

Return Your Registration Card
ICOM Simulations, Inc. is committed to providing quality products and the highest level of services for our
customers. To take full advantage of ICOM's services, you must be a REGISTERED user of TMON. Please
take a few moments now to complete the registration card located in this package and forward it to ICOM as
soon as possible. As a registered user, you will be entitled to the following benefits:

Customer Service and Product Support. As a part of the service provided to our registered users, we provide
a limited warranty on software, and support and assistance by telephone. If you experience any difficulty in
using TMON, please refer to your User's Guide and Technical Reference. If you still need assistance, call our
Teclmical Support Department between 9:00 AM and 5:00 PM (Central Time) Monday through Friday. Our
phone number is 312/520-4440. Please have your registration number available, as well as information relevant
to your question.

ICOM Upgrade Information. ICOM is constantly looking for ways to enhance its products by incorporating
new capabilities and features. These new upgrades will be available to our registered users. As a registered
user, you will be regularly updated by mail on new upgrades.

New Product Information. As a registered user, you will be provided with early information on new
products and special offers.

Site Licenses
Information about site licenses and volume purchases can be obtained by contacting the Marketing department
of ICOM at the number given above.

Limited Warranty on Media and Manuals
If you discover physical defects in the media on which this software is distributed, or in the documentation
distributed with the software, ICOM Simulations.Tnc, will replace the media or documentation at no charge
to you, provided you return the item(s) to be replaced with proof of purchase to ICOM or an authorized
ICOM dealer during the 90-day period after you purchased the software.

ALL IMPLIED WARRANTIES ON THE MEDIA AND DOCUMENTATION, INCLUDING
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION TO NINETY (90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF THIS PRODUCT.

Even though ICOM has tested the software and reviewed the documentation, ICOM makes no warranty or
representation, either express or implied, with respect to this software or documentation, its quality,
performance, merchantability, or fitness for a particular purpose. As a result, this software and documentation
is licensed "as is," and you, the purchaser are assuming the entire risk as to its quality and performance.

In no event will ICOM be liable for direct, indirect, special, incidental, or consequential damages resulting
from any defect in the software or its manuals or any additional documentation, even if advised of the
possibility of such damages. In particular, ICOM shall have no liability for any programs or data stored in or
used with ICOM products, including the costs of recovering such programs or data.

The warranty and remedies set forth above are exclusive and in lieu of all others, oral or written, express or
implied. No ICOM dealer, agent or employee is authorized to make any modification, extension, or addition to
this warranty.

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation or exclusion may not apply to you. This warranty gives you
specific legal rights, and you may also have other rights which vary from state to state.

T ON
Version 2.8

User's Guide and Technical Reference

--~§:'..._...
leOM SIMULATIONS, INC.

648 S. Wheeling Road Wheeling, IL 60090 312/5204440

Credits

Author

Waldemar Horwat

User Area

Darin Adler

Waldemar Horwat

User's Guide

Paul Snively

Technical Reference

Waldemar Horwat

Copyright C> 1987 ICOM Simulations, Inc. All rights reserved. Printed in U.S.A.

TMON and IeOM Simulations, Inc. logo are trademarks of ICOM Simulations, Inc.

Macintosh is a registered tradeinark of Apple Computer, Inc.
Unauthorized reproduction, adaptation, distribution, performance, or display of this document, the associated
computer program, or the audio-visual work is strictly prohibited.

Contents

Summary of Features•••••••••••••••••••• ~•••••••••• ~•••.•••••••••••••••••••••••• 1
User's Guide••.•.••••••••••••••••••••••••••••••••••.••••••.••••.••••.•••••.•••••....•.....•....•••..•.....3

Introduction.•••••••••••••••••••••••••.••••..•••.•••••••••••..••••••...•.•.••.•...•.••..•........•.............................•..•.....4
A Few Words About the Macintosh Keyboard. 4

Wbatis a Debugger?•••••••••••••••••••••••.••••••••.•••••••••••..•••.•••...•...•.•....•.•..••.......•............•....••....•••.....6
Design Flaws.••....••.•••••••..••..••.....•••....••.•.•....•.....•••.....6
Implementation Flaws••••••••••••••••••••••••••••••.•••••••.••.•...•.•••...•..•.••.............•••...•..•.•.•...•......6

WbatAre SomeCommon Macintosh Bugs?••••••••••••••••••••••••..••••.••...•..••.•...•...•..........•...•..........•••..7
Dire Straits Bugs••.•.•••••..••...•.•••..•••.......•.....••..•.......•...••..7
Everything Else•••.•.•.•.•...•••.••.•.•••••.•••..•••••.•..••••••••••••••••••••••7

Why Sh<JU1d I UseTMON?•••.•••••••••••••••••••••••••••••••9
What is TMON? ••.•••.•••••••••••••••••••••9

Installing, &'tering, and Leaving TMON•••••••••••••••••••.••••..•.•..••••...•....•••.••..•..........•...•.•....•...••... 11
Loading TMON•••••••••••••••••••••••••••••••••.•••••••••.••••••••••.••..........•••...•........•.•.•...........•...•.. 11
Configuration 12
Getting Into TMON••.•••••.•••.••..••••.••.•.••..••••••••••••••.••••••••••• IS
Oetting Out of TMON•••••••••••••••••••••••••••••••••••••••...•••••••.••••.•••••••••••••.••••••.••.•••...••.•••.•.• 16

The Monitor Environment-•••...•..••••.•...•••.••.•.••••••...•••••••••••••.•.•.•••.•••.•• 17
The ButtonBar••....••••.••••••.•.•••••••.•••••••••••••••••••••••••••••• 17
The Windowing System •••••••••••••••••••••••••••••••••••.••••..•••••.•••.••••••••••.•••.•••••••••••••••••.••••••••• 17
Typin.g•• 18

BasicPeat1lres••••••••••••••••••••••••••••••~••••••••••••••••••••••••••.••.•..•••..•••.••..•..••••...••..••••••.•••••••.••..•••••••••• 19
Assembly••••••••••••.••••••.••••••••••••••••••••••••••••..•....••••••..••.••••.••••••••••••••.••••••••..••••.••••.••••••.. 19
Registers•••.••••••.•••••••••••••.••••••••••••••••..•••••..••••••••••. 21
Breakpoints ••••••••••••••••••:•••••••••••••••••.•••.••••••••• 21
Dump ••:.~.~;~~~:~~ ••••••.••••••••••••••••••••••••••.•••••••.•••••..•.•.•.••••••.• 22
Print •••~:~.•••••.• ~•••••.••.•••••.•••••••••• ~.•••••.•••••....•.•......•...••.... 23
Step ,••'•••••••••••••••••••...••.•............••...••.•. 23
1:r.:e ••~~~ 24-
OoSub ••••••••••••••••••.•.•••••.••..•••••••••••••••••••...•.•...............•.••.••.•• 24­
Exit •••.•••••••••..••..•••.•_.•.....•...•...••.•••••..•••• 24-
Block Move•••.•••.••••••••.••••.•.••.•••.•••••••••••• 24­
BlockCompare •••••••••••••••••••••••••••••••.•••••••••••••••••••••••.•.••••••••..•••••.•..••••••••••••••••••••••••••.•• 2S
Fill••.•••••••••••••.•••••••.••. 2S
Fmd ••• 25

Intermediate Featul'eS ••..•••••••••.••.•••••....••••.•...•.........•.•....••••••....... 26
Trap Intercept-•••••••••••••••••••••••••••••••.••••.••..•••.•.•..•.•••••.•••..•••••..•..••.••...•......................... 26
Checksum••.•••••••••••••..•••••.•••..•..•.•...•......•.•............................ 26
Leave TMON••.•••••••••••••••••••••••••••••••.•.••••••..••.•••.•••.••••••••••••••••••••.••..•..••............•......•.•• 27
Trap Record 27
Template.•••••••••••••••••••••••••••••••••••••••..••...•••••.••.••.•••.••••••••••.•••••••.•.••••.•••••.•....••..•.....•.... 28
Stack Addresses •••.••.•••••.•••••••••••••••••.•••••••.•.•..•.•.........•.. 28
Stack'O"awl •••••••••.•••••••••••••••••••••••.••••..••••••.•..•...•••••.•••••...•••••••••••••.•.•••.••.•••.•.•......•...•. 29
Load Resource•••••.•••••••••••••••••••••••••••.••••••••.•••••••••••••••.••••••••••~•••••••••.••••.••.~••.•......•...••... 29
Leave application•.•.•..•..••••.•.••••••.•••...••.••.......••..••.•...•.•••..••••••.•••••••••••.••••...••.•..•........... 29
Shut down.•••••••.•.•.••••..••••••••••••••••••...•...•.•....•...•..•..•.......•..••••••••••••••••••....................... 30
File 30

l

TMON

Number•••••••••• ~•••••••••••••••••••••••••••••.•••31
Advanced Features.••.••32

Trap Signal•• 32.
Tra.p Discipline •••••••••••••••••••••••••••••••..••••••••••••••••••••.•• 33
Look for Labels Between LlNK/UNLK ofAx•••••••••••••••~••33
La.bel Table•••33
Label Add/Remove•••34
Label File Load.••••••••••••••••.••~•••34
Heap Check. Scramble, artdIor Purge•.•••3S
Heap••• 36
Options•••·••37

TecJmica1 Reference •••~••39
The Main Dialog••40

l.,oading the Monitor••40
~ a UseI' Area•••41

The Monitor••42
The ButtonBar••42
Windows•••••••••••••••••••••••••••••.••42
Refreshing of Windows ••43
~e Cursor and the Editing Facilities••43
Numbers•••43
Labels ••~••••46
Exiting the Monitor•••49
Reentering TMON•••••••••••••••.••~~•••••••••••49
Permanently Leavin.g the Monitor•••.•••~••••••••••49

The Monitor's Functions.••••••••••••·••••.••"' 50
Dump ••,•••••••••••••••••••••••••••••••••••• 50
Assembly.•.•••••••••••••••••••••••••~••51
Breakpoints j" ;.~~'•• S4.
Registers 54
Heap•••••••••••••••••~•••.•• 55
File ••58
Exit, GoSub, Step, 811d Trace •••58
Opdbns..•••.•..••..•..••~........•.............6()

Number•••••••••••••••••••••••••••••.•.•• 6()

User••••••••••••••••••••••.•••••••••.•• 6()

Print ••.•••••.•.••..•••..••••••••••..•.••••.•••••••.••.•••••••••• ~••• 61
Mouse Unfreeze••.•••••••••••••••••••..•.••••.•••••..•••• ~•• 61

Bxception Handling..•••••••••..•.•.•••..•••••••••••.••.•.••••.•.•••••••••••••••••••••••••! •••••.••••••••••••••••••••••••••••••••••• 62
Normal Exception Messages 62
Address and Bus, Errors..•••' 62
Breakpoints 62
SystemError..••.•••••••••••••••••••..••• 63
Interrupt Button•• 63
Self-eheck•• 63
User ,Exceptions•••••••••••••••••••••••••••••..•• 63

Possible Problem Areas .•••64
MouseFreezing _ 64
In.terrupting me VerticalRem 64-
C8I1't Regain Controlof t:i:lCMonitor••• 640

Contents

TraceFlag On. •• ~•••..•••.•••••••••••••••• 64­
Windows Crash or Are·Too Slow••••••...••••...•..••.•....•••••.•.•...••...•.•...•...........•.••...•..•...••.. 64­
Printing Problems •••••••••••••.•.••••.•••••.•.•.••••...•..•......•.....••.••.•.•..............•..........•.....••.•.•.. 64­
DebuggingExisting Applications ..•........•....•....••..............•.••...........•.•............•.....•....... 65
Using the Disk Cache; RAMDisks, and Other High-Memory Drivers 65
Function Key Usage in the Monitor.•••••.••.•.•..........•.......•.•..••....•.•................................. 65

The Configuration Menus.••••••••••••••••••••••••••.•.•.••.••.••...••................•....•..........................•...•...... 66
The File Menu••••••••••••••••••••.••••••.•••••••.••••...........•..•..•.•.•.......••.••...•....•.•................••••.• 66
The Options Menu•.••• ~••••••••••••••••••...•.•••••••.....•..•......•....•..•...........•...................•.....•.••. 66

Communications ••••••••••••••••..••••••.•• ~ .•.•...•.•...........••.••.•..••...............••.••.••...•..•.• 66
Vector Refresh•••••••••••••••••••.•••.••.•••..........•.•.•...•..•.•....•..........•.•.•....•....••......•.. 66
VBLTasks••.•••.••.•.••••.•••..•••••••••.•••.•••.•..••..•.••.•.•..•.••. 67
Loading Position••••••••••.••••••••••.••••..••••••.••••••.••.•.•..•..•.••.•.••.••........••.•.•••••••.••••••. 67
Auto-Quit•••••••••••••••••••••••••••••.•••.•.•.••.•••••...••..•...••.•....•.•••••.••.•.•......•••••••..•.•.••.. 67
Memory Size••...•....•..•.•••.•..•.•••••.•.••.••.••.••••.••••.•••.•••• 67

Built-In User Area Functions•••.•.•••.•.•.•.•••.•••••.••••••.••.•••••••••••••••. 68
TogglePages••.••••••••••••.•••.•••••••••••••.••••••••••.•••••••••••••••••••• 68
Block Move••.•..•.•••••.•.••.•.••••.••.•••.•••••••••.••..••••••••••••.••••••• 69
BlockCompare••..•.••...••........••.•.••••.•.•.••••••••••....••..••••.•••••••• 69
Fill•••.•••••••.•••..••.•••••..••.••••••••.••••••••.••••••.••.•.••••.••••••.•• 69
Find •••.•••..•.••..•.•.••.•••••••••••••••••••.•.••••..••.••.••••••• 69
Template 70
Stack AddI'esses ••••••••••••••••••••••••••••••••••••••.••.••.•• 70
Stack Crawl ••••••••••••••••••••••••••••••.•••••••.•••.•••••••.••••••••••••••••••.•••••••••••••••••••••••••••••••••••.•••• 70
Load resource•••.•••••••••••••••••••••••••••••••••.•••••••••••••••••••••.••• 70
Print •••.•••••••••••••••••••.••••••••••.•••••••••.•••••••• 71
Look for labels•••.•• 71
I.,abel table•••••••••••••••••••:•••.•••••••••••••••• 71
I.,abel add/I'emove •••••••••••••••••••••••••••••••..•~•••••••••••••••••• ~•••••••••••••••••••••••••••••••••••••.•.••••••••• 72
I.,abel rue load•• ~•••••••••••••••••••••••••••••••.•••••••••••••••• 72
Registers••.••.•••••• 73
Leave TMON•• ~'~~•••••••••••••••••••••••••.•••••.•••••.•••.••••.•••• 73
Leave application.••.••••••••••••••••..••••.••.•••.•••..•••••..•••••. 73
Shut down••••••••••••••••••••••••••••••••••••.••••••••••••••••••.•••.••••••.•..•••••••••••••••••.••.•.•••••••••••.•••••••• 74
Trap record 74
Record•• 74
'I'rapheapcheck, scramble, purge••7S
Heap•••.•••••••••••••••••••••••••••••••••••••••.••••••••••••••••••••• 76
Trapdiscipline•••••••••••••••••••••••••••••.••••••••••••••••.••••••••••••••••••••••.•••••••••.••••••••.••••••.••••••••••• 76
'I'rapchecksum ••• 76
Checksum•••.•••• 77
Tl'apintercept•• 77
Trap signal•• 77

Creating Your OwnUser Functions ••••••••••••••••••.•• 78
The User Configuration Area•...•.••.•...•..•••.•.•••••••••••• 79
Names andLocal Storagein tb.e UserArea ..••.•••..•••.••.••.•••• 80
What's in a Name?•••.••••• 80
ParameterCount•••••••••••••••••••••••••••••.•••. 82
The AOOO Trap Intercepting Hook•...••..••••••.••• 82
User Routines Leaving the Monitor 83

iii

TMON

User Routines Entering the Monitor•• 83
The Heap Window Identification Routine 83
The User InitializationRoutine••••••••••••••••••••~•••.•••••••••••• 84
The UseI" En.ter and Exit Routines ••• ~•••••••••••• 84
The Use!" !.abel Routines •••.••.•••••••••.••••••••••••.•.•••.•.••••• 84
The .User AOOO Name Table•••.•••••.••••••••••••.••..••••.••....••....•••.. 85
The SystemEn'orTable••.•••••••••.••••••..•.•...•••.••••.•. 85
The Windowlist•.........•... 85
The Exception Vector Bitmaps•••••••••••••••••••••••.•.•••••.••••••·••••••.•••••••••••••••••••••••••.••...••••••••• 85
The Monitor'S Variables••••••••••••••••••••••••••••••••••••.••••••••••••••.•••••••••.•••••••••••••.•••.•••••.••••.•. 85
The Monitor'S Vectors••.•• 87 .

