

EiScheme

for the Macintosh

User’s Guide
and
Reference Manual

Schemers Inc.

© 1993 by Schemers Inc.

Neither the whole nor any part of the information contained
in or the product described in this manual may be repro-
duced in any form except with the prior written approval of
Schemers Inc.

Schemers Inc. holds right, title, and interest in the software
described herein. The software, or any copies thereof, can-
not be made available to or distributed to any person or
institution without the prior written consent of Schemers
Inc.

The software described by this publication is subject to
change without notice. Although all information is given in
good faith, neither Schemers Inc. nor its agents accept any
liability for any loss or damage arising from use of the soft-
ware or from use of any of the information provided herein.

This User’s Guide and Reference Manual was written by
Fdward C. Martin and lain Ferguson.

EdScheme is a trademark of Schemers Inc.

ISBN 0962874566

First published 1993
Typeset in 11pt Computer Modern Roman using TEX
Published by Schemers Inc.

4250 Galt Ocean Drive, Suite 7U

Fort Lauderdale, FL

USA 33308

Contents

Part I The Programming Environment

1 Starting Out
1.1 Scheme—A Modern Lisp
1.2 The EdScheme Advantage
1.3 AboutThisBook,
1.4 When You First Use EdScheme

2 An EdScheme Session
21 StartingUp e
2.2 Organizing the Desktop,.
2.3 The Current Expression«
2.4 Indentation and Formatting
2.5 Indexing Document Windows
2.6 Using Multiple Documents
2.7 Saving your Documents

3 Programming Environment Windows
3.1 Transeript Windows
32 TheTraceWindow« .c.ov.....
3.3 Document Windows .,

00 Cn b S0 O

Contents

3.4 The Expression Window 25
3.5 The Clipboard Window, 26
Part II The Programming Language 27
4 Listsand Vectors o . . i o i it v it 29
4.3 Lists e e e e e e e e e e e e 29
4.2 VecloTs . . . o v e e e e e e e e e e e e e e e e e e e 31
5 Numbers and Numeric Procedures 35
51 Typesof Numbers oo 35
5.2 Numeric Constants v v v v v v v e e 36
5.3 Prefixes . . . v v i v e e e e e e e e e e e e e e e 36
Bad DEIES .+ o o et e e e e 37
55 Imtegers. v v vt ottt e e e 37
5.6 Rational Numbers« o i i s e 39
57 Real Numbers« i i it i it e e e e 41
58 Complex Numbers. 43
5.9 EXactNess . . . v« v v v v v e e e e e e e e e 44
5.10 Mathematical Information 45
8 Filesand Ports« v v i ittt et e 49
6.1 Flles . . . o e e e e e e e e e e e e e e e e e 49
6.2 Ports and File-handling 50
7 Graphics Windows and Bitmaps 53
7.1 Graphics Windows 53
7.2 A Graphics Programming Example 54
7.3 Bitmaps o e e e e 58
8 Text Windows and User Menus 61
8.1 Text Windows v o v v o b it et e e e e 61

B2 MEMUS .« v v v v e v e e v b e mn m e s a e 65

Contents

v
Part II1 Language Reference 67
0 The EdScheme Menus o v v v vt e v v oo n oo 69
01 TheFile Menu v v v v v v v vt ot v oo n oo 69
92 TheEdit Menu« vt v v vttt 83
03 TheSearch Menu o oo v v v v v oo v 86
94 The Evaluate Menu v oo v v oo v oo vt 89
65 The Windows Menu v oo o v v v oo 93
10 Data Expressionso 95
10.1 Tdentifiers: Keywords and Variables 95
10.2 BOOIEANS . « v v v v v v o e h e e e e e e e 97
10.3 Pairsand Lists.« c o v v v i v o o7
10.4 Numbers . . .« v v v v v vt s e e s e e e 99
10.5 CRAaTaclerS . - « « v v v v v v e v e a v o a o s s e e 99
106 Strings . - .« . o v o e e e e e 99
107 VECLOLE + « « o v v v e e e e o et e s e m s e 100
10.8 Procedires . . . o v v v v v i i b e e e e e e 100
10.9 Continuations ¢« o v v v v v b e 101
1010 ALOIIS - - o v v v v e e e e e e e e e e e e e e 102
10.11 Streams and Delayed Objects 103
10.12 Environments« . v s v v a0 e e e e 103
1013 POIES . v o o o e e e e e e e e e e e e e e e e s 104
10.14 Miscellaneous Data Expressions« .o oo oot 105
10.15 Comments v o v v v v v o v v s e e e e 106
11 Syntax and Semantieso 107
11.1 Abbrevialions ¢ . c o v i v o e i 107
11.2 The Syntax of EdScheme v oo oo v o 109
12 Language Elements 245
12.1 Constants, Booleans, and Equivalence Predicates 245
122 ChalTacterS - - « v v v v v o e e e v e et e e 246
123 SHHNES .« o v v v e e e e e e 246
12.4 VeCHOTS . « -« v s v e v e e e o e e e e e e 247

125 NUIMDBEIS . « v v v v o v o v oo st v vt s et s o a e 247

vi

Contents

12.6
12.7
12.8
12.9

Symbols and Lists
Graphics and Text Windows
Keyboard and Ports
Events, Menus, and the Mouse
12.10 Debugging
12.11 Keywords and Special Forms
12.12 Miscellaneous

...................

.........................

Part I

The Programming
Environment

- Starting Out

.1 Scheme—A Modern Lisp

Programming computers is not just about encoding algorithms with a view to
processing large amounts of data. Certain programming languages—Scheme
is one—lend themselves to more interesting pursuits, including those that
fall under the catch-all ‘artificial intelligence’. Scheme programmers have a
special responsibility, namely, to ensure not only that their programs work but
that they are imbued with a sense of elegance, even beauty. A good program
is greater than the sum of its parts, just as a masterful painting is more than
just streaks of oil on canvas. The Scheme programmer does not seek elegance
simply for its own sake, however, for the well-written program is more efficient,
more reliable, and easier to debug. Above all else, a good Scheme program
readily lends itself to use in unexpected applications, and it is this particular
quality that sets Scheme apart from many other programming languages.
So often, the Scheme programmer who sets out to solve a specific problem
instead finds solutions to an entire class of problems, many of which seemed
previously unrelated, and of which the initial problem is just an instance,
Scheme is a dialect of the Lisp programming language; it was invented by
Guy Lewis Steele Jr. and Gerald Jay Sussman of the Artificial Intelligence
Laboratory at the Massachusetts Institute of Technology. It demonstrates
that a clear and simple language with few syntactic rules is sufficient to form
the basis of a practical, efficient, and powerful programming language, flexi-
ble enough to support most of the major programming paradigms, including
object-oriented programming. Scheme’s simple structure is due in part to
the fact that the language’s designers rated simplicity of form above gratu-

3

1: Starting Out

itous compatibility with the older Lisps, and in part to recent advances in
the mathematics of programming language design. The result is a language
powerful enough for professional programmers, yet with a structure so sim-
ple that even complete computer novices can pick up the language and write
significant programs.

Scheme's ‘tail-recursive’ design means that the traditional control struc-
tures may all be described in terms of a single paradigm: recursion. Armed
with this tool, students have immediate access to algorithms that would pre-
viously have been beyond their immature skills. One of the features of Scheme
is that all data objects are treated alike. Consequently, the addition of a new
data object may add significantly to the Scheme’s expressive power while in no
way increasing the complexity of the language. Moreover, the skills required
to manipulate the simpler data objects are transferable to the manipulation
of more complex objects. No wonder, then, that so many educational insti-
tutions have turned to Scheme as the basis for both their introductory and
advanced computer science courses.

Scheme is a language whose future is assured. Increasingly, computer
scientists are exploring the possibility of applying mathematical proof tech-
niques to verifying or predicting the behavior of computer programs, and it
is no accident that both the language itself and the behavior of Scheme pro-
grams are susceptible of rigorous mathematical interpretation.! Furthermore,
Scheme is poised to exploit the new generation of parallel processing archi-
tectures. And in terms of software engineering, Scheme supports—indeed,
encourages—the most up-to-date programming paradigms.

The EdScheme Advantage

EdScheme for the Macintosh™ is an incremental optimizing compiler for the
Scheme language designed specifically with the learner in mind, but providing
a complete implementation of the Scheme specification? for the intermediate
and advanced user. The programming environment takes advantage of the
special capabilities of the Macintosh computer, and includes:

In fact, Scheme is an outworking of the highly theoretical investigations of the American
mathematician and logician Alonzo Church, who first described his pioneering work in an
article published in 1941, The Calculi of Lambda Conversion.

2 EdScheme implements the Revised® Report on the Algorithmic Language Scheme.

About This Book 5

¢ A full-featured integrated editor, with special capabilities such as paren-
thesis-matching, program formatting, file indexing, and template edit-
ing,.

o Customized transcript and debugging windows featuring colored and
styled text in addition to all the facilities provided by the integrated
editor,

e A powerful and comprehensive turtle graphics interface, providing users
with access to the Macintosh’s Color QuickDraw™™ graphics toolbox
and many additional graphics capabilities.

At the same time, EdScherne is a powerful implementation, with:

e Unlimited precision, ‘bignum’ integral and rational arithmetic, double-
precision floating point arithmetic to approximately 16 significant digits,
and complex number arithmetic.

o Comprehensive file-handling facilities, as well as access through the
Macintosh’s serial ports to external devices such as the HyperBot™
robotic controller.

o Language extension using macros and transformers, support for ad-
vanced programming techniques such as delayed evaluation and streams,
and first-class continuations and environments.

The result is a simple-to-learn but powerful language in a simple-to-use yet
comprehensive programming environment.

About This Book

This User’s Guide is designed to complement the EdScheme interpreter. For
your convenience it is divided into three parts. Part I deals with the pro-
gramming interface. If you are already familiar with using the Macintosh
computer then you will feel right at home, since EdScheme provides all the
usual features that you will have come to expect from a Macintosh appli-
cation. However, to help you take full advantage of EdScheme’s advanced
programming interface it would be wise to familiarize yourself with the vari-
ous aspects of EdScheme’s programming environment by reading Chapter 2,
which takes you through a brief but informative EdScheme session. It will

1: Starting Out

also help you decide how to set up the EdScheme programming environment
to best suit your needs and abilities. Chapter 3 discusses the programming
environment from a more technical standpoint.

Part II of this Guide describes how EdSchemne implements the Scheme
programming language, and includes several example programs that may
be entered directly into EdScheme. Chapter 4 provides a gentle introduc-
tion to programming with lists (the backbone of many EdScheme programs)
and vectors. Chapter 5 describes EdScheme’s exceptional ‘number crunch-
ing’ abilities, including its ability to process ‘bignums’ (integers of practically
unlimited size), rational numbers (or ‘fractions’) and complex numbers. Al-
though including technical, mathematical descriptions of certain aspects of
EdScheme’s numeric processing, it begins with an intuitive introduction to the
topic suitable for beginners. Chapter 6 describes EdScheme’s file-handling ca-
pabilities and hardware support, including a description of the serial interface
which is used to link EdScheme to robotic controllers. Chapters 7 and 8 de-
scribe the special EdScheme extensions that allow you to take full advantage
of the Macintosh’s powerful graphics and text processing abilities. Chapter 7
covers the EdScheme turtle graphics interface and discusses graphics windows
and bitmaps. Chapter 8 describes EdScheme’s program-generated text win-
dows and menus, and introduces you to some of the techniques used to write
Macintosh applications within the EdScheme programming environment.

Users who are not familiar with the Scheme programming language will
find it informative to read through Chapter 2. It should be understood,
however, that this Guide is not designed to be a Scheme primer. For that
purpose there are several excellent introductory texts, among them those in
the list that follows. Novice users are encouraged to take advantage of one or
more of these books.

[1} The Schemer’s Guide by lain Ferguson with Edward Martin and Burt
Kaufman, Schemers Inc., Fort Lauderdale, FL, 1992.

This book teaches the Scheme programming language from the very
beginning. An understanding of elementary school arithmetic is all
that is required as the book takes you from simple concepts all the
way to more advanced programming techniques such as streams and
object-oriented programming. The Schemer’s Guide is currently in in-
creasingly wide use as a textbook in high schools and as a freshman
text in colleges. (EdScheme provides a special ‘Schemer’s Guide Mode’
that ensures compatibility with The Schemer’s Guide. In this mode,

About This Book 7

EdScheme uses strict error checking to catch the programming errors
typically made by beginners. For details of how to set EdScheme so
that it operates in Schemer’s Guide Mode, see page 9.)

[2] Scheme and the Art of Programming by George Springer and Daniel P.
Friedman, MIT Press, Cambridge, MA, 1989.

This college freshman-level textbook covers all the major aspects of
Scheme programming, and includes a substantial section on program-
ming with continuations (this is one of the few textbooks that deals
with this difficult and advanced topic well). The book includes many
example programs, and discusses many computer science issues from
a Scheme viewpoint, including sorting procedures and object-oriented
programming techniques.

{3] Structure and Interpretation of Computer Programs by Harold Abelson,
Gerald Jay Sussman with Julie Sussman, MIT Press, Cambridge, MA,
1985,

A landmark book in the history of computer science education, SICP
is an undergraduate textbook covering many aspects of computer sci-
ence from an engineering standpoint. It includes sections on repre-
sentations of digital circuits, constraints, streams, logic programming,
and compiler construction. SICP is a must-read for students interested
in constructing large Scheme programs. (Although this book employs
non-standard Scheme programming elements, FdScheme interprets its
programming examples without modification.)

[4] Essentials of Programming Languages by Daniel P. Friedman, Mitchell
Wand, and Christopher T. Haynes, MIT Press, Cambridge, MA, 1992.

This book is suitable for upper-division and graduate-level courses in
computer science, and demonstrates Scheme’s amazing ability to ‘pro-
totype’ other computer languages. The book provides a thorough intro-
duction to interpreter and compiler design, with a great many program
examples, ali of which may be run in EdScheme.

Part III of this Guide constitutes an exhaustive reference, a place you can
turn to whenever you get into difficulty, whether you are seeking a solution
to a problem concerning the programming environment—Chapter 9 provides
a complete breakdown of EdScheme’s menus—or the Scheme programming

1: Starting Out

language—Chapters 10, 11, and 12 combine to provide a comprehensive de-
scription of the Scheme programming language, including many examples.

When You First Use EdScheme

If you are not familiar with the jargon of computers, compilers, and interpret-
ers—perhaps this is your first foray into computer science—then don’t worry!
Using EdScheme is as simple as double-clicking on the EdScheme icon (the
‘ink-pot X’ icon). However, the first time you start up the application you
may want to take steps to ‘configure’ EdScheme so that it behaves according
to your needs. You can also change the way EdScheme appears, to suit your
personal taste.

If you are running under a multiprocessing environment such as Multi-
finder™ or System 7', you may wish to begin by increasing EdScheme’s
‘partition size’. The partition size determines how much memory is allocated
to EdScheme by the Macintosh computer when EdScheme starts up. The
more memory EdScheme has, the faster it is able to run your programs,
and the larger the programs it can process. The partition size that is right
for you depends on the total amount of memory in your system, and on
whether you require EdScheme to run concurrently with other applications.
EdScheme provides a default partition size of 1500K, but on systems with a
large amount of memory (4MB or more) you should consider increasing this
figure. To change the partition size, first exit from EdScheme (if it is already
running), select the EdScheme icon by clicking on it, then choose
from the Finder’s menu and alter the partition size.

Most other changes to EdScheme’s behavior or appearance are made by
starting up the application and then choosing [Preferences] from the [File]

menu. A cascading sub-menu then provides a further choice of five items:

[Windows|, [Language], [Debugging|, [Memory|, and .

Detailed information about each of these is provided in Chapter 9: The
EdScheme Menus starting on page 71. Here are two changes you may want
to make right away:

1. If you intend to use EdScheme’s extensive graphics capabilities, you
will need to set aside some memory for this purpose. To do so, start

EdScheme by double-clicking on its icon and then choose the

. You First Use EdScheme 9

item from the sub-menu in the menu. EdScheme dis-
plays a dialog showing the various uses to which EdScheme puts the

memory provided by the Macintosh. One of the entries in this dia-
log shows the amount of memory allocated to the Graphics buffer; by
default, this amount is zero. To use EdScheme’s powerful graphics com-
mands you must allocate sufficient memory to the Graphics buffer. All
you need to know in order to perform this task is explained on page 80
in Chapter 9.

2. If you are learning to program in Scheme using The Schemer’s Guide
(see [1] in the bibliography in the previous section), you should set
EdScheme to Schemer’s Guide Mode. This forces EdScheme to conduct
more thorough error checking of the programs you write, trapping the
kinds of errors that are often made by beginners. (These errors are
ignored when FEdScheme is in Standard Scheme Mode, and this some-
times leads to unexpected and confusing results.) You can set EdScheme
to Schemer’s Guide Mode by choosing from the
sub-menu of the menu and clicking on the radio button labeled
Schemer's Guide Mode. As you do this, certain other selections will au-
tomatically be made for you, so as to guarantee compatibility with The
Schemer’s Guide. For further information about this automatic behav-
ior and how to reverse it (if you so desire), see page 75 in Chapter 9:
The EdScheme Menus.

000

10

1: Starting Out

2.1

An EdScheme Session

In this chapter we describe a short EdScheme session that shows how the
EdScheme programming environment may be used to best advantage.

Starting Up

Before starting your first EdScheme session, you should make sure that all
the files the application needs have been installed on your Macintosh hard
drive (if you have one) and that you have a backup copy of the installation
diskette. (See also Section 1.4: When You First Use EdScheme in Chapter 1.)

To launch EdScheme, double click on the EdScheme icon (an ink-pot over
the Greek letter lambda, X). There will be a short pause, during which
EdScheme displays a ‘splash screen’ copyright notice, and then a window en-
titled ‘Transcript’ will appear. This window is called ‘the Transcript Win-
dow’. If the file ‘EdScheme Init.s’ is in your ‘EdScheme’ folder, the message
‘Initializing EdScheme........ Done.” will gradually be printed in this window,
and beneath this a right arrow symbol, ‘=>’, called ‘the prompt’, will ap-
pear, To the right of this prompt there will be a flashing black line, called ‘the
caret’. If you are impatient to see EdScheme in action, type (+ 3/2 1/2 5)
and then press the RETURN key. The contents of the Transcript Window will
resemble the diagram at the top of the next page (except that if you are work-
ing on a color system, your Transcript Window will now contain multicolored
text!).

You may have noticed that, when you typed the right parenthesis and
before you pressed the RETURN key, EdScheme flashed the left parenthesis.

11

2: An EdScheme Session

EdScheme (with integrated editor and turtle graphics interface).
Release 4.0, (© 1991, 1993 Schemers Inc. SN# 007.
Standard Scheme Mode. Tuesday, January 5, 1983, 9:42 PM.

Initializing EdScheme........ Done.
= (+ 3/2 1/2 5)

7

= |

This is an important service provided by all of EdScheme’s edit windows.
(In making these comments, we are assuming that you have not yet altered
EdScheme’s default settings. In particular, this ‘parenthesis-matching’ be-
havior only occurs if the Format & Paren-Matching checkboxes are checked in
the dialog accessed through the sub-menu in the
menu.)

The expression (+ 3/2 1/2 5) is called a Scheme expression. When
you pressed RETURN after the right parenthesis, FdScheme evaluated the
Scheme expression to an ‘answer’, technically called a data expression.
EdScheme makes it easy for you to distinguish a Scheme expression from a
data expression by printing them in different colors (and in different type-
faces).

If you are already familiar with Scheme then you may want to try evaluat-
ing a few more Scheme expressions in order to get a feel for how the Transcript
Window behaves. However, before you tackle any real projects you should
read the next section, which explains how to optimize EdSchemne’s program-
ming environment.

Organizing the Desktop

At any time during an EdScheme session you may type Scheme expressions
into the Transcript Window and evaluate them to data expressions, but ex-
perience has shown that in general this is seldom the most productive way to
work. An important feature of the Transcript Window is that it provides a
true transcript (or history) of an EdScheme session. In particular, you can-
not go back and ‘change history’ by editing a previously evaluated Scheme
expression, even if that Scheme expression generated an error. You may,

Organizing the Desktop 13

of course, use the standard Macintosh editing facilities to 2 Scheme
expression, it into the Transcript Window at the current prompt, and
then edit it before pressing RETURN, but this is usually not very convenient.

An alternative is to use a document window, as follows: First, use
the ‘size box’ in the bottom right-hand corner of the window to resize the
Transcript Window so that it takes up about one-third of the height of the
desktop, Then move the Transcript Window by clicking in its title bar and
dragging with the mouse until it lies in the bottom one-third of the desktop.
Next, choose from the menu. An empty window, called a ‘docu-
ment window’, will appear with the title ‘Untitled’. I necessary, resize and
move this window so that it occupies the top two-thirds of the screen, thereby
allowing the Transcript Window to remain in view in the bottom one-third.
A caret will be fiashing in the top left corner of the document window,

Now type the Scheme expression (+ 2 -1/2 5 3). This time, what you
type should appear in the document window in a ‘simple’ black font. Note
that pressing the RETURN key now has no effect other than to move the
caret down by one line each time it is pressed—FEdScheme does not attempt
to evaluate the expression. However, when the caret is placed immediately
after the right parenthesis,! the matching left parenthesis flashes, just as it did
in the Transcript Window. Make sure that the caret is placed immediately
after the right parenthesis, and then press the ENTER key on the Macintosh’s
‘keypad’—the small group of keys on the right of the keyboard. The Scheme
expression (+ 2 -1/2 5 3) appears in the Transcript Window next to the
last prompt, and beneath it appears the answer: 19/2.

Of course, you could just as easily have typed the Scheme expression
directly into the Transcript Window. But let’s suppose you had really meant
to type the number 5/2 instead of 3. In the Transcript Window, you would
have no alternative but to copy-and-correct or retype the entire expression
before re-evaluating it. In a document window, however, you can correct
errors by editing your previous work. In this case, you would use the mouse
or the left arrow key to move the caret just to the right of the ‘3’, press

! Each press of the right or left arrow key moves the catet one character in the corresponding
direction. Similarly, each press of the up or down arrow key moves the caret one line in the
corresponding direction. This behavior holds true both in the Transcript Window and in
any document window. In addition, if you hold down the OPTION key while pressing the
right, left, up, or down arrow key, the caret will move to the end of the current line, the
start of the current line, the top of the file, or the battom of the file, respectively. Finally,
you can move the caret to any desired location in the current window by moving the mouse
pointer to that location and clicking once.

2: An EdScheme Session

the DELETE key to erase it, and then type ‘5/2’. Finally, move the caret so
that it once again lies immediately after the right parenthesis (causing the
left parenthesis to flash), and press Keypad-ENTER. The amended Scheme
expression will be evaluated in the Transcript Window as before (except, of
course, that the answer will now be 9).

The Current Expression

The ease with which Scheme expressions can be edited and re-evaluated is
just one reason why you will find it convenient to do most of your work in
a document window rather than directly in the Transcript Window. But
there are additional features of document windows that make them truly
indispensable! Leaving the amended Scheme expression as it is, press the
RETURN key two or three times, then type the second Scheme expression
shown in the following diagram:

(+ 2 -1/2 5 §/2)

(first (quote (monday tuesday wednesday)))

As you type, note that each time you type a right parenthesis, EdScheme
flashes the matching left parenthesis. You can tell when you have finished
typing this Scheme expression by watching which left parentheses flash as
you type right parentheses; when the parenthesis to the left of the symbol first
flashes, the expression is complete. Making sure that the caret is immediately
after the final right parenthesis, press the Keypad-ENTER key once more. The
Transcript Window again responds by evaluating the Scheme expression to
produce the data expression monday. Now move the caret back up to the top
line, again immediately after the right parenthesis, and hit Keypad-ENTER.
This time, the Scheme expression on the top line is re-evaluated.

This example illustrates the concept of the current expression. In gen-
eral, the current expression is the Scheme expression whose left parenthesis
is flashing, or whose left parenthesis was the last one that EdScheme flashed.
Pressing the Keypad-ENTER key tells EdScheme to ‘paste’ the current expres-
sion into the Transcript Window, to evaluate it, and then print the resulting
data expression.

You may care to try experimenting with changing the current expres-
sion. EdScheme provides a window, called the Expression Window, whose

Indentation and Formatting 15

sole purpose is to display the current expression. To view this window,
choose [Show Expression] from the menu. Then, using the mouse or the
arrow keys, move the caret to various places in the document window (or even
in the Transcript Window) and notice how the current expression changes.
You may evaluate the expression shown in the Expression Window at any
time by pressing Keypad-ENTER or, equivalently, by choosing [Expression]
from the menu.

Indentation and Formatting

Next, let’s try something a little more ambitious! Leave some space under the
last expression in the document window (or, if you prefer, erase the contents

of the document window by choosing and then from the

menu), and then type the following:

(define cube
{lambda (n)

(* nnn)))

Notice that each time you press the RETURN key, EdScheme indents the next
line.? EdScheme uses a sophisticated indentation routine to calculate where
each line should begin, so that your Scheme programs automatically appear
in standard layout. Make sure the definition for cube is the current expres-
sion (the easiest way to ensure this is to move the caret so that the first left
parenthesis—preceding the keyword define—is flashing) then press Keypad-
ENTER to evaluate the definition. To test the definition, try evaluating some-
thing like (cube 3), either from the document window using Keypad-ENTER,
or directly in the Transcript Window. (If you are feeling a little more adven-
turous, try evaluating (cube 12345678987654321)— EdScheme will tell you that
the answer is 1881676411868862234942354805142998028003108518161.)
Of course, very few people are able to create flawless procedure definitions
every time, se you will usually find yourself having to edit the definitions you
write. This action will often transform what began as a neatly indented
definition into a ragged collection of lines of code, arranged apparently at
random. For our purposes, we can simulate this effect by just adding or

2 As mentioned earlier, we are assuming that EdScheme’s default settings have not yet been
altered.

2: An EdScheme Session

deleting leading spaces from the definition of cube. To reinstate the original,
neatly indented format of the definition, all you have to do is place the caret
on one of the three lines of the definition, and then choose [Format] from
the menu. EdScheme will rapidly change the indentation of each line of
the definition so that it once again appears in standard form.

For your convenience, EdScheme also provides two alternative ‘hot key’
methods of choosing the menu item: You can simply press the TAB
key while holding down the OPTION key, or you can press the M key while
holding down the COMMAND key.

EdScheme’s formatting capabilities extend beyond the reformatting of in-
dividual procedure definitions, however. If you wish, you can format a single
line so that its leading character is correctly indented relative to the previ-
ous lines. To do this, place the caret on the line in question and press the
TAB key—this time without the OPTION key. At the other extreme, you
can format several definitions—or even a whole document—all at once by
using the mouse to mark the definitions (or by selecting the whole document

by choosing from the menu), and then choosing (or
using one of the OPTION-TAB or COMMAND-M hot key combinations).

Indexing Document Windows

Here’s a more complex definition that you should type below the definition
for cube:

(define factorial
(lambda (n)
{if (zero? n)
1
(* n (factorial (- n 1)))}))

When you have finished typing this definition, press the OPTION key and,
while still holding it down, click the mouse on the title bar of the docu-
ment window. A ‘popup’ menu will appear containing the two items
and [factorial], listed in alphabetical order. If you choose either of these items,
the corresponding procedure definition will be selected in the document win-
dow (that is, it will marked as though ready to be cut or copied, say)}. This
automatic indexing of the contents of document windows is invaluable when

Using Multiple Documents 17

working with larger documents; keeping track of the location of many defini-
tions is a task best left to the computer!

Using Multiple Documents

The EdScheme implementation disk includes several extensive Scheme doc-
uments, some of which contain a large number of definitions. To open a
document window for an existing document, choose from the
menu. You will be shown a standard Macintosh File Selector dialog; double-
click on the document you wish to open.

Very often, the development of a large or medium-sized program involves
definitions spread over several Scheme files, so EdScheme provides a facil-
ity for fast-switching between open document windows. Document windows
are numbered in the order in which they are opened, and as each document
window is opened, its title is entered into the menu on the main
EdScheme menu bar. Associated with each such menu item is a hot-key com-
bination comprising the COMMAND key and the document window’s number.
For example, if you have two open document windows (each one either hav-
ing been opened using from the menu or created using
from the same menu), alternately pressing COMMAND-1 and COMMAND-2
(or choosing the corresponding items from the menu) will switch

you between the two documents.

Saving your Documents

Before you end your EdScheme session you may wish to save your documents
(and possibly your Transcript Window) to disk. This couldn’t be easier! Just
make sure that the window whose contents you want to save is the currently
selected window (the easiest way to ensure this is to click on the window’s
title bar), then choose from the menu (or use the item’s
alternative hot-key combination, COMMAND-S). You will first be prompted
to provide a name for the file, unless the contents of the document window
have previously been read from or written to a file. If you are an experienced
computer user, you will know that it is very unsafe to leave the important
task of saving documents until the end of the session. Whether experienced
or not, you should try to get into the habit of saving your documents at

18

2: An EdScheme Session

regular intervals, say, every few minutes, by pressing COMMAND-S while in
each document window in turn. That way, you can avoid the frustrating
experience of losing hours of work because of an unexpected, momentary
fluctuation in electrical power.

-00Qo0-

Programming Environment
Windows

[EdScheme provides six types of windows within its programming environment:

e The Transcript Window is a channel of communication between you
and the EdScheme interpreter, and it maintains an historical record of
the current EdScheme session.

e Debug Transcripts provide a more specialized form of communication
with the interpreter within the context of ‘error environments’,

¢ The Trace Window allows you watch programs as they run.

e Document Windows enable you to store Scheme programs in disk
files, and they serve as a convenient canvas on which to create new
programs.

e The Expression Window displays the current expression.
¢ The Clipboard Window displays the contents of the clipboard.
All these windows are described in detail below. In addition, EdScheme pro-

grams can generate two other types of windows, namely, graphics windows
and text windows. These are discussed in Chapters 7 and 8.

19

3: Programming Environment Windows

.1 Transcript Windows

This section describes the operation of the primary Transcript Window and
Debug Transcript windows, Each Transcript Window is a colored, styled-text
editor whose behavior and appearance may be customized to suit your needs.

Text in Transcript Windows may appear in as many as three different
colors and fonts. System messages, such as error messages and the EdScheme
banner, are printed in one color, Scheme expressions (your programs) print in
a second color, and data expressions (the output produced by your programs)
print in a third color. The following table lists the default colors and fonts
for the three types of expressions.

System | Scheme | Dala
Font | Geneva | Chicago | Monaco
Color | Blue Black Red

By default, each font is printed in a plain style, but it is possible to customize
the styles, as well as the colors and fonts, by means of the dialog
that is accessed through the sub-menu of the menu.

The same dialog gives you the option of switching on and off EdScheme’s
automatic expression-formatting and parenthesis-matching feature in the con-
text of Transcript Windows. By default, this feature is activated.

You can save the contents of the Transcript Window or any Debug Tran-
script Window using the [Save] or [Save As ...] items in the menu. Hav-
ing saved in one of these ways, however, the only way to reinstate the saved
contents as a Transcript Window is to use the {Open As Transcript ...] item
in the menu; such saved contents cannot be read into a document win-
dow. To save the contents of a transcript or debug transcript window so that
they can be read into a document window, use the [Save As Text ...] item
in the menu. Be warned, though, that this method of saving makes it
impossible for the saved contents to be reinstated as a Transcript Window.

If you would like to open a fresh Transcript Window, you may do so using
the [New Transcript ...|item in the menu. Before the new window opens,
you will be given the choice of saving or discarding the current Transcript
Window.

The (primary) Transcript Window appears when EdScherne is started.
Scheme expressions typed at the prompt (=) are evaluated and their values
are printed into this window. All the usual Macintosh editor functions (cut
and paste, search and replace, for example) are available in the Transcript

Transcript Windows 2

Window, with one important proviso: EdScheme will not allow you to change
anything that appears before the last prompt. This behavior ensures that the
contents of the window provide a true transcript (or history) of the current
EdScheme session.

On start-up, EdScheme allocates a block of memory for use by the Tran-
script Window. The amount of memory set aside is determined by the
setting for the Transcript buffer in the [Memory] dialog accessed through
the [Preferences| sub-menu in the menu. As a session continues, the
Transcript Window gradually fills this block of memory until eventually there
is no room for any more input into the allocated memory. At this point,
EdScheme automatically deletes text from the top of the transcript, releasing
memory so that the session may continue. If you need to ensure that all of a
session’s transcript is kept, and you anticipate that an extensive record will
be generated, then you should increase the memory allocated to the Tran-
script Window. (As with all changes to EdScheme’s memory configuration,
any alteration you make will not come into effect until after EdSchemne is
restarted.)

The Transcript Window may be closed (temporarily) in any of the stan-
dard Macintosh ways or from within an EdScheme program by evaluating
the expression (window—close transcript). Closing the Transcript Window
does not cause it to lose its contents (in effect it is ‘hidden’ rather than
‘closed’). It may be re-opened from the desktop by choosing from
the men, or from within an EdScheme program by evaluating the
expression {window—select transcript). Alternatively, you caa remove the
window from view by evaluating the expression (window-hide transcript),
and then make it visible again by evaluating the expression

(window—show transcript).

If your EdScheme preferences are set appropriately—see the section of
Chapter 9§ (starting on page 77) that deals with the dialog ac-
cessed through the sub-menu in the menu)—an error atising

during the evaluation of a Scheme expression will cause a Debug Transcript
to open. The environment that is current in this Transcript Window includes
bindings for all the local variables that are in play at the time the error
occurred. You may evaluate Scheme expressions in this window, and even
generate new errors, which in turn will cause additional (dependent) Debug
Transcripts to open.

If Debug Transcripts are enabled in the dialog just referred

3: Programming Environment Windows

to, then they may be temporarily inhibited by choosing [Debug Transcripts)
from the [Evaluate] menu. If Debug Transcripts are enabled, a black dia-
mond appears next to the menu item when the menu drops down.
If Debug Transcripts are enabled, but have been temporarily inhibited by
choosing [Debug Transcripts] from the menu, then this black dia-
mond is not present. If Debug Transcripts are not enabled, then this menu
item is ‘grayed out’, that is, it cannot be chosen.

Debug Transcripts are numbered in hierarchical fashion. Those that arise
from errors generated in the Transcript Window are numbered sequentially
in the form 1.n in order of generation. Those that arise from errors generated
in a Debug Transcript Window m.z are numbered sequentially in the form
{m + 1).n in order of generation. The bindings that are current in a given
Debug Transcript Window are cumulative; they include all the bindings in
force in all of the Debug Transcripts in the ‘ancestral line’ that traces the given
window’s generation history all the way back to the Transcript Window itself.

You can define procedures and macros in a Debug Transcript window
using define, define~-macro, define-alias, and define-transformer, or you can load
them from a file using load or by choosing from the menu.
However, such procedures and macros are inaccessible to all ‘older generation’
Debug Transcripts whose environment (or ‘context’) differs from that of the
Debug Transcript into which those procedures and macros were introduced.
If your preferences are set so that Debug Transcripts are only generated in
a new context, then the procedures and macros are only accessible in the
Debug Transcript into which they were introduced and its ‘descendants’.

If you evaluate an expression that involves a mutator procedure such as
set!, the relevant binding will be changed in the uppermost (that is, ‘most
ancient’) Debug Transcript whose environment involves such a binding, and
in all Debug Transcripts that trace their existence back to that Transcript.

The fonts, colors, and type styles used in Debug Transcripts are deter-
mined by the selections that have been made for the Transcript Window. The
memory allocated to Debug Transcripts may be set by modifying the Debug-
ging entry in the dialog (see the similar note above concerning the
memory allocated for the Transcript Window). The setting in this dialog
specifies the amount of memory available to each Debug Transcript individ-
ually. Normally, Debug Transcript windows are short-lived, so they do not
require as large an allocation of memory as the Transcript Window.

To close a Debug Transcript, click in its Close Box (the box at the left end
of the window’s title bar). A Debug Transcript differs from the Transcript

The Trace Window 23

3.3

Window, however, in that by closing it you will lose its contents and—if its
environment is different from that of its ‘parent’—the environment in which
it was created.

Pressing Keypad-ENTER causes the current expression to be pasted into
the most recently active Transcript Window. The expression is then evaluated
and the result printed in that window.

If an error occurs in a Scheme program, and the Transcript Window from
which the program was run is currently hidden, EdScheme automatically
shows that Transcript Window.

The Trace Window

A third, more rudimentary type of Transcript Window is the Trace Win-
dow. This is the window to which trace information is written if you have
checked the Output to Trace Window checkbox in the dialog accessed through
the item in the menu. (See the detailed description on
page 90 in Chapter 9: The EdScheme Menus.) The contents of this window
are generated by EdScheme. You may copy text from the Trace Window to
the clipboard, but you will not be able to do any editing in the window it-
self. To show the Trace Window, choose [Trace Window]| from the
menu. To erase everything from the Trace Window, choose from
the menu. The amount of memory allocated to the Trace Window
is the same as that allocated to each Debug Transcript, and its behavior once
that allocation is exceeded is the same as for the Transcript Window.

Document Windows

Documents are text files that may be created or opened in the usual way
by choosing [New] or [Open __.], respectively, from the menu. They may
be edited using the standard Macintosh editing facilities. Finally, they may
be saved and/or closed in the usual way by means of the [Save], [Save As ...},
and [Close]items in the menu. You may also close a document by clicking
on its window’s Close Box, whereupon you will be given the option of saving
the document if you have made any changes since opening it.

Document windows are not directly manageable from within an EdScheme
program. So anything you want to do with a document window must be

3: Programming Environment Windows

achieved using the keyboard, the mouse, and/or the main menu bar. In par-
ticular, choosing from the menu closes all open document
windows. (It has no effect on any other kind of windows that may be open.)

If one or more document windows are open, you can use the bottommost
items in the [Windows] menu or the corresponding hot key combinations to
switch rapidly between all such open document windows. These menu items
do not apply to any other kind of window. (See also Section 2.6: Using
Multiple Documents on page 17 in Chapter 2.)

If you choose from the menu, then all the Scheme
expressions in the currently selected document will be evaluated, and the
value of the final expression will be printed to the Transcript Window. (The

same effect is produced if you choose [Select All] from the menu and then

choose from the menu.) Further related information is
provided in the entry for the [Whole file] menu item on page 89 in Chapter 9:

The EdScheme Menus.
With the help of the mouse, you can also select a block of text of any size
in the currently selected document using one of the following methods:

1. Click once on the mouse button and then drag to some other location.
All the text between the initial and final positions of the caret will be
selected.

2. Quickly click twice on the mouse button and then drag to some other
location. All the text from the word initially clicked on through the
word on which the mouse button is released will be selected. (If either
the initial or final position of the mouse happens to lie between two
words, then EdScherne acts as if the mouse were on the word following
its actual position.)

3. Quickly click three times on the mouse button and then drag to some
other location. All the text from the line initially clicked on through
the line on which the mouse button is released will be selected.

If you select a block of text in the current document in one of these ways,
and then choose from the menu, all the expressions in the
marked block will be evaluated, and the value of the last one will be printed
to the Transcript Window. Further related information is provided in the
entry for this menu item on page 89 in Chapter 9: The EdScheme Menus.

The dialog box, accessed through the sub-menu in
the menu, gives you control over whether or not EdScheme’s expression-

The Expression Window 25

formatting and parenthesis-matching feature is activated in document win-
dows. Let us suppose that you have checked the appropriate Format &
Paren-Matching checkbox. Then, as explained in Section 2.3: The Current
Ezpression in Chapter 2, if you place the caret immediately after a right
parenthesis and either hit the Keypad-ENTER key or choose from
the menu, the current expression will be pasted into the Transcript
Window and its value will be printed to the Transcript Window,

In fact, if you have checked both Format & Paren-Matching checkboxes in
the dialog accessed through the sub-menu in the
menu, then, whenever you place the caret immediately after a right parenthe-
sis of a Scheme expression in the Transcript Window, any Debug Transcript
Window, or any document window, the matching left parenthesis will flash,
even if the partners in this matching pair are not both visible in the window
at the same time. (In other words, you may have to scroll the window up in
order to locate the flashing matching left parenthesis.)

The memory allocated to document windows may be changed by modify-
ing the Text buffer entry in the dialog, which is accessed through
the sub-menu in the menu.

The Expression Window

Whenever the caret is immediately after a right parenthesis either in a docu-
ment window or in a Transcript Window, then the expression comprising that
right parenthesis, its matching left parenthesis, and everything in between is
the Current Expression. If the caret is anywhere else, either in a document
window, in the Transcript Window, or in a text window, then the Current
Expression is whatever it was on the last occasion that the caret immediately
followed a right parenthesis. The Current Expression may be directly spec-
ified under program control using the procedure expression-set-text (see the
relevant entry on page 158 in Chapter 11: Syntaz and Semantics).

The sole function of the Expression Window is to display the Current Ex-
pression. If the Current Expression happens to be so extensive that it cannot
all appear in the Expression Window at once, then as much of that expression
as will fit in the window, starting from the begirning of the expression, will
be displayed. In such a case, the remainder of the Current Expression may
be inspected by scrolling or resizing the Expression Window.

The Expression Window is activated by choosing [Show Expression] from

3: Programming Environment Windows

the menu or by using the COMMAND-J hot key combination. It is
particularly useful when typing the final parentheses of lengthy definitions—
type right parentheses one by one as you watch the Expression Window; when
sufficient right parentheses have been typed, the Current Expression will start
with (define

The contents of the Expression Window may be accessed under program
control using the procedure expression—text (see the relevant entry on page 158
in Chapter 11: Syntazr and Semantics). The Expression Window may be
dismissed either by clicking on the Close Box in the upper left corner of the
window or by choosing [Hide Expression] from the menu. The contents
of the Expression Window (that is, the Current Expression) are not affected
by closing the window.

The Clipboard Window

The sole purpose of the Clipboard Window is to show what was marked at
the time of the last or (using the menu) or whatever was
designated at the time of the last evaluation involving text—cut, text—copy, or
clipboard-set—text (see the entries for these procedures in Chapter 11: Syntaz
and Semantics), whichever was most recent.

Choosing from the menu or evaluating an expression involv-
ing text—paste (see the relevant entry on page 225 in Chapter 11: Syntaz and
Semantics) will cause the contents of the Clipboard Window to be pasted
into the currently selected window, either Transcript, document, or a Scheme-
generated text window (see Chapter 8).

The contents of the Clipboard Window may be accessed under program
control using the procedure clipboard—text (see the relevant entry on page 135
in Chapter 11: Syntazr and Semantics).

OOO

Part 11

The Programming Language

4.1

Lists and Vectors

Programming in Scheme involves dealing extensively with lists. Indeed,
Lisp, the language from which Scheme is derived, is an acronym for ‘LISt
Processing’. Lists are special kinds of structures in which data may conve-
niently be stored. Of course, they are not the only such structures; alterna-
tives include those known as vectors. This chapter briefly introduces lists
and vectors, the objects from which they are built, and some of the primitive
procedures with which they are manipulated.

Lists

A list is a flexible data structure that contains zero or more items of data—
called data expressions—which are accessed sequentially. In this Guide we
write lists using the typewriter typeface, like this:

(this is a list)

The expressions that make up Scheme program—these are known as Scheme
expressions—look just like data expressions. This is often very confusing
to beginning Scheme programmers, so in this Guide we distinguish Scheme
expressions from data expressions by printing Scheme expressions using the
sans serif typeface, like this:

(first *(second third))

The list containing no data expressions is called the empty list, and prints as
(). The predicate null? tests its input for ‘emptiness’, returning the boolean

29

4: Lists and Vectors

#t if the input is the empty list and the boolean #f otherwise. Non-empty lists
may be constructed using the procedure cons. For example, (cons "harry °())
evaluates to the list that prints as (harry). Here are some more examples,
where ‘—’ should be read ‘evaluates to':

(cons 1 (cons 2 '())) —~ (12
(cons 'fred *(harry)) — (fred harry)
(cons '(fred harry) "(jane mary)) — ((fred harry) jane mary)

If the second input to cons is not a list, then the result is an improper
list, which prints using ‘dot notation’. For example,

(cons 1 2) — (1. 2)
{cons 1 {cons 2 (cons 34))) — (123 . 4)

WARNING: Improper lists are not permitted in Schemer’s Guide Mode. For
more information about EdScherne’s two language modes, see the section—
beginning on page 74 in Chapter 9: The EdScheme Menus—that deals with
the dialog accessed through the sub-menu in the
menu, and for information about improper lists refer to Section 10.3: Pairs
and Lists in Chapter 10: Data Ezpressions. The predicate list? returns the
boolean #t if and only if its input is a (proper) list; the predicate pair? returns
#t if and only if its input is either a list or improper list. (In fact, improper
lists and non-empty proper lists are collectively known as pairs.)

The principal way to access the data expressions in a pair is to use the
procedures first and rest. The procedure first returns the first data expression
in the input pair, that is, the data expression that appears furthest to the left
in the list’s printed representation. If its input is a proper list, the procedure
rest returns the list consisting of all but the first data expression. Otherwise,
it behaves as illustrated by the last two examples below:

(first '(ab c d e)) — a

(rest'(abcde)) — (bcde)

(first (rest ‘(abcde))) — b

(first (1 . 2)) - 1 [in Standard Scheme Mode]
(rest ‘(1 . 2)) — 2 [in Standard Scheme Mode]
(rest‘(ab . c)) +— (b . c) [in Standard Scheme Mode]

The procedures caf and cdr—whose names have historical connections to
Scheme’s parent language, Lisp—are exactly equivalent to first and rest, re-
spectively, and may be used in their place, if you so prefer.

Vectors 31

Among the other procedures for accessing data expressions in a (proper)
list are last, list—ref, and nth. The procedure last returns the last data expres-
sion in its input, which must be non-empty. (The last data expression is the
one that appears furthest to the right in the list’s printed representation.)
To gain access to data expressions that are in neither first nor last place,
without having explicitly to ‘chop’ your way in from the left using rest and
picking out the desired expression with a final first, you may use either of
the procedures list-ref and nth. Of these, list-ref assumes that you take the
standard Scheme view that lists are zero-referenced, in that the first data ex-
pression in the list has index 0, the next has index 1, and so on. On the other
hand, it is sometimes useful for educational purposes to use the more intuitive
one-referencing system, whereby the first data expression has index 1. The
procedure nth assumes that lists are one-referenced.

(list-ref ‘(abcde)2) — <
(nth2'(abcde)) — b

(Notice that list-ref and nth do not take their inputs in the same order as each
other.)

The procedure length returns the length of the input list, that is, the num-
ber of data expressions it contains. As is the case for many of the primitive
procedures that manipulate lists, it may be written as a derived procedure:

(define length
(lambda (r}
(if (null? =)
0
(+ 1 (length {rest))})))

See Section 12.6: Symbols and Lists in Chapter 12: Language Elements for a
catalogue of EdScheme’s other list-manipulating procedures. The catalogue
refers you to the appropriate entries in Chapter 11: Syntaz and Semantics.

