o,

For MacsBug 6.2 MaCSBUg 62
Software Release Notes

€.

Developer Technical Publications
© Apple Computer, Inc. 1990

MacsBug 6.2 Software Release Notes

iU

éqa Welcome to Macintosh.
MacsBug instalied.

k4

MacsBug 6.2 Quick Reference 2
MacsBug 6.2: What's New, Improved, and Documented 3
New MacsBug Display Information 4
Command Line Editing Commands 6
The Find Command 10
The Find Byte, Find Word, and Find Long Commands 12
The Find Pointer Command 13
Macros for the Find Command 16
New Heap Dump Display)
Summary of Changes to MacsBug Commands 18
Specifying Commands Using DebugStr 18
Working with the Debugger Preferences File 19
Standard demds 2
Constructing Linked Lists Using the mxwt Resource 23
Removing Resources to Gain Memory 25

Using MacsBug Under A/UX 26

Software Release Notes: MacsBug 6.2 2/3/91

MacsBug 6.2 Quick Reference

This section provides a summary of changes and additions to MacsBug.

Command/Trap/ Syntax Effect/Change
Variable
Command-D Command-D Displays a menu of procedure names from which

you can select a name to insert in the command
line. This is not 2 new command, it is a way of
implementing the Command-: command on
German and Scandinavian keyboards.

Command-B Command-B Scrolls the command line buffer up.

Find command | F addr nbytes expr | "string" | Returns the address where it finds the specified
pattern.

FBIWILIP] addr nbytes expr | Returns the address where it finds the specified
byte, word, long word, or pointer,

ATP command | ATP If ATR is off, the ATP command plays back
information from the most recent ATR.

GT command GT addr[;cmds] Breaks at the specified address and executes
one or more commands.

DebugStr trap | Debugstr ("string[; cmd)...") | Following a break set with the Debugger trap
from within the source program, it displays
string and executes one or more commands.

Printf demd printf "format" arg ... Formatted output command.
TargetZone TargetZone Specifies the zone currently set with the HX
variable command.

2/3/91 Software Release Notes: MacsBug 6.2

MacsBug 6.2: What's New, Improved and Documented

This note describes the software changes and additions that make up the release of
MacsBug version 6.2. These changes and additions have basically one aim, to make
MacsBug an easier tool for you to use as you hunt for bugs and test code.

One of the major changes to MacsBug is that it now works reliably with all Apple monitors
and all third-party monitors if their slot ROM and driver software have been designed
according to the guidelines presented in Designing Cards and Drivers for the Macintosh II
and Macintosh SE. MacsBug 6.2 also runs under A/UX. Please read the section “Using
MacsBug under A/UX” for additional information. In addition to its increased

portability, MacsBug 6.2 includes

» A new display that shows you the name of the current application, the memory
management scheme (24 bit/32 bit) currently used, and whether you have access to
virtual memory.

» New options for the Find command that allow you to specify the width of the pattern
for which MacsBug searches. You can even use one of these options to have MacsBug
look for pointers.

= A more detailed heap dump display.

= An extension to the GT command that allows you to specify one or more MacsBug
commands to be executed once the specified breakpoint is reached.

» A standard printf demd (debugger command) that allows you to produce formatted
output.

In addition to these specific changes, you should find MacsBug 6.2 easier to use.
Whenever possible its output has been made more articulate and its displays more
intelligible.

This software release note also describes an extension to the DebugStr trap, which was
introduced (but not documented) with the 6.1 software release of MacsBug.

Please read through the following pages for more detailed descriptions of the items listed
above. You should try out the new commands and command options whenever possible.
When you are familiar with the new material and are ready to work with MacsBug 6.2, you
might want simply to consult the “MacsBug Quick Reference” section on the opposing
page, or use the on-line help to jog your memory.

Software Release Noles: MacsBug 6.2 2/3/91

New MacsBug Display Information

MacsBug 6.2 has changed the display to provide the following information:

= The name of the application using the processor when MacsBug was invoked
s Whether the machine is in 24-bit or 32-bit memory mode

s Whether virtual memory was running when MacsBug was invoked

Figure 1 shows the new MacsBug display. The new information is shown in the status
region of the MacBug Display, in the area between the stack and the register information.

The Current Application Name: MacsBug 6.2 displays the name of the application using
the cpu when MacsBug is invoked. In Figure 1, the current application is Finder.