The Starblp I..oader••• 88
Apper1dices •.••••••••••••••••••••••••.••• 89

Appendix A-Quick Reference•••••••••••.•••••••••••••••••••••••••••••••.•••••••••••••••••••••••••••••••••••.•••••••••••••••••• 89
Keys that May beUsed in the Monitor•••••.•••••••••••••••••••••••••••.••••••••••••••.••••••••••••••••••••..•• 89
Keys that May be Used outside the Monitor 89
Operators Allowed in Bx.pressions•••••••••••••••••••••••••••••••••••.••••••••••••••••••••••••••••••••••••.•••••• 89
Registel' Ref"eretlCeS ••90
Dump Window Flags•••••••••••.••• 90
Assembly Window .Addressing Modes•••••••••••••.•••••••••••••••.•••••••••••••••••••••••••••••••••••••••.•••• 90
Items Idet1tified by theHeap Window •• 91
Heap Window lIandle Flags ••91
File Window Map Flags•••.•••91·
File Window ResourceFlags•••.••• 91
AOOO 'I'mps in Numerical Order ~~••••••• 91
AOOO Traps in Alphabetical Order••••••••••••••••••••••••••••••••••.•••••••••••••••••••••••••••••:~::;.~: ••••••••• 94
!.abets Built Into the User Area. in Numerical Order 97
ubels Built Into the User Area.in.A1phabetical Order••• 99

AppeIJdix B--TMONW~g and ~··Me8saaes •••••••••••••••••••••• ~••••••••••••••••••••••••••~••~ ••••••••••••••101
Themonitorhas been dpged•...101
Bxception••••••••••••••·•••101
Intempt.....••••.••.•.••............••...........•.•.•·....•..•••••.•....•..•..••.•.•••••.•.•••.•••.•••.••...••..•....••..101
The AOOO trap 01'.subroutine has returned•••••••••••••.••.••••••101
Breakpoint••101
System error•••~•••••••••••••••••••••••••••••101
Bus error••102
Accessaddress 102
Welcome to Monitor•••.•••102
No more windows can be created.••••••••••••••.•••102
Mouseantift~ 'completed ••.102
I don't want to execute the next in.struction•••••.•••102

AppeI1dix e--1MON liints and nps•.•.•....................................•......•••.....•.........................103
MPW Tools Gone Amok•.•••.•••••••••••••••••••••••••••.••103
catching a Failure to Oleck Common Errors••103
Looking at Other Heap Zones•••.••.•••••103
Alternate ~xitToShell •••••••••••••••••••••••••••••••••••..••103
Restricting Trap Intercepting Funcdons to the Application Zone 103
Breakpoints in Unloaded8eamel1tS ••1Q4.
Is TMON Installed?••104
R.UDDing Out of Roomin I.abel Tables•••IQ4.

;11

Contents

Walking Through the VBL Queue IQ4.
TMON and Context-Switching Bnvironments 105
ResumeProc Functions·..••••••••••••••••••••••••.••.....••.....•.........................•...........•....•••••.•....105
The Mystical, Magical V and N Registers......•....................................•..................•.....105
What Version of tlle User Area Do I Have? 105
Getting Through .-I,oadSeg Quickly •.•.•.••••....••.••......••.•...........•................•.....•.....•..••...105
Tools for Getting Into TMON••••••••••..••••....•........•....................•.............•.•...••.....•.....106
Viewing ROM Resources•••••••••••••.•••..•..•••••..........•.............•...............•........••••••.....•...106
Saving Your File•••.••••••••••••••.••..•••.•••....•...........•...............................•......•....••...........106

Index....•••.•••••••••.••••••••••.•...•...••.•.....................•.....•.••..•..•........•••••••••.•.•.•..107

Summary ofFeatures

TMON is an object-level symbolic monitor/debugger for the Macintosh personal computer. It will work on
all Macintoshes exceptthe Macintosh XL and the Macintosh 128K. Among the features included are:

A fast implementation of windows on the screen that has these advantages:
• Information is not lost when it scrolls off the screen.
• Registers, breakpoints, program code, subroutines, data, stack, heaps, and resource filescan all

beexamined at thesame time.
• Multiple sections of codecan be viewed.
• Windows can be scrolled up or down.
• Disassembly and dumpwindows canbe anchored to registers.
• Instruction andeffective addresses In disassembly windows are identified using labels.
Windows update continuously. When onewindow Is changed, otherwindows Instantly reflect the

change. .
An interactive 68000 assembler/disassembler.
• Includes reverse scrolling of disassembly windows.
• AOOO traps are displayed by their names, notnumbers.
• Labels may be used bothby thedisassembler andin assembling.
Label and symbol capabilities.
• Labels may be usedin anyexpression.
• Labels may be recognized automatically from routine names in code.
• Labels may be loaded from .MAPfiles.
• Labels maybe entered directly from TMON aseither absolute or resource-relative.
• Names of theAOOO trapsare used as labels during examination of ROM routines.
Predefined labels for low-memory globals.
An Interactive hexadecimal andASCII memory dump andchange.
Filewindows which Identify all resources Inall open resource files.
• Resources notcurrently In memory arealso displayed.
• Resource flags areshown Inaneasy to read format
• Resource types, IDs,names, references, andhandles areshown when appropriate.
• Information displayed Is checked for consistency.
Heap windows displaying the contents of the application or system heaps.
• The location, siZe, andtype of all heap objects aredisplayed.
• Theaddresses of handles andflags aredisplayed for relocatable objects.
• Theresource 10,type, andfilearedisplayed for objects which are resources.
• Windows, controls, window regions, scraps, and various other heap objects are Identified. A

userroutine can be made to identify other heap objects when appropriate.
• Information' displayed is checked for consistency.
Register windows which display andallow changing of all 68000 registers.
• Theflags aredisplayed Inan easy to read format
Saving, loading, andexchanging registers with an alternate register set
Converting numbers andexpressions between hexadecimal, decimal, binary, ASCII, AOOO trap

names, and labels.
Useof expressions involving hexadecimal, decimal, and binary numbers, ASCII values, addition,

subtraction, multiplication, division, boolean operations, indirection, parentheses, AOOO trap
names, and labels. .

1

TMON

up to seven breakpoints.
Single-step execution of programs.
• All stepping and tracing features work in ROM.
• Tracing into AOOO traps is possible.
• A convenient function for skipping subroutines during tracing is included.
Searching a blockof memory for a 1, 2, 3, or 4 bytevalue.

Word-aligned, as well as byte-aligned searches.
Blockmove, compare, fill, andchecksum.
Interception of almostall exceptions and system errors.
Interception of any AOOO traps upon request.
Interception of program at a specific point when interrupt Is pressed.
Quiet recording of all or specific AOOO trapswhich allows the course of execution of a program to

be qUickly traced. This function may also be used for performance analysis as it records the
times of the AOOO traps.

A heapcheck function, which may be automatically run on AOOO traps.
A highlyoptimized heapscramble function, which maybe automatically run on AOOO trapsas well.

A purgeoption is available. The heap scramble clears the unused blocks, providing additional
debugging security.

AOOO trap discipline, whichchecks the parameters of AOOO traps, catching errors before they
cause damage.

Symbolic displaysof window records, control records, TextEdit records, and file parameter
blocks.

A variable-length user area designed to allowcustomization of the Monitor.
Printing to a printer, external computer, or terminal.
• Any window on the screen can be printed.
• Disassemblies and dumps of arbitrarily large blocks of memory can be printed.
• Heapand resource file dumps canbe printed.
• XOnIXOff and hardware handshaklng,are supported.
• Printing can be done from either port.
Mouse unfreeze and vector refresh options, which maybe very helpful aftera program crashes.
The ability to easily disab,le the more system-dependent Monitor functions like labels and heap

Identification in casethese functions fail because the system Is In an Inconsistent state.
A Monitor self-test run continuously to provide extra security.
Choice of eithersystem heap or high memory. to load the Monitor allowing the Monitor to work

with virtually all programs.
The ability to quietly load the Monitor upon starting the Macintosh without any interaction.
The ability to load the Monitor as an INIT. This allows debugging of otherINITsand lets another

application be the startup application.
The capability of automatically patching the Monitor codevia a userarearoutine.

TMON 2.8 doesnot support the extrafeatures of the68020, 68030, 68881, and 68851 processors and
coprocessors that are not also foundon the 68000 (i.e. it will not disassemble the extra instructions and will
not display theextra registers). TMON 2.8 does, however, workwithany of these processors.

2

User's Guide

TMON

Congratulations on your purchase of TMON Version 2.81

In the two and one half yearssinceTMON's initialreleasemuchhas changed in the Macintosh development
world.Apple introduced new ROMs whichwere 128Kin size, and in so doing also introduced severalnew
wrinkles to developers: a new file system, new bugs, more power, and more flexibility. TMON evolved only
marginally to accommodate the 128KROMs; for some time the only way thatTMON could be said to be
supportive of them was that it was capable of running the Extended User Area (EUA) written by Darin
Adler, which patched TMON to work with Ule 128K ROMs. Fortunately, most TMONusers seemed to use
EUA,since it was in the public domain.

As even more time went on, other changes were made to the Macintosh architecture as well. Modifications
such as Levee's Prodigy4, with its 68020microprocessor, 68881 mathcoprocessor, and four megabytes of
RAMbecamepopularas development systemsbecauseof their speedandpower. Several alternative screens
also appearedon the marketfor those who wishedfor a larger screenon theirMacintosh. Earlierversions of
TMONdid not work well on large screens,and did not work at all on machines witha 68020 microprocessor,
such as the new Macintosh n.
For these reasons we are proud to offer you TMON Version2.8. It is fully compatible with all Macintosh
architectures with at least S12K of RAM with the sole exception of the Macintosh XL, and is compatible
with all of the currently available Macintosh microprocessor and ROMconfigurations. It Is also compatible
with most available third party large screen modifications. (If you fmd that TMON.does not work properly
on yourhardwareconfiguration, please contactus and let us know what is non-standard about your systemso
thatwe can ensure compatibility w~th it in a future release.) .

We regret that you imd it necessaryto use TMON(no one likes to chaselurking bugs), but we are glad that
you have chosenTMONas your tool. We hope that TMONsaves you effort that would bebest applied to
otherareas of the development cycle.Who knows,TMONmight evenprovefun to use!

Before I begin, I'd like to point out that.when I use the third personin theEnglish language, I·use theEnglish
language as it was taught to me, which is to say that I use "he" to refer to eithermales or females, since users
of TMON can obviously be either. If someone can providea graceful genderneutralsubstitute, pleasedo. I'd
love to hear it. In the meantime, "he/she," "him/her," "his/her," etc. just don't cut iL

I'd like to take this opportunity to thank Jay Zipnick, Bill Leininger, Darin Adler, and Dave Feldmanfor
reviewing this manualand offeringmany valuablecomments, most, if not all, of which you will fmd
incorporated here. A special thanks is alsodue to our beta testers, withoutwhomTMONwouldnot be as
reliable as it is. ·

Now, allow us to show you how TMON can help you eliminate bugs in your software•••

A Few Words About the Macintosh Keyboard
Before I talk about debugging I shouldpoint out that debugging a piece of software on any computer
inevitably becomesa keybOard-intensive task.This is even true on computers such as the Macintosh, whichis
normallya mouse-intensive machine. It's probably a good idea to take this opportunity to discuss some aspects
of the Macintoshkeyboardthat may not be immediately obvious.

Perhaps the most significant key on the Macintosh keyboard whosefunction is not always obvious is the
Command key, whichlooks like a cloverleaf (II). On somekeyboards this key alsobas the outlineof an apple
on iLThiskey is one of the modifier lceys. Modifier keys are keys that somehow changethe behavior of
another key.Theynormally do this whenthey are held downand another key is pressedat the same time.The
mostobvious example of a modifier key is the Shift key. Youhold downShift andpressanotherkey, and Shift
modifies the behavior of the otherkey by making it generate an uppercase character, as opposed to a lowercase
character.

The Command key does what its nameimplies; it causes the otherkey to execute somecommand associated
with iL Examples will be given later.

Anothermodifier key is the Option key. Holding downthe Option key and pressing anotherkey will also
generatesome other character than what you expect. Option is also usedwith the interrupt buttonon the
programmer's switch; this function will be explained in detail later.

4

User's Guide

Some Macintosh keyboards have a key that is labeled "Control." In the early days of microcomputers the
Control key servedmuch the. same function as the Command key does today. It was used primarily to issue
commands to a program. On the Macintosh the Control key is used to createstill another rangeof ASCn
cbaracters onthekeyboard.

As a TMON user, you will flnd Option very usefulfor getting into TMON, and you will find the Command
key (hereafter referred to as the "II" key) useful for doing the same things that you can do with TMON's
buttons, which will be explained later.

TMON

What is a Debugger?

Therecomesa time in the development cycleof any but themost trivialof computer programs thatproblems
will arise (although students of Hoareand/orDijkstrawill argue this point). These problems, referred to as
"bugs."comein many shapes. sizes,flavors, and species (but they're all ugly). Bugs canbe dividedinto two
majorcategories: designflaws and implementation flaws.

Design Flaws
Thesebugs canbe quite insidiouS, or theycanmerely be thecause of theprogrammer hittinI himselfonthe
forehead and mumbling vaguely aboutstupidity. Theyare causedby implementing a" solution to". problem that
is just plain wrong. Unfortunately. within the context"ofthe currentstate of the art, theODlydebuuer
capableof detecting this type of bug is the humanbrain. ICOM Simulations, Inc.is DOt carreudy martetiDI
this type of debugger. .

Implementation Flaws
These bugscanalsobequite insidious, or canbe thecause of minorself-inflictedheadachel. DOted above.
Unlike design flaws. the problemwith implementation flaws is that while thesoludon"de8ipeel for the
problem at hand is perfectly fme. the mannerin which the solution has been described to the coIDputer is
faulty. Unfortunately for the programmer, theseproblems can manifest themselves in DIlDywa,.. some of
which may bring the computer" totally to its knees. (Thereis at leastone errorwhich Macintosh assembly
language programmers can commit"which "willcausean instantaneous systemr~ about beiDa"toush to
track down!)

o

User's Guide

What Are Some Common Macintosh Bugs?

Well,before we can answer this question, we need to providea bit more clarity in describing just what some
bugs' symptoms are. There are two major categories of Macintosh bugs:Dire Straits bugs and everything else.

Dire Straits Bugs
Occasionally in the course of using a program on a Macintosh the user is treatedto a uniquedisplaywhich
consistsof a small rectangularwindow containing an icon of the old stereotypical bomb (a black ball with a
burning fuse), a messagesaying"Sorry, a systemerror occurred," and a mysterious message, "ID=xx,"where
"xx" is essentiallyany number from one to thirty-three (thereare more of these little beasties, but I have yet
to actuallysee any number higher than thirty-three). One of these boxes looks something like this:

Sorry, II system error occurred.

(Restart) (Resurne)
10· 05

Note that there are two buttons on the box, one that says "Restart"and one that says "Resume."Many a
Macintoshuser has complained that the "Resume" buttonis usually grayedout and unusable, forcing them to
re-boot the machineas if they were turning it on for the first time. In reality,when you see one of these
things, it can mean that the systemis in such a mess that any attemptto do anything other tbanrestart could
result in "unpredictable behavior," including the irrevocable loss of everything on your disk. Restarting may
just be your best bet.

The important thing to realize about "Dire Straits"errors is that they are bad enoughthat the system tries to
catch them itself and, if successful, brings the normaloperation of the computer to a standstill. Oftentimes
the user's only recourse is to start over from scratchand hope that the problem doesn't persist. Every so often
a program will actually enable the "Resume"button (it's the application's responsibility to do that) and try
to make it do something at least moderately helpful, such as closing all currently open files and exiting to the
Fmder(whether this is advisable or even possible, depending upon the currentstatus of the system, is open to
debate).