Vectors

While lists provide the most flexible data structure for writing Scheme pro-
grams, they suffer from a major disadvantage. As was hinted in the previous
section, in order to access data expressions near the end of the list, you have
to ‘recur’ down the list, repeatedly taking the rest of the list until the required

4: Lists and Vectors

data expression is in first place in what remains of the original list. For ex-
ample, to obtain the 500th data expression in a list containing 1000 data
expressions, you must take the rest of the list 499 times, and finish off with
a single first. This may appear to contradict the description in the previous
section of the procedures list~ref and nth. However, these procedures operate
internally by ‘recurring down the list’ in exactly the way just described; they
are provided simply as a convenience to hide the ‘messy details’ from your
eyes! Naturally, this means that the time it takes to access a data expression
in a list is longer the further along the list the expression is; this can have a
significant impact on the efficiency of certain kinds of programs.

For situations where yon frequently want io access the nth element of a
list, discarding or ignoring its first through (n—1)st elements, Scheme provides
a data structure called a vector. Vectors are like lists in the sense that they
can be used to ‘store’ many data expressions (including other vectors), but
the elements in a vector cannot be accessed using the procedures first and rest.
Instead, each element is accessed directly by reference to its index. Every
vector is zero-referenced, that is, its first data expression has index 0, the
next has index 1, and so on. (Unlike the situation for lists, EdScheme does
not provide a one-referenced method of accessing the data expressions in a
vector.)

For example, we can use the procedure vector to make a new vector con-
taining the symbols fred, jane, and harry and assign it the name v1, as
follows:

(define v1 (vector 'fred 'jane 'harry})

To access the elements of this vector we use the procedure vector—ref as follows:

(vector-ref v 0) — fred
(vector—ef v 1) — jane
(vector—ref v 2) +— harry

The printed representation of a vector resembles that of a list, the only differ-
ence being that the leading left parenthesis is preceded by the hash symbol,
t N

vl — #(fred jane harry)

Vectors may be used explicitly in Scheme expressions provided they are
‘quoted’, as in the following example:

Vectors 33

(vector—ref "#(abcde)d) — e

Each element of a vector is accessed equally quickly by EdScheme, no matter
where it lies within the vector. In some circumstances, this represents a dis-
tinct advantage over lists. Unlike lists, however, vectors cannot be lengthened
or shortened; they forever remain the length they are at the time they are
created. In fact, an alternative way to bring a vector into existence is to use
the procedure make-vector, which takes the desired length of the vector being
created as one of its inputs. (To discover the length of a given vector, you
may use the procedure vector-length.) The only way to modify the contents
of a vector is to use the procedure vector-set!, which requires explicit refer-
ence to the index of the item you wish to modify.! This ‘rigidity’ of vectors
highlights the fact that, in a sense, vectors trade speed for flexibility.

The procedures mentioned in the previous paragraph are all catalogued
in Section 12.4: Vectors in Chapter 12: Language Elements, together with a
few other vector-manipulation procedures. The catalogue refers you to the
relevant entries in Chapter 11: Syntaz and Semaniics.

000

3

In the Scheme community, ‘I’ is pronounced ‘bang’, so ‘vector-set!’ is read as ‘vector set

bang’.

4: Lists and Vectors

5.1

Numbers and Numeric
Procedures

This chapter includes information concerning the various kinds of numbers
that EdScheme supports, as well as some of the large number of procedures
it provides for manipulating them.

Types of Numbers

EdScheme distinguishes numbers from boolean objects, pairs, symbols, char-
acters, strings, vectors, procedures, and the empty list. They cause the pred-
icate number? to return #t; all other data expressions return #f when input
into the predicate number?.

All pumbers are complex. Among the complex numbers, some are real,
some are rational, and some are integers. These categories are nested in the
sense that

e all integers are rational;
e all rational numbers are real;
¢ all real numbers are complex.

The categories into which a given number falls may be determined by using
the predicates integer?, rational?, real?, and complex?.

35

36

5: Numbers and Numeric Procedures

5.2

5.3

Numeric Constants

In EdScheme, numbers may be named using standard mathematical no-
tation, as follows:

Complex numbers:

-0.5i J+2i ~1/2+9i 2.5-4/Ti

Real numbers:

-16.5421 14.92 9e-57

Rational numbers:

5/3 -33/41
1670947235500047792/37599643332011773

Integers:
-3 +99
-102.0 0.3e52
9871243078455829056374123358

In addition, EdScheme provides a powerful facility whereby you may name
numbers in a variety of radixes (that is, bases) and for specifying numbers as
being exact or inexact. Note however that, unless you specify otherwise us-
ing the number~>string procedure (see the relevant entry on page 188 in Chap-
ter 11: Syntaz and Semantics), EdScherne represents numbers externally—for
example, when it prints the result of performing some numerical calculation—
in radix 10 notation.

Prefixes

Numeric constants may be written in binary, octal, decimal, or hexadecimal
form, each of which has a corresponding radix prefix, as follows:

Prefiz Meaning Prefiz Meaning
#b binary #d decimal
#o0 octal #x hexadecimal

54

Digits 37

If no prefix is given, the numeral is assumed to be a decimal, that is, in
radix 10.

In addition, numeric constants may optionally be preceded by an ‘exact-
ness prefix’, either #i for inexact, or #e for exact. (See Section 5.9: Fzractness
starting on page 44.)

5.4 Digits

The digits available depend on which radix you are using. They are as follows:

Radiz Digits
2 0,1
8 0,1,23,456,7
10 0,1,23,456,789
16 0,1,23456,789abcdef

5.5 Integers

Integers in any of the supported radixes are denoted by ‘words’ made up of
an optional prefix (which may be a radix prefix, or an exactness prefix, or a
combination in either order of a radix prefix and an exactness prefix), followed
(in the case of negative integers) by a minus sign or (in the case of positive
integers) by an optional plus sign, followed by one or more digits appropriate
to the radix in question. (We say that the portion of such a ‘word’ following
the initial prefix(es) is ‘in exact integer form’.) Examples:

#0707 52 FiFx-2of #b10101 #d4-999 1024 +007

(When printing such integers, EdScheme strips off any leading zeros and/or
plus signs and, if necessary, translates into radix 10 form.) Neither commas,
periods, nor spaces may be used to delimit thousands. Integers in this form
are exact unless they include a #i prefix, in which case they are inexact.

Alternatively, the ‘word’ naming an integer may have all the digits in its
‘tail’—starting anywhere past the first digit and going all the way to the end
of the ‘word’—replaced by #-signs. Examples:

#ol0# FOLFHF# #eFx-2c#¥

5: Numbers and Numeric Procedures

(We say that the portion of such a ‘word’ following any initial prefix(es) is
‘in unknown digit form’.) EdScheme prints such integers by replacing each
#-sign by O, translating into radix 10 form if necessary, and—unless a e
exactness prefix is present—appending ‘.0’ on the end. For example,

#ol0# — 448.0
#elSF## — 1500

Integers in this form are inexact unless they include a #e prefix, in which
case they are exact.

In addition, integers may be denoted in rational number form (see the
next section) using an optional prefix, followed by an integer in exact integer
or unknown digit form ‘over’ one of its exact divisors, also in exact integer or
unknown digit form. (If unknown digit form is involved, the question as to
whether the denominator is an exact divisor of the numerator is settled afier
all the #-signs have been replaced by zeros.) Examples:

-15/3 #x2afe #bstell11#4/10104

Integers in this form are exact if they involve no #-signs or if they include a
#te prefix. Otherwise, they are inexact.

In the decimal case only, there are three additional ways to denote inte-
gers: An optional exactness prefix, followed by

s an optional decimal integer in exact integer form, followed by a decimal
point, followed by a (possibly empty) string of zeros, followed by a
(possibly empty) string of #-signs. (If there is no integer in front of
the decimal point, then there must be at least one zero immediately
following the decimal point.) Examples:

123.0 #5040.000000 5. 5.007 4 #e.0#

If an integer entered in this form has a F#e exactness prefix, then it
is exact and EdScheme prints it by deleting the decimal point and all
that follows. In every other case, it is inexact and EdScheme replaces
whatever follows the decimal point by a single zero.

¢ a decimal integer in unknown digit form, followed by a decimal point,
followed by a (possibly empty) tail of #-signs. Examples:

123 3 Fed### #H¥¥##

Rational Numbers 39

If an integer entered in this form has a #e exactness prefix, then it is
exact and EdScheme prints it by replacing all the #-signs by zeros and
then deleting the decimal point and all that follows. In every other case,
it is inexact and EdScheme changes all the #-signs to zeros and then
replaces whatever follows the decimal point by a single zero.

¢ an ‘exponential form’ real number in which what follows the exponent
marker represents a number greater than or equal to the number of
digits from the decimal point to the last non-zero, non-#-sign digit
after the decimal point. (See Section 5.7: Real Numbers starting on
page 41 to find out both what this means and how EdScheme prints
integers named in this way.) Examples:

#i-30.4020 #e3 0.007d12

Integers entered in this form are inexact unless they include a #e prefix,
in which case they are exact.

EdScheme supports exact ‘bignum’ integers of practically unlimited size.
You do not have to issue any special commands to activate a ‘bignum mode’;
EdScherne automatically uses bignums whenever it is appropriate to do so.
Bear in mind, however, that bignums are exact. This means that, if you
want a numerical calculation to produce a bignum result, then you must stay
away from procedures that only return inexact numbers. The ‘square root’
procedure sqrt falls into this category (see the relevant entry on page 211 in
Chapter 11: Syntaz and Semantics). To produce exact square roots of bignum
integers, you will need to define an ‘exact-root’ procedure, such as the one—
based on the iterative Newton’s Method for finding square roots—shown at
the top of the next page. Then, for example, {(exact—root (expt 11 250)) returns
the 131-digit number that is the actual square root of this number. (Check
it for yourself against the result of evaluating (expt 11 125).) In comparison,

1.4930888242180356e+130
(which is the result generated by (sqrt (expt 11 250))) is pretty feeble!

Rational Numbers

Rational numbers that happen also to be integers are denoted as described
in the previous section. Every other rational number is denoted in one of the
ways itemized beneath the figure on the next page.

5: Numbers and Numeric Procedures

(define newton
(lambda (n a)

(/(+a(/na)2)

(define exact—root
(lambda {n)
(letrec
([loop
(lambda (newa olda diff)
(cond
[(= n (* newa newa)) newa]
[{<= diff (abs (- newa olda)))
(sart n)}
[else (loop (fioor (newton n newa)))
newa
(abs (~ newa olda)))I1N])
(loop (floor (inexact—>exact (sqrt n))) n n))))

Iigure 5.1: An Exact Square Root Procedure

Rational numbers may be denoted:

¢ as a ‘word’ formed by an optional #e exactness prefix and/or an optional
radix prefix, followed possibly by a minus sign or a plus sign, followed
by one or more appropriate digits, followed by a “forward slash’ (),
followed by one or more appropriate digits. Examples:

1/2 -12/35 #022/1 Fb-1010001/11 je+45/24

¢ as a number in decimal, unknown digit, or exponential form (see the
next section on real numbers), preceded by a #e exactness prefix. Ex-
amples:

#e0.52## #el2.5 #e2de-H #e43#4d-10

Note that EdScheme accepts any rational number that is named according
to the foregoing description. Whenever it prints a rational number, however,
that number is always in lowest terms, with any leading zeros in the numerator

Real Numbers 4]

and for denominator removed, and—unless you specify otherwise by using the
number->string procedure (sce the relevant entry on page 188 in Chapter 11:
Syntaz and Semantics)—it will be in radix 10 notation. For example,

If you enter EdScheme prints

~-15/6 -5/2
#b1111/0101 3
#x-2ac/00ba -114/31

#e0.6 3/5

The only inexact rational numbers are inexact integers. All other rational
numbers are exact.

Note that EdScheme does not support mixed numbers such as three-and-
five-sixths; such numbers should instead be represented as ‘improper frac-
tions’, thus: 23/6.

.7 Real Numbers

Real numbers that happen to be rational numbers or integers are denoted as
described in the preceding two sections. Every other real number is inexact
and may only be represented in one of the following four ways:

e in (radix 10) ‘decimal’ form as an optional plus sign or minus sign
and/or an optional integer in exact integer form, followed by a decimal
point that in turn is followed by one or more decimal digits. Examples:

-.007 3.142 —0.125 +1000000.0000001

e in (radix 10) ‘unknown digit’ form, which looks just like decimal form
except that, from some point beyond the first digit, every digit is re-
placed by a #-sign. Examples:

3143 1T##. ### -.503¢#

* in (radix 10) ‘exponential’ form as a real number in either exact integer,
unknown digit, or decimal form, followed by an exponent marker—
one of e, s, f, d, and |, in either upper- or lower-case—followed by an
integer in exact integer form. Examples:

&: Numbers and Numeric Procedures

5e-20 -17.32L6 5.3##5-08 4.9056f+2178

In this notation, if m is one of the exponent markers, AmB means A
times 10 to the power B, Thus, the first of the above examples denotes
the number that may also be written as zero point nineteen zeros 5, and
the last example may also be written as 49056 followed by 2174 zeros.

Note that, although EdScheme accepts real numbers in exponential form
according to the foregoing description, after replacing any #-signs in A
by zeros it prints such numbers AmB as follows:

— if the absolute value of A times 10 to the power B is between 0.0001
(included) and 10 to the power 16 (not included), the number
printed is in decimal form, rounded if necessary to the nearest
inexact integer. For example, if you enter

52.3456789012345678901234567e14
EdScheme prints 5234567890123457.0.

— if the absolute value of A times 10 to the power B falls outside this
range, the number printed is in exponential form CeD where the
absolute value of C lies between 1 (included) and 10 (not included)
and C is rounded if necessary to the nearest 10 to the power -15,
and where D is provided with a leading zero if it is one of -5, -6,
-7, -8, or -9. For example, if you enter 0.9s-5 , EdScheme prints
9e-06.

As far as EdScheme is concerned, different exponent markers do not
indicate different degrees of precision; all numbers that EdScheme prints
in exponential form are at least as precise as is required by the IEEE
64-bit floating point standard.

Note that d, e, and f are both hexadecimal digits and decimal notation
exponent markers. No confusion can arise, however, since it is impossi-
ble for both uses to occur in one and the same numeric constant. (See
the entry for the procedure string->number on page 216 in Chapter 11:
Syntar and Semantics where this apparent ambiguity is specifically ad-
dressed.)

in ‘rational’ form—involving a forward slash (/), as described in the
previous section—preceded by a #i exactness prefix, or where either
or both of the denominator and the numerator have ‘tails’ of #-signs.
Examples:

58 Complex Numbers 43

543/29 3##/ 2% #i3/5 #i#x2af/bcd

Note that EdScheme always prints real numbers written in this inex-
act rational form in radix 10. So, for example, if you type the sec-
ond of the above numbers and hit the RETURN key, EdScheme prints
0.2280119482243611.

5.8 Complex Numbers

Complex numbers that are also real numbers are denoted in one of the ways
described in the preceding three sections. Every other complex number is
represented

¢ in one of the following ways, in which r and s denote (possibly equal)
real numbers:

+i -4 +ri - r+i - r+si r-si Qs
preceded possibly by an exactness prefix (#i or #e); or,

e when both r and s denote exact numbers, in one of the above eight forms,
preceded (in addition to, or instead of the optional exactness prefix) by
a radix prefix.

The leading sign in the case of +i, —, +ri, and —i is essential; it must not be
omitted. The letter i may be either upper- or lower-case. Neither spaces nor
parentheses may be included in the name of a complex number. Examples:

4 #o+15/Ti -2.3-5¢-10i 23/17-0.0045i 12.501.596

The r@s form above is known as ‘polar form’; the complex number named
in this way is r + [(cos s) 4 i # (sin 5)], where s is interpreted as being an angle
measured in radians, irrespective of which Angle Mode you have chosen in
the dialog accessed through the sub-menu in the
menu.

EdScheme prints complex numbers by

¢ supplying any ‘pure imaginary’ numbers with an exact zero real part
(thus, for example, #x+2b/ci prints as 0+43/12i);

5: Numbers and Numeric Procedures

o printing the real and imaginary parts of complex numbers entered in
‘rectangular’ (that is, non-polar) form according to the printing rules
outlined in the preceding sections;

e and printing complex numbers entered in polar form in rectangular form
(thus, for example, 12.5€1.596 prints as

-0.3150126619420T707+12.496030063013581).

Note that, although you can use the number->string procedure—see the
relevant entry on page 188 in Chapter 11: Syntez and Semantics—to
print representations of ezact complex numbers in radixes other than 10,
EdScheme always prints inexact complex numbers in radix 10 notation.
(See the next section to find out how to tell whether or not a complex
number is exact.)

.9 Exactness

In the eyes of EdScheme each number is either exact or inexact, a state
that can be identified using either one of the predicates exact? and inexact?.
Non-integer rational numbers are exact; integers denoted without the use of a
decimal point or a #-sign—that is, in exact integer form—are exact (hence the
name!) unless preceded by a #i exactness prefix; all other integers are inexact.
Real numbers named either in decimal, unknown digit, or exponential form
are inexact unless preceded by a #e exactness prefix. Complex numbers
whose real and imaginary parts are both exact are themselves exact unless
preceded by a #i exactness prefix; all other complex numbers—even those in
polar form with exact integers either side of the @-sign—are inexact unless
preceded by a #e exactness prefix or unless the number following the @-sign
is an exact zero.

As a general rule, simple arithmetic performed upon exact numbers pro-
duces an exact result, but if at least one of the numbers involved is inexact
then the result will be inexact. Some procedures, however, always produce
inexact results—for example, sqrt and acos fall into this category—a state of
affairs that is noted in their entries in Chapter 11: Synter and Semantics.
All numeric comparison predicates (such as <=) and some numeric predi-
cates (such as zero?) produce unreliable results if any of their arguments are
inexact. The worst offenders are = and zero?, since the small inaccuracies
inherent in the state of ‘inexactness’ can easily affect the result.

Mathematical Information 45

10

To switch between equivalent exact and inexact numbers you can use the
procedures inexact->exact and exact->inexact, or you can add an appropriate
exactness prefix. Thus, (inexact->exact 0.2) produces the same result as #e0.2.
The result of such an ‘exactness change’ may not, however, always be what
you might expect. For example,

(inexact->exact 0.2)
— 199999999999999999/1000000000000000000

rather than the expected 1/5. This happens because EdScheme is working
with the internal (binary) representation of the number in question, rather
than its external (decimal) representation. To achieve the ‘expected’ result
for numbers expressed in decimal form, use the procedure exact—rationalize
with a ‘small’ second argument, such as le-16. For example,

(exact—rationalize 0.2 le-16) — 1/86
(exact-rationalize 0.0625 le-16) — 1/16

Simple derived procedures can be written to take care of inexact real num-
bers whose names are in other forms, and of other types of inexact complex
numbers,

Mathematical Information

EdScheme provides procedures that give access to a large selection of math-
ematical functions, most of which accept as arguments any of the numbers
described in this chapter. Their behavior when presented with certain kinds
of real number arguments, however, agrees with what you probably know of
these functions from your high school mathematical studies. The following
table specifies which arguments produce such ‘usual’ behavior:

Procedure Mathematical Function Argument(s)

exp natural exponential any real number
function

expt general exponential any two real numbers such that, if
function the first is zero, then the second is

non-negative

5: Numbers and Numeric Procedures

Procedure

Mathematical Function

Argument(s)

log natural (or general)
logarithm function

power general exponential
function

sqrt square root function
cos cosine function

sin sine function

tan tangent function

acos inverse cosine
function

asin inverse sine function

atan inverse tangent
function

one (or two) positive real numbers
(the second, if provided, being dif-
ferent from 1)

any two real numbers such that, if
the first is zero, then the second is
non-negative

any non-negative real number

any real number

any real number

any real number not an odd multi-
ple of Z (in Radian Mode) or not
an odd multiple of 90 (in Degree
Mode)

any number in the real interval
from -1 to 1 (both included)

any number in the real interval
from -1 to 1 (both included)

one or two real numbers (not both
zero, if there are two)

For all other arguments, these FdScheme procedures operate as complex-
argument /complex-result procedures and, irrespective of which Angle Mode
you have chosen in the dialog accessed through the
sub-menn in the menu, they treat all angles as being measured in radi-
ans. For such arguments, 2 = a + bi (where @ and b are real), they calculate
their values as follows:

(exp z) (exp a) * [(cos &) + i * (sin b)]
(exptzw) = (expfuw+ (log 2)]) (#0)
(power 2 w) = (exp [w * (log 2)]) (z #0)
(cos z) = [(cos &)+ cosh(h)] — [i * (sin a) » sinh(b)]

(sinz) = ([(sin @) * cosh{b)] + i * (cos a) + sinh(b)]
(tan a) + i * tanh(b)
1 —i * (tan @) * tanh(b)

(tan z) =

Mathematical Information 47

Note that sinh, cosh, and tanh are the hyperbolic sine, cosine, and tangent
functions, respectively. They are not primitive procedures in EdScheme, but
they may easily be defined as derived procedures, as follows:

(define sinh (define cosh
(lambda (z) (lambda (z)
(/ (- (exp z) (exp (- 2))) 2))) (/ (+ (exp =) (exp (- 2))) 2)))
(define tanh

{lambda (z)
(/ (sinh z) (cosh z))))

Returning to the evaluation of complex-argument procedures,

(log z) = (log (abs z)) + i * (angle 2)
(log zw) = (logz)/(log w)

(Here, neither 2z nor w may be 0, and w may not be 1.) Note that all
occurrences of the logarithm function on the right side of these equalities
are natural logarithms to base e (usually denoted by ‘In’ in mathematical
circles), not logarithms to base 10. For the operation of the procedures abs
and angle, see the relevant entries in Chapter 11: Syntaz and Semantics.

(sqrt 2) = (expt z 1/2)

(asinz) = —ix(log(i*z+ (sqrt (1 — z* z))])
(acos z) = pi/2— (asinz2)
(atanz) = —0.5ix[(log (1 +i*2))— (log(1—i=2))]

See the entry for the variable ps on page 197 in Chapter 11: Syntazr and
Semantics. The argument of atan must not be either +i or —i.

000

&: Numbers and Numeric Procedures

6.1

Files and Ports

EdScheme provides a comprehensive collection of procedures for accessing
disk files and for communicating with peripheral devices via the Macintosh’s
serial ports. This chapter includes the background information you will need
in order to interpret the detailed descriptions of EdScheme’s file-handling and
port-commaunication procedures given in Chapter 11: Syntaz and Semantics.

Files

Macintosh files are identified by means of the volume on which they are
located and the file name. Volumes are referenced by exact integers, and
they correspond (roughly speaking) to the Finder™ windows that appear
on the desktop and the windows that open when the names/icons of fold-
ers are clicked on. For example, if you have installed all the EdSchemne files
from the implementation disk into a folder entitled ‘EdScheme’ on your hard
drive, then the file ‘game startup.s’ is on a volume that corresponds to the
window showing the contents of the disk drive from which you usually start
the EdScheme program. It is also on the volume corresponding to the ‘Ed-
Scheme’ folder, as well as the volume corresponding to the folder entitled
‘Game’ contained within the ‘EdScheme’ folder.

In general terms, the current volume will by default be the volume contain-
ing the current application. Thus, if you launch EdScheme by double-clicking
on the EdScheme ‘ink-pot A’ icon, then the current volume will correspond
to the window in which that name/icon appears.

The following EdScheme procedures—which are described in detail in

49

8: Files and Ports

Chapter 11: Syniax and Semantics—enable you to determine a volume’s ref-
erence number and to change the current volume:

EdScheme—volume last-volume set—volume volume

EdScheme allows you to refer to a particular file using either of two meth-
ods. You may specify a file using a full file specification, that is, a list
of three data expressions comprising, in order, a volume reference number,
a file version number (usually 0), and a string or symbol naming the file
in question. You may also identify a file using a string—known as a path
name—that specifies the sequence of folders that need to be opened in order
to locate the file. The folder names are separated (without any intervening
spaces) by colons. Thus, if you have installed all the EdScheme files from the
implementation disk into a folder entitled ‘EdScheme’ on your hard drive,
which you have called ‘Macintosh HD’, then the string

“Macintosh HD:EdScheme:Game:game startup.s”

identifies the file ‘game startup.s’ from which you may launch the demonstra-
tion game provided with EdScheme. (Note that the disk drive name is not
preceded by a colon.) On the other hand, if the current volume is the one on
which the ‘EdScheme’ folder appears, then the string

":Game:game startup.s”

identifies the same file. (Path names that begin with a colon are assumed to
refer to files located in folders on the current volume.)

Files not in folders, but on the current volume, may alternatively be
referred to even more simply by the string or symbol that names them. Thus,
if the current volume is the one corresponding to the ‘Game’ folder, then the
startup file is identified by the string “game startup.s”.

Ports and File-handling

EdScheme communicates with the outside world via data objects known as
ports. Like all of Scheme’s data expressions, ports can be input to proce-
dures, output from procedures, and stored in data structures. In addition,
however, ports may be written to and/or read from (depending on the type
of port).

Ports and File-handling 51

There are three types of ports supported by EdScheme: input ports, out-
put ports, and serial ports (which are specialized kinds of input foutput ports).
The predicates input-port? and output-port? enable you to determine what
kind of port you are dealing with. In addition, the Transcript Window—see
Section 3.1: Transcript Windows in Chapter 3: Programming Environment
Windows—is both an input port and an output port.

The procedures current-input—port and current—output—port enable you to
discover which are the current input and cutput ports. WARNING: The fact
that serial ports and the Transcript Window are both input and output ports
can confuse certain test batteries that check for compatibility with the Scheme
standard. Since the Transcript Window is frequently both the current input
port and the current ocutput port, the Scheme expression

(input—port? (current—output—port))

for example, will usually return the boolean #t rather than the expected #£.

Files may be opened using the procedures open—input-file, apen-output-
file, and open—extend-file. However, these procedures require you to refer to
the file in question by name. (The Macintosh system of naming files is de-
scribed in the previous section.) To avoid this requirement, you may use the
procedures choose-input-file and choose—output-file to generate the argument
to these three procedures with the help of the Macintosh File Selector dia-
log. Use choose-input-file in conjunction with open-input-file, choose-output-file
with open—output-file, and either one with open—extend-file. You should refer,
however, to the entry for open—extend-file on page 189 in Chapter 11 for fur-
ther information concerning the relative ease of using the two choose—. . . file
procedures, and advice on how to do so. By bringing up a Macintosh File
Selector dialog box these two procedures allow you to select the file you wish
to open by pointing and clicking. A file that has been opened using the pro-
cedure open-extend-file is classified as an output port. Files may be closed
using the procedures close~input-port, close—output-port, and close-port.

Once a file is open, information concerning its various characteristics may
be ascertained and modified using these procedures:

eof? eof-object? file—ength file-set-length
file—margin file-set~margin file—position file—set—position

To help you read data from an open input port, EdScheme provides the
procedures char-ready?, peek—char, read, read—char, read-line, and string—vead,

8: Files and Ports

and to write data to an open output port you may use the procedures display,
freshline, newline, string—write, write, and write—char.

Serial ports may be opened using the procedure open—serial-port, and, once
open, may be configured using the procedure configure—serial-port.

Finally, input to or output from EdScheme procedures may be gathered
from or directed to disk files using the procedures

call-with—input-fle call-with—output-file
with-input—from-—file with~output-to-file

All the procedures mentioned in this section are described in detail in
Section 11.2: The Syntaz of EdScheme in Chapter 11: Syntaz and Semantics,
where all of EdScheme’s language elements are considered in alphabetical
order. The entries in that section that deal with the read/write procedures
mentioned above provide specific information concerning how they should be
used for communications through serial ports when such usage differs from
what is appropriate for other types of ports.

-00o0-

7.1

Graphics Windows and
Bitmaps

EdScheme provides a versatile turtle graphics interface that enables you to
engage in all the usual turtle graphics activities, as described in such excellent
books as:

[1] Harold Abelson and Andrea A. DiSessa, Turtle Geometry, MIT Press,
Cambridge, MA, 1983,

[2] Brian Harvey, Computer Science Logo Style, Vol. 1, MIT Press, Cam-
bridge, MA, 1985.

[3] Peter Goodyear, Logo, A Guide To Learning Through Programming,
Ellis Horwood Ltd., Chichester, West Sussex, UK, 1984.

In addition, EdScheme includes a number of graphics procedures that give you
the power to complement and extend the standard turtle graphics capabilities.
Among these extended graphics facilities are procedures that allow you to
create, save, and manipulate bitmaps. This chapter provides you with some
relevant background information.

Graphics Windows

A graphics window is a window onto a turtle plane, which is centered on an
origin and coordinatized in turtle steps by means of a standard right-handed
Cartesian coordinate system.

53

7: Graphics Windows and Bitmaps

The default dimensions of a turtle plane are 576 turtle steps wide and 720
turtle steps high. Turtle planes of other sizes may be created by supplying
a suitable optional input to the procedure make-graphics-window (see the rel-
evant entry on page 178 in Chapter 11: Syntaz and Semantics). No turtle
plane may have either dimension less than 20 turtle steps. If you attempt to
create a smaller plane, EdScheme will replace the offending dimension(s) by
20. The smallest graphics window that EdScheme will open measures 50 by
50, even if the turtle plane beneath it is smaller,

Note that turtle headings, as input to the procedure turtie-set-heading
and returned by the procedure turtle-heading, are measured clockwise from
due North in radians or degrees, according to the Angle Mode you have se-
lected in the dialog accessed through the sub-menu in
the menu. (See the relevant section of Chapter 9: The EdScheme Menus,
starting on page 75.) This clockwise measurement of angles from due North
contrasts with the universal mathematical convention—used in every other
angle-handling part of the Scheme language—according to which angles are
measured counterclockwise from due East. EdSeheme makes this exception
so as to be compatible with other standard turtle graphics interfaces.

Graphics windows require quite a lot of your computer’s memory, espe-
cially on color systems. When supplied to you, EdScheme by default allo-
cates no memory to graphics. So, if you plan to use graphics windows, you
will need to reserve sufficient memory by changing the Graphics buffer set-
ting in the dialog accessed through the sub-menu in
the menu. For further details, see the relevant section of Chapter 9: The
EdScheme Menus on page 80.

A Graphics Programming Example

A catalogue of the turtle graphics procedures is included in the listing be-
ginning on page 248 in Chapter 12: Language Elements. In this section we
illustrate the use of some of these procedures by setting up the rudiments of
an object-oriented multiple turtle environment. All the Scheme procedures
used in this example are described in detail in Section 11.2: The Syniaz of
EdScheme in Chapter 11: Syntaz and Semantics, where all of EdScheme’s lan-
guage elements are considered in alphabetical order. The basic ‘constructor’
procedure for creating turtle-objects and its accompanying syntax-switching
procedures are provided in Figure 7.1, on the next page.

\ Graphics Programming Example

{define make—turtle
(lambda (pos heading)
(let ([pos—at—creation pos]
[hdg-at-creation heading])
(lambda (msg)
(iet ([oldpos (turtle-position)]
[oldhdg (turtle-heading)])
(let ([restore (lambda ()
(begin

(pen—up) (turtle—set—position oldpos)
(turtle-set-heading oldhdg) (pen—down)

‘done))])
{cond
[(eq? mag 'reset)
(begin

(set! pos pos-at—creation)
(set! heading hdg-at—creation)
(restore))]
[(eq? msg "turn)
(lambda {angle)
(begin
(set! heading (+ heading angle))
(vestore)))]
[(eq? msg "ahead)
(lambda (steps)
(begin
(pen-up) {turtle-set—position pos)
(turtle—set-heading heading) (pen-down)
(forward steps) (set! pos (turtle—position))
(restore)}1N)
(define turtle-reset (define turtle—right

(tambda (turtle) (lambda (turtle angle)
(turtle "reset))) ((turtle "tum) angle)))

(define turtie—forward
(lambda (turtle steps)
{(turtle "ahead) steps)))

Figure 7.1: Turtle-object Procedures

7: Graphics Windows and Bitmaps

Having reserved enough buffer space for a graphics window, and restarted
EdScheme if necessary, let us open a graphics window onto a 200 by 200 turtle
plane:

(define G (make—graphics—window (200 200)))

Next, we ensure that we are in Degree Mode by choosing the item
from the sub-menu in the [File] menu, clicking on the Degrees
radio button (if it is not already activated), and exiting from the dialog by
clicking on the OK button. (Any Angle Mode change goes into immediate
effect.) Then we use the make-turtle procedure to create six turtles, initially
all located at the origin of the turtle plane, but facing in directions spaced at
60-degree intervals:

(define t1 (make-turtle (0 0) 0)) (define ¢2 (make-turtle '(0 0) 60))
(define t3 (make-turtle '(0 0) 120)) (define t§ {make-turtle ‘(0 0) 180))
(define ¢5 (make-turtle (0 0) 240)) (define 6 (make-turtle "(0 0) 300))

To manage the activity of multiple turtles, in Figure 7.2 on the next page we
define a procedure—using a special kind of lambda-expression {described in
the relevant entry on page 169 in Chapter 11: Syntez and Semantics)—that
accepts a variable number of arguments, the first of which is a procedure of
two inputs (a number and a turtle), the second of which is the number of times
the two-input procedure is to be called for each turtle, and the remainder are
the turtles on which the two-input procedure is called. Finally, we define two
complementary drawing procedures:

(define rspiral (define ispiral
{lambda {n furtle) {lambda (n turtle)
(begin (begin

(turtle—forward (turtle—forward
turtle turtle
(+ 10 (+ 1 n))) (* 10 (+ 1 n)))

(turtie—right turtle 60) (turtle-right turtle —60)

"done))) ‘done)))

We are now ready to give our six turtles some work to do. The three
Scheme expressions listed beneath the figure on the next page cause a hexag-
onal ‘stained glass window’ design to be drawn in graphics window G. If you
watch as the drawing takes place, yon may be able to discern the separate
activities of the six turtles.

A Graphics Programming Example 57

(define manager
(lambda args
(let (Lf (frst args)] [n (lst—ef args 1)]
[t-tist (vest (vest args))] [p—state {pen-state)]
[show—state (turtle—shown?)])
(letrec ([time-slice
(lambda {ctr)
(if (= ctr n)
'done
(begin
(map (lambda (turtle) (f cir turtle))
t-list)
(time-slice (+ 1 etr)))))])
(begin
(turtle-hide) (time-slice 0)
(if show-state (turtle-show))
(pen—set-state p-state)

"done)))))
Figure 7.2: Multiple Turtle Manager

To draw a stained glass window design, evaluate these Scheme expressions:

(manager rspiral 6 t1 ¢2 &3 1§ t5 t6)

(manager (lambda (n turtle) (turtle-—reset turtle))
11 t2 £3 t§ t5 t6)

(manager lspiral 6 t1 £2 3 t4 t5 t6)

(The second expression returns the six turtles to their initial state, ready for
the second phase of the drawing.) And before leaving this example, we tidy
up after ourselves by reactivating the dialog from the
sub-menu in the [File] menu and resetting Radian Mode—if that was your
Angle Mode prior to trying out this example.

Notice that the manager procedure hides the turtle before starting to do
any drawing. Turtle graphics procedures all operate more efficiently when
the turtle is not shown for the simple reason that, under such circomstances,
EdScheme does not have to take time to redraw the turtle constantly as it
moves.

7: Graphics Windows and Bitmaps

We leave it to you to add to the capabilities of these turtle-objects. As
defined here, they operate exclusively in the ‘pen-down’ mode. It is a rela-
tively straightforward task to give them the ability to understand additional
messages s0 that they can change their pen state or their pen color. Or, if you
are more ambitious, you could improve the manager procedure by broadening
the range of procedures it can cause to be applied to the team of turtles it is
managing.

Bitmaps

EdScheme allows you to create off-screen bitmaps for use in conjunction with
graphics windows. Bitmaps can be established using the procedure make-
bitmap, which requires you to specify the dimensions of the bitmap and gives
you the opportunity to say how colorful it will be. Once created, an image
may be assigned to a bitmap by ‘fetching’ a rectanguiar image from an open
graphics window using the procedure bitmap-fetch. In this process, either
the image can be taken ‘as is’ from a rectangle whose lower left corner is
specified and whose dimensions match those of the bitmap, or it can be taken
from a specified rectangle and scaled to fit the dimensions of the bitmap.
Alternatively, you can create a new bitmap and at the same time assign to it
a previously-saved bitmap image using the procedure bitmap—set-spec.

Bitmap images may be ‘stamped’ in a graphics window using the pro-
cedure bitmap-stamp. By default, the entire bitmap image overprints the
rectangular area of the graphics window onto which it is stamped; this is
the so-called ‘copy mode’. But the stamping mode may be altered using the
procedure bitmap—mode. Furthermore, bitmap—stamp gives you the ability to
‘mask’ one bitmap with another so that only those portions of the stamping
bitmap that ‘show through’ the masking bitmap are stamped in the graph-
ics window., By masking a bitmap with itself you can make sure that the
only parts of a bitmap image that overprint the rectangular area onto which
it is stamped are those where the bitmap image is non-white, In certain
circumstances—which are explained in the entry for the procedure bitmap—
stamp on page 124 in Chapter 11: Syntazr and Semantics—the masking bitmap
is scaled to match the dimensions of the stamping bitmap if they happen to
be of different sizes.

The details of a bitmap image can be captured in a form suitable for saving
to disk using the procedure bitmap-spec. As indicated earlier in this section,

7: Graphics Windows and Bitmaps

8.1

Text Windows and User
Menus

Text Windows

Text windows allow you to provide the user of an application written in
EdScheme with information and to accept input provided by the user while the
application is running. They have an automatic word-wrap feature, and their
contents may be manipulated under program control as well as by standard
mouse-and-menu means. They are created using the procedure make—text—
window, and—depending on whether or not you supply an optional input to
this procedure—the line width at which words are wrapped to the next line
can vary with the width of the text window as you resize it and move it
about the desktop, or that line width can be rigidly set to a fixed amount.
The smallest text window that EdScheme will open measures 50 by 50. If
you attempt to specify a smaller size using the procedure window—set—position,
then EdScheme will replace the offending dimension(s) by 50.

Text written to text windows can appear flush left, centered, or flush right,
the default being flush left. To find out what type of alignment is currently
in force, you can use the procedure text—alignment, and to alter the alignment
setting you can use the procedure text—set—alignment.

The preferred method for writing data to text windows and reading data
from them is in the form of strings. For writing purposes, EdScheme provides
the procedures display, string-write, text—display, text-set—contents, and write,
each of which operates slightly differently. (The specific details are provided

61

8: Text Windows and User Menus

in the relevant entries in Chapter 11: Syniar and Semantics.) For reading
data from text windows, EdScheme provides the procedures string-read, text—
contents, and text-readline, which are also described in detail in Chapter 11.

It is important to realize that strings take up a lot of main memory.
So procedures that include many explicit strings will be very greedy of the
workspace you have available. This becomes particularly important if you are
programming an application with a user-interface that involves your program
in displaying a lot of information in text windows. In such circumstances, it is
preferable to organize the text to be displayed in one or more ‘text resource
files’, the contents of which may be read using string—read, broken up into
manageable pieces in a variety of ways, and then written into text windows
as required using string-write or text—set—contents. The demonstration game
program in the ‘Game’ folder on the EdScheme implementation disk illustrates
this method of handling the transmission of information in a text-window-
based user-interface. See in particular the function make-resource-text-object
in the file ‘game startup.s’.

Text windows share a memory pool with document windows. There is
no limit on the number of text windows that may be open at once, only
on the total amount of memory they and any open document windows use.
By default, 80 kilobytes of memory are set aside for this purpose. You may
change this by altering the Text buffer setting in the dialog, which
is accessed through the sub-menu in the menu. Before any
such change comes into effect, however, you will have to restart EdScheme.

Text may be selected, cut from, or pasted into a text window under pro-
gram control using the primitives text-set-selection, text—cut, text—clear, text—
copy, and text—paste, or directly by using standard mouse-and- menu
methods. This ability of text windows to exchange data with the clipboard
makes possible other uses for text windows besides their involvement (men-
tioned earlier in this section) in application user-interfaces. For example, the
procedure leave—strings, whose definition is given in Figure 8.1 on the next
page, may be used to extract just the strings out of a data file. Such a proce-
dure might be useful, for example, for creating the kind of ‘text resource file’
referred to earlier in this section.

For demonstration purposes, let us construct a suitable data file. Open a
new document window by choosing the item from the menu, and
type into it the following text (which continues at the top of page 64).

This is a "demonstration" data "file" created for the
'purpose' of illustrating "how the" "leave-strings*

Text Windows 63

(define leave-strings
(lambda (zwin)
(letrec

([work
(tambda (start current cut—flag)

(let ([(text-length zwin)])
(if (= n current)
(if cut-flag

(begin
(text-set—selection (fist (- start 1) current) zwin)

(text—cut zwin) (newline zwin)
‘done)

(begin
(text—set—selection (list start current) rwin)

(text—cut zwin)
'done))
(tet ([next

(begin

(text—set—selection
(tist current (+1 current)) zwin)

(text—copy zwin) (clipboard-text)))

(if (string=? next "\"")
(if cut—flag

(begin

(text-set—selection
(list start current) zwin)

(text-cut zwin)
(work start (+ 1 start) {not cut—flag)))

(let ([new-start (+1 current)])
(begin
(text—set—selection
(list new-siart new—start) zwin)

(newline zwin)
(work (+1 new—start) (+ 1 new—-start)

(not cut—flag)))))
{work start (+1 current) cut—flag))))])

(work 0 0 #t))))
Figure 8.1: A Text Window Procedure

8: Text Windows and User Menus

procedure works. Once the "procedure" finishes its
"job", there should be a "list" of nine strings
remaining in the "window".

Then choose from the menu, enter the name test.dat, and
click on the OK button. Dismiss the document window by clicking on its Close

Box (in its upper left corner), and open up a new one using the menu
item. Type the definition of the procedure leave—strings into this document
window, and evaluate it by placing the caret immediately to the right of
the final parenthesis and pressing the Keypad-ENTER key. (By typing this
definition into a document window, you avoid having to retype the whole
thing if you make a typing error.) Move into the Transcript Window simply
by clicking on it once, and open a text window by evaluating the following
Scheme expression:

(define T (make-text-window))

Use the mouse to resize and drag the text window so that it does not overlap
the Transcript Window, and then evaluate the following Scheme expression:

(begin
(text—set—contents
(string-read (open—input-file “test.dat”)))
(close-port)
(leave-strings T'))

The contents of the file ‘test.dat’ will appear in the text window, and before
your very eyes all the non-strings will be ‘eaten away’, leaving only nine
strings, each on a separate line.

Roughly speaking, the leave-strings procedure works as follows: It copies
the characters, one at a time, onto the clipboard, checking each one to see
if it is a ‘double quote’ mark. It recognizes the first such double quote it
finds as the start of the first string, so it cuts everything from the start of
the window contents up to (but not including) that double quote. It then
switches the cut—flag to #f and looks for the next double quote, which it
recognizes as the end of the first string. Next, it inserts a newline character
into the text window, switches the eui—flag back io #t and begins a new
search, starting with the character following the second double quote mark. It
continues like this, finding double quotes, and alternately cutting and leaving,
until it reaches the end of the text window’s contents. (The portion of the
procedure comprising the first Scheme expression following the line

Menus 65

(if (= n current)

deals with the tail end of the window’s contents.) If you wauld like to save the
list of strings that results from this application of the leave-strings procedure,
you may do so by evaluating the following Scheme expression:

(begin
(string—write
(text—contents T') (open—output—file “string.dat”))
(close—port)
(window—close T')
"done)

which also closes the text window T. After this, the file ‘string.dat’ will
contain the list of strings just obtained.

We leave it to you to medify and improve the leave-strings procedure so
that it reads a Scheme program from a disk file and creates from it two disk
files, one containing all the strings in the program in order of appearance,
and the other being the original Scheme program in which each string has
been replaced by a Scheme expression of the form

(resource—string n)

where n is a number indicating that the string being replaced is the nth in
order from the beginning of the program.

All the procedures used in the foregoing example are described in detail in
Section 11.2: The Syntar of EdScheme in Chapter 11: Syntaz and Semantics,
where all of EdScheme’s language elements are considered in alphabetical
order.

Menus

EdScheme allows you to add your own menus to the main menu bar. The
items in these menus may be specified, modified, selected, deselected, checked,
and unchecked under program control. EdScheme also enables programs to
accept user input in the form of a menu selection from a user-defined menu.

Menus are established using the procedure make-menu, and their items
may be inspected and modified using the procedures menu-item and menu-
set~-item, respectively. When working with user-defined menus, the procedure

8: Text Windows and User Menus

menu-number-of-items often proves useful since it returns the number of jtems
such a menu contains. (Note however that a separator line also counts as a
menu item.) To close a user-defined menu—that is, to remove it from the
menu bar—use the function menu-close.

Menu selections from menus (whether user-defined or not) may be read
using the procedure event, which—together with all the procedures mentioned
so far in this section—is described in detail in Chapter 11: Syntaz and Se-
mantics. In particalar, the Scheme expression (first {event)) will evaluate to
the symbol menu if the event in question is indeed a menu selection, in which
case (last (event)) will evaluate to a string containing the text of the selected
menu item. Of course, the two Scheme expressions just mentioned should not
be evaluated one after the other, or else the EdSchemne interpreter will expect
two separate events. Instead, the event should be captured, and the resulting
list inspected, using a Scheme expression such as the following:

(let ([e (event)])
(if (equal? (first) 'menu)
(last e)
"not a menu selection”))

There are several examples of the manipulation of user-defined menus
in the program files of the demonstration game included on the EdScheme
implementation disk. For example, the file ‘game utilities.s’ in the ‘Game’
folder includes the definition of a procedure menu-items that returns a list of
the items in a user-defined menu.

-00Qo0-

Part II1I

Language Reference

9.1

The EdScheme Menus

In this chapter we describe the purpose of each item in the five menus on the
EdScheme Menu Bar. The sections and sub-sections correspond to the menus
and the items and any dependent sub-menus they contain.

The File Menu

The [File] menu contains twelve menu items, as
follows:

New| [Hot Key: COMMAND-N]

Opens a new document window, with the title
‘Untitled’. To replace this title with one that
is more appropriate to the contents you wish to
enter into the document, choose the [Save As .|
item of this menu. For more information about
document windows, see Section 3.3: Document
Windows in Chapter 3: Programming Environ-
ment Windows.

[Open ...| [Hot Key: COMMAND-O]

Brings up a Macintosh File Selector dialog box
that enables you to select a file to be opened.

69

New €N
Open ... 80
Close RBW
Save %S
Save As ...

Save As Text ...

Page Setup

Print 8P
Preferences 3
New Transcript

Open As Transcript ...
Quit #Q

9: The EdScheme Menus

[Hot Key: COMMAND-W]

Closes the currently selected window. If the window in question is a document
window whose contents have been modified since the window was opened, a
dialog box will appear giving you the opportunity to save the document before
closing the window.

[Hot Key: COMMAND-S]

Saves the contents of the currently selected document, text, or transcript
window, using the window’s title as the file name. If you wish to use a
different name instead, then choose the item in this menu.

H the window is a text window, the ‘Save File As:’ Macintosh File Selector
will appear, just as if you had chosen the [Save As ...] item. You may then
either accept the window’s title as the file name, or you may enter an alter-
native. Note that, if you save the contents of a text window using this item
or the [Save As ..] item, those contents cannot subsequently be read back
into a text window using any menu item. They can, however, be read into a
document window using the item in this menu. (To reinstate text
window contents that you have saved in a file called ‘text’—into a text win-
dow, you can open a text window T using the procedure make-text-window,
evaluate the Scheme expression

(text—set—contents (string-read (open—input-file “text”)} T)

and finally close the input file—and every other open port——by evaluating the
Scheme expression (close—port).)