If an unexpected crash lands you in MacsBug, check this item first. If your application is
running in a multitasking environment (Multifinder) it is possible that one of the
background applications has caused the crash. If this is the case, the name of the current
application shown in theMacsBug display will not be the name of the foreground
application.

24-bit and 32-bit Marker: MacsBug 6.2 displays the message “24-bit” or “32-bit” to
indicate whether the machine is in 24-bit mode or 32-bit mode.

Being aware of which mode the machine is in could save you time and trouble in
identifying the cause of some bus errors (in MacsBug the error would be “Unable to access
that address.”). For example, to implement drivers that access a NuBus board you need
to switch the hardware to 32-bit addressing mode. If you now de-reference an address
that uses the high byte to hold data, you will get a bus error because the address does not
refer to a valid location. It is your responsiblity to make sure that your program is not
using invalid addresses either by switching back to 24-bit mode or by using the Strip
Address routine to strip the misleading high byte from the address. For additional
information see “Compatibility: Rules of the Road” in the January 1990 issue of Develop,
and “The Memory Manager” in Volume II of Inside Macintosh.

In short, the marker tells you what memory management scheme the machine is using. It is
then up to you to make sure that your application is behaving appropriately given that
state.

Virtual Memory Marker: MacsBug 6.2 displays one of three codes to indicate whether
virtual memory is being used and whether MacsBug can rely on the Memory Manager to
swap pages if the program being debugged makes use of virtual memory.

2/3/91 Software Release Notes: MacsBug 6.2

s Figurel MacsBug 6.2 Display

sp
60487026
26 498BF2A4 L
2R 9091215C
2E B1E40048
32 894B722C
36 90487084
3R 4880F 1RO
3E 8@4B?22C
42 FFFFa100
46 004B722C
4R 0OO3R418
4E 000P0R4C
52 D6450000
56 BD?ERABED
SA FFFF@1E4
SE 98480000
62 8D?60000
66 90010000
6A FFFFO24B)
6E 96000003 — Status region
172 89628001
76 2EDCOD4B
7R 722C004B

CurApName< Current application name
Finder
24-bit R Virtual memory marker
SR $mxnzuc @] * 24-bit/32-bit marker

Do 060BB000
D1 80060067
D2 FFFFO0o0
D3 00200000
D4 80060D76
0S 06000001
D6 0BBOFFFF
D7 9084B0000

ARG RBVB2CCS
Al 864B722C User break at ABBO2CCA

A2 8084B722C NgcsBug will remain visible always
A3 884B722C o procedure name

@92CCA *RTS | 4E75
Sg 33335223 902CCC ORI.B 27C6,00 | epo@ S6
A6 0487836 ©02CDo NEGX.B Do | 4000

A7 908487026

The codes displayed have the following meaning:

= RM virtual memory is not being used (Real Memory).
s VM memory manager can swap pages if MacsBug requires it.
= VM MacsBug was invoked while the memory manager was swapping pages;

now the Memory Manager cannot swap pages for MacsBug.

Software Release Notes: MacsBug 6.2

Command Line Editing Commands

Using MacsBug often involves having to type complicated expressions on the command
line. Previous versions of MacsBug provided the Command-V command to place a copy
of the previously executed command line on the current command line; you could then use
the Command key together with the left and right arrow keys and the Delete key to edit
the command line. Pressing Return or Enter then executed the edited command line.
MacsBug 6.2 has replaced the Command key combination with Option key combinations
as follows:

» Option-Left Arrow Move cursor left one word.
» Option-Right Arrow Move cursor right one word
m Option-Delete Delete word to the left of cursor

This change makes these editing commands the same as in MPW.

MacsBug 6.2 also adds a new command, Command-B to help with copying command lines
from the command line buffer to the current command line.

MacsBug places each command that you execute in a circular buffer . Typing Cmd-V,
scrolls the buffer down, copying the previous command to the current command line.
Typing Cmd-B scrolls the buffer up. Figure 2 shows the effect of Command-V and
Command-B. (In this example, the greater the command line number, the more recent the
command.)

sFigure 2 Effect of Command-B and Command-V

Command line 1
Command line 2

&

2/3/91 Software Release Notes: MacsBug 6.2

The following example shows you the process of entering and editing commands using
Command-B and Command-V. If you have the time, you should try duplicating these
steps. Learning how to use these two commands can make your work with MacsBug much
easier.