Everything Else
By defmition, "everything else" bugs are a lot more common than bugs that manifest themselves by bringing
the systemto a standstill (although there are someproblems that can bring the system to a standstill without
being caughtby the systemand stopped via the Dire Straits alert box). One problem that was quite prevalent
in very early Macintosh softwarewasone that caused the display to behave in a very bizarrefashion and
usually causedthe Macintosh soundhardware to create sounds somewhat akin to machine gun fire. In general,
theseare symptoms of a problemthat provesfatal to the machine, although no Dire Straits alert box is ever
produced. The systemmerelydies miserably. Many otherbugs are possible, most of whichcause the program
to function improperly, but do not cause the machine to give up the ghost.For the most part, though,
"everything else" bugs will cause the program to behave incorrectly, but it will be entirely up to you to track
downthe causeof the problemand solve it. .

7

TMON

Now we can answerthe question on the previous page,namely"Whatare somecommon Macintosh bugs?"
Perhaps the most common Macintosh bug is the one that causes the Dire Straits alert box to show up with an
ID=2.This means that the 68000, whichrequires data of more thanone byte in length to be at an even address,
tried to accessmore than one byte from an odd address. This alert is quitecommon lnprograms writtenby
beginning Macintosh programmers; it evencropsup in experienced Macintosh programmers' code from time to
time. It's easily recoverable in almost all circumstances; returning to the Finder somehow is usually.sufficient
and evensafe.

AnothercommonMacintosh boo-boo is to ignoredisk inserted events, figuring that the user will never have
either the need or the opportunity to insertanother disk. This is not the case; in the vast majority of
applications (i.e. those-that use GetNextEvent) the user can use X-Shlft-l or 8C-Shlft-2 to eject a floppy
(unless your application somehow disables the function keys, a difficult, extremely obnoxious, but not
impossible thing to do). The user can theninserta different disk, and it mayneverevenhavebeen initiaUzed!
Your application shouldhandledisk inserted eventscorrectly, or problems are guaranteed. '

Unfortunately the most common Macintosh programming error, passing one or morebad parameters to a
ROMtrap, cannotbe defined or explained within the scopeof a singleparagraph, or evenwithin the scopeof a
single book! All that this error means is that a) the programmer got cockyand thought tbat he could
remember the parameter list for a particular ROM trap whenin reality suchperfect knowledge escaped bim, or
b) the bad parameterwas a handle that hadn't been dereferenced or something along thoselines.The solution
to a) is to look up the argument list for a ROMtrap if there's any question at all as to what it is. That's what
Inside Macintosh is for! The solutionto b) can be quite difficult to fmd, and that's whatdebuggers are for.

Now that we have deimedour termsmoreclearly, we can begin to answerthe question poseda few pages back:
Whatis a debugger?

A debugger is a tool that assists the programmer in tracking down implementation flaws. That is, a program,
once designed and written, is exhibiting undesirable behavior, whether system-killing or otherwise. A
thorough examination of the programhas convinced the programmer that there is nothing wrong with the
program's concept, therefore the problem must lie in the program's implementation. (Notethat many
programmers will insist that, at flrstglance, there's nothing wrong with the implementation, either. This
attitude may even last throughthe secondor thirdglances at the code! Howmanytimes have youhearda
programmer utter that famous phrase, "It must be a hardware problem?")

The debugger exists in the systemas a pieceof software whichis somehow out of reachof the normal
operations of the computer. It generally reserves memory for itself in some special way so as not to interfere
with the computer's normal way of doing things (andalso so as to avoidbeingdamaged if the computer's
memory management schemeshouldbe brokenby whatever bug the debugger is looking for). It also intercepts
almost all of thecomputer's mechanisms for dealing with error conditions; the debugger provides tools for
error tracking and recovery that are considerably more robust than the computer's own (surprising, but true)!

So, in summary, the debugger is a specialprogram that lies "beneath"the built-insoftware of the computer
(in the sense that, ideally, the debugger is invisible until/unless it is askedfor by the programmer or a system
error occurs, whichever comes fll'St). Whenthe debugger is calledupon,it places the programmer in an
environment which is conducive to flDding errors in the problem program.

8

User's Guide

Why Should I Use TMON?

Goodquestion! Hopefully we'll be able to providesome thoughtprovoking answers. As part of providing
thoseanswers, perhapswe should ill'st answer the question•••

What is TMON?
We couldcop out at this point and say thatTMON is a Macintosh debugger, but we'renot generally in the
babit of insultingpeople's intelligence. TMONis a highly sophisticated interactive (we'll explain what that
means in a moment) multi-window (we'll explain why this is neat later on, too) symbolic (this is
particularly nifty) debuggerfor the Macintosh/amity of microcomputers.

TMON is interactive. This goes partiallyband-in-bandwith being multi-window; TMON doesn't lock you
into any particularmode at any particulartime.If you're looking at a disassembly of part of a programand
suddenly decide that a breakpointat a particular spot wouldbehelpful, you don't have to leave the
disassembly or worry that it will scroll off the screen.Just open the breakpoint window,pick one of
TMON'sseven breakpoints, and enter the appropri8te address into the breakpoint line. Not only will the
breakpoint windowshow the address of the breakpoint, but an asterisk (~.").will appear next to the
breakpointed instructionin the disassembly window to indicate that execution of the program will stop at
that point due to a breakpointbeing set there.

TMON is a multi-window debugger. The Macintosh is a multi-window computer, so why not have a multi­
window debugger? The same thoughts that went intomaIdng the Macintosh itself easier to use went into
making TMONeasier to use. TMONcan have· severalwindows open at one time,up to a maximum of
nineteen. Most TMONwindows can beduplicated, Le, therecan be more thanone of their type open at one

. time. For example, you may wish to have two or threedisassembly windows open showing disassemblies from
different addresses. This is ime with TMON. Once a window of a given type is open, to open any more you
mustholddown Shift while openingthe window. A ,window can be openedby clicking on the appropriate
button at the top of the screen or by holdingdown the "." key and typing the first letter of the button (e.g.
• A for an "Asmbly" window). There are four types of windows, however, for whichmultiple copies would
not makeany sense. These are the breakpoints window· (TMON has sevenbreakpoints, period), the registers
window (The 68OXO family of microprocessors has only so many registers, period), the options window
(options are global), and theuser window (TMON can'JonI.y supportone user area at a time).

TMON'. windowsare a nttle different in appearance and operation from normal Macintosh windows. There is
a 1004reasonfor this.TMONt a debugger, mustbeas independent of theMacintosh operating systemas it
possibly can. This means that it cannotexpect the Macintosh operating systemor toolbox to be in a reliable
state,becauseif somelmportantaspect of the Macintosh operating system ·were to break under the weightof a
large bug, so wouldTMON! That wouldbe intolerable. Therefore TMON implements its own windows,
handles thekeyboard invisibly to theeventmanager, andso on. So bear with us if the somewhat strange
windows take some gettingused to.

How are these windows different? Well, for starters, they cannotbe resized in the horizontaldirection-they
are always 512 pixelswide, like theclassicMacintosh screen. For another thing, they can be dragged by
clicking just about anywhere, not just in the title bar (besides, TMON windows don't even havean obvious
title bar). The TMONwindows' scroll bars have no "thumb" (the little white box between the arrows) and
no Mamy area." Actually,there are good technical· reasons for the scroll bars being the way they are. The
upshotof not bavingthumbs or gray. areas is that the window can be dragged by this area as well,with an
interesting difference from being dragged by other areas; dragging by the scroll bar will not bring that
window to the front.

TMONis a symbolic debugger. This means that youcan refer to the code thatyou are debugging by whatever
you chose to call it whenyou createdit (within certain limits). Thereare two ways that TMONcan determine
what label to assign to a panicu1ar range of code:embedded labels and .MAP files.

Embeddedlabels are labels thatare actually bunt-into.the program in sucha way as not to interfere with
program execution but to allow identification of particular subroutines in the program. (Specifically, they are
embeddedimmediately after the UNLK and RTSor IMP instructions that end a function or procedure.) These
labels will be a maximum of eight characters long.Somecompilers havean optionto includethese labels.
'Ibis capability was ill'St found in theLisa Pascalcompiler that most earlyMacintosh programswere written

9

TMON

with. Several other development systemscreatedsince then, such as Apple's popularMacintosh Programmer's
Workshop, support this option as well.

TMON will also read .MAPfiles whichhave been generated by the MDS and ConsulairMac C systems, as
well as .MAPfiles created by some other development systems, such as TML Pascal.This also provides names
for procedures and functions, with an added bonus that embedded labels don't share; since the .MAPrue is
generatedby the linker, it contains labels for the librariesthat the compileruses, whereas these labels are not
embedded in the code.

Regardless of how the labels are stored, they can be used in any expressionevaluation functionanywhere in the
system (expressions in TMON will be explained in detail when we discuss the Number window). For
example,it is common,when programming the Macintosh in a high level languagelike Pascal, to have a
procedurewhich is capableof dealing with a long integer,half of which is a menu ID and half of which is a
menu itemID.1f expressedin this fashion, this routinecan be used either as a menu handleror a. key
equivalenthandler. If the procedureis calledDoCommand, and the label bas been entered into TMONeither
by being embeddedafter DoCommand's code,by beingread in from a .MAPfile, or by being manuallyentered,
then it is perfectly valid to think the following:

Since menus tend to be a central part of any Macintosh application, it might prove useful to set a breakpoint at
the point at which menu handlingbegins. Ideally, this breakpoint will also catch the use of. key equivalents,
althoughthis mayor may not-be the case; it's application dependent (if you used something like DoCommand,
it will be the case). Normally what you wouldhave to do is:

1. Enter the application.
2. Enter TMON by holding down Option and pressingthe interrupt button.
3. Find the code that looked like the DoCommand code.
4. Open thebreakpointwindow.
S. Type in the hexadecimal addressof the·beginning of DoCommand.

With the symbolic nature of TMON, though, it's much simpler:

1. Enter the application.
2. Enter TMONby holding down Option and pressing the interrupt button.
3. Open the breakpointwindow.
4. Type in "DoCommand" with the quotes.

Both of these will set the same breakpoint,but one requires that you go searching your code for the
appropriate address.Not only that, it assumes that you can tell what your source compiledto.

ga You can use a label anywhere an expression is beingevaluated. Breakpoint setting,disassemblies,
dumps, the numberwindow-all are_ candidates for havinga label typedin to them. Anywhere you can
use an address,you can use a label. Be sure to type in the quotesso that TMONknows thatyou're
referring to a label.

Just to make sure that it worked,you may wish to do something that will invoke a menu function (select
something from a menu or press a • key equivalent). Once the choicehas been made, controlwillpass to
_ to de8l with it, at which point the breakpoint that you set will drop you into TMON, from
~'you can do great things, like singlestep, trace, etc. to see what's goingon.·Neat,huh?

TMON was designedwith features that had neverbeen available with any Macintosh debugger. One example
of lbis is the "trap discipline"function. The conceptof trap discipline flrst appeared as a standalone
application writtenby Steve Capps,a memberof the original Macintosh· team at Appleand one of the authors
of the Finder.This application checkedsome of the morearcaneparameters of someof the morearcane traps
and reported things that it found out of line. Darin Adler took this concept, expanded it to cover virtuallyall
parameters of virtually all traps, and gave it two strengths-lenient and strict-to make it easier to determine
whethera parameterwas way out of the realm of the real or whether it was just questionable. Using
discipline, it is possible to catch many errors before theyhappen-passing a NIL bandle to TBId1e, for
example. It is features like trap disciplinethat set TMON apart from any other Macintosh debuggercurrently
available. .

10

User's Guid8

Installing, Entering, and Leaving TMON

Well. here it is: the portion of the manual that you've been waiting for. Hopefully now you have some idea as
to whatusing a debugger is all about, andyou alsohave an acquaintance with what TMONis andhow it
differs from other Macintoshdebuggers.

Now it's time to take a look at TMON in more detail.We'll explainhow you install it, how you can get into
it, and how you canget out of it. In the sectionsfollowing this one we'll explain each function.

Loading TMON
The i11"st thing that you bave to know is how to set TMONinto your system.TMON is providedon a 400K
floppy disk that is not copyprotected.·One upshot of this is that TMONcaneasily be copied to wherever you
needit; anotherupshot is that TMONcan easily bepirated.Please respectournot giving you a copy protection
hassle by not giving us a 1ack.m-iDcome hassle.·:
TMON canbe loaded two ..,-•. PorOccastOlll1_ltCIDbe startedas III appHcadon. This is describedbelow.
For day-to-day use, it II belt to put the TMON app1icldoD. with afile·caneclwrMON Startup"
(included on the TMON dlsk). in your·systeIIl·folder.1bi&Js describedinDlOl'e detailin The Startup Loader
section of theTecIudt»lRef"",".

TheTMON appU_GIlls,. by all 011~~'l normal MacintoshappUcation. It is executedby
clicking on TMON aDd·choosiDg -open" froID the-Filett menu or by double-clicking on the file. The TMON
application wl11 be loaded. If OptlO.t.t Shift. orthemouse buttonare beingheld down,or if any
combination of these _ held dovm, TMON will display this dialog box:

TMON uerslon2.8

Written by
Waldemar Horwllt.

01987 ICOM Simulations, Inc.

648 S. Wheeling Rd.
Wheeling, IL 60090

(312) 520-4440

((onfigure)

(Monitor)

(Monitor...)

(TranSfer)

(QUit)

This dialog is "commandcentral," if you will, for TMON. It allows you to configureTMON to yOtlr lildng
(Configure), enter the Monitor (Monitor), enter the Monitor after choosing a particular user area
(Monitor•••), Transfer to another program (Transfer), or quit to the Finder (Quit). TMONcomesfrom us
configured to what we hope is a useful set of defaultconditions. You can, however, change them andsave them
as yourcustomized user area file.

If you do not hold the keys or mousebutton down, TMONwill look in the current directory(the disk that
containsTMONfor MFS users; the folder thatcontains TMONfor HFS users) for a file called "User Area."
If it fmds one, it will try to load it as the default user area. If there is no ide called "UserArea" available
to TMON, it will use the user area that is built-in.

The user area is the customizable portion of TMON; it can be writtenor rewritten by you or·some other third
party as needed. One of the things that the.user areacanbe configured to do is force TMONto quit to the
Fmderimmediately upon loading. This is so thatTMON can be made the startup application and be made to
install itself withoutany intervention on yourpart; this is also why it is sometimes DeCeIS8I'Y to hold down
the OpUOD or • key or the mousebuttonin order to see the main dialog.

11

TMON

Probably the most commonly used functionon this dialog is the "Monitor"function. Clicking on this button
will cause the debugger tobe installed alongwith the appropriate user area.Once the debugger has been
installed,control will pass to the debugger. We'll explain how the debugger looks ina moment,

The "Monitor•••" button is for power debugger-users who use more than 'oneuser area. If you click on it, the
StandardGet File dialog will come up and allow you to select whichuser area file you wish to load when the
debugger is installed.That user area will then be installedwith the debugger, and·control will pass to the
debuggerjust as it does if you choose"Monitor."

The "Transfer" button was originally intended to allow 128KMacintosh users to load TMON and then
transfer to anotherapplication, since on 128KMacintoshes thereweremanycircumstances under whichTMON
would take up too much memory to allow the Finder to run! We've left the "Transfer" button in asa
convenience; if you click on it, a Standard Get File dialogappears whichallows you to choosethe applicadon.
Note that the TMON ''Transfer" function does not switch to the Systemrue on the'new volume.(assuming
that the volume is differentand contains a'Systemfile).

Clicking on the "Quit" button 'willreturn you to the Finder. A great deal of debatewas involved in the
decision as to whether to include this feature or not Gustkidding, folks, just kidding)1

The "Configure" function takes you into anothersection of the program tbat deals with all of the things
about the debugger that can be easilychanged. In the dialogbox shownabove, the "Configure" buttonhas been
disabled. This is becausethe debugger hasn't evenbeen loadedyet, and theprogram doesn't knowwhichuser
area file to change this infonnationin (remember, the thingsabout TMON thatcan be cbanged are stored in
the user area file). For detailed information on how to load the debugger, read the "OettingInto·TMON"
section. When the debuggerhas been loaded, this buttonwill becomeenabled. When youclick on this button,
anemptyscreen with a menu bar appears.

Configuration

16 File Edit Options

The configuration menu bar consistsof four menus. The first threeare the ones that Applesays shouldbe in
everyMacintosh application (and we try to follow the rules as muchas possible-that's why these menusare
there).They are the Applemenu, the File menu, theEdit menu,and the Options menu.

