SK8 User Guide

Version 0.9

CONFIDENTIAL

Note: This guide is still under development. Substantial revisions are expected.

©1995 Apple Computer, Inc. All rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a retrieval system, or translated into
any language in any form by any means without the written permission of Apple
Computer, Inc.

Apple Computer, Inc.

© 1995, Apple Computer, Inc.
All rights reserved.

No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc., except in the
normal use of the software or to make a
backup copy of the software. The same
proprietary and copyright notices must
be affixed to any permitted copies as
were affixed to the original. This
exception does not allow copies to be
made for others, whether or not sold,
but all of the material purchased (with
all backup copies) may be sold, given,
or loaned to another person. Under the
law, copying includes translating into
another language or format. You may
use the software on any computer
owned by you, but extra copies cannot
be made for this purpose.

Printed in the United States of America.

The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Newton computers.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
LaserWriter, the light bulb logo,
Macintosh, and Newton are trademarks
of Apple Computer, Inc., registered in
the United States and other countries.
Newton ToolKit and QuickDraw are
trademarks of Apple Computer, Inc.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

If you discover physical defects in the
manual or in the media on which a software
product is distributed, APDA will replace
the media or manual at no charge to you
provided you return the item to be replaced
with proof of purchase to APDA.

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

©1995 Apple Computer, Inc. 5/7/95

About SK8 i
HardWare Requirements i
SoftWare Requirements i
Intended Audience ii
Assumptions Before Starting i
About the SK8 Documentation
The User Guide iii
Conventions and Visual Cues iv
Special Fonts iv
Types of Notes iv
Lexical Notation iv
Other notation conventions \%
Additional Support Materials \%

Chapter 1 SK8 Overview 1
What is SK8? 1
System Components of SK8 1
Object System 2
Object Heterarchy 3
Object Framework 3
Graphics System 4
2-1/2-D Graphics Engine 5
Imaging System 5
SK8Script Language 6
SK8 Interface (The Project Builder) 6
Using the Project Builder 6

Chapter 2 Tutorial 9
The Application 9
Using SK8 to Implement Concentration 10
Making the Board 12
Making the Board “Special” 13

Making the Board Draggable 16
Adding the Cards 18

Importing Media 21

Creating Global Variables 22
Distributing the sounds to the Cards 23
Players and Scores 25

Showing the Scores 26

And finally, the Game 27

Anything Left? 31

Chapter 3 Basic Concepts 33
Objects 34
Properties 35
Propagatable Properties 36
Handlers 37
Garbage Collection 38
Projects 39
Functions, Variables and Constants 40
Actors 41
The Stage 42
Containment 43

Chapter 4 Project Builder Overview 45
What is the Project Builder? 45
An Overview 45
Project Builder At Startup 45
The Project Builder Windows 46
Keyboard Focus 46
Drag and Drop 46
Help Key 47
Updating Windows 47
Clearing References 47

Project Builder Components 49
Message Box 50
Listener Panel 50
Display Panel 50
Draw Palette 51
Description 51
Object Editor 52
Description 52
Properties Menu 52
Handlers Menu 53
Properties Display Panel 53
Handlers Display Panel 54
Property Control Panel 55
Description 55
Project Overviewer 56
Description 56
The Selection Halo 57
Description 57
Using the Option Key 58
Selection Halo Menu 58
Keyboard Shortcuts 60
Clearing: 60
Changing Selection: 60
Layout: 60
Layering: 60
Configuring the Selection Halo
Description 61
Stage Monitor 62
Description 63
Searcher 64
Description 64
Inheritance Overviewer 66
Description 66
System Browser 68
Description 68

Menu Editor 69
Description 69
Edited Objects List 69
Menubar Proxy 70
Menu Proxy 70
Menu Title 70
Menu Items Panel 70
Menubar Menu 70
Menu Menu 71
Items Menu 71
Media Browser 72
Description 72
Finding the Media 72
Choosing the Style of Importation
The Import Naming Dialog 73
Color Palette 75
Description 75
Renderer Editors 76
Description 76
RGBColor Editor 77
ComplexRGBColor Editor 78
Gradient Editor 79
ComplexGradient Editor 80
BevelRenderer Editor 81
MultiRenderer Editor 82
Hatch Editor 83
ImageRenderer Editor 84
Script Editor 85
Description 85
Edit Menu: 85
Debug Menu 86
Version Menu: 86
Debugging with the Script Editor 86
Breakpoints 87
Halt Due to Error 87

73

Running Menu 88

060 Menu 88
Go, command-G 88
Step, command-S 89
Abort, command-period 89

Step Into 89
Go To End 89
Restart 89

Expression Watcher 89
Stack Watcher 91
Description 91
Handler Tracer 93
Description 93
Documentation Window 94
Description 94
Project Builder Menubar 96
Menubar Replacement 96
Hide Project Builder 96
Undo Menu Item 96
Window Preferences Dialog 97
Graphic Intensive Tasks: Using Project Builder
Code Intensive Tasks: Using Project Builder 97

Chapter 5 SK8Script 99
Initial Considerations 99
General Language Design 99
Syntax Design 100
Case in SK8 100
Statement Continuation 102
Declarations 102
Comments 102
Identifiers 103
Variables 103
Constants 104

97

Type Declarations 104
Expressions 105
Literals 105
Booleans 105
Numbers 106
Symbols 107
Collections 108

Strings 108
Lists 108
Arrays 108

Calls to Executables 109
#Undefined# 110
Operators 110
Arithmetic Operators 110
Logical Operators 110
Collection Concatenation Operator 111
Comparator Operators 112
Selection Expressions 114
Filters 116
Selectors 118
Prepositions 121
Embedded Selection Expressions 122
Operator Precedence 123
Parentheses 123
Functions and Handler Expressions 123
Selection Expression Precedence 124
Get Command 124
Assignment 124
Assignment to Variables 125
Assignment Using Executables 125
Assignment Using Selection Expressions 125
Assignment Between Selection Expressions 126
Assignment Using Destructurers 127
Flow of Control 127
Conditionals 127

Single Line Conditional: If... then... else 127
Multi-line Conditional 127
Multi-branch Conditional: If... is one of... 128
Iteration (Looping) 130
Clauses 130
Loop Exits 133
Wait 133
Collection Commands 134
Tables 134
Insert Command 135
Into... 135
At Beginning... 136
at End... 137
General Insertions 137
Remove Command 137
Creating New Objects 138
The New Handler 138
The Copy Handler 140
Creation Relations 141
Declaring Creation Relations (Modeling Interrelations) 141
Identifying Objects Via Relations 142
The Purpose of Creation Relations: Automatic Instantiation of Creation
Groups 142
Creation Relations and Actors 143
Properties 143
Accessing Properties 143
Accessors (getter or setter) 144
Property Attributes 146
Adding and Removing Properties 147
AddProperty 147
RemoveProperty 147
Forms[*12] 148
With-Forms 148
Header Line Syntax 148
Parameter List 149

Results of Executables 151
Handlers 151
Calling Parent’s Handler 151
Special Handler Variables 152
Defining With-Forms 152
Invoking Forms 153
Data Types 154
Advantages of Type Declarations 154
Associating a Type with a Variable 154
Type Coercion 155
Coercion Operator 155
General Object Literals 155
Virtual & Enumerated Types 156
SK8Script Condition System 157
Condition Object 157
Signaling a Condition 157
Condition Handlers 158
Condition Responses 158
Creating Condition Responses 160
Search Algorithm 160
Other Features and Issues 161
Syntactic Sugar 161
in vs. of 161
Message Box Results 162

Chapter 6 Tutorial 2: SK8 as a Meta-Tool 163

Introduction 163

Aims and Prerequisites 164

The Goal 165

The SimKit Window Tool 166
Creating a Window 166
Naming an Object 166
Editing the SKWindow Object 167
Regions and Renderers 167

Tagging Component Objects 169

Defining Handlers 169

An Explanation of the Resized Handler 170

Highlighting the Active Window 171

Creating the SKWindow Tool 172

Tags versus Named Objects 172

Properties versus Named Objects 173
The SimKit Viewer Tool 174

Using the Object Editor 174

Adding New Properties to Objects 174

Labels 175

Resized Revisited 176

Making the SKViewer Tool 178
The SimKit Oval Tool 179

Adding the Properties 179

Adding the SKOval Handlers 179
Making Things Move 182

Making SKViewer Re-scale SKOvals 182

Teaching SKOvals How to Move 183

Telling SKOvals to Move 183

But We Have Only Done Ovals... 184
Using the Tool Kit 185

Building a Basic Simulation 185

Using the SimKit Overviewer 186

The Need for Controls 186
The SimKit Button Tool 187

Creating SKButton 187

Using SKButton 187

More SKButtons and Using “its” 188
The SimKit Gauge Tool 190

Making the Gauges Update 191
Creating a Simulation Tool 193

Tidying Up 193

Sensible Layout for SKSimwin 193

Creating the SKSimWin Tool 194

Chapter 7

Building Planets and SKGravitas 195
Creating the SKGravitas project 195
Creating Planets 195
Creating Gravitas 195
Creating Jupiter and its Moons 196
Going Further With SimKit 198

Actor and Stage 201
Introduction 201
Stage and Actor Metaphor 201
Actor 202
The Stage 202
Containment Hierarchy 203
Actor 204
Actor Properties 204
Attaching Actors to The Stage 205
Halo (an Actor) 206
Complex Actors, SubActors, and Tags 207
The Stage 207
Actor Coordinates 207
Physical Coordinate System Properties 208
Logical Coordinate System 209
FillColor Of The Stage 211
Windows 211
Actors Directly Contained by Stage (Windows)
colorDepth and windowsStyle 211
Activate and Deactivate 212
KeyTarget 212
Windows of Stage 212
Hide and Show 213
Window Styles 213

211

Chapter 8 Browsers 215

Chapter 9 Clipboard and Import/Export 219
The SK8 Import/Export Architecture 219

Exporting 219

Importing 220

Translator (an Object) 220
Translator Properties and Handlers 220

The SK8 Clipboard (an import/export application) 221
Overview and Requirements 221
The Clipboard Obiject; its Properties and Handlers 221

The Clipboard within SK8 222
Cut and Paste within SK8 223
The Clipboard and the System 225

What happens on resume... 225
What happens on suspend... 225
Chapter 10 Clocks 227
Chapter 11 Collections 231

Introduction 231

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Chapter 17

Chapter 18

Dialogs 235

Tools and Palettes 239

EditText 243

The Error System 247

Event Interests 251

The Event System 255
Introduction 255
Delegating Events 256
Handling Events 257
Event Functions 257
Pass Command 257
Event Modes 258
Creating Your Own Event Mode
Mouse Sensitivity 258
Click Interpretation 259
Event Tracking 259

Files 261
File Objects 261
physicalName and logicalName

258

262

Chapter 19

Chapter 20

Chapter 21

File Object Handlers 262
Streams 264

Stream Handlers 264

Streams as Collections 265

Current Directory 265

Foreign Function Interface 267
Intro/Warnings 267
Using the FFI 268
Compiling your foreign functions 268
Loading a foreign object file 268
Foreign Data Types 269
Simple Types 269
Complex Types 270
Foreign Memory 271
Memory Access 271
Memory Allocation 272
Getting New Pointers and Handles 272
Disposing of Foreign Memory 272
Converting From raw foreignMemory to typed foreignMemory
Foreign Function Calls 274
Foreign callins 277
Supported Argument and Result typeSpecs for FFI Calls 278

Imaging 281

Projects 285

Projects 285
Superprojects 285
Namespaces 285

274

Chapter 22

Chapter 23

SubProjects 286
Project Handlers 287
openProject 287
saveProject 287

writeSources (Saving Project Source Text Files)

compactProject 288

Publishing Symbols 289

Publish Handlers 289
Obiject Store (Project Store) 291

Media 293
Media 293
Resource (a Media) 293

Menus 297

Setting up a Menubar 297
Creating a Menubar 297
Adding Menus 297
Adding Menultems 298
Installing Menus and Menubars
Connecting a Menu to a Handler

298
298

288

Chapter 24 Object 301

Chapter 25 Pickers 305

Chapter 26 Ports 309
Introduction 309
The Port Object 310
Types of Ports 310
Port Handlers 311
AddOutputPort 311
AddInputPort 311
AddInputOutPort 311
attachPort 312
wirePorts 312
unwirePorts 312
unwirePort 312
wiredTo 312
ActivateOutputPort 312
ActivatelnputPort 313

Chapter 27 QuickTime™ 315
QuickTime Obijects in SK8 315
How to Play a QuickTime Movie 316
Moviefy of Actor 317
Creating QuickTimeMovie Objects 318
Create a new QuickTimeMovie Obiject referencing an existing move resource
file 318
Create a new QuickTimeMovie Object from a file with the movie data stored
in the data fork 318

Creating a new QuickTimeMovie Object from a file that may have the movie
data stored in either a movie resource or in the data fork 318
Creating a new QuickTimeMovie Object from the clipboard 319
Creating a new QuickTimeMovie Object from scratch, in memory 319
QuickTime Commands 319
QuickTime™ Properties 321
QuickTimeRenderer Object 321
QuickTimeMovie Object 323

Chapter 28 Renderers 327
Introduction 327

Chapter 29 Shapes and Lines 331
Chapter 30 System and Devices 335
Devices 335

Monitors 335
Storage Device 336
Keyboard 337

Printer 338

Pointer 338

Modem 338
Cursor 338

Color Cursors 338
Animated Cursors 338

Chapter 31 Types 339

Chapter 32 Widgets 343

Glossary 347

About SK8

PREFAUCE

SK8 is written for multimedia and authoring tool developers who integrate
media components (movies, sounds, still pictures, text, etc.) into a final
product.

SK8 can best be thought of as a “meta” tool—a tool used to develop other
tools. In this case, the “other” tools are of a multimedia and authoring tool
nature.

The objective of SK8 is to provide a multimedia and authoring development
environment which could be used by programmers and non-programmers
alike and which would enable order of magnitude productivity gains.

Our main objectives have been:

= To provide a direct manipulation user interface for authoring the graphics,
animation and multimedia aspects of the application with minimal
programming.

= To recognize that programming is necessary at some point, but to provide a
language that could be used by a scripter (e.g., someone who has
acquaintance with HyperTalk or spreadsheet macro languages) but which
had all the power expected by a professional programmer.

= To provide a rich yet elegant, fully object-oriented application framework
that would provide all the power needed to develop conventional as well
as multimedia applications of the future. This framework would provide
very high-level, easy to understand abstractions that would allow
developers to focus on their task, rather than on the infrastructure needed
before they could get started.

= To provide a powerful graphics and animation system that would
encourage experimentation and obviate the need for programmers to get
involved with system-level or graphics programming.

= To provide a model which could be used to cross-develop to other runtime
models with reduced effort.

= To make the SK8 system as platform-independent as possible.This was
solved by having a sufficiently rich framework—one that would abstract
away the platform’s system environment.

The key to success for SK8 has been a core creative design and
implementation team working with an extended group of colleagues and
users over the years to refine the system’s usability.

HardWare Requirements

A Macintosh Quadra or PowerMac running System 7.0 or greater with 32 MB
of memory will provide the best results for SK8 development with Release 1.0.

©1995 Apple Computer, Inc. 5/7/95

PREFAUCE

SoftWare Requirements

QuickTime 2.0 for playing movies within SK8.

To develop an authoring tool or title, you will probably desire, at some point in
the future, a cross-development runtime toolkit for the platform on which you

wish to deliver your titles or applications—such as Kaleida’s ScriptX™. We are
also considering other target platforms, like Apple’s Newton™,

In the future, SK8 will be able to output to other platforms.

Intended Audience

The SK8 User Guide is written for the users of SK8 and for the SK8 developer
who wants to do any of the following:

= prototype an application in SK8
= develop SK8 tools to be used by other SK8 developers

= develop a SK8 project that will serve as an authoring “tool.” The tool can
potentially be used by content developers in a particular domain (e.g.,
electronic books, adventure games) to build multimedia titles or applications.

Assumptions Before Starting

To do SK8 development, you need to be familiar with the:

= basic concepts of object-oriented programming systems (OOPS). A number
of books on OOP are available and it is recommended that you become
familiar with the concepts before tackling any projects in SK8. A bibliography
is provided in the Appendices.

= basic concepts of authoring tools and multimedia development. Refer to the
bibliography.

= basic components of SK8—the SK8 Script Language constructs used to
develop programs in SK8, the SK8 Project Builder and the SK8 Object
Framework. Refer to subsequent sections/chapters in this manual.

= operational fundamentals of the Macintosh.

About the SK8 Documentation

ii

The SK8 Documentation strategy has three parts:

= The User Guide. This book, which provides tutorials as well as a multitude
of examples illustrating how to get things done using SKS8, its language and
its object framework.

©1995 Apple Computer, Inc. 5/7/95

PREFAUCE

The Object Reference. A book which presents all the object, functions,
global constant and variables that are available in the SK8 object
framework. Every property and handler of each object is described very
briefly. This book is meant to be used as a reference by the experienced SK8
user.

On-line help. While running SK8 you can bring up the Documentation
window and ask for documentation about anything in SK8.

The User Guide

The User Guide is organized in two sections. The first section contains two
tutorials and introduces the user to the basic concepts of SK8: the concepts
you have to understand in order to use SK8 effectively. Its parts are:

Overview. This is a high level view of SK8 as a system. The parts that make
the system are described and the overall capabilities of SK8 are presented.

Tutorial. A very gentle hands-on introduction to using the SK8 Project
Builder (SK8’s User Interface) to create a simple project: a Concentration
game that uses sounds instead of images. Introduces the main windows of
the Project Builder and how to create objects, layout actors, define
handlers, functions and variables, import media and play sounds among
other things.

Basic Concepts. This chapter presents in succinct sections, the basic
concepts of SK8. Each section uses examples to explain the concept in
guestion.

The Project Builder. This chapter describes the tools and menus that are
available in the Project Builder.

SK8Script. A one chapter overview and introduction of the SK8Script
language. Designed to cover the language in its entirety answering
questions like “how do | do a for loop in SK8Script?”

Object Oriented Programming in SK8. The general section is closed by
another tutorial that focuses on how to do Object Oriented programming
using SK8. Presents the features of SK8 that encourage good OOP design.

The second section cover SK8'’s object framework. While the Object Reference
describes objects alphabetically, this section of the User Guide groups objects
in functional groups. For example, all the objects involved in importing and
exporting data from SK8 are grouped in one chapter, all the objects involved
in playing QuickTime movies is in another chapter and so on.

The second section of the User Guide is still to be written.

iii

©1995 Apple Computer, Inc. 5/7/95

PREFAUCE

Conventions and Visual Cues

Special Fonts

All code listings, reserved words, names of objects, properties, handlers,
variables, constants, functions and arguments are shown in Cour i er font
(this is Courier).

Words that appear in boldface are key terms or concepts. These terms are
defined in the Glossary contained at the end of the User Guide.

Types of Notes

There are several types of informational notes used in this book.

Note

A note like this contains information that is interesting but possibly not
essential to an understanding of the main text. O

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. a

A WARNING

Warnings like this indicate potential problems that you should be aware
of as you design your application. Failure to heed these warnings can
result in system crashes or loss of data. a

Lexical Notation

‘ synbol '— A symbol is a series of alphanumeric and symbolic characters
that represents the name of a SK8 entity. A symbol is surrounded by
apostrophes, i.e., single quotes.

“ St ri ng” — Strings are delimited by double-quote marks. The characters
between quotes are the elements of the string. Within the string, white space
is significant (it contributes to the string). Strings are surrounded by double
quotes.

hj ect — Addirect reference to a SK8 object appears in Cour i er font, with
the initial letter capitalized. When a SK8 object’s Cbj ect Nare is used as an
adjective (as in, for example, “the rectangle's location™), the Qbj ect narme is
not capitalized and is written in normal text. A general reference to the object
(e.g., “an Oval”) is in plain, non-Courier, non-capitalized text.

iv

©1995 Apple Computer, Inc. 5/7/95

PREFAUCE

aHandl er, aProperty, an Event — ASK8 handler name, property
name or event name is also in Cour i er font and starts with a lowercase letter.

sanpl e code — All sample SK8Script appears in single-spaced Couri er.

{iteml, itenR}— ASKB8Script listof items is placed in curly brackets.
Each item is delimited by a comma.

Other notation conventions

For purely expository reasons, when we say “SK8 sends event X to object Y”’,
we mean “SK8 invokes or calls handler X of object Y”.

Additional Support Materials

If you are interested in learning more about SK8, additional materials, such as
Getting Started with SK8 videotapes and tutorials will soon be available. To get
your name added to the SK8 group address, contact Lori Leahy, SK8 Project
Coordinator, at 408-974-2730, AppleLink: LLEAHY.

©1995 Apple Computer, Inc. 5/7/95

vi

PREFAUCE

©1995 Apple Computer, Inc. 5/7/95

CHAPTER 1

SK8 Overview

This chapter introduces you to SK8 (pronounced “Skate”), including:
= What is SK8?
= An overview of SK8 system components.

= A brief overview of the capabilities each component provides.

A more detailed description of SK8 concepts and components are discussed later in this
manual.

What is SK8?

SK8 is an object-oriented authoring environment designed for rapid development of
highly customized authoring tools and titles for multimedia. SK8 is considered a “meta”
tool in that it can be used to develop other multimedia tools. SK8 is designed to provide
development support for multimedia artists, designers, administrators, and
programmers (hackers and non-hackers).

System Components of SK8

SK8 is a prototype-based object system that provides the developer with an Object
System, an Object Framework, a Graphics and Imaging System, a Scripting Language,
and a powerful user interface called The Project Builder.

The following figure illustrates SK8’s system components. To present SK8’s system
components, we will start at the bottom of the diagram and work our way up.

What is SK8? 1-1
©1994 Apple Computer, Inc. 5/7/95

CHAPTERI1 SK8 Overview

User Project A User Project B

N

SKS8 Project Builder
(User Interface)

/ AN

Graphics/Imaging System SK8Script Language

N/

Object Framework

a

Object System

Object System

Three important concepts regarding the Object System are:

= Everything in SK8 is an object. All data and procedures are represented as objects. A
character is a Char act er object. An integer is an | nt eger object. Projects are objects.
Text, sounds, scripts, graphics, and QuickTime movies are, as far as SK8 is concerned,
just different types of objects with different properties and handlers.

= SK8 is based on a prototype-based model where every object can be a template for
creating new objects with different types of properties and handlers.

= An object can refer to other objects. In SK8 a property is an object reference. This
allows objects to include other objects by reference. In fact, the same property can
include different types of objects at different times.

The Object System is the foundation for SK8. The Object System supports many object,
handler, and property related functionalities. Examples are: the addition or removal of
object properties at any time, the creation of a child of an object, the duplication of an
object, etc. A complete list of Object System functionalities is provided in the Object
System chapter.

System Components of SK8
©1994 Apple Computer, Inc. 5/7/95

CHAPTERI1 SK8 Overview

Object Heterarchy

In order to keep track of the thousands of SK8 objects and their associated or inherited
properties and handlers, SK8 objects are organized into an object inheritance heterarchy
where each object is the child of some other object. We use the term heterarchy because
an object can have more than one parent and is, therefore, not a strict hierarchy.

The top object of this heterarchy is the object Obj ect . This is the only object that is not a
child of anything and all objects are descendants of Cbj ect. Obj ect contains all the
handlers needed to create new objects or copies of objects, initialize objects, add or
remove properties, assign object names, and more.

More Object System Information

“The Object System” and “The Object Framework” chapters provide additional
information.

Object Framework

The SK8 Object Framework provides a set of objects for developing applications and
tools. The Framework provides objects that represent files, 1/0 devices, sounds, shapes,
dates, clocks, etc. These objects are described in detail in the SK8 Object Reference
Manual.

SK8 provides objects that abstract away all the particulars of the operating system and
hardware upon which an application runs. For example, devices like disks, keyboards,
pointers, monitors, and system clocks are represented by objects with which you can
interact with SK8Script. In addition, objects are provided to represent how the lowest
levels of the graphics system work, as well as the much higher-level aspects of the
graphics and animation system, including:

= actors for creating object-oriented 2-1/2D graphics
= Vvisual effects that can be applied to graphical changes
= translators for converting data from files to internal data formats

» media objects for QuickTime movies, pictures, and other Macintosh resources
including sounds

= objects for traditional data types such as integers, characters, and strings as well as
arbitrary collections of objects, arrays, lists and vectors

= objects that handle errors and events

= user interface objects like buttons and scrollers

More Framework Information

More information about the object heterarchy can be obtained by using the System
Browser in the Project Builder.

System Components of SK8 1-3
©1994 Apple Computer, Inc. 5/7/95

CHAPTERI1 SK8 Overview

Additional details about the Object Framework are found in the SK8 Object Reference
Manual and later part of this manual.

Graphics System

The SK8 Graphics System provides two general models for the creation of multimedia
projects:

» The 2-1/2-D Media and Event Engine
= The Imaging System

The media engine provides a model for creating object-oriented graphics and
animations. A variety of graphic objects for geometrical shapes, as well as an extensive
library of user interface objects, is provided. The media engine delivers:

= Complete platform-independence

» Drawing capability for any graphical shape and complex rendering on display devices
= Object-level clipping

= Object level zoom and pan for any view shape

= Object-oriented rendering mechanism

= Many types of pre-defined renderers

= Many ease-of-use controls, such as auto highlighting, for all graphic objects

= Extensible and user-definable graphic objects and renderers

= Alibrary of existing graphic shapes and user interface objects

The engine is responsible for all of the drawing and bookkeeping chores that
programmers would typically have to implement to provide smooth and sophisticated
graphics to their applications.

The actors supported by the graphics engine may be separated into two categories:

= Geometry actors. The geometry actors draw geometry which is managed by the
graphics engine. Geometry actors include Rectangle, Polygon, LineSegment, Oval,
and others. The system can be extended by creating new geometries. This can be done
quite easily. See the Actor chapter of this guide for details.

= User Interface actors. The user interface actors draw widgets which are the building
blocks for user interfaces. These actors are actually created out of geometry actors, but
provide more functionality. Among the user interface actors are scrollers, buttons, text
fields, lists of text or graphics, and spreadsheets.

IMPORTANT

When you use actors, the graphics engine will manage the imaging for
you. If you want to extend the imaging capabilities or implement a
different graphics engine (e.g., a 3D engine), you should refer to the
Imaging chapter. O

System Components of SK8
©1994 Apple Computer, Inc. 5/7/95

CHAPTERI1 SK8 Overview

2-1/2-D Graphics Engine

This component of SK8 relieves programmers from the burden of writing most of the
low-level graphics code required to support sophisticated multimedia titles and
applications. It is based on a platform-independent imaging system.

The 2-1/2-D graphics engine is a render-based model providing arbitrary pan and zoom,
containment, user-definable Actors and Renderers, and full support of QuickTime.

Technical Note

Render-based is an object architecture in which all screen drawings are
done by objects (as opposed to a library function or subroutine). A
renderer is the only type of object in SK8 allowed to draw on the screen.
These renderer objects are given the special knowledge of how to draw
and fill a shape with color viar ender handlers that come with the
object or that you have written. (Yes, you too can write ar ender
handler!) O

Imaging System

The imaging system provides a platform-independent, object-oriented model for
imaging arbitrarily and directly onto display devices (e.g., monitors and printers). With
the imaging system, you can create your own renderers.

The imaging system provides:

s Complete platform-independence

= Mask obijects for clipping draw operations

= Pen objects to save and restore graphics context

= Asuite of painting and drawing operations

= Recordability and playback of drawing operations

= A programmer’s interface for creating primitive Media Engine renderers

SK8’s imaging system allows you to write very low-level graphics in a
platform-independent way. This level is reserved for programmers who want to
implement their own renderer objects when SK8’s renderer library does not support
some needed functionality.

Despite the fact that this is a low-level capability, the imaging system is still
object-oriented and has been carefully designed to make it as easy to learn as possible,
without sacrificing power.

A WARNING

You should not modify the imaging system unless you are convinced
that the SK8 Graphics System does not support the feature that you
need. O

More Graphics and Imaging System Information

Refer to the Imaging chapter of this Guide. Please be aware that the graphics and
imaging information are primarily intended for the advanced user.

System Components of SK8 1-5
©1994 Apple Computer, Inc. 5/7/95

1-6

CHAPTERI1 SK8 Overview

SK8Script Language

The SK8Script Language is designed to be easy to program, easy to read, and easy to
learn; but it is also a complete, compiled, efficient and object oriented programming
language.

SK8Script’s genesis was in the early specifications of AppleScript and shares many
syntactic and some semantic features with it. While AppleScript was initially targeted for
inter-application scripting, SK8Script’s goal has been to serve as a full programming
language capable of being used by scripters and professional programmers alike,
obviating the need to write lower-level code.

SK8Script is fully object-oriented and dynamic. Its objects are, of course, SK8 objects, and
its dynamics are found in the interactive and fast way that individual handlers are
compiled and run, as well as the ease of use of its editing and debugging tools.

The main features of SK8Script are:

= English-like scripting syntax

= Full programming language providing: user-defined types, error checking, etc.
= Protection against errors

= Simple definition of macros via “with” handlers

= Support for all SK8 object system semantics

= Simpler iteration and processing of groups of objects via the Collection protocol

= Object-oriented internal database queries and modifications through selection
expressions

= Complete and easy to use error and condition system
» Efficient native-code compiler

= Low-level system access (e.g., operating system and foreign function calls)

Additional information about SK8Script

Additional information about SK8Script may be found in the SK8Script chapter in this
Guide.

SK8 Interface (The Project Builder)

The Project Builder is a project, built in SK8, that provides a general-purpose
direct-manipulation user interface for rapid development of your own SK8 projects.

The Project Builder provides a variety of powerful object and SK8Script language
browsers, editors, debugging tools, media import and export, and the ability to quickly
build your application’s user interface.

Using the Project Builder

SK8 projects are modules that are eventually converted to a multimedia title, application,
prototype or tool. A project is the workspace in which you do your development. The
process of building a SK8 project consists of the following steps:

System Components of SK8
©1994 Apple Computer, Inc. 5/7/95

CHAPTERI1 SK8 Overview

= Designing and quickly prototyping an overall user interface for your project.

= Customizing your interface by changing properties and scripting the interface to
provide your application’s behavior.

= Experimenting with the interface’s space design, look-and feel, and, hopefully, getting
early feedback from potential end-users.

= Continuing with a more detailed, final implementation of your project’s functional
requirements.

These steps are not necessarily carried in strict succession. The overall design and
implementation process is iterative. How many times each step or how many times the
whole cycle is repeated depends on the project’s complexity and on whether you employ
a more or less user-centered design methodology.

More Project Builder Information

More information about Project Builder is located in the Project Builder chapter of this
manual.

System Components of SK8 1-7
©1994 Apple Computer, Inc. 5/7/95

1-8

CHAPTERI1

System Components of SK8
©1994 Apple Computer, Inc. 5/7/95

SK8 Overview

CHAPTER 2

Tutorial

In this chapter a hands-on introduction to SK8 is presented. In the process of building a
simple SK8 application, many of SK8’s basic concepts will be introduced. This process
will also introduce the SK8 Project Builder, as it will be used extensively while making
the application. At various points in the tutorial, you will be referred to a section of
Chapter 3: Basic Concepts for further explanation. In addition, as each tool of the Project
Builder is introduced, you may refer to the Project Builder chapter for a fuller
explanation of the tool and it’s capability. It’s a good idea to skim through all of these
sections as you go through the tutorial in order to flesh out your understanding of SK8.

The parts of the text that are just instructions appear in bold.

The Application

We will implement a simple “Concentration” game. Concentration is a game typically
played with cards. At the start of the game all the cards are placed face down on the
table in a grid. During each turn, a player uncovers two cards. If the two cards
uncovered have the same picture, the player gets the keep them and scores a point. The
player also gets to go for another consecutive turn. If a match is not found, the two
uncovered cards are covered and the next player gets a chance. The game ends when all
the matches are found and we run out of cards. The player that has found the most
matches wins.

For our version of the game we will introduce the following variations/additions;

» Instead of pictures we will use sounds. Thus instead of uncovering a card, a sound
would be played. This variation makes the game a lot harder than the original game.

= We will provide automatic scoring as well as an indicator to specify the current player.

The Application 2-9
©1994 Apple Computer, Inc. 5/7/95

CHAPTER2 Tutorial

Using SK8 to Implement Concentration

2-10

We begin by starting up SK8. To do this, doubleClick on the SK8 application icon. SK8
presents you with a startup screen displaying the SK8 Painting and then proceeds to
bring up a few of the Project Builder windows. The last window to come up is a dialog
box with which you can open an old project or create a new one.

A SK8 project is like a title (or an application). All the work you do is associated to a
project. You can think of a project like a bag of objects, constants, global variables and
functions. All these together conform your application or title.

(For more information on projects, see the Projects section in the Basic Concepts chapter)

Open a Project...

Euild Part 1
deleteme

Documentation Desktop
examples
Library
Mif Qutput
Patches
SK5

5K& Ternporary Files

cooooorbob

Click on the button labeled “New” in order to create a new project. A new dialog will
now appear to let you name the new project. Type “SK8Concentration” in the field
where it asks for the name of the project.

Using SK8 to Implement Concentration
©1994 Apple Computer, Inc. 5/7/95

CHAPTER2 Tutorial

Ewild Part 1
deleterne
dev-package-notes Desktop
Drocurnentation
examnples

lzonResources Fars Cancel

CooDood

Library

Create New Project with Objectname:
|3KBCnncentratiud |

and with Filename (if different):

Click on the button labeled “New” to actually create the SK8Concentration project.
When SK8 is done doing the required creation, the Project Overviewer window appears
as below.

SHECONCEnTEation WY ErvIEW e

Objects

All Objects
Frototypes

Renderers

RaRLRREARIRR RTINS

Functions
Constants
Globals
Libraries

ARnARERRRLLIARRLAY

Show Swatches

MNew

The Project Overviewer allows you to look into the project and examine everything in it.
As mentioned above, a project is a collection of objects, globals variables, constants and
functions. This list is mirrored in the Project Overviewer. Clicking on the buttons on it
shows you all the things you have created in your project.

Using SK8 to Implement Concentration 2-11
©1994 Apple Computer, Inc. 5/7/95

2-12

CHAPTER2 Tutorial

Making the Board

Having created the project, we are ready to start creating the objects that will make up
the game. First we need the board: the object where all our cards will be displayed. We
can create the board (a Rectangle) by drawing it from the Draw Palette.

Lravy 1hools

Your Tools

Selection

Library

Rectangle

Oual

RoundRect

Polygon

LineSegment

MaskedActor

The Draw Palette shows a list of actors (graphical objects) that we can create by direct
manipulation. To draw our board object click on the Rectangle tool in the Draw Palette.
The cursor will change into a “+” shape with which you can draw the rectangle. Now
click on an empty point of the screen where you want a corner of the rectangle to be
and drag the mouse until you hit the opposite corner. Then let up the mouse.

The result of this is a new rectangle, created in the SK8Concentration project, that has no
objectname. It will be selected by the SelectionHalo: another Project Builder tool.

Rectangle 1 in Stage H

The selection halo has 4 parts that can be seen in the picture above:

Using SK8 to Implement Concentration
©1994 Apple Computer, Inc. 5/7/95

CHAPTER2 Tutorial

= The resizer: these are the little black squares that you can see at the corners and the
sides of the selected object. By dragging these squares you can resize the selected
object.

= The dragger: this is the thick green frame around the selected object. By dragging this
frame you actually drag the object selected.

= The object reference: the rectangle that currently reads “Rectangle 1 in Stage”. This
section of the SelectionHalo will always contain a textual description of the object or
objects selected.

= The menu: the black triangle pointing downwards. Mouseing on it shows a menu of
useful commands for actors.

Notice that the object reference part of the SelectionHalo reads “Rectangle 1 in Stage”.
What this means is that the object we have created is the frontmost rectangle in the
contents of the Stage. The Stage is the sum of all your monitor space. Windows are
nothing more than actors that have been added to the contents of the Stage.

(For more information on the Stage, windows, and actors, see the Actors section in the
Basic Concepts chapter)

Next we need to name the rectangle we just created. Let us call it “Board” as we have
been calling it all along. To name it, mousedown on the SelectionHalo’s menu and
select the menu item that reads “Name...”.

Rectangle 1 in Stage
Name...
Edit
Deselect
Clear References

Tag...

Layering
Arrange...
Take a Snapshot

New Property...
Mew Handler...
Local Handlers P

In the dialog that comes up type “Board” and press the Enter key. Notice that when you
are done, the object reference part of the SelectionHalo now reads “Board”.

Making the Board “Special”

At this point our Board is nothing more than a child of Rectangle. As such a child, the
Board has inherited all the properties and handlers of Rectangle. The Board, therefore

Using SK8 to Implement Concentration 2-13
©1994 Apple Computer, Inc. 5/7/95

2-14

CHAPTER2 Tutorial

has properties like fillColor, frameColor, frameSize and boundsRect just like the
Rectangle object does.

(For more information on the objects and inheritance, see the Objects section in the Basic
Concepts chapter)

In this section we start to make our Board object special by changing the value of some
of its properties. Further specialization can be achieved by adding new properties and
adding new handlers, all of which we will do in this tutorial.

Let us start by adding text to the Board. The text would read “SK8 Concentration”: the
title of our game. To add this text all we need to do is set the text property of the Board to
*“SK8 Concentration”.

Most of the changes that we will do using the Project Builder can be easily done by
typing SK8Script commands into the MessageBox (another Project Builder window). To
use this method to add text to the Board, type the line below in the MessageBox and
press Return at the end. (Always end your MessageBox commands by pressing the
Return key.)

set the text of the Board to “SK8 Concentration”

Notice that the text has shown up in the center of the Board. It is black and its font is
“Chicago”. Let us now use the Project Builder to change the appeareance of the text until
we are satisfied. The ObjectEditor provides facilities to allow us to change the value of
every property of any object by direct manipulation. Let us use an ObjectEditor to edit
the Board.

Notice also that as a result of our trip to the MessageBox, the SelectionHalo is no longer
selecting the Board. To reselect the Board, click on the Selection tool of the DrawPalette
and then clicking on the Board. (You can also click on the Board while holding down
the Control key).

Mousedown on the object reference part of the SelectionHalo (where it reads
“Board”). Do not let up the mouse button and drag the mouse. You will realize that you
are dragging the outline of a rectangle. This outline represents the reference to the object
that was selected by the SelectionHalo. Drag the outline to the ObjectEditor (the
window on the top right of the Screen). As you drag over the rectangle at the top of the
ObjectEditor (the rectangle on the left of the menu) the rectangle will highlight. When
this happens, let up the mouse to drop the reference to the Board onto the
ObjectEditor. The ObjectEditor is now focused on the Board.

Using SK8 to Implement Concentration
©1994 Apple Computer, Inc. 5/7/95

CHAPTER2 Tutorial

i SkfConcentration Object Edi...

D I Baard

All Properties

acceptsdraps True

ELRERIAEY PRttt oo
autahighlight Falze

autotab Falze
boundedbycontents | Falze

boundsrect {248 121,618, 3.
cachespixrmap True

calordepth u}

cantainer Stage

contents False:

Local Handlers

The ObjectEditor shows us all the properties of the Board as well as all the handlers we
have defined on it (none so far). At the top left we can also see a snapshot of the Board.

The snapshot is not very interesting now because our Board is not very interesting. Let
us fix this problem.

We will change the font and size of the text and place it on the top of the Board. The
textFont property controls the font used to draw the actor’s text. To change this property
use the scroller in the properties panel to scroll to the property called “textFont”.
Notice that the current textFont is ChicagoFont.

Now double click on the property. The property panel of the ObjectEditor is now
replaced by a new panel that lets you change the property. Let us change the font to
“Times” or TimesFont (we can use either of these formats to specify the textFont).

Using SK8 to Implement Concentration 2-15
©1994 Apple Computer, Inc. 5/7/95

2-16

CHAPTER2 Tutorial

skdConcentration Object Edi...

Properties l Handlers

Values of: textfont

ChicagoFont

Local Handlers

To change the textFont, type “TimesFont” (without the quotes) into the field that now
reads “ChicagoFont”, or you can click on the button labelled “...”” to get a list of options.
When you are done click the “Set” button or press the Enter key.

The textSize can be changed in the same way. Find the textSize property, double click
on it and type the size wanted. A textSize of 36 will do nicely.

The final task is to move the text of the Board to the top. For this we use the textLocation
property. As usual, find the textLocation property and double click on it. Notice that in
this case, the *...”” button has been replace by a menu. From the menu that appears
above the properties panel, select ‘topCenter’.

Making the Board Draggable

At this point we have specialized the Board by changing the values of some of its
properties. The ultimate way to specialize objects is to define handlers on them, to teach
them to do new things. Our first example will involve making the Board drag itself when
the mouse goes down on it.

To get this behaviour all we need to do is to add a mouseDown handler to our object.
This handler will be called by the event system when the mouse goes down on our object.

Pull down the “Handlers” menu from the ObjectEditor’s menubar and select “New
Handler...” The following dialog will appear:

Using SK8 to Implement Concentration
©1994 Apple Computer, Inc. 5/7/95

CHAPTER?2 Tutorial

In Project

With Name || L]

In the field, enter the name of the handler you want to define: mouseDown. (You can
also select mouseDown from the menu on the right. This menu contains the common
actor events.) Then click on the “Create” button to bring up the SK8Script editor.

= ScriptEditor

[[rouzebiown of Board in project SKSConcentration]

n ILm:aIs rhe
=

on mouselown of rme {a Board)

end rmouselown

Note that the handler has already been started for us. Let us concentrate briefly on the
first line (or header) of this handler. It reads:

on nouseDown of me (a Board)

The first part (“on mouseDown”) means that this program will be executed whenever a
mouseDown event happens on the object on which this handler is defined. The object on
which this handler is defined is shown between parenthesis: a Board. Note that this
handler will apply to any descendant of the Board (not just to the Board itself). Finally,
“me” is the way we refer within the handler to the actual descendant of Board that got
the mouseDown event.

We want to drag the Board on mouseDown. Thus, in the place where the cursor is, type
the following line:
drag e

Our whole handler, therefore looks like this:

Using SK8 to Implement Concentration 2-17
©1994 Apple Computer, Inc. 5/7/95

2-18

CHAPTER2 Tutorial

on nouseDown of ne (a Board)
drag me
end nouseDown

Now we are ready to activate this handler. To do so, select “Activate Current Version”
from the Version menu in the SK8ScriptEditor. You will notice that the Version menu’s
text ceases to be in italics when you do this. This means that the version of this handler
that you are currently looking at is the one that is activated.

We can now try to drag the Board to see if this handler is actually doing what is
supposed to do. Click on the Board. Now mousedown on it and drag. You will see that
the Board’s outline is dragged by the mouse. When you release the mouse button, the
Board moves to the place where the outline ended.

We could drag the Board live (moving it continuously instead of just dragging an outline
of it). To do so, add an extra argument to our call to the drag handler. Replace the line
we typed in the handler with the following line:

drag me with live

When done, select “Activate Current Version” to activate the handler and then close
the SK8Script editor window by clicking on its close box (the little rectangle at the top
left of the window).

Adding the Cards

We are now ready to add the cards to the board. We will play with 100 cards. They
should be arrayed in a grid like fashion. A little planning is in order before we start
making the cards. We should notice that every card will do the same thing:

= when clicked on, each card will play the sound associated to it.

= when clicked on, each card will indicate in some form that it has been clicked (for
example by changing its fillColor to Red).

= when clicked on, each card has to check whether it is the second card that has been
clicked and if so check if a match has been found.

From this simple analysis, we see that all cards need a property into which to store a
sound, and a mouseDown handler that does everything we described. We could create
100 rectangles and add the property to each one and then define the mouseDown
handler 100 times but if we did so our project would probably miss its deadline... Object
oriented programming comes to the rescue!

We can create 1 new rectangle, calling it “Card”. We add the property and the handler to
this rectangle. When we are done, we just make 100 cards and add them to the board.

Let us start by creating the Card object. In the top panel of the Object Editor, type the
following line:

new Rectangl e with objectnane “Card”

This creates a new rectangle with our given objectname and sets the Object Editor up to
edit the object. Note that you can type any SK8Script expression into this top panel and it
will be evaluated. The editor will focus on whatever object or set of objects are returned
by the expression.

Using SK8 to Implement Concentration
©1994 Apple Computer, Inc. 5/7/95

CHAPTER2 Tutorial

We will now add a property to our Card object. To add aproperty, select “New
Property...” from the Properties menu. A dialog appears, that you can use to name the
property. In the field provided type “mySound” without the quotes and press Enter (or
click on the “Create” button).

Returning to the ObjectEditor, you see that the new property is selected and its value is
set to False. Also notice that the property is bold. This means that it is a “local” property
of this object, a property that this object has defined as opposed to a property that was
inherited from any of its ancestors.

Let us make a rectangle into which the cards will be made. Click on the Rectangle tool
of the DrawPalette and draw a large Rectangle inside of the Board. Then name the
rectangle “CardHolder”. The following figure shows the state of the Board.

=k& Concentration

[2]

Now we will use the DrawPalette to draw 100 cards into the CardHolder. For that, we
need to add Card to the objects that the DrawPalette can draw. To do this, mouseDown
on the picture of Card that is at the top of the ObjectEditor. When the rectangle
appears, drag it to the DrawPalette. Drop it right over the Selection tool. You will see
that Card appears right below the Selection tool. This new tool we have created can be
used just like the Rectangle tool we have used before.

Using SK8 to Implement Concentration 2-19
©1994 Apple Computer, Inc. 5/7/95

2-20

CHAPTER2 Tutorial

Drave Tools

Your Tools

Selection

Card

Library

Rectangle

Oral
RoundRect
Folygon
LineSegment

MaskedActor

Instead of drawing just one Card, we can use the Option key to draw multiple ones in
one operation. Click on the Card tool. With the Option key pressed, mousedown on
the top left corner of the CardHolder. Keeping the Option key pressed, drag the
mouse. You will see that the outline of more and more cards appears. Keep going until
you have 10 rows and 10 columns of cards. Then release the Option key and use the
mouse to resize all the cards at once to make them fill the space in the CardHolder.
When satisfied with the result, let up the mouse button. 100 cards will be created and
placed inside the CardHolder. The result is shown below.

=k8& Concentration

I
[N I
[N I
[N I
| o
N
(N ¢

If the Selection Halo does not read “100 items” when you are done, you have created the
wrong number of Cards. You can delete all the card you have created by pressing the
Delete key. A dialog will come up asking you if you really want to do it. Click the “yes”
button. Then you can try creating the 100 cards again.

This is a good time to save your project. From the file menu select “Save
SK8Concentration”. When asked whether you really want to save, click on the “Yes”
button.

Using SK8 to Implement Concentration
©1994 Apple Computer, Inc. 5/7/95

CHAPTER2 Tutorial

Importing Media

The cards are ready. We now need some sounds to associate to them. Since we have 100
cards we will need 50 sounds. We can get the sounds from any file that contains “snd “
resources. Let us assume that a file called “Concentration Sounds” exists with all the
sounds we need.

To import the media into our project we will use the Import Media dialog. Bring it up by
selecting the “Import Media” menu item from the File menu.

' Wledia Browser

Euild Part 1

Preview deleterne

dev-package-notes
Drocurnentation

examples
lconResources rsrc

Libtatw

MCL 2.0.1

MCL 2.0.1 for DEY SKE build
MICL Help

opoold0o 0 0ooDd

Shiwr Previaw:

Innport Media... Innport As:

{8 Copying media to project file

G Leaving riedia in original file

The first step of this process is to find the file that has the media. You can use the file list
at the middle of the dialog just like the standard Macintosh file dialog. Once you have
found the right file, double click on it to see a list of the resource types that can be
found in it.

Using SK8 to Implement Concentration 2-21
©1994 Apple Computer, Inc. 5/7/95

2-22

CHAPTER2 Tutorial

& ¥edia Browser

[Concentration Sounds ¥ |

clill snd [50] hix

Preview

Desktop

Shoow Preview | |[Import All

Imnport Media... Imnport As:

@ Copying redia to project file

G Leawing redia in original file

Conveniently, there are 50 sounds already in the file. To import them all, click on the
“Import All” button. Importing the sound resources will create children of Sound. A
dialog will come up to allow us to name the new objects.

About to Make 50 SoundRSRC
in Project SKBConcentration

@ Name Sequentially Starting With:
[ASound |

lﬁ Use Resource Hames

'a Do not Name

Let us give all our sounds names that start with “ASound” and end with an integer. For
that, click on the RadioButton titled “Name Sequentially Starting With” and type
“ASound” in the field provided. Click the “Create” button. You will then hear your
hard disk spinning as all the media is copied to your project’s file.

You will now notice that the project overviewer has switched to its drop pile in which it
shows all the objects we have just created with the Import Media dialog.

Close the Import Media dialog by clicking on its close box.

Creating Global Variables

It will be useful to keep all our sounds in a global variable. Let us call this variable,
“concentrationSounds”. To create it, switch the ProjectOverviewer to global variable
mode by clicking on the button labeled “Globals”. The object list becomes empty since
there are no variables defined in our project yet.

Using SK8 to Implement Concentration
©1994 Apple Computer, Inc. 5/7/95

CHAPTER2 Tutorial

To define the variable, click on the “New” button. A dialog appears. Type
“concentrationSounds” in the first field. The click the “Create” button to create the
variable. The project overviewer now shows the new variable with its current value:
False.

To set the value of the variable to the list of sounds, double click on the variable. The list
of variables becomes an editor into which we can type the desired value. Now we can
use the power of SK8Script to write an expression to return just the sounds we are
interested in. A good start would be

t he knownChi | dren of Sound

This would return every named child of Sound in the system at the moment, which
would include not only our 50 sounds but every other sound that was there before. We
can refine our search by specifying that we only want those sounds whose objectName
starts with “ASound”. In SK8Script,

every item whose objectNane starts with “ASound” in the

knownChi | dren of Sound

Type this line in the editor. Press the Return key. The variable now contains all our 50
sounds. To test this hypothesis you can type in the MessageBox:

get the length of concentrati onSounds

Note that an alternative way you could get these same sounds with the following

SK8Script expression:

every item whose project is equal to SK8Concentration in the
knownChi | dren of Sound

Distributing the sounds to the Cards

In SK8 there are two ways to write scripts: as handlers or as functions. A function is just
a named piece of script that does something. A handler, on the other hand, is a scripts
that is defined to teach an object how to react to a specific message. The name of the
handler is just the message that the object can now respond to. In one of the previous
sections, where we defined a mouseDown message for our Board, all we did was teach
the Board how to react to the mouseDown message. Each time a mouseDown event
happens on the Board, the handler we defined will be called.

A question we must ask ourselves often is whether a task should be implemented using
a function or a handler. A very nice feature of handlers is that we can define the same
handler on many different objects to do many different things. In our example above, we
changed the behaviour of the Board from the behaviour it had inherited from its parent
(Rectangle).

(For more information on handlers, see the Handlers section in the Basic Concepts
chapter)

Our next task is to write a program that randomly assigns eachof the 50 sounds to 2
cards in the board. We could make this program be a handler of the Board or the
CardHolder, or we could make it a function with no arguments. In this case it is not

Using SK8 to Implement Concentration 2-23
©1994 Apple Computer, Inc. 5/7/95

2-24

CHAPTER2 Tutorial

really clear which is the best alternative and thus, for the purpose of illustrating how to
create functions, we will make it a function.

The function will be called “distributeSounds”. We can use the ProjectOverviewer to add
a new function to our project. Click on the button that reads “Functions”. The object list
becomes empty because we have not yet defined any functions for our project. Click on
the button labeled “New”. When the naming dialog comes up, enter
“distributeSounds” on the field and click the “Create” button. A SK8Script editor
comes up to let us type the function in. Type the following:

on di stri but eSounds
set the cards to the contents of CardHol der
repeat with oneSound in concentrationSounds
-- pick the first card, give it a sound and
-- remove it fromthe |ist.
set cardl to any itemin the cards
set cardl's nySound to oneSound
renove cardl fromthe cards
-- pick the second card, give it the sane
-- sound and renove it fromthe |ist.
set card2 to any itemin the cards
set card2's mySound to oneSound
remove card2 fromthe cards
end repeat
end di stri but eSounds

This program distributes the 50 sounds to the 100 cards randomly. First note that any
line that begins with two dashes “--" is considered to be a comment. The script starts by
setting the local variable cards to all the cards we want to give sounds to. The repeat
loop that follows runs through everything in concentrationSounds (the global variable
we defined). At every iteration of the loop, the local variable oneSound is set to one of
the sounds in our list. Given a sound, we need to pick two cards at random and assign
the sound to them. Let us go through the the three lines that achieve this in detail.

set cardl to any itemin the cards

This line picks a random item from the cards (a collection of cards). The picked card is
set to the value of the variable cardl.

set cardl’'s mySound to oneSound

Now that we have the chosen card, we need to give it the sound. The sound is kept in
the loop variable oneSound.

remove cardl fromthe cards

Once we are done with the chosen card, we have to make sure it will not be picked again
and given another sound. All we need to do is remove the card from the cards that are
still available to be picked.

We do this twice for each sound, in order to assign the same sound to two different cards.

Using SK8 to Implement Concentration
©1994 Apple Computer, Inc. 5/7/95

CHAPTER2 Tutorial

To try out this function, activate it by selecting the “Activate Current Version” menu
item in the “Version” menu of the editor. Then go to the MessageBox and call the
function by typing the following line followed by the Return character:

di stri but eSounds()
Close the SK8Script editor.

Players and Scores

We are still missing some important parts of our game: a way to remember who is
currently playing, a way to remember the score of each player and a way to report these
scores.

Let us start attacking this (almost) final part of the game by creating a new object called a
Player. The only thing that is important about players is that they have scores. We can
create this object and add the “score” property to it in by the use of SK8Script alone. In
the MessageBox type the following:

new obj ect with objectNanme “Pl ayer”

And type the following line to add the “score” property to it. (Note that single quotes
should enclose the word “score”.)

addProperty Pl ayer, ‘score’

And now we can make two players to represent player 1 and player 2. As we create these
players we will set their score to 0. Type in the MessageBox:

new Pl ayer with objectNane “Playerl” with score 0
new Pl ayer with objectName “Player2” with score 0

To remember who the current player is we can add a property to the Board called
“currentPlayer”. By setting this property to Playerl or Player2 we will always know who
the current player is. Again in the MessageBox, type:

addProperty Board, ‘currentPlayer’

Let us now provide a mechanism with which our game will show who the current
player is and show the score of both players. We will create 4 Label objects and put them
in the empty space at the right of the Board. (You can think of a Label as just a piece of
text.)

You will notice that the Label tool is not present in the DrawPalette. This is because the
palette is only showing the basic shapes in the system. From the menu in the palette
select the menu item that reads “Widgets” to show the tools to draw all sorts of user
interface widgets. The Label tool will be the first one in the list.

To create the labels, select the Label tool and then click on the place where you want
the label to go (the empty area at the right edge of the Board). You will see that the
label’s text will read “Untitled”. Now you can use the ObjectEditor to set the label’s text.
Focus the ObjectEditor on the label by dragging the SelectionHalo’s object reference to
the ObjectEditor. Then set the text property by selecting the property, double clicking on
it and typing the new text. Do this 4 times, creating 4 labels. Their text should be: “Player
17, 0", “Player 2” and “0”.

Using SK8 to Implement Concentration 2-25
©1994 Apple Computer, Inc. 5/7/95

2-26

CHAPTER?2 Tutorial

When you are done, set the objectName of the two labels whose text is “0” to
“Player1Score” and “Player2Score”. The Board will look like this:

sk8 Concentration

| I
I o |
N
CICICIEIE I ICIEIEAE]] prager 2
N |
[| I
| I
I | | N
B | I
(N | I |

Showing the Scores

We want to keep the player’s scores always in synch with the text of the score labels on
the Board. The way to do this is to ensure that whenever a player’s score changes, its
score label is updated on the spot. Consider the following line that needs to be use to
change the score of Player1:

set the score of Playerl to 1

What this line actually does is call the “set score” handler of Playerl. Whenever a
property is added, two handlers are defined: a getter and a setter. In this case the
handlers defined are “score” (which returns the score) and “set score” (which sets the
score to the value provided).

You can redefine any of these handlers to do something else besides accessing the
property in question. You might, for example, change the setter of the “score” property
to, in addition to setting the property, updating the player’s score label.

To redefine this handler, type “Playerl” in the top pannel of the ObjectEditor. Then
select the “New Handler...” menu item from the “Handlers” menu. A dialog comes up
to ask us to name the new handler. Enter “set score” (without the quotes). The
SK8ScriptEditor appears. In the editor type the following handler:

on set score of me (a Playerl) to newval ue
do inherited
set the text of PlayerlScore to newal ue
end set score

Note that the newValue argument appears in the editor. This argument holds the value
that the user wants to set the property to. The first line in this handler actually sets the
property. The second line, after the property is set, makes the text of the label devoted to
Playerl’s score be updated, as we wanted.

Using SK8 to Implement Concentration
©1994 Apple Computer, Inc. 5/7/95

CHAPTER2 Tutorial

Now close the SK8Script editor and do the exact same thing for Player2 (with
Player2Score instead of Player1Score).