The series of boxes below show the current command line, the command line buffer and
the copy pointer. The position of the copy pointer determines which line in the
command buffer will be copied to the current command line. Pressing Command B,
Command V, or Return changes the position of the copy pointer. The text to the left of
the boxes explains what MacsBug does as the user types and enters commands,

MacsBug has just been invoked. The
command line is empty; the command line ~ cmd-line: <€— copy ptr

buffer is also empty.

The user types vol.

cmd-line: vol <€— copy ptr

The user presses Return. MacsBug
executes the command. It displays the
output for the command in the output

region, adds the command to the vol

command buffer and clears the command sal-1inas ¢ copy ptr

line for new input.

The user types id main. vol

cmd-line: id main -€— copy ptr

The user presses Return. MacsBug

executes the command, adds it to the vol

command line buffer, and clears the id main

command line for new input.

cmd-line: <€— copy ptr

Software Release Notes: MacsBug 6.2

‘The user types hd CODE.

The user presses Return. MacsBug
executes the command and adds it to the
command line buffer. The command line

is clear and ready for input.

The user types ? sc.

The user presses Retum. MacsBug
executes the command and adds it to the
command line buffer. The command line

is clear and ready for input.

The user enters Command-V. MacsBug
scrolls the command line buffer down one
position and copies the command line at
that position to the current command line.
Note that the arrow indicates a new
position for the copy pointer.

vol

id main

2/3/91

cmd-line:

hd CODE

vol

id main

hd CODE

copy ptr

cmd-line:

vol

id main

hd CODE

copy ptr

cmd-line:

? sc

vol

id main

hd CODE

copy ptr

cmd-line:

vol

id main

hd CODE

copy ptr

copy ptr

cmd-line:

2/3/91

The user enters Command-V. MacsBug
scrolls the command line buffer down one
position further and copies the command
line at the new position to the current
command line, replacing the contents of

the current commandline.

The user enters Command-V once more.
MacsBug scrolls the command line buffer
down and copies the command at the new
current position to the current command

line.

The user edits the current command line
by backspacing four times to delete main
and then types createModule.

The user presses Return. MacsBug
executes the id createModule command,
adds it to the command line buffer, and

restores the buffer to its default position.

vol

id main

hd CODE

Software Release Noies: MacsBug 6.2

-€— copy ptr

cmd-line:

hd CODE

vol

id main

hd CODE

-«€— copy ptr

cmd-line:

id main

vol

id main

hd CODE

? sc

-€— copy ptr

cmd-line:

id createModule

vol

id main

hd CODE

? sc

id createModule

cmd-line:

-— copy ptr

If the user pressed Command-V now, MacsBug would copy the id createModule command to the current command
line. If the user pressed Command-B instead, MacsBug would copy the vol command to the current command line.

Software Release Notes: MacsBug 6.2

The user presses Command-B. MacsBug
scrolls the buffer up and copies the vol
command to the current command line.

The user presses Command-B once more.
MacsBug scrolls the buffer up and copies
id main to the current command line. The
user can enter Command-B or Command-
V to scroll through the command line
buffer and copy other commands to the
command line, edit the command on the
current command line, or press Return to

execute it.

vol

id main

hd CODE

? sc

id createModule

- —

2/3/91

copy ptr

cmd-line:

vol

vol

id main

hd CODE

? sc

id createModule

copy ptr

cmd-line:

id main

The Find Command

This section describes changes and additions to the Find command. It also describes the
Find macros shipped with MacsBug 6.2, which you can use to specify one of several

ranges for the Find command.

The F (Find) command has both a new behavior and several new flavors in MacsBug 6.2.

To understand the new features, it is best to briefly review the behavior of the Find

command in previous versions of the software.

The syntax of the Find command, which has not changed, is shown on the next page:

10

2/3/91 Software Release Notes: MacsBug 6.2

F addr nbytes expr | 'string’

addr specifies the starting point of the range where MacsBug should begin the search .
MacsBug uses the value of addr + nbytes - 1 to determine the end point of the range.

expr specifies the value to search for,

'string' specifies the string to search for.

In MacsBug 6.1, if you entered the command

F 0 100000 1234

it might return the following:

Searching for 1234 from 00000000 to QQOFFFFE
000044B9 1234 0161 0000 D46E OOFF 5204 4200 8020 <*4*acc*ne*R°Be"

MacsBug would then set the dot address to the address starting after the first occurrence
of 1234. If you then pressed Return (to repeat the command), MacsBug would output

Searching for 1234 from 000044BB to 001044BA
0000B076 1234 4E75 4EBY9 4081 ODA4 302E OOOE 6758 <*4NuNe*@ee+0.°°gX

You will notice that in MacsBug 6.1, the end-of-range address does not remain constant
but is equal to the sum of the new starting address plus the value you specified for nbyes.