The Applemenucontains the desk accessories that you have installed in yourSystem. They are there sothat
you can use them if you need them (you may wish to note yourconfiguration for a particularuser area in the
Note Pad desk accessory, for example).

The File menu contains twoitems: SaveUser Area and Quit. SaveUser Area allowsyou to saveyour
configured user area on disk. Quit returnsyou to the maindialog. Here's what the menu looks like:

-' · Edit Options
seue User Area ...

Quit MQ

f TheEditmenuis therefor thesake of the deskaccessories. It won't evenbecome enabledunlessyou opena
deskaccessory.

12

User's Guide

The Options menuis the one tbatallows you to definehow you wish TMON to work. Let's look at it now:

• File Edit
Communications...
Bector Refresh•••
DBlTasles•••
Loading Position•••
Ruto-Qult•••

Monitor Size... .M

The Options menu has seven user-configurable items. Thefll'St is the communications settings.

Baud Rate 0 300 0 1200 0 2400 0 4800 @) 9600

Connection @) Printer Port 0 Phone Port

Handshake 0 HOn/HOff @) CTS 0 None

(OK]

(C8ncel)

The purpose of the communications dialog is to allowyou to defme how TMONwin communicate with a
device that is connected to one of the Macintosh's serial ports. Most of the time this device will be a printer.
The dialog aboveshows the defaultvalues,wbicharefme in manycases,.and areCOITeCt for the ImageWriter
and ImageWriter n. When you useany of the printing features of TMON, it win attempt to send~ts output
to tbe pan specified by this dialog,using the baud rate and handshaldng protocol specifiedhere as well.

Vector Refresh is the next option. Its dialog looks like this:

this option controls the refreshing of Interrupt uecton.
If you pick "refresh",. the monitor will re-'oed the
Interrupt uectors euery time It Is entered. For norme'
use, pick "refresh".

@)Refresh

o Don't refresh
[OK·] (cancel]

The 680xO family of microprocessors bas several locations in low RAM (called vectors) whichare used to
defmethe behaviorof the systemundercertainconditions. Debuggers store addresses of their internal routines
in thesevectorsso that they have control of thesystem if somespecialcircumstance arises.TMON in
particularnot only puts addresses there whenit is loaded, it also puts its values there every time the Monitor
is entered. This is so that, in.the eventof a crashof somekind, the debugger's values will be in the correct '
locations if the debugger can be enteredat all. Someprograms store valuesin these vectorsand will not woit
properly unless thesevalues are allowedto stay. For this reason, you can ten TMON IIOt to refresh those
vectorsevery time it is entered.The default is IIOt to refreshthe vectors, sincea few popular applications (e.g.
MacWrite) use them.

13

TMON

The next item is one that allows you to defmewhether verticalblanking (VBL) tasks are left nmning while
TMONis active or not, Previous versions of TMON left VBLtasks running, whichproveduseful in getting
screensnapshots from within TMONbut left a great deal to be desired for thosewho were trying to debug
things that depended upon VBL tasks (it's historically been very toughto debug·things whlle they're running),
In particular, AppleTalk development with TMON whileVBLtasks are running can bea challenge. Also,
someVBL tasks expectnot to be in a monitor, or use too muchstackspace (TMON doesn't offervery much).
SuchVBL tasks can cause system-crashing damage if left running whileTMON is active. In orderto provide
the user with a choice of whether to leaveVBLtasks running or not, we haveprovided the following dialog:

Choose·Suspend DBLs" to haue the Monitor
automatically suspend uertlcal blanking queue tasks
while It Is actlue. This preuents them from crashing the .
Monitor orouerflowlng Its steck. Select "Leaue DBLI
running" If you must leaue them running.

@) Suspend DBLs

o Leaue DBLs running
(OK) (cancel]

Next is Loading Position. This allows you to choose whether you want the debugger to live in the systemheap
or in high RAM. Its dialog looks like this:

You haue II choice of places to load the Monitor.
Loading Into high memory Is more common, but
preuents use of alternate screen and sound buffers on
Macintosh 512K, 512Ke, Plus and SEe Loading Into the
system heap causes problems with a few programs.

@ High memory

o System heap
(OK) (cancel)

As the dialog indicates, it is more common to load the debugger into high RAMthan it is to load it into the
system heap, although.eachbas its advantages anddisadvantages. Loading intohighRAM causes the alternate
screenand soundbuffers to become unavailable, and loading into thesystem heapcauses someapplications to
malfunction. Specifically, applications which use _SetTrapAddress to change a ROM trap to point to the
application heap zone will fail if running on a 64K ROM machine withTMON installed in the system heap
zone. the reason is that on 64K ROM machines trap addresses had to be within 32Kof eitherthe beginning of
ROM. the beginning of the system heapzone, depending uponwhether theywerein ROMor RAM.
IDstaUing a routine in the application heap zonemayor maynot haveworked-it wasdependent uponwhether
the address waswithin32K of the beginning of the system heap zoneor not. WithTMON installed in the
s~ heapzone, the application heapzoneis never within32Kof the beginning of the system heap zone, and
me faultyapplication wouldfail miserably and mysteriously. Note that since 64KROMmachines are
becoming so scarce, this is generally not a problem anymore, and it seems preferable to haveTMON installed
in thesystem heap zoneso that the alternate screen andsoundbuffers are available to applications whichwish
to use them.

14

User', Guide

The last optionthat changes the way in which TMONworks is Auto-Quit. Auto-Quit allows you to defme
whether TMON goes to the main dialog when it is loaded,or whetherTMON simply installs itself and
immediately goes back to the Finder. The default is to auto-quit so that TMONcanbe the startup application
on yourdisk and be loadedevery time you boot your systemwithoutany intervention on your part, The dialog
for this option looks like this:

You may, If you wish, haue TMON automatically eHit to
the Finder when first started. If you want later to
ouerrlde this feature (to use Configure, for eHample),
hold down Option, Shift, _, or the mouse button after
the screen clears·during booting.

@) Ruto-qult

o Don't auto-quit
OK) (cancel)

I said that the Auto-Quit option was the last one that allowed you to change TMON's configuration, and it is.
The last item on the menu, MonitorSize, Isan informative one rather thanone that causesa change. Monitor
Size provides information regarding the amountof space that the debugger currently takesup; that is, it shows
the infonnation beforeany changes are made (to see the effects of your changes on the size of the debugger,
saveyourchanges to a user area file, restart your system, load TMONwith your customized user area, and
thenuse MonitorSize). Here is anexampleof what Monitor Size shows:

The Monitor's memory usage Is as follows:
19400 bytes for the Monitor code.
6336 bytes for ROOD trap name routines.
1280 bytes for Monitor's uarlables and local stack.

30208 bytes for the User Rrea (physical size).
21908 bytes for the saued screen Dndcursor.

79132 bytes. total. OK)

Now you know all aboutwhat lies beneaththat "Configure" buttonon the main dialog. Note once again that
this buttonwill not be enabledunless the debugger has already been loadedinto memory (whichmeans that
TMONknows what user area to modify with your configuration).

Remember thatonce youhavemadeyourchanges you mustuse the.Save User Areaoptionin the File menuto
save yourconfigured userarea to disk!

Getting Into TMON
Now that you know how to configure the debugger, it's time to talk about the "Monitor" and "Monitor..."
buttons, as well as systemerrors and the interrupt buttonon the programmer's switch. First let's talk about
the "Monitor" button. Actually, we should talk about the "Monitor... " button 111"st, or at least at the same
time as "Monitor"since they both do the same thing with only one difference. "Monitor•.•" brings up a
Standard Get File dialog andallowsyou to choose a user area file to use whenthe debugger is installed.
"Monitor," on the other hand, simply installs the debugger according to the configuration stored in the file
called "User Area" (if TMONfound one) or according to the built-indefault userarea (if there is no "User
Area" file),

15

TMON

In any case, when you click on either "Monitor" or "Monitor•••" the display will look something like this:

~p ASMbly Brkp\s Regs Heap Fil. EXi\ GoSub S\ep Trace HuM User Op\ions Prin\
WelcoM. \0 Moni\or version 2.8
Wri\\en by WaldeMar Horwa\.

Initially, this is all that you see from TMON: a "button bar" (we'll talk more about that later) and a
window indicating what versionof·TMON you are usingand mentioning the fact that Waldemar Horwat
wrote it (yes, Waldemar Horwat does exist).

Note that once TMONhasbeen initialized in this fashion or installed automatically, there are a few ways that
it can be entered. One is by causing any error that wouldnormally result in a "Dire Straits" box. Another is
by pressing the interrupt buttonon the programmer's switch that Apple told you to install only if you were
a developer. Still another is to put a ..Debugger trap at a point in your program at whichyou want to enter
TMON. Entering TMON due to a uDire Straits" error will present you with diagnostics relating to the error;
entering by pressing interrupt will present you with a message to ihe effect that an interrupt hasoccurred.
There are variations on the interrupt method that I will discusslater.

Getting Out of TMON
Terrific. You can load the debugger, configure it, and get into it in one of basically five ways ("Monitor,"
"Monitor... ," a system error, interrupt, or a J)ebugger trap).Once you're in it, how do you get out of it?
And how do you get rid of it completely?

To leave the debugger and go on aboutyourbusiness, click on the ·"Exit" buttonfrom the button bar or press
H, hold it down, and press the "E" key (for Exit).TMONwill put you back wherever you were when you
entered TMON (assuming that youhaven't doneanything to change TMON's perception of where you·were.
We'll talk more about that later).

The only way to.get rid of the debugger completely is to re-bootyourmachine and not let it l0a4TMON.
OnceTMONhas been installed, nothing short of re-booting will get rid of it.

16

User's Guide

The Monitor Environment

This section describes the Monitor.The Monitor is the part of TMON that is installed into the machine.The
Monitorhas its own user interface, with a button bar, windows, and special conventions for user input

The heart and soul of the Macintoshis its user interface. The Macintosh embodies user interfaceconcepts that
were avant garde at the time that the~ were created-in the early 1970s.At the time, though, the hardware to
do lhe things imagined at Xerox PARC (palo Alto Research Center)'took up entire tables, not one and one
half squarefeet of desktop.Since hardware has improved in price vs, performance since then, examplesof the
PARC-style user interface are becoming more'common.

TMON, as was mentioned above, follows theMacintosh user interfaceguidelines fairly closely, although it
can't follow them completely. If a debuggeris to.be able to.go anywhere, includingwandering around in the
operatingsystem, it needs to be as independent of that operating system as it possibly can-particularly if the
operating system is notre-enttant, Le, was not•writtenwith·the idea of having portions of it being executed
by more than one process at a time. Since 1'MONhadto~plement its own versionsof things like windows,
it seems like a 800d idea reexplain d1ese thlnp·brietJ)'•..•....•••,

The Button liar
, .. - ~;; q

The button bar Hes at the top of the•scteeI.l, where~themenu bar normally lies for Macintoshapplications.
When you cUctthe~oJl.. OfI1lese,~iQstea4,of.puUingdown a menu, it performsa particularfunction.
Many of these buttoDa open awindow.So!nOof themper,form somespecificaction that doesn't require a
window. We'll look at thef~\CJf&\dtbv.ttOJl abitJater, but not necessarily in left-to-rightorder across
the .button bar. ". , .

The Windowing System
As was mentionedearlier, TMON's windows are a.bit differentfrom.what you're used to on the Macintosh.
Let's look at a·typical TMON.window and see howit differsfrom what you'd expect

~ DUMP. FROI1 eeeeee ~8 888:UH 19 F8 B8 e8 oFF FF FF FF 00 8E 83 DE 80 BE 00 ae
e00010: ee ae 83 E2 e0 0E 03 E4 00 0E 03 E6 00 0E 93 E8 :::::::::::Ii::::000e2e: ee IE 93 EA 00 0E 03 EC 000E 03 48 00 0E 03 EE
009030: ee BE 03 F0 00 0E 03 F0 00 0E 03 F0 00 BE 83,F8
000040: ee BE 83 F0 00 0E 03 F0 00 0E 03 F0 00 0E 83 Fe
800050: 98 BE 93 F0 00 0E 03 F0 00 0E 03 F0 00 BE 03 Fe ::::::q::i:: .s.:000060: 08 BE93 F0 00 00 71 SA 00 40 lA 84 00 40 lA 84
000070: 90 BE 93 F2 00 0E 03 F4 00 0E03 F6 00 BE 03 F8
0000e8: 88 BE 83 FA 00 0E 03 FC 00 0E 03 FE 00 0E 04 00
000090: 08.eE 84 02 000E0404 00 0E 04 06 00 0E 04 08
0008A0: 88 BE 84 8A 00 0E 04 0C· 00 0E 04 0E 00 0E 04 10
800080: 88 BE 84 12 00 0E 04 14 00 0E 04 16 00 BE 04 18
0000C0: Be BE 83 Fe 00 0E 03 Fe 00 0E 03 F0 00 0E 03F0
000000: ea BE 83 Fe 00 0E 03 F0 00 0E 03 F0 00 BE 93 F0 ::::::::: ::::i:<0000E0: eleE 93 F0 00 0E 03 F0 00 0E 03 F0 00 40 11 3C
0000F0: 88 40 11 3C 00 40 11 3C 00 00 149C 00 00 07 4E .(2.<.@.< ...••..N
000100: FF FF 08 48 00480040 0010 0000 00 00 07 4E ...H.H.t.. ••...H ~
000110: ee 08 ee 80 0e 00 42 46 00 01 14.00 00 00 16 DA ...•..8F...••.••
000120: 2040 17 E0 FF·FF FF FF FF FF FF FF 00 80 00 08 (2••••••••••••••

This.obviously, is a dump window. It was createdeitherby clickingon the "Dump" button on the button bar
or by holding down the X key and pressing the "D" key.

At the top of the window it says "DUMPFROM"followed by, in this case, an address which happens to be
000000. This is as close as TMONwindows get to having a title bar. Don't be fooled by my calling it a title
bar, though; its purpose isn't the same as a normal Macintosh window's titlebar's. There's nothing that says
that you have to drag a dump window by its title bar; you can drag it by practically anything. Specifically,
TMONwindows can be draggedby their title bars, their contents, or the area in the scroll bar between the
arrows. The places that dragging will not workare in the close box, the growbox, and the arrowheads. As an
addedbonus toall of this, dragging a window by the scroll bar area will not bring the window to the front.
Thismakes it easy to reorganize withoutdisrupting youractive window.

17

TMON

Speaking of active windows, TMON windows do not have the normalhilighted/uDhilighted appearance that the
Macintosh normallyuses to indicatewhichwindow is active and whichare not. Instead, any givenTMON
windowmay have a vertical blinkingbar-.Whichever window has the bar is the active window; all others are
inactive. By the way, all that "active" means in the contextof TMON is that when you type, the information
will be put wherever the blinking bar is in that window(assuming that that is possible-typing ASCII that
containsinvalid hexadecimal characters when the blinking bar is in the hexadecimal portionof the dump
windowwill accomplishnothing). However, just becauseyou can't type in the inactive windows, don't assume
that they're sitting there doing nothing! All TMONwindows have their contentsupdatedcontinually so that
as the state of the system changesthe windows are updated to reflect that change.

Almostall TMON windows have a close box. The exception to this rule is the special messagewindow which
occasionally appearsnear the top of the screen. It has no close box; insteadit disappears upon the ftrst mouse
click or key press after it appears. Specialmessages are things like the welcoming messagewhenyou flrst enter
TMONor notifications of what systemerror causedTMONto be entered. Clickingon the close box makes
the windowdisappear,just as you wouldexpect.

Anothercommon element of most TMONwindows is the grow box. It too behaves as you would expect,
with one crucial difference: TMON windows are always the width of the originalMacintosh's 9" built-in
screen. In other words, TMON windows can only be resized vertically, not horizontally. Since information in
TMONis laid out in a more-or-less linear fashion (i.e. line by line), it makes sense to control the numberof
lines displayed, but not as much sense to control how muchof each line is displayed.

Typing
A couple of paragraphs ago, I mentioned typing information into TMON. In general, anytimethere's a
blinkingvertical bar in a TMON window, you can type some kind of information there. It's up to the window
to decidewhetheror not what you're typingmakes any sense (invalid hex digits in a hex dump do not).Two
things that hold true regardless of what window you're typing in. The line that the blinking bar is on is 1101
continually updated·a1ong with the rest of the window (in order to prevent what you're editing fromchanging
on you on the fly), and if you end your inputby pressing Return, TMONwill only change the data from the
beginning of the line to wherever the cursorwas whenyou pressedReturn, whereas if you press.·EDter key
TMON will accept the entire field from beginning toend.· ...