Did we say the “exact same thing”? Mmmm. Seems like some more object oriented
thinking could allow us to redesign this in a slightly better way.

And finally, the Game

The big handler is the click handler of the Card object. This is what is has to do:

» if this is the first click, play this card’s sound. Then uncover it by, for example, setting
its fillcolor to Red. Then somehow we must remember that the next click will be the
second click.

» if this is the second click and this card is not uncovered, play its sound and uncover it.
If this card’s sound is the same as the first card’s sound, a match has been found.

» if a match has been found, remove both cards from the board and add 1 to the score of
the current player. If the combined score of the two players equals 50 points, the game
has ended. Report who won.

= if no match was found, uncover both cards and make the currentPlayer of the Board
be the other player.

To remember whether this click is the first or second click we will use a variable called

waitingForSecondClick which we wiill set to False. Use the ProjectOverviewer to create

the variable.

We will now write the big handler: click of Card, in stages, making it more complex at
every stage. You can choose to define each version as we go along or to wait till the
handler is complete to type it in.

A good start is a click handler that plays the Card’s sound and marks the card as played
(by setting its fillcolor to Red). Focus the ObjectEditor on the Card object by typing
“Card” (without the quotes) in its top most panel. Press Return. Now add the click
handler. When the SK8ScriptEditor appears, type the following;

on click of ne (a Card)

pl ay ny nySound
set nmy fillcolor to Red

end click

But we do not want to allow the user to click on a Card that is already Red (meaning it
has already been selected). Thus, if the Card is already red, we should do nothing. We
change the handler as follows:

on click of ne (a Card)
if my fillcolor # Red then

pl ay ny nySound
set nmy fillcolor to Red

end if
end click

You can get the “£” character by pressing Option-=.

Using SK8 to Implement Concentration 2-27
©1994 Apple Computer, Inc. 5/7/95

2-28

CHAPTER2 Tutorial

Next we need to determine whether this click is the first or the second click of the pair. If
it is the second click, we need to do some work to find out whether a match has occured.
To determine this, we use the value of the waiting ForSecondClick variable. If this
variable is set to True, this click is the second click. Who sets this variable to True? We do,
when we determine that this click is the first click. Again we refine the handler:

on click of ne (a Card)
if my fillcolor # Red then

i f not waitingForSecondC ick then
pl ay ny nmySound
set ny fillcolor to Red
set waitingForSecondCick to True

el se
pl ay ny nySound
set nmy fillcolor to Red
set waitingForSecondC ick to Fal se

end if
end if
end click

We are now done with the first case (processing the first click). When the second click
happens, we need to see whether a match has occured (the two sounds of the cards
clicked are the same). To find this out, we need to find the two cards clicked and
compare their sounds. We can do it as follows:

set playedSounds to the nySound of every Card whose fillcolor = Red
in the contents of CardHol der

if item1 in playedSounds = item 2 in playedSounds then
--a match!

el se
-- no match.

end if

And we can define a function to test this case. Create a new function called
“weHaveAMatch” with no arguments an the text above. The complete function would
be:

on weHaveAMat ch
set playedSounds to the nySound of every Card =
whose fillcolor = Red in the contents of CardHol der
if item1 in playedSounds = item 2 in playedSounds then
return True
el se
return Fal se
end if
end weHaveAMat ch

You can get a “=” (continuation) character by pressing Option-Return to jump to the next
line.

Using SK8 to Implement Concentration
©1994 Apple Computer, Inc. 5/7/95

CHAPTER2 Tutorial

Let us now add this test to the second part of the Click handler. If there is no match we
want to do the following:

= set the fillcolor of the clicked cards to White.
= change the CurrentPlayer to the other player.

The click handler now looks like this (only the part that processes the second click is
shown):

el se
pl ay ny nySound
set nmy fillcolor to Red
i f weHaveAMat ch() then
-- do sonething
el se
set the fillcolor of every Card -
whose fillcolor = Red in CardHol der to Wite
if the Board's currentPl ayer = Playerl then
set the Board's currentPlayer to Player2

el se
set the Board's currentPl ayer to Playerl
end if
end if
set waitingForSecondC ick to Fal se

end if

And the last thing is to figure out what to do when we do have a match. Well, we should
do the following:

= Add 1 to the score of the current player.

= Set the fillcolor of the two cards clicked to White and remove themfrom the Board. We
can remove them by hiding them.

= Check if the total score is 50. If so, the game has ended and we need to report the
result.

And here is the result of these changes (only the case with the match is shown):

i f weHaveAMat ch() then

-- add 1 to the score of the current player.

set goodPl ayer to the Board's currentPl ayer

set goodPl ayer's score to 1 + goodPlayer's score

-- color clicked cards white and hide them

set clickedCards to every Card -
whose fillcolor = Red in CardHol der

set the fillcolor of every itemin clickedCards -
to Wite

hi de every itemin clickedCards

-- check if the game has ended.

if Playerl's score + player2's score = 50 then

Using SK8 to Implement Concentration 2-29
©1994 Apple Computer, Inc. 5/7/95

CHAPTER2 Tutorial

nessageToUser "Gane Over"
end if

And hopefully we are done. The text of the whole handler is presented below:

on click of ne (a Card)
if ny fillcolor # Red then
if not waitingForSecondCick then
pl ay ny mySound
set ny fillcolor to Red
set waitingForSecondClick to True
el se
pl ay ny nySound
set nmy fillcolor to Red
i f weHaveAMat ch() then
-- add 1 to the score of the current player.
set goodPl ayer to the Board's currentPl ayer
set goodPl ayer's score to 1 + goodPlayer's score
-- color clicked cards white and hide them
set clickedCards to every Card -
whose fillcolor = Red in CardHol der
set the fillcolor of every itemin clickedCards -
to Wite
hi de every itemin clickedCards
-- check if the game has ended.
if Playerl's score + player2's score = 50 then
nessageToUser "Gane Over"
end if
el se
set the fillcolor of every Card -
whose fillcolor = Red in CardHol der to Wite
if the Board's currentPlayer = Playerl then
set the Board's currentPlayer to Player?2

el se
set the Board's currentPlayer to Playerl
end if
end if
set waitingForSecondCick to Fal se
end if
end if
end click

Activate the handler and close the SK8Script Editor.

2-30 Using SK8 to Implement Concentration
©1994 Apple Computer, Inc. 5/7/95

CHAPTER?2 Tutorial

Anything Left?

Yes, but not much. We still need a way to show who the current player is, and a way to
let our users start a new game. Both are very simple.

A simple way to show who the current player is, is to redefine the set currentPlayer
handler of the Board to highlight the score of the current player. Focus the ObjectEditor
on the Board. Add a new handler: “set currentPlayer”. In the SK8Script Editor type the
following;

on set currentPlayer of me (a Board) to newal ue
-- Do the actual property access:
do inherited
if newal ue = Pl ayerl then
set the highlight of Player2Score to Fal se
set the highlight of PlayerlScore to True
el se
set the highlight of PlayerlScore to Fal se
set the highlight of Player2Score to True
end if
end set currentPl ayer

Activate the handler and close the editor. You can now try this handler out by changing
the Board’s currentPlayer. In the messageBox, you can type:

set the Board’s currentPlayer to Player2

And finally, we need a way to let users start a new game. We will add a button and
define its mouseDown handler to start the game.

We will draw a RoundRect using the DrawPalette. Go to the palette’s menu and select
“Shapes”. This will show the RoundRect tool. Draw a RoundRect at the bottom right of
the Board. Then set its text to “New Game”. The final state of the Board is,

SK& Concentration

| |
B N N N

LI I IEJE A EEIE L] piayer 2
| N N N [|

||
N N N |
||
N N N |
||
CICIC I ICJC I JC] |(New 6ame]

Let us now define the mouseDown handler of this new button. From the ObjectEditor or
the SelectionHalo’s menu, add a new mouseDown handler. In the SK8ScriptEditor, type
the following text:

Using SK8 to Implement Concentration 2-31
©1994 Apple Computer, Inc. 5/7/95

2-32

CHAPTER2 Tutorial

on nousedown of me
do inherited
show every Card in the contents of CardHol der
di stri but eSounds()
set playerl's score to O
set player2's score to O
set the Board's currentPl ayer to Playerl
end nousedown

And we are done! The perfectionists in the room will be bothered by the fact that our
“New Game” button does not highlight when the mouse goes down on it. To appease
them, type in the MessageBox:

set the autohighlight of RoundRect 1 in the Board to True

And now we are really done. Save the project and then try out the game.

Using SK8 to Implement Concentration
©1994 Apple Computer, Inc. 5/7/95

CHAPTER 3

Basic Concepts

This chapter introduces the basic concepts of SK8: the concepts you have to understand
in order to use SK8 effectively. These are presented in one page sections. Most of the
material presented here is revisited and expanded in later chapters of the manual.

This chapter assumes familiarity with the SK8 Project Builder as well as some basic
SK8Script.

3-33
©1994 Apple Computer, Inc. 5/7/95

3-34

CHAPTERS3 Basic Concepts

Objects

Objects in SK8 are like nouns in the real world. An object is a “thing”. If you can refer to
it, it is an object. Objects are defined in terms of other objects.

An object is defined by its features and its relationship to its parents.

The features of an object are its properties and handlers. An object can be a child of one
or more parents. A child inherits the features of its parent or parents. Since a parent
object inherits the features of its parents, the child will inherit the features of all of its
ancestors.

In SK8 everything is an object. A character is a Char act er object. An integer is an
I nt eger object. Text strings, lists, and numbers are all considered objects. Base types
from which other structures or records are constructed do not exist in SK8.

As an example, consider creating a “Person” object which we could use to store
information about people in a Rolodex type application. We create the object and add
some appropriate properties to it:

new obj ect with objectNane “Person”
addProperty Person, ‘nane
addProperty Person, ‘address’

addProperty Person, ‘phoneNunber’

Now we can fill in the properties and use the object we have created.

set Person’s nanme to “Julio”
set Person’s phoneNunber to “312-5748"

And we can enrich the object by defining a new handler for it that makes some use of the
information in it. Assuming the “dial” function existed we could define the following:

on call of nme (a Person)
di al my phoneNunber
end cal |

And we can now call the Per son object. We can also make children of the Per son object
which will inherit all the capabilities of Per son itself: its properties and handlers.

set x to new Person with name “George Smith” with phoneNunber
“543- 7865"

©1994 Apple Computer, Inc. 5/7/95

CHAPTERS3 Basic Concepts

Properties

Properties in SK8 are like adjectives in the real world. A property is storage space in an
object. This storage has a hame and can hold exactly one value. This value can be
anything ranging from Fal se to a collection of values; including a list, an array, or any
kind of object.

As an example, we create an object and add a property to it:

new obj ect with objectNane “Mnth”
addProperty Month, ‘nunberODays’with initialValue 31

Because a property belongs to an object, both the property name and the object must be
specified in order to reference the property’s value.

get the nunmber O Days of Mnth

An object inherits all of the properties of its parents, its grandparents, and so on. Thus if
we create a new Mont h object we will see that it will have a nunber O Days property
whose value will be initialized to 31 (the nunber O Days of its parent).

new Month wi th object Nane “Septenber”

And we can specialize this month to have 30 days instead of 31.

set the nunmber O Days of Septenber to 30

All properties of an object can be found using the pr opert i es handler. For example the
following line would return all the properties the Mont h object has.

get the properties of Mnth

This will return all the properties, including the ones it has inherited from all its
ancestors (the object Obj ect). We can get a list of the properties that Mont h has added
to itself by asking for its | ocal Properti es.

Properties can be added to or removed from an object at any time. The following line
would remove the nunber O Days property from Mont h and all its descendants:

removeProperty Mnth, ‘nunber Of Days’

Note

In other object oriented systems, properties are known as “fields”, “slots”, or “instance
variables”. O

3-35
©1994 Apple Computer, Inc. 5/7/95

3-36

CHAPTERS3 Basic Concepts

Propagatable Properties

Propagatable properties transmit their values to descendants. Normal (non
propagatable) properties only transmit their values when the children are created: any
subsequent changes in value are not propagated.

Let us show the difference between a propagatable property and a normal property with
a simple example: representing movies for a video store rental system. In our simple
example, every movie has a title and a price. Each individual movies has a distinct title
but every movie has its rental price propagated from the object Movi e. That way, when
the price of a rental goes up, all we have to do is change ther ent al Pri ce of the Movi e
object and all its descendants will be updated.

new obj ect with objectNanme “Mvie”
addProperty Mvie, ‘title’ with initialValue “No Title”

Since the rental price can change, we will make this property be propagatable.

addProperty Mvie, ‘rental Price’ with propagatedVal ue
set Movie's rentalPrice to 3.75

Let us make a new movie to see how the values of the two properties are inherited.

set x to new Myvie

When SK8 makes a new object it copies the values of all its properties from the value in
its parent. Thus, x’s titleis“No Ti t| e” and its price is 3. 75.

In the case of normal properties, when the value of the property changes in the parent it
is not updated in the children.
set Mwvie's title to “Still No Title”

x’s title has not been updated: it still is“No Ti t| e”. If we now changed the
rent al Pri ce of the Movi e object, the price will be changed for it and any of its
descendants.

set Movie's rental Price to 4.00

And we can now see that x’s r ent al Pri ce has also become 4. 00. This automatic
update happens until the child overrides the value of the property by setting it directly.
So, if x was an extremely rare movie we might want to increase its rental price to some
ridiculous setting:

set x’s title to “The Zaragoza Manuscri pt”
set x’s rental Price to 25.95

And now changing the r ent al Pri ce of x’s parent (Movi e) will have no effect on x’s
rental Price.

©1994 Apple Computer, Inc. 5/7/95

CHAPTERS3 Basic Concepts

Handlers

Handlers in SK8 are similar to verbs in the real world. The behavior of objects and
operations on objects are performed by handlers. A handler is a named piece of code
that is executed in response to a message or event. “Handler” is short for “message
handler”. Handlers are procedures available to an object that specify some action to be
performed. A handler is the name of a behavior that the object is asked to perform. Other
worthy features of handler are:

= they are inherited just like properties. An object inherits all the handlers defined on
each of its ancestors.

= they can return values.

To illustrate some of these features, let us create a rectangle called “Beeper” sitting on a
window on the St age.

new Rectangl e with objectName “TheW ndow w th container Stage
wi t h boundsRect {100, 100, 300, 300}

new Rectangl e with objectNanme “Beeper” with container TheW ndow
wi t h aut ohi ghl i ght

When the mouse goes down on Beeper, a nouseDown event is generated. All this
means is that the nobuseDown handler of Beeper is called. Note that we have not taught
Beeper how to respond to mouseDown messages, but that this is not a problem because
Beeper inherits a nrouseDown handler that is defined on one of its ancestors: .

The mouseDown handler of Act or takes care of highlighting the actor when the actor’s
aut ohi ghl i ght property is set to Tr ue. And this is what we get if we nrouseDown on
Beeper since the aut ohi ghl i ght property is set to Tr ue. But we want Beeper to
beep when the mouse goes down on it. For this, we define its own nouseDown handler
to beep:

on nouseDown of me (a Beeper)
beep
end nouseDown

And now, Beeper will beep when we mouse on it. If you try this out you will notice that
Beeper no longer highlights. This is because when the mouse goes down on Beeper,
we actually run the most specific handler we can find. Since Beeper does define the
nouseDown handler, that is the handler we run, which just beeps.

There is a way to be able to also run the handler an object has inherited: using the do
i nher it ed command. In our example, we can get Beeper to beep and then do the
usual highlighting behaviour by modifying the handler as follows:

on nmouseDown of ne (a Beeper)
beep
do inherited

end mouseDown

The handlers of an object can be found using a handler called handl er.

3-37
©1994 Apple Computer, Inc. 5/7/95

3-38

CHAPTERS3 Basic Concepts

Garbage Collection

SK8 uses automatic garbage collection to manage memory. This means that the memory
taken by objects is reclaimed when the objects are no longer used and that you as a SK8
developer do not need to worry about cleaning up the unwanted objects.

SK8 determines whether an object is used by checking if anything refers to the object. If
nothing in the environment is pointing to the object, the system concludes that there is
no way that you can refer to the object in question and thus the memory can be
reclaimed.

Consider the following example in which we create an object and put it in a variable:

set x to new obj ect

This object will not “go away” since it is being refered to by the variable x. If we now set
the variable x to something else, nothing will be refering to the object and thus it will be
reclaimed.

set x to Fal se
These are the ways in which you can prevent objects from being reclaimed by the system:
= by storing them somewhere: a variable, a constant, a property, a collection, etc.

= by naming the objects (setting their obj ect Name property to a string). For example,
an object created with the following line would not be reclaimed:

new obj ect with objectNane “Vegetabl e”

» (for actors) by putting them in the contents of other actors or the St age.

©1994 Apple Computer, Inc. 5/7/95

CHAPTERS3 Basic Concepts

Projects

The project is the SK8 unit of work. You do all your work within the context of a project.
You save and load whole projects.

More specifically, a project is a SK8 object with which you associate objects, functions,
variables and constants.

When you work in SK8, the first thing you are asked to do is create (or open) your own
project. Once this project is open, all the objects, variables, constants and functions you
create are created in that project.

Each project defines a name space for itself. That means that every named thing that is
created in it has to have a distinct name.

Projects are arranged in a hierarchy whose root is the project called SK8. The
ProjectBuilder project is a subproject of SK8. User projects are also subprojects of SK8, as
shown in the following figure.

SK8

N

ProjectBuilder UserProject

A subproject sees everything that is defined in all its super projects. Thus, in your
projects, you can use everything that is defined in the SK8 project.

A subproject also shares its name space with the name space of its super project. That
means that in your project you cannot create an object called Rectangle because one
already exists in SK8.

It is also important to note that a project does not share name spaces with its siblings.
Therefore, you could have two distinct objects called “Pipo” in both the ProjectBuilder
project and your project.

The ProjectOverviewer is the ProjectBuilder’s window that shows everything that is
associated to a project. Thus you can use it to view your project’s objects, functions,
variables and constants.

A subtle point is that when you create a project, an actual child of the Pr oj ect object is
created for it. In the tutorial, for example, when we created the SK8Concentration
project, we actually created a child of the Pr o] ect object, called “SK8Concentration”.
We can ask this object, SK8Concentration, for its objects, functions, globals and constants
by calling the obj ect s, f unct i ons, gl obal s and const ant s handlers respectively.

3-39
©1994 Apple Computer, Inc. 5/7/95

3-40

CHAPTERS3 Basic Concepts

Functions, Variables and Constants

Besides objects, projects store functions, global constants and global variables.

Functions differ from handlers in that they are pieces of code that are not associated to
any object. You can define new functions from the ProjectOverviewer (see the Tutorial
for details). Functions are accesed back by using the f unct i ons handler of Pr oj ect .
You can immediately tell the code of a function appart from that of a handler by looking
at its header line. Here is an example of a function next to a handler:

on add2 of n
return n + 2
end add2

on mouseDown of me (a Rectangle)
beep
end nuosedown

You can see that the handler contains in its header line the me argument followed by a
specification of the object type that responds to this message. The function just has a list
of arguments.

Constants are place holders for values, that live outside the scope of any handlers. The
main feature of a constant is that once you define it, it is an error to change its value. This
is how a constant is defined in SK8Script:

gl obal constant nunber O Pl ayer sl nASoccer Team = 11

Global variables are just like constants but their values can be changes as many times as
you want. This is how global variables are defined and later changed:

global x = 10
set x to 20

Once created, variables and constants can be removed by using the ProjectOverviewer or
by using the r enoveVar i abl e and r enoveConst ant handlers of Pr oj ect as shown
in the lines below. Assume the project in which we have create our variables is called
“MyProj”,

renoveVari abl e del eteme with nane 'x
removeConst ant del etene with name ' nunber O Pl ayer sl nASoccer Team

©1994 Apple Computer, Inc. 5/7/95

CHAPTERS3 Basic Concepts

Actors

Actors are graphical objects. Any object in SK8 that has a graphical representation is an
Act or (descends from the Act or object).

Geometrically, an Act or is defined by three regions or areas which are shown in the
following figure. The f r aneRegi on frames the actor’s bounds with a thickness that is
determined by the f r aneSi ze property. The fi | | Regi on is everything inside the
frame and the text region is the area occupied by the actor’s text if any.

FrameRegion
/

Hi There - TextRegion

\
\FiIIRegion

All drawing in the system is done by objects that descend from Render er. Each actor
has a renderer associated with each of its regions. The fi | | Col or paints the

fill Regi on,thefranmeCol or paintsthe f raneRegi on and the t ext Col or paints
the text region.

The most important feature of actors is that they can be put inside other actors. Each
actor has a property called cont ent s in which it stores all the actors that are inside of it.
Actors inside other actors are drawn inside the actor’sf i | | Regi on. Windows are
nothing more than actors whose cont ai ner has been set to the St age.

To summarize, actors provide the following capabilities:
= containment; the ability to contain other actors.

= scale: each actor defines a logical scale for actors that go inside of it. This allows
arbitrary zooming of the contents.

= origin: each actor has a local coordinate system whose origin can be moved. This
allows arbitrary panning of the contents.

The direct children of Actor define the geometries available in the system. These are:
Rect angl e, RoundRect , Oval , Pol ygon, Li neSegnent , MaskedAct or (gets is
geometry from the mask of an IconRSRC), Hal o and Sel ect i onDot s.

You can easily define new geometries. See the Actor chapter of this guide for details.

3-41
©1994 Apple Computer, Inc. 5/7/95

3-42

CHAPTERS3 Basic Concepts

The Stage

The St age is the place where everything graphical takes place. More concretely, the
St age is the sum of your monitor space (or in the Macintosh, the desktop).

You can find the dimensions of the St age by finding its boundsRect . The 4 numbers
returned define the rectangle within which all your monitors fit. To get it, you can type

get the boundsRect of the Stage

Even though the St age is not an actor, it also has contents which are actors. By making
an actor an item in the cont ent s of the St age the actor becomes a window. In order to
be visible, an actor has to be (ultimately) contained by the St age.

Let us create a rectangle and add it to the contents of the St age.

new Rectangl e with objectnane “MW ndow
set myWndow s container to the Stage

The St age defines what we call the physical (or Stage) coordinate system. The unit of
measurement is the pixel. When you get the boundsRect of the St age, you get the
number of pixels that you can display in the sum of your monitors. The origin of this
system, the point {0,0}, is located at the top left of your main monitor (the monitor with
the Macintosh menubar on it).

If you entered the lines above in the MessageBox, you will see a small white rectangle
appear close to the top left of your main monitor. Let us now use the St age’s coordinate
system to change the position and size of our window. We can do this by setting its
boundsRect , as follows:

set the boundsRect of nyWndow to {100, 100, 300, 300}

What this means is that the top left corner of ny W ndowwill start at the point that is 100
pixels down and to the left of the top left of your main monitor. The bottom right corner
is located 200 pixels to the right and bottom.

©1994 Apple Computer, Inc. 5/7/95

CHAPTERS3 Basic Concepts

Containment

Containment is the mechanism to associate, group or composite separate actors into
more complex actors. Each actor has two properties that are used to implement
containment: the cont ai ner and the cont ent s property.

Actors can be contained by other actors, the St age or False (no container). In order to be
visible, an actor has to be ultimately contained by the St age.

Let us create a few actors to illustrate the most important features of our containment
model:

new Rectangl e with objectnanme "theW ndow' =

wi t h boundsRect {200, 200, 500, 500} wi th contai ner Stage
new RoundRect wi th objectNane "Roundy" -

wi t h boundsRect {50, 50, 300, 300} with container theW ndow
new Oval with objectNanme "Ovi" =

wi t h boundsRect {10, 10, 100, 100} wi th contai ner theW ndow
new Rectangle with objectName "Recti" =

wi th contai ner Roundy with | ocation {100, 100}

And here is the resulting actor:

B Ovi

—1 = theWindow

p Recti

p= Roundi

This very simple containment model provides the following features:

= unlimited levels of containment. There no arbitrary limit to the number of containers
an actor can have on its way to the St age.

= clipping. Actors are automatically clipped to the fi | | Regi on of their immediate
containers.

To prove this claim, select Rect i using the selection tool and drag it. Notice that when

Recti istaken beyondthefi | | Regi on of its container, it is clipped from view. The

same thing happens when we drag Roundi outside the fi | | Regi on of its container

(t heW ndow).

= layering. All the actors inside a container are ordered by layer. Actors closer to the
front cover actors behind them.

3-43
©1994 Apple Computer, Inc. 5/7/95

3-44

CHAPTERS3 Basic Concepts

In our example above, notice that Ovi is partially obstructing Roundi from view. This is
because Ovi is in the front of Roundi . You can change the layering by setting the | ayer
property of all actors. You can do this by direct manipulation by selecting Ovi and then
selecting an item from “Layering” menu inside the SelectionHalo’s menu.

» independent coordinate systems with arbitrary scales and origins.

Each actor defines its own, local coordinate system in which its contents live. When the
| ocati on or boundsRect of an actor is specified, it is always done with respect to the
coordinate system of its cont ai ner.

To explore this, let us examine the lines of SK8Script we used to create the actors above.
The first line was:

new Rectangl e with objectnane "t heWndow' =
wi t h boundsRect {200, 200, 500, 500} wi th contai ner Stage

Which means that the new rectangle would be place in the contents of the St age, its top
left corner would be at location { 200, 200} and its bottom right corner at location
{500, 500} . These locations are expressed in the coordinate system of t heW ndow's
container: the St age. Thus {200,200} means 200 pixels to the left and bottom of the top
left corner of your main monitor. The next line reads:

new RoundRect wi th objectNane "Roundy" -
wi t h boundsRect {50, 50, 300, 300} wi th container theW ndow

Which placed Roundy 50 logical units to the right and bottom of the top left corner of its
container: t heW ndow The real (physical) size of a logical unit is given by the scal e of
an actor. Since the scal e of t heW ndowis set to 1 (the default), a unit equals one pixel.

By changing the scal e, you zoom in or out the contents of the actor.

Thel ocat i on (or boundsRect) of any actor can be expressed in logical or physical
terms. Logical location is the location of the actor relative to the coordinate system of its
container. Thus, the location of Roundy is {175, 175} (the center of its boundsRect).
Physical location is the location of an actor relative to the coordinate system of the

St age: the location expressed in pixels from the top left of the main monitor of your
system. The following line returns Roundy’s physical location:

get the location of Roundy wi th physical

The SK8 architecture is devoted to the preservation of the logical location of actors. Thus,
when you drag an actor that has contents, everything in the contents moves with the
actor since the logical location of the contents does not change as the container moves.
For a demonstration, try dragging Roundy.

©1994 Apple Computer, Inc. 5/7/95

CHAPTER 4

Project Builder Overview

This chapter provides a reference to all of the tools inthe Project Builder. This chapter
fleshes out many of the tools used in the previous tutorial.

What is the Project Builder?

The Project Builder is the primary user interface to SK8. It is designed to aid the rapid
development of individual SK8 projects and it includes a set of tools which provide
access to all of SK8’s power in a simple direct manipulation style.

Since the Project Builder was developed and implemented in SK8, it is a SK8 project like
any other. Thus the Project Builder provides an excellent illustration of SK8’s capabilities
and how they can be used to build an authoring tool.

Note

Project Builder prefers the “Espy” font be included in the system fonts
folder. O

An Overview

Project Builder At Startup

Upon initial startup of SK8, the following Project Builder interface tools are displayed:
= Message Box
= Draw Tools

= Object Editor
After a new project is created, the following Project Overviewer is displayed.

What is the Project Builder? 4-45
©1994 Apple Computer, Inc. 5/7/95

4-46

Close Box

CHAPTER4 Project Builder Overview

The Project Builder Windows

The Project Builder interface has windows which are characterized by a unique
appearance. This appearance is designed to be similar enough in design to the
Macintosh to be usable, but different enough so that you will not confuse it with the
application that you are building. Below is a sample window with its parts labeled:

Draggable Title Bar

Zoom Box

D0 ¥lessage Box

every itemn whose project = uiin the stage

Panel Splitter

"every itern whose project = uiin the stage"

1MeszageBos, PEMHolder {in prajact U3 Dr awfalette (in praject LI, Scroll Bar

ProjectOrvervieweat {in praject LI, Infaindow (n praject L

Resizer

One additional feature of these window is that doubleclicking on their titlebar activates a
“Window Shade” type functionality.

Keyboard Focus

In many of the tools there are multiple panels where you can type. The field which is
highlighted in white is the active typing field. For example if the Message Box (shown
above) is not selected, both panels are gray. When the window is active, as in the
diagram above, one of the panels becomes white to show that any keystrokes will be sent
to this panel. Within any window, you can use the Tab key to change the focus from one
of the panels to the next:

Drag and Drop

The Project Builder interface fully supports drag and drop. The user can drag and drop
references to objects, properties, and handlers between the various editors and browsers.
Items may be dragged by:

= Using the title on the halo,
= Using the icons next to text fields,

= mousing down on any of the pickers for an extended period of time.

An Overview
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

For example, in the Project Editor, by pressing the “All Objects” button, you can
mousedown on a particular object for half a second and a grayish box will appear
around the name of the object. This box can be dragged to the top field of the Object
Editor and dropped there to cause the editor to focus on this object. Note that you could
shift select several objects and then hold the mousedown for half a second and drag a set
of objects to edit simultaneously in one of the editors.

It is important to note that you are not dragging the actual objects around, only
references. Dragging a reference around will NOT affect the object. Also note, when
dragging a reference, the system will alert you to an appropriate place to drop by
highlighting to white and in some cases flashing.

Help Key

The Help key can be used to display balloon help on a selected word of text. For
example, if you enter the word “idle” in the Message Box, select it, and press the Help
key, balloon help is displayed to show where in the project the i dl e handler is defined
along with its argument list. Similarly, the help key will bring up more information on
any of the items in the panels displaying properties, functions, etc.

The Help key is the Help function key on most keyboards, or the Escape key on a
keyboard without function keys.

Updating Windows

In general, the Project Builder will update itself to reflect any actions such as property
setting and handler creation done within the Project Builder. It will NOT detect property
changes make in SK8Script or in the Message Box. Whenever you wish to update an
editor or window, you can simply place the item in the editor again. For example, in the
Object Editor you can reselect the item using the history menu or you can drag the icon
of the item(s) to the text field and drop it there.

Clearing References

Throughout the Project Builder, you can select an item and press the delete key to
remove it. For example, you can select a handler and press delete to remove the handler.
This works for properties, handlers, functions, constants and variables. It also works for
objects, but in a less direct manner. SK8 supports full garbage collection of objects. This
means that as long as there are no references to an object, it will be removed. However,
any reference to the object is enough to keep it around. Thus if you select an object in the
Project Builder and press delete, the Project Builder will give you the option to clear the
standard references to an object or clear all references to an object.

Clearing standard references is usually enough to get rid of an object. Namely, it sets the
object’s obj ect nane to f al se, it removes it from it’s parent’s knownChi | dr en list,
and it removes it from it’s cont ai ner (if it is an actor and has one). It also makes sure
that that object isn’t referenced by the Project Builder.

An Overview 4-47
©1994 Apple Computer, Inc. 5/7/95

4-48

CHAPTER4 Project Builder Overview

Note that if you have a reference to this object in some other object’s properties, it will
stay around until you remove that reference. For this reason, you can choose to clear all
references to an object by pressing the “All” button in this dialog. In so doing it will first
clear the standard references as describe above and then it will do an exhaustive (and
time consuming) search of all properties, constants and variables in the project to see if
any of these refer to the object. If they do there value is set to False, or in the case of
constants are removed.

Note that in some cases, such as when your project has a global or property which stores
a list of important objects, setting the value to false may not be the preferred action. If
you feel your project may contain such references, then you should use the Searcher
window (described below) to find anything that refers to your object and manually set
these values to the desired value. You can then use the clear all references capability to
get rid of the rest.

Note also that garbage collection takes time. After all your references to the object are
gone, it may be a period of time before the system gets around to deallocating it.

The most important thing to keep in mind here is that you don’t have to worry about
getting rid of objects. The system takes care of this for you.

An Overview
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4

Project Builder Components

Project Builder Overview

Many of the Project Builder windows are designed to provide users with contextual
information for their project editing tasks. The Project Builder contains the following
main components. A description of each component follows.

Message Box

Draw Palette

Object Editor

Project Overviewer
Selection Halo

Stage Monitor
Inheritance Overviewer
System Browser

Menu Editor

Media Browser

Color Palette and Renderer Editors
Library Editor

Script Editor

Stack Watcher

Handler Tracer
Documentation Window

Project Builder Menubar

Project Builder Components

©1994 Apple Computer, Inc. 5/7/95

4-49

CHAPTER4 Project Builder Overview

Message Box

Listener Panel
e

Display Panel

4-50

The Message Box serves as both a place to type SK8Script Commands and a place to
receive system messages.

oo ¥lessage Box

every itemn whose project = uiin the stage

Panel Splitter

"every itern whose project = uiin the stage"

1MeszageBos, PEMHolder {in prajact U3 Dr awfalette (in praject LI,
ProjectOrvervieweat {in praject LI, Infaindow (n praject L

Listener Panel

The Listener is a SK8Script command line interface that allows you to talk to SK8 by
typing into it. When the Return or Enter key is pressed, Listener evaluates your
SK8Script commands and expressions, and responds in the Display Panel.

By typing Option-Return (hitting the Option key and Return key simultaneously), a
phrase or script can be continued over more than one line.

By typing a handler name into the Listener Panel and pressing the Help key, a popup
balloon appears describing that handler.

Display Panel

SK8 responds via this panel. The display panel prints out a response (error messages,
etc.) to the commands entered into the Listener. It also provides status information
during the execution of certain operations, such as saving or loading a project. It is the
default system “Log”.

If you select an item in the Display Panel and hit Return, the item is copied to the
Listener. Double-clicking on the item will also copy it to the Listener. This does not apply
in the case of error messages. Pressing enter in this panel will place the item in the
Listener Panel and then will evaluate it.

Performing either of the above actions on an error message brings up an error dialog box
which provides debugging tools to help the developer.

Items in the display panel are accumulated into a “scrollable history” or history picker.
You may pick (select) any item in the history by clicking on it. From here you can move
the item to the Listener panel (if not an error message) by the two methods described
above. If the item is an error message, you can bring up an error dialog by
double-clicking on the error.

The Delete key will remove any selected items from the display panel.

Message Box
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

Draw Palette

The Draw Palette provides a set of tools for drawing SK8 actors on the screen.

Lravs Ionls

Your Tools

Extensible Panel Selection
Library Selection Menu
Library | Shapes "

Rectangle

Oval

RoundRect

Actors in Library Folygon

Line5%egment

MaskedActor

Description

The draw palette has two panels, each of which displays a set of tools. To use a tool, click
on the tool icon and begin drawing. You can also get options for drawing by briefly
holding the mouse down on a tool.

The upper panel displays your personal extensible set of tools. By default, it contains the
Selection Tool. You can drag references to one or more named actors and drop them on
this panel to create tools for drawing those actors. An actor which is added to a palette
is marked as a prototype, (i.e. its pr ot ot ype property issetto true).

Remove a tool by selecting it and hitting the Delete key. Note that removing a tool does
not affect the actor.

The lower panel displays libraries of actors. What library is shown is controlled by the
popup menu just above it. This popup contains a list of all the open libraries in SK8 as
well as in your project. Selecting a different library will cause a tool to be created for all
of the actors in the library marked as prototypes (their prototype property is set to true).
It is possible to drag tools from the lower panel to the upper one by briefly mousing
down on the name of the object and dragging it to the top panel. You can also drag these
references to any Project Builder editor (e.g. the Documentation Window) to get more
information on the object and its functionality.

Draw Palette 4-51
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

Object Editor

The Object Editor allows the viewing and modification of objects. It displays all aspects

of the objects, including their properties, property values, and handlers. It allows editing
of each of these aspects.

¥ Object Editor

Properties Menu Handlers Menu

. I Fipo Obiject Input Field

All Properties

krzwnchildren

i iR iauag.
Properties Display Panel laver

lacation

Ak

Akt

mouzesensitivity | 'normal’

objectname "Pipo"

Local Handlers

mousedown o__.

Handlers Display Panel

Description

Each object editor consists of the components in the above diagram. Each of which is
described below. Note that it is possible to have multiple Object Editors active at one
time. In addition, note that an Object Editor can edit more than one object at a time. The
user can do this by dragging a set of objects into the Object Editor (using shift selection
in one of the pickers or dragging a list of objects) or by typing a SK8Script expression
that returns multiple objects (e.g. every rectangle in the stage whose fillcolor is blue).

Properties Menu

Provides the following options for property display:

4-52 Object Editor

©1994 Apple Computer, Inc. 5/7/95

CHAPTER4

Add Property
Remove Property
Show Private Properties

Edit Property Attributes

Add Port
Show All
Show Inherited
Show Parents
Show Local
Show Graphic

Handlers Menu

Project Builder Overview

Brings up a dialog to add a property to the edited object(s).
Brings up a dialog to remove the selected property.

Cause the editor to include private properties in the
properties panel.

Brings up the Property Control Panel to view and edit the
selected property.

Brings up a dialog to add a port to the selected property.
Show all properties of given object.

Show only inherited properties

Show only local and parents local properties

Show local properties only.

Show only properties related to appearance

Provides the following options for handler display:

Add Handler
Remove Handler
Show Private Handlers

Show All
Show Inherited
Show Parents
Show Local
Show Graphic

Properties Display Panel

Brings up a dialog to add a handler to the edited object(s)
Brings up a dialog to remove the selected handler.

Cause the editor to include private handlersin the properties
panel

Show all handlers of given object.

Show only inherited handlers

Show only local and parents local handlers
Show local handlers only.

Show only handlers related to appearance

Shows the selected object’s properties and values

A property value for an object is edited by double-clicking on the property or selecting
the property and pressing return or enter. The properties display panel is replaced by a
Value Editor panel shown below:

Object Editor
©1994 Apple Computer, Inc. 5/7/95

4-53

4-54

CHAPTER4 Project Builder Overview

:..-' foo Object Editor:

| | | :

g

Yalues of: fillcolor

White

Value Selector

Value Editor Panel

Panel Resizing Splitter

d
<

mouzedown of .. me

You can type any SK8Script expression (e.g. “the fillColor of SuperButton”) in the Value
Editor panel. Press the Set button or Return key to evaluate the expression and set the
property, or press the Cancel button or Escape key to leave the property unchanged.

Note that there is a menu item to bring up a property control panel on the selected item.
As a short cut, command double-clicking on a property will do the same.

The Value Selector button (top right) displays different value lists from which to select a
value, such as, a list of window styles, a list of colors, etc.

Note

As a special convenience, if you hold down the Command key while
clicking the Set button, not only will the property be set for the object,
but for all the descendants of this object. This is useful, for example,
while editing the graphical properties (e.qg. fillcolor) of a prototype
which already has many children. O

Handlers Display Panel

Shows the handlers and their arguments, both positional and keyword, currently
defined on the selected object. Double clicking on a handler will bring up a Script Editor
for that handler (if the script is available). Alternatively selecting a handler and pressing
return or enter will bring up a Script Editor for that handler.

Object Editor
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4

Property Control Panel

Project Builder Overview

The Property Control Panel allows the editing of the meta-properties of a particular
property; such as making a property propagating or private. This can be brought up
through the Edit Property Attributes menu item ofthe Object Editor (see above).

' Property Control Panel

Property Name

fillCalor of hernan <

[Get Parent's '-.-'aluel [Edit Getter... I

[Pr-:-pagate Ml '-.-'aluel [Edit Setter... I

Private Propagating

Description

The top portion shows the name of the property you are editing. You can drop a
property into this field to change what you are editing.

The Private checkbox and the Propagating checkbox at the bottom of the panel allow
you to specify whether the property is private or propagating.

The following four buttons allow you to control various aspects of inheritance:

Get Parent's Value

Propagate My Value

Edit Getter...
Edit Setter...

Property Control Panel
©1994 Apple Computer, Inc. 5/7/95

Sets the edited properties value to the value of its parent, or if
the property is propagating, it is forced to re-inherit the value
from its parent (or wherever the value comes from).

Sets the value of this property on all of the object's
descendants to its current value, or in the case of propagating
property it forces all descendants to re-inherit from this value.
This button is particularly useful for graphical properties. For
example, if you changed the fil | Col or of a prototype
button, you can use this button to make sure that

fill Col or ispropagated to all instantiations of that button.

Brings up a Script Editor to edit the getter of the property.
Brings up a Script Editor to edit the setter of the property.

4-55

CHAPTER4 Project Builder Overview

Project Overviewer

4-56

The Project Overviewer provides a common browser where every object in a SK8 project
is organized and manipulated. It does this by giving a “bird’s eye view” of a project
which can be used for both viewing and editing.

Project Overviewer
for project “foo”

i foo Overviewer

Objects
All Objects pipo
I the File "5K S fon" E:
Il the File "SKE5KS Termpora... |6
Il [achild of TypeTable]
Categories
\ Display Panel
Show Swatches
New Button
Description

On the lefthand side of the Overviewer, there is a list of selectable categories. These
represent the various types of information contained in a SK8 project. Selecting a
category, which can be done by clicking on it, causes all members of that category in the
current project to be displayed in the scrolling list on the righthand side of the window.
There items can be selected, double clicked, deleted and dragged off as references in the
standard manner.

Note that items can be deleted by selecting them and pressing the Delete key. Double
clicking on an item brings up an editor appropriate for that item. The New Button on the
bottom left allows you to create a new item of the selected type (e.g. a new variable).

Note also that when viewing the variables of a project, you can edit the value of a
variable by double clicking on itor selecting it and hitting Return or Enter. This brings up
a Value Editor panel similar to the one in the Object Editor to allow you to set the value.

There are two special categories in the list. The first is the “Drop Pile”. When the Drop
Pile category is selected, a free space appears in the right hand panel. This free space can
serve as a storage place for frequently used references. For example, you can drag and
drop a set of objects and handlers that you are currently editing. Double clicking on

Project Overviewer
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

ahandler will bring up a Script Editor for the handler. Note that pressing the delete key
in the pile simply removes the item from the pile. It does not get rid of the item.

The second special category is “Prototypes”. This category displays every item in the
project whose ‘prototype’ property is set to true. Remember that the pr ot ot ype
property has no functional effect on an object. It is simply a useful way to mark certain
objects as “important”. Thus this category provides a place for you to mark and store
“special” objects. The Project Builder marks any objects dropped in this panel (or in the
Draw Palette) as a prototype by setting this property tot r ue. Selecting an item and
pressing delete sets an object’s pr ot ot ype property to f al se, thus removing it from
the list.

Note that sometimes you may wish to drag an item from, say, the Drop Pile to the
Prototypes category. You can do so by dragging the item from the Pile to the Prototypes
category button and dropping it. Thus you drag an item to the category button for either
the drop pile or the prototypes.

Note

The Project Overviewer isn’t always immediately updated. If you press
on the category a second time it will update the display. For example, if
you are viewing prototypes, and you made a new prototype via a script,
you can press the “Prototypes” button again and the list will be
updated. O

The Selection Halo

The Project Builder suports several styles of selecting and editing actors on the stage. By
default, actors are “live” and respond to mouse events normally. Thus to modify these
objects, there is a “Selection Halo” which surrounds the currently selected actor(s) to
allow you to drag, resize and edit.

corner
resize handle

drag frame

side

Creal 1 in Stage | 'I resize handle

object name / \ menu

Description

The selection halo contains four main parts:

= the object name/title

The Selection Halo 4-57
©1994 Apple Computer, Inc. 5/7/95

4-58

CHAPTER4 Project Builder Overview

= the menu
» the drag frame
= the resize handles

The object name/title bar, with white text, displays the object name of the object(s)
selected. The title is draggable and is used to drag the name to other windows in the
Project Builder.

The drag frame allows you to drag objects to any location within a container. An actor’s
container is changed to the deepest actor the cursor is over after dragging and dropping.

The resize handles let you resize the actor in any direction.

Note

Although the actor can be resized in a particular direction using the resize handles, the
origin of the actor remains fixed, so its contents will appear to shift to the new
boundsRect as their position is defined relative to the upper left-hand corner.

Using the Option Key

Pressing the Option key while resizing, allows toggling between live and non-live
resizing. Non-live resizing shows only the outline of the object being resized. Since some
objects (e.g., like a rectangle with a large uncached color bitmap) may be slow to resize,
the non-live option permits you to resize these objects quickly.

Pressing the Option key while dragging an object or actor , lets you toggle between live
and non-live dragging. Note that resizing windows is always done non-live.

Selection Halo Menu

The Selection Halo menu items have the following actions:

Name Sets the obj ect Namne of the actor(s).

Edit Brings up an Object Editor for the selected object.

Deselect Removes the selection halo and deselects the selection(s).
Clear References Allows the user to clear standard references to the actor(s) to

allow them to be garbage collected. See below for more
information on reference clearing.

Tag Creates a Tag for a part of a complex actor.

Layering Allows the user to change the graphical | ayer of the selected
actor(s) in their container.

Arrange Brings up a dialog that allows the user to align, distribute or
tile the selected objects.

Take a Snapshot This allows you to take a graphical snapshot of the actor and
creates an i mageRender er to display it.

NewProperty Add a property to the selected actor(s).

The Selection Halo
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

NewHandler Add a handler to the selected actor(s).

LocalHandlers Bring up and editor for one of the existing local handlers from
the selected actor.

The Selection Halo 4-59
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

Keyboard Shortcuts

The following keyboard shortcuts can also be used while the Selection Halo is active:

Clearing:

Delete Clears references to the selected actor(s). See below for more
information on reference clearing.

Changing Selection:

Up Arrow Select the object that contains the current selection

Down Arrow Select the first item in the contents of the current selection

Left Arrow Select the next item in the selection’s container’s contents

Right Arrow Select the previous item in the selection’s container’s contents

Layout:

Option-Up Arrow Move the selection 1 pixel up

Option-Down Arrow Move the selection 1 pixel down

Option-Left Arrow Move the selection 1 pixel left

Option-Right Arrow Move the selection 1 pixel right

Shift-Option-Up Arrow Move the selection 10 pixels up
Shift-Option-Down ArrowMove the selection 10 pixels down
Shift-Option-Left Arrow Move the selection 10 pixels left
Shift-Option-Right Arrow Move the selection 10 pixels right

Layering:

Actors are arranged in a front-to-back order. Thus, an actor can cover another actor. The
following keys allow you to move actors through this front-to-back ordering.

+ Bring the selected actor one step closer to the front
- Send the selected actor one step further to the back
Shift + Bring the selection all the way to the front

Shift - Send the selection all the way to the back

Actors also have a | ayer property that can be modified to change layering. The top
layer is layer number 1. If you change the | ayer of an actor in the Object Editor the
| ayer properties of the other actors in that container will be renumbered accordingly.

4-60 The Selection Halo
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

Configuring the Selection Halo

In the Workspace menu, there is an item called “Selection Preferences” which is shown
below:

Selection Control Preferences:

/@ Active Dbjects & Edit Control O Edit Control Dnly

Sarple Selection Controls

Crag Frame

oK E Button iz active. Select
Rezizing Handles with the Selection Tool or
by Contral Clicking.
Object FMenu

Object Mame
drag & droppable

Show:

(<] Resizing Handles
(<] Drag Frame

(<] Object Title

Description

This dialog allows you to configure how you wish to select objects. It provides two main
modes:

Active Obijects Allows object selection by the standard method of clicking to
select an object and mouseDown to drag the object.

Edit Control Only A mode where the objects do not get mouse events. This
mode also determines the configuration of the halo. In
general, when you have active objects, you will want all the
options of the halo available. For example, when objects are
active, the drag frame is needed to move them around. When
objects are not active, you can drag them by mousing down
on them and therefore a drag frame is not needed. Thus by
default, when in Edit Control Only mode, only the resize dots
of the halo are shown.

Part Checkboxes Options of the halo. See Edit Control Only.

The Selection Halo 4-61
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

Stage Monitor

The Stage Monitor provides an overview of all actors in a project and their containment
hierarchies. It also provides the user with a place where visual elements are manipulated
on and off the St age (in and out of sight).

The Stage Monitor provides:
= an overview of all Actors in a project, both on and off stage

= direct manipulation of hard to select items (due to the obstructions possibly induced
by containment and layering)

= references to all actors

= information about a project's containment hierarchy

i foo Stage Monitor

On S5tage

v Rectangle 2 in Stage

[»

Crval 2in Rectangle 2 in Stage |

=

Crval 1in Bectangle 2in Stage (3
RoundRect 1 in Rectangle 2.

Line5egrnent 2 in Rectangle ...

L L R R LR
T R A R A R A R R

Line5egrnent 1 in Rectangle ..

Resize panel bar

| Off Stage

[[===] [achild of Rectangle]

[a child af Cval]

4-62 Stage Monitor
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

Description

The Stage Monitor window has two panels.

The OnStage panel (top panel) displays a list of every Window (top level actor) on the
St age. The Stage Monitor is dynamically linked to selected items on the stage. For
example, when a new rectangle is drawn on the St age, a reference to that rectangle
automatically appears in the Stage Monitor. . Double-clicking on an item in the OnStage
panel causes the item to be selected with the Selection Halo.

The OffStage panel (bottom panel) shows a list of all Windows that do not appear on the
St age at the present time. In other words, these are the windows whose container is
equal to f al se. Those actors can be thought of as “waiting in the wings” of the St age.

In both panels, the containment hierarchy of actors is shown in a finder style list fashion.
A user can traverse the hierarchy using the standard finder opening/closing triangles.
For example, to see a list of what objects are contained in a window on the screen, a user
can “open up” a list of contained items by clicking on the finder triangle next to the
window's reference in the Stage Monitor.

Items in the Stage Monitor can be edited in the standard manner. References to them can
be dragged away in the standard manner (see global changes) as well. In addition, users
can edit the containment hierarchy of actors by changing the order of actors in the list by
dragging and dropping them into place. For example, you can drag an item from the
bottom panel to the top panel to put it on St age. You can drag an item from within one
actor and drop it on the swatch of another actor to change its container. Note that you
can ensure an actor goes on stage or off stage by dropping it on the title label of the lists.

Stage Monitor 4-63
©1994 Apple Computer, Inc. 5/7/95

Searcher

CHAPTER4 Project Builder Overview

4-64

The Searcher helps find objects, properties, handlers, functions, constants and variables
in SK8.

Type of Search Method of Search

Input Field

[Intersectil:unl [Find I

Result:

MenuFarharPickers
MizinForCbjectPicker s
MiinForProjectDuataPickers
MizinForPropertyHandlerPickers

fulultiLinePicker
OibjectPicker Result Panel

i CbjectPilePicker
Ficker
FickerCallaction
Pickerflenu
PickerMenultern
PickerMenulternSpacer
ProjectCrataPicker
ProjectCrataShestPicker

Description

The Searcher has two Find menus to let you specify the kind of search you wish to
perform. A search is specified by the two menus at the top of the window and by the
input field. The first menu, located at the top left, allows you to specify the type of item
you are looking for (e.g. objects or handlers). The second menu, located at the top right,
allows you to specify the method to use to search for the items. The Input Field allows
you to specify the object or string used while searching. Pressing Return in this field or
clicking on the Find button will perform the search. The results are displayed in the
Result Panel.

This window allows you to do several different kinds of searches. For all the types of
items (i.e. object, properties, handlers, functions, constants and globals), you can search
based on a substring of the item’s name. Note in the example above, the string “picker”
is in each of the object names listed in the result panel. For handlers and functions, you
can search for scripts which contain some string of text. For globals, constants and
properties you can search for items with a particular value or whose value references a

Searcher
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

particular object. These two types of searches can be useful when you wish to ensure that
an object will be garbage collected. Searching for a value will see if any item of the
specified type(s) has the object as it’s value. Searching for a reference will see if any item
of the specified type(s) has the object somewhere in it’s value. This means that the search
will look “deeply” into values searching through collections to see if the specified object
is part of the value.

Items can also be dragged from the Results Panel to other Project Builder windows, such
as the Documenation Window, for more information. In addition, you can double click
any of the items to bring up an editor for the item. Thus if you wish to clear a reference
to an object from some property, you can double click on the property and edit it’s value
to remove the reference.

Finally, there is a button labeled “Intersection” displays the intersection of the results of
this search with the results of the previous search. This is useful for cases such as if you
know an object's name contains both the words “Button” and “Push”.

Searcher 4-65
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

Inheritance Overviewer

The Inheritance Editor provides:

= information to the user about the inheritance hierarchy (including multiple
inheritance)

= havigation of the inheritance hierarchy
= aview from which users can abstract a set of objects into a prototype

= an appropriate view on which to indicate inheritance “meta information” such as
whether a property is editable or inheritable

_E..-I INNERITaNCE DY ERYIEY EL

n I RoundRect Input Panel

Parents Children
T
Aty aboutboxButton

CialogBoxButton
GetFrornlserButton
Handlerwy atchingCl...
. hernan

Parent List PCPEditParent o s

Children List

PCPGettarButton
FiCFPropagate

P PReinherit
PCPSetterButton
Aliauiacs 7 sz o
SrrintFditarRnttnn

R P
D D

Description

The Inheritance Overviewer window is divided into three panels.

The top panel is an input panel for specifying the object (or group of objects) you wish to
view or edit.

The left panel, the Parent panel, provides for viewing and editing of the parents of the
selected object(s). If multiple objects are selected, shared parents are displayed. New
parents can be added via the Parents menu or via dropping a new parent into the Parent
panel. Parents can be reordered via drag and drop within the panel. They can be
removed by selecting the parent and pressing delete.

4-66 Inheritance Overviewer
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

Finally, the menu has an option for splicing in a new parent between the selected
object(s) and their existing parents. This is useful when you have made several objects
which should descend from a common prototype. You can “splice” by selecting the
objects, dragging them to the top field and then using the “Splice in a New Parent”
option in the Parents menu.

The right panel, the Children panel, displays the children of the selected object(s). If
multiple objects are selected, shared children are displayed. Note that children will show
all of the “knownChildren” as well as any other children in the currently edited project.
You can add and remove children to this “knownChildren” list by selecting the children
and using the appropriate menu item in the Children menu. In addition you can create
new children of the selected objects as well as clear references to children.

A WARNING

Any change to parents is a serious or major operation which can seriously alter your
object. Use this with caution. a

Inheritance Overviewer 4-67
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

System Browser

Input Panel

The System Browser is useful for browsing sets of objects, properties, values, and
handlers, as well as, traversing through the various hierarchies of the system. It can be
used to find objects with similar names. This is useful to determine if inherited handlers
are overridden by a specific object.

sy stem Browser

Dhbjects I_ Properties I_ alues I_ Handlzrs

4-68

the knownchildren of abject
Objects Properties Value List
Murmber Al | function-record-t.__|[*] | foo
ObjeCtS Panel Character Hetiaay Ll
Symbol s sk2
Callection handler-record-t._..
Project knovwnchildren
Local Handlers SCript
activate of Project Script Panel
addconstantdialog of Project
addfunctiondialog of Project
addvariabledialog of Project
before closeproject of Project
Description

The user can type a query (or drop an object or property reference) into the query field at
the top of the panel, and the objects panel will display the results of that query. The
objects panel controls what the other panels (properties, value list, and handlers panels)
display. The selected item(s) in the objects panel will cause the appropriate properties
and handlers to appear in the properties and handlers panels. Note that you can select
and edit multiple objects at the same time by shift selecting in the object panel.

The value of the selected property in the property panel appears in the value panel. You
can edit the value by either double clicking on the value or selecting the panel and
pressing Return or Enter.

The button above the Value List allows you to move the contents of the Value List to the
objects list on the left side. For example, if you are browsing the knownChi | dren of
object, pressing this button would place “The knownChildren of object” in the field at
the top and the children would appear in the object list.

Double-clicking on a property will bring up a Property Control panel. Double clicking or
pressing return in the value list will let you edit that value in the same way as the object
editor.

Finally there is a Script Panel which displays any script which is available for the
selected handler. Note this is not editable.

System Browser
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

Menu Editor

The menu editor allows the building of menubars, menus, menu items, pop-ups, and
hierarchical menus through direct manipulation.

Objects:

Menubar: | ConlhenuBar |

Menu: | [a child of Menu] « | Edited ObJeCtS
Menuiten: | Prefs |

Menubar Proxy:

Menubar Proxy

ile Edit

=
>)

Menu Proxy

Sub-Menu

Selected Menu:

Menu Title =
ile

MeLw...

Open... Menu Items Panel

Close

Preferences

Description

The menu editor can be used to create a single menu or an entire menubar. Editing is
controlled predominantly by the three menus at the top, which are described in detail
below. Navigation is controlled via direct manipulation. Note that drag and drop is
particularly useful within this editor. Specific cases are described below

Edited Objects List

These three rectangles display which objects are currently being focused upon. You can
mousedown on these rectangles and drag away references to these objects. In addition,
you can drop objects of the appropriate type on these rectangles to have the editor focus
on them.

Menu Editor 4-69
©1994 Apple Computer, Inc. 5/7/95

4-70

CHAPTER4 Project Builder Overview

Menubar Proxy

When editing a menubar, a proxy displaying the menubar is shown in the center of the
editor. Clicking on one of these menus displays a proxy of the menu underneath it and
focuses the bottom part of the editor on the selected menu. You can drag menuitems
from the bottom part of the editor and drop them on a different menu in this proxy to
move them to a new menu. You can drag around the menus within the proxy to reorder
them. Note that when the keyboard is focused on this proxy, you can type Command-N
to add a new menu and delete to remove one.