If the window is a transcript window, it will be saved in a form that can
only be reinstated using the [Open As Tramscript ...] item in this menu. To
save the contents of a transcript window in a form that can subsequently be
read into a document window, use the [Save As Text ...] item in this menu.

|Save As ...|

Brings up a Macintosh File Selector dialog box that enables you to choose a
file name under which to save the contents of the currently selected document,
text, or transcript window. The window’s title appears in the box entitled
‘Save File As:’. You may accept this as the file’s name by hitting the ENTER
key or by clicking on the Save button. Alternatively, you may enter some
other name simply by beginning to type, and then hitting the ENTER key or
clicking on the Save button once you have finished typing the new name.

The File Menu 7l

The comments made concerning the saving of text and transcript win-
dows using the item in this menu and their subsequent reinstatement
or readability apply in the case of this item also.

Save As Text ...

Brings up a ‘Save File As:’ Macintosh File Selector dialog box allowing you
to choose a name under which to save the contents of the current transcript
window as a text file that can subsequently be read into a document window.

By saving the contents in this way you will not be able later on to reinstate
those contents as a transcript window (using the [Open As Transcript ...]item
in this menu). The reason for this is that saving the contents of a transcript
window as text removes all the color and font information that are an essential
part of a transcript window’s presentation. Furthermore, in the file that is
created as a result of saving the contents of a transcript window as text, the
EdScheme prompt ‘=’ is replaced by the symbol ‘>’.

In contrast, saving the contents of a transcript window by using either
the or the items in this menu causes the additional color
and font information to be retained. In these cases, the window can sub-
sequently only be reinstated using the [Open As Transcript ...] item in this
menu. The contents of transcript windows saved using these menu items
cannot be read into a document window,

[Page Setup ...|
Brings up a dialog box that enables you to modify the settings of the printer
driver you have activated using the item in the menu.

[Hot Key: COMMAND-P]

Brings up a Macintosh dialog box that enables you to specify how you want
some or all of the contents of the currently selected window to be printed.
(Any of the various kinds of windows provided by EdScheme—including
graphics windows—may be printed by choosing this menu item, provided
you have previously activated a suitable printer driver

using the item in the menu.) Windows 26;
Language

Preferencesj Debugging

Activates a five-item sub-menu (shown on the right) Memory

giving you control over many aspects of EdScheme’s | "' Lo

operation. The sub-menu items are as follows: Specify .

9; The EdScherne Menus

[Hot Key: COMMAND-;]

Brings up a Macintosh dialog box that gives you control over the styles, colors,
fonts, and sizes of the characters that appear in document and transcript
windows. (The same features of the characters that appear in graphics and
text windows are controlled using the procedure font-style—see the relevant
entry on page 162 in Chapter 11: Syntazr and Semantics.)

The dialog box also allows you to control whether or not EdScheme’s
automatic parenthesis-matching and ‘pretty-printing’ formatting of Scheme
expressions is activated in document and/or transcript windows.

The upper portion of the dialog box concerns all of EdScheme’s Transcript
Windows (including Debug Transcripts and the Trace Window). Automatic
parenthesis-matching and expression formatting is activated or deactivated
using the Format & Paren-Matching checkbox.

The styles, colors, and fonts used for system messages, Scheme expres-
sions, and data expressions may be selected using the pop-up menus in the
3-by-3 array with row headings ‘System’, ‘Scheme’, and ‘Data’, and col-
umn headings ‘Style’, ‘Color’, and ‘Font’. The font selections you make
will influence how well EdScheme performs its expression formatting (if you
have activated that feature). For the best results, you should chcose a non-
proportional-spacing font for Scheme expressions. (Monaco, which EdScheme
uses in document windows, is such a font.)

The number entered in the Text Size box determines the point size of the
characters used in Transcript Windows.

|The default size for text in Transcript Windows is 12 point. I

The number entered in the Right Margin box determines how many
characters may be displayed in a siegle line of a transcript window before
EdScheme begins to look for a ‘natural’ place to break the line. Such a break
will occur after a space, unless no breaking point is found before the tran-
script line length (determined by the number entered in the Line Length box)
is reached. In such a case a forced line break will be inserted, even if this
means splitting a word or an atom.

The default transcript right margin is 65 characters, and the default tran-
script line length is 75 characters.

You will probably want to increase the transcript right margin and tran-
script line length settings if you are using smaller than the default 12 point

The File Menu 73

characters and for you have a large screen monitor. Conversely, you will want
to decrease these dimensions if you are using larger than 12 point characters.

A judicious setting for the transcript line length can greatly simplify the
task of checking the contents of a data file that would appear as a truncated
single line if read into a document window. You can select a transcript line
length that is appropriate for the type of data in the data file, read the
contents into the current transcript window using code such as the following:

(lets ([F (open—input—file “your—data—file-name”)]
[S (stringread F)])
(close—port F)
5)

The contents of your data file will appear in the Transcript Window, broken
into easily-manageable lines. You then have only to copy the result into a
document window (using the menu, described below) ready for closer
inspection,

Note that the line-breaking described above occurs only when data expres-
sions are evaluated or displayed in a transcript window. It does not happen
when you are typing expressions into the current Transcript Window. As long
as you do not type a carriage return, the line you are typing will continue
without breaking.

The lower portion of the dialog box concerns EdScheme’s document win-
dows. As in the case of transcript windows, automatic parenthesis-matching
and expression formatting is activated or deactivated using the Format &
Paren-Matching checkbox.

Note that, when creating or working on a document that does not con-
sist primarily of EdScheme procedure definitions, it is advisable to switch off
parenthesis-matching and expression formatting in document windows. This
allows the EdScheme editor to go about its business more speedily, with-
out having to take time to search for matching parentheses and to calculate
indentation tab stops. It also prevents EdScheme from annoyingly and unnec-
essarily indenting the second and subsequent lines of parenthetical remarks
in your text file.

You should be aware, however, that switching off this feature also dis-
ables EdScheme’s ability to recognize the Current Expression in a document
window—for further information, see Sections 2.3 and 3.4—and it makes it
impossible to evaluate any Scheme expressions included in your text file sim-
ply by placing the caret after the final right hand parenthesis and hitting the

9: The EdScheme Menus

Keypad-ENTER key (see page 14 in Chapter 2: An EdScheme Session for more
information about this evaluation technique). It is still possible, though, to
evaluate such expressions by selecting them with the mouse, and choosing
the item in the menu (see later in this chapter for more
details).

The number entered in the Text Size box determines the point size of the
characters used in document windows.

|The default size for text in document windows is 9 point. I

To display the default settings for all the parameters that feature in the
Windows-Preferences dialog box, click on the Defaults button. Once you
have chosen which windows settings you would like, click on the OK button,
and your desired settings will go into immediate effect. Alternatively, you
can dismiss the dialog box without changing the settings by clicking on the
Cancel button.

The EdScheme procedures windows—set—preferences and windows—preferences
give you control from within a program over the settings that feature in this
dialog box. See the relevant entries on pages 241 and 242 in Chapter 11:
Syntaz and Semantics.

Brings up a Macintosh dialog box that gives you control over the Language
Mode in which EdScheme operates, the Angle Mode (either radians or de-
grees), and the presence or absence of case-sensitivity.

The dialog box also lets you instruct EdScheme to carry out a garbage
collection whenever an error occurs, and it gives you control over some aspects
of EdScheme’s communication with you.

You may choose either the Standard Scheme Mode or the Schemer’s Guide
Mode. In Standard Scheme Mode, EdScheme procedures operate according
to the Scheme Standard and are consistent with the requirements of the
Revised* Report on the Algorithmic Language Scheme. In Schemer’s Guide
Mode, the procedures behave in a way that is consistent with The Schemer’s
Guide [Schemers Inc., Fort Lauderdale, FL, 1992]. The behavior of all proce-
dures that operate differently in the two modes is explained in detail in their
respective entries in Chapter 11: Syntar and Semantics. Note that, if you
choose Schemer’s Guide Mode, then Degree Mode and Case-sensitive Mode
are automatically chosen for you, and Extended Procedure Representations
are automatically activated. (This automatic behavior occurs in order to en-
sure full compatibility with The Schemer’s Guide. You may, however, reject

The File Menu 75

any of these automatic choices by using the radio buttons and checkboxes to
make other selections.)

By default, EdScheme is set to Standard Scheme Mode. Changes in Lan-
guage Mode setting go into immediate effect, with one exception: i your
change of Language Mode involves changing from case-insensitivity to case-
sensitivity or vice versa, then that aspect of the change will not go into
effect until you restart EdScheme.

In addition, you may select either Radian Mode or Degree Mode. This
setting affects how EdScheme interprets inputs to trigonometric functions and
certain turtle graphics procedures, and it determines how you should interpret
the output from the inverse trigonometric functions and certain other turtle
graphics procedures. Note, however, that some procedures (for example,
make—polar—see the relevant entry on page 180 in Chapter 11: Syntaz and
Semantics) always interpret arguments as being in radians, irrespective of the
Angle Mode you have selected. All such procedures are identified specifically
in their respective entries in Chapter 11.

By defauit, EdScheme is set to Radian Mode. Changes in Angle Made
setting go into immediate effect.

You may choose whether you want EdSchemne to pay attention to the dis-
tinction between upper- and lower-case letters. If you reject case-sensitivity
by clicking on one of the Lower Case or Upper Case radio buttons, then by
so doing you are selecting the default case for all aspects of EdScheme’s op-
eration. Fither one of these two single-case settings behaves in accordance
with the requirements of the Revised* Report on the Algorithmic Language
Scheme,

By default, EdScheme is set to lower-case. Changes in case-sensitivity do
no! go into immediate effect; you must first restart EdScheme.

The four checkboxes in this dialog box affect EdScheme’s behavior as
follows:

o If you check GC On Error, EdScheme will perform a partial garbage
collection whenever an error occurs. (See the entry for the procedure gc
on page 164 in Chapter 11: Syntaz and Semantics for more details.) If
you leave this checkbox unchecked, no such garbage collection is forced.

o If you check Extended Procedure Representations, then each derived pro-
cedure is represented externally by EdScheme in such a way as to in-

9: The EdScheme Menus

clude the procedure’s parameter list, the ‘body’ of its definition, and
a representation of the environment within which its values are to be
calculated. For example, if you define the derived procedure second as
follows:

(define second
(lambda (=)
(first (rest z))))

and you check Extended Procedure Representations, then the Scheme
expression second returns

<derived procedure (x) (first (rest x)) ()>
in Standard Scheme Mode, or
(derived (x) (first (rest x)) ())

in Schemer’s Guide Mode. Or, if the derived procedure tag-object is
defined as follows:

(define tag—object
(let {[1611 "atom] [Ibi2 'ist])
(lambda (s)
(if (atom? s)
(list Ibl1)
(list 1612 s)))))

and the Extended Procedure Representations checkbox is checked, then
the Scheme expression tag-object returns

<derived procedure (s) (if (atom? s)
(list 1bl1 s)
(list 1bl12 s8))
(((1bl1 atom) (1bl2 1list)))}>

in Standard Scheme Mode, or

{derived (8) (if (atom? s8)
(1ist 1bl1l s8)
(list 1bl2 8))
(((1bl1 atom) (1bl2 list))))

The File Menu 77

in Schemer’s Guide Mode. (For further information concerning the

external representation of procedures, see Section 10.8: Procedures in
Chapter 10.)

On the other hand, if you leave the Extended Procedure Representations
checkbox unchecked, then all derived procedures are represented ex-
ternally as <derived procedure> in Standard Scheme Mode, or as
{derived function) in Schemer’s Guide Mode.

¢ If you check Print Values when Loading, then, whenever you load an
EdScheme file using the item in the menu (see later
in this chapter) or the procedure load (see the relevant entry on page 176
in Chapter 11: Syntar and Semantics), EdScheme will display the value
of each of the file’s Scheme expressions in the Transcript Window in
order of appearance and then returns the value of the final expression.
Activating this feature makes it easy to identify which is the first ex-
pression in a file to generate an error, thus speeding up the debugging
process. If this checkbox is left unchecked, the value of the final Scheme
expression in the file is returned, but no other values will appear in the
Transcript Window.

¢ If you check Print Values when Evaluating Selection or File, EdSchemne will
behave in the manner just described whenever you evaluate some or all
of the Scheme expressions in a document window using the
or the items in the menu. If this checkbox is left
unchecked, then the value of the final Scheme expression in the win-

dow or the selected portion thereof will be returned to the Transcript
Window.

By default, FEdScheme leaves all four of these checkboxes unchecked.
Changes in the status of the checkboxes bring about immediate changes
in FdScheme’s behavior.

The EdScheme procedures language—set—preferences and language-preferences
give you control from within a program over many of the settings that feature
in this dialog box. See the relevant entries on pages 170 and 170 in Chapter 11:
Syntar and Semantics.

Debugging

Brings up a Macintosh dialog box that gives you control over the manner in
which EdScheme provides you with information concerning errors.

9: The EdScheme Menus

The radio buttons under the heading ‘New Debug Transcripts’ allow you
to choose where you want error messages directed.

o If you click on Following Each Error, then each time an error occurs a new
Debug Transcript Window is opened and error messages are displayed
in accordance with the settings you make in the lower portion of this
dialog box.

o If you click In New Context Only, then a new Debug Transcript Win-
dow is opened whenever an error occurs in circumstances when the
current environment is different from what it was when evaluation of
the current expression began. When such a Debug Transcript Window
is opened, error messages are displayed as in the Following Each Error
case. If, however, no change has occurred in the current environment,
then no new Debug Transcript Window is opened, and error messages
are displayed in the Primary Transcript Window in accordance with
the settings you make in the left half of the lower portion of this dialog
box. (The Primary Transcript Window is the window—either the Tran-
script Window itself or a Debug Transcript Window—that contains the
Scheme expression being evaluated when the error occurred.)

s If you click on Never, then no Debug Transcript Window is ever opened,
and all error messages are directed to the Transcript Window in accor-
dance with the settings you make in the left half of the lower portion
of this dialog box. (In addition, the right half of the lower portion is
disabled.)

For further information concerning Debug Transcript Windows, refer to Sec-
tion 3.1: Transcript Windows of Chapter 3: Programming Environment Win-
dows.

Each of the two lower sections of the dialog box includes an array of three
checkboxes that may be set independently of each other and that control the
extensiveness of the error messages EdScheme generates.

In each array that is enabled the checkbox settings have the following
effects:

e If you check Explanation, then EdScheme will provide fuller informa-
tion concerning the immediate cause of each error than is provided in
EdScheme’s most basic error messages, which often do little more than
alert you to the occurrence of an error without giving much indication
as to its possible cause.

The File Menu 79

o If you check Context, then EdScheme will tell you the names of all the
local variables that have bindings at the time when the current error
occurred.

o If you check Stack Trace, EdScheme will provide information concerning
the recent history of the evaluation-in-progress that has given rise to
the current error.

To view the default settings of these parameters, click on the Defaults button.
To bring any change of settings into immediate effect, click on the OK button.
Tao dismiss this dialog box without changing EdScheme’s behavior with regard
to error messages, click on the Cancel button.

Memory

Brings up a Macintosh dialog box that enables you to control a variety of
memory allocations and related settings. The areas under your control and
the corresponding default settings are as follows:

Files: the maximum number of documents that may be open at the same
time (provided sufficient memory is allocated for the Text buffer—see
later in this section). Default: 8.

Recursion Depth: the maximum number of fully recursive (as opposed to
tail recursive) calls that are permitted before EdScheme generates a Too
complez error. (It is highly unlikely that you will ever need to increase
this figure. The most likely cause of a Too complez error is that a
fully recursive procedure has failed to terminate properly. However, it
may sometimes be useful to decrease the maximum recursion depth,
since this is a convenient means of releasing quite a lot of memory.)
Default: 1024.

Repeats: the maximum permitted number of nested repeat-loops. Default:
10.

Trace Depth: the maximum recursion depth of the history reported when
Stack Trace is checked in the dialog box, described above.
Default: 32.

8: The EdScheme Menus

Buffer sizes (in kilobytes):

Text: the total amount of memory set aside for all open text and document
windows. This setting places no restriction on the number of such
windows that may be open at once (the setting under Files, described
above, does that), only the total amount of memory that they utilize.
In view of the shared use of this memory space, it is a good idea to
close large documents prior to running an application that involves text
windows.

The appearance of the error message Cannot create tezt window means
that your Text Buffer setting is not big enough for the memory re-
quirements of the text and document windows you have tried to open
simultaneously. Default: 80K.

Graphics: the total amount of memory set aside for all open graphics win-
dows. Once again, the number of open windows is not at issue, only
the amount of memory they utilize.

The amount of memory you should set aside for graphics purposes will
depend upon how many colors your system has in operation. You should
decide how many graphics windows onto default size {that is, 576 by
720) turtle planes you want to be able to have open at one time, and
then reserve memory according to the following table:

monochrome systems: 53K per graphics window

color systems:

4 colors: 105K per graphics window
16 colors: 210K per graphics window
256 colors: 420K per graphics window

If your turtle planes will be any size other than the default, then the
amount of memory to be reserved can be calculated by means of simple
proportion based on area. Thus, the memory necessary for a 300 by
200 turtle plane on a 16-color system is

(300 x 200 x 210K) / (576 x 720),

or approximately 31K.

As with text windows, the appearance of the error message Cannot cre-
ate graphics window means that your Graphics setting is too small for

The File Menu 81

the namber and size of graphics windows you have tried to have open
simultaneously. Default: OK.

WARNING: Graphics and text windows will encroach onto each other’s
buffer space, if that is the only memory available. So, for example,
if your settings are 64K for Text Buffer and 110K for
Graphics and you open three graphics windows on a monochrome sys-
tem in which memory is very tight, then your available Text Buffer
will have been reduced below the reserved amount of 64K, possibly to
as low as 15K.

Transcript: the amount of memory set aside for the contents of the Tran-
script Window. When the memory required to show the current con-
tents of this window exceeds the amount reserved in this dialog box,
text is discarded from the top of the Transcript; it ‘scrolls off the top
of the window’ and is subsequently unrecoverable. Defaunlt: 10K.

Debugging: the amount of memory allowed for the contents of each Debug
Transcript. As soon as the contents of a Debug Transcript exceed this
amount, text begins to be discarded from the top of the window, as in
the case of the Transcript Window. Default: 5K.

Oblist: the amount of memory set aside for the oblist. You will only need to
increase this setting if your program generates enormous quantities of
data that are subsequently called upon by the program. Although you
may be able to enter a larger number into this dialog,in fact EdScheme
will not increase the oblist memory allocation beyond 64K. It must
never be set to less than {K. Default: 16K.

Compiler buffer: the size of the compiler workspace. If your program in-
cludes some really large Scheme expressions, you may find that an Ez-
pression error is generated when you try to load or otherwise evaluate
them. If this happens, you are advised to increase the compiler bufier
setting in increments of 16K until the program (or expression) success-
fully evaluates. Default: 18K.

Note that changes in memory allocation made using this dialog box only come
into effect after BdScheme is restarted.

9: The EdScheme Menus

By default, EdScheme keeps a record of your current preferences in an inac-
cessible file called ‘EdScheme Preferences’ in the ‘EdScheme’ folder. In some
configurations-—for example, when the network version of EdScheme is run
from a file server—this may not be a suitable choice of name or location.
Choosing the item from the sub-menu brings up a
‘Save File As:’ Macintosh File Selector dialog box that enables you to specify
some other preferences file name and/or location. Once you have made such
a specification, any changes to EdScheme’s preferences made in the current
session will be saved to the specified file instead of to the default file.
EdScheme may be invoked by double-clicking on an EdScheme prefer-
ences file (denoted by the plain A icon). In such a case, the clicked-on file
becomes the default preferences file. Thus, for example, network users may
use the sub-menu item to save a preferences file onto a local floppy
disk, and may subsequently use this file to startup a customized EdScherne
(even though the EdScheme application resides on a hard drive or file server).

[New Transcript|
Closes the current Transcript Window, after inviting you to save its contents

(if you have not already done so using either the or the [Save As ...
items in this menu), and opens a fresh Transcript Window with the title

“Transcript’.

[Open As Transcript ...|

Brings up a Macintosh File Selector dialog box in which are listed the names
under which the contenis of previous transcript windows have been saved, If
you select one of these ‘filed’ transcripts, you are invited to save the contents
of the current Transcript Window (if you have not already done so using ei-
ther the or the items in this menu), the current Transcript
Window is closed, and the ‘filed’ transcript you have selected is reinstated
as the Transcript Window. Such an action does not, however, reinstate the
environment that was current when the filed transcript was saved. In partic-
ular, this means that any derived procedures defined in the filed transcript
will not be recognized until you copy their definitions {ore by one} to the
current prompt and re-evaluate each one.

[Quit] [Hot Key: COMMAND-Q]
Quits from FdScheme; equivalent to evaluating the Scheme expression (quit).

The Edit Menu 83

The Edit Menu

The menu contains ten items, as shown on
the right. You will notice that many of the de- | Undo 14

scriptions in this section refer to the clipboard. |'*' """ r=rrrerreerey
Detailed information, concerning the clipboard is
provided in Section 3.5: The Clipboard Window in Copy %C
Chapter 3: Programming Environment Windows

and in the entries in Chapter 11: Syntar and Se- Clear

mantics for the procedures whose names begin | Select All 9A
ith cioboard. e

M o Format %M

UndO/RedO [Hot Key H CO M MAN D'Z] Show Expression %J

This menu item lets you to change your mind. Show Clipboard
In particular, each of the following actions is un- |- T . | """""""""
doable using this menu item: emplates 3

typing, cutting, pasting, clearing, formatting.

Having been undone, each of these is also redoable. Note that if a cut is
undone, the previous contents of the clipboard are reinstated. The text of
the first item in the menu changes according to what action, if any, is
undoable or redoable and whether it is in the undo or redo phase.

Cut| (Hot Key: COMMAND-X]

Removes the currently selected text from its current position, and substitutes
it for the current contents of the clipboard, ready for subsequent pasting (see
the description below of the item in this menu). In the context of a text
window, the procedure text—cut serves the same purpose as this menu item
(see the relevant entry on page 224 in Chapter 11: Syniax and Semantics.)

See page 24 in Chapter 2: An EdScheme Session for a description of
three ways to select text using the mouse. Text may also be selected in a
text window using the procedure text-set-selection (see the relevant entry on
page 227 in Chapter 11: Syntar and Semantics). In addition, text may be
selected using the item from this menu.

To move text from one place to another, first it to the clipboard and
then it into its new location.

9: The EdScherme Menus

[Hot Key: COMMAND-C]

Replaces the current contents of the clipboard by the currently selected text,
while leaving that text in its current position. In the context of a text window,
the procedure text—copy serves the same purpose as this menu item (see the
relevant entry on page 224 in Chapter 11: Syntaz and Semantics).

To copy text from one place to another, first it to the clipboard,
and then it into its intended new location.

[Hot Key: COMMAND-V]

Inserts the current contents of the clipboard beginning at the current location
of the caret. In the context of a text window, the procedure text—paste serves
the same purpose as this menu item (see the relevant entry on page 225 in
Chapter 11: Syntaxz and Semantics).

Deletes the currently selected text from its current position, without changing
the contents of the clipboard. In the context of a text window, the procedure
text—clear serves the same purpose as this menu item (see the relevant entry
on page 224 in Chapter 11: Syntaz and Semantics).

[Select Alll [Hot Xey: COMMAND-A)

Selects the entire contents of the current window.

Format| [Hot Key: COMMAND-M or OPTION-TAB)

Lays out some or all of the Scheme expressions in the current document
or Transcript Window in the standard indented, ‘pretty-printed’ form. If a
portion of text is currently selected, then all lines that are touched by that
selection will be correctly laid out, each line relative to the one that precedes
it (if such there be). If no text is currently selected, then the entire Scheme
expression in which the caret resides is correctly laid out. To select text, you
can use the mouse and any of the three methods described on page 24 in
Chapter 2: An EdScheme Session, or you can select the entire contents of a
document window using the item in this menu.

To format a single line relative to the preceding lines, rather than selecting
the line and using this menu item, you can alternatively place the caret in
the line in question, and hit the TAB key.

The Edit Menu 85

|Show Expression| [Hot Key: COMMAND-J]

Opens the Expression Window and displays the current expression in it. {See
Section 3.4: The Ezpression Window in Chapter 3: Programming Environ-
ment Windows for fuller information.) If the Expression Window is already
open, then this menu item will read [Hide Expression], and choosing it will
close the Expression Window.

IShow Clipboard|

Opens the Clipboard Window, displaying its current contents. (See Sec-
tion 3.5: The Clipboard Window in Chapter 3: Programming Environment
Windows for fuller information.) If the Clipboard Window is already open,
then this menu item will read [Hide Clipboard}, and choosing it will close the
Clipboard Window.

[Templates|
Activates a sub-menu containing a variable number define
of items, the last of which is [Edit Templates ...], the lambda
rest being selected EdScheme keywords (those on
. . cond
the right, for example). Choosing a keyword from
. . . let
this sub-menu inserts the corresponding template at
e o x . letrec
the current caret position in the current transcript | ™™
or (-lcfcument-wm(}ow, and places. the ca.r‘et in the Edit Templates . ..
position specified in the template in question.

The [Edit Templates ...] menu item allows you to edit existing templates
or add new ones. It activates a Macintosh dialog box containing an up-down
arrow button that enables you to cycle through the templates already defined.
Note that the definition of multi-line templates is net ‘pretty-printed’ in the
“Template’ box; such ‘pretty-printing’ is taken care of—provided you have
the appropriate Format & Paren-Matching checkbox checked in the [Windows]
dialog accessed through the sub-menu in the menu—at the
time that the template is inserted into the current window.

Templates may also be accessed using hot key combinations. Each of
these is of the form SHIFT-OPTION-n, where n is the number of the template
in question in the [Templates] sub-menu, counting from the top. (To press
SHIFT-OPTION-1, for example, you hold down the SHIFT and QPTION keys,
and at the same time press the 1 key.)

8: The EdScheme Menus

.3 The Search Menu m

The [Search] menu contains seven items, as Find ... *F
follows: Enter selection $E
Find again 86

[Hot Key: COMMAND-F] | Replace =

Replace and find again 36H
Replace all

.............................

Go to line ... &,

Brings up a ‘Search and Replace’ Macintosh
dialog box. In the upper left field of this
box {entitled ‘Search for:’) you may enter
words or sequences of characters that you are
interested in locating in the current document or transcript window. You can
do this simply by typing, or you can enter text into this field without actually
activating the dialog box. Two ways to do this are explained below in the
description of the [Enter selection] menu item.

In the upper right field (entitled ‘Replace with:’) you may—if you so
desire-—enter words or sequences of characters with which you want to replace
some or all of the occurrences of whatever you have entered in the ‘Search
for;’ field. To switch between these two fields, either use the mouse or the
TAB key.

The dialog box also contains three checkboxes labeled Ignore Case, Match
words, and Whole file, and three buttons labeled Find, Don’t Find, and Cancel.

o If you exit from this dialog box by clicking on the Cancel button, any
changes you have made will be jettisoned and the box will be dismissed.

» If you exit by clicking on the Don't Find button, any changes you have
made will be retained, but the box will be dismissed without any further
action taking place.

o If you exit by clicking on the Find button, the subsequent behavior
depends on the settings of the three checkboxes (which operate inde-
pendently of each other).

— I Whole file is checked, the first occurrence of the search string in
the current document or transcript window will be found. If it is

unchecked, the first occurrence beyond the caret’s current position
will be found.

— If Ignore Case is checked, EdSchemne will look for occurrences of the
search siring, paying no attention to the distinction between upper-

The Search Menu 87

and lower-case letters, If it is unchecked, FdScheme will ignore all
occurrences that do not match exactly character by character.

— If Match words is checked, EdScheme will only find occurrences
where the search string is not part of some longer sequence of char-
acters. For example, if the search string is form and Match words
is checked, then EdScheme will find the next (or first—depending
on the setting of Whole file) occurrence of the word ‘form’, but will
not recognize this sequence of four characters in the words ‘forms’
or ‘information’. On the other hand, if Match words is unchecked,
then EdScheme will recognize occurrences of the search string that
are part of longer sequences of characters.

If the search is successful, the current document or transcript window
scrolls so as to make the found occurrence visible, and the occurrence in
question is highlighted. If the search is unsuccessful, then the caret is left in
the position where it was when the dialog box was activated.

You may enter a special character or control character into either of the
two fields of this dialog box by pressing whatever key combination ordinarily
produces it. The only exception to this is the newline character. To enter
that into one of the fields, use the key combination COMMAND-RETURN.
(This may be useful if, for example, you want to comment out a section of a
program by searching for newline characters and replacing them by a newline
character followed by a semicolon.)

[Enter selection| [Hot key: COMMAND-E]

Replaces the current contents of the ‘Search for:’ field in the ‘Search and Re-
place’ Macintosh dialog box by the currently selected text, without activating
the dialog box, and without altering the contents of the ‘Replace with:’ field.
An alternative, ‘hot key’ method for achieving the same result in the case of a
single word is to hold down the OPTION key and double click on the word in
question. The word will be highlighted in the current document or transcript
window, and at the same time will be entered into the ‘Search for:” field in
the ‘Search and Replace’ dialog box.

|[Find again| [Hot Key: COMMAND-G]

Finds the next occurrence (if such exists) in the current document or tran-
script window of whatever is currently entered in the ‘Search for:’ field of the
‘Search and Replace’ Macintosh dialog box.

9: The FEdScheme Menus

[Hot Key: COMMAND-=]

Replaces the currently selected text in the current document or transcript
window by whatever is entered in the ‘Replace with:’ field of the *‘Search and
Replace’ Macintosh dialog box. On most occasions, the selected text will have
been selected as the result of a search operation (initiated either by exiting
from the ‘Search and Replace’ dialog box by clicking on the Find button,
or by choosing the item or the [Replace and find again| item from
the menu). However, the replacement will take place no matter how
the text selection has been made, and whether or not the selected text agrees
with what is entered in the ‘Search for:’ field of the dialog box.

If no text is selected, then the effect of choosing this menu item is to insers
whatever is entered in the ‘Replace with:' field at the current caret position.
Similarly, if the ‘Replace with:’ field is empty, then choosing this menu item
has the effect of deleting the selected text.

[Replace and find again| [Hot kKey: COMMAND-H]

Produces the same result as choosing the item and then choosing
the item from the menu.

{Replace all

Replaces all occurrences of whatever is entered in the ‘Search for:’ field of
the ‘Search and Replace’ Macintosh dialog box by whatever is entered in
the ‘Replace with:’ field. The replacements include all occurrences in the
current document or transcript window if the Whole file checkbox is checked;
otherwise, they include only those occurrences that come afier the caret’s
current position.

|Go to line ...| [Hot Key: COMMAND-]

Brings up a Macintosh dialog box that allows you to specify on which line
of the current document or transcript window you would like the caret to be
placed. If you dismiss this dialog by clicking on the OK button, the caret will
be placed at the start of the line in question. If you specify a line number
greater than the number of lines in the window, the caret will be placed at
the start of the last line in the window.

This feature may also be used to discover the line number of the line
that currently contains the caret, because the ‘Go To Line:” box displays this
information as soon as the dialog box is activated.

The Evaluate Menu 89

4

The Evaluate Menu

The menu contains seven menu items, as

followa: | Evaluatc

. Expression 36D
[Expression| [Hot Key: COMMAND-D] Selection %U
Pastes the current expression into the current Tran- Whole file
script Window, and then evaluates that expression, "7 """ """ vrrerece
returning the result in the Transcript Window. For Trace ...

Clear Trace

descriptions of how the current expression is de- .
termined, refer to Sections 2.3 and 3.4. To view Debug Transcripts
the current expression, choose the [Show Expression] | ;" 0]
item in the menu (described above).

You may achieve the same effect as choosing this menu item by placing the
caret immediately after the final right parenthesis of the current expression
and hitting the Keypad-ENTER key.

[Hot Key: COMMAND-U]

Evaluates all the Scheme expressions included in the currently selected text,
either returning the value of each expression as it is evaluated or return-
ing only the value of the last expression, depending on whether or not you
have checked the Print Values when Evaluating Selection or File checkbox
in the [Language] dialog box accessed through the sub-menu in
the menu. (Three ways to select text are described on page 24 in Chap-
ter 3: Programming Environment Windows.)

If an error occurs while these evaluations are taking place, then the
evaluation process stops and the error is reported according to your set-
tings in the [Debugging] dialog accessed through the [Preferences] sub-menu
in the menu. If, in addition, the selected text is in a document win-
dow, then the offending expression will be highlighted so that you can easily
identify it the next time the document window in question is the selected
window.

[Whole file

Evaluates all the Scheme expressions in the current document window, either
returning the value of each expression as it is evaluated or returning only the
value of the last expression, depending on whether or not you have checked

9: The EdScheme Menus

the Print Values when Evaluating Selection or File checkbox in the [Language]
dialog box referred to in the previous item.
If an error occurs while EdScheme is performing some evaluations in re-

sponse to your having chosen this menu item, then the subsequent behavior
is the same as in the case of the item just described.

Trace ...

Brings up a Macintosh dialog box that enables you to control EdScheme’s
tracing facility. In the upper left corner of the dialog box is a scrollable
window containing an alphabetized list of procedure names. If the checkbox
entitled Show Only Derived Procedures is checked, then only the derived pro-
cedures you have defined or loaded during the current session will be listable.
If this checkbox is not checked, then all the primitive and derived procedures
will be listable.

Exactly which procedures are actually listed in this window depends upon
the trace or untrace action specified in the pop-up menu entitled that
appears to the right of the procedure list window. The items in this menu
correspond to the six trace and unirace procedures described on pages 230
and 234 in Chapter 11: Syntaz and Semantics. The six menu items are:

[Trace Entry] [Trace Exit| [TIrace Both]

[Untrace Entry] [Untrace Exit) [Untrace Both)

Only one of these may be chosen at a time, although choosing
is equivalent to choosing both and [Trace Exit], and similarly
for [Untrace Both|.

e If one of the three trace actions is chosen, then the procedure list in-
cludes the names of all procedures conforming to the setting of the Show
Only Derived Procedures checkbox that are not already being traced in
the chosen manner. Thus if a procedure is being traced on entry, its
name will be listed if you choose [Trace Exit] or [Trace Both], but not if
you choose [Trace Entry]. On the other hand, if a procedure is already
being traced both on entry and on exit, it will not be listed no matter
which of the three trace actions is chosen.

e If one of the three untrace actions is chosen, then the procedure list
includes the names of all procedures currently being traced, at least
partially, in the chosen manner. Thus if a procedure is being traced on

The Evaluate Menu o1

entry, its name is listed if you choose [Untrace Entry]| or [Untrace Both],

but not if you choose [Untrace Exit]. On the other hand, if a procedure
is being traced both on entry and on exit, it is listed no matter which

of the three untrace actions is chosen.

The checkbox entitled Qutput to Trace Window controls whether trace
information is directed to a special Trace Window (if the checkbox is checked)
or to the current Transcript Window {otherwise).

To initiate some form of trace on one or more procedures, select the
name(s) of the procedure(s) in question from the procedure list, choose the
desired type of trace action, set the Output to Trace Window checkbox in ac-
cordance with where you would like the trace information directed, and click
on the OK button.

The trace action you choose for different procedures may be different.
Simply select all the procedures you want traced in one way, choose the desired
trace action, and then click on the OK button. Then rechoose the
menu item, select the procedures you want traced in another way, choose
that alternative trace action, and click on the OK button again. And so on.
The state of the Qutput to Trace Window button on the most recent occasion
when you exited from the dialog box by clicking on the OK butten
determines the destination of all trace information.

To discontinue some aspect of the trace action currently in force, choose
one of the three untrace actions, select one or more of the listed procedure
names, and click on the OK button. As in the case of tracing, you may
selectively discontinue different aspects of tracing in regard to different pro-
cedures. To discontinue all tracing of any kind and dismiss this dialog box
without being able to change your mind, click on the Untrace All button,

To exit from the dialog box without changing any aspect of
EdScheme’s current tracing behavior, click on the Cancel button.

For your information, the dialog box displays how many procedures are
listed in the scrollable window and the number of procedures you have selected
(and not subsequently de-selected) since calling up the dialog box.

If the Trace Window is showing, you may hide it in any of the ways you
can hide (or ‘close’) the Transcript Window or any Debug Transcript. It
will continue to receive all trace information, even though the window is no
longer visible. To show the Trace Window again, use the [Trace Window]item
in the menu (described below) or the alternative COMMAND-T hot

key combination.

9: The EdScheme Menus

[Clear Trace]

Clears the contents from the Trace Window, whether or not it is currently
visible.

[Debug Transcripts|

Lets you temporarily override the settings you have made in the
dialog box accessed through the sub-menu in the menu, If
you have chosen to have New Debug Transcripts open Following Each Error or
In New Context Only, there will be a solid diamond next to this menu item. By
choosing [Debug Transcripts], you will make this diamond disappear, and—
until you choose this menu item again or reset or restart the application—
EdScheme will behave as if you had clicked on Never in the dialog
box. Rechoosing this menu item resets EdScheme’s debugging activity ac-
cording to your settings. However, no use of this menu item has
any actual effect on those settings.

On the other hand, if you have clicked on Never in the dialog
box, this menu item will be ‘grayed out’, that is, you will not be able to
choose it.

[Hot Key: COMMAND-L]

Brings up a Macintosh File Selector dialog box from which you may select a
file to be loaded into EdScherne. If you dismiss this File Selector by clicking on
the Cancel button, EdScheme returns the boolean #£. If you select a file and
dismiss the File Selector by clicking on the Open button, EdScheme loads the
file in question, evaluating all the Scheme expressions it contains. If you have
checked the checkbox entitled Print Values when Loading in the di-
alog box accessed through the sub-menu in the menu, then
the value of each Scheme expression is displayed as it is evaluated, and the
value of the last expression is returned. On the other hand, if that checkbox
is not checked, then only the value of the final Scheme expression in the file
is returned.

If an error occurs while the loading is in progress, then evalnation will
stop, and the error will be reported in accordance with the settings you have
made in the dialog accessed through the sub-menu
in the menu. In addition, EdScheme takes steps to preserve the contents
of your files by closing all files that are open for loading at the time when the
error occurs.

Choosing this menu item is equivalent to evaluating the Scheme expression

The Windows Menu 93

(load (choose-input-file))

Note, however, that the combined use of the load and choose-input-file proce-
dures is more versatile than choosing this menu item. In fact, evaluating the
Scheme expression

(load (choose-inputfile) #t)

will enable you to select an input file whose contents will then be loaded as
if the Print Values when Loading checkbox were checked, whether or not it
actually is. Similarly, evaluating the Scheme expression

(load (choose-input-file) #f)

loads your selected file as if that checkbox were unchecked, whether or not it
is.

The Windows Menu
The [Windows| menu contains a variable number of

items, the first four of which are as shown on the m_
Close all xY

right.
Zoom 8/

Close all] [Hot Key: COMMAND-Y] |-eeereereeinrnnnnenn,
Trace Window 38T

Closes all open document windows, after offering you Transcript %K

the opportunity to save those whose contents have
been changed since being opened.

[Hot Key: COMMAND-/]

Either expands the current window to full screen or returns it to its original
size, depending on its current state. Choosing this item is equivalent to
clicking on the zoom box in the upper right hand corner of the window.

[Trace Window| [Hot Key: COMMAND-T]

Selects the Trace Window, reshowing it if it is currently hidden.

[Transcript| [Hot Xey: COMMAND-KI

Selects the Transcript Window, reshowing it if it is currently hidden.

94

9: The EdScheme Menus

[Document Windows] [Hot Key: COMMAND-<number>]

If you have any document windows open, there will be additional items at the
bottom of the menu, each one corresponding to a document win-
dow. The listed items will be the names of the files in the windows, and next
to each one will be a hot key combination of the form COMMAND-<number>.
Using these menu items or the corresponding hot key combinations, you can
quickly switch between your open files.

10.1

Data Expressions

In this chapter we describe EdScheme 's data types, whose representations are
referred to collectively as ‘data expressions’. Note that all of EdScheme’s
data expressions (including procedure objects, streams, continuations, and
environments) are first class. That is, they may be presented as arguments
to procedures, returned by procedures, and stored in data structures.

The dialog box accessed through the sub-menu in
the menu allows you to control the colors and Jor typefaces in which data
expressions, Scheme expressions—the expressions that make up a Scheme
program—and system messages are printed on the screen. This facility makes
it possible for you to make a clear, visual distinction between evaluated and
unevaluated expressions. (For further information, see the entry dealing with
this dialog box starting on page 72 in Chapter 9: The EdScheme Menus.)

Throughout this chapter there are references made to EdScheme proce-
dures. Detailed information about each of them may be found by consulting
the alphabetical listing in Section 11.2: The Syntaz of EdScheme in Chap-
ter 11: Syntaz and Semantics. The information in this chapter is of necessity
more densely-packed and technical in nature than the rest of the Guide. It
represents an attempt to express the main features of the formal grammar of
Scheme in something approaching ‘everyday’ language.

Identifiers: Keywords and Variables

Identifiers (otherwise known as symbols) fall into two disjoint categories:
keywords and variables. They are the only EdScheme objects that cause

95

10: Data Expressions

the predicate symbol? to return the boolean #t. The rules governing the
construction of identifiers are as follows:

e The ‘stand-alone’ tokens + - and ... are identifiers.

o Every other identifier is a sequence of one or more tokens, the first of
which must be in one of these three lists:

a b ¢cd e f gh 1 j kE1 mn
©o p 9 r 8 t u v W X Yy Z
A B CDETVFGH I J KVL KX
0 P Q RS TUV W X Y Z
I $ % & = / < = > ? 7 _ 7

If there are any tokens after the first, they may be any of those in the
above three lists or any of these additional tokens:

+ - 01 2 3 4 5 6 7T 8 9

¢ The following identifiers are EdScheme’s keywords:

=> and begin case

cond define delay do

else if lambda let

let* letrec or quasiquote
quote rec set! unquote

unquote-splicing
¢ In EdScheme, a variable is any identifier that is not a keyword.

Identifiers are not self-evaluating; they must be ‘quoted’ if you want to
provide them—as opposed to their values—as arguments to procedures, that
is, they must be preceded by a single quote-mark (see the relevant entry on
page 109 in Chapter 11: Syntar and Semantics) or they must be presented in
the form of a quote-expression (see the entry for quote on page 202).

For example, $salaries$ is a variable. It can be bound to a value using
a define-expression such as the following:

(define $salaries$ (17500 52000 54650))

Then the different effects of quoting or not quoting this variable are seen in
the following evaluation:

(cons '$salaries$ $salaries$) — ($salaries$ 17500 52000 54650)

Booleans 97

Booleans

The EdScheme boolean objects—denoting true and false, respectively—are
#t and #f. They are the only EdScheme objects that cause the predicate
boolean? to return #t. They are self-evaluating; that is, they do not need to
be quoted (as identifiers do).

In Standard Scheme Mode, #f is the only data expression recognized
as ‘false’ by EdScheme’s predicates; every other data expression (including
the empty list—see the next section) is recognized as ‘true’ by EdScheme’s
predicates. (For information concerning EdScheme’s two Language Modes,
see the section—starting on page 74—of Chapter 9: The EdScheme Menus

that deals with the dialog accessed through the item
in the menu.)

In Schemer’s Guide Mode, #t is the only data expression recognized as
‘true’, and #f is the only data expression recognized as ‘false’.

Pairs and Lists

A pair is a data object that has two components, the first of which is accessed
by either of the procedures car or first, the second being accessed by either
of the procedures ¢dr or rest. Pairs may be constructed using the procedure
cons. They are the only EdScheme objects that cause the predicate pair? to
return the boolean #t.

In Standard Scheme Mode, either component of a pair may be any data
expression. (For information concerning FdScheme’s two Language Modes,
see the section—starting on page 74—of Chapter 9: The EdScheme Menus

that deals with the dialog accessed through the item
in the menu.)

In Schemer's Guide Mode, the first component of a pair may be any data
expression, but its second component must be a list (see the next paragraph).
Lists may be described recursively as follows:

e The empty list () is a list.

e Whenever L is a list, then any pair with second component I is also a
list.

o Every list may be analyzed by ‘reverse application’ of the previcus re-
lationship in such a way that after a finite number of steps a pair is

10: Data Expressions

reached whose second component is the empty list.

The data expressions that are the first components of the successive pairs
revealed in this analysis of a list are the list’s elements. The number of
such pairs is the length of the list. The empty list is deemed to have length
zero; it has no elements. The elements of a list are indexed, the first element
having index 0, the second having index 1, and so on. The only valid indexes
for a list of length n are the exact integers from 0 through » — 1.

EdScheme prints a non-empty list by printing its elements in order, sep-
arated by spaces, and enclosed in a pair of parentheses. For example,

(abcde)

As the above description implies, Standard Scheme Mode allows im-
proper lists. They are formed in the same way as ‘proper’ lists, except
that the second component of the final pair is some data expression other
than the empty list. Such improper lists are printed in the same way as lists,
except that the first component of the final pair is separated from its second
component by a space-delimited dot. For example,

{abcd. e)

In Schemer’s Guide Mode, improper lists are not allowed; attempting to create
them or use them will generate an error message.

In either mode, EdScheme allows a type of pair known as a eircular list—
even though it is not a (proper) list at all. Such a pair is recognizable from
the fact that the above recursive definition of a list fails because the ‘reverse
application’ it mentions keeps on revisiting the same element(s) over and over
again without ever bringing the empty list to light. Since circular lists cycle
endlessly, it is of course difficult to represent them with a finite number of
tokens. EdScheme does the best it can by making fairly liberal use of ellipses:
¢,.." For example, the following let-expression sets the second component of
the pair a to be a itself. The result is a circular list that is endlessly ‘chasing
its tail’.

(et ({21 D)
(set-rest! @ a)
a) - (11...)

In either mode, the empty list is the only EdScheme object that causes
the predicate null? to return the boolean #t, and (proper) lists are the only

104

Numbers 99

10.5

10.6

EdScheme objects that cause the predicate list? to return the boolean #t. Nei-
ther pairs nor lists are self-evaluating; they should be ‘quoted’ when provided
as arguments to procedures.

Numbers

EdScheme’s treatment of numbers is so extensive and versatile that we have
devoted an entire chapter of this User’s Guide to explaining it. See Chapter 5:
Numbers and Numeric Functions, starting on page 35.

Numbers are the only EdScheme objects that cause the predicates number?
and complex? to return the boolean #t. They are self-evaluating.

Characters

In EdScheme, a character is any of the symbols corresponding to the ASCII
character codes in the range 0 through 255. Many characters are accessible
directly from the keyboard. Those that are not may be generated using the
integer—>char procedure. Characters are the only EdScheme objects that cause
the predicate char? to return the boolean #t. They are gelf-evaluating.

In Standard Scheme mode, EdScheme prints (and allows you to type)
printable characters by preceding the usual tokens with the combination #\.
For example, the character P is represented as #\P. In addition, certain char-
acters are represented by descriptive names. For example,

#\space denotes a space character
#\newline denotes a newline character

In Schemer’s Guide mode, EdScheme omits the combination #\ and uses
no descriptive names unless it is explicitly given such notation to evaluate
(which it does by simply returning the input character in the input notation).

