Contents

CHAPTER 1 Introduction

About This Manual

On-screen Help

What You Need to Get Started

Installing Script Debugger
Registering Your Copy of Script Debugger

CHAPTER2 Getting Started

AN W W

~

The Script Debugger Interface

A Script Window

The Data Window

The Controls Window

The Result and Event Log Windows
A Dictionary Window

Dictionary Shortcuts

CHAPTER3 Creating and Editing Scripts

Creating and Editing a Script

Cursor Movement

Editing Scripts

Copying and Pasting Text

Compiling Scripts

Recording Scripts

Searching For Text

Replacing Text

Opening Scripts
Text Scripts

10
12
12
14
17

19

20
22
23
24
27
28
30
31
32
33

Debugger Scripts

33

Compiled Scripts

33

Script Applications

Droplets
Stationary Pads

Contents

33
33
33

CHAPTER 4

CHAPTER 5

il

Script Debugger User’s Guide

Saving Scripts 35
Text 36
Debugger Scripts 36
Compiled Scripts 36
Application 37

Saving As Run-Only 38

Printing Scripts 39

Locating Handlers, Script Objects, Global Variables and Properties ... 40

Extensions Scripts 42

Debugging and Stepping through Scripts 43

Debugging Strategies 44
Common Errors 45
Simple Strategies 46

Controlling Script Execution 48
Preparing to Step Through a Script 48
Stepping Through a Script 50
Setting Breakpoints 51
Clearing Breakpoints 52
Setting Temporary Breakpoints 52
Logging Apple Events 54

Using the Data Window 56
Adding Expressions to the Data Window 56
Adding Properties to the Data Window 58
Removing Expressions from the Data Window 58
Examining Script Variables 59
Examining AppleScript Expressions 59
Restrictions 61

Debugging Open, Idle and Quit Handlers 61
Executing an Open Handler 62
Executing an Idle Handler 63
Executing a Quit Handler 65
Script Debugger Extensions 66

Customizing Script Debugger 67

Changing Script Debugger Default Settings 68

AppleScript Formatting 68

Startup Action 70

Script Error Actions 70
Script Pause Action 71
Editing Options 71
Scripting Options 72
Changing Defaults for New Scripts 73
Adding Templates to the Templates Menu 74
Adding Applications to the Open Dictionary Menu 76
Adding Commands to the Extensions Menu 78
Attaching Scripts to the Menu Items 79
How Attachments Work 79
Creating Attachment Handlers 81
Debugging Extension and Attachment Scripts 82
CHAPTER6 ~ Common Problems and Troubleshooting 83
APPENDIXA Extension Scripts 87
Script Debugger Extensions 88
Add Properties To Data Window 89
Add To Open Dictionary Menu 90
Execute Idle Handler 91
Execute Open Handler (Files) 92
Execute Open Handler (Folders) 93
Execute Quit Handler 94
Hide and Show Descriptions 94
Lock and Unlock All Expressions 95
Paste File Path 96
Paste Folder Path 97
APPENDIXB Script Debugger Scripting Interface 99
Scripting Script Debugger 100
Certain Restrictions 100
Element Hierarchy 101
Augmented Suites 102
Text Suite 102
Core Suite 103
Miscellaneous Suite 104

Contents iii

Script Debugger Suite 104

Script Window 105
Create a Script Application 105
Save as Run-Only 106
Comment Lines 106
Scripting Pointers 107

Data Window 108

Dictionary Window 109

Event and Result Windows 111

APPENDIXC Scripting Additions 113

Additions Examples 114
AppleTalk Folder 114
Files & Folders Folder 114
Misc. Folder 115
Regular Expressions Folder 115
Resources 115
Speech Folder 116

Libraries 116

Script Tools 1.3 117

AppleScript 1.1 Issues 117

AppleTalk Control 118
Get Zone 118
List Zones 119
List Network Names 120
Get Network State 122

Choose Files and Folders Addition 123
Choose New File 123
Choose Several Files 125
Choose Several Folders 126
Get Default Folder 128
Set Default Folder 129

File IO Addition 130
CloseFile 130
CreateFile 131
CreateFolder 132
DeleteFile 133
ExchangeFile 134

iv Script Debugger User’s Guide

GetFileLength 135
GetFilePosition 136
LengthenFile 137
MoveFile 138
OpenFile 139
PositionFile 140
ReadLine 141
RenameFile 142
WriteLine 143
WriteString 144
Find Application 145
findApplication 145
Gestalt Addition 146
Get Gestalt 146
List Manipulation 148
Difference of 148
Intersection of 149
Union of 150
More Math Addition 151
Processes 153
List Processes 153
Get Process 154
Get Foreground Process 156
Get Current Process 157
Regular Expressions Addition 158
Compile Regular Expression 158
Match Regular Expression 159
Substitute Regular Expression 161
Replacements for Regular Expressions 162
More about Regular Expressions 162
Regular Expression Error Messages 166
Resource 10 Addition 168
AddResource 168
ChangeResource 170
ChangeStringResource 172
CloseResourceFile 174
CountlResources 175
CountlResourceTypes 176

Contents

CountResources 177
CountResourceTypes 178
CreateResourceFile 179
GetlIndexedResource 180
GetlIndexedResourceType 182
GetlResource 184
GetIndexedResource 186
GetIndexedResourceType 188
GetIndexedStringResource 190
GetResource 192
GetStringResource 194
OpenResourceFile 196
RemoveResource 197
GetUniquelResourceID 199
GetUniqueResourceID 200
Resource Class 201
Screens Addition 202
List Screens 202
Shutdown Addition 203
Shutdown 203
Speech Addition 204
Speak 204

List Voices 205

Get Voice 205
APPENDIXD Scheduler 207
Scheduler Components 208
Scheduling An Application or Document Event 208
Scheduler Features 213
Adding, Setting and Deleting Scheduled Events 213
Date and Time-Based Scheduling 214
Scheduling Events Periodically Throughout the Day 215
Scheduling Daily Events 216
Scheduling Weekly Events 217
Scheduling Monthly Events 218
Scheduling Yearly Events 220
Scheduling Events That Occur at a Specific Date and Time 221

vi Script Debugger User’s Guide

APPENDIX E

APPENDIX F

File and Folder-Based Scheduling 222
Scheduling Events When Folders Are Changed 222
Scheduling Events When the Number of Files In a Folder Reaches a Limit ... 223
Scheduling Events When the Size of a Folder Reaches a Limit 224
Scheduling Events When Files Are Changed 225

Volume-Based Scheduling 226
Scheduling Events When Volumes Are Mounted or Dismounted ... 226
Scheduling Events When Free Space on a Volume Reaches a Limit ... 228

Scheduling Features for PowerBook Users 229
Scheduling Events When the Power Adapter is Plugged in or Unplugged ... 229
Scheduling Events When the PowerBook Wakes Up 230

Launching Applications in the Background 231

Disabling Scheduled Events 232

Modifying Scheduler Preferences 233

Script Debugger and Projector 235

Files Checked out for Modification 236

Files Checked as Read-Only 236

Files Checked Out as Modifiable Read-Only 238

More Information about AppleScript 239

Apple’s Scripting Guides 240

Apple’s Finder Scripting Kit 240

Third-Party Books 241

Articles About AppleScript 241

MacScripting Mailing List 242

Index 243

Contents

vii

CHAPTER

Introduction

Script Debugger is a replacement for Apple’s Script Editor.
With it, you can create and edit scripts, but it has many
additional features that you will find invaluable if you are a

script developer.

Script Debugger provides you with a development environ-
ment for AppleScripts. Script Debugger has advanced editing
features including support for scripts larger than 32K and
Drag and Drop editing. It is fully Projector aware, and allows
you to make read-only projector files modifiable with the click
of a button. It also provides you with a complete debugging
environment. Script Debugger allows you to single-step
through your scripts and examine the contents of variables

while your script is executing.

Script Debugger is also scriptable, recordable, and attachable.
You can use AppleScript to customize Script Debugger by
adding scripts to its Extension menu and attaching scripts to
its other menu items. This allows you to customize and extend
Script Debugger for your work habits and needs. We're glad
you purchased Script Debugger. Enjoy.

Introduction 1

About This Manual

Chapter 1

This manual explains how to install and use the Script Debugger
software. Chapter 1 gets you started with Script Debugger. It tells you
what you need and walks you through the installation process.

Chapter 2 introduces you to Script Debugger’s interface. You will

learn about the different windows, the function of the various pop-up
menus, and the basic Script Debugger features. Chapter 3 discusses
each of Script Debugger’s features in detail. It shows you how to get the
most out of those features by walking you through creating and editing
a sample script.

Chapter 4 describes Script Debugger’s debugging capabilities. It begins
by discussing some strategies for debugging scripts, and then steps you
through debugging some example scripts. Chapter 5 shows you how to
customize Script Debugger by configuring the preferences, adding
scripts to the Extensions menu, and by attaching scripts to the other
menu items. Chapter 6 describes some common problems that you
might encounter while working with Script Debugger and offers some
solutions.

You will also find several appendices at the end of the guide that
contain documentation for the extension scripts that ship with Script
Debugger. In addition, there is also discussion of Script Debugger’s
scripting interface and the documentation for Late Night Software
Scripting Additions and Scheduler that are shipped with Script
Debugger. You will also find an appendix explaining how to find out
more about AppleScript and how to get help with your scripts.

This manual assumes that you are already familiar with the Macintosh
desktop as well as with basic Macintosh skills, such as using the mouse
and using the Chooser. This document also assumes you are somewhat
familiar with AppleScript.

On-screen Help

Script Debugger includes on-screen information that you can consult
when you need help. Balloon Help is a feature of System 7 that explains
the function or significance of items you see on the Macintosh screen.
To turn on Balloon Help, pull down the Help menu from the Help icon
(@) near the right end of the menu bar, and choose Show Balloons.
When you point to an item on the screen, a balloon with explanatory
text appears next to the item. To turn off Balloon Help, choose Hide
Balloons from the Help menu.

What You Need to Get Started

To use Script Debugger, you must have a Macintosh II or later with
Color QuickDraw. Your Macintosh must be running system software
version 7.0 or later with at least two megabytes of free memory. If you
install all of the components from the Script Debugger disk, you will
need close to 3 megabytes of disk space. This includes AppleScript 1.1.
If you already have AppleScript or System 7.5 installed, you will not
need as much free space on your hard disk.

The Script Debugger package includes the following items:
m one 1.4mb disk, titled Script Debugger Install

m this manual, the Script Debugger User’s Guide

m the Script Debugger Quick Reference card

Script Debugger has been accelerated for Power Macintosh, however,
AppleScript 1.1 has not. You will see performance increases while
editing scripts in Script Debugger, but executing and stepping through
scripts will still be emulated on a Power Macintosh.

Introduction 3

Installing Script Debugger

Figure 1-1
The Script Debugger
installer disk

Chapter 1

Follow the steps in this section to install the Script Debugger software
on your computer.

1. Insert the Script Debugger Install diskette.

Before inserting the Script Debugger Install diskette, make sure it is
write protected by moving the write protect tab on the back of the
diskette to the upper position.

When you insert the Script Debugger Install diskette, the Script
Debugger Installer disk window appears (Figure 1-1).

E[I= Script Debugger Install =E5

2 items 1.2 MB in dizk 11K avail
1= i

Read Me First Script Debugger Installer | |
o

<] [o]E

2. Read the Read Me First file.

The Read Me First file contains late breaking information that may not
appear in this manual. The Read Me First file also contains errata
information and release information for minor releases of Script
Debugger.

3. Run the Installer.

Install the Script Debugger software by running the Script Debugger
Installer. To run the installer, double-click the Script Debugger
Installer application. You will be greeted by an instruction dialog box
(Figure 1-2).

Figure 1-2
The Installer
startup

message ¥ersion 1.0.0

Copyright & 1993-1995
Mark Alldritt & Late Might Software Ltd.

Note: Turn off any anti-virus software you may have in
your computer before installing the Script Debugger
software, Youmay turn it on again after the installation iz
complate.

-
)
)
o)
-
‘9
)
0O
=
=
o
v

Continue

4. Click the Continue button to continue with the installation.
5. Select Easy or Custom installation.

When the installer is running, you are given the option of doing a
standard or a custom installation (Figure 1-3).

Figure 1-3
The Installer (@ Script Debugger Standard Install

window

Click "Install” to install the Script
Debugger software, including the Late
Night Software Scripting Additions 1.4,
Scheduler 1.2 and AppleScript 1.1.

Installation requires: 2828k

Clicking on the Install button installs AppleScript 1.1, Late Night
Software Scripting Additions, and Scheduler, in your System Folder.
It also installs a folder containing Script Debugger and the example
scripts that come with it.

Introduction

Figure 1-4
The Installer
prompts for the
version of Script
Debugger

You may want to use the Custom installation option. If you are running
System 7.5, AppleScript 1.1 is already installed. Clicking on the Custom
button allows you to install any of the components in the Script
Debugger package.

6. Select the version of Script Debugger that you want fo install.

After you select the type of installation and confirm that you want to
reboot your Macintosh after the installation is complete, the Installer
then prompts you to select the 680x0, PowerPC, or Universal version of
Script Debugger (Figure 1-4).

e You are running on a PowerPC machine. Some
AT applications to be installed can be run on both
PowerPC and 68010 machines.

Do you want to install the larger Universal
applications or the smaller specific ones?

[68010] [PowerPC][[Universal]]

Clicking the 680x0 button installs a version of Script Debugger that is
only compatible with 680x0 Macintoshes.

Clicking the PowerPC button installs a version of Script Debugger that
is only compatible with Power Macintoshes.

Clicking the Universal button installs a fat binary version of Script
Debugger. This version of the program is larger than the other two, but
is compatible with both 680x0 and PowerPC-based Macintoshes.

Registering Your Copy of Script Debugger

Chapter 1

In order to provide you with service, we need to know who you are.
Please take the time now to complete and mail the product registration
card. Just fill in your name, address, and computer model. We also
would appreciate your filling out the short questionnaire attached to
the registration card. Thank you in advance for your prompt response.

CHAPTER

Getting Started

This chapter introduces you to Script Debugger’s interface and
teatures. It discusses all of Script Debugger’s windows, shows
you their different features, and explains how to use them. The
chapter also describes the functions of the various pop-up
menus in Script Debugger and gives you some tips for getting
the most out of them.

Getting Started 7

The Script Debugger Interface

If you have used Apple’s Script Editor, Script Debugger’s Script window
will seem very familiar (Figure 2-1). It has a Script Description field
that you can show or hide by clicking on the triangle next to “Script
Description.” You can change the font, style, size, and color of the text
that you enter in the Script Description field using the hierarchical
menus at the bottom of the Edit menu.

A Script Window

Figure 2-1
Script Debugger’s
Script window

Hide or show the
script's description

Potential
breakpoints

Shows AppleScript
Handlers menu

Chapter 2

In addition to the Script Description label, you will also notice a Script
Debugger status button and a document pop-up menu. The options in
both of these items are also available in the Save As dialog, but the
button and pop-up menu items can save you time.

Script Debugger can save the expressions in the Data window and
breakpoint settings with your file. The Script Debugger status button is
valid for all file types, except text files. It controls whether or not
breakpoints, Data window expressions, and positions of the Data

window, are saved. If the button has an “x” through it, Script Debugger
does not save the debugging information.

Indicator showing Script

I_—_ Debugger status

E=————— Untitled-2 E|_E§
. s 3l Indicator showing script
— 1 = Seript Description: &I documenttypeg P
E Script description
<‘ editing area
=
piset thefile to -]
foose Fifo widlfl prospd o 1
"Selectafileto open: =& dggea "TERT"
< étell appfication "Sonipt Debugger”
L Crosource aare of theFilel
iend tell | Script editing area
=
i Handlerz « [<a] [=}

The black arrow is the current line indicator. When you are stepping
through the script, it indicates which line Script Debugger will execute
next.

Figure 2-2
The script type
pop-up menu

NOTE: If you save a script in Compiled or Application format with debug-
ging information and then edit the file using the Script Editor, the break-
point information will be lost when you open the file again using Script
Debugger.

The pop-up menu on the right side of the Script window lets you

see at a glance whether the open script was saved in Text, Debugger,
Compiled, or Application format (Figure 2-2). The Script Type menu
also allows you to change the document type without performing a
Save As. You can also open the Save As dialog box by option-clicking on
the script type pop-up menu.

+[g] Debugger Script
% Compiled Script
<> Application

=[]

You edit your scripts in the area below the script description. If you
have set the automatic indentation in the Preferences dialog box, your
script is automatically indented as you type it in.

You can change the font, size, style, and color of your script using the
AppleScript Formatting options in the Preferences dialog box. You will
also notice that potential breakpoints appear in the left boundary of the
Script window. Clicking on a diamond activates the breakpoint.

In the lower left corner of the Script window is a Handlers pop-up
menu. If your script has any handlers in it, they are listed in this pop-
up menu (Figure 2-3). If you select one of the handlers from the pop-
up menu, the Script window jumps to that handler. If you Option-click
on the Handlers menu, it lists the global variables, properties, and
script objects in your script along with the handlers.

If you are working on a script application or droplet script, you will see
an additional set of script indicators above the Script Description field
(Figure 2-3).

Getting Started 9

10

Figure 2-3
Script indicators

and the Handlers
pop-up menu

Sl listfolders =——————————— 1=

[* Script Description...

on 2po0 of srcFolders

< ListFiles(srcFolders)

end opes

—— KU RERFTEE. Frompt ThE Lesr ToF TolaErs 1o e sng then fo LisrFiles

on run
set srcFolders to cfoose saveraf Folders with prompt "Selectfolderstolist:”
ListFiles{srcFolders)

end run

L

== Frompd fe e fRlder o be Jisled sod e oudpud Tle
on ListFiles{srcFolders»
<& set newfFile 40 oftvose now Fife widf prosgd "Choosean outputfile:
ke set includeFolder o displfay dizfog -

nShanldthe folder path beincludedinthelisting?" fe #oms £"Cancel", "Yes", "Mo"> -
bert 200 "Mo"

on open
on Fun

Handlers e | on ListFiles

In Figure 2-3, the icon with the two arrows forming a circle indicates
whether or not the script is a Stay-Open script. In this case, the cross
through the icon indicates that the script stops whenever the run
handler finishes. You can change this setting by clicking the Stay Open
indicator or selecting the Stay Open checkbox in the Save As dialog
box.

The next icon indicates whether or not the script’s description is
shown in a splash-screen whenever the script runs. In this case, a cross
through the icon indicates that the description is not shown. You can
change this setting by clicking on the Splash Screen indicator or
selecting the Show Startup Screen checkbox in the Save As dialog box.

The Data Window

Chapter 2

Every Script window has a Data window associated with it. The Data
window contains the variables that you enter from the script. As you
run or step through a script, the contents of the variables in this
window are updated.

To add a variable to the Data window, enter it in the editing area, and
then press the Return key or click the Enter Variable button to the right
of the editing window. You will notice that the variable you entered is
added to the list of variables in the bottom portion of the window. You
can display global variables and properties, but not local variables.

Figure 2-4
A Script Data
window

Expression editing area

Expressions

Figure 2-5
Resizing the panes

in the Script Data
window

Untitled-1 (Data) EEEI
| VI | be _i Cancel expresgon
L Enter expression
the result alias "Mac0S Desktop Folder :short zen script” 43
theFile alias "Mac0S Desktop Folder :short zen seript” Expression values
=
]

If you are defining a variable for the first time, Script Debugger places
the comment “The variable <variable name> is not yet defined.” in the
values pane. If you have already run the script or have already stepped
through the first occurrence of the variable, the current value of the
variable is entered in the pane when you press the Return key (see
Figure 2-4).

You can control whether or not the information in the Data window is
saved with your script. To save the information, use either the Save
Debugging Information checkbox in the Save As dialog box or the
Debugging Information icon situated in the upper right hand corner of
the Script window.

You can resize the panes in the Data window by moving the pointer
over the dividing lines until it becomes a double-headed arrow (Figure
2-5). If you press and hold the mouse button, you can change the size
of a pane by dragging it. Generally, a pane only displays a single line of
text. While this is adequate for a variable name, you only see the first
line of the contents of the variable. If the script returns a list of values
for your variable, you may want to make the pane larger so you can see
more of the list.

=S[[I=——— Untitled-3 (Data) EE%I
|
the result The wvariable result is not defined. 4

AppleScript's text L

=]

Getting Started 11

The Controls Window

Figure 2-6
The Controls
window

The Controls window floats above your script and Data windows
(Figure 2-6). It provides you with a way to compile and control the
execution of your scripts as well as begin recording a script with a
single click.

Lo

Record Stop Pause Run Step Cornpile

You can hide the Controls window by selecting the Hide Controls
command from the Windows menu or by typing Command- — (Dash).

Even when the Controls window is hidden, you have access to all of its
commands through the Controls menu and keyboard shortcuts.

The Controls window is automatically hidden when windows other
than the Script and Data window, are activated. For instance, it is
hidden when you bring the Result, Event Log, or a dictionary window
to the front. It is hidden under these circumstances because the buttons
in the Controls window are not active.

The Result and Event Log Windows

The Result window shows the results of your script. For example, the
script

list folder “Macintosh HD:System Folder:Extensions:Scripting Additions”

12 Chapter 2

produces a list of the contents of the Scripting Additions folder. It
would be returned as a list, and you would see the list in the Result
window (Figure 2-7).

Figure 2-7
The Result
window

Figure 2-8
The Event Log
window

Result
£"Access Privileges for', "ACME Script Widgets 2.0, "Add Picture", |4
"AddResource”, "Add Sting List®, »Address of, "AGStat", “app E
menu", "Appendaeter, "AppleTalk Control®, "ApplicationInfo",
vapplicationMenu®, "Audio CD", "Available Dislects", "Beep",
"Choose Address”, "Choose Application”, "Choose File", "Choose
Files & Folders", "Choose From List®, "Chaoose Link", "Coerce
Record ToTexd", "CopyFile", “"CurentDate", "CurrentDatein
Seconds", "CurrentDialect, "Date Stingfort, "Depth®,
"Diglects", "DisplayDialog", "Displaytext", "Does Font Exist",
"DoesMonitor Support”, "EightyLister, *ExtractNumberfrom",
"Extract Picture", "Exract Resource", "Exract Sting List", "File
Commands", "FilelO", "File Tracket Enabler, "Find Application®,
"FindIn List", "FontInformationfor', "Fornat Mumber, " Front
Application”, "Gestalt", "GetUser', "IndexOf", "Is Application

The Event Log window shows you the Apple events that Script
Debugger sends to itself, to scripting additions, and to scriptable
applications. If you executed the list folder script above, the Event Log
window would show you the application receiving the Apple events, the
script that is sent, and the results of the script (Figure 2-8).

&= Event Log

2alt current applicalion

Fist Folfdor "MacOS:System
Folder:Extensions: Scripting Additions"
—-—=> {"Access Privilegesfor, "ACME
Script Widgets 2.0, "Add Picture", "Add
Resource", "Add Sting List", "Address
of*, "AGStat, "appmenu", “Append
aete", "AppleTalk Contral", "Application
Info”, "Applicationkenu, "AudioCD",
"awailable Dislects®, "Beep", "Choose
Address", "Choose Application”, "Choose
File", "Choose Files & Folders", “Choose
From List", "Choose Link", "Coerce
Record To Text", “"CopyFile", "Current
Date", "CurentDatein Seconds",
"Current Dialect”, "Date Sting for,
"Depth", "Dialects", "DisplayDialog",
"Displaytext", "Does Font Exist®, "Does
Monitor Support", "EightyLister, "Esxract
Mumberfrom®, "Exract Picture", "Extract
Resource", "Exract String List", "File
Caoramands", "FilelO", "File Tracker
Erabler, "Find Application", "FindIn

Notice that the result of the script appears as a list following the arrow

(—>).

Getting Started 13

14

A Dictionary Window

Every scriptable application and scripting addition has a dictionary

Figure 2-9
The Additions

Dictionary
window

Chapter 2

which contains all of the AppleScript terms that it understands. Script
Debugger’s Open Dictionary command in the File menu allows you to

open the dictionaries of scriptable applications and scripting additions.

The Additions menu item under the Open Dictionary command opens

the dictionaries of your scripting additions. When you select the com-

mand, Script Debugger opens all of the additions installed in your
Scripting Additions folder and builds an Additions Dictionary window

(Figure 2-9).

= Additians Dictignaiy o
Lipk: [tainr =] [Hirwehy: [Eeverts v | St Gime: [rors =]
mate Hignt Eerwars B8 Laie Might Sofvware Soiie fl
e E'Emm @ 1903-1995 Mark Alldritr & Late Night Software [=
bl gz
el bt marer)
okl All Rights Reserved
L o ey
Frimte el mtwork sigte gt e s of Azcle Talk
: = n_::r.r;: [P i TEE R Ty ST R T e Sl R EE Lt R T
"""""‘ e A
FlraTe ol pone gl (he currant AspdaTalk ots marm
) e e
mlr““ E Bemil whring -~ afed Tl oase s
B 1l 1 Tl
readey Témi aveas .
Fitin Brmir 1l whring - depds Tl s apoes
st Bt Aprsla Tk ek cbijcts (HEF naigs)
] Tiet meimywE naves
e |mbimet whring] - - AARETA AT A DS B A SN
okl Th | g auring] - - Anahr ol afiecy o, JoRds Sy Are Bt e
e T E !:‘_H- 'l-lll::.nnpl = = AR Al et Gkt .'h" Kt D E

Script Debugger groups events in the additions together by suite.
For instance, all of the events in the Late Night Software Scripting
Additions are grouped together in the Late Night Software suite.

You can use the Find command to search for Apple events and classes
in the Dictionary window.

Figure 2-10
The Dictionary
window for the
Scriptable Finder

To open an application’s dictionary, follow these steps:

1. Choose Other from the Open Dictionary hierarchical menu under the File menu.

A dialog box opens where you can select an application. Notice that
only scriptable applications appear in the dialog box.

2. Select an application and dlick the Open button.
The Dictionary window opens (Figure 2-10).

= Findai Dy r.|:|
Ligk: [faimi =] o Wirwehy [Ceminn v] P Gl [_apicaien |
[T oy
- T FoEeT T T
P P, OO . S = e
i P s
bt i Feddar
oot zpuce e]
coiod]
P B
Pt - A
sk
LR Lt
A
ok
ot lcas et | £
- 2 — E
ST i 1.- w1 L 4
bl TR E
B comrafner wi noloers
g sonbyegr Eletmtine
» - v waei Eoawe WV AR Tl R B e
ot v wdias e VF 0w TR, by Raer
o s iocafdan ©i e VD0 TdE b Raret
[com e by FIEETE W VY i
_HJ'N comirel panel b EICETE R WY (R
;‘_ § drrd accwryarg e DY OETE Wi, VY (EE
robjent | oty n.--._s;.'ru'rrp'l.-ue:-.h'-rm'r e
i il Fer W R i X, b e
et 2 W £ b [5]

As in the Additions Dictionary, the scrolling list along the left side of
the window shows you the Apple events that the application under-
stands and the objects in the application. This information is grouped
by suites in the application. The Finder, for instance, understands
events from the Required and Standard suites as well as its own Finder
suite.

The right side of the window contains the specific information about
the event or events that you select on the left side of the window. When
you select an event, its description, forms, and syntax appear on the
right side of the window along with a description of the parameters.
You will also notice that you can select and copy the syntax examples
from the window. If you have Macintosh Drag and Drop installed, you
can drag the examples from the Dictionary window and drop them in a
Script window.

Getting Started 15

16

Figure 2-11
The Dictionary
pop-up menus

Chapter 2

The List pop-up menu on the top left side of the window lets you
change the display of the suites and events. Selecting Events from the
pop-up hides the suite information and sorts the events alphabetically
by event name. This is a quick way to locate an event when you cannot
remember which suite it is in. It also lets you check for more than one
event with the same name in your scripting additions since events will
appear in the list for each scripting addition they are in. Selecting
Classes from the List pop-up hides all of the suite and event infor-
mation and just displays the classes available.

=———————— Finder Dictionary =E§I
d acceszory suitcase

. =7 Hierarchy : ERAENEINS Foot Class: F
container
container window
desktop-object
dizk
folder
font suitcase
sharable container
suitcase

trash-object

ED

inzei-ton point
Finder Suite
clean up
cornputer
eject
empty

The Hierarchy and Root Class pop-up menus control the display of the
objects in the hierarchical diagram at the top of the Dictionary window
(see Figure 2-11). You can display the diagram by clicking on the
triangle next to the Hierarchy label. You can resize the diagram pane by
clicking below the horizontal scroll bar and dragging. If you select an
object in the diagram, its description is displayed in the pane below it.

NOTE: Not all scriptable applications support object heirarchies. In these
cases, Script Debugger is not able to show a diagram.

When you select Elements from the Hierarchy menu, the diagram
shows the objects in the application according to their hierarchy. The
ellipses at the end of some class names in the diagram indicate that the
sub-tree has been truncated. This is done if the sub-tree is already
displayed in another area of the diagram. If you select inheritance from
the Hierarchy menu, the diagram shows the object selected in the Root
Class and the other objects in its inheritance hierarchy.

Figure 2-12
The window

object and its
sub-classes

docurnent window
result window

log window |

[window

dictionary window |

Not all applications use inheritance. If an application does not use
inheritance, the Root Class menu will be empty. If an application uses
inheritance, the Root Class menu will contain all of the objects in the
application which have sub-classes. Selecting an object from the menu
changes the hierarchical diagram to show the object you have selected
and all of the objects which inherit from it. For instance, in Script
Debugger, the window object has a number of sub-classes like the
Dictionary window (Figure 2-12).

You can option-click on an item in the diagram to display the
description of the item and make it the root class in the diagram.

Dictionary Shortcuts

If you open a program’s dictionary regularly, you can add it to the
Open Dictionary menu by placing an alias in the Dictionary Items
folder. You can add the alias from Script Debugger by using the Add to
Open Dictionary Menu extension script under the Extensions menu.
For more information about this extension script, refer to Appendix A,
Extension Scripts.

Getting Started 17

18

Figure 2-13
The not scriptable
error message

Chapter 2

You may notice that Script Debugger appears in the Open Dictionary
dialog box. However, you can only open the Script Debugger’s
dictionary if you have turned on the Enable Script Debugger
Dictionary checkbox in the Preferences dialog box. If you have not
checked the Enable Script Debugger Dictionary checkbox, and you try
to open the dictionary, you will get an error message saying that the
application is not scriptable (Figure 2-13).

0 Couldn't complete the last command
because the application or
extension is not scriptable.

Result Code = 1007

You may get this error message if an application or scripting addition
has a dictionary, but there are no commands in it.

You can also open an application’s or scripting addition’s dictionary by
dropping it on Script Debugger’s icon. If an application does not have a
dictionary, you will see the error message in Figure 2-13.

CHAPTER

Creating and Editing Scripts

This chapter explains how you can use Script Debugger to
create and edit scripts. It provides information about the
script formats that Script Debugger can open and save, as
well as instructions for editing and printing scripts. This
chapter also discusses compiling and recording scripts.

Creating and Editing Scripts

19

20

Creating and Editing a Script

Chapter 3

In this portion of the tutorial, we create a simple script to list the
contents of a folder using the Choose File and the List Folder scripting
additions that are provided with AppleScript. Afterwards, we modify
the script to include a test for the Scriptable Finder.

To create a new script document,

1. Choose New Default Script from the File menu.

A new, untitled Script window opens. You will also notice that a Data
window for the script opens below it.

2. Enter a script. For the purposes of this tutorial, enter the following script:

choose folder with prompt “Select a folder to list...”
copy the result to theFolder
list folder theFolder

This script uses the Choose File scripting addition to open a dialog box
where you can select a folder for a listing of its contents. The “with
prompt” lets you add the text “Select a folder to list...” to the dialog box.
Once you select a folder in the dialog box, your selection is placed in
AppleScript’s result variable. The second line of the script places the
contents of the result variable in the variable theFolder. The third line
of the script uses the List Folder scripting addition to get a listing of the
folder referred to by the theFolder variable.

3. Select run from the Control menu or click on the Run button on the Control window.
When the script begins to run, the cursor changes to two gears.

Script Debugger uses three cursors to indicate that it is busy with an
action: the gears, the beachball, and the watch. The gears indicate that a
script is executing. You should be able to switch to other applications,
select from the Controls menu, or click on the buttons in the Controls
window while the gears are turning. The spinning beachball indicates
that Script Debugger is executing an attachment or extension script.
You should be able to switch to other applications while the beachball is
spinning. The watch indicates that Script Debugger is busy. It appears
when Script Debugger is responding to an Apple event or performing a
lengthy operation like compiling or opening a Dictionary window.

Figure 3-1
Choose Folder
dialog box

Figure 3-2
The Data
window with
the listing
results

When you select Run, Script Debugger will first compile your script
and then run it. You will know that the script has compiled because the
format will change to reflect your formatting choices in the Preferences
dialog box. If you have made any typing mistakes, you may find them
at this point in the form of compile errors.

Once Script Debugger begins to run your script, a dialog box opens
and you are prompted to select a folder (Figure 3-1).

Select a folder to list...
= Hard Disk 234
EER:

Desktop

E2

i honse

] Cancel
]

[Choose “Libraries”

4. Select a folder by navigating fo it and then dlicking on the Choose button af the
bottom of the dialog box.

A moment later the script finishes running, and you will notice a listing

of the folder contents in the result pane of your script’s Data window
(Figure 3-2).