- This one is important! Reread what I just'laid-.Anytime TMONis ta1dnI keyboard input,. you can
press Return if you want TMONto take everything before the cursor, or you can pressEnter if you
wantTMONto take everything in the field, including whatcomesafter the cursor.This capability,
quite useful, and specificcircumstances wMJ'e it is useful will be explained as we get to them.

To position the cursorat the uppermost and leftmost positionof the window, just press the Tab key. To
delete a typed character use the Backspace (or Delete) key. Also, if you are typing something and wish to
cancel the entire line's changes, just click the mouseon anotherline without pressing Return orEnter. The
changes that you hadtypedwill be ignored.

If you're using a numeric.keypad, a Macintosh Pluskeyboard, or a keyboard on anymachine morerecent tban
the MacintoshPlus, you have a few other options as well. The left andright arrow~ys will move the
blinkingvertical bar left and right, and the clear key will clear the entire line.

18

User's Guide

-'aslc Features
Let's take a look at someof themostcommon and mostusefulTMONfunctions.

Assembly
'Ibis feature is simultaneously one of the most basic (mthe sense thatit's something that's frequently usedand
shouldbeapart of anydebugger) and the most complex (in thesensethatsomeof its capabilities arenot obvious
and lie ratbersopdstieated). Let's takea lookat one po8Sl"ble "Asmbly" window.

Pr-in\

[] DLtP FROtt 188888<A7)
8CllDC:S II ee 12 A6 FF FF SS 76 81 82 OF 78 II ec 12 A6 ••••••Uv•••p ••••
8CllEC: FF FF AI II 86 CC ee B8 _ee ee ee ee ee ee ee .
8Cl1FC: ee ee 88 ee ee ee ee 88 II 88 ee Fe ae ee ee ec .

C REGISTERS PC-88I2DE16 SR-·".S•• 880•••xnzvc:'
8 123 4 S

DATA eeeeeee6 9D86817A A880068I __ eeeeeeee __ eeeeeeee 880e8e00
ADDR 80031188 eeeaeeee 800C12A6 ee8C148A 18835576 808C2818 ee0C1216 0e0CllDC

Actually, I tolda little whitelie.This is obviously a dumpof a wholescreen, not just the "Asmbly"window. The
"Asmbly" window i$ theonetbatsays"DISASSEMBLY FROMOOOOOO(pc)" at the top. It's beensizedto show
six instruCtic!DS and movednext toa dumpwindow.

Thereareseveralnotablethingsaboutthe"Asmbly",window. FIrSt of all, insteadofbeinga disassembly fromsome
arbitrary address, it isa disassembly from~PC), orwhatever thecurrentPCvalueis pluszero. This
capability is called "anchoring," because it "anchors" thewindow toa particular registersothatwhenever thePC
cbanges, the disassembly window will automatically cbange to reflectthenewdisassembly range. There'snothing
magical aboutthis; to do thiswithanewlyopened ..Asmbly" window (which initially disassembles fromaddress
zero),youjustclickon theaddress givenandtype"(PC)" without thequotes. Sinceyoudidn't specify anoffset,
TMONwillassumethatyoumeant"()()()()()()(PC" and'update the"Asmbly" window accordingly. Notethatyoucan
anchoranydumpor disassembly window. to anyregister exceptSa, notjust to thePC.

Speaking of registers, nowis probably a good timeto mention acrucial factaboutregisters in TMON. Thereare
times whenTMONexpects youto referto a register, and thereare timewhenTMONexpects a value.TMONis
typeless; it can'ttell thedifference between a register anda valueon itsown,especially sincethenamesof the
680xO data andaddress registers areallvalidhexadecimal values (DO-D7 and AO-A7).'J;here aretimes whenit
becomes necessary to beable to avoidambiguity. This is onereasonthatyoucan referspecifically to a registerby
prefIXing its namewith an"R," e.g. RDO, RAS, andsoon.

19

TMON

PrefIXing a register name with an "R" causes the registerto be treatedas a value, and the value is whatever
the register containsat the time. The best way to see this is to open the ''Num'' window by clicking on the
"Num" button in the button bar or by pressing 8IN. Try typing in things like DO,·A3, and so on. Now try
typing RDO, RA3, and so on. You may want to open the "Regs" window to see why the "Num" window
shows the numbers that it does when you use the "R."

The next thing that I should point out is the columnof addresses along the left side of the window. Thoseare
the absoluteaddressesof the first byte of each disassembled instruction. In other words, the addressfor the
flI'St line is the current value of the PC (and if you look at the bottom window, which is the "Regs" window,
you'll see that the value of the PC there is the same asthe address in the "Asmbly" window,but we're
getting ahead of ourselvesby lookingat the "Regs" window).

Note the "P" next to the flfSt address. That "P" stands for "PC," and it's just a way that TMON has of let­
ting you know that that's what the currentvalue of the PC is. Of course, since this particulardisassembly
window is anchored to the PC, that"P"· will always be by the first address.

In the next column are the labels for the instructions in this procedure or function. As I mentionedbefore,
these labels canbe built into thecode or read in from a .MAPfile. They canalso be manually entered,al­
though this is not often done. If no labels have been built-in, read in, or manuallyentered, TMON will allow
you to refer to a piece of code by its resource type ("CODE," in this case), its resource10 ("0001"), and some
offset from the beginning of the resource. In general, it is desirable to have some non-absolute way of
referring to Macintosh code, since Macintosh codehas to be positionindependent due to the way the Macintosh
memory manager works.

The next columncontains the disassembly of the instruction. If the disassembler fails to recognize a particular
byte pattern as an 68000 instruction, it will display "1111" as the mnemonic for the instruction. If it
encounters a ROM trap that it doesn't recognize, it will say "ROM" followed by the hex value of the op­
code.ROMtraps whichTMONdoes recognize are disassembled by name if you have configured TMONto do
so.

The last columnmay have the label (withan offset,if necessary) which is used to refer to one or the· otherof
the operands for the instruction. This way, whenyousee a reference to an addressyou'll know the..of the
location. Here's what that looks like:

[] DISASSEMBLY FROM 40F5A9
4~9: I_Launch+0044 MOUE." (Q)+.te936
40FSA4: 1-Launch+0048 LEA '0919,Al
49F5A8: 1_Launch+084C MOUEQ 1$28.01
49FSM: '_Launch+004E _BlockMov4t
40FSAC: 1..Lan:h+0059 MOUE.N $0908, De
40FSB8: 1..Laanc:h+98S4 BlE. S A$40FSM

'-I;lrP8geO-+4l888 !
: .CurltpHM......

That takes care of the visibleaspects of the"Asmbly" window, but there are a couple more thingstbat need
to be mentioned.First of all is that the scroll bar does work, and worksfairly well in both directions. When
you try to scroll an "Asmbly"windowbackwards, TMONguesseshow long the previous instmction is.
OCcasionally TMON will misinterpret and get out of sync. Just keep goingand TMO~will get bac1cin 'sync
sooneror later. As an alternative, you can press the Tab key to get the cursor to the address lineand press
Return. 'That will advancethe address by two bytes,forcing TMON to disassemble from thataddress.
Contin1e this until you're back in sync.

Another invisibleaspect of the "Asmbly" window is that it is, indeed, an assembly window! Not only does it
disassemble what's at a particular address, it allowsyou to type in a newinstructionwhichreplaces the old
o. in RAM. Just position the cursorover the instruction to be replaced and type in the new instruction (using
space$ between fields rather than tabs).This can be quiteusefulfor applying quickie patches to a program
duringdebugging (justmakesure that any patches thatsolvea problem get implemented in thesourcecode
sooner or later)!

20

User's Guide

Registers
The "Registers" window allows you to view and change the contentsof any of the 68000 microprocessor's
registers. It can be opened either by clickingon the "Regs" button in the button bar or by holding down the
"." key and pressing the "R" key. The window looks like this:

C REGISTERS PC-6eel5..~4 SR-·".S•• 908•••xnzvc· USPa47FF66DE
• 1 234 S 6 7

DATA eeee8888 eeeeeeel FFFFeeee 80000009 80000009 80900B0B 90018C22 80918F4C
ADDR 180C4C16 888883D1 80018A88 800C48AC 00018A88 809C4C1A 000C4830 000C47F8

Tbiswlndowshows the 68000 registersat a glance. The PC is the first register shown, and its field is where
the~, aoes •• Itgoes to the "top" of the window, i.e.. when you press the Tab key the cursor will be
posltloled~ '\" ~di&i~of the PC value, making it easy to change the PC.

The_~'1I11ioWD next. SincetheStatus Register is normally interpretedon a bit-by-bitbasis,
most ofdltfbltl 'pen mnemonic character namesin order to make their meaningmore clear.The
Statui~~ dllpJayl(l •. ~striDs··ofcharactersfor that reason. !fa character is lowercase, it means that
the fill II teillii,;1f·"~isupperCase, it means that the flag is set. Periods mean "don't care" or
-unused."Tbere·.. ttwee bits 8hown'whichare the exception to the characterrule; in the example shown
above the)' ~tJl~,'l'his.~ the interrupt maskfor the 68000. It holds the current interrupt level for the
processor.':~ .. ".. -: ,,,.4~ ,'..wiili •..ptiority lesa than this binary value (zero, in the example) will be ignored.
Since thotevel,fa.. :.··~lIzer(), aU interruptS will be handled.

"",,<,,;,,';;'.,,;',j.'-:','~',., _,';"'-i' _~.".ff ' ' .' • -, " c· "., .' ., "-,- ' , " " •

In theexample _ JeaIIter. above, the trace bit is off, meaning that the processorwill not generatea trace
exceptionaftertlCh 'IDItrucdoD;the supervisor bit is on, since historically the Macintosh has alwaysrun in
supervisor~8Dd~aU of'thearitbmetic .flags (extend, negative, zero, overflow,carry)are off.

Next is the USP.or UserStack Pointer(as opposed to the Supervisor Stack Pointer,or SSP, which is shown in
the window u -..An. Although the Macintosh has historically functioned in supervisor mode, and the
operating8Y".software expected to be in supervisor mode, some applications maywish to enter user mode
briefly,or ru_ operating systems may work in user mode. If they do, the stack pointerswill be swapped, so
it Is usefu1lO be able to{&ee the USP.

The remaining two rows in the window are the 68000's general purposeregisters. They are divided into the
eight data registers and the eight address registers. Note again that A7 is synonymous with the current stack
pointer.

In the event that you need to changethe contents of an,. of the registers, you may click somewherewithin the
valueshownand enter any valid hex expression and pressReturn. The valuewill be assigned to the register.
Note that this shouldonly bedone if you are certain that the register shouldbe changed.

Breakpoints
BreakpOints are anotherfeature that you will fmd in just about every debugger that's of any value. A break­
point is something that you can put in your programso that when the computertries to execute the lnstruction
at that location, it passescontrol to the debugger. When it hasdone that, you can use the debugger to make
sure that·everything is in order. Breakpoints are a very useful tool.

TMONhasone breakpoints window that can be opened by clicking on tQe "Brkpts" button on the button bar
or by holding down the 81 key and pressing the "B" key. It looks like this:

1BREAKPOINTS
1....--

2 3 4 6 7

21

TMON

The breakpoints windowallows you to set up to seven breakpoints in your code. To set a breakpoint, click on
the dotted line and enter something that evaluates to an address (it can be anabsoluteaddress,a label, or some
other expression), andpress Return. Note thatmultiplebreakpoints canbe set if the addresses are separated by
a space.Hereis what this looks·lik:e:

I[J IlREAI<POIHTS 1 2 3
-OoCoPlPland· ·MainEven\._-

4 6 7

In the above example, the user is setting two breakpoints, one at the address with the label "DoCommand"
and the other at the address with the label "MainEvent.tt Note that the labels are in quotes and are separated
byaspace.

Once your breakpointshave been set, you may exit TMONby clickingon the Exit buttonIn thebutton bar or
by holding down the • key and pressing the "E" key. When the programencounters a breakpoint, TMON will
be entered with the PC value equal to the address that you set the breakpoint at. At that pointyou can
examine or change values in registers, the heap, low memory,etc. Note that the instruction at the breakpoint
hasnot yet been executed. Also note that in any open "Asmbly" windows thatshow the brealtpoiDtec:l
instruction, an asterisk ("*") will appear immediately to the right of the address of theiDstmction. This is so
that you can see breakpoints in disassemblies at a glance.

Breakpoints are cleared by entering a hyphen(CC_") in the line with the address for tbatbreakpolnt.If you have
more thanone breakpointset, you canclear any individual breakpoint by clicking at,thebeginning of its address
and typing the hyphen, then pressingReturn. As with setting multiplebreakpoints, you can clear multiple
breakpoints by separatinghyphenswith a space.

Dump
The ability to view displays of arbitraryareasof memoryso that you can see or change what they contain is
also a very basic debuggerfeature. To opena dump window, clickon the "Dump"button in the button bar or
hold down the ac key and press the "D" key. A dump window looks something like this:

D DUMP FROM 000090(A7)
0Deeec:s ee eo CB C0 FF FF·ea ee ea eo CB 44 ee ae ee ee
eocruc: 86 81 53 AS 8e 8e 8e 0e B0 ee B0 88 89 ee ee ee
BDCB..~: ee ee 80 ea 0e ee 80 80 00 ea 00 ee Be FS 88 ee

•..••.••••.0 ..••
..s .

This is a small dump window; in fact this windowis as small as TMON windows get (three lines of data).
Dump windows show'a combination of hexadecimal and Ascn data, with the hex on the left and the AScn
on the right. Note again that you can click on the line with the CCOOOOOO(A7)" andtype in any expression,
includinglabels or addresses, or you can anchorthe dump to a registerso that every time the registerchanges
the dump will follow suit. (In this example the dump is anchoredto the stack.pointer; this window will
always show a dump of the top $30 bytes of the stack.)

A word about dumping application globals is in.order. Application globals have negative offsetsfrom the AS
regis., and are usually accessed with the 680xO's register indirectwith displacement addressing mode, in
whjebcase the displacement is a four digit hexadecimal value.However, due to the way TMONhandlethesi" bit, when using the dump window to look at globals the displacement must be expressed with the sign
;~ carried out to the 24th bit, e.g. FFFC42(AS) instead of the incorrectly interpretedFC42(AS).

o;Making changes in a dumpwindow worksmuchthe sameway as making changes in an assembly window. You
:can click anywhere withineither the hex data or ASCn data and type in your changes. All of the normalrules
of TMONuser input apply. In addition, the dump window is smart enoughnot to allow you to type invalid
hex data in the hex portion of the window (although you can enter any expression that evaluates to a
hexadecimal value). Also be aware that the cursor doesnot automatically wraparoundat the end of the
line-you must explicitly press Return or Enter. Normally when you type ASCn in TMON it is converted
to uppercase, but this is not true in the ASCn portionof the dump window-it is case sensitive.

22

User's Guide

Print
Acma11y, there are two sides to the printing coin. One is the "Print" button on the button bar. Clickingon it,
or holding downthe • key and pressingthe"P'"key, will cause the contentsof the active windowto be sent
to whatever port using whateverprotocolyou chose in the configuration of TMON.Normally this means that
the window will be printed on your ImageWriter printer (note thatTMON, due to its nature, doesn't print to
a LaserWriter via the AppleTalknetwork).

The flip side of this coin arises when you want a printoutof a particularly long dump,disassembly, heap
analysis, or resourcefile listing. Then you need to use the "Print" functionfrom the user area. To do this,
f11"st click on the "User" button in the buttonbar, or hold down the • key and press the "U" key. You
shouldsee something like this:

[J USER ar•••t.ar'. at. .StDBBE. PhySical Siz. is $7688: logical size is .7688
10gg1. pages 6IePIory func'iOM>:
Block ~. (src dst. len):
Block corap.... 0 (acIr'l adr2 1..,):
Fill (bgn end val tvLenJ):
Find (byt.e.ligned) () (val tvL.4tn·tbgn c.ncc:JJ):
T_Plpl.". (WindowRecor-cD (addr):
S\ack addresses <) (addr):SP
S\ac:k crawl 0 (addr):RA6
Load resource~= ID):Prin\ (duPlP) (. ae) Cbgn -.c!):

The "User" button brings up the closest thing to a menu that TMONhas; it's a window that containsnothing
but choices. This window is actually three pages,and thefU'St line is how you get from one to the other.The
function is called "Toggle pages". We don't need to togglepages at the moment, however, since the "Print"
optionis on this window. It's the last choice listed above•.