In MacsBug 6.2, the behavior of the F command, which also applies to the FB, FW, FL, and
FP commands, has changed. If you enter the same command (F 0 100000 1234),
MacsBug 6.2 displays the following information:

Searching for 1234 from 000044BB to QQ00FFFFE
0000B076 1234 4E75 4EBY9 4081 O0DA4 302E OOOE 6758 +4NuNe@ee(0.°°gX

If you press Return a few more times, MacsBug reports the following:

Searching for 1234 from 000044BB to QQQFFFFF

0000B076 1234 4E75 4EB9 4081 O0DA4 302E 00OE 6758 <*4NuNe@ee+0.*°gX
Searching for 1234 from 0000B078 to QOQFFFFF

0001D028 1234 702C 3F01 486E FF5C 486E FEC6 487A <+4p,?+Hne\Hne*°*Hz
Searching for 1234 from 0001D02A to QQ0QFFFFF

0001DOBA 1234 702C 3D41 FEA8 3F01 486E FF8E 486E +4p,=Ac¢<¢?°Hne**Hn

11

Software Release Noles: MacsBug 6.2

You will notice that the end-of-range address remains constant, MacsBug 6.2 is behaving
more reasonably in that it takes seriously your initial specification of a limited range. Of
course, the end-of-range address is not underlined in MacsBug output; it is underlined in
the examples presented above for your reading comfort,

2/3/91

The Find Byte, Find Word, and Find Long Commands

Another problem with the F command in MacsBug 6.1 is that it assumed that the size of
the expr to look for was the smallest unit (byte, word, or long word) that would contain
its value. For example, if you specified 00001234 for expr, the F command ignored the
leading zeros and looked for the value 1234,

You can now use three additional commands, FB, FW, and FL , to prevent MacsBug from
making what could be a bothersome assumption. These commands allow you to specify
the exact width of the pattern that MacsBug looks for.

The syntax of the command remains the same except that you optionally add the letters
B, W, or L to the F command to indicate the actual size of expr:

FBIWIL] addr nbytes expr
B specifies that MacsBug should search for the byte value specified by expr.
W specifies that MacsBug should search for the word value specified by expr.

L specifies that MacsBug should search for the long word value specified by expr.

For example, if you enter,

FB 0 400 8

MacsBug 6.2 returns

Searching for 08 from 00000000 to 000003FF

00000027 0840 8064 BA40 8021 0C40 8021 OE40 8021 +@ede@e!e@e!o@s!

If you enter,

FW 0 400 8

12

2/3/91 Software Release Notes: MacsBug 6.2

MacsBug 6.2 returns

Searching for 0008 from 00000000 to 000003FF
000003BA 0008 FFDF 0008 0000 0008 003C 2A1E 0000 esssccsssceckons

If you enter

FL 0 400 8
MacsBug 6.2 returns

Searching for 00000008 from 00000000 to 000003FF _
000003B8 0000 0008 FFDF 0008 0000 0008 003C 2A1E eescccsscsosecks

The Find Pointer Command

The FP (Find Pointer) command allows you to find every occurrence of a pointer in the
range of memory you specify. The syntax of the FP command is

FP addr nbytes expr

P specifies that MacsBug should search for the lower three bytes of expr.

A specific Find command for pointers is useful because in software releases prior to
system software version 7.0, applications sometimes used the high byte of the long word
containing an address to pass data. For example, the Memory Manager used the high byte
of the long word containing the address of a relocatable block to specify whether the
block was purgeable, locked, or a resource. This means that you cannot use the FL
command to find every reference to an address because sometimes that address might be
stored in its stripped form, 00xx xxxx, and other times in its non-stripped form, 02xx
o0, 04xx xoocx, OExx xaxx, and so on. The following example shows how you would use
the FP command to find all handles to a heap block and how you would check that the
addresses returned were valid handle addresses.

Let's suppose that you want to find every reference to a heap block. For the sake of this
example we will take the Geneva FOND resource, which is stored as a relocatable block in
the system heap. Figure 3 shows the master pointer and some of the handles to this
block.