Strings

In EdScheme, a string is a (possibly empty) chain of characters. Strings
are the only EdScheme objects that cause the predicate string? to return the
boolean #t. They are self-evaluating.

100

10: Data Expressions

10.7

10.8

When printed or displayed by EdScheme or entered at the keyboard, the
chain of characters is enclosed between double-quote marks (). If you want
to include a double-quote mark or a backslash (\) as one of the characters in a
string, then you must ‘slashify’ (or ‘escape’) by preceding it with a backslash,
as in the following example:

"This double-quote, \", is escaped by a backslash, \\."

The characters in a string are indexed, the first character having index 0,
the second having index 1, and so on. The length of a string is the number
of characters it contains. The only valid indexes for a string of length n are
exact integers from 0 through n — 1.

Vectors

A vector is a data object that has a finite number (possibly zero) of elements
that are indexed in order of appearance. Fach element may be any EdScheme
data expression, the first having index 0, the second having index 1, and so
on. The length of a vector is the number of elements it has, and the only
valid indexes for a vector of length n are the exact integers from 0 through
n— 1. Vectors are the only EdScheme objects that cause the predicate vector?
to return the boolean #t.

EdScheme prints (and allows you to type) vectors as follows: A hash-sign
is followed by a left parenthesis; then come the elements of the vector in
order of appearance, separated by spaces; finally there is a right parenthesis.
For example,

#(23 (a b) "yo" #() ¥\a)

In EdScheme, vectors happen to be self-evaluating. However, for compatibil-
ity with the requirements of Revised$ Report on the Algorithmic Language
Scheme it is recommended that they always be quoted. (We follow this prac-
tice in this User’s Guide.)

Procedures

Just like every other Scheme data object, procedures are ‘first class’. Thus
they may be passed as arguments to other procedures, they may be returned

Continuations 101

by other procedures, and they may be stored in data structures. Each pro-
cedure contains the information it needs in order to perform an evaluation,
together—in the case of derived (or compound) procedures—with the envi-
ronment in which the evaluation is to be performed. Derived procedures may
be generated using the define or lambda special forms. Procedures are the only
EdScheme objects that cause the procedure procedure? to return the boolean
3t .

Primitive procedures are represented externally as in the following exam-
ple, which concerns the primitive procedure first:

<primitive first> [in Standard Scheme Mode]
(primitive first) [in Schemer’s Guide Mode]

As far as derived procedures are concerned, you have some measure of control
over their external representation. The relevant details are provided in the
section—starting on page 75—of Chapter 9: The EdScheme Menus that deals
with the checkbox Extended Procedure Representations in the dialog
accessed through the item in the menu.

Note that, in Schemer’s Guide Mode, if you have checked the Extended
Procedure Representations checkbox, then the external representations of pro-
cedures correspond exactly with what The Schemer’s Guide calls function
descriptors (or FDs, for short). In this mode only, the (extended) external
representation of a procedure may be explicitly ‘built’ using cons, and the
result may be applied just as if the external representation were the actual
procedure itself. For further details, refer to Chapter 5 of The Schemer’s
Guide.

Continuations

A continuation is a data object that represents the default future of a com-
putation. At almost any moment, an EdScheme program can take a record
of its current state and store this record for future use. Later, if required,
the program can jump directly to the recorded state. Continuations are the
only EdScheme objects that cause the predicate continuation? to return the
boolean #t.

Continuations are sometimes called ‘escape procedures’, since this is the
simplest of their uses; they are the modern equivalent of the less flexible catch
and throw procedures of traditional Lisp systems. They are created using

10: Data Expressions

the procedure call/cc—or, to give it its full, official title, cal-with—current-
continuation.
Continuations may nof be captured during calls to

o derived procedures whose exit is being traced using either of the proce-
dures trace—exit or trace-both (see the section—starting on page 90—of
Chapter 9: The EdScheme Menus that deals with the [Trace .._]item in

the menu);

o procedures that have been compiled in-line—most primitive procedures
fall into this category—but that have subsequently been redefined. To
avoid this restriction, set the variable integrate—primitives to #f, and
re-evaluate those definitions that involve redefined in-line procedures.

In EdScheme, each continuation is represented externally in the form:
<continuation n>

where n is a number assigned individually to a continuation when it is created.

Each captured continuation consumes a little memory (about 100 bytes
per continuation) from the text/graphics buffers. Inaccessible continuations
are disposed of by a garbage collection, and the memory they use is released.
If you plan to store large numbers of continuations in static structures (a
globally bound list, for example), you may find it necessary to increase the
size of the Text buffer reserved in the [Memory] dialog accessed through

the sub-menuy in the menu (see the relevant section starting
on page 79 in Chapter 9: The EdScheme Menus).

.10 Atoms

EdScheme groups together identifiers, numeric constants, strings, characters,
and boolean objects under the general heading of atom. Conversely, the
following EdSchemne data objects are not atoms:

procedures, eontinuations, environments, ports, windows, menus,
bitmaps, streams, lists, pairs, vectors.

Atoms are the only EdScherne objects that cause the predicate atom? to return
the boolean #t.

10.11 Streams and Delayed Objects 103

10.11 Streams and Delayed Objects

A stream is a sequence of Scheme objects. Unlike a list, however, the ob-
jects in a stream are evaluated only when accessed and not when inserted
into the sequence. This allows the representation of large, possibly infinite,
data structures in a finite space. In EdScheme, a stream is a pair—see Sec-
tion 10.3 above—whose first component is any data expression, and whose
second component is a delayed object (such as is created, for example, by
either of the special forms delay or freeze).

The special form cons—stream is used to construct streams, just as the
procedure cons is used to construct lists. Similarly, the role of the empty list
is played by the variable the—empty-stream, and the roles of the primitive
procedures first and rest (or car and cdr) are played by the primitive procedures
head and tail, respectively.

10.12 Environments

An environment is a data object that keeps track of variables and their
values. Each environment contains a sequence of frames, each of which con-
tains a table of bindings of variables to their values. In EdScheme, bindings
are represented as pairs (see Section 10.3 above); the pair (a one), for exam-
ple, records the fact that the variable a is bound to the atom one. EdScheme
prints frames as lists of bindings, and environments as lists of frames. The ap-
plication usually manipulates its environments out of sight in the background,
but there are occasions when it is useful to refer to them directly.

The variable user-global-environment is bound to an environment
that contains a single frame, called the global frame. This frame contains,
among other things, bindings for EdScheme’s primitive procedures. In addi-
tion, the variable user—initial-environment is bound to an environment
that contains two frames: the initial frame, containing bindings established
by you and/or the Scheme application(s) you are running, and the global
frame.

Both the initial environment and the global environment are represented
externally by the empty list. The frames within them are printable, however.
To display the initial frame, evaluate the Scheme expression

(first user—initial-environment)

and to display the global frame, evaluate

10: Data Expressions

(first user—global-environment)

At any moment, only one environment is active (for otherwise EdScheme
would soon become confused as to the current values of the active variables!),
and this environment is called the current environment. Typically, at each
point in the course of an evaluation, the current environment contains the
global and initial frames, plus various other frames containing, for example,
bindings for local variables and procedure parameters. The Scheme expression
the—environment returns the current environment.

The special form make-environment provides a means of constructing a
specific environment, and the procedure eval allows you to specify the envi-
ronment within which you wish to evaluate a given Scheme expression.

.13 Ports

Ports are data objects that represent input and output devices. They are the
means by which EdScheme communicates with such devices as disk drives,
printers, modems, and robot controllers. In addition, the Transcript Win-
dow—which is the principal channel of communication between you and the
EdScheme interpreter (see Section 3.1: Transcript Windows in Chapter 3:
Programming Environment Windows, starting on page 20)—is a port. Ports
are the only EdSchemne objects that cause the predicate port? to return the
boolean #t.

Just like every other Scheme data object, ports are ‘first class’. Thus,
they can be input to procedures, output from procedures, and stored in data
structures. EdScheme’s ports fall into three categories: input ports, output
ports, and serial ports {which are specialized kinds of input/output ports).
The Transcript Window is both an input and an output port.

Ports are represented externally in the form

<port n>

where n is a number assigned individually to a port when it is opened. The
number % is positive in the case of regular input and output ports, it is ~1
for the Transcript Window, and other negative numbers for serial ports.

For much more information concerning ports and how they may be used
to communicate with disk files and other parts of the ‘outside world’, please
refer to Chapter 6: Files and Poris, in particular to Section 6.2: Ports and
File-handling.

10.14 Miscellaneous Data Expressions 105

10.14 Miscellaneous Data Expressions

EdScheme supports several other kinds of data expressions, as follows:

Aliases: Produced using the define-alias special form (see the relevant en-
try in Chapter 11: Syntaz and Semantics). All aliases are represented
externally by <alias> with no indexing number.

Bitmaps: The only EdScheme data objects that cause the predicate bitmap?
to return the boolean #t. Represented externally in the form

<bitmap n>

where n is a number assigned individually to a bitmap when it is ‘made’
using the make-bitmap procedure. For further information, see Sec-
tion 7.3: Bitmaps.

Graphics Windows: The only EdScheme data objects that cause the pred-
icate graphics-window? to return the boolean #t. Represented externally
in the form

<graphics window n>

where n is a number assigned individually to a graphics window when it
is opened. For further information, see Section 7.1: Graphics Windows.

Macros: Produced using the define-macro special form (see the relevant entry
in Chapter 11: Syntaz and Semantics). All macros are represented
externally by <macro> with no indexing number.

Menus: The only EdScheme data objects that cause the predicate menu? to
return the boolean #t. Represented externally in the form

<menu 7>

where n is a number assigned individually to a user-defined menu when
it is ‘made’ using the make-menu procedure. Yor further information,
see Section 8.2: Menus.

Text Windows: The only EdScheme data objects that cause the predicate
text-window? to return the boolean #t. Represented externally in the
form

106 10: Data Expressions

<text window n>>

where n is a number assigned individually to a text window when it is
opened. For further information, see Section 8.1: Tert Windows.

Transformers: Produced using the define-transformer special form (see the
relevant entry in Chapter 11: Syntar and Semantics). All transformers
are represented externally by <transformer> with no indexing num-
ber.

10.15 Comments

EdScheme ignores all characters between a semicolon and a newline character.
You may therefore embed comments within an EdScheme program by typing
remarks at the right-hand end of some or all of the lines of the program
and preceding the ‘comment tail’ of any such program line by a semicolon.
Alternatively, or in addition, you can ‘comment out’ entire lines by ensuring
that the first non-space character in the line is a semicolon.

000

Syntax and Semantics

.1 Abbreviations

The descriptions in the main section of this chapter employ a notational
convention and certain abbreviations in a systematic way. The abbreviations
are as shown below and on the next page:

alist an association list, that is, a list of pairs (in the technical
sense explained in Section 10.3: Pairs and Lists)

alom an atom
bmap a bitmap
bool one of the boolean cbjects #t or #£
ch a character
def a define-expression
env an environment
ezp a data expression
fp aformal parameter
id an identifier
k an exact non-negative integer
lam a lambda expression
list a list

meny a menu

n an integer

107

11: Syntax and Semantics

pair a pair, in the technical sense explained in Section 10.3:
Pairs and Lists

port a port
proc a procedure
promise an object (produced for example by the delay special form)
that does not evaluate until passed as an argument to the
procedure force

g a rational number
rad a radix, that is, one of the exact integers 2, 8, 10, and 16
rgb an RGB triple specifying a color (see the more detailed
explanation below)
sezp a Scheme expression

spec a file specification, either a full file specification, or one of
the types of path name or file name described in Chapter 6:
Files and Ports

str a string
stm a stream
sym a symbol
temp a quasiquote template expression
vec a vector
var a variable
z a real number
z a complex number

*win where * is replaced by any combination of the letters ¢, e,
¢, g, and z, a window of any of the types indicated by the
coded replacement for *

Window Codes
t — transcript; € — expression; ¢ — clipboard;

g — graphics; T ~ text

The notational device we use in our descriptions is the ellipsis, ...’

This appears in the parameter list of those procedures described in the next
section that accept a variable number of inputs. If it is preceded by just one

2

=

The Syntax of EdSchemne 109

identifier, then the procedure takes zero or more inputs; if it is preceded by
two identifiers, then the procedure takes at least one input.

The RGB triples referred to in the above table are lists of three whole
numbers, each in the range from 0 through §5535. The first of these numbers
corresponds to the ‘amount’ of Red in the color mix described by the triple,
the second corresponds to the ‘amount’ of Green, and the third corresponds
to the ‘amount’ of Blue.

Some sample RGB triples

black (00 0) purple (65535 0 65535)
blue (0 0 65535) red (65535 3500 3500)
green (0 65535 0) white (65535 65535 65535)

orange (65535 33343 1237) yellow (65535 65535 0)

The Syntax of EdScheme

In this section we describe all the language elements of EdScheme. See the
previous section for further information concerning the abbreviations and the
notational convention that are used systematically in these descriptions. Be
on the alert for references to other parts of this manual. The cross-referenced
material often includes more details concerning the conditions under which
EdScheme operates as described here.

#1 Constant

Evaluates to the boolean #f.

#t Constant

Evaluates to the boolean #t.

‘sexp Syntactic Abbreviation

Abbreviates the Scheme expression (quote sezp). (See the entry for quote
later in this section.) Example:

'(abed) » (abcd

11: Syntax and Semantics

L _ _— __ . _ .\« .. . _]
() Constant

Evaluates to the empty list; equivalent to (quote ()). Examples:

(2 ()) — #t
(cons'a()) — (a)

e ——
(22 ...) Procedure

Returns the product of its arguments. (See Chapter 5: Numbers and Numeric
Procedures for information concerning the numbers that EdScheme supports.)
Examples:

(*) - 1
¢+ 3) 3
(» -5 2.5) ~ -12.5
(* 2 -1/2 442/3) —~ 4-2/3i

o e]
(+set—current-input—port* port) Procedure

Sets the current input port to be port, which must be an input port. (See
Section 6.2: Poris and File-handling in Chapter 6: Files and Ports for further
information concerning ports. See also the entry for the procedure current-
input-port later in this section.)

— . . - __ ___ __ ___ _ ____]
(+set—current-output-port+ port) Procedure

Sets the current output port to be port, which must be an output port.
(See Section 6.2: Ports and File-handling in Chapter 6: Files and Ports for
further information concerning ports. See also the entry for the procedure
current-output—port later in this section.)

sthe—non-printing—object* Variagble

A variable initially bound in the global environment to a non-printing object.
This is useful if you want a Scheme expression that you are calling primarily
for its side effects to return a predictable value that will not disturb the layout
of the rest of your displayed output.

The Syntax of EdScheme 111

(+z21...) Procedure

Returns the sum of its arguments. (See Chapter 5: Numbers and Numeric
Procedures for information concerning the numbers that EdScheme supporta.)
Examples:

(+) — 0

(+ 3) - 3

(+ 2 3.0) — 5.0

(+ 2 -1/2 -4+2/3) — -5/2+2/3i

SezPp Syntactic Abbreviation

Abbreviates the Scheme expression (unquote sexp) in the context of a qua-
siquote-expression. (See the entries later in this section for guasiquote and
unquote. Also see the ‘backquote’ example on page 114.)

Qsezp Syntactic Abbreviation

Abbreviates the Scheme expression (unquote-splicing sezp) in the context of
a quasiquote-expression. (See the entries later in this section for quasiquote
and unquote-splicing. Also see the ‘backquote’ example on page 114.)

(- z1) Procedure
(-2122...)

With one argument, returns the additive inverse of that argument. With
two or more arguments, returns the result of subtracting those arguments,
associating to the left. (See Chapter 5: Numbers and Numeric Procedures for
information concerning the numbers that EdScheme supports.) Examples:

(- 4 - -
-1242) ~ -3.0
-2468 — -6

the reason for the final result being

((2-4)—6)—8=(-2-6)—8=~8—8=—16.

11: Syntax and Semantics

(/ z1) Procedure
(/21 z2...)

With one argument (which must be non-zero), returns the multiplicative in-
verse of that argument. With two or more arguments (all but the first of
which must be non-zero), returans the result of dividing those arguments, as-
sociating to the left. (See Chapter 5: Numbers and Numeric Procedures for
information concerning the numbers that EdScheme supports.) Examples:

(/ 4 - -1/4
(/ 1.2 2.3) -~ 0.5
(/ 24 20+4i 15 10-2) — 1/130

the reason for the final result being

((24 / 20+4i) / 15) / 10-20 = ((15/13-3/131) / 15) / 10-2i
(1/13-1/651) / 10-2i

= 1/130

S ————————

(<=z1...) Procedure

A predicate that returns the boolean #t if and only if its arguments are
in strictly increasing order. (The value returned by this procedure is only
guaranteed to be accurate if all of its arguments are exact numbers. See
Section 5.9: Fzactness in Chapter 5: Numbers and Numeric Procedures.)
Examples:

(«-10210) — #t (¢ 5 — #
(¢ 258 4/7) +— #f (<) - #t
(< 10 10) - #f

(¢==z1...) Procedure

A predicate that returns the boolean #t if and only if its arguments are in non-
decreasing order. (The value returned by this procedure is only guaranteed
to be accurate if all of its arguments are exact numbers. See Section 5.9:
Ezactness in Chapter 5: Numbers and Numeric Procedures.) Examples;

The Syntax of EdScheme 113

(<= -1 00 20) — #¢t (¢= 5) — #¢t
(<= 258 -4/7) ~—~ #f (<=) - #t
(<= 10 10) — #t

(<> z1 22) Procedure

A predicate that returns the boolean #t if and only if its arguments are
unequal. (The value returned by this procedure is only guaranteed to be
accurate if both its arguments are exact numbers. See Section 5.9: Ezactness
in Chapter 5: Numbers and Numeric Procedures.) Examples:

(<> -1 (+ 0+1i 0+1i)) — #f
(<> 3/4 4/3) .

(=21 ..)) Procedure

A predicate that returns the boolean #t if and only if all its arguments are
equal. {The value returned by this procedure is only guaranteed to be accu-
rate if all of its arguments are exact numbers. See Section 5.9: Eractness in
Chapter 5: Numbers and Numeric Procedures. Examples:

(=510 (+23) +— # (=3) —~ a
(= 1-1i (/ 2 1+1))) — #t (=) — #t

=> Keyword

(Read as ‘throw to’.) In Standard Scheme Mode only, when => occurs as
the second expression in a cond-clause, if the first expression evaluates to
something other than #f, then the value of that expression is passed to the
third expression (which must evaluate to a one-input procedure), and the
result is returned as the value of the cond-expression. (See the entry later in
this section for the special form cond.)

>ez1...) Procedure

A predicate that returns the boolean #t if and only if its arguments are in
strictly decreasing order, that is, in the reverse order to the one tested by the
predicate <. (The value returned by this procedure is only guaranteed to be
accurate if all of its arguments are exact numbers. See Section 5.9: Ezactness
in Chapter 5: Numbers and Numeric Procedures.)

11: Syntax and Semantics

(>==2z1...) Procedure

A predicate that returns the boolean #t if and only if its arguments are in
non-increasing order, that is, in the reverse order to the one tested by the
predicate €=, (The value returned by this procedure is only guaranteed to be
accurate if all of its arguments are exact numbers. See Section 5.9: Eraciness
in Chapter 5: Numbers and Numeric Procedures.)

‘temp Syntactic Abbreviation

(Read as ‘backquote temp’.} Abbreviates the Scheme expression
(quasiquote temp).
(See the entry later in this section for the quasiquote special form.) Example:

‘#(a ,(addl 7) ,@(map addl '(12 -9))b) — #{(a 8 13 -8 b)

(abs z) Procedure

Returns the magnitude of the argument. If z is complex with an exact zero
real part or if it is real, then the result has the same exactness as z. For
all other values of z, the result is inexact. (See Section 5.9: Ezectness in
Chapter 5: Numbers and Numeric Procedures. See also the entry for the
procedure magunitude later in this section.) Examples:

(abs-3/2) — 3/2 (abs 0+4i) — 4
(abs 5-12i) +— 13.0

(acos z) Procedure

Returns the principal angle whose cosine is z. If you have chosen Radian

Mode in the dialog accessed through the sub-menu in
the menu, and

e if z is real and in the interval from -1 to 1 (inclusive), the result is an
inexact number in the interval from 0 to 7 (inclusive);

The Syntax of EdScheme 115

e if z has any other real or non-real value, the result is an inexact number
that is calculated as described on page 47 in Chapter 5: Numbers and
Numeric Procedures.

On the other hand, if you have chosen Degree Mode in the dialog,
and

e if z is real and in the interval from —1 to 1 (inclusive), the result is an
inexact number in the interval from 0 to 180 (inclusive);

e if z is real and outside the interval from -1 to 1 (inclusive), an error
message is generated;

e if z is not real, the result is an inexact complex number that is calculated
as described on page 47 in Chapter 5: Numbers and Numeric Procedures.

Examples:

(acos 1/2) +— 60.0 fin Degree Mode]
(acos 0+1i) — 1.570796326794897-0.88 1373587019543i
[in either Angle Mode]

—————— e —————— e ———

(addl =) Procedure

Returns z + 1 with the same exactness as z. Examples:

(addl 4) = 5
(addl -5/3) — -2/3
(add1 43) +~ 5.3

@ndoeapt ..) Special Form

Evaluates the arguments in order of appearance, until one is found whose
value is the boolean #f, whereupon #f is returned and the remaining argu-
ments are left unevaluated. If no argument has a false value, the value of the
final argument is returned. If there are no arguments, then #t is returned.

In Schemer’s Guide Mode, all the arguments except the last must evaluate to
a boolean object. In Standard Scheme Mode, no such restriction is imposed.

[WF)

11: Syntax and Semantics

Examples:

(and) - #t

(and (null? ’()) (¢ 2 1)) — #£

(and 1 2 3) — 3 (Standard Scheme Mode only]
(angle z) Procedure

Returns the polar angle of z, when z is expressed in ‘polar form’. The polar
angle will always be in the interval from 0 (included) to 2r (not included).
For a complex number in polar form, r@s, the polar angle is s. (See page 43
in Chapter 5: Numbers and Numeric Procedures where the polar form of
complex numbers is described.) In geometrical terms, this is the angle be-
tween the positive real axis and the ray from the origin of the complex plane
through the point representing the complex number z, positive angles being
measured counterclockwise. The result is always given in radians, irrespective
of the Angle Mode you have chosen in the [Language] dialog accessed through

the sub-menu in the menu. z must be non-zero. Examples:

(angle -3) — 3.141592653589793
(angle 3-4i) — -0.9272952180016122
(angle {make—polar 3 (¢ ~17/3 pi))) — 1.047197551196598
(append list1 ...) Procedure

Returns a list consisting of the data expressions (in order of appearance) in
the first input list, followed by those in all succeeding lists (again, in order of
appearance). If there are no inputs, returns the empty list. Examples:

(append '(ab) '((ab) (c)) '(d)) — (a b {ab) (c) d)

(append '(1 2 3)) = (123)

(append) - ()
e feesvem—
(apply proc hist) Procedure
(apply proc ezp1 ... hist)

In the first form, returns the result of evaluating the procedure proc with
the contents of the input list as its arguments. In the second form, which
generalizes the first, the arguments are the contents of the list made up of

Nl

The Syntax of EdScheme 117

all the input expressions expl and so on, in order of appearance, with the
contents of the input list appended on the end (see the last example below).

Examples:
{apply +°'(123 4)) — 10
(apply (lambda (s) (first (rest 2)}} "((ab¢c))) — b
(apply * 123 °(4 56)) = 720

(arc list 21 22) * Procedure

{arc list 21 z2 gwin)

Draws the arc of an ellipse specified by list in the graphics window gwin, if
provided, or the most recently active open graphics window, otherwise. The
first three inputs are as follows:

e a list containing two pairs of numbers that give the coordinates of two
diagonally opposite corners of the bounding rectangle of the ellipse in
question (see the entry for oval later in this section);

o the start angle of the arc, where 0 represents due North and the positive
direction for angle measurement is clockwise.

¢ the angle of turn, positive for clockwise and negative for counterclock-
wise.

The two angle arguments are interpreted as being measured in radians or
degrees, according to the Angle Mode you have chosen in the dialog
accessed through the sub-menu in the menu.

The resulling drawing is contained entirely within the bounding rectangle,
no matter what the size of the pen’s ‘nib’ (see the entry for pen-state later in
this section).

For example, in Degree Mode, (arc "((0 0) (50 50)) 180 —90) causes the south-
east quadrant of the circle bounded by the square with corners (0,0), (0,50),
(50,50), (50,0) to be drawn in the most recently active open graphics window.

11: Syntax and Semaatics

(arc—paint! 21 z2) - o - Procedure
(arc—paint list 21 22 gwin)

Draws a filled sector bounded by the arc that would have been drawn if ‘arc-
paint’ were replaced by ‘arc’ and the two radii from the center of the arc to
the ends of the arc. (See the above entry for arc.) The sector is filled in
accordance with the current pen state. (See the entry for pen-state later in
this section.) If this does not specify a solid fill but you want the boundary
of the filled sector to appear as a solid curve, then the pen-state must be
changed and the boundary drawn separately.

(asin z) Procedure

Returns the principal angle whose sine is z. If you have chosen Radian

Mode in the dialog accessed through the sub-menu in
the menu, and

¢ if z is real and in the interval from -1 to 1 (inclusive), the result is an
inexact number in the interval from —% to £ (inclusive);

e if z has any other real or non-real value, the result is an inexact number
that is calculated as described on page 47 in Chapter 5: Numbers and
Numeric Procedures.

On the other hand, if you have chosen Degree Mode in the dialog,

and

o if z is real and in the interval from -1 to 1 (inclusive), the result is an
inexact number in the interval from -90 to 90 (inclusive);

¢ if z is real and outside the interval from -1 to 1 (inclusive), an error
message is generated;

e if z is not real, the result is an inexact complex number that is calculated
as described on page 47 in Chapter 5: Numbers and Numeric Procedures.

Examples:

(asin1/2) — 30.0 [in Degree Mode)
(asin 0+1)) — 0.0+0.881373587019543i jin either Angle Mode]

The Syntax of EdScheme 119

P]
(assoc exp alist) Procedure

Returns the first pair—in the technical sense explained in Section 10.3: Pairs
and Lists in Chapter 10: Data Expressions—in alist whose first data expres-
sion is equivalent to ezp, where the comparison is made using the predicate
equal? (see the relevant entry later in this section). If no such pair is found,
the boolean #f is returned. Examples:

(assoc 4 '((1 a) (2 b)) 8t
(assoc ‘(a b) '(((a) (b)) ((ab)))) — ((a b))

(assq ezp alist) Procedure

Similar to assoc (see above), except that the comparison is made using the
predicate eq? (see the relevant entry later in this section). Examples:

(assq "(a b) "(((b a)) ((a b)) ((a)))) > #f

(et ([y "(ab)])
(let ({= (list '((b a)) (fist y) "((a)))])
(assq y 2))) — ((a b))

e e —
(assv ezp alist) Procedure

Similar to assoc (see above), except that the comparison is made uvsing the
predicate eqv? (see the relevant entry later in this section). Examples:

(assv2'({1 a) (2b) (3 <)) — (21
(assv'(ab) (((ba)) ((a b)) ((a)))) — #f

(atan z) Procedure
(atan 21 z2)

In the first form, returns the principal angle whose tangent is 2, If z is
real, the result is an inexact number of radians (in the interval from -%
to £, neither endpoint included) or degrees (in the interval from -80 to 90,
neither endpoint included), depending upon which Angle Mode you have

chosen in the dialog accessed through the sub-menu

11: Syatax and Semantics

in the menu. If 2 is not real, the result is an inexact complex number
that is calculated as explained on page 47 in Chapter 5: Numbers and Numeric
Procedures. z must not be either +i or —i.

In the second form, returns the size of the angle between the positive z-axis
and the ray joining the origin to the point (22,21 }—note the order of the
coordinates—as an inexact number in the interval from —x (not included) to
= (included), if you are in Radian Mode, or in the interval from -180 (not
included) to 180 (included), if you are in Degree Mode. At least one of #1
and 22 must be non-zero.

Examples:

(atan-1) +~— -45.0 [in Degree Mode]
(atan 3-4i) +— 1.448306995231465-0.1589971916799992i

[in either Angle Mode]
(atan 3 —4) — 2.498091544796509 [in Radian Mode]

" — —— — — - — — — ____________
(atom? ezp) Procedure

A predicate that returns the boolean #t if and only if its argument is an atom.
Examples:

(atom? 'Enc) +— #t (atom?'()) — #f
(atom? “abc”) — #t (atom? #\a) — #t
(atom? '#(a)) — #f (atom? #t) +— #t

(back z gwin)

Makes the turtle back up z steps in the graphics window gwin, if specified,
or in the most recently active open graphics window, otherwise. The nature
of the track left by the turtle depends upon the current pen state (see the
entry for pen—state later in this section).

L " - _ _ __ __—]
(begin sexp? ...) Special Form
{begin def1 def2 ... sezpl)

In the first form, evaluates its arguments in order of appearance, and returns
the value of the last one. The principal use of this type of begin-expression
is to sequence side effects such as input, output, and assignment.

2 The Syntax of EdScheme 121

Example:

{begin
(display “Et tu, Brute!”)
(newline)
'Farewell)
Et tu, Brute!
— Farewell

If evaluated at top-level, the second form of begin-expression, in which the
keyword is followed by one or more define-expressions—see the entry for
the special form define later in this section—followed perhaps by some other
Scheme expressions, is equivalent to the sequence of the constituent define-
expressions followed by a begin-expression (of the first type) whose body is
the sequence of any remaining Scheme expressions. For example, at top-level

(begin is equivalent to the (define a 2)
(define a 2) sequence of Scheme (define & 3)
(define b 3) expressions on the (begin
(-ab) right: (-abd)
(expt a b)) (expt a b))

If evaluated in any environment other than top-level, the second form of begin-
expression is equivalent to a nested collection of letrec-expressions—see the
entry for the special form letrec later in this section—the outer expression
binding the first define-expression’s variable to that expression’s body, the
next letrec-expression binding the second define-expression’s variable to its
body, and so on, with the innermost letrec-body being the sequence of the
remaining Scheme expressions. For example, when evaluated in any environ-
ment other than top-level, the begin-expression in the previous example is
equivalent to the following nested letrec-expression:

(letrec {[& 2])
(letrec ([5 3])
(- ad)
(expt a b))

If no arguments are provided, an unspecified value is returned.

11;: Syntax and Semantics

(bitmap? ezp) - ~ Procedure

A predicate that returns the boolean #t if and only if its argument is a
bitmap.

e T —
(bitmap—close) Procedure
(bitmap—close bmap)

Closes (that is, destroys) the bitmap dmap, if specified, or all bitmaps cur-
rently in existence, otherwise.

Procedure

(bitmap-fetch list dbmap gwin)

Assigns to the bitmap dmap the image taken from the rectangle determined
by the input list in the graphics window gwsn, if specified, or in the most
recently active open graphics window, otherwise.

The input list must be of one of the following two types:

e if it is a list of two numbers, then the rectangle it determines has the
point whose coordinate is the input list as its bottom left corner, and
its dimensions are the same as those of the bitmap bmap;

o if it is a list of two 2-number lists, then the rectangle it determines
has opposite corners at the points whose coordinates are the two 2-
number lists, and the rectangle image is scaled to fit the dimensions of
the bitmap dmap.

Examples:

i Create a {0 by 50 bitmap, B.
(define B (make-bitmap (40 50)))

ws Assign to B the image of the 40 by 50 rectangle with
3 bottom lefi corner at the point (0,10).
(bitmap—fetch ‘(0 10) B)

s Assign to B the image of the rectangle with opposite corners
i: at the points (0,0) and (30,30}, scaled to measure {0 by 50.
(bitmap-fetch "((0 0) (30 30)) B)

}

The Syntax of EdScheme 123

(bitmap-mode k£ dmap) Procedure

Specifies the ‘stamping mode’ that will be used when the bitmap dmap is
subsequently supplied as the only bitmap input to the procedure bitmap—stamp
{see below). The number k& must be an exact integer from 0 through 7, and
the ‘stamping modes’ are as follows:

Mode Action Mode Action

0 copy 4 color-inverted copy

1 or 5 color-inverted or

2 Xor 6 color-inverted xor

3 and 7 color-inverted and
(bitmap—set—spec list) Procedure

Returns a newly-created bitmap whose specification is given by the input
fist. This list must, of course, be a valid bitmap specification (such as is
generated by the procedure bitmap-spec—see the next entry). Example:

s Open a graphics window and draw a circle.
(define W (make—graphics—window (200 200)))
(oval "((0 0) (20 20)))

i Create a 20 by 20 bitmap B, get the circle image, and
s assign it to B. Then close the graphics window.
(define B (make-bitmap '(20 20)))

(bitmap—fetch '(0 0) B)

(window—close W)

i Save the bitmap to file, then close the bitmap.
(let ((F (open—output—file "My BitMap”)))
(begin
(display {bitmap—spec B) F)
(close-port F)))
(bitmap—close B)

i Create a new bitmap whose image is the circle just saved.
(define P (open-input-file "My BitMap”))

(define NewB (bitmap—set-spec (read P)))

(close—port P)

11: Syatax and Semantics

(bitmap—spec bmap) Procedure

Returns a list that completely specifies the bitmap dmap. In conjunction
with the procedure bitmap—set—spec (see above), this procedure provides a
means of saving a bitmap to disk for later use.

. . .]
(bitmap—stamp list dmap1) Procedure
(bitmap-stamp list bmap! gwin)

(bitmap-stamp list bmap! dbmap2)

(bitmap-stamp list dmapl dbmap2 gwin)

Stamps the image of bitmap dmap1 in the rectangle determined by the input
list in the graphics window gwsn, if specified, or in the most recently active
open graphics window, otherwise. The ‘stamping mode’ used is mode 0 (copy)
unless there is only one bitmap input and some other ‘stamping mode’ has
previously been specified using the procedure bitmap-mode (see above).

The nature and meaning of the input ltst are as explained in the entry for the
procedure bitmap—fetch above. If the rectangle determined by the input kst
does not have the same dimensions as the bitmap bmap1, then the bitmap
image is scaled to fit the rectangle,

If a second bitmap input dmap2 is supplied, then it is used as a mask in the
sense that only the points where bitmap bmaep2 is non-white are stamped
(necessarily in mode 0) with the corresponding points of the image of bitmap
bmapl.

On systems with Color Quickdraw™ only, the image of bitmap bmap2 being
used as a mask in this process is scaled to fit the ‘stamp rectangle’, if necessary.
(See the entry later in this section for the predicate color—quickdraw?.)

For example,
(bitmap—stamp *((0 0) (30 30)) BitmapA BitmapA)

stamps just the non-white points of BitmapA (scaled if necessary to fit into
a 30 by 30 square) onto the 30 by 30 square whose bottom left corner is at
the origin of the current graphics window, leaving all the other points of the
turtle plane unchanged.

The Syntax of EdSchemne 125

(? ezp) Procedure

A predicate that returns the boolean #t if and only if its argument is one of
the boolean objects #t and #£. Examples:

(boolean? #f) — #t
(boolean? 5) +— #f

e ———————— e ——————
(call/cc proc) Procedure

Creates an ‘escape procedure’ that encapsulates the current continuation and
passes it to the one-input procedure proc. The procedure thus created takes
a single input, and when passed a value at some future time, it discards the
continuation then in effect and instead gives the value to the continuation
that was in effect when the escape procedure was created. For example, the
following procedure returns the sum of the numbers in the input list. Assoon
as it detects a non-number in the input list, however, it immediately returns
a suitable error message.

(define sum
(lambda (list)
(call/cc
(lambda (return)
(letrec ([total
(lambda (s)
(cond
[(null? 8) 0]
[{not (number? (first s)))
(return
{string—append
{expression—>string (first s))
" is not a number.”)}]
[else (+ (first 5) (total (sest 8))1))])
(total kist)))))) +— unspecified

(sum *(12 3)) - 6
(sum '(1 x 3)) +~ "x is not a number."

11: Syntax and Semantics

(See the next entry.) For further details concerning the operation of this
procedure, see Section 6.9 of the Revised* Report on the Algorithmic Language
Scheme.

- —__________ __ ____ — __________________]
(call-with—current—continuation proc) Procedure

The full, official name for call/cc. See the previous entry.

(call-with—input-file str proc) Initiglization File Procedure

Opens an input port to accept input from the file named by the input sér,
and evaluates the one-input procedure proc, using the input port as the
procedure’s argument. Note that the input port is closed just before the
procedure returns a value. Example:

(call-with—input—file "MyFile” string-read)
is equivalent to

(let ([in—port (open—input-file “MyFile”)])
(let ([result (string—read in—port)])
(begin
(close—input-port in—port)
result)))

For information concerning the naming of files, see Chapter 6: Files and Poris.

(call-with~output-file str proc) Initialization File Procedure

Opens an output port ready to send output to the file named by the input
str, and evaluates the one-input procedure proc, using the output port as
the procedure’s argument. Note that the output port is closed just before the
procedure returns a value. For further information concerning the naming of
files, see Chapter 6: Files and Ports.

e e ————————
(car pair) Procedure

Returns the first component of the input pair. (See the entry later in this
section for the procedure first.)

The Syntax of EdSchemne 127

The companion procedure to car is cdr (see the relevant entry below). All
28 combinations of these procedures (such as caadr) required by the Scheme
standard (see Section 6.3 of the Revised* Report on the Algorithmic Language
Scheme) are also included as primitive EdScheme procedures. Examples:

(cddr'(a{(bc)d)e)) — (e
(caadr'(a({bc)d)e)) — (b c)

. _]
(case sexzp clausel clause2 ...) Initialization File Special Form

Each clause must be of one of the following two forms:

o [(ezp1 ...) sexpl sezp2 ...]

o [else sexpl sexp2 ... |

(The convention in EdScheme is to enclose case-clauses in brackets. Brackets
and parentheses are completely interchangeable, however.)

Within each clause of a case-expression and within all its clauses taken to-
gether, the expressions ezp1, ..., must all be distinct. Case-expressions do
not have to include an else-clause, but if one is included, it should be the last
clause. (In any case, it is the last clause that EdScheme pays any attention
to!}

A case-expression is evaluated as follows: First, the input Scheme expression
sezxp is evaluated, producing a value v. Then, taking the clauses in order of
appearance,

o if the clause is not an else-clause, the value v is compared (using the
predicate eqv?—see the relevant entry later in this section) with each
expression in the clause’s expression list, and if a match is found, the
corresponding Scheme expressions are evaluated in order of appearance,
and the case-expression returns the value of the last one; if no match is
found, the process is repeated with the next clause.

o if the clanse is an else-clause, then the corresponding Scheme expressions
are evaluated in order of appearance, and the case-expression returns
the value of the last one.

11: Syntax and Semaatics

If there is no else-clause, and no match is found in the above evaluation
process, an error message is generated in Schemer’s Guide Mode, and an
unspecified value is returned in Standard Scheme Mode,

Example:

(case (list—ref '(Adam Burt Cindy Daniel Ellen) 2)
[(Adam Burt Daniel Fred lan Mark) 'boy]
[(Cindy Ellen Lauren Nancy Olivia) 'girl]
[(Georgie Hilary Jackie Kim) 'ambiguous]) — girl

e vyt p—
(caution-alert str) Procedure

Activates a Macintosh caution alert box containing the contents of the input
string sfr. The size of this box is set by EdScheme and the text of the alert
automatically word-wraps to fit inside the box.

Procedure

(cdrp

Returns the second component of the input pair. (See the entry for the
procedure rest later in this section. Also see the entry above for the procedure
car for information concerning the various combinations of car and cdr.)

L _ ____ _____ __ _ _ __ __ . ___ _ _ ___ ____ _ ___ __ ____ .]
(ceiling 2) Procedure

Returns the smallest integer greater than or equal to z, the exactness of the
result being the same as that of z. (See Section 5.9: Fraciness in Chapter 5:
Numbers and Numeric Procedures.) Fxamples:

(ceiling 12/5) — 3
(ceifing 3.2} ~ -3.0

e e s e e —
(char? ezp) Procedure

A predicate that returns the boolean #t if and only if its argument is a
character. Examples:

(char? #\a) — #t (char? "a) — #f

(char? "a") — #f (char? "#(a)) Y
(char?’(a)) — #f (char? (stringref "abc” 1)) — #t

The Syntax of EdScherne 129

(charc? ch1 ...) Procedure

A predicate that returns the boolean #t if and only if its arguments are in
strictly increasing ASCII code order. Examples:

(char<? #\B #\a #\z) —~ #t
(char<? #\a #\a) R
(char<? F#\a #\A) - #
(char<? #\A) - #t
(char<?) — ¥t
(char¢=? chi ...) Procedure

A predicate that returns the boolean #t if and only if its arguments are in
non-strict increasing ASCII code order. Examples:

(char<=? #\B #\B #\a) — #t
(char<=? #\a #\a) - #t
(char<=7 #\a #\A) — #f
(charc=7 #\a) - ¥t
{char¢=7) —

(char=? cht ...) S ~ Procedure

A predicate that returns the boolean #t if and only if all its arguments are
the same character. Examples:

(char=7 #\a #\A #\a) — #f
(char=? #\A #\A) — #t
(char=7 #\a) S -
(char=T7) —~ #t
(char>? chi ...) Procedure

A predicate that returns the boolean #t if and only if its arguments are in
strictly decreasing ASCII code order. Examples:

(char>? #\B #\a) = #f
(char>? #\a #\a) — #f
{char>? #\a #\Z #\A) —» #t

11: Syntax and Semantics

(char>? #\a) — #t
(char>?) . -

Procedure

(char>=? ch1 ...)

A predicate that returns the boolean #t if and only if its arguments are in
non-strict decreasing ASCII code order. Examples:

(char>=? #\B #\a) v #f
(char>=? #\a #\a #\I) — ¥
(char>=? #\a #\A) — #
{(char>=? #\a) — #t
(char>=1) — ¥t

/
Procedure

(char-alphabetic? ch)

A predicate that returns the boolean #t if and only if its argument is an
alphabetic character. Examples:

(char-alphabetic? #\A) — #t
{char-alphabetic? #\space) — #f
(char-alphabetic? F#\5) — #f
(char—alphabetic? F#*) — #

/
Procedure

(char—i<? chl ...)

A predicate that returns the boolean #t if and only if its arguments are in
strictly increasing ASCII code order when the distinction between upper- and
lower-case is ignored. Examples:

(char—<i<? #\B #\a) — &
(char—ci<? #\a #\a) — #f
(char-ci<? #\a #\A) — #f
(char—i<? #\a #\B #\z) — ¥t
(char—i<? #\a) — &t
(char—i<?) — #t

(2]

The Syntax of EdScheme 131

(char—i<=? ch1 ...) Procedure

A predicate that returns the boolean #t if and only if its arguments are in
non-strict increasing ASCII code order, when the distinction between upper-
and lower-case is ignored. Examples:

(char—ci<=? #\B #\a) — #f
(char—<i<=? #\a #\a) — #t
(char—cic=? #\a #\A #\z) —~ #t
(char—i<=? #\a #\B) — #t
(char—ci<=? #\a) — #t
(char—i<=7) — #t
(char—<i=? cht ...) Procedure

A predicate that returns the boolean #t if and only if its arguments are the
same character when the distinction between upper- and lower-case is ignored.
Examples:

(char—i=? #\B #\a #\b) — #f
(char—i=? #\a #\a) — #t
(char—ci=? #\a #\A) — Rt
(char—i=? #\a) S 3
(char—<i=?) — #t

(char—i>? chl ...} Procedure

A predicate that returns the boolean #t if and only if its arguments are in
strictly decreasing ASCII code order, when the distinction between upper-
and lower-case is ignored. Examples:

(char—ci>? #\Z #\B #\a) — #t
(char—i>? #\a #\a) — R
(char—ci>? #\a #\A) — #f
(char—i>? F#\a) — 8t
(char—i>?) — #t

11: Syntax and Semantics

- . . __. _ _ _ _ _]
(char—<i>=? ch1 ...) Procedure

A predicate that returns the boolean #t if and only if its arguments are in
non-strict decreasing ASCII code order, when the distinction between upper-
and lower-case is ignored. Examples:

(char—ci>=? F\Z #\B #\a) — =t
(char—ci>=? #\a #\a) — #t
(char—<i>=? #\a #\A) Rt
(char—<i>=? #\a #\B) — #f
(char—ci>=? #\a) — #t
(char—ci>=?) — Bt

- _ — — — _ ___ ___ __ ___________ __ ____]
(char—downcase ch) Procedure

Returns a character ch? such that (char—ci=? ch chi1) returns the boolean
#t. Furthermore, if ch is alphabetic, the result is lower-case. Examples:

(char—downcase #*) — #*
(char—downcase #\a) — #\a
(char—downcase #\A) — #\a

- - —]
(char->integer ch) Procedure

Returns the ASCII code for the character ch as an exact integer. Example:
(char—>integer #\a) — 97

In Schemer’s Guide Mode, char->integer also accepts symbols. Example:
(char->integer 'Q) +— 81

e ———

(char-ower—case? ch) Procedure

A predicate that returns the boolean #t if and only if its argument is a lower-
case alphabetic character. Examples:

The Syntax of EdScheme 133

{char—lower—case? #\a) — #t
(char—lower—case? #\A) — #f
(char—lower—case? #\5) — #f
(char-lower-case? #\newline) +— #f

e ——
(char~numeric? ch) Procedure

A predicate that returns the boolean #t if and only if its argument is a
numeric character. Examples:

(char-numeric? #\a) — #f

(char-numeric? #\A) > #f

(char-numeric? #\5) — &t

(char-numeric? #\newline) +~ #f
L . . . _]
(char-ready?) Procedure
(char—ready? port)

A predicate that returns the boolean #t if and only if a character is waiting
on the input port, if specified, or the current input port, otherwise. {See the
entry for the procedure current-input—port below.) If port is not a serial port
and is at end-of-file, then char-ready? returns the boolean #t.

Example (assuming that the current input port is the Transcript Window):

(if (char-ready?) (read—char) '(no key on))

i If you have pressed a key, then the character corresponding
i to that key is returned. Otherwise, the list (no key on)
i is returned.

If port is a serial port, then this predicate returns the boolean #t if and only
if one or more characters are waiting in the input buffer.

(char-upcase ch} Procedure

Returns a character ch!f such that (char—ci=? ch ch1) returns the boolean
#t. Furthermore, if ch is alphabetic, the result is upper-case. Examples:

(char—upcase #\#) — #* (char-upcase #\a) — #\A
(char—upcase #\A) +— #\A

11: Syntax and Semantics

(char-upper-case? ch) Procedure

A predicate that returns the boolean #t if and only if its argument is an
upper-case alphabetic character. Examples:

(char-upper—case? #\a) —~ #f
(char—upper—case? #\A) — #t
(char—upper—case? #\9%) — #f
(char-upper—case? #\newline) — #f

b _ _ _ __ __— _—__ ___ . ____ .___ ____ _ __ __ _ _ __ _ ___ __._ ___]
(char-whitespace? ch) Procedure

A predicate that returns the boolean #t if and only if its argument is a
‘whitespace’ character, that is, either a space, a tab, a line feed, a form feed,
or a carriage return. Examples:

(char-whitespace? #\a) - #f
(char-whitespace? #\A) — #f
(char-whitespace? #\5) — #t
(char-whitespace? #\newline) — #t

- — . . _— — — — _— _ _— _— _— _— ___ _— _— __ ___ _____ ___ __]
(choose-input-file) Procedure

Brings up the Macintosh File Selector dialog, allowing you to select a file from
which to accept input. Returns the full file specification of the selected file.
For example,

(define F (open—input-file (choose-input-file)})

defines F to be the port through which input from a user-selected file may
be read.