You'll notice the word "dump" in curly braces after the word "Print." Curly braces indicatea message that
will changeunder certain circumstances. In the case of "dump,"if you positionthe cursor after thecolon on
that line and.. pressReturn or Enter withoutproviding any parameters, the message will cbange.These are
your priJ;l~ oPtions. In this case, the optionsare dump,disassembly, file, and heap.Theerror messagealso
chaD&~;(but only asa result of trying to print .something. You cannotchange. it manually.

Itemlln parentheses are parameters to the function. Youmust enter these in order for the function to work.
Thesemayalso changeas the nature of the function changes. For example, dumps and disassemblies requirea
startingandending address,whereas resource rue contentlistings require a file reference number,.and heap
analyses require aheapzone number.

To use the "Print*' function, fll'St positionthe blinking verticalbar after the colon on that line. Press Return
or Enter until the proper type of operation is listed in the braces, Supply theparameters askedfor by typing
them after the colon,and pressReturn or Enter. That's all there is to itl

Step
The ability to execute a program literally one instruction at a time is anotherimportant basic featureof any
debugger, and TMON is, of course, no exception. Stepping through the program can be accomplished by either
clicking on the "Step" button in the buttonbar or by holding downthe • key and pressing the "SItkey.
Stepping through the programcausesTMON·to pass control back to $e application beingdebugged for the
durationof one instruction. This way you can seethe effect that any giveninstruction will have on the system.

Note that any windows open whenyou use Step will be updated to reflectwhatever· the instruction cbanges.
thanks to TMON's constantly updated windows. Soif you step through an instruction that changessome
memory location, and that location currently appears in a dump window, then the dump windowwill change
to reflect the new value in that memory location.

Actually, it is not quite true that stepping. win .execute ODe· instruction at a time. If the instruction to be ex­
ecuted is a ROMtrap, TMONwill treat the trap as if it were a single instruction. In other words, using
"Step" will not allow you to go through the ROM routines one instrucdon at a time. However, another
function will allow you to do this. It's called...

TMON

Trace
Trace behaves in exactly the same fashionas Step, except that when ROMtraps are encountered, Trace wiIllet
you step through the trap dispatcher and the ROMcode itself.This is handyfor seeingexactlywhat those
ROMroutinesare really doing to your program (Beyond Inside Macintosh"as it were).You can use Trace by
clicking on the "Trace" button in the buttonbar or by holdingdown the 81 key andpressing the "T" key.
Other than the handling of ROM traps, Trace is identical in all respects to Step.

GoSub
The GoSubfunction is identical to Step exceptthat any ISR or BSR instructions are allowed to execute in­
divisibly. This is handywhenyou aredebugging something and you encounter a ISR or BSRto a subroutine
that you are not interested in. You can simplyOoSuband TMON will not regaincontroluntil the subroutine
has returned. You can use this function eitherby clickingon the "OoSub"buttonin thebuttoD,.\Jaror by
holding down the • key and pressing the "0" key.

Exit
The Exit function is one that has been touched on already, but the explanation of its purpose beaD repeating. If
you click on the "Exit" button in the buttonbar or hold down the 81 key and press thet&Jr' key, TMON will
relinquish control and let the 68OXO start executing code at wherever the PC currendy points (hopefully
somewhere in a relatively bug-freeenvironment). This is useful for letting an application execute in an all-out
fashion. (Well, almost all out; TMON still has its addressesstored in those low RAMvectorsunless the
application has overwrittenthem and you told TMONnot to refresh them.) The exit function is used when a)
the debugging session is over, or b) you have told TMONto regain controlat a point thatwould take you
hours to Step or Trace to. A good example of this latter use is to execute theprogram, in full gear until a
breakpoint that you've set is reached.

Block Move ,
Moving an arbitrary block of memoryfrom one place to another is sometimes a.usefuf''bung to do from
within a debugger. Among other things, it's handyfor copyingvaluesfrom one variable to another(assuming
thatyou can determine the addresses of the variables). BlockMove is a user area function. It's found in the
"memoryfunctions" window. Click on the "User" button in thebutton bar or hold down the • key and press
the "U" key. The user area window will appear. If the first line ("Toggle pages") under the title does not say
"(memory functions)", click to the right of the colon on that line and press Return until it does.Just to
refresh your memory, here's what the window shouldlook like:

o USER area s\.ans a" $01088E. Phys~cal size is $7600; logical size is $7600
Toggl. pages~ runc\.ions):
Block PICMt <sn: cis\. . len):
Block COMp". 0 <adrl adr2 len):
Fill <bgn end val [vLenJ):
Find (b\I"e aligned) () (val [vLen Cbgn c.nccJJ):
T~la\.e (WindowRecord) (addr):
S\.Kk Mdrnws 0 <addr'):SP
S'ack crawl 0 <addr): RA6
u.d ,.~ 0 ("'alP. 10):
Pr'i", (duMP> (~000)(bgn end):

You'l1 see that Block Move is the fast function after the one that toggles the windows. You'll also see that
it is a simplefunction that takes three parameters: the sourceaddress, the destination address,and the number
of bytes to move.Type these three items after the colonon that line (click to theright of the colon to put the
cursor there), and press Return or Enter. That's all it takesto movebytesfrom one place to anotherl Be sure
that you knowwhat you are doing with this function; it's basic, but powerful, and movingmemory around at
randomnot only can crash your system,it probably will crash your system! Note that all of the rules about
entering addresses in TMONapplyto user area functions as well (theycan beany expression, including labels,
ete.),

24

User's Guide

Block Compare
Block Compare is another user areafunction thatcompares two blocksof memory to ensure that they contain
the samevalues. It, too, is a user area function, and is in the same window as BlockMove.It takes the same
three parameters as BlockMove,namelya beginning address of the first block,a beginning address of the
second block, and a byte count. Initially the curly bracesfor the BlockCompare function are empty.Any
mismatches will be reported there as "Mismatch at xxmx/yyyyyy," where"xxxxxx" is the address of the
mismatch in the fll'St block, and "yyyyyy" is theaddress of the mismatch in the secondblock.

Fill
The FJ.11 functionallows you to fill a block of memory with a particularvalue. This function takes four pa­
rameters: the beginning addressof the block to fJ.11, the endingaddressof the block, the value to fill with, and
the size of the value. The square brackets around thefourth parameter meanthat it is optional. If it is not
specified, TMON will assume that it is only to use the least significant byte of the value to fill. Note that
the size canonly be one throughfour bytes.'Ibis function is also very dangerous, so use it with extreme
cautionl Like movingblocks to undefined areas, filling random memory blocksis a goodway to crasha
system.

Find
Fmddoesexactly what it soundslike. It searches for a particular value throughout a particular block of
memory, reporting any successful searches as it goes along. It is a user area function, and is in the "memory
functions" window just like Compare and Fill. It takes four parameters: the value to searchfor, the length of
thevalue,the beginning address to search from. and theending addressto search to. Note that all parameters
other than the value itself are optional, but also be aware thatuser area function parameters are positionally
dependenL In other words, if you want to specify a beginning address you must specify the lengthof the search
value, since thatparameter comesbeforethe belinnfD& address. Note that the only valid lenltbs areone
through four. If you press.Return withoutentering any parameters, Find will togglebetween doing its
RIIChes onbyte boundaries or word boUndaries (word boundarysearches areusefulforflDding 680xO
lDatractlcq. since the~OxO requires its instlUCtious to lie on word boundaries. They're also useful for
flDdJDa thIDp in dataSWCtul'eS .thatyouknoware· word aligned, BUchas heap blocks.)

If InY matd1es ate found, a message givingthe address of thematch willbe displayed betweenthe curly braces.
The address wiD also be assigned to TMON's pseudoregister, called"V."

W It is definitely worth talking about MV" now, "V" is a register that.is set by many of the user area
functions that retum values. The find function is one of them. This is so that when you have useda
user area function to determine a valueyou don't have to type thatvalue in whatever otherportionof
TMON youare using-you cansimply use V. For example, whenyouhavefound an address, youcan
opena dumpwindow and type MV" as theaddress to dumpfrom. Or you can enchora window to V
and watch yourdump(s) and/ordisassembly/disassemblies change as V changes.,The usefulness of V
has been underestimated by manypeople. It is a powerful tool for making use of information that user
area functions return to you. Remember· iL

TMON

Intermediate Features

Now it's time to explainsomeof the features that are not so common and whichare, perhaps, slightly more
powerful than the. preceding ones.

Trap Intercept
Trap intercept is a user area function that allows you to specify a trap or range of traps that,' if encountered
withinthe specified PC range~or anywhere, if no rangeis specified), will causethe debugger to be entered.
This function can be found on this "AOOO trap functions" portionof the "User" window. FIrst open the
"User" window by clicking on the "User"button in the buttonbar or by holding down the • key and press­
ing the "U" key. If the first line ("Toggle pages") under the title does not say C'(AOOO trap functions}",
click to the right of the colonon that line andpressReturn until it does. The window should look something
like this: .

[J USER area starts at $0tOBBE. Physical size is $7688; logical size is $7600
Toggle pages <A000 trap functions):
Trap record (t8 [tl [PCe PClJJ>:
Record () (fullStop nMsg [locJ):
Trap (heap check. saMble) (zonel):
Heap () (zonel):
Trap discipline <lenient) (\e [\1 [PCe PC1JJ):
Trap checks~ (\8 [tl [PCe PClJJ):
Checksu" (bgn end) (A426):40000e 4lFFFF
Trap intercept (t9 [tl [PCe PClJJ):
Trap Signal (\9 [\1 [Pce PC1JJ):_G.tN.xtEv.nt _Ev.ntAvail

Trap intercept is the secondfunction from the bottom; it takes at least one parameter, with the remaining
parameters beingoptional. Note that whena userareafunction requires a trap or trap range,youmaysimply
type in the trap namepreceded by an underscore ("_"),just as the trap nameappears in an "Asmbly" window.
See the "Trap signal"function in the window above for an example of a trap range LOetNextEvent through
..BventAvail). Often you will just wish to entera single trap; in that case you can sitnply type in the trap
nameand TMON will supply the other parameter automatically (itwill be the sameas the one you
entered-in otherwords, TMONconstructs a traprangeconsisting of one trap).If you wish to include more
thanone trap, type them in, separating themwith a space. You willneed to entera range. evenif it.consists of
one trap, if youneed to enter one or both of the optional PC values. If you enter the trapsin. the range in
reverse order,TMON will reverse themfor you automatically (so that trap rangesalways go from lowest
trap number to highest).

Note that trap numbers have changed from the 64K ROMs to newerROMs. On 64K ROMs, only trap
numbers from $OOO-$lFF were' valid..On 128K: or 256K ROMs, trapnumbers from$OOO-$FFF are valid. Also
on newer ROMs, the toolbox/OS flag bit is the definitive wayto identifya trapas an OS trapor a toolbox
trap.The upshotof all of this is that youneedto be conscious of whatyouare reallysaying when you typein
a trap name or number. For example, the correct way to say c'do this on all traps"is to entera numeri~
range from $000 to $FFF.This will work the way that you expect it to.

One popularuse of Trap intercept is to intercept _InitGraf so that when an application is launched TMON
wiUgain controlvery early in the program's execution, since_InitGraf is executed very early in the program.

Checksum
The"Trapchecksum" function is used to determine whether a particular range of memory has had anychanges
from one ROM trap to another. This is useful, for example, for narrowing down the section of code that you
thinkmaybe trashing a variable in yourprogram. Trap checksum is also on the"AOOO trapfunctions" portion
of the "User" window, and, like trap intercept, it takes four parameters, the last threeof which are optional.

The line below the Trap checksum line allows youto deflne whatrange of addresses to perform the checksum
on. The default values hereare the beginning andending addresses of the Macintosh ROM (which, of course,
canneverchange, andso the checksum willnever fail). Change these addresses in orderto change thearea that
TMON will checksum.

26

User's Guide

Onceyouhavedefinedthe trapsand PC rangeduring whichto checksum, and the memory range to checksum,
execution of any code that contains the traps you choseand lies within the PC range that you chose will cause
the memory that you chose to be checksummed. This checksum occurs before the trap is executed. If the
checksum does not match the previous checksum, TMONwill be enteredand will display a message indicating
that the checksum failed.

Leave TMONj queue events until mouse click
This functionis a catch-allone that allows you to generate eventswhichwill be accepted into the applica­
tion's event queue.TMON will regain controlonly. after a mousedown event (i.e. only when you click the
mouse). As the application executesits event loop, theseevents will eventually be acted upon. This is a good
way to force an event, such as a menu selection, into an application while you are spyingon it with TMON.
This function is a user area function which is on the "controlfunctions" portion of the "User" window. To
use it, click on the "User" button in the buttonbar or hold down the ~ key and press the "U" key. If the
first line ("Toggle pages") under the title does not say "{control functions}", click to the right of the colon
on that line and press Return until it does. The window shouldlook something like this:

[JUSER area starts at $01DBBE. PhySical size is $7600; logical size is $7600
Toggl. pages (c~rol functions):
Look for labels between LINK/UNLK of A6 <0-6=register Ax):6
Label tabl. o (nLabels [locJ):
Label'add/reftOVe 0 (lbl [adr [endJJ):
Label file load:
Registers 0 (8=save):
~ea~ TMOH; queue events until Mouse click:

Lea~ appli~ion (8=EXitToShell. l=re-Iaunch current application):
Shut down (B-r.-boot. l-unMount voluM.s and r.-boot):

To use this function, click after the colonon the line that says "Leave TMON; queue events until mouse
click:" and press Return or Enter. Youwill appear to be in the application. You can do anything that you'd
like to generateevents. When youclick the mouse, you will be returned to TMON. Whenqueueing events for
your application, bear in mind that the Macintosh onlymaintains the number specified by your volume's boot
blocks at boot time; anyeventsbeyond thatnumber are lost. Once theseevents havebeenqueued, the
application will receive themas theyare retrieved fromthe queue.

Trap Record
The "Trap record"function is another highly useful one for helping to determine where a problem arose. It
allows you to definean area of memory which will be used to recordimportant information about a set of
traps. Trap record is located on the "AOOO trap functions" portionof the "User" window, and like most of
the AOOO trap functions, it takesa trap number (or range) and an optional J;>C range. A secondary line allows
you to indicatehow many traps to recordand whether recording shouldstop when the buffer is full.
Optionally, this line allows you to indicate where the recorded information is to be stored. Generally it is
best to leave this parameter out and letTMON allocate the space for you (TMON will allocate space in the
system heap).Any time a trap within the givenrangeoccurs within the givenPC range, it will be recorded in
the buffer if fullStop is false, or if fullStop is true and the buffer is not full. Note that if you enter a non­
zero value for the fullStop parameter, the function will enter TMON and give you a message when the trap
record buffer is full. Otherwise the function will continue to record traps, overwriting the ones that were
recorded before.

To disable the trap recording, just click to the rightof the colon on the line that says "Record"and press
Return. TMON will deallocate the block that contains the recorded information and return everything to
normal.

27

TMON

Creating a buffer to record traps in assigns the address of the bufferto the V register, so that you can opena
dumpwindow anchored to the V registerto see the recorded information. The information is layedout in rows
starting with the most recent trap and ending with the oldest, and each line is as follows:

Byte Description
0-1 AOOO trap number
2-3 Low 16 bits of Ticks
4-7 Address of AOOO trap
8-1S DO/AO for OS' traps, top eight bytes of stackfor toolbox traps

Note that recording $10 traps is usually enough to be quite useful in tracking down the flow of the problem
program.

Template
Template is an attemptto allow you to look at a sometypical Macintosh data structures in a meaningful way.
It takesan address and treats the data at thataddress as a record of whatever type youhave chosen. (It's up to
you to make sure that the data at the address youspecify actually is what you are claiming that it is.)