Menu Proxy

When one of the menubar’s menus is selected, this proxy appears underneath it. This
proxy serves two purposes. First it shows the approximate size of the menu with one line
for each item. Second it displays any sub menus in the menu (see the above diagram). By
clicking on a submenu, the lower section of the editor will be focused on the submenu.

Menu Title

When a menu is being edited, it’s text appears in this field. Typing in this field allows the
user to directly change the text.

Menu ltems Panel

When a menu is being edited, it’s menu items appear in this picker. By doubleclicking on
an item or by selecting an item and pressing return, you can edit the text of the menu
item. Press return when finished to set the text. You can drag and drop items to reorder
them, as well as drop a menu into this list to serve as a subMenu. Note that when the
keyboard is focused on this panel, you can type Command-N to add a new menuitem
and delete to remove one.

Menubar Menu

Edit New Menubar This brings up a dialog to create a new menubar to edit.

Edit Existing Menubar This brings up a dialog which hierarchically displays all of
the menubars visible to your project. Selecting one focuses the
menu editor on that object.

Put Menubar in Stage This makes the currently edited menubar the menubar of the
stage. In other words, it installs this menubar on top of the
screen.

Clear References Clears all references to the edited menubar. See the section on
Clearing References at the end of this chapter.

Edit Update Brings up a Script Editor to write the Update handler for the
selected menubar. Note that by default, a menubar gets an
update event whenever the user mouses down on one of it’s
menus.

Menu Editor
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4

Edit Menuselect

Menu Menu

Project Builder Overview

Brings up a Script Editor to write the Menuselect handler for
the selected menubar. Note that by default, a menubar gets a
menuselect event whenever the user selects and item from
one of it’s menus.

Edit New Menu
Edit Existing Menu

Add Menu to Menubar
Add subMenu to Menu

Clear References

Edit Update

Edit Menuselect

[tems Menu

This brings up a dialog to create a new menu to edit.

This brings up a dialog which hierarchically displays all of
the menus visible to your project. Selecting one focuses the
menu editor on that object.

This adds a new unnamed menu to the edited menubar.

This adds a new unnamed submenu to the edited menu. This
is used to build hierarchical menus.

Clears all references to the selected menu. See the section on
Clearing References at the end of this chapter.

Brings up a Script Editor to write the Update handler for the
selected menu. Note that by default, a menu gets an update
event whenever the user mouses down on it.

Brings up a Script Editor to write the Menuselect handler for
the selected menu. Note that by default, a menu gets a
menuselect event whenever the user selects one of it’s items.

Add Menuitem to Menu
Clear References

Edit Update

Edit Menuselect

Menu Editor
©1994 Apple Computer, Inc. 5/7/95

This adds a new unnamed menuitem to the edited menu.

Clears all references to the selected menuitem. See the section
on Clearing References at the end of this chapter.

Brings up a Script Editor to write the Update handler for the
selected menuitem. Note that by default, a menuitem gets an
update event whenever the user mouses down it’s menu.

Brings up a Script Editor to write the Menuselect handler for
the selected menuitem. Note that by default, a menuitem gets
a menuselect event whenever the user selects it.

4-71

CHAPTER4 Project Builder Overview

Media Browser

The Media Browvser is used to select media from files, to view them, and if desired to
import them into your project. The media will be translated into image renderer objects,
sounds, cursors, etc.

¥ledia Brovwser

cicns in Space Game Resources ¥ |

Preview

Desktop

Import
(3] showPreview Import All

Imnport Media_.. Import As:

@ Copying rmedia to project file IrnageRenderar W I

G Leaving media in original file

Description

The Media Browser provides an interface for importing media into your SK8 application.
It consists of two main sections. The upper section specifies what is to be imported. The
lower section specifies how the media is imported.

Finding the Media

The upper section consists of a psuedo-file dialog that allows you to browse through the
files available on disk. When you find a file which contains the media you wish to
import, you can double click on the file to see the list of media types that file contains.
You can then double click on a media type to see the list of media of that type. Note that
on the right hand side is a preview box which is activated by the checkbox underneath it.

4-72 Media Browser
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

When you have found the media you wish to import, you can shift select the choice you
wish to import and press the import button, or you can choose to import all the media of
the selected type by pressing the import all button.

Choosing the Style of Importation

Media will be imported based on the selections made in the lower section. The first two
radio buttons control where the media is to be located:

Copying media to project Copies the media directly into the project

Leaving media in original Copies the media’s filename only into the project. The media
is not copied into SK8, but imported by reference to the
filename.

The Import As option (lower right) provides the ability to specifythe object
representation of the imported media. For example, with a PICT you might wish to have
an imageRenderer which can be used to color objects or you might wish to just have a
low level media object which points to the media. The popup menu gives you such
choices.

The Import Naming Dialog

Clicking on the import or the import all buttons brings up the following dialog:

About to Make 31 lconRSRC
in Project foo

lﬂ Name Sequentially S5tarting With:

'ﬂ Use Resource Names

@ Do not Name

| Cancel ||| Create '

This dialog allows you to specify the objectnames of the objects created for the media. It
has three radio buttons:

Name Sequentially Set the objectnames of the objects to be the name typed in the
field followed by a number. Thus if the user imported three
PICTs and typed “mypict”, it would create “mypictl”,
“mypict2”, and “mypict3”.

Use Resource Names This names the objects according to their resource names.
Unnamed objects are left anonymous. Spaces and other illegal
objectname characters are removed.

Do not name This leaves the objects anonymous.

Media Browser 4-73
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

Once the objects are created, they will show up in the object pile of the project
overviewer . This provides a way for the user to hold on to and examine the set of
media, even if it is anonymous.

4-74 Media Browser
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

Color Palette

The Color Palette provides an easy way to use the color facilities of SK8. It allows the
user to browse the renderers available in the system and use them to color objects.

Palette Menu

[Green

| Copy l | Mew l | Edit l

Description

The Palette menu, top left, displays a menu of many palettes. In the example, above, the
RBGColor panel is displayed.

You can drag colors from the Color Palette and drop them on objects. By default the
object’'sfi | | Col or is setto the new color.

The franeCol or of an object is set by holding down the Option key as the color is

dropped on the object.

The t ext Col or is set by holding down the Command key as the color is dropped.
Copy button Duplicates the currently selected renderer in your project.
New button Creates a new renderer of the currently viewed type.

Edit button Displays the appropriate renderer editor for the selected

renderer. (see below)

Color Palette 4-75
©1994 Apple Computer, Inc. 5/7/95

CHAP

TER4 Project Builder Overview

Renderer Editors

4-76

The Project Builder provides direct manipulation tools for building and manipulating
renderers in your project. There are tools for building the following renderers:

= RGBColor

= ComplexRGBColor

= Gradient

s ComplexGradient

= BevelRenderer

= MultiRenderer
= Hatch

= ImageRenderer

[a child of Gradient]

Obiject Field

S5tart Color: -

End Color:

Sample Image

Direction:

| 'shape' w

| Reset l |Redrawl

Reset Renderer Button Redraw Actors Button

Description

Most of the Renderer Editors described below follow a design similar to the sample

shown

above. At the top of the window is a field for specifying a renderer to edit. You

may specify this by typing a renderer’s name in this field, by dropping a renderer in this

field, o

T3]

r by clicking on the “...” button and choosing from a dialog of choices.

The left side of the window provides you with controls for the various important
properties for the renderer. These controls come in four flavors. The first kind is for

Renderer
©1994 Appl

Editors
e Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

choosing a renderer or an RGBColor (see the Start Color and End Color controls in the
above example). Clicking on these controls brings up a dialog for selecting an
appropriate color for theproperties. In addition you can drag and drop a color of the
appropriate type onto these controls to set the property to that value. The second kind of
control is a popup menu of options. The third is a slider which is used in specifying
translucency. The fourth kind is a number entry field for entering integer values. These
are used in specifying offsets andline sizes. Note that you can undo any changes you
make using these controls in the standard fashion.

The right side of the Renderer Editor provides a sample imageof the renderer so you can
view the changes. There are two buttons at the bottom of the window. The first button
will revert the renderer back to the way it was when you began editing. This is useful
when you’ve made a whole bunch of changes and are unsatisfied with the result. The
second button is the “Redraw” button which will force every actor on the stage that uses
the edited renderer to redraw itself to reflect the changes you have made. Thus you can
click this button whenever you want to see the changes in the context of your project.

RGBColor Editor

RGBColors are specified by their forered, foregreen and foreblue properties. This editor
is unique in that it brings up the standard system dialog for choosing an RGB color to set
these values.

Renderer Editors 4-77
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

ComplexRGBColor Editor

LOTNPIEXEASE 01O EC T TOT,

Fore Color:

*

Back Color:

Pattern:

ECEETT
.\'. o]

Pen fMode:

=z

T Sl
|

Degree of Blend

This editor allows you to editor to generate ComplexRGBColors. ComplexRGBColors
allow you to control two main parameters. The first is the pattern of the color drawn.
You can choose a pen pattern, a foreground color and a background color, and the
renderer will draw the pattern using these colors. The second parameter is the Pen
Mode. Pen Modes affect how the pattern is drawn on the screen. The default is ‘SrcCopy’
which just draws normally. Others, such as ‘Blend’, allow you to create translucent
colors. The slider at the bottom is active for some pen modes to specify an additional
parameter. For example, in the case of ‘Blend’ it specifies the percentage of translucency.

4-78 Renderer Editors
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

Gradient Editor

sradient eaitor

Starburst

S5tart Color: -
End Color: -

Drirection:

| shape’)

[Reset I [Redrawl

This editor allows you to create Gradient renderers. This type of renderer draws a
gradient of color from a start color to an end color in a specified direction. You can
choose an RGBColor to use as a start color and as an end color by clicking on those two
controls or by dropping a color onto the controls. Note that the quality of gradients
depends heavily on the number of colors your system can display.

Renderer Editors 4-79
©1994 Apple Computer, Inc. 5/7/95

4-80

CHAPTER4

ComplexGradient Editor

Project

Builder

Overview

O mPIEXGhEAUENT ECToT:

qradey

Start Color:

Degree of Blend

End Color:

Degree of Blend

[

Pen fMode:

|

Direction:

A e s T
Y gt B 5
S
-."ﬁ-;ljgm:'i{; i

.

* SethT I
Epcr iy N Lo | -.1'!"!':3'
:3::.;'.5:;-."*.'--5‘.'.":* ;

- L1 : =
A

‘.i ‘z"‘r__l-::-éﬂ%
-'.-1-'“-' '1".- o .-e

..i 'ZAT_.- -::-4#'\"-.:%

'.-"_

[Redraw I

ComplexGradients are similare to normal Gradients except that you can specify the Pen

Mode used to draw the gradient. Pen Modes can be used to createa variety of effects, the
most common being translucency. In the above example, note that the ‘Blend’ pen mode
has been selected. The two sliders control the percentage of translucency of the start and
end points. This amount of translucency is interpolated between the start and the end in

the same way the color is.

Renderer Editors

©1994 Apple Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

BevelRenderer Editor

UIRactangleingewel

‘ Top Renderar: - |

Laft Renderer: -| D Right Rendarer: -|

Bottom Renderer: -
| Rezet I |Redrawl

The BevelRenderer takes four renderers and draws them in a rectangular shape where
each renderer corresponds to a side. It is designed to be used in the frame of an actor to
give it beveled three dimensional look. This editor simply allows you to experiment
setting the values for each of the sides. You make click on one of the four controls to
choose a renderer, or you may drop any renderer onto these controls. Note the layout for
this window is slightly different than the other editors in that the sample image is in the
middle.

Renderer Editors 4-81
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

MultiRenderer Editor

I e ERER EOIToT:

DarkerFloorTile

Renderer Pile

Floor Tile
Darker

AMultiRenderer is simply a renderer that sequentially draws a series of renderers into
the same space. In the above example, first the floor tile is rendered into the rounded
rectangle and then it is made darker by the darker renderer. The editor allows you to
control this series of renderers in a pile like fashion. You can drag and drop renderers
into the Renderer Pile to add them. You can drag and drop renderers within the pile to

reorder them. You can select a renderer and press the Delete key to remove a renderer
from the pile.

Note that adding and removing renderers to this pile will not affect the existing
renderers themselves.

4-82 Renderer Editors
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

Hatch Editor

plejiep el

[a child of Hatch)

Foreground: -
Backqround: %

Direction:

Fd

FPen 5ize:

Spacing: | Reset | | Redraw |

Hatches are used to draw a grid of lines on top of another renderer. The background
color specifies the renderer which is first drawn before lines are drawn on top it. The
foreground color specifies the color of the lines. The pen size, which must consist of two
integers, specifies the size of the lines. The spacing, which also must be an integer, is the
distance between the lines. The direction specifies whether to draw only horizontal, only
vertical or both horizontal and vertical lines.

Renderer Editors 4-83
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

ImageRenderer Editor

[a child of ImageRendarer]

Background: -

Render 5tyle:

Offset: o] [Resat I [Redrawl

An ImageRenderer can be used to display a large number of media types, e.g. PICTs,
PPATS, etc. Generally these objects are first created via importation using the Media
Browser. This editor lets you control some of the finer parameters of these renderers after
their media has been set. You can specify the style you want the media to be drawn.
Options are to draw regularly (i.e. draw the media once unstretched), draw stretched to
fit the space alloted, or draw unstretched in a tiled grid. You can specify a background
renderer to draw behind the media. You can also specify an inital offset from the upper
left hand corner to draw the media. Note that the background renderer and the offset
only are used when the media is drawn unstretched.

4-84 Renderer Editors
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

Script Editor

Whenever you choose to add a handler to an object, a Script Editor is presented for
writing and compiling the new handler. The Script Editor is also used to edit the scripts
of existing handlers. The Script Editor is also the place where functions can be edited.
The Script Editor can also be invoked by typing Command-N in a handlers or functions
panel (e.g. the handlers section of the Object Editor), or by double clicking on a handler
or function in a one of these panels.

[[rouzedown of ¥ava {in project hahal] Input Panel

Gloebals ZoomupSound, Blue, Locals me
Withite, Red, aya

Global and Local

on rousedown of meaia Yava) Variable Panels
set my fillcalor to everything in {red, white, blus} e

drag rne with live
play zoormupsound
end rousedawn

Editor

Optional Expression
Watcher

Description

The Script Editor is a context sensitive SK8Script language editor. It automatically adds
some initial and closing syntax and indicates syntax errors while they are being typed.

Edit Menu:

New Property... Adds a property to the object of the handler being edited.

New Handler... Adds another handler to the object of the handler being
edited.

Remove this Handler Deletes this handler from the object.

Print Prints the text of the handler.

Stack Editors Stacks up all Script Editors currently on the stage.

Script Editor 4-85

©1994 Apple Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

Debug Menu

The Script Editor Debug Menu controls several aspects of SK8’s debugging environment.
The first item in Debug menu, “Watching On”, is the master switch for the next three
items in the Debug menu. The last three items in the debug menu cause additional
debugging information to be revealed in windows or sub-panes. See the next section ,
Debugging with the Script Editor, for more details.

Log Calls If Log Calls and Watching On are both checked, a message
will be written in the Message Box each time the handler is
called and each time it returns.

Pop Up When Running Pop Up When Running and Watching On are both checked,
the handler’s Script Editor window will be displayed as the
topmost SK8 window, every time the handler is called

Trace Execution If Trace Execution and Watching On are both checked, each
line of the handler will be highlighted as it is executed..

Expression Watcher Displays or Hides the Expression Watcher component of the
Script Editor. See the next section for more details.

StackWatcher Brings up the Stack Watcher. See the section below on the
Stack Watcher.

Handler Tracer Brings up the Handler Tracer. See the section below on the

Handler Tracer.

Version Menu:

Activate Current Version This takes the existing SK8Script in the editor, compiles it, and
activates it for the object.

Delete Current Version Deletes the current version from the version history.

Delete Earlier Versions Deletes all versions of the current handler from the version
history which are previous to the selected one.

<Date, Time> These menu items represent the different versions of the
current handler which are in the version history. Choosing
one of these items will display the script of this version. Note
that this version will only become active if “Activate Current
Version” is chosen. Note also that the menu places a check
next to the current version.

Debugging with the Script Editor

4-86

SK8 provides an advanced source code level debugging environment to help you isolate
and fix errors in your handler and function scripts. The debugging facilities are available
via SK8 Script Editor windows. This section describes how to use the SK8 debugging
facilities.

Debugging with the Script Editor
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

The basic steps for debugging in SK8 are:

= Set a breakpoint in your handler

= Step through the execution of your handler and handlers it calls
< Examine values referenced in your handler

= Display and examine the call chain (the stack). There are several ways to do this.

Breakpoints

To the left of each script statements is a column with a breakpoint button. Clicking on a
breakpoint button toggles the breakpoint on and off. When a breakpoint is on, SK8 will
halt execution of handler immediately before executing the next statement. An arrow
icon will appear next to the breakpoint button, indicating which statement will be
executed next.

If you double click on a breakpoint box, the condition for a conditional breakpoint can be
entered as a SK8Script expression. Conditional breakpoints are indicated by a dot in the
center of the breakpoint box.

Halt Due to Error

Similarly, if SK8 encounters an error while running your handler, it will halt execution of
your handler, and put a yellow triangular warning marker over the breakpoint mark of
the instruction that caused the error. Note there are a couple of important differences
between halting at a user-defined breakpoint and halting due to an error:

= An error indicator appears next to the statement that failed to execute. On the other
hand, when a handler is halted at a breakpoint, the arrow indicator is next to the
statement that is about to execute.

= You cannot continue execution of a handler that has been halted at an error. The Go
and Step commands will be disabled. The abort command is still available, and you
can still examine the state of the handler using the Expression Watcher.

When handler execution has been halted, two new menus appear at the top of the Script
Editor.

Debugging with the Script Editor 4-87
©1994 Apple Computer, Inc. 5/7/95

4-88

=)

CHAPTER4 Project Builder Overview

SCHpT EQitor

[[mauzedown of Rectangle 2 in Stage]

Globals ZoormupSound, RGECalor ILm:aIs e

on mousedown of me
set my filloolor to any iternin the knownchildren of rgbcalor
drag rne with live
plaw zoormupsaund

and rmousedown

Running Menu

The “Running” menu contains commands specific to controlling the execution of the
handler under debug mode.

60 Menu

The “60” menu shows the chain of handlers that were called to get to the handler now
under examination. To examine one of these handlers, select it from this menu.

Also when handler execution is halted, three new buttons appear at the top of the Script
Editor. These buttons provide a convenient way of executing three debugger commands.
These three commands can also be executed by selecting them from the Running menu,
or typing a command key combination.

Go, command-G

To continue normal execution of the handler:

1) Click on the “Go” button at the upper right of the Script Editor window.
2) Select “Go” from the Script Editor’s Debug menu.

3) Type command-g when the Script Editor is the active SK8 window.

Debugging with the Script Editor
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

Step, command-S

Once a program has halted for a user-defined breakpoint, you can step—statement by
statement— through the rest of the handler. There are three ways to execute the current
statement and step to the next statement. You can:

1) Click on the “Step” button at the upper right of the Script Editor window.
2) Select “Step” from the Script Editor’s Debug menu.

3) Type command-s when the Script Editor is the active SK8 window.

Abort, command-period

To terminate execution of the current handler and all handlers in the calling chain:
1) Click on the “Abort” button at the upper right of the Script Editor window.
2) Select “Abort Event” from the Script Editor’s Debug menu.

3) Type command-period when the Script Editor is the active SK8 window.

The other menu items in the Running Menu are:

Step Into

This command enters the first called handler (or function) it finds in the current
statement. It will display a Script Editor for the called handler and execution will be
halted before its first line.

“Step into” will only work for handler and functions for which you have the SK8 source
code; in other words you cannot step into functions from the SK8 Project or Ul (User
Interface) Project. If there is no such handler in the current statement, “step into” works
just like the normal “Step” command.

Go To End

Execute the handler until the end statement. When SK8 has halted on a handler’s “end”
statement, it has lost the handler’s context so you cannot use the expression watcher for
any meaningful evaluation.

Restart

This debugger command is not implemented in the current version of SK8. When it
works, handler execution will proceed from the first line of the handler.

Expression Watcher

Selecting Expression Watcher from a Script Editors Debug menu reveals an evaluation
area at the bottom of the Script Editor window. The Expression Watcher consists of two
column lists, and a type-in field. In the type-in field you can type, or copy, the name of a
handler variable, or a more complex expression, followed by the enter key; the text you

Debugging with the Script Editor 4-89
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

typed will appear in the left column above and its current value will appear in the
adjacent row on in the right column. Note the handler’s local variable will only be
defined during the execution of the handler.

4-90 Debugging with the Script Editor
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4

Stack Watcher

Project Builder Overview

The Stack Watcher, as the name implies, provides the ability to view and navigate
through the stack. The Stack Watcher remembers every handler call and captures all the
information. This is an excellent tool for observing the layering of handler calls, starting
at the beginning call and filtering down the stack to a specific location in code.

[_.-' dack Watcher

Filter Field

On/Off Button

Description

5how Handler IT: Stack

i
Trug]- [locklewsl af Actor]

Depth Graph: [idle of EditText]

[locked of Actar]

Frequency Of Lipdates:

R R R R R R

Watch Stack

On/Off Button
Filter Field

Depth Graph

Stack Watcher
©1994 Apple Computer, Inc. 5/7/95

The Stack Watcher is activated/deactivated by this button.

Allows you to write a filter for the Stack Watcher. The filter is
a SK8Script selection expression that you apply to all the
handlers in the Stack Watcher. For example, maybe you only
want to look at the handlers in a particular project or when
“mygl obal is red”, etc. The current handler in the Stack is
referred to as “it”. The output is displayed in the Stack panel
on the right. The handler called last is at the top of the Stack
panel.

Allows viewing of a previous part of the stack. This is useful
for showing the handler call sequence for each new handler.
Click on a part of the graph to see the stack at that point. Use
the left and right arrows to navigate backwards and forwards
in time to examine the order of handler execution.

4-91

4-92

CHAPTER4

Frequency of Updates

Stack Watcher
©1994 Apple Computer, Inc. 5/7/95

Project Builder Overview

Controls the update frequency of the stack. The fastest setting
will cause all handler calls to be displayed in the Watcher
exactly as they happen. This will result in some degradation
of SK8'’s performance. Slower settings will cause the Watcher
to update only periodically, allowing the system to perform
better.

CHAPTER4

Handler Tracer

Project Builder Overview

The Handler Tracer window lets you control “watching” the execution of multiple

handlers.

i} Handler Tracer

Handler Pile

Watching 5tate

[rouzedown of binghar Cin ... E Wiratching On

Description

E Log Calls

Fop Up When Bunning
E Trace Execution

Mo &ctive Breakpoints

Handler Pile

Watching State

Handler Tracer
©1994 Apple Computer, Inc. 5/7/95

Allows you to specify the handlers you wish to watch or not
watch. You can drag handlers into the “Handler Pile” from
Object Editor’s and other SK8 windows.

For all the handlers in its “Handler Pile”, Handler Tracer
simultaneously provides the functionality described above for
theScript Editor’s menu items “Log Calls”, “Pop Up When
Running”, and “Trace Execution”. See the Script Editor
description for more detail.

4-93

CHAPTER4

Project Builder Overview

Documentation Window

The documentation window allows you to browse the SK8 object reference as a
hypertextual document online.

Input Field

¥Ho Dcumentation

S5howing Documentation On:

boundsrect of Actor

Documentation:

Documentation
Panel

Description

Description of Property:
The boundsRect property determines the location of an actor's

four corners, and therefore determines the size and
locationof the actor.

Getter Description:

Returnz alist of four integers: the laft, top, right and bottorn
points enclozing the actor’s frarme area. The points lie within the
frame area.

[Mote: While an actor such as an 0%valhas no corners, it still has a
bovndsRect property. Inthe case of Owal actors, the
bovndsRect property determines the largest owval in zize and
shape that can fit within itz coordinates.]

Input Field

4-94 Documentation Window
©1994 Apple Computer, Inc. 5/7/95

Here you can drop an object, function, property, etc. to get
documentation on it. Note that if there is no documentation
on the particular object it will search up the inheritance
hierarchy to find the next highest piece of relevant
documentation. Note you can search for an object by typing
it’'s name. You can search for a property or handler by typing
the form “<property/handler> of <object>". You can search
for a function, constant or variable by typing “the function
beep” or “the constant pi”, etc..

CHAPTER4 Project Builder Overview

Documentation Panel This panel shows documentation on the specified item. The
documentation may contain words or phrases which are
underlined. These are hotlinks which may be clicked upon to
find more information. Note you can use the history menu of
the input field to go back.

Note

The documentation is unmodifiable. You can neither change existing
documentation nor add additional documentation. You can however
select and copy the examples to try them out. O

Documentation Window 4-95
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

Project Builder Menubar

4-96

The Project Builder Menubar allows you to access the various tools and functions of the
Project Builder. It is designed to allow you to both edit and use your project at the same
time. Thus it is replacable (see the first item below).

Most of the menu items are self explanatory. Below a few of them are described in more
detail.

Menubar Replacement

If you replace the project builder menubar at the top of your screen with your own, the
Project Builder menubar will slide out onto the stage in a window which looks like
below.

& pr Dject bunder Ylenubar

| R

Note that in this case, if you have a Project Builder window active, command keys will
go to the Project Builder menubar. If the windows of the user's project are active,
command keys will act normally, (i.e. go to the menubar on the stage).

Hide Project Builder

The Hide Project Builder menu is located under the Project Builder Workspace menu.
The Hide Project Builder option provides the capability of clearing the Project Builder
environment from the Desktop without quitting SK8. When this command is invoked, all
Project Builder’s windows are hidden and disabled except for a small Project Builder
window or icon. Clicking on the icon brings the Project Builder environment back to the
Desktop.

This feature allows you to quickly return to the Project Builder, after doing some other
task, while avoiding the time and overhead of bringing up the Project Builder from
ground zero.

Undo Menu ltem

The Undo menu item is located under the Project Builder's Edit Menu. Undo provides
users the ability to “undo” typing in fields and the setting of properties.

The Project Builder's Edit menu has the standard “Undo” menu item whose text changes
to specify what could be undone and is disabled when not available. There is only one
level of undo. Property settings are undone by resetting them to their old value.

Project Builder Menubar
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

Window Preferences Dialog

This dialog lets you select the window color the interface uses. Click on a color to select
it and press OK.

Window 5tyle Preferences:

3KS

-

Gresn Blus rellow Qrey Fink;

Graphic Intensive Tasks: Using Project Builder

During Graphic intensive tasks, such as importing source artwork (as Picts or fill colors),
graphics integration, and direct manipulation graphic layout, a user is likely to use the
following items together on the stage:

= The Import dialog for importing outside artwork.
= Graphic Source materials.

= Selection handles (instead of Halos) for easy selection and direct manipulation of
graphics.

= Drawing tools for making new graphics.
= Color palettes for adding colors and textures to graphics.
= The Project Overview Window for showing items in the media category.

= The Stage Monitor to allow selection of objects in containment layers.

Code Intensive Tasks: Using Project Builder

During code intensive tasks, such as editing the basic object architecture of a project, a
user is likely to have the following items out on the stage:

Graphic Intensive Tasks: Using Project Builder 4-97
©1994 Apple Computer, Inc. 5/7/95

CHAPTER4 Project Builder Overview

= The Project Builder Application menu—in its detached state, to allow room for a new
application menu bar to be built in place.

» Graphical interface elements of the project being built.
= The Color Palette—for changing colors easily.

= Selection Halos (instead of handles)-to enable the composite edit and use style of
editing, useful for immediately trying out coded interaction behaviors.

= A Script window—for writing new handlers.

» The Message Box—for trying out SK8Script queries.

= The Project Overview Window—showing all objects included in the project.
= The Object Editor—where properties and handlers of objects are edited.

= The Inheritance Editor—which shows the inheritance context of the currently selected
object in the Object Editor.

= The Stage Monitor—for viewing actors and their containment hierarchies.

The user is also likely to use the Import command heavily to import outside work into
the project media collection (viewable in the Project Overviewer).

4-98 Code Intensive Tasks: Using Project Builder
©1994 Apple Computer, Inc. 5/7/95

CHAPTER 5

SK8Script

The purpose of this chapter is to cover all of the significant aspects of the SK8 scripting
language, SK8Script, in sufficient detail to answer almost all questions that arise while
using the language. Each SK8Script construct is explained and detailed working
examples are provided. See Chapter 2 for a more gentle tutorial introduction and the SK8
Language Reference for a more concise, technical description of SK8Script.

Initial Considerations

General Language Design

SK8Script is an object oriented language. As such most SK8Script code is associated with
some particular named data structure or ‘object’. Such code is called a
‘functional-handler’ or when unambiguous simply a handler. Each handler is owned by
exactly one object. New objects are created from existing objects. By default a new object
shares or ‘inherits’ all the handlers owned or inherited by the objects it is created from
(its ‘parents’). Unlike many other object oriented languages SK8Script does not
distinguish between ‘prototypes’ and ‘instances’. Loosely speaking every SK8Script
object could be considered to be an instance of its parents and a prototype for its children.

In addition to functional-handlers, SK8Script has ‘functions’ which are not associated
with a particular object. Functions are more familiar to new SK8 users who have never
worked in an object oriented language before. However, they are rarely used by
experienced SK8Script programmers. Functions and functional-handlers share many
features so the term ‘executables’ is used to refer to both.[*12]

Finally, SK8Script is used to create user defined ‘with-forms’. With-forms are used to
guarantee that specially designated cleanup code always runs. These forms can either be
globally defined or associated with a particular object. In the latter case they are referred
to as ‘with-handlers’. With-forms are discussed in more detail later in this chapter.

Initial Considerations 5-99
©1994 Apple Computer, Inc. 5/7/95

5-100

CHAPTERS SK8Script

Another important part of the design of SK8Script is ‘garbage collection’. Garbage
collection provides an automatic mechanism for destroying objects that are no longer
usable. In general this occurs when an object can no longer be accessed in any way by
the system. This means that any named object will not be garbage collected. In addition,
it means that clean-up of complicated data structures the programmer creates out of
unnamed objects happens cleanly and correctly without the programmer doing any
explicit destruction of the objects.

Syntax Design

The syntax of SK8Script is designed to be English-like. Many commands in SK8Script
read as English sentences and are easily understood by anyone familiar with English.

Example:

Get the first rectangle in the stage
Set the width of the result to 150

However, most English sentences are not valid SK8Script.
Example:

The follow is not a valid SK8Script command

Add the wi dth and height of the first rectangle in the stage

and some SK8Script commands are not correct English.

set text of rectangle 1 of stage to "hello" & space & "world"

Understanding exactly how to craft SK8Script commands is the purpose of the rest of
this chapter.

Case in SK8

Similar to English, SK8Script has common capitalization conventions, but these are not
enforced in any way and the meaning of a command is in general not effected by the
case. The following conventions are recommended for all SK8 code:

= Global variables, global constants and object names have a leading capital.

Examples:
Pi
Act or

= The names of functions, handlers and properties as well as local variables, local
constants, and arguments start with a lower case letter.

Examples:

X
factori al
wi dt h

Initial Considerations
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

contents
updat e
= Words within any name are capitalized.

Examples:

fill Col or
RoundRect

= All other letters are in lowercase.

Example:

set the fill Color of MyWell NamedRectangle to LargeBrickWave

Remember that these are just conventions so the above line has exactly the same effect as

seT thE fil Lcol oR oF mvYwel LnaneDr ectangl E t O | ar gEbri ckweavE

As an example where case does matter the expression:

(ascii of "h") equals (ascii of "H")

has the value Fal se. However, the simpler statement

"h" equals "H
is case insensitive and has the value Tr ue.

For object names, symbols and other identifiers the case pattern of the first occurance is
considered to be ‘correct’ and will be used by SK8Script when values are returned. For
strings the case pattern depends on the original source of the string.

The following examples show the result of each command or expression as returned
when they are entered into the SK8 Message Box. The entered forms are given in
bold-face.

new rectangl e with objectnane "Rectl”
Rect 1
rectl
Rect 1

set x to "hello world"
"hell o worl d"

set y to "Hello World"
"Hello Worl d"

X equals vy

True

X

"hell o worl d"

y
"Hell o Wor|d"

Initial Considerations 5-101
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

Statement Continuation

Unlike English, line breaks are significant to SK8. The character ‘=’ (Option-Return in the
SK8 environment) at the end of a line tells SK8 to ignore that line break. Such lines are
normally indented with a tab character. Tabs and space are significant only as token
separators.

Example:

set the fill Col or
of rectangle 1 of stage to blue

is syntactically incorrect. Whereas

set the fill Color -
of rectangle 1 of stage to blue

is correct SK8Script.

Declarations

5-102

Most lines of SK8Script code are ‘Commands’ which usually have some direct effect on
some variables or objects. Declarations are lines of SK8Script code that provide extra
information either for the reader or the SK8Script compiler.

Comments

Comments provide information for the reader and ignored by the SK8Script compiler.
Comments are indicated in SK8Script by two dashes (- -) and may be placed anywhere
in a script. A comment consists of all characters after the comment marker up to the next
carriage return.

The comment marker is ignored if it occurs within a string or symbol literal.
Examples:

The following are two examples of valid comments:
set x to 1l -- it’s inportant to do this!

on add a, b
-- add: this function adds two nunbers
return a + b

end add

The following statements do not contain a comment because the comment marker is
within a string (double quotes) and a symbol (single quotes), respectively.

set x to "-- sonthing"
set x to '--hello'
Declarations

©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

Identifiers

Identifiers are the names used in SK8Script. They are used as objectnames, variable
names, property names, handler names etc. They consist of any sequence of letters,
digits, and the underscore () character. The first character must not be a digit. In
addition, identifiers cannot conflict with the reserved words in the SK8Script language.

A complete list of SK8Script’s reserved words is given in Appendix <???>.[*1]
These are legal identifiers:

Gar bo

t hi ng2

ho_ho
br ewCof f ee

These are not legal identifiers:

4onTheFl oor -- begins with a nunber

X+y -- contains illegal special character
H there -- contains illegal special character
end -- conflicts with reserved word
Variables

Variables in SK8Script provide a way to assign a value to an identifier. By default
variables are not typed so they many get assigned any value.

Example:

set Xto 1l

1

X

1

set X to "Hello world"
"Hello worl d"

X

"Hel |l o worl d"

Variables do not have to be explicitly declared in SK8Script. However both for
readability and reliability it is recommended that variables be declared in all SK8Script
code. Variables may be declared either ‘local’ or ‘global’. A local variable is only
available to the commands that are part of the handler or function in which they are
declared. Values assigned to local variables to not persist between executions of their
containing body. Global variables are available to any code executed within the project
they are declared in. Values assigned to global variables persist until explicitly changed.
SK8Script assumes that any undeclared variable in a function or handler is a ‘local’
unless it has been declared global prior to the compilation. The parameters to a handler
or function are always considered to be local.

Declaring a variable is done by giving the name of the variable (or a list of variables) on
a line preceeded by either the word ‘I ocal ’ or ‘gl obal . The declaration of a variable
can be anywhere within a block of code as long as it is before the first use and within a

Declarations 5-103
©1994 Apple Computer, Inc. 5/7/95

5-104

CHAPTERS SK8Script

context that contains all uses of the variable. However, SK8 has only one local scope
within a function or handler, so by convention all variable declarations appear
immediately after the header line of a handler or function.

Example:
gl obal count = 0 -- eval uated sonmewhere el se like the MessageBox

on exanple_func al, a2
local 11 = al + a2 + count
gl obal g1
set count to count + 1
if not gl then
set 12 to al * a2
set |1toll +12

end if
set gl to not g1
return |1

end exanpl e_func

In this example the variables g1 and count are globalsand| 1, | 2 (by default), al and
a2 are locals. Note that variables can be initialized when they are declared.

In general global variable should only be initialized outside any function or handler. A
global declaration with an initialization suffix will reset the global variable each time
execution reaches that line. If no initializer is given then the variable is automatically
given the value ‘#Undef i ned#’.

Constants

Globals may also be declared constants by inserting the word ‘const ant ’ after the word
‘gl obal ’ in their declaration. Constants may not be changed after they have been
initialized.

Example:

gl obal constant ShortPi = 3.14

After this command has been executed any attempt to change the value of Short Pi will
result in an error.

Type Declarations

Variable declarations, both local and global, may assign a type to a variable. This allows
the compiler to check for typing errors and to optimize the code that it generates. Type
declarations are optional.

Examples:

local b (an Integer) = 3

This declares the variable B as local, initializes it to the integer 3 and declares its type to
be | nt eger (that is, the value of b must be an object that descends from the object
I nt eger).

Declarations
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

gl obal C (a Rectangle) = ny contai ner

This declares the variable Cas global, initializes its value to the value in ny cont ai ner,
and types this value as a Rect angl e. (See Data Types, later in this chapter, for more
information on typing.)

gl obal SoneNunber (a Nunber)

This declares the variable SomeNunber to always contain a descendant of Nunber . Since
Conpl ex, | nt eger, and Fl oat are descendants of Nunber, SomeNunber may be any
of these.

Version 1.0 Note
Type declarations are not enforced in this version of SK8.

Expressions

An expression is a phrase that can be evaluated into some object. Evaluating an
expression may involve anywhere from a negligible computational overhead to
time-intensive search through databases or external networks.

The SK8 MessageBox can evaluate most expressions, but it is important to remember
that expressions are not the same as commands. In particular, the code bodies of
functions and handlers are made of commands not expressions. In general expressions
appear as part of some larger command.

Literals

The simplest expressions are object literals which directly represent objects. A literal
always evaluates to itself.

Examples:
101
"Hel | 0"

t he character "g

Booleans

Tr ue and Fal se are global constants whose values denote truth and falsity, respectively,
in the SK8Script language. They are vital concepts in the control of execution.

Any expression that evaluates to Fal se is, by definition, false.

Any expression that evaluates to something other than Fal se implies Tr ue and thus is
true.

Examples:
The following expressions are considered to be logically true:

not Fal se = True
19

Expressions 5-105
©1994 Apple Computer, Inc. 5/7/95

5-106

CHAPTERS SK8Script

"Hurman"

the third character in "Hello"
0 -- zero is NOT false in SK8
not (3 = 2)

The following expressions evaluate to false:

not True

True and Fal se

19 and Fal se

not 3 =2 -- this is equivalent to (not 3) = 2
the eighth character in "Hello"

Numbers

SK8Script supports a wide variety of numeric classes arranged in a hierarchy given in
Figure 5.1. SK8 tries to make this hierarchy as transparent as possible. From the
standpoint of entering numeric literals, the user is typically only concerned with the
distinction between integers and floating point values.

Number
Real \ Complex
Integer Float

/ VAR

Smallinteger Biginteger SmallFloat BigFloat
Figure 5.1. SK8’s numeric hierarchy.

Integers

An integer literal consists of an optional unary sign (either “+” or “-”"), a combination of
the digits 0 through 9 and an optional decimal point. If no sign is given, the number is
considered to be positive. If the integer value is very large (= 228), SK8 will automatically
create a Bi gl nt eger which uses a ‘bignum’ representation to represent arbitrarily large
integer values. Note that this is different from other common languages which either
silently overflow or automatically switch to a floating point representation when integer
values become too large for the standard representation.

Examples:

0

1

-59
+12345678901234567890.

Expressions
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

Hexadecimal Integers

SK8Script will read integers in hexadecimal when they are preceded by 0x (the digit zero
followed by the letter x). Hexadecimal numbers may be given a sign, but no trailing
decimal point is permitted.

Example:

Ox1F -- evaluates to 31
-OxFF -- evaluates to -255

Floats

A floating point literal begins with the same components as an integer, but it must be
followed either by a combination of digits after a decimal point, or an exponent. An
exponent consists of the letter ‘e’ followed by an optional unary sign and a combination
of digits. See the on-line documentation for details on the limits of the different
representations.

Obijects of the class Snmal | FI oat can be created using General Object Literals. However,
these objects should be used with caution since any overflow causes an
ArithmeticOverfl owError to be signalled.

Examples:

0.0

-3.14159

1lel0

+1. 234e-56

the Smal |l Float 1.5

Complex

Obijects of the class Conpl ex do not have a literal form but can be created with the
function ‘conpl ex’. The components of a complex value can be accessed with the
functions ‘r eal Part’and ‘i magPart .

Examples:
The following expressions all have the value Tr ue.
conpl ex(0, 1) equal s squareRoot of -1

3 equal s real Part of (conplex(1,4) + conmplex(2,6))
0 equal s imagpart of cos of conplex(0, 1)

Symbols

A symbol is an unchangable sequence of characters. They are used to provide
informative symbolic values where appropriate. For users unfamiliar with the use of
symbols, they can be thought of as fixed strings. In general they are significantly more
efficient than strings. Symbols are indicated by single quotes. Any characters may appear

Expressions 5-107
©1994 Apple Computer, Inc. 5/7/95

5-108

CHAPTERS SK8Script

inside the single quotes except single quotes themselves. In addition the empty symbol,
"', is not permitted.

Examples:

‘center' -- the synbol used to center the text of an Actor
"renderUnstretched" -- a synbol used in |InageRenderers
"Hello world'" -- note enbedded spaces

Collections

Collections provide a way to combine simpler objects into more complex objects, e.g.
strings, lists or arrays. More specifically collections are descendants of the Col | ecti on
class. Many of the special properties of collection come from their use of the collection
protocol. It is very rare that a SK8 programmer really needs to understand the details of
the collection protocol. However the details are available in the Object Reference
Manual. Conceptually, the collection protocol allows a data type to be used in special
ways in ‘selection expressions’ and special collection-related functions all of which are
described later in the chapter.

Strings

A string is a collection of characters. A string literal is a child of St ri ng. It can be
created by enclosing the appropriate characters with double quotes. The double quote
character itself is represented by a backslash (\) preceeding the double quote. The
backslash character is represented by two backslashes. See <???> for a discussion of
standard string functions.[*2]

Examples:
"Hello world!"

"\"The tine has cone,\" the Walrus sai d"
"Here's a backslash \\"

Lists

Alist is a collection of objects. All lists are children of the Li st object. Lists can be
created by enclosing a comma separated set of expression with braces, {} .

Examples:

{1, 2, 3}
{1+4,{"Hell 0", "world'}}
{} -- The enpty list

Arrays

An array is another type of collection of objects. Arrays may be created using ‘general
object literals’ (see below). Lists can be converted into arrays using this method. If the list

Expressions
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

is a list of lists of the same size then a multi-dimensional array is created. The object
‘vect or "is achild of ‘Ar r ay’ that is constrained to be one dimensional.

Examples:

the Array {1,2,3} -- A one dinensional array of nunbers

the Vector {4,5,6,7} -- Another one dinensional array of numnbers
the Array {{1,2},{3,4}} -- A two dinensional array of nunbers
the Vector {{1,2},{3,4}} -- A one dinmensional array of lists

the Array {{1,2},{3,4,5}} -- A one dinensional array of lists
the Array {{1,2},3,rectangle} -- A nixed one dinensional array

In addition to general object literals, the newhandler is commonly used to create arrays.
See the new Handler section below. To create an array with the new handler, it is
necessary to indicate its size. A one dimensional vector can be created by giving the
array al engt h. A multi-dimensional vector can be created by giving a set of

di mensi ons. Arrays can contain any type of objects and are initialized so that all entries
are Fal se. unlessan ‘i t emi is given.

Examples:
new array with length 10 -- A vector of 10 el enments
new array with dinmensions {2,3,4} -- A 3 dinensional array

-- with 24 el enents.
new array with dinmensions {2,3} with itemrectangle

Calls to Executables

Calls to executables, that is function or functional-handlers, can be used as either
expressions or commands. If an executable does not explicitly return a value in its
definition, then its value is always Fal se.

Examples:

on exanpl e_func
beep
end exanpl e_func

on exanpl e_func2
if not exanple func() then
exanpl e_func()
end if
return 4
end exanpl e_func?2

After creating these functions entering exanpl e_f unc2() into the Message Box would
cause the system to beep twice and return the value 4. See the Handlers and Functions
section for details on the possible ways of declaring and invoking them.

Expressions 5-109
©1994 Apple Computer, Inc. 5/7/95

5-110

CHAPTERS SK8Script

#Undefined#

‘#Undef i ned#’ is a special reserved word that corresponds directly to the special object
#Undef i ned#. This object is meant to be used as a value for variables or properties to
indicate that they don't currently hold a meaningful value. #Undef i ned# will cause a
"#Undefined# is not of the expected type ... "errorforalmostany
operation besides writing itself.

Operators

Operators are used to construct more complex expressions from simpler ones. Operator
syntax follows standard mathematical notation: unary operators are given as a prefix to
their sub-expression and binary operators appear infix, that is between their two
sub-expressions.

Arithmetic Operators

Any expression with a numeric value may be used with an arithmetic operator. The
unary arithmetic operators are + which is just the numeric identity function and - whose
value is the negation of the argument’s value. The binary arithmetic operators are:

n + addition

.- subtraction

. ¥ multiplication

s/ division

w div integer divide (division rounded towards zero)

= nod modulo (sign is the same as sign of the second argument).

Integer divide and modulo are not restricted to positive integer classes.

Examples:

1+3
a*b/-c
(x div y)*y + x nod y-- Should al ways equal x

Logical Operators

Any expression may be used with any of the logical operators. As stated previously any
value other than Fal se is considered to be true.

The only logical unary operators is not which returns Tr ue if its argument is Fal se.
Otherwise it returns Fal se.

Examples:

The following expressions return Tr ue.
not Fal se

not (not True)

The logical binary operators are and and or . Both of these operators are
‘short-circuiting’. This means that they may only evaluate one their operands. In the case

Expressions
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

of and if the first operand has the value Fal se, then the value of the entire expression is
Fal se and the second operand is not evaluated. Otherwise, the second operand is also
evaluated and its value is the value of the entire expression. For the or operator, only
when the first operand evaluates to Fal se is the second operand evaluated. If the first
operand evaluates to something other than Fal se, then the value for the entire
expression is the value of the first operand. Otherwise the value of the entire expression
is the value of the second operand.

Examples:

The following expressions all evaluate to Tr ue:

True and True
True or True
True or Fal se
Fal se or True

The following expression all evaluate to Fal se:

Fal se and True
True and Fal se
Fal se and Fal se
Fal se or Fal se

The following examples demonstrate the short-circuiting feature:
beep() or beep() or 3 or beep() -- beeps twice and returns 3
3 and beep() -- beeps once and returns Fal se

beep() and 3 -- beeps once and returns Fal se
(Fal se = beep()) and 3 -- beeps once and returns 3

Collection Concatenation Operator

The operator ‘&’ is a binary operator that takes two collections and returns a collection
that contains the concatenation of the contents of its operands. The type of the result of
the concatenation operator depends on the types of its operands. The type of the result is
determined using the following rules in the given order:

» If‘is a text’istrueofany argthentheresultisa‘String’

= elseif‘is a vector ’istrue of any arg then the result is a vector
» else the result is a list

Examples:

The following expressions all evaluate to Tr ue:

"Hello" & " " & "world" = "Hello world"
"Hell 0" & the vector {1,2} = "Hellothe Vector {1,2}"
{1,2,3} & the vector {4,5} = the vector {1,2,3,4,5}
the array {{1,2},{3,4}} &{1,2} ={1,2,3,4,1,2}
the array {{1,2},{3,4}} & the vector {5,6} = -

the vector {1,2,3,4,5,6}
the array {{1,2},{3,4}} & the array {{5,6},{7,8}} = =

Expressions 5-111
©1994 Apple Computer, Inc. 5/7/95

5-112

CHAPTERS SK8Script

{1,2,3,4,5,6,7, 8}

Comparator Operators

Comparators always return either Tr ue or Fal se. The relationships they test include
object identity and type, and magnitudes between numbers. Unlike the operators
discussed so far, comparators are often short lists of words rather than just single
characters or words. To express all possible syntaxes the following conventions are used.
Bol df ace indicates words that should appear exactly as they are. / t al i ¢s are for
components that get substituted for something meaningful from the surrounding context
like a variable or object name. Components in square braces, [] , are optional. Sets of
components in parentheses, () , separated by vertical bars, | , are syntactically
interchangable though they may change the meaning.

Object Identity

Two objects are identical if the ‘i s t he sanme obj ect as’ comparator returns Tr ue.
The word ‘i s’ may be replaced by ‘i s not’, ‘i snt ’or ‘i sn' t’ to test if the objects are
different. There are two forms for this comparator. In the first form the word ‘t he’ is
optional:

object (is|is not|isnt]isn't) [the] same [object] as object
[*4]

In the second form the word ‘t he’ is not optional
object (is|is not|isnt|]isn't) the object object
Examples:

The following expressions all have the value Tr ue:

4 is the sane object as 3+1

4 isnt the same object as 4.0 -- Integers aren’t floats

Rectangl e isnt the sane as new rectangle [*4]

"hell 0" isnt the object "hello" -- Two objects are created

"hello" is the object '"Hello' -- These really are exactly the sane
Equivalence

All objects can be tested for equivalence to other objects. The precise meaning of
equivalence depends on the types of the objects. For numeric classes simple numeric
equivalence is used. For characters and symbols a case insensitive comparison is done.
For collection objects (e.g. strings, arrays and lists), the members are recursively checked
for equivalence. If they are all equivalent, then the collections are considered equivalent.
For other objects the comparison is object identity. Many syntaxes are accepted for
equivalence testing:

thing [(is|is not]isn't|isnt)] (=|equal) [to] thing
thing [is] #[to] thing

t hi ng equal s thing

t hi ng (does not| doesn't|doesnt) equal thing

Expressions
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

Note that ‘t hi ng i s thi ng’is nota valid equivalence comparator.
Examples:

The following expressions all have the value Tr ue:

4 = 3+1

"Hello" is equal to "hello"

"jello" # "hello"

{1,{1,"hell 0"}, 2,3} equals {1,{1,"Hello"}, 2,3}
{1, 2} doesn’t equal {2,1}

Magnitude Comparators

The magnitude comparators apply to numeric classes, characters, collections of these
classes and any other objects on which the handlers ‘gr eat er Than’ and ‘equal To’
have been defined, e.g. Dat eTi me. Numeric comparisons are as expected. For characters
lowercase alphabetic characters are converted to uppercase and then the ASCII values
are compared. For collections the earlier elements are considered more significant.

thing [is] (>|greater than)thing

thing [is] (<|!ess than)thing

thing [is] (=|>=|greater than or equal [to]) thing
thing [is] (<|<=|less than or equal [to])thing

Examples:

The following expressions evaluate to Tr ue.

(9 +2) > 10
"Hel | 0" < "Jello"
{3,2,1} = {3,1,2}
"h" < "H'

(ascii("h")) is greater than (ascii("H"))

Type Comparator

By default the type comparator tests if Ais a descendant of B. See the section on Virtual
and Enumerated Types for objects with more complex type relations. The syntax of the
type comparator is:

object (is|is not]isn't|isnt) (alan) object
Examples:

The following expressions return Tr ue.

19 is a Number

"M ke" isnt an Integer

Rectangl e is a Rectangle
Nunber is an Object

Expressions 5-113
©1994 Apple Computer, Inc. 5/7/95

5-114

CHAPTERS SK8Script

Collection Comparators

There are a set of comparators that only work with collections. Examples of collections
include lists, arrays, and strings. The comparators test for membership within a
collection. All of them take a collection as one operand and either an object that is a valid
member of the collection or another collection of such objects as the other operand. The
following syntaxes can be used:

collection [(does not|doesn't|doesnt)] starts with object
col l ection [(does not|doesn't|doesnt)] ends with object
coll ection [(does not|doesn't|doesnt)] containsobject
object (is|is not|isn't|isnt) contained by collection

If the obj ect operand is itself a collection, then the col | ect i on argument is searched
for exactly that subsequence.

Examples:

The following expressions return Tr ue.

"Morni ng Mani acs" starts with the character "M
"Morni ng Mani acs” starts with "Mrn"

"Hell o world" ends with "|d"

{1,2,{3,4}} contains 2

{1,2,{3,4}} contains {2}

{1,2,{3,4}} contains {1, 2}

{1,2,{3,4}} doesn't contain 3

{1,2,{3,4}} contains {3, 4}

5 is contained by {1, 4, 5, 10}

The following expressions return Fal se.

{1, 2} starts with "1"
{1,2,{3,4}} contains {2, 1}
"hell 0" contains "X'

Selection Expressions

Selection expressions provide a powerful, consistent way to gather together sets of
objects within the SK8 environment. For example,

every rectangle in the stage

Is a valid SK8 expression that returns a list of every rectangle on the SK8 stage.

The components of a selection expression include asource, a filter, aselector, and a
preposition.

The source is a collection which is the computational starting point of the selection
expression. The source must be an expression that evaluates to an object inheriting from
Col | ect i on. Often the source is itself a selection expression.

Expressions
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

A filter limits the search within the source to objects that are of a specific type or objects
that pass an arbitrary test. The first kind of filter is called a type filter, while the latter is
called a test filter.

The selector, as its name indicates, is used to select a particular item or subset of the
filtered source.

The preposition guides how a selection expression positions the reference within the items
in the source.

Each of these elements and the possible syntactic variations for selection expressions are
described in detail in the following sections.

The result of a selection expression is normally a member of the source collection or a list
of members. However, the ‘range over ’ operator can be used to return a collection of
the same type as the source. In addition, ‘embedded selection expressions’ may be used
to return the value of an arbitrary expression on members of the source collection.

Examples:

The following examples are intended to give the reader a feel for how selection
expressions are generally used.

Oval 3 in x

In the above example, the source collection is X, so the collection stored in the variable x
is the source. The filter is the type filter ‘Oval ’, so the search is limited to objects in x that
are descendants of the Oval object. The selector is the index 3; that is, it selects the third
object returned by the search. Finally, the preposition ‘i n’ searches the entire contents of
the source. In summary, this selection expression represents the third object of type Oval
found in the collection in the variable x.

character 3 through 4 in "I am okay!"

In this case the source is the string " | am okay! ". The preposition isi n. Char act er is
the type filterand " 3 t hr ough 4" is an index range selector. This selection expression
returns the list{"a", "ni'}.

the range over character 3 thru 4 in "l am okay!"

Is very similar to the previous example, except that the resulting collection is of the same
type as the source. In this case the result is the string " ant'.

every char before the mddle word in =
the text of Rectangle 1 in stage

This is a compound selection expression. Component selection expressions include
“Rectangle 1 in stage” and“the mddle word in the text of
Rectangle 1 in stage”.Thesubexpression“the text of Rectangle 1 in
st age” is a property access expression. The property being accessed ist ext . Note that
the collection“t he text of Rectangle 1 in stage” isused bothtofind“t he
nm ddl e word” and “every char before the m ddl e word”. The word

“bef or e” is a preposition which takes an additional selector and restricts the search to
those items in the source that occur before the selected item. Finally, the word ‘every’ is
a selector that simply returns a list of all the members of the source that match the filter.

Expressions 5-115
©1994 Apple Computer, Inc. 5/7/95

5-116

CHAPTERS SK8Script

Thus, as expected, this expression returns the list of characters from the selected
rectangle’s text property that occur before the middle word in that text.

The final example shows another compound selection expression used to set the
fill Col or of a certain subset of rectangles (blue above 250) in a specified top level
actor (mainWindow) to random colors. This is an example of a test filter.

set the fill Color of every rectangle whose fillColor = blue and -
whose top < 250 in nmainWndow to any itemin the =
knownChi | dren of RGBCol or

Filters

In general, filters are used to reduce the set of objects that can be returned based on
properties of those objects. Type filters are used to limit the scope of a search to a specific
type of object. Test filters are tests that use arbitrary user-defined criteria to filter the
searched obijects.

Type Filters

Type filters limit the scope of selection expression elements to things that are “of the
specified type” as determined by the ...i s a... type-checking operator. A type filter must
always be given. Type filters may be the name of a particular object or a variable
containing an object. In addition the words ‘i t eni and ‘t hi ng’ are considered
equivalent to the object ‘obj ect ’ and thus may be used as filters that have no effect.
Note that arbitrary expressions are not permitted as type filters.

Examples:
every itemin stage -- The contents of stage are returned
every rectangle in the stage

nunber 2 in {35,20,10} -- Returns 20
word 1 in "Herr Buddenbrook"” -- Returns "Herr"

Test Filters

Test filters are tests that use various criteria to filter the searched objects, including
arbitrary tests defined by users. The possible syntaxes for test filters are

wher e testExpression

whose continuedTestExpression
t hat continuedTestExpression
named nameExpression

These test filter forms allow various types of test expression to be specified. The test filter
limits the scope of a selection expression element by only permitting members for which
the test expression evaluates to a non-false value.

Generally, the test expression will refer to properties of the current target as the search is
performed. Expressions that don’t refer to the current target are allowed but are rarely
correct.