EDE Untitled-1 [ﬂata] EEI
the rezult {"&ppleSeript Ervor Codes Lib", "Error Return Codes Lib", "Gestalt Selectors 4

Lib", "Useful Scripting Utilities "}]
AppleSeript's text ftem " E

Creating and Editing Scripts 21

22

Cursor Movement

Chapter 3

While you have the script open, you may want to use the command key
equivalents to move the cursor around in your script. You can use the
arrow keys to move the cursor a character or a line at a time. You can
also use the Option and Command modifier keys in conjunction with
the arrow keys to move a word and a line at a time.

1.
2.

4.
5.
6.

Press Option-Up arrow to move the cursor to the beginning of the script.

Press Option-Right arrow a few times. You will notice that it moves the cursor to the
beginning of the next word.

Press Option-Left arrow a few times. You will nofice that it moves the cursor to the
end of the preceding word.

Press Command-Right arrow to move the cursor fo the end of the current line.
Press Command-Left arrow to move the cursor to the beginning of the current line.
Press Option-Down arrow to move the cursor fo the end of the script.

You can also select words and lines in your script by holding down the
Shift key in combination with any of the cursor movement keys. For
instance, if your cursor is still at the end of the script, you can select the
entire script.

7.

Press Shift-Option-Up arrow to select to the beginning of the script.

Editing Scripts

In addition to the cursor movement keyboard shortcuts, Script
Debugger supports the standard Cut, Copy, and Paste commands with
a couple of noteworthy differences. If you still have the Script window
open for the script you were working on above, you can test these
commands.

1. Select several lines in the script and then select the Cut command from Edit menu.

2. Select the Undo command from the Edit menu fo replace the lines that you just cut
from the script.

3. Select the Clear command from the Edit menu to remove all of the lines that you
have selected.

4. Select the Undo command from the Edit menu again to replace the lines you just
cleared.

5. Now open a new Script window by selecting Default Script from the New menu.

6. When the Script window opens, select the Paste Reference command from the Edit
menu.

This pastes a reference to the text that you copied from in the Script
window. You could close your original window and the pasted reference
would still refer to it.

7. Bring your tutorial Script window to the front and add parentheses to the last line of
your script so that it looks like this. Yes, it is nonsensical.

list (folder theFolder())

8. Place your cursor between the two parentheses after theFolder and select the Balance
command from the Edit menu.

The command will select the two parentheses that the cursor is
between. Select the Balance command a second time and Script
Debugger highlights from the last parenthesis to the first one in the
line.

Creating and Editing Scripts 23

Copying and Pasting Text

Figure 3-3
Open Script
dialog box

24 Chapter 3

While your script uses scripting additions to get a listing of a folder,
you could take advantage of the Scriptable Finder. Unfortunately, it
might not be available in every situation, so you could add a test to
your script to check for the Scriptable Finder. The Libraries folder has a
Useful Scripting Utilities script that contains a handler to check for the
presence of the Scriptable Finder.

In this portion of the tutorial, we will copy the handler into the script
that we are working on and make some modifications.

1. Select Open Script from the File menu.

When the Open dialog box appears, navigate to the Libraries folder
and then open the Useful Scripting Utilities script (Figure 3-3). The
Libraries folder is inside of the Examples folder in your Script
Debugger folder.

= Hard Disk 234
@ AppleScript Error Codes Lib |1 Eject
% Error/Return Codes Lib
% Gestalt Selectors Lib Desktop

& Useful Scripting Utilities
Cancel

=

2. (lick on the Handlers pop-up menu af the bottom of the Script window. Select the
CheckForScriptableFinder handler at the bottom of the menu.

Script Debugger scrolls the window to the bottom of the script and
places the cursor at the beginning of the handler.

3. Select the two properties and the handler.
This is the portion of the script that you will be copying:

property gestaltFinderAttr : “fndr”
property gestaltOLSCompliantFinder : 3

on CheckForScriptableFinder ()

— This handler allows you to check for the existence of the Scriptable Finder
— before you begin using it.

try
return (get gestalt gestaltFinderAttr bit gestaltOLSCompliantFinder)
on error -1708
error “Gestalt Scripting Addition is not installed.” & return & return & -
“Please refer to the Script Debugger User’s Guide for information on “ & -
“how to install Script Tools”
end try
end CheckForScriptableFinder

4. Select Copy from the Edit menu.

5. Bring your Script window to the front and place the cursor at the beginning of
the script.

6. Select Paste from the Edit menu to add the properties and handler at the top of
the script.

NOTE: If you have Macintosh Drag and Drop installed, you could accom-
plish this in fewer steps. You would select the properties and handler in the
Useful Scripting Utilities script. Then you would click on it a second time
and drag it to your Script window.

Now we need to modify the script to take advantage of the handler.

7. Add a call for the handler above the top line of the original script.
CheckForScriptableFinder ()

This will return whether or not the Finder is scriptable. If it is, the
handler will return true. If not, the handler will return false.

Creating and Editing Scripts 25

8. Add an “if then” statement fo the original script.

if the result = false then
choose folder with prompt “Select a folder to list...”
copy the result to theFolder
list folder theFolder

else

If the Scriptable Finder is not present and the handler returns false, this
part of the script uses the scripting addition to get a listing of the
folder.

9. Add another “if statement” and a “tell statement” for the Finder.

if the result = true then
choose folder with prompt “Select a folder to list...”
copy the result to finderFolder
tell application “Finder”

list folder finderFolder

end tell

end if

end if

This “if then” statement is used if the Scriptable Finder is present and
the handler returns true. This portion of the script uses the same
Choose File scripting addition to select the folder whose contents will
be listed, but the tell statement lets the Finder generate the listing
instead of the List Folder addition.

26 Chapter 3

Compiling Scripts

Before it can run a script, Script Debugger must compile it. This
involves checking the syntax of the script for any AppleScript errors
or any errors in the portions of the scripts that use applications or
scripting additions. A script must be re-compiled after you make any
changes to it.

Aside from checking the syntax, the main reason for compiling a script
is to make it run faster. Once a script is compiled, it does not have to be
checked before it is run.

1. You can compile the script that we have been working on. If you have already closed
it, enter or open a script that you want to compile.

2. Select Compile from the Controls menu or dlick on the Compile button on the Controls
window. Script Debugger displays a watch icon to let you know that it is working.

If Script Debugger encounters any errors while it is compiling the script,
it stops the compile and displays a dialog box with an error message in it.

3. When Script Debugger finishes compiling, the formatting of the script changes to let
you know that it is compiled.

For instance, if you have specified that Language Keywords should be
bold (or red, if you are using a color display), the language keywords in
your script will become bold.

4. Save your script when Script Debugger has finished compiling it.

Once you have checked the syntax of your script, you might want to
check the variables to see that your script is running properly. In the
case of our tutorial script, you will be able to see which if statement
the script uses to get the listing of the folder. In order to check the
variables, you will need to add them to the Data window.

1. Select Bring Data to Front from the Windows menu or press command-; to bring the
Data window to the front.

2. Place the cursor in the expression editing area and enter the variable used in the first
if statement: theFolder.

3. Press the Return key fo add the variable o the expression panes.

You will notice that the value portion of the Data window says that
“The variable theFolder is not defined” and that the variable is selected.
Script Debugger shows this “error” and selects the variable so you can
correct it.

Creating and Editing Scripts 27

4. Press the Return key to add the variable to the expression panes. Click below the
variable to deselect it.

5. Enter the variable used in the second if statement in the expression editing area:
finderFolder.

6. Click the Run button in the Control window or select Run from the Controls menu.

As before, you will be prompted to choose a folder as the script runs.
When the script finishes, you will be able to see that the variables in
the Script window have been updated (Figure 3-4). If you have the
Scriptable Finder installed, the finderFolder variable will contain the
path to the folder that you choose. Otherwise, theFolder variable will
contain the path. You might also notice that the result variable will
contain the listing of the folder. If you bring the Event Log window to
the front, you will be able to see each step as your script runs. We
will talk more about the Event Log and Data windows in Chapter 4,
Debugging and Stepping Through Scripts.

Flgure 3-4 N tutorial script (Data)
The DUIU WlﬂdOW {"attachments Examples”, “Libraries”, "Script Debugger Examples”, "Script Tools Examples '}
(lher funnmg 1he the result {"a&ttachments Examples”, "Libraries”, "Seript Debugger Exarnples”, "Seript Tools
H Examples"}]
S("pi AppleScript's tesxct item L
theFolder The wariable theFolder is not defined.
finderFolder alias "Hard Dizk 224 :Desktop Folder :Script Debugger 1.0 Script Debugger
gestaltFinder Attr “frde
gestaltOLSCompliantFinder 3 6
]

Recording Scripts

Script Debugger supports recording scripts. While not all applications
that are scriptable are recordable, a growing number of them are. In
general, recording a script is faster than writing it from scratch. You
will probably need to edit the recorded script, but you can let the
application do most of the work. You can also learn more about how to
write scripts for an application by recording a common action in it.

For this tutorial, you may want to move the Script window so you can
watch Script Debugger create the script. We will be recording a script
using Scheduler. Scheduler is a combination of an Extension and a

28 Chapter 3

Control Panel that allows you to launch programs and open documents
at specified times.

If you chose the Easy Install option when you installed Script
Debugger, the appropriate version of Scheduler was automatically
installed in your Control Panels folder. If you chose Custom Install and
did not install Scheduler, you will need to install it for this section of
the tutorial.

1.

Open the Scheduler Setup from your Control Panels folder and then switch to Script
Debugger.

Open a new Script window and select Record from the Controls menu or click on the
Record icon in the Controls window. A flashing tape icon appears on the Apple menu.

Switch o Scheduler Setup.

Click on the Add button. This opens a standard Open dialog box where you can select
a document or application.

When the Open dialog box appears, select SimpleText or TeachText, or any other
application.

Select When a Folder Changes from the Launch menu.
Click on the Set Folder button and select the Control Panel folder.

Now switch back to Script Debugger and select Stop from the Controls menu or click
the Stop button on the Controls window. Script Debugger may complete the script
after you have stopped recording.

Your script may look something like this:

tell application “Scheduler Setup”

activate

make new periodic occurrence with properties {scheduled file:alias “Hard Disk

234 :apps:SimpleText”}

set selection to occurrence 1
set class of occurrence 1 to folder change occurrence
set folder of occurrence 1 to alias “Hard Disk 234:System Folder:Control

Panels:”
end tell

While this script is just an example, it does show a useful function of
Scheduler that you could use for running scripts.

Creating and Editing Scripts 29

30

Searching For Text

Figure 3-5
The Find dialog box

Chapter 3

Script Debugger lets you search for text in your scripts. If you still have
the script open that we were working with earlier, you can search for
text in it.

To begin a search for text in your script,

1. Select Find from the Search menu or type Command-F.

The Find dialog box appears (Figure 3-5).

2. Enter the text you are searching for in the Search For area of the dialog box.

If you want Script Debugger to ignore the case of the text that it is
searching for, enable the “Ignore Case” checkbox. Once you do this,
Script Debugger will treat “TheValue”, “theValue”, and “thevalue” as the
same search term.

3. Click the Find button or press Return to begin the search.

Script Debugger remembers the text in the Search For and Replace
With fields between searches. If you have entered text in either field,
but you click the Don’t Find button, Script Debugger cancels the search
but remembers the text. If you enter text in either field, but you click
the Cancel button, Script Debugger forgets the text you entered.

You can find the next occurrence of the text by selecting Find Next
from the Search menu or you can press Command-G. You can find a
previous occurrence of the text by pressing Shift-Command-G.

Sardath Faa:

Replace Seine

(€ lqnore Cass

T N (T [

Script Debugger provides you with a shortcut for this process in the
Enter Selection command under the Search menu. You can select a text
string in your script and then select the Enter Selection command. The
text is inserted in the Search For field, and you can select Find Next
from the Search menu to find the next occurrence of the text.

Replacing Text

Figure 3-6
The Find dialog hox

Script Debugger lets you search for and replace text in your scripts. To
begin a search for text in your script,

1. Select Find from the Search menu or type Command-F.

The Find dialog box appears (Figure 3-6).

Fueld

Sarih Faas

Riplace Wi

(] lgnore Cass

T R (T |

2. Enter the text you are searching for in the Search For area of the dialog box.

If you want Script Debugger to ignore the case of the text that it is
searching for, enable the Ignore Case checkbox.

3. Enter the replacement text in the Replace With area of the dialog box.

4. (lick the Find button or press Return fo begin the search. Click the Cancel button to
cancel the search.

5. When the Script Debugger finds the text, select Replace from the Search menu or
press Command-H to replace the text that you found.

Script Debugger supports Undo and Redo for single replace operations.
However, Undo and Redo are not supported for Replace All operations.

You can replace the text and find the next occurrence by selecting
Replace and Find Again from the Search menu or by pressing
Command-T. You can replace the text and find a previous occurrence
by pressing Shift-Command-T. Replace All will replace all of the
occurrences of the search string after the current selection; any
occurrences of the string before the current selection are not replaced.

Creating and Editing Scripts 31

32

Opening Scripts

Figure 3-7
Script Debugger's
Open dialog box

Chapter 3

In the previous tutorials, we have used the Open command, but we did
not look at all of the file formats that Script Debugger can open.

To open a script saved on disk, select the Open Script command from
the File menu. When you choose this command, you are prompted to
locate the file you want to open (Figure 3-7).

[=u useful Scripts v |

< Additions Inventory [+ = Hard Disk 234
#% Convert To Run-Only —
@ Usefull Scripting Utilities _m
Desktop
:

If you are running System 7.5 or have System Utilities 3.0 installed, you
will be able to see the different document icons in the Open dialog.

Alternatively, you can use the Finder to choose a file and open it. If the
file was saved using Script Debugger, you can simply open it using the
Finder by double-clicking the file or by selecting it and choosing Open
from the File menu. You can also drag script files onto the Script
Debugger icon.

NOTE: If you double-click on a Script Editor file in the Finder, it will
open the Script Editor. To open Script Editor files, you must use the
Open command in Script Debugger or drag the file icon onto the Script
Debugger icon.

Text Scripts

Script Debugger can open the following types of files:

Script Debugger can open any text file. Any script that has not been
compiled is saved in text format. If you are working on a script that has
errors in it, you can save it in text format if you cannot save it in
compiled format.

Debugger Scripts

Debugger scripts are created only by Script Debugger. Scripts saved in
this format load more quickly than compiled scripts and don’t need to
be re-compiled each time they are opened. You can open a debugger
script from the Finder and also with the Open command.

Compiled Scripts

@

Compiled scripts are produced by Apple’s Script Editor and other
script editing utilities. You can open a Script Debugger compiled script
from the Finder, with the Open command, or by dropping them on the
Script Debugger icon.

Script Applications

&

Droplets

&

When a script has been saved as an application, you can double-click
the script to run it. You can open script applications in Script Debugger
with the Open command or by dropping them on the Script Debugger
icon.

When a script has been saved as a droplet, you can drop files on it to
process them. You can open droplet files in Script Debugger with the
Open command or by dropping them on the Script Debugger icon.

Stationary Pads

Script Debugger supports Stationary Pad files. These are files which,
when opened, create a new untitled document containing pre-defined
settings and contents. Stationary files also store the default location of
Script Debugger’s windows. To use a Stationary Pad file, open it as you
would a normal script file.

Creating and Editing Scripts 33

34

Figure 3-8

The Default Script
window with the
stationary pad icon

Chapter 3

Whenever you choose New Default Script from the File menu, Script
Debugger automatically opens the Stationary Pad named “Default
Script” located in the Script Debugger folder.

You can hold down the Option key while selecting Default Script from
the New menu to open the Default Script directly and retain the
stationary pad settings. When you do this, you will see a stationary pad
icon in the Script window (Figure 3-8).

SI=——— Default Script =———"P1=

[Script Description... @ vI
[

=])

Handlers » [<a] i

If you want to create a stationary file with your own default settings for
all new scripts, open a new file. Position the windows and enter the
contents and pre-defined settings that you want to use every time you
open a script. Select Save As... from the File menu. When the Save As...
dialog box appears, enter the name “Default Script” in the name field
and click on the Stationary Pad checkbox at the bottom of the dialog
box. If you want to create a separate template with your own settings,
you can name it anything you like. You can make your templates/
stationary pads handier by saving them in the Templates folder. Then
they will always be accessible from the New hierarchical menu under
the File menu.

TIP: If you want a stationary pad that does not save window positions, you
can create one using the following steps.

1. Move the Default Script stationary pad out of the Script Debugger folder.
2. Create a new script. Do not move or resize the Script or Data window.

3. Make whatever other changes you like to the script.

4. Save the stationary pad.

5. Move the Default Script back into the Script Debugger folder.

Whenever you open this stationary pad, Script Debugger automatically
places the window for you.

Saving Scripts

Figure 3-9
Save As
dialog box

Figure 3-10
Save As
pop-up menu

To save a script that you have created, use the Save command in the File

menu. If you have not saved your script before, you will be asked to
name your script, choose the type of script document, and a location

on your hard disk where the script is to be saved (Figure 3-9).

[Script Debugger 1.0 * |

% Attachments
Default Script

[T Dictionary Items
[T Examples

[T Extension Scripts

= Hard Disk 234
Eject

Desktop

Save Script as:

[untitled-2

Cancel

Save

o

Kind: | Debugger Script v |
[Jstay Open

O Show Startup Screen

[Save Debugging Information
[Jstationary Pad

Replace the default “Untitled” name with the name you would like for
your script. Use the Kind pop-up menu to choose the type of script
document. The Kind pop-up menu has four choices (Figure 3-10).

Text

Kind: /& Debugger Script
&4 Compiled Script
<%> Application

Creating and Editing Scripts

35

36

Text

The Text format stores your script in a format that other script editors
and word processors can read. Text scripts must be compiled before
they can be run, but they do not need to be compiled before they are
saved.

TIP: If your script has compilation errors and you are in a hurry to
save your work, you can save it as a text script or a debugger script.

Debugger Scripts

The Debugger Script format is the default kind. This type of file
records scripts in a format which is unique to Script Debugger.
Using this format, Script Debugger can store your script, the script
description, your breakpoints, and all the expressions, in the Data
window.

While this format cannot be used by other applications, such as Apple’s
Script Editor, it does have distinct advantages. Script Debugger scripts
open and close faster. Unlike compiled scripts and script applications,
Debugger Scripts are not recompiled when they are saved.

Compiled Scripts

Chapter 3

The Compiled script format stores your script and script description. If
you have chosen the Save Debugging Information option, it also saves
information about breakpoints you may have set or expressions which
have been entered in the Data window.

Compiled scripts (and script applications) are re-compiled when saved.
If the script has property definitions which prompt for things, or if
Apple Script needs to locate an application, you will have to respond to
these prompts before Script Debugger can complete the save operation.
Because of this, property definitions are reset when saving in this
format.

This file format is compatible with other applications, such as Apple’s
Script Editor, which can read compiled AppleScript script files.

Application

The Script Application format stores your script in the form of an
application. Scripts stored in this format can be executed as stand-
alone applications without the aid of Script Debugger or any other
script editing utility. If your script has an “on open” handler, it is saved
as a droplet.

Files saved as script applications are compatible with other script
editing utilities, such as Apple’s Script Editor, which can open script
applications.

When saving a script as a script application, you can choose from the
following options:

Stay Open
A Stay Open script continues to execute after the run
handler finishes. This is useful if your script contains an idle
handler or accepts Apple events from other scripts or
applications.

Show Startup Screen
The Show Startup Screen option causes your script’s
description to be displayed before it executes.

Creating and Editing Scripts 37

38

Saving As Run-Only

Figure 3-11
Run-Only Save As
dialog hox

Chapter 3

You can save a script in Run-Only format. The only difference between
Run-Only format and the standard compiled and script application
formats is that the scripts cannot be examined.

To save a script in Run-Only format, select Run-Only from the File
menu. A Save As dialog box appears (Figure 3-11).

|'fjl Script Debugger 1.0+ | — Hard Disk 234

% Attachments
Default Script

[T Dictionary Items
[T Examples

[Extension Scripts

Save Script as:
[untitled-3
Kind:| &> Application

[]Stay Open
(<] Show Startup Screen

Enter a name for the script in the “Save Script as” text box and select
the kind of script from the pop-up menu. You can save the script as a
compiled script or a script application as you can with the standard
Save As dialog box.

NOTE: When you save a script as Run-Only, you will never again be able
to edit the script . If you are saving a script in a Run-Only version to
distribute to users or clients, you should keep a backup copy of the script
in text or compiled form.

Printing Scripts

Figure 3-12
The Page Setup
dialog hox

Figure 3-13
The Print
dialog box

You can print your scripts using Script Debugger’s Print command.
When you print a script, a header is added to the top of each page

which contains the name of the script, the day, date, and time the script

was printed, and the page number.
To print a script,

1. Select Print Options from the File menu.

A Print Options dialog box appears (Figure 3-12).

Laserllriter Page Setup 75 |ﬁ|

Paper: @ US Letter O A4 Letter _ ——
(I US Legal O BS Letter r|_Tabloid hd | (cancel]
Reduce or % Printer Effects:
Enlarge: [Font Substitution?

Orientation [Text Smoothing?
@ [Graphics Smoothing?
¥ []Faster Bitmap Printing?

2. Set the options in the Print Options dialog box and click OK.
3. Select Print from the File menu.

A Print dialog box opens (Figure 3-13).

LaserlWriter “LaserlWriter” 72 mPrinl
Eupies:E Pages: ® Al O From: To: -

-I:ancel
. PFAPEF SOUTCE . -
@Al OFirst From:[_Cassette -] (options
Remaining Frome] Daseplle w

Destination: @ Printer 3 PostScript® File

Creating and Editing Scripts

Locating Handlers, Script Objects, Global Variables and Properties

The Handlers menu at the bottom of the script window allows you to
jump quickly to handlers in your script (Figure 3-14).

Figure 3-14 smartstring
The H(][]dlers [Script Description...
pop-up menu ¥

SEsriSiring & Smsi st ingit

Lagrigrigh? £ GGG by b Fugle <P omi i@ neionn ooy
VAR B T R R B B O TR B LT R R S il

Smrer IFtringd! reguires Mwe lodenioe asg fipar YWeyae Walrstl s A0
Fhee best Weps bo uee (s soriol s fo logd 17 Fromr SrEl \when o oom

DEGEEFTY S St inglhy - losd soripd siiss eur sk Foldes ofela

=4 on newString of SmartString st St iiomy ,-wh-ﬁ?n',r;‘gr."":-;ﬂ
74 on getString of SmartString
on zetString of SmartString
&4 on appendString of SmartSteing
on prependString of SmartString
on beforeString of SmartString
on afterString of SmartString
on replaceString of SmartString
on deleteString of SmartString
on zubString of SrartString
on inzertBefore of SmartString
on inzertAfter of SmartString
on deleteCharacters of SmartString
on getTokens of SmartString
on firstToken of SmartString
on lastToken of SrmartString
on MthToken of SrartString
on newString of SmartStringll
on getTokens of SmartStringll
Handlers = | on NthToken of SmartStringll

Y

0T R e b B o
RS SIE

R

oG poboh s

40 Chapter 3

Figure 3-15
Script properties
and objects

In addition to locating handlers, you can use the Handlers pop-up
menu to locate script objects, global variables and properties in your
scripts.

1. Hold down the Option key and click on the Handler pop-up menu at the bottom of
the Script window.

The pop-up menu now shows script objects, global variables, and
script properties, in addition to script handers (Figure 3-15).

= Smartstring
[+ Script Deseription...
ok

Simgr it ing & Smeristringli

LRpprigled F SO by e Puglt Fomp i@ e ing ar oeme
A PR R RO S R e T T L b s msge il

&{ soript SmartString v Fr Wy Efreth s At
script SrartStringll

7 br' 7 P Rl e i o

on newString of SrmartString
on getString of SrmartString

on setString of SrmartString

on appendString of SrmartString X
#4 on prependString of SmartString R B Seing s pewStringi L
#q on beforeString of SmartString
on afterString of SmartString
£ onreplaceString of SmartString
an deleteSiring of SmartString
on subString of SmartString e e Ao dele B e
an ingertBefare of SmartString

an ingertafter of SmartString

an deleteCharacters of SmartString
an getTokens of SmartString

an firstToken of SmartString

an lastToken of SmartString

an MthToken of SmartString

an newString of SmartStringll

an getTokens of SmartStringll

an MthToken of SmartStringll

property theString of SmartString
Handlers w+ | property parent of SmartSteingll

Figs ek Feldsr S

® i

SR

LA

2. Select a script object, property, or global variable and release the mouse button. The
Script window scrolls to the object you have selected and places the cursor before it.

3. Press Command-Up arrow if you have a script open with a handler in it. The cursor
jumps to the beginning of the previous handler.

4. Press Command-Down arrow if you have a script open with a handler in it. The cursor
jumps to the beginning of the next handler.

Creating and Editing Scripts 41

42

Extensions Scripfs

Figure 3-16

The 12 Extension scripts
supplied with Script
Debugger

Chapter 3

Because Script Debugger is scriptable and attachable, you can add
features or functionality to it using AppleScript. Twelve scripts which
extend Script Debugger are supplied with it. You can see these scripts
by selecting the Extensions menu (Figure 3-16). In particular, several of
the extension scripts make editing scripts easier: the Paste File Path,
Paste Folder Path, Hide All Descriptions, and Show All Descriptions
scripts.

Add Properties to Data Window
Add To Open Dictionary Menu
Execute Idle Handler

Execute Open Handler (Files)...
Execute Open Handler (Folders)...
Execute Quit Handler

Hide Descriptions

Lock AIl Expressions

Paste File Path...

Paste Folder Path...

Show Descriptions

Unlock All EXpressions

You can add your own scripts to the Extensions menu by placing your
compiled scripts in the Extension Scripts folder. If you place files of any
other type in the Extensions folder, Script Debugger ignores them.

To find out more about these Extension scripts, refer to Appendix A,
Extension Scripts. If you want to write your own Extension Scripts, refer
to Appendix B, Script Debugger Scripting Interface. It provides more
information about the Script Debugger objects and the events that you
can use to control them.

CHAPTER

Debugging and Stepping through Scripts

Script Debugger provides you with all the tools you need to
debug your AppleScripts. This chapter begins by giving you
some general strategies for debugging your scripts. It then
walks you through the process of debugging scripts using
Script Debugger’s Data and Event Log windows. In addition to
scripts, the chapter also demonstrates debugging AppleScript

handlers and Script Debugger extensions.

Debugging and Stepping through Scripts 43

44

Throughout this tutorial, we will work with the Debugging Tutorial
script that you can find in the Tutorial folder inside the Examples
folder of the Script Debugger folder. For purposes of this tutorial, we
will step through a script in Script Debugger that copies portions of a
script to an empty Script window.

To set your Script Debugger to follow through this tutorial, you need to
do the following:

1. Launch the Script Debugger, open the Preferences dialog box and select the Enable
Script Debugger Dictionary checkbox. You will need to quit Script Debugger after
making the change.

If you have already enabled Script Debugger’s dictionary, you can skip
this step.

2. Launch Script Debugger again.
3. Open the Debugging Tutorial script.

4. Leaving the Untitled-1 Script window open, open the Execute Quit Handler script that
you will find in the Extension Scripts folder inside the Script Debugger folder.

Depending on the size of your display, you may want to adjust the
windows so you can watch the two Script windows in Script Debugger
as you step through the script.

Debugging Strategies

Chapter 4

Finding the errors or bugs in your AppleScripts can be time-consuming
and tedious. Since you cannot always tell the status of your script while
it is running, you must either embed debugging code or step through a
script.

Script Debugger provides you with a sophisticated development
environment for AppleScripts. You can set breakpoints and step
through scripts a line at a time. While the previous chapters have
introduced you to some of Script Debugger’s features, this chapter will
show you how to take advantage of those features as you develop
scripts.

Common Errors

Figure 4-1
An error caused
by a typo

Some programming errors do not require sophisticated tools to locate.
Probably the most common programming error that you can make in
any language is a simple typing error. Typing errors can be particularly
hard to debug since they can lead you away from the real error. For
instance, if the word “line” in the following line of the Debugging
Tutorial script

get style of word j of line i of theDoc
is misspelled as “lin”

get style of word j of 1lin i of theDoc

Script Debugger will highlight the word “lin” and signal a script error
that it is expecting the end of a line (Figure 4-1).

Script Error

f Expected end of Tine, ete. but found identifier.

Carefully checking the line that a script error is signaled on is the best
way to find a typo in your script. Whenever you encounter a script
error, you should not immediately suspect your AppleScript code. Scan
the line the error is in to make certain that you have not made the
simplest of programming mistakes.

Other easy mistakes to make are inserting the incorrect path to a file or
folder in your script and referring to windows or objects that are not
open or do not exist. In the Debugging Tutorial script, for instance, you
would get a script error if the window named “Untitled-1” was not
open. The script would run up to the point of copying the text to that
non-existent window, but would fail when it tried to write to that
window (Figure 4-2).

Debugging and Stepping through Scripts 45

46

Figure 4-2
Referencing a

paragraph that
does not exist

Script Error

Script Debugger got an error : Can't set insertion point
after every text of docurnent "untitled-2" to "if first

docurnent exists then

In this case, the reference to the window “untitled-2” should tip you off
that something is amiss.

Simple Strategies

Chapter 4

When you do have an error in your script, you can apply some simple
strategies with Script Debugger to locate the problem. Begin by asking
yourself some of the same questions that Scott Knaster does in his
book, How to Write Macintosh Software.

m Where did the error occur?
m What caused the error?

m What was the last line of the script to execute before the error
occurred?

When you are trying to debug your script, try to isolate where the error
occurred. For example, did the error occur in a tell statement directed
to the Scriptable Text Editor or when the Finder was trying to write to a
file? Answering this question helps you focus on the handler or control
statement in the script that contains the error. You can use Script
Debugger’s breakpoint feature to speed the debugging process. If you
need to run through the script to test the problem, you can click the
Run button and the script will run up to the breakpoint and stop. You
can then single-step through the problem portion of your script.

If you are debugging an open handler, setting a breakpoint allows you
to stop the execution of the handler and step through the script. This is
discussed in more detail later in this chapter.

Figure 4-3
A highlighted
line in the script

Once you have determined where the error occurred, you can begin
looking for the cause of the error. Did the Scriptable Text Editor look
for paragraphs in a window that did not have any? Was the Finder
trying to write to a file that another application already had open?

In the example we used above, you could determine that the Script
Debugger was looking in the wrong window by checking the name of
the window that your script references (Figure 4-3).

Debuqgqging Tutorial

[+ Script Deseription... %

et 1 tO 1 * |
exit repeat
else
get sigfo of word i of fime i of theloc
set theStyle to the resafd as fisd
if the comienis of item ? of theSiyle is equal to {
copy Fox? of safoc?ion to theParagraph
» copy theParagraph & (ASESF cfaracter 13 -
to the insoriion poind after 1oxd of docw)
set i to i+ 1
else

LR R R R R R SR+

Script Error

after every text of docurnent "untitled-1" to

f Script Debugger got an error : Can't set insertion point

the res “docurnent " Execute Quit Handler "

Apples

theSty [_] dow , condensed,
theFar 3 - 10006 Cancel

3
i T]

You can use the Data window with single-stepping or with the break-
point feature. For instance, you can select the variables that you want to
watch and then single-step through your script, watching how the
variables change. You could also set a breakpoint that stops script
execution just after a variable is updated. This allows you to execute
your script quickly, but still examine the variables to make certain that
they are being updated correctly.

You should also ask yourself which was the last line to execute. Script
Debugger can be very helpful since it shows you exactly which line
was executing when the error occurred and, in most cases, will flag a
variable or word within the line (Figure 4-3). Examine that line to
make certain that your references are correct and the terms are not
misspelled. You should be able to solve most of your problems by
re-reading the line carefully.

Debugging and Stepping through Scripts 47

48

Controlling Script Execution

While Apple’s Script Editor allows you to execute the scripts that you
create, it only allows you to stop the execution of a script. You cannot
step through your script a line at a time or set breakpoints in your
script. With Script Debugger, you can control the execution of a script
and watch the variables and expressions change as you step through the
script.

We ran a script in Chapter 3, so in this chapter we will concentrate on
the debugging features of Script Debugger.

Preparing fo Step Through a Script

Chapter 4

For the next few sections, we will be using one of the example scripts
that came with Script Debugger.

1. Open the Debugging Tutorial script in the Tutorial Examples folder if you have not
already done so. This is the script:

tell application “Script Debugger”
set theDoc to document “Execute Quit Handler”
set x to count of lines of theDoc
set 1 to 1
repeat while 1 < x

select line i of theDoc
if length of line i of theDoc is greater than 0 then
set j to 1
get word j of line i of theDoc
set theWord to the result
repeat
if theWord begins with “—” then
set 1 to i + 1
exit repeat
else
get style of word j of line i of theDoc
set theStyle to the result as list
if the contents of item 2 of theStyle is equal to {bold} then
copy text of selection of theDoc to theParagraph
copy theParagraph & (ASCII character 13) -
to the insertion point after text of document “untitled-1”
set 1 to i + 1
else
set 1 to i + 1
exit repeat
end if
exit repeat
end if
end repeat
else
set 1 to i + 1
end if
end repeat
end tell

2. If you have not already done so, create a new script and open the Execute Quit

Handler script that you will find in the Extensions folder inside the Script Debugger
folder.