{choose-output-file) Procedure

Brings up the Macintosh File Selector dialog, allowing you to select a file
to which output may be written. Returns the full file specification of the
selected file.

The Syntax of EdScheme 135

(clean) ~ Procedure

(clean gwin)

Clears the graphics window gwin, if specified, or the most recently active
open graphics window, otherwise.

clipboard Variable

A global variable bound to (the representation of) the clipboard window.

(clipboard—set—text sir) Procedure

Replaces the contents of the clipboard by the contents of the input str and
updates the Clipboard Window, if visible.

(cipboard—tet) ~ Procedure

Returns the contents of the clipboard (in the form of a string).

_ ___ __ _ — — —— — — — — _ _— — _— _— _— __— ______J]

{cdlose-input-port) Procedure
(close-input-port port)

Closes the file associated with port, if specified, or all files that are open
for input, otherwise, thus making it impossible for the associated port(s)
to receive any further data from the file(s) in question. If the file(s) is/are
already closed, the procedure has no effect. The output from this procedure
is unspecified.

(close—output—port port)

Closes the file associated with port, if specified, or all files that are open for
output, otherwise, thus making it impossible for the associated port(s) to send
any further data to the file(s} in question. If the file(s) is/are already closed,
the procedure has no effect. The output from this procedure is unspecified.

11: Syntax and Semantics

(close-port) - "~ Procedure
(close—port port)

Closes the file associated with port, if specified, or all open files, otherwise,
thus making it impossible for the associated port(s) either to send any further
data to the file(s) in question or to receive any further data from it/them. If
no files are open, the procedure has no effect. The output from this procedure
is unspecified.

(color—quickdraw?) Procedure
(colour—quickdraw?)

A predicate that returns the boolean #t if and only if the Macintosh system
on which EdSchemne is mounted has Color QuickDraw ™,

- —— —— - e ..__]
(complex? exp) Procedure

A predicate that returns the boolean #t if and only if its argument is a
complex number, that is, if and only if it is a number. Examples:

(complex? 3-4i) — #t
(complex? -3/4) — #t
(complex? ‘pvc) — #f

(cond clause! clause2...) ~ Special Form

In Standard Scheme Mode, each clause must be of one of these three types:

o [<test> sezpl ...]
¢ [else sezpt sezp2 ...]

o [<tesi> => sexp]

(The convention in EdSchemne is to enclose cond-clauses in brackets. Brackets
and parentheses are completely interchangeable, however.)

The second type of clause is known as ‘an else-clause’. A cond-expression
does not have to include an else-clause; but if it does, the else-clause should

Wt

137

be the final clause. (In any case, it is the last clause that EdScheme pays any
attention to!) In the third type of clause, sezp must evaluate to a one-input
procedure. The <fest»s may be Scheme expressions of any kind.

A cond-expression is evaluated by evaluating the <test>s in order of appear-
ance of the associated clauses until one is found that does not evaluate to the
boolean #f, or until an else-clanse is reached.

If the clause thus located is of the first type, and

o if there are no Scheme expressions following the <test>, then the cond-
expression returns the value of <test>;

o otherwise, the Scheme expressions sezp!, sexp?, ... are evaluated in
order of appearance, and the cond-expression returns the value of the
last one.

If the clause thus located is an else-clause, the Scheme expressions sezp1,
sezp2, ... are evaluated in order of appearance, and the cond-expression
returns the value of the last one.

If the clause thus located is of the third type, then the cond-expression returns
the result of passing the value of <test> to the one-input procedure that is
the value of seap.

The output when there is no else-clause and all the <Zest>s evaluate to the
boolean #f is unspecified.

Example:
(define lookup
(lambda (ezp alist)
{cond
[(assoc ezp alist) => (lambda (=) (first (rest z)))]
[else #£]))) — unspecified
(loakup 'b '((a 1) (b 2) (c 3))) - 2

In Standard Scheme Mode only, EdScheme also accepts a cond-expression
that has no clauses. Such an expression returns an unspecified value.

In Schemer’s Guide Mode, there are only two acceptable types of clause,
namely:

11: Syntax and Semantics

o [<test> sexzp])

s [else sexp]

Each <test> must be a Scheme expression that evaluates to a boolean object.
The manner in which a cond-expression is evaluated is the same as in Standard
Scheme Mode—suitably simplified of course to take into account the restricted
kinds of acceptable clauses. Furthermore, if there is no else-clause and no
<test> evaluates to the boolean #t an error message is generated.

Example (valid in either Language Mode):

{(cond
[(null? *(a b)) 1]
[(zero? 0) 2]
[else 3]) - 2

(configure—serial-port n port) Procedure

Configures the serial port in accordance with the integer n. To calculate the
value of n that corresponds to the configuration you need, add together the
code numbers of the desired settings:

Stop Bits Code

Baud Rate Code 1 16384
300 380 1.5 -32768
600 189 2 -16384

1200 94 .
1800 69 Data5 Bits C‘od;
2400 46 6 2048
3600 30
7 1024
4800 22 8 3072
7200 14
9600 10 Parity Code
19200 4 None 0
37600 0 0Odd 4096
Even 12288

The serial port must have been opened using the procedure open-serial-port
(see the relevant entry later in this section as well as Chapter 6: Files and

The Syntax of EdScheme 139

Ports, in which certain restrictions are described concerning the baud rates
that may be used with which serial port). Note that the driver configured
by this procedure is adequate for communication with simple devices such
as Hyperbot™, but in general not for more sophisticated operations such as
telecommunications using error-checking protocols.

Example:

(define sPort (open—serial-port 'modem))
{configure—serial-port -13302 sPort)

i Configures the modem serial port to 9600 baud (code 16),
s 8 databits (code 3072), 2 stopbits (code ~16384), and

v no parity (code 0): 10 + 3072 — 16384 + 0 = —13302.

it (In fact, this is the defaull setting.)

b — — _ _ __ — _ __ _ — __ _ __ __}
{cons expl exp2) Procedure

Returns a pair whose first component is ezp! and whose second component
is ezp2. If the predicaie eqv? is used to compare the resulting pair with
any Scheme object created earlier in the same EdScheme session, the result
is guaranteed to be #f. In Schemer’s Guide Mode, exp2 must be a list.
Examples:

(cons 'a '(b)) - (a b)
{cons'(a) '(a())) — ((a) a ()
(cons ’(a) °b) — ((a) . b) ([Standard Scheme Mode only)

Returns a stream whose first component is ezp and whose second component
is a ‘promise’ that, when called by using the procedure tail (see the relevant
entry later in this section), returns the value of seep. (See Section 10.11:
Streams and Delayed Objects in Chapter 10: Data FEzpressions for further
information concerning streams.)

The Scheme expression (cons—stream a) is equivalent to the Scheme expres-
sion {cons a (freeze b)). Examples:

(define S (cons-stream 1 2)) — unspecified
(head S) — 1
(tall S) — 2

11: Syntax and Semantics

(define wholes

(lambda (n)
(cons-stream n {wholes (addl n})))) — unspecified
(define W (whales 0)) — unspecified
(head (tail (tail (tail W)))) — 3

{continvation? ezp) Procedure

A predicate that returns the boolean #t if and only if its argument is a
continuation. Example:

(continuation? (call/cc (lambda (z) 2))) — #t

—
(cos z) Procedure

Returns the cosine of z as an inexact number. If z is real, it is interpreted as
being in radians or degrees, according to the Angle Mode you have chosen in
the dialog from the [Preferences] sub-menu. If z is not real, then
its cosine is calculated in the manner explained on page 46 in Chapter 5;
Nuymbers and Numeric Procedures. Fxamples:

(cos(/pi3) — 0.5 [in Radian Mode]
(cos 90) — 0.0 [in Degree Mode]
(cos 3-4i) — -27.03494560307422+3.8511533348117784

[in either Angle Mode]

L]
(current-input—port) Procedure

Returns the current default input port, that is, the port from which data will
be read if the Scheme expression (read) is evaluated. (See the entry for the
procedure read later in this section.)

S
(current—output—port) Procedure

Returns the current default output port, that is, the port to which data will
be written if a Scheme expression of the form (display ezp) is evaluated. (See
the entry for the procedure display later in this section.)

2

The Syntax of EdScheme 141

(CUI‘ W S PTUC

Sets the form of the cursor according to the value of k, as follows:
0: pointer 1: watch 2: I-beam

(The effect of this procedure may be rather short-lived since moving the
mouse out of the window it is currently in will automatically cause its form
to change.)

(define var sezp) Special Form
(define {var fp1 ...) sezp)

(define (var fp1 fp2 fpk) sexp) [Standard Scheme Mode only]
(define (var . fr) sezp) [Standard Scheme Mode only]

Establishes a binding in the current environment.

Examples of the first type of define-expression:

{define e (exp 1)) — unspecified

€ — 2.718281828459045
(define second (lambda (s) (first (rest s)))) — unspecified

(second *{a b c}) — b

The second type of define-expression, in which var is followed by zero or
more formal parameters is equivalent to a define-expression of the first type,
as follows:

(define var (lambda (fpf ...) sezp))

Example:

(define (second s) (first (rest s3))) — unspecified
(second '(a b c)) — b

The final two types of define-expressions are not available in Schemer’s Guide
Mode. The third type, in which var is followed by at least one formal pa-
rameter, followed by a space-delimited period, followed by one more formal
parameter, is equivalent to a define-expression of the first type, as follows:

11: Syntax and Semantics

(define var (lambda (fp1 fp2 fpk) sezp))
Example:

(define (allbut2 z y , z) z) — unspecified
{allbut2 "a’b 'c 'd 'e) — (cde)

The final type of define-expression, in which var is followed by a space-

delimited period and then by a formal parameter, is equivalent to a define-
expression of the first type, as follows:

(define var (lambda fp sexp))

Example:

(define (third . s} (first (rest (rest 8)))) — wunspecified
(third 'a 'b 'c 'd 'e) — C

For further information concerning the various kinds of lambda-expressions
involved in the foregoing examples, see the entry for the special form lambda
later in this section.

(define-alias 1d1 id2) Special Form

Defines 1d? to be an identifier whose behavior is identical to that of the
identifier :+d2. Examples:

(define—alias make—procedure lambda) — unspecified
((make—procedure (z) (* z z 2))5) — 125

(define-alias otherwise else) — unspecified
(cond

[(null? *(a b)) 1]

{ otherwise 2]) — 2

Aliases must be defined prior to the definition of any procedure that uses
them. In practice, therefore, it is wise to enter them at the start of an
EdScheme session or place their definitions at the beginning of a Scheme file,

The Syntax of EdScheme 143

(define—macro (:d fp1 ...) sezp) Special Form
(define—macro id fp sezp)

Establishes éd as a macro, each use of which is evaluated by (if necessary)
expanding sezp as explained below and then evaluating the resulting Scheme
expression.

In the first form, the macro thus defined takes as many arguments (zero or
more) as there are formal parameters following the identifier ¢d in the define-

macro-expression.

If the define-macro-expression involves no formal parameters, no expansion of
sezxp is required, and the macro use is evaluated simply by evaluating sezp.
Example:

(define—macro (patience)
(letrec ([loop (lambda (n)
(it (=n 10)

(string—>symbol “What's keeping you?”)

(begin
(display "1'm waiting.”)
(newline)
(loop (addl n)))))])

(loop 0))) — unspecified

The macro use (patience) then causes "I’m waiting." to be displayed on the
screen ten times, each on a new line, before returning the symbol

What’s keeping you?

Note that this could just as effectively have been achieved by defining patience
as a thunk (that is, a procedure of no arguments); there is no real need in
this case for the power of macro definition.

Otherwise, sezp is expanded by replacing each occurrence in sezp of the first
formal parameter, fpl1, by the unevaluated first argument in the invocation
of the macro, replacing each occurrence of the second formal parameter, fp2,
if such there be, by the unevalualed second argument in the invocation, and
so on until all occurrences of formal parameters in sezp have been replaced.

11: Syntax and Semantics

Examples:

s The special form cons—stream could be defined as a macro
i as follows:
(define-macro (cons-stream ezp1 ezp2)

(cons ezp! (lambda () ezp2)))

.- The while construct may be implemented using the
ih: following macro:

(define—macro {while criterion? action)

(tetrec ([loop
(tambda ()
(if criterion?
(begin action {loop))})])
(loop)))

i Then, for ezample,
(while
(not (char—ready?))
{begin
(display “1I'm waiting.”)
{newline)))

- causes "I'm waiting." lo be displayed repeatedly on the
=+ screen until such time as a key is pressed, whereupon an
i1 unspecified value is returned.

Note that neither cons—stream nor while can be defined as procedures.

In the second form, the expansion of sezp is achieved by first forming a
new Scheme expression F by deleting the occurrence of ¢d from the invoking
macro-expression, and then replacing each occurrence in sezp of the formal
parameter fip by the unevaluated expression F. Example:

(define-macro special s (length s))
:: Then we have:

i Use: (special first *((a b) c))
:: Expansion: (length (first "((a b) c)))
a: Value: 2

The Syntax of EdScheme 145

;i Use: (special (lambda (z) (list = = 2)) '(a b))
«: Expansion: (length ({lambda (=) (list « z 2)) '(a b)))
o Value: 3

Macros must be defined prior to the definition of any procedure that uses
them. In practice, therefore, it is wise to enter them at the start of an
EdScheme session or place their definitions at the beginning of a Scheme file.

M
{define-record var (field1 ...)) Initialization File Special Form

When evaluated at top level, defines var to be a record object whose fields
are field1, and so on. (Records are represented externally in EdScheme as
‘tagged’ vectors.) In this process, the following procedures are created:

o make—var, which inputs the data expressions that are to fill the fields,
and returns a record of type var.

e var?, a predicate that returns the boolean #t if and only if its argument
is a record of type var.

o var->fieldl, and so on {one such procedure for each of the fields of
the record); each of these procedures inputs a record of type var and
returns the value in the corresponding field of the input record.

Procedures may use the special form variant-case to dispatch on a record type
(see the entry for variant—case later in this section).

The following example implements a binary tree data structure:

(define—record leaf (number))
::: Defines the procedures make—leaf, leaf?, and leaf->number.

(define—record tree (number left-tree right-tree))
»r: Defines the procedures make-tree, tree?, tree->number,
o tree—>left-tree, and tree=>right-tree.

(define tree—a

(make—tree 1 (maketeaf 2) (make-leaf 3))) — unspecified
(tree? tree-a) — #t
(tree->number tree-a) - 1
(tree? (tree—>left-tree tree—a)) 8t

11: Syntax and Semantics

(leaf? (tree—>left-tree tree-a)) — #t
(leaf->number (tree—>left-tree tree-a)) +— 2

—————— gy ————— S ————

(define-transformer id lam) Special Form

Establishes id as a transformer, each invocation of which is evaluated by
transforming the invocation into a Scheme expression constructed according
to the prescription provided by the input lam, and then evaluating that
Scheme expression. The input lam may be any valid lambda-expression, of
which there are three types in Standard Scheme Mode, or two in Schemer’s
Guide Mode (see the entry for lambda later in this section for further details).

Calling on the black/red, unevaluated /evaluated metaphor used in The Sche-
mer’s Guide, the transformed Scheme expression may be ‘built’ as follows:

1) Define id as a procedure by replacing define-transformer in the trans-
former definition by define.

2) Evaluate the transformer invocation as a procedure application whose
arguments are the ‘quoted’ formal parameters of the transformer being
defined. This produces a red data expression.

3) Paint the red expression black. The resulting black expression is the
desired transformed Scheme expression.

Examples:

i The special form cons—stream may be defined as a
i transformer, as follows:
(define-transformer cons—stream
(lambda {ezp1 exzp2)
(list ‘cons ezp1 (list 'lambda ‘() ezp2))))

i1 A procedure can be applied to multiple sets of arguments al
5i: once using the transformer multi-apply, defined as follows:
(define—transformer multi-apply
(lambda s
(tist ‘'map
(list 'lambda '(z)
(list "apply (first s) 'z))
(cons 'list (rest 1)))))

' The Syntax of EdScheme 147

i: [Note that the procedure map is provided in the
i EdScheme initialization folder ‘Scheme Init Files’,]
(multi-apply +°(12)'(345)'(6789)) — (3 12 30)

(multi-apply first *((a b)) '({c d))) — (a ¢)
(multi-apply
(lambda (z) (/ z))
'(2) '(-5/7) '(1+)) —~ (1/2 -7/5 1/2-1/2i)

Transformers must be defined prier to the definition of any procedure that
uses them. In practice, therefore, it is wise to enter them at the start of an
EdScheme session or place their definitions at the beginning of a Scheme file.

R —

(delay sezp) Initialization File Special Form

Returns an object called a ‘promise’, which may subsequently be asked—using
the procedure force—to evaluate the Scheme expression sezp, and return its
value. (See the entry for force later in this section.) The value of the promise
is ‘memoized’ so that, if it is forced more than once, then the value computed
in response to the first ‘forcing’ is returned by all subsequent ‘forcings’.

The delay/force combination allows the implementation of ‘lazy evaluation’
(otherwise known as ‘delayed evaluation’ or ‘call by need’). A non-memoized
version of delay is also available (see the entry for the special form freeze later
in this section).

5 — .]

(delete! exp list) Procedure

Returns &st with all occurrences of the data expression ezp removed. (Com-
parisons of exp with the entries in list are performed using the predicate
equal?’—see the relevant entry later in this section.)

This procedure has destructive side-effects that may permanently modify lis¢,
8o special precautions are required if the original value of list will be needed
later. Furthermore, to be sure to ‘capture’ a value returned by delete!, that
value should explicitly be bound to a variable. Examples:

(deletet "a "(a b a c)) — (b c)
(delete! '#(a) "(a #(a) #\a)) — (a #\a)
(delete! 4'(3 4.0 6/3)) — (3 4.02)

11: Syntax and Semantics

(denominator ¢) Procedure

Returns the denominator of the rational number ¢ as an exact positive inte-
ger, after having reduced ¢ to lowest terms. The denominator of any integer,
whether exact or inexact, is 1. (Recall from Chapter 5: Numbers and Nu-
meric Procedures that in EdScheme no non-integer expressed in decimal or
exponential form is rational.) Example:

(denominator (/ 15 -65) — 13

(derived? exp) 7 o |

A predicate that returns the boolean #t if and only if its argument is a derived
procedure in the current EdScheme session. Examples:

(derived? first) — ¥
(derived? (lambda (z) z)} — #t

(desktop) Procedure

Returns a pair of number pairs that give the global screen coordinates of the
top left and bottom right corners of the desktop, that is, the portion of the
screen helow the main menu bar.

{display exp) Procedure
(display exp port)
(display exzp gtzwin)

Prints ezp to the specified port or window, if provided, or to the current
output port, otherwise. (See the entry for current—output-port above.) Returns
an unspecified value.

Note that slashification and the double-quotes delimiting strings are both
suppressed by this procedure. So, if you subsequently use the procedure read
(see the relevant entry later in this section) to read data that have been
written out using the procedure display, any space characters belonging to
displayed strings—whether they are slashified or not—will be interpreted as
delimiters between data expressions. To avoid this behavior, use one of the

The Syntax of EdScheme 149

procedures string-write, write—char, or write (see the relevant entries later in
this section).

display also suppresses the #\ combination that identifies characters, display-
ing only the actual character itself. Similarly, it displays named characters
themselves rather than their names. Thus,

(display #\space)

displays an actual space character—not the symbol #\space—on the current
output port.

To send more than one character to a serial port using a single display-
expression, display the string whose contents are the characters you wish to
send, in the desired order.

(do ([vart init-vall update—var? |
(<test> sexpl ...)
sexp ...)

Initialization File Special Form

(The convention in FEdScheme is to use brackets to delineate the variable
initialization and update lists that appear in do-expressions. Brackets and
parentheses are completely interchangeable, however.)

This special form provides a versatile means of carrying out iterations. It
gives the initial values of a collection of variables, specifies how they are to
be updated between iterations, and lists what has to be done during each
iteration. Finally, there is a terminating condition which, when met, triggers
a sequence of instructions, the last of which returns the value of the do-
expression.

The presence of the third, ‘update’ entry in any or all of the variable lists
is optional. If it is omitted, the list in question is interpreted as if it had a
third entry equal to its first entry. (See the comment on the second example
below.)

A do-expression is evaluated as follows:

s The tntt-vals are evaluated in some unspecified order, and the values
assigned to the new local variables, varl, and so on. The iteration then
begins.

11: Syntax and Semantics

o At the start of each iteration, <fest> is evaluated.

— If the value is #f, then any final Scheme expression(s) is/are eval-
uated, for effect, in order of appearance, starting with sezp; the
updaie—var expressions are evaluated in some unspecified order,
and the values assigned to yet more new local variables, varl, and
s0 on, and the next iteration begins.

— If the value is not #£, then the Scheme expressions sezp?, and so
on—if any—are evaluated for effect in order of appearance, and the
value of the last one is returned as the value of the do-expression.
(If there are no Scheme expressions following <test», the value of
the do-expression is unspecified.)

Examples:

(define factorial
(tambda (k)
(do ([n k (- n 1)]
[product 1 (* product n)])

((zero? n) product)))) — unspecified
(factorial 6) — T20
(do([a'(01234) (rest a)]

[6'()]) : this is interpreted as [3 '() b]

((null? a) b)
(let ([nezt (first a)])
(if (even? nezt)
(set! b (cons next 3))))) —~ (420)

e o —————
(draw—point pair) Procedure
(draw—point pair gwin)

Plots the point with coordinate pasér in the graphics window gwin, if speci-
fied, or the most recently active open graphics window, otherwise, using the
current pen color. Returns an unspecified value.

(EdScheme—volume) - ~ Procedure

Returns the reference number of the volume that was current when EdScheme

Yl

The Syntax of EdScheme 151

was started at the beginning of the current session. By including the expres-
sion (set-volume (EdScheme-volume)) just before the end of a program you can
ensure that, once execution of the program is complete, the current volume
is returned to the value it had when EdSchemne was started.

=
else Keyword

Signals the else-clause of a case-expression or a cond-expression. (See the
entries above for case and cond.)

(empty—stream? ezp) Procedure

A predicate that returns the boolean #t if and only if its argument is the—
empty—stream (see the relevant entry later in this section).

(eof? port) Procedure

A predicate that returns the boolean #t if and only if port is at end-of-file.
Example:

(define copy—file
(lambda (in—port out—port)
(if (eof? in—port)

(begin (close~port) "done)

(begin
(display (read-line in—port) out—port)
(newline out—port)
(copy-file sn—port out—port))))) — unspecified

(copy-file
(open-input-file "MyFile"”)
(open—output-file "MyBackUpFile”}} +— done

;i; Copies the contents of the file ‘MyFile’ to the

Procedure

A predicate that returns the boolean #t if and only if its argument is the
end-of-file object (which prints as #!eof).

11: Syntax and Semantics

(eq? ezpl exp?2) Procedure

In Standard Scheme Mode, a predicate that returns the boolean #t if and only
if its arguments are of the same type (symbols, boolean objects, the empty list,
pairs, non-empty strings, non-empty vectors, and procedures) and share the
same memory location. Its behavior when the arguments are both numbers,
both empty strings, or both empty vectors is unspecified. Examples:

(eq? (list 'a) (list 'a)) — #f
(let ([= '(a)])

(eq? = z)) —

In Schemer’s Guide Mode, a predicate that retorns the boolean #t if and
only if its arguments are atoms that print the same. If either or both of the
input expressions are lists or vectors, an error message is generated. In this
mode, when both its arguments are numbers, eq? returns #t if and only if the
arguments are the same number.

(equal? ezp? ezp2) Procedure

A predicate that returns the boolean #t if and only if either

¢ both arguments are the user—global-environment, or
¢ both arguments are the user—initial-environment, or

¢ both arguments print the same, neither of them being the user—global—
environment or the user—initial-environment,

(See the entries for the variables user-global-environment and user—
snitial-environment later in this section.) Examples:

(equal? {list a) "(a)) — #t
(equal? 2 (sqrt 4)) — #f

The reason why the second example returns #£ is that the procedure sqrt
always returns an inexact number, and an inexact 2 prints as 2.0 rather than
2. (See the entry for the procedure sqrt later in this section, and refer to
Section 5.9: Eractness in Chapter 5: Numbers and Numeric Procedures for
further information concerning the exactness of numbers.)

The Syntax of EdScheme 153

(eqv? ezpl ezp?2) Procedure

In Standard Scheme Mode, a predicate that returns the boolean #t if and
only if either

¢ both arguments are numbers that have the same exactness and are
numerically equal according to the predicate =, or

e neither argument is a number, and the arguments are equivalent ac-
cording to the predicate eq?.

(See the entries above for the predicates = and eq?, and refer to Section 5.9:
Ezactness in Chapter 5: Numbers and Numeric Procedures for further infor-
mation concerning the exactness of numbers.) Examples:

(eqv? 2 6/3) — #t {eqv? 2 20) — 2t
(eqv? (list 'a) '(a)) — #£

In Schemer’s Guide Mode, eqv? is indistinguishable in its behavior from the
predicate eq? (see the ‘Schemer’s Guide’ section of the entry above).

(error exp sezpl ...) Special Form

Generates an error message. The kind of error is given as ezp, and the values
of any subsequent Scheme expressions are then listed, thereby providing a
means to determine what the source of the error might be. By including
(the—environment) among these Scheme expressions, all the current values of
the active local variables will be displayed. (See the entry for the procedure
the-environment later in this section.) Example:

(define test
(lambda (z v)
(if (not (and (number? z) (number? y)))
(error "Wrong kind of input” (the—environment))
(< z y)))) — unspecified

(test 5 2) — #f
(test "one 3)

11; Syntax and Semantics

An errvor has occurred while evaluating the procedure test:
Error: “Wrong kind of input”
—(((x one) (y 3)))

e o e s ——
(eval ezp) Procedure

(eval exp env)

Evaluates the expression exp in the environment env, if specified, or in the
current environment, otherwise. Examples:

(eval ‘(first "(a b c))
(the—environment)) - a
(eval "b {make—environment
(define a 1)
(define b 2)
(define ¢ 3))) — 2
(let ([= 2] [y 3])
(eval '(* z y))) — 6

See later in this section for entries relating to the procedures make-environment
and the-environment.

e ——— —— — — — — _— _ — _ —_ _— ___ __ ___ __ — _ —— ————
(even? n) Procedure

A predicate that returns the boolean #t if and only if its argument (which
must be an integer) is even. Examples:

(even? 4} +— ¥t (even? 5e2) — #t
(even? 6/2) #f

Returns the specifications of the next event (mouse click in a graphics window,
keypress, or menu selection) in the form of a list of five data expressions, as
follows:

1) a symbol specifying the nature of the event, either ey, click, or menu.

The Syntax of EdScheme 155

2) an integer giving the time in ‘ticks’ since system start-up when the event
occurred. ’

3) a pair of integers giving the location of the mouse at the time when the
event occurred. (In the case of a keypress or a menu selection, this is in
screen coordinates; in the case of a mouse click in a graphics window,
it is in turtle coordinates relative to the current graphics origin of that
window.}

4) a list of five booleans giving the states of the OPTION key, the CAPS
LOCK key, the SHIFT key, the COMMAND key, and the mouse button
(in that order) at the time when the event occurred. In the case of
the keys, #t means ON and #f means OFF; in the case of the mouse
button, #t means PRESSED and #f means NOT PRESSED.

5) a data expression giving some identifying information about the event:

a) In the case of a keypress, this is a list of two integers, the first
of which is the ASCII code of the key and the second of which is
the code number of the physical key that was pressed (indepen-
dent of any modifier key) —see page 251 of Inside the Macintosh,
Volume 1.

b} In the case of a mouse click in a graphics window, this is (the
representation of) the window in which the click occurred.

¢) In the case of a menu selection, this is a string containing the text
of the item selected.

For example, invoking (click-demo) after the following definitions will cause
EdScheme to wait for a mouse click in the graphics window that is created
by the procedure and return the turtle coordinate of the point clicked on:

(define click—demo
(lambda ()
(begin
(make—graphics-window)
(get—click)}))

11: Syntax and Semantics

(define get—click
(lambda ()
(let ([ev (event)])
(if (eq? (first ev) "click) o Is it @ click event?
(list-ref ev 2) s YES - return the coordinate;
(get—lick))))) i NO - try again.

e ey ——
(event-flush) Procedure

Flushes all pending keyboard and mouse events. This procedure is useful,
for example, for controlling the flow of user input being obtained using the
procedure event (see the entry abhove) so that, effectively, only one event is
allowed to be pending at any given moment. It needs to be used judiciously,
however, in view of the possibility of a garbage collection occurring while the
user produces a desired event that is then immediately flushed in response
to a call to this procedure. (See the entry for the procedure gc later in this
section.)

e . . —]
(event—veady?) Procedure

A predicate that returns the boolean #t if and only if an event (that is, a
mouse click in a graphics window, a keypress, or a menu selection) is waiting
to be ‘read’ using the procedure event (see the entry above).

e ———vv—
(exact? z) Procedure

A predicate that returns the boolean #t if and only if its argument is an exact
number. Examples:

(exact? 3/5) — &t (exact? -2.0) — #f
(exact? 5e2) - #f (exact? 2-7/3i) — #t
(exact? 2.5+17i) +— #f

Lol i _ ____ _— _ _ - _____— _____ __ _— —]
(exact—>inexact z) Procedure

Returns the inexact number that is numerically closest to z. Examples:

The Syntax of FEdScheme 157

(exact—>inexact 2) - 2.0
(exact—>inexact 3/5) — 0.6
(exact->mexact —2.5) = -2.5
(exact—>inexact +i) — 0.0+1.0i
(exact—>inexact 2.5-17() ~ 2.5-17.0i

e ——
(exact-rationalize 21 22) Procedure

Returns the simplest exact rational that differs from 21 by no more than
the absolute value of 2. (If a, b, ¢, and d are integers such that b and d
are non-zero, ¢ and b are relatively prime, and ¢ and d are relatively prime,
then a/b is simpler than ¢/d if and only if {a| < |¢| and |b| < |d}, where ¢|z|’
denotes the absolute value of z—see the entry earlier in this section for the
procedure abs) Examples:

(exact-rationalize p: 1/1000000) — 355/113

(exact-rationalize 2/5 1/10) - 1/2

(exact-rationalize 6.25 -1/5) - 19/3
e —
(exp z) Procedure

If z is real, returns e to the power z. If z is non-real, returns an inexact
complex number that is calculated as explained on page 46 in Chapter 5:
Numbers and Numeric Procedures. Examples:

{expl) — 2.718281828459045
(exp -2.5) — 0.0820849986238988
(exp 3-4i) — -13.12878308146216+15.200784463067951

(explode atom) Procedure

Returns a list of the single-character symbols that form the argument. (The
entries in the output list are symbols, not characters. If you want the entries
to be characters, use the procedure string—>list instead-—see the relevant entry
later in this section.)

If atom is a string, the output list may include some spaces (as symbals
rather than characters). Examples:

(explode'abc) +— (a b c)
(explode “abc”} — (a b c)

11: Syntax and Semantics

expreasion Variable

A global variable bound to (the representation of) the Expression Window.

(expression—set—text str) Procedure

Sets the current expression to be the contents of the input s¢r and updates
the Expression Window, if visible. Example:

{begin
(expression—set-text “(first "(a b c))”)
{expression-text)) = “(first '(a b c))"
(expression—>string ezp) Procedure

Returns the string of the symbols required to print the argument. Examples:

(expression—>string "abc) — Mabc"
(expression—>string "abc”) — "\ "abc\""
(expression—>string #\a) = U\\a"
{expression—>string '#(abc)) — "#(a b c)*
(expression->string ‘(abc})) +— "(a b €)™

(expression—text) Procedure

Returns the current expression (in the form of a string).

(expt 21 22) Procedure

Returns z1 to the power 22, If z1 is 0, then 22 must not be a negative
real number—if 22 is 0, the result is 1; otherwise, the result is 0. If either
or both arguments are non-real (and z1 is not 0), the result is calculated

in the manner explained on page 46 in Chapter 5. Numbers and Numeric
Procedures.

If 21 is an exact complex number and z2 is an exact integer (with the one
proviso mentioned above in the case when zf is 0), then the result is exact.
Otherwise the result is inexact.

The Syntax of EdScheme 159

This procedure produces exactly the same results as the procedure power—see
the relevant entry later in this section. Examples:

(expt 2 3) — 8

(expt 243 -1/5) — 0.3333333333333333

(expt 2 5+i) — 24,61564484364711+20.446760842036314
(expt 34i -3) +— -117/16625+44/15625i

(expt 3—4i 5+i) > -7847.176113287395-902.8820324360111]

" Procedure

A predicate that returns the boolean #t if and only if the file specified by spec
exists. In the case when spec is simply a string or symbol with no separating
colons, then the file is only looked for among the non-folder documents on the
current volume. (See Chapter 6: Files and Ports for information concerning
the naming of files.)

{file—length port) Procedure

Returns an exact non-negative integer that gives the number of characters in
the file at the specified port.

Returns an exact non-negative integer that gives the file margin of the file at
the specified port {which must be an open port). A result of 0 corresponds
to no file margin being set. (Also see the entry below for the procedure
file—set—margin.)

- edure

Returns an exact non-negative integer that gives the current position of the
file pointer of the specified port, that is, the number of bytes that precede
the pointer’s current location in the file at that port. Example:

(file-set—position port (+ (file-position port) 10))

i Moves the file pointer 10 bytes further along the file
i» at the specified port or to the end of the file
i: (whichever comes first).

11: Syntax and Semantics

(file-set-length port k) Procedure

Sets the length of the specified port to k characters by moving the end-of-
file marker so that it becomes the character with index & (which must be
non-negative and less than 2 to the power 31, that is, 2147483648).

It is generally undesirable for & to be greater than the length of the file at the
specified port, since reading such a ‘lengthened’ file might involve reading
uninitialized portions of the disk.

e]

(file-set-margin port k) Procedure

Sets the right margin for the file at the specified port to k characters (where k
must be non-negative and less than 2 to the power 31, that is, 2147483648).
When this margin is set, EdScheme sends a newline character to the file
immediately following the last character of each atom that first exceeds the
right margin. The setting remains in effect until reset by a subsequent use of
file—set—margin or until the port is closed.

If & has the value 0, then the default setting is instated, in which no file
margin is set, thus leaving you with the responsibility of explicitly inserting
all subsequent newline characters into the file.

Example: After EdScheme evaluates the following sequence of expressions:

(define F (open—output-file “MyFile”))
(file-set-margin F 10)

(repeat 3 (display 'testing F'))

(newline F)

(display "How does it look?” F)
(display '(fairly good considering) F)
(close—port F)

the contents of the file ‘MyFile’ will look like this:

testingtesting
testing

How does it look?
(fairly good
considering)

The Syntax of EdScheme 161

o

{file—set—position port k) Procedure

Places the file pointer of port at the byte with index k in the file at that
port. (k must be non-negative and less than 2 to the power 31, that is,
2147483648.) If k is greater than the length of the file, then the file pointer
is placed at the end of the file. (With the help of this procedure it is possible
to implement random access files.) Example:

(file—set—position F 0)

11t Moves the file pointer to the beginning of the file at
w port F.

m
(file—spec port) Procedure

Returns the full file specification of the file at the specified port. This pro-
cedure is helpful if used immediately after opening a file by name, when your
intention is subsequently to close that file and then reaccess it later in your

program.

v —————

(first pair) Procedure

Returns the first component of the input patr. Examples:

{first *(a}) - a
(frst '({a) b)) — (a)

This procedure behaves in exactly the same way as the procedure car (see the
relevant entry earlier in this section).

e ————— e ey

(floor 2) Procedure

Returns the largest integer less than or equal to @, the exactness of the
result being the same as that of . (See Section 5.9: Fractness in Chapter 5:
Numbers and Numeric Procedures for information concerning the exactness
of numbers.) Examples:

(floor 12/5) — 2
(floor -3.2) — -4.0

11: Syntax and Semantics

| ———— — =]
(font—set-style kst) Procedure
(font-set-style list gzwin)

Sets the style of font in which text will be displayed in the text or graphics
window gzwin, if provided, or the most recently active open text or graphics
window, otherwise, to be that specified by the input kst. This must be a list
of four exact positive integers that signify, in order of appearance, the font
number, the style number, the text size, and the text mode. Style numbers
are as follows:

1: bold 16: shadow

2: italic 32: condensed
4: underline 64: extended
8: outline

These may be combined simply by adding. Thus, for example, a style number
of 38 corresponds to underlined, condensed, italic text. For details concerning
the other numbers, see pages 171 and 219 of Inside The Macintosh, Volume I.

(font-style) Procedure
(font-style gzwin)

Returns a list of four numbers describing the current font style for text dis-
played in the text or graphics window gzwsn, if provided, or the most recently
active open text or graphics window, otherwise. For the significance of the
numbers, see the above entry for font-set-style.

]/ . ______________ __ _ _— — — _ _____ . .]
(force promise) Initialization File Procedure

Forces the value of promise (which will usually have been generated by the
gpecial form delay—see the relevant entry earlier in this section). If no value
has previously been computed for the promsise, a value is calculated and
returned. The value calculated in this way is memoized so that if the same
promise is forced again, then the already calculated value will be returned.

For information concerning a special form/procedure pair that behave in a
similar fashion to delay and force, but without memoization, see the entries in
this section for the special form freeze and the procedure thaw.

163

L __]
(for-each proc listl list2 ...} Initialization File Procedure

Calls the procedure proc (for side-effects only) as many times as there are
elements in each input list, each call taking as its arguments similarly-placed
elements (for example, the third element from each list). The procedure calls
are made in order of appearance of the list elements, that is, on the first
elements first, the second elements next, and so on. The procedure proc
must accept as many arguments as there are input lists, and all the input
lists must be the same length. The value returned by for-each is unspecified.

Example:

(define match-up
(lambda (a1 s2)
(let (v (make-vector (length s1))] [ctr 0])
(for—each {lambda (a 3)
(begin
(if (equal? a)
(vector—set! v ctr a)
(vector—set! v cir '-))
(set! etr (addl cir))))
al s2)
{vector—>list v)))) — unspecified

{match—up
(2 a #(1 2 3) "str ng” #\2)
"(1a #(123)"string” #\z)) — (- a #(1 2 3) - #\=z)

b e . T

(forward z) Procedure
(forward z gwin)

Makes the turtle advance = steps in the graphics window gwin, if specified,
or in the most recently active open graphics window, otherwise. The nature
of the track left by the turtle depends upon the current pen state (see the
entry for pen—state later in this section).

L T
(freemem) Procedure

Returns the size, in bytes, of the largest available contiguous block of free

11: Syntax and Semantics

memory available to EdScherne. This gives you some indication of, for exam-
ple, the largest graphics window you could open in the current state of your
system.

T e e — e ———————
(freesp) Procedure

Returns the number of unused Scheme pairs currently available in your sys-
tem. When this number reaches 0, EdScheme automatically triggers a garbage
collection, thereby (usually) releasing new pairs. Thus, the value returned by
this procedure gives you some indication of how long it might be before the
next antomatic garbage collection. {See the entry for the procedure gc later
in this section.)

(freeze sezp) Special Form

Creates a thunk which, when passed to the procedure thaw (see the relevant
entry later in this section), yields the value of the input sezp.

A special form/procedure pair that behaves in a similar fashion to freeze and
thaw, but which uses memoization, 1s also available. See the entries in this
section for the procedure force and the special form delay.

__ _ _______ _— — —_ — ___ __ ____ _____ ____ __ ____________]

(freshfine) Procedure
(freshiine port)
(freshline tewin)

Sends a newline character to the specified port or window, if provided, or
the current output port (usually the Transcript Window), otherwise, unless
the character most recently sent to that port or window was also a newline
character. In that case, no action is taken. (See the entry for the procedure
current—output—port earlier in this section.) Returns an unspecified value.

To send a newline character unconditionally, use the procedure newline, de-
scribed later in this section.

(g¢) Procedure
(g9c bool)

Invokes a garbage collection, releasing as many Scheme pairs as possible. if

gt

The Syntax of EdScheme 165

an argument of #t is provided, then EdScheme’s oblist is also purged and
compacted. Otherwise (if an argument of #f or no argument at all is pro-
vided), a ‘partial’ garbage collection is performed in which no such purging
and compaction of the oblist take place.

 Procedure

Returns the greatest common divisor of its arguments, if any, or 0, if there
are none. The result is always non-negative, and is exact if and only if all
the arguments are exact. Examples:

(gcd) - 0
(ged —4) - 4
(ged 6 -15.0 54) — 3.0

vy S S P—
(graphics-origin) Procedure
(graphics—origin gwin)

Returns a pair of inexact numbers indicating the location of the origin of
the turtle plane corresponding to the graphics window gwin, if provided, or
the most recently active open graphics window, otherwise, measured in turtle
steps relative to the bottom left corner of the plane, By default, the origin of
a turtle plane is at its center.

- — @]
(graphics—set—origin pair) Procedure
(graphics—set—origin pair gwin)

Sets the graphics origin in the graphics window gwin, if provided, or the
most recently active open graphics window, otherwise, as indicated by the
input pair. This input contains two numbers that give the coordinate of the
origin’s desired position in turtle steps relative to the bottom left corner of
the corresponding turtle plane. The graphics origin is the turtle’s ‘home’ (see
the entry for the procedure home later in this section).

Y — — ____ __ ______ — —— — _ _ _ _____ _ _________ _ .}
{graphics—window) Procedure

Returns (the representation of) the most recently active open graphics win-
dow, or the boolean #f if no graphics window is open.

11: Syntax and Semantics

(graphics—window? ezp) Procedure

A predicate that returns the boolean #t if and only if its argument is a
graphics window.

(head stm) Procedure

Returns the first component of the input stream. Example:

(define S (cons—stream 1 2)) — unspecified
(head S) — 1

(home) Procedure
(home gwin)

Sends the turtle in the graphics window gwin, if provided, or the most re-
cently active open graphics window, otherwise, to the graphics origin and
changes its heading to zero (that is, due North}, while leaving the pen state
unchanged (see the entry for the procedure pen-state later in this section).

L __ . _ ____— __ _]
(if <test> sexpl sexp?2) Special Form

(if <test> sezpl)

If <test> evaluates to a true value, then the Scheme expression sezpl is
evaluated and its value returned. On the other hand, if <fest> evaluates to
the boolean #£, then the ‘alternative’ Scheme expression sezp2 is evaluated
(if it is provided) and its value returned. If no alternative Scheme expres-
sion is provided and <test> evaluates to #f, the value of the if-expression is
unspecified.

In Schemer’s Guide mode only, <test> is required to evaluate to a boolean
object.

Example:

(if (< 2/5 3/7)
(-2/53/7)
(-3/12/5) — -1/38

!

The Syntax of EdScheme 167

Returns the imaginary part of the complex number 2. Examples:

(imag—part1.2) — 0 (imag—part 2+3.5)) +— 3.5

(imag—part 14) — -1 (imag—part (/ 14)) — 1/2
m
(implode list) Procedure

Concatenates the atoms in the input /st and returns the result as a symbol.
(The input list must be non-empty and contain only atoms.) Since the output
from this procedure is always a symbol, if that symbol is interpretable as a
number and you wish to use it as such, you must pass the output through a
combination of the procedures symbol->string and string->number before you
can do so (sce the entries for these two procedures later in this section, and
the second example below). Examples:

(implode ‘(abra "cad” abr #\a)) — abracadabra
(addl (string—>number
(symbol->string
(implode '(007))))) +— 8

%
(inexact? z) Procedure

A predicate that returns the boolean #t if and only if its argument is inexact.
{See Section 5.9: Ezactness in Chapter 5: Numbers and Numeric Procedures
for further information concerning the exactness of numbers.) Examples:

(inexact? 1/2) — #f
(inexact? 2-0.5)) +— #¢
(inexact? (sqrt 4)) — #t

%
(inexact->exact z) Procedure

Returns the exact number that is numerically closest to the input complex
number. (See page 45 in Chapter 5: Numbers and Numeric Procedures for
details of why this procedure sometimes behaves in a surprising fashion.)
Examples:

11: Syntax and Semantics

(inexact->exact 2) — 2
(inexact->exact pi)
— 3141582653589793233/1000000000000000000
(inexact->exact 2-0.6i)) — 2-3/5i
(inexact—>exact (/ 5e2))
— 1999999999999999/1000000000000000000

(input-port? ezp) Procedure

A predicate that returns the boolean #t if and only if its argument is either
the Transcript Window, a serial port, a port at which there is a file that has
been opened for input, or an ‘input-string’ (created by a call to the procedure
open—input—string—see the relevant entry later in this section).

e
(integer? ezp) Procedure

A predicate that returns the boolean #t if and only if its argument is an
integer. Examples:

(integer? 'ten) — #£ (integer? 5¢2) — &t
(integer? 6/3) — #t (integer? 1/2) — #f
(integer? 500t — #t (integer? pi) — #f

(integer->char k) Procedure

In Standard Scheme mode, returns the character whose ASCII code is the
remainder when k is divided by 256. In Schemer's Guide mode, returns the
corresponding symbol. Examples:

(integer—>char 112) — #\p [in Standard Scheme mode]

(integer—>char 575) — #\? [in Standard Scheme mode]

(integer—>char 36) — $ [in Schemer’s Guide mode]
integrate—primitives Variable

When set to the boolean #t, EdScheme reserves the right to compile cer-
tain primitive procedures (such as first and addl) in-line, thus speeding up
EdScheme’s performance. When set to the boolean #£, all identifiers in the
operator position of a Scheme expression are treated as variables, Initially
bound to the boolean #t.

The Syntax of EdScheme 169

(lambda <formals> sexp? sezp2 ...) Special Form

Returns a procedure object that incorporates a record of the environment in
effect when the lambda-expression is evaluated. If the procedure so described
is later called on some actual argument(s), then the variable(s) that feature(s)
in <formals> isfare bound to the corresponding argument(s), the resulting
binding(s) is/are added to the recorded environment, the Scheme expressions
sexpl, sexp?, ... are evaluated in order of appearance in the extended
environment, and the values of the final Scheme expression is returned.

In Standard Scheme Mode, <formals> must be of one of the following forms:

(var? ...): The procedure takes a fixed number of arguments (as many as
there are variables); when it is called, the first argument is bound to
the first variable, the second argument is bound to the second variable,
and so on.

var: The procedure takes a variable number of arguments; when it is called,
the actual arguments (in order of appearance) are made into a list which
is then bound to the variable var.

(vart ... vark—1 . vark): (Note that a space-delimited dot precedes the
final variable.) The procedure takes & — 1 arguments or more; when
it is called, the first argument is bound to the first variable, and so on
up through the (k — 1)st argument, and any remaining argements (in
order of appearance) are made into a list which is then bound to the
variable vark.

In Schemer’s Guide Mode, only the first two of these forms are allowable. In
neither mode may any variable appear more than once in <formals>.