Example:

Expressions
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

The following is an example of the rare case where the test expression does not refer to
the current target.

the 1st itemwhere (1 equals random (2)) in {1,2,3,4,5,6,7}
-- Random sel ection favoring the beginning of the collection

The reserved word ‘wher e’ is the most general form of test filter and is followed by a
complete expression that is evaluated. Within the expression following the ‘wher e’, the
variable ‘i t " may be used to refer to the object in question. In addition, the word ‘i t s’ is
supported for extracting values for particular properties. E.g. the fragment ‘where its
top is greater than 100’ isequivalentto ‘where the top of it is

greater than 100’

Most test filters begin with the reserved word ‘whose’ which is equivalent to ‘wher e
its’. Thus ‘whose top is greater than 100’ isanother equivalent expression for
the example above.

Example:

every rectangl e whose fillcolor is blue in the stage

The reserved word ‘t hat ’ is equivalent to ‘wher e i t’. This form is useful for applying
a functional test or some direct comparison operator.

Example:

every nunber that equals 4 in {1,4,3,4,2,3,4}
Finally the reserved word ‘named’ is equivalent to ‘whose nane equal s’.

Example:

every itemnaned "Rectangle" in {Rectangle, Oval, Rectangl e}

Test filters may be combined using the operators ‘and’ and ‘or ’. Within each test filter
the reserved words may be used with the expected meanings. If the standard precedence
of ‘and’ before ‘or ’ is not desired, parentheses and the reserved word ‘wher e’ must be
used.

Example:
every rectangl e whose top < 100 or whose bottom > 360 in the stage

every rectangl e whose top < 100 or whose bottom > 360 and whose -
fillcolor equals blue in the stage

-- Picks out any rectangle whose top is < 100 along with any -

-- blue rectangl es whose bottomis > 360

every rectangle where (its top < 100 or its bottom > 360) and -
whose fillcolor equals blue in the stage

-- Picks out only blue rectangl es whose top is < 100 or whose =

-- bottomis > 360

When a selection expression is evaluated, the test filter is always applied after the type
filter. This means the expression in the test filter may assume the current target (i.e.,i t)
meets the type constraint specified in the type filter.

Expressions 5-117
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

Examples:

every nunber whose squareRoot < 5 in {1, Bl ue, 16, 24, Rect angl e, 25}

Selectors

The selector of a selection expression specify which element or elements that successfully
pass any filters are returned as the result of the selection expression. Selectors can be
either singular or plural. Singular selectors return a member of the source. Plural selectors
return collections of members of the source.

Examples:

The next two examples are both singular. In the first case the selector is the index ‘1’. In
the second case it is the reserved word ‘m ddl e’.

get Rectangle 1 in the Stage

get the mddle word in "The Oigins of English Wrds"

The next two examples are plural. In the first case the selector is the reserved word
‘every’. The second example selects a range of elements using indices and the reserved
word ‘t hr ough’.

get every Rectangle in the Stage
get item2 through 4 in {1,2,3,4,5, 6}

Singular Selection Expression Elements

The following singular selectors are defined in SK8. In each case the selector is
underlined. The relative position of the selector and the type filter depends on the
natural position in an English phrase. Regardless of the position of the selector the type
and test filters are always applied to the source collection first, yielding a sub-collection
of it; then the given selector is used to choose an item from that sub-collection. Not all
singular selection expressions can be used with test filters. Those that can will explicitly
include them in the given syntax expressions. Test filters are described above in the
Filters sub-section.

type index
In first form, an arbitrary index is used as the selector. If the index is beyond the bounds
of the sub-collection, the value of the selection expression element is Fal se.

The form of the index in this form depends on the type of the collection. For linear
collections, Li st's, St ri ngs or Arr ays, only numeric indices are expected. For
multi-dimensional Ar r ays a list of numbers, one for each dimension, may be used.
Single numeric indices are also supported for multi-dimensional arrays. In this case the
array is considered to be ‘flattened’ so any element may be accessed. E.g. ‘i t em 2 of
Sonme3DArray’isthesameas‘item {1, 1,2} of Some3DArray’. Finally, Tabl es
may be indexed by arbitrary SK8 objects. See the Collection subsection for more details
on tables.

Note that the simple index form cannot be followed by a test filter.

Examples:

5-118 Expressions
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

The following expressions may confuse the message box if they are entered as they are.
However, they all work correctly if they are transformed into commands by prepending
the word ‘get ".

rectangle 1 in the stage
item3 in "Hello world"
item{i, j} in Some2DArray
item'foo" in SonmeTabl e

[the] ordinallndex type [testFilter]

In the above form, the index must be given in ordinal form: it may be one of first twelve
ordinals spelled out (i.e. fi r st throughtwel ft h),front (asynonymforfirst) ora
number followed immediately by one of the four ordinal endings: st, nd, rd ort h.[*3]

Example:

the 2nd word of "say goodni ght™
the (i)th word character of "sone string"

[t he] type testFilter
returns the first element that matches the test filter. In this case a test filter is required.

Example:
the rectangl e whose top > 100 in the stage

[the] (beginning|front)
are contractions of ‘fi r st i t em. Most commonly used as part of ranges for plural
selection expressions describe below.

Example:
t he begi nning of {1, 2,3, 4}

[the] (Last]|back) type [testFilter]
returns the last element.

Example:
the I ast nunber that is <4 in {1,2,3,4}

[the] (end| back)
are contractions of ‘| ast it emi. Most commonly used as part of ranges for plural
selection expressions described below.

Example:
the end of {1, 2,3, 4}

[the] middle type [testFilter]
returns the middle element, that is, the ((n + 1) div 2)thitem isreturned.

Example:

Expressions 5-119
©1994 Apple Computer, Inc. 5/7/95

5-120

CHAPTERS SK8Script

the mddle word in "I came, | saw, | conquered”

any type [testFilter]
returns a randomly chosen member of the filtered source.

Example:
any card in the deck

anyt hi ng [testFilter]
is a contraction of ‘any t hi ng’.

Example:

anyt hi ng whose fillColor is blue in stage

any of
is a contraction of ‘any thing in’.

Example:

any of the standardCol ors

Plural Selection Expression Elements

Plural selection expressions always return lists containing zero or more members of the
source. If no elements match the filter criterion then an empty list will be returned.

The most general plural selection expressions are

every type [testFilter]
everyt hi ng [festFilter]

all of

These forms evaluate to all of the items of the source collection that satisfy the given type
and test filters. The reserved word ‘ever yt hi ng’ is a contraction of ‘every t hi ng’.
The reserved word ‘al | of ’is a contraction of ‘every itemin’.

Examples:
every nunmber in {1,2,rectangle, {3,4}} -- returns {1, 2}
everyt hing whose top > 100 in stage

all of new array with dinmensions {2, 2}
-- returns {Fal se, False, False, False}

Plural selection expressions can also return a subset of the filtered source.

type startlndex (through | thru) endlndex [testFilter]

The above form selects based on index. See the discussion of indexed singular selection
expressions above for the valid set of indices.

Examples:

Expressions
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

item2 thru 3 of {1,2,3,4,5} -- returns {2, 3}

item{1,2} thru {2,2} of new array with di nensions {2, 2}

-- returns {Fal se, Fal se, Fal se}

item'foo' through 'bar' of SonmeTable

Another techinque for selecting a subsequence combines two singular selectors and
returns the elements between them.

singularDeterminer (through | thru) singularDeterminer type [testFilter]

See the section on singular selection expressions for a complete explanation of singular
determiners.

Example:

the mddle thru the last itemof {1,2,3,4,5}
-- Returns {3,4,5}

every type [testFilter] from startPathExpr t o endPathExpr
everyt hi ng [testFilter] from startPathExpr t o endPathExpr

The last two forms are known as the general range forms. Two arbitrary selection
expressions are used to determine the range. First the range is computed using the two
selection expressions, startPathExpr and endPathExpr; then the type and test filters are
applied to the resulting range of items.

Examples:

everything fromrectangle 1 to nunber 4 of {3,rectangle,4,5,6,7}
every nunber fromrectangle 1 to nunber 4 of {3,rectangle,4,5,6,7}

Prepositions

Prepositions in selection expressions provide a way to modify how the filters and the
selector view the source.

(in|of)

These are the identity prepositions. They simply pass the source collection directly to the
filters unmodified. Most of the examples above use this preposition.

(after| behind|in back of) selectionPhrase (in]|of)

These prepositions reduce the source by eliminating members up to and including the
one specified by the selection phrase. A selection phrase consists of a selector, an
additional type filter and an optional test filter.

Example:

item1l after the mddle itemof {1,2,3,4,5} -- returns 4

item1l through 3 after the first itemthat is > 2 in {1,2,3,4,5, 6}
-- returns {4,5, 6}

Expressions 5-121
©1994 Apple Computer, Inc. 5/7/95

5-122

CHAPTERS SK8Script

(before|lin front of) selectionPhrase (in|of)

Finally, this preposition eliminates the selected member and any members following. In
addition, it causes indexed searches to be done from the selected member towards the
beginning of the collection rather than the default of always starting from the beginning.

Examples:
item1l before the middle itemof {1,2,3,4,5} -- returns 2

item1 thru 3 before the first itemthat is >4 in {1,2,3,4,5, 6}
-- returns {2, 3,4}

Embedded Selection Expressions

In addition to using selection expressions to derive single specific elements or sets of
elements from the source, selection expressions can be applied to more complex
expressions. In particular, expressions can appear in place of the selection phrase
(everything before the preposition) of a selection expression. Within such an expression
singular selection phrases may appear. When the expression is evaluated the selection
phrases are evaluated with respect to the source appearing after the expressions.

Example:
{iteml,item5} in {1,2,3,4,5,6} -- returns {1,5}

{any item any itenm} in x -- returns a randonly sel ected pair
(the 1st word & space & the last word) of line 9 in x

Plural selection expressions can also be used in a special way as part of an expression.
When a plural selection expression appears as a subexpression the entire expression is
evaluated repeatedly once for each member of the plural selection expression.

Example:

t he squareRoot of every itemin {1,4,9,16} -- returns {1, 2,3, 4}

This can occasionally lead to unexpected behavior. For example, the phrase

the Iength of every itemthat is > 2 in {1,2,3,4,5}

might seem to be a valid SK8 expressions returning the value 3. However, ‘every
itemthat is > 2 in {1, 2,3, 4,5} isaplural selection expression so SK8 tries to
apply the function | engt h to each member of the result and fails. To avoid this problem,
a plural selection expression must be converted into a list. The easiest method is to
enclose it in parentheses and use a General Object Literal to coerce the result into a list.
Note that parentheses by themselves are insufficient.

Example:

the length of the list (every itemthat is > 2 in {1,2,3,4,5})

Finally, if more than one plural selection expression appears within a given expression,
then the results are all stepped through simultaneously until one of them terminates.

Example:

Expressions
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

all of {1,2,3} + all of {2,4,6,8} -- returns {3,6,9}

Operator Precedence

As with most programming languages, the interpretation of an expression containing
operators depends on the priority or ‘precedence’ of the operators. In general, SK8
follows the standard conventions for precedence.

Example:

4+8*3 equal s 28
(4+8)*3 equal s 36

The order of precedence from highest to lowest between the SK8 operators is:

0
+ (unary), - (unary)
N
nod
* |, div
+, -
and
or
&
as a(n) ... (coercion operator. See Data Types section.)

Operators on the same line in the above table are considered to have the same
precedence.

Parentheses

In most expressions, sub-expressions enclosed in parentheses are evaluated first. Any
expression can be enclosed in parentheses. The resulting expression may be combined
with the standard operators. Because of the behavior of embedded selection expressions
described in the previous section, parentheses can behave unexpectly within selection
expressions. In such cases the expression should be either simplified or broken across
multiple lines storing the intermediate results in variables.

Functions and Handler Expressions

Function and handler expressions have precedence below all operators.
Examples:

The following expression is valid SK8 script

| ength of 1000 as a string
However,
length of {1,2,3} + 4

is an error since adding a list to a number is not allowed. The correct way to get the
intended value is

Expressions 5-123
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

(length of {1,2,3}) + 4
Finally, note that

length({1,2,3}) + 4

is also invalid.

Selection Expression Precedence

Expressions within selection expressions takes precedence over that of binary operators.
Examples:

Assume that the variable x is set to 2. The following is illegal:

itemx + 1 of {2,4,6,8}

SK8Script interprets this line as:

(itemx) + 1 of pto 10

which is contains the illegal selection expression ‘1 of p to 10’. Parentheses should
be used to clarify the meaning:

item(x + 1) of {2,4,6,8} -- returns 6
(itemx + 1) of {2,4,6,8} -- returns 5

Get Command

get expression

This command is a shorthand for:

set result to expression

That is, the variable r esul t is set to expression. The get command is the simplest way to
transform an expression into a command. It also is the motivation for calling the
property value accessing functions “getters”. However, in actual practice get is rarely
used.

Exanpl e:

The following statement sets r esul t to the value of the property nane in the object
John.

get John's nane

Assignment

The value at any place or location where objects can be stored (e.g., variables, collections,
and properties) is changed using the set command.

5-124 Get Command
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

set location t O expression

Location can be a variable, the name of an executable, a selection expression, or a list
destructurer. Each of these are described in the following subsections.

Assignment to Variables

set wvariableName t 0 expression

The value ofexpression is stored in the variable variableName..

Examples:
set x to "Good" -- x now has the value "CGood"
set x to x & " morning!" -- x new has the value "Good norning!"

Assignment Using Executables

set setterNamet 0 expression

This form is used for changing the value of properties and for calling any user defined
‘setters’. Setters are specially defined executables whose conceptual purpose is to change
some value. It is possible for setters to use additional arguments as described in the
Handlers and Functions section below. The setter name can be either a function name or
a handler name with the name of the object to be effected.

Examples:
set fill Color of SoneRect to Blue -- a property (also a setter)
set width of SomeRect to 100 -- a setter

Assignment Using Selection Expressions

set selectionExpression t 0 expression

Any valid selection expression may be given. The result is that the item (or items) that
would normally be returned as the result is modified in the source collection to have the
value of the expression.

Example:

The following statements illustrate the use of set with some simple selection
expressions. In each case assume that the variable ‘x’ has been set to the value
{1, 2, 3, 4, 5}. The resulting value of x is given as a comment.

set item3 of x to 6 -- {1,2,6,4,5}

set iteml1l to 3 of x to 7 -- {7,7,7,4,5}

set every nunber that is >2 inxto 0 -- {1,2,0,0,0}
set item1l of x toitem3 of x -- {3,2,3,4,5}

Assignment 5-125
©1994 Apple Computer, Inc. 5/7/95

5-126

CHAPTERS SK8Script

Assignment Between Selection Expressions

In the last example above a singular selection expression is assigned to another singular
selection expression. In this case the semantics are obvious. However when either or
both are plural the semantics become somewhat more complex. The behavior of set for
each case is described below.

Plural location and Singular value

When only the location is plural, the value is recomputed for each iteration of the set
operation over the given collection of places.

Examples:

In the following example, each oval in St age is assigned a potentially different color.
Theclause“any itemin the knownChildren of RGBCol or” is recomputed
each timeafil |l Col or isassigned to one of the ovals in St age.

set the fill Color of every oval in the stage to -
any itemin the knownChil dren of RGBCol or

Singular location and Plural value

The whole collection represented by the plural value is stored into the location and no
iteration occurs.

Example:

If *x” starts with the value { 1, 2, 3, 4}, the following command changes its value to
{{1,3,5},2,3,4}.

set iteml in x to everything in {1, 3,5}

Plural location and Plural value

When both the location and value are plural, the set operation iterates over the
collection of locations and the collection of values in parallel. If the length of the two
collections is different, then the number of iterations is equal to the length of the shorter
of the two collections.

Example:
In the following example, the first three ovals in the stage will receive thefi | | Col or
Red, Bl ue, and Gr een, respectively.
set the fill Color of every oval in the stage -

to everything in {Red, Blue, G een}
In the next example, each oval in the stage is assigned a fill color from the rectangles on
the stage.

set the fillColor of every oval in the stage -
to the fill Color of every rectangle in the stage

Assignment
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

Assignment Using Destructurers

set listOfPlaces t 0 expression

When the location of the set command is a list of valid location, SK8 automatically
‘destructers’ the list into a set of assignments. In order to be successful the result of the
expression given must be a collection containing the same number of elements as there
are places. An error will be signalled if the dimensions of the list of places and the
expression don’t match.

Example:

The following statements illustrate list destructurers.

set {h,v} to the location of SonmeW ndow

Destructurers are very efficient and should be used whenever possible. For example, the
above command will be noticably faster and will use less temporary memory than the
separate commands ‘set h to item1 of the |ocation of SomeW ndow and
‘set v toitem1 of the |ocation of SomeW ndow.

Flow of Control

SK8Script provides a variety of flow of control constructs for conditional execution,
looping and a special command for pausing execution.

Conditionals

The conditionals in SK8Script include a simple single line form, a multi-line form and a
multi-branch form similar to the ‘case’ statements from other languages.

Single Line Conditional: If.... then... else

The syntax for the single line conditional is:

i f expression then commandl [el se commandZ]

If expr essi on evaluates to something that is not Fal se, conmand1l is executed.
Otherwse conmand?2 is executed if it is provided. If there is ambiguity of the association
of an ‘el se’ with a set of nested ‘i f ’, it associates with the closest ‘i f °.

Example:
if today's dateString # "Decenber 31, 1994" then beep
if today's dateString = "Decenber 31, 1994" then beep 2 -

el se beep 3
if true then if false then beep 2 el se beep 3 -- beeps 3 tines

Multi-line Conditional

The syntax for the multi-line conditional is

Flow of Control 5-127
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

i f expression then
commandList1
[el se
commandLi st 2]
end if

or
i f expression then

commandList]1
el se el seCommand

If expr essi on evaluates to something that is not Fal se, the commandLi st 1 is
executed. If expr essi onis Fal se, then the conmandLi st 2 or el seConmand (if
present) is executed. Note that ‘end i f ’ is part of only the first form. The second form
allows for the common ‘el se i f’syntax

Example:

if Rectl's fillColor = Red then

beep 2

set Rectl's fillColor to Blue
el se

beep 3

set Rectl's fillColor to Red
end if

In the next example note the nested conditionals.

if today's day is odd then

beep

sendToLog "Today's an odd day"

if today's year = 1994 then

sendToLog "and it's 1994"

end if
else if today's day is > 14 then

beep 2

sendToLog "today's an even day near the end of the nonth"

if today's year = 1995 then sendToLog "and it's 1995!"
end if

Multi-branch Conditional: If... is one of...

This conditional allows the kinds of decisions that are usually performed using ‘case’ or
‘switch’ statements in other languages. The syntax is

i f [caseExpression (is| TestConparator)] one of
(conditions : conditional ConmandLi st)*
[el se
al t er nat eCommandLi st

5-128 Flow of Control
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

end if

If the alternate command list is a single command, then the following alternative syntax
maybe used.

i f [caseExpression (is| Test Conparator)] one of
(conditions : conditional ConmandLi st)*
el se al t ernat eCommand

When this statement is executed, at most one of the enclosed command lists are
executed. The case expresson is evaluated first. If no case expressions is given then it is
assumed to have the value Fal se and the test operator is ‘2. The conditions are comma
separated ‘condition expressions’. Each condition expresssion is evaluated in turn and
compared to the value of the case expression using the test comparator. The conditional
command list corresponding to the first condition expression that matches the case
expression is executed. The alternate command list is executed only if none of the
condition expressions are matched. The test comparator can be any of the comparators
described in the Expressions section above. If ‘i s’ is used instead of a test comparator
then the rest of the comparator is prepended to the condition expression. This allows
different comparators to be used in each case.

Examples:

The first example has no case expression, so the first condition expression that evaluates
to a value other than Fal se is chosen.

if one of
Person is sleeping: set person's partying to Fal se
today's dateString with dayOr\Wwek starts with "S', =
(today's hour) >= 17: -- Saturday or Sunday or after 5pm
sendToLog "Let's party!"”
set person's partying to True
el se sendToLog "Nothing to do!"

In the next example a fixed case expression and test comparator are given.

if today's dateString contains one of
"r", "m': sendToLog "It's not summer!"”
"j": sendToLog "Relax, it's sunmer"
el se
sendToLog "School is on the horizon!"

end if

The final example, uses the word ‘i s’ to vary the test comparator.

if selectedObj is one of
an actor: insert selected®j into the viewArea
a collection:
set the itenms of nyListViewer to sel ectedObj
set viewArea's text to "It's a collection”
not a nunber:
beep

Flow of Control 5-129
©1994 Apple Computer, Inc. 5/7/95

5-130

CHAPTERS SK8Script

set viewArea's text to "Who knows.
> 0: set viewArea's text to "It's a positive nunber.’
< 0: set viewArea's text to "It's a negative nunber.'’
el se set viewArea's text to "It nust be zero!"

Iteration (Looping)

Most explicit looping in SK8 is done with the r epeat command. The general syntax of
this command is:

repeat [/ oopControl A ause]
conmands
(end repeat |/ oopControl O ause)

Exactly one of the two loop control clauses must be used. In addition, only the whi | e
and unti | loop control clauses can appear in the end position. When the clause appears
at the end, the loop is guaranteed to be executed at least once.

Clauses

Different types of iteration are provided by varying the loop control clause.

Forever

If the loop control clause is just the reserved word ‘f or ever ’, the loop to repeated
continuously until it is explicitly ended by a ‘Condi ti on’, ‘ret urn’ or ‘exi t ’. All of
these are described later in this chapter.

Example:

repeat forever
beep -- beeps forever; very annoying. Cnd-. will stop it.
end repeat

Times

This clause executes the given commands some number of times. In this form the index
of the loop is not available. If the current loop index is needed, see the ‘with...from...to’
clause below.

[for] integerValue times

Examples:

repeat 5 tines -- beeps 5 tines; |ess annoying
beep
end repeat

repeat for 3 tines -- beeps 3 tinmes; just annoying
beep
end repeat

Flow of Control
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

With...from...to [*5]

This clause is used to iterate over a sequence of numeric values.

with var fromstart [to end] [by step]

Var must be a variable name which is automatically declared as a local. Var is initially
set to the value of st art and incremented by st ep as long as the value is approaching
or at the value of end. The exact meaning of approaching depends on the value of st ep
in the obvious way. The st art, end and st ep must be expressions whose values are
descendants of the object Real . Each expression will be evaluated exactly once at the
beginning of the loop. The value of st ep defaults to 1. If no value is given for end, the
loop continues forever. The value of var at the end of the loop is undefined.

Example:

-- sends 3, 4, 5, 6, and 7 to the MessageBox
repeat with index from3 to 7

sendToLog i ndex
end repeat

-- sends 7.1, 5.0, and 2.9 to the MessageBox

repeat with index from7.1to 2.3 by -2.1
sendToLog i ndex

end repeat

repeat with index from3

sendTolLog i ndex

if index is greater than random(i ndex*3) then exit repeat
end repeat

With...in [*5]

This clause allows for iteration over an arbitrary collection.

with var in expression

Var must be a variable name which is automatically declared as a local. The loop body is
executed with var set to each member of the collection returned by the expression in
turn. The value of var at the end of the loop is undefined.

Example:

--print "red", "green", and "blue" into the MessageBox

repeat with awrd in {"red", "green", "blue"}
sendToLog awrd

end repeat

While

This clause repeatedly evaluates an arbitrary expression and executes the loop body as
long as the value of the expression is not Fal se. The syntax is

Flow of Control 5-131
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

whil e test
Example:

The following example is has the same output as the first example for the
‘with...from...to’ clause. In this case aNunber is guaranteed to have the value 8 at the
end of the loop.

gl obal aNunber = 3

repeat while aNunmber is less than or equal to 7
sendToLog aNumber
set aNunmber to aNunber + 1

end repeat

This loop can be rewritten to use the end clause syntax as

gl obal aNunmber = 3

repeat
sendToLog aNumber
set aNumber to aNumber + 1
whi l e aNunber is |less than or equal to 7

Note that if the 7 in the above example were replaced with 2, the loop would still
execute once, as compared to the previous example which would never execute the body
of the loop.

Until

This clause is identical to the while-clause except that it terminates as soon as the value
of the test is non-Fal se. The syntax is

until test
Example:

This example has the same output as the example for the while-clause. Again aNunber
is guaranteed to have the value 8 at the end of the loop.

gl obal aNunmber = 3

repeat until aNunber is greater than 7
sendToLog aNumber
set aNumber to aNumber + 1

end repeat

Again this may be rewritten to use the end clause syntax as

gl obal aNunber = 3

r epeat
sendToLog aNumber
set aNunber to aNunber + 1

5-132 Flow of Control
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

until aNunber is greater than 7

Loop Exits

Within the context of a repeat loop special commands are provided to exit the entire loop
and to skip to the next iteration. These commands are almost always used in conjunction
with conditionals.

Local Exits

The command

exit repeat
causes the containing loop to terminate and control to pass to the command after the
appropriate ‘end repeat ’ statement.

Example:

This loop waits until the current minute is odd, then beeps and exits.

repeat forever
if nows mnute is odd then
beep
exit repeat
end if
end repeat

Exit to Next Iteration

The command

next repeat
skips the remaining loop body and starts the next iteration of the r epeat .
Example:
The following loop outputs the numbers from 1 to 10, but only beeps 5 times.
repeat with i from1l to 10

sendToLog i

if i is odd then next repeat

beep
end repeat

Wait

The wait command provides a mechanism for suspending SK8 either for a specified
period of time or until some condition is met. To wait for a period of time the syntax is:

wait [for] numberOfUnits tinmeUnit [(with|w thout) events)])
The number of units is an expression that evaluates to a real and time unit may be any
one of m nut e, m nut es, second, seconds, tick,ticks,mllisecondor

Flow of Control 5-133
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

m | | i seconds. Atick is one sixtieth (1/60) seconds. If wi t hout event s is used then
all event processing is suspended until the time elapses.

Examples:
wait 20 ticks
wait for 1 second

wait 2.4 seconds
wait 0.2 mnutes

The second form of the wait command is

wait [(with|w thout) events)] (while|luntil)conditionExpression

The condition expression is repeatedly evaluated until it evaluates either to Fal se or to
a value other than Fal se depending on whether whi | e orunti | is used, respectively.
If wi t hout event s is used then all event processing is suspended until the condition is
met.

Examples:

wait while nouse is down
wait without events until comandKeyDown()

Collection Commands

5-134

As discussed in earlier sections, collections are objects which contain sets of other
objects. The creation of most type of collections is discussed in the Expressions section.
The remaining common collection type, Tabl e, is discussed below. Values within
collections can be accessed or changed using Selection Expressions. The principle subject
of this section are the commands i nsert and r enove for adding and deleting elements
from collections respectively.

Not all collections support these commands, e.g. insert is not supported for children of
the Tabl e object. In this case the same functionality can be achieved with Selection
Expressions. Collections that completely support the commands include descendants of
Li st,StringandArray.

These commands only guarantee that the value of a location explicitly described in the
command will be changed. It does not guarantee either that a new object will be created
or that an existing object will be modified. This choice depends on the type of the
collection.

[*6]In particular, Vect or and Ar r ay objects will in general return different objects,
whereas Li st objects will usually modify the existing list.

Tables

The Tabl e object provides and easy to associate pairs of objects. The use of tables is
simiilar to arrays except that rather than using numeric indices, the indices can be any
object (including numbers). If a value is requested for an element that has not been set,
the value Fal se will be returned. There is, however, a difference between an unset value

Collection Commands
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

and a value set to Fal se. In the later case the value is contained in the Table. This
difference is most evident when using plural selection expressions. Tables are created
using the standard newand copy discussed later in this chapter.

Examples:
The following example both shows how to create and use a Tabl e.

[*7] Check all the following examples

new Tabl e wi th obj ect Nane "SomeTable" -- Create a Table

-- Add some itemns
set item'foo' of SoneTable to 5
set item Oval of SomeTable to Yell ow

get item'foo' of SoneTable -- Returns 5

get item Oval of SonmeTable -- Returns Yell ow

get item'Oval' of SoneTable -- Returns False (no entry)
get every itemin SoneTable -- Returns {Yellow, 5}

set item'foo of SomeTable to Fal se
get item'foo' of SoneTable -- Return False (explicitly set)
get every itemin SoneTable -- Returns {Yellow, False}

renove item'foo' of SoneTable
get item'foo' of SoneTable -- Return False (no entry)
get every itemin SoneTable -- Returns {Yell ow}

Insert Command

Thei nsert command is used to add objects to collections. The general syntax of the
insert command is

i nsert source target

The t ar get describes the collection or collections to be effected and the position where
the value or values are inserted. Multiple collections and multiple values are specified
using plural selection expressions. The sour ce can be any arbitrary expression. The
following subsections describe the different type of ‘insertion targets’.

Into...

The syntax of this target is

into place

This insertion target leaves the point of insertion unspecified. The type of p/ ace
determines the insertion point. In general, this means the most efficient position will be
used.

Collection Commands 5-135
©1994 Apple Computer, Inc. 5/7/95

5-136

CHAPTERS SK8Script

Examples:

Assuming that x has the value ‘{1, 2, 3}’

insert O into X
results in x having the value {0, 1, 2, 3}".

On the other hand, if x has the value ‘t he Vector {1, 2, 3}’, the same insertion
command results in x having the value ‘t he Vector {1, 2, 3,0}".

If x has the value {{1, 2, 3},the Vector {1, 2}},

insert O into X
results in x having the value ‘{0, {1, 2, 3} ,the Vector {1, 2}}".

However, if the target is a plural selection expression, then the source is inserted into
each member in turn. Thus

insert O into every itemin x
results in x having the value ‘{{0, 1, 2, 3} ,the Vector {1,2,0}}"

Similarly if the source is a plural selection expression, then each member of the source is
inserted into the target in turn,

insert every itemin {4,5} into x
results in x having the value {5, 4, {1, 2, 3},the Vector {1,2}}"

Finally, if both the source and the target are both plural selection expressions, the
iteration proceeds down both collections in parallel and terminates when one of them is
exhausted.

insert every itemin {4,5,6} into every itemin X

results in x having the value ‘{{4, 1, 2, 3},the Vector {1, 2,5}}"

At Beginning...

The syntax of this target is

at [the] (beginning|start|front) (of]|in) expression
This target inserts the value at the beginning of the collection(s) given by expression.

Examples:

insert 10 at the beginning of x

The statement above inserts 10 at the front of the collection in x regardless of its type.

insert 10 at the beginning of every itemin x

The statement above inserts 10 at the front of the collections contained in x. Note that if
x contains elements that are not collections, an error will be signalled and any collections
in X may or may not of been changed. A safer command would be

Collection Commands
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

insert 10 at the beginning of every collection in x

at End...
The syntax of this target is

at [the] (end|back) (of]|in) expression
This target inserts the value at the beginning of the collection(s) given by expression.

Examples:

insert 10 at the end of x

The statement above inserts 10 at the end of the collection in x regardless of its type.

General Insertions

These targets use a selection expression to choose a location or locations within the
source collection to insert the value. To insert the value in front of the specified
location(s) the syntax is

(before|in front of)selectionExpression

To insert the value after the specified location(s) the syntax is

(after| behind|in back of) selectionExpression

If a singular selection expression is given, the insertion is performed at the position
specified by that expression; if a plural selection expression is given, the insertion is
performed at each of the positions it specifies.

Examples:

Each of the following example assumes that x has been setto {1, 2, 3, 4} . The new
value of x after executing the command is given as a comment

insert 2.5 after item2 in x -- {1,2,2.5, 3,4}

insert 2.5 before item3 in x -- {1,2,2.5,3, 4}

insert 2.5 before the itemthat is > 2.5in x -- {1,2,2.5,3,4}
insert O before every itemin x -- {0,1,0,2,0, 3,0, 4}

insert O before every itemthat is odd in x -- {0,1,2,0, 3, 4}
insert every itemin {4,5,66} before every itemthat is odd in x
-- {4,1,2,5,3,4}

Remove Command

The r enbve command is used to delete items from collections. The syntax of the general
form of this command is

renove selectionExpression

The item or items described by the selection expression are removed from the source
collection. In addition to the general form there is a special syntax

Collection Commands 5-137
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

renmove oalue from expression

This form is equivalent to the general form

[*8][renpve the itemthat is the object wvalue of expression

This means that only the first item that matches val ue is removed. Note that f r omis
not an accepted preposition in a selection expression.]

After any r emove command has been executed, the value of r esul t is set to a list of the
removed members of the source collection.

Examples:

Each of the following example assumes that x has been setto {1, 2, 3, 4, 2}. The new
value of x after executing the command is given as a comment

renove item1 of x -- {2,3,4,2}

renove the itemthat is >2 in x -- {1,2,4,2}
renove every itemthat is > 2 in x-- {1,2,2}
renove 2 fromx -- {1, 3,4,2}

renove every itemthat equals 2 in x -- {1, 3,4}

[*15]renove the last itemthat equals 2 in x -- {1, 2,3,4}

[*8] renove every itemin {1,2} from{1,2,3,4} -- {3,4}

[*8][If the above exanple is nade to work the text above in square
braces should be revised. If this feature is not included in the
final release then the exanpl e should be renoved]

Creating New Objects

5-138

Most simple objects such as Nunbers, St ri ngs, Li st sor even Ar r ays can be created
with literals or general object literals as described in the Expressions section. However,
more complex object such as Act or s are created with one of two special handlers, new
and copy. The first of these creates an new object that is a child of a given object. The
second creates an identical sibling object.

Both the newand copy handlers call the handler i ni ti al i ze after the object has been
created and its properties have been initialized. This handler is provided as a hook for
the programmer so that any special initialization work they desire can be handled
automatically. The defaulti ni ti al i ze handler does nothing.[*16]

The New Handler

new object [with objectNane (a String)] -
[wWith project (a Project)] -
[wWith properties (a List)] =
[with otherParents (a List)] -
[Speci al i zedKeywor dAr gunent s]

Creating New Objects
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

The newhandler is used to create a child of obj ect . It returns the child. The new child
will inherit all of the properties of the given object, except as described below.

obj ect Nane The optional object name you may wish to assign to the child.
If you do not assign an object name, you may still assign it at
a later time using the obj ect Name handler. Objects can also
be renamed by setting the obj ect Nane property. The default
is that the object is not named. This value is never inherited.

pr oj ect The project that will contain the new object. The default is the
project to which the surrounding handler or function
definition belongs. In the special case of the message box, the
default project is shown in the title bar.

properties A list of symbols that are the names of desired properties for
the new object. Properties created in this way are public, not
propagated, and have an initial value of Fal se. See the
following section on Properties for an explanation of these
attributes.

ot her Par ent s An optional list of objects that represent other objects, in
addition to the given obj ect, from which the child should
inherit handlers and properties. That is, object and
ot her Obj ect s will be the parents of the child. Object is
called the ‘base parent’ of the child.

Speci al i zedKeywor dAr gunent s

Used to set values for any property of the new object or to
automatically call any defined setter-handlers. Example:
with location {60, 60}

Examples:

new obj ect with objectName "TooSi npl e"

The children of very simplest object, obj ect , are useful for creating compound data
structures similar to the records or ‘structs’ of other languages.

new obj ect w th objectName "Address" =
with properties {'nane', 'street', 'city'}

new Actor wi th objectNane "Medi aCol | ecti on"
with project MyProject
with otherParents {Collection}
with | ocation {60, 60}

IMPORTANT
[*9][More like bogus! Try

new rectangl e with objectnane "rect1"

new rectangl e with objectnanme "rect2" with otherparents {rect1}
new rectl with objectnane "rect3" with otherparents {rectangl e}]
You should not supply objects in ot her Par ent s that inherit from the same parents
(except from Cbj ect), or else you will be introducing a circularity into the descendancy
of your new object. This will generate an error. a

Creating New Objects 5-139
©1994 Apple Computer, Inc. 5/7/95

5-140

CHAPTERS SK8Script

The Copy Handler

copy object -
[wWith objectNane (a String)] -
[with project (a Project)] =
[Speci al i zedKeywor dAr gunent s]

The resulting copy will have the same parents as the original and it will have the same
local handlers, properties and property values defined with the exception of the object
name. Unlike the newhandler these components of the new object are independent of
those of the original object. Thus changes to one of them after the initial copy do not
effect the other.

obj ect Nare The optional object name for the copy. The default is for the
object to have no value for obj ect Nane.

proj ect The project in which the copy should be created. The default
is the project of the original object.

Speci al i zedKeywor dAr gunent s

Optional arguments used to override the property values
(virtual or otherwise) in the original object from which the
copy is made.

Example:

Suppose you created a rectangle called SomeRect angl e, specialize it as shown, and
want an exact copy of it:

set SoneRectangle's fillColor to Red
set SoneRectangle's franmeColor to Blue

on dick of ne (a SoneRectangl e)
beep
end dick

copy SoneRectangle -
wi t h obj ect Nane " CopyOr SoneRect angl e" =
wi th franmeCol or G een

Thefill Col or of CopyOf SomeRect angl e will be Red and its f r ameCol or will be
G een. d i ck will also be defined for Copy Of SoneRect angl e.

If you now redefine the SormeRect angl e’s click handler as

on Cick of me (a SomeRectangl e)
set nmy fillColor to Blue
end dick

The click behavior of SomeRect angl e will be changed, but the behavior of

CopyF SorreRect angl e will remain the same. If, on the other hand,

CopyOF SonreRect angl e had been created using newinstead of copy, then its behavior
would have also changed.

Creating New Objects
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

Creation Relations

Creation relations provide a mechanism modeling complex compound objects in SK8.
Consider a familiar object such as a guitar:

= We generally think about a guitar as a unit, even though we recognize that it is made
up of several distinct objects; in particular, each string is a distinct object but one that
is closely related to the guitar, one that is part of the guitar.

= On agiven guitar we refer to the d-string, for example, as “the d-string of Hernan’s
guitar” — that is, we refer to it via its relation to another object, rather than with a
more absolute identification.

= |If we create a new guitar, we know we also need to create new strings and attach them
to this new guitar just as the other strings are attached to the other guitar.

Creation relations do the following three things:

= They enable compound objects in an object-oriented programming environment to be
modeled as we tend to model such objects in the real world.

= They allow sub-objects to be referenced and identified in terms of their relation to
their root object.

= They automate the creation and linking up of the corresponding sub-objects when a
copy (or instance) of the root object is created.

Declaring Creation Relations (Modeling Interrelations)

The first step in creating a compound object is simply to build the prototype; that is,
build all the prototypical pieces with appropriate properties tying them together.

Example:

Using the guitar example, we create a guitar object with a st ri ngs property. Then we
create six guitar string objects, instances of a prototypical guitar string object with a

gui t ar property. Wesetguitar's strings to a list containing the six

Cui t ar St ri ng objects, and we set each guitar string’s gui t ar property to the gui t ar
object.

new obj ect with objectName "Guitar" with properties {'strings'}
new object with objectName "QuitarString" with properties =
{"guitar'}

set GQuitar's strings to {}

repeat 6 tines
insert a new GQuitarString into Guitar's strings
end repeat

set the guitar of every itemin Guitar's strings to CQuitar

Note that the gui t ar and gui t ar St ri ng objects could, of course, have additional
properties such as make and nodel , ort hi ckness andt ensi on.

Creating New Objects 5-141
©1994 Apple Computer, Inc. 5/7/95

5-142

CHAPTERS SK8Script

Once the prototype object is built and its interrelations set up, the creation relations are
declared; they describe the way in which the properties of sub-objects embody their
interrelations in forming a compound object or “creation group”.

The gui t ar ’s creation relations would include its st r i ngs property, along with an
indication (an asterisk) that this property is considered plural (i.e. it holds a collection of
objects rather than a single object). Our prototypical guitar string’s creation relations
would include its “guitar” property, along with an indication (square brackets) that this
relation is a simple, non-creation relation. If this creation relation were left out, then the
value of gui t ar in each of the new Gui t ar St ri ngs would be just be copied so their
value would be the prototype object gui t ar rather than the newly created child of

gui t ar. Note that the six string instances we made automatically inherit the creation
relations from their prototype.

set Cuitar's local Creati onRelations to {'strings*'}
set QuitarString's local CreationRelations to {'[guitar]'}

The complete syntax for creation relations is

"[[1propertyName[*][]]"

Identifying Objects Via Relations

Notice that we have named the prototype guitar string object (i.e. supplied it a global
obj ect Narre by which it can be directly referenced), but we haven’t named any of the
six instances we made. However, we can still refer to a given string relative to the guitar
object. For example, the third string in our guitar can be referred to as:

GQuitarString 3 in the strings of Guitar

And, in fact, since each string “knows” which guitar it belongs to (via its “guitar”
property), that string will identify itself (i.e. write out its textual representation) as the
same expression:

QuitarString 3 in the strings of Guitar

The Purpose of Creation Relations: Automatic Instantiation of Creation Groups

Though most object systems (including SK8'’s) give the programmer a hook into the
creation of objects (thus allowing the installation of code that creates sub-objects and
links them to the root), most such systems require code to be written specially to deal
with each new type of compound object.

Creation relations handle the problem of creating compound objects generally enough
that, in most cases, the programmer does not need to write any such “object
initialization” code at all. Once the creation relations are specified, the creation group
associated with a given root object can be automatically determined by traveling through
the object’s creation relations —keeping track of which objects have been visited— until
closure is reached. Instantiating the root object then automatically causes all objects in
the creation group to be instantiated and interrelated in the same way the prototypes are
interrelated.

Creating New Objects
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

To finish our example, since the guitar’s and guitar strings’ creation relations have
already been declared, we can simply make a new guitar and notice that it has six new
guitar strings:

new Guitar wth objectName "YamahaGuitar"

get item1l1 in YamahaGuitar's strings
-- returns an object that identifies itself as:
-- item1l in the strings of YamahaGuitar

get whether item11 in YamahaGuitar's strings -
is the same object as item1 in Guitar's strings
-- returns Fal se

get YanmhaCuitar's strings

-- returns the list:

-- {item1 in the strings of YamahaCGuitar, -
- - item2 in the strings of YamahaGuitar, -

-- item6 in the strings of YamahaCuitar}

Creation Relations and Actors

SK8 users who are familiar with creating and using complex graphical objects have
actually been making use of creation relations. The cr eat i onRel at i ons of Act or are
{'contents*', '[container]', 'lines*'},whichexplainswhy new content
objects are created whenever a new compound Act or is created.

Properties

A property is much like a variable except that, since a property belongs to an object, both
the property name and the object must be specified in order to reference the property’s
value. Values are stored in and can be retrieved from the properties.

Accessing Properties

There are two equivalent syntaxes for accessing a property of an object.

propertyNanme of expression
(expression s|ny|its) propertyNane
In both cases the value of the named property is accesssed from the object returned by

the expression. By themselves these forms are expressions with the given value. The
forms may also be used as part of a set command in order to change the given value.

The reserved word ‘ny’ may only be used within a handler definition and is used to
access values of the invoking object. It is the natural contraction of ‘ne' s’. Similarly the

Properties 5-143
©1994 Apple Computer, Inc. 5/7/95

5-144

CHAPTERS SK8Script

reserved word ‘i t s’ may only be used within selection expressions and is used to access
values of the current element.

Examples:

frameCol or of Rectangle

Rectangle's fill Col or

set frameCol or of SomeRectangle to G een
set (anything in stage)'s fillColor to Blue

The next example uses the reserved word ‘ny’

on Cick of nme (a SoneRectangl e)
if nmy fillColor equals Red then
set nmy fillColor to Blue
el se
set ny fillColor to Red
end if
end dick

Finally, here an example using ‘i t s’

set contai ner of everything where 100 > its top in stage to Fal se

Accessors (getter or setter)

In SK8 Script there is a close relationship between handlers and properties. At the
syntactic level there is no difference between accessing a property value and calling a
handler with the same name. It is common in SK8 to create ‘virtual properties’ by
creating a handler with a given name and setter handler that shares that name.
Obviously it is up to the programmer to ensure that these handlers perform in the
expected way.

A good example of a virtual property is the wi dt h of the Act or object. The position of
an actor within its container is controlled by the boundsRect property. The wi dt h
handler uses this value to compute its value. Similarly, the set wi dt h handler modifies
the value of this property in such a way to guarantee that a later call of the the wi dt h
handler will have the expected value.

In addition, to virtual properties, a handler with the same name as one of an objects
properties can be created. Such handlers take priority over the default behavior of
getting or setting the value of the property. In this case, the actual property can only be
accessed by calling the special command ‘do i nheri t ed’ within these handlers. This
type of handler is commonly used to guarantee some attribute like the type of a property.

Example:

The following SK8Script code creates a ‘beep switch’ object that can be on or off and
beeps whenever its value is read. A setter handler is defined to ensure that it can only get
set to one of these two values. A getter handler is also defined to do the beeping. In
addition two virtual properties ‘i sOn’ and ‘i sOF f ” are defined.

new obj ect with objectName "BeepSwitch" with properties {'state'}

Properties
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

on set state of ne (a BeepSwitch) to newval ue
-- Define the setter of the state property to ensure
-- that only valid values are given
if newvalue is the object one of

on', 'off': return do inherited
el se General Error -
with strings {"A beep switch can only be '"on' or 'off'"}
end set state

on state of nme (a BeepSwi tch)
-- Let it beep
beep
-- Do the actual property access:
return do inherited
end state

on isOn of ne (a BeepSwitch)
-- Cetter for virtual property isOn
return 'on' is the sane as ny state [*4]
end isOn

on set isOn of nme (a BeepSwitch) to newval ue
-- Setter for virtual property isOn
i f newval ue then

set my state to 'on
el se

set nmy state to 'off'
end if

end set isOn

on isOf of me (a BeepSwi tch)
-- Cetter for virtual property isOf
return 'off' is the same as ny state [*4]
end i sOf

on set isOf of nme (a BeepSwitch) to newval ue
-- Setter for virtual property isOf
i f newval ue then
set nmy state to 'off'
el se
set nmy state to
end if
end set isOf

on

Properties
©1994 Apple Computer, Inc. 5/7/95

5-145

5-146

CHAPTERS SK8Script

Property Attributes

Properties have two attributes, private and propagated, that determine the manner in
which they are inherited.

If a property is private then it can only be accessed using the object that owns it or
handlers defined on this object.

1.0 Note

Private properties are incompletely supported. Properties may be
declared as private, but the access limitations are not enforced.

If a property is propagated then changes to the value of a parent object are automatically
propagated to its children unless its value has been explicitly overridden.

A property can be made to propagate or not using the ‘nakePr oper t yPr opagat e’ and
‘makePr oper t yNot Pr opagat e’ handlers respectively.

Example:

Continuing the BeepSwi t ch example from above, first set the value of the
BeepSwi tch’sstate

set state of BeepSwitch to 'on'

Make the state property propagate

makePr opert yPropagat e BeepSwitch, 'state’
Create a child

new BeepSwitch wi th object Nane " NewSwi tch"

At this point the state of NewSwi t ch is copied from BeepSwi t ch so it is ‘on’. This is the
normal behavior whether or not the property is propagated. Now we turn BeepSwi t ch
‘off’.

set state of BeepSwitch to 'off’

Since the state property propagates, NewSwi t ch' s st at e is also set to ‘off’. If the state
property did not propagate, NewSwi t ch' s st at e would have remained ‘on’.

However, if we now explicitly set NewSwi t ch' s state

set state of NewSwitch to 'on'

This overrides the propagation, so the value of BeepSwi t ch' s st at e is still ‘off’, but
NewSwi t ch' s st at e is now ‘on’. At this point changes to BeepSwi t ch' s stat e no
longer effect NewSwi t ch' s st at e. However, the property still propagates, so the
values of other children of BeepSwi t ch that haven’t overridden the value will continue
to propagate. Furthermore, any children of NewSwi t ch will now derive their values
from NewSwi t ch. The connection between NewSwi t ch and BeepSwi t ch can be
reestablished using the ‘pr opagat eVal ue’ function,

propagat eVal ue 'state' from BeepSwitch to NewSwitch

NewSwi t ch' s st at e now has the same value as BeepSwi t ch' s st at e. However,
any children of NewSwi t ch created while the two were disconnected will remain,
disconnected. [*10]

Properties
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

Adding and Removing Properties

When dealing with properties for the purposes of listing, adding or removing, a special
set of symbols known as ‘property symbols’ are used. Valid property symbols are
composed only of letters, digits, and the underscore character, *_’. In addition, they
cannot start with a digit. These restrictions allow the properties to be used later as
handler names (identifiers) in SK8 script.

The properties owned by an object are stored in the property ‘I ocal Properti es’.
Properties may be directly added or deleted from this list using the usual ‘i nsert’and
‘renove’ commands. However, the two handlers addPr operty and r enovePr operty
provide a simpler interface.

AddProperty

addProperty object, propertySynbol -
[wWith private] =
[with propagat edVal ue] -
[wWith initial Value [value]] -
The pri vat e and pr opagat edVal ue with-parameters set these attributes of the new

property. Thei ni ti al Val ue provides an initial value for the property. If no inital value
is given, the property is initialized to Fal se.

AddPr oper ty only adds a new property if the object does not already have a property
(local or inherited) by that name.

When a property is added, all of its descendants are given that property. If an initial
value is provided then all the descendants get that value. However, future changes are
only propagated if the propagated attribute of the property is set.

Examples:

addProperty BeepSwitch, 'color'
addProperty BeepSwitch, 'kind' wth propagatedValue with =
initial Value "wall"’

RemoveProperty

renoveProperty object, propertySynbol
The given property is removed from object only if it is a local property of that object.

Examples:

renoveProperty BeepSwitch, 'color’
renoveProperty BeepSwitch, 'Kkind'

Properties 5-147
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

Forms[*12]

5-148

Forms include executables (functions and functional-handlers) as well as with-forms (see
below). Forms are the principle places where SK8Script commands are stored and from
which the commands are executed. Functions are named sets of commands that have no
special relationship to particular SK8 objects. Functions must have a unique name within
a given project. Similarly, globally defined with-forms must have a unique name within
a given project.

Functional-handlers and with-handlers, on the other hand, are always associated with a
particular SK8 object that is considered to ‘own’ the handler. Such handlers can only be
invoked using the object that owns it or a descendant of that object. It is common (and
part of standard object oriented programming) for the descendants of an object to
redefine or modify a handler defined by one of its ancestors.

With-Forms

With-forms are used in SK8Script to create ‘contexts’. Contexts are most simply thought
of as wrappers that go around a body of code. Contexts normally consist of some
SK8Script that initializes the context and runs before the enclosed body of code, and
another piece of SK8Script that cleans up the context and runs after the enclosed body of
code. The key feature of contexts is that the clean up code is guaranteed to execute no
matter how the enclosed body of code is terminated.

A simple example is the with-form ‘Cur sor ’. This context changes the screen cursor to
some child of Cur sor RSRC. and then restores it to its previous state when the context is
exited.

Example:

on click of nme (a Special Rect)
wi th cursor Wt chCursor

repeat with i in the knownchildren of rgbcol or
set ny fillcolor to i
end repeat
end with
end click

The above object-handler causes the standard watch cursor to appear while the color of
the invoking object is sequentially set to each of the possible solid color renderers.

Header Line Syntax

All types of forms maybe created by a SK8 programmer. Handlers are distinguished
from other forms both by the way they are created and by the syntax of the first line of
their definition (the header line). For functions and globally defined with-forms the
header line has the syntax:

Forms[*12]
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

on [(set|with)] formNane [paraneterlList]

Object-handlers have the following syntax

on [(set|with)] handl erNane of me (a object Type) [paraneterlList]

Technically, the optional set or wi t h are part of the form name, but they are separated
out since they are used to defined specific types of forms, setters and with-forms,
respectively.

Parameter List

SK8 supports required positional parameters, optional positional parameters and
position-independent keyword parameters for all forms.

Required Positional Parameters

Required parameters are regular positional parameters that must always be provided in
order to execute a form. They are variable names separated by commas.

Examples:

Header lines with required parameters:

on nyFunc X, Y

on keydown of ne (a Special Rect), TheChar
Using required parameters:

nmyFunc 100, {1, 2, 3}
keydown of SoneSpeci al Rect, the character

a

Optional Positional Parameters

Following any required parameters a set of optional parameters may be given. The
optional parameters are enclosed in square braces, [] , and separated by commas. Any
number of optional parameters may be given, but they are always positional. This means
that in order to provide a value for a given parameter, any previous optional parameters
must also be provided. If an optional parameter is not provided, it defaults to the value
Fal se.

Example:

Header lines with optional parameters:

on nyFuncl [X]
on myFunc2 Y[, X] -- Note the comma is inside the braces
on nmunble of nme (a Special Rect), X[, Y, Z]

Using optional parameters:

myFuncl
myFuncl 100
myFunc2 100
nyFunc2 100, 200

Forms[*12] 5-149
©1994 Apple Computer, Inc. 5/7/95

5-150

CHAPTERS SK8Script

munbl e of SomeSpeci al Rect, 100 -- X = 100, Y = False, Z = Fal se
munbl e of SoneSpeci al Rect, 100, 200 -- As above except Y = 200
nmunbl e of SoneSpeci al Rect, 100, 200, 300 -- Now Z = 300

‘With’-Parameters

Instead of optional parameters the more general mechanism of ‘with-parameters’ may be
used. With-parameters are also optional, but they are not positional. With-parameters are
chosen using a unique ‘keyword’ associated with each possible parameter. This means
that the user may provide values for only the with-parameters they desire. In a header
line, with-parameters are usually specified with the word ‘wi t h’ followed by the
keyword and the variable name to be used in the body. However, there are also a set of
special words that automatically create with-parameters with those names. The complete
syntax for with-parameters is:

((with keyword [nane] | speci al Nane nane) [typeQrDefaul t])*

Where a speci al Nane is one of the reserved words

(by|for|fromin|into]on|to|thru|through)
and t ypeQOr Def aul t has the form

([(al an) type] [defaul ting to val ue])

When a handler is called and a with-parameter is not specified it is given the value

Fal se unless a different default has been given using the def aul ti ng t o syntax. See
the section on Data Types for details on the optional type specifier. If the nanme parameter
component is left out, it defaults to the keywor d.

For providing values for with parameters there is an addition syntax [*13]

keyword : val ue
Examples:

Header lines with keyword parameters:

on myFunc3 with border b
on myFunc4 X fromstart to end with border b
on myFunc5 with border (a Nunber defaulting to 0)

Using keyword parameters:

myFunc3 -- b = Fal se

myFunc3 with border 100 -- b = 100

nmyFunc4 100 -- start = False, end = Fal se, b = Fal se

myFunc4 100 with border 100 -- start = False, end = False, b = 100

myFunc4 100 from 10 to 20 border: 100 -- start = 10, end = 10
-- b = 100

Forms[*12]
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

myFunc5

myFunc5 border: 100

Results of Executables

By default executables, functional-handlers and functions, return the value Fal se when
they are invoked as part of an expression. If another value is desired then the ‘r et ur n’
command must be used. Note that with-forms have no return value. The syntax is:

return expression

The value of expr essi on is returned as the value of the executable. The return
command also terminates the execution of its enclosing executable. When a return
command is executed the value of the expression is always computed regardless of
whether that value is by the caller used or not.

Example:

on bark
beep
return 400

beep
end bark

Invoking this function will always beep once and return 400.

Handlers

There is a special command and a couple special variables that are used in only in
handlers.

Calling Parent’s Handler

By default creating a handler for some object with the same name as a handler defined in
one of that object’s ancestors completely redefines the actions taken when the handler is
invoked on that object or one of its children. However, the handler defined by the
‘nearest’ ancestor may be invoked from within a child’s handler with the command:

do inherited [(object positional Parans)w t hParans]

With no arguments t his command causes the ancestor’s handler to be called with the
same objects as were given to the containing handler. If any new arguments are given
then an entirely new argument list is created. The obj ect argument is almost always ne.

Examples:
do inherited
do inherited (ne, X, Y) with border 100

If an object has more than one parent with a definition of the handler or which inherits
such a definition, then the handler associated with parent nearest the beginning of the
par ent s list is called. This rule extends to more distant ancestors in the obvious way.

Forms[*12] 5-151
©1994 Apple Computer, Inc. 5/7/95

5-152

CHAPTERS SK8Script

Calling ‘do i nheri t ed’ is particularly important for ‘setters’ since otherwise the value
of the property will not be modified. It is also often important for various event handlers
in order to maintain the expected behavior.

Special Handler Variables

Within a handler the variables ‘e’ and ‘rmysel f ’ are set to the object used to invoke the
handler. In addition, the word ‘rmy’ may be used to refer to the invoking object.

Examples:

on click of ne (a Special Rect)
-- Al three of these lines nodify a property of
-- the invoking object
set fillcolor of ne to blue
set left of nmyself to 100
set ny right to 200
end click

Defining With-Forms

There is a special command and a special marker that are used in with-forms but not in
executables. Conceptually there are four sequential components to the execution of a
with-form: the initialization code, the contained body of code, unnecessary follow-up
code and necessary clean-up code. None of these components is required to create a
valid with-form, but in practice most with-forms include all the components except the
unnecessary follow-up code. Since the contained body of code varies between uses of the
with-form, this component is represented by the command ‘do body’ in the definition.
The necessary clean-up code is the only component that is guaranteed to execute once
the form has been entered. In particular, if a condition is raised while executing the body;,
the unnecessary follow-up code will be skipped and execution will resume with the
clean-up code. The unnecessary follow-up code and the necessary clean-up code are
separated by the reserved keyword ‘cl eanup: .