13

Software Release Notes: MacsBug 6.2

2/3/91

To obtain information about a block in memory you would use the HD command.
However, since FOND resources are shared by all applications (and therefore stored in the
system heap) you would first use the HX command to select the system heap and then

enter

hd FOND

to obtain a display of all the FOND resources in the system heap. The following listing
shows a partial output listing for the command. The information about the Geneva FOND

resource is underlined.

Displaying the System heap

Start Length Tag Mstr Ptr Lock Prg Type ID File Name
00090BDC 00001046+02 R 00022B28 P FOND 0014 0002 Times
00091C2C 00000060+00 R 00022840 P FOND 0003 0002 Gepeva
000A3704 000002F0+00 R 00034B70 P FOND 000D 0002 Zapf

» Figure 3 Pointers and Handles to 2 FOND resource
High memory -
2 2B4
0009 ESB2 0002 2B40 handle
0009 BCES 0002 2B40 handle
FOND—Geneva relocatable
block
0009 1C2C —» £
&
S
dl
0007 C646 —> hande 1.8
0002 2B40 —> master
pointer
Low memory)

14

2/3/91 Software Release Noles: MacsBug 6.2

Notice that the address of relocatable blocks as well as the address of master pointers to
the blocks are displayed in their stripped forms by the HD command. You can now use
the FP command to find every handle to the block. For example, if you enter the
command

FP 0 BufPtr~ 00022B40

and press Return to repeat the command until MacsBug finds no further occurrences of
the pointer, MacsBug displays every address where the pattern xx022B40 is stored.

Searching for xx022B40 from 00000000 to 004CDE71

0007C646 0002 2B40 0000 0100 0100 0100 0100 0009 eet@eccccsccscse
Searching for xx022B40 from 0007C64A to 004CDE71

0009BCE6 (002 2B40 0015 O0B9 EQ004 1EE6 0002 2B34 eet@eccscccccciy
Searching for xx022B40 from O0OOEACS5A to 004CDE71

0028F464 7002 2B40 F606 7A00 7C00 206D FECC 2050 pe+@eezejes mee P
Searching for xx022B40 from 0028F468 to 004CDE71

00377F12 7002 2B40 E93C 6000 0112 7002 B02B 0084 pe+Q@e< esepectoe
Searching for xx022B40 from 00377F16 to 004CDE71

Not found

Note that MacsBug only looks for the lower three bytes of the pointer and assumes that
00022B40 and 70022B40 refer to the same master pointer. If you need to track down
every handle to the block, you should make the same assumption because some routines
strip the address and some do not.

To check whether an address returned by the FP command does in fact contain a handle
to the block, you can use the DM command to display memory at that address. For
example, if you enter

DM 0007C646 handle

MacsBug outputs the following information:

Displaying handle
0007C646 00022B40 -> 60091C2C

That is, the value 00022B40 is stored at 0007C646. The value 60091C2C is stored at
address 00022B40. 60091C2C looks suspiciously like the address of the Geneva FOND
resource with a high byte of 60, which is what the Memory Manager would tack on to
indicate an unlocked purgeable resource. Looking back at the output of the HD
command we find that the Geneva FOND resource is indeed unlocked and purgeable.

15

Software Release Notes: MacsBug 6.2

2/3/91

Macros for the Find Command

Among the standard macros shipped with MacsBug 6.2 are the macros described in Table
1. You can use these macros with the Find command to specify common address ranges.

sTable 1 Macros for the Find Command

Macro Description Macro Expansion

RamF Defines RAM as the address range of | F 0 BufPtrA

RamFW the Find command. FW 0 BufPtrA

RamFL Example: RamF 'Main FL 0 BufPtrA

RamFP FP 0 BufPtrA

SysF Defines the System zone as the F SysZoneA (SysZoneAA-SysZoneA)
SysFW address range of the Find command. | FW SysZoneA (SysZoneMA-SysZoneA)
SysFL Example: RamFw 1234 FL SysZoneA (SysZoneAA-SysZoneA)
SysFP FP SysZoneA (SysZoneAA-SysZoneA)

ApF Defines the Application zone as the | F ApplZoneA (ApplZoneAA-ApplZoneA)
ApFW address range of the Find command. | FW ApplZoneA (ApplZoneAA-ApplZoner)
ApFL Example: ApFP 0032e232 FL ApplZoneA (ApplZoneAA-ApplZoneA)
ApFP FP ApplZoneA (ApplZoneAA-ApplZoneA)
ZF Defines the zone selected by the F TargetZone (TargetZoneA-TargetZone)
ZFW last HX command as the address FW TargetZone (TargetZoneA-TargetZone)
ZFL range of the Find command. FL TargetZone (TargetZoneA-TargetZone)
Aty Example: ZFL 000A232B0 FP TargetZone (TargetZoneA-TargetZone)

¢ The new variable TargetZone used in the Z Find commands described above is defined
as the zone currently selected by the HX command. You can use it with other MacsBug
commands to indicate a range.