The Debugging Tutorial script checks the style of each line in the
Execute Quit Handler looking for bold text in the line. When it finds
one, it copies the paragraph to the Untitled-1 document. Now that you
have the script open, let’s step through it.

Debugging and Stepping through Scripts 49

50

Stepping Through a Script

Figure 4-4
A Script window with

the step indicator in
the left margin

Chapter 4

When you step through a script, Script Debugger moves an indicator
along the left side of the Script window so you can track your progress
(Figure 4-4). Each time you select the Step command, Script Debugger
executes the next line in your script. If your script requires interaction
by selecting files or entering information, the dialog boxes will open for
the information as you step through the script. If your script runs
another program, as our example script does, the commands in your
script will be executed in the background unless you specifically
activate the program or an error brings it to the front.

== Debugging Tutorial = [I-
[+ Seript Description... 'I

& itell appficadion "ScriptDebugger” 45

& set theloc to socwewesd "Execute Quit Handler

< set ¥ 20 cowrrd of fines of theboc

L 3 set i to |

B repeat while i { x

B sofort finge i of theloc

b if Jfeagih of fime i of theloc is greater than [then

ke set j to |

kel get word i of fime i of theloc

& heblord h 24

Hardlers |<a] il

As you step through this script, you might want to adjust your windows
so you can watch Script Debugger’s windows. If you shrink your
windows, you will see that Script Debugger scrolls the window as you
step through the script. Even the script Execute Quit Handler window
scrolls in the background so that the selected line is always in view.

1. Click on the Step button in the floating palette or select the Step command.

Script Debugger takes a moment to compile the script and then the step
indicator appears next to the first line of the script.

2. Single-step through the script until you have seen the step indicator jump over the “if
then” statement, which tests for the comment characters.

The indicator returns to the “if then” statement that tests for the length
of the line.

3. Click the Stop button on the palette or select the Stop command fo stop single- stepping
through the script. You will not be able to edit the script until you stop the single-step
execution.

Now that you see how stepping though a script works, let’s set a break-
point into the script so that you can see how Script Debugger steps to
breakpoints.

Setting Breakpoints

As you have probably noticed from the previous section, single-stepping
through a script can take time. Often you may suspect that your script
has a problem in one particular statement, subroutine, or handler, near
the end of the script. Instead of single-stepping through the whole script,
you can set a breakpoint just before the problem section. Then you can
run the script until it reaches the breakpoint.

Another possible use of breakpoints is that you want to examine a
variable to make certain that it is being updated properly. When you

run a script, the values of a variable are updated and when the script
stops, it will contain the very last value of the variable. To check a
variable as it changes, you can set a breakpoint before the line which
changes the variable. When you run the script, Script Debugger stops at
the breakpoint and you can step through the line to see how the variable
changes. You can then continue running the script. As with the previous
example, setting the breakpoint allows you to check for problems in your
scripts without single-stepping through the whole script.

If you look at the left side of your Script window, you will see a column
of hollow diamonds. These are all of the potential breakpoints in your
script. You can set a breakpoint by clicking on a diamond. Let’s set a
breakpoint at the second “if” statement.

1. Click on the diamond next to the line “if theWord begins with ‘—' then.”

You will notice that it is filled when you click on it; that’s your visual clue
that the breakpoint is set.

2. Select Run or click the Run button on the palette. The pointer changes to the two gears
while your script is running.

When it reaches the breakpoint, the step indicator is placed next to the
breakpoint, and Script Debugger stops running the script.

3. Step until the “exit repeat” statement.
4. Now click on the Run button or select the Run command.

Script Debugger runs the script until it reaches the breakpoint again.

NOTE: Script Debugger stores breakpoint and Data window information in
Compile Script and Script Application documents. If you save one of these
documents with Script Debugger, edit it with Script Editor and then try
and open it with Script Debugger, your breakpoints will not be loaded since
it cannot be certain that the lines match up with the breakpoints.

Debugging and Stepping through Scripts 51

52

NOTE: As you step through this script, you will notice that the “i” variable
does not get updated. That is because loop variables in AppleScript are
local to the repeat loop. Declaring a global variable will not fix this
problem. Due to limitations of AppleScript, Script Debugger cannot
display the value of local variables.

Clearing Breakpoints

After you have stepped through a script using breakpoints, you may
want to remove them from the script. If your script is short and you
have only set a few, you can probably click on them individually to
disable them. If you have a longer script with breakpoints scattered
throughout, you may want to use the Clear All Breakpoints command.
Let’s experiment with the example script to see how easy it is to clear
breakpoints.

1. Set several breakpoints in the script.
2. (lick on a couple of them so that you can see how easy it s to disable them.

3. Select Clear All Breakpoints from the Debug menu to remove the remainder of the
breakpoints.

Unless you have disabled the Script Debugger icon in the Script
window, it retains all of the breakpoints when you select the Save
command. While you are developing a script, you will probably want to
keep the breakpoints, but you should remove them when you finish the
script.

Setting Temporary Breakpoints

Chapter 4

Occasionally, you may want to set a temporary breakpoint that is
cleared as Script Debugger comes to it during the execution of the
script. Temporary breakpoints are useful for skipping over repeat loops
and handler calls when you run a script. You can create a temporary
breakpoint by holding down the option key while you click on the
breakpoint diamond. If you want to set a breakpoint without running
the script, press the Option and Shift keys while clicking on the hollow
diamond.

Figure 4-5

Setting a temporary
breakpoint in Script
Debugger

If you are still in single-step mode, click the Stop button on the Control

window or type Command-. so that we can start fresh for this section

You may also want to open the Event Log window if you do not already

have it open.

1. Press the Option key and dick on the hollow diamond next to “set theStyle to the
result as list” line. A dot appears inside of the hollow diamond (Figure 4-5).

[IE————— Debugging Tutorial

EE|

[» Seript Description... vI

tell agpficazise "SofiptDebugger
set theloc to dwcesransd "Execute Guit Handler
set ¥ to cownd of fipes of theloc

» set i to |

repeat while i < x

if fengifrof fipe i of theloc is greater than 0 then

set j to |
get word i of fins i of theDoc

T =33

<
<
kel
&
<
& safor? figs i of theloc
<
<
kel
o
H

andlers - <::I 111}

Notice that Script Debugger compiles the script if it is not already

compiled and then begins to run it. Script Debugger will run the script
until it comes to the temporary breakpoint. Notice that the breakpoint

is cleared when Script Debugger comes to it.

In our tutorial script, this runs quickly through all of the lines
containing comments and comes to the section of the script that
examines the line to see if it contains any bold formatting. The
advantage of this is that we are able to jump to the portion of the
script that does the real work.

2. Move the Event Log window so that you can watch while the script is running.

NOTE: If the Event Log window is not open, it does not record the events
while a script runs.

3. Press the Option key and dlick on a diamond below the first temporary breakpoint to

set another.

Notice as the script runs that the events begin to run up from the first
breakpoint.

Now that you have been introduced to the Event Log window, let’s see
how you can use it for debugging your scripts.

Debugging and Stepping through Scripts

53

54

Logging Apple Events

Chapter 4

The Event Log window accumulates a running list of the Apple events
executed by your script and the results that they return. The Event Log
is cleared each time you run a script, and you can see it at any time by
selecting Bring Event Log to Front from the Windows menu or by
pressing Command-

The Event Log window has the advantage of being a history of a script’s
execution. After you have run a script, you can look at the Event Log
window to see how each expression was evaluated. In addition to
keeping a history of a script’s execution, it is a real-time indicator of its
progress. When you run a script in Script Debugger, the variables in the
Data window are not updated until the script finishes running or is
stopped. As a result, you only see the last changes to the variables. You
can see the variables updated in the Event Log window as the script
runs. To see how this works, let’s run the Debugging Tutorial script that
we were looking at.

1. Bring the Event Log window to the front.
2. (lick on the Run button or select the Run command.

As the script executes, notice that after each event sent to Script
Debugger, an arrow (—>) indicates what the event returns

(Figure 4-6). If you have specified different colors or fonts for the
language keywords, references, variables, or any of the other
AppleScript formatting items in the Preferences dialog box, you will
see that Script Debugger uses those in the Event Log window.

Figure 4-6
The Event Log

window after
running a script

Figure 4-7
Saving the
Event Log

[I=———-—— Frent Log

Faff currond appficadion
get docwwand "Execute Gt Handler!
———: document "Execute Buit Handler"
round every fise of docerend "Execute Quit
Handler"
—: 23
safoct fine | of docerend "Execute QuitHandler
fongth of fime | of docwrend "Execute CuitHandler
» 0
———: e
get wore | of fin=s | of docwwsnd "Execute Cuit
Handler
s n_a
sefoct fine 2 of docerenid "Execute QuitHandler
fengifr of fime ! of doceresd "Execute Quit Handler
>0
———i e
get sore | of fine ? of decesend "Execute Cuit
Handler
s n_a
sefoct fine 3 of docerend "Execute QuitHandler
fengifr of fime 3 of docewesd "Execute Quit Handler
>0

TS| &

———: 3

When the script has completed, you can save the contents of the Event
Log to a file. This makes it possible for you to compare the results of
running a script to the script itself. To save your Event Log, use the Save
As command.

3. Bring the Event Log window to the front.

4. Select the Save Event Log As command from the File menu. A standard Save As
dialog box appears (Figure 4-7).

|'fjl Script Debugger 1.0+ | — Hard Disk 234

comment extension script [

debugging open handler
Debugging Tutorial

[Non-Shipping Items

[Script Debugger 1.0

Desktop

Save Event Log as: Cancel

=
o
E
[

|Euent Log |

5. Enter a name for the Event Log and dick on the Save button. The log will be saved to
disk as a Script Debugger text file. You can open the Event Log with any text editor.

Ewent Log

Debugging and Stepping through Scripts 55

Using the Data Window

The Event Log gives you continuous feedback while a script is running,
but the Data window allows you to interactively examine expressions
and watch them as your script runs. While Script Debugger does not
save the contents of the Event Log window, it does save the contents of
the Data window with your script. This gives a snapshot of the state of
the variables and expressions as you stepped through your script.

At any point while you are stepping through your script, you

can add an expression from your script to the Data window. If the
expression in the script has not been evaluated when you add it, Script
Debugger reports an error—“The variable i has not been defined yet’,
for instance. Once Script Debugger evaluates the expression, the
evaluation appears next to the expression in the Data window.

Adding Expressions to the Data Window

Let’s add expressions to the Data window for the Debugging Tutorial
script.

1. Bring the Debugging Tutorial Data window to the front if you have not already
done so.

If you cannot see the window, you can bring it to the front by selecting
Debugging Tutorial (Data) from the Windows menu.

2. To enter an expression from the script, click in the expression editing field
(Figure 4-8), enter the expression, and press the Return key or click on the
Checkmark in the Data window.

If you make a mistake while you are adding an expression, you can
remove the expression from the editing area by clicking on the X button
in the Data window.

Figure 4-8
The Data window

= Baaagging Tularial (Dalal a]
Expression |_| | Il-"j Cancel expression
editing area X L Enter expression
ek PRl Tra smrinliie reaul i ot il
e T T et e =1
G Pt g b il el Dk ciderhing | caiine , ofdelie | Ladtelidred
e g T el deaarend saliin iy |
Expressions L = | Expression values
i
=

56 Chapter 4

If you have not yet run the script, the expression value area will contain
“The variable theParagraph is not defined.” If you have run the script
and you enter one of the expressions that has been evaluated, the
current value of that expression appears in the value area.

You can also drag a variable and drop it into the expression editing
area.

3. In the Script window, double-click on one of the variables that you have not entered
to select it.

Click on it again and drag it over to the expression editing area and
release the mouse button.

4. Now that the variable is in the expression area, press the return key fo add it fo the
list of expressions.

Add the rest of the variables to the Data window.

5. After you have entered several of the variables from the script, run the script so that
you will have values for all of the expressions in the Data window.

Drag and Drop Support for Values

In the same way that you can drag and drop a variable from the Script
window into the Data window, you can also drag the values from the
Data window to another application’s window.

1. Open another Script window and select one of the values in the Debugging Tutorial
script’s Data window.

2. Click on the value a second time and then drag it to the new Script window that you
opened.

Notice as you drag the value from the Data window that an outline
follows the pointer. When you get over the new Script window, it is
highlighted to show that you can drop the value in it.

Debugging and Stepping through Scripts 57

58

3. Release the mouse button to drop the value into the Script window.

TIP: You may want to drop values from the Data window into your
script. For instance, if a value in the Data window contains a folder path
or object reference, this is a quick way to get it in your script.

If you have a text editor or word processor that supports Drag

and Drop, you can drag the variables and their values into them.
More importantly, you can drag a variable from your script into the
expression editing field of the Data window. This saves you the time it
takes to type the variables into the window.

Adding Properties to the Data Window

If your script has properties in it, you can quickly add them to the Data
window using the Add Properties to Data Window extension script.
When you run the script, it collects all of the properties in your script
window and adds them into the Data window of the current script.

Removing Expressions from the Data Window

Chapter 4

You can remove variables and expressions from the Data window
individually or you can remove all of them at once.

1. Select the variable that you want to remove from the window.
2. Select Clear Expression from the Debug menu. You can also press Command-/.

You can also clear all of the expressions from the Data window at once.

3. Select Clear All Expressions from the Debug menu.

Selecting the Clear All Expressions command removes all of the
expressions from the window including any that have been inserted by
the Default Script. For instance, “the result” is inserted by the Default
Script. After selecting the Clear All Expressions command, you may
need to re-enter some of your expressions.

Examining Script Variables

If you removed all of the expressions in the previous section, you
should add them back into the Data window for this portion of the
tutorial.

Whenever you step through a script, you can examine the script’s
variables. As you have already noticed, when you add a variable to the
Data window and then step through the script, you can watch as the
variable is updated dynamically. You can also examine these variables at
any time while you are stepping through the script. Let’s step through
the Debugging Tutorial script to see how you can watch and examine
variables.

1. Select the Debugging Tutorial script window from the Windows menu if it is not the
frontmost window.

2. (lick on the Step button in the Control window or select Step from the Controls menu.
3. Step through the script, watching as the values of the variables change.

You will also notice as you step through the script that any line
containing bold lines are being copied to the Untitled-1 window.

Examining AppleScript Expressions

You can enter expressions and one line scripts that you want to evaluate
directly into the Data window.

1. In the expression editing field, enter the expression:
40 * 80 - 25
2. Press Return or dick the Checkmark to evaluate the expression.

Script Debugger enters the expression in the values area and places the
value after it (Figure 4-9).

Debugging and Stepping through Scripts 59

60

Figure 4-9
Evaluating AppleScript

expressions in the
Data window

Chapter 4

SN=————— Untitled-? (Data) ="ci————"——P1=

{"Default Seript"”, "Dictionary Mems", "Examples”, "Extension Scripts”, "lcon
¥, "Read Me First”, "Seript Debugger”, "Soript Debugger 27, "Template Scripts"}

AppleSoript's text: {""}

40 # 80 - 25 173

2(2+4)-5 A (¥ gan't go after this number.

list folder "Hard §{"Default Script”, "Dictionary Items", "Examples”, “Extension

5 |<afi

If the expression cannot be evaluated, Script Debugger enters the
expression in the list of expressions and places an error message in the
values area next to it.

3. Enter the expression:
2(2+4) -8

4. Press Return or dlick the Checkmark to evaluate the expression.

You will see an explanation of the error in the values area. You can also
enter single line expressions in the expression editing area.

5. Enter the path to a folder in the expression editing area:

list folder “Hard Disk 234:Desktop Folder:Script Debugger
1.0:"

6. Press Return or dick the Checkmark to evaluate the expression.

This expression requires the List Folder scripting addition. Script
Debugger evaluates the expression and places a list with the contents of
the folder that you selected into the value. If you click on the value, its
contents are displayed in the expression editing area.

Restrictions

The Data window has a couple of restrictions. Any expressions you
enter cannot reference local variables, and “the result” must appear as
the first item in the Data window.

Due to the nature of AppleScript and the way Script Debugger
operates, the expression “the result” must be the first item in the Data
window. If you place “the result” after another expression in the Data
window, the value shown for “the result” will be the value returned
from the prior expression in the Data window. The Default Script
supplied with Script Debugger has “the result” placed as the first item
in the Data window. We recommend that you do not change this in the
Default Script file.

You should avoid displaying long lists or record structures. You are not
limited to the size of the value that you can display in the Data window,
but long lists and record structures may slow down AppleScript and
this will cause single-stepping to slow down. When you display large
values in the Data window, Script Debugger only displays the first few
thousand characters. However, when you copy or drag the value, you
will get the entire value.

Debugging Open, Idle and Quit Handlers

Script Debugger normally executes the Run handler when you use the
Run and Step commands. AppleScript defines three other standard
handlers (open, idle and quit) which scripts can contain. Normally,
you would have to write and test the scripts contained in the handlers
before adding them to the handlers. Three of the extension scripts

for Script Debugger allow you to step through open, idle, and quit
handlers to debug them.

Debugging and Stepping through Scripts 61

Executing an Open Handler

Open handlers are generally used for script applications or droplets.
Usually, you would write and test all but the handler of the script in a
script editor. Then you would add the handler and save the script as a
script application. The Execute Open Handler (Folders...) and Execute
Open Handler (Files...) extension scripts allow you to test the handler
and script together by executing the open handler in the frontmost
window. If the script does not contain an open handler, Script
Debugger returns an error (Figure 4-10).

Figure 4-10 =—— script Error

The error refurned

|f ihe Scrip1 does A :::E::Debugging Quit Handler * does not have an Open
not have an open

handler

To see how this feature works in Script Debugger, let’s look at a sample
script.

1. Open the Debugging Open Handler script. This is the script:

global theFiles

on open (theFolders)
set theFiles to {}
repeat with i from 1 to count theFolders
set aFolder to item i of theFolders
list folder (contents of aFolder)
set theFiles to theFiles & the result
end repeat
end open

on run

open (choose folder with prompt “Select a folder to list...”)
end run

2. Set a breakpoint on the “list folder (contents of aFolder)” line.
3. Add the expression theFiles to the Data window.
4. Select Execute Open Handler (Folders...) from Script Debugger’s Extensions menu.

Script Debugger opens the Choose Folders dialog box where you can
select the folder that you want to list (Figure 4-11).

62 Chapter 4

Figure 4-11
. Script Debugger 1.0 ¥ | Hard Disk 234
The dialog box from |1 Script Jebugger 107] = Hard@is

|

the Execute Open (O Non-Shipping Items Eject
; Script Deb 1.0

Handler extension [Seript Debugger Desktop

script

Cancel

<l

Folders for Open handler:
[Add “Script Debugger 1.0]

—

Remove

L

5. Choose a folder, click the Add button, and then click the Done button. Script
Debugger executes the script up fo the breakpoint.

6. Click the Step button in the Control window or select step from the Controls menu.
Nofice as you step through the next two lines of the script that the expression theFiles
lists the contents of the folder you selected.

You can also use the Execute Open Handler (Files...) extension script in
the same way if you have a script that collects information about a file
or modifies the contents or attributes of a file.

Executing an Idle Handler

Typically, idle handlers are in Stay Open script applications.
AppleScript periodically sends idle commands to script applications
when a script application is not responding to incoming events. The
Script Editor does not provide you with any way to debug an idle
handler, but Script Debugger does in the Execute Idle Handler
extension. It allows you to execute the handler without the need of
adding to a larger script.

Like the Execute Open Handler extension scripts, the Execute Idle
Handler script allows you to execute the idle handler in the frontmost
window. If the script does not have an idle handler in it, Script
Debugger signals an error (Figure 4-12).

Debugging and Stepping through Scripts 63

64

Figure 4-12
The error
returned if the
script does not
have an idle

handler

Chapter 4

Script Error

Seript " Debugging Open Handler * does nat have an Idle
handler.

To see how you would test an idle handler script, let’s look at a sample
script.

1. Open the Debugging Idle Handler script. The script looks like this:

on idle
set i to 1
repeat with i from 1 to 10
if 1 = 1 then
beep 1
else
if 1 = 10 then
beep 2
end 1if
end 1if
set 1 to 1 + 1
end repeat
end idle

This script does not do any work, but it shows you how you can debug
an idle handler in the Script Debugger.

2. Set a breakpoint at the “if i = 1 then” line.

3. Add the variable i to the Data window. This allows you to see the variable
incremented as Script Debugger loops through the script.

4. Select Execute Idle Handler from Script Debugger’s Extensions menu. Script Debugger
executes the script up fo the breakpoint.

5. Click the Step button or select Step from the Controls menu. Step through the
statements of the repeat loop several fimes to see the value of i incremented.

6. Click the Run button to finish executing the handler.

Executing a Quit Handler

Figure 4-13

The error returned
if the script does
not have a quit

handler

Typically, quit handlers are in stay open script applications. AppleScript
sends the script application a quit command whenever the user chooses
Quit or presses Command-Q. Script Debugger provides you with a way
to easily debug a quit handler in the Execute Quit Handler extension. It
allows you to execute the handler without the need of adding to a larger
script.

Like the other execute extension scripts, the Execute Quit Handler
script allows you to execute the quit handler in the frontmost window.
If the script does not have a quit handler in it, Script Debugger signals
an error (Figure 4-13).

Script Error

Seript " Debugging Open Handler * does not have a Quit
handler.

To see how you would test a quit handler script, let’s look at a sample
script.

1. Open the Debugging Quit Handler script. The script looks like this:

on quit
display dialog “Do you really want to quit?” =
buttons {“Not really”, “Quit”} default button “Quit”
if the result is “Quit” then
continue quit
end if
end quit

2. Set a breakpoint at the “display dialog” line.

3. Select Execute Quit Handler from Script Debugger’s Extensions menu. Script
Debugger executes the script up fo the breakpoint.

4. Click the Step button or select Step from the Controls menu. Step through the line
with the dialog box and click on the Quit button to see the value returned as the
result.

Debugging and Stepping through Scripts 65

66

NOTE: You always need to include the continue quit statement in
your handler, otherwise you will have trouble quitting your script applica-
tion. If you have failed to include the statement, you can always quit by
pressing Command-Shift-Q. This will save any changes to the script’s
properties and quit immediately.

Script Debugger Extensions

Chapter 4

In addition to the debugging tools that are built into Script Debugger,
you can also write your own extensions to add to the Extensions menu.
Chapter 5 discusses Extension scripts, and you will find all of the
documentation for Extension scripts in Appendix A.

Perhaps the best way to test Extension scripts that you are writing for
Script Debugger is to run them from a second copy of Script Debugger
or from Apple’s Script Editor. This method would allow you to control
Script Debugger and determine if your script is behaving as it should.

CHAPTER

Customizing Script Debugger

Script Debugger is an attachable application. In other words,
through scripts, you can customize it in a number of ways to
make it better suit your needs. This chapter describes how you
can customize the way Script Debugger formats your scripts
and reacts to certain events. The chapter shows you how to
create custom script templates. It shows you how to add items
to the Extensions menu, and how to change Script Debugger
commands through an Attachments script.

Customizing Script Debugger 67

68

Changing Script Debugger Default Settings

Script Debugger allows you to alter how it displays AppleScript scripts
and how the debugger responds to certain events. To change any of
these settings, select the Preferences command from the Edit menu.
Selecting this menu item opens the Preferences dialog box (Figure 5-1).

Figure 5-1 Preferences
Scrim Debugger’S r #ppleSeript Formatting: ——————————————— -~ Startup Action:
Prefereﬂ(es Hew text [wncompiled) i None
X Operstors, etc. O+ & .3 ® New Document
dlulog bOX Language keywords { Open Dialog
Application Keguords r Seript Error Actions:
LMt [Bring Debugger To Foreground
1 1 ke ki lickel E BEED
E Plain Text D Shadow Seript Pause Action:
] Bold [Outline [[Z] Bring Debugger To Foreground ‘
O talic O Condensed — :
O Underline []Expanded Editing Options:
[Auto Indent
Font: [Courier -
Scripting Options :
Size: Color: EI &J Enable Script Debugger Dictionary
[< “path to me” refers to document
AppleScript Formatfing

Chapter 5

This group of settings lets you change the way AppleScript formats
your scripts. The scrolling list shows the different elements of a script.

NOTE: The formatting changes that you make in Script Debugger’s Prefer-
ences dialog change the formatting of the English AppleScript system and
will carry over to the Script Editor and any other application which
displays AppleScript scripts.

New text is anything that you have entered into your script but have
not yet compiled. In other words, it is the script before you dlick on the
Compile button.

Operators that you might use in your scripts are the plus (+) and
minus (-) signs, the less than (<) and greater than (>) symbols, and the
equal sign (=).

Language keywords are the AppleScript keywords that appear in your
script.

Application keywords are the keywords from the dictionary of the
application or scripting addition that you are scripting.

Comments are the portions of the script set off by dashes (—) or by
blocks. For example, (* this is a block comment*).

Values are the dates, numbers, strings, and lists that AppleScript returns
whenever expressions are evaluated.

Variables and subroutine names are the names that you enter in your
scripts.

References are the phrases that you use to specify objects within
applications.

You can adjust the text style, font, font size, and color for each of these
items. To change the style of one of the elements:

1. Select the element that you want to change from the scrolling list.
2. Adjust the style of the font by dicking on the checkboxes.

3. Adjust the font and the font size using the pop-up menus.

4. Adjust the color of the element using the color pop-up menu.

You can change another element by selecting it from the list. Closing
the Preferences dialog box saves your changes.

While color scripting may seem frivolous, it can help you understand
scripts and find problems quickly. For instance, you might want to use
color for the language and application keywords, the values, and the
variables in your scripts. While the colors do not carry over to the Data
window, they do show up in the Event Log and the Result windows. If
you are tracing the progress of a variable, you can spot it quickly in the
Event Log by watching for the color you have assigned to variables.

NOTE: After you change AppleScript formatting settings, Script Debugger
will reformat all open scripts and dictionaries. There may be a brief pause
while this takes place.

Customizing Script Debugger 69

70

Startup Action

The Startup Action group of radio buttons allows you to control what
Script Debugger does when you double-click on its icon. The options
are:

None When this radio button is selected, Script Debugger does
not perform another action when it starts up. In other
words, Script Debugger does not open a new, untitled script
nor open a file selection dialog.

New Document
When this radio button is selected, Script Debugger creates
a new, untitled script. Script Debugger uses the Default
Script as the template for the new script. This is the default
option setting when Script Debugger is installed.

Open Dialog
When this radio button is selected, Script Debugger
presents a file selection dialog box when it starts up.
This allows you to choose a script when starting Script
Debugger.

Script Error Actions

Chapter 5

This group of items lets you control how Script Debugger operates
when there is an error in your script.

Bring Debugger to Foreground
When this item is selected, Script Debugger comes to the
foreground whenever there is a script error.

Beep When this item is selected, Script Debugger plays the beep
sound whenever there is a script error.

Script Pause Action

The Script Pause Action allows you to control how Script Debugger
operates when a script pauses or reaches a breakpoint.

Bring Debugger to Foreground
When this item is selected, Script Debugger comes to the
foreground whenever a script is paused or Script Debugger
encounters a breakpoint.

For example, if you are stepping through a script which activates the
Scriptable Finder, selecting this option brings Script Debugger to the
foreground each time you pause. (If you are single-stepping through
the script, you pause at each line.) As you step, Script Debugger
activates the Scriptable Finder to handle the next event and then Script
Debugger comes back to the foreground so you can step again.

This option relies on an auto-activate feature. Script Debugger tries
very hard to track which application is the foreground application. It
does this so that it can re-activate the foreground application whenever
you step over a statement which sends an event. The idea is to ensure,
as much as possible, that the application environment is correct.

Editing Options

When the Auto Indent checkbox is checked, Script Debugger
automatically indents your script as you enter it.

Customizing Script Debugger 71

72

Scripting Opfions

Figure 5-2
Enabling the Script
Debugger dictionary

Chapter 5

If you want to write scripts for the Script Debugger, you need to enable
the Script Debugger Dictionary checkbox in the Preferences dialog box.
After enabling the dictionary, you must quit Script Debugger and
restart it to make the changes take effect. Script Debugger warns you
that you need to do this (Figure 5-2).

Enabling or disabling the Script Debugger
dictionary takes effect the next time Script

Debugger is launched.

Selecting the Enable Script Debugger Dictionary option makes the
Script Debugger’s dictionary available. When this option is not
selected, nothing—not even Script Debugger—can display the
dictionary. When it is selected, Script Debugger intercepts the Get
AETE event and returns the appropriate aete data. Script Debugger
must take this approach to allow you to write non-Script Debugger
scripts which use terms that might conflict with the terms in the Script
Debugger dictionary.

NOTE: At present, the only known conflict is with the offset property.

Enabling the Script Debugger Dictionary also enables recording. This
allows you to record operations done in Script Debugger, just as you
can record operations performed in other applications. If you do not
want Script Debugger to record its own functions, disable the Script
Debugger Dictionary.

Select the “path to me” checkbox if you want Script Debugger to
intercept the “path to me” command. Doing this causes Script
Debugger to return the path to the document for the command. This is
useful if you save a script as a script application or droplet. In this case,
the “path to me” command returns the same value when the script is
executed within Script Debugger, and when it’s executed as a stand
alone application.

If you do not select this checkbox, Script Debugger returns the path to
itself for the command. This option only has an effect if you save the
script. If the script is new and unsaved, this setting has no effect—the
path to Script Debugger is returned in both cases.

Changing Defaults for New Scripts

The Default Script stationary pad in the Script Debugger folder
supplies all defaults for new scripts. This stationary pad file can supply
defaults for every aspect of a new script. When you save a new script
document as a stationary pad, it retains the window settings and
locations, font and color settings, and script text.

You can hold down the Option key while selecting Default Script from
the New menu to open the Default Script directly and retain the
stationary pad settings.

To change defaults for new scripts, follow these steps:

1. Open a new document.

Use the New command from the File menu to create a new untitled
script document.

2. Alter the new document.

Modify the new script so that it has the settings you prefer. You can
enter a default script description, default script text and default data
expressions. You can also hide or show the script description and save
the window location. You can even set breakpoints if you have default
script text.

3. Save the new document.

Select Save As from the File menu. When the Save As dialog box
appears (Figure 5-3), name your script “Default Script” and select the
Stationary Pad checkbox. Save the script in the Script Debugger folder.

Customizing Script Debugger 73

74

Figure 5-3
(reating a new
default script

|'fjl Script Debugger 1.0+ | — Hard Disk 234

Default Script

[T Dictionary Items
[T Examples

[T Extension Scripts
EE] Read Me First

Eject

Desktop

o

Save Script as: Cancel
[Default script | Save
Kind: | Debugger Script v |

[Jstay Open

O Show Startup Screen
[]Save Debugging Information
[Stationary Pad

4. Replace the old Default Script.

When you click on the Save button, Script Debugger asks if the old
Default Script file should be replaced. Answer Yes.

Adding Templates to the Templates Menu

Figure 5-4
The template

scripts in the
File menu

Chapter 5

Script Debugger’s Template Scripts folder contains three script
templates: Folder Droplet; File Droplet; and Folder Scanner Droplet.
You can see these templates under the New menu (Figure 5-4). These
three template scripts are the beginnings of general purpose droplet
scripts. They each provide handlers with comments that tell you where
to place your script for processing files or folders.

Default Script ¥#EN
Open Script... 30
Open Dictionary P File Droplet
Close #1W\ Folder Droplet

Folder Scanner ODroplet

Save S
Save Result As...

Figure 5-5
(reating a
template script

You may add your own template scripts to the New menu by placing
scripts saved as stationary pads in the Template Scripts folder.

To add a template script to the New menu, follow these steps:

1. Open a new document.

Use the New command from the File menu to create a new, untitled
script document.

2. Alter the new document.

Create a specialized template script with the handlers and script text
you need. You can enter a script description, text, and data expressions.
You can also hide or show the script description and save the window
location. You can even set breakpoints if you have entered script text.

3. Save the new document.

Select Save As from the File menu. When the Save As dialog box
appears (Figure 5-5), give your template script a name and select the
Stationary Pad checkbox. Save the script in the Template Scripts folder.

|fleempIate Scripts "l = Hard Disk ...

% File Droplet [

< Folder Droplet

< Folder Scanner Droplet Desktop
|
i

Save Script as:

|Ungzip Droplet | [{W]I

Kind:| & Debugger Script v |
[Jstay Open

O Show Startup Screen

[Save Debugging Information
[Stationary Pad

NOTE: Non-stationary pad files stored in the Template Scripts folder are
listed in the Templates menu. However, if your template is not stored as a
stationary pad, Script Debugger will open the template as a normal
document. In other words, it will not use the template to create a new,
untitled document, and you may overwrite your template script.

Customizing Script Debugger 75

76

Adding Applications to the Open Dictionary Menu

Figure 5-6
The Dictionary
Items folder

Chapter 5

The Open Dictionary menu allows you to quickly display dictionary
information for applications and scripting additions without having to
use a file selection dialog box. You can add the names of the scriptable
applications and scripting additions you use frequently to the Open
Dictionary menu.

To add an item to the Open Dictionary menu, do the following:

1. Make an alias for the application or scripting addition.

Use the Finder to make an alias for the application or scripting
addition you want to add to the Open Dictionary menu.