Example:

on with beep
beep
do body
beep
cl eanup:
beep
end with beep

The following code will beep four times:
wi th beep

beep
end with

Forms[*12]
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

However, if we insert an Abor t Condi t i on into the body it only beeps twice once
during initialization and once during clean-up.

w th beep
abort condition
beep

end with

The above example demonstrates how with-forms work, but it is not a good example of
the reasons for using with-forms. The following with-form enforces a proper ice-cream
protocol. In particular, it guarantees that the ice-cream always gets put away. Note that
Put Thel ceCr eamAway should not assume that the ice cream was ever successfully
taken out.

on with | ceCream
Cet Qut Thel ceCream()
do body
cl eanup:
Put Thel ceCr eamAway ()
end with | ceCream

Invoking Forms

The syntaxes for invoking executables are:

[set] nane [(of positional Parans| (positional Parans))] [w t hParans]
[set] firstPositional Params name [(positional Parans)] -

[Wi t hPar ans]
[set] firstPositional Paramis nane [(positional Parans)] -

[Wi t hPar ans]

The last form is intended for use with executables that are used as boolean tests.
However, any excutable may be called using this syntax. When unambiguous the
parentheses around the positional parameters may be left off. Note that the parentheses
never go around the with-parameters. Again the optional set is used to invoke
setter-handlers. Setter-handlers always have a required special with-parameter ‘t o’

For with-forms the syntax is:

wi th name [(of positional Parans| (positional Parans))] [w thParans]
body
end with

For all handlers the first positional parameter must be an object which owns or inherits a
correctly named handler. The positional parameters are expressions separated by
commas. The with-parameters are generally given as the word wi t h followed by a valid
keyword and an expression for the value. This pattern is repeated for addtional
with-parameters. Certain with-parameters (see subsection on with-parameters above) do
not require the presence of the word wi t h. For other with-parameters, the value may be
left off in which case the value for that with-parameter is Tr ue. Similarly, the word

wi t hout may be given followed by a keyword. In this case the value is Fal se.

Forms[*12] 5-153
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

Examples:

squar eRoot of 4

squar eRoot (4)

squar eRoot 4

4’ s squar eRoot

set SpecialRect’s fillcolor to blue

set fill Color of Special Rect to blue

set left of Special Rect to 10 without resizing

Sonme(bj ect’ s soneHandl er (100, 200) from4 to 10 with border 300

Data Types

5-154

In most situations SK8 relieves the programmer of the need to be explicitly aware of the
data types of the values used in the language. However, in some cases the programmer
may wish to have control over the automatic type conversions or to provide additional
explicit type information to improve error detection or to increase the efficiency of the
code.

Advantages of Type Declarations

With type declarations the SK8 compiler may:
= perform type-checking during compilation as a debugging aid.

= invoke specialized runtime type checking enabling early detection of assignment
errors -- before they manifest into more obscure bugs.

= Use type information to create more optimized code.

In addition, type declarations can improve code readability and maintainability by
clarifying the programmer’s intent for the possible values of a variable.

Note

Early versions of the SK8 compiler may not take full advantage of type declarations to
produce efficient code or even to guarantee the contents of a particular location.
However, the explicit type checking mechanisms described below are supported. O

Associating a Type with a Variable

Anywhere a variable is declared, the intended type for the variable may be given. The
syntax is:

var Name ((a| an) type)

Examples:

Data Types
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

| ocal X (a Nunber)

on munble Str (a String) fromstart (a Nunber defaulting to 1) =
to end (a Nunmber defaulting to Str's |ength)

on set border of me (a Special Rect), b (an Integer)

Type Coercion

Coercion Operator

The... as a ...and... as an... operators allow you to coerce one type of
object into another type. The most frequently desired types of coercion are supported.
You can write your own coercion functions for ones that are not supported.

[*11]Note

An enumeration of the supported coercions and instructions on how
you can write your coercion functions will be available in a later release
of this manual. O

A WARNING

SK8Script does not support complete automatic coercion in the same
way as HyperCard and other systems. Restricting the allowed kinds of
automatic coercion makes your code easier to understand and maintain
by others. In general, if you need an object to be interpreted as a certain
type, you should explicitly coerce it to that type; e.g. 10 equal s " 10"
returns Fal se. a

Example:

The following expressions evaluate to Tr ue.

("10" as a Nunber) = 10
(10 as a String) = "10"

General Object Literals

Coercions using the coercion operator are always reevaluated each time the expression is
evaluated. If the same particular object is always expected, the more efficient mechanism
of general object literals may be used. The most common use of general object literals are
to create objects that can intuitively be defined by more easily read objects such as
strings, e.g. Dates. The syntax for a general object literal is:

t he desiredParent Gbj ect val ueToCoerce

Examples:

t he Nunmber "10"

the String 10

the Date "January 15, 1994"
the Date 2841436800

Data Types 5-155
©1994 Apple Computer, Inc. 5/7/95

5-156

CHAPTERS SK8Script

the Nunber the Date "January 15, 1994" -- Returns 2841436800

User defined objects can take advantage of this mechanism as long as the appropriate
coercion functions are defined.

SK8 wiill reevaluate a general object literal if it cannot guarantee that the given
expression is constant. However, SK8 does not consider a non-constant value an error. A
good example of this feature is converting a plural selection expression into a list.

Example:

length of the list (every rectangle in the stage)

Note that the statement ‘l engt h of every rectangle in the stage’, would
attempt to call the function | engt h on each rectangle on the stage in turn which is
invalid.

Virtual & Enumerated Types

Virtual types are a SK8Script mechanism used for extending the SK8 type system beyond
the standard inheritance type system. For example, the concept of a positive integer is
available through the standard virtual type Posi t i vel nt eger.

Example:
3 is a Positivelnteger -- Returns true
-3 is a Positivelnteger -- Returns false

Virtual types are all descendants of the Vi rt ual Type object. They are implemented
using through the t ypeSat i sfi ed handler. This handler is expected to take an
arbitrary SK8 object and return Fal se unless the object should be consider to be of the
given virtual type.

Example:

new Virtual Type wi th object Nanre "Qddl nt eger”

on typeSatisfied of ne (an Oddlnteger), obj
return obj is an Integer and obj is odd
end typeSatisfied

1 is an Oddinteger -- Returns True
42 is an Oddlnteger -- Returns Fal se

Enuner at edType is a predefined virtual type that is used for representing arbitrary
discrete collections of options. The possible values are stored in the opt i ons property of
a child of Enuner at edType.

Example:
new Enuner at edType with obj ect Nane "GeonPrimtive"

set options of GeonPrinmitive to {Rectangle, Oval, RoundRect, -
Pol ygon, Line}

Rectangle is a CeonPrimitive -- Returns True

Data Types
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

new Rectangl e with objectNane "Rect 1"

Rectl is a GeonPrintive -- Returns Fal se

SK8Script Condition System

SK8Script provides an easy to use, fully object-oriented, extensible condition system. The
condition system is comprised of condition objects, condition handlers and condition
response objects.

Condition objects are created when a condition is detected and are intended to store all
of the information needed to correctly respond to the condition. Condition handlers are
defined within a function or handler and are the first line of response to a condition.
Finally, condition response objects are special objects that know how to respond to some
set of conditions. Condition response objects are normally invoked in response to a
condition object for which no condition handler has been defined in any of the currently
active functions or handlers. A table associating condition response objects with
condition objects is stored in the condi t i onResponses property of every project.

Condition Object

A condition object is any descendant of the object Condi t i on. In order for the condition
to be invokable from SK8Script, the name of the object must end with either ‘Er r or ’ or
‘Condi t i on” and must have some prefix, e.g. Gener al Err or or Abort Condi ti on.
Condition object often store useful information in local or inherited properties. For
example, the Gener al Er r or object stores a list of objects and strings that are used to
contruct an error message.

Signaling a Condition

Conditions are signalled or ‘raised’ with a special condition command. The syntax of a
condition command is

condi tionType (error]|condition) KeywordArgumentlList

The condition type is the prefix of the name for some condition. The reserved word
error or condi ti on must correspond to the suffix of the desired condition. When a
condition command is executed the containing executable [*14] [form] is checked for a
matching condition handler. If one is found, then it is invoked. If none is found, the
condition is treated as though it were created in the executable [form] that called the
previous function or handler. This process is repeated until a matching condition handler
is found. If the top level SK8 event loop is reached, then the condi t i onResponses of
any relevant projects are checked. The exact order in which the projects are search in this
case is discussed in the Condition Response subsection below. In any case, the SK8
project is always checked eventually and since its condi t i onResponses includes an
entry for the Condi t i on object itself, all conditions are ultimately handled in some way.

Example:

SK8Script Condition System 5-157
©1994 Apple Computer, Inc. 5/7/95

5-158

CHAPTERS SK8Script

The following command creates a Gener al Er r or which by default will get reported in
the message box if it is executed from there.

general error with strings {"W encountered some problens!"}

SK8 provides a set of common conditions which are documented in the Reference
Manual.

Condition Handlers

Condition handlers are defined inside functions or handlers and catch condition objects
when they are created with some condition command. The syntax for a condition
handler is

on [conditionType] (condition|error)
CommandLi st
end (condition|error)

The choice of the condi ti on or er r or keyword is again determined by the name of the
condition being raised. If no condition type is given then all conditions or errors are
caught depending on which keyword is used. The er r or object is a descendent of the
condi t i on object, so all errors will be caught if all conditions are caught, but the
reverse is not true.

Example:

new condi tion with objectName "D skCondition"

on TestDi sk
if DisklsBad() then Di sk Condition

on Di sk Condition
sendToLog "Tinme to buy another disk?"
end Condition

on error
sendToLog " Sore error happened"
end error
end Test Di sk

Condition Responses

Condition responses are objects which encapsulate common protocols for responding to
conditions. For example the LogEr r or Message condition response calls the
wri t eObj ect handler of a condition on the stream associated with the MessageBox.

Condition responses are used by installing them into the table stored in the

condi t i onResponse property of a project. Empty tables are created automatically
when a new project is created. Such tables are all children of the TypeTabl e object.
Tabl e objects are normally used to associate specific objects with other objects. A

SK8Script Condition System
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

TypeTabl e is a special type of Tabl e object that returns the object associated with the
closest ancestor of that object present in the table.

When a condition command is executed and no condition handler is found, the
TypeTabl e of various associated projects are checked. Conceptually the projects ‘closer’
to the point of execution at which the condition command is executed are checked first
and the top level project, sk8, is checked last. See the Search Algorithm sub-section
below for more details.

Example:

We will restrict ourselves to the simple, though common, case where there are only two
projects involved. The sk8 project and a user project, say pl ay. If we create a new
condition,

new condi tion with objectName "HappyCondition”

and then invoke it in the message box

happy condition

nothing seems happen. What actually happened is the condition response NoResponse
was applied to the child of HappyCondi t i on so the condition was resolved by taking
no action. You may be familiar with this approach often taken by large bureaucracies.

To find out that this was what happened we can look up the responses the different
projects have for HappyCondi ti on.

get item HappyCondition of conditionResponses of play
get item HappyCondition of conditionResponses of sk8

The first of these returns Fal se indicating no applicable condition response was found.
The second, returns { NoResponse} . Alist is returned because it is sometimes desirable
to associate more than one condition response with a condition.

We can change this behavior by inserting a condition response into the
condi ti onResponses of pl ay

set item HappyCondition of conditionResponses of play to -
{LogError Message}

Now when we raise the condition an error message appears in the message box. By
default the message simple prints out the name of the condi t i on. This can be changed
by providing awr i t eObj ect handler for the condition.

on witeCbject of ne (a HappyCondition), thestream rereadably
if rereadably then
do inherited
el se
witeObject "lI'mreally happy", theStream rereadably
end if
end witeQbject

SK8Script Condition System 5-159
©1994 Apple Computer, Inc. 5/7/95

5-160

CHAPTERS SK8Script

Creating Condition Responses

New condition responses are created in the usual way as children of the
condi ti onResponse object. Two handlers are used by the condition system.

The i nvoke handler actually implements the protocol.

The i nvokabl e handler ensures that this condition response knows how to handled the
raised condition which is stored in the global variable cur r ent Condi ti on. If the

i nvokabl e handler returns Fal se for some condition, then the system will continue
the search for a condition response. This is one of the reasons that a list of condition
responses is associated with a condition rather than just a single condition response.

Example:

new condi ti onResponse wi th obj ect Nanme " BeepResponse”
on invoke of ne (a BeepResponse)

beep
end i nvoke

-- invokable defaults to being True

set item HappyCondition of conditi onResponses of play to -
{ BeepResponse}

happy condition -- Now causes a beep.

Search Algorithm

Each executable [form] on the call stack indicates a “chain” of required projects
originating from the project to which the handler belongs.

If all the chains, when merged, make up a single chain then the condition response to
invoke is determined by searching up this chain from its deep end for a project whose
conditionResponses property has a match to the raised condition

Otherwise, if the chains are divergent, the “pivot project” is defined as the deepest
intersection of all the chains, i.e. the project below which the chains diverge. When
searching up a chain to find an applicable condition response, the traversal stops short of
the pivot project (since a condition response found in or above the pivot project would
be applicable in any project in any of the chains). The portion of a chain below the pivot
project is called the “exclusive chain”.

The condition response to invoke is determined by searching up the stack for a frame
whose project’s exclusive chain has a condition response applicable to the given
condition. If the entire call stack is searched without finding an applicable condition
response then, as a final resort, the chain from the pivot project up is searched. Since this
chain always ends with SK8, which has a condition response for Condition, this final
search is guaranteed to find an applicable response.

SK8Script Condition System
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

Other Features and Issues

This section discusses several issues that commonly arise for new SK8 users.

Syntactic Sugar

Observant SK8 programmers often notice that some of the words in SK8 do not have an
obvious functional role in some SK8 commands, but appear to simply make the
command more English-like. In some situations this is true and where possible SK8 does
not require such ‘syntactic sugar’. However, it is important not to over generalize and
assume that just because a word is not needed in one command that it is always
unnecessary.

Examples:
The following pairs of commands are equivalent:

get 10 is the same object as 5 + 5
get 10 is sane as 5 + 5

get every itemin the knownchildren of the rectangle
get every itemin knownchildren of rectangle

get 10 as a string
get 10 as string

get whether x is =toy
get x =y

However the following ‘commands’ are not equivalent:

get the Date "January 10, 1994" -- valid general object literal
get Date "January 10, 1994" -- call to a function called 'Date'
get "10" is alist -- Is "10" a child of List? Value is Fal se
"10" is list -- list("10"). Value is {"10"}

get every oval in contents of soneRect
every oval in contents of someRect -- An expression not a command

get whether every itemin {10,20,30} is < 20 -- False
get every itemin {10,20,30,40} is < 20 -- {True, False, False}

in vs. of

It is sometimes confusing when to use the terms ‘i n” and ‘of ’. There are two different
places this keyword gets used. One is in selection expressions. The other is the parameter
list of a form. In selection expressions the two words are precisely equivalent.

Other Features and Issues 5-161
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS SK8Script

Example:

(rectangle 1 of stage) is equal to (rectangle 1 in stage)

In parameter lists, on the other hand, ‘of ’ is one method for beginning the list of
positional parameters, whereas ‘i n’ is one of the special with-parameters.

Example:

sonmeFunc of 4,5 with border 300 in {10, 20, 30}

Message Box Results

When an expression is evaluated in the Message Box, SK8 attempts to provide a result
that uniquely describes the same value. For objects that have literal forms, the literal is
given. For named objects, the name is returned. If the object is unnamed, but can be
described using its creation relations, an appropriate selection expression is built. If none
of these expressions can be created, a brief description of the object will be given
enclosed in square braces, [] . The square braces indicate an unreadable form. Unreadable
forms are not valid SK8Script. Unreadable forms can actually appear any time the name
of an object that is otherwise undescribable is requested.

Examples:

In the following examples the result as it would appear in the Message Box appears as a

comment.
4 + 8 =12
new rectangl e with object Nanme "Speci al Rect" --Speci al Rect
new rectangle with container Stage -- Rectangle 1 in Stage
new rectangle -- [a child of Rectangl e]

5-162 Other Features and Issues

©1994 Apple Computer, Inc. 5/7/95

CHAPTER 6

Tutorial 2: SK8 as a Meta-Tool

Introduction

This tutorial will demonstrate some of the features discussed in the earlier chapters
which make SK8 such a powerful development environment. While following this
tutorial, you may find it instructive to refer back to the “Basic Concepts” and “Project
Builder Overview” chapters for more information. The aim of this tutorial will be to
emphasise the use of SK8 as a meta-tool, that is, as a tool for creating other tools.
Accordingly, the tutorial will be based around the creation of a tool kit which we will
then use to build real applications.

The class of applications our tool set will allow us to build can be characterised as
dynamic simulations. These are commonly used in science education and also in the field
of scientific visualization. They bring together a mathematical model of a process and an
animation engine which then allows the user to investigate the evolution of the process
under a range of conditions.

Of course, our hope is that by following this tutorial you will learnsome general skills
which they will be able to apply to your own problems. Dynamic simulations are just
convenient examples that allow us to introduce some of the key concepts behind SK8
and its approach to object-oriented programming.

6-163
©1994 Apple Computer, Inc. 5/7/95

6-164

CHAPTERG Tutorial 2: SK8 as a

[Gravitas

2.175E+4

Elapsed Time Time Step

Start| | 1130000 | 2000 In | Dutl

The figure shows the actual application we will build with our tool set. The picture
shows four satellites orbiting a planet. In fact, the objects represented are Jupiter and its
four largest moons, but in principle they could be any astronomical system - the program
works out orbits from initial conditions and Newton’s Laws of Motion, not from preset
data.

In this tutorial we will be using SK8 to build a set of tools that, in turn, make the
construction of such programs relatively straightforward.

Aims and Prerequisites

The broad aims of this tutorial are to:

n Demonstrate SK8 being used to create a set of tools. In other words, to show SK8'’s
power to be a meta tool.

n lllustrate a typical extended user interaction with SK8.
n Raise some of the issues arising from Object-Oriented Programming in SK8.

n Show that SK8’s support for both Direct Manipulation and Command Line styles of
interaction creates a powerful synergy.

n Point at further directions in which you may like to explore SK8 programming.

©1994 Apple Computer, Inc. 5/7/95

CHAPTERG Tutorial 2: SK8 as a

To follow this tutorial you should have some experience of scripting languages such as
HyperTalk or AppleScript and you should also know a few things about SK8. In
particular you should be familiar with:

n

The SK8 Project Builder and its major components: the Message Box, the Object
Editor, the Drawing Tools and the Project Overviewer.

The fact that SK8 has its own scripting language, SK8Script.

The basic Object-Oriented structure of a SK8 program: All parts (including visible
parts like windows and controls) of an application are objects which can send and
receive events generated by other objects, the user or the system.

The way objects respond to events by executing scripts called handlers, which may be
their own or which they may have inherited from other objects.

The fact that objects can have their own data items, known in SK8 as properties, and
that like handlers. these may also be their own or be inherited.

The way SK8 compartmentalizes the user’s work in projects which parcel groups of
objects together in a protected name space.

The Goal

Before starting we’ll take a slightly more detailed look at the simulation we will build
with the finished tool kit.

The application window has 'Recessed' drag bar. Light

bevelled edges and a drag bar Brown when this window

which sizes automatically is active. Gray when not.
[Gravitas '!

The viewer displaysitssize at
the four edges. Here it
represents an arearoughly 6
times the size of our Moon's
orbit. The viewer scales any
objectswe placeinit.

These buttons 'zoom' in and

Elapsed Time

Ste

— ,W,“’;‘ng I | Our out, shrinking and enlarging
o \ 4

the area of space the viewer

/ \ / represents

Clicking on this button | | The viewer updatesthe elapsed time
starts and stops the: for each step of the simulation . These
animation of the objects| | gauges display the elapsed time and

the interval between each step.

6-165

©1994 Apple Computer, Inc. 5/7/95

6-166

CHAPTERG6 Tutorial 2: SK8 as a

This program is a simplified version of Gravitas (Sellman, 1992), a dynamic simulation
designed to let students investigate the motion of gravitating bodies. Users can drop
new planets into the viewer, adjust their velocities and masses and watch their
trajectories evolve. The program computes the paths of the bodies using Newton’s Laws
of Motion and Gravity. The interesting point in the context of SK8 is that Gravitas is an
example of a class of possible simulations, all with a similar structure, based on the
animation of interesting objects. These simulations need a place to display the objects, a
method for generating the next step in the animation, controls for driving the animation
and setting object properties, and gauges to display the properties.

Gravitas deals with planets, but the central objects could just as well be charged
particles, or molecules, or organisms of some kind. We would have to change the
detailed working of the viewer, the controls and the animation method, but the overall
structure would stay pretty much the same. With this point in mind we will begin work
on our tool kit.

The SimKit Window Tool

The first thing we will construct is the window tool for our kit. After you have loaded
SK8 a dialog box will appear which will ask you to open an existing project or create a
new one. We will start with a new project so type SimKit (from Simulation Tool Kit) into
the text box and click the New button. SK8 creates a new project object and names it
SimKit. After loading SK8 and creating the new project you should have four windows
on the screen: at top left the Draw Tools, at top right the SimKit Object Editor. At bottom
left you should have the SimKit Overviewer and at bottom right the SimKit Message Box.

Creating a Window

In SK8 a window is simply a rectangle, so choose the Rectangle from the Draw Tools and
drag out a rectangle a few inches across on the screen. The notion of graphical containment
is at the heart of SK8 and we must now consider what this concept means for the
rectangle you have just drawn. It doesn’t actually appear to be contained by anything.
However, SK8 treats the entire screen as a container called the stage, and the new
rectangle is then said to be contained by the stage. In turn, it will become the container of
other things we will be building.

This new window is rather plain - a white interior with a black frame. We could now
choose to set its windowstyle property to make it look like one of the standard
Macintosh windows. However, to show that SK8 is not tied to a particular desktop ‘look
and feel’ we will be creating a simple one of our own.

Naming an Object

If you haven’t clicked the mouse anywhere else the new window should still be selected,
if not, select it now (use the selection tool from the Draw Tools palette) so that the
selection halo is surrounding it. Use the halo’s pop up menu and select Name... Type
SKWindow into the dialog box which appears.

©1994 Apple Computer, Inc. 5/7/95

CHAPTERG6 Tutorial 2: SK8 as a

Editing the SKWindow Object

If you hold the mouse button down on the name in SKWindow’s halo it will highlight.
You can drag the highlighted name into the Object Editor (actually, into the text box at
the top of the editor) which will fill up with the new window’s properties. Now, in the
Object Editor, find the window’s fillcolor property and set it to gray. SK8 defines a handy
range of grays between white and black and we’ll use one of medium density called
GrayTone50. Double click on the fillcolor property to edit it and type in GrayTone50.

Regions and Renderers

We still have a plain looking window but for our new look and feel we are going to
produce something with a simple 3-D appearance. To do this we have to take a quick
look at SK8’s imaging methods. First of all, it is important to understand that a graphic
object in SK8 defines one or more regions. The rectangle we just created defines two: its
fill region and its frame region (the black border). In most applications setting the color
of a graphic object is just a matter of setting all the pixels contained by that object to the
desired color. In SK8 we must think about the process a little differently. Setting a SK8
object’s fillcolor is best thought of as assigning the job of painting its fill region to a
special new object called a renderer.

Renderers come in many forms but what they all have in common is the ability take a
region of a graphic object and act on the pixels inside it. They can paint the region with a
solid color, or a pattern, a picture, a transparent color, or even a complex predefined
sketch. For our present purposes we are going to use an object called a bevel renderer,
which, as its name implies, makes a region look beveled.

t oprender er

| eftrenderer ri ghtrenderer

bot t onr ender

As the diagram shows, when acting on a rectangle a bevel renderer actually views the fill
region as four sub-regions and applies a renderer to each. By choosing the right shades
we can make the bevel appear to be illuminated from any angle and to be recessed or
raised. We’ll now build a couple of useful bevel renderers of our own.

Go to the SimKit Project Overviewer and press the New button. A dialog box will

appear, giving you the chance to create and name a new object. Type BevelRenderer into
the Object field and SKBevelln in the ObjectName field. Press the Create Button and your
new object will appear in the Project Overviewer.

SKBevelln’s default shading is unsuitable for our purposes but you can double click on it
in the Project Overviewer to bring up a specialized BevelRenderer editor. This will allow
us to set the colors for each region. Click on the color tab of the Left Renderer. A palette
will appear showing, among other colors, a range of grays. Find the gray called

6-167
©1994 Apple Computer, Inc. 5/7/95

6-168

ER 6 Tutorial 2: SKB8 as a
ool

GrayTone40 and click on OK. The Left Renderer of SKBevelln is now set to this shade.
Carry on in the same way, setting the Top Renderer also to GrayTone40, the Right
Renderer to GrayTone70 and the Bottom Renderer to GrayTone80. That completes
SKBevelln.

Our second renderer is going to have the opposite appearance so we will call it
SKBevelOut. Return to the Overviewer and press the New button again. This time type
BevelRenderer into the Obiject field and SKBevelOut into the ObjectName field. When
you press the Create button SKBevelOut will appear in the Overviewer where you can
double click on it to bring it into the Bevel Renderer editor.

In the same way as before set the Left Renderer of SKBevelOut to GrayTone70, the Top to
GrayTone80, the Right and the Bottom to GrayTone40. You can put away the Bevel
Renderer editor now, we are finished with it.

Incidentally, note that no new objects corresponding to SKBevelln or SKBevelOut have
actually appeared on the screen. This is because renderers are not themselves graphic
objects. We only see them in the Overviewer.

Now we can use our bevel objects but we won’t be assigning them to the SKWindow’s
fill region. Instead we will use one of them on the window’s frame. Return to the Object
Editor where SKWindow should still be the selected object with its properties and their
values displayed. Find and double click on the framecolor property. Type in SKBevelOut
and press the Set button. We also need to enlarge SKWindow’s frame to see the effect.
Double click on the framesize property and type in {2,2} and press the Set button.
Framesize has two components - width and height - hence the list of numbers.

This is what you should have on the screen. Now we’ll add a drag bar, so that we can
move the window around the screen. Our drag bar is going to be another rectangle, so
select the rectangle tool and drag out a long thin rectangle inside of SKWindow.

©1994 Apple Computer, Inc. 5/7/95

CHAPTERG6 Tutorial 2: SK8 as a

Tagging Component Objects

The shape of the new rectangle doesn’t matter now as we will be setting it precisely in a
moment. Using the menu on the new rectangle’s halo, select Name... and type in
SKDragBar. Next, choose the Tag... item on the halo menu. A dialog box will appear
asking you to “Tag” SKDragBar as a named part of its container, SKWindow. Simply type
in dragbar. Tags establish a relationship between a complex object and its components
and SKDragBar is going to be a component of SKWindow.

Now we can refer to SKDragBar in two ways - by its name or by its tag. Thus the two
statements:

set the framecol or of SKDragBar to SKBevelln
set the framecol or of SKW ndow s dragbar to SKBevelln

are equivalent. Type either one of them into the Message Box to set the dragbar’s
framecolor. Of course, you could also have done this in the Object Editor but sometimes
the Message Box is handy for a one off task.

We’ll explain the rationale behind tagging soon but first we’ll put some functionality into
SKDragBar and SKWindow. We can do this by defining some handlers on the objects.

Defining Handlers

First we’ll add a handler to SKDragBar. It should still be selected so just use the halo
menu again and select the New Handler... item. A dialog box will appear asking you to
name your new handler. A handy pop-up menu allows you to rapidly select one of SK8’s
standard events to handle. Use this and choose the mouseDown item. A handler editor
will now appear with the template of our new handler already installed and the cursor
positioned at the right place. Type a new line in so that the completed handler reads:

on nouseDown of me (a SKDragBar)
drag nmy container with live
end nouseDown

and pull down the Version menu. Choose the Activate Current Version item. If you
mouse down on the drag bar now you will find that it does indeed drag its container,
SKWindow, around the screen. The with live statement is what makes the movement of
the window immediate - if we had left it out a frame would be dragged and SKWindow
would snap to the new position upon release of the mouse.

The SKDragBar however, is not really in the appropriate place. We have to do something
about that. Again, a handler is the answer but this time we’ll define it on SKWindow so
that the SKDragBar is correctly positioned whenever the window is resized. One of
SK&8’s standard events is generated when something gets resized so we simply have to
supply a corresponding handler. Select SKWindow (Use Selection from the Draw Tools
and click the mouse on SKWindow) and choose New Handler... from the halo menu.
From the pop-up menu in the dialog box choose the resized item and a handler editor
will appear as before but with a template for the new event. Type in the following
SK8Script:

6-169
©1994 Apple Computer, Inc. 5/7/95

6-170

CHAPTERG6 Tutorial 2: SK8 as a

on resized of nme (a SKW ndow)
if ny dragbar is an object then
set {dx, dy} to ny franesize
set ny dragbar’s boundsrect to {dx,dy, my w dth-dx, dy+18}
end if
end resized

There are several features in this handler we should explain but first give it a try. Select
SKWindow again and use the halo’s selection dots to resize it. You should see
SKDragBar adjust itself to the correct size also.

An Explanation of the Resized Handler

Looking back at the handler, the first thing to note is the syntax of the opening line: on
resi zed of me (a SKW ndow) . The code is saying that this handler deals with
resized events for objects of the type SKWindow. At the moment we only have one object
of this type, the original itself, but we will soon be creating copies which will inherit this
same handler. The me in the definition carries the identity of the particular object
receiving the event. Incidentally, the resized event is sent by SK8 to an object just after its
size has been changed.

The next line is a check to see that the dragbar of this particular SKWindow actually
exists (we might delete it for some reason in which case our handler would crash
without this line).

We then use a couple of local variables (that is, variables which only exist briefly, while the
handler is executing) to hold the SKWindow’s framesize. As you can see, SK8Script
allows multiple assignments in one line such that:

set {name, height} to {“Lhotse”, 8516}

is equivalent to:

set name to “Lhotse”
set height to 8516

The local variables are then used to set the boundsrect property of the SKWindow’s
dragbar, that is the coordinates of the dragbar’s bounding rectangle. The coordinate
system for a graphic object is based on the top left corner of its container: the stage for
SKWindow, and SKWindow for SKDragBar. The boundsrect property has four
components: {left,top,right,bottom}. Thus:

set my dragbar’s boundsrect to {dx,dy, my w dth-dx, dy+18}

places SKDragBar just inside SKWindow’s frame, with height 18 pixels. By the way,
notice the use of the apostrophe to form the possessive in this line of code. It is a shorter
equivalent to:

set the boundsrect of ny dragbar to {dx,dy, ny w dth-dx, dy+18}

To improve SKWindow’s look we’ll set a few more of SKDragBar’s properties to new
values. As we are going to make a few changes, the Object Editor is a good place to do
this. Select SKDragBar and drag its name bar into the Object Editor. In the usual way, set

©1994 Apple Computer, Inc. 5/7/95

HAP
et

TERG6 Tutorial 2: SKB8 as a
a-Too

1

its fillcolor to GrayTone60, its text to “SimKit” and textfont to “Palatino”, its framesize to
{2,2}, its textsize to 14, its textstyle to {'bold'} and finally its textcolor to GrayTonel5.

You should now have a window which looks something like this:

- SmKe

Highlighting the Active Window

The last two handlers we will add to SKWindow will make it highlight itself when it is
the active window. This feature will complete our rudimentary new look and feel. Again,
we’ll use standard SK8 events, in this case activate and deactivate, which windows
receive when they are clicked on or when another window is clicked on. As before,
choose New Handler... from the halo menu and this time choose the activate item the
pop-up menu in the dialog box and type the following SK8Script into the handler editor:

on activate of ne (a SKW ndow)
if ny dragbar is an object then
set the fillcolor of ny dragbar to LightBrown
end if
end activate

Pull down the Version menu in the handler editor and choose Activate Current Version
to save the handler. Now pull down the Edit menu and choose New Handler... When the
dialog box appears choose the deactivate preset handler and type in:

on deactivate of ne (a SKW ndow)
if ny dragbar is an object then
set the fillcolor of ny dragbar to GrayTone60
end if
end deactivate

6-171
©1994 Apple Computer, Inc. 5/7/95

6-172

CHAPTERG6 Tutorial 2: SK8 as a

Pull down the Version menu in the handler editor and choose Activate Current Version.
Now when you click on SKWindow its dragbar will change color to indicate that it is the
selected window.

Creating the SKWindow Tool

We have a nice looking window now but how would we go about producing more than
one of them? We could type something like this:

new SKW ndow wi t h cont ai ner stage

and a new object, a perfect copy of SKWindow, would appear on the screen. However,
SK8 gives us a very simple way to turn any graphic object into a Direct Manipulation
tool. Select SKWindow and drag its name bar into the top part of the Draw Tools
window, by the Selection Tool. The new tool will appear, alongside a miniature
representation of itself.

It doesn’t make much sense to have the original SKWindow on the screen now. It has
become our prototype for the creation of others like it. To hide it we simply remove it
from the Stage. Type the following into the Message Box:

set SKW ndow s container to false

SKWindow will disappear from the screen but you can select the new tool and draw a
few SKWindows out on the stage. Give it a try. Actually, in Object-Oriented terminology,
the objects you are drawing are called children of SKWindow and we say that the
children inherit their properties and handlers from their parent, SKWindow.

Draw three or four child SKWindows out on the stage and click on them in turn. You’'ll
see our simple highlighting mechanism working.

Tags versus Named Objects

Now we should spend a moment to reflect on a detail of our programming that made it
possible for us to turn SKWindow into a tool. First of all, SK8 insists that all objects in a
project have different names. This is sensible, as SK8 would find it difficult to distinguish
between two objects with the same name. But every child of SKWindow needs to be able
to refer to their copy of SKDragBar by some reliable means. This is why we tagged
SKDragBar to be the dragbar of SKWindow. It allowed us to refer to my dragbar in each
of SKWindow’s three handlers almost as if it was a property. In each of the children of
SKWindow we just created, the expression “my dragbar” is resolved to mean the child’s
local copy of SKDragBar. Imagine that we had typed the following handlers instead (the
changes are in bold):

on resized of nme (a SKW ndow)
if SKDragBar is an object then
set {dx, dy} to ny franesize
set the boundsrect of SKDragBar to {dx,dy, ny wi dth-dx, dy+18}
end if
end resized

©1994 Apple Computer, Inc. 5/7/95

CHAPTERG6 Tutorial 2: SK8 as a

on activate of me (a SKW ndow)
i f SKDragBar then
set the fillcolor of SKDragBar to LightBrown
end if
end activate

on deactivate of ne (a SKW ndow)
i f SKDragBar then
set the fillcolor of SKDragBar to GrayTone60
end if
end deactivate

The explicit references to SKDragBar would work fine for SKWindowv itself because its
dragbar really is the object SKDragBar. But, our copies of SKWindow can’t have dragbars
called SKDragBar as well. In fact, their dragbar’s don’t have names at all. If we had
typed in the above text, resizing one of the children of SKWindow would lead to
SKDragBar being resized, not its own dragbar. The tags though, allow us to give an
unambiguous relative reference to an object, which will work for all SKWindow’s
children.

Properties versus Named Objects

The second feature of our programming which allowed us to turn SKWindow into a tool
was used in our very first handler;

on mouseDown of me (a SKDragBar)
drag ny container with live
end nouseDown

The key phrase here isny cont ai ner. The handler

on nmouseDown of me (a SKDragBar)
drag SKW ndow with |ive
end mouseDown

would have failed for SKWindow’s children just like the other handlers. The symbol
container is not a tag but a property. The reference avoids using an explicit object name
by using an existing property.

Using tags and properties in this way allows us to build objects that we can easily turn
into tools. In the common terminology of Object-Oriented Programming, it allows us to
do sub-classing, that is, create new instances of objects from class prototypes.

Now we move on to the construction of our next tool.

6-173
©1994 Apple Computer, Inc. 5/7/95

6-174

CHAPTERG Tutorial 2: SK8 as a

The SimKit Viewer Tool

The next tool we will build is a viewer for the objects at the center of the simulations we
intend to construct with our kit. The viewer will display the objects in a window which
can represent an arbitrarily large region of space and it will scale the objects correctly to
this space.

If you have been following the tutorial up to this point you will have three or four
SKWindows on your screen. Get rid of them for the time being by selecting them and
choosing Clear References. SK8 automatically reclaims the memory used up by
unreferenced objects so this is equivalent to deleting them. Pressing the delete key when
an object is selected accomplishes the same thing.

Using the Object Editor

Now, use the rectangle tool and draw out a three or four inch square on the screen. Drag
the new object’s name box into the top field of the SimKit Object Editor. The editor will
fill up with the square’s properties. Incidentally, this “drag and drop” method is the
Direct Manipulation equivalent of the Edit item on the halo menu. SK8 usually offers
more than one way to carry out an operation and you can choose the method you prefer.

Now name the new object: scroll the properties list down until you can see the
objectname property. Double click on it and type in SKViewer and press return. This is
equivalent to the halo’s Name... menu item that we used before.

Next, scroll the property list to fillcolor, double click as before and type Black. In the
same way set SKViewer’s framesize to {2,2}, and its framecolor to SKBevelln. You should
have something like this:

The viewer is black so that it will resemble outer space when it contains the planets we
will be building later.

Adding New Properties to Objects

So far in this tutorial, we have simply changed the values of properties (like framecolor
and boundsrect) that came built in with our newly hatched objects. We are now going to
add new properties to an object, SKViewer, to help us give it more functionality.

©1994 Apple Computer, Inc. 5/7/95

CHAPTERG6 Tutorial 2: SK8 as a

The Object Editor has a menu called Properties. Pull this down and choose the New
Property... item. A dialog box will appear allowing you to name the new property. Type
metersperpixel. Now repeat the process and add two more properties: timestep and
elapsedtime. We will see the purpose of these new properties later. For now we will just
set their values. In the same way you edited the values of the built in properties
framecolor and so on, find the new properties in the Object Editor’s list and set their
values. Set metersperpixel to 1, timestep also to 1, and elapsedtime to 0.

We could have done all this work on SKViewer from the halo menu and the message
box. However, it was useful practice as the Object Editor is convenient and quicker if
you know you are going to do several things to an object in quick succession.

Labels

The new property, metersperpixel, that we have added to SKViewer will be used to
define the size of the space that SKViewer represents: Its width and height in meters will
be its width and height in pixels times its metersperpixel value. It would be handy if we
could somehow display the size of the space at all times. To do this we’ll use a new kind
of object, called a label.

We will need four labels, one each for the x and y maxima and minima of our space.
We’ll start this work in the Message Box and illustrate a couple more features of
SK8Script along the way. Type:

new | abel with objectnane "SKXM n" w th container SKVi ewer
tagpart SKViewer, SKXMn, ‘xmn’

Previously we created new objects either inthe Overviewer or by using one of the Draw
Tools. Here we are using a third method - a command from the Message Box. We have
created a new label and set two of its properties in the creation line using the “with”
statement. In fact, you can set as many properties as you like this way. Secondly, we have
tagged SKXMin as the xmin of SKViewer (Note the order of the arguments to tagpart).
The other labels are created in the same way. Type:

new | abel with objectnane "SKXMax" w th contai ner SKVi ewer
tagpart SKVi ewer, SKXMax, ‘xmax’

new | abel with objectnane "SKYM n" with contai ner SKVi ewer
tagpart SKViewer, SKYMn, ‘ymn’

new | abel with objectnane "SKYMax" w th contai ner SKVi ewer
tagpart SKVi ewer, SKYMax, ‘ymax’

At the moment you won’t see any new objects in SKViewer because the default textcolor
for labels is Black! We can soon fix that, and learn a new trick on the way. Type {SKXMin,
SKYMin, SKXMax, SKYMax} into the edit box at the top of the Object Editor. We can
actually edit several objects at the same time! This makes a lot of sense whenever we
want to set a common property of a set of objects to the same value - which is exactly the
present situation. Of course, it makes less sense the more different the objects are.

Set the textfont to “Times”, the textsize to 10, and the textcolor to White.

6-175
©1994 Apple Computer, Inc. 5/7/95

6-176

CHAPTERG6 Tutorial 2: SK8 as a

Now you will see a label up at the top left of SKViewer. Actually, all four are there but
they are on top of each other. We will write some handlers to position them correctly.

Resized Revisited

The new labels are going to display the x and y values (in meters) of the edges of
SKViewer. The only time these values will change is if we resize SKViewer or if we
change the value of metersperpixel. We can handle the first possibility with a resized
handler defined on SKViewer. Type SKViewer into the Object Editor and choose New
Handler... from the Handlers menu. Choose a standard resized handler from the pop-up
menu in the dialog which appears and type in:

on resized of me (a SKVi ewer)
set npp to ny netersperpixe
set w2 to nmy width / 2
set h2 to nmy height / 2
set the text of ny xmin to -nmpp * w2
set the text of nmy ynin to -nmpp * h2
set the text of ny xmax to npp * w2
set the text of ny ymax to npp * h2
set nmy xmin's location to {my xmn's width / 2, h2}
set nmy ymn's location to {w2,ny height-ny ymn's height/2}
set nmy xmax’s location to {ny width-my xmax's w dth/2, h2}
set nmy ymax's location to {w2, nmy ymax's height}
end resized

Choose Activate Current Version from the handler editor’s Version menu then select
SKViewer and resize it. The labels should now all snap to the correct positions and show
the extent in meters of the space that SKViewer is representing.

The first three lines of the handler we just typed in set up three local variables. We did
this partly to make the rest of the code more readable. But local variables are also quicker
for SK8 to access than object properties so they can speed up a handler that makes
repeated use of the same properties. In this case the speed up is probably negligible, but
local variables are a good habit to get into.

We next set the text property of each of the labels to plus or minus half the size of the
space represented in meters. Finally, the handler sets the locations of the labels to
reasonable values.

Your SKViewer should look something like this:

©1994 Apple Computer, Inc. 5/7/95

CHAPTERG Tutorial 2: SK8 as a

At the beginning of this section we mentioned that the extent in meters of SKViewer can
also change if metersperpixel’s value is changed. We can arrange for the labels to update
on this event by defining a new kind of handler called a setter. Use the Object Editor’s
Handlers menu and select the New Handler... item again. This time we will not add a
standard handler but create a new one. Type set metersperpixel into the edit box and
press return. Type into the Handler Editor:

on set netersperpixel of me (a SKViewer) to newval ue
do inherited
set npp to ny netersperpixe
set w2 to ny width / 2
set h2 to nmy height / 2
set the text of nmy xmin to -nmpp * w2
set the text of nmy ymin to -nmpp * h2
set the text of ny xmax to npp * w2
set the text of ny ymax to npp * h2
end set metersperpixe

Choose Activate Current Version from the handler editor’s Version menu. This handler
will be invoked whenever we try to change the value of metersperpixel.

The first line of code, do inherited, ensures that metersperpixel actually does get set to
newValue by invoking the property setting mechanism SKViewer, like all objects,
inherited from its ancestors.

The next three lines do our customary thing with local variables with even less
justification than last time although it does make the code a little more readable. Finally,
we update the text of the labels. Obviously, there’s no need to reposition them this time.

You can try this handler out now by typing the following into the Message Box:

set SKViewer’'s netersperpixel to 2
The labels will all update. Be sure to set metersperpixel back to 1.

You may be wondering why we didn’t have to insert a do inherited into handlers we
defined previously. The reason is that in those cases we were defining handlers which

6-177

©1994 Apple Computer, Inc. 5/7/95

6-178

CHAPTERG6 Tutorial 2: SK8 as a

respond to a message from SK8 that something has been done - a window has been
resized or activated, or there has been a mouseDown on it. There was no work left for us
to do to complete the event, we simply wanted to do something of our own immediately
after the event. Our setter handler however is tinkering with the actual mechanism for
setting a property which SKViewer inherited from its ancestors. The do inherited makes
sure that the inherited mechanism gets done, that is, the value of metersperpixel gets set
to newValue, before our new code is run.

Making the SKViewer Tool

As before, we now want to turn our instance of SKViewer into a tool for constructing
others like it. Once again, select SKViewer and drag its name box into the top section of
the Draw Tools window. Then type the into the Message Box:

set SKViewer's container to false

and SKViewer will disappear from the stage.

Notice that, as with SKWindow, we used tags rather than explicit references to the label
objects SKXMax, SKXMin, SKYMax and SKYMin. Once again, this was akey feature
allowing us to turn SKViewer into a tool.

©1994 Apple Computer, Inc. 5/7/95

CHAPTERG6 Tutorial 2: SK8 as a

The SimKit Oval Tool

The next item we will build is an oval with some special functionality. It will be useful
when we come to build planet objects later in the tutorial, and could be the basis for
atoms, molecules and so on.

SK8 already has a basic oval tool in the Draw Tools Palette. We will be producing a
similar tool which creates our new, special ovals. We could go on and build similar tools
for other SK8 graphical objects like rectangles or polygons but we do not have the space
here. The principles of their construction would however be the same.

Our SimKit ovals, or SKOvals, will have some extra properties: an xsize and a ysize, and
xloc and a yloc, to match the meter based coordinate system we have given to SKViewer.
We will also give SKOvals velocity components in the x and y directions, xvel and yvel.
These will be used when we come to animate the new objects.

We’ll also need to give SKOvals some extra handlers: We will want them to set their
meter based coordinates automatically when they are drawn or moved in a SKViewer.

First, we create the new object. Type into the Message Box:

new oval with objectname “SKOval” with container stage

A new oval will appear at the top left of the stage. Use the halo to drag it to a convenient
position.

Adding the Properties

We’re going to add and set quite a few properties so we will work from the Message Box
as before. Type in:

addProperty SKOval, 'xsize'
addProperty SKOval, 'ysize'
addProperty SKOval, 'xloc'
addProperty SKOval, 'yl oc'
addProperty SKOval, 'xvel'
addProperty SKOval, 'yvel'

set SKOval's xsize to 1
set SKOval's ysize to 1
set SKOval's xloc to O
set SKOval's yloc to O
set SKOval's xvel to 1
set SKOval's yvel to 1

Adding the SKOval Handlers

We want a handler which will automatically set the meter based properties of a new
SKOval when it is drawn in a SKViewer. Once again, the best event for the job is our
friend resized. Pull down SKOval’s halo menu and select New Handler.... Choose the
resized standard handler again and type in:

6-179
©1994 Apple Computer, Inc. 5/7/95

6-180

CHAPTERG6 Tutorial 2: SK8 as a

on resized of ne (a SKOval)
set mycon to ny contai ner
if the properties of nmycon contains ‘netersperpixel’ then
set npp to mycon's metersperpixe
set nmy xloc to (nmy h - mycon's width / 2) * npp
set ny yloc to (nmycon's height / 2 - ny v) * npp
set ny xsize to ny width * npp
set ny ysize to ny height * nmpp
end if
end resized

Choose Activate Current Version from the Version menu. This handler checks first to see
if it is contained by an object with the metersperpixel property (only SKViewer has this
at the moment but we might create other viewers in the future). If it is not it does
nothing but if it is then SKOval calculates its meter based property values from its
height, width and location within its container (actually, as well as location we are using
the separate horizontal and vertical pixel based values h and v). Unless you are
particularly interested, don’t worry about understanding the scaling calculations in the
above handler. You can always come back to them after you have got the whole package
working.

The second handler we will add allows us to drag SKOvals around in an SKViewer,
keeping their meter based coordinates up to date. We’ll use the mouseDown event again
so select New Handler... from the halo. Choose the mouseDown standard handler and
type in:

on nmouseDown of nme (a SKOval)
set {oldh, oldv} to nmy |ocation
set mycon to ny contai ner
if the properties of nmycon contains ‘nmnetersperpixel’ then
drag ne with live
set npp to nycon's netersperpixel
set my xloc to nmy xloc + (my h - oldh) * npp
set ny yloc to ny yloc - (my v - oldv) * npp
end if
end mouseDown

First of all, this handler saves the SKOval’s current h and v. Then it checks to see if the
SKOval’s container has the metersperpixel property. If it has it lets the SKOval be
dragged by the mouse. When the mouse button goes up it calculates the increments to
the meter based coordinates from the increments to its h and v within its container.

The last handler we have to add to SKOval is almost an inverse of the resized handler.
That is, it takes the meter based properties of a SKOval and it works out the
corresponding boundsrect for it (Incidentally, boundsrect, is the fundamental pixel based
property of graphic objects - location, h, v, height and width are all virtual properties
which are calculated from the boundsrect). Pull down SKOval’s halo menu and select
New Handler.... We’ll call the new handler scaletoviewer, so type that name into the
dialog box and click the create button, then type the following code into the handler
editor:

©1994 Apple Computer, Inc. 5/7/95

Tutorial 2: SK8 as a

on scal etovi ewer of ne (a SKOval)
set mycon to ny contai ner

if the properties of mycon contains ‘netersperpixel’

set ox to nycon's width / 2
set oy to mycon's height / 2
net er sper pi xel

set npp to mycon's
set x| to ox + (ny
set yt to oy - (ny
set xr to ox + (ny
set yb to oy - (ny
if xr - xI is less
if yb - yt is less

x| oc
yl oc
x|l oc
yl oc
t han
t han

- (ny xsize
+ (nmy ysize
+ (my xsize
- (ny ysize
1 then set xr
1 then set yb

~ O~~~

set ny boundsrect to {xl,yt,xr,yb}

end if
end scal et ovi ewer

Choose Activate Current Version from the Version menu.

After checking that it is contained by an SKViewer (or at least something with the
metersperpixel property) this handler works out the corners of the boundsrect for its

2)) /| npp
2)) / npp
2)) |/ npp
2)) /| npp
to xI + 1
to yt + 1

t hen

SKOval. We need to work out the center of the containing SKViewer (ox and oy) because

we are using it as the origin of the meter based coordinates.

We are finished with SKOval for now so we can add it to the Draw Tools as before. In the

usual way, select SKOval, drag and drop its name into the top section of the tools

window, and then set its container to false.

©1994 Apple Computer, Inc. 5/7/95

6-181

6-182

CHAPTERG6 Tutorial 2: SK8 as a

Making Things Move

We have done almost all the work needed to display SKOvals in SKViewers and
maintain the meter based coordinate system. The reason for all this effort is that the new
coordinate system will allow us to represent spaces of widely differing sizes: simply by
altering metersperpixel we’ll be able to go from atomic to cosmic scales. This feature will
give SimKit a valuable generality.

Now, simply by modifying two existing handlers and adding two new ones we will give
SKViewers the ability to animate the objects we place in them.

Making SKViewer Re-scale SKOvals

We made sure that SKOvals update their meter based properties from their pixel based
counterparts by giving them resized and mouseDown handlers. We also made sure that
their pixel based boundsrect can be recomputed from their meter based properties using
the scaletoviewer handler. However, the two sets of properties could still be put out of
step by changes to the size or metersperpixel of SKViewer. We can quickly put that right.
Note that SK8 allows us to edit the handlers (or properties) of objects that are in the
Draw Tools Palette as SKViewer and SKOval now are.

Find the handler editor for set metersperpixel of SKViewer. You probably have quite a
few handler editors open at the moment but click on the one you want and bring it to the
front. Add the extra line (last but one) shown below and Activate Current Version.

on set netersperpixel of ne (a SKViewer) to newval ue
do inherited
set npp to ny netersperpixel
set W2 to nmy width / 2
set h2 to nmy height / 2
set my xmin's text to -nmpp * w2
set my ymn's text to -nmpp * h2
set ny xmax's text to npp * w2
set nmy ymax’'s text to npp * h2
scal etovi ewer every SKOval in ne
end set netersperpixel

To cope with changes in the size of SKViewer we need to modify its resized handler.
Make sure you get the correct one - we have defined resized handlers on more than one
object. Add the same single line as above to the end of the handler so that it reads:

on resized of nme (a SKVi ewer)
set npp to ny netersperpixel

set w2 to my width / 2

set h2 to ny height / 2

set nmy xmin's text to -mpp * w2

set my ymn's text to -nmpp * h2

set ny xmax's text to nmpp * w2

set ny ymax's text to npp * h2

set nmy xmin's text to {nmy xmn's width / 2, h2}

©1994 Apple Computer, Inc. 5/7/95

CHAPTERG6 Tutorial 2: SK8 as a

set ny ymin s location to {w2,nmy height-nmy ymn's height/2}
set nmy xmax's location to {nmy wi dth-nmy xmax's wi dth/2, h2}
set ny ymax's location to {w2, nmy ynax's height}
scal et ovi ewer every SKOval in ne

end resized

Now Activate Current Version to save the modified handler.

Teaching SKOvals How to Move

Now for the new handlers. The first one will give SKOvals the ability to move
themselves to a new position. All SK8 graphic objects can already be moved without the
programmer needing to deal with erasing them in the old position and redrawing in the
new. But our new method of moving SKOvals is based on their velocity (remember that
we gave SKOvals xvel and yvel properties) and a time increment. To add a handler to
SKOval, which is now in the Draw Tools Palette, go to the Object Editor and type
SKOval into the text box. The Editor will fill up with SKOval’s details and you will be
able to pull down the Handlers menu and choose the New Handler... item. Type
updateposition into the dialog box and click on the Create button. Type in the following
code:

on updat eposition of nme (a SKOval)
set mycon to ny contai ner
if the properties of mycon contains ‘tinestep’ then
set dt to nmy container's tinestep
set ny xloc to nmy xloc + (my xvel * dt)
set nmy yloc to my yloc + (ny yvel * dt)
scal et ovi ewer ne
end if
end updat eposi tion

Choose Activate Current Version to save the new handler. The workings of
updateposition are quite simple. It checks to see whether its container has a property
called timestep (and remember, we added this to SKViewer back at the beginning). If it
does then its value is multiplied by the SKOval’s velocity components to work out the
meter based position increments. These are added to the existing x and y positions.

Telling SKOvals to Move

We are going to give the task of running the animation to SKViewer. It will store the
timestep, send messages to SKOvals at regular intervals telling them to updateposition,
and it will keep track of the elapsedtime. This job needs us to define a new handler on
SKViewer.

Go to the Object Editor and type SKViewer into the text box. The Editor will fill with
SKViewer’s details. Pull down the Handlers menu and choose the New Handler... item
(by now, this routine should be familiar to you!). Once again we are going to define a
standard handler. When the dialog box appears use the pop up menu and choose the
idle item. Type in the following code

6-183
©1994 Apple Computer, Inc. 5/7/95

6-184

CHAPTERG6 Tutorial 2: SK8 as a

on idle of nme (a SKVi ewer)

[ock ne

updat epositi on every SKOval in ne

unl ock ne

set nmy elapsedtine to ny elapsedtime + ny timestep
end idle

and Activate Current Version. SK8 sends idle events when no other processing is going
on to any object that asks for them. The lock me statement stalls all graphical updating of
SKViewer until after the updateposition message has been sent to all the SKOvals in its
contents. The unlock me statement allows graphical updating to proceed, making it look
as though all the SKOvals are moving at the same time. Finally, the SKViewer updates its
record of elapsedtime.

All the ground work is done now. We are ready to start making things work. In the next
section we’ll build our first dynamic simulation.

But We Have Only Done Ovals...

It’s true, we have only prepared our own SimKit versions of Ovals. That’s all we have
space for here. However, you could use the same techniques for other objects, such as
rectangles and polygons.

©1994 Apple Computer, Inc. 5/7/95

CHAPTERG6 Tutorial 2: SK8 as a

Using the Tool Kit

We can now give our tool kit a first try out. Make some space on the screen by closing all
the Handler Editors.

Building a Basic Simulation

Select the SKWindow tool and drag out a new window about three or four inches square.
Now select the SKViewer tool and drag out a new viewer inside the new SKWindow.
Finally, select the SKOval tool and draw a small SKOval inside the new viewer. Try to
produce something a little like the figure below. Deselect the new SKOval by clicking the
mouse on either of the other objects.

SimKit

109.5

The objects you have just drawn are instances of the tools you used to draw them. In
SK8Script we say they are in the knownchildren of the tool objects. Thus the window is
one of SKWindow’s knownchildren, the viewer is one of SKViewer’s knownchildren,
and so on.

Try out the instance of SKOval’s mouseDown handler. Hold the mouse down on the oval
and drag it around. Notice that the oval is clipped to its container, the viewer, if you
move the mouse outside the viewer’s frame.

However, nothing is moving of its own accord yet. This is because we have not told SK8
that the viewer wants to be sent idle events. We do this by setting the viewer’s wantsidle
property to true. To make this easier we will give the new window a name and then tag
the viewer inside it.

Select the window (choose the Select Tool and click somewhere in the gray area of the
window), then pull down the halo menu and choose the Name... item. Type in
SKSimWin and press return. Now we wish to select the viewer so that we can tag it.
However, don’t deselect SKSimWin but instead press the down arrow key on your
keyboard.

6-185
©1994 Apple Computer, Inc. 5/7/95

6-186

CHAPTERG6 Tutorial 2: SK8 as a

When a complex object is selected, the arrow keys allow you to move around the
containment hierarchy. In this case we have moved down a level into the layer
containing the window’s dragbar and the new viewer. If you now press either the left or
right arrow key you will select each of these objects. Select the viewer. Now you can
press the down arrow once more and move around the labels and the oval.

Come back up to the viewer with the up arrow key and choose Tag... from its halo menu.
Type in viewer and press return. The instance of SKViewer has become the viewer of
SKSimWin and is now easy for us to refer to in SK8Script. For example, in the Message
Box, type:

set the wantsidle of SKSimiWn's viewer to true

The oval will start to move. It moves up and right because we set SKOval’s default
values for xvel and yvel to 1. Notice that you can still drag the oval around with the
mouse (providing it didn’t move off the screen before you got to it!)

