)
03 Memtest - ByteWrite "
04 Memtest - Mod3test "
05 Memtest - Add uniqueness "
06 through 0E - not used
0F Exception - MC68000 error Processor error (listed below)
0001 Bus Error 0007 privilege violation
0002 address error 0008 trace
0003 illegal instruction 0009 A-trap
0004 zero divide 000A F-trap

PAGE

0005 check instruction 000B other exceptions
0006 trapv instruction 000D NMI (interrupt button)

PAGE

PART 7A
Standard ASCII Chart

This ASCII chart is labeled in hexadecimal. The ASCII character code for any character is obtained
by adding the character's row and column numbers, e.g. ASCII code for "g" is 60+7 or $67 hex.

PART 7B
ASCII Character Layout, Mac Plus Keyboard

NOTE: Although there are several other Apple keyboard designs, the ASCII codes generated by
their keys will largely follow the pattern used by the Macintosh Plus keyboard.

(continued on next page)

PAGE

PAGE