2. Move the alias to the Dictionary ltems folder.

Use the Finder to move the alias you created in step 1 to the Dictionary
Items folder. The Dictionary Items folder is located within the Script
Debugger folder.

Figure 5-6 gives an example of a Dictionary Items folder containing a
series of aliases to commonly used scriptable applications.

E[0=———— Dictionary ltems =—115
10 items 4523 MB indisk 12.6 MEB available
ik
Read Me
Ansrehie Eudors Fileltsder Fro
il Fronimsd PlseEraieet? Fre
&
& E.
Sepip? fedugger Soriglesie Ted £ailar Sppridd Aefue™
2] EE

Figure 5-7
The Open Dictionary
menu

The resulting Open Dictionary menu is shown in Figure 5-7.

[File

New »

Open Script... 30

Open Dictionary [,

Close FE
Save #S
Save As...

Save As Run-0nly...
Revert to Saved

Anarchie

Eudora

FileMaker Pro

Finder

Frontmost
MacProject Pro
Script Debugger
Scriptable Text Editor
Stuffit Deluge™

Page Setup...
Print... ®P
Quit #0

Scripting Additions
Other...

You can also use the Add to Open Dictionary Menu extension script to

add an application’s dictionary to the menu. If you have a Dictionary

window open, you can select the Add to Open Dictionary Menu script

from the Extensions menu. The script adds an alias of the application

to the Dictionary Items folder.

NOTE: If you add an application to the Dictionary Items folder (in other
words, the program and not the alias), it will not be listed in the Open

Dictionary menu.

Customizing Script Debugger

77

Adding Commands to the Extensions Menu

Figure 5-8

A keyhoard command
added fo an Extension
script

78 Chapter 5

The Extensions menu allows you to add new commands to Script
Debugger. Each item listed in the Extensions menu corresponds to an
AppleScript script application file or compiled script stored in the
Extension Scripts folder inside the Script Debugger folder.

To add a new item to this menu, follow these steps:

1. Create a script.

Using Script Debugger, create a script which you want to include in the
Extensions menu.

2. Save the script in the Extension Scripts folder.

Save your script in the Extension Scripts folder within the Script
Debugger folder as a script application (applet or droplet) or as a
compiled script. If you save your script in any other format, such as a
Debugger Script or Text File, Script Debugger will not include your file
in the Extensions menu.

You can add a keyboard command to your Extension script by adding
“|<the key>“ to the Extension script’s name. For instance, if you
wanted to add Command-H to the Hide Descriptions extension, you
would rename it Hide Descriptions|H. The Extensions menu would
change accordingly (Figure 5-8).

Add Properties to Data Window
Add To Open Dictionary Menu
Execute Idle Handler

Execute Open Handler (Files)...
Execute Open Handler (Folders)...
Execute Quit Handler

Hide Descriptions 3#H
Lock RAll Expressions

Paste File Path...

Paste Folder Path...

Show Descriptions

Unlock Rl Edpressions

Attaching Scripts to the Menu Items

We have already pointed out elsewhere in this manual that Script
Debugger is scriptable, recordable, and attachable. Like other scriptable
applications, Script Debugger can be scripted and recorded. More
importantly, you can write scripts that extend and add to Script
Debugger’s functionality.

You have already seen how you can add commands to Script Debugger
by adding scripts to the Extensions folder. Script Debugger is also
attachable; you can write scripts and attach them to commands in
Script Debugger’s menus. This allows you to modify the way in which
some of Script Debugger’s commands work.

The rest of this section explains how attachments work, outlines which
commands can be modified, and describes how to write attachment
handlers. For more information about Script Debugger’s dictionary,
refer to Appendix B.

How Attachments Work

When Script Debugger starts up, it looks for a compiled script called
“Attachments” in the Script Debugger folder. If the Attachments

script exists, Script Debugger loads it and uses it to handle attachable
commands. When you issue one of the commands listed in Table 5-1,
Script Debugger uses the handler in the Attachments script for the
command. If the Attachments script does not contain a handler for the
command, or if an Attachments script is not present, Script Debugger
handles the command normally.

Customizing Script Debugger 79

Table 5-1: ATTACHABLE COMMANDS

Command

Menu Command

AppleEvent/Handler

Create a new script

File/New/Default Script

make new document

dictionary

Open a script document File/Open open
Close an open script File/Close close
Compile a script Controls/Compile compile
Run a script Controls/Run execute, execute open,
execute idle & execute quit
Step a script Controls/Step step
Pause a script Controls/Pause pause
When a script pauses n/a pause
(following a step, or when a
breakpoint is encountered)
Stop a script Controls/Stop stop
When a script completes n/a stop
(following a stop, following
an error or when the script
completes)
Start recording Controls/Record record
Save a script File/Save, File/Save As, save
File/Save As Run-Only
Revert to saved File/Revert To Saved revert
Open an application Open Dictionary/Other open dictionary

Open the Scripting Additions
dictionary

Open Dictionary/Scripting
Additions

open additions dictionary

Close an open dictionary

File/Close

close

NOTE: Before executing an attachable command, Script Debugger checks the modification date of the
Attachments script file. If the file has been changed since Script Debugger last loaded it, it reloads the script.
If the Attachments script has been removed or renamed, Script Debugger stops using the attachment handlers.

80 Chapter 5

Creating Attachment Handlers

on open of theFile

To attach a script to a Script Debugger command, you must create a
handler for the command’s Apple event and add it to the Attachments
script. For examples of attachment handers, look at the Attachment
scripts in the Auto-Add to Dictionary and Every Possible Handler
folders in the Attachments Examples folder. In particular, the Every
Possible Handler script has example handlers for all of the commands
that support attachment.

For instance, if you wanted to attach a script to Script Debugger’s Open
Script command, you would add statements inside the open handler.

tell application “Finder”
set datel to modification date of theFile as string
set date2 to creation date of theFile as string

end tell
display dialog “Created: “ & date2 & return & -
“Last modified: " & datel buttons {“Cancel”, “OK”} default button 2

continue open theFile

end open

This particular script uses the Scriptable Finder to get the file
information about the file that you are about to open. It puts the
creation and modification date into variables and then displays a dialog
box with that information before the document is opened. Notice that
we do not have to insert a line to choose the file; Script Debugger takes
care of that before calling the handler. Another important item to
notice in this handler is the continue open theFile line before
the end of the handler. If this is not included, Script Debugger does not
open the file. You should also notice that the display dialog line is
outside of the tell Finder block so the dialog is displayed in Script
Debugger. You could easily modify this script to use scripting additions
to get the file information and reformat it for display in the dialog box.

Customizing Script Debugger 81

82

Debugging Extension and Aftachment Scripts

Chapter 5

It is sometimes difficult to debug Script Debugger extension scripts and
attachment handlers directly within Script Debugger. One way to solve
this problem is to use a second copy of Script Debugger. When you use
two copies of Script Debugger, one copy can host the script, and the
other can respond to Apple events.

When you run two copies of Script Debugger, you should make sure to
send the events to the correct copy. Renaming the second copy of Script
Debugger makes this a little easier.

CHAPTER

Common Problems and Troubleshooting

While every effort has been taken to make Script Debugger
a solid and bug-free program, you may still experience some
problems while you are using it. Some of these problems
stem from the interaction of AppleScript and scriptable
programs. This section lists some common problems and
offers suggestions for working around them.

page 225

Use the Include Enclosed Folders checkbox to indicate
whether or not you want Scheduler to include the files stored
in enclosed folders when it calculates the size of the folder.

front matter

Apple, Macintosh, Power Macintosh, PowerBook, AppleScript, APDA, Finder,
Balloon Help, Script Editor are trademarks of Apple Computer, Inc. All other
trademarks are acknowledged as the property of their respective owners.

Unauthorized reproduction by any means, electronic or otherwise, is strictly

forbidden.
page 121
atObject The name of an AppleTalk network object
atType The type name of an AppleTalk network object
atZone The zone name of an AppleTalk network object

Common Problems and Trouble Shooting 83

84

Chapter 6

PROBLEM I can't compile Script Debugger scripts.

ANSWER The Script Debugger dictionary is disabled. You can enable
it by clicking in the Enable Script Debugger Dictionary checkbox in the
Preferences dialog. See the Scripting Options section of Chapter 5:
Customizing Script Debugger, for more information.

PROBLEM I can't record Script Debugger actions.

ANSWER Recording is only available when the Script Debugger
dictionary is enabled. To record Script Debugger’s actions, you must
click on the Enable Script Debugger Dictionary checkbox in the
Preferences dialog. See the Scripting Options section of Chapter 5:
Customizing Script Debugger, for more information.

PROBLEM I can't display the Script Debugger dictionary.

ANSWER The Script Debugger dictionary is disabled. You can enable
it by clicking in the Enable Script Debugger Dictionary checkbox in the
Preferences dialog. See the Scripting Options section of Chapter 5:
Customizing Script Debugger, for more information.

PROBLEM 1 can't open Script Debugger script files with Apple’s Script Editor.

ANSWER Your Script Debugger scripts must be saved in Text,
Compiled Script, or Script Application format before they can be
opened by Apple’s Script Editor.

PROBLEM The breakpoint information in my compiled script is missing.

ANSWER If you save a compiled script or a script application with
debugging information and then edit the file using Apple’s Script
Editor, all of the breakpoint information will be lost when you open
the script again using Script Debugger.

PROBLEM Script Debugger’s performance is poor when single-stepping through a
script.

ANSWER If you have an excessive number of expressions in the Data

window, Script Debugger slows down when single-stepping.

Expressions that result in long text values, record structures, or object

specifiers are particularly time consuming to update.

Figure 6-1
Script Debugger
can't open a file
created by a later
version

PROBLEM | can't debug open, idle or quit handlers.

ANSWER1 Confirm that your script contains an open, idle or quit
handler and that it’s compiled.

ANSWER2 ~ Make sure that you have a breakpoint set in your handler,
and that you are executing it using the appropriate Extensions script.

PROBLEM ~ When | try to open a script, Script Debugger tells me that it can't open the
script because it was created by a later version of Script Debugger
(Figure 6-1).

ANSWER You will need to upgrade to the latest version of Script

Debugger.

NOTE: You can still open the file using Apple’s Script Editor. You will lose
any debugging and data saved with the script.

0 Couldn't complete the last command
because the document was created
by a later version of Script
Debugger.

Result Code = 1009

PROBLEM | can't use Drag and Drop to invoke open handler.

ANSWER1 ~ Make sure the script is compiled.

ANSWER2 Make sure your script has an open handler.

ANSWER3 Make sure you have a breakpoint set in the open handler.

ANSWER 4 Make sure your Macintosh has the Drag and Drop
extension installed or you are running System 7.5.

ANSWER5 Make sure you are dragging a file (application, document,
etc.) or a folder. Script Debugger will not invoke the open handler if
you drag text or a text clipping.

Common Problems and Trouble Shooting 85

86

Chapter 6

PROBLEM | get an out of memory (-108) error when displaying the Scripting
Additions dictionary.

ANSWER 1 If you have a large number of third party scripting additions
installed, you may need to expand Script Debugger’s memory partition
before you can display the Scripting Additions Dictionary window.

ANSWER2 Script Debugger stores some of the information it needs to
display the dictionary using “Temporary Memory.” If your system is
low on free memory, you do not have enough space available for Script
Debugger to display the dictionary. Try closing other applications that
you may have running.

PROBLEM I've written an attachment script for Script Debugger, but now | can’t quit
the program.

ANSWER ~ When you are writing scripts for the attachability features in
Script Debugger, you may get into a state where you can’t quit the
program. This is caused when an attachment for the Close command
generates an error. The solution is to simply move the Attachments file
out of the Script Debugger folder and try the operation again.

This solution can be used to solve any problems caused by attachments.
It works because Script Debugger checks the Attachments file and
executes any handlers it finds there each time you select a command.

PROBLEM The identifiers in my script are in the lident| style. (For more information
about identifiers, refer to the AppleScript Language Guide, p. 28.)

ANSWER If you open a script using Script Debugger which contains
identifiers that conflict with the identifiers in the Script Debugger
dictionary, the identifiers in the script are converted to the |ident]
style. To avoid this, uncheck the Enable Script Debugger Dictionary
checkbox in the Preferences dialog box.

APPENDIX

L)

Extension Scripts

You can add to Script Debugger’s features by writing
Extension scripts and placing them in the Extensions folder.
This appendix describes the Extension scripts that are
shipped with Script Debugger. It explains how to use them
and provides some tips that might not be obvious. If you are
interested in writing Extension scripts for Script Debugger,

be sure to examine the way these scripts are written.

Extension Scripts

87

88

Script Debugger Extensions

Figure A-1
Script Debugger's
Extensions menu

Appendix A

Script Debugger provides a special Extensions menu (Figure A-1)
where you can add additional commands to the program. These
commands invoke AppleScript scripts that use the Script Debugger
scripting interface to add functionality to the program.

Script Debugger comes with twelve Extension scripts that are
documented in this section. If you want to add Extension scripts to
this menu, see Chapter 5, Customizing Script Debugger.

Add Properties to Data Window
Add To Open Dictionary Menu
Execute Idle Handler

Execute Open Handler (Files)...
Execute Open Handler (Folders)...
Execute Quit Handler

Hide Descriptions

Lock AIl Expressions

Paste File Path...

Paste Folder Path...

Show Descriptions

Unlock All Expressions

Add Properties To Data Window

Figure A-2
Compile changes
prompt

The Add Properties to Data Window extension script allows you

to set up the Data window with the object properties from the Script
window. This can save time since you do not have to add each property
in the script individually.

To add the properties to the Data window,

1. Bring the Script window to the front.
2. Select the Add Properties to Data Window command from the Extensions menu.

If you have made any changes to the script, the script extension
prompts you to compile the changes (Figure A-2). This allows Script
Debugger to add any additional globals you have added to the script
since the last time you compiled it. Script Debugger then adds the
object properties to the Data window.

Compile changes?

[Eancel] [No] Yes

If the script has been compiled, this dialog box does not appear.

Extension Scripts 89

90

Add To Open Dictionary Menu

Figure A-3
Not a Dictionary
window error
message

Appendix A

The Add to Open Dictionary Menu extension script adds an appli-
cation or scripting addition to the Open Dictionary menu. When you
execute the script, it gets the name of the frontmost application or
scripting addition dictionary window. It then creates an alias of the
application or scripting addition in the Dictionary Items folder. To add
an application’s dictionary to the menu, follow these steps:

NOTE: This script uses the Scriptable Finder.

1. Open an application’s or scripting addition’s dictionary using the Other sub-menu
under the Open Dictionary menu.

2. Choose Add to Open Dictionary Menu from the Extensions menu.

The script creates an alias in the Dictionary Items folder for the
application.

NOTE: Make certain that you have a Dictionary window in the foreground
when you choose Add to Open Dictionary Menu. If you do not, Script
Debugger informs you that the current window is not a Dictionary
window (Figure A-3).

Script Error D—0—————x=|

f The current window iz not a dictionary window

This script uses the Gestalt scripting addition from Late Night Software
Scripting Additions and the Scriptable Finder. If you do not have the
Scriptable Finder installed, an error dialog box appears with the
message that the Scriptable Finder is not installed. See Appendix D,
More Information about AppleScript, for information about getting the
scriptable Finder.

If you try to add a Dictionary window that is already in the Open
Dictionary menu, you will see an error message (Figure A-4).

Figure A-4
An dlias already
exists in the
Dictionary Items

folder

Script Error

“ JPEGYiew * already exists in the Drictionary tems
folder

Execute Idle Handler

Figure A-5
No Idle handler
error message

Figure A-6
Script running

or recording
error message

The Execute Idle Handler extension script invokes the idle handler in
the current script. Like the Execute Open and Execute Quit scripts, this
script allows you to test and debug idle handlers without the need to
modify your script after you have finished testing it.

The best way to test an idle handler is to set a breakpoint in the handler,
and then select the Execute Idle Handler script. The breakpoint stops
the script in the handler and you can then single-step through it.

NOTE: If the current window does not have an idle handler in it, Script
Debugger returns an error message (Figure A-5).

Script Error

f Seript "test” does not have an Idle handler.

Script Debugger also returns an error message if the script in the
current window is running or if you are recording a script in the
current window when you invoke the Execute Idle Handler script
(Figure A-6).

Script Error

f Seript “test” iz already running or recording.

Extension Scripts 91

92

Execute Open Handler (Files). . .

Figure A-7
The Add Files
dialog box

Appendix A

The Execute Open Handler (Files) extension script invokes the open
handler of the current Script window. If you want to take control of the
script once the handler has been invoked, you should set a breakpoint
in the Open handler. This stops the script in the handler so that you
can single-step through it.

To execute the script,

1. Choose Execute Open Handler (Files) from the Extensions menu.

2. Select the files for the Open handler in the dialog box (Figure A-7) and click the
Add button.

i Script Debugger 1.0 = | — Hard Disk 23

[Dictionary Items [+
[Examples
[T Extension Scripts Desktop
[1con —_—
EE] Read Me First
“ $cript Debugger
[Template Scripts
Files for Open handler:

[Add N [Remove]

Hard Disk 23<:Desktop ...er 1.0:Default Script

As you select files, they are added to the scrolling list at the bottom of
the dialog box.

3. Click the Done button and Script Debugger passes the selected files fo the Open
handler as a parameter, and executes .

If you have Macintosh Drag and Drop installed, you can use the
Drag and Drop feature to execute your Open handler. You do this
by dropping a file or files on the open Script window. For more
information about this feature, refer to Chapter 3, Creating and
Editing Scripts.

Execute Open Handler (Folders). . .

Figure A-8
The Add Files
dialog box

The Execute Open Handler (Folders) extension script invokes the open
handler of the current Script window. If you want to take control of the
script once the handler has been invoked, you should set a breakpoint
in the Open handler. This stops the script in the handler so that you
can single-step through it.

To execute the script,

1. Choose Execute Open Handler (Folders) from the Extensions menu.

2. Select the folders for the Open handler in the dialog box (Figure A-8) and click the
Add button.

= Script I]ehugger 1.0v | — Hard Disk 234
[Dictionary Items [
[Examples
[Extension Scripts Deskiop
=

Folders for Open handler:
[Add “Extension Scripts”]

—

Remove

L

Hard Disk 234:0esktop... 1.0:Template Scripts

3. Click the Done button and Script Debugger passes the selected folders to the open
handler as a parameter, and executes it.

If you have Macintosh Drag and Drop installed, you can use the
Drag and Drop feature to execute your Open handler. You do this

by dropping a folder or folders on the Open Script window. For more
information about this feature, refer to Chapter 3, Creating and
Editing Scripts.

Extension Scripts 93

94

Execute Quit Handler

Figure A-9
No Quit Handler
error message

The Execute Quit Handler extension script invokes the quit handler in
the current script. As with the other Execute scripts, this script provides
you with a way to debug a Quit handler without having to edit the
script.

If your script needs to be compiled, this script will compile it before the
handler is executed.

NOTE: If the current window does not have a quit handler in it when you
choose Execute Quit Handler from the Extensions menu, Script Debugger
returns an error message (Figure A-9).

Script Error

f Seript “test” does not have a Quit handler.

Hide and Show Descriptions

Appendix A

The Hide Descriptions extension script lets you hide the description
areas in all currently open scripts. This is quicker than bringing each
window to the front and clicking on its Script Description triangle. To
hide all descriptions, choose Hide Descriptions from the Extensions
menu.

You can reverse the effect of the Hide Descriptions script by choosing
Show Descriptions from the Extensions menu. The Show Descriptions
extension script lets you show the description areas in any currently
opened scripts. This is quicker than bringing each window to the front
and clicking on its Script Description triangle. To show all descriptions,
choose Show Descriptions from the Extensions menu.

If you do not have any Script windows open, Script Debugger returns
an error (Figure A-10).

Figure A-10
No open documents
error message

script Error ———"——|

f Thete are no open docurnents

==

Lock and Unlock All Expressions

Figure A-11
A Data window
with Locked
Expressions

The Lock All Expressions extensions script allows you to lock the
contents of the expressions in your Data window. This preserves the
values of the expressions in the Data window. If you run your script
again after you have locked it, the expression values are not changed.
Another advantage of locking expressions is that it speeds up the
performance of your script when you are single-stepping.

To lock the expressions in your script,
1. Bring the Script or Data window to the front.
2. Choose Lock All Expressions from the Extensions menu.

You will notice that locks appear next to the expressions in the Data
window (Figure A-11).

EO0=————— Count Resources (Data) =r8——P=
theFile W aliaz "Mac0S :Systemn Falder Extenszions :Scripting Additions :Add Picture” |4
resFile 9026 =
rumTypes s ERRS
totalRsres 13 i
aResType B osax”]

Now, if you run your script again, the values of the expressions will not
change. If you watch the progress of your script in the Event Log
window, you can see that the expressions are being updated, but their
values in the Data window are not updated.

The Unlock All Expressions script reverses the effects of the Lock All
Expressions script. To unlock the expressions in your script,

1. Bring the Script or Data window to the front.

Extension Scripts 95

96

2. Choose Unlock All Expressions from the Extensions menu.

Now, if you run your script again, the values of the expressions will be
updated as they normally would.

Paste File Path. . .

The Paste File Path extension script pastes the path to a file into a
script. You can use this to quickly place the location of files in the
scripts you write. For instance, if you want to define an AppleScript
property containing an alias to a particular file, follow these steps:

1. Enter the beginning of a property definition into your script (Figure A-12).

Figure A-12 Si———— untitled-1 EE|
Property definifion P> Seript Desoription... &
for a file alias i

property myFile : alias

Handlers » [0

2. Choose the Paste File Path command in the Extensions menu.

When the file selection dialog box opens (Figure A-13), locate the file
whose path you want to place in the script.

Figure A-13

The File Selection [Script Debugger 1.0 * |

dialog box % Default Script = Hard Disk 234
[Dictionary Items —
[Extension Scripts
(3 Script Tools 1.4
Scripting Interface
[Template Scripts |ﬁ|
[useful Scripts e

5

Appendix A

Once the Open button is pressed, the file’s path is added to your script
(Figure A-14).

Figure A-14 EOi=—————————————— lintitled-l =———————JI-
Afile’s pathname > Seripiiesriien..
pusied inIo épropertq myFile: alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:5cript Debugger™ i
a script
Hanc;]ers -
Paste Folder Path. ..

Figure A-15
The Folder
Selection
dialog hox

The Paste Folder Path extension script is similar to the Paste File Path
extension script. Instead of pasting a file pathname into your script,
however, it pastes a folder’s pathname into your script.

To paste a folder path into your script,

1. Choose Paste Folder Path from the Extensions menu.

A folder selection dialog box opens (Figure A-15).

Choose a folder:

[Script Debugger 1.0 v | = Hard Disk 234

[Dictionary Items
[TExtension Scripts
[15cript Tools 1.4 Desktop

[OTemplate Scripts | | e
[useful Scripts

[

Fipnt

Choose

] Cancel

[Choose “Script Debugger 1.0” |

Extension Scripts 97

2. Select the folder whose path you want o add to your script and click the Choose
button.

When you have selected a folder, the dialog box closes and the path is
pasted into your script window (Figure A-16).

Figure A-16 Eil=————————————————— lnlitled- 1 ——————— 77|
A folderls [> Seript Description... i
pthnume < i "Hard Disk 23<4:Desktop Folder:Script Debugger 1.0:Examples:Libraries:” ﬁ
pasted into
a script
&}
Handlers = [<a]li =5}

98 Appendix A

APPENDIX

Script Debugger Scripting Interface

This appendix describes the objects available in Script
Debugger’s dictionary and the commands that you can
use to manipulate these objects and their contents. The
purpose of the discussion in this appendix is to make it
easier for you to write scripts extending and modifying
Script Debugger’s behavior. You can find information
about all of Script Debugger’s objects and commands by
opening its dictionary using the Open Dictionary Other

command in the File menu.

Script Debugger Scripting Interface

99

100

Scripting Script Debugger

As we discussed in Chapter 5, Customizing Script Debugger, you can
write scripts that add commands to Script Debugger’s Extensions menu
and modify the behavior of Script Debugger’s commands. Toward that
end, this section of the manual briefly elaborates on the description of
the commands that you find in Script Debugger’s dictionary.

NOTE: To use the Script Debugger scripting interface effectively, you must
enable the Script Debugger dictionary using the Preferences command.
When you no longer need the Script Debugger dictionary, disable it

to avoid terminology conflicts with Scripting Additions and other
applications. Please refer to Chapter 5 for more details about the
Preferences command.

Certain Restrictions

Appendix B

When you are scripting Script Debugger, you should be aware of
certain restrictions that affect any event which causes a script to
execute. These events are the step, execute, execute open, and other
commands.

Script Debugger only allows one script to be executing at any given
time. If you have a script paused in one window, you cannot begin
executing or recording a script in another window. Whenever you
cannot run a script, check the other open windows to make certain that
you have not paused a script. One exception to this is that you can
compile a script in another window while a script is paused.

Another restriction in Script Debugger is that the event which initiates
the execution of a script (the first step or execute command) will not
complete until the script finishes executing. If you want to be able to
issue additional step events, you must send the first step event using an
AppleScript “ignoring application response” block.

In addition to these restrictions, you will also notice that object
references containing “whose” tests involving strings are limited to
255 characters and not 32,767 as the Apple Event Registry suggests.

Element Hierarchy

Figure B-1
Script Debugger’s
object hierarchy

Figure B-1 shows the hierarchy of objects within Script Debugger.
Whenever you see an element in the hierarchy followed by an ellipse,
the element has a sub-tree that is hidden to save space in the graphic.
For more information about objects and inheritance in AppleScript,
refer to the Apple Event Object Support Library Developer Note and the
Apple Event Registry.

character...

character

docurnent

window

character...

[application | decurnent windew

H data windew | data item |

dictionary ewvent
dictionary class

-| dictionary window

-I result window

-| event Tog window

inzertion point

g Tnenu H rrerw itern]

Script Debugger Scripting Interface 101

Perhaps the best way to think of Script Debugger’s element hierarchy is
as windows and the information they contain. For example,

Script Debugger
has open documents
which have text
which have data items

has open dictionaries
which have suites
which contain events
which contain classes

This is the core structure for the program. The window classes are built
around this core and provide access to non-document information
such as the dictionary, event log, and result windows. The window
classes also provide alternate access paths to document information
such as the script text and data items. The alternate access paths are
made possible by additions to the Core, Text, and Miscellaneous suites.
You can see these suites in the Script Debugger dictionary.

Augmented Suites

If you look in Script Debugger’s Dictionary window, you will see the
core, text, and miscellaneous suites represented along with the Script
Debugger suite. These suites are included in the dictionary because
they have additional commands, classes, and properties that make
scripting Script Debugger easier. We will look at a few of these
commands in this section, and you can find out more about the
additions by examining the dictionary.

Text Suite

The additions to the Text suite allow you to get text from Script
Debugger’s document windows. These extensions to the suite are
limited to some additional properties for the text, line, character, and
word classes. For example, the properties “breakpoint” and “breakpoint
set” let you get the breakpoint information about a line in your script.
The extensions to the text suite are modeled on the Scriptable Text
Editor.

102 Appendix B

In the Text suite, you can ask for the default value of an object in a few
forms:

1. Asfext.

get lines of first document whose breakpoint set = true as plain text

2. As styled text. This is the default.

get first line of document as styled text

3. As an object reference.

get lines of first document whose breakpoint=true as reference

Object references are important because they allow you to retain
references in your script. This can be very useful if you need to apply a
number of events to the references:

set bpLines to lines of first document whose breakpoint set = true as reference
set bpLineText to contents of bpLines
set breakpoint set of bpLines to false

Core Suite

save first window in

This is generally faster because the returned object references are
character-based, which is the fastest method. Line-based selections are
the next fastest. Word-based selections are the slowest because Script
Debugger has to find all of the words along the way to resolve the
specification.

The only addition to the Core suite is the Save command. It accepts
some additional parameters which let you specify the file type and
whether or not it is run-only. For instance, you can save a window into
a debugger script.

save first window in (new file) as debugger script

Or you could save a compiled script in read only format.

(new file) as script application with run only

Script Debugger Scripting Interface 103

104

Miscellaneous Suite

The additions to the Miscellaneous suite allow you to script the menus
and menu items in Script Debugger. As you will see in a script later in
this appendix, you can use the menu commands to bring windows to
the front in your scripts. You can also use menu commands to speed
some otherwise tedious-to-script tasks.

For example, if you want your script to quit Script Debugger and save
all of the windows as Script Debugger is quitting, you could write a
script which cycles through all of the windows and saves each one.
However, the menu commands allow you to accomplish the same task
in fewer lines.

select menu item “Save All” of menu “Windows”
select menu item “Quit” of menu “File”

Granted, such scripts are not always optimal, but they can save you
time and let you script objects in Script Debugger that you might not
otherwise be able to script.

The Miscellaneous suite also contains an addition to the Select
command. It has a “scroll to selection” parameter which only applies
when selecting objects from the text suite. It allows you to scroll the
newly selected text into view.

Script Debugger Suife

Appendix B

Aside from the additions to the other suites that we have just looked at,
all of the other unique commands are limited to the Script Debugger
suite. The commands in the Script Debugger suite allow you to perform
all of the tasks in scripts that you can perform in the interface. This
extends to the way that scripts are executed and that windows are
opened, in scripts.

Script Window

When you are executing a script interactively in Script Debugger, the
Script window must be on top. The same holds true of any script that
you write to control Script Debugger. If your script issues events to
Script Debugger which change window order, the window of the
running script remains on top. If your script opens a Dictionary
window, for example, it will be opened below the running script.

Note also that when a script is executing or paused, its text is locked.
Any Apple events which try to alter the text of a running or paused
script, are not handled.

With those restrictions in mind, let’s look at some ways that you can
script Script Debugger.

Create a Script Application

This example script creates a script application from the script on the
clipboard. While trivial in itself, this script demonstrates that you can
control Script Debugger through scripts.

Due to Script Debugger’s restriction that the executing window must
be on top, you would need to run this script from another script editor
or a second copy of Script Debugger.

tell application “Script Debugger”

activate

paste

save first window in file “Script App” as script application
end tell

Before you run this script, you would need to copy the script for

a script application to your clipboard. When the example script is
executed, activating Script Debugger converts the clipboard. The

paste command inserts the contents of the clipboard into the front-
most window. The save command allows you to save the script as an
application. If you step through the script, you may notice a longer
delay while the save line is executing. This is a result of Script Debugger
compiling the script before it saves it as an application. Of course, any
errors in the script that you are pasting in will cause the script to fail.

Script Debugger Scripting Interface 105

106

Save as Run-Only

This example script has its basis in the File Droplet template. It takes a
compiled script that you drop on it and saves it as a run-only script.
The script application opens the script dropped on it in Script
Debugger and then saves it.

on ProcessAFile (aFile)
tell application “Script Debugger”
open aFile
save first window in (new file) as script-
application with run only
end tell
end ProcessAFile

on open of filelList
repeat with aFile in fileList
ProcessAFile (contents of aFile)
end repeat
end open

on run
set theFile to choose file
ProcessAFile (theFile)

end run

The script prompts you for a name, but it could just as easily be re-
written to take the name of the original script.

Comment Lines

Appendix B

While the previous scripts show how easy it is to script Script
Debugger, the real power of Script Debugger is in its extendability.
Through Extension scripts, you can add features and power to Script
Debugger. This example script places a block comment around the
selected text and can be run as a script extension. It performs a couple
of checks to make certain that the front window is a script and that it is
not paused or running. It then gets the range of the selected text and
places a block comment mark at the beginning and end of the
selection.

if first document exists then

if class of first window = document window then
if debugger state of first document = stopped then
set theSel to selection of first document
if class of theSel # insertion point then
set startOffset to character offset of first character of theSel
set endOffset to character offset of last character of theSel

make new text at after character endOffset of first document -
with data “*)”
make new text at before character startOffset of first document -
with data ™ (*”
select text startOffset thru (endOffset + 4) of first document
else
error “Can’t comment empty selection”
end 1if
else
error “Script “” & (name of first document) & “” is running or recording.”
end 1if
else
error “The current window is not a document window”
end 1if

else

error “There are no open documents”

end 1if

You can extend this script to place either block comment marks or
single line comment marks based upon the length of the selection. For
example, if there are more than six lines selected, the script would place
block comment marks. If six lines or less are selected, the script would
place two dashes at the beginning of each line.

Scripting Pointers

When you are writing scripts for Script Debugger’s Script window, it is
a good idea to use “whose” expressions as much as possible. This speeds
up script execution considerably. For instance, you could locate all of
the lines containing breakpoints by stepping through each of the lines
and checking to see if the breakpoint is set.

set bpLines to {}
repeat with i from 1 to count lines of first document
if breakpoint set of line i of first document then
set bpLines to bpLines & { i }
end
end

Script Debugger Scripting Interface 107

108

While thorough, this is the slow way to find the breakpoints. A faster
way uses a “whose” expression.

set bpLines to lines of first document whose breakpoint set = true

Data Window

script dataItemObj

property theExprs

end

Whose expressions rely on object references. As noted earlier in this
appendix, they are faster than line and word references.

In addition to manipulating the contents of script windows and the
windows themselves, you can also work with the contents and other
Script Debugger windows. For example, you can save the contents of
the Data window. If you save a script that you are working on as a
Debugger script, it retains the expressions and their values between
runs. You might also find it useful to save the contents of the Data
window across several runs of your script for the purpose of
comparison. The following script saves the contents of the Data
window to a text file.