Examples:

((lambda (z y) (cons z y)) 'in ‘(sert})) — (in sert)

((lambda s
{display “And the total is: ")
(apply + s))
246 8)
And the total is: — 20

11: Syntax and Semantics

ii: The next ezample is only possible in Standard Scheme Mode.
((lambda (= y . z)
{cond
(> = v) (frst 2)]
[(< 2 v) (tast 2)]
[else (list-ref z 1)}))
57 'a'ab’'b) — b

(language-preferences) Procedure

Returns a list of five booleans that report the settings in the di-
alog accessed through the sub-menu in the [File] menu. Their

meanings, in order of appearance, are as follows:

1) The Language Mode selection: #t corresponding to Standard Scheme
Mode and #f corresponding to Schemer’s Guide Mode.

2) The Angle Mode selection: #t corresponding to Radian Mode and #f
corresponding to Degree Mode.

3) The first Error Mode selection: #t corresponding to extended error

messages being activated and #f corresponding to their being switched
off.

4) The second Error Mode selection: #t corresponding to a (partial) gar-
bage collection being invoked following each error—see the entry for the
procedure gc earlier in this section—and #f corresponding to no such
garbage collection being invoked.

5) The third Error Mode selection: #t corresponding to stack tracing error

messages being activated and #f corresponding to their being switched
off.

(language-set-preferences lsst) Procedure

Sets features in the dialog accessed through the sub-
menu in the menu that can be adjusted while an FdScheme session is in

progress go that they conform to the input list. This must be a list of five
boolean objects. The features in question and the settings that correspond

The Syntax of EdScherne 171

to #t and #f, respectively, are explained in the above entry for the procedure
language—preferences. The new settings take effect immediately, and the report
of the current settings is automatically updated in the dialog from
the sub-menu. Example:

(language-set—preferences (3t #t #t #f #f))

1 Sets FdScheme to Standard Scheme Mode, Radian Mode,
i with extended error messages, but without a forced

i garbage collection after each error and without stack

i tracing error messages.

(last kst) Procedure

Returns the last data expression in its argument, which must be a non-empty
list. Examples:

(last '(a b c)) —
(last "(a (b (c (d))))) — (b (c (d)))

(last-pair list) Procedure

Returns the last pair of its argument, which must be a non-empty list. Ex-
amples:

(last—pair '(a b c)) - {c)

(define A (list 'a 'b 'c)} — unspecified
(set-rest! (last—pair A) '(d e)) +— unspecified
A = (abcdae)

e t—
(last—volume) Procedure

Returns the reference number of the most recently accessed volume. (*Access-
ing’ includes opening and loading EdScheme files.) This procedure is useful
if you are writing an EdScheme program that will cause specified files to be
read from or written to. Consider, for example, the Scheme expression

(set-volume (Yast-volume))

11: Syntax and Semantics

at the beginning of the file ‘game startup.s’ in the ‘Game’ folder on the
EdScheme implementation disk. As explained in the ‘Game ReadMe’ file,
that file is loaded from within EdScheme, the order of operations being

1. launch the EdScheme application;

2. open and evaluate all the data expressions in the file ‘game startup.s’.

Since this file is located in the ‘Game’ folder, the above expression sets the
current volume to the one that corresponds to the ‘Game’ folder. This means
that files referred to explicitly later in the program-—as, for example, by the

expression (load “game graphics.s”)—are looked for in the ‘Game’ folder.

e e ey —
(lemmnz ...) Procedure

Returns the least common multiple of its arguments, if any, or 1, if there are
none. The result is always non-negative, and is exact if and only if all the
arguments are exact. (See Section 5.9: Ezactness in Chapter 5: Numbers and
Numeric Procedures for more information about the exactness of numbers.)
If one or more of the arguments is/are 0, then the result is also 0. Examples:

{lem) — 1 (lem -2 0 24) — ©

(lem 4) - 4 (lem -15 6.0) ~— 30.0
(left =) Procedure
(left 2 gwin)

Subtracts z radians or degrees (according to the Angle Mode specified in
the dialog accessed through the sub-menu in the
menu) from the current heading of the turtle in graphics window gwin, if pro-
vided, or the most recently active open graphics window, otherwise, adjusting
the direction of the turtle on screen if it is currently begin shown.

(length &ist) Procedure

Returns the length of—that is, the number of data expressions in—its argu-
ment as an exact integer. Examples:

(length *()) = 0 (length *(a (b (c (d (D))} — 2
(length’'(bbb)) — 3

The Syntax of EdScheme 173

(et ([vart seepl] ...) seaph sezpk+1...) Special
(let var ([varl sezpl] ...) sezpk sexpk+1 .. .)

In the first form, the Scheme expressions sezpi through sezpk—1 are eval-
vated in the current environment in some unspecified order, the variables
varl, ..., are bound to the results of the corresponding Scheme expressions,
the Scheme expressions sezpk, ..., are evaluated in the current environment
extended by these new bindings, and the value of the final Scheme expres-
sion is returned. The sequence of Scheme expressions from sexpk onward is
known as ‘the let-body’. The bindings of the variables war1, ..., are local
to the let-body. Example:

(let ([a 2] [& 3])
(let ([a 4] [c (- a B)])

(+ ¢ a)) — -4
=:: The @ appearing in the binding for ¢ takes its value from
=: the outside let-expression (so ¢ is bound to 2—3 = ~1),

- whereas the a appearing in the body of the inside let-
:i: ezpression takes its value from that inner ezpression.

In the second form—known as ‘a named let’—the method of evaluation is the
same as in the first form, except that within the let-body the variable var is
bound to a procedure whose formal arguments are the variables varl, ...,
and whose body is the let-body. This introduces the possibility of versatile
looping procedures. Example:

(let loop ({factors? '(2337)]
[factors2'(22235171711)}])
(cond
[(or (null? factora1) (nuli? factors2)) ()]
[(< (first factorsl) (first factors2))
(loop (rest factorsl) factors2)]
[(> (first factorsi) (first factors2))
(toop factors1 (rest factors2))]
[else (cons (first factorsi)
(loop (rest factors1)
(rest factors2))])) — (237

11: Syntax and Semantics

For both forms, there must be no repetitions among the variables bound by
the let-expression in the context of the let-body. It is convenient to highlight
the bindings being established by delineating them with square brackets (see,
for instance, the bindings [e 2] and [b 3] in the first example above). As
far as EdScheme is concerned, however, brackets and parentheses are entirely
interchangeable in this context.

(let* ([vart sezpil] ...) Initialization File Special Form
sexpk sezpk+1 ...)

Evaluates in the same way as the corresponding let-expression would evaluate,
except that the Scheme expressions sezp? through sezpk—1 are evaluated in
order of appearance, and the binding established for each variable is visible
not only to the let-body, but also to all the Scheme expressions appearing
later in the variable-binding list. Example:

(let ([a 2] [3])
(lets ([a 4] [c (- a B)])
(+ c a))) = 4

s In the (inner) let #-expression, the binding of the value
i to the variable a is visible when the binding for ¢ is
i established. Consequently, ¢ is bound to4 -3 = 1.

As in the case of let-expressions, EdScheme views brackets and parentheses
interchangeably.

— —— - _—]
(letrec ([vart sexpt] ...) sezpk sezpk+1 ...) Special Form
Bindings for the variables vari, ..., to unspecified values are added to the

current environment, the Scheme expressions sexpi through sexpk-1 are
evaluated in this extended environment in some unspecified order, the result-
ing values being assigned to the corresponding variables, the Scheme expres-
sions sezpk, ..., are evaluated in the new environment, and the value of the
final Scheme expression is returned.

The bindings of the variables extend over the entire letrec-expression, not
just the body (comprising the Scheme expressions sexzpk, ...). This makes
it possible for the variable-bindings to include mutually recursive procedures.

} The Syntax of EdScheme 175

There must be no repetitions among the variables var! through vark—1, and
it must be possible to evaluate each of the Scheme expressions sezp? through
sexpk—1 without assigning or referring to the value of any of the variables.
(In most normal uses of letrec, this last restriction is automatically satisfied
because the Scheme expressions in question are all lambda-expressions.)

Example:

(letrec {[movel

(lambda (n) (if (> n 0) (move2 (+ n 15)) n)))

[move2
(lambda (n) (if (< n 20) (movel (- n 7)) n))])
(movel 3)) — 26
(stexpz..) Procedure

Returns the list of its arguments, in order of appearance. Example:

(list 'two ‘and 'two 'is (+ 22)) — (two and two is 4)

A predicate that returns the boolean #t if and ounly if its argument is a list.
Note that ‘circular lists’, such as the one in the final example below, are not
‘proper’ lists; they generate a result of #f when input to list?. Examples:

(Tist? °()) — #t
(list? *(a b)) - #t
(list? 'a) - #f
(list? "(a . b)) — #f [Standard Scheme Mode only]

(let ([z '(a)])
(set-rest! = z)
(list? z)) — #f

(list—ref list k) Procedure

Returns the data expression with index & in the input list, where the first
expression has index 0, the second has index 1, and so on. k must be an exact,
non-negative integer that is strictly less than the length of I{s¢. Example:

{list-ref '(a ((a) b) c) 1) — ((a) b)

11: Syntax and Semantics

(list->string list) Procedure

Returns the string that results when the contents of its argument (which must
be a list of characters) are concatenated. Example:

(list—>string "(#\a #\b #\c)) — "abc"

= . —— ——— .}

(Vist-tail hist k) Procedure

Returns what remains of the input kst once the first & data expressions have
been removed. (If k is greater than the length of the lis¢, then the empty
list is returned.) Example:

{listtail ‘(abcde)2) — (cd e)

T —————N
(list->vector list} Procedure

Returns a vector whose entries are the data expressions in the input list in
order of appearance. Example:

(fist—>vector '(abc)) — #(a b c)

I — — —]
(load spec) Procedure
(load spec bool)

Loads the (existing) file given by the input specification, and sequentially
evaluates the Scheme expressions it contains in the current environment. If
bool is the boolean #t, then as each Scheme expression is evaluated its value
is displayed on the screen. If bool is the boolean #f, then the values of the
Scheme expressions are not displayed. If no boolean argument is provided,
then EdScheme operates as specified by your setting of the Print Values when
Loading checkbox in the dialog accessed through the
sub-menu in the [File] menu: If the checkbox is checked, EdScheme behaves as
if a boolean argument of #t had been provided; if the checkbox is not checked,
it behaves as if a boolean argument of #£ had been provided. In all cases, the
value of the final Scheme expression is returned. (Note that the current input
and output ports are not altered by the evaluation of a load-expression.)

The Syntax of EdSchemne 177

If you do not know the correct file specification for the file you want to load,
use one of the following three Scheme expressions:

{load (choose-input-file) #f)
(load (choose—input-file) #t)
(load (choose-input-file))

and indicate the desired file using the File Selector. As an alternative to the
last of these, you could choose the option from the menu.

If an error occurs while the loading is in progress, then evaluation will stop,
and the error will be reported in accordance with the settings you have
made in the dialog accessed through the sub-menu
in the menu. In addition, EdScheme takes steps to preserve the contents
of your files by closing all files that are open for loading at the time when the

eITor ocCcurs.

(logz2) Procedure
(log 21 22)

Returns the logarithm of z1 to the base 22, if provided, or to the base e (that
is, approximately 2.718281828459045), otherwise. Neither argument may be
0, and the second argument (when provided) must not be 1. Examples:

(log 5) — 1.6094379124341

(log 2 10) - 0.3010299956639812

(log 3-4i) — 1.6094379124341-0.9272952180016122i

(log 1-i 245i)) — -0.08264069265990966-0.4080614309983656i

For information on how these values are calculated (especially in the case
when complex numbers are involved), see page 47 in Chapter 5: Numbers and
Numeric Procedures.

(magnitude z) Procedure

Returns the magnitude of the argument. If z is complex with an exact zero
real part or if it is real, then the result has the same exactness as z. For
all other values of z, the result is inexact. (See Section 5.9: Ezactness in
Chapter 5: Numbers and Numeric Procedures for information concerning the

11: Syntax and Semantics

exactness of numbers. Also see the entry for the procedure abs earlier in this
section.) Examples:

(magnitude -3/2) — 3/2 (magnitude 0+4) +— 4
(magnitude 5-121) ~ 13.0

e ——————

(make-bitmap pair) Procedure
(make-bitmap pair k)

Returns a bitmap whose size is given by the input patr, which must be a list
of two positive exact integers. The first of these two numbers specifies the
width of the bitmap, and the second specifies its height. The optional second
input specifies the ‘color depth’ of the bitmap; it must be one of the following
four numbers:

1: black and white 2: 4 colors
4: 16 colors 8: 256 colors

If you omit the second input or if you specify a value that exceeds the greatest
‘color depth’ of any device connected to your computer, then EdScheme sets
a depth equal to that maximum ‘color depth’.

See the entries for the procedures bitmap-fetch and bitmap-set-spec earlier in
this section for examples of this procedure being used in context.

e __ — — _ — — _____ _ _ _____ _____ ________ __]

(make—environment sezpl sezp2 ...} Special Form

Returns the environment that results from evaluating the given Scheme ex-
pressions in order of appearance in the current environment. See the entry
for the procedure eval earlier in this section for an example of this procedure
being used in context.

e e e —r e
{make—graphics—window) Procedure
(make—graphics—window pairi)

(make-graphics—window pair2)

{make-graphics—window pair1 pair2)

Creates a graphics window and returns (a representation of) that window.

The Syntax of EdScheme 179

If the optional input pairf (a pair of exact whole numbers) is provided,
then the width of the turtle plane onto which the graphics window looks is
given by the first number and its height is given by the second. (If either
of the numbers in this pair is less than 20, then EdScheme replaces it by 20.
Furthermore, the smallest graphics window EdSchemne will open measures 50
by 50, even if the turtle plane onto which it looks has smaller dimensions.) If
pair! is not provided, then the default width of the turtle plane is 576 turtle
steps and its default height is 720 turtle steps.

If the optional input pair2 (a pair consisting of an exact whole number n
from 0 through 6 and a boolean bool) is provided, then the nature of the
window that is created is determined according to the following tables:

n Close boxr Scroll bars Title

0 Yes Yes Yes

1 No Yes Yes

2 Yes No Yes

3 No No Yes

4 No No No (single border)
3 No No No (shadow border)
6 No No No (double border)
bool

#t The window is created in a ‘shown’ state.
#f The window is created in a ‘hidden’ state.

If pair2 is not provided, then EdScheme behaves as if an input of (0 #¢t)
had been provided.

It is advisable to create a window in a hidden state if you have to size it,
position it, and/or give it a title before any further activity takes place in it.
Then, once the window is in a ‘presentable’ state, you can ‘show’ it using the

procedure window-show.

Calling the procedure window—set-title on a graphics window that has been
created with no title will have no effect (and no error will be generated). The
only way to scroll a window that has been created with no scroll bars is to use
the procedure window—set—position. (The various graphics window procedures
are catalogued in Section 12.7: Graphics and Text Windows in Chapter 12:
Language Elements and described in detail in this section, where they appear
in alphabetical order.)

11: Syntax and Semantics

e — __ — ___ ___ ______ __ " ______ _ ____ __ _ _ _______ ___________]
(make-menu str list) Procedure

Space permitting, adds a menu to the menu bar whose title is the contents
of the string str and whose items are the contents of the strings in the input
list, in order of appearance from top to bottom. A separator line may be
included in the menu by using the string “-” in the appropriate position of
the input list. Returns (a representation of) the menu.

The items in user-defined menus are deselected and unchecked at all times
except during an invocation of the thunk (event)-—see the relevant entry earlier
in this section—when the status of the items is determined by the most recent
call to menu-set-item (see below), if there has been such a call, or the default
status (all selected, all unchecked), otherwise. Example:

(define M (make~menu
“React”
l(ﬂLaugh” ﬂcry" ﬂsniﬂ.'” w_i ”cancel”)))

creates a menu (denoted by the identifier M) whose title is and whose

items, from top to bottom, are [Laugh], [Cry], [Sniff], and [Cancel}, with a sep-
arator line between the last two items.

(make-polar 21 =2) Procedure

Returns the complex number 21 *[(cos 22)+ (i*(sin 22))]. The second input
is interpreted as being in radians, irrespective of the Angle Mode you have
chosen in the dialog accessed through the sub-menu in
the menu. The result is an inexact complex number unless either the first
input is an exact zero or both inputs are exact with the second being zero.
(See Chapter 5: Numbers and Numeric Procedures for further information
concerning EdScheme’s treatment of complex numbers.) Example:

(make-polar 4 (/ pt 6)) — 3.464101615137755+2.04
(make-polar 0 5.7) - 0
(make—polar 5 0) - B

[

The Syntax of EdScheme 181

(make—rectangular z1 z2) Procedure

Returns the complex number 21 + (i * 22). (See Chapter 5: Numbers and
Numeric Procedures for further information concerning FdScheme’s treatment
of complex numbers.) Example:

(make—rectangular 2 -3.5) — 2-3.5i

Proced u

make—strig k)
(make-string k& ch)

Returns a string that is k characters long. The string is filled with the input
character ch, if provided; otherwise, the contents of the string are unspecified.
(The optional input may be provided in the form of a symbol, a character,
or a string,) k must be less than 2 to the power of 31, that is, 2147483648.
Example:

(define § (make—string 10 “A")) — unspecified
S — "RAAAAAAAAA"

{make-text-window) Procedure
{make-text-window k)

(make-text-window pair)

(make-text-window k& pasir)

Creates a text window whose line width (that is, the maximum length before
text wraps onto the next line) is k pixels, if the optional input is provided. In
that case, the line width will not change if the window is subsequently resized
by dragging or using the procedure window—set-position (see the relevant entry
later in this section). On the other hand, if no width is specified, then the line
width is the same as the width of the window, and will change if the window
is subsequently resized. Returns (a representation of) the text window thus
created.

E must be non-negative and less than 2 fo the power 15, that is, 32768.

The provision of the optional input pair, consisting of a whole number from
0 through 6 and a boolean, has the same effect as for graphics windows (see
the entry for make—graphics-window above). Its default value is again (0 #t).

11: Syntax and Semantics

The comments made under make-graphics-window regarding the use of the
procedure window—set-title and the possibility of scrolling the window being
created also apply in the case of text windows.

e A —
(make—vector k) Procedure

(make—vector k ezp)

Returns a vector that has kB elements. All the elements are set to the input
data expression, if provided; otherwise, the elements of the vector are un-
specified. k& must be non-negative and less than 2 to the power of 31, that is,
2147483648. Example:

(define V' (make-vector 3 "#(a "B")))
— unspecified
| 74 — ‘(‘(a upgn) ‘(a wg") ‘(a IIBII))

e ——
(map proc hist1 list2 ...) Initialization File Procedure

Returns a list whose first element is the result of applying the input proc
to the first elements of the input lists, whose second element is the result of
applying proe to the second elements of the lists, and so on. The procedure
proc must accept as many arguments as there are input lists, and these lists
must all have the same length. (The order in which the applications of proe
take place is not specified, but the order of the elements in the output list is
the same as that of the elements in the input lists.) Example:

(map (lambda (z y)
(cons (last z) (rest y)))

((ab}(27) (33) (v 2))
W@BAME2Dy) - 2 (N B2 =y

Returns the greatest of the inputs as an exact number (if all the inputs
are exact) or as an inexact number (if not all the inputs are exact). See
Section 5.9: Fraciness in Chapter 5: Numbers and Numeric Procedures for
further information concerning the exactness of numbers. Examples:

The Syntax of EdScheme 183

(max -3) — =3
(max 4 5.0 79) ~— 79.0
(max -999 -999.0) — -999.0

(member ezp list) Procedure

Returns the boolean #f if the input %st¢ does not contain the data expression
ezp. Otherwise, the sublist of list from the first occurrence of ezp to the end
of list is returned. (Comparisons are made using the predicate equal?—see
the relevant entry earlier in this section.) Examples:

(member 'a '(b c d e)) —~ #f
(member '(a) ‘(b (a) (b a))) — ((a) (b a))

(member? exp list) Procedure

A predicate that returns the boolean #t if and only if its first argument is
contained in its second. {Comparisons are made using the predicate equal?—
see the relevant entry earlier in this section.) Examples:

(member? 'a'(b c d ¢)) — A
(member? '(a) ‘(b (a) (b a))) — #t

{memgq ezp hst) Procedure

Behaves just like the procedure member (see above), except that comparisons
are made using the predicate eq? (see the relevant entry earlier in this section).
Examples:

(memgq ‘a ‘(b ac)) — (a¢)
(memq '(a) ((b) (a) (c))) — ¥t
(let ([X "(a)])

(memq X (list "(b) X '(c)))) — ({a) (<))

(memv exp list) i Procedure

Behaves just like the procedure member (see above), except that comparisons
are made using the predicate eqv? (see the relevant entry earlier in this sec-
tion). Examples:

11: Syntax and Semantics

(memv 3 (1 3 5)) — (3 85)
(memv'(2b) '((La) (2b) (3¢))) — #f

e —
(menu? ezp) Procedure

A predicate that returns the boolean #t if and only if the input ezp is a
menu.

- — — — _____________________]

(menu—close) Procedure
(menu-close menu)

Closes the input user menu, if provided, or all user-defined menus, otherwise,
and removes it/them from the menu bar, repositioning any remaining menus
on the menn bar so that they are as far to the left as possible.

. e ————— - ———
{menu-item menu k) Procedure

Returns a list describing the current state of the item with index & in the
input user menu. (Note that, unlike most of Scheme’s indexed structures,
menu items are l-rteferenced, that is, the first item in the menu has index
1, rather than 0.) &k must be greater than 0 and less than or equal to the
number of items in the menu (see the entry below for the procedure menu-
number—of-items).

The list contains three data expressions, the first being a string containing the
text of the item in question, the second being a boolean that is #t if the item
is deselected (that is, dimmed) and #f if it is selected (that is, undimmed),
and the third being a boolean that is #t if the item is checked and #f if it is
not checked.

(menu—number—of-items menu) Procedure

Returns the number of items in the input user menu. Note that a separator
line counts as an item.

b
(menu—set-item menu k list) Procedure

Sets the state of the item with index k in the input user menu (the first
item having index 1) so that it conforms to the specifications in the input

L

The Syntax of EdScheme 185

list, which must contain three data expressions of the type and having the
meanings explained in the above entry for the procedure menu—item.

Note that it is permissible for the item text in the final argument to differ
from what it was at the time when the menu was created; this enables you to
make dynamic changes in the contents of the menus you create. k must be
positive and less than or equal to the number of items in the menu (see the
entry above for the procedure menu-number—of-items).

The state of the menu item does not come into effect until the next invocation
of (event)—see the relevant entry earlier in this section—and remains in effect
until the next call to menu—set-item with the same inputs menu and k.

It is usnal for matters to be so arranged that separator lines in menus are
always dimmed and unchecked; to achieve this, use menu-set-item with the
appropriate inputs menu and k and a final input of ("-" #t #£).

There are many examples of the use of this procedure in the files relating to
the demonstration game provided on the EdScherne implementation disk.

E . __ ___ _ . . __ __ _ _________ _______]
(min =1 22 ...) Procedure

Returns the smallest of its inputs as an exact number (if all the inputs are ex-
act) or as an inexact number (if not all the inputs are exact). See Section 5.9:
FEractness in Chapter 5: Numbers and Numeric Procedures for further infor-
mation concerning the exactness of numbers. Examples:

(min -3) — =3
(min 403 -5 79) —~ -5.0
{min -999 -999.0) — -999.0

(modifiers) Procedure

Returns a list of five booleans giving the states of the OPTION key, the CAPS
LOCK key, the SHIFT key, the COMMAND key, and the mouse button (in
that order) at the time of the most recent invocation of (read—char) (see the
relevant entry later in this section). In the case of the keys, #t means ON
and #f means OFF; in the case of the mouse button, #t means PRESSED
and #f means NOT PRESSED.

11: Syntax and Semantics

(modulo n1 n2) Procedure

Returns the unique integer » strictly between n2 and -n2 such that r + n2
is positive and, for some integer ¢,

nl =(g*xn2)+r,

that is, the remainder—with the same sign as n2—when ni1 is divided by
n2. The second input must not be zero. The result is exact if both inputs
are exact, but inexact otherwise. (See Section 5.9: Ezactness in Chapter 5:
Numbers and Numeric Procedures for further information concerning the ex-
actness of numbers.) Examples:

(modulo 14 3) - 2 (modulo 14 -30) — -1.0
(modulo -14 -3) — -2 (module -14 30) — 1.0

(See also the procedure remainder, which is described later in this section, and
behaves slightly differently.)

%

(mouse—state) Procedure
(mouse—state gzwin)

Returns a list of two data expressions indicating the state of the mouse in
the context of the text or graphics window gzwin, if provided, or the most
recently active open text or graphics window, otherwise. The first data ex-
pression is a pair of numbers giving the coordinate of the mouse in the window
in question (relative to the current graphics origin in the case of a graphics
window, and relative to the top left corner of the window in the case of a
text window), and the second is a boolean, which is #t if the mouse button
is pressed and #f otherwise.

M

(negative? 2) Procedure

A predicate that returns the boolean #t if and only if its argument is negative,
(The result may be unreliable if the argument is an inexact number that is
close to zero. See Section 5.9: in Chapter 5: Numbers and Numeric Procedures
for further information concerning the exactness of numbers.) Examples:

(negative? 5) — &£ (negative? 6.25) — #t

The Syntax of FdScheme 187

L]
{newline) Procedure

(newline port)
(newline tzwin)

Sends a newline character to the specified port or window, if provided, or the
current output port (usually the Transcript Window), otherwise. {See the
entry for the procedure current—output—port earlier in this section.) Returns
an unspecified value.

{not ezp) Procedure

A predicate that returns the boolean #t if and only if its argument is the
boolean #£. In Schemer’s Guide Mode, the input must be a boolean object;
in Standard Scheme Mode, no such restriction applies. Examples:

(not (list? 3)) ~— #t
(not 3) — & [Standard Scheme Mode only]
(not (null? '())) — #f

. ___ ___— —_ __ . __ _ _ _._._ ____ __ . _ _ _ _]
(note-alert sir) Procedure

Activates a Macintosh note alert box containing the contents of the input
string. The size of this box is set by EdScheme and the text of the alert
automatically word-wraps to fit inside the box.

e —————t

(nth & list) Procedure

Returns the kth data expression in the input l3sf, where the expressions are
numbered in the natural, intuitive way starting from 1. (By contrast, the
procedure list-ref, described earlier in this section, does a similar job, but
numbers the expressions in the list starting from 0.) & must be positive
and less than or equal to the number of data expressions in the input list.
Example:

(th2’'(abcd)) — b

11: Syntax and Semantics

{null? exp) Procedure

A predicate that returns the boolean #t if and only if its argument js the
empty list. In Schemer’s Guide Mode, the input must be a list; in Standard
Scheme Mode, no such restriction applies. Examples:

(nulli? (rest *(a))) — #t
(nuli? "(a)) S
(null? "a) — #f [Standard Scheme Mode only]

@
{numbesr? ezp) Procedure

A predicate that returns the boolean #t if and only if its argument is a
number. Examples:

(number? 3) +— #t {number? '()) — #f
(number? 'a) — #f

M
(number->string z) Procedure

(number->string 2 rad)

If the input number z is exact, returns—as a string—a representation of z,
using the radix rad, if provided, or 10, otherwise. If z is inexact, ignores the
input radix, if one is provided, and returns—as a string—a representation of
z in decimal or exponential form. The resulting string contains no explicit
reference to the radix.

See Section 5.9: Ezactness in Chapter 5: Numbers and Numeric Procedures
for further information concerning the exactness of numbers.

Examples:
{(number->string (/ 15 3)) Y
(number—>string 1000 2) — "1111101000"
(number—>string 63/115 16) — "3f£/73"
(number—>string #x-lc+21/a2i 8) — “-34+13/661"
{number—>string (sqrt 6.25)) - "2.5Y
(number->string (sqrt 6.25) 2) - "2.5"

The Syntax of EdScheme 189

(numerator g) ~ Procedure

Returns the numerator of the rational number ¢ as an integer (whose ex-
actness matches that of g), after having reduced ¢ to lowest terms with a
positive denominator. (Recall from Chapter 5: Numbers and Numeric Proce-
dures that in BdScheme no non-integer expressed in decimal or exponential
form is rational. See Section 5.9: Fractness in that chapter for further infor-
mation concerning the exactness of numbers.) Examples:

(numerator {/ 15 -65)) —~ -5
(numerator 2e3) = 2000.0

(odd? n) Procedure

A predicate that returns the boolean #t if and only if its argument (which
must be an integer) is odd. Examples:

(cdd? 4) > #f (odd? 5e2) +— #f
(odd? 6/2) — #t

... " ______ . ____]

(open-extend-file spec) Procedure

Opens the existing file specified by the argument, and places the file pointer at
the end of the file, ready for output from EdScheme. Returns an output port.
If you are unsure of the correct file specification, use the Scheme expression

(open—extend-file {choose-input-file))

and use the File Selector to indicate which file you have in mind, See the
entry for the procedure choose-input-file earlier in this section.

It may seem strange to see an ‘input’ procedure being used in this patently
‘output’ situation. The reason is that the ‘natural’ choice of choose-output-
file involves you in more work. This procedure brings up the ‘Save As:’ File
Selector with all the current file names ‘grayed out’. You then have to type
in the name of the file you wish to extend in the form that it appears in
the File Selector, and click on the Yes button when asked ‘Replace existing
<filename>7",

Example:

11: Syntax and Semantics

(define F (open—extend—file “MyFile"))
— unspecified

(begin
(display “some more info” F)
(close-port F)
'done) +— done

i Wriles the conients of the string "some more info"
i to the end of ‘MyFile’.

L e T
(open—input-file spec) Procedure

Opens the existing file specified by the argument, and places the file pointer
at the beginning of the file, ready for input to EdScheme. Returns an input
port.

If you are unsure of the correct file specification, use the Scheme expression

(open-input—file (choose-input-file))

and use the File Selector to indicate which file you have in mind. (See the
entry for the procedure choose-input-file earlier in this section.)

Example:

(define F (open—input—file "MyFile”))

— unspecified
(let ([contents (string—read F)])
(close-port F)
contents) = a string containing the

entire contents of ‘MyFile’

e i ——————
{open—input-string sir) Procedure

Returns an input port whose contents are those of the input string. This
allows data expressions to be read individually from the string,

Used in conjunction with string-read (see the relevant entry later in this sec-
tion), this provides a means of reading the contents of a disk file all at once,
making those contents available for subsequent inspection without any further
need for accessing the disk.

' The Syntax of BdScheme 191

Examples:

(define T' {open-input-string “abc 5 (A B C})"))

r unspecified
{read T) +— abc
(read T) —» 5
(read T) —» (ABC)
{eof? T) — 8t
(define §

(let ([in—port (open—input-file “MyFile”)])
(let ([contents (open-input—string (string-read in—port))])
(close—port in—port)
contents))) — unspecified

w: Defines S to be an input port (in RAM) containing the entire
5i: contents of the file ‘MyFile’. These contents may then be

- accessed as in the first ezample above, using the procedure
i read.

S ——————— s — e ———— N ———

{open—output-file spec) Procedure

Opens a new file specified by the argument, deleting any existing file with
the same specification, and places the file pointer at the beginning of the file,
ready for output from EdScheme. Returns an output port.

If you are unsure of how to specify the file so that it is stored in the desired
folder, use the Scheme expression

(open—output-file (choose—output—file))

and use the File Selector to provide a suitable name in the correct folder.
(See the entry for the procedure choose-output-file earlier in this section.)

(open-serial-port sym) Procedure

Opens the serial port specified by the input symbol, which must be either
printer or modem, and returns the port in question. The serial port thus
opened is both an input port and an output port, and it may be configured
using the procedure configure—serial-port (see the relevant entry earlier in this

11: Syntax and Semantics

section). Note, however, that the printer port should only be used for baud
rates of 300 or less; there is no such restriction on the modem port.

Both serial ports may be open at the same time, and, once a serial port is
open, there is no need to close it. In fact, EdScheme does nothing in response
to the Scheme expression (close-port §) when S is a serial port. To flush
serial port §, evaluate the Scheme expression (read S).

e —

(or sezpl ...) Special Form

Evaluates the arguments in order of appearance, until one is found whose
value is not the boolean #f, whereupon the value of the Scheme expression
in question is returned, leaving any remaining arguments unevaluated. If all
the arguments have false values, #f is returned.

In Schemer’s Guide Mode, all the arguments except the last must evaluate to
a boolean object. In Standard Scheme Mode, no such restriction is imposed.

If there are no arguments, then #f is returned. Examples:

(or) S
for (< 2 1) (null?’())) — 4t
(or 1 2 3) = 1 [Standard Scheme Mode only]

(output-port? ezp) Procedure

A predicate that returns the boolean #t if and only if its argument is either
the Transcript Window, a serial port, or a port at which there is a file that
has been opened for output or extension.

e ____ __ __— _ _____ __ _ _____ __ . _]
(oval list) Procedure

(oval kst gwin)

Draws the largest possible ellipse in the rectangle specified by the input list
in the graphics window gwin, if provided, or the most recently active open
graphics window, otherwise. The list must be a pair of pairs, specifying the
coordinates of either pair of diagonally opposite corners of the rectangle in
question. The resulting drawing will be contained entirely within the bound-
ing rectangle, no matter what the size of the pen’s ‘nib’ (see the entry for the
procedure pen—state later in this section), even if the ‘nib’ is more extensive
than the bounding rectangle.

The Syntax of EdScheme 193

For example, (oval "((0 0) (50 50))) will cause the circle of radius 25 centered
at the point (25,25) to be drawn in the most recently active open graphics
window.

(oval-paint list) Procedure
(oval-paint list gwin)

Draws a filled ellipse specified by list and gwin (if provided) in the manner
described under oval above. Refer also to the entry earlier in this section for
the procedure arc—paint; the comments made there concerning the pen-state
and the appearance of the boundary of the figure apply in this case also.

(pair -]) edune

A predicate that returns the boolean #t if and only if its argument is a pair in
the technical sense explained in Section 10.3: Pairs end Lists in Chapter 10:
Data Ezpressions. Examples:

(pair? '()) — #f (pair? 'a) .
(pair? '#(ab)) — #f (pair? '(ab)) — #t
(pair? '{a. b)) ~— @t

The final example holds in either mode, since

¢ in Standard Scheme mode, {a . b) is an improper list;

o in Schemer’s Guide mode, the dot is not a reserved character, and in
consequence (a . b) is viewed as a list containing three data expres-
sions.

(peek—char) Procedure
(peek—char port)

Returns the next character ready at the specified input port, if provided, or
the current input port, otherwise. (See the entry for the procedure current-
input-port earlier in this section.) The position of the file pointer is not altered
in any way. If the port is associated with a file that is at end-of-file, or if it
is the Transcript Window and no characters are pending, then the end-of-file
object #!eof is returned.

11: Syntax and Semantics

The input port must not be a serial port.

(pen-color gwin)
(pen—colour)
(pen—colour gwin)

Returns an RGB triple denoting the current color of the turtle’s pen in the
graphics window gwin, if provided, or the most recently active open graph-
ics window, otherwise. (See the first section of this chapter for information
concerning RGB triples.)

(pen—down) Procedure
{pen—down gwin)

Causes subsequent turtle movements in the graphics window gwin, if pro-
vided, or the most recently active open graphics window, otherwise, to leave
their trace in the current color of that turtle’s pen. (See the above entry for

the procedure pen-color.)

For greater control over the state of the turtle’s pen, use the procedure pen-
set-state, described later in this section,

(pen—down?) Procedure
(pen—down? gunn)

A predicate that returns the boolean #t if and only if the turtle in the graphics
window gwin, if provided, or the most recently active open graphics window,
otherwise, has its pen down.

For more detailed information concerning the state of the turtle’s pen, use
the procedure pen-state, described later in this section.

(pen-—erase) Procedure
(pen—erase gwin)

Causes subsequent turtle movements in the graphics window gwin, if pro-
vided, or the most recently active open graphics window, otherwise, to leave

2

The Syntax of EdScheme 195

their trace in the background color, thus in effect erasing any portions of
existing drawings that the turtle’s pen passes over.

e e —————
(pen-reverse) Procedure

(pen—reverse gwin)

Causes the color of each point the turtle’s pen subsequently passes over in the
graphics window gwin, if provided, or the most recently active open graphics
window, otherwise, to be changed to its logical color complement.

I e
(pen—set—color rgb) Procedure
(pen-set—color rgb gwin)

(pen-set—colour rgb)

(pen—set—colour rgb gwin)

Sets the color of the turtle’s pen in graphics window gwsn, if provided, or
the most recently active open graphics window, otherwise, to that given by
the triple rgb, with effect from the next movement of the turtle in question.
(See the first section of this chapter for information about RGB triples.)

{pen—set-state list) Procedure
(pen—set-state lisat gwin)

Sets the drawing state of the pen in the graphics window gwin, if provided, or
the most recently active open graphics window, otherwise, to be as specified
by the input lfst. This list must be of the form described in the entry below
for the procedure pen-state.

(pen-state) Procedure
(pen-state gwin)

Returns a list describing the drawing state of the pen in the graphics win-
dow gwsn, if provided, or the most recently active open graphics window,
otherwise. This list contains four data expressions, as follows:

1. an integer in the range —-15 through 15 indicating the pen writemode
(numbers that differ by 16 have the same significance):

11: Syntax and Semantics

0: pen-erase mode—the turtle colors its track in the background color,
thus effectively erasing anything it passes over.

8: pen-down mode—the turtle colors its track in the current pen color.

10: pen-reverse mode—the turtle changes the color of each point it
passes over to its reverse {or logical color complement).

-1 {or 15): pen-up mode—the turtle leaves no trace.

2. a number indicating the QuickDraw™ writemode. See page 170 of

Inside The Macintosh, Velume I for further details.

3. a pair of whole numbers, the first giving the pen width and the second
giving the pen height. Together, these two numbers determine the
thickness of lines drawn by the turtle. (If the width and height are
unequal, then line thickness will vary according to the direction of the
line in question.) The pen’s ‘nib’, whose dimensions are specified by
this pair, extends to the right and downward from the current turtle
position.

4. alist of eight integers in the range —255 through 255 specifying the pen
pattern in which regions will be filled. (Numbers that differ by 256
have the same significance.) The numbers represent a binary coding
of an 8 by 8 fill pattern. Thus, the 8 by 8 fill pattern at the top of
the next page is represented by the list (60 102 6 12 24 48 126 0),
whose elements describe the rows of the pattern in order from top to
bottom.

The default pen-state corresponds to the list
(88 (11) (-1 -1 -1-1-1-1-1-1))

that is, the turtle’s per is down and is one turtle step wide and one turtle
step high, and the fill pattern is a solid fill (all the dots in the 8 by 8 fill
pattern are colored, giving a binary code for each row of 11111111 = 255 or,
alternatively, —1.

————— — —— —— — __ _ — _ —— — __ — _ — _ -~ _ __ ___ __ ____ __]
(pen—up) Procedure

(pen-up gwin)

Causes subsequent turtle movements in graphics window gwsn, if provided,

The Syntax of EdScheme 197

— 00111100 = 60
— 01100110 = 102
— 00000110 = 6
— 00001100 = 12
— 00011000 = 24
| — 00110000 = 48
— 01111110 = 126
— 00000000 = 0

Figure 11.1: Coding a Fill Pattern

or the most recently active open graphics window, otherwise, to leave no
trace. For greater control over the state of the turtle’s pen, use the procedure
pen-set-state, described above.

e e ——
pi Variable

A global variable, bound initially to the value 3.141592653589793, that is,
(approximately) the ratio of the circumference of a circle to its diameter.
Example:

{define degrees—>radians
(lambda (z)
(/ (¢ z pi) 180))) +— wunspecified

(degrees—>radians 150) — 2.617993877991494

(pick-color str rgb) Procedure
{pick—colour atr rgb)

If Color QuickDraw™™ is not present in the system, returns the boolean #f.

If Color QuickDraw is present, brings up the color-picker di-
alog with the contents of the input string displayed as a prompt in its top

left corner, and the pointer initially on the color specified by the input RGB
triple. Returns the RGB triple corresponding to the chosen color, if the OK
button is pressed, or the boolean #f, if the Cancel button is pressed. (For
further information about RGB triples, see the first section of this chapter.)

11: Syntax and Semantics

Example (on a Color QuickDraw system):

(pick—color “Choose a color ... " *(65535 33343 1237))

i Brings up the color-picker dialog with the prompt ‘Choose a
i color ... 7 displayed in the top left corner and the pointer

s initially on orange; returns an RGB triple or a boolean

s object as described above.

e e ——— e ——
(point—color pair) Procedure
(point—color pair gwin)

(point—colour pair)

(point—colour pair gwin)

Returns an RGB triple specifying the color of the point in graphics window
gwin, if provided, or the most recently active open graphics window, other-
wise, whose coordinate relative to the current graphics origin in that window
is given by the input pair. (For further information about RGB triples, see
the first section of this chapter.)

(pointnair) 7 uw

(point-on? pair gwin)

A predicate that returns the boolean #t if and only if the point in graph-
ics window gwsn, if provided, or in the most recently active open graphics
window, otherwise, whose coordinate relative to the current graphics origin
in that window is given by the input pasr has some color other than the
background color.

(polygon Kist) ' Procedure
(polygon list gwin)

Draws the rectilinear figure in graphics window gwin, if provided, or the
most recently active open graphics window, otherwise, that is obtained when
the turtle’s ‘head’ joins the dots whose coordinates are given in the input
list (which must be a list of pairs of numbers). The size and position of the
resulting figure’s boundary will depend on the current state of the turtle’s
‘pen’ (see the above entry for the procedure pen-state), which extends to the

?

"

The Syntax of EdScheme 199

right and down from the turtle’s ‘head’. To draw a closed polygon, make the
final pair in the input list the same as the first.

Example:

(polygon '((0 -50) {-50 -50) (-50 50) (0 50)) G)
s Draws a squared-off ‘C’-shaped figure in graphics window G.

(polygon—paint list) Procedure
(polygon—paint list gwin)

Draws the filled polygon in graphics window gwin, if provided, or the most
recently active open graphics window, otherwise, that is specified by the
input list in the manner described under polygon above. With polygon~paint,
however, there is no need for the last coordinate in the input list to be the
same as the first; the missing edge of the boundary is supplied automatically
before the filling occurs.

The comments concerning the state of the turtle’s pen and the appearance of
the boundary of the figure, made in the entry earlier in this section for the
procedure arc—paint, apply in this case also.

. — _____ __— ___ ____ — . __ _____ _____ ..]
(port? exp) Procedure

A predicate that returns the boolean #t if and only if its argument is an open
port. (Note that the Transcript Window is a port.)

b — _ —— _____ —— _____— . _ __ __ ______ . "]
(positive? z) Procedure

A predicate that returns the boolean #t if and only if its argument is positive.
(The result may be unreliable if the argument is an inexact number that is
close to zero. For further information concerning the exactness of numbers,
see Section 5.9: Eractness in Chapter 5: Numbers and Numeric Procedures.)
Examples:

(positive? 5) — #t {positive? -6.25) — #f

11: Syntax and Semantics

e v Y —
(power z1 22) Procedure

Returns 21 to the power z2. If z1 is 0, then 22 must not be a negative
real number—if z2 is 0, the result is 1; otherwise, the result is 0. If either
or both arguments are non-real (and zZ is not 0), the result is calculated
in the manner explained on page 46 in Chapter 5: Numbers and Numeric
Procedures.

If 21 is an exact complex number and 22 is an exact integer (with the one
proviso mentioned above in the case when z1 is 0), then the result is exact.
Otherwise the result is inexact.

This procedure produces exactly the same results as the procedure expt—see
the relevant entry earlier in this section. Examples:

(power 2 3) — 8

(power 243 -1/5) — 0.3333333333333333

(power 2 5-+i) — 24,61564484364711+20.44676084203631i
(power 3-4i -3) +— ~-117/15625444/15625i

(power 3-4i 5+i) ~— -7847.176113287395-902.88203243601111i

- ——]
(primitive? exp) Procedure

A predicate that returns the boolean #t if and only if its argument is a
primitive procedure. Examples:

(primitive? first) ~— #t (primitive? "#{a b)) — #f

(print—length ezp) Procedure

Returns the number of characters needed in order to print the input expression
on the screen. Example:

(print-length '(a (b {c (d)}))) — 15

. ____ _ ____ — ___ ——— ___ . ___________|

{(procedure? exp) Procedure

A predicate that returns the boolean #t if and only if its argument is a
procedure in the current EdScheme session. Examples:

The Syntax of EdScheme 201

(procedure? first) —~ #t
(procedure? (lambda (z) z)) +~ #t
(procedure? “modus operandi”) ~ &£

(procedure~definition proc) Procedure

Returns a lambda-expression equivalent to the input pree, which must be a
derived procedure. Example:

(define second
(fambda (s)
(first (rest s)))) +— unspecified

(procedure—definition second) +— (lambda (8) (first (rest s)))

(virmnt proc) " Procedure

Returns the local environment of the input proe, which must be a derived
procedure. Example:

(define label
(let (["tag] [y "Monday])
(lambda (s)
(cons z s)))) — unspecified
(label "(a b)) — (tag a b)

(procedure—environment label) +— (((x tag) (y Monday)))

{See the note on page 103 in Chapter 10, Section 10.12: Environments con-
cerning the printing of environments.)

qqote tep) - | .7 Special Form

If no commas or occurrences of unquote or unquote-splicing—see the relevant
entries later in this section—occur in the input temp, returns the same value
as the Scheme expression (quote temp).

If a ,@-combination (or the unquotesplicing special form) occurs in temp,
the expression that follows that combination must evaluate to a list, the

11: Syntax and Semantics

elements of which (without the enclosing delimiting parentheses) are inserted
into temp in place of the ,@-combination and the following expression.

If a comma—without an @-sign—(or the unquote special form) occurs in
temp, then the value of the expression that follows is inserted into temp
in place of the comma and the following expression.

Once all these insertions have been completed, the resulting data expression
is returned.

Example:

(quasiquote (a ,(cons 'm '()) ,@(rest '(x y z)) end))
—~ (a (m) y 2z end)

The Scheme expression (quasiquote temp) may be abbreviated to ‘temp, us-
ing a ‘backquote’ (see the relevant entry on page 114, earlier in this section).

(quit) Procedure

Terminates the current EdScheme session and exits from the application.
(This is equivalent to choosing from the menu.)

(quote sezp) - B] Special Form

Returns the Scheme expression sezp without evaluating it. The Scheme
expression (quote sezp) may be abbreviated by "seep (see the relevant entry
on page 109, earlier in this section). Examples:

(quote (¢ 2 pt)}) — (* 2 pi)
(cons 1 °(4 all)) — (1 4 all)

(quotient n1 n2) Procedure

Returns the unique integer ¢ with the same sign as nf * n2 which is such
that, for some non-negative integer r strictly less than the absolute value of
n2,

[nt]= (gl +In2]) +r,

where ‘|2|’ denotes the absolute value of 2 (see the entry for the procedure
abs earlier in this section). The second input must not be zero.

L

The Syntax of EdScheme 203

If both inputs are exact, then the result is exact; otherwise, the result is
inexact. (See Section 5.9: Eractness in Chapter 5: Numbers and Numeric
Procedures for further information concerning the exactness of numbers.) Ex-
amples:

(quotient 17 3) +~ 5 (quotient -17 3.0) +— -5.0
(quotient 17 -3) —~ -5 (quotient -17.0 -3) ~ 5.0

(ram k) o " Procedure

Returns a pseudo-random integer from 0 through k-1; k& must be an exact
positive integer no greater than 32767. Example:

{random 4)
1+ Returns one of the numbers 0, 1, 2, or 3.