16

2/3/91 Software Release Notes: MacsBug 6.2

New Heap Dump Display

The output for the HD command has been modified. If you enter HD, MacsBug 6.2
displays information in the following format:

Displaying the Application heap

Start Length Tag Mstr Ptr Iock Prg Type ID File Name

» 0031CFE8 00000100+00 N

+ 0031DOF0O 00000018400 R 0031DOE4 L

+ 0031D110 00000032+02 N

¢ 0031D14C 0001CD36+02 N

* 00339E8C O0O0COBDFC+00 N

+ 0035232C 00000A260+00 N

* 00352D94 00029800+00 R 0031D070 L

e 0037C59C 00000006+02 N
0037C5AC 0000009C+00 F
0037C650 0000000C+00 F
0037C664 0000000C+00 F
0037C678 00000010+00 F

+ 0037C690 00000100408 N

The new output provides additional information for a block’s Length field by showing the
length of the block in terms of two distinct operands; for example

06000100+08

The first number gives the actual length of the block (the size you asked for when you
allocated the block); the second number indicates the number of bytes that have been
added by the Memory Manager to meet the two requirements that

= A block must end at an even address.
m A block must have a minimum length of 12 bytes.
(This requirement is different for 32-bit heaps.)

Previous versions of MacsBug displayed the length of a block as the sum of these two
numbers. This display provides more exact information.

15

Software Release Notes: MacsBug 6.2 2/3/91

Summary of Changes to MacsBug Commands

Some MacsBug commands have been changed in slight ways. Table 2 describes these
changes.

= Table 2 Changes to MacsBug Commands

Name Syntax/Alternate Description/Changes

ATP ATP If ATR is off, the ATP command plays back
information from your most recent ATR

GT GT addr!',cmds] Go till addr is reached and optionally
execute one or more commands. The cmds
parameter is an addition of MacsBug 6.2.

Command-: Command-D Alternate way of entering command for use
on German and Scandinavian keyboards.
Command-: or Command-D displays a menu
of procedure names.

Specifying Commands Using DebugStr

MacsBug defines a DebugStr trap that allows you to invoke MacsBug from your source
program and to specify a message you want MacsBug to display when MacsBug is
invoked.

Beginning with MacsBug 6.1, the DebugStr trap was extended so that you could include
one or more commands in the message string to DebugStr. After MacsBug was invoked by
the DebugStr trap, in addition to displaying a message specified with DebugStr, MacsBug
could also execute the command(s) you included in the message for DebugStr. The syntax
for the call is as follows:

18

2/3/91 Software Release Notes: MacsBug 6.2

DebugStr ("string ; cmd 1..")
string is the message you want displayed.

cmd is a MacsBug command or macro.

Example: This routine would invoke MacsBug, display the message "Checking the Heap,"
do a heap check, and then resume execution of your program,

DebugStr ("Checking the heap; hc; g")

This next routine would display the message "Checking for segment loading," output
information about the specified code segment, and then resume execution of your
program,

DebugStr ("Checking for segment locading; hd code3; g")

Working with the Debugger Preferences File

This section describes the Debugger Preferences file which is included on the MacsBug 6.2
release disk. When you open the Debugger Preferences file, ResEdit (1.2 or later) displays
a list of resources similar to that shown in Figure 4. Note that the display includes
information about the number of resources of a certain type (count) as well as the total
size of the resources of that type.

Note that all MacsBug resources have been placed in the Debugger Preferences file
including the resource file used to provide help information.