{}

(*Save the expressions in the data window to a file *)

set theExprs of dataltemObj to (expression of data items of second document)
set theObjFile to new file
store script dataltemObj in theObjFile replacing yes

(*Add the expressions saved in a file to the data window *)

delete data items of second document

set newDataltemObj to load script theObjFile
repeat with anExpr in theExprs of newDataItemObj
make new data item at end of second document with data (contents of anExpr)

end repeat

Appendix B

Dictionary Window

The dictionary commands in the Script Debugger suite allow you to
open any Dictionary window or the Scripting Additions Dictionary
window. The scripting interface also allows you to retrieve information
from the Dictionary window. If you have selected text in a Dictionary
window, you can retrieve the text with the script

get text from the first dictionary window

You can also specify the text for Script Debugger to retrieve. For
example, the script

get lines 1 through 5 of the first dictionary window

returns the specified lines. The full text suite is supported so you
can perform “whose” tests or any operation you can do in the other
windows.

NOTE: The text in Dictionary windows is not modifiable.

For a better idea of the capabilities in Script Debugger’s
implementation of the dictionary window, open the Additions
Inventory script application that you will find in the Script Debugger
Examples folder of the Examples folder. This script uses Script
Debugger to open the dictionary window for each addition in the
Scripting Additions folder, to copy the class and event information, and
to write it to a Scriptable Text Editor file. The business end of the script
begins after the “tell application "Script Debugger"”
located toward the end of the file.

statement which is

Script Debugger Scripting Interface 109

110

tell application “Script Debugger”
set theDict to open dictionary additionPath

tell me to OutputText (“*Addition “” & name of additionInfo & “”")
set numSuites to count every dictionary suite of theDict
repeat with i from 1 to numSuites

tell me to OutputText (“ Suite: “ & name of -

dictionary suite i of theDict)
if dictionary event 1 of dictionary suite i of theDict exists then
tell me to OutputText(“ Events: “ & -
(name of every dictionary event of -
dictionary suite i of theDict) as string)

else
tell me to OutputText (“ Events: none”)
end if
if dictionary class 1 of dictionary suite i of theDict exists then
tell me to OutputText (" Classes: “ & -
(name of every dictionary class of -
dictionary suite i of theDict) as string)
else
tell me to OutputText(“ Classes: none”)
end if

end repeat
tell me to OutputText (“ “)
close theDict
end tell

In this portion of the script, Script Debugger counts the suites in the
scripting additions window. It then checks for and lists the events and
classes in each of the suites in the Dictionary window. Notice that it is
retrieving the information as a string and then concatenating the string
with a label to paste in the Scriptable Text Editor window.

Appendix B

Event and Result Windows

The Script Debugger suite contains classes that allow you to refer to the
Event and Result windows. You can use the save command to write the
contents of the window to a file.

While you are testing a script, you might want to save the contents of
the Event Log or Result windows during different runs of a script. This
would provide you with a source of comparison as you make changes
to your script and help you isolate problems. It is easy enough to bring
the Event Log or Result window to the front and perform a save, but it
is even simpler to incorporate the save command into your script.

For example, you can add a line to the end of your script that prompts
you for a name and saves the contents of the Result window to disk.

tell application “Script Debugger”
list folder “Hard Disk 245:System Folder:Extensions:Scripting Additions:”
save “Result” window (new file with default-
“Additions Listing”)
end tell

You can script the Event Log window in the same way. You should
remember that the events are not recorded in the window if it is not
open. To make sure that the window is open to catch events, you can
add a line to the beginning of your script that opens the window, and
then one at the end that saves the contents of the window.

tell application “Script Debugger”
select menu item “Show Event Log” of menu “Windows”
list folder (choose folder)
save event log window in (new file)

end tell

Note that this rather simplistic script will fail if the Event Log window
is already open since its menu will be disabled. You can check for the
status of a menu with this line of script.

get enabled of menu item “Enter Selection” of menu “Search”

This will return a boolean on which you can base the behavior of your
script .

Script Debugger Scripting Interface 111

112 Appendix B

APPENDIX

Scripting Additions

This appendix describes each of the AppleScript commands
in the Late Night Software Scripting Additions package.
Scripting additions are a special type of software that add
new features to the AppleScript language.

The Late Night Software Scripting Additions are automatically
installed when you select Easy Install when installing Script
Debugger (see Chapter 1). You will find the example scripts in
the Examples folder which is inside the Examples folder of the
Script Debugger folder.

Scripting Additions 113

114

Additions Examples

The Additions Examples folder inside the Examples folder contains a
series of example AppleScript scripts showing how to use the new
commands provided by the Late Night Software Scripting Additions.
All of these examples are stored as Script Debugger scripts or script
applications.

AppleTalk Folder

AppleTalk State
This example displays the current state of the AppleTalk
network.

List File Servers
This example lists the file servers available on your
AppleTalk network.

Files & Folders Folder

Choose File In Prefs Folder
This example shows how to use the Set Default Folder and
Get Default Folder commands to control the starting folder
presented by the Choose File command.

Choose New File Example
This short example shows the Choose New File command
in use.

Choose Several Files Example
This short example shows the Choose Several Files
command in use.

Choose Several Folders Example
This short example shows the Choose Several Folders
command in use.

File IO Example
This example creates a text file and writes a short message
to it using the File IO commands.

File IO Example I
This example opens a text file and displays the contents of
the file, line by line.

Appendix C

List Folders
This example uses the Choose Several Folders and the File

IO commands to produce a listing of the files stored in
folders.

Misc. Folder

Quit All Applications
This example illustrates how to use the List Processes, Get
Process and Get Current Process commands to quit all the
non-essential applications running on your Macintosh.

Shutdown
This example illustrates the use of the Shutdown command.

Regular Expressions Folder

Regular Expression Example
This example uses the Regular Expression commands to
modify the names of all the files in a folder (note the file
names are not actually changed).

Regular Expression Example IT
This example uses Regular Expression and File IO
commands to read and parse a simple text file.

Resources

Count Resource
This example counts the number of resources in a resource

file.

Enumerate All Resource Types
This example displays all of the resource types in the
current resource file chain.

Get Chosen Printer
This example displays the name of the currently selected
printer.

Remove “ckid” Resources
This droplet script scans a directory tree and removes ‘ckid’
resources from the files it finds in the directory tree. ‘ckid’
resources are added to files by Projector/SourceServer.

Scripting Additions 115

Speech Folder

Happy Birthday To You
This example script application sings the happy birthday
song using the various voices installed in your system.

Speak A Text File
This example script application speaks the contents of a file,
line by line.

Libraries

The Libraries folder contains the following AppleScript libraries.

Gestalt Selector Lib
This library defines the Gestalt selectors which are
documented in Inside Macintosh, Volume V1.

Error/Return Codes Lib
This library defines a variety of Macintosh OS error and
return codes.

AppleScript Error Codes Lib
This library defines AppleScript and AppleEvent related
error codes.

116 Appendix C

Script Tools 1.3

The Late Night Software Scripting Additions are based on the popular
and award winning Script Tools 1.3 package. If you have been using
Script Tools 1.3, you may notice that some of the scripting additions
have changed and some new ones have been added. These new
additions include AppleTalk Control, More Math, List Manipulation,
and Resource 10.

You will also notice that the Choose Folder command has been
removed because it conflicts with Apple’s Choose Folder command.
The handler is still in the Choose Files & Folders scripting addition to
provide backward compatiblity with older scripts, but the dictionary
entry has been removed.

AppleScript 1.7 Issues

With the release of AppleScript 1.1, Apple has introduced a number of
new scripting additions which make some Late Night Software
commands obsolete. However, you may continue to use the commands
without fear of conflicting with Apple’s new commands.

Now that the Scriptable Finder has been released by Apple, you may
find the functionality provided by some commands is also available
through the Finder. Here too, you may continue to use the scripting
additions without conflicting with the new Finder.

Scripting Additions 117

118

AppleTalk Control

Get Zone

Appendix C

The AppleTalk Control addition allows your scripts to perform
AppleTalk network management operations. This section describes
each of the AppleScript commands provided in the AppleTalk Control
addition.

The Get Zone command allows you to determine the name of the
AppleTalk zone to which your Macintosh belongs. If your AppleTalk

o

network has only one zone, the command returns the string

Syntax

get zone

Parameters
None.

Result
None.

Example

set myZone to get zone
if myZone = “*” then
display dialog “No zones” buttons { “OK” }
else
display dialog “Zone: “ & myZone buttons { “OK” }
end if

Outcome:

tell current application
get zone
—> “ARA”
display dialog “Zone: ARA” buttons {“OK”}
—> {button returned:”OK”}
end tell

Errors

This command can return any of the errors which are returned by the
ToolBox GetMyZone routine. These errors are explained in detail in the
Inside Mac series.

List Zones

The List Zones command allows you to find the names of all the zones
on your local network.

Syntax

list zones

Parameters
None.

Result
None.

Example

set localZoneNames to list zones
display dialog “Zones: “ & count of localZoneNames

Outcome:

tell current application
list zones
—> {“Engineering2”, “Marketing”, “Marketing2”, “RandD”,
“Admin”, “Engineering”}
display dialog “Zones: 6”
—> {button returned:”OK"}
end tell

Errors

This command can return any of the errors which are returned by the
ToolBox GetLocalZones routine. These errors are explained in detail in
the Inside Mac series.

Scripting Additions 119

120

List Network Names

Appendix C

The List Network Names command allows you to search for services
available on an AppleTalk network.

Each Macintosh registers a series of names representing the various
network services available on the machine. Other systems query these
registered names to find the network addresses.

Syntax

list network names
[object objectName]
[type typeName]
[zone zoneName]

Parameters

objectName This optional parameter specifies the objects to be
found. If the parameter is not supplied, all objects are
found.

Wildcard characters (=) may be used to replace portions
of the object name. For example, “=Server” matches any
object name ending in “Server”.

typeName This optional parameter specifies the types of objects to
be found. If the parameter is not supplied, all object
types are found.

Wildcard characters (=) may be used to replace portions
of the type name. For example, “=Server” matches any
object types ending in “Server”.

zoneName This optional parameter specifies the zone to search. If
the parameter is omitted, the current zone is searched.
No wildcard characters are allowed.

Result
The result of the list network names command is a list of Network
Name classes. Network Name classes contain the following fields:

atObject The name of an AppleTalk network object
atType The type name of an AppleTalk network object

atZone The zone name of an AppleTalk network object

Example

— Find all the AppleShare servers

list network names type “AFPServer”

Outcome:

tell current application

list network names type “AFPServer”
—> {{class:network name, atObject:”pbl", atType:”AFPServer”,
atZone:”*"}, {class:network name, atObject:”pf’s PowerBook
170", atType:”AFPServer”, atZone:"*"}}
end tell

Scripting Additions

121

Get Network State

The Get Network State command allows your script to determine if the
network is active.

Syntax
get network state

Parameters
None.

Result

None.

Example

get network state

Outcome:

tell current application
get network state

—> network active

end tell

122 Appendix C

Choose Files and Folders Addition

The Choose Files & Folders addition allows you to prompt the user to
select files and folders in your scripts. This addition builds on the file
prompting capabilities provided by Apple in the AppleScript software.
This section describes each of the AppleScript commands provided in
the Choose Files & Folders addition.

Choose New File

The Choose New File command presents the standard Macintosh new
file selection dialog box (Figure C-2).

Figure C-2
The Choose New File [£3 Archive Folder ¥ | = Hard Disk 234

[

=
o
E
[

dialog box Eject

Desktop

<l

Select a new archive file: Cancel

|Testing |

Syntax

choose new file
[with prompt promptString 1]
[default name nameString]

Parameters

promptString
This parameter is a string which is displayed in the dialog
box. If this parameter is omitted, the string “Save As:” is
displayed.

nameString
This parameter is a string which is offered as the default
name for the new file. If this parameter is omitted, no
default name is presented.

Scripting Additions 123

124

Appendix C

Result

The result of the Choose New File is a record containing three values:

filename returned
This value is a string representing the name of the new file.

folder returned
This value is an alias to the folder where the new file is to

be placed.
replacing
This Boolean value indicates whether or not the new file
replaces an existing file (TRUE = Yes, FALSE = No).
Example

— Ask the user for a new file

set newFile to choose new file -
with prompt “Select a new archive file:” =
default name “Testing”

Outcome:

—> {resource name:”Testing”, replacing:false, folder
returned:alias “Hard Disk 234:Archive Folder:”}

Choose Several Files

The Choose Several Files command presents a modified standard file
selection dialog box which allows the user to choose several files at one
time (Figure C-3).

Figure C-3
. =] Script I]ehugger 1.0v" | — Hard Disk 234

Choose Several Files e

dialog box Default Script =
[T Dictionary Items
[Examples Deskiop
[Extension Scripts _—
o Script Debugger
“ Script Debugger.Debug
[(OTemplate Scripts]
Select files to be archived:

[Open N [Remove]

Hard Disk 234:Desktop...r:Script Debugger 1.0

Syntax

choose several files
[with prompt promptString]
[of type typeList]
[starting with fileList]

Parameters

promptString
This parameter is a string which is displayed in the dialog
box. If you omit thewith prompt parameter, no prompt
is displayed.

typeList ~ This parameter is a list of strings specifying the file types of
the files to be displayed in the dialog box. Each string is a
four-character code for the file type, such as “TEXT”,
“APPL”,“PICT” or “PNTG”. If you omit the of type
parameter, all files are displayed. You may specify up to four
file types.

Scripting Additions 125

fileList This parameter is a list of aliases referring to files which
are to be displayed as already selected. If you omit the
starting with parameter, the selected files list is left
empty.

Result

The result is a list of aliases referring to the files selected by the user.

Example

choose several files -
with prompt “Select files to be archived:” -
of type {“APPL”, “asDF” } -
starting with-
{ alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:”

}

Outcome:

—> {alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:”}

Choose Several Folders

The Choose Several Folders command presents a modified standard
file selection dialog box allowing the user to choose several folders at
one time (Figure C-4).

Figure C-4
= Mac0s
Choose Several Folders =
dialog hox £2 Aladdin [Eect)
[Printer Descriptions
[Scripting Additions Desktop
[Type Libraries E—
=

Select files to be archived:
[Add “scripting Additions”]

—

Remove]

Hard Disk 234:System Folder
Hard Disk 234:System Folder:Extensions

126 Appendix C

Syntax

choose several folders
[with prompt promptString]
[starting with folderList]

Parameters

promptString
This parameter is a string which is displayed in the dialog
box. If you omit thewith prompt parameter, no prompt
is displayed.

folderList This parameter is a list of aliases referring to folders which
are to be displayed as already selected. If you omit the
starting with parameter, the selected folders list is left
empty.

Result
The result is a list of aliases referring to the folders selected by the user.

Example

choose several folder -
with prompt “Select files to be archived:” -
starting with -
{ alias “Hard Disk 234:System Folder:” -
alias “Hard Disk 234:System Folder:Extensions:”}

Outcome:

—> {alias “Hard Disk 234:System Folder:”, alias “Hard Disk
234:System Folder:Extensions:”}

Scripting Additions 127

128

Get Default Folder

Appendix C

The Get Default Folder command returns the current folder used by
the Choose File and Choose Folder commands in this package and
those provided by Apple as part of AppleScript.

Syntax

get current folder

Result
This command returns an alias to the current default folder.

Example

set saveFolder to get default folder
set default folder path to extensions
choose file

set default folder saveFolder

Outcome:

tell current application
get default folder
—> alias “MacOS:System Folder:Extensions:”
path to preferences folder
—> alias “MacOS:System Folder:Extensions:”
set default folder alias “MacOS:System
Folder:Preferences:”
choose file
—> alias “MacOS:System Folder:Extensions:AppleScript™”
set default folder alias “MacOS:System Folder:Extensions:”
end tell

NOTE: If you have System 7.5 installed, the General Controls control panel
has a setting that allows you to set the folder to which the Open and Save
As commands default. The Choose commands in the example above do
not override the effect of the control panel.

Set Default Folder

The Set Default Folder command changes the current folder used by
the Choose File and Choose Folder commands in this package and
those provided by Apple as part of AppleScript.

Syntax
set default folder folderPath

Result

This command returns no result.

Parameters

folderPath This parameter is an alias to the folder which is to become
the default folder. If you provide an alias to a file, the folder
containing the file becomes the default folder.

Example

set default folder path to extensions
choose file

Outcome:

tell current application
path to extensions folder

—> alias “MacOS:System Folder:Extensions:”
set default folder alias “MacOS:System Folder:Extensions:”
choose file

—> alias “MacOS:System Folder:Extensions:AppleScript™”

end tell

NOTE: Under System 7.5, the Set Default Folder command does not have
any effect.

Scripting Additions 129

File 10 Addition

The File IO addition allows your scripts to perform file operations
directly within your scripts. Using the commands of the File IO
addition, your scripts can move, rename, and delete files. Your scripts
can also read and write text data. This section describes each of the
AppleScript commands provided by the File IO addition.

CloseFile

The closeFile command closes a file previously opened with the
openFile command.

Syntax
closeFile fileRefNum

Parameters

fileRefNum
This parameter is the reference number of a file. This value
is returned by the Open File command.

Result
None.

Example

set filePath to choose file -
with prompt “Select a file to open:” -
of type “TEXT”
set refNum to openFile filePath for reading
closeFile refNum

Outcome:

tell current application
choose file with prompt “Select a file to open:” of type “TEXT”
—> alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:Event Log”
openFile alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:Event Log” for
reading
—> 8744
closeFile 8744
end tell

Errors
This command can return any of the errors which are returned by the
ToolBox FSClose routine.

130 Appendix C

CreateFile

The createFile command creates a new file of type “TEXT”.

Syntax

createFile fileName
[in folder]
[owner signature]

Parameters

fileName This parameter is the new file’s name.

folder This parameter is an alias to the folder where the new file is
to be placed. If this parameter is omitted, the file is created
in the current default folder.

signature This parameter is a list of aliases referring to folders which
are to be displayed as already selected. If you omit the

owner parameter, the new file is given the signature
VPP

Result
None.

Example

set newFile to choose new file -
with prompt “Pick a new file name:”

createFile (filename returned of newFile) -
in (folder returned of newFile) -
owner “ttxt” — TeachText

Outcome:

tell current application

choose new file with prompt “Pick a new file name:”
—> {resource name:”a text file”, replacing:false, folder returned:alias “Hard Disk
234 :Desktop Folder:Script Debugger 1.0:”}

createFile “a text file” in alias “Hard Disk 234:Desktop Folder:Script Debugger
1.0:” owner “ttxt”
end tell

Errors

This command can return any of the errors which are returned by the
ToolBox HCreate routine.

Scripting Additions 131

132

CreateFolder

The createFolder command creates a new folder.

Syntax
createFolder folderName
[in folder]

Parameters

folderName
This parameter is the new folder’s name.

folder This parameter is an alias to a folder where the new folder is
to be placed. If this parameter is omitted, the file is created
in the current default folder.

Result
None.

Example

set newFolder to choose new file -
with prompt “Pick a new folder name:”

createFolder (filename returned of newFolder) -
in (folder returned of newFolder)

Outcome:

tell current application

choose new file with prompt “Pick a new folder name:”
—> {resource name:”Empty Folder”, replacing:false, folder returned:alias “Hard
Disk 234:Desktop Folder:Script Debugger 1.0:”}

createFolder “Empty Folder” in alias “Hard Disk 234:Desktop Folder:Script

Debugger 1.0:”
end tell

Appendix C

Errors
This command can return any of the errors which are produced by the
ToolBox DirCreate routine.

DeleteFile

end tell

The deleteFile command deletes a file without placing it in the Trash.

Syntax
deleteFile theFile

Parameters
theFile
This parameter is an alias referring to the file being deleted.

Result
The result is a list of aliases referring to the folders selected by the user.

Example

choose file-

with prompt “Select a file to be deleted:” -
set trashMe to the result
deleteFile trashMe

Outcome:

tell current application
choose several files with prompt “Select files to be deleted:”

—> {alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:a text file”}
deleteFile {alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:a text

Errors
This command can return any of the errors which are returned by the
ToolBox HDelete routine.

Scripting Additions 133

134

Exchangefile

The exchangeFile command swaps the data stored in two files.

Syntax
exchangeFile firstFile with secondFile

Parameters

firstFile This parameter is an alias which identifies the first of the
two files.

secondFile This parameter is an alias which identifies the second of the
two files.

NOTE: The two files being exchanged must be on the same disk volume.

Result

None.

Example

exchangeFile (choose file) with (choose file)

Outcome:

tell current application

choose file

—> alias “Hard Disk
choose file

—> alias “Hard Disk

234 :Desktop Folder:Script Debugger 1.0:Backup”

234 :Desktop Folder:Script Debugger 1.0:Event Log”

exchangeFile alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:Backup”
with alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:Event Log”

end tell

Appendix C

Errors
This command can return any of the errors which are produced by the
ToolBox PBExchangeFiles routine.

GetFileLength
The getFileLength command gets the length (in bytes) of the file.

Syntax
getFileLength fileRefNum

Parameters

fileRefNum

This parameter is the reference number of a file. This value
is returned by the Open File command.

Result
The number of bytes stored in the file.

Example

set filePath to =
choose file with prompt -

“Select a file to open:” of type “TEXT”
set refNum to openFile filePath for reading
— position the marker at the end of the file so
— data can be appended to the file
getFileLength refNum
closeFile refNum

Outcome:

tell current application
choose file with prompt “Select a file to open:” of type “TEXT”
—> alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:Event Log”
openFile alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:Event Log” for

reading
—> 8838
getFileLength 8838
—> 2837
closeFile 8838
end tell
Errors
This command can return any of the errors which are produced by the
ToolBox GetEQF routine.

Scripting Additions 135

136

GetFilePosition

The getFilePosition command obtains the current position of a file’s
marker. A file marker represents the address within a file where the next
read or write will begin.

Syntax
getFilePosition fileRefNum

Parameters

fileRefNum

This parameter is the reference number of a file. This value
is returned by the Open File command.

Result
The result is a number representing the address of the file’s marker.

Example

set filePath to -
choose file with prompt -

“Select a file to open:” of type “TEXT”
set refNum to openFile filePath for reading
getFileLength refNum
positionFile refNum at (getFileLength refNum)
getFilePosition refNum
closeFile refNum

Outcome:

tell current application
choose file with prompt “Select a file to open:” of type “TEXT”
—> alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:Event Log”
openFile alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:Event Log” for
reading
—> 7804
getFileLength 7804
—> 2837
positionFile 7804 at 2837
—> 2837
getFilePosition 7804
—> 2837
closeFile 7804
end tell

Errors
This command can return any of the errors which are produced by the
ToolBox GetFPos routine.

Appendix C

Lengthenfile

You can use the lengthenFile command to shorten or extend the size of
a file. Note that you must open the file for writing to lengthen or
shorten a file.

Syntax
lengthenFile fileRefNum length fileLength

Parameters

fileRefNum

This parameter is the reference number of a file. This value
is returned by the Open File command.

fileLength This parameter is the new length of the file.

Result
None.

Example

set filePath to -
choose file with prompt -

“Select a file to open:” of type “TEXT”
set refNum to openFile filePath for writing
— empty the contents of a file
lengthen file refNum length 0
closeFile refNum

Outcome:

tell current application
choose file with prompt “Select a file to open:” of type “TEXT”
—> alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:Event Log”
openFile alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:Event Log” for
writing
—> 8838
lengthenFile 8838 length 0
closeFile 8838
end tell

Scripting Additions 137

138

MoveFile

The moveFile command moves a file or a folder from one folder to
another.

Syntax
moveFile fileOrFolder to destination

Parameters

fileOrFolder
This parameter is an alias which identifies the file or folder
being moved.

destination
This parameter is an alias referring to the destination folder
for fileOrFolder.

NOTE: The file or folder being moved must be on the same disk volume as

the destination.

Result

None.
NOTE: The file or folder being moved and the destination folder must be on

the same volume.

Example

moveFile (choose file) to (choose folder)

Outcome:

tell current application

choose file

—> alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:Backup”

choose folder

—> alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:Empty Folder:”
moveFile alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:Backup” to
alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:Empty Folder:”

end tell

Appendix C

Errors
This command can return any of the errors which are produced by the
ToolBox PBCatMove routine.

OpenFile

The openFile command opens a text file for reading and/or

writing. This command, when used with the readLine and writeLine
commands, allows you to process text files within scripts without the
aid of a scriptable text editor application.

Syntax
openFile file
[for reading|update|writing]

Parameters

file This parameter is an alias to the file which is to be opened.

Result
The result is a file reference number. You must provide this number to
all other commands that you issue when processing the file.

Example

set filePath to -
choose file with prompt -
“Select a file to open:” of type “TEXT”
set refNum to openFile filePath for reading
closeFile refNum

Outcome:

tell current application
choose file with prompt “Select a file to open:” of type “TEXT”
—> alias “Hard Disk 234:Script Debugger Manual:SD error messagees”
openFile alias “Hard Disk 234:Script Debugger Manual:SD error messagees” for

reading

—> 9026
closeFile 9026

end tell

NOTE: When the optional £or is not specified, the file is opened for
update.

NOTE: Be careful to ensure you close all the files you open. Due to the
nature of AppleScript additions, the Open File command does not ensure
the file is closed when a script aborts without first closing the file with the
Close File command.

Errors
This command can return any of the errors which are returned by the
ToolBox HOpen routine.

Scripting Additions 139

140

PositionFile

The positionFile command changes the current position of a file’s
marker. A file marker represents the address within a file where the next
read or write will begin.

Syntax

positionFile fileRefNum at filePosition

Parameters

fileRefNum

This parameter is the reference number of a file. This value
is returned by the Open File command.

filePosition
This parameter is the new address for the file’s marker.

Result

None.

Example

set filePath to -
choose file with prompt -

“Select a file to open:” of type “TEXT”
set refNum to openFile filePath for reading
— position the marker at the end of the file so
— data can be appended to the file
positionFile refNum at (getFileLength refNum)
closeFile refNum

Outcome:

tell current application
choose file with prompt “Select a file to open:” of type “TEXT”
—> alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:Event Log”
openFile alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:Event Log” for
reading
—> 8838
getFileLength 8838
—> 2837
positionFile 8838 at 2837
—> 2837
closeFile 8838
end tell

Errors
This command can return any of the errors which are produced by the
ToolBox SetFPos routine.

Appendix C

ReadLine

The readLine command reads a “line” of text from a file opened with the
openFile command. A line in this case means all characters up to the next
carriage return in the file. This is referred to as a paragraph in some
applications since these lines may wrap around a number of times when
displayed in a window.

Syntax
readLine fileRefNum
[maximum length maxLength]

Parameters

fileRefNum This parameter is the reference number of a file. This value is
returned by the openFile command.

maxLength This integer parameter specifies the maximum number of
characters you wish to read. Normally, the readFile command
reads a maximum of 1024 characters. The practical maximum
for this value is limited only by the memory available.

Result
The command returns a string representing the data from the file.

Example

set myFile to choose file -
with prompt “Select a text file:” =
of type “TEXT”
set refNum to openFile myFile
set inputLine to readLine refNum
display dialog inputLine
closeFile refNum

Outcome:

tell current application
choose file with prompt “Select a text file:” of type “TEXT”
—> alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:Event Log”
openFile alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:Event Log”
—> 9308
readLine 9308
—> “tell application \”Finder\””
display dialog “tell application \”Finder\””
—> {button returned:”OK"}
closeFile 9308
end tell

Errors
This command can return any of the errors which are returned by the
ToolBox PBRead routine.

Scripting Additions 141

142

RenameFile

The renameFile command changes a file’s name.
Syntax

renameFile file to newName

Parameters

file This parameter is an alias which identifies the file whose
name is being changed.

newName This parameter is a text string containing the file’s new
name.

Result
None.

Example

renameFile (choose file) to “Backup”

Outcome:

tell current application

choose file

—> alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:Event Log”
renameFile alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:Event Log” to

“Backup”
end tell

Appendix C

Errors
This command can return any of the errors which are produced by the
ToolBox PBHRename routine.

WriteLine

The writeLine command writes a line to a text file.

Syntax
writeLine fileRefNum text data

Parameters

fileRefNum

This parameter is the reference number of a file. This value
is returned by the openFile command.

data This parameter is the line of text to be written to the file.

Result
None.

Example

set myFile to -
choose file with prompt “Select a text file:” of type
“TEXT”
set refNum to openFile myFile
writeLine refNum text “hello”
closeFile refNum

Outcome:

tell current application
choose file with prompt “Select a text file:” of type “TEXT”
—> alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:Event Log”
openFile alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:Event Log”
—> 9308
writeLine 9308 text “hello”
closeFile 9308
end tell

Errors
This command can return any of the errors which are returned by the
ToolBox FSWrite routine.

Scripting Additions 143

WriteString

The writeString command writes a string of text to a file. This
command differs from writeLine in that it does not add a new-line
character to the end of the text you write.

Syntax

writeString fileRefNum text data

Parameters

fileRefNum
This parameter is the reference number of a file. This value
is returned by the openFile command.

data This parameter is the line of text to be written to the file.

Result2

None.

Example

set myFile to -
choose file with prompt “Select a text file:” of type “TEXT”
set refNum to openFile myFile
writeString refNum text “hello”
closeFile refNum

Outcome:

tell current application
choose file with prompt “Select a text file:” of type “TEXT”
—> alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:Event Log”
openFile alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:Event Log”
—> 9308
writeString 9308 text “hello”
closeFile 9308
end tell

Errors
This command can return any of the errors which are returned by the
ToolBox FSWrite routine.

144 Appendix C

Find Application

The Find Application addition allows you to determine the application
which owns a file.

findApplication

The findApplication command allows you to find the application
which owns a file.

Syntax
findApplication signature on volumeName
[index appIndex]

Parameters

signature This parameter is a four-character string representing an
application signature. The findApplication command
locates the application with this signature.

volumeName
This parameter specifies the name of the disk volume to
search.

appIndex This optional parameter specifies which version of the
application to find. If you omit this parameter, the
findApplication command returns the version of the
application with the most recent creation date.

This parameter is only useful if you keep multiple copies of
application files on your disk.

Result
The result of the findApplication command is an application file
corresponding to the signature specified.

Example
find application “asDB” on “Hard Disk 245:”

Outcome:

tell current application

find application “asDB” on “Hard Disk 245:”
—> file “Hard Disk 245:Script Debugger 1.0:Script Debugger”
end tell

Scripting Additions 145

146

Gestalt Addition

Get Gestalt

Appendix C

The Gestalt addition allows you to determine the services available on
the Macintosh running your scripts. This section describes each of the
Gestalt commands provided by the Get Gestalt addition.

The Get Gestalt command gets information about the operating
environment.

Syntax
get gestalt selector]
[bit bitNumber]
[with/without report missing selectors]

Parameters

selector ~ This parameter is a string representing the type of operating
environment information you want. This parameter must
be a four-character code. The gestalt Selectors Lib file
defines all of the Gestalt selectors documented in Inside
Macintosh, volume VI, as well as selectors for Apple’s Speech
Manager.

bitNumber
This optional parameter defines which bit of the selectors
value to test. If this parameter is specified, the command
returns a Boolean value. If the parameter is omitted, the
command returns the entire selector value.

Result

The result of this command is either the selector’s integer value when
the bit parameter is not specified or a Boolean value when the bit
parameter is specified.

NOTE: When the optional with report missing selectorsis
specified, the Get Gestalt command reports errors associated with un-
known selectors. Otherwise, a value of 0 is returned.

Example

— verify that the Speech Mgr is present

property gestaltSpeechAttr : “ttsc”
property gestaltSpeechMgrPresent : 0

if get gestalt gestaltSpeechAttr -
bit gestaltSpeechMgrPresent then
display dialog “Speech Mgr Present”
else
display dialog “Speech Mgr Missing”
end if

Outcome:

tell current application
get gestalt “ttsc” bit 0
—> true
display dialog “Speech Mgr Present”
—> {button returned:”OK”}
end tell

Scripting Additions

147

148

List Manipulation

Difference of

Appendix C

The List Manipulation scripting addition has commands that let you
manipulate lists quickly. Its commands allow you to find the difference,
intersection or union of two lists.

The Difference of command compares two lists and produces a list
which contains the differences of the two lists. In other words, it
produces a list of items which the two lists do not have in common.

Syntax

difference of 1listl and list2

Parameters

list1 A list of items.

list2 A second list that you compare to the first list.
Result

The result of this command is a list containing the items that are not
common to both lists.

Example
set theDifference to difference -

of {1, 5, 10, “this is a test”, 4} -

and {4, 2, “hi there”, “this is a test”, 1}
Outcome:

—> {“hi there”, 2, 5, 10}

Intersection of

The Intersection of command compares two lists and produces a list
which contains the intersection of the two lists. In other words, it
produces a list of items which both lists have in common.

Syntax

intersection of listl and 1list2

Parameters
list1 A list of items.

list2 A second list that you compare to the first list.

Result
The result of this command is a list containing the items common to
both lists.

Example

set thelIntersection to intersection-
of {1, 5, 10, “this is a test”, 4} -
and {4, 2, “hi there”, “this is a test”, 1}

Outcome:

—> {“this is a test”, 1, 4}

Scripting Additions 149

150

Union of

Appendix C

The Union of command compares two lists and produces a list which
contains all of the unique items of the two lists. This command is
useful when you are trying to merge the contents of two lists quickly. It
saves you the trouble of comparing each item in the two separate lists
and then creating a third, unique list.