The "Template" functionis a user area function which can be foundon the "memory functions" portion of the
"User" window. It takes one parameter, the address of a data structure. If you press Return after the colon
without entering a parameter, the function will cycle through the four data structures that it currently
suppons: WindowRecord, ControlRecord, TERec, andParamBlock. Onceyouhavechosenthe appropriate data
structure type, just type an expression that evaluates to the address of the data structure and press Return or
Enter, and the "User" window will show the names and contents of the record's fields to the best of its
ability. An exampleof this looks something like this:

In this example, I bavea data structure at $4FCA8 that I happen to know is a WindowRecord. (How do I
know that?There's a TMON heap window that makes these things easy to find, We'll get to thatlater.) So, I
typed in 4FCA8 after the colonand pressed Return, and the window above is whatI got backfrom TMON.
Among the interesting things that I can learn from this window are: the window is type 8 ("zoomDocProc,"
according to Inside Macintosh), the window was visible at the time that the WindowRecord was displayed,
the window was highlighted, the window had a go awaybox, at leastone control, and its title was. wrMON 2
Manual." Other useful piecesof information are present as well. In particular, the handles to the window's
various regionsare given.Similardisplays are generated for the otherthreedata structures.

Stack AddressesIIS_ addresses" is a function on the "memory functions" portion of the "User" window. Its purpose is
simply to take the values that it fmds on the stackand attempt to "recognize" them (i.e. if theyare return
addresses within a pieceof code that has a labelassociated. withit, TMON willdisplay the address as the
appropriate label with the appropriate offset).

The user area startsoff by conveniently providing you witha default parameter to this fimcdon of liSP." If
you click to the right of this value (it is treated as a value) and pressReturn orEater, TMON wllllook at
the value thatlies at that address and try to recognize It, Thevaluewill. be disp...yed in the curlybraces,and
any labelandoffsetcombination that applies will be displayed in theparenthesiJ·iDthe braces. Continuing to
p-ell Enter will continue to walkup the stackaddress by address. To startover. just click to the leltof the
address insteadof to the right it and pressReturn. Youcan takeadvantage of theway in which pressing Enter

28

User's Guide

dift'ers from pressing Return by clickinganywhere in the parameterand pressingEnter (whichre-enters the
wholeline). Continuing to press Enter will cycle through the stack addresseslist. Since the cursor remains to
the left of the parameter when you do this, you can start over at any time by pressingReturn insteadof Enter
(pressing Return at the beginning of the line clears the line). Since this is a user area function that returns a
value, thatvalue is also assigned to the V register.

Stack Crawl
The "Stack crawl" function is a lot like "Stack addresses" except that its purpose is to follow a chain of
procedures or functionswhichhave been activated but not yet completed. This is possiblebecausein high level
languages like Pascal and C (and in some 680xO assembler programs as well) the A6 register is used in a LINK
instruction at the beginningof the procedure and in an UNLK at the end. The LINKinstruction creates what's
knownas a "stack frame," and the UNLK instruction destroys it. The Stack crawl function follows these
stackframes in order to determinethe return address of the procedure. It then sees if it can be identifiedby a
label and, if so, does so.

It's harder to explain than it is to use. The functiontakes one parameter, the address register to assume is the
stackframe pointer (in most Macintoshprograms, it'll be register A6, expressedas the default parameterof
RA6). If you click after the 6 -and press Return or Enter, the function will determine what the return address
for the currentlyactive procedureis, displayit in,the curly braces,and displayany matching label and offset in
the parenthesis in the braces. Continuing to click to the right of the address displayedas the parameter will
continue up the stack frame list until there are no more activeprocedures. The processcan be cancelled at any
timeby. clicking to the left of the address and pressing Return instead of clicking to the right of it. Note that
the sameReturnjEnter shorteutthat I described for "Stackaddresses" also workshere.'The value displayed in
the curlybraces is also assigned to the V register.

Load Resource
This is kind of an obvious function, and also rather handy. It allows you to load into RAM a resourcefrom
any currentlyopen resource file. It's particularly usefulfor loading resources of types other than CODE that
do contain executable 680xO-code that you wish to debug(these types can be thingslike DRVR, INIT, CDEF,
MDEF, WDEF, and It) on).

'.....
The -Load resource"function is on the "memoryfunctions" portion of the" "User" window. It takes two pa­
rameters, the resource typeand its ID. You can express the type as a fourcbaracter value using single quotes
('CODB') or the type can be any valid longword expression. If ther~ceis successfully read from disk, the
address of its bandlewill appear in the curly bracesand also be~.·lO·'tlle V register. Note that because
this function expects the resourcemanageranddisk I/O functions to work: properly, it is a very dangerous
function if the system has been left in an inconsistent state,.eitherbecause of a problem with the application
beingdebugged or becauseyou've enteredTMONat a timewhen thesystemis inthe middleof an important
operation. Alwaysremember to hold down Option whilepressing the interrupt button; precisely what this
does is discussed in the Trap Signal section.

Leave application
Leaveapplication is a user'area function that takesone of two parameters: zero to ExitToShell (launchthe
Finder) or 1 to re-launchthe currentapplication. All breakpoints are clearedby this function. Both of the
choices (ExitToShell or current application) are usefulfor "startingover from scratch" because they close all
openflles and open resourcefuesbefo~ launching•. They're also usefulfor attempting recovery from certaip.
kinds of system errors. For example, if the application that you're debugging consistently bombs into TMQN
with a System Error $1C (meaning that the stack and heap have collided) you may find it useful to try, uslng
Leave application to ExitToShell. Hopefully it will work and you will at least have some way to get out of
the application which is trying so desperately to destroy the heap (exiting TMONand quitting the application
won't work; by definitionyou'll wind up bac1c in TMON with a System Error $IC almost immediately,
unless you've played with the stack pointerto avoid the problem). You'll,fmdLeave application on the
"control functions" portion of the "User" window. Note that Leave application uses to re-launch the current
application, so you can cheat and force TMONto launch anything by editing the strina found in CurApName.

29

TMON

Shut down
Shut down, which is also among the "controlfunctions" of the "User" window, bears a certainfunctional re­
semblance to Leave application. Youuse it to get out of a stickysituation. The difference is tbat Shut down
does exactly what it says; it's like turning your computer off and backon. Thereare two flavors of this
function: providing a parameter of 0 will re-boot; providing a parameter of 1 will unmount all currently
mounted volumes and re-booL Usually using parameter 1 will save you a lot ,of grief.

File
The "Flle" function is anotherresource-related one that's nice to have around. If youcUck on the "Flle" but­
ton in the buttonbar or hold downthe 81 key and press the "F' key, a window listing all currentlyopen
resourceflies by fJ.1e reference number will be shown. It lookssomething like this:

D Rnow-c:e fll••
Filn prnem: t8B68 $8802

According to this window, there were tworesource files open at the time: file number2 II almost always the
Systemflie (the flI'St resource flie the Macintosh opens,by defmition). In thiscase,u iD most caei.. tbo otber
rlle reference numberrefers to the application's resource file.

If we type "60" after the "Resource fde I" prompt, we see something like this:

D 'Resource fll. "0060
'CODE' .0008 •• P..... Nowhere
'CODE' *0901 ••PL.l. • A\ $00CC44
'CODE' *0902 •'. PL. • • • Nowhere
'CODE' *0993 •• PL. • • • A\ $962BC4
'CODE' $9904 ••PL.... A\ $062198
'CODE' .0983 ••PL. • • • A\ .95FC72
'CODE' *0896 •• PL. • • • A\ .05E6B6
'CODE' *0987 ••PL. • • • Nowher.
'CODE' $0908 ••PL. •• • Nowher.
'CODE' $0089 ••PL. • • • Nowh.,..
'CODE' $geeA ••PL. • • • A\ .0617F6
'CODE' $080B ••PL. • • • A\ .05EA36
'CODE' te80C ••PL. • • • Nowl"14tre
'CODE' $0880 ••PL. • • • A\ $069A3C
'CODE' S888E •• PL.... A\ S96116C
'CODE' $88IF ••PL.. • • M .05F~9A
'CODE' tell. ..PL.... Howher.
'CODE' $0011 ••PL.... Nowhere
'CODE' *0812 ••PL. • • • A\ .05EF78
'WIND' $0088 ••P•• l.. Howher.
'WIND' .0081 ••P•• 1.. Howher-.
'WIND' .0082 ••P•• l.. Nowher.
'WIND' *0083 ••P•• 1.. Howh.r.
'n)CAp' .0888 ••••• 1.. A\ .017746
'n)CAp' .•981 •••••1.. A\ S0166S8
IITAT' $8888 Nowhere

I dI1iberately madethis window pretty large in order to showas muchinformadon as I could.,1blswindow is
a (SMu1ia1) resource list from the application thatwas running at the time. .

30

User's Guide

The window provides us with some useful information. Fast it tells us the resource type. Then it tells us the
resource ID (in hex, of course).Then it shows us the resourceattributes in a format that's a lot more in­
telligible than just Is and Os. A period (".'') is used if the flag is reset, otherwise a characterappears.The
characters are these:

R System reference
H Loadinto systemheap
P Purgeable
L Locked
T Protected
1 Preloaded

W Write into resource file
U U flag set

Using this information, we can see from the window above that all of the CODEsegments, for example, are
purgeable and locked.In addition, CODEsegment number1 is preloaded (loaded into RAM immediately when
the resource file is opened).

If you wish to look at a differentfile's resource list, just click before the flle numberand press Return. The
fist of flie numberswill reappear.You can then chooseanotherfue ·number.

Number
The "Number" window is essentially TMON's answerto the programmer'scalculator-you know, the ones
thatdo decimal/binary/hex math and conversions. Well, TMON's is even more powerful than that. It will
takeany expression and evaluate it. Here's whatthewindow looks like:

I0 HUl'l8ERIr~ +.eeeeeeeeae(+.eeeee) ' ...• ' _Open

~pretty innocuous,doesn't it? It can be. You simply type any valid expression. after the "NUMBER"
prompt.lIld TMONwill· display the result of evaluating the expression in theUno below (as a hexadecimal
DUmber iIslgned to thepseudoregister N,\s a 32-bitdecbDaIvalue, asa 16-bitdectmal value, asa four
charactez string, as whatever ROMtrap the numbercan be taken to ~epresent. and asa label with some offset,
if the resulthappeDs to lie within a recognizable label range. .

~~........

Fme.What's an expression? That's a reasonable question, andone 1l'bi(;la. Waldemar has answered in great detail
in his Technical Reference, which accompanies .thls one. Rather tbail reading a peat dealof redundant
Information here; I suggest thatyoulook at theNumbers section in the Technical Reference. You willleam
just how powerful NON'. expression handling is.

31

TMON

Advanced Features

Ah, here we are! Now for the good stuff, the stuff that really comes in handywhen thepressure's on and the
bugs arestarting to resembleSherman tanks.

Trap Signal
The "Trap signal" function really' could be considered a "smart interrupt"function. What it literally does is
provideyou with a way to press interrupt on the programmer's switchand not have that interrupt take effect
until a single trap or trap withina range that you have specified occurswithina PC range tbatyouhave
specified.This could also be considered a "basic" function, since it's used quitefrequently in·.TMON. This
function is on the "AOOO trap functions" portionof the "User" window. It's been a while since we've seen
that, so here it is again:.

Among the defaults that we've provided for TMON are the parameters forTrap signal. As you can see, we've
set the trap range to the traps _GetNextEvent through -.EventAvail (and-provided no-PCrange, whichmeans
that any PC value will cause the function to work).

Oncethe parameters have been enteredandTMON has been exited,you can get into TMON elegantly by
holding down Option and pressing Interrupt. This will indicate to TMONthat you want the trap signal to go
into effect.Now TMON will son of keep an eye on thingsuntil a trap within the.specified trap range and in
the specified PC range occurs. If one occurs,TMON will be enteredat that--dme--not at the time that
interrupt was pressed.You're not likely to noticethe delay,however, since things are happening so quickly.
As far as you're concerned the time betweenyourpressing interrupt whileholding down Option and the
Macintosh'sentry into TMON is zero most of the time.

We recommend using Option-interrupt any time that you need to get into TMON, becauseit guarantees that
the system will be in a consistent state whenTMON is entered, whereas if youmerely. hit interrupt, -you may
interrupt the processor at a pretty bizarre time-like right-smackdab in the middle of one of the system's
interrupt tasks, for example. Note that this will only work if the trap(s) for which the Trap Signal function
has been set are beingexecuted somewhere after the time that you use Option-interrupt. If this is not the case,
Option-interrupt willbe ignored. You may use interrupt alone, although this is somewhat risky. If neither
of those choices work, try X-interrupt, whichtries rather desperately to enterTMON, even goingso far as
to clear some of its globals in the process. This causesTMONto display a message to the effect that it has
been damaged, since TMONis constantly looking out for its own best interests by doinga checksum of itself
as lQ1lg as at least one window is open. Beforeusing the Exit or GoSub functions, be sure to set up your
nwfsters and stack appropriately, since X-interrupt clears them.As a draconian measure of last resort (if, for
elample, .-interrupt causes TMONto hang),youmaywish to use .-Option-interrupt, which does
."'erything that .-interrupt does, and also clears the first 48 bytesof the user areaso that a damaged user
area won't screw TMON' up. Of course, if you do this, the debugger will also complain that it has been
damaged, and it will be virtually unusable for any purpose other than gettingwhere you want to go by using
Exit or setting PC to !_ExitToShell and Exiting.

32

User's Guide

TrapDiscipline
Trap discipline is, in my opinion, TMON's most exciting feature. It represents a significant chunk of the user
area's size and power. It is a front end to the Macintosh's ROMtrap mechanism that, upon encountering a trap
in the rangespecified withinthe PC range specified, checksthe parameters to that trap and makes sure that
they aren't obviously screwy.

Trap discipline has two strengths. I like to think of them as personal and industrial, but Darin Adler, who
wrote the user area, refers to them as lenientand strict, and, I must admit, his terminology is at least
consistent with the idea of discipline. To choosewhichstrengthto use, just click after the colon on the "Trap
discipline" line and pressReturn. Once youhavedone tbat, you canset up Trap discipline with the samefour
parameters as Trap interceptor Trapsignalrequire.

Whenyou exit TMON with Trap disciplineactive,nothing obvious happensright away other thanthe dot in
the upper left hand comer of the screenflashing on and off to let you know that TMON's up to something
with the ROM traps. TMON does this whenever any of the AOOO trap intercepting functions (Trap record,
Heapcheck/scramble!purge, Trap discipline, Trapchecksum, Trap intercept, or Trap signal)are in use.

If, in the processof examining the parameters to a ROMtrap, TMONfmds something that it doesn't think is
reasonable, it will activate itself with the PC pointing to the trap whose parameters are questionable. You
may then look at the stack and/or the registers to try to determine what TMON doesn't like. TMON will as­
sist in identifying the problemas muchas possible by giving you a specialmessage window with some
indicator as to what it thinks the problemis ("1 NIL Handle." for example). Needless to say, Trap discipline
is a realGodsend.

Look for Labels Between LINKlUNLK of Ax
This function allows you to defmehow local variable allocation worksfor the program that you are debug­
ging.The LINK and UNLK instructions of the 680xO family of microprocessors exist precisely to facilitate
the creation of local variables. Most Macintosh programs use the LINK and UNIX instructions with address
registers A6. SomeMacintosh programs, however, use another addressregisterbecause they use A6 for
something else (in particular, programs written with the MACH2™ 83-Standard FORTHdevelopment
system use A6 as thedata·stack.pointer and A2 as the LINK/UNLK parameter).

This function is on the "control functions" portion of the"User" window. Here's whatlt looks like:

[J USER rea s\.-'s a\ $SlDBBE. Phy~ical ~iZ. i $ $7681; logical $ize i $ $7680
TOWI. P," (con\rol func..ions):
Look for abels be\we~ LINKAJHU< of Ai (8-6-r~i~\""Ax):6
Label \abl. 0 (nl..abel~ [loc]):
Labe1 adcYrettCMt 0 <Ibl tadr [.nee]):
Lab.l file load:
R.gi~\.r~ 0 <e-s.v.):
~eaw TtION; CI'MW 4tWM. un\il flIOUH click:

i.eave applic:a\ion <8=Exi\ToSheII,l-r.-launch curT.m. 8PP1ic:a\ion):
S~ clown <e-r.-boo\, ll1Uft1'1OUM. vol..... and r.-boo\):

To use this function, click after the colon on the line that says "Lookfor labels•••" and enter the numberof
the address register to use. Note that. since so many programs use A6, "6" is the defaultparameter for this
function.