Now type:

set the wantsidle of SKSSmWn's viewer to fal se

and the animation will stop. We have built our first simple (very simple) simulation of a
moving object.

Using the SimKit Overviewer

Don’t worry if the oval moved out of sight. To find it we can make use of the SimKit
Overviewer again. The Overviewer is useful for getting references to objects we can’t see
(either because they are off the screen or because they are not graphical objects, such as
Renderers) or whose name we do not know. Even if you haven’t lost the oval, click on
the All Objects button so that the list box fills with a host of items.

You are looking for SKOval 1 in the viewer of SKSimWin, although probably not all of
the name will be visible. As usual, if you hold the mouse down on this expression in the
list box it will highlight and show a gray frame indicating that you can now drag the
reference and drop it into the name box of the Object Editor. Do this and scroll the Object
Editor’s property list down to xloc and yloc. Set them both to 0. Then type into the
Message Box:

scal etoviewer SKOval 1 in the viewer of SKSi mWn

The oval will immediately move to the center of the viewer.

The Need for Controls

Controlling the animation by typing commands into the Message Box as we did above is
rather clumsy. It would be better if we could switch it on and off with a button. In fact,
it’s easy to imagine that buttons will come in useful for many interface requirements so
in the next section we will make an SKButton prototype and add it to our tool kit.

©1994 Apple Computer, Inc. 5/7/95

CHAPTERG6 Tutorial 2: SK8 as a

The SimKit Button Tool

Our SimKit Button tool will be quite a simple object, based on Rectangle. We'll create it
and set its properties from the Object Editor.

Creating SKButton

We start with a new rectangle on the stage. Type into the Object Editor:

new Rectangl e with objectnane “SKButton” w th container Stage

Notice that you can even create new objects in the Object Editor. Now set the following
properties of SKButton one by one: set the size to {50,20}, the fillcolor to GrayTone50, the
framesize to {2,2} and the framecolor to SKBevelOut.

We’ve given the SKButton a simple 3-D look. Carry on typing: set the textfont of
SKButton to Palatino, the textsize to 14, the textstyle to {'bold’}, the textcolor to DarkGray
and the text to "SKButton"

That completes its appearance but we also want SKButton to highlight when we click on
it, so type:

set the autohighlight of SKButton to true

But the default rectangle highlighting behaviour is to invert it. We can override this and
make the button look pressed in. First type:

set the inverts of SKButton to fal se

Now we’ll add our own code for handling the highlighting. We’ll set SKButton’s
framecolor to SKBevelln when the highlight is true.

on set highlight of ne (a SKButton) to newval ue
do inherited
i f newval ue then
set nmy franmecolor to SKBevelln
el se
set nmy framecol or to SKBevel Qut
end if
end set highlight

That’s SKButton defined. Add it to the Draw Tools as before by dragging its name into
the Draw Tools, then set its container to false.

Using SKButton

Now you can create a button to turn the animation on and off. Start by using the
SKButton tool to draw a new button in SKSimWin. Make sure your button reallyis in
SKSimWin, you may have to stretch it a little (Select it and use the halo’s resize dots) to
give yourself room.

After you have drawn the new instance of SKButton, pull down its halo menu and Name
it SKStartStopButton. Now choose the New Handler... item. When the handler dialog

6-187
©1994 Apple Computer, Inc. 5/7/95

6-188

CHAPTERG6 Tutorial 2: SK8 as a

box comes up use the pop up menu and choose the standard click handler. This is the
handler that deals with a mouse click on a graphic object. Type into the handler editor:

on click of me (a SKStart StopButton)
if (ny container’s viewer)'s wantsidle then
set (my container's viewer)'s wantsidle to fal se
set ny text to "Start"
el se
set (my container's viewer)'s wantsidle to true
set ny text to "Stop"
end if
end click

Use the Handler Menu to Activate Current Version and try it out.

SimKit

The handler checks to see if its container’s wantsidle is true (which is why it is important
that its container is SKSimWin). If it is asking for idle events then the next two lines tell it
to stop doing so and set the text of the button to “Start”. Otherwise, its wantsidle is set to
true (and the animation starts) and the text is set to “Stop”.

More SKButtons and Using ‘its”

We’ll create a couple more buttons now, one to magnify the region represented by the
viewer, the other to shrink it. This turns out to be easy to do. Use the SKButton tool to
draw two buttons like those in the diagram below. Select them in turn and Name one
SKZoomlInButton, the other SKZoomOutButton. In the Message Box type:

set the text of SKzZoom nButton to “In”
set the text of SKZoonfutButton to “CQut”

©1994 Apple Computer, Inc. 5/7/95

CHAPTERG6 Tutorial 2: SK8 as a

Now define a Click handler on each (Use the halo menu’s New Handler... item, and don't
forget to Activate Current Versions):

on click of me (a SKZoom nButton)

set myCon to ny container's viewer

set myCon's netersperpixel to its nmetersperpixel / 2
end click

on click of me (a SKZoomQut Butt on)

set myCon to nmy container's viewer

set myCon's netersperpixel to its nmetersperpixel * 2
end click

This is what you should have now. Try it all out.

The two click handlers work by altering the viewer’s metersperpixel. All the
redisplaying of the oval and the labels is taken care of by the viewer’s set metersperpixel
handler. Notice how SK8Script allows you to use the provisional form of its to refer back
to an object you have previously referenced in a line of code. This feature can make
scripts more readable because it makes it clear that the code is refering to just one object.
When the references to objects are complex (and they can become much more complex
than our example) this can be difficult to see at a glance.

6-189
©1994 Apple Computer, Inc. 5/7/95

6-190

CHAPTERG6 Tutorial 2: SK8 as a

The SimKit Gauge Tool

Another useful tool for our kit would be a gauge for displaying a named quantity. We
could use such a device to display SKViewer’s timestep or elapsedtime. We’ll build the
gauge tool on the stage and then pop it into the Draw Tools before using it in SKSimWin.

Begin by selecting the Rectangle tool and drawing out a rectangle about an inch long and
half an inch high. Use the Name... halo menu item and call it SKGauge. Then draw
another rectangle just inside the first, name it SKGaugeValue and then Tag it as the
valubox of SKGauge.

We will set the graphical properties for these two new objects from the Message Box.
Type SKGauge into the Object Editor and set the following property values: set the
fillcolor to GrayTone50, the framesize to {0,0}, the text to “SKGauge”, the textfont to
Palatino, the textsize to 9, the textstyle to {*bold’}, and the textlocation to ‘topcenter’.

A few points here deserve explanation. We have set SKGauge’s framesize to zero in both
directions, which is the same as telling it not to have a frame. We set the style of its text
to bold - the {*bold’} syntax arises because we may wish to set a compound style and
SK8Script allows us to do this in a list (signified by curly braces) each item of which must
be a symbol (signified by single quotes). Thus we could use a textstyle such as {*bold’,
‘outline’, ‘italic’} but we will resist the temptation. Finally we have changed its
textlocation to ‘topcenter’ (another symbol) from the default position, ‘center’. Now
we’ll set up SKGaugeValue. As before, type its name into the Object Editor and set the
following property values: set the fillcolor to GrayTone50, the framesize to {1,1}, the
framecolor to SKBevelln, the text to 0, the textfont to Palatino, and the textsize to 9.

The plan for SKGauges is that we can set their text and their valuebox’s text to show the
name and value of the property they are displaying. We’ll make sure the valuebox
always fills the bottom half of the gauge by giving SKGauge a resized handler. Select the
SKGauge and choose the halo menu’s New Handler... item. Choose the standard resized
handler and type in:

on resized of ne (a SKGauge)
set ny val uebox’ s boundsrect to {0, ny height/2, hsize, ny height}
end resized

We’ll also make sure that gauges don’t go below a certain size. This is done not by
setting properties but by defining another handler on SKGauge. This time call the
handler minimumsize. Its definition should be:

on mni nunsi ze of nme (a SKGauge)
return {50, 25}
end resized

SK8 uses this handler internally to make sure an object’s size never gets set smaller than
the value it returns. Now we can put SKGauge into the Draw Tools. Once again, set its
prototype to true, drag its name into the Library Editor, then set its container to false.

Use the new tool to draw a couple of gauges inside SKSimWin as shown below:

©1994 Apple Computer, Inc. 5/7/95

CHAPTERG6 Tutorial 2: SK8 as a

SimKit

Select each in turn (make sure you are selecting the gauge and not just its valuebox) and
Tag one of them as the timestepgauge of SKSimWin, and the other as the
elapsedtimegauge of SKSimWin.

You can set their texts quite easily now from the Message Box. Type:

set the text of SKSimWn's tinestepgauge to “Tine Step”
set the text of SKSimWn's el apsedti negauge to “Total Tine”

Making the Gauges Update

There is nothing at present to make the values of these gauges update when the values of
the quantities they represent change. To fix this we once again use set handlers. The
actual properties timestep and elapsedtime belong to SKSimWin’s viewer and so it is on
that object that we should define the setters. Of course, that means we now have to name
this instance of SKViewer so select the viewer, choose Name... and call it SKSWViewer.
Then choose New Handler... and type set timestep into the dialog box. When the
Handler Editor appears type in:

on set tinestep of me (a SKSWi ewer) to newal ue
do inherited
set ((ny container's tinmestepgauge)'s valuebox)’'s text to
newval ue

end set tinmestep

Repeat the process for set elapsedtime:

on set elapsedtine of ne (a SKSWiewer) to newval ue
do inherited
set ((ny container's el apsedti negauge)'s val uebox)’s text to

6-191
©1994 Apple Computer, Inc. 5/7/95

CHAPTERG6 Tutorial 2: SK8 as a

newval ue
end set el apsedtinme
Don't forget to use the Handler Menu to Activate Current Version for both the handlers.

If you now type into the Message Box

set SKSW/iewer’'s tinestep to 1

the value in the Time Step gauge should update. Press the Start button and the Total
Time gauge will display the value of elapsedtime.

6-192
©1994 Apple Computer, Inc. 5/7/95

CHAPTERG6 Tutorial 2: SK8 as a

Creating a Simulation Tool

The object we have built is one important step short of being a useful simulation: the
objects we place in the viewer (SKOvals) have a completely uninteresting behaviour. If
they could be made to feel a force or to interact with other objects in the viewer then we
would have a system worth investigating. However, this shortcoming is also an
opportunity: we can turn what we have now into a high level tool for producing
simulation frameworks. Draw one of these out on the screen, add some interesting
behaviour and voila, we have something of value. We’ll do a little bit of tidying up and
create this high level tool then finish the tutorial by using it to produce a gravitational
simulation.

Tidying Up

First, get rid of the SKOval. We want the tool to start with an empty viewer. Select it and
press the delete key. Next, change the text of SKSimWin’s dragbar to “SKSimWwin”. Type
into the Message Box:

set the text of SKSinWn’s dragbar to “SKSi n\W n”

Sensible Layout for SKSimWin

We’ll change the code of SKSimWin’s resized handler so that it positions its component
objects in a sensible way when we draw out a new one or resize one that already exists.
You may prefer to work out your own layout but we provide an example any way:

on resized of ne (a SKSi mWn)
set {dx, dy} to ny franesize
set {newWN newH to ny size
set mny dragbar’s boundsrect to {dx, dy, neww dx, dy+18}
set ny viewer’s boundsrect to {10, 30, newV 10, newH 40}
set ny startstopbutton’s boundsrect to {10, newH 30, 60, newH 10}
set ny tinestepgauge’ s boundsrect to {70, newH 32, 120, newH 8}
set ny el apsedti negauge’ s boundsrect to
{130, newH 32, 180, newH 8}
set my zoom nbutton’s boundsrect to
{newW 72, newH 30, newW 42, newH 10}
set ny zoonoutbutton’s boundsrecT to
{ newW 40, newH 30, newwW 10, newH 10}
end resized

Use the Handler Menu to Activate Current \Version.

Just as we did with the gauge, it is a good idea to set SKSimWin’s minimum size to a

value which leaves room for all the components. The following handler works for the
layout we specified above. Select SKSimWin again. Choose New Handler..., and type

minimumsize into the dialog box. When the Handler Editor appears type in:

6-193
©1994 Apple Computer, Inc. 5/7/95

6-194

CHAPTERG6 Tutorial 2: SK8 as a

on mni munsi ze of nme (a SKSi nW n)
return {260, 250}
end m ni munsi ze

Now you can select SKSimWin and resize it with the halo’s dots. Make it as small as you
can. You should have something like this:

SimKit

Creating the SKSimWin Tool

Finally, we can turn SKSimWin into a tool. As before, drag its name into the top part of
the Draw Tools, then set its container to false.

We are ready to begin creating a simulation of real interest. Before moving on, close all
the handler editors you have on the screen then use SK8’s File menu to Save SimKit.

©1994 Apple Computer, Inc. 5/7/95

CHAPTERG6 Tutorial 2: SK8 as a

Building Planets and SKGravitas

Gravitas is an educational dynamic simulation which was built to allow students to
investigate the behaviour of gravitating objects. The program has direct manipulation
tools with which users can create planets and stars. These may be positioned and set in
motion and the user can observe their trajectories as they interact with each other under
the force of gravity in two dimensions.

We will be building SKGravitas, a simple version of this application using the tools we
have built in the tutorial. To do this we need to modify just two objects: we must create a
child of SKOval that has the added property of mass, and we must augment SKViewer’s
animation method so that it can apply the gravitational force to these new ovals.

Creating the SKGravitas project

Pull down SK8'’s File menu and choose the New... item to open a new project. A dialog
box will appear asking you whether you want this new project to be a sub-project of SK8
or SimKit. Choose SimK:it - our new project is going to need access to the objects we have
defined so far. We are however, free to define any number of independent sub-projects in
SimKit. This means we will be able to have different kinds of simulation running
independently under SimKit if we like. Type SKGravitas into the Objectname field of the
file dialog box and press the New button.

Creating Planets

Use the SKOval tool to draw out a small circular object on the stage. Make it about half
an inch in diameter and name the new object Planet. Drag Planet’s name bar over into
the Object Editor’s name box and use the Properties menu’s New Property... item. Type
mass into the dialog box which appears then select this property in the Object Editor and
set its value to 0. Next, select Planet’s framesize property and set it to {0,0}. Finally, select
Planet’s fillcolor property and set it to metal2. This last adjustment gives Planet a simple
(you might say ‘bogus’) 3-D look.

Now we can turn Planet into a tool. As before, drag its name into the Draw Tools, then
set its container to false.

Creating Gravitas

Now use the SKSimWin tool to draw out a new simulation window on the stage. Use the
Name... item of the halo menu and call it Gravitas. Also, select the viewer inside Gravitas
and name it GravitasViewer. While it is still selected, choose the halo menu’s New
Handler... item. Pick the standard idle handler and type in:

on idl e of me (a GavitasVi ener)
set planetlist to every planet in ne
if planetlist is not enpty then
repeat with thisPlanet in planetlist
repeat with otherPlanet in planetlist
if otherPlanet is not the same object as thisPl anet then
set rx to (otherP anet's xloc) - (thisPlanet's xloc)
set ry to (otherP anet's yloc) - (thisPlanet's yloc)

6-195
©1994 Apple Computer, Inc. 5/7/95

6-196

CHAPTERG6 Tutorial 2: SK8 as a

set modr to sqgrt((rx * rx) + (ry * ry))
if modr < (thisPlanet's xsize + otherPl anet's xsize) / 2 then
beep
set the wantsidle of ne to fal se
set the text of ny container’s startstopbutton to “Start”
end if
set F to 6.67e-11*(ot herPl anet's nass)/ (nodr*nodr *nodr)
set thisPlanet's xvel to thisPl anet's xvel +rx*F * ny timestep
set thisPlanet's yvel to thisPlanet's yvel +ry*F * ny timestep
end if
end repeat
end repeat
end if
do inherited
end idle

Use the Handler Menu to Activate Current Version

We have printed this handler in a small font so that the long lines fit across the page.
This increases readability, hopefully not at too much cost to your eyesight. What the
handler actually does can be explained in words: GravitasViewer builds a list of all its
planets. Then for each one of these it sums the changes in velocity the current planet will
experience due to the gravitational force of each of the others. While it is doing this it
also checks for collisions. If a collision occurs the handler stops. Finally, the handler calls
its inherited version which updates the positions of all the planets and sets the
elapsedtime.

You don’t have to worry about understanding this handler thoroughly now. However, it
could be a useful model if you decide to build a simulation of your own with different
behavior.

That completes the work for SKGravitas. All we need now is a few realistic planets. We
will create the objects shown at the beginning of the tutorial, that is, Jupiter and its four
principal moons (it has several other much smaller satellites).

Creating Jupiter and its Moons

We could use the Planet tool, draw five objects in GravitasViewer and then set their
properties in the Object Editor. However, this would be a laborious and error prone
method. Equally laborious, but less error prone is to create the objects and set their
properties in two special handlers which you can check and correct. Select SKGravitas
and choose New Handler... from the halo menu. Call the first handler
createjupiterandmoons and type in:

on createjupi terandmoons of ne (a SKG avitas)
set ny viewer's netersperpixel to 1.5e7
new Pl anet with objectnane "Jupiter” with contai ner G avitasVi ener
new Pl anet with objectname "lo" with contai ner G avitasVi ewer
new Pl anet with objectnane "Europa" with contai ner G avitasVi ener
new Pl anet with objectnane "Ganymede" with container GavitasVi ewer
new Pl anet with objectname "Callisto" with container GavitasVi ener
end creat ej upi t er andnoons

©1994 Apple Computer, Inc. 5/7/95

CHAPTERG6 Tutorial 2: SK8 as a

Now define a second handler called setupjupiterandmoons. Type:

on setupj upiterandnmoons of me (a SKGravitas)
set the mass of Jupiter to 1.9e27
set the xsize of Jupiter to 1.428e8
set the ysize of Jupiter to 1.428e8
set the xloc of Jupiter to O
set the yloc of Jupiter to O
set the mass of lo to 8.89e22
set the xsize of lo to 7.26e6
set the ysize of lo to 7.26e6
set the xloc of loto O
set the yloc of o to -4.25e8
set the xvel of lo to -17348
set the mass of Europa to 2.27e22
set the xsize of Europa to 6.28e6
set the ysize of Europa to 6.28e6
set the xloc of Europa to O
set the yloc of Europa to 6.66e8
set the xvel of Europa to 13741
set the mass of Ganynede to 1.48e23
set the xsize of Ganynede to 1.05e7
set the ysize of Ganynede to 1.05e7
set the xloc of Ganynede to O
set the yloc of Ganynede to 1.07e9
set the xvel of Ganynede to 10875
set the mass of Callisto to 1.07e23
set the xsize of Callisto to 9.6e6
set the ysize of Callisto to 9.6e6
set the xloc of Callisto to O
set the yloc of Callisto to 1.88e9
set the xvel of Callisto to 8205
scal etovi ewer every planet in ny viewer
end set upj upit er andnoons

Remember to Activate Current Version for both these handlers.

The data above can be found in almost any text on the Solar System although they
usually do not specify orbital velocity (which is what we have used to set the xvels) but
instead give the orbital period and diameter. Of course, it is easy enough to convert
between these representations. You could even write a SK8 handler to do it.

Now we will set things up. Type the following lines one by one into the Message Box:

createj upi terandnoons SKGravitas
set upj upi t erandnoons SKGravitas

The Planets will be created and this is what you should see:

6-197
©1994 Apple Computer, Inc. 5/7/95

6-198

CHAPTERG6 Tutorial 2: SK8 as a

SimKit

You may have to resize your SKGravitas to bring all of the objects into view - Callisto is
almost 2 x 109 meters from Jupiter. Now press the Start button. Sadly, not much seems to
happen except that the Total Time indicator begins to count up. However, this is a clue to
what is wrong - the timestep is so small that the positions are changing too slowly to
notice. We can easily change the timestep by typing into the Message Box:

set GravitasViewer's tinmestep to 2000

Now things start to happen. You can watch the moons revolve around Jupiter or drag
them out of position and watch their orbits change. ou can also zoom in or out while the
system is running. Take a look at lo, the closest moon. lo is roughly the same distance
from Jupiter as our moon is from the Earth. However lo takes less than two days to orbit
Jupiter while our moon takes about 28 days. This is the effect of Jupiter’s much stronger
gravitational pull.

You should save your project now. We have finished work on the tool kit and shown
how it can be used. The application we have built already allows us to model and
examine some interesting phenomena. And as we have noted, the tool kit should also
make it a much simpler task to produce simulations of other objects and forces. We will
finish off this tutorial with some suggestions for further work.

Going Further With SimKit

There are several ways in which you could modify and extend SimKit. First of all, you
could fix a bug in the Resized handler of SKOvals (and therefore Planets). You may
already have noticed that if you zoom the Jupiter’s moons system out a few times and
then zoom back in the same number of times, the objects have changed size. In fact they
will probably all appear to be the same size. This is because our current Resized handler
re-computes the meter based size of an SKOval every time its boundsrect is changed. It

©1994 Apple Computer, Inc. 5/7/95

CHAPTERG6 Tutorial 2: SK8 as a

should in fact only do this the very first time an SKOval is resized, that is, just after it is
created.

In the interest of good pedagogy we should probably leave this fix as an excercise for the
reader. However, that seems too cruel, so here is a suggestion:

on resized of nme (a SKOval)
gl obal SKVi ewer
set nycon to ny container
if not ny neterSizeSet then
if the properties of mycon contains 'mnetersperpixel' then
set npp to nycon's netersperpixel

set nmy xloc to (my h - mycon's width / 2) * npp
set nmy yloc to (nmycon's height / 2 - ny v) * npp
set ny xsize to ny width * npp
set nmy ysize to ny height * npp
set nmy nmeterSizeSet to true

end if

end if
end resized

Notice that this handler uses a new property called meterSizeSet. To make the handler
work you will have to add this property to SKOval and set its value to false.

A feature of SKGravitas that could definitely be improved upon is the method of
creating planets. This is really quite clumsy as it stands. A better method would allow us
to set the size, location, velocity and mass of Planets by direct manipulation. Direct
manipulation though is poor at providing the kind of precision we need in this
application. Can you think of ways around this?

Another weakness of SKGravitas is that the Planets are not labeled and it is therefore
difficult to identify them. A simple solution would be to set the text of a Planet to its
objectname, but this would not be very useful as the objects are often much smaller than
their text.We saw how useful SK8’s label object could be in the creation of the SKViewer.
Can you think of a way to attach labels to Planets and have them always move with
them? You will have to modify more than one handler.

Finally, you may want to investigate other physical domains. Good examples would be
the dynamics of charged particles, movement in the presence of friction or air resistance,
or motion in a varying potential field. Your ingenuity rather than SK8 will probably be
the limiting factor to what is possible. Good luck.

6-199
©1994 Apple Computer, Inc. 5/7/95

CHAPTERG6 Tutorial 2: SK8 as a

6-200
©1994 Apple Computer, Inc. 5/7/95

CHAPTER 7

Actor and Stage

Actor and Stage are the objects which provide the core functionality for the graphics and
windows that might be associated with a particular SK8 application/title.

All Actor objects descend from the Graphic object and provide most of the drawing
capabilities for SK8. The Stage Object controls the placement and display of actors on the
screen. Actors, through their containment hierarchy, can become SK8 Windows.

This chapter provides an introduction to Actor, Stage, Windows, and the containment
hierarchy.

Introduction

Stage and Actor Metaphor

The main graphic objects of a SK8 project are named after the metaphor of a theatrical
play. Like a play, all the visible action of the computer program takes place on the

St age. Just as a theater’s stage can be of any size, SK8’s St age object—at least the part
that is visible—varies in dimensions according to the size of the monitor(s) in use. The
Stage is the plane in which all the configured monitors exist. For the Macintosh, the
Stage is the Desktop.

Actors can take on a variety of forms and functions. Ovals, polygons, and line segments
are just a few of the simple geometry actors which let you draw. SK8 also features a
variety of other actors that allow interaction. Some of these actors are designed to accept
text entry, while others allow graphical selections or changes.

Just as a playwright writes dialogue telling actors how to perform, the SK8 programmer
can write scripts to tell SK8 actors how to perform.

Because of its object-oriented architecture, scripts written in SK8 can make actors —
which are objects — behave and respond in almost every conceivable way.

For example, SK8 actors can:

Introduction 7-201
©1994 Apple Computer, Inc. 5/7/95

7-202

CHAPTER?Y Actor and Stage

= change their location on the stage

= alter their appearance

= interact with other actors you create or from a library of actors
= disappear, or change behavior

= respond to user input

The costume and makeup for each actor is determined by a set of Renderer objects.
These can be anything from simple colors to Quicktime™ movies.

Actor

As previously mentioned, the Actor object provides most of the drawing capability
necessary to build a title or multimedia application for the Macintosh or other computer
platforms. The Actor object provides the default handlers for drawing, animating, and
controlling groups of objects that appear on the screen.

Actor supports two major kinds of objects:
= simple geometric objects, such as Pol ygon and Oval s
= user interface objects, suchas Scrol | er, TextLi st,and Radi oButton

An actor can contain one or more actors of any type. For example, an Oval in SK8 can
contain a Rectangle (that is, the contained Rectangle would be visible inside the
boundary of the Oval).

Actors are used to create windows, clip the drawing of other actors, group other actors
together, zoom and pan other actors, and more.

With the exception of Menul t em and Cur sor, every graphic object used in SK8 is a
descendant of Actor. The simplest actors take shapes such as circles or squares and have
no function other than being visible on the screen. In addition, most types of actors are
capable of displaying text.

Complex actors perform a diversity of tasks. Scrol | er, Radi oButton,
Edi t Text, and Text Li st are some of the SK8 actors that interact with the user.
Their actions depend on input from the user.

The Stage

The St age object controls the coordinate system used for placement of all windows in
SK8. Windows are located within the boundaries of St age, and have their own logical
coordinate system for the objects they contain.

The St age object can be thought of as a huge polygon that matches the shape of the
monitors as placed in the Monitors’ control panel. The origin of the St age object is
located at the upper-left corner of the monitor that contains the menu bar.

There is only one St age object. The St age object automatically configures itself to the
current monitor setup. When multiple projects are in use, they all share the same St age
object.

Introduction
©1994 Apple Computer, Inc. 5/7/95

CHAPTER?Y Actor and Stage

Containment Hierarchy

The containment hierarchy presents an image of the relationships of the visual elements
on the screen. When a child of Actor is moved to the Stage, it is added to the Stage’s
contents. Each descendant (child) of Actor has a contents property, that lists its contents,
and a container property, that indicates which object it is contained by in the
containment hierarchy.

To be visible on the screen, an object must be contained by the Stage or contained by an
object that is contained by the Stage (i.e. in the Stage’s containment hierarchy) or, to carry
this further, contained by an object that is contained by an object that is contained by the
Stage.

The containment hierarchy is the order in which Actors in SK8 are contained by other
Actors.

Actors must be attached to a container to be visible inside that container. A container is
either another Actor or the Stage. The top of the containment hierarchy is the object
Stage. When an Actor is contained by the Stage, the Actor appears directly on the
desktop. Other Actors may, in turn, be attached to the Actors that are attached to the
Stage.

Figure 1-1 illustrates the containment hierarchy.

Introduction 7-203
©1994 Apple Computer, Inc. 5/7/95

CHAPTER?Y Actor and Stage

Figure 1-1 Containment Hierarchy

Oval contained by the
rectangle contained by the stage

-

Rectangle contained by Stage

The Stage object

white Oval contained by Stage

The large gray rectangle, the Stage object, contains a white Oval and a white Rectangle.
The white Rectangle contains a dark Oval, and the dark Oval contains a triangle. The
triangle is contained by the dark Oval, which in turn is contained by the white
Rectangle, which is contained by the Stage. All objects are visible because they are all, in
some way or another, contained by Stage.

Actor
Actor Properties
An actor’s properties determine its appearance and function, such as: color, width, size,
draggable by the mouse, etc.
All properties can be read by the user, and most properties can be set by the user.
Examples:
To get the color of the interior of the rectangle:
get Hot Rectangle's fill Col or
7-204 Actor

©1994 Apple Computer, Inc. 5/7/95

CHAPTER?Y Actor and Stage

To store the value of Cool Oval ' s visible property into the variable x:

set x to the visible of Cool Oval

To set the location of MyOval to the coordinates {30,30}:

set the location of Cool Oval to {30, 30}

To set the frameHei ght property of Cool Oval to4:

set Cool Oval's franmeHeight to 4
Many actors also have properties that are specific to themselves and their descendants.
For example, CheckBox actors havea checkCol or property that determines the

color of the X in a highlighted CheckBox. Other types of actors do not have a
checkCol or property.

Attaching Actors to The Stage

When a new child actor is created in SK8Script, the new actor is not placed in any
container. The actor must be contained by the Stage or another actor eventually
contained by the Stage in order to be seen.

Example:

The examples below show two actors created as children of SK8's built-in Rectangle and
Oval actors. The first actor is then made to be contained by the Stage, while the second
actor is made to be contained by the first actor.

Create a Rectangle actor:

set actorl to new Rectangle

Create an Oval actor:

set actor2 to a new Oval

Make actorl contained by the Stage:

insert actorl into the Stage

Make actor2 contained by actorl:

insert actor2 into actorl

Actor 7-205
©1994 Apple Computer, Inc. 5/7/95

CHAPTER?Y Actor and Stage

Note
Container here only refers to Containment Hierarchy. [

Halo (an Actor)

The Halo is a rectangle with a “hole” in the middle. Think of it as a rectangle whose
fillRegion has been taken away. It is used by the User Interface of SK8 to implement the
Selection Obiject. The following figure shows a Halo object on a window.

7-206

Figure 1-2 A Halo in front of two other actors.
P Oval
j Halo
Rectangle
N
Actor

©1994 Apple Computer, Inc. 5/7/95

CHAPTER?Y Actor and Stage

Complex Actors, SubActors, and Tags

Complex SK8 actors are often made up of a collection of subActors. A subActor is an
actor that is used in constructing a complex SK8 actor. In SK8 terms, a subActor of Actor
is an actor in Actor’s contents. A vertical Scroller, for example, is made up of four
subActors:

= a Rectangle with an up arrow on it
= a Rectangle with a down arrow on it
» ashaded Rectangle between the up and down arrows
» afinal Rectangle subActor (the “thumb’) that moves on the shaded subActor.
Repeatedly accessing an actor’s subActors is inconvenient. The objectName of a
Scroller’s thumb, for example, has nothing to do with the Scroller to which it is attached.
Without tags, changing the fi || Col or of the Scroller’s thumb would require
specifying the subActor by its objectName:

set the fill Color of Rectangle255 to brown

Tags provide a more efficient method of specifying actors. Tags allow a subActor to be
referenced through the name of the object it composes. If, in the above example, the
Scroller’s thumb had been tagged, the following line could be used to change the
thumb’s fill Col or:

set the fill Color of the thunb of the Scroller266 to brown

Better still, if the Scroller had a handler to modify its thumb, it could include a line like:

set the fillColor of ny thunb to brown

The Stage

Actor Coordinates

All drawing in SK8 occurs on the Stage. The Stage, which is represented in SK8 by the
Macintosh desktop, defines a coordinate system on which SK8 actors are positioned and
sized according to standard coordinate systems.

The coordinate system uses a horizontal and a vertical value to specify each coordinate.
The actor is positioned using coordinates that reference the upper-left corner of either its
container or the St age object.

A point on the Stage is specified in two ways: physically or logically. In SK8, each actor
has both logical and physical coordinate properties.

The physical coordinates of an actor define its location relative to the origin of the Stage.
In Figure 1-3, the physical top left coordinates of the gray rectangle specify its distance
from the origin of the Stage. With physical locations, a value of {152,104}, for example,

The Stage 7-207
©1994 Apple Computer, Inc. 5/7/95

7-208

CHAPTER?Y Actor and Stage

means that the specified point is located 152 pixels to the right and 104 pixels below the
Stage's upper-left corner of the start-up monitor.

The logical coordinates of an actor define its location relative to the origin of the object
that contains it. In Figure 1-4, the logical top left coordinates of the gray rectangle specify
the distance from the origin of its immediate container.For example, if you set the logical
location of an Oval to {32, 54}, the Oval will be placed 32 units to the right and 54 units
below the upper-left corner, or position {0,0}, of its container.

Each SK8 actor defines its own logical coordinate system for the actors it contains. Note
that if the container of an actor is the Stage, then its logical and physical coordinates are
the same.

Physical Coordinate System Properties

A physical coordinate is one that determines the actor’s size and location on the Stage.
Performing operations such moving an actor or its container changes the physical
position of an actor.

Changing any one of the physical location properties usually changes many or most of
the other physical coordinate properties. For example, changing the

physi cal BoundsRect property affects physical properties pertaining to: size, left
coordinates, right coordinates, top coordinates, bottom coordinates, location, etc.

Physical properties also include scal e, hScal e, and vScal e. These properties
display the specified actor at a multiple of the actor’s logical dimensions. For example, if
a Rectangle contained an Oval whose logical si ze was 20, and the Rectangle’s scal e
was set to 3, the Oval would take up 60 pixels when displayed, even though its logical
si ze remained at 20 units.

The Stage
©1994 Apple Computer, Inc. 5/7/95

CHAPTER?Y Actor and Stage

Figure 1-3 Physical Coordinates

152
Al & File Edit Winddws

The physical coordinates of the top left corner of the gray rectangle {152,104} are the
number of pixels to the origin of the stage.

Logical Coordinate System

A logical coordinate system is one that is determined by the actor’s position relative to
the origin of its immediate container. The origin is the upper left corner of the
boundsRect of the container.

Performing operations such as panning, zooming, or moving the actor’s container in no
way alters the logical position of an actor. The only way to change an actor’s logical
coordinates is to change its size or position within its container.

Changing any one of the logical coordinate properties usually changes many or most of
the other logical location properties. For example, changing the boundsRect property
affects properties pertaining to: size, left coordinates, right coordinates, top coordinates,
bottom coordinates, location, etc.

The arguments assigned to logical location properties are based on units. A unit is equal
to one pixel, if the actor’s container’s hScal e and vScal e properties are set to their
default value of 1.0. As the scale changes, the unit size changes proportionately. To
change the way an actor is scaled or panned, you change the scal e or origin
properties of the actor’s container.

The Stage 7-209
©1994 Apple Computer, Inc. 5/7/95

CHAPTER?Y Actor and Stage

Figure 1-4 Logical Coordinates

7-210

T

& File Edit Windows

The logical coordinates of the top left corner of the gray rectangle, {32,54}, are the
number of units to the origin of its immediate container.

origin

The ori gi n property of Actor accepts or returns two numbers. The first number
specifies the container’s horizontal origin. The second number specifies the container’s
vertical origin.

get the origin of Actor
set the origin of Actor to {h, v}

The ori gi n property has a two-item list argument that selects a point based on the
specified actor's logical coordinate system. When the actor's ori gi n property is set,
the point specified by the argument is moved to the upper-left corner of the actor's
boundsRect. As aresult, the entire contents of the actor pan to accommodate the new
origin.

Note

It is possible to set a container’s ori gi n to a point either outside or
inside the container.O

Setting the ori gi n property effectively moves the specified point to the upper-left
corner of the container. As a result, actors inside the container will pan vertically and/or
horizontally to fit within the new coordinate system. For example, setting the origin of a
container (whose ori gi n is currently set to {0,0}) to {-5, 5} will move all contained actors
5 logical units to the right and five vertical units up. Until the ori gi n isagain
changed, the point at the actor's boundsRect' s upper-left corner would have a value
of {-5,5}.

The Stage
©1994 Apple Computer, Inc. 5/7/95

CHAPTER?Y Actor and Stage

FillColor Of The Stage

The fillcolor of the Stage can be set to an RGBRender er. The stage will be rendered
with this color (provided the St age is covered).

Windows

Actors Directly Contained by Stage (Windows)

In SK8, a Window is any actor whose container is the Stage. Window refers to all actors
that are contained directly by the St age. In Figure 3-1, the white oval and the white
rectangle are the only Windows. Any actor moved to the Stage becomes a Window and
behaves accordingly. All actors may become Windows, since all actors can be attached to
the St age. Because windows are actors, they are ordered, selected, shown, hidden, and
manipulated the same way as other actors.

The following statements create an actor that behaves like a traditional Macintosh
window from the built-in Rect angl e object (the new child of Rect angl e isa
window because it is attached directly to the St age):

set MacW ndow to a new Rectangl e

set the container of MacWndow to the Stage

The first statement creates a new rectangle actor and binds it to the variable
MacW ndow The second statement sets the container of the rectangle to the St age.

If we follow the above example but create a new Oval instead of a new Rect angl e,
we get an oval-shaped window.

Note

This is not in compliance with the Macintosh Human Interface
Guidelines. If you are creating an application to run on other platforms,
capabilities such as this are useful. O

colorDepth and windowStyle

When an actor becomes a Window, some of the actor’s behavior as a Window may be
affected by the way that it is displayed. This is the case with the following two properties:

= col orDepth
= W ndowStyl e

Col or Dept h is the bit depth (number of bits per pixel) the actor wants to use for itself
as it becomes a window. This specifies whether offscreen graphics memory will be used,
and how many colors the window accepts. Note that an actor can only dictate the

col or Dept h of its window when the actor is the window.

Windows 7-211
©1994 Apple Computer, Inc. 5/7/95

7-212

CHAPTER?Y Actor and Stage

W ndowSt yl e is the type of window used by the actor when it attaches itself to the
stage. The default is for actors to show up on a blank window, but you can here specify
the usual Macintosh window types, such as document with zoom, etc.

Activate and Deactivate

When you click on the window and it is not the front most one, then the front most
window is senta deacti vat e event and the window that received the click receives
an activate event.

You can use the acti vat e event, for example, to set up a menubar which is active
when your window is in the front. You would then remove the menubar when your
window is no longer the front most window.

Only one window can be active at a given time.

KeyTarget

When an actor becomes a Window, the actor acquires some extra properties and
capabilities, such as: keyTarget. KeyTarget isa veryimportant property that
specifies which actor inside a window receives the window’s key events. When a
Window actor receives the acti vat e event described above, we want a specific actor
to be the keyTar get for that window. Each Window can have only one current
keyTar get. In the case where the Window actor may contain many subActors, only
one subActor can be the keyTar get for a window at a time. The Window remembers
which subActor is its keyTar get. You can set the Window’s keyTar get as follows:

set the keyTarget of Wndow to sonmeActor
where W ndow is the window object of desire and soneAct or is a subActor of that
Window.
Note
If this call is made to an actor that is not a Window, there is no effect on

the actor. O

Note
Additional information regarding key events is located in the Event
System chapter. O

Windows of Stage

By using the wi ndows property, you can get the windows of the stage.

Example:

get the wi ndows of the stage

Windows
©1994 Apple Computer, Inc. 5/7/95

CHAPTER?Y Actor and Stage

Hide and Show

To hide or show a window, you may use the hi de or show handlers. Another way is
to use the vi si bl e property.

Example:

To show window x, and then check if it is visible:

show x
if x is visible then sendToLog "x is visible"

To hide a window, the hi de handler can be used or the window’s vi si bl e property
can besetto fal se.

Window Styles

The Rect angl e object supports specialized styles used in standard Macintosh windows.
Example:
The following code sequence, from the example above, creates a Macintosh document

window:

set MacWndow to a new Rectangle with container Stage -
wi th wi ndowstyl e ' Docunent'

Table 1-1 SK8 Window Styles.

Window Style Description

'blank’ a “plain vanilla” window with no standard objects attached

‘document' a standard Macintosh window with close box and menu bar

‘documentWithZoom' a standard Macintosh window with close box, menu bar, and
zoom box

‘doubleEdgeBox' a window that is generally used for messages or dialogs, and
is surrounded by a double line

'movableDialog’ a Macintosh movable dialog like the Copy File dialog

'singleEdgeBox’ a window that is generally used for messages or dialogs, and
is surrounded by a single line

'SK8Window' the standard window available under SK8 with a beveled
frame that can be dragged

‘tool' a Macintosh window with rounded corners, a close box, and a

draggable title bar
'‘documentwitharrow’ <need info>
'shadowEdgeBox’ <need info>

Windows 7-213
©1994 Apple Computer, Inc. 5/7/95

CHAPTER?Y Actor and Stage

7-214 Windows
©1994 Apple Computer, Inc. 5/7/95

CHAPTER 8

Browsers

This chapter is under development. It will appear in the finished manual.

8-215
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS Browsers

8-216
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS Browsers

8-217
©1994 Apple Computer, Inc. 5/7/95

CHAPTERS Browsers

8-218
©1994 Apple Computer, Inc. 5/7/95

CHAPTER 9

Clipboard and Import/Export

The SK8

SK8 includes built-in support for exchange data with the outside world. This chapter
introduces the SK8 import/export architecture, including Translators and the Clipboard.

Import/Export Architecture

The SK8 Import/Export Architecture supports data exchange with the world outside of
SK8. In SK8, we only manipulate SK8 objects; while in the outside world many data
formats are available depending on the current hardware and software configuration.
For translation purposes, SK8 includes built-in support for common translations for the
Macintosh and is extensible for more esoteric translations and translations to different
platforms.

Translators address the source and destination in all import and export activity. You can
read and write data into any form of file. For this, you read and write data using the
St r eamobject abstraction to avoid problems related to arbitrary file representations.

Translators know how to turn SK8 objects into various formats (e.g. turning an Act or
into a 'PICT' Resour ce) and various external formats into SK8 objects (e.g. turning a
'ci cn'into a MaskedAct or). Specific objects are preferred to a suite of conversion
functions because they can be used to query the state of our system: we can ask the
objects whether they can be invoked to perform the translation or not.

Exporting

To export a SK8 object into a stream, do the following:
1. Find all the Tr ansl at or objects that know ways to export the object.
2. Select the translator desired.

3. Do the conversion and write the result to the stream specified.

The SK8 Import/Export Architecture 9-219
©1994 Apple Computer, Inc. 5/7/95

9-220

CHAPTERY Clipboard and Import/
Export

Importing

To import data from a file into SK8, do the following:

1. Given the data available, find all translators that know how to turn it into SK8 objects.
2. Select the translator desired (yields the thing we want).

3. Convert the data into a new object of the desired type in the specified project.

Note

Given a stream, you need a function that tells you what type of data can
come from it. O

Translator (an Object)

Translators inherit from the Tr ansl at or object. Each translator handles conversions
between an internal object and an external object. The translation is done by an export
and an import handler.

Translator Properties and Handlers

i nt ernal Obj ect The SK8 object that the translator translates or yields as a
result of a translation.

ext er nal oj ect A keyword, specifying the external representation of the data
the translator is translating. Examples: 'PICT", ‘cicn' 'snd".

i mport A handler that reads the type required from the stream
specified and creates the appropriate SK8 object in the
specified project.

i mport Translator, streamw th Project (a
Project | false), thing

If Proj ect isfal se, the currentProject is used for the
creation.

export A handler that translates a SK8 object into an external
representation and writes the result to the stream provided.

translatorsApplicable stream

Returns all the translator objects that can read data from the
stream and converts it.

importTypesAvailable stream

Returns all the SK8 objects you could create from the data in a
stream. This is done by checking the data in the stream with
the available translators. All applicable translators return their
SK8 types.

exportTypesAvailable listOfObjects

The SK8 Import/Export Architecture
©1994 Apple Computer, Inc. 5/7/95

CHAPTERY Clipboard and Import/
Export

Returns a list of keywords specifying all forms you can export
given a list of SK8 objects. This is done by finding all
applicable translators and returning their external types.

exportTypes object

Returns all the forms into which you could export the object
(a list of keywords).

importTypes type

Given at ype keyword, returns the SK8 object types you
could make from it.

The SK8 Clipboard (an import/export application)

The SK8cl i pboar d is a structure that provides SK8 a way to cut and paste within SK8
as well as across applications. Across applications, we use the import/export
architecture described above, treating the system's clipboard as a stream (see discussion
below).

Overview and Requirements

The SK8cl i pboar d is the object that supports all cut and paste activity in SK8. Within
SKS8, it serves as a temporary receptacle for objects that have been copied or cut. When
an object is copied or cut, it is placed into the clipboard, from where it is retrieved (and
possibly copied) when a paste operation takes place.

The clipboard also serves as an interface to the world outside of SK8. This importing and
exporting takes place when SK8 becomes or ceases to be the current application.

The clipboard object supports the following operations:
= temporary store of objects (one or many), returned on demand.
= querying of objects currently on hold.

= automatic importing and exporting of objects when applications are switched.

The Clipboard Object; its Properties and Handlers

The SK8C! i pboar d object is the recipient of things that have been cut or copied. For all
user purposes, the clipboard only deals with SK8 objects.

The SK8C! i pboar d object has the following properties:

obj ect sOnHol d The objects kept in the clipboard themselves (this property is
private and should only be accessed by the user through the
API).

cl i pboar dOpen Determines if the clipboard is open to activity outside SK8. If

this property is false, no importing and exporting activity is
automatically triggered by the clipboard. Defaults to true.

The SK8 Import/Export Architecture 9-221
©1994 Apple Computer, Inc. 5/7/95

9-222

CHAPTERY Clipboard and Import/
Export

i ncom ngDat a Determines if the clipboard's contents are the contents of the
system scrap. This has to do with the use of the clipboard as
an importer of data from the system (see below for details).

These capabilities allow SK8 authors (including the SK8 Project Builder) to write their
own cut/paste system. Handlers act on the clipboard object. The SK8Cl i pboar d, a
child of Ol i pboar d, is SK8's base clipboard, being the only one that talks to the outside
world. Authors are welcome to use it for their purposes, which should be sufficient in
most cases. They can also define their own clipboards to do more esoteric things.

The Clipboard within SK8

In this section we describe the handlers that allow the user to implement common cut
and paste behavior within SK8. They provide the means to place things in the clipboard,
remove things, and query the clipboard for its contents.

addToClipboard Adds something to the clipboard.

addTod i pboard thing, clipboard
wi th copySel ecti onToC i pboard (a Bool ean)
with overWite (a Bool ean)

If copySel ecti onTod i pboard istrue (the default), the
thing is copied before being placed in the clipboard.
Otherwise it is placed directly. If t hi ng contains actors, they
are removed from any containers with which they are
associated. If over Wi t e ist r ue (the default), t hi ng
replaces whatever was in the clipboard before (this can cause
disposal of objects by calling cl ear Cl i pboar d). Otherwise,
t hi ng is added to whatever is in the clipboard already.

clearClipboard Clears the clipboard. This handler is called just before the
clipboard is overwritten by something else. All the items in
the clipboard are disposed.

cleard i pboard cli pboard

objectsInClipboard Returns a list of all the objects in the clipboard. These are the
objects stored in the obj ect sOnHol d property of the
i pboar d object.

obj ect sl nd i pboard cli pboard

typesInClipboard Lists all the types of objects on the clipboard. In its simplest
form, this is a list of all the parents of the objects in the
clipboard with duplicates removed. For example, if three
RGBCol or s are in the clipboard, only RGBCol or is listed.

typesl nd i pboard cli pboard
typelnClipboard Returns true if a descendant of type is in the clipboard.

typel nC i pboard clipboard, type

getFromClipboard Retrieves items from the clipboard. The second argument
specifies the type of object we want.

The SK8 Import/Export Architecture
©1994 Apple Computer, Inc. 5/7/95

CHAPTERY Clipboard and Import/
Export

get FronCl i pboard cli pboard, thing
wi th copySel ecti onToCd i pboard (a Bool ean)
wi th rermoval (a Bool ean)
wi th everyone (a Bool ean)
with project (a Project)
If copySel ecti onTod i pboar d is true, the default, copies
of each item found are returned.

If r emoval is true, the items returned are then removed from
the clipboard. The default is false.

If ever yone is true, all items of the specified type which are
found are returned. Otherwise, only the first item found is
returned. The default is false.

IfacopySel ecti onTod i pboar d needs to be made, it is
made in the project specified (or the current project if no
project was passed).

Cut and Paste within SK8

The event system is responsible for generating the events required to drive the cut and
paste system. The system events are:

cut Sel ecti onTod i pboard
copySel ecti onTod i pboard

past eCl i pboar dToSel ecti on

We write cut and paste handlers for the objects that require this functionality; like act or
and Edi t Text .

Cutting and Pasting Text

For Edi t Text , the cut and paste process is fairly simple.

copySel ecti onToCl i pboar d gets the selected text and destructively (wipe out what
is there) places it in the clipboard.

on copySel ecti onTod i pboard of nme (a Edit Text)
set theText to my selection

addTod i pboard sk8C i pboard, theText
end copySel ecti onTod i pboard

cut Sel ecti onTod i pboar d does the same, but the text that is currently selected is
deleted.

on cut Sel ectionTod i pboard of ne (a EditText)
set theText to ny selection

set {start, end} to my selection
-- clear the text.

The SK8 Import/Export Architecture 9-223
©1994 Apple Computer, Inc. 5/7/95

9-224

CHAPTERY Clipboard and Import/
Export

set ny text with start start with end end to
-- add the string to the clipboard w thout copying.
addTod i pboard sk8C i pboard, theText wi thout=
copySel ectionTod i pboard
end cut Sel ecti onTod i pboard

For past ed i pboar dToSel ect i on, we insert, at the cursor's position, any text that
we find in the clipboard. For simplicity, we assume there is only one string in the
clipboard.

on pasted i pboardToSel ection of me (a Edit Text)

set {start, end} to ny selection

set theText to getFronC i pboard sk8C i pboard, text

set nmy text with start startChar with end endChar to theText
end past ed i pboardToSel ecti on

Cutting and Pasting with the sel ecti onHal o

Asslightly more interesting example has to do with the sel ect i onHal o, the Project
Builder actor in charge of selecting actors and changing them using direct manipulation.
Let us write the cut Sel ecti onTod i pboar d, copySel ecti onTod i pboar d and
past eCl i pboar dToSel ect i on handler for the halo. When the halo is selecting an
actor, it can copy or cut the actor, or it can choose to paste into it something in the
clipboard.

Copying is simple, just gather everything in the selection and put copies of each item in
the clipboard.

on copySel ecti onToC i pboard of nme (a Sel ecti onHal 0)
addTod i pboard sk8d i pboard, mny sel ectedltens
end copySel ecti onTod i pboard

The cut Sel ecti onToCl i pboar d handler is exactly the same except the copy optional
argument is set to false. In this case, the actors are automatically removed from their
containers.

In the example below, the past ed i pboar dToSel ect i on handler assumes the
selectionHalo is currently selecting an actor. Every actor in the clipboard is added to the
contents of the selected actor.

Note

If more than one actor is selected, we choose as the recipient of the

past eCl i pboar dToSel ect i on action the front most container on the
screen that contains everything that is selected. The Stage itself might be
such container. This is all done for you by the Project Builder.

on pasted i pboardToSel ection of ne (a Sel ecti onHal o)
set theActors to getFronC i pboard sk8d i pboard, actor-
with everyone
-- for sinplicity, just get the first item
set theRecipient to item1 in nmy selectedltens

The SK8 Import/Export Architecture
©1994 Apple Computer, Inc. 5/7/95

CHAPTERY Clipboard and Import/
Export

wi t hLockedAct or t heReci pi ent
set the container of every itemin theActors to-
t heReci pi ent
end with
end pasted i pboardToSel ecti on

In the example above, past ed i pboar dToSel ect i on takes all the actors in the
clipboard and sets the container of each of them to the “first selected” actor in the
selection halo. In other words, past ed i pboar dToSel ect i on places all the actors
from the clipboard into the “first selected” actor. Note that the selection halo may contain
several actors. The selection of the “first selected” actor, of the several that may be in the
selection halo, is strictly arbitrary. The actor that happens to be the first in the

sel ect edl t ens list become the “first selected”.

The Clipboard and the System

The SK8C! i pboar d is the only clipboard object specialized to interface with the outside
world. If the cl i pboar dOpen property is true, then the SK8C! i pboar d interacts with
the system and can be used to import and export things in and out of SK8. In this section
we discuss what happens when SK8 suspends and resumes when the SK8cl i pboar d's
cl i pboar dOQpen property is Tr ue.

Note that the discussion that follows relies heavily on the Import/Export architecture
outlined above.

In order to use the Import/Export system, we need to treat the system's clipboard as a
stream. A stream will be created to represent the system's scrap, and write and read
operations will translate to put Scr ap and get Scr ap.

What happens on resume...

Basically nothing happens. If the scrap has changed from the time we left SK8, the

SK8d i pboar d'si ncom ngDat a property is set to Tr ue, meaning that there is new
data in the scrap. The old contents of the SK8C i pboar d are disposed. All further action
happens when the user tries to get something from the SK8C i pboar d.

In the first place, the t ypesl| nd i pboar d handler behaves differently when the
i ncom ngDat a property is settotr ue:itcallsi nport TypesAvai | abl e to find out
what SK8 objects could be created. The stream argument is the SK8C i pboar d itself.

The user can then call get Fr onCl i pboar d with the appropriate SK8 object type, and
the object will be read in from the scrap using the import handler of the appropriate
translator. All work required will be done by the translator.

What happens on suspend...

Given the objects in the SK8Cl i pboar d, we call the export TypesAvai | abl e to find
all the forms of outputs we can produce. With the resulting list, we have to select a target
type and export it, using the export handler of the chosen translator. Two decisions still
have to be made:

= Wwhich of the objects in the SK8C i pboar d is chosen for the export.

= which of its translators is used.

The SK8 Import/Export Architecture 9-225
©1994 Apple Computer, Inc. 5/7/95

CHAPTERY Clipboard and Import/
Export

9-226 The SK8 Import/Export Architecture
©1994 Apple Computer, Inc. 5/7/95

CHAPTER 10

Clocks

This chapter is under development. It will appear in the finished manual.

10-227
©1994 Apple Computer, Inc. 5/7/95

CHAPTER10 Clocks

10-228
©1994 Apple Computer, Inc. 5/7/95

CHAPTER10 Clocks

10-229
©1994 Apple Computer, Inc. 5/7/95

CHAPTER10 Clocks

10-230
©1994 Apple Computer, Inc. 5/7/95

CHAPTER 11

Collections

SK8 provides a powerful and flexible notion of a Collection. This chapter explains
collections, their use, and how they can be extended.

Introduction

The col | ecti on object is the basic behavior for representing a collection of other
objects in SK8. SK8 currently represents many different types of collections. They appear
as descendants of the col | ect i on object. They are: list, vector, string, text, and string
(string resides under text).

The col | ecti on object is not a functional working object per se. It is strictly an abstract
prototype. It contains no items. You can not look into it. The col | ect i on object strictly
defines the basic behavior of collections.

A collection in SK8 is a descendant of the col | ect i on object, but the true meaning of a
collection, from SK8 ‘s view, is any object that properly implements the collection
protocol. All the built-in SK8 objects properly implement the collection protocol.

Generally when dealing with collections, a scripter will only create children of existing
collection prototypes— lists, strings, vectors, and arrays.

The way that the average scripter creates a collection to work with is either by starting
with a list or string literal form.

Or the average scripter will grab an existing collection. For example, doing some sort of
operation on the Stage to come up with a subcollection like “every oval whose
fillColor is red”. Thiswill create a list that corresponds to some subcollection of
Stage.

In general, to use SK8 you should not need to create a new col | ect i on object. You can
get an existing collection, use string and list constructor to create string and list
collections respectively. If you do need to create a new array, -you want to use the correct
prototype. Do not instantiate collection to make a new collection.

Introduction 11-231
©1994 Apple Computer, Inc. 5/7/95

11-232

CHAPTER11 Collections

The concept of Collection in SK8 does not imply any particular representation (linked
list, block of memory, etc.). This allows all the different types of collections, but all
accessed the same way via the SK8 scripting language. The implementation is not as
important because Collection is a protocol. As long as the object responds to the
messages you send it, it appears to be a collection to SK8.

In addition to the representation not being specified, a fixed ordering is not really a part
of the protocol, although every collection that exists in SK8 has a fixed order. You can
potentially have a collection that gives you a different order each time you iterate over it.
In this case you would want to specialize the i ndex sel ecti on handler to get the
correct response back, given a particular key.

Introduction

©1994 Apple Computer, Inc. 5/7/95

CHAPTER11 Collections

Introduction 11-233
©1994 Apple Computer, Inc. 5/7/95

CHAPTER11 Collections

11-234 Introduction
©1994 Apple Computer, Inc. 5/7/95

CHAPTER 12

Dialogs

This chapter is under development. It will appear in the finished manual.

12-235
©1994 Apple Computer, Inc. 5/7/95

CHAPTER12 Dialogs

12-236
©1994 Apple Computer, Inc. 5/7/95

CHAPTER12 Dialogs

12-237
©1994 Apple Computer, Inc. 5/7/95

CHAPTER12 Dialogs

12-238
©1994 Apple Computer, Inc. 5/7/95

CHAPTER 13

Tools and Palettes

This chapter is under development. It will appear in the finished manual.

13-239
©1994 Apple Computer, Inc. 5/7/95

CHAPTER13 Tools and Palettes

13-240
©1994 Apple Computer, Inc. 5/7/95

CHAPTER13 Tools and Palettes

13-241
©1994 Apple Computer, Inc. 5/7/95

CHAPTER13 Tools and Palettes

13-242
©1994 Apple Computer, Inc. 5/7/95

CHAPTER 14

EditText

This chapter is under development. It will appear in the finished manual.