Syntax

union of listl and list2

Parameters

list1 A list of items.

lise2 A second list that you compare to the first list.
Result

The result of this command is a list containing all of the unique items
in the two lists. It is a merged list.

Example

set theUnion to union-
of {1, 5, 10, “this is a test”, 4}~

and {4, 2, “hi there”, “this is a test”, 1}
Outcome:
—> {*hi there”, “this is a test”, 1, 2, 4, 5, 10}

More Math Addition

abs

acCos

asin

atan

atan2

[0}

cosh

The More Math and More Math 68881 additions allow your scripts to
perform mathematical operations. This section describes each of the
AppleScript commands provided by the More Math and More Math
68881addition. The Script Debugger installer installs either the More
Math or More Math 68881. If your Macintosh has a floating point
accelerator, More Math 68881 is installed.

The abs command returns the absolute value of an integer.

Syntax:
abs intValue

The acos command computes the arc cosine of a value.

Syntax:
acos value

The asin command computes the arc sine of a value.

Syntax:

asin value

The atan command computes the arc tangent of a value.

Syntax:
atan value

The atan2 command computes the arc tangent of the quotient of two
values.

Syntax:
atan2 valuel over value2

The cos command computes the cosine of a value.

Syntax:
cos value

The cosh command computes the hyperbolic cosine of a value.

Syntax:
cosh value

Scripting Additions 151

fabs The fabs command calculates the absolute value of a floating point
value.

Syntax:
fabs value

log The log command computes the natural logarithm of a value.

Syntax:
log value

log10 The logl10 command computes the base-10 logarithm of a value.

Syntax:
logl0 wvalue

power The power command raises a value to a power.

Syntax:
power value to powe

sin The sin command computes the sign of a value.

Syntax:
sin value

sinh The sinh command computes the hyperbolic sign of a value.

Syntax:
sinh value

tan The tan command computes the tangent of a value.

Syntax:
tan wvalue

tanh The tanh command computes the hyperbolic tangent of a value.

Syntax:
tanh value

152 Appendix C

Processes

The Processes scripting addition lets you get detailed information
about the applications running on your Macintosh. It has commands
to get the foreground application and currently executing application
as well as any desk accessories and faceless background-only
applications.

List Processes

The List Processes command obtains a list of the names of the
applications running on your Macintosh. This includes normal
Macintosh applications, desk accessories, and faceless-background-
only applications.

Syntax

list processes

Parameters
None.

Result
The result is a list of strings representing the names of all the running
applications.

Example

list processes

Outcome:
—> {“PowerTalk Manager”, “Finder”, “QuicKeys™ Toolbox”, “Script Debugger.Debug”,
“Microsoft Word”, “Canvas™ 3.5”, “Script Debugger” }

Scripting Additions 153

154

Get Process

Appendix C

The Get Process command obtains detailed information about a
running application.

Syntax
get process processName

Parameters

processName
This parameter specifies the name of the process you want
information about.

Result
The result of the Get Process command is a record containing the
following values:

process name
This string is the name of the process.

process number
This value represents the serial number of the process.
AppleScript translates this value into an application object
automatically.

application type
This string is the application’s four-character file type.
Normally this value is “APPL”.

signature
This string is the application’s four-character signature.

partition size
This integer value represents the amount of memory the
application occupies.

free memory
This integer value represents the amount of free memory
within the application’s partition.

launcher
This string is the name of the application which launched
this application. If it’s blank, then the application is no
longer running.

launch date
This integer value represents the date and time when the
application was launched.

active time
This integer value is the amount of CPU time used by the
application since it was launched. The units for this value are
ticks (1/60th of a second).

application file
This value is a reference to the application’s file.

deskAccessory
multiLaunch
needSuspendResume
canBackground
activateOnForegroundSwitch
compatible32Bit
onlyBackground
getFrontClicks
getApplicationDiedEvents
highLevelEventAware
localAndRemoteEvents
stationeryAware
useTextEditServices

These Boolean values represent the application’s mode flags.

Example

get process (first item of (list processes))
Outcome:

tell current application

list processes current application
—> {“Finder", “QuicKeys™ Toolbox”, “Script Debugger.Debug”, “Microsoft Word”,
“Canvas™ 3.5”, “Script Debugger” }

get process “Finder”
—> {class:process info, resName:”Finder”, process number:application “Finder”,
application type:”FNDR”, signature:”MACS”, partition size:377856, free
memory:204448, launch date:date “Saturday, March 4, 1995 2:24:02 PM”, active
time:3203261, application file:file “MacOS:System Folder:Finder”,
deskDccessory:false, multiLaunch:false, needSuspendResume:true, canBackground:true,
activateOnForegroundSwitch:true, onlyBackground:false, getFrontClicks:true,
getApplicationDiedEvents:true, compatible32Bit:true, highLevelEventAware:true,
localAndRemoteEvents:true, stationeryAware:false, useTextEditServices:false,
launcher:””}
end tell

Scripting Additions 155

156

Get Foreground Process

Appendix C

The Get Foreground Process command gets the name of the
foreground application. The foreground application is the application
whose windows are presently active. Note that the foreground
application is not necessarily the current application (see the Get
Current Application command).

Syntax

get foreground process

Parameters
None.

Result
The result of this command is a string representing the name of the
foreground application.

Example

get foreground process

Outcome:

—> “Script Debugger”

Get Current Process

The Get Current Process command gets the name of the currently
executing application. This command is useful for finding the name of
the process executing a script. The value returned by the Get Current
Process command is different from the value returned by the Get
Foreground Process command when the current process is in the
background.

Syntax

get current process

Parameters
None.

Result
The result of this command is a string representing the name of the
currently executing application.

Example

get current process

Outcome:

—> “Script Debugger”

Scripting Additions 157

158

Regular Expressions Addition

The Regular Expressions addition allows you to perform simple and
complex textual pattern matching within your scripts. This section
describes each of the AppleScript commands provided in the Regular
Expressions addition.

Compile Regular Expression

Appendix C

The Compile Regular Expression command compiles a pattern string.
Compiled Regular Expressions are used by the Match Regular
Expression and Substitute Regular Expression commands.

Syntax

compile regular expression patternString

Parameters

patternString
This parameter is a string which is displayed in the dialog
box. If you omit thewith prompt parameter, no prompt
is displayed.
For a description of the syntax of pattern strings, see the
documentation for the UNIX grep command and the
section More about Regular Expressions below. Information
about Regular Expressions is also available in the THINK C
User’s Guide.

Result

The result is a compiled version of the patternString. This compiled
pattern is used with the Match Regular Expression and Substitute
Regular Expression commands.

Example

set pattern to compile -
regular expression “(cat|dog) (fish|fight)”

Outcome:

tell current application

compile regular expression “(cat|dog) (fish|fight)”
—> “<nonprintable characters>"
end tell

Errors

Compile Regular Expression returns errors when there is a problem
with the expression being compiled. The error code returned is -50
(paramErr), and the error string contains the actual error. If you want
to capture the actual error text, you could do the following:

try

set theExpr to “(.*):(*)”

set thePattern to compile regular expression theExpr
on error errMsg

error “Can’t compile \”” & theExpr & “\” - “ & errMsg
end try

Match Regular Expression

The Match Regular Expression command matches a string to a Regular
Expression and returns the portions of the string which match the
regular expression.

Syntax
match regular expression compiledExpression
to candidateString

Parameters

compiledExpression
This parameter is a compiled regular expression. This value
is returned by the Compile Regular Expression command.

candidateString
This parameter is the string that is to be matched to the
regular expression.

Result
The result of the Match Regular Expression command is a record
containing the following values:

matched This Boolean value indicates if there was a match.

match string
This string value represents the largest match found.

Scripting Additions 159

160

match I~ This string value represents the portion of the string
matching the first () expression.

match 2 This string value represents the portion of the string
matching the second () expression.

match 3 This string value represents the portion of the string
matching the third () expression.

match 4 This string value represents the portion of the string
matching the fourth () expression.

match 5 This string value represents the portion of the string
matching the fifth () expression.

match 6 This string value represents the portion of the string
matching the sixth () expression.

match 7 This string value represents the portion of the string
matching the seventh () expression.

match 8 This string value represents the portion of the string
matching the eighth () expression.

match 9 This string value represents the portion of the string
matching the ninth () expression.

Example

set pattern to -
compile regular expression “This (.*) test”
set result to match regular expression pattern -
to “This is a test”
{ result }

This script compiles a regular expression and then matches it to a
string. It produces a match string and a match:

tell current application
compile regular expression “This (.*) test”
—> “<nonprintable characters>"
match regular expression “<nonprintable characters>"
—> {class:match reply, matched:true, match string:”This is a test”, match 1:”is
a"}
end tell

Appendix C

Substitute Regular Expression

The Substitute Regular Expression command extracts the elements
from a candidate string which match the patterns of a Regular
Expression, and then substitutes the extracted elements into a template
string.

Syntax

substitute regular expression compiledExpression
of candidateString
with templateString

Parameters

compiledExpression
This parameter is a compiled Regular Expression pattern.
Regular Expressions are compiled using the Compile
Regular Expression command.

candidateString
This parameter is a string representing the text which is to
be compared to the Regular Expression, and then modified.

templateString
This parameter is a string representing a template for the
substitutions which are to be performed. See the following
section titled Replacements for Regular Expressions, for a
description of the format of this string.

Result
The result is the substituted string.

Example

set pattern to =

compile regular expression “This (.*) test”
substitute regular expression pattern -

of “This is a test” with “-\\1-—"

Outcome:

—is a—

Scripting Additions 161

162

Replacements for Reqular Expressions

Within a template string, the following conventions apply:

m A backslash quotes the following character. The special characters
within a template string are ‘& and ‘\’; these are the only
characters that need to be quoted. The construct “\ &” produces a
single ‘&’ and the construct “\\” produces a single backslash.

B Anampersand (&) indicates the entire matched regular expression.
For example, the replacement “&&” would consist of two copies of
the matched expression.

m Thesequence “\n”, where n is a single digit, indicates the text
matching the nth parenthesized component of the regular
expression.

More about Regular Expressions

Appendix C

This section is taken with permission from Paul W. Abrahams and
Bruce R. Larson’sUNIX for the Impatient (Addison-Wesley, 1992),
pp- 50-53.

A Regular Expression defines a pattern of text to be matched. The
definition of a regular expression here is a sub-set of the regular
expressions found on UNIX and other systems.

In general, any character appearing in a regular expression matches that
character in the text. For example, the regular expression “elvis”
matches the string “elvis”. However, certain characters are used to
specify variable patterns and are therefore special. In addition, other
characters are special under particular conditions.

If you want to use a special character in a pattern, you must quote it, in
effect, by escaping it with a preceding backslash (\). For example, the
regular expression “cheap at $9\.98” matches the string “cheap at 9.98”.
Here the ¢ needs to be quoted but the ‘$’ does not because it isn’t at the
end of the string and therefore isn’t special.

The meanings of the special characters are as follows:

\

The backslash quotes the character after it, whether special or
not.

The period matches any single character.

A single character followed by an asterisk matches zero or
more occurrences of that character. Similarly, a pattern that
matches a set of characters followed by an asterisk matches
zero or more characters from that set. In particular, *’
matches an arbitrary, possibly empty, string. The longest
possible matching sequence is always used, although the
matching mechanism is clever enough to consider the whole
string when testing for a match. For example, it can discover
that “*a. *b.c$” matches “axybbcc”, even though this
match requires that the “ . *” should consume the first ‘b’ but
not the second one.

The plus character following a regular expression matches one
or more occurrences of that expression.

The question mark character following a regular expression
matches zero or one occurrence of that regular expression, i.e.
it matches an optional regular expression.

A dollar sign at the end of an outermost regular expression
matches the end of the line. Anywhere else in a regular
expression, it matches itself.

A hat at the beginning of an outermost regular expression
matches the beginning of a line. Anywhere else in a regular
expression, it matches itself.

Scripting Additions 163

164

Appendix C

[set] A set of characters in square brackets matches any single

character from the set. For example, “ [moxie] ” matches
any of the characters (e i m o x). This notation is extended as
follows:

m Within the set, the only characters with special meanings
are (-] 7). All other characters, even ‘\’, stand for
themselves.

m The notation cI-c2 indicates the set of ASCII characters
ranging from cI to c2. For example, ™ [a-zA-Z 1~
matches any lowercase or uppercase letter, or an
underscore. A minus sign at the beginning or end of the
set stands for itself, however, this * [+-1” matches a plus
or a minus.

m A right bracket as the first character of the set represents
itself and does not end the set. (Within the set, a left
bracket is not special.) Thus * []1 []” matches a left
bracket or a right bracket.

m The sequence ["set] matches any character that is not
in set. (in this case a‘-’or ‘]’ following the initial ‘*’
stands for itself, as above.) This * [*0-9]” matches any
character except a digit.

Note that a set of characters can be followed by an asterisk.
Thus “ [0-9a-£] *” matches a possibly empty sequence of
characters, each of which is either a digit or a letter between a
and £.

> match an occurrence
> operator acts as an or.

Two regular expressions separated by ¢
of either of them, that is, the

Parentheses are used for grouping. For example, the pattern
“(cat|dog) (fish|fight)” matches any line
containing either “*catfish”, “catfight”, “dogfish”
or “dogfight”.

Grouped expressions are also used to identify sections of a
string which are to be substituted with the Substitute Regular
Expression command.

You can follow a single character, or a regular expression that
denotes a single character, with one of the following forms:

{m} {m, } {m,n}

Here m and n are non-negative integers less than 256. Let S be
the set containing either the single character or the characters
that match a regular expression.

m The first form denotes exactly m occurrences of characters
belonging to S.

B The second form denotes at least m occurrences of
characters belonging to S.

m The third form denotes between m and n occurrences of
characters belonging to S.

For example, " [0-9] {2, } ” matches a sequence
consisting of two or more digits.

Scripting Additions 165

166

Regular Expression Error Messages

Appendix C

The Regular Expression scripting addition returns error messages if it
has problems compiling your expression. The following section
contains some of the error messages that you are likely to see, and
provides you with brief explanations of the messages.

Error: regexp too big
You will see this error message if the regular expression is
larger than 32k.

Error: out of space
You will see this error message if you run out of memory
while your regular expression is compiling.

Error: too many ()
You will see this expression if you have more than nine pairs
of parentheses in your regular expression.

Error: unmatched ()
You will see this error message if you do not have the same
number of left and right parentheses in your regular
expression.

Error: *+ operand could be empty
A + or * operator must follow an atom. For instance, to
match any number of “a” characters, you would use “a*” in
(9> B4 :

your expression. If the “a” is missing, the expression is
incomplete and will generate an error.

Error: nested *?+
You will see this error if you use “?*” in an expression. The
expression is invalid because “?” is an operator. If you want
to find any number of “?” characters, you would have to
enter “\?*”. Note that in AppleScript, you have to escape the
“\” character as “\¢*”.

Error: invalid [] range
You will see this error if you use an invalid character range
in your expression. For example, the expression “[0-a]” is
not a valid range of characters.

Error: unmatched []
You will see this error message if you do not have the same
number of left and right brackets in your regular
expression.

Error: 24+* follows nothing
You will see this error message if you have not included an
expression to repeat. The ?+* operators are repeating
operators, and they must have an expression to repeat. For
instance, [0-9]* indicates any number of digits.

Error: trailing \\
You will see this error message if your regular expression
contains trailing backslashes.

Error: internal disaster
You will see this error message if there is an internal failure
of the software.

Scripting Additions 167

168

Resource 10 Addition

CAUTION

AddResource

Appendix C

The Resource IO AppleScript addition allows you to write scripts
which manipulate the contents of resource files. This includes both
reading and writing resource data. This section describes each of the
commands in the Resource IO addition.

The commands provided in the Resource 10 addition can damage your
files, if used improperly. Please ensure that you fully understand how
resources operate on the Macintosh before you begin using these com-
mands. In particular, you should be familiar with Apple’s ResEdit applica-
tion and the Resource Manager chapters of the “Inside Macintosh” series
of publications from Apple & Addison Wesley.

The addResource command adds a new resource to a resource file.

Syntax

addResource fileRefNum type resType id resID data
resData

name resName]

with/without purgeable]

with/without protected]

with/without preload]

with/without locked]

[
[
[
[
[
[with/without system heap]

Parameters

fileRefNum

The addResource command adds the new resource to the
resource file referred to by this reference number. This value
is returned by the openResourceFile command.

resType This parameter specifies the four-character resource type of
the new resource. For example, “PICT”, “TEXT" .

resID This parameter specifies the ID of the new resource.
resData This parameter specifies the data for the new resource.

resName This optional parameter specifies the ID of the new
resource. If this parameter is omitted, the resource is added
with a blank name.

purgeable, protected, preload, locked, system heap
These optional parameters allow you to specify values for
their corresponding resource status bits.

Result
None.

Example

set theFile to choose file of type “rsrc”
set resFile to openResourceFile theFile
addResource resFile of type “TEST” id 128 -
name -
“Testing” data “Testing”
closeResourceFile resFile

Outcome:

tell current application
choose file of type “rsrc”
—> alias “Hard Disk 245:pf:Script Debugger Manual:Current Drafts:resource file”
openResourceFile alias “Hard Disk 245:pf:Script Debugger Manual:Current
Drafts:resource file”

addResource 7146 of type “TEST” id 128 name “Testing” data “Testing”
closeResourceFile 7146

Errors
The addResource command can return any of the error codes provided
by the ResError() toolbox function.

Scripting Additions 169

170

ChangeResource

Appendix C

The changeResource command changes the data, ID, name or status
flags of a resource in a resource file.

Syntax

changeResource fileRefNum type resType
id resID | name resName

data resData]

newName newResName]

newID newResID]

with/without purgeable]

with/without protected 1]

with/without preload]

with/without locked]

[
[
[
[
[
[
[
[with/without system heap]

Parameters

fileRefNum

The changeResource command modifies a resource in the
resource file referred to by this reference number. This value
is returned by the openResourceFile and createResourceFile
commands.

resType ~ This parameter specifies the four-character resource type of
resource you want to change. For example, *PICT”,
“TEXT” .

resID This parameter specifies the ID of the resource being
modified. If you specify this parameter, you cannot use the
resName parameter.

resName This parameter specifies the Name of the resource being
modified. If you specify this parameter, you cannot use the
resID parameter.

resData This optional parameter specifies your new data for the
resource being modified. If you do not provide this
parameter, the resources data is not changed.

newResName
This optional parameter specifies a new name for the
resource. If this parameter is omitted, the resource’s Name
is not changed.

newResID This optional parameter specifies a new ID for the resource.
If this parameter is omitted, the resource’s ID is not
changed.

purgeable, protected, preload, locked, system heap
These optional parameters allow you to specify new values
for the resources status bits.

Result
None.

Example

set theFile to choose file of type “rsrc”

set resFile to openResourceFile theFile

changeResource resFile of type “TEST” id 128 -
data “New Data”

closeResourceFile resFile

Outcome:

tell current application
choose file of type “rsrc”
—> alias “Hard Disk 245:pf:Script Debugger Manual:Current Drafts:resource file”
openResourceFile alias “Hard Disk 245:pf:Script Debugger Manual:Current
Drafts:resource file”
—> 7146
changeResource 7146 of type “TEST” id 128 data “New Data”
closeResourceFile 7146
end tell

Errors
The changeResource command can return any of the error codes
provided by the ResError() toolbox function.

Scripting Additions 171

172

ChangeStringResource

The changeStringResource command changes the data, ID, name or
status flags of an *STR * resource in a resource file.

Appendix C

Syntax

changeStringResource fileRefNum
id resID | name resName

[
[
[
[
[
[
[
[

Parameters

fileRefNum

resID

resName

resData

data resData |

newName newResName]

newlID newResID]
with/without purgeable 1]
with/without protected 1]
with/without preload]
with/without locked]
with/without system heap]

The changeStrResource command modifies a resource in
the resource file referred to by this reference number. This
value is returned by the openResourceFile and
createResourceFile commands.

This parameter specifies the ID of the *STR ' resource
being modified. If you specify this parameter, you cannot
use the resName parameter.

This parameter specifies the Name of the *STR
resource being modified. If you specify this parameter, you
cannot use the resID parameter.

This optional parameter specifies your new string for the
resource being modified. If you do not provide this
parameter, the resources data is not changed.

newResName

newResID

This optional parameter specifies a new name for the
resource. If this parameter is omitted, the resource’s Name
is not changed.

This optional parameter specifies a new ID for the resource.
If this parameter is omitted, the resource’s ID is not
changed.

purgeable, protected, preload, locked, system heap
These optional parameters allow you to specify new values
for the resources status bits.

Result
None.

Example

set theFile to choose file of type “rsrc”

set resFile to openResourceFile theFile

changeStringResource resFile id 128 =
data “New Data”

closeResourceFile resFile

Outcome:

tell current application
choose file of type “rsrc”

—> alias “Hard Disk 234:Desktop Folder:junk file”
openResourceFile alias “Hard Disk 234:Desktop Folder:junk file”

changeStringResource 5736 id 128 data “New Data”
closeResourceFile 5736

Errors
The changeStringResource command can return any of the error codes
provided by the ResError() toolbox function.

Scripting Additions 173

174

(loseResourceFile

The closeResourceFile command closes a resource file which was
previously opened by the openResourceFile command.

Syntax
closeResourceFile fileRefNum

Parameters

fileRefNum

This parameter specifies the reference number of an open
resource file. This value is returned by the openResourceFile
and createResourceFile commands.

Result
None.

Example

set theFile to choose file of type “rsrc”
set resFile to openResourceFile theFile
closeResourceFile resFile

Outcome:

tell current application
choose file of type “rsrc”

—> alias “Hard Disk 234:Desktop Folder:junk file”
openResourceFile alias “Hard Disk 234:Desktop Folder:junk file”

—> 6676

closeResourceFile 6676

end tell

Appendix C

Errors
The closeResourceFile command can return any of the error codes
provided by the ResError() toolbox function.

Count1Resources

Use the count1Resources command to count the number of resources
of a certain type in a resource file.

Syntax
countlResources fileRefNum type resType

Parameters

fileRefNum

This parameter specifies the reference number of an open
resource file. This value is returned by the openResourceFile
and createResourceFile commands.

resType This parameter is the type code of the resources you want to
count. Specify the type code as a four-character string, for
instance: “PICT” or “TEXT".

Result
An integer value representing the number of resources of the type
specified in the resource file.

Example

set theFile to choose file of type “rsrc”

set resFile to openResourceFile theFile

set numRsrcs to countlResources resFile of type “PICT”
closeResourceFile resFile

Outcome:

tell current application
choose file of type “rsrc”
—> alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:resource file”
openResourceFile alias “Hard Disk 234:Desktop Folder:Script Debugger
1.0:resource file”
—> 6488
countlResources 6488 of type “PICT”
—> 0
closeResourceFile 6488
end tell

Errors
The countlResources command can return any of the error codes
provided by the ResError() toolbox function.

Scripting Additions 175

176

Count1ResourceTypes

Appendix C

Use the count1ResourceTypes command to count the number of
different types of resources stored in a resource file.

Syntax
countlResourceTypes fileRefNum

Parameters

fileRefNum

This parameter specifies the reference number of an open
resource file. This value is returned by the openResourceFile
and createResourceFile commands.

Result
An integer value representing the number of different types of
resources stored in the resource file.

Example

set theFile to choose file of type “rsrc”

set resFile to openResourceFile theFile

set numRsrcTypes to countlResourceTypes resFile
closeResourceFile resFile

Outcome:

tell current application
choose file of type “rsrc”
—> alias “junk:resource file”
openResourceFile alias “junk:resource file”
—> 8838
countlResourceTypes 8838
—> 6
closeResourceFile 8838
end tell

Errors
The countlResourceTypes command can return any of the error codes
provided by the ResError() toolbox function.

CountResources

Use the countResources command to count the number of resources of
a certain type in a chain of resource files.

The Macintosh Resource Manager maintains a chain of open resource
files. The chain is extended each time a new resource file is opened. For
more detailed information about resource file chains, consult the
Resource Manager chapter of Inside Macintosh.

Syntax
countResources fileRefNum type resType

Parameters

fileRefNum

This parameter specifies the reference number of the
first resource file to search. This value is returned by the
openResourceFile and createResourceFile commands.

resType This parameter is the type code of the resources you want to
count. Specify the type code as a four-character string, for
instance: “PICT” or “TEXT".

Result
An integer value representing the number of resources of the type
specified in the open resource files.

Example

set theFile to choose file of type “rsrc”

set resFile to openResourceFile theFile

set numRsrcs to countResources resFile of type “PICT”
closeResourceFile resFile

Outcome:

tell current application
choose file of type “rsrc”
—> alias “junk:resource file”
openResourceFile alias “junk:resource file”
—> 8838
countResources 8838 of type “PICT”
—> 42
closeResourceFile 8838
end tell

Errors
The countResources command can return any of the error codes
provided by the ResError() toolbox function.

Scripting Additions 177

CountResourceTypes

Use the countResourceTypes command to count the number of
different types of resources stored in a chain of resource files.

The Macintosh Resource Manager maintains a chain of open resource
files. The chain is extended each time a new resource file is opened. For
more detailed information about resource file chains, consult the
Resource Manager chapter of Inside Macintosh.

Syntax
countResourceTypes fileRefNum

Parameters

fileRefNum

This parameter specifies the reference number of an open
resource file. This value is returned by the openResourceFile
and createResourceFile commands..

Result
An integer value representing the number of different types of
resources stored in the resource file.

Example

set theFile to choose file of type “rsrc”

set resFile to openResourceFile theFile

set numRsrcTypes to countlResourceTypes resFile
closeResourceFile resFile

Outcome:

tell current application
choose file of type “rsrc”
—> alias “Hard Disk 234:Desktop Folder:resource file”
openResourceFile alias “Hard Disk 234:Desktop Folder:resource file”
—> 8838
countlResourceTypes 8838
—> 6
closeResourceFile 8838
end tell

Errors
The count ResourceTypes command can return any of the error codes
provided by the ResError() toolbox function.

178 Appendix C

CreateResourceFile

The createResourceFile command creates a new resource file.

Syntax

createResFile fileName
[in folder]
[owner signature]
[filetype type 1]

Parameters

fileName This parameter is the new file’s name.

folder This parameter is an alias to the folder where the new file is
to be placed. If this parameter is omitted, the file is created
in the current default folder.

signature This parameter defines the application signature code of the
new file. Specify this value as a four-character string such as
“MSWD” or “RSED”.

If you omit this parameter, the new file is given the
signature code “????”. The Finder uses this information
to link the file to the application which can open it.

type This parameter defines the file type code of the new
file. Specify this value as a four-character string such as
“TEXT” or “PICT".

If you omit the owner parameter, the new file is given the
file type code “?2222".

Result
None.

Example

set newFile to choose new file -
with prompt “Pick a new file name:”

createResourceFile (filename returned of newFile) -
in (folder returned of newFile) =
owner “RSED” — ResEdit

Scripting Additions 179

180

Outcome:

tell current application

choose new file with prompt “Pick a new file name:”
—> {resource name:”junk file”, replacing:false, folder returned:alias “Hard Disk
234:Desktop Folder:”}

createResourceFile “junk file” in alias “Hard Disk 234:Desktop Folder:”

signature “RSED”

end tell

Errors
This command can return any of the errors which are returned by the
toolbox ResError routine.

Get1IndexedResource

Appendix C

The getlIndexedResource command allows you to read a resource of a
given type by index rather than ID or name. The getlIndexedResource
command indexes through all the resources of the type specified in a
single resource file. If you want to index through the resources in a
chain of resourece files, see the getIndexedResource command.

This command is useful if you do not know the names or IDs of the
resources you want to access. Also, when combined with the
countResources command, you can use the getlIndexedResource
command to read all of the resources of a given type.

Syntax

getlIndexedResource fileRefNum
type resType index resIndex
[as dataType]

Parameters

fileRefNum

This parameter specifies the reference number of an open
resource file. This value is returned by the openResourceFile
and createResourceFile commands.

resType This parameter specifies the type of resource you want to
read. Specify resource types as four-character strings such as
“PICT” or “TEXT".

resindex This parameter specifies the index of the resource you want
to read. The value of this parameter must be in the range of
1 to the value returned by CountlResources for resType.

dataType This parameter allows you to control the data type
applied to the resource data. For instance, you can use this
parameter to have your resource data treated as a string,
picture, number or any other type of information.

Result
The result of this command is a Resource class. See the Resource Class
sub-section below for more information.

Example

set filePath to =
choose file with prompt -
“Select a file to open:” of type “rsrc”
set resFile to openResourceFile filePath for reading
set numRsrcs to countlResources resFile of type “PICT”
set thePICTs to {}
repeat with i from 1 to numRsrcs
set thePICTs to thePICTs & -
{getlIndexedResource resFile of type “PICT” index i}
end repeat
closeResourceFile resFile

Outcome:

tell current application

choose file with prompt “Select a file to open:” of type “rsrc”
—> alias “Hard Disk 234:Desktop Folder:resource file”

openResourceFile alias “Hard Disk 234:Desktop Folder:resource file” for reading
—> 9214

countlResources 9214 of type “PICT”

—> 1
getlIndexedResource 9214 of type “PICT” index 1
—> {class:resource, resType:”PICT”, resID:128, resName:””, resData:«data

****x)ADC000000000022002CFOC0O0F2C0000000000988034016100BA0183000000000000004E0000. ..
ECFAOOFEFFEDOOOBF20001F00FBF10001F9FFFDO08F00000F9FE30002CD0002CD0002CD0O00000FF»,
resPurgeable:false, resPreload:false, resProtected:false, resLocked:false,
resSystemHeap:false}

closeResourceFile 9214
end tell

Errors
This command can return any of the errors which are returned by the
ResError() toolbox routine.

Scripting Additions 181

182

Get1IndexedResourceType

Appendix C

The getlIndexedResourceType command allows you to obtain the type
codes of each of the different resource types stored in a resource file.

GetlIndexedResourceType allows you to access the type codes available
in a single resource file. If you want to access type codes in a chain of
resource files, see the getindexedResourceType command.

Syntax
getlIndexedResourceType fileRefNum index typelIndex

Parameters

fileRefNum

This parameter specifies the reference number of an open
resource file. This value is returned by the openResourceFile
and createResourceFile commands.

typelndex This parameter specifies the index of the resource type you
want to read. The value of this parameter must be in the
range of 1 through the value of countResourceTypes for the
resource file.

Result
The result of this command is a four-character string representing a
resource type code.

Example
The following example builds a list containing the type codes of all the
resources stored in a resource file.

set typesList to {}
set filePath to =
choose file with prompt -
“Select a file to open:” of type “rsrc”
set resFile to openResourceFile filePath for reading
repeat with i from 1 to countlResourceTypes resFile
set typesList to typesList & -
{getlIndexedResourceType resFile index i}
end repeat
closeResourceFile resFile

Outcome:

tell current application
choose file with prompt “Select a file to open:” of type “rsrc”
—> alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:resource file”
openResourceFile alias “Hard Disk 234:Desktop Folder:Script Debugger
1.0:resource file” for reading
—> 6394
countlResourceTypes 6394
—> 6
getlIndexedResourceType 6394 index 1
—> “ics4”
getlIndexedResourceType 6394 index 2
—> “ics8”
getlIndexedResourceType 6394 index 3
—> “ics#”
getlIndexedResourceType 6394 index 4
—> “icla”
getlIndexedResourceType 6394 index 5
—> “iclg”
getlIndexedResourceType 6394 index 6
—> “ICN#”
closeResourceFile 6394
end tell

Errors

This command can return any of the errors which are returned by the

ResError() toolbox routine.

Scripting Additions

183

184

GetTResource

Appendix C

The get1Resource command allows you to read a resource.
GetlResource looks only in the resource file specified. See the
getResource command if you want to search a chain of resource files
for a resource.

Syntax

getlResource fileRefNum type resType
[1id resID]
[name resName]
[as resType]

Parameters

fileRefNum

resType

resID

resName

resType

Result

This parameter specifies the reference number of an open
resource file. This value is returned by the openResourceFile
and createResourceFile commands.

This parameter specifies the type of resource you want to
read. Specify resource types as four-character strings such
as “PICT” or “TEXT".

This parameter specifies the ID of the resource you want to
read. If you specify this parameter, you cannot use the
resName parameter.

This parameter specifies the Name of the resource you want
to read. If you specify this parameter, you cannot use the
resID parameter.

This parameter allows you to control the data type applied
to the resource data. For instance, you can use this
parameter to have your resource data treated as a string,
picture, number or any other type of information.

The result of this command is a Resource class. See the Resource Class
sub-section below for more information.