19

Software Release Notes: MacsBug 6.2 2/3/91

s Figure4 Debugger Preferences

{ED)=== Debugger Prefs =03
Type Count Size
dcmd 8 17484
mxbc 1 12
mxbh 1 11922
mxbi 1 6
mxbm 6 10615
mxwt 3] 8054
TMPL 4 401
vers 1 26

1%

B

Table 3 describes the contents of the Debugger Preferences File.

s Table 3 Resourcesin the Debugger Preferences File

Resource Contents

mxbh MacsBug help messages.

mxbi Specifies the size of the history buffer, the number of traps recorded by MacsBug,
and the number of lines displayed in the PC area of the display.

mxbc Specifies color display preferences.

mxbm Defines the macros you can use to reference low memory globals and macros that
define useful command lines.

mxwt Defines the templates you use to obtain a more readable memory display
demd Defines the demds you can use in addition to MacsBug commands.
Cih Used to unmangle C++ compiled files so that MacsBug can understand them,

20

2/3/91 Software Release Notes: MacsBug 6.2

Standard dcmds

Table 4 lists the demds included in the DebuggerPrefs file demd resource.

s Table4 Standard dcmds

dcmd Description

drvr [refnum| numj Lists all the currently installed drivers or lists information for
the specified driver.

file (fRefNum!|" filename'] | Lists all open files or information about the specified file.

vol [uRefNum | drvNum Lists all the volumes on line or displays volume information
| "volumeNamé'] | for the specified volume

vbl Lists all the VBL tasks currently installed.

printf "format" arg... Displays the arguments according to the format.

The printf demd is a formatted output command that behaves very much like the C
programming language printf command. This section describes how you use the printf
command for those of you who are unfamiliar with C and gives several examples of how
you can use this command in debugging. To avoid confusion, please interpret any
reference to the printf command in this section as a reference to the MacsBug printf
demd, not the C printf command. The syntax of the printf command is

printf "string" arg [arg] ...
string is a combination of literals and conversion specification(s).

arg is an expression that is evaluated and converted according to the
conversion specification to which it corresponds

21

Software Release Notes: MacsBug 6.2 2/3/91

The sample printf command below,
printf "Data for %d will be available on %s" 1990, Wednesday

produces the following output:
Data for 1990 will be available on Wednesday
A conversion specification consists of the percent symbol (%), which introduces the

specification; an optional digit specifying the field width of the converted argument; and
a conversion character specifying how the argument is to be represented.

Table 5 shows the meaning of the conversion characters you can use with the printf
command.

aTable § Conversion Characters for the printf demd
Conversion | Meaning Example
Character

d decimal integer 93

0 octal integer 77

) hexadecimal integer 2F

u unsigned decimal integer 99

c single character q

s string application

If you're logging the output of a MacsBug session, you can use the printf command to
make MacsBug output more intelligible. The following printf command,

printf "this application is %s" curapname
outputs
this application is Finder
This printf command
printf "this application's name contains %d characters" curapname”.b

outputs

22

2/3/91 Software Release Notes: MacsBug 6.2

this application's name contains 6 characters

If you are using the Debugger inline call to invoke MacsBug from within your source

program, you can use the printf command with the DebugStr call to have MacsBug output

key values during program execution.

This printf command

printf "Register A7 (%8x) points to word %x (= #%d)." RA7 RA7".W RAT .W
outputs

Register A7 (4b7026) points to word 4080 (= #16512).

Note the use of 8 in the first specification (%8x) to specify the field width of the
converted argument.

Constructing Linked Lists Using the mxwt Resource

MacsBug can display linked lists if you have marked the fields appropriately in your mxwt
resource. Figure 5 shows the entry for the nextWindow field for the WindowRecord
template. Note that the field type defines this field as a pointer to another window
record.

A Figure 5 Linked list field entry in mxwt resource

E[J¥ muwi “Macsbug 6.1° 1D = 100 from Debugger Prefs S

Count Il | 9,
Fleld name nextHindow

Type naome “WindowRecord

Count 1 |

Field name windowPic

Type name Handie

Count ! |

If you use the dm (display memory) command from MacsBug to show you a window
record; for example:

dm @WindowList WindowRecord

and the application you're debugging has several windows open, MacsBug outputs
information similar to the following:

23

Software Release Notes: MacsBug 6.2

Displaying WindowRecord at 003E94CC
#0 #0 #429 #516

003E9%94DC portRect
003E94E4 visRgn 003E7DOC
003E94E8 clipRgn 003E7DO08
003E9538 windowKind 0008
003E953A wvisible TRUE
003E953B hilited FALSE
003E953C goaAwayFlag TRUE
003E953D spareFlag TRUE
003E953E strucRgn 003E7CB4
003E9542 contRgn 003E7CBO
003E9546 updateRgn 003E7CAC
003E954A windowDefProc 080020D4
003E954E dataHandle 003E7CAQ
003E9552 titleHandle 003E7CAS8
003E9556 titleWidth 003C
003E9558 controlList 003E7C94
— 003E955C nextWindow ___ Q03E7AS0
003ES560 windowPic NIL
003E9564 refCon 00000004