14-243
©1994 Apple Computer, Inc. 5/7/95

CHAPTER14 EditText

14-244
©1994 Apple Computer, Inc. 5/7/95

CHAPTER14 EditText

14-245
©1994 Apple Computer, Inc. 5/7/95

CHAPTER14 EditText

14-246
©1994 Apple Computer, Inc. 5/7/95

CHAPTER 15

The Error System

This chapter is under development. It will appear in the finished manual.

15-247
©1994 Apple Computer, Inc. 5/7/95

CHAPTER15 The Error System

15-248
©1994 Apple Computer, Inc. 5/7/95

CHAPTER15 The Error System

15-249
©1994 Apple Computer, Inc. 5/7/95

CHAPTER15 The Error System

15-250
©1994 Apple Computer, Inc. 5/7/95

CHAPTER 16

Event Interests

This chapter is under development. It will appear in the finished manual.

16-251
©1994 Apple Computer, Inc. 5/7/95

CHAPTER16 Event Interests

16-252
©1994 Apple Computer, Inc. 5/7/95

CHAPTER16 Event Interests

16-253
©1994 Apple Computer, Inc. 5/7/95

CHAPTER16 Event Interests

16-254
©1994 Apple Computer, Inc. 5/7/95

CHAPTER 17

The Event System

Introduction

The SK8 Event System allows your project to receive user-initiated and other kinds of
system events. User events, for example, are generated when the user depresses a key on
the keyboard, or presses or releases the mouse button. SK8 identifies these events and
lets your project know that the event has taken place by invoking event handlers which
you define in your project’s objects.

The SK8 Event System provides the following services:
= Delegation: The ability to easily delegate events up the containment hierarchy.

= Event Modes: The ability to circumvent the normal event system in order to perform
sensitive, non-interruptible operations.

= Mouse Sensitivity: The user’s ability to contextually specify SK8's interpretation of
mouse operations in order to achieve a high degree of flexibility over how and which
events are sent to a user’s actors.

= Event Tracking: The ability to track and intercept events.

The event engine supports:
= A full suite of low-level user input events, such as click, doubleClick, mouseEnter, etc.

= Asuite of high-level protocols, such as drag-drop, connect-disconnect,
started-stopped, used in conjunction with graphics, animation and other activities.

= Asuite of high-level SK8 system events, (e.g., suspend-resume, tick) for
communication with the operating environment.

= Asuite of event modes for performing critical operations by partially or totally
inhibiting the event system.

s User-defined event modes

Introduction 17-255
©1994 Apple Computer, Inc. 5/7/95

CHAPTER17 The Event System

= Event trapping

Delegating Events

17-256

SK8 allows one to delegate events up the containment hierarchy. In other words, SK8
event delegation allows the handling of an event at a higher place in the containment
hierarchy than that of the original event target.

For example, if you don’t implement a nouseDown handler for the Oval actor, then
SK8 will pass the nbuseDown event to the actor that contains the oval. Suppose that
your oval is contained by a rectangle. You have an opportunity to “trap” the oval’s
nouseDown event, and that of any other actor contained by the rectangle, in the
rectangle’s nouseDown handler. (See below for “trap” definition.)

Event delegation provides another dimension for programming in SK8. The specific
actor to which SK8 originally sends an event is called the event actor. The default
behavior of all event handlers is to pass the event to the event actor’s container unless
you have written a script for the handler of the event actor. The container to which the
event is passed is called the secondary target of the event. If you haven’t written a script
for the secondary target, SK8 will automatically pass the event to the secondary target’s
container. This delegation continues up the containment hierarchy until either the Stage
is reached or the actor has no container.

Whenever you write a script to handle an event, you trap the event in that handler. Once
trapped, an event will no longer be delegated up the containment hierarchy. However, if
you wish to delegate the event, even though you have trapped it, you may do so by
using the pass command.

Delegation programming techniques are not a substitute for using SK8’s inheritance
capabilities, but in some cases they provide an elegant solution to an otherwise complex
problem. For example, suppose you want to create a button which beeps when someone
presses it. The ideal solution might be to create a prototype button actor witha cl i ck
handler that beeps. Then make as many children or copies of this button as you need. All
buttons would inherit the cl i ck handler.

But suppose you have twenty different actors contained by a rectangle and you want
each of them to print something into the message box upon receiving a click event.
Instead of defining a cl i ck handler for each actor (20 handlers in total), you can define
one click handler for the rectangle. When any one of the actors receives a click event,
the event will be delegated from the individual actor to the cl i ck handler of the
rectangle (the container of the twenty actors). Thus, one handler on the container
replaces 20 potential handlers. Quite a savings, in terms of lines of code!

Delegating Events
©1994 Apple Computer, Inc. 5/7/95

CHAPTER17 The Event System

Handling Events

Event Functions

event Act or Holds the actor to which SK8 originally sent an event. For
example, on a click, this is the actor on which the user
intended to click.

event H Holds the h (horizontal coordinate) of the position where the
event took place. The value of this global depends on the
event. For example, on a click event, this global contains the h
position of the mouse at the time it was clicked.

event V Holds the v (vertical coordinate) of the position where the
event took place.

event Ti ne Holds the time, in SK8 system ticks, the event took place.

Pass Command

Pass [argunents]

Use the Pass command only if you wish to delegate a trapped event to your actor’s
container. For example, suppose you wish to create a beep sound when any key is
depressed on a text field actor. To pass the keyDown event to your field’s container,
which might be a document which counts the number of keystrokes, you would write a
script such as this one:

on keyDown of me (a BeepFi el d)
beep
Pass

end keyDown

In this example, the handler nullifies normal processing of the keyDown event by the
BeepFi el d. If BeepFi el d were, e.g.,a Sinpl eText field, the character
corresponding to the depressed key would not print in your field. To have it print and
still delegate the keyDown event to your field’s container, do the following:

on keyDown of me (a BeepFiel d)
beep
do inherited
Pass

end keyDown

The above is an example of how inheritance and delegation can be used in one handler
to achieve different effects.

Note that the pass command is a logically equivalent, but more concise way of doing
the following:

Delegating Events 17-257
©1994 Apple Computer, Inc. 5/7/95

CHAPTER17 The Event System

on keyDown of ne (a BeepField)

beep

if my container # fal se then keyDown my contai ner
end keyDown

Note
Using Pass, instead of “passing” an event, allows SK8’s event- tracking
system to more fully track event processing.O

Event Modes

Event modes allow circumvention of normal event processing so critical operations are
performed without disruptions caused by unanticipated processing of certain events.
Event modes are objects which descend from Event Mode.

Defining your own event mode is straightforward. Create a child of Event Mode and
assign one or more handlers to the event mode object.

The following event modes are predefined in SK8:

dragOnStageMode Drags an actor on the stage.
MenuSelectMode Used during popup menu selection.
ModalDialogMode Makes dialogs modal.

Port Edit Layer Mode Shows port wiring.

By using an event mode, you instruct the event system to circumvent its event-
processing procedure. While your event mode is active using ent er Mode, SK8 will
not send the normal events to your actors.

Instead, SK8 sends an alternate set of events to your event mode object, so that you may
handle the event in a manner appropriate for your event mode. In addition, you may
suspend certain types of event-processing altogether by entering your event mode using
the ent er Mbdal St at e handler instead of ent er Mbde.

Creating Your Own Event Mode

You create your own event mode by creating a child of Event Mode. You can override,
or “shadow” the Event Mbde’ s handlers as required by your application. You can add
any properties you wish to the event mode object in order to preserve its state.

IMPORTANT
Never delete a property or handler inherited from EventMode. O

Mouse Sensitivity

17-258

When a user points at an object by clicking the mouse, the user’s intention may not
coincide with SK8’s interpretation of the pointing gesture. For example, if an oval is
contained inside a rectangle, and the user intends to click on the rectangle, but the

Event Modes
©1994 Apple Computer, Inc. 5/7/95

CHAPTER17 The Event System

pointer is over the oval, the cl i ck event will be sent to the oval instead of to the
rectangle.

SKS8 lets you manage this situation in a number of ways. One is to use delegation, in
which case the oval’s cl i ck handler would delegate the cl i ck event to its container
(the rectangle). The rectangle would get the cl i ck, asthe user intended.

You can also change SK8’s interpretation of mouse events by changing the value of the
nouseSensi tivity property of your actor.

Click Interpretation

Sometimes you may have conflicting requirements on how you want a click,
double-click, or mousedown events to be interpreted by the system. Sometimes, when
the user clicks or double-clicks, you may not want to have the actor receive a
nouseDown event. The doubl eCl i ckSt yl e property, defined on actors, permits you
to control this. More information on the doubl ed i ckSt yl e property is in the Actor
object description.

The possible styles are:
‘standard’ (the default) ‘ doubl el i ckOnly’ ‘clickOnly’

Note

See the “SK8 Projects and Libraries” chapter for additional information
on openedProject and openedLibrary. O

Event Tracking

Event tracking is a category which subsumes a variety of services provided by SK8.
These include:

MouseSensitivity Controls SK8'’s responses to a user’s pointing actions (e.g.,
with the mouse).

Cl i ckl nterpretation Controls SK8’s interpretation of a click, versus a double-click
versus a pointer-down and pointer-up combination.

Event Recor di ng Records or logs SK8 events.
Event I ntercepti on Intercepts SK8 events.

Event Tracking 17-259
©1994 Apple Computer, Inc. 5/7/95

CHAPTER17 The Event System

17-260 Event Tracking
©1994 Apple Computer, Inc. 5/7/95

CHAPTER 18

Files

SK8 provides a simple interface to long term data storage in the form of:
» Files

= Streams

File Objects

Every computer operating system that SK8 supports represents long term data storage
(a.k.a. disk storage) in operating system structures known as files. Furthermore, the
operating systems all organize files in a hierarchial system of volumes (disks), folders
(directories).

Each file can be uniquely identified by a file name and its position in the hierarchy. For
example, there can only be one file named Folio in the same folder (directory). A file can
also be specified by telling the operating system its disk, and all the directories that lead
to it; e.g. on a Macintosh “MyHardDisk:MyFolder:Folio”; on a PC
“MyHardDisk\MyDirectory\Folio”; on a Unix system “/MyDisk/MyDirectory/Folio”.
This specification is sometimes called a “PathName”. In SK8 this specification is
manifested by the “File” object.

Please note that a file object is not a file itself nor is it a file’s data. It is merely the unique
identification of a file that gets correctly translated to the host operating system. File
objects are just “smart name strings.” In fact, just because you have a valid file object, it
does not mean it refers to a file that actually exists. You may have a valid file object that
refers to a file that has not yet been created, or that has been deleted. Similarly there can
be several different file objects that refer to the same file.

An analogy: a name tag may have your name on it; it refers to you. It is easy to image
several name tags with your name on them; each one refers to you. It is also easy to
image a name tag of someone who is not present, or a name tag for a fictional character
(i.e. someone who does not exist). File objects are very much like these name tags, only
they refer to files instead of people.

File Objects 18-261
©1994 Apple Computer, Inc. 5/7/95

18-262

CHAPTER1S8 Files

So what can you do with file objects? Actually quite a lot. There is a rich set of object
handlers that give you one standard programming interface to access files from
whatever operating system your SK8 application happens to be running on. Below are a
few examples of these handlers. Examine a File object with the SK8 Object Editor and
refer to the SK8 Object Reference Manual for more detail descriptions.

physicalName and logicalName

File Objects use two separate ways for specifying a file:
= logicalName

= physicalName

PhysicalNames specify the file with the explicit name of the disk, every directory leading
to the file and finally the filename itself.

For example:
MyDisk:MyTopDirectory:MyLocalDirectory:Folio

Note the directories are separated by colons. Also note no colon appears before the first
thing in the path; i.e. the disk name.

LogicalNames provide a shortcut from having to supply the file’s entire path. Instead of
starting with the disk name, logicalNames start with the name of a Fi | eAl i as object.
Twofil eAli as objects are defined in SK8:

= “SK8” which is the directory in which the SK8 application resides, and

= “Root” the top level of all operating system paths. On a Macintosh, Root is the
DeskTop.

An example of a logical name would be:
SK8;SK8:SK8

which is the SK8 file, inside the SK8 directory, inside the directory in which resides the
version of the SK8 application you are running. Note the first separator in logicalNames
is a semicolon.

File Object Handlers

FileExists

Returns Tr ue if the file that the File Object refers to actually exists and can be accessed.

Set x to new file with | ogi cal Name “ SK8; SK8: sk8”
Fil eExi st of X -- returns true

File Objects
©1994 Apple Computer, Inc. 5/7/95

CHAPTER1S8 Files

Set y to new file with | ogi cal Name “ SK8; Not Her e”
FileExist of y -- returns fal se

CreateFlle

Given a File Object that refers to a file that does not exist, the handler will instruct the
operating system to create a file as specified by the file object.

Set y to newfile with | ogical Name “ SK8; | mNewHer e”
CreateFile y

Delete

Given the actual file exists, this command instructs the operating system to delete the file.
Del ete y

Note
This does not end the File Object’s existence. O

isDirectory

Returns Tr ue if the File Object refers to an operating system directory (i.e. folder on a
Macintosh) and not a data file.

New file with objectName “HereTis” with =
| ogi cal Nane “SK8; SK8 Li brary”

isDirectory HereTis -- returns true
Set x to new file with | ogi cal Name “ SK8; SK8: sk8”
isDirectory x -- returns fal se

Files

If the File Object refers to a data file, this handler returns a list of files it contains.

new file with objectname “Herel Anf with | ogical name “SK8;”
files of Herel Am
-- returns: {the File “SK8; Library:”, the File =
“SK8; Pat ches: ", the File
-- "“SK8;SK8:", the File “SK8;SK8 v1.0", the File “SK8; SK8 -
Tenporary Files:"}

Directories

If the File Object refers to an operating system directory, this handler returns a list of
directories it contains.

File Objects 18-263
©1994 Apple Computer, Inc. 5/7/95

Streams

CHAPTER1S8 Files

directories of Herel Am

-- returns: {the File “SK8; Library:”, the File =
“SK8; Patches:”, the File

-- “SK8;SK8:", the File “SK8; SK8 Tenporary Files:"}

Name

Return various forms of the name of the file that the File Object refers to.

Set x to new file with | ogi cal Name “ SK8; SK8: sk8”
Set y to new file with Phyiscal Name “M/Di sk: Applications; -
Sk8 V1. 0: SK8: SK8: sk8”

With no parameters it returns the name of the file as it was originally specified so:

nane of x -- returns “SK8; SK8: sk8”
nane of y -- returns “M/Di sk: Applications; Sk8 V1. 0: SK8: SK8: sk8”

If the directory parameter is set to Fal se, only the name of the file is returned:

name of x with directory false -- returns “sk8”
name of y with directory false -- returns “sk8”

18-264

St r eans are used to perform input and output operations, both sequential and random
access. Two types of streams exist:

m Text St r eans are used for text and characters. TextStreams have an understanding
of words, paragraphs, lines, and so forth.

= Byt eSt r eans are used for binary data. You are responsible for reconstituting the
byte stream data when you read the file. SK8 provides minimal functionality to help
you with input/output of SK8 objects. Refer to the wr i t eObj ect handler in the SK8
Object Reference Manual.

Stream Handlers

Some of the handlers for the St r eamobject API (application program interface) are:
writeStream t emstream, item
readSt r eand t emstream
at St r eanEnd stream
streanPosi ti on stream
Virtual property which has a setter.
streamiN it er| nf o stream
Provides fast repeated performance of wi t eStream tem
st reanmReader | nfo Provides fast repeated performance of r eadSt r eam t em

Streams
©1994 Apple Computer, Inc. 5/7/95

CHAPTER1S8 Files

Streams as Collections

Since Streams are collections, all of their operations are available via selection
expressions. Read and write operations are supported in ByteStreams and TextStreams
via the collection protocol so that one may read or write to a file from within a repeat
loop or by using a complex selection expression.

Example:

get item 410 in nmyByteStream
set item 410 in nyByteStreamto 255

TextStreams may also use text-oriented selection expressions.

Example:
get the second word in nyText Stream

set the fifth character of the 1004th word-
in myTextStreamto “x

Note
Refer to the “SK8Script Language” chapter for more information on
Selection Expressions. O

A WARNING
Writing into a Stream in such a way as to cause items to be inserted in
the middle of the Stream is not currently supported. O

Current Directory

The current Di rect ory is a property of the system. It is a file path name naming a
directory that is used as a default for relative file path names—names without a top level
directory reference (or syntactically, a file path name beginning with a colon).

Absolute filename: “Socr at es: St uf f: Fol der: nyfil e”
Relative filename: “: Fol der: nyfil e”

Ifthecurrent Directory is“Socrat es: St uf f: ”, the above relative file path name
will reference the same file as the above absolute file path name.

Streams 18-265
©1994 Apple Computer, Inc. 5/7/95

CHAPTER1S8 Files

18-266 Streams
©1994 Apple Computer, Inc. 5/7/95

CHAPTER 19

Foreign Function Interface

Intro/Warnings

The SK8 Foreign Function Interface (FFI) allows you to make calls to functions and
procedures that were written, compiled, and linked in other programming environments
like C, Pascal, or assembly language. SK8's FFI is a fairly minimal interface. To use it, you
must understand several low level concepts for the specific language and computer you
are interfacing with, such as: the bitwise representation of the various data structures
you will be passing, how parameters are passed on the stack or in registers, and code
linking conventions. In general, code you write in SK8 for the FFI will not be
cross-platform compatible; i.e. it will not work on every computer that SK8 may run on
(Macintosh, Windows PC, or specific Unix platforms, etc.).

A WARNING

Users of the FFI have full power and control to corrupt memory, create
dangling pointers, cause storage leaks, and otherwise crash the system.
If you are not comfortable with low level runtime details of your
computer system, you should not use this interface. a

Note

The current incarnation of SK8’s Foreign Function interface is
guaranteed to work only for ATG releases of SK8. Subsequent Applesoft
releases may contain an FFI which is significantly different. O

Note #2

Most of the examples of foreign code in this chapter use C, with only a
few of the examples illustrating how to use Pascal or Mac traps, but
extrapolation to these should be reasonably straightforward. O

Intro/Warnings 19-267
©1994 Apple Computer, Inc. 5/7/95

CHAPTER19 Foreign Function
Interface

Using the FFI

19-268

Here are the steps generally necessary when using the foreign function interface:
1) Compile your foreign functions.
2) Use the | oadFor ei gn() function to load the foreign functions into your project

3) Write your SK8Script code that uses each foreign function, and put it in a separate
script file. These functions are often called the “wrapper” code, because they wrap the
foreign code in SK8Script. Since SK8 is an object-oriented environment, you should try to
design your wrappers so that they can work inside object handlers, in order to preserve
the object-oriented paradigm.

4) Use these wrapper functions, just as you would any other SK8 function.

Compiling your foreign functions

You can write and compile your foreign functions in any programming environment that
produces MPW format object-code (binary) files (for Pascal or C). For more information,
you can refer to the manual for MPW C, Version 3.0, Appendix C, Calling Conventions and
Type Correspondence.

All of the foreign object files must be linked into one object-code file, because (as of
version 0.9) SK8 can only have one object file loaded at a time.

Loading a foreign object file

Once your foreign object-code file has been created, it must be read into the SK8
environment before it can be used. To read an object-code file use the following
command:

| oadFor ei gn (loadSpec, pathName)

loadSpec, the first argument, is the load specifications. It lets SK8 know what the object
file looks like. There are the only two load specifications currently supported:

Mac68KMPWCLoadSpec
Mac68KPascal LoadSpec

As you might surmise from their names, both of these loadSpec arguments specify that
the object code uses Motorola MC680x0 instructions and addressing modes.
Furthermore, the first loadSpec specifies that the instructions use C conventions for
passing arguments and return values, whereas the second loadSpec specifies that Pascal
conventions were used. Specifically, the C convention is to push the arguments in right
to left order, call the function, and when the function returns, the function's caller is
expected to remove the arguments from the stack. The Pascal convention, on the other
hand, is to push the arguments in left to right order, call the function, and when the
function returns, only the result (if any) will be left on the stack. Other loadSpec values
may be available in later versions of SK8 (later than version 0.9).

Using the FFI
©1994 Apple Computer, Inc. 5/7/95

CHAPTER19 Foreign Function
Interface

pathName, the second argument, is the location of the object-code file. Currently (i.e.
version 0.9) the pathname must be a fully specified OS specific pathname string. For
example, on a Macintosh the pathname string might be”Mac HD:SK8:MyCode:Stuff.o";
on a PC the pathname string might be “C:\SK8\MYCODE\STUFF.O”. SK8's OS
independent physical or logical file names (e.g. “SK8;MyCode:coolStuff.0”) cannot be
used. This restriction will likely disappear in later versions of SK8 (later than version 0.9).

Some linking loaders only load referenced code rather than loading the entire binary.
This is called “searching link libraries” (for referenced code). SK8’s FFI, however, does
not currently support searching link libraries.

Note

Foreign functions are not saved with your SK8 project; they must always
be loaded using the | oadFor ei gn() function. When you use the
project store to save a project which has foreign function calls in it, the
foreign function will not be loaded the next time you open that project.
You need to guarantee that foreign functions are loaded before any of
your code calls them. One approach would be to write an initialize
handler for your project that includes a call to the loadForeign function.

Example:

on initialize of ne (a yourProject)
do inherited
| oadForei gn (Mac68KMPWCLoadSpec, " MacHD: SK8: MyCode: St uf f. 0")
--Then we need to | oad the w apper functions..
| oadScriptFile (“SK8;nyWappers.sk8”, ne)
end initialize

Before we elaborate upon how you can call foreign functions, and how foreign functions
can call SK8 handler/functions (a.k.a. Foreign Callins), in the next two sections we
introduce foreign data types and foreign memory.

Foreign Data Types

SK8 is able to communicate with foreign functions and memory using a limited set of
simple data types. In addition, SK8Script allows for the declaration of complex data
types (known as records) which are built by composing simple data types and other
complex data types.

FFI type declarations are SK8Script descriptions that the SK8Script compiler uses to
generate machine code. FFI type declarations do not instantiate or describe an actual SK8
object. These declarations only cause a SK8 constant to be created with the specified type
name.

Simple Types

The simple data types are the following:

= SInt8, Ul nt8 (8bitsigned and unsigned integers)

Foreign Data Types 19-269
©1994 Apple Computer, Inc. 5/7/95

CHAPTER19 Foreign Function
Interface

s Example: our |l ndex (a SInt8)
= SInt16, U nt16 (16 bit signed and unsigned integers)
= Example:ourlconl D (a SInt16)
= Sl nt32, U nt32(32bitsigned and unsigned integers)
s Example: our OSErr (a Sl nt 32)
= Char 8 (8 bit extended-ASCII Characters)
s Example:ourLetter (a Char8)
s MenPoi nt er (an address in system memory)
s Example:our Graf Ptr (a MenPoi nter)
= MenHandl e (an indirect address to memory, a pointer to a MemPointer)
= Example: our W ndowHdl (a MenHandl e)
= MenArray (an array's base address in system memory)

s Example:ourRect (a SIntl1l6 MemArray with numtens 4)

Complex Types

Complex data types specify a block of physical memory, with individually accessible
parts, or components. Access to the components is via a syntax which is identical to
accessing properties of a SK8 object. Compound data types can be used as components
in other compound data types. Since Compound data types are specified using a
universal set of simple data types, their structure can be mapped onto data structures
declared in other programming languages.

Form:

type MenRecord with typeName newIypewi th fields -

fieldName ([a| an] type) [, fieldName ([a| an] type)]*

where type is a base type (defined above), a memHandle or memPointer to

another type, or a <type> memArray with numltems <n> [<memType>].

Examples:

Type MenRecord with typeNanme "personType" with fields =
nane (a Char8 MemArray with numtens 32), -

age (a Unt8), =
badgel D (a Ul nt 32)

Type MenRecord with typeNanme "departnent Type" with fields -
manager (a Char8 MemArray with numtens 32), =
dept Num (a U nt16), -
enpl oyee (a personType MenArrya with nunltens 10)

Corresponding C Code:

19-270 Foreign Data Types
©1994 Apple Computer, Inc. 5/7/95

CHAPTER19 Foreign Function
Interface

typedef struct {
char nane[32] ;
unsi gned char age;
unsi gned | ong badgel D;
} personType;

typedef struct {

char manager [32] ;
short dept Num
per sonType enpl oyee[10] ;

} departnent Type;

Foreign Memory

Memory Access

Foreign memory values may be accessed via a specialized expression syntax, which may
be used in both setters and getters.

Typed foreignMemory may omit the specific type information, but the dereference will
be generated at run-time, will be slower, and will cause some temporary SK8 memory
allocation. Giving the full type allows for static, compile-time code generation which is
more efficient, but gives up type error checking. Giving partial type information gives
fairly quick dereferences which do type check the memory.

Form:
foreign [item <n> [in] of] <field> of <foreignRef> [(a <type> <memType>)]
<memType> = memHandle | memPointer | foreignMemory

Use of the f or ei gnMenor y type (the parent class of both rentHandl| e and
menPoi nt er) indicates that a memory check at runtime should be performed to find if a
memory pointer or handle is used.

Similarly to C and Pascal, nested record fields use a dot notation for field names (e.qg.
person.age).

Examples:

--the following line is described in the next section;

--it just allocates foreignMenory which is the right size for
- -depart ment Type

set newDept to newMenHandl e(depart ment Type)

--fully static reference; this works with raw forei gnMenory
--and does not type check the nenory. (The fastest way.)
set foreign item11 in nanager -

of newDept (a departnent Type nenHandl e) to the character "J"
get foreign item 1l in nmanager-

Foreign Memory 19-271
©1994 Apple Computer, Inc. 5/7/95

19-272

CHAPTER19 Foreign Function
Interface

of newDept (a departnent Type nmenHandl e)

--now, pointer vs handle is decided at runtinme; this does a type

--check, but is relatively quick.

set foreign dept Num of newDept (a departnent Type forei gnMenory) =
to 15

get foreign dept Num of newDept (a departmnent Type forei gnMenory)

--finally, a fully dynamic reference. This takes a relatively |ong
--tinme, but does type check.

set foreign dept Num of newDept to 15

get foreign dept Num of newDept

Memory Allocation

To actually allocate memory based on a type specification, you use the SK8 functions
newMenPoi nt er () and newivenHandl e() . Memory allocated in SK8 via these
functions is typed and autodisposed if the object representing the memory is garbage
collected.

Getting New Pointers and Handles

The initialize handler for each foreignMemory type can be overridden for customized
behavior. When newMenPoi nt er () or newvenHandl e() is called, memory is
allocated and the i niti al i zeMen() handler is called with the typed foreign memory
as an argument. dol nheri t ed() may not be called inside ani ni ti al i zeMen()
handler.

Form:

newMenPoi nt er (<nenRecor dType>)
newienHandl e(<menRecor dType>)

Examples:

set newPersonPoi nter to newMenPoi nt er (personType)
set newDept Handl e to newMenHandl e(depart nent Type)

on initializeMem of ne (a personType)
--You can override the handler here if you want to nanage
--your own nenory

end initializeMem

Disposing of Foreign Memory

Similarly, you may override the default memory deallocator (which SK8 calls when it's
releasing your memory). If adi sposeMen{) handler is defined by the programmer, the
handler is expected to cause the foreign memory to be deallocated. di sposeMent()
handlers are typically used either to deallocate interior memory references or the call is

Foreign Memory
©1994 Apple Computer, Inc. 5/7/95

CHAPTER19 Foreign Function
Interface

used to deallocate the memory reference in some non-standard way. Unlike normal SK8
handlers, dol nerited() may not be called inside a di sposeMent() handler. An
example of this second use is to call the foreign deallocator corresponding to the foreign
call which allocated the memory initially (e.g. to call Di sposeW ndow() for a reference
allocated by NewW ndow()).

A WARNING

Default memory deallocation is “precooked” for the Mac. When a
memory dispose handler is defined, it replaces the default deallocator. It
is the responsibility of the programmer to call the appropriate memory
deallocation function inside the dispose handler. a

Form:
di sposeMen(<poi nt er O Handl e>)

Example:

on di sposeMem of ne (a personType)
--do sone stuff here
end di sposeMem

Typed foreignMemory is considered to be owned by SK8, which means that it is either
disposed when garbage collected by SK8 or a user defined disposeMem handler is
called. When typed foreignMemory is passed as an argument to disposeMem, it's
deallocator (i.e. it's dispose handler) is invoked if it is owned by SK8. The programmer
may change this behavior using the functions menOmn() and nmenDi sown() . Disowning
typed foreignMemory means that the user takes responsibility for deallocation by
directly calling a Mac trap routing such as Di sposePt r, Di sposeHandl| e, or

Di sposeW ndow di sposeMen() has no effect on typed foreignMemory that is
unowned.

Note

Owned typed foreignMemory is auto-disposed whenever its object is
garbage collected. Therefore you should keep a reference to an owned,
typed foreignMemory in SK8 to avoid having it inadvertently
deallocated. O

Form:

menmom(<t ypedFor ei gnRef er ence>)
nmenDi sown(<t ypedFor ei gnRef er ence>)

Examples:

--Doing this means that SK8 will take care of disposing
--the menory whi ch newPer sonPoi nter references
menOan(newPer sonPoi nt er)

--But now we're responsi ble for deallocating newDept Handl e
menDi sown(newDept Handl e)

Foreign Memory 19-273
©1994 Apple Computer, Inc. 5/7/95

CHAPTER19 Foreign Function
Interface

Converting From raw foreignMemory to typed foreignMemory

To this point, we have been primarily concerned with memory allocated by SK8, known
as typed foreignMemory. Sometimes foreign function or trap calls will return pointers
or handles to memory which they allocated. These references are known as raw
foreignMemory. A typed foreignMemory reference may be derived from a raw
foreignMemory reference using either the t oMenPoi nt er () ort oMenHandl e()
function. Once you've converted raw foreignMemory to typed foreignMemory, you
should no longer reference the raw foreignMemory.

Form:

t oMenPoi nt er (<r awFor ei gnRef erence>, <typeNane>, <own?>)
t oMenHand| e(<r awFor ei gnRef er ence>, <typeNane>, <own?>)

Setting <own?> to true means that SK8 owns the memory, and will be
responsible for deallocating it, while setting <own?> to false means that
the programmer is responsible for deallocating the memory.

Examples:

Say we have a foreign function called NewPer sonPoi nt er () which returns araw
foreignMemory pointerto a personType which it allocated, and, similarly, a function
called NewDept Handl e(), which returns a raw foreignMemory handle to a
departmentType. Then, to be able to access the individual fields of each within SK8, we
would do this:

--Here, SK8 will do the deallocation for us.
set typedPersonPointer to -
t oMenPoi nt er (NewPer sonPoi nter (), personType, true)

--Now, however, we're responsible for it ourselves.
set typedDeptHandle to =
t oMenHandl e(NewDept Handl e(), dept Type, fal se)

Foreign Function Calls

19-274

When a SK8 function or handler invokes a function written in another language
(specifically C, Pascal, or MC680x0 Assembly), it is known as a foreign function call,
which has the following form:

Form:

on <SK8Nane> [[of] <nane> <argSpec> [, <nanme> <argSpec>]* =
[returns a <result Spec>]
foreign function "<forei gnName>" with call Spec
<cal | Patt er nSpec>
end <SK8Nane>

Foreign Function Calls
©1994 Apple Computer, Inc. 5/7/95

CHAPTER19 Foreign Function
Interface

<ar gSpec> = ([al an] <type> <usage> [<regi ster>] <pass>)

<register> ::= RegDO | RegDl | RegD2 | RegD3 | RegD4 | RegDb5 |
RegD6 | RegD7 | RegA0 | RegAl | RegA2 | RegA3 |
RegA4 | RegA5

<usage> L= in | out | inQut

In arguments are input only, out arguments are results only, and inOut arguments may
be side effected by the foreign call.

<pass> .= byVal ue | byReference

Foreign parameters may be passed byReference or byValue. Arguments that fitin a
machine register are typically passed byValue (which copies the argument). Arguments
larger than that are usually passed byReference (which passes the address of the
argument). Note that foreign memory references are already addresses and so are
generally passed byValue (i.e. the value of the address).

Because SK8 objects may safely and freely move about in memory, the SK8 system takes
special care when passing values by reference--it makes a copy of the bits in the passed
object in a static are of memory and passes the static address. This makes a difference
between in and inOut byReference parameters:

= in byReference parameters do not copy the bits back after the foreign call.

= inOut byReference parameters do copy the resulting bits back to their SK8 objects
(with some data representation coercions) after the foreign call. This means that if you
pass a reference parameter in rather than inOut and side effect it, the result will not be
visible to SK8, so use caution.

<resul t Spec> L= [al an] <foreignType> [out <register>]
<cal | PatternSpec> :: = Mac68KMPWCCal | Spec |

Mac68KPascal Cal | Spec |

Mac68KTr apCal | Spec

CallPatternSpec's are used to abstract over common call pattern conventions which are
in our case MPW C or Pascal, and MC68K traps. They maybe thought of as information
for the compiler's code generator. Currently, there is no supported way for you to extend
the supported callPatternSpec's or define your own.

Note

Not all possible <argSpec>'s or <resultSpec>'s are currently supported; a
list of supported types occurs at the end of this chapter. [

IMPORTANT

Data coercions take place at the interface between SK8 and the foreign
code. For example, SK8 integers may have any humber of bits, but you
can only pass an integer which is representable in a single machine
register which, in the case of SK8, is a smalllnteger, represented by 29
bits. A

Examples:

MacTrap Example:

Foreign Function Calls 19-275
©1994 Apple Computer, Inc. 5/7/95

19-276

CHAPTER19 Foreign Function
Interface

on SysBeep of duration (a SIntl1l6 in byVal ue)
foreign function 43464 with call Spec Mac68KTrapCal | Spec
--this is the address of the system beep function

end SysBeep

C Example:
C Handl e Sk8TCPCreate(char *tcpBuffer, |ong tcpBufferSize,
char *inputBuffer, |ong inputBufferSize)
{
/1 Do sone stuff in here, then return a | ong
return s;
}

SK8: type MenRecord with typeName "tcpCharBuffer"” with fields=
buff (a Char8 MemArray with num tens 16000)

on TCPCreate of =
buf fer (a tcpCharBuffer MenPointer in byValue), -
buff Si ze(a SInt32 in byvalue), -
i nBuf fer (a tcpCharBuffer MenPointer in byValue), =
i nBuff Si ze(a SInt32 in byValue) -
returns a SInt32 out RegDO

foreign function “Sk8TCPCreate” -

wi th cal | Spec Mac68KMPWCCal | Spec

end TCPCreate

Pascal Example:
Pascal : FUNCTI ON PBOFf Li ne (paranBl ock: ParamBl kPtr): OSErr;

SK8: on FF_PBO fLine of =
paranmBl ock (a RegAO0 i nCut byVal ue) -
returns a SInt32 out RegDO
foreign function "PBOfLine" -
wi th cal | Spec Mac68KPascal Cal | Spec
end FF_PBO f Li ne

Since SK8 currently doesn't allow many things to be passed by reference, interfacing
with some functions can be a little tricky. What follows is an example of how to pass
longs byReference. Of special note is the fact that you MUST allocate memory for the
mem~Record which contains the integer.

C voi d DoTheRi ght Thi ng(l ong *nun)
{

// Do sone stuff to *num

}

SK8: type menRecord with typeName “longPtr” with fields =
t heLong (a Sl nt 32)

Foreign Function Calls
©1994 Apple Computer, Inc. 5/7/95

CHAPTER19 Foreign Function
Interface

on DoTheFFI Thing of num (a longPtr nmenPointer in byVal ue)
foreign function "DoTheRi ght Thi ng" -
wi th cal | Spec Mac68KMPWCCal | Spec
end DoTheFFI Thi ng

set nylnteger to newMenPoi nter (|l ongPtr)
DoTheFFI Thi ng (nyl nt eger)

Foreign callins

During a trap or foreign function call, there may be a need for the foreign code to call a
function in SK8. You can create SK8 functions, called callins, which may be passed (as
addresses) to and called from foreign code.

Form:

on foreign callin <SK8Name> -
[[of] <nane> <argSpec> [, <nane> <argSpec>]* =
[returns a <resultSpec>] -
wi th cal | Spec <cal |l PatternSpec>

<just put standard SK8script code here>
end foreign callin <SK8Nane>

<argSpec>'s currently supported are:
= (aSIntl16 in byValue)
= (aSInt32 in byValue)

» (a MemPointer inOut byReference)

<resultSpec>'s currently supported are:
= SIntl6
= SInt32

= MemPointer

Example:

Say, for instance, that we wanted to call a C function which takes an integer argument,
beeps that number of times, then returns the number plus 2 (which we'll do in the
example by incrementing it once in the callin and once in the C function. In the
add2Beep wrapper, you should particularly notice that the argument f unPt r is passed
asa T nmenPoi nt er, which tells the compiler that it is a generic pointer.

C | ong Add1(long n, void (*sk8Function)())
{

Foreign callins 19-277
©1994 Apple Computer, Inc. 5/7/95

CHAPTER19 Foreign Function
Interface

sk8Function(n);
return (n + 1);

}

SK8: on foreign callin newBeep of num (a SInt32 in byValue) -
returns a SInt32 with call Spec Mac68kMPWCCal | Spec
beep num
return (num + 1)
end foreign callin newBeep

on add2Beep of num (a SInt32 in byValue), -
funPtr (a T MenPointer in byValue) -
returns a SInt32 out RegDO
foreign function “Addl” with call Spec Mac68KMPWCCal | Spec
end add2Beep

add2Beep(5, newBeep)

Supported Argument and Result typeSpecs for FFI Calls

Following are the supported argument and result typeSpecs for foreign function calls.
The types listed may not be the only ones that work; they are, however, the only ones
supported at this time. Unless otherwise noted, arguments are passed on the stack.

Table 2-1 Supported Argument TypeSpecs for Pascal and C Calls

SK8 Type Foreign Type
Character a Char8 in byValue
Integer a SIntl16 in byValue

a SInt32 in byValue

a RegDx in byValue (reg D0..D7)
Float an IEEEFloat inOut byReference

an IEEEFloat as RegAx inOut byReference(reg A0..A4)
MemPointer a pointerType in byValue

a pointerType in RegAx byValue (reg A0..A5)
MemHandle a handleType in byValue

a handleType in RegAx byValue (regA0..A5)
String (*) a String inOut byReference

a String inOut RegAx byReference (register A0..A4)

a String with numltems n inOut byReference

a CString inOut byReference

19-278 Supported Argument and Result typeSpecs for FFI Calls
©1994 Apple Computer, Inc. 5/7/95

CHAPTER19
Interface

Foreign Function

Table 2-1 Supported Argument TypeSpecs for Pascal and C Calls

SK8 Type

Foreign Type
a CString inOut RegAx byReference (reg A0..A4)

a PString inOut byReference
a PString inOut RegAx byReference (reg A0..A4)

(*) Using the generic String type tells SK8 to default to the type of string appropriate to
the language which you are using (e.g. a null terminated string for C). You may also pass
strings as buffers, using the ...with numltems <n> syntax, which allows for foreign code
to extend the strings (up to <n> characters). Using this method, trimmed, native SK8
strings will be returned. You may also specify that a SK8 string be coerced to a C string
within a Pascal call or vice versa using CString or PString, respectively

Table 2-2 Supported Argument TypeSpecs for MacTraps Calls

SK8 Type
Boolean

Character

Integer

Float

memPointer

memHandle

String

Foreign Type
a Boolean in byValue

a Char8 in byValue

a SInt8 in byValue

a SIntl16 in byValue

a SInt32 in byValue

a UlInt8 in byValue

a UInt16 in byValue

a UInt32 in byValue

an IEEEFloat32 inOut byReference

an IEEEFloat32 as RegAx inOut byReference (reg A0..A4)
foreign

pointerType in byValue

pointerType in RegAx byValue

handleType in byValue

handleType in RegAXx byValue

a String inOut byReference

a String inOut in RegAx byReference (register A0..A4)
a PString inOut byReference

a PString inOut in RegAx byReference (reg A0..A4)

Supported Argument and Result typeSpecs for FFI Calls 19-279

©1994 Apple Computer, Inc. 5/7/95

19-280

CHA

PTER19

Interface

Table

2-3 Result typeSpecs forPascal and C Calls

Foreign Function

Result typeSpec
Char8

Char8 out RegDx

SIntl6

SIntl6 out RegDx

SInt32

SInt32 out RegDx

IEEEFloat

type memPointer

type memPointer out RegAx
type memHandle

type memHandle out RegAx

SK8 Type Returned
Character

Character
Integer

Integer

Integer

Integer

Float

type memPointer
type memPointer
type memHandle

type memHandle

String memPointer out RegAXx String
String memHandle out RegAx String
Table 2-4 Result typeSpecs for MacTraps Calls
Result typeSpec SK8 Type Returned
Boolean Boolean
SIntl6 Integer
SIntl16 out RegDx Integer
SInt32 Integer
SInt32 out RegDx Integer
IEEEFloat32 Float

Supported Argument and Result typeSpecs for FFI Calls

type memPointer

type memPointer out RegAx
type memHandle

type memHandle out RegAx
String memPointer out RegAXx

String memHandle out RegAx

©1994 Apple Computer, Inc. 5/7/95

type memPointer
type memPointer
type memHandle
type memHandle
String
String

CHAPTER 20

Imaging

This chapter is under development. It will appear in the finished manual.

20-281
©1994 Apple Computer, Inc. 5/7/95

CHAPTER20 Imaging

20-282
©1994 Apple Computer, Inc. 5/7/95

CHAPTER20 Imaging

20-283
©1994 Apple Computer, Inc. 5/7/95

CHAPTER20 Imaging

20-284
©1994 Apple Computer, Inc. 5/7/95

CHAPTER 21

Projects

Projects

SK8 provides a framework that allows the user to organize their objects, functions,
constants, and variables into one unit, the Project.

This chapter discusses:
= Projects

= Object Store (Project Store)—a mechanism for storing (saving) projects

A SK8 Project is a workspace for manipulating a collection of objects. You can save, store,
and retrieve all the objects in a Project at once. Projects provide a method for organizing
all the objects associated with a specific SK8 application into modular workspaces that
you can save and load. It is possible to create a Project with the Project Builder or
programmatically. Project workspaces are the basis for final applications and titles that
you build using SKS8.

Not only is a Project a collection of objects, a Project is itself an object.

Superprojects

A project can be part of a superproject. In the following diagram, Project Curly is part of
the superproject Stooges.

In real life, your project’s ultimate superproject is the SK8 project itself.

Namespaces

A project can not have two objects with the same name. Objects in a project must have
unigue names, i.e., namespaces.

Projects 21-285
©1994 Apple Computer, Inc. 5/7/95

CHAPTER21 Projects

Also, since a project can inherit all objects and their names from a superproject, a project
can not have an object with the same name as an object in the superproject. For example,
suppose you are developing a project called Foo. Foo is a subproject of SK8. Because
there is an object in SK8 called Rect , Foo can not have an object named Rect .

The above example is an over simplification, to explain the concept of namespaces. In
real life, things are not this simple. The publ i shSynbol handler, described below,
discusses in more detail how object names or symbols are passed to (published) or not
passed to (unpublished) subprojects.

SubProjects

A project can be comprised of subProjects. In the following diagram, Projects Larry and
Curly are subprojects of Project Stooges. Project Moe is a subproject of Project Larry.
Project Stooges and each of the subprojects have their respective objects.

Subprojects are useful to limit the scope of object names, to manage logical groups of
objects, etc.

Figure 2-1 Subprojects

21-286

O = other objects

Project Stooges (O

/{\Object A O \
arry Object B Arl

SubProject SubProject

AL o o

SubPI’OJE \
You are here

Some features of subprojects are best explained with an example:

Projects
©1994 Apple Computer, Inc. 5/7/95

CHAPTER21 Projects

The first feature is: a project object is not in its own project. (Remember that a project is
not only a collection of objects but is also an object itself.) In the example above,
subprojects Larry and Curly are project objects to Project Stooges and subproject Moe is a
project object to subproject Larry. Looking at it from another angle, project object Larry is
not a project object of subproject Larry (i.e. itself), project object Curly is not a project
object of subproject Curly, and so on.

The second feature is: if you (or an object) are at location X, you can see all the objects in
subproject Larry and superproject Stooges, but you can not see or get to the objects in
subproject Curly or subproject Moe. In other words, a subproject is not able to see all the
objects within a sibling subproject.

Project Handlers

openProject

The openPr oj ect handler opens a project from a project file.

openProject file with copyright

file A file object specifying the file from which the project will be
loaded.

copyri ght keyword A boolean specifying if you want a copyright announcement
to be generated at the moment the project completes loading.
The defaultis f al se.

opened Event

The opened event is sent to a project immediately after it has been successfully opened
by openPr oj ect . It is possible to specialize an opened handler for a project to
perform initialization of the project workspace.

openedProject

A system level event sent to the objectSystem. This event can be forwarded to a specific
object by inserting that object into the eventListeners property of the objectSystem.

saveProject

The savePr oj ect handler saves a project into a file. All objects and imported media are
stored/saved in a file.

saveProj ect ourproject with docunentation -
wi th copyri ght

Projects 21-287
©1994 Apple Computer, Inc. 5/7/95

21-288

CHAPTER21 Projects

docunent ati on keyword

Provides a documentation string—a description of the project.
copyri ght keyword

Provides for a copyright announcement (encoded as a string).

Supplying a new docunent at i on or copyri ght string overrides the previously saved
one.

writeSources (Saving Project Source Text Files)

wri t eSour ces saves the text (SK8Script) sources of a project.

writeSources of Project with file -
wWith objects -
wi th handl ers =
with gl obals -
wi th functions

Pr oj ect The project whose sources are to be saved.

file A file object representing the file into which the text will be
written. If the file exists, it will be overwritten.

nj ect s Boolean. If true, objects’ sources are stored to a file (default =
false).

Handl er s Boolean. If true, the handlers for all objects are stored (default
=true).

d obal s Boolean. If true, variables and constants are stored (default =
true).

Functi ons Boolean. If true, project functions are stored (default = true).

A WARNING

This feature is supported for the handlers, globals, and functions
options. The objects option will provide the best possible written record
of the objects in the project. However, it is not guaranteed that
evaluating the scripts for these objects will necessarily and satisfactorily
reconstitute these objects in memory. You can, however, use the objects
option to get a close idea of the script representation of the objects in
your project. O

compactProject

The conpact Pr oj ect handler compacts a project file resulting in a dramatic reduction
of disk space needed for storing the project. Project files should be compacted regularly.

conpact Proj ect project with filenane -
wi th maxVersions -
with nedia

Projects
©1994 Apple Computer, Inc. 5/7/95

CHAPTER21 Projects

fil ename keyword The file pathname of the file in which a compacted version of
your project is saved. By providing the f i | ename keyword,
the original project file will not be compacted. Using the
fil enanme keyword is like using the “Save As...” capability.
The compacted file is separate from the original. If the
fi | ename keyword is not provided, then the file from which
the project was loaded is the one compacted. (To check the
original file from which a project was loaded, use get t he
file of nyproject))

maxVer si ons keyword Determines the number of available versions of the source
that are preserved in the compacted file. The valid options are
t r ue or a positive integer. If t r ue, all available versions of
the source for the project are preserved. An integer indicates
the maximum number of versions preserved. The defaultis 1
(only the currently active version of the source will be
preserved).

medi a keyword Determines if you want the media objects compacted as well.
Compacting your media, in the present context, means that if
no objects in your project reference that media, then the
media will be deleted from the file. For example, you may
have imported an image into the project but, after some
experimentation, may not be actually referencing that media.
Media compaction ensures that the space in disk occupied by
the media is reclaimed. The defaultist r ue.

Publishing Symbols

Publishing symbols is a functionality in SK8 that allows you to publish a symbol to a
project’s subprojects. What exactly does this mean? First, think of symbol as a name of an
object or a reference to an object. (Refer to the SK8 Overview chapter for a more
complete explanation of symbol.)

Publish means if an object in a superproject is “published”, the object now becomes
available to all the subprojects. Referring back to Figure 10-1, “Subprojects”, if Object A
and Object B in the Project Stooges is published, Object A and B are now available to all
subprojects of Stooges. This also means the subprojects can not have any local objects
named Object A and Object B. (Refer to namespaces at the beginning of this chapter.)

If Object A and B have not been published, the other subprojects can not get to Object A
and B. This also means the subprojects can have local objects named Object A and Object
B.

Publish Handlers

The Publ i sh handlers are: publi shSynmbol, unpublishSynbols, and
publ i shedSynbol s.

Projects 21-289
©1994 Apple Computer, Inc. 5/7/95

21-290

CHAPTER21 Projects

publishSymbol

The publ i shSynbol handler publishes a symbol for your subprojects. The only
current reason to publish a symbol is when you want to provide handlers or functions
that accept a set of symbols as their arguments.

publ i shSynbol Project, Synbol

Pr oj ect The project in which the symbol is published.
Synbol The symbol to be published.

When testing for equality between your symbol and those provided by your subprojects,
it is important that the symbols be the same symbol. Even though your subproject may
use a symbol with the same name as yours, this does not necessarily mean that the
symbols are equal. Since the symbols exist in two different projects, they could be
different.

An analogy to illustrate the concept of equality is that of identical twins. Even though
they are identical (look the same, same characteristics, etc.), they are two different people.

To ensure that your subprojects use the appropriate symbol, all you need to do is publish
the appropriate symbols. For example, suppose you have an object Foo in your project
and you write a handler called | ocati on which is written as follows:

on set location of me (a Foo) to val ue
if value = ‘center’ then beep
end set | ocation

In this case, you want to make sure that your subproject’s ‘center’ symbol is the same as
the one you’ve used in the IF test above. You can ensure this by executing the following
statement:

publish ‘center’

All subprojects will “subscribe” to this symbol, so that a beep will sound when a
statement in your subproject does this:

set foo's location to ‘center’

unpublishSymbols

The unpubl i shSynbol s handler removes a previously published symbol.
unpubl i shSynbol Project, Synbol

publishedSymbols

The publ i shedSynbol s handler returns all of the symbols that have been published
by a project.
publ i shedSynbol s Proj ect

Projects
©1994 Apple Computer, Inc. 5/7/95

CHAPTER21 Projects

Object Store (Project Store)

Object Store or Project Store, in the generic sense, is the mechanism SK8 provides for the
saving and re-opening of a SK8 project undergoing the throes of development.

To save a project use the Save command under the File Menu of Project Builder.

When a project is stored or saved, all the objects, handlers, properties, variables,
functions, etc. are saved with it. The disk file that contains all the project “stuff” is called
the Object Store. For reasons that are obvious, the user is not able to do the usual file
manipulation with the Object Store file. An Object Store file contains only one project.
Each project has a file object that corresponds to the file that is the project’s Object Store.

When a project is saved everything is written out to the Object Store file. When the
project is opened, everything in the Object Store is read into memory and the project’s
contents are created.

The Obiject Store file is in binary format. The negative side of this is that you can not look
at the file using an ASCII text editor. At this point in time, the only functionality
provided by SK8 in terms of this file is Open and Save.

Objects in a project are a very inter-related, tangled network of connections, pointers,
etc., and it is very difficult to store these relationships in a text file. The positive side of
the binary format is that it is able to store these relationships and references to objects,
internal pointers, etc. Also binary format loads into memory much faster than other file
formats.

The Obiject Store is also used to store handler scripts as temporary files (also in a binary
form for all particular purposes). The importance of this is that the handler files can be
read from and written to without opening the project.

The only part of a project that is not kept in memory at all times is the SK8Script
handlers. When a project is retrieved from Object Store, the entire project is brought into
memory, except handlers. Handlers only need to be in memory when executing. This is
why handlers are kept in a temporary file until they are read into memory. They are read
into memory from the temporary file when they are accessed via the Script Editor. When
the Script Editor window is closed, the handler is written back to the temporary file and
not kept in memory.

When you open an existing project, the object file is copied to a temporary file in a
temporary folder. This is the file used for working storage. When you save the project, all
the objects, etc. currently in memory, are written to the temporary file. The old project file
is deleted and the temporary file becomes the new project file.

When SK8 aborts, you will see lots of temporary files in your folder. If SK8 is not
running, it is okay to get rid of those files because the only way these temporary files can
exist (when SK8 is not running) is through an abrupt error that prevented SK8 from
performing cleanup and file deletion. If SK8 is running, leave the files alone.

Project files tend to be very small except when using media. It is a developer design
decision whether to store media directly in the project or reference the media stored
outside the project.

Object Store (Project Store) 21-291
©1994 Apple Computer, Inc. 5/7/95

CHAPTER21 Projects

Only objects that are in the project proper are stored in the Object Store file. Any objects
outside the project, that are referenced by the project, are stored as a reference. Since
references are resolved at load time, the reference must be a valid reference when the
project is loaded.

There may be some cases when the user must provide an initialization phase upon
opening a project to add specific behavior when restored from store. For example, if the
parent project contains an array but the elements of the array are in a child or subproject,
some specific initialization needs to occur to link subproject elements to the array in the
master/super project.

21-292 Object Store (Project Store)
©1994 Apple Computer, Inc. 5/7/95

CHAPTER 2 2

Media

Media

Media are the objects which connect you with the real world of data. Each media object
provides you with properties and handlers that shield you from having to directly
manipulate the data. Media objects are typically created by the Tr ansl| at or object,
which is responsible for exporting SK8 objects as external platform-specific media and
visa versa.

For example, the SoundToSndTr ansl at or is used to import Macintosh ‘snd’ resources
into SK8 sound objects. It is also used to export Sound objects as ‘snd’ resources.

Media includes all objects that represent platform-specific media. The term media refers
to formatted data which is the basis, for example, for images and sampled sounds. These
include objects which represent resources in the Macintosh, QuickTime™ movie files,
PICT and Window DIB graphics files, and so on.

Resource (a Media)

This is the object from which all Macintosh resource objects inherit.

All Macintosh files consist of two main segments: the resource fork and the data fork.
The resource fork is the collection of objects available to the data fork. Icons, sounds,
cursor styles, PICT images, and dialog box items are just some of the resources that can
be added to any Macintosh file. ResEdit, for example, is designed for adding, modifying,
and deleting a file’s resources.

In some types of files, the resource fork is empty. A text file, for example, is made up
only of a data fork that stores all the text. By contrast, a word processing file that
displays several PICT graphics will contain the file’s text in its data fork and the PICTs in
its resource fork.

Media 22-293
©1994 Apple Computer, Inc. 5/7/95

22-294

CHAPTER22 Media

In SK8, the r esour ce fork is contained by the Resour ce object, which is a child of
Media. The Resource object is the parent of the following built-in SK8 objects:

QDPicture A resource whose type is ‘PICT’ and is used for Macintosh
pictures. Renderers that use pictures require a child of this
resource in their frame property. QDPicture resources have a
boundsRect and asi ze property.

CursorRSRC A resource whose type is ‘CRSR’ and is used to display the
image of the mouse pointer. Your can set the cur sor of the
St age to one of these objects. SK8 comes with over a dozen
built-in cursors. (To see the names of each, typet he child
of Cursor into the Message Box.) Cursors have a
boundsRect and asi ze property.

IconRSRC A resource whose type is ‘CICN’ that is used for Macintosh
icons. Renderers and actors that use icons will expect a child
of this resource. SK8 includes icon resources for its built-in
interface objects. Examples: arrow icons for Scrollers, button
icons for its dialog boxes, and so forth.

SoundRSRC A resource whose type is ‘SND’ that stores all information
necessary to play a given sound. These objects have a play
handler that plays the sound. Up to four different sounds can
be played at once. Sound objects also have a dur at i on
property.

BWPattern A resource whose type is ‘PAT’ that is used for Macintosh
black and white patterns. Patterns are 8x8 images that are
used to fill in graphic objects, and were widely used through
the control panel to create desktop patterns in older black and
white Mclntoshes.

SK8 includes five built-in BWPattern objects:
BlackPatternRSRC, DarkGrayPatternRSRC,
GrayPatternRSRC, LightGrayPatternRSRC, and
WhitePatternRSRC.

The SK8 user interface defines 45 others. For example,
BWPattern objects can be passed to renderers that want a
penPattern. BWPatterns have a boundsRect and asi ze
property, but they are always 8x8.

ColorPattern A resource whose type is ‘PPAT’ and is used to create color
patterns. Like BWPatterns, ColorPatterns can be passed to
renderers that require a penPattern. ColorPattern objects have
aboundsRect and asi ze property, but they are always 8x8.

To add one of the above resources, you make a child of the appropriate Resource object.

Media
©1994 Apple Computer, Inc. 5/7/95

CHAPTER22 Media

Note

Resource is not documented, but it is available for use. Use the SK8 User
Interface (Project Builder) to get more information on the descendants of
Resource. O

Media 22-295
©1994 Apple Computer, Inc. 5/7/95

CHAPTER22 Media

22-296 Media
©1994 Apple Computer, Inc. 5/7/95

CHAPTER 23

Menus

This section describes how menus are created, installed and used via SK8Script.