Example

set filePath to -
choose file with prompt -
“Select a file to open:” of type “rsrc”
set resFile to openResourceFile filePath for reading
set strData to getlResource resFile of type “PICT” id 128
closeResourceFile resFile

Outcome:

tell current application

choose file with prompt “Select a file to open:” of type “RSRC”
—> alias “Hard Disk 234:Desktop Folder:Script Debugger Manual:AppleScript
icons.rsrc”

openResourceFile alias “Hard Disk 234:Desktop Folder:Script Debugger
Manual :AppleScript icons.rsrc” for reading

—> 7804
getlResource 7804 of type “PICT” id 128
—> {class:resource, resType:”PICT”, resID:128, resName:””, resData:«data

*%%%0ADC000000000022002C02FFOCOFF002C00000000001000A00002C00988034016100BA300EDO0000000000004E0000. . .
ECFAOOFEFFEDOOOBF20001F9FFFFEA10000001F9FFFDOOFDFFE700000F9FDFFE30002C02CD0002CD000000FF>,
resPurgeable:false, resPreload:false, resProtected:false, resLocked:false,
resSystemHeap:false}

closeResourceFile 7804
end tell

Errors

This command can return any of the errors which are returned by the
ResError() toolbox routine.

Scripting Additions 185

186

GetIndexedResource

Appendix C

The getIndexedResource command allows you to read the resources of
a given type by index rather than ID or name. The getIndexedResource
command indexes through all the resources of the type specified in the
entire resource file chain. If you want to index through the resources in
a single file, see the GetlIndexedResource command.

This command is useful if you do not know the names or IDs of
the resources you want to access. Also, when combined with the
countResources command, you can use the getindexedResource
command to read all of the resources of a given type.

Syntax

getIndexedResource fileRefNum
type resType index resIndex
[as dataType]

Parameters

fileRefNum

This parameter specifies the reference number of an open
resource file. This value is returned by the openResourceFile
and createResourceFile commands.

resType This parameter specifies the type of resource you want to
read. Specify resource types as four-character strings such
as “PICT” or “TEXT”".

resindex This parameter specifies the index of the resource you want
to read. The value of this parameter must be in the range of
1 to the value returned by CountResources for resType.

resType This parameter allows you to control the data type
applied to the resource data. For instance, you can use this
parameter to have your resource data treated as a string,
picture, number or any other type of information.

Result
The result of this command is a Resource class. See the Resource Class
sub-section below for more information.

Example

set filePath to -
choose file with prompt -
“Select a file to open:” of type “rsrc”
set resFile to openResourceFile filePath for reading
set numRsrcs to countResources resFile of type “PICT”
set thePICTs to {}
repeat with i from 1 to numRsrcs
set thePICTs to thePICTs & -
{getIndexedResource resFile of type “PICT” index i}
end repeat
closeResourceFile resFile

Outcome:

tell current application

choose file with prompt “Select a file to open:” of type “RSRC”
—> alias “Hard Disk 234:Desktop Folder:Script Debugger Manual:AppleScript
icons.rsrc”

openResourceFile alias “Hard Disk 234:Desktop Folder:Script Debugger
Manual :AppleScript icons.rsrc” for reading

—> 7522
countResources 7522 of type “PICT”
—> 40
getIndexedResource 7522 of type “PICT” index 1
—> {class:resource, resType:”PICT”, resID:128, resName:””, resData:«data

*%%*0ADCO000000000201102FF000000022000000000000022002C0098300E000004E0000004000000000800010008000000

getIndexedResource 7522 of type “PICT” index 40
—> {class:resource, resType:”PICT”, resID:-5694, resName:”"”, resData:«data
****018E0000000000100010001102FF0C0O0F00000048000000100010000001000A00010990002F9000000FF >,
resPurgeable:true, resPreload:false, resProtected:false, resLocked:false,
resSystemHeap:false}

closeResourceFile 7522
end tell

Errors
This command can return any of the errors which are returned by the
ResError() toolbox routine.

Scripting Additions 187

188

GetIndexedResourceType

Appendix C

The getIndexedResourceType command allows you to obtain the type
codes of each of the different resource types stored in a chain of
resource files. If you want to access type codes in a single resource file,
see the getlIndexedResourceType command.

Syntax
getIndexedResourceType fileRefNum index typelndex

Parameters

fileRefNum

This parameter specifies the reference number of an open
resource file. This value is returned by the openResourceFile
and createResourceFile.

typelndex This parameter specifies the index of the resource type you
want to read. The value of this parameter must be in the
range of 1 through the value of countResourceTypes for the
resource file.

Result
The result of this command is a four-character string representing a
resource type code.

Example
The following example builds a list containing the type codes of all the
resources available to the script.

set typesList to {}
set filePath to -
choose file with prompt -
“Select a file to open:” of type “rsrc”
set resFile to openResourceFile filePath for reading
repeat with i from 1 to countResourceTypes resFile
set typesList to typesList & -
{getIndexedResourceType resFile index i}
end repeat
closeResourceFile resFile

Outcome:

{vcfrg”, “gmra’, “hman”, “pElp”, “Ewst’. wgfnt”, “NFNT”, “KCOD", wIDLE”, “DKND",
“LOCN”, “PREF”, “FLSH", wTHSF”, “sysz”, “nrct’. smach”, “OPTS”, “DICS", WACTV" ,
WBARY”, “SARY”, “PHON", wgxT”, “crsr”, “emgl’, sedev”, “PROC, “DCOD". vden “,
waudt”, “movp’, woprf”, waprf”, “alis”, watlk”, “iopc”, wltlk”, “AINI”, wdrvr"”,
“lmgr”, “picb”, “fmap” wROvr”, “FOND", wwedg” “pixs”, “pmap” wrtt#”, “FMTR",
sppcc”, “RDBS”. WCDEF”, “DRVR”, “DSAT” “FREY”, “FRSV”, “ICON", wINTL", “KCAP",
WKCHR”, “KMAP”, “KSWP", “LDEF”, “MACS”, V“MBDEF” WpACK”, “PAT “, “PATH#", “PTCH" ,
WRECT”, “ROVH", wpoot”, “bst#”, wgard”, “cctb”, welut”, “cmtb”, wetbh v, “dbex”,
wdemp” vdimg”, wenet”, “f1d#", wflst”, “gbly” windl”, “inpm” wiglo”, “itll”,
witlan, “itl4”, witlb”, “itlc”, witlm”, “kcs#”, wkesa”, “lodr”, “1lpch” wlgtr”,
vmeky” wmitg”, wpntr”, “ppat” wppci” “ppt#” “proc”, “pslt” “ptbl” “ptch”,
wresf”, “rgb %, wend %, “snth”, wym Y, “wetb”, wgeod”, “lmem”, wIWIT”, “MDRW”,
WMPNT”, “MACA”, “mst#”, wmstr”, “INIT”, “DLOG". wpITL”, “xMAP”, “XRSC", “WDEF" ,
whEdr”, “hmnu”, vhdlg”, wgosz", “Xete”, wRDls"”, “Pane”, “pltt” wMDEF”, “dctb”,
wpBsc”, “TEXT”, “BNDL", wasDB”, “stap”, “cicn’y WFREF”, ‘acur”, “FONT", “CURS",
wprCT”, “ScPn”, “ESET”, WMBAR”, “SICN", “STR#” WgTR “, “WIND”, V“MENU", “ALRT" ,
wCNTL”, “SIZE", “CODE", WpREL”, “ZERO”, “DATA", wTEST#, “ckid”, “vers”., “Crr ",
“demd” , “mxbc” wpoxbi”, “oxwt”, wpmxbm” , “TMPL", wicsa”, “ics8”, wicg#”, “icl4”,
vicls”, “ICN#" }

Errors
This command can return any of the errors which are returned by the
ResError() toolbox routine.

Scripting Additions 189

190

GetIndexedStringResource

Appendix C

The getIndexedStringResource command allows you to read the text
data stored in an “STR#” resource.

Each “STR#” resource contains a series of strings.
GetIndexedStringResource allows you to access any of the strings
stored in an “STR#" resource.

Syntax

getIndexedStringResource fileRefNum
[id resID]
[name resName]
index strIndex

Parameters

fileRefNum

This parameter specifies the reference number of an open
resource file. This value is returned by the openResourceFile
and createResourceFile commands.

resID This parameter specifies the ID of the “STR#"” resource
you want to read. If you specify this parameter, you cannot
use the resName parameter.

resName This parameter specifies the Name of the “STR#”
resource you want to read. If you specify this parameter,
you cannot use the resID parameter.

strIndex This parameter specifies the index of the string within the
“STR#"” resource you want to read.

Result
The result of this command is a string.

Example

set filePath to =
choose file with prompt -
“Select a file to open:” of type “rsrc”
set resFile to openResourceFile filePath for reading
set strData to getIndexedStringResource id 128 index 1
closeResourceFile resFile

Outcome:

tell current application
choose file with prompt “Select a file to open:” of type “rsrc”
—> alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:resource file”
openResourceFile alias “Hard Disk 234:Desktop Folder:Script Debugger
1.0:resource file” for reading
—> 5830
getIndexedStringResource id 128 index 1
—> “quitting”
closeResourceFile 5830
end tell

Errors
This command can return any of the errors which are returned by the
ResError() toolbox routine.

Scripting Additions 191

192

GefResource

Appendix C

The getResource command allows you to read a resource. GetResource
searches through a chain of resource files to locate your resource. See
the get1Resource command if you want to search through a single
resource file.

Syntax

getResource fileRefNum type resType
[id resID]
[name resName]
[as resType]

Parameters

fileRefNum

This parameter specifies the reference number of an
open resource file. This value is returned by the
openResourceFile, and createResourceFile commands.

resType This parameter specifies the type of resource you want to
read. Specify resource types as four-character strings such
as “PICT” or “TEXT”".

resID This parameter specifies the ID of the resource you want to
read. If you specify this parameter, you cannot use the
resName parameter.

resName This parameter specifies the Name of the resource you want
to read. If you specify this parameter, you cannot use the
resID parameter.

resType ~ This parameter allows you to control the data type
applied to the resource data. For instance, you can use this
parameter to have your resource data treated as a string,
picture, number or any other type of information.

Result
The result of this command is a Resource class. See the Resource Class
sub-section below for more information.

Example
This script returns the hexadecimal version of the PICT.

set filePath to =
choose file with prompt -
“Select a file to open:” of type “rsrc”
set resFile to openResourceFile filePath for reading
set strData to getResource of type “PICT” id 128
closeResourceFile resFile

Outcome:

Ttell current application
choose file with prompt “Select a file to open:” of type “rsrc”
—> alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:resource file”
openResourceFile alias “Hard Disk 234:Desktop Folder:Script Debugger
1.0:resource file” for reading

—> 6582
getResource of type “PICT” id 128
—> {class:resource, resType:”PICT”, resID:128, resName:””, resData:«data

**%*(0DRA0152000D027101DB2FFOCOOFFEF0152000010B00027100000000001E001FFFFO001000A0152000D0271010B00080031000E027101D7

0038001BFFFFO00000000031015201D101D700C0F60011F40001FE900061FFFE000OFFFFFS000CD0001 01FFE0001 0FF8F50002C70000FFs
resPurgeable:false, resPreload:false, resProtected:false, resLocked:false,
resSystemHeap:false}

closeResourceFile 6582
end tell

Errors
This command can return any of the errors which are returned by the
ResError() toolbox routine.

Scripting Additions 193

GetStringResource

The getStringResource command allows you to read the text data
stored in an “STR ™ resource.

Syntax

getStringResource fileRefNum
[id resID]
[name resName]

Parameters

fileRefNum

This parameter specifies the reference number of an
open resource file. This value is returned by the
openResourceFile, createResourceFile, and getCurResFile
commands.

resID This parameter specifies the ID of the *“STR” resource you
want to read. If you specify this parameter, you cannot use
the resName parameter.

resName This parameter specifies the Name of the “STR” resource
you want to read. If you specify this parameter, you cannot
use the resID parameter.

Result
The result of this command is a string.

Example

set filePath to -
choose file with prompt -
“Select a file to open:” of type “rsrc”
set resFile to openResourceFile filePath for reading
set strData to getStringResource id 128
closeResourceFile resFile

194 Appendix C

Outcome:

tell current application
choose file with prompt “Select a file to open:” of type “rsrc”
—> alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:resource file”
openResourceFile alias “Hard Disk 234:Desktop Folder:Script Debugger
1.0:resource file” for reading
—> 7146
getStringResource id 128
—> “Script Application

closeResourceFile 7146
end tell

Errors
This command can return any of the errors which are returned by the
ResError() toolbox routine.

Scripting Additions 195

OpenResourcefile

The openResourceFile command opens a resource file (or the resource
fork of any other type of file) for reading, updating, or writing. This
command, when used with the other commands provided by the
Resource 10 addition, allows you to manipulate resources within scripts.

Syntax
openResourceFile file
[for reading|update|writing]

Parameters

file This parameter is an alias to the file which is to be opened.

Result
The result is a resource file reference number. You must provide this
number to all other commands you issue when processing the resource

file.

Example

set filePath to -
choose file with prompt -
“Select a file to open:” of type “rsrc”
set resFile to openResourceFile filePath for reading
closeResourceFile resFile

Outcome:

tell current application
choose file with prompt “Select a file to open:” of type “rsrc”
—> alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:resource file”
openResourceFile alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:resource
file” for reading
—> 6582
closeResourceFile 6582
end tell

NOTES: When the optional £ox parameter is not specified, the file is opened
for update.

Be careful to ensure you close all the files you open. Due to the nature of
AppleScript additions, the openResourceFile command does not ensure the
file is closed when a script aborts without first closing the file with the
closeResourceFile command.

Errors
This command can return any of the errors which are returned by the
ResError() toolbox routine.

196 Appendix C

RemoveResource

The removeResource command removes a resource from a resource

file.
Syntax

removeResource fileRefNum type resType
[id resID]
[name resName]

Parameters

fileRefNum

resType

resID

resName

Result

None.

Example

This parameter specifies the reference number of an open
resource file. This value is returned by the openResourceFile
and createResourceFile commands.

This parameter specifies the type of resource you want to
remove. Specify resource types as four-character strings
suchas “"PICT” or “TEXT”.

This parameter specifies the ID of the resource you want to
remove. If you specify this parameter, you cannot use the
resName parameter.

This parameter specifies the Name of the resource you want
to remove. If you specify this parameter, you cannot use the
resID parameter.

set filePath to =
choose file with prompt -

“Select a file to open:” of type “rsrc”
set resFile to openResourceFile filePath
removeResource resFile of type “PICT” id 128
closeResourceFile resFile

Scripting Additions 197

198

Outcome:

tell current application
choose file with prompt “Select a file to open:” of type “rsrc”
—> alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:resource file”
openResourceFile alias “Hard Disk 234:Desktop Folder:Script Debugger
1.0:resource file”
—> 5548
removeResource 5548 of type “PICT” id 128
closeResourceFile 5548
end tell

Errors

This command can return any of the errors which are returned by the
ResError() toolbox routine.

Appendix C

GetUniqueResourcelD

Use the getUniquelResourceID command to find a unique ID for a
given type of resource. The getUniquelResource]D command ensures
that the value it returns is unique within a single resource file.

Syntax
getUniquelResourceID fileRefNum type resType

Parameters

fileRefNum This parameter specifies the reference number of an
open resource file. This value is returned by the
openResourceFile and createResourceFile commands.

resType This parameter is the type code of the resources you want
to count. Specify the type code as a four-character string,
suchas: “PICT” or “TEXT".

Result

The new unique resource ID.

Errors
The getUniquelResourcel D command can return any of the error
codes provided by the ResError() toolbox function.

Example

set theFile to choose file of type “rsrc”
set resFile to openResourceFile theFile for writing
set newResID to 0
repeat while newResID < 128
set newResID to getUniquelResourceID resFile of type “TEST”
end repeat
addResource resFile -
of type -
“TEST” id newResID -
data “Testing”
closeResourceFile resFile

Outcome:

tell current application
choose file of type “rsrc”
—> alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:resource file”
openResourceFile alias “Hard Disk 234:Desktop Folder:Script Debugger
1.0:resource file” for writing
—> 6958
getUniquelResourceID 6958 of type “TEST”
—> 19718
addResource 6958 of type “TEST” id 19718 data “Testing”
closeResourceFile 6958
end tell

Scripting Additions 199

200

GetUniqueResourcelD

Use the getUniqueResourceID command to find a unique ID for a
given type of resource. The getUniqueResourcelD command ensures
that the value it returns is unique within an entire chain of resource

files.

Syntax
getUniqueResourcelD fileRefNum type resType

Parameters

fileRefNum This parameter specifies the reference number of an
open resource file. This value is returned by the
openResourceFile and createResourceFile commands.

resType This parameter is the type code of the resources you
want to count. Specify the type code as a four-character
string, such as: “PICT” or “TEXT".

Result
The new unique resource ID.

Errors
The uniqueResourcelD command can return any of the error codes
provided by the ResError() toolbox function.

Example

set theFile to choose file of type “rsrc”
set resFile to openResourceFile theFile for writing
set newResID to 0
repeat while newResID < 128
set newResID to getUniqueResourcelID resFile of type “TEST”
end repeat
addResource resFile -
of type -
“TEST” id newResID -
data “Testing”
closeResourceFile resFile

Outcome:

tell current application
choose file of type “rsrc”
—> alias “Hard Disk 234:Desktop Folder:Script Debugger 1.0:resource file”
openResourceFile alias “Hard Disk 234:Desktop Folder:Script Debugger
1.0:resource file” for writing
—> 6958
getUniqueResourceID 6958 of type “TEST”
—> 19718
addResource 6958 of type “TEST” id 19718 data “Testing”
closeResourceFile 6958
end tell

Appendix C

Resource Class

The various GetResource commands of the Resource IO addition
return resource information in the form of a Resource class.

The resource class has the following properties:
resID This property corresponds to the resource’s ID.
resName This property corresponds to the resource’s Name.

resData This property contains a resource’s data. The type of
this property is governed by the AS parameter of the
GetResource commands. If the AS parameter is not
specified, the GetResource commands use the data type
“anything”.

resPurgeable
This Boolean property represents the purgeable bit of the
resource’s status bits.

resPreload
This Boolean property represents the preload bit of the
resource’s status bits.

resProtected
This Boolean property represents the protected bit of the
resource’s status bits.

resLocked
This Boolean property represents the locked bit of the
resource’s status bits.

resSystemHeap
This Boolean property represents the system heap bit of the
resource’s status bits.

Scripting Additions 201

Screens Addition
List Screens

The List Screens command obtains detailed information about each of
the Macintosh’s display screens.

Syntax

list screens

Result

The result of the List Screens command is a list of records. Each record
describes a different display screen. The records contain the following
values:

main screen
This Boolean value indicates whether or not the screen is
the main screen. The main screen is the screen containing
the menu bar.

bit depth
This value represents the number of bits in the display
screen.

bounds This value is the screen’s bounding rectangle.

Example

list screens

Outcome:

—> {{class:screen information, main screen:true, bit depth:8, bounds:{0, 0, 640,

0, O

768}}}

Appendix C

{
870}}, {class:screen information, main screen:false, bit depth:8, bounds:{-1024,

Shutdown Addition

The Shutdown addition allows your scripts to shutdown the
Macintosh.

Shutdown

The Shutdown command shuts down and optionally restarts your
Macintosh.

Syntax
shutdown
[with restart]

Result

This command returns no result.

Example

set result to display dialog -
“Are you sure you want to shutdown?” -

buttons {“Shutdown”, “Restart”, “Cancel"} - default button “Cancel”
if button returned of result = “Shutdown” then - shutdown
if button returned of result = “Restart” then - shutdown with restart
Outcome:

tell current application
display dialog “Are you sure you want to shutdown?” buttons {“Shutdown”,

“Restart”, “Cancel”} default button “Cancel”
—> User cancelled.
end tell

Scripting Additions

203

204

Speech Addition

Speak

Appendix C

The Speech addition allows your scripts to use the services of Apple’s
Speech Manager within your scripts. This section describes each of the
AppleScript commands provided in the Speech addition.

To use the Speech addition, you will need version 1.1.1 or later of
Apple’s Speech Manager software.

The Speak command uses the Apple Macintosh Speech Manager to
speak text strings. Note that because of its dependency on the Speech
Manager, this command only operates on Macintoshes which have the
Speech Manager installed.

If you enter the Command-. while the speak command is speaking a
long text string, the command is aborted and a userCanceledErr is
returned.

Syntax

speak message
[voice voice]
[rate rate]
[pitch pitch]

Parameters

message This parameter is the text you want to have spoken.

voice This optional parameter allows you to specify the name of
the voice you want used when the message is spoken.

rate This optional parameter specifies the rate at which
your message is spoken. Express the rate as a number
representing words per minute.

pitch This optional parameter specifies the pitch at which your
message is spoken.

Result

None.

Example

speak “The wind blows mainly in the plains”

List Voices

The List Voices command obtains a list of the names of the voices
available. Note that because of its dependency on the Speech Manager,
this command only operates on Macintoshes which have the Speech
Manager installed.

Syntax

list voices

Parameters
None.

Result
The result is a list of strings representing the names of all the Speech
Manager voices.

Example

list voices

Outcome:
—> {“Zarvox”, “Whisper”, “Trinoids”, “Ralph”, “Princess”, “Kathy”, “Junior”, “Good
News”, “Bad News”, “Fred”}
Get Voice

The Get Voice command returns detailed information about a
particular Speech Manager voice. Note that because of its dependency
on the Speech Manager, this command only operates on Macintoshes
which have the Speech Manager installed.

Syntax

get voice voice

Parameters

voice This parameter specifies the name of the voice you want
information about.

Result
The result of the Get Voice command is a record containing the
following values:

Scripting Additions 205

voice version
This integer value represents the voice’s version number.

voice name
This string is the voice’s name.

comment
This string further describes the voice.

gender This integer value defines the gender of the voice—1 =
neuter, 2 = male and 3 = female.

age This integer value represents the approximate age of the

voice.

voice script
This integer corresponds with the voice’s script code.

language
This integer value is the voice’s language code.

Example

get voice (first item of (list voices))

Outcome:

tell current application

list voices
—> {“Zarvox", “Whisper”, “Trinoids”, “Ralph”, “Princess”, “Kathy”, “Junior”, “Good
News”, “Bad News”, “Fred”}

get voice “Zarvox”
—> {class:voice information, voice version:259, voice name:”Zarvox”, comment:”That
looks like a peaceful planet.”, gender:0, age:1l, voice script:0, language:O0,
region:0}
end tell

206 Appendix C

APPENDIX

Scheduler

Scheduler is a utility that lets you schedule the launch of
applications and the opening of documents in response to a
wide variety of events. For example, you can create an event in
Scheduler that can open a spreadsheet regularly each week. It is
fully scriptable and recordable so you can write scripts using
AppleScript or any other OSA language to automate common
activities. Scheduler’s recordability allows you to create scripts
by recording your actions; this makes it easy to learn how to
script Scheduler.

Because of its flexibility, Scheduler has applications in Network
Management, Telecommunications, Business Systems and
many other areas where actions within your application need
to be performed on a regular basis. Since it is scriptable, you
can program your Macintosh to perform tasks involving a
number of applications.

Scheduler 207

208

Scheduler Components

When you ran the Script Debugger Installer, it installed the Scheduler
components if you chose the Easy Install option or if you selected
Scheduler in the Custom Install. If you look in your Control Panels
folder, you will find the Scheduler Setup control panel file. You will
also find the Scheduler extension file in your Extensions folder.

NOTE: The Scheduler extension is a fat binary so it will work with both
68K and Power Macintoshes.

To use Scheduler effectively, your Macintosh computer must be
running system software version 7.0 or later with at least two
megabytes of memory. Four megabytes is the recommended amount
of RAM for Scheduler.

The following sections in this appendix show you how to create an
event in Scheduler. You can refer to Chapter 3 to see how Scheduler’s
recordability works. You can find out more about the events and classes
that Scheduler supports by referring to its dictionary.

Scheduling An Application or Document Event

Appendix D

Scheduler makes it very easy to schedule the launch of applications and
documents. This example shows you how to use Scheduler to open the
Read Me First file on the Script Debugger Install disk whenever the disk
is inserted into your Macintosh’s disk drive.

1. Double-click the Scheduler Setup control panel.

The Scheduler Setup file is located in the Control Panels folder within
your System Folder.

Scheduler Setup

2. (lick Add (Figure D-1).

Figure D-1 EN=— Scheduler Setup —0r—————
The S(hEdUIET Semp Documents and Applications to Dpen:
window]
Click the Add button ks

to schedule a — add. [=
document or application .

When you dick Add, Scheduler Setup presents a file selection dialog
box (Figure D-2).

Figure D-2
I[g] Script Debugger Install v | 2] $cript Debu...
Scheduler

file selection Read Me First i
. 4 Script Debugger Installer
dialog box Deskiop

Use this dialog box to locate the application or document you want to
schedule. For this example, select the Read Me First file and click the
Open button.

Scheduler 209

210

Figure D-3
The Read Me First
file selected

Figure D-4
Scheduler Setup's
Launch menu

Appendix D

Once you have selected a file, the Scheduler Setup window will look
like the one in Figure D-3.

SO=————— Scheduler Setup EI
Documents and Applications to Open:
Script Debugger Install:Read Me First <

A
Croe) (o)
Launch: | Feriodically Throughout The Day b I IC: 4
Every : : E Enabled
. | . Launch In

Between: . Ak and . P Foreqround
On: E Sunday s E Monday = E Tuesdays

E wWednesday s E Thursdayz E Friday=

E Saturdays=
Me:t launch on Thursday , May 4, 19935 at &:00 A

3. Select a scheduling type.

By default, Scheduler Setup schedules your document to execute
“Periodically Throughout The Day” In this example, choose “When
Volumes Are Mounted” from the Launch pop-up menu (Figure D-4).

“Wwhen Yolumes Are Mounted
“Wwhen Yolumes Are Dismounted
Ywhen & Yolume's Free Space Limit s Exceeded

“when & Folder Changes

“Wwhen Files Within & Folder Exceed A Limit
“when & Folder's Size Limit |z Exceeded
“when # File Changes

Launch : s ally Throughout The Day
Once Daily

Once wWeakly

Once Manthly

Once early

Onie

Once you have selected a scheduling option, the bottom portion of the
Scheduler Setup window changes to display scheduling parameters
(Figure D-5).

Figure D-5
Scheduler with

the scheduling
parameters set

Figure D-6
The Volume
pop-up menu

fi=—————— Scheduler Setyp =r——=—
Documents and Applications to Open:
Secript Debugger Install :Read Me First A
A
o) (oo
Launch: | ‘when Wolumes e Mounted bl | Io: 4
Wolume | Any alurme - | E Enabled
E Launch In
Foreqraund

4. Set scheduling parameters.

Once you have selected the type of scheduling you want, you can
provide additional information governing when your document or
application is opened. In this example, choose the Script Debugger
Installer disk which contains Read Me First.

Choose Script Debugger Install from the Volume pop-up menu
(Figure D-6).

Yolume ® Any Volume

other
D
Graphics

Hard Dizk 224

Mail Enclasures
[Mac0S

Script Debugger Install

Scheduler

211

5. Close Scheduler Setup.

You have finished scheduling the Read Me First document. The
Scheduler Setup window should look something like Figure D-7.

F|gure D-7 ENES=———=———=— Scheduler Setup "FiccFcF——7——
The (Omplemd Documents and Applications to Dpen:
S(hEduler Seript Debugger Inztall:Read Me First [
window
7]
[wad.][change..]
Launch: | when Yolurnes e Mounted b I IC: 4
Yolume : | Script Debugger Install l E Enabled
Launch In
E Fareqround

All scheduling changes made with Scheduler Setup take effect
immediately after the Scheduler Setup window is closed.

6. Dismount the Script Debugger Install disk by dragging it to the Trash.
7. Re-insert the Scheduler Install disk into your Macintosh.

When you insert the Script Debugger Install diskette, Scheduler opens
the Read Me First file.

212 Appendix D

Scheduler Features

Scheduler is a powerful and flexible tool for scheduling the opening of
documents and applications. This section describes all of the advanced
Scheduler features.

Adding, Setting and Delefing Scheduled Events

The Scheduler Setup control panel is your interface to Scheduler.
Scheduler Setup allows you to add, change and delete scheduled
documents and applications (Figure D-8).

Figure D-8
The Scheduler Setup
window

SO0=———— SchedulerSetuyp=————————
Documents and Applications to Open:
it
=
[Add...] [PR]
Launch: | ‘when Wolurmes e Mounted - |
Add Click the Add button to add a new document or application
to the list of scheduled documents and applications.
When you dick the Add button, a file selection dialog box
appears so that you can choose the application or document
to be launched.
Change Click the Change button to change the application or

document being scheduled.

The Change button is active only when a scheduled
document or application is selected.

Scheduler 213

214

Figure D-9
Scheduler Setup's
Launch menu

Delete Click the Delete button to remove a document or
application from the list of scheduled documents and
applications.

The Delete button is active only when a document or
application is selected.

Launch Use the Launch pop-up menu to choose the type of
scheduling for your document or application.

The Launch pop-up menu is active only when a document
or application is selected (Figure D-9).

when Yolurnes Are Mounted

“when Yolumes Are Dismounted - Volume-based

when & Yolume's Free Space Limit |5 Excesded options

“when & Folder Changes

“when Files w'ithin A Folder Exceed & Limit n Folder and

when & Folder's Size Limit |s Exceeded file-based

“when & File Changes options

Periodizally Throughout The Cay

Once Caily

Once Weekly Date and

Once Monthly time-based

Once Yearly options

Once

“when Power Adapter |s Plugged In

“when Power Adapter |s Unplugged 1 Powgl: Book

‘when woken Up Spe.CIfIC
options

Date and Time-Based Scheduling

Appendix D

Scheduler provides a series of options for launching applications

and documents at a specific time in the future. Using these options,
you can configure your Macintosh to perform repetitive operations
periodically throughout the day, week, month or year. You can also
schedule applications and documents to launch at a specific date and
time in the future.

The following sub-sections describe each of Scheduler’s time-based
options in detail.

Scheduling Events Periodically Throughout the Day

Figure D-10
The"Periodically
Throughout The Day”
settings

This scheduling option allows you to have your application or

document opened at regular intervals throughout the day.

Select this option by choosing “Periodically Throughout The Day”
from the Launch pop-up menu (Figure D-10).

Em Scheduler Setup
Documents and Applications to Open:
Secript Debugger Install:Read Me First 4
7]

(o) Com)
Launch: rPeriodicallg Throughout The Day h | o: 4
Every: [o1]:[ac] Enabled

. | . Launch In
Between: [oo] am and [oa] P = Foregromd
On: E Sundays E Mondays E Tuesdays

Wednesdays E Thursdays E Fridays
E Saturdays

Mext Taunch on Thursday , May 4, 1995 at 8:00 AM

The “Periodically Throughout The Day” scheduling option provides

the following parameters:

Every:

This parameter defines the interval, in hours and minutes,
between launches. To change this value, click on the hours

or minutes field with the mouse. Then use the up/down

arrow that appears, to adjust the value.

Every: : @

Scheduler

215

Between: This parameter specifies the period of the day when
scheduling occurs.

As with the Every parameter, to change either the start or
ending time, click on the hours or minutes field with the
mouse. Then use the up/down arrow that appears to adjust
the value.

Between: :mAM E] and :.PM

T

Starting time Ending time

On: This parameter specifies the days of the week when you
want scheduling to occur. To prevent scheduling on a
particular day, simply uncheck that day’s checkbox.

Scheduling Daily Events

This scheduling option causes your documents and applications to
open once daily.

Select this option by choosing “Once Daily” from the Launch pop-up
menu (Figure D-11).

Figure D-11 Si=———— SchedulerSetyp—0—"n———|
" | "
The. 0"(8 Dﬂlly Documents and Applications to Open:
Se"ll‘lgS Script Debugger Install:Read Me First E
Cos) (o)
Launch: | Once [aily hd I I 4
[Enabled
. . Launch In
At ' Moon & Foreground
On: E Sunday= E FMondays E Tuesdays
E YWednesdays E Thursdays E Fridays
E Saturdays
MNext launch on Thursday, May 4, 1995 at 12:00 PM

216 Appendix D

Figure D-12
The “Once Weekly”
settings

The “Once Daily” scheduling option provides the following

parameters:

At: This parameter defines the time of the day, in hours
and minutes, when the document or application is to be

opened.

To change this value, click on the hours or minutes field
with the mouse. Then use the up/down arrow that appears,

to adjust the value.

At m: Noan @

On: This parameter specifies the days of the week when you
want your application or document to open.

Scheduling Weekly Events

This scheduling option allows you to have your application or

document opened once each week.

Select this option by choosing “Once Weekly” from the Launch pop-up

menu (Figure D-12).

S=———————— Scheduler Setup I
Documents and Applications to Open:
Script Debugger Install:Read Me First 45

|
Croe) (o)
Launch: | Once weekly hd | o: 4
On: B Enabled
. . Launch In
At: ' Macn & Foreground
Mext launch on Wednesday , May 10, 1995 at 12:00 PM

Scheduler 217

218

The “Once Weekly” scheduling option provides the following

parameters:

On: This parameter specifies the day of the week when you
want your application or document to open.

At: This parameter defines the time of the day, in hours

and minutes, when the document or application is to be

opened.

To change this value, click on the hours or minutes field
with the mouse. Then use the up/down arrow that appears,

to adjust the value.

At m: Noan @

Scheduling Monthly Events

This scheduling option allows you to have your application or

Figure D-13
The “Once Monthly”
settings

Appendix D

document opened once each month.

Select this option by choosing “Once Monthly” from the Launch

pop-up menu (Figure D-13).

S=—————=— Scheduler Setup

Documents and Applications to Open:

Preferences...