— - . —____ _ _______________ _____________________ __________}
(randomise) Procedure

(randomize)

Seeds the random number generator with an integer that depends on the state
of the computer’s internal clock. This should be called before the procedure
random—see above—is used to generate a sequence of random numbers.

e P —

(rational? exp) Procedure

A predicate that returns the boolean #t if and only if its argument is a rational
number. Examples:

(rational? -3/7) +— #t (rational? (/ 1+i)) = #f
(rational? 3.5) — #f (rational? '#(1 2 3)) — #f
(rational? -6.0) — #t (rational? “fraction) S

e e ———

(rationalize 1 z2) Procedure

Returns a representation of the simplest rational that differs from 21 by no
more than the absolute value of 22. (If @, b, ¢, and d are integers such that
b and d are non-zero, a and b are relatively prime, and ¢ and d are relatively
prime, then a/b is simpler than c/d if and only if |a] < |e| and [b} < |4,

11: Syntax and Semantics

where |z| denotes the absolute value of z—see the entry for the procedure abs
earlier in this section.)

If both inputs are exact numbers, the result will be an exact rational; oth-
erwise, the result will be inexact. If you require the result to be an exact
rational independently of the exactness of the inputs, then you should use
the procedure exact—rationalize, described earlier in this section. (For further
information about the exactness of numbers, see Section 5.9: Eractness in
Chapter 5; Numbers and Numeric Procedures.)

Examples:

(rationalize pi 1/1000000) — 3.141592920353982
(rationalize 2/5 1/10) — 172
(rationalize 6.25 -1/5) — 6.333333333333333

(read) Procedure
(read port)

Returns the next data expression from the input port, if provided, or the
current input port, otherwise—see the entry for the procedure current-input-
port earlier in this section—updating the port to the first character following
that data expression.

If an end-of-file marker is reached before a character is located that could
begin a data expression, or if the port is already at end-of-file, then the
end-of-file object #!eof is returned.

If an end-of-file marker is reached before a data expression is complete, an
error is reported.

If port is a serial port, EdScheme returns the entire contents of the serial
port’s input buffer in the form of a string. If the input buffer is empty, then
the empty string is returned. Sometimes, however, read may appear to return
the empty string even though the input buffer is not empty. This is because
the buffer may contain some non-printing characters, a zero, for example. It
is therefore advisable when using read to access input from a serial port to
pass the resulting string through the procedure string->list (see the relevant
entry later in this section).

If port is specified as the Transcript Window, or if no port is specified and
the current input port is the Transcript Window, then EdScheme waits while

The Syntax of EdSchemne 205

you enter characters at the keyboard. As soon as you hit a carriage re-
turn after having completed the data expression that began with the first
non-whitespace character you entered, EdScheme returns the completed data
expression. Example:

(read)

(ab’c
dﬂ'
e)f#(gh) —~ (ab “c
a» G)

e _____._..__._]

(read—char) Procedure
(read—char port)

Returns the next character from the input pert, if provided, or the current in-
put port, otherwise—see the entry for the procedure current-input—port earlier
in this section—updating the port to the following character.

If the port is at end-of-file, then the end-of-file object #!eof is returned, and
the port remains at end-of-file.

If port is a serial port, then EdScheme returns the next character in the
input buffer or, if there are no characters in the buffer, a (non-printing) zero
character.

If port is specified as the Transcript Window, or if no port is specified and
the current input port is the Transcript Window, then EdScheme waits for
you to enter a character at the keyboard. As soon as you do so, EdScherne
returns the character in question, without displaying your keypress on the
screen.

eV ———
(read-line) Procedure
(read-line port)

If port is associated with an input file, or if no port is specified but the
current input port is associated with an input file—see the entry for the
procedure current-input—port earlier in this section—then the portion of the
contents of that file from the current file position up to (but not including)
the next newline character or the end-of-file marker (whichever comes first) is
returned as a string, and the port is updated to the first character of the next

11: Syntax and Semantics

line or to the end-of-file, respectively. If port is already at end-of-file, then
the end-of-file object #!eof is returned, and the port remains at end-of-file.

If port is a serial port, then read-line behaves exactly as the procedure read
in similar circumstances (see the relevant entry above).

If port is specified as the Transcript Window, or if no port is specified and
the current input port is the Transcript Window, then EdScheme waits while
you enter characters at the keyboard. As soon as you hit a carriage return,
EdScheme returns a string containing everything you have typed (not includ-
ing the carriage return).

(real? ezp) Procedure

A predicate that returns the boolean #t if and only if its argument is a real
number. (See Chapter 5: Numbers and Numeric Procedures for information
concerning the types of numbers EdScheme supports.) Examples:

(real? -3/7) - #t (real? #025) +— #t
(real? 3@1.57) — #f (real? 1+i) +— #f
(real? ‘(ab)) +~ 3f (real? #\5) +— #f
(real? 15##) ~— #t
(real-part z) Procedure

Returns the real part of the complex number z. (For information concern-
ing EdScheme’s treatment of complex numbers, see Chapter 5: Numbers and
Numeric Procedures.) Examples:

(realpart 1.2) — 1,2
(real-part 1) - 1

(real-part (/ 3-4i)) — 3/26
(real-part (make—polar 3 (/ pi 3))) — 1.5

e s f————
(rec var sezp) Special Form

A binding for the variable var to an unspecified value is added to the current
environment, the Scheme expression sexzp is evaluated in this extended envi-
ronment, the value to which war is bound is changed to the resulting value,
and the value of var in the resulting new environment is returned.

L -

The Syntax of EdScheme 207

Usually, sezp evaluates to a procedure that is recursive. The environment of
such a procedure contains a self-reference, and in consequence the procedure
will execute more rapidly than would otherwise be the case, since the re-
cursive calls do not require a search of the global environment. Furthermore,
procedures defined in this way may be ‘renamed’ using the define special form.

The Scheme expression (rec var sezp) is equivalent to the Scheme expression
(letrec ([var sezp]) var). (See the entry for the letrec special form earlier
in this section.)

(remainder n1 n2) Procedure

Returns the unique integer r strictly between n2 and —n2 such that r ¥ nl
is positive and, for some integer g,

nl=(¢gxn2)+r,

that is, the remainder—with the same sign as n1—when n1 is divided by
n2. The second input must not be zero, The result is exact if both inputs
are exact, but inexact otherwise. Examples:

(remainder 14 3) - 2 (remainder 14 -3.0) —~ 2.0
(remaindesr -14 -3) +— -2 (remainder -14 3.0) +— -2.0

(See also the procedure modulo, which is described earlier in this section, and
behaves slightly differently.)

- — — — — — — - . — - ___ __ —— — ___ — ——— _}
(repeat k sezp? ...) Spectal Form

Evaluates the Scheme expressions sezpl, ..., in order of appearance k times,
and returns the value of the last Scheme expression (or some unspecified value,
if there are no Scheme expressions).

Example (in Degree Mode):

(repeat 3 (forward 100 G) (right 120 G) 'done) +— done

i Draws an equilateral triangle with sides 100 turtle steps
s long in graphics window G.

11: Syntax and Semantics

(reset) Procedure

Resets EdScheme, returning the initial and global environments to their orig-
inal states, and re-loading the file ‘EdScheme Init.s”, if it is present.

(rest pair) Procedure

Returns the second component of the input pesr. Examples:

(rest "(a b c)) + (b c)
(rest '({((a) b) {c d))) — ({c dA))

This procedure behaves in exactly the same way as the procedure cdr (see the
relevant entry earlier in this section).

(reverse list) Procedure

Returns a list containing the data expressions in the input Iis¢ in the reverse
order. Example:

(reverse 'laf{bc) (d(e)))) — ((d (&)) (b c) a)

(right z) Procedure
(right £ gwin)

Adds z radians or degrees (depending on Angle Mode you have chosen in
the dialog accessed through the sub-menu in the
menu) to the current heading of the turtle in graphics window gwsn, if pro-
vided, or the most recently active open graphics window, otherwise, adjusting
the direction of the turtle on screen if it is currently being shown.

(round z) Procedure

Returns the integer that is closest to the real pumber z, choosing the even
possibility if two integers are equally close. The result is exact if and only if
the input is exact. (For further information about the exactness of numbers,
see Section 5.9: Eractness in Chapter 5: Numbers and Numeric Procedures.)
Examples:

The Syntax of EdScheme 209

(round -17/2) +— -8 (round 3.5) — 4.0
(round p3) — 3.0 (round -355/113) — -3

(runtime) Procedure

Returns the current value of the system clock as an inexact number (rounded
to the nearest hundredth of a second).

(seed k) Procedure

Seeds the EdScheme random number generator with the integer k, which
must be non-negative and less than 65536.

(set! var sezp) Special

Evaluates the Scheme expression sexp in the current environment, assigns the
resulting value to the variable var (for which there must already be a binding
in the current environment) and returns an unspecified value. Example:

(define = 9) w unspecified
E] — 9

(set! z (+ 2 €)) — unspecified
z — 81

- " .. — _ _ ___ _ ——]
(set—car! pair ezp) Procedure

Sets the first component of the input patr to be ezp, returning an unspecified
value. (See the entry for the procedure set-first! below.)

(set—dr! pair ezp) Procedure

Sets the second component of the input pasr to be ezp, returning an un-
specified value. (See the entry for the procedure set-rest! below.}

(set-first! pair exp) Procedure

Sets the first component of the input pair to be ezp, returning an unspecified
value. Example:

11: Syntax and Semantics

(define L '(a b ¢)) — unspecified

L — (ab ¢
(set-first! L'(abc)) — unspecified

L — ((abec)be)

(See also the procedure set—car!, described above.)

- — _ __ _ — —— _—— . _— . __
(set-rest! pair ezp) Procedure

Sets the second component of the input pair to be exp, returning an un-
specified value. Example:

(define L '(a b c)) — unspecified
L — (abc)

(set-rest! L'(123)) +— unspecified
L — {(a123)

(See also the procedure set—cdr!l, described above.)

e g e p——— Y —
(set-volume k) Procedure

Sets the current volume to the one whose reference number is k. If k is
not the reference number of one of the volumes recognized by the operating
system, then an operating system error message is generated. To avoid this
happening, use a Scheme expression such as the following:

(let ([port (open—input—file (choose-input-file))])
(set—volume (last~volume))

(close—port port)

'done)

and, using the File Selector, select any file that is in the desired volume.

(sin z) Procedure

Returns the sine of z as an inexact number. If z is real, it is interpreted as
being in radians or degrees, according to the Angle Mode you have chosen in
the dialog accessed through the sub-menu in the
menu. If z is not real, then its sine is calculated in the manner explained on
page 46 in Chapter 5: Numbers and Numeric Procedures. Examples:

The Syntax of EdScheme 211

(sin 90) — 1.0 [in Degree Mode]
(sin (/ ps 6)) — 0.5 [in Radian Mode]
(sin 3-4i) — 3.853738037919377+27.016813258003931

[in either mode]

tz) Procedure

If z is real, returns the positive square root of z. If z is not real, returns
the square root such that either its real part is positive or its real part is
zero and its imaginary part is non-negative. In all cases, the result is inexact.
(For further information about FdScheme’s handling of complex numbers,
see Chapter 5: Numbers and Numeric Procedures; in particular, Section 5.9:
FEractness provides more information about the exactness of numbers.) Ex-
amples:

(sqrt 4) — 2.0 (sqrt -6.25) — 0+2.5i
(sqrt 3-4i) — 2.0-1.0i

(stop—alert str) Procedure

Activates a Macintosh stop alert box containing the contents of the input
string. The size of this box is set by EdScheme and the text of the alert
automatically word-wraps to fit inside the box.

(string ch? ...) Procedure

Returns a string whose contents comprise all the arguments in order of ap-
pearance. Example:

(string #\O F\space #\h F#\i #\!) —~ "0 hi!"

(string? exp) Procedure

A predicate that returns the boolean #t if and only if its argument is a string.
Examples:

(string? “"twine and thread”) +— #t
(string? 'twine-and-thread) + #f

11: Syntax and Semantics

M

(string<? sir1 ...) Procedure

A predicate that returns the boolean #t if and only if its arguments are in
strict lexicographic order based on the char<? comparison (see the relevant
entry earlier in this section). Examples:

(string<? "left” “margin” "wide”) — #t

(string<? “Ray” "Raymond”) - #t

(tring<? "down’” "UP) o

(string<? "vest”) - Wt

(string<?) L et
M
(string<=? str? ...) —

A predicate that returns the boolean #t if and only if its arguments are in non-
strict lexicographic order based on the char<? comparison (see the relevant
entry earlier in this section). Examples:

(stringe=7 “teeny” “teeny” "weeny”) — #t
(string<=? *polka—dot” "bikini") S
(string<=? "Bean”) — #t
(string<=7?) — #t

eepwas T

A predicate that returns the boolean #t if and only if all its arguments are,
character for character, equal strings. Examples:

{string=? "abc” “abc” (string #\a #\b #\c)) — ¥t
(string=? "Abc"” "abc") N
(string=7 "abc”) - #t
(string=7?) — #t

W

(string>? str1 ...) Procedure

A predicate that returns the boolean #t if and only if its arguments are in
strict lexicographic order based on the char>? comparison (see the relevant
entry earlier in this section). Examples:

The Syntax of EdScheme 213

(string>? “right” "margin” “fat”) »s #t
(string>? "Jo” " Josephine”) — #f
(string>? "back” “DOWN") — #t
(string>? "Gee!”) = 8t
{string>?) - #t
(string>=? atr! ...) Procedure

A predicate that returns the boolean #t if and only if its arguments are in non-
strict lexicographic order based on the char»? comparison (see the relevant
entry earlier in this section). Examples:

(string>==? “that” "binds” “Together”) — #t
(string>=? "him” "up”) — ¥
(string>=? “orchestra”) — &t
(string>=7) #t

e ———————————
(string-append sir1 ...) Procedure

Returns the string obtained by concatenating all the input strings, in order.
Example:

(string-append “back” “to” "front”) — "backtofront"

(string—<i<? strf ...) Procedure

A predicate that returns the boolean #t if and only if its arguments are in
strict lexicographic order based on the char—ci<? comparison (see the relevant
entry earlier in this section). Examples:

(string—ci<? “Ab” “ab” “xyz") — &£
(string—ci<? “abc” "AbcD"}) — #t
{string—ci<? "DOG") - #t
(string—ci<?) — 8t

11: Syntax and Semantics

(string—ci<=7 sir? ...) Procedure

A predicate that returns the boolean #t if and only if its arguments are
in non-strict lexicographic order based on the char-ci<? comparison (see the
relevant entry earlier in this section). Examples:

(string—ci<=? “What"” "what” "WHAT?") — #t
(string—ci<=7 “No” “GO") — #f
(string—ci<c=7 "K") — #t
(string—ci<=7?) — #

— e — =27 e e —

(string—ci=? str? ...} Procedure

A predicate that returns the boolean #t if and only if its arguments are,
character for character, equal strings, when the distinction between upper-
and lower-case letters is ignored. Examples:

(string—ci=? "Abc” "abc” (string #\a #\B #\C)) — #¢
(string—i=? "AbcD” “abc”) — #f
(string—ci=? "sola”) — &t
(string—<i=7) — ¥t

m .

(string—<i>? strf ...) Procedure

A predicate that returns the boolean #t if and only if its arguments are in
strict lexicographic order based on the char—i>? comparison (see the relevant
entry earlier in this section). Examples:

(string—i>? “sloppy” “Organization” “EVERYWH ERE") — #¢
(string—ci>? “except” "HERE") = ¥
(string—ci>? “tie”) — %t
(string—<i>?) = 3t

(string—ci>=? atr1 ...)

A predicate that returns the boolean #t if and only if its arguments are
in non-strict lexicographic order based on the char—i>? comparison (see the
relevant entry earlier in this section). Examples:

The Syntax of EdScheme 215

(string—<i>=? "Slide” "downhill” “BACKwards”) — #t
(string—ci>=? "Scared” “stiff!") — ¥
(string—<i>=? "CRASH") - #t
(string—ci>=?) - #t

(string—copy sir) Procedure

Returns a copy of the input string. This is useful for preserving a copy
of a string that may subsequently be changed permanently by a modifier
procedure such as string-set! (sce the relevant entry later in this section).
Example:

(define S “abcde”) — unspecified
(define T (string—copy §)) — unspecified
(string—set! S 2 "Z") — unspecified
S — "abzde’
T — "abcde"

T e —
(string->expression sir) Procedure

Returns the first data expression in the input string. If the string ends before
the data expression that begins with the first of the string’s characters is
completed, an error is signalled.

Examples:

(string—>expression “(1 list) 2 many”) — (1 1list)
(string—>expression “#(a \"b\") ") — #(a "d")

(string-filll sér ck) Procedure

Sets all the characters of the input string to be ch. Returns an unspecified
value, Example:

(define S "hog tied”) — unspecified
(string-hll! § #\x) — wunspecified
s

— xxxxxxxx"

11: Syntax and Semantics

(string—length str) Procedure

Returns the number of characters in the input string. Example:

(string-length “one two"”) s+ 7

(string—>list sir) Procedure

Returns a list of the characters that make up the input string.

H you would prefer the output list to contain symbols rather than characters,
then use the procedure explode instead (see the relevant entry earlier in this
section).

Example:

(string—>list “Split up”)
— (#\S #\p #\1 #\i #\t #\space #\u #\p)

(string->number str) Procedure
(string->number str rad)

If the contents of the input string may be interpreted as an exact number with
an explicit radix prefix (see the first two examples below), or as an inexact
number, returns a number equal in value to the contents of str, ignoring the
rad input, if provided. (The result is displayed on the screen in radix 10
notation.)

If the contents of the input string may be interpreted as an exact number with-
out an explicit radix prefix, returns a number equal in value to the contents
of the input string, when interpreted as a number in radix rad, if provided,
or radix 10, otherwise. (Again, the result is displayed on the screen in radix
10 notation.)

In the potentially ambiguous case when the input string’s contents includes
no explicit radix prefix, but features one of the exponent markers d, o, £
that double as hexadecimal digits, the string’s contents are interpreted as a
hexadecimal number if rad is 16 and as an inexact decimal number if rad
is either 2, 8, 10, or not provided. (See the sixth through eighth examples
below.)

The Syntax of EdScheme 217

If the string’s contents are not interpretable as a number, or they are not
interpretable as a number in the specified radix, then the boolean #f is re-
turned.

For further information concerning EdScheme’s representation of numbers,
see Chapter 5: Numbers and Numeric Procedures.

Examples:
(string->number “#0123") ~ 83
(string->number “#0123” 16} ~ 83
(string->number *123" §) ~ 83
(string->number 123" 16) — 291
(string->number 74.9e3") — 4900.0
(string->number 23" 16) ~ 755
(string—>number ”2{3" 8) = 2000.0
(string->number *2f3") ~ 2000.0
(string—>number "15##” 8) +— 1500.0
(string->number “ten") ~ #f
(string—>number 29" §) — #

(string~read port) Procedure

(string—read port k)
(string~read zwin)
(string~read zwin k)

If the first input is a port, reads the contents of the file at that port, starting
at the current file position, and

o if an optional argument k is provided and its value is less than the
number of characters to the end of the file, ending & characters later;

o otherwise, ending with the final character before the end-of-file marker.

If the file position before string-read is applied is kf, then the file position
afterward will be at end-of-file (if the optional second input is not provided),
or whichever is the earlier of k1 + k and the end of the file (if it is).

If the first input is a text window, reads the contents of that window, begin-
ning from the start of the current text selection, and

11: Syntax and Semantics

¢ if an optional argument k is provided and its value is less than the
number of characters to the end of the window’s contents, ending &
characters later;

¢ otherwise, ending with the final character in the window.

When string—read is used to read from a text window, the text selection in that
window is left unchanged (see Chapter 8: Tert Windows and User Menus and
the entry for the procedure text-set—selection later in this section).

Returns the result as a string. The optional input k& must be positive and
less than 2 to the power 31 (that is, 2147483648).

For example, to read the entire contents of a text window T, use

(text-set—selection '(0 0) T')
(define contents (string—+ead T'))

(string-ref str k) Procedure

Returns the character with index & in the input string, where the first char-
acter has index 0, the second has index 1, and so on. The exact integer k
must be non-negative and less than the length of the string. Example:

(string—ref “abcde” 3) — #\d

Sets the character with index k in the input string to be ch, returning an
unspecified value. Note that the first character of a string has index 0, the
second has index 1, and so on. The exact integer £ must be non-negative and
less than the length of the string. Example:

(define S ”abcede™) — unspecified
S — "abcde"
(string-set! S 2 #\newline) — unspecified
s — "ab

de"

The Syntax of EdScherne 219

(string—>symbol sir) Procedure

Returns the contents of the input string as a symbol. This procedure al-
lows you to create symbols containing special characters or, if you have
not set the Case Sensitive Mode in the dialog accessed through
the [Preferences| sub-menu in the menu, containing characters not in

the default case. Example:

(string->symbol “one two”) + one two
w Note that this symbol contains
i @ space character.

(string-width sér) Procedure
(string-width sir gwin)

Returns, as an exact number of pixels, the width of the input string if it
were to be printed in the current font style in the graphics window gwin, if
provided, or the most recently active open graphics window, otherwise. The
information provided by this procedure is useful if you want to center text
relative to a given vertical line in a graphics window.

e s ——
(string—write sir port) Procedure
(string—write str zwin)

Writes the input string str to the specified port or text window.

In the case of writing to a text window, the string is inserted at the start of the
current text selection, and the text selection is reset by adding & to both start
and finish, where sir is k characters long. (See Chapter 8: Tezt Windows
and User Menus for information about text selections in text windows, and
later in this section for an entry describing the procedure text-set-selection.)

In the case of writing to a port, the string is placed in the file starting at
the current file position, overwriting the next k characters (where str is k
characters long) and extending the file if necessary.

(subl) Procedure

Returns 2 — 1 with the same exactness as . (See Section 5.9: Eractness in

11: Syntax and Semantics

Chapter 5: Numbers and Numeric Procedures for information concerning the
exactness of numbers.) Examples:

(subl 10) ~ 9
(subl -8/7) — —-15/7
(subl 3.4) — 2.4
(number—>string (subl 65536) 16) > "ffff"

(substring str k1 k2) Procedure

Returns the subsiring of sér starting at the character with index kf and
ending at the character with index k2-1. (Strings are ‘zero-indexed’; that is,
the first character has index 0, the second has index 1, and so on.)

k1 and k2 must be non-negative integers, each no greater than the length of
str, and such that kZ is less than or equal to k2,

Examples:

(substring “abcde” 24) — “cd"
(substring “abcde” 33) +— o

(substring—copy! str1 k sir2) Procedure

Sets the substring of s¢r1 starting at the character with index to be the string
str2. The number of characters replaced is equal to the lesser of the length
of str2 and the number of characters there are in str from the character
with index k to the end of the string. (Strings are ‘zero-indexed’; that is, the
first character has index 0, the second has index 1, and so on.)

k must be a non-negative integer strictly less than the length of str1.

Examples:
(define § “abcdefgh”) — unspecified
b — "abcdefgh"
(substring—copy! § 3 “zyx") — unspecified
) — "abczyxgh"
(substring—copy! S 6 "new”} — unspecified
§ — "abczyxne"

?

The Syntax of EdScheme 221

Sets all the characters of str from the one with index k2 through the one with
index k2-1 to be ch. (Strings are ‘zero-indexed’; that is, the first character
has index 0, the second has index 1, and so on.)

k1 and k2 must be non-negative integers, each no greater than the length of
str, and such that kf is less than or equal to k2.

Examples:
(define S “abcdefgh”) — unspecified
i) — "abcdefgh"
(substring-fill! § 2 6 "w") +— unspecified
S — "abwwwwgh'
(substring-fill! S 58 #\z) — unspecified
S — “abwwwzzz"

e —

(substring—find str1 k1 k2 str2) Procedure
(substring-find strf k1 k2 str2 bool)

If the boolean input is not provided or is #t, returns a number giving the
index of the leftmost character of s¢r? from the one with index k1 through
the one with index k2-1 that matches a character in str2, or returns the
boolean #f if no such match is found.

If the boolean input is #£, returns the index of the rightmost character of sir1
from the one with index kf through the one with index k2-] that matches
a character in str2, or returns the boolean #f if no such match is found.

(Strings are ‘zero-indexed’; that is, the first character has index 0, the second
has index 1, and so on.)

k1 and k2 must be non-negative integers, each no greater than the length of
str1, and such that kI is less than or equal to k2.

Examples:

(substring-find “abcdabedabed” 3 9 “beat”) — 4
(substring—find “abcdabedabed” 3 9 “brat” #f) — 8

11: Syntax and Semantics

L ___ ____ _______ . __ _______ . .. __ . . _ ... _]
(symbol? ezp) Procedure

A predicate that returns the boolean #t if and only if its argument is a symbol.
Examples:

(symbol? 'word) +— #t (symbol? "abc”) — #f
(symbol? 123) ~ #f (symbol? #\a) - #f
(symbol? '(a)) + #f (symbol? '#{123)) — #f
{symbol? *()) R
(symbol->string sym) Procedure

Returns the name of the input symbol as a string, using—with one exception
that is explained below—the default standard case for alphabetic characters if
that name includes any such characters and you have not chosen the Case Sen-

sitive Mode in the dialog accessed through the sub-
menu in the menu.

The one exception to the case-modification just described is as follows: If
the input symbol has been returned by the procedure string->symbol (see the
relevant entry earlier in this section), then symbol->string returns the string
using the original cases, irrespective of the Case Sensitivity setting. Examples:

(symbol->string "UnEvEn)
++ "UnEvEn" [with Case Sensitivity set]
~ "uneven" [with Lower Case set)
> "UNEVEN" [with Upper Case set)
(symbol->string
(string->symbol “UnEvEn"))

— "“UnEvEn" [in every case]

e . ___ _ — — _ _— —— ___ —— _____ __]
(tail stm) Procedure

Returns the (evaluated) second component of the input stream. Example:

{define A$
(cons—stream 1 (cons-stream 2 3))) — unspecified
(head (tait A%)) - 2

(tail (tail AS)) - 3

The Syntax of EdScheme 223

(tan z) Procedure

Returns the tangent of z as an inexact number. If z is real, it is interpreted as
being in radians or degrees, according to the Angle Mode you have chosen in
the dialog accessed through the sub-menu in the
menu. If z is not real, then its tangent is calculated in the manner explained
on page 46 in Chapter 5: Numbers and Numeric Procedures. (There are
restrictions on which numbers are suitable inputs to this procedure. See
Chapter 5 for more details.) Examples:

(tan 135) ~ =1.0 [in Degree Mode]

(tan (/ pi -3)) ~ -1.732050807668877 [in Radian Mode]

(tan -1+2i) — -0.03381282607989669+1.0147936161466341
[in either mode]

e e e —————
(text—alignment) Procedure
(text-alignment zwin)

Returns an integer specifying the type of text alignment currently in force
in the text window #win, if provided, or the most recently active open text
window, otherwise. The resulting integer is to be interpreted as follows:

0: flush left text 1: centered text —-1: flush right text

(text—char—closest pair zwin)

Returns the index of the character in the text window zwsn, if provided, or
the most recently active open text window, otherwise, that is closest (to the
left and on the same line) to the point whose coordinate in that window is
given by the specified pair of whole numbers.

The input pair must be a list of two numbers; it will usually be generated by
the Scheme expression (first (mouse—state})—see the entry for the procedure
mouse-state earlier in this section.

The contents of text windows are ‘zero-indexed*; that is, the first character
has index 0, the second has index 1, and so on.

11: Syntax and Semantics

T e —— i
(text—clean) Procedure
(text-clean zwin)

Wipes all the contents from the text window zwin, if provided, or the most
recently active open text window, otherwise, and sets the text selection to
(0 0). (See the entry below for the procedure text-set-selection.)

(text—clear) Procedure
(text—clear zwin)

Deletes the current text selection from the text window zwin, if provided, or
the most recently active text window, otherwise. (See the entry below for the
procedure text-set-selection.) If the text selection prior to carrying out this
operation was {k1 k2), then it is reset to (k1 k7).

"\ —]
(text—contents) Procedure

(text—contents zwin)

Returns the entire contents of the text window zwin, if provided, or the
most recently active text window, otherwise, as a string. The current text
selection—see the entry below for the procedure text-set-selection—remains
unchanged.

- .. . — ________________________________]

(text—copy) Procedure
(text—copy zwin)

Replaces the current contents of the clipboard by a copy of the current text
selection from the text window zwin, if provided, or the most recently active
open text window, otherwise. (See the entry below for the procedure text-
set—selection.) The current text selection remains unchanged.

L

(text—cut) Procedure
(text—cut zwin)

Cuts the current text selection from the text window zwin, if provided, or
the most recently active text window, otherwise, replacing the contents of
the clipboard by a copy of the selected text and deleting it from the window.

The Syntax of EdSchemne 225

(See the entry below for the procedure text-set—selection.) If the text selection
prior to carrying out this operation was (k1 k2), then it is reset to (k1 k1).

(text—display ezp) Procedure
(text~display exp zwin)

Displays the data expression ezp in the text window ewsin, if provided, or the
most recently active open text window, otherwise, inserting it immediately
before the first character of the current text selection (see the entry below for
the procedure text-set-selection).

If the text selection prior to carrying out this operation was (k1 k2), then it
is reset to (kf+n k2+n), where n is the print length of ezp (see the entry
earlier in this section for the procedure print-length).

(text-length) Procedure
(text—length zwin)

Returns the number of characters of text in the text window zwin, if pro-
vided, or the most recently active open text window, otherwise,

(text-lines) Procedure
(text-{ines zwin)

Returns the number of lines of text in the text window 2win, if provided, or
the most recently active open text window, otherwise.

If the final character in the window is a newline character, then, irrespective
of the current text selection (see the entry below for the procedure text—set—
selection}, the output from this procedure will be greater than the number of
‘visible’ lines by the number of final newline characters.

(text-paste) Procedure
(text-paste zwin)

Pastes the contents of the clipboard into the text window zwin, if provided,
or the most recently active open text window, otherwise.

If the print length of the inserted text (that is, the contents of the clipboard)
is » and the text selection prior to carrying out this operation is (k1 k2),

11: Syntax and Semantics

then the selected text—irrespective of its length—is replaced by the inserted
text, and the text selection becomes (ki+n kiI+n), that is, the caret is
placed at the end of the newly-inserted text. (See the entry earlier in this
section for the procedure print-length and the entry below for the procedure
text-set-selection.)

- — — - — . — —_ — — — — .
(text—readline) Procedure

(text-readline zwin)

Selects text window @win, if provided, or the most recently active text win-
dow, otherwise—see the entry for the procedure window—select later in this
section—and waits for you to type something. As you type, the characters
you are entering appear in the text window, starting after the last character
of the current text selection—see the entry below for the procedure text—set-
selection—and overprinting anything that is there already. If, however, you
reach the right margin of the text window, what you type stops being echoed
into the window. As soon as you enter a newline character, EdScheme returns
a string containing everything you have typed, except for the final newline
character. Furthermore, what vou have typed disappears from the text win-
dow, anything that had been overprinted is reinstated, and the text selection
remains the same as it was before the call to text-readline.

Y — — __— . __— _ _ _ —
(text—scroli-to—selection) Procedure

(text-scroll-to-selection zwin)

Scrolls the text window zwsn, if provided, or the most recently active open
text window, otherwise, so that the current text selection—or caret, if the
text selection is of the form (n n)—is visible. (See the entry below for the
procedure text-set—selection.)

(text-selection) Procedure
(text-selection 2win)

Returns the current text selection in the text window zwin, if provided, or
the most recently active open text window, otherwise. (See the entry below
for the procedure text-set-selection.)

The Syntax of EdScheme 227

- . _ _ __ _ _ __ ____________________ . _]
(text-set-alignment k) Procedure

(text—set-alignment k zwin)

Sets the type of text alignment in the text window zwin, if provided, or
the most recently active open text window, otherwise. The alignment setting
goes into immediate effect on the entire contents of the window, including
any material entered prior to the change of setting.

The input & must be one of -1, 0, or 1, the significance of each value being
as described under text-alignment above. The default alignment is flush left,
which corresponds to a text-alignment setting of 0.

- " —— - - — —_____ __— — — — — . ——]
(text-set—contents str) Procedure

(text—set—contents str zwin)

Sets the contents of the text window zwin, if provided, or the most recently
active open text window, otherwise, to be the contents of the given string.
Changes the text selection (see the entry below for the procedure text-set-
selection) to (k k), where k is the number of characters in the given string,
that is, the caret in the text window is placed at the end of the text.

e e —
(text—set-selection pair) Procedure

(text-set—selection pair zwin)

Selects the section of text indicated by the input patr in the text window
zwin, if provided, or the most recently active open text window, otherwise.

The input patr must be a list of two whole numbers, each no greater than
the total number of characters in the text window in question, and such that
the first is less than or equal to the second.

If this pair is (k1 k2), then the selected text comprises all the characters in
the window from the one with index kf through the one with index &2 — 1.
(The contents of text windows are ‘zero-indexed’; that is, the first character
has index 0, the second has index 1, and so on.)

If the text window is the selected window—see the entry for the procedure
window—select later in this section-—and its current scroll position permits, the
selected text will be highlighted in the window as soon as EdSchemne returns to
its top-level or following the next call to the procedure event—see the relevant

11: Syntax and Semantics

entry earlier in this section—whichever comes sooner. Whether visible or not,
it may be cut, copied, cleared, and so on, under program control using text-
cut, text—copy, text—clear (see the relevant entries above), or by the standard
mouse-and-menu methods.

If k1 and k2 are equal, then the effect is to position the caret immediately
before the character with index kf. Thus, you may position the caret at the
start of text window T by evaluating the Scheme expression

(text-set-selection "(0 0) T').

(text—set—spacing k) Procedure
(text—set—spacing k& zwin)

Sets the line spacing in the text window zwin, if provided, or the most
recently active open text window, otherwise, to that indicated by the input &.
This input must be one of the numbers 1, 2, or 3, which are to be interpreted
as described under text-spacing below.

(text-spacing) Procedure
(text-spacing zwin)

Returns an integer specifying the current line spacing in the text window
zwin, if provided, or the most recently active open text window, otherwise.
The significance of this integer is as follows:

1: single spacing 2: double spacing 3: triple spacing

(text-window) Procedure

Returns (the representation of) the most recently active open text window,
or the boolean #f if no text window is open.

(text-window? ezp) Procedure

A predicate that returns the boolean #t if and only if its argument is a text
window.

The Syntax of EdScheme 229

L . . "
(thaw proc) Procedure

Evaluates its argument, which must be a thunk—usually this will have been
generated using the procedure freeze (see the relevant entry earlier in this
section)—and returns the result. Examples:

(thaw (lambda () "yo!)) — yo!
(define F (freeze (cons 'a'(123)))) — unspecified
(thaw F) — (2123)

L . — _ — . _— ____ _— _ — _— |
the—empty—stream Variable

A variable that is bound initially to the empty list.

b - _ _ _ _ — _ - _— _ — . . - _ —___ _— _ — _ — — — — — _]
(the—environment) Procedure

Returns a representation of the current environment. (See the note in Chap-
ter 10, Section 10.12: Environments, concerning the printing of environments.)
Example:

(let ([a 2] [b 7]) (the—environment)) — (((a 2) (b TI))

(towards pair) Procedure
(towards pair gwin)

Returns an inexact number that gives the heading (in radians or degrees,
according to which Angle Mode you have chosen in the dialog ac-
cessed through the sub-menu in the menn) required to aim
the turtle in graphics window gwin, if provided, or the most recently active
open graphics window, otherwise, at the point with coordinate indicated by
the input pasr—which must be a list of two numbers. (See the entry for the
procedure turtle—set-heading later in this section.) Example:

(turtle—set-heading (towards '(100 -50) G) G)
i Aims the turtle in graphics window G at the
i point (100,-50).

11: Syntax and Semantics

e e
(trace proc) Procedures

(trace-both proc)
(trace—entry proc)
(trace—exit proc)

Cause messages to be printed either in the Trace Window or the Tran-
script Window each time the procedure proc is invoked. The target of these
messages is determined by whether or not you have checked the Qutput to
Trace Window checkbox in the dialog accessed through the |Trace...]item in
the menu. The procedures trace and trace—entry generate messages
on entry to proc; the procedure trace—exit generates messages on exit from
proc; and the procedure trace—both does so both on entry to and on exit from
proc. (See the entries for the corresponding untrace procedures later in this
section.)

transcript Variable

A global variable bound to (the representation of) the Transcript Window.

(transcript—off) Procedure

Cancels the current call to transcript—on (see the next entry), if one is in effect,
by closing the transcript file. If no such call is currently in effect, then no
action is taken. Returns an unspecified value.

— _ — _ __ _ _ ——— -
(transcript-on spec) Procedure

Causes an echo of the screen to be written to the file given by the input
specification. This echoing continues until such time as it is terminated by
a call to the procedure transcript—off (see the previous entry). The simplest
way to provide transcript-on with an accurate file specification is to enter a
suitable file name into the File Selector that is brought up in response to the
Scheme expression

(transcript—on (choose—output-file))

The Syntax of EdScheme 231

(truncate z) o ~ Proced

Returns the integer closest to ¢ whose absolute value is less than or equal
to the absolute value of . The exactness of the result matches that of the
input. See Section 5.9: em Exactness in Chapter 5: Numbers and Numeric
Procedures for information concerning the exactness of numbers. Examples:

(truncate -13/5) +— -2 (truncate pi) — 3.0
(truncate -10.5) — -10.0

(turtle—color) Procedure
(turtle—color gwin)

(turtle—colour)

(turtle—colowr gwin)

Returns an RGB triple denoting the current turtle color in the graphics win-
dow gwin, if specified, or the most recently active open graphics window,
otherwise. (See the first section of this chapter for further information con-
cerning RGB triples.)

(turtle-display ezp) Procedure
(turtle—display ezp gwin)

Prints the data expression ezp using the current pen color—see the entry
earlier in this section for the procedure pen—color—in the graphics window
gwin, if provided, or the most recently active open graphics window, other-
wise. The printing starts with the lower left corner of the data expression’s
first character at the current turtle position—see the entry below for the
procedure turtle-position—and, when the printing has been completed, the
turtle’s position has been moved to the lower right corner of the data expres-
sions’s last character. This procedure suppresses the double quotes delimiting
strings, ‘slashification’ within strings, and the #\-combination that identifies
characters.

e e ——

(turtle~heading) Procedure
{turtle-heading gwin)

Returns an inexact number indicating the heading of the turtle (in graphics

11: Syntax and Semantics

window gwin, if provided, or the most recently active open graphics window,
otherwise) in radians or degrees—depending on which Angle Mode you have

chosen in the dialog accessed through the sub-menu
in the menu—measutred clockwise from due North.

(turtle-hide) Procedure
(turtle-hide gwsin)

With immediate effect, hides the turtle in graphics window gwsn, if provided,
or the most recently active open graphics window, otherwise. (This has the
useful side effect of considerably speeding up most graphical activity.) If the
turtle in question is already hidden, no action is taken.

e ———
(turtle—paint bool) Procedure
(turtle-paint bool gwin)

If bool is #t, the turtle in graphics window gwin, if provided, or the most
recently active open graphics window, otherwise, will be shown (with imme-
diate effect) as a solid-filled triangle drawn in the current turtle color (see the
entry above for the procedure turtle—color). Otherwise, the turtle in question
is shown as a triangular outline drawn in the current turtle color. The default
condition is for the turtle to be shown in outline only.

(turtle—plane) Procedure
(turtie-plane gwin)

Returns a list of two pairs of inexact numbers, the first being the coordinate
(in turtle steps and relative to the current graphics origin) of the top left
corner of the turtle plane corresponding to the graphics window gwin, if
provided, or the most recently active open graphics window, otherwise, and
the second being the coordinate of its bottom right corner. The difference
between the first components of these coordinates is the width of the turtle
plane, and the difference between the second components is its height.

e ——— e ——— e
(turtle-position) Procedure
(turtle—position gwin)

Returns a list of two inexact numbers, indicating the coordinate (in turtle

The Syntax of EdScheme 233

steps and relative to the current graphics origin) of the turtle’s current po-
sition in the graphics window gwin, if provided, or the most recently active
open graphics window, otherwise.

e e e ——

(turtle—set—color rgb) Procedure
(turtle—set—color rgd gwin)

(turtle—set—colour rgh)

(turtle—set—olour rgb gwin)

Sets the color in which the turtle is drawn in graphics window gwsn, if pro-
vided, or the most recently active open graphics window, otherwise, to that
specified by the input RGB triple. (See the first section of this chapter for
information concerning RGB triples.)

W

(turtle—set-heading =) Procedure
(turtle—set—heading z gwin)

Sets the heading of the turtle in graphics window gwin, if provided, or the
most recently active open graphics window, otherwise, to , measured—
in radians or degrees, according to the Angle Mode you have chosen in

the dialog accessed through the sub-menu in the

menu—clockwise from due North.

(turtle—set—position pair) Procedure
(turtle-set—position pair gwin)

Moves the turtle in the graphics window gwin, if provided, or the most
recently active open graphics window, otherwise, from its current location to
the point whose coordinate is given by pair (in turtle steps relative to the
current graphics origin), drawing the intervening segment in accordance with
the current pen state in that window. (See the entries for the procedures
turtle—position and pen—state earlier in this section.) paiér must be a list of two
numbers.

Eﬁ
(turtle—show) Procedure

(turtle-show gwin)

With immediate effect, reveals the turtle in the graphics window gwin, if

11: Syntax and Semantics

provided, or the most recently active open graphics window, otherwise. If the
turtle in question is not hidden, then no action is taken.

e —————
(turtle—shown?) Procedure

(turtle—shown? gwin)

A predicate that returns the boolean #t if and only if the turtle in the graphics
window gwin, if provided, or the most recently active open graphics window,
otherwise, is currently not hidden. (Note that a turtle that generates a #t
output from this predicate may not actually be visible, because it might be
located outside the boundaries of its graphics window or in a graphics window
that is currently either hidden or overlaid by other windows.)

(unquote sezp) Special Form

Evaluates sezp and inserts the result at the position in the quasiquote-
expression in which this unquote-expression occurs. See the entry for the
special form quasiquote earlier in this section. Unquote-expressions may also
be abbreviated using a comima. See the entry on page 111 earlier in this
section.

b — e ——]
(ungquote—splicing sezp) Special Form

Evaluates sexp, which must evaluate to a list, and inserts the elements of
that list, in order of appearance, at the position in the quasiquote-expression
in which this unquote-splicing-expression occurs. See the entry for the special
form quasiquote earlier in this section. Unquote-splicing-expressions may also
be abbreviated using a ,@-combination. See the entry on page 111 earlier in
this section.

(untrace pro) 7 © Procedure
(untrace-entry proc)
(untrace—exit proc)

These procedures terminate the generation of messages that are being pro-
duced in response to calls to one or more of the corresponding trace procedures
(see the relevant entries earlier in this section). The procedure untrace-entry
terminates messages generated on entry to the procedure proc; untrace—exit

The Syntax of EdScheme 235

terminates those generated on exit from the procedure; and untrace terminates
all messages generated when the procedure proc is invoked.

%

user—global-environment Variable

A variable bound to the user global environment. This contains a single
frame: the global frame (which contains bindings for all the EdScheme prim-
itive procedures, for example}. It prints as the empty list. Nevertheless, the
contents of the global frame may be printed out by evaluating the Scheme
expression (first user—global-environment) at EdScheme’s top-level.

user—inttial-environment

~ Variable

A variable bound to the user initial environment. This contains two frames:
the initial frame (containing bindings you have defined at EdScheme’s top-
level), and the global frame (described in the previous entry). It prints as the
empty list, but the initial frame may be printed out by evaluating the Scheme
expression (first user—initial-environment) at EdScheme’s top-level,

%
(variant—case sezp clausel clause2 ...) Initialization File Special Form

Each clause must be of one of the following two forms:

o [rect (field1 ...} sezpl sezp2? ...]

o [else sezpl sezp2 ...]

(The convention in EdScheme is to enclose variant-case-clauses in brackets.
Brackets and parentheses are completely interchangeable, however.)

Taking all the clauses of a variant-case-expression together, the ‘dispatch’
expressions rect, ..., must all be distinct. Variant-case-expressions do not
have to include an else-clause, but if one is included, it should be the last
clause. (In any case, it is the last clause that EdScheme pays any attention
to!)

A variant-case-expression is evaluated as follows: First, the input Scheme
expression sezp is evaluated, producing a value v. Then, taking the clauses
in order of appearance,

11: Syntax and Semantics

e if the clause is not an else-clause, the value v is tested (using the predi-
cate recl?) to see if it is a record of type recl. If it is, then the corre-
sponding Scheme expressions, sezpl, sezp2, ..., are evaluated in or-
der of appearance in an environment in which the variables field?, ...,
are bound to the values of the corresponding—that is, same-named—
fields of v, and the variant-case-expression returns the value of the last
one. If v is not a record of type rec?, the process is repeated with the
next clause.

o if the clause is an else-clause, then the corresponding Scheme expres-
sions, sexpl, sexp?2, ..., are evaluated in order of appearance, and
the variant-case-expression returns the value of the last one.

It there is no else-clause, and v is not a record object of any of the types
reci, ..., then an unspecified value is returned,

For example, assuming tree—a is defined as in the example given for the special
form define-record earlier in this section,

(variant—case tree-a
[leaf (number) number]
[tree (number) number]
[else "error’]) — 1

(define tree—sum
(lambda (ir)
(variant-case tr
[leaf (number) number]
[tree (number left—tree right-tree)
(+ number
{tree—sum left—tree)

(tree-sum right-tree))]))) — unspecified
(tree-sum tree-a) — 6

(vector ezp1 ...) Procedure

Returns a vector whose entries are the given data expressions, in order of
appearance. Examples:

(vector 1 "ab” #\c¢ '(abc)) — #(1 "ab" #\¢ (a b c))
(vector) — *#()

L3

The Syntax of EdScheme 237

(vecto? ezp) Procedu

A predicate that returns the boolean #t if and only if its argument is a vector.
Exampies:

(vector? ‘(a b)) — #f (vector? "#{a b)) — #t
(vector? “ab”) — #f (vector? 'ab) — #f

e —
(vector—filll vec ezp) Procedure

Sets each entry in the vector vec to be the data expression ezp, and returns
an unspecified value. Example: :

(define V (vector 'al’'c)) — unspecified

v — #(a 1l c)

(vector-filll V' “pad”) +— unspecified

V — '(llpadll "pad" "pad")

{vector—tength vec) Procedure

Returns the number of entries in its argument as an exact integer. Example:
(vector-length "#(a #(a b) "ab” (a b))) — 4

T e —
(vector->list vec) Procedure

Returns a list whose elements are the entries of the input vector, in order of
appearance, Examples:

(vector->list "#(a (b c) “de” #\z)) — (a (b c) "de" #\z)

{vector—>list "#()) = ()
e .]
(vector—ref vec k) Procedure

Returns the entry of the vector vee with index k. Vectors are ‘zero-indexed’;
that is, the first entry has index 0, the second has index 1, and so on. & must
be non-negative and strictly less than the length of the vector. Example:

(vector—ref '#{abcd)2) — ¢

11: Syntax and Semantics

e m—
(vector-set! vee k exp) Procedure

Sets the entry of the vector vec with index k to be the data expression exp,
and returns an unspecified value. Vectors are ‘zero-indexed’; that is, the first
entry has index 0, the second has index 1, and so on. k must be non-negative
and strictly less than the length of the vector. Example:

(define V (vector 0 'a "b” '(abc))) — unspecified
1’4 — #(0 a "b" (a b c))
(vector—set! V' 3 j#\c) — unspecified
v — #(0 a "b" #\c)
(volume) Procedure

Returns the volume reference number of the current volume.