Note

The Project Builder also provides the capability of menu creation and installation by
direct manipulation. Refer to the Menu Editor section in the Project Builder chapter for
more information. O

Setting up a Menubar

Creating a Menubar

To create a menubar with three menus, enter the following script:

new menubar with objectnanme “our Menubar”

Adding Menus

new menu with objectname “firstMenu” with text “first”
new menu wi th objectnanme “secondMenu” with text “second”
new nenu wi th objectname “thirdMenu” with text “third”

To install the menus into the menubar, you have two options:
= setting the menubar property of each menu, or

= setting the menus property of the menubar.
Using the second method, we can write the following script:

set our Menubar’s nenus to {firstMenu, secondMenu, thirdMenu}

Setting up a Menubar 23-297
©1994 Apple Computer, Inc. 5/7/95

23-298

CHAPTER23 Menus

Adding Menultems

Menultems are installed into the menu by setting their menu property or by setting the
menultems property of the menu.

Enter this script:

new nenultemw th objectNanme “nmitl” with text “Menu Item 1”
new menuitem with objectNane “mt2” with text “Menu Item 2"
new menultemw th objectNanme “mt3” with text “Menu Item 3”
set mtl's nenu to firstMenu
set mt2's nenu to firstMenu
set mit3' s menu to firstMenu

Now we’re ready to test our menubar!

Installing Menus and Menubars

A SK8 menubar can be placed in one of two locations:
= on the Stage, in which case it becomes the Macintosh menubar, or

= 0on another actor.

To install the menubar on the Stage, you can use the cur r ent Menubar property of the
Stage as in the following line.

set the current Menubar of the stage to ourMenubar

Place a rectangle on the Stage and simply call itt heRect .

To install the menubar into it, set the menubar’s container to the actor, as shown in the
following example. Incidentally, this is how the SK8 User Interface Project gets menubars
placed on actors such as the SK8 Object Browser.

set the contai ner of ourMenubar to theRect

A menubar can’t be in two places at the same time, so the command we have just
executed removes the menubar from the Stage. (The same result is achieved by setting
the cur r ent Menubar of the Stage to Fal se.) Similarly, setting the cur r ent Menubar
of the Stage to our nenubar would remove our Menubar fromt heRect .

In the previous examples, menus installed in a menubar behave as pull down menus.

A popup menu, by contrast, is a menu that is not installed in a menubar. Instead it is
contained by any SK8 actor. To make the first menu in our Menubar (fir st Menu) a pop
up menu, set its container to an actor (t heRect , for example), as follows:

set the container of firstMenu to theRect

Connecting a Menu to a Handler

Each time an item is selected from a menu item a handler called menuSel ect is called.

Setting up a Menubar
©1994 Apple Computer, Inc. 5/7/95

CHAPTER23 Menus

on nmenuSel ect of ne (a mt1l)
beep
end nenuSel ect

Be sure to call do i nherit ed from your nenuSel ect handler to get it to perform the
behavior that you want.

Setting up a Menubar 23-299
©1994 Apple Computer, Inc. 5/7/95

CHAPTER23 Menus

23-300 Setting up a Menubar
©1994 Apple Computer, Inc. 5/7/95

CHAPTER 2 4

Object

This chapter is under development. It will appear in the finished manual.

24-301
©1994 Apple Computer, Inc. 5/7/95

CHAPTER24 Object

24-302
©1994 Apple Computer, Inc. 5/7/95

CHAPTER24 Object

24-303
©1994 Apple Computer, Inc. 5/7/95

CHAPTER24 Object

24-304
©1994 Apple Computer, Inc. 5/7/95

CHAPTER 25

Pickers

This chapter is under development. It will appear in the finished manual.

25-305
©1994 Apple Computer, Inc. 5/7/95

CHAPTER25 Pickers

25-306
©1994 Apple Computer, Inc. 5/7/95

CHAPTER25 Pickers

25-307
©1994 Apple Computer, Inc. 5/7/95

CHAPTER25 Pickers

25-308
©1994 Apple Computer, Inc. 5/7/95

CHAPTER 2 6

Ports

Ports provide a covenient and dynamic to allow properties to be interconnected. They
are described in detail below.

Introduction

It is often desirable that changing a property’s value causes side effects. This could be
done in SK8 by overriding the property’s setter handler. But if those side effects are
complex, or cannot be predetermined, it can be difficult to design and maintain the side
effect code.

Ports formalize side effects, in a convenient and dynamic way. Ports “attach” to the
properties of objects. Two or more ports can be “wired” together. When the value of the
property changes, the attached port broadcasts a message to all the ports wired to the
receiving ports and affect a change to their attached property. Ports can easily be
re-wired (i.e. disconnected and connected) dynamically, during runtime

Introduction 26-309
©1994 Apple Computer, Inc. 5/7/95

CHAPTERZ26 Ports

.An illustration of Ports

Object A
Property OutputPort m
Property ObjeCt B

Property Property
Property InputPort Property
Property Property
Property
Property

(For nomenclature: “attach” refers to associating a port to a property; “wired” refers to
establishing a communication link between ports.)

Ports are attached to the properties of objects. There is no limit to the number of ports
attached to any particular property.

Ports are attached to the properties of individual instances of an object. They are not
inherited. If you need all the children of an object to have similar ports, you will need to
override the object’s initialize routine to add the port when the child is instantiated.

The Port Object

26-310

Types of Ports

Three types of port objects exist:
= output,

= input, and

= inputOutput.

An output port can be connected to any number of input ports. An input port can be
connected to any number of output ports. An InputOutput port can be connected to any
number of InputOutput ports. InputOutput ports cannot be connected to input ports nor
output ports.

Note the “Port Wiring Mode” a Project Builder graphic interface for creating ports. It
uses Connector objects (lines) to graphically simulate ports, allowing you to “draw

The Port Object
©1994 Apple Computer, Inc. 5/7/95

CHAPTERZ26 Ports

connections between actors. To use this mode, use the “Enter Port Wiring Mode”
command in Project Builder’s Project’s Workspace menu

If you need more elaborate side-effects that just copying the value of a property from one
object to the property of another, you should override the Act i veQut put Port, or

Act i vat el nput Por t , handler for your port. These handlers are used for “filtering” the
data flowing from the output to the input.

Port Handlers

Below are a few examples of the handlers of the Port object. Examine a port object with
the SK8 Object Editor and refer to the SK8 Object Reference Manual for more detailed
descriptions.

AddOutputPort

To create and attach an Output port to an object’s property you can use the
AddCut put Por t handler of Object.

Example:

new rectangle with objectName “source” with container stage -
wi t h boundsrect {100, 50, 200, 150}
addQuput Port source, ‘fillcolor’ with objectnane “col orQut”

AddInputPort

To create and attach an input port to an object’s property you can use the
AddI nput Port handler of Object.

Example:

new rectangle with objectNane “target” with container stage -
wi t h boundsrect {250, 50, 350, 150}
addl nput Port source, ‘fillcolor’ with objectnane “col orln”

AddInputOutPort

To create and attach an inputOutput port to an object’s property you can use the
Addl nput Qut Port handler.

Example:

new Oval with objectName “Ying” with container stage -
wi t h boundsrect {100, 150, 200, 250}
addl nput Qut Port Ying, ‘fillcolor’ wth objectnanme “col orYing”
new Oval with objectNanme “Yang” with contai ner stage -
wi t h boundsrect {250, 150, 350, 250}
addl nput Qut Port Yang, ‘fillcolor’ w th objectnanme “col or Yang”

The Port Object 26-311
©1994 Apple Computer, Inc. 5/7/95

26-312

CHAPTERZ26 Ports

attachPort

If a port object already exists, you can attach it to an object’s property with the
at t achPort handler.

Example:

new port w th objectnanme “frnKol or”
attachPort frnKolor with obj target with property ‘franecol or’

wirePorts

Ports are wired together using the wi r ePor t s handler of the OutputPort and
InputOutputPort objects.

Example:

Wi rePorts colorQut,colorln
wi rePorts col orYing, col or Yang

unwirePorts

The communication link between any two ports can be removed by using the
unwi r ePor t s handler of the OutputPort and InputOutputPort objects.

Example:

unwi rePorts colorQut,colorln
wi rePorts col orYing, col or Yang

unwirePort

All communication links associated with a port can be severed with the unwi r ePor t
handler of the OutputPort and InputOutputPort objects.

Example:

unwi rePorts colorln
wi rePorts col or Yang

wiredTo

Wi redTo returns a list of all the ports this port is wired to.

Example:

Wi redt To colorln
wi redTo col or Yang

ActivateOutputPort

Every time the value of a property changes, and an output port, or inputOuputPort is
attached to that property, ActivateOutputPort gets called. To filter the value your port

The Port Object
©1994 Apple Computer, Inc. 5/7/95

CHAPTERZ26 Ports

broadcasts to its wired ports you must override the ActivateOutputPort handler. The
parameters passed by this are “oldValue” representing the attached properties original
value, and “newValue” representing the attached property’s new value.

If you need Act i vat eQut put Port to be called before the attached property’s value is
changed, set the “triggerBefore” property of the port to Tr ue.

Example:

on ActivateCQutputPort of ne (a colorQut), oldValue, newal ue
-- do not allow color to be set to sanme col or
repeat while ol dval ue = newval ue
set newval ue to any of the knownchildren of RGBCol or
end repeat
do inherited(nme, ol dvalue, newalue) -- very inportant!
-- if you do not call do inherited with paraneters
-- it will send original values of paraneters
end Acti vat eQut put Por t

ActivatelnputPort

Every time the property associated with the port changes, Act i vat el nput Port is
called, assuming an inputPort or inputOutputPort is attached to property. To filter the
value your port receives, you must override the Act i vat eQut put Port handler. The
parameters passed to this handler are “oldValue” and “newValue” representing the
value change that has taken place on the output (source) side of the connection.

Example:

on ActivatelnputPort of me (a colorln), oldvalue, newal ue
if newalue = Green
set newval ue to Bl ue
if oldvalue = Red
set newval ue to Green
do inherited(me, ol dvalue, newalue) -- very inportant!
-- if you do not call do inherited with paraneters
-- it will send original values of paraneters
end Acti vat el nput Port

The Port Object 26-313
©1994 Apple Computer, Inc. 5/7/95

CHAPTERZ26 Ports

26-314 The Port Object
©1994 Apple Computer, Inc. 5/7/95

CHAPTER 27

QuickTime™

QuickTimeT'VI is a major application of multimedia technology. It allows realtime
playback of composed video on a computer screen. SK8 allows the playing of
QuickTime™ movies and provides the ability to create and modify movies.

This chapter describes SK8 support of QuickTime ™.

QuickTime Objects in SK8

QuickTime™ support in SK8 starts with the Qui ckTi neMovi e,
Qui ckTi nreRenderer, and Movi eRect angl e objects.

The Qui ckTi mreMovi e object provides an abstract object-oriented interface into
QuickTime™ movies.

The Qui ckTi meRender er object provides an extended set of capabilities, including
playing a movie.

The Movi eRect angl e object is a Black Rectangle withan i niti al i ze handler that
sets each new child’s fill Col or toanew child of Qui ckTi mreRenderer.

Movi eRect angl e is on the standard palette. After you make a new

Movi eRect angl e, setits fill Col or’ s mediato the movie you want or to true
(which will bring up a QuickTime open file dialog).

One other important way to use QuickTime in SK8 is to start with an actor and call its
nmovi ef y handler. This sets the actor’s fil | Col or toanew child of

Qui ckTi neRender er with its media set to the movie you choose from a QuickTime
open file dialog which will come up. The movie will render into the shape of the actor,
whatever it is.

A Qui ckTi mreRender er can only render one actor at a time. Ifa

Qui ckTi neRender er is already rendering actor A, and you set actor B’s fi | | Col or
to the same Qui ckTi meRender er, the renderer will be yanked away from actor A and
given to actor B. In this case, the renderer for the region of actor A that was being

QuickTime Objects in SK8 27-315
©1994 Apple Computer, Inc. 5/7/95

CHAPTER27 QuickTimeTM

rendered reverts to the current setting of the Qui ckTi meRenderer’s
backgr oundCol or property.

How to Play a QuickTime Movie

M

This is one example of how to play a QuickTime™ movie in SK8.

1. Create an Actor to play the movie in:

new Rectangle -
wi t h obj ect Nane "screen”
wi th container Stage

2. Create a renderer that provides handlers for manipulating a movie and set your
actor’s fill Col or to thisrenderer:

new Qui ckTi neRenderer -
wi t h obj ect Nane "pl ayer"
set the screen’s fill Color to the player

3. Create an object representing a movie file:

new Qui ckTi meMovi e =
With resourceFile true -
wi t h object Name "noviel”

Selecting resourceFi |l e true displays an open dialog. Canceling out of the dialog
causes an error and aborts the creation of the new obiject.

4. Tell the renderer which movie you want to manipulate:

set player’s nmedia to noviel

This has a useful side effect in that it adds novi el to the parents of player. This means
that the movie can be manipulated through the player object, using properties and
handlers of Qui ckTi meMovi e aswell as Qui ckTi mreRender er. This means there is
more functionality available to you for manipulating the movie.

While a movie is associated with a renderer in this way, you can access it by referencing
either the renderer or the movie. The right thing happens whether you do something to
the renderer that should affect the movie, or you do something to the movie that should
affect the renderer.

27-316 How to Play a QuickTime Movie
©1994 Apple Computer, Inc. 5/7/95

CHAPTER27 QuickTimeTM

Moviefy of Actor

Examples:
novi efy Actor

novi efy Actor -
with nmovie (a QuickTineMovie) -- or true (the default)

movi efy Actor =
with file (a File)

novi efy Actor -
with | ogical Name (a string)

novi efy Actor -
wi t hout novi e

Anew Qui ckTi mreRender er iscreated and the fill Col or of the actor is set to the
new renderer. All of the examples, except the last, set the media of the new renderer to a
QuickTimeMovie. The renderer is immediately usable for playing movies when its
media is set.

If with novie true or with file true isspecified, a QuickTime open file
dialog is displayed. The media can be set via the dialog box.

It is an error to specify more than one of novie, file, or |ogical Name.
Once you have “moviefied” the actor, you can change or set the movie to be played by
doing either one of the following to the actor’s fil | Col or:

set funMovie's nmedia to true

This will bring up an open file dialog for specifiying the movie file.

set funMvie's nedia to sonelMvie
<where>
someMovi e is a QuickTimeMovie

When the Qui ckTi meRender er is stopped, the previous setting of the actor's
fill Col or will be rendered. You can change color this by setting the actor’s
fill Color’s backgroundCol or.

Moviefy of Actor 27-317
©1994 Apple Computer, Inc. 5/7/95

CHAPTER27 QuickTimeTM

Creating QuickTimeMovie Objects

Examples of SK8Script code for creating a new Qui ckTi neMovi e Object follows:

Create a new QuickTimeMovie Object referencing an existing
move resource file

new Qui ckTi neMovi e
with resourceFile foo
with resourcel D (defaulting to 0)
-- 0 neans use the ID of the first usable
-- resource found in the file
[with resourceNane]
-- find the resource by nane rather than by nunber
-- false neans we don't care about
-- the resource nanme for the novie

Note
See Inside Macintosh QuickTime™, ““NewMovieFromFile”. O

Create a new QuickTimeMovie Object from a file with the movie
data stored in the data fork

This alternative is useful for movie files not created on a Macintosh.

new Qui ckTi neMovie =
with dataFile foo -
with fileOfset (defaulting to 0)

Note
See Inside Macintosh QuickTime, “NewMovieFromDataFork”. O

Creating a new QuickTimeMovie Object from a file that may
have the movie data stored in either a movie resource or in the
data fork

If there is a movie resource in the file, it is used in preference to a movie in the data fork.

27-318 Creating QuickTimeMovie Objects
©1994 Apple Computer, Inc. 5/7/95

CHAPTER27 QuickTimeTM

new Qui ckTi neMovie with file foo =

Creating a new QuickTimeMovie Object from the clipboard

new QUi ckTi neMovie -
with clipBoard -

Note
See Inside Macintosh QuickTime, “NewMovieFromScrap”. 0O

Creating a new QuickTimeMovie Object from scratch, in
memory

This will be more useful when QuickTime movie editing is fully supported.
new Qui ckTi neMovi e

Note
See Inside Macintosh QuickTime, “NewMovie”. O

QuickTime Commands

This section provides a quick reference to QuickTime commands. For some
commands, a reference is make to the Inside Macintosh QuickTime™ (IMQT)
manual. Text stating “Consult the IMQT” is referring to this manual.

cut Sel ecti on of QuickTimeMovie

Returns a new QuickTimeMovie each time it is called,
allowing one to create a cut from the current selection of the
movie.

copySel ecti on of QuickTimeMovie

Returns a new QuickTimeMovie each time it is called,
allowing one to create a copy from the current selection of the
movie.

got oBegi nni ng of QuickTimeRenderer

Rewinds movie to the beginning of the active segment.
got oEnd of QuickTimeRenderer

Forwards movie to the end of the active segment.
| oadl nt oRamof QuickTimeMovie -- with options

Allows loading of a movie (or as much as wanted) into RAM.
Returns t rue if entire movie fits in memory, otherwise
fal se.

QuickTime Commands 27-319
©1994 Apple Computer, Inc. 5/7/95

27-320

CHAPTER27 QuickTimeTM

next | nt eresti ngTi ne of QuickTimeMovie -- with options

Allows forward or backward navigation in a movie by
finding the “interesting times”. Sets ti neVal ue to the new
time value and returns it. Consult the Inside Macintosh
QuickTime manual.

Supported keywords are:
with startTime

Defaults to the movie’s ti neVal ue.
with rate

Defaults to the movie’s pref erredRat e.
with mediaSample

Defaultsto fal se.
with mediaEdit

Defaultsto fal se.
with trackEdit

Defaultsto fal se.
with syncSample

Defaultsto fal se.
with edgeOK

Defaultsto fal se.
with ignoreActiveSegment

Defaultsto fal se.
with mediaTypes

Defaultsto {"eyes"}.
with interestingDurationWanted

Defaultsto fal se.

past eSel ect i on of QuickTimeMovie

Allows the pasting of the current selection of a movie into
another movie.

Example:
past eSel ecti on toMvie, fromvbvie

pause QuickTimeRenderer
Leaves current frame visible.
pl ay QuickTimeRenderer
Plays from current position.
pl ay QuickTimeRenderer with noOtherActivity
Plays without any other event processing.
prerol | of QuickTimeMovie

Allows pre-rolling of movie before it actually plays. The
supported keywords are:

startTime Defaults to movie’s current t i neVal ue.
rate Defaults to movie’s pref erredRat e.

QuickTime Commands
©1994 Apple Computer, Inc. 5/7/95

CHAPTER27 QuickTimeTM

start QuickTimeRenderer

Plays from beginning of the active segment.
start QuickTimeRendererwith noOtherActivity

Plays without any other event processing.
step of QuickTimeRenderer

Steps through video samples and returns the number of steps
accomplished. Returns negati ve if it went backwards. See
next I nterestingTi ne of QuickTimeMovie.

step pl ayer
Goes to next sample.
step pl ayer by: 2
Steps 2 samples.
step player by:-3
Steps backwards 3 samples.
st op QuickTimeRenderer

Redraws the actor using the backgr oundRender er of the
Qui ckTi neRender er .

QuickTime™ Properties

QuickTimeRenderer Object

act or Oamner of QuickTimeRenderer

The act or Oaner is the actor whose fill Col or,
frameCol or, or textCol or we are rendering. If this
property is fal se, you can still play the movie and only
hear the sound tracks.

di spl ayi ng of QuickTimeRenderer

false Makes the renderer invisible (sound will still
be heard when playing).
true Make it visible.

nmedi a of QuickTimeRenderer

The medi a property specifies the movie being played.
Change the movie by changing the media of the renderer. Set
the nmedi a of the renderer to f al se if you want to have no
movie associated with the renderer (the backgr oundCol or
of the renderer will be rendered in the renderer’s

act or Owner).

newSt at eWhenDone of QuickTimeRenderer

The newSt at eWhenDone property controls the state of the
renderer after it is finished playing. Legal values are:

QuickTime™ Properties 27-321
©1994 Apple Computer, Inc. 5/7/95

CHAPTER27 QuickTimeTM

‘previous’ ‘inactive' ‘poster’ 'stopped’ ‘paused’

The 'previous' option refers to the state that existed before the
movie played. Refer to st at e property of
Qui ckTi neRender er for more information.

pl ayW t hNoQt her Act i vi t y of QuickTimeRenderer

The pl ayWt hNoQt her Activity property, ifsetto
true, allows the renderer to play its movies without any
other event processing in the system. The default is f al se.
This may improve the playback performance of your movie,
at the expense other system activity. You will not be able to
control your movie when in this mode. Do not use this mode
when your movie’s r epeati ng property is set to ‘loop’ or
‘palindrome.’

r at e of QuickTimeRenderer

Changes the rate of the renderer. You can set the rate to a
positive or negative number, in which case the st at e of the
renderer is set to 'playing'. Setting it to 1 causes it to play at
normal speed. Setting it to 0 is equivalent to pausing the
renderer.

resi zi ngSt yl e of QuickTimeRenderer

The resi zi ngStyl e of the renderer determines what
happens when the renderer gets a new media or is set to
render one of the regions of an actor. The valid

resi zi ngStyl e values are:

‘resizeMovieFromRenderedRegion’
'resizeMovieFromFill’
‘resizeMovieFromFrame’
‘resizeRenderedRegionFromMovie'
‘resizeFillFromMovie’
'resizeFrameFromMovie'

The defaultis f al se.

st at e of QuickTimeRenderer

A renderer’s state can be changed by setting its st at e
property to one of the following states:

'‘playing’ Playing.

'‘pause’ Current timeValue is displayed.
'‘poster Movie's poster is displayed.
'stopped’ Stopped, backgroundColor rendered.
'inactive’ Active of movie is false.

27-322 QuickTime™ Properties
©1994 Apple Computer, Inc. 5/7/95

CHAPTER27 QuickTimeTM

QuickTimeMovie Object

act i ve of QuickTimeMovie

A virtual property stored in the child of QuickTimeMovie.
This property is rather esoteric, as it is set automatically when
you pause or play the movie. See Inside Macintosh QuickTime.

act i veSegnent of QuickTimeMovie

A virtual property stored in the child of QuickTimeMovie.
Allows specification of the active segment of the movie. The
segment is specified as an interval, which is a list of two
integers {ti meVal ue, durati on}. This will be the part of
the movie that actually plays. For example:

set the activeSegnent of mto {10, 60}

If the interval listis fal se or {fal se, false},thenthe
selection is the entire movie. If ti neVal ue is fal se

{fal se, 120},then tineVal ue isassumed to be the
current ti neVal ue. If the durationis fal se {60,

fal se} or not present {60}, then the rest of the movie
(forward or reverse as indicated by pr ef err edRat e) is
assumed.

coul dNot Resol veDat aRef er ence of QuickTimeMovie

This property is true if the Movie Toolbox was unable to
resolve all the data references when creating the SK8 object. It
does not have a setter. It is set when the Qui ckTi neMovi e
object is initialized.

dat aRef er enceWasChanged of QuickTimeMovie

This property is tr ue if the Movie Toolbox had to change
any data references while resolving them when creating the
SK8 object. It does not have a setter. It is set when the

Qui ckTi neMovi e object is initialized.

dat asi ze of QuickTimeMovie

A virtual property stored in the child of Qui ckTi meMvi e.
See Inside Macintosh QuickTime. It does not have a setter. Its
value is retrieved from the media.

dur at i on of QuickTimeMovie

A virtual property is stored in the child of

Qui ckTi neMovi e. A non-negative integer specifying the
duration of the movie. Duration is a number of time units.
Time units are specified by the movie’s time scale. (See Inside
Macintosh QuickTime.) It does not have a setter. Its value is
retrieved from the media and can be changed by editing the
movie.

QuickTime™ Properties 27-323
©1994 Apple Computer, Inc. 5/7/95

CHAPTER27 QuickTimeTM

fil e of QuickTimeMovie

Stored in the child of Qui ckTi meMovi e. Initially, this is the
file the movie was created from, if any. Thisisa Fi | e object.
This property does not have a setter. It is set when the

Qui ckTi neMovi e object is initialized.

fileOfset of QuickTimeMovie

Contains a number if the movie was created from a data
fork-only movie file (such as one would get from a Window’s
machine movie authoring application). It does not have a
setter. It is set when the Qui ckTi meMovi e object is
initialized.

novi ePi ct GCHandl e of QuickTimeMovie

A high-quality PICT of the current frame (interpolated). This
property does not have a setter because it is derived from the
movie data.

pr ef er r edRat e of QuickTimeMovie

A virtual property stored in the child of Qui ckTi neMovi e.
Allows changing the rate of the movie the next time it plays.

pr ef er r edVol une of QuickTimeMovie

A virtual property stored in the child of Qui ckTi meMvi e.
It allows changing the volume for the movie the first time it
plays after being loaded. This should be a number between 0
(no sound) and 1 (loudest). You can set this to a larger value
to amplify a quiet movie, but then loud sounds will distort by
“clipping”. To temporarily turn sound off, but still remember
the normal value, you can negate the normal value.

r at e of QuickTimeMovie

A virtual property stored in the child of Qui ckTi meMovi e.
A number one (1) means normal speed forward, minus one
(-1) means normal speed backwards. It does not have a setter.

render er of QuickTimeMovie

Specifies the Qui ckTi mreRender er this movie is currently
bound to, if any. A Qui ckTi neMovi e can only be bound to
one Qui ckTi meRender er atatime. If a QuickTimeMovie
is already being rendered by QuickTimeRenderer A, and you
set QuickTimeRenderer B’s media to the same
QuickTimeMovie, the movie will be yanked away from its
renderer A and given to renderer B.This property does not
have a setter.

repeat i ng of QuickTimeMovie

27-324 QuickTime™ Properties
©1994 Apple Computer, Inc. 5/7/95

CHAPTER27 QuickTimeTM

The r epeat i ng property is a virtual property stored in the
movie object. The r epeat i ng property can take the
following values:

'loop’ Again and again.
‘palindrome' Back and forth.
‘false’ No looping.

r esour cel Dof QuickTimeMovie

Contains an integer if the movie was created from a resource
file. It does not have a setter. It is set when the
Qui ckTi neMbvi e object is initialized.

r esour ceNane of QuickTimeMovie

Sets to a string if the movie was created from a resource file
by specifying the resource name. It does not have a setter. It is
set when the Qui ckTi neMbvi e object is initialized.

sel ecti on of QuickTimeMovie

A virtual property stored in the child of Qui ckTi meMvi e.
Determines what part of the movie is selected for editing
operations. (See copySel ecti on, cut Sel ection and
past eSel ecti on.) A selection is specified as an interval,
which is a list of two integers {ti meVal ue, durati on}
(see activeSegnment of Qui ckTi neMovi e). For example,

set the selection of mto {60, 120}
ti meScal e of QuickTimeMovie

A virtual property stored in the child of Qui ckTi neMovi e.
Allows changing the time scale of the movie’s time base. See
Inside Macintosh QuickTime.

t i meVal ue of QuickTimeMovie

A virtual property stored in the child of Qui ckTi neMovi e.
Allows changing of the current position in the movie. It
functions even while the movie is playing. The following
example rewinds the movie to its beginning.

set the timeValue of mto O
vol une of QuickTimeMovie

A virtual property stored in the child of Qui ckTi neMovi e.
It allows you to change the volume of the movie. This should
be a number between 0 (no sound) and 1 (loudest). You can
set this to a larger value to amplify a quiet movie, but loud
sounds will distort by “clipping”. To temporarily turn sound
off, but still remember the normal value, you can negate the
normal value.

QuickTime™ Properties 27-325
©1994 Apple Computer, Inc. 5/7/95

CHAPTER27 QuickTimeTM

27-326 QuickTime™ Properties
©1994 Apple Computer, Inc. 5/7/95

CHAPTER 2 8

Renderers

Introduction

Renderers simplify the SK8 programmer’s color model. Instead of having to assign many
options as to how an actor should be rendered (e.g., how much red, blue and green
should go into the forecolor and backcolor, what patterns and copying behavior to use),
the programmer need only assign a Renderer object to one of the three areas of an actor
(i.e., the fill, frame and text areas).

A descendant of Render er may be assigned to any of the three subareas of an actor
(e.g., the fillColor) to render that area. The job of Render er is to accept an actor and a
mask (Mask is described below) and to draw into the area designated by that mask. The
SK8 graphics engine takes care of all the bookkeeping so that the renderer’s only concern
is to paint the designated mask.

There is a wide variety of renderers supplied with SK8. In addition, since renderers are
objects, you can extend their functionality or implement primitives.

A renderer may be used as many times as you wish to render any number of actors in a
project. If you wish to have a slightly modified version of an already defined renderer,
you can create a child of that renderer and change the appropriate properties to create
the desired effect. When you create your own renderers (or children of existing
renderers), these renderers will be saved with your project.

Introduction 28-327
©1994 Apple Computer, Inc. 5/7/95

CHAPTER2S8 Renderers

28-328 Introduction
©1994 Apple Computer, Inc. 5/7/95

CHAPTER2S8 Renderers

Introduction 28-329
©1994 Apple Computer, Inc. 5/7/95

CHAPTER2S8 Renderers

28-330 Introduction
©1994 Apple Computer, Inc. 5/7/95

CHAPTER 29

Shapes and Lines

This chapter is under development. It will appear in the finished manual.

29-331
©1994 Apple Computer, Inc. 5/7/95

CHAPTERZ29 Shapes and Lines

29-332
©1994 Apple Computer, Inc. 5/7/95

CHAPTERZ29 Shapes and Lines

29-333
©1994 Apple Computer, Inc. 5/7/95

CHAPTERZ29 Shapes and Lines

29-334
©1994 Apple Computer, Inc. 5/7/95

CHAPTER 30

System and Devices

SK8 provides a set of objects which represent system components in an abstract,
platform-independent way.

Devices

Devi ce supports all kinds of devices usually attached to the computer in which SK8 is
currently running. SK8 monitors the operating environment as it loads and dynamically
as it runs for changes in device configurations. Many types of devices in your
environment are represented by SK8 as descendants of Devi ce.

The following devices are currently supported by SK8:

Monitors All monitor screens

Storage devices All storage devices, including CD players and cassette
recorders

Keyboards Example: an Extended keyboard on a Macintosh

Printers

Pointers Example: a mouse

Modems

Audio Channels Example: synthesizers

Monitors

Inquiries regarding which monitors are currently installed in your operating
environment may occur in two ways:

» ask the Syst emobiject for its monitors:

get the nonitors of the System

Devices 30-335
©1994 Apple Computer, Inc. 5/7/95

30-336

CHAPTER30

System and Devices

= ask the children of Moni t or for information:

get the children of Mbonitor
set nyMonitor to Iteml in the nonitor of system

i f myMonitor

mai nMbni t or

active

col or Dept h

col or

| ocation

size

boundsRect

Storage Device

is mai nMonitor then ...

Returns t r ue if the monitor is the main monitor. In the
Macintosh, this is the monitor in which the menubar always
appears.

Returns t r ue whenever the monitor is the active monitor.

if nyMonitor is active then ...

Returns the maximum color depth supported by the monitor
(e.g., 32 bits). The col or Dept h is a humber. This should not
be confused with the dept h of a window actor. The

col or Dept h of a monitor refers to the depth of a physical
device.

get the col orDepth of nyMonitor
Returns t r ue if the monitor supports color.

if myMonitor is color then

Returns a list with the h and v location of the top-left corner
of the monitor with respect to the Stage. In the Macintosh, the
Stage corresponds to the Desktop.

get the location of nyMonitor

Returns a list with the width and height of the monitor in
pixels.

get the size of myMonitor

Returns a list with the left, top, right and bottom points of the
monitor in the Stage.

get the boundsRect of nyMonitor

The st or ageDevi ce object's children are all secondary storage devices attached to the
system. Generally, these are disks, although they may also be CD-ROM players and
other input/output devices.

You may get all children of st or ageDevi ce by asking for the children of

st or ageDevi ce:

Devices
©1994 Apple Computer, Inc. 5/7/95

CHAPTER30

System and Devices

get the storage devices of the System

The following capabilities are supported:

nanme

nunber

drive

ej ect ed

flush

unnount

Keyboard

Returns a string representing the name of the storage device.
In the Macintosh, this is the name of your volume as shown in
the Finder.

get the name of nyStorageDevice
Returns the volume number of the storage device.

get the nunber of nyStorageDevice
Returns the drive number of the storage device

get the drive of nyStorageDevice
Returns true if the storage device has been ejected.

if myStorageDevice is ejected then
Flushes all buffers to the storage device.

flush nyStorageDevice
Unmounts the storage device.

unnmount nySt orageDevi ce

You can query the children of Keyboar d or ask for the keyboards of the System to get all
keyboards installed in your system environment. The following capabilities are

supported:
keysDown

get Keys

shi f t KeyDown

opt i onKeyDown

comuandKeyDown

Devices
©1994 Apple Computer, Inc. 5/7/95

Returns false or a list of keys which are currently depressed.
This does not return any modifier keys.

get the keysDown of nyKeyboard

Returns a list of all the key characters current depressed in the
main keyboard.

set x to getKeys()
Returns true if the shift key is currently down.

i f shiftKeyDown() then ...
Returns true if the option key is currently down

if opti onKeyDown() then ...
Returns true if the command key is currently down.

30-337

CHAPTER30 System and Devices

i f commandKeyDown() then ...
cont r ol KeyDown Returns true if the control key is currently down.

if control KeyDown() then ...
capsKeyDown Returns true if the caps key is currently down.

i f capsKeyDown() then ...

Printer

This object represents the currently selected printer.

Pointer

Children of this object are the pointers currently connected to your system. Pointer
devices include the mouse or pen tablets.

Modem

Children of this object are the modems (e.g., fax) currently connected to your system.

Cursor
Cur sor is the object used to render the visual views corresponding to pointing devices.
Color Cursors
A type of resource which behaves in a transparent way. You can set the cursor of the
Stage to any type of cursor.
Animated Cursors
These are clocks with a property that contains a list of cursors. You use it by setting the
cursor of the stage to the ani mat edCur sor. The cursor will be updated by the
ani mat edCur sor as required (provided t i ckEvent C ock is called by the system).
30-338 Cursor

©1994 Apple Computer, Inc. 5/7/95

CHAPTER 31

Types

This chapter is under development. It will appear in the finished manual.

31-339
©1994 Apple Computer, Inc. 5/7/95

CHAPTER31 Types

31-340
©1994 Apple Computer, Inc. 5/7/95

CHAPTER31 Types

31-341
©1994 Apple Computer, Inc. 5/7/95

CHAPTER31 Types

31-342
©1994 Apple Computer, Inc. 5/7/95

CHAPTER 32

Widgets

This chapter is under development. It will appear in the finished manual.

32-343
©1994 Apple Computer, Inc. 5/7/95

CHAPTER32 Widgets

32-344
©1994 Apple Computer, Inc. 5/7/95

CHAPTER32 Widgets

32-345
©1994 Apple Computer, Inc. 5/7/95

CHAPTER32 Widgets

32-346
©1994 Apple Computer, Inc. 5/7/95

Glossary

A

actor
actor (with a small “a”) is a collective, generic term
referring to an Actor Object(s).

Actor
Actor (with a capital “A”) refers specifically to the
Actor Object. Actor provides most of the graphical
and drawing capabilities within SK8 and is a
descendent of the Graphic Object.

Ancestors
Obijects from which child objects are derived.

Anonymous Object
An object whose objectName is False.

Arguments
Data that is passed as a parameter with a message
within the handler. If the called object does not have a
feature of the same name, then an exception occurs.

C

Calling
The action of sending a message object to another
object.

Child

A child object is one that has been derived from an
existing ancestor or parent object.

Containers
Connections between the components in the
containment hierarchy. A container, in SK8, is either
an actor or the Stage. A visible actor is either attached
to the Stage or another actor that is attached,
ultimately, to the Stage.

Containment
An object inside another object.

©1995 Apple Computer, Inc. 5/7/95

Containment Hierarchy
The organization of objects to represent the order in
which objects are contained by other objects. For
example, a visible actor is contained by Stage (or
contained by another object that is contained by
Stage).

D

Deep Copy
Made by copying the object and every object it
references and every object referenced by those
objects and so on down the line.

Descendants
The “off-spring” (children) of objects.

E

Error System
A pre-defined, but extensible, set of objects and
handlers that trap particular system errors. See
Appendix for a list of supported error types.

Event
A user-initiated (mouse, keyboard) or system action.
SK8 identifies the event and invokes the appropriate
event handler (if defined by SK8 or the developer).

Event Mode
Event modes are predefined objects in SK8 that allow
the circumvention of normal event processing.

F

Focus
The area of the screen that is the current target for
mouse or keyboard events.

347

GLOSSARY

G

M

Garbage Collection
Any object not being referenced by any other object is
dynamically purged from memory. This feature is
built into the language and frees the programmer
from worrying about memory management. Most
common compiled languages do not contain built in
garbage collection.

H

Handler
A named piece of code that is executed in
response to a message (the mouseDown handler
is invoked when a mouseDown event happens.)
In other Object Oriented systems, handlers are
called “methods”.

Handling
Handling a message is equivalent to executing a
handler.

Heterarchy
A model in which an object can have more than one
parent and therefore can inherit properties and
handlers from more than one parent.

Hierarchy
A model in which an object an have only one parent.
Also, a method for organizing objects. Example,
containment hierarchy.

Message
An object used to tell another object to perform its
function. In a broader sense, an OOP term.

Multimedia
The current hot buzzword in the computer industry.
A “vanilla” definition: the embracing of video,
sound, still images, animation, or hypertext with
computer hardware and software technology. SK8 is
an example of the software technology used to
generate multimedia applications.

Multiple Inheritance
An OOP term. The ability to inherit features,
properties, etc. from multiple parents.

O

Inheritance
An OOP term. The ability of an object to inherit the
characteristics (handlers, properties, etc.) of another
object.

Instantiate
An OOP term. Creating an object as a data type.

Interlude
An interlude is designed to “distract” the user and
fill up the time required for a large media file to load.

348

©1995 Apple Computer, Inc. 5/7/95

object
In SK8, an object is an instance of another object.
Each object contains properties and handlers and
each object has parents or ancestors.
In “traditional” OOP, an object is an instance of a
single class and does not have parents or ancestors --
the object’s class has ancestors.

Object
Object (with capital “O”) refers to the Object object.
Obiject is the parent of all objects. All objects are
derived from Object.

Object Heterarchy
Represents an object’s inheritance of properties,
features, etc. from multiple parents.

Object Hierarchy
Represents the inheritance of objects: parents,
children, ancestors, and descendants from a single
parent.

OOP
Object Oriented Programming

Overload
An OOP term. The same operation can be used
consistently with objects of different classes (types).
Not only can the same operator be used for
characters, integers and Booleans, but the operator
can be overloaded for other classes by declaring an
operator method for that class.

GLOSSARY

Override
If a particular object wants to do things differently
than its ancestors, it can override any handler that it
inherited from any of its ancestors by declaring a
handler of the same name.

P

Parameter
Data passed with a handler or message.

Parents
Objects from which an object inherits properties and
handlers.

Polymorphism
Dynamic binding of messages to specific features.
The same message can be sent to several objects
which may have different object derivations but have
handlers to handle that message. This allows the
object framework to be abstracted to a higher level.

The ability to exhibit different behavior for the same
message (depending on the object type).

Property
A property is storage space in an object. This
storage has a name and can hold exactly one
value. In other Object Oriented systems,
properties are known as “instance variables” or
“slots”.

Protocol
A formal set of “rules” or conventions that govern
how two entities interface, communicate, or react to
each other. Within SK8 there are protocols between
objects and collections of objects.

Prototype-based
In a prototype-based model, no distinction is made
between the object and the “template” (class in
conventional OOP). The object is the “template” for
other objects. Classes are not involved.
In SK8, everything is an object. Every object is a
prototype. Every prototype is a type. Therefore, every
objects is a type. See Type.

Q

QuickTime™
An Apple product/technology developed for the
Macintosh that SK8 supports for the playing of

©1995 Apple Computer, Inc. 5/7/95

movies. Many libraries of QuickTime movies are
available. SK8 can be used to create, modify, and play
QuickTime movies.

R

Receive, Receiving a message
When a message is received by an object, it executes
the named handler or returns the value of the named
field.

S

Screen Object
An object that is currently displayed on the screen.

Scripter
A person who writes scripts -- such as SK8 Script,
AppleScript, and HyperTalk.

Sending a message
A message is an object that can be sent to another
object.

Shadow Copy
Made by only copying the object and just referencing
the objects it references.

Stream
A classification of data where the data characters
exist in an input/output stream.

T

Title, Title Application
A term used to refer to a multimedia project.

Type
The object type is the values of the object’s properties
(variables) and handler behavior. The object type is
determined by inheritance from parent objects. Every
object is a type. See Prototype-based.

349

GLOSSARY

350
©1995 Apple Computer, Inc. 5/7/95

A
Activate 212
activate event 212
Actor 202
Actor Coordinates 207
Actor Properties 204
Actors

Geometry 4

User Interface 4
Adding Menultems 298
addToClipboard 222
ancestors 34
atStreamEnd 264

B

Bold type face

use in manaul iv
BWPattern 294
ByteStreams 265

C

child 34

clearClipboard 222

Click Interpretation 259
Clipboard 221
clipboardOpen 221, 225
colorDepth 336

Color Palette 75
ColorPattern 294
compactProject handler 288
container 203

Containment Hierarchy 203
containment hierarchy 256
Conventions iv

coordinate system 202
copyright keyword 287, 288
copySelectionToClipboard 223
Current Directory 265

currentkey 212

Cursor 338

CursorRSRC 294

Cut and Paste 223
cutSelectionToClipboard 223

D

data exchange 219
Deactivate 212

deactivate event 212

default handlers 202
Delegating Events 256
Delegation 255

delegation 257

Depth 211

Devices 335

documentation keyword 288
doubleClickStyle property 259
dragOnStageMode 258
Draw Palette 55

drive 337

E

ejected 337
enterModalState 258
enterMode 258
equality, concept of 290
Error Responses, definition of 158
Error Types 1

Error Types, list of 1
eventActor 257

event actor 256

Event Globals 257
eventH 257

Event Interception 259
eventListeners 287
Event Modes 255, 258
Event Recording 259

Event System 255

eventTime 257

Event Tracking 255

eventV 257

export 220

Exporting data 219
exportTypes 221
exportTypesAvailable 220, 225
externalObject 220

F

features 34

filename keyword 289
filter, definition of 115
Filters, test 116
Filters, type 116

flush 337
front-to-back order 60

G

geometric actors 202

Geometry actors 4
getFromClipboard 223
Graphics and Imaging System 1
Graphics Engine 5

Graphics System 4

H
Halo 57

Halo (a child of Actor) 206
Halo, browse 58

Halo, deselect 58

Halo, drag frame 58

Halo, resize handles 58
Halo Keys, Up Arrow 60
handlers 34

Handling Events 257
hide handler 213

I

IconRSRC 294

Imaging System 4,5

import 220

Import/Export Architecture 219
Importing data 220

importTypes 221
importTypesAvailable 220, 225
incomingData 222, 225
informational notes, use of in manual iv
inheritance 257

Inheritance Overviewer 64

inherits 34

Installing Menus and Menubars 298
internalObject 220

K
Keyboard 337

L

localProperties 147
Logical Coordinate System 209

M

max\ersions keyword 289
Media 293

Media Browser 72

media keyword 289
Media objects 293

Menu Editor 69
MenuSelectMode 258

Message Box 51
ModalDialogMode 258
Modem 338

Monitors 335

mouseDown event 256

Mouse Sensitivity 255, 258, 259
Moviefy of Actor 317
MovieRectangle object 315
multimedia 6

N
named, test filter 116
next repeat 133

0
object 34
Object Editor 51
Object Framework 1,3
object inheritance heterarchy 3
Object-Oriented Programming ii
Objects
Keyboard 337
modems 338
monitors 335
pointers 338
printer 338
QuickTimeMovie 315
QuickTimeSimplePlayer 315
resource 293
SKS8 clipboard 221
storageDevice 336
stream 264
Translator 220
objectsinClipboard 222
objectsOnHold 221
Object System 1, 2
objectSystem 287
opened event 287

openedProject 287
openProject 287

openProject handler 287
origin (a property of actor) 210

P
panning 209

parents 34

Pass, definition of 256

Pass Command 257

pass command 256
pasteClipboardToSelection 223
Pathname 265
physicalBoundsRect 208
Physical Coordinate System Properties 208
PICT' Resource 219

Place 125

Pointer 338

pop up menu 298

Port Edit Layer Mode 258
Ports 310

Printer 338

Project Builder 1, 45

Project Builder Components 49
Project Handlers 287

Project Overviewer 56
Projects 285

projects 6

properties 34

Property Control Panel 55
publishedSymbols 290
publishSymbol 290

Q

QDPicture 294

QuickTime 2

QuickTime Commands 319
QuickTime Movie

How to Play 316
QuickTimeMovie

Creating Objects 318
QuickTimeMovie object 315
QuickTime Objects in SK8 315
QuickTime Properties

of QuickTimeMovie 323

of QuickTimeSimplePlayer 321
QuickTimeSimplePlayer object 315
QuickTimeTM Properties 321

R

readStreamltem 264
references v
Renderer object 327
Resource object 293
resume 225

S

sample code v
saveProject handler 287
Script Editor 85
Script Language 1
secondary target 256
selection expression, source 114
selectionHalo 224
selector, definition of 115
Set, path expressions 125
SK8 1
Components of 1
SK8 Building Blocks 2
SK8 Clipboard
handlers 222
properties and handlers 221
SK8 clipboard 221
SK8 Import/Export Architecture 219
SK8 Interface (The Project Builder) 6
SK8 Script Language 6

SoundRSRC 294

Stack Watcher 91

Stage 256

Stage Monitor 57

Storage Device 336

Stream object 264
streamPosition 264
streamReaderinfo 264
Streams 264

Streams and Files as Collections 265
streamWriterinfo 264

String iv

subproject 290

SubProjects 286

suspend 225

symbol iv

System Browser 68

System Components of SK8 1

T
test filter, definition of 115
TextStreams 265
that, test filter 116
The Stage 211
title 6
Tracking Events 258
Translator
externalObject 220
internalObject 220
Properties and Handlers 220
Translator (an Object) 220
Translators 219
translatorsApplicable 220
trap 256
Type Filter, definition of 116
type filter, definition of 115
typelnClipboard 222
typesinClipboard 222, 225

U

unmount 337
unpublishSymbols 290

User events 255

user interface (Project Builder) 1
User interface actors 4

user interface actors 202

V
visible property 213
Visual Cues iv

W

where, test filter 116
whose, test filter 116
Windows 211
windows 202
WindowsStyle 212
writeSources 288
writeStreamltem 264

VA

zooming 209

	Title Page
	Table of Contents
	Preface
	About SK8
	HardWare Requirements
	SoftWare Requirements

	Intended Audience
	Assumptions Before Starting

	About the SK8 Documentation
	The User Guide

	Conventions and Visual Cues
	Special Fonts
	Types of Notes
	Lexical Notation
	Other notation conventions

	Additional Support Materials

	SK8 Overview
	What is SK8?
	System Components of SK8
	Object System
	Object Heterarchy

	Object Framework
	Graphics System
	2-1/2-D Graphics Engine
	Imaging System

	SK8Script Language
	SK8 Interface (The Project Builder)
	Using the Project Builder

	Tutorial
	The Application
	Using SK8 to Implement Concentration
	Making the Board
	Making the Board “Special”
	Making the Board Draggable
	Adding the Cards
	Importing Media
	Creating Global Variables
	Distributing the sounds to the Cards
	Players and Scores
	Showing the Scores
	And finally, the Game
	Anything Left?

	Basic Concepts
	Objects
	Properties
	Propagatable Properties
	Handlers
	Garbage Collection
	Projects
	Functions, Variables and Constants
	Actors
	The Stage
	Containment

	Project Builder Overview
	What is the Project Builder?
	An Overview
	Project Builder At Startup
	The Project Builder Windows
	Keyboard Focus
	Drag and Drop
	Help Key
	Updating Windows
	Clearing References

	Project Builder Components
	Message Box
	Listener Panel
	Display Panel

	Draw Palette
	Description

	Object Editor
	Description
	Properties Menu
	Handlers Menu
	Properties Display Panel
	Handlers Display Panel

	Property Control Panel
	Description

	Project Overviewer
	Description

	The Selection Halo
	Description
	Using the Option Key
	Selection Halo Menu
	Keyboard Shortcuts
	Clearing:
	Changing Selection:
	Layout:
	Layering:

	Configuring the Selection Halo
	Description

	Stage Monitor
	Description

	Searcher
	Description

	Inheritance Overviewer
	Description

	System Browser
	Description

	Menu Editor
	Description
	Edited Objects List
	Menubar Proxy
	Menu Proxy
	Menu Title
	Menu Items Panel
	Menubar Menu
	Menu Menu
	Items Menu

	Media Browser
	Description
	Finding the Media
	Choosing the Style of Importation
	The Import Naming Dialog

	Color Palette
	Description

	Renderer Editors
	Description
	RGBColor Editor
	ComplexRGBColor Editor
	Gradient Editor
	ComplexGradient Editor
	BevelRenderer Editor
	MultiRenderer Editor
	Hatch Editor
	ImageRenderer Editor

	Script Editor
	Description
	Edit Menu:
	Debug Menu
	Version Menu:

	Debugging with the Script Editor
	Breakpoints
	Halt Due to Error
	Running Menu
	 Menu
	Go, command-G
	Step, command-S
	Abort, command-period
	Step Into
	Go To End
	Restart

	Expression Watcher

	Stack Watcher
	Description

	Handler Tracer
	Description

	Documentation Window
	Description

	Project Builder Menubar
	Menubar Replacement
	Hide Project Builder
	Undo Menu Item
	Window Preferences Dialog

	Graphic Intensive Tasks: Using Project Builder
	Code Intensive Tasks: Using Project Builder

	SK8Script
	Initial Considerations
	General Language Design
	Syntax Design
	Case in SK8
	Statement Continuation

	Declarations
	Comments
	Identifiers
	Variables
	Constants
	Type Declarations

	Expressions
	Literals
	Booleans
	Numbers
	Symbols

	Collections
	Strings
	Lists
	Arrays

	Calls to Executables
	#Undefined#

	Operators
	Arithmetic Operators
	Logical Operators
	Collection Concatenation Operator
	Comparator Operators

	Selection Expressions
	Filters
	Selectors
	Prepositions
	Embedded Selection Expressions

	Operator Precedence
	Parentheses
	Functions and Handler Expressions
	Selection Expression Precedence

	Get Command
	Assignment
	Assignment to Variables
	Assignment Using Executables
	Assignment Using Selection Expressions
	Assignment Between Selection Expressions

	Assignment Using Destructurers

	Flow of Control
	Conditionals
	Single Line Conditional: If… then… else
	Multi-line Conditional

	Multi-branch Conditional: If… is one of…
	Iteration (Looping)
	Clauses
	Loop Exits

	Wait

	Collection Commands
	Tables
	Insert Command
	Into...
	At Beginning...
	at End...
	General Insertions

	Remove Command

	Creating New Objects
	The New Handler
	The Copy Handler
	Creation Relations
	Declaring Creation Relations (Modeling Interrelati...
	Identifying Objects Via Relations
	The Purpose of Creation Relations: Automatic Insta...
	Creation Relations and Actors

	Properties
	Accessing Properties
	Accessors (getter or setter)
	Property Attributes

	Adding and Removing Properties
	AddProperty
	RemoveProperty

	Forms[*12]
	With-Forms
	Header Line Syntax
	Parameter List

	Results of Executables
	Handlers
	Calling Parent’s Handler
	Special Handler Variables

	Defining With-Forms
	Invoking Forms

	Data Types
	Advantages of Type Declarations
	Associating a Type with a Variable
	Type Coercion
	Coercion Operator

	General Object Literals
	Virtual & Enumerated Types

	SK8Script Condition System
	Condition Object
	Signaling a Condition
	Condition Handlers
	Condition Responses
	Creating Condition Responses
	Search Algorithm

	Other Features and Issues
	Syntactic Sugar
	in vs. of
	Message Box Results

	Tutorial 2: SK8 as a Meta-Tool
	Introduction
	Aims and Prerequisites
	The Goal
	The SimKit Window Tool
	Creating a Window
	Naming an Object
	Editing the SKWindow Object
	Regions and Renderers
	Tagging Component Objects
	Defining Handlers
	An Explanation of the Resized Handler
	Highlighting the Active Window
	Creating the SKWindow Tool
	Tags versus Named Objects
	Properties versus Named Objects

	The SimKit Viewer Tool
	Using the Object Editor
	Adding New Properties to Objects
	Labels
	Resized Revisited
	Making the SKViewer Tool

	The SimKit Oval Tool
	Adding the Properties
	Adding the SKOval Handlers

	Making Things Move
	Making SKViewer Re-scale SKOvals
	Teaching SKOvals How to Move
	Telling SKOvals to Move
	But We Have Only Done Ovals...

	Using the Tool Kit
	Building a Basic Simulation
	Using the SimKit Overviewer
	The Need for Controls

	The SimKit Button Tool
	Creating SKButton
	Using SKButton
	More SKButtons and Using “its”

	The SimKit Gauge Tool
	Making the Gauges Update

	Creating a Simulation Tool
	Tidying Up
	Sensible Layout for SKSimWin
	Creating the SKSimWin Tool

	Building Planets and SKGravitas
	Creating the SKGravitas project
	Creating Planets
	Creating Gravitas
	Creating Jupiter and its Moons
	Going Further With SimKit

	Actor and Stage
	Introduction
	Stage and Actor Metaphor
	Actor
	The Stage
	Containment Hierarchy

	Actor
	Actor Properties
	Attaching Actors to The Stage
	Halo (an Actor)
	Complex Actors, SubActors, and Tags

	The Stage
	Actor Coordinates
	Physical Coordinate System Properties
	Logical Coordinate System

	FillColor Of The Stage

	Windows
	Actors Directly Contained by Stage (Windows)
	colorDepth and windowStyle
	Activate and Deactivate
	KeyTarget
	Windows of Stage
	Hide and Show
	Window Styles

	Browsers
	Clipboard and Import/Export
	The SK8 Import/Export Architecture
	Exporting
	Importing
	Translator (an Object)
	Translator Properties and Handlers

	The SK8 Clipboard (an import/export application)
	Overview and Requirements
	The Clipboard Object; its Properties and Handlers

	The Clipboard within SK8
	Cut and Paste within SK8
	The Clipboard and the System
	What happens on resume...
	What happens on suspend...

	Clocks
	Collections
	Introduction

	Dialogs
	Tools and Palettes
	EditText
	The Error System
	Event Interests
	The Event System
	Introduction
	Delegating Events
	Handling Events
	Event Functions
	Pass Command

	Event Modes
	Creating Your Own Event Mode

	Mouse Sensitivity
	Click Interpretation

	Event Tracking

	Files
	File Objects
	physicalName and logicalName
	File Object Handlers

	Streams
	Stream Handlers
	Streams as Collections
	Current Directory

	Foreign Function Interface
	Intro/Warnings
	Using the FFI
	Compiling your foreign functions
	Loading a foreign object file

	Foreign Data Types
	Simple Types
	Complex Types

	Foreign Memory
	Memory Access
	Memory Allocation
	Getting New Pointers and Handles
	Disposing of Foreign Memory
	Converting From raw foreignMemory to typed foreign...

	Foreign Function Calls
	Foreign callins
	Supported Argument and Result typeSpecs for FFI Ca...

	Imaging
	Projects
	Projects
	Superprojects
	Namespaces
	SubProjects
	Project Handlers
	openProject
	saveProject
	writeSources (Saving Project Source Text Files)
	compactProject
	Publishing Symbols
	Publish Handlers

	Object Store (Project Store)

	Media
	Media
	Resource (a Media)

	Menus
	Setting up a Menubar
	Creating a Menubar
	Adding Menus
	Adding MenuItems
	Installing Menus and Menubars
	Connecting a Menu to a Handler

	Object
	Pickers
	Ports
	Introduction
	The Port Object
	Types of Ports
	Port Handlers
	AddOutputPort
	AddInputPort
	AddInputOutPort
	attachPort
	wirePorts
	unwirePorts
	unwirePort
	wiredTo
	ActivateOutputPort
	ActivateInputPort

	QuickTimeTM
	QuickTime Objects in SK8
	How to Play a QuickTime Movie
	Moviefy of Actor
	Creating QuickTimeMovie Objects
	Create a new QuickTimeMovie Object referencing an ...
	Create a new QuickTimeMovie Object from a file wit...
	Creating a new QuickTimeMovie Object from a file t...
	Creating a new QuickTimeMovie Object from the clip...
	Creating a new QuickTimeMovie Object from scratch,...

	QuickTime Commands
	QuickTimeTM Properties
	QuickTimeRenderer Object
	QuickTimeMovie Object

	Renderers
	Introduction

	Shapes and Lines
	System and Devices
	Devices
	Monitors
	Storage Device
	Keyboard
	Printer
	Pointer
	Modem

	Cursor
	Color Cursors
	Animated Cursors

	Types
	Widgets
	Glossary
	Index