Script Debugger Install:Read Me First

[wad.][change. |

Launch: | Once Manthly b I
On the: of the month
At : Noon

E Execute on the last day of short rmonths

MNext launch on Wednesday , May 31, 1995 at 1200 PM

D 4

I o =

[<] Enabled

Launch In
Foreground

The “Once Monthly” scheduling option provides the following
parameters:

On the:

At:

This parameter specifies the day of the month when you
want your application or document to open.

This parameter defines the time of the day, in hours
and minutes, when the document or application is to be
opened.

To change this value, click on the hours or minutes field
with the mouse. Then use the up/down arrow that appears,
to adjust the value.

At m: Noan @

Execute on the last day of short months:

This parameter describes what happens in months

with fewer days than the day you selected in the On The
parameter. When this parameter is checked, your document
or application is operated in the last day of the month.
When not checked, your document or application is not
opened in short months.

Scheduler 219

220

Scheduling Yearly Events

Figure D-14
The “Once Yearly”
settings

Appendix D

This scheduling option allows you to have your application or
document opened once each year.

Select this option by choosing “Once Yearly” from the Launch pop-up
menu (Figure D-14).

E=———— Scheduler Setup EI
Documents and Applications to Open:
Script Debugger Install :Read Me First e

r
(Coe) (oo]
Lauruczh : | Once ‘fearly - l I 2
On: | January b || I1 st - | E Enabled
Launch In

At 12]: il

oon E Foreground
MNexct launch on ‘Wednesday , January 31, 1996 at 12:00 PM

The “Once Yearly” scheduling option provides the following

parameters:

On: This parameter lets you specify the month and day of the
year when your application or document is to be opened.

At: This parameter defines the time of the day, in hours
and minutes, when the document or application is to be
opened.

To change this value, click on the hours or minutes field
with the mouse. Then use the up/down arrow that appears,
to adjust the value.

At m: Noan @

Scheduling Events That Occur at a Specific Date and Time

This scheduling option allows you to have your application or
document opened on a specific day and time in the future.

Select this option by choosing “Once” from the Launch pop-up menu
(Figure D-15).

Figure D-15 [IE=———=— Scheduler Setup

u n .
The Ome Se"lngs Documents and Applications to Open:

Script Debugger Install:Read Me First

I o =

Coor) (orame)
Launch: | One b | Ib: 5
On: [[January =][1st = I [Enabled

3 3 Launch In
At ' Maan & Foreground

Me:t launch on Monday , January 1, 1996 5t 1200 PM

The “Once” scheduling option provides the following parameters:

On: This parameter lets you specify the month, day and year
when your application or document is to be opened.

At: This parameter defines the time of the day, in hours
and minutes, when the document or application is to be
opened.

To change this value, click on the hours or minutes field
with the mouse. Then use the up/down arrow that appears,
to adjust the value.

Scheduler 221

222

File and Folder-Based Scheduling

Scheduler provides a series of options for launching applications and
documents whenever a file or folder is changed. You can use these
options to configure your Macintosh to perform repetitive tasks when
files are placed in a folder or whenever a file is edited.

The following sub-sections describe each of Scheduler’s file and folder
options in detail.

Scheduling Events When Folders Are Changed

Figure D-16
The “When A Folder
Changes” setfings

Appendix D

This scheduling option allows you to have your application or
document opened whenever files are added to or removed from a
folder. Scheduler recognizes changed folders by periodically checking
their modification dates.

Select this option by choosing “When A Folder Changes” from the
Launch pop-up menu (Figure D-16).

S=————— Scheduler Setup ==—————
Documents and Applications to Dpen:
Script Debugger Install:Read Me First -

<
oo) Corm)
Launch : | when & Folder Changes i I I 2

Folder: i Set Folder... E Enabled

Mac0S: Systemn Falder : Control Panels [II;::::EOI:nd

The “When A Folder Changes” scheduling option provides the
following parameter:

Folder: The folder parameter allows you to select the folder which
triggers your application or document. Click the Set Folder
button to set or change the folder.

Scheduling Events When the Number of Files In a Folder Reaches a Limit

Figure D-17

The “When Files Within A
Folder Exceed A Limit”
setting

This scheduling option allows you to have your application or
document opened whenever the number of files stored in a folder
rises above or falls below a limit.

Select this option by choosing “When Files Within A Folder Exceed A
Limit” from the Launch pop-up menu (Figure D-17).

S=—————=— Scheduler Setup

Documents and Applications to Dpen:

Script Debugger Install:Read Me First

I] I 5

(Cree) (o)
Launch: | when Files 'w'ithin & Folder Exceed A Limnit b I IC: 4
Folder : E et Folder.. B Enatied
3 3 Launch In
MacS: Systern Folder : Control Panels [Foregreund

File Count: | Greater Than * ||D |ﬁ1es
|:| Include Enclosed Falders

The “When Files Within A Folder Exceed A Limit” scheduling option
provides the following parameter:

Folder: The folder parameter allows you to select the folder which
triggers your application or document. Click the Set Folder
button to set or change the folder.

File Count:
This parameter allows you to define a limit for the number
of files stored in the folder. The pop-up menu lets you
choose the type of limit on free space, either Greater Than
or Less Than.

Once you have selected the type of limit, you can enter the
number of files into the text box. Use the Include Enclosed
Folders checkbox to indicate whether or not you want
Scheduler to include the files stored within enclosed folders
when it calculates the number of files stored in the folder.

Scheduler 223

224

CAUTION : Use the Include Enclosed Folders feature with care. When this
feature is checked, Scheduler must scan through all the enclosed folders to
calculate the number of files. If you have a deep folder structure, Scheduler
requires extra time to calculate the number of files. The extra time taken
by Scheduler to perform this function may slow down other activities on
your Macintosh.

Scheduling Events When the Size of a Folder Reaches a Limit

This scheduling option allows you to have your application or
document opened whenever the size of a folder rises above or falls
below a limit.

Select this option by choosing “When A Folder’s Size Limit Is
Exceeded” from the Launch pop-up menu (Figure D-18).

Figure D-18 EO=—— Scheduler Setup —8—A—————
u 1}
T!]e When A FOIders Documents and Applications to Dpen:
Slze |.|m|1 IS EX(eeded” Script Debugger Install:Read Me First ﬁ
settings
=]
e) Come)
Launch : | Ywhen & Folder's Size Limit |s Exceeded i I I 2

Folder: i Set Folder... E Enabled

Mac0S: Systemn Falder : Control Panels i IE:EZ;:olgnd

Folder Size: | Greater Than ™ || 1000 |K Eytes
D Inzlude Enclosed Folders

The “When A Folder’s Size Limit Is Exceeded” scheduling option
provides the following parameter:

Folder: The folder parameter allows you to select the folder which
triggers your application or document. Click the Set Folder
button to set or change the folder.

Appendix D

Folder Size:
This parameter allows you to define a limit for the size of
the folder. The pop-up menu lets you choose the type of
limit on free space, either Greater Than or Less Than.

Once you have selected the type of limit, you can enter the
size limit into the text box.

Use the Include Enclosed Folders checkbox to indicate
whether or not you want Scheduler to include the files
stored in enclosed folders when it calculates the size of the
folder.

CAUTION: Use the Include Enclosed Folders feature with care. When this feature

is checked, Scheduler must check every file in all the enclosed folders to
calculate the total size of the folder. If you have a deep folder structure
containing many files, Scheduler requires extra time to calculate the total
folder size. The extra time taken by Scheduler to perform this function
may slow down other activities on your Macintosh.

Scheduling Events When Files Are Changed

Figure D-19
The “When A File
Changes” settings

This scheduling option allows you to have your application or
document opened whenever a particular file is changed. Scheduler
recognizes changed files by periodically checking their modification
dates.

Select this option by choosing “When A File Changes” from the Launch
pop-up menu (Figure D-19).

SI=————— Scheduler Setup

Documents and Applications to Open:

Script Debugger Install :Read Me First

I o =

(ot) (oo]
Launch : | ‘when & File Changes - l 0 4
File: [<] Enabled
Launch In
E Foreground

Scheduler 225

226

The “When A Folder Changes” scheduling option provides the
following parameter:

File: The file parameter allows you to select the file which
triggers your application or document. Click the Set File
button to set or change the file.

Volume-Based Scheduling

Scheduler provides a series of options for launching applications and
documents whenever volumes are mounted and dismounted, or when
the free space available on a particular volume reaches a limit.

The following sub-sections describe each of Scheduler’s volume-based
options in detail.

Scheduling Events When Volumes Are Mounted or Dismounted

Figure D-20
The “When Volumes

Are Mounted”
settings

Appendix D

This scheduling option allows you to have your application or
document opened whenever a volume is mounted or dismounted.

Select this option by choosing “When Volumes Are Mounted” or
“When Volumes Are Dismounted” from the Launch pop-up menu
(Figure D-20).

SO=———— Scheduler Selup ""FcF——T——
Documents and Applications to Open:
Script Debugger Install:Read Me First 4

i
o) Cororee
Launch: | ‘when Wolurnes Are Mounted b | b 4
Wolume | Any Molume hal I E Enabled
E Launch In

Fareground

Figure D-21
The Volume
pop-up menu

The “When Volumes Are Mounted” and “When Volumes Are
Dismounted” scheduling options provide the following parameter:

Volume:

This parameter lets you specify the name of the volume
which triggers the opening of your document or application
(Figure D-21).

Yolurne : & dny Yolorme

other

Lrew

Graphics

Hard Disk 234

Mail Enclosures
Macs

Script Debugger Install

The Volume pop-up menu lists all mounted volumes

and contains an option titled Any Volume. Selecting Any
Volume causes your document or application to be
launched whenever any volume is mounted or dismounted,
depending on the option you have chosen in the Launch
pop-up menu.

Scheduler 227

228

Scheduling Events When Free Space on a Volume Reaches a Limit

This scheduling option allows you to have your application or
document opened whenever the free space available on a volume
reaches a limit. You can use this option to launch applications or
documents when the space available on a volume drops below a certain
value or when the space available rises above a limit.

Figure D-22
The “When A Volume's

Free Space Limit Is
Exceeded” setfings

Appendix D

Select this option by choosing “When A Volume’s Free Space Limit Is
Exceeded” from the Launch pop-up menu (Figure D-22).

SN=——"—— Scheduler Setup EI
Documents and Applications to Open:
Script Debugger Install:Read Me First <

A
Croe) (o)
Launch: | when A Waolume's Free Space Limit Iz Exceed.. ¥ I IC: 4
Wolume | Any Molume bl l E Enabled
I—I Launch In
4 -
Fres Space: Lesz Than 1000 K Bytes E Foregreund

The “When A Volume’s Free Space Limit Is Exceeded” scheduling
option provides the following parameter:

Volume:

This parameter lets you specify the name of the volume
which triggers the opening of your document or application
(Figure D-21).

The Volume pop-up menu lists all mounted volumes
and contains an option titled Any Volume. If you select
Any Volume, your document or application is launched
whenever any volume is mounted or dismounted,
depending on the option you have chosen in the Launch
pop-up menu.

Free Space:

This parameter allows you to define the free space limit for
the volume. The pop-up menu lets you choose the type of
limit on free space, either Greater Than or Less Than.

Once you have selected the type of limit, you can enter the
amount of free space into the text box.

Scheduling Features for PowerBook Users

Scheduler provides a series of scheduling options designed specifically
for PowerBook users. These scheduling options allow PowerBook users
to perform operations in response to events which can only occur on
battery-powered Macintoshes.

Figure D-23
The “When Power

Adapter Is Plugged
In" setting

NOTE: These scheduling options are only available on PowerBook
computers. Scheduler Setup does not allow access to these options on
desktop computer systems.

Scheduling Events When the Power Adapter is Plugged in or Unplugged

This scheduling option causes your document or application to be
opened or launched when you plug the power adapter into the
PowerBook or when you unplug the power adapter (Figure D-23).

]

Scheduler Setup

Documents and Applications to Dpen:

Script Debugger Install Read Me First

[wad.][changs..]
Launch : | “when Power Adapter |s Flugged In - l Ib: 104
[<] Enabled
&= Launch In

Fareground

Scheduler 229

This scheduling option is useful for configuring your PowerBook based
on the level of power available. For instance, when the power adapter is
unplugged, you may want to terminate power-hungry applications—
applications which use the serial ports or modems.

Scheduling Events When the PowerBook Wakes Up

This scheduling option causes your document or application to be
opened or launched when you wake up your PowerBook (Figure D-24).

Figure D-24 O scheduler Setup
” "
The_ When WOken Up Documents and Applications to Open:
Semngs Script Debugger Install Read Me First
[wed.][change.. |
Launch: | “w'hen woken Up b I IC: 104
[Enabled
Launczh In
E Foreqground

This scheduling option is useful for restoring services which may have
been interrupted while your PowerBook was sleeping.

230 Appendix D

Launching Applications in the Background

Figure D-25

The Launch in
Foreground checkbox

Scheduler allows you to select how your applications are launched and
how your documents are opened. Scheduler can open applications and
documents in the background or in the foreground.

When documents or applications are launched in the foreground, they
interrupt any work you might already be doing on your computer.
When documents and applications are opened in the background, your
work is not affected, except possibly for a brief slowdown of your
computer.

By default, Scheduler launches applications and opens documents in
the foreground. If you want to have your document or application
opened in the background, uncheck the Launch in Foreground
checkbox (Figure D-25).

o]

Scheduler Setup ==r———1|

Documents and Applications to Open:

Preferences...

Script Debugger Install:Read Me First

I k] I 5

o) (o)

Launch : | Feriodically Throughout The Cay i I Ik 5

Every: [a1]:[oo] E<] Enabled Click here to have your

Between: [0g] {00] am and [oo]Fr Launch In -}~ document or application
lo=] ol S]] & Foreground | Jaunched in the background

On: E Sunday= E Monday= E Tuezday=s

E wednesday s E Thursdays E Fridays

E Saturdays
Mext launch on Thursday , May 4, 1995 at 2:00 4

Scheduler 231

Disabling Scheduled Events

There may be times when you want to temporarily prevent one of your
applications or documents from being opened. You can do this easily
using the Enabled checkbox in the Scheduler Setup window. Normally,
this checkbox is checked, indicating that the document or application
will be opened. When it is unchecked, Scheduler ignores the document

Figure D-26 e i
or application (Figure D-26).

The Enabled checkbox

Scheduler Setup

Documents and Applications to Dpen:

Script Debugger Install:Read Me First

I L I 2

ree) (o)
Launch : | Feriodically Throughout The Day - l Io: 5
Click here to enable or

E : 01): 4

e B Enabled disable this document
Between: : A and : Fr E Launch In

Foreground

On: E Sunday= E Maonday = E Tuesdays

E Ywednesdays E Thursdays E Friday=s

E Saturdays
Mexct launch on Thursday , May 4, 1995 at 2:00 AR

232 Appendix D

Modifying Scheduler Preferences

Figure D-27
The Scheduler Setup
Preferences dialog

Scheduler provides a series of preferences settings which allow you to
configure the way Scheduler operates.

To modify the Scheduler preferences, click the Preferences button in
the Scheduler Setup window (Figure D-27).

Preferences...

Startup Actions: [] Check Mounted Dolumes
[Check For Modified Files And Folders
[Check Date And Time

Logging: [Keep a Log File

[Eancel][0K]

Check Mounted Volumes
This checkbox allows you to control how Scheduler
responds to mounted volumes during system start-up.

When checked, this setting causes Scheduler to check
mounted volumes. When not checked, Scheduler only
begins to watch for mounted volumes after system start-up.

Check For Modified Files And Folders
This checkbox allows you to control how Scheduler responds
to files and folders on file servers which have changed when
your Macintosh is not running. When checked, this setting
causes Scheduler to check for modified files and folders
which may have changed. When not checked, Scheduler
ignores changed files and folders and begins to watch for file
and folder changes following system start-up.

Check Date And Time
This checkbox allows you to control how Scheduler
responds when a scheduled application or document could
not be launched because your Macintosh was not operating.

When checked, this setting causes Scheduler to launch
documents (at start-up time) which would have been
launched if your Macintosh had been operating.

Scheduler 233

Keep a Log File
This checkbox allows you to start or stop Scheduler logging.

When checked, this setting causes Scheduler to keep a
record of all events in the Scheduler Log file located in the
Preferences folder within your System Folder. When not
checked, no logging is performed.

234 Appendix D

APPENDIX

Script Debugger and Projector

Projector is an integrated collection of MPW tools and scripts
for managing source files. Projector regulates users’ access to
files since they must check files in and out of the Projector
database. It also maintains revisions and comments to the
source files. If you have a large number of scripts and you use
Projector to manage them, Script Debugger can be used in
conjunction with it. Script Debugger indicates the Projector
state of the script with one of three icons in the script’s header.
A script can be either checked out for modification, checked

out as read-only, or checked out as modifiable read-only.

NOTE: In this discussion, we do not explain how to check files in and out of
Projector. For that information, you should refer to the documentation
that came with your copy of Symantec C++, CodeWarrior, or MPW.

Script Debugger and Projector 235

236

Files Checked out for Modification

Figure E-1
The Pencil icon

indicates the file is
modifiable

If your script file is managed by Projector and you have checked it out
for modification, the script header contains an additional icon; it is a
pencil drawing a line (Figure E-1).

Modifiable —"————0]

7
4P

Bl

After you have made modifications to the script, you will check it back
into Projector’s database.

Files Checked as Read-Only

Figure E-2
A crossed Pencil icon

indicates the file is
read-only

Appendix E

If your script file is managed by Projector and you have checked it

out as read-only, the Pencil icon in the header has an X through it
(Figure E-2).

Head:’l]nlg EEEI

i | <]

In this case, Script Debugger treats the file as though it were locked.
You cannot make changes to the contents of the file. For instance, the

Save menu is disabled to prevent you from accidentally making any
changes to the file.

Figure E-3
The Modify Read-Only
menu item

Figure E-4
Confirming a change to
modifiable read-only

If you decide to make changes to the file, you can change its state to
Modifiable Read-Only. A button and menu item are provided for
these circumstances. You can click on the Pencil button in the script
header or select Modify read-only from the File menu (Figure E-3)
to make the Read-Only file modifiable.

Save S
Save As...

Save As Run-0Only...
Revert to Saved

Modify Read-0nly

Page Setup...
Print... ®pP
Print Diagram...

Clicking on the button or selecting the Modify Read-Only command
displays a dialog box to confirm that you want to change the state of
the file (Figure E-4).

“Debugging Tutorial - Read/0Only” is
checked out Read-0Only. Do you want to

make the script modifiable?

l Cancel l 114

Modifiable read-only files are a feature of Projector which allow you to
make changes to otherwise read-only files without checking them out
of the Projector database. You do have to check the changes back into
Projector at a later time.

Script Debugger and Projector 237

238

Files Checked Out as Modifiable Read-Only

Figure E-5

A Pencil icon with a
dimmed cross indicates
it is Modifiable
Read-Only

Appendix E

If the script file has been checked out as Modifiable Read-Only,

the Pencil icon in the script header has a dimmed X through it
(Figure E-5).

Head:’l]nlg EEEI

7 &[]
o

=] B

In this case, you can make changes to the file, and then check them into
Projector’s database when you are through.

APPENDIX

More Information about AppleScript

Some of the best information about AppleScript can be found
in AppleScript manuals, however, not everyone has them or
knows how they can be obtained. This section of the manual
provides pointers to Apple’s manuals, other books about

AppleScript, and other sources of information.

More Information about AppleScript 239

240

Apple’s Scripting Guides

If you purchase the AppleScript Scripter’s Kit (M1730LL/B, $139.00,
available from APDA or Apple) or the Developer’s Kit (R0175Z/C,
$199.00, available from APDA), you receive several AppleScript books:
Getting Started, Scripting Language Guide, Scripting Additions, and
Building Interfaces. Some of these books are also available directly from
Addison-Wesley (the Getting Started and Building Interfaces manuals
can only be purchased with the two kits). These manuals can be
purchased separately:

AppleScript Language Guide, Addison-Wesley, 1993
(ISBN 0-201-40735-3). $29.95

AppleScript Additions Guide, Addison-Wesley, 1993
(ISBN 0-201-40736-1). $18.95

Apple also has a book which documents the standard suites of Apple
events. You can purchase a printed copy of the Apple Event Registry
from APDA, and you can find electronic versions on the Developer’s
Kit CD and the develop 20 Bookmark CD.

Apple Event Registry: Standard Suites, Apple Computer, 1992. APDA,
RO130LL/A, $85.00

Apple’s Finder Scripting Kit

Appendix F

Since AppleScript was first released, Apple has released the Scriptable
Finder. First made available in the Finder Scripting Kit (R0573Z/A,
$25.00, available from APDA), it includes the Finder software and a
manual. The Scriptable Finder was incorporated into System 7.5,
but the manual was not shipped with the System Software. It is
available separately: AppleScript Finder Guide, Addison-Wesley,

1994, (ISBN 0-201-40910-0). $19.95

Third-Party Books

In addition to Apple’s AppleScript Guides, there are currently four
third-party books:

Goodman, Danny. The Complete AppleScript Handbook. 2nd ed.
Random House, 1995 (ISBN 0-679-75806-2). $35.00

Michel, Steve. Scripting the Scriptable Finder. Heizer Software,
1995. $49.00

Schneider, Derrick. The Tao of AppleScript. 2nd ed., 1994
(ISBN 1-56830-115-4). $24.95

Trinko, Tom. Applied Mac Scripting. MIS:Press, 1995
(ISBN 1-55828-330-7). $34.95

Articles About AppleScript

The following is a list of articles about AppleScript published in the
quarterly Apple Technical Journal, develop . Each issue comes with a
bookmark CD which contains all of the develop magazines in electronic
form along with other documentation, system software components,
and utilities. Yearly subscriptions can be obtained for $30.00 from
Apple Computer by calling 800/877-5548 (or 815/734-1116 outside

the U.S.) or by sending e-mail to dev.subs@applelink.apple.com.

Anderson, Greg. “Scripting the Finder from Your Application,”
develop 20, December 1994, pp. 65-78.

Berdahl, Eric M. “Better Apple Event Coding Through Objects,”
develop 12, December 1992, pp. 58-83.

Clark, Richard. “Apple Event Objects and You,” develop 10, May 1992,
pp- 8-32.

Smith, Paul G. “Programming for Flexibility: The Open Scripting
Architecture,” develop 18, June 1994, pp. 26-40.

Smith, Paul G. “Implementing Inheritance in Scripts,” develop 19,
September 1994, pp. 89-99.

More Information about AppleScript 241

242

MacScripting Mailing List

Appendix F

If you have an electronic mail account, you may be interested in

the MacScripting mailing list. A mailing list is a group of people
interested in a particular topic whose e-mail addresses are kept in a
list maintained by a mailing list manager running on a workstation or
mainframe. The mailing list allows subscribers to ask questions and
exchange information.

NOTE: If your e-mail account is on a commercial service, you should be
warned that some services charge for messages that pass through a gate-
way to the Internet. Be sure to check with your service provider to see if
you are charged for individual mail messages to the Internet.

The MacScripting mailing list is devoted to the discussion of
AppleScript, Frontier, and other OSA scripting languages. You
can subscribe to the mailing list by addressing a message to
listserv@dartmouth.edu. The message should contain the line

sub macscrpt your name

Replace the your name with your real name. You will be added to the
mailing list and sent information about changing your mail options
and unsubscribing.

Another informal source of information is the Frequently Asked
Questions file generated by the mailing list. The FAQ contains the most
commonly asked questions on the mailing list, and it exists to reduce
the amount of mail traffic. You can obtain a copy of the MacScripting
FAQ via anonymous ftp from gaea.kgs.ukans.edu if you have ftp access
to the Internet. You may also find it in the AppleScript sections and
forums on some of the commercial services.

Index

A

abs 151
acos 151
activate OnForegroundSwitch 155
active time 155
Add Properties to Data Window
58, 89
Add to Open Dictionary Menu
77, 90
Adding Data window expressions
56
Additions Dictionary window 14
addResource 168
Animated cursors 20
APDA 240
Apple Event Registry 240
AppleEvents, logging 54
AppleScript Additions Guide 240
AppleScript Developer’s Kit 240
AppleScript expressions, examining
59
AppleScript Finder Guide 240
AppleScript formatting 68
AppleScript Language Guide 240
AppleScript Scripter’s Kit 240
application file 155
application type 154
asin 151
atan 151
atan2 151
atObject 121
Attachments 79
handlers 79
close 80
execute 80
make new document 80
open 80
open additions dictionary 80
open dictionary 80
pause 80
record 80
revert 80
save 80

step 80
stop 80
script 79
atType 121
atZone 121
Auto-activate 71

Balance command 23
Balloon Help 3
bit depth 202
bounds 202
Breakpoints
clearing 52
setting 51
temporary 52

C

canBackground 155
changeResource 170
changeStringResource 172
Choose Folder 117

Choose New File 123

Choose Several Files 125
Choose Several Folders 126
Clear All Breakpoints command 52
Clear All Expressions command 58
Clear command 23

Clearing breakpoints 52

close 80

closeFile 130

closeResourceFile 174
Command-Down arrow 41
Command-Left arrow 22
Command-Right arrow 22
Command-Up arrow 41
compatible32Bit 155

compile 80

Compile Regular Expression 158
Compiled scripts 33, 36
Controls window 12

Core Suite 103

cos 151

cosh 151

countlResources 175
countlResourceTypes 176
countResources 177
countResourceTypes 178
createFile 131
createFolder 132
createResourceFile 179
Current line indicator 8
Cut command 23

D

Data window 8, 10, 56
adding expressions 56
removing expressions 58
resizing panes 11
restrictions 61

Debugger scripts 33, 36

Debugging strategies 46

Debugging Tutorial script 44

Default Script 58, 70

Default Script file 73

Delete File 133

deskAccessory 155

Dictionary Items folder 17, 76

Dictionary window 14

Difference of 148

Droplets 33

Editing options 71

Enabling the Script Debugger
dictionary 72

Event Log window 12, 13, 54

Examining AppleScript expressions
59

Examining variables 56

Examples

scripting additions 114

exchangeFile 134

Execute Idle Handler 63, 91

Execute Open Handler (Files)...
62, 92

Execute Open Handler (Folders)...
62, 93

Index 243

Execute Quit Handler 65, 94
Extension scripts 42
Extension Scripts folder 78
Extensions 88
Add Properties to Data Window
58, 89
Add to Open Dictionary Menu
77, 90
debugging 66
Execute Idle Handler 63, 91
Execute Open Handler (Files)...
62, 92
Execute Open Handler
(Folders)... 62, 93
Execute Quit Handler 65, 94
Extension Scripts folder 42
Hide All Descriptions 42
Hide Descriptions 94
Lock All Expressions 95
menu 42, 78
command keys 78
Paste File Path 42, 96
Paste Folder Path 42, 97
Show All Descriptions 42

F

fabs 152
File Droplet 74
File formats
Compiled scripts 33, 36
Debugger scripts 33, 36
Droplets 33
Run-Only scripts 38
Script applications 33, 37
Stationary pads 33
Text scripts 33, 36
filename returned 124
Find command 14, 30
findApplication 145
Finder Scripting Kit 240
Folder Droplet 74
folder returned 124
Folder Scanner Droplet 74
Formatting
AppleScript 9, 68
Script Description 8
free memory 154

G

Get Current Process 157
Get Default Folder 128
Get Foreground Process 156
Get Gestalt 146
Get Network State 122
Get Process 154
Get Voice 205
Get Zone 118
getlIndexedResource 180
getlIndexedResourceType 182
getlResource 184
getApplicationDiedEvents 155
getFileLength 135
getFilePosition 136
getFrontClicks 155
getIndexedResource 186
getIndexedResourceType 188
getIndexedStringResource 190
getResource 192
getStringResource 194
getUniquelResourcelD 199
getUniqueResourceID 200
Global variables

examining 59

locating 41

Handlers
close 80
compile 80
debugging 61
execute 80
execute idle 80
execute open 80
execute quit 80
locating 9, 24, 40
make new document 80
menu 9, 40
open 80
open additions dictionary 80
open dictionary 80
pause 80
record 80
save 80
step 80
stop 80

244 Script Debugger User’s Guide

Hide All Descriptions 42
Hide Descriptions 94
Hierarchy menu 16
highLevelEventAware 155

Idle handler 61, 63
Intersection of 149

K
Kind pop-up menu 35
L

launch date 155
launcher 154
lengthenFile 137

List Folder 20

List Manipulation 148
List menu 16

List Network Names 120
List Processes 153

List Screens 202

List Voices 205

List Zones 119
localAndRemoteEvents 155
Lock All Expressions 95
log 152

log10 152

Logging AppleEvents 54

Macintosh Drag and Drop

15, 25, 57, 92, 93
MacScripting Mailing List 242
main screen 202
make new document 80
Match Regular Expression 159
Match Reply class 160
Miscellaneous Suite 104
Modify Read-Only command 237
moveFile 138
multiLaunch 155

needSuspendResume 155
Network Name class 121

0

onlyBackground 155

open 80

open additions dictionary 80
Open command 32

open dictionary 80

Open Dictionary command 14

Open Dictionary menu, adding to

76

Open handler 61, 62
openFile 139
openResourceFile 196
Option-Down arrow 22
Option-Left arrow 22
Option-Right arrow 22
Option-Up arrow 22

P

partition size 154

Paste File Path 42, 96

Paste Folder Path 42, 97

Paste Reference command 23

path to me 72

pause 80

positionFile 140

power 152

power adapter 229

Preferences 18, 68
AppleScript formatting 68
Editing Options 71
Script Error Actions 70
Script Pause Action 71
Scripting Options 72
Startup Action 70

Print command 39

Process Info class 154

process name 154

process number 154

Projector 235

Properties
locating 41

Q
Quit handler 61, 65

Read-Only files 236
readLine 141
record 80
Recording 28
disabling Script Debugger 72
Regular Expressions 158
Error Messages 166
Explained 162
Substituting 161
removeResource 197
Removing Data window expressions
58
renameFile 142
Replace All command 31
Replace command 31
replacing 124
resData 201
resID 201
Resizing panes 11
resLocked 201
resName 201
Resource class 201
resPreload 201
resProtected 201
resPurgeable 201
resSystemHeap 201
Restrictions
Data window 61
Result window 12
Root Class menu 16
Run Only scripts 38

S

save 80

Save As command 9

Save command 35

Save Event Log As command 55

Scheduler 29, 207

Screen Information class 202

Script applications 33, 37

Script Debugger Dictionary,
enabling 72

Script Description 8

Script Error Actions 70

Script indicators 9

Script Pause Actions 71

Script templates 74
Script type pop-up menu 9
Script window 8

Scriptable Finder 15, 20, 24, 240

Scriptable Text Editor 47
Scripting additions
abs 151
acos 151
addResource 168
asin 151
atan 151
atan2 151
changeResource 170
changeStringResource 172
Choose Folder 117
Choose New File 123
Choose Several Files 125
Choose Several Folders 126
classes
Match Reply 160
Network Name 121
Process Info 154
Resource 201
Screen Information 202
closeFile 130
closeResourceFile 174

Compile Regular Expression 158

cos 151

cosh 151

countlResources 175
countlResourceTypes 176
countResources 177
countResourceTypes 178
createFile 131
createFolder 132
createResourceFile 179
deleteFile 133

Difference of 148
exchangeFile 134

fabs 152

findApplication 145

Get Current Process 157
Get Default Folder 128
Get File Length 135

Get File Position 136

Get Foreground Process 156
Get Gestalt 146

Index

245

246

Get Network State 122

Get Process 154

Get Zone 118

getlIndexedResource 180

getlIndexedResourceType 182

getlResource 184

getIndexedResource 186

getIndexedResourceType 188

getIndexedStringResource 190

getResource 192

getStringResource 194

getUniquelResourceID 199

getUniqueResourceID 200

Intersection of 149

Lengthen File 137

List Network Names 120

List Processes 153

List Screens 202

List Zones 119

log 152

logl0 152

Match Regular Expressions 159

moveFile 138

openFile 139

openResourceFile 196

positionFile 140

power 152

readLine 141

removeResource 197

renameFile 142

Set Default Folder 129

Shutdown 203

sin 152

sinh 152

Substitute Regular Expression
161

tan 152

tanh 152

Union of 150

upgrading from Script Tools 1.3.x

117
writeLine 143
writeString 144

Scripting Pointers 107
Set Default Folder 129
Setting breakpoints 51
Shift-Command-G 30
Shift-Command-T 31

Shift-Option-Up arrow 22
Show All Descriptions 42
Show Startup
indicator 10
Save As option 37
Shutdown 203
signature 154
sin 152
sinh 152
SourceServer. See Projector
Speak 204
Speech Manager 204
Splash Screen indicator 10
Startup Action 70
Stationary pads 33
opening 34, 73
templates 75
window location 34
stationeryAware 155
Status button 8
Stay Open
indicator 10
Save As option 37
step 80
stop 80

Substitute Regular Expression 161

System 7.5 128, 129

T
tan 152
tanh 152

Template Scripts
File Droplet 74
folder 74, 75
Folder Droplet 74
Folder Scanner Droplet 74
menu 75
Templates 75
Temporary breakpoints 52
Text scripts 33, 36
Text suite 102
Troubleshooting 83

u

Undo command 23
Union of 150
useTextEditServices 155

Script Debugger User’s Guide

v
Variables, examining 56

w

Window positions 34
writeLine 143
writeString 144