{wait z) Procedure
(wait z bool)

Causes EdScheme to pause for z seconds. (¢ must be a non-negative real
number less than or equal to 3600.) This procedure can be useful when
sending data to or reading information from a serial port.

If an optional boolean argument of #t is provided, EdScheme continues to
process events in (almost) the usual way. For example, you can open, close,
edit, and save documents, the Transcript Window, the Trace Window, and
so on. However, you cannot quit or edit the preferences or do anything that
requires action on the part of the compiler. So, you cannot evaluate Scheme
expressions during such a pause by typing them into the Transcript Window
or using the Keypad-Enter method. A pause may be interrupted using the
COMMAND-PERIOD hot key combination.

At the end of the pause, the program that was executing when the call to the
procedure wait was made continues as before.

Repeated calls using the Scheme expression (wait 0 #t) give the effect of being
in the EdScheme program development environment while a Scheme program
is actually running. However, the only ‘development’ possible under such
circumstances is simple editing in text or document windows.

The Syntax of EdScheme 239

(window? ezp)

A predicate that returns the boolean #t if and only if its argument is a
window.

(ine " Procedure

(window—close tecgzwin)

Closes the window designated by the input, if provided. Otherwise, all open
text and graphics windows are closed. When an input is provided, this is

equivalent to choosing from the menu.

* Procedure

(window-hide)
(window-hide tecgzwin)

Hides (that is, makes invisible) the window designated by the input, if pro-
vided. Otherwise, the most recently active open text or graphics window is
hidden. Hiding a window simply removes it from view without changing its
status as an open window or its place in the ‘stack’ of active windows. (Note
that evaluating either

(window—hide ezpression) or (window-hide clipboard)

is equivalent to choosing either [Hide expression] or [Hide clipboard], respec-
tively, from the menu.) This procedure has no effect if the window in
question is already hidden.

(window—position) Procedure
(window—position tecgzwin)

Returns a list of three pairs of numbers. The first pair gives the scroll position
of the window designated by the input, if provided, or the most recently active
text or graphics window, otherwise, The second pair gives the position of the
window’s top left corner in screen coordinates (if the window is currently
hidden, this pair will be (0 0), and if the window has a title bar, the corner
in question is the bottom left corner of the title bar), and the third pair gives
the width and height of the window in screen units (in the case of a window
with a title bar, the height does not include the depth of the title bar).

11: Syntax and Semantics

(window-print) Procedure
(window—print tgzwin)

Provided a suitable printer driver has been chosen using the item
in the menu, prints the window designated by the input, if provided,
or the most recently active open text or graphics window, otherwise.

———————— i — T
(window-select tecgzwin) Procedure

Selects the designated window, making it the most recently active window
to which all (appropriate) subsequently evaluated procedures are targeted by
default. This is equivalent to clicking on the window.

(window-set—position list) Procedure
(window—set—position list tecgzwin)

Positions the window designated by the second input, if provided, or the most
recently active text or graphics window, otherwise, so as to conform to the
positional information provided in the input Itst. This must be a list of three
pairs of numbers, whose significance is explained in the above entry for the
proced ure window—position.

Note that, if the optional input is either ezpresston or chpboard, then
specifying any scroll position other than (0 0) will have no effect on the
actual scroll position of the window in question, which remains (0 0).

The smallest window that EdScheme will open measures 50 by 50. If you
attempt to specify a smaller size, then EdScheme will replace any smaller
dimension by 50.

et —
(window-set-title str) Procedure

(window-set-title str tgzwin)

Changes the title of the window designated by the input, if provided, or the
most recently active text or graphics window, otherwise, to the contents of
the input string,.

The Syntax of EdScheme 241

(window-show) Procedure

(window—show tecgzwin)

Shows (that is, makes visible) the window designated by the input, if pro-
vided. Otherwise, the most recently active open {but hidden) text or graphics
window is shown. Note that evaluating either

(window—show ezpression) or (window—show clipboard)

is equivalent to choosing [Show expression] or [Show clipboard], respectively,
from the menu. Nothing happens if the window in question is already
shown. Furthermore, the window’s position in the ‘stack’ of open windows is
not changed; it is not necessarily revealed as the topmost window.

(windows—preferences) Procedure

Returns a list of five lists of exact non-negative integers that report the current

settings in the dialog accessed through the sub-menu
in the menu.

The first three lists, in order of appearance, give details of the fonts in use
for system messages, Scheme expressions, and data expressions, respectively.
Each of these lists contains three numbers, the first being the font number, the
second being the style number (calculated as explained in the entry for font-
set-style earlier in this section), and the third indicating the color according
to the following code:

0 - black 1 - red 2 — green 3 — blue
4 — cyan 5 — magenta 6 - yellow

The fourth list contains two numbers, the first being the point size of the
characters used in Transcript Windows, and the second being the point size
of those used in document windows.

The fifth list also contains two numbers, the first being the right margin of the
Transcript Window, and the second being the line length of the Transcript
Window. As expressions are displayed in the Transcript Window, EdScheme
starts a new line immediately after each atom (or ‘word’) that surpasses the
right margin, or as soon as the line length is reached (even if that means
splitting an atom or ‘word’), if this occurs sooner.

11: Syntax and Semantics

The default settings for these (which, in the case of the fonts in use, depend
on whether you are running EdScheme under Color Quickdraw™ or not) may
be found by clicking on the Defaults button in the dialog accessed

through the sub-menu in the menu.

iows-—set—preferences list) Procedure

Sets all the features in the dialog accessed through the
sub-menu in the menu so that they conform to the input lsf. This must

be a list of five lists whose form and meaning are described in the above entry
for the procedure windows—preferences. Example:

(windows—set—preferences
"((2 2 6) (1 32 0) (3 1 5) (10 10) (70 75)))

i1y Configures EdScheme to print system messages in yellow, italic
i characters from Font #2, Scheme expressions in black, condensed
iy characters from Font #1, and dela ezpressions in magenta, bold
e characters from Font #3. Also, both the transcript and document
i windows are set to use 10-point characters, and the Transcript

i Window’s right margin and line length are set to 70 and 75

i characters, respectively.

(with-input—from-file spec proc) Initialization File Procedure

Opens the existing file identified by the given specification ready for input
to EdScheme, establishing an associated port which is temporarily made the
current input port (see the entry earlier in this section for the procedure
current-input—port), calls the given procedure proc (which must be a thunk,
that is, a procedure of no arguments), and returns the value returned by the
thunk, after closing the temporary input port and restoring the input port
that was current when this procedure was called.

L . _________________________________ . ___ |
(with—output-to—file spec proc) Initialization File Procedure

Opens the specified file ready for output from EdScheme, establishing an
associated port which is temporarily made the current output port (see the
entry earlier in this section for the procedure current-output-port), calls the
given procedure proe (which must be a thunk, that is, a procedure of no

The Syntax of EdScheme 243

arguments), and returns the value returned by the thunk, after closing the
temporary output port and restoring the output port that was current when
this procedure was called. If the specified file already exists, its contents will
be overwritten during the course of the evaluation of this procedure.

e e e — e g—
(write ezp) Procedure

(write ezp port)
(write ezp gltzwin)

Prints exp to the specified port or window, if provided, or to the current
output port, otherwise. (See the entry earlier in this section for current-
output-port.) Returns an unspecified value,

Unlike the procedure display—see the relevant entry earlier in this section—
write does not suppress slashification, the double-quotes delimiting strings,
or the #\-combination identifying characters. In particular, this means that
you should only use this procedure to send data to a serial port if you really
intend double-quotes and special characters to be sent intact.

e i ————————
(write—char ch) Procedure

(write—char ch port)
(write—char ¢h glzwin)

Writes the given character—not its external representation—to the specified
port or window, if provided, or the current output port, otherwise. (See the
entry earlier in this section for the procedure current-output—port.) Returns
an unspecified value.

v —— ity
(zero? z) Procedure

A predicate that returns the boolean #t if and only if its argument is zero. If
z is inexact and close to zero, ontput from this procedure may be unreliable.
For further information about the exactness of numbers, see Section 5.9:
Ezactness in Chapter 5: Number and Numeric Procedures. Examples:

(zera? (- 5 5) — #t (zero? 2.3) —~ #f
(zero? -5e-10) — #f

244 11: Syntax and Semantics

Language Elements

This chapter catalogues the language elements—the procedures, variables,
constants, and special forms—of EdScheme 4.0 for the Macintosh. They are
grouped into sections according te their type, and are cross-referenced to
the detailed descriptions provided in Section 11.2: The Syntaz of EdScheme,
where these same language elements are dealt with in alphabetical order. In
addition, to the left of each entry in this chapter there appears a symbol indi-
cating its status relative to the Scheme language, as described in the Revised*
Report on the Algorithmic Language Scheme. R{RS categorizes language el-
ements as essential or—by implication—non-essential. We therefore par-
tition EdScheme’s language elements into three categories, denoted by the
following symbols:

o — R{RS essential; o — R{RS non-essential; * — EdScheme special

This coding will be useful if you are writing Scheme programs that you want
to be portable to other Scheme implementations.

12.1 Constants, Booleans, and Equivalence Predicates

Element Page | Element Page
o #f 109 o Jt 109
o () 110 % sthe-non-printing~object* 110
¢ boolean? 125 * empty-stream? 151
s eq? 152 e equal? 152

245

246

12: Language Elements

Element Page ' Element Page
s eqv? 153 ¢ not 187
* pi 197 % the—empty-stream 229

12.2 Characters

Element Page FElement Page
o char? 128 o char<? 129
e char¢=? 129 e char=? 129
o char? 129 s char>=7 130
o charalphabetic? 130 s char—cic? 130
o char—<i<c=? 131 e charci=? 131
o char<i>? 131 s char—ci>=? 132
¢ char—downcase 132 s char->integer 132
¢ char-ower—ase? 132 e char—-numeric? 133
¢ char—upcase 133 e char-upper—case? 134
¢ char—whitespace? 134 e integer->char 168

12.3 Strings

FElement Page Flement Puage
* expression—>string 158 e list->string 176
o make-string 181 e number->string 188
% open—input—string 190 e string 211
e string? 211 s string<? 212
o string<=? 212 e string=? 212
e string>? 212 e string>=? 213
e string—append 213 ¢ string—ci<? 213
e string—cic=? 214 s string-ci=? 214
e string—ci>? 214 o string—ci>=? 214
o string—copy 215 * string—>expression 215
o string—fill! 215 » stringlength 216
s string—>hist 216 o string->number 216
*x string—read 217 e string—ref 218
¢ string—set! 218 ¢ string—->symbol 219
* string—width 219 * string—write 219
e substring 220 * substring—copy! 220

124 Vectors 247
Element Page | Element Page
% substring—filll 221 * substring-find 221
e symbol->string 222
12.4 Vectors
Element Page Element Page
o list->vector 176 o make—vector 182
o vector 236 o vector? 237
o vector-fill! 237 ¢ vector-length 237
o vector->list 237 » vector—ref 237
s vector-set! 238
12.5 Numbers
Element Page Element Page
» & 110 e + 111
. - 111 o / 112
s < 112 e <= 112
*x <> 113 . = 113
. > 113 s >= 114
e abs 114 o acos 114
x addl 115 o angle 116
o asin 118 o atan 119
e ceiling 128 e complex? 136
o Cos 140 o denominator 148
s even? 154 » exact? 156
o exact->inexact 156 * exact-rationalize 157
o exp 157 o expt 158
e Hoor 161 e gcd 165
o imag-part 167 » inexact? 167
o inexact—>exact 167 e integer? 168
¢ lcm 172 o log 177
o magnitude 177 o make—polar 180
o make-rectangular 181 * max 182
e min 185 ¢ modulo 186
» negative? 186 e number? 188

248 12: Language Elements

Element Page Element Page

o numerator 189 s odd? 189
e positive? 199 * power 200
e quotient 202 * tandom 203
+ randomise 203 * randomize 203
e rational? 203 o rationalize 203
s real? 206 o realpart 206
e remainder 207 e round 208
* seed 209 o sin 210
o sqrt 211 * subl 219
o tan 223 e ltruncate 231
s zero? 243

12.6 Symbols and Lists

FElement Page Element Page
e append 116 e assoC 119
e assq 119 ® assv 119
e car 126 o cdr 128
s« cons 139 * delete! 147
x first 161 o for—each 163
* last 171 * last—pair 171
o length 172 o list 175
o list? 175 o list—ref 175
o list-tail 176 e map 182
s member 183 * member? 183
s memq 183 ¢ memv 183
* nth 187 ¢ null? 188
e pair? 193 * rest 208
e reverse 208 e set—car! 209
s set—cdr! 209 * set—first! 209
* set-rest! 210 ¢ symbol? 222

12.7 Graphics and Text Windows

Element Page Element Page
* arc 117 * arc—paint 118

Graphics and Text Windows

Element Page Element
% back 120 * bitmap?
% bitmap—close 122 * bitmap—fetch
* bitmap—mode 123 * bitmap—set—spec
* bitmap—spec 124 * bitmap—stamp
* clean 135 * draw—point
* font—set-style 162 * font—style
* forward 163 * graphics—origin
* graphics—set—origin 165 * graphics—window
% graphics—window? 166 * home
* left 172 * make-bitmap
* make—graphics-window 178 * make-text-window
* oval 192 * oval-paint
* pen—color 194 * pen—colour
* pen—down 194 * pen—down?
* pen—erase 194 * pen—reverse
~ pen—set—color 195 * pen-set—colour
* pen—sel—state 195 * pen-state
* pen-up 196 % point—color
* point—colour 198 * point-on?
* polygon 198 % polygon—paint
* right 208 * text—alignment
* text—-char—closest 223 * text—clean
* text—clear 224 * text—contents
* text—copy 224 * text—cut
* text—display 225 * text-length
* text-lines 225 * text—paste
* text-readline 226 % text-scroll-to—selection
* text-selection 226 * text—set-alignment
* text—set—contents 227 % ltext-set-selection
* text-set-spacing 228 * text—spacing
* text—window 228 * text-window?
* towards 229 *+ turtle—color
* turtle—colour 231 * turtle—display
% turtle—heading 231 * turtle-hide
* turtle-paint 232 * turtle—plane
* turtle—position 232 * turtle-set—color
% turtle—set—colour 233 * turtle—set-heading

250 12: Language Elements

Element Page FElement Page
* turtle—set—position 233 % turtle—show 233
% turtle—shown? 234 * window? 239
* window—close 239 * window-hide 239
* window—position 239 * window—print 240
* window—select 240 * window-set—position 240
* window—set-title 240 * window-show 241

12.8 Keyboard and Ports

. not to mention the Clipboard, Expression, and Transcript Windows.

Element Page Element Page
* *set—current-input—portx 110 + #set—current—output—port¥ 110
o call-with-input-file 126 o call-with—output-file 126
o char-ready? 133 * choose-input-file 134
% choose—output—file 134 * chpboard 135
* clipboard-set-text 135 * clipboard-text 135
s close—input—port 135 ¢ close—output—port 135
% close—port 136 % configure-serial-port 138
s current—input—-port 140 e current—output-port 140
o display 148 * EdScheme-volume 150
* eof? 151 e eof-object? 151
* ezpression 158 * expression-set—text 158
* expression—text 158 * file—exists? 159
* filedength 159 * file—margin 159
* file-position 159 * file—set-length 160
* file—set-margin 160 * file—set—position 161
« file—spec 161 + freshline 164
e input—port? 168 * last—volume 171
s load 176 ¢ newline 187
+ open—extend-file 189 o open—input-file 190
s open—output-file 191 * open-serial-port 191
e output—port? 192 s peek—char 193
* port? 199 e read 204
¢ read—char 205 * read-line 205
* set-volume 210 * transcript 230
o transcript—off 230 o transcript—on 230

12.9 Events, Menus, and the Mouse 251
FElement Page | FElement Page
* volume 238 o with=input—from—file 242
o with—output-to-file 242 e write 243
write-char 243
12.9 Events, Menus, and the Mouse
Flement Page Element Page
* event 154 * event—flush 156
* event-ready? 156 * make—-menu 180
* menu? 184 * menu~close 184
+ menu—item 184 * menu—number—of-items 184
* menu-set—item 184 * modifiers 185
* mouse—state 186
12.10 Debugging
Element Page | Element Page
% trace 230 * trace—both 230
* trace—entry 230 * trace—exit 230
* untrace 234 % untrace—entry 234
* untrace—exit 234
12.11 Keywords and Special Forms
Element Page Flement Page
o => 113 e and 115
s begin 120 * case 127
e cond 136 * cons—stream 139
o define 141 * define—afias 142
* define—macro 143 * define—record 145
« define-transformer i46 o delay 147
o do 149 e else 151
* error 153 * freeze 164
o if 166 ¢ lambda 169
o let 173 o lets 174

252 12: Language Elements

Element Page Element Puage
s letrec 174 * make—environment 178
* o 192 e quasiquote 201
s quote 202 * rec 206
* repeat 207 * setl 209
e unquote 234 » unquote—splicing 234
* variant—case 235

12.12 Miscellaneous

Element Page Element Page

e ' (single right quote) 109 o , (comma) 111
e ,@ (comma-at) 111 » (single left quote) 114
s apply 116 * atom? 120
o callfcc 125 * caution-alert 128
* color—quickdraw? 136 * colour—quickdraw? 136
* continuation? 140 * cursor 141
% derived? 148 * desktop 148
* eval 154 * explode 157
o force 162 * freemem 163
» freesp 164 * gc 164
« head 166 * implode 167
* integrate—primitlives 168 * language—preferences 170
+ language—set—preferences 170 + note—alert 187
+ pick—color 197 * pick—colour 197
* primitive? 200 * print-dength 200
e procedure? 200 % procedure—defnition 201
* procedure—environment 201 * quit 202
% reset 208 * runtime 209
* stop-alert 211 * tail 222
* thaw 229 * the—environment 229
* wait 238 * windows—preferences 241
* windows—set-preferences 242

o call-with—current—continuation 126

* user—global-environment 235

* user—inilial-environment 235

Index

" (double-quote), 100

(hash symbol), 32

#b, 37

F#d, 37

#'eof, 151

#f, 97

F#f, 109

#o, 37

*t, 97

#t, 109

#x, 37

' (single right quote), 96, 109
(1,29

(), 110

* 110
*set—current—input—port, 110
#set—current—output—port+, 110
*the—non—printing—object+, 110
+, 111

, (comma), 111

.0 (comma-at), 111

- 111

.o., 108

/, 112
<, 112

Index

Angle Mode, 75, 170 bitmap-mode, 58, 123
default, 75 bitmaps, 6, 58, 105
angles in mathematics, 54 color depth of, 178
angles in turtle geometry, 54 external representation of, 105
append, 116 bitmap—set—spec, 58, 123, 178
applications, Macintosh, 6 bitmap-spec, 58, 124
apply, 116 bitmap—stamp, 58, 124
arc, 117 bitmap stamping mode, 58, 123
arc—paint, 118, 193, 199 boolean?, 97, 125
arithmetic, boolean objects, 35, 97
bignum, 5 boolean values, 97
complex number, 5 booleans, 97
floating point, 5 breaking lines, 72
integer, 5 buffers,
rational, 5 debugging, 81
artificial intelligence, 3 graphics, 9, 80
asin, 46, 118 text, 25, 62, 80
assoc, 119 transcript, 21, 81
association list, 107
assq, 119 call by need, 147
assv, 119 calt/cc, 102, 125
atan, 46, 119 call-with—current—continuation, 102, 126
atom?, 102, 120 call-with—-input-file, 126
atoms, 102 call-with—output-file, 126
car, 30, 97, 103, 126, 161
back, 120 caret, 11
backquote, 114, 202 moving, 13 (footnote)
backslash, 100 carriage return, 134
bang, 33 (footnote) case, 127, 151
begin, 120 case-sensitivity, 74
bignum arithmetic, 5, 39 default setting, 75
binary, 36 catch, 101
binary tree, 145 caution—alert, 128
bindings, 103 cdr, 30, 97, 103, 128, 208
in Debug Transcripts, 22 ceiling, 128
bitmap?, 105, 122 centered text in text windows, 61
bitmap—close, 59, 122 changing exact to inexact, 45

bitmap—fetch, 58, 122, 178 changing inexact to exact, 45

255

changing menu items, 185
char?, 99, 128
char<?, 129, 212
char<=1, 129
char=1, 129
char»?, 129, 212
char>=7?, 130
char—alphabetic?, 130
char—i<?, 130, 213
char—i<=1?, 131
char—i=7, 131
char—i>?, 131, 214
char—ci>=17, 132
char-downcase, 132
char—>integer, 132
char-ower—case?, 132
char-numeric?, 133
char—ready?, 51, 133
char-upcase, 133
char—upper-case?, 134
char-whitespace?, 134
characters, 35, 99

printing, 99
checked menu items, 184
choose—input-file, 51, 93, 134, 177,

189

choose—output-file, 51, 134, 189, 191
CHURCH, Alonzo, 4 (footnote)
circular list, 98, 175
clean, 135

[Cloas), 84
[Clear Trace], 92

clearing text, 84

clearing the Trace Window, 92
clipboard, 83, 135
clipboard—set-text, 135
clipboard-text, 135

clipboard window, 26, 83, 85
hiding, 85
showing, 85
Clase), 70
[Close AT, 93
close—input-port, 51, 135
close—output—port, 51, 135
close—port, 51, 136
closing all document windows, 93
closing Debug Transcripts, 23
closing serial ports, 192
closing the Transcript Window, 21
closing windows, 70
codes for windows, 108
color depth of bitmaps, 178
Color QuickDraw ™, 197
color—quickdraw?, 136
colors for text, 20, 72
colour—quickdraw?, 136
comma, 111
comma-at, 111
comments, 106
compiler workspace, 81
complex?, 99, 136
complex number arithmetic, 5
complex numbers, 6, 35, 43
polar form, 116
cond, 136, 151
configuration codes for serial ports,
138
configure—serial-port, 52, 138, 191
cons, 30, 97, 103, 139
cons—stream, 103, 139, 144, 146
continuation?, 101, 140
continuations, 5, 7, 101
external representation of, 102
inaccessible, 102
memory used by, 102

Index

control character, searching for, 87
control panel, 197
convention, notational, 107
G, 84
copying text, 26, 84
cos, 46, 140
cosh, 47
cosine function, 46
hyperbolic, 47
inverse, 46
creating templates, 85
current environment, 104
current expression, 14, 25, 73, 85
evaluating, 15, 89

current—input-port, 140, 193, 204, 205,

242
current—output—port, 140, 164, 187,
242
current volume, 49
cursor, 141
customizing document windows, 72
customizing transcript windows, 72

[Cut, 83
cutting text, 26, 83

data expressions, 12, 29, 95
[Debugging), 77
debugging, 77
debugging buffer setting, 81
debugging window, 5
debug preference setting,
overriding, 92
[Debug Transcripts], 92
Debug Transcripts, 20, 21, 78
bindings in, 22
closing, 23
colors in, 22
disabling, 22

Debug Transcripts,
fonts in, 22
memory allocation for, 22
mutator procedures in, 22
numbering of, 22
procedures in, 22
temporarily disabling, 92
type styles in, 22
decimal, 36
decimal form, 41
decimal notations, 38
default Angle Mode, 75
default case-sensitivity setting, 75
default Language Mode, 75
default line length, 72
default partition size, 8
default pen state, 196
default right margin, 72
default text alignment, 227
default text size
in document windows, 74
in transcript windows, 72
define, 101, 141, 146, 207
define—alias, 105, 142
define-macro, 105, 143
define-record, 145, 236
define-transformer, 106, 146
definition formatting, 16
degrees—>radians, 197
delay, 103, 147, 162, 164
delayed evaluation, 5, 147
delayed objects, 103
delete!, 147
deleting text, 84, 88
denominator, 148
derived?, 148
deselected menu items, 184
desktop, 148

257

digits, 37 EdScheme session,
disabling Debug Transcripts, 22 transcript of, 12
temporarily, 92 EdScheme-volume, 150
display, 52, 61, 140, 148 elements of a list, 98
displaying the global frame, 103 elements of a vector, 100
displaying the initial frame, 103 elements of the empty list, 98
divisor, greatest common, 165 ellipsis, 108
do, 149 else, 151
document, else-clause, 127, 136, 236
creating, 23 empty list, 29, 35, 97, 110
document windows, 13, 23 elements of, 98
closing, 23 length of, 98
closing all, 93 empty-stream?, 151
customizing, 72 |Enter Selection], 87
default text size in, 74 ENTER (on keypad), 13
hot key switching, 17, 24, 94 entering selected text into search
indexing, 16 and replace, 87
memory allocation, 80 entering selected word into search
opening, 17, 23, 69 and replace, 87
saving, 17, 23, 70 environments, 5, 103
text size in, 74 current, 104
dot notation, 30 global, 208
double spacing, 228 initial, 208
double-quote, 100 eof?, 51, 151
draw—point, 150 eof-object?, 51, 151
eq?, 152, 183
83 equal?, 152, 183
[Edit Templates ...}, 85 eqv?, 153, 183
editing templates, 5, 85 erasing text, 84
editor, 5 error, 153
EdScheme , 4 error messages,
features, 4 target of, 78
initializing, 208 types of, 78
launching, 11 Error Modes, 170
on a network, 82 error while evaluating selections, 89
quitting from, 82 escape procedure, 101, 125
EdSchemne session, escaping special characters, 100

history of, 12 eval, 104, 154, 173

Index

[Evatuate), 89

evaluated expressions, 95
evaluating a selection, 24, 77
evaluating a whole file, 77, 90
evaluating current expression, 15,
89
evaluating expressions, 25
evaluating selected expressions, 89
error while, 89
evaluation, 12
delayed, 5, 147
hot key combination, 23
lazy, 147
even?, 154
event, 66, 154, 180, 185
event—flush, 156
event-ready?, 156
exact?, 44, 156
exact—>inexact, 45, 156
exact integer form, 37
exactness, 44
exactness prefix, 37
exact numbers, 44
exact—rationalize, 45, 157
exact—root, 40
exact to inexact, changing, 45
exiting from search and replace
dialog, 86
exiting from trace dialog, 91
exp, 45, 157
explode, 157, 216
exponent markers, 41, 216
exponential form, 41
exponential function,
general, 45
natural, 45
89

expression, 158

expression,
current, 14
evaluating, 15
data, 12, 29
evaluation of, 25
formatting, font selection for,
72
Scheme, 12, 29
expressions,
evaluated, 95
unevaluated, 95
expression—set—text, 158
expression—>string, 158
expression—text, 158
Expression Window, 14, 25, 85
hiding, 85
showing, 85
expt, 45, 158, 200
extension of the language, 5
external representation of
bitmaps, 105
continuations, 102
graphics windows, 105
macros, 105
menus, 105
ports, 104
procedures, 76, 101
records, 145
text windows, 106
transformers, 106
vectors, 32

#, 109

factorial, 150

false, 97

FD, 101

fetching a bitmap image, 58
fields of a record, 145

ex

259

[File], 69

file—exists?, 159
file-handling, 5
file indexing, 5
file—dength, 51, 159
file-margin, 51, 159
file name, 49
file—position, 51, 159
files, 49

loading, 77, 92

random access, 161
File Selector, 51
file—set—length, 51, 160
file—set—margin, 51, 159
file—set—position, 51, 161
file-spec, 161
file specification, {ull, 50
[Fid], 86
[Find gals), 57
Finder™, 49
finding the line number, 88
first, 30, 97, 103, 161
first class objects, 95
floating point arithmetic, 5
floor, 161
floppy disk, starting EdScheme from,

82
flush left text, 61
flush right text, 61
flushing a serial port, 192
fonts, 20, 72
font selection for expression format-
ting, 72

font-set-style, 162, 241
font-style, 72, 162
font style for graphics, 219
for—each, 163
force, 147, 162, 164

form feed, 134
84
formatting definitions, 5, 16
formatting, hot key combinations,
16
formatting Scheme expressions, 72,
84
forward, 163
forward slash in rational numbers,
40
fractions, 6
frame, 103
global, 103
initial, 103
freemem, 163
freesp, 164
freeze, 103, 147, 162, 164, 229
freshline, 52, 164
full file specification, 50
function descriptor, 101

garbage collection, 74, 164, 170
partial, 75, 165, 170

gc, 75, 156, 164, 170

ged, 165

general exponential function, 45

general logarithm function, 46

global environment, 208

global frame, 103, 235
displaying the, 103

Gt Tme], 58

go to line number, 88

graphics buffer, 9, 80

graphics font style, 219

graphics—origin, 165

graphics origin, 165

graphics-set-origin, 165

graphics toalbox, 5

Index

graphics, turtle, 5

graphics—window, 165

graphics-window?, 105, 166

graphics windows, 6, 53, 105
external representation of, 105
memory requirements, 54
minimum size, 54

greatest common divisor, 165

hash £, 97

hash symbol, 32

hash t, 97

head, 103, 166

hexadecimal, 36

[Hide Clipboard), 85

[Hide Expression), 85

hiding the Clipboard Window, 85

hiding the Expression Window, 85

hiding the Trace Window, 91

history of EdScheme session, 12

home, 165

hot key combinations for
formatting, 16

hot key document-switching, 94

hot key evaluation, 23

hot keys for templates, 85

hyperbolic cosine function, 47

hyperbolic sine function, 47

hyperbolic tangent function, 47

Hyperbot™, 5,139

identifiers, 95
quoting, 96
rules for, 96
if, 166
imag-part, 167
implode, 167
improper fractions, 41

improper lists, 30, 98
printing, 98

inaccessible continuations, 102

indentation, 15

index in a list, 31, 98

index in a string, 100

index in a vector, 32, 100

indexing document windows, 16

indexing files, 5

inexact?, 44, 167

inexact->exact, 45, 167

inexact numbers, 44

inexact to exact, changing, 45

initial environment, 208

initial frame, 103, 235
displaying the, 103

initializing EdScheme, 208

input port, 51, 104, 140

input—port?-com, 51, 168

input-string, 168

inserting a template, 85

inserting text, 88

integer?, 168

integer arithmetic, 5

integer—>char, 99, 168

integers, 35, 37

integrated editor, 5

tntegrate—primitives, 102, 168

inverse cosine function, 46

inverse sine function, 46

inverse tangent function, 46

iteration, 149

Keypad-ENTER, 13
keywords, 95

lambda, 101, 142, 146, 169

[Canguags), 74
language extension, 5

ex

261

Language Mode, 9, 74, 170
default setting, 75
language preferences, 74
language—preferences, 77, 170
language-set—preferences, 77, 170
last, 31, 171
last—pair, 171
last-volume, 171
launching EdScheme, 11
lazy evaluation, 147
lem, 172
least common multiple, 172
left, 172
length, 31, 172
length of a list, 98
length of a string, 100
length of a vector, 100
length of the empty list, 98
let, 173
named, 173
let*, 174
let-body, 173
letrec, 174, 207
lexicographic order, 212
line feed, 134
line length, 72
default setting, 72
line number,
finding, 88
go to, 88
line width in text windows, 61
line-breaking, 72
Lisp, 3, 29
ist, 175
list?, 30, 99, 175
list, 6, 29, 97
association, 107
circular, 98, 175

list,
elements of, 98
empty, 29, 35, 97, 110
improper, 30, 98
index in, 31, 98
length of, 98
one-referenced, 31
printing, 98
zero-referenced, 31

list—ref, 31, 175, 187

list->string, 176

list-tail, 176

list=>vector, 176

In, 47

load, 77, 176

Load ..., 92

loading a file, 77, 92

log, 46, 177

logarithm function,
general, 46
natural, 46

lookup, 137

macros, 5, 105

external representation of, 105
magnitude, 114, 177
make-bitmap, 58, 105, 178
make—environment, 104, 154, 178
make—graphics-window, 178, 181
make—menu, 65, 105, 180
make—polar, 75, 180
make-rectangular, 181
make—string, 181
make-text—window, 61, 181
make—vector, 33, 182
map, 182
marker, exponent, 41
masking a bitmap image, 58

Index

matching parentheses, 5, 11, 25, 72
mathematical information, 45
max, 182
member, 183
member?, 183
memoization, 147, 162
[Memory), 79
memory allocations, 79
for Debug Transcripts, 22
for text, 25
for the Trace Window, 23
memory encroachment, 81
memory requirements,
for document windows, 80
for graphics windows, 54
for text windows, 62
memory used by continuations, 102
memq, 183
memy, 183
menu?, 105, 184
menu—lose, 66, 184
menu—item, 65, 184
menu—items, 66
menu items,
changing, 185
checked, 184
deselected, 184
selected, 184
unchecked, 184
menu—number—of—items, 66, 184
menus, 63, 105
external representation of, 105
user-generated, 6
menus:
, 83

ate

B’E
E
P
=]

va

menus:
Windows/|, 93
menu separator line, 66, 180, 184
menu-set-item, 65, 180, 184
min, 185
minimum turtle plane, 179
mixed numbers, 41
mode,
angle, 75, 170
bitmap-stamping, 58
case-sensitivity, 74
language, 9, 74, 170
modem, 191
modifiers, 185
modulo, 186, 207
Monaco, 72
mouse—state, 186
moving text, 83
moving the caret, 13 (footnote)
multi-apply, 146
Multifinder™, 8
multiple, least common, 172
mutator procedures in Debug Tran-
scripts, 22

name of a file, 49

named let, 173

natural exponential function, 45
natural logarithm function, 46
negative?, 186

network, running EdScheme on, 82
[New], 69

[New Transcript|, 82

newline, 52, 164, 187

newline character, searching for, 87
Newton’s Method, 39

nib of turtle pen, 196

not, 187

notation for decimals, 38
notational convention, 107
note-alert, 187
nth, 31, 187
null?, 29, 98, 188
number?, 35, 99, 188
number bases, 36
numbering of debug transcripts, 22
numbers, 99
complex, 6, 35, 43
exact, 44
inexact, 44
rational, 6, 35, 39
real, 35, 41
number—>string, 36, 41, 188
numerator, 189
numeric constants, 36
numeric prefixes, 36

object-oriented programming, 7
objects, first class, 95

oblist, 165

oblist size setting, 81

octal, 36

odd?, 189

one-referenced list, 31
[Open -} 69

[Open As Transcript ... |, 82
open—extend-file, 51, 189

open files setting, 79

opening a new transcript, 82
opening document windows, 17, 69
open—input—file, 51, 190
open—input-string, 168, 190
open—output-file, 51, 191
open-serial-port, 52, 191

or, 192

origin, graphics, 165

output from tracing, 91

output port, 51, 104

output-port?, 51, 192

oval, 192

oval-paint, 193

overriding debug preference setting,
92

[Pge Setup), 71
pair?, 30, 97, 193
pairs, 30, 35, 97, 108
parenthesis-matching, 5, 11, 25, 72
partial garbage collection, 75, 165,
170
partition size, 8
default, 8
[Pasis, 84
pasting text, 26, 84
path name, 50
patience, 143
peek—char, 51, 193
pen nib, turtle, 196
pen—color, 194
pen-colour, 194
pen—down, 194
pen-down?, 194
pen-—erase, 194
pen—reverse, 195
pen-set—color, 195
pen—set—colour, 195
pen—set—state, 194, 195
pen-state, 117, 118, 163, 166, 192,
194, 195, 198, 233
pen state, default, 196
pen—up, 196
pt, 197
pick—color, 197
pick—colour, 197

Index

point—color, 198
point-colour, 198
point—on?, 198
polar angle, 116
polar form of complex numbers, 43,
116
polygon, 198
polygon—paint, 199
port?, 104, 199
ports, 50, 104
external representation of, 104
input, 51, 104
output, 51, 104
serial, 5, 49, 104
positive?, 199
positive sense for angle measure-
ment, 54
power, 16, 159, 200
71
preferences,
language, 74
windows, 72
preferences file, 82
prefixes, 36
pretty-printing, 72, 84
primary Transcript Window, 78
primitive?, 200
[Pkt], 71
print—length, 200, 225
printer, 191
printer driver, 71
printer setup, 71
printing,
characters, 99
from windows, 71
improper lists, 98
lists, 98
strings, 100

printing,
vectors, 100
procedure?, 101, 200
procedure—definition, 201
procedure-environment, 201
procedures, 35, 100
external representation of, 76,
101
procedures in Debug Transcripts,
22
program formatting, 5
programming interface, 5
promise, 139, 147, 162
prompt, 11

quasiquote, 201, 234

[GuTE), 82

quit, 82, 202

quitting from EdScheme, 82
quote, 96, 202

quote mark, 109

quotient, 202

quoting identifiers, 96

radix, 36, 108

radix prefixes, 36, 216

random, 203

random access files, 161

randomise, 203

randomize, 203

rational?, 203

rational arithmetic, 5

rational form, 42

rationalize, 203

rational numbers, 6, 35, 39

rational, simpler, 204

re-opening a Transcript Window,
21

read, 51, 140, 204

Index

read—char, 51, 185, 205
reading from serial ports, 204
read-line, 51, 205
real?, 206
real numbers, 35, 41
real-part, 206
rec, 206
record, external representation of,
145
record fields, 145
record object, 145
rectangular form of complex num-
bers, 44
recursion, 4
recursion depth setting, 79
recursion, tail-, 4
[Feda) 53
redoing, 83
reinstating a filed transcript, 20, 82
remainder, 186, 207
repeat, 207
repeat depth setting, 79
[Rephacs], 58
[Replace all, 88
[Replace and find again|, 88
replace, search and, 86
reset, 208
rest, 30, 97, 103, 208
reverse, 208
RGB triples, 109, 194
right, 208
right margin, 72
default, 72
round, 208
rules for identifiers, 96
runtime, 209

sans serif typeface, 29

[Eave), 70

Bavs A5) 0
[Save As Text ...|, 71

saving document windows, 17, 70
saving text windows, 70
saving Transcript Windows, 20, 70
Scheme, 3
Scheme expression, 12, 29
evaluating selected, 89
formatting, 72, 84
Schemer's Guide Mode, 74
[Searck], 86
search and replace dialog, 86
entering selected text, 87
entering selected word, 87
exiting from, 86
searching for,
control character, 87
newline character, 87
special character, 87
seed, 209
etect 11, 84
selected menu items, 184
selecting text, 24, 83, 84
selecting the Trace Window, 93
selecting the Transcript Window,
93
[Selection, 59
selection, evaluating, 24, 77
separator line in menus, 66, 180,
184
serial interface, 6
serial ports, 5, 49, 104, 138, 238
closing, 192
configuration codes, 138
flushing, 192
reading from, 204
set!. 200

Index

set—car!, 209
set—cdr!, 209
set—first!, 209
set—vest!, 210
set—volume, 151, 171, 210
settings:
compiler workspace, 81
debugging buffer, 81
graphics buffer, 80
oblist size, 81
open files, 79
recursion depth, 79
repeat depth, 79
text buffer, 80
trace depth, 79
transcript buffer, 81
[Show Clipboard], 85
[Show Expression|, 85
showing,
the Clipboard Window, 85
the Expression Window, 85
the Trace Window, 91
SICP, 7
simpler rational number, 204
sin, 46, 210
sine function, 46
hyperbolic, 47
inverse, 46
single spacing, 228
sinh, 47
slash, forward, 40, 42
slashification, 100
solid fill, 196
sorting, 7
space, 134
special characters, searching for, 87
specification, full file, 50

82

sqrt, 39, 46, 152, 211
square root function, 46
stack tracing, 170
stamping a bitmap image, 58
stamping mode for bitmaps, 123
Standard Scheme Mode, 74
starting EdScheme from a floppy
disk, 82

STEELE, Guy Lewis, Jr. 3
stop—alert, 211
stopping tracing, 91
streams, 5, 103
string, 211
string?, 99, 211
string¢?, 212
string<=7, 212
string=7, 212
string>?, 212
string>=?, 213
string—append, 213
string—ci<?, 213
string—ci<=?, 214
string—ci=?, 214
string—ci>?, 214
string—ci>=7, 214
string—copy, 215
string—->expression, 215
string—filll, 215
string—length, 216
string—>list, 157, 204, 216
string->number, 167, 216, 219
string-read, 51, 62, 190, 217
string—vef, 218
strings, 35, 99

indexing, 100

printing, 100
string-setl, 215, 218
string->symbol, 219

ex

267

string—width, 219

string—write, 52, 61, 219

style numbers, 162

styles for text, 20, 72

subl, 219

substring, 220

substring—copy!, 220

substring-fill!, 221

substring—find, 221

SUSSMAN, Gerald Jay, 3

switching between documents, 17,
24

symbol?, 96, 222

symbols, 35, 95

symbol->string, 167, 22

System 7™, 8

#t, 109

Tab, 134

tail, 103, 139, 222

tail-recursion, 4

tan, 46, 223

tangent function, 46
hyperbolic, 47
inverse, 46

tanh, 47

target of error messages, 78

[omplates), 85

templates, 85
creating, 85
editing, 5, 85
hot keys for, 85
inserting, 85

text-alignment, 61, 223

text alignment in text windows,
default, 227

text buffer, 25, 62, 80

text—char—closest, 223

text-clean, 224
text—lear, 62, 84, 224
text colors, 20, 72
text—contents, 62, 224
text—copy, 62, 84, 224
text—ut, 62, 83, 224
text—display, 61, 225
text fonts, 20
text-length, 225
text—ines, 225
text—paste, 62, 84, 225
text-readline, 62, 226
text resource files, 62
text-scroli-to—selection, 226
text, selecting, 24
text—selection, 226
text—set-alignment, 61, 227
text—set—contents, 61, 227
text-set—selection, 62, 83, 219, 224,
226, 227
text-set—spacing, 228
text size
in document windows, 74
in transcript windows, 72, 73
text-spacing, 228
text styles, 20, 72
text—window, 228
text-window?, 105, 228
text windows, 6, 61, 105
alignment in, 61
external representation of, 106
line width in, 61
memory requirements of, 62
minimum size of, 61
saving, 70
word wrap in, 61
thaw, 162, 164, 229
the—empty—siream, 103, 151, 229

Index

the—environment, 104, 153, 229
throw, 101
thunk, 143
title bar of window, 239
Too complex error, 79
toolbox, graphics, 5
towards, 220
trace, 230, 234
[Tace), 90
trace—both, 102, 230
trace depth setting, 79
trace dialog, exiting from, 91
trace—entry, 230
trace—exit, 102, 230
trace output, 91
{Trace Window|, 93
Trace Window,
clearing, 23, 92
hiding, 91
memory allocation for, 23
selecting, 93
showing, 23, 91
tracing programs, 90
stopping, 91
[amscript], 93
transcript, 230
transcript buffer, 21, 81
adjusting, 21
transcript of an EdScheme session,
12
transcript—off, 230
transcript—on, 230
Transcript Window, 5, 11, 20, 104
closing, 21
customizing, 72
Debug, 20, 78
default text size in, 72
default text size in, 73

Transcript Window,
opening a new, 82
primary, 78
reinstating, 20, 82
re-opening, 21
saving, 20, 70
selecting, 93
text size in, 72

transformers, 5, 106
external representation of, 106

tree, binary, 145

triple spacing, 228

true, 97

truncate, 231

turtle—color, 231

turtle—colour, 231

turtle—display, 231

turtle graphics interface, 5

turtle—heading, 54, 231

turtle—hide, 232

turtle—paint, 232

turtle pen nib, 196

turtle—plane, 232

turtle plane, 54, 179
default size, 54
minimum size, 54, 179

turtle—position, 231, 232

turtle—set—color, 233

turtle—set—colour, 233

turtle—set-heading, 54, 229, 233

turtle—set—position, 233

turtle-show, 233

turtle—shown?, 234

types of error messages, 78

typewriter typeface, 29

unchecked menu items, 184

[l 83

Index 269

undoing, 83 whole file,
unevaluated expressions, 95 evaluating, 77, 90
unknown digit form, 38, 41 wholes, 140
unquote, 201, 234 window?, 239
unquote—splicing, 201, 234 window—close, 239
untrace, 230, 234 window codes, 108
untrace—entry, 234 window-hide, 239
untrace—exit, 234 window—position, 239
user—global-environment, 103, window—print, 240
152, 235 [Windows), 72, 93
user—initial-environment, 103, windows,
152, 235 Clipboard, 85

closing, 70
Debug Transcript, 5
document, 13, 23
indexing, 16
Expression, 14
graphics, 6, 53
printing from, 71
text, 6, 61
Transcript, 5, 11, 20
zooming, 93
window—select, 227, 240
window—set—position, 61, 179, 181, 240
window—set-title, 179, 240
window—show, 179, 241
printing, 100 w.indows preferences, 72
windows—preferences, 74, 241
zero-referenced, 32 .
vector—set!, 33, 238 windows-set—preferences, 74, 242
window title bar, 239

variables, 95, 96
variant—case, 145, 235
vector, 32, 236
vector?, 100, 237
vector elements, 100
indexing, 100
vector-hll!, 237
vector-length, 33, 237
vector—>list, 237
vector—ref, 32, 237
vectors, 6, 29, 32, 35, 100
external representation of, 32
indexes for, 32
length of, 100

volume, 49

current, 40 with-input—from-file, 242
volume, 238 with—output—to—file, 242

word wrap in text windows, 61

W, 140 write, 52, 61, 243
wait, 238 write—char, 52, 243
while, 144
whitespace, 134 zero?, 44, 243

[Whole file|, 89 zero-referenced list, 31

270 Index

zero-referenced vectors, 32

o), 93

zooming a window, 93

EdScheme for the Macintosh

'Explore the art of programming with EdScheme!

- EdScheme for the Macintosh is an incremental optimizing
- compiler for the Scheme language designed specifically with
~ the learner in mind, but providing a complete implementation
- of the Scheme specification for the intermediate and advanced
user. The programming environment takes advantage of the
~ capabilities of the Macintosh computer, and includes:

e A full-featured integrated editor, with special capabilities
such as parenthesis-matching, program formatting, file
indexing, and template editing.

e Customized transcript and debugging windows featuring
colored and styled text in addition to all the facilities
provided by the integrated editor.

e A powerful and comprehensive turtle graphics interface,
providing users with access to the Macintosh's Color
QuickDraw graphics toolbox and many additional
graphics capabilities.

At the same time, EdScheme is a powerful implementation,
~owith:

¢ Unlimited precision ‘bignum’ integral and rational
arithmetic, double-precision floating point arithmetic to
approximately 16 significant digits, and complex number
arithmetic.

|« Comprehensive file-handling facilities, -as well as access
- through the Macintosh’s serial ports to external devices
- such as the Hyperbot robotic controller.

- e Language extension using macros and transformers,
- support for advanced programming techniques such as
- object-oriented programming, delayed evaluation, and
- streams, and first-class continuations and environments.

Requirements

* Mac Plus or newer

« System 6.0.4 or better

« One megabyte RAM ISBN 0-9628745-6-6