->
->

003ES570
003E9584

003FF734
003BCFAQ
003EC5E4
20832A5C
003EC630
003FF24C

003FD6DC

2/3/91

Untitledl

If you press Return, MacsBug displays information about the next window in WindowList,

whose address (003E7AS50) is given in the nextWindow field.
Displaying WindowRecord at

E7A

#0 #0 #429 #506
003884B0 -> 003E7AF4
003884B4 -> 003F8DEC

0008
TRUE
FALSE
TRUE
TRUE
003E7B5C
003E7BS58
003E7B54
080020D4
003E7B48
003E7B50
006A

003E7B3C
NIL

003E7A60 portRect
003E7A68 visRgn
003E7A6C clipRgn
003E7ABC windowKind
003E7ABE visible
OO3E7ABF hilited
003E7ACO0 goAwayFlag
003E7AC1 spareFlag
003E7AC2 strucRgn
O03E7AC6 contRgn
003E7ACA updateRgn
003E7ACE windowDefProc
003E7AD2 dataHandle
003E7AD6 titleHandle
003E7ADA titleWidth
003E7ADC controlList
— 003F7AEQ nextWindow
003E7AE4 windowPic
O03E7AE8 refCon

24

NIL
00000003

003F8D68
003F8D7C
003F88ES8
20832A5C
003F8938
003FD814

003F8B5C

-> mbreleasenotes

2/3/91 Software Release Notes: MacsBug 6.2

(Portions of the output above are underlined for you reading comfort.) When the
nextWindow field has a value of NIL and you ask MacsBug to show you the next window
record, it displays the message “End of linked list.”

Note also that MacsBug 6.2 displays complete information for fields defined as handles,
for example the strucRgn and updateRgn fields shown in the previous listings.

You use the mxwt resource to define templates for structures that are unique to your
application. If your structures include fields that are handles or pointers that you use to
build linked lists, declaring them as such will allow MacsBug to display more detailed
information about these structures, which should make debugging a whole lot easier.

Removing Resources to Gain Memory

If you must save space in memory, you can do so by deleting, moving or altering the
following resources from the Debugger Preferences file. You should not remove the TMPL
resource because this is the resource that ResEdit uses to display the other MacsBug
resources. Without it you'll be eating hex dumps for breakfast, lunch, and dinner.

The effect of moving or altering the resources is described in Table 6:

= Table 6 Effect of removing resources from Debugger Preferences file

Size (K) | Resource Effect

5 G Needed only by C++ programmers for unmangling CFront
generated code.
12 mxbh You must rely on the documentation for help.
- mxbi MacsBug uses default values. If you reduce the size of the history
buffer, you gain some memory but can save less information.
mxbc Uses default black and white display.
8 mxbm If you remove resources 101 and 102, you will no longer be able to

reference low memory globals by name. Please examine the
contents of the other mxbm resources before you remove or

delete them.

8 mxwt You will lose the use of templates to make sense of memory
display.

16 demd You will no longer be able to use these commands. You can

remove demds individually. See Table 4 .

25

Software Release Notes: MacsBug 6.2 2/3/91

Using MacsBug Under A/UX

A/UX supports MacsBug 6.2. To install MacsBug, drag the MacsBug document and the
DebuggerPrefs file into the system folder. When you are done, you should have the
following two files:

/mac/sys/System Folder/MacsBug

/mac/sys/System Folder/DebuggerPrefs

Then reboot your machine.

To invoke MacsBug, you must press the cont rol-command-i keys simultaneously.
This will bring up the MacsBug display, and you can start working with MacsBug,

The only limitation you will encounter in working with MacsBug under A/UX is that you will
not be able to use the Log command to log output to an Imagewriter. However, you can
still log to a file.

As the version of MacsBug that runs under A/UX behaves identically to that running under
the Macintosh system software, you can use the same documentation for your debugging:
MacsBug Version 6.1 Reference Manual and this software release note.

A Warning Do not press the programmer's switch to invoke
MacsBug . Under A/UX the programmer's switch is used to break into
the A/UX kernel debugger, it will not get you into MacsBug. a

26