Label Table
This function, which is also on the "control functions" portion of the "User" window, is used to allOcate
space to hold labels that refer to various points in a program. These labels are usuallyread with.the "Label
ftIe load" function (explained later) but not always. Labelscan be addedand removed manually. (I'll explain
how in a moment).

One thing that youshouldbe awareof is that each label takes 16 bytesof RAM to store.Also, labels canbe
storedeither as absolute or resource relative. Theseissues, as well as the label format, are discussedin detail
in the PredefmedUserAreaFunctions sectionof the TMON Technical Reference ManuaL

33

TMON

To use this function, click after the colon on the line that says "Label table" and type in the number of labels
to make room for and, optionally, the location of the table (if you leave it out, TMON will allocate the space
somewhere in the system heap for you). Press Return or Enter. The curlybraceswill contain a message
indicatinghow many labels are currently loaded; to start with this number will, of course, be zero. The table
can be deallocatedby clicking to the right the colon and pressingReturn withouttyping. any parameters.

Since this user area functionreturns a value, that value is assignedto theV register, and you can dump the area
allocatedby opening a dump window and anchoring it to V.

Note that you don't need to use this functionif your programcontainsembedded labels.

Label AddiRemove
This function allows you to add or removea label to a label table on the fly. "Label add/remove" isOD~e
"control functions" portion of the ."User"window. Let's look at the window again:

o USER rea .\r\. a\ $S1DBBE. PhySical size is $7688; logical sia i. $7681
Toggle pages (comrol runC\ ions):
look ror 1..1. bMWMn.lINKAJNlK or A6 <9-6-I"'egiS\.,. Ax>:6
label 'abl. 0 <nLatMtls [locJ):
label adcYrePIOW 0 <Ibl Cadr CendJJ):
label file load:
RegiS\erS 0 <8-s8ve>:
~.av. TMON: ~tMtn\S un\il ..cuM elide:

leav. applica\ion <B-EXi\ToShel1, l-re-launch curren\ 8pplica\ion):
Shu' down <9.r~, l-unMOUn\ V01UM•• and re-boo\):

The label table to work on must alreadyhave been allocated. "Label add/remove" takes three parameters. If no
parameters are provided the information in the curly braces is cleared. If just a label is Jiven (it must be a
label, in quotes, so that TMON knows it's a label) it will be removedfrom the table if it is present. Nothing
will happen if the label is not present.

If a label and an address are'given, the addressis assigned to the label.If the "SCan resources" optionin the
"Options" window (more about that later) has been enabled and the 'lddre~s falls withina resource, the label
is storedas resource-relative and needs no endingaddress. A message iBdicatina··that the label has been stored
resource-relative will appear in the curly braces.

If all three parameters are given or the label could not be stored as resource-relative, it is stored as an absolute
label startingat the address providedand endingat the endingaddress providedor, if no endingaddresswas
given, at the startingaddress + $800. Note that the endingaddress is considered the flrst byte past the
recognitionrange, not the last byte in the recognition range. In other words, the endingaddress will not be
recognizedas "label"+offset. A message to the effect that the label has been added as absolutewill appear in
the curly braces.

If the label table is alreadyfull the label is not added and nothingappears in the curly braces.

One reason that you may wish to add labelsmanually is so that you can easily identify important .sectionsof
code. You may also wish to use it to name important locations at whichto set breakpoints during debugging
10 that)'OU don't have to remember breakpoint addresses.

L8&81 File Load
Tbe"Label file load" function is also on the "control functions" portion of the "User" window. As I men­
tionedearlier, some development systems create what we call ".MAP files." We call them this because the
fIles have the string ".MAP" as the last four characters of the file name. The "Label file load" function can
read a .MAP file into an allocatedlabel table. Among the development systems. that create TMON­
recognizable .MAPfiles are Apple's MDS,Consulair'sMac C, TML Systems' MacLanguage SeriesPascal
(morecommonly known as TML Pascal), and recent versions of Manx's AztecC.

Touse this function you must alreadyhave allocated a label table that is at least large enough to hold however
many labels·are in the ftIe (and if you haven't countedthem,you can alwaystry to overestimate). Once the
tablehas been allocated, just click after the line that says"Label fIle load:" andpressReturn or Enter. The

34

User's Guide

Macintosh's standard dialog box for reading a file win appear, and it will only show .MAP files. Open the
one that you want. If TMONhas trouble reading the rue, or if you click the "Cancel" button instead of the

."OK" button, the message "Bad load" will appear in a message window, otherwisethe labels will be loaded
into the table. If the table is too small to hold all of the labels, TMON will load as many as it can, and then
stop. It will not providea warning that it could not load all of the labels, so be sure that you have allocated
enough space. .

Using .MAP files is encouraged if your development systemprovides them, since the file will even contain
labe~ for your development system's ·library routines, ..which is something that cannot be accomplished by
embedding the labels directly in the code.Do be awarethat this functionis extremely dependent upon the
system beingin a reliable state. QuickDr'aw, the Dialog Manager, the File Manager, the ControlManager, the
Font Manager, and TextEdit must all be working properly for this function to.work properly! For this
reason, you shoulduse this function immediately upon entering TMONfor the fust time, i.e. before any other
functions areused.

Heap Check, Scramble, and/or·Purge
The Macintosh uses dynamicmemorymanagement. In other words, it hasa pool of memory from which
programs can requestblocks of a particular size.These blocksmayor may not move aroundin this memory
pool (called the "heap") in order to allow allocation of large blocks. It can be quite confusing, and there are
manyopportunities for things to go wrong with theMacintosh's memory.

For thisreasonthe user area includes a funcdon thatallows you to check the heapfor consistency (the heap is
actually a large, fairly complexdatastructure whichmay be "broken"by buggy programs), force a heap
scramble anytime that one may occur, and/orpurgeall purgeable blocksfrom the heap.

The "Heapcheck, scramble,purge" functionappears in the "AOOO trap functions" portion of the "User"
window. It looks like this:

The"Trap (heap check, scramble) (zone#):" line is theone you're looking for. If you click after the colonand
press Return withouttYPiDa. in any parameters,· themessage·in the curlybraceswill cycle through:

"heap check,"
"heap check, scramble,"
"heap check, purge,"and
"heap check, scramble, purge."

Heap checkexamines the heap and makes IUfe that its structure is consistent. If it is not, TMONwill be
entered and a messagewindowdisplayed whichexplains the problem. Note· that with this function, a heap
inconsisteDCy is the only reason tbatTMONwill be entered. The check is performed whenany of the ROM
traps lis~ in the next paragraph are encountered.

Heapscramble causes all relocatable blockswhichcanbe movedto be moved. It only does so, however, whena
trap that may cause relocation is called.The idea Is to see if relocation may occurand, if it may,force it to
occur. This win causeprograms that rely on memory blocksnotmoving at particular times when they may
move to fail consistently, sincethe blockswill consistently move.The traps tbat may cause relocationare
..NewPtr, .,.NewHandle, _ReallocHandle, _SetPtrSize, and _SetHandleSize. Note that_SetPtrSize and .
-SetHandleSize may only cause relocation if the new size is greater than theold size. Note that the options
chosen are performed before the trap is executed.

JS

TMON

Scrambling the heap will also clearfree blocks to an oddnon-zero valueandjoin consecutive free blocks.
Thesefacts go an extra step towards assuring that any program thatbasan invalid pointer willfail quickly.

Using the "purge" optionof this function will purgeall purgeable blocks from the heapbeforechecking and
scrambling. This is usefulfor causing programs that assume that a purgeable block will stick around to fail
whenit doesn't. It's interesting to note that very few programs can survive the purge option! Most Macintosh
developers simplydon't expect things to be purged out fromunderthem, don't check, and therefore fail when
they assume that something is.still in RAM thathasbeenpurged.

Note that sincethe scramble andpurgeoptions occurwhenever theymightnormally occur, theyoccura lot
more often than they do in "real life," and the result is that they slow the system downa great deal.If you
use these, be prepared to haveyoursystem: perform likesomeone poured molasses into its vents, andbe aware
that with these functions such behavior is normal.

Immediately beneath the "heapcheck, scramble, and/or purge"function is one that simply says"Heap ()
(zoneH):" If you click to the rightof the colon, typea "0" for the system heap zoneor a non-zero valuefor
the application heap zone,and pressReturn or Enter, the curly braces will contain the totalnumber of free
bytes in the zone, the number of free contiguous bytes, and the amount that the zonecan grow, in that order.
If you enter a zoneparameter to rightof the "heapcheck, scramble, and/or purge"function's colon, the "Heap
() (zones):" changes to "Heapcheck, etc.now" depending uponwhatoptions you chose. Clicking to theright
of the colonand pressing Return or Enter will cause TMON to perform the chosen function immediately,
rather than waiting until the next appropriate AOOO trap.Note that scrambling and/orpurging the heap when
the memory manager is in an inconsistent state is extremely dangerous. Youshould onlyuse this function if
youhaveentered TMON via Option-interrupt or if youcansomehow be sure thatyouare in theapplication
environment at a moment when thereare no dereferenced handles about to bemanipulated. Hitting the ap­
plication when it isn't looking isn't very sportsmanlike.

Heap
Speaking of heaps, TMON wouldn'tbe a very good Macintosh debugger if it didn't provide youwithsome
means of taking a lookat thesystem heapand application heapandseeing whatwasthere. Youcan open a heap
window by clicking on the "Heap"button in the button bar or by holding down the • key and pressing the
"R" key. A heap window looks something like this:

[J AppliCa\ion heap is a\ '911400-$0C0298•
• 019729 90011C e Handle.\ $018884 (lpr)
$019844 900012 e Fr••
$01985E 090068 A Handle.\ $0114A8 (lpr)
$019808 000012 A. Handle a\ $018A10 (lpr)
$9198FC 800088 e Handle.\ $0114EC (lpR)
$01998C 000229 1 Handle.\ $011504 (lpR)
$019BBE 89000A e Handle.\ t018849 (lpr)
$919B09 809906 e Handl••\ $0114AC (lpr)
$919BDE 800008 8 Handl••\ $0187E8 (lpr)
.919BEE 00900A 8 Handle.\ $018899 (lpr)
$019C09 00000A 8 Handle.\ $91889C (lpr)
$919C12 000012 e Handle.\ $018AIC (lpr)
$019C2C 000014 e Handl••\ $0187DC (lpr)
$019C48 0000AA e Free
$019CFA 800012 e Handle.\ $9187A4 (lpr)
$919014 900002 6 Handl. a\ $0187E0 (lpr)
$019024 9000EC 8 Handle.\ $0114E0 (lpR)
$019E18 00009C 9 Handle.\ $01140C (IPR)
.919EBC e0000A e Handle.\ $9188B8 (lpr)
$919ECE 800010 e Handle.\ $918818 (lpr)
.019EE6 eee00A e Handle a\ $9188B4 (lpr)
t019EF8 900002 2 Handle.\ $018804 (lpr)
t019F04 00002A B Handle.\ $011510 (lpr)
$019F36 90000A 0 Handle.\ .018814 (lpr)

885F7C ¥" tr... :t

(Window ael8C22) TEHancn.

Fil. $911C .~, IO-$00es
Fil. $011C 'STRI' IO-t0088
(Window 1$019008) CI ipRgn
(Window U818C22) WTi\l.

(Window 1$819908) Con\Rgn
(Window 1$819B08) Upda\.Rgn

Fil. $911C 'MENU' IO-t9988
Fil. t01lC 'DITL' IO-t9081
(Window a818AB8) CI ipRgn
(Window @.918CFS) WDa\.
(Window 1$818AB8) S\ruc\Rgn

(Window 1$818CF8) Comrol !

This window shows the application zone.Which zone is being displayed is given on theItrSt lineof the
window, along with the location of the zone(starting andending addresses) and the total number of free bytes
in the zone.

36

User's Guide

If you wish to see the information for the systemzone, make sure that the cursor is on the first line of the
window(by pressing the Tab key) and pressReturn or Enter. The window will change to show the system
zone.

Each line of the heap windowdescribes a block in that zone.First is a space if the block is relocatable or an
asterisk ("*") if it is not. This is useful for easily seeing non-relocatable blocks in the middle of the heap,
causing fragmentation. Next comes the addressof the first byte of the block of data. In other words, the
pointer to the data is next. After the pointer comes'the size of the block. This will be the same as what was
requested of the operatingsystem. In other words, if the programexecutes a _NewHandle with a requested
size of $2A bytes, a block size of$2A will,awear in the heap window.

Thenext item-a single hex digit-takesa little explaining. It is the size correction factor for the block.
'Ibis is thenumber of unused bytes in the block. If the pointer to this block is X and the pointer to the fol­
lowln& block is Y, then the size correctionvaluefor the block pointed to by X is literally Y-X-8-Size(X),
where Slze(X),is thesize given 'in, the heap window.

Next comes,one of four phrases:, "Pree,'" f&Nonrel," f&JIandle at•••It 'or "INVALID." "Free" means that the
block 11 not currentl', allocated.~anything. "Nonre1ltmeans that the block isnon-relocatable. "Handle
at... " meaDJ that~1JIock~ ~r~locatab1eand ,~ refell'e(fto by a handle (a pointer to the pointer)
which 'isat ·the-addfelI:atveo.,'POl1oWtifS. 'tht addreII0fthe ,b8I1cDefsagroupof memorymanager flags, L, P,
andR.Thesefiap are1lppetcueif_ancllo~lfillOt;-L-stands for Locked, "P" stands for Purgeable,
andR. stands for Resource. Pina11y.,"JNVAlJ])tt meaai:tbat' the block failed,the'consistencycheck for some
reason audtbat,tbo_il~l)tJnbiB.~~
Both IlODI'elocatabte1IId~ ...-,··~··present,addidonal information helpful in determining what
they are. Firstof aU, if the -Rtf flag islet, the handle is checked against the list of open resource files and
their resources. If ..match ile f01l11dt thefde referencenumber, resourcetype, and resource10 for the resource
are shown. AUotber'DODI'e1ocatabIeand relocatable blocksare passed to a routine in the user area (the cus­
tomizablepart of the debugger). Thisroutine,sh;ould try to identifyas 'many blocks as it can. In the examples
above, the routine has identified many parts of windows (controls, TEHandles, visRgns, etc), The system
zone display identifies things like the FCBs list (File Control Blocks), the WDCBs list (Working Directory
Control Blocks), DCEs (DeviceControlBntries), the UnitTable, and so forth. All of these are handled by a
customizableuser area routine, so if there's something thatyou'd like identified that isn't currently,feel free
to rewrite the routine and add itl

You can set the V register to the address of a heap blockby positioning the cursorsomewhere on the line for
that block and pressing Return. This is useful,for example, for entering shortcode sequences for quick and
dirtypatches: fmd a block markedFREE,put the cursoron that line, and press Return. Now open an
"Asmbly" windowanchored to V. You can enter a few bytes of code in this unused block that way.

Options
The "Options" window allows you to specifywhich of TMON's recognition features are used and whichones
aren't This is useful for a couple of reasons. First, many of thesefeatures are more reliant upon the system
being in a consistentstate thanthe heart of TMONis, and they may break and cause problems if the operating
system is in an inconsistent state. Secondly, someof thesefeatures are somewhat slow, and if you don't need
them you can tum them off and speed TMONup significantly.

Here's what the,"Options" window looks like:

C OPTIONS Labels: 118S\.,. '5wi ..c:h
Labe Is: Scan r.sourc:.s
Labels: Sc:an lab.l ..able
Labels: Scan for naPles in c:ock'
Label'5: Idem i fy Aeee ..raps

Heap windows: Sc:an resourc:"
H••p windows: ld.n\iry i".MS

on
on
on
on
on
on
on

There are five switches for label functions and two for heap functions. The flrst label switch is the master
switch; it defmes whether or Dot labels are used at all. I find myself turning this one off whenever, I am in a
tight loop and have no convenient way toget out of it (i.e. it's in ROM or something like that). The labels

37

TMON

p-obably aren't doing me any good as long as I'm in this DBRA or whatever,so I can tum them off and let
TMON move a bit faster (I usually close all windows except the "Regs" window, too, for maximumspeed).

Thesecond'switch defines whether TMON will recognize addresses as being within a resource. In other words,
if this switch is off, disassemblies will never indicate whether the code lies withina CODB resource or nRVR
resource or what have you. Since TMONhas no way of identifyingcode within resources,embedded labels are
disabled by this option by definition (since TMON only looks for embeddedlabels if the code falls within
certain resources).
The third switch defmes whether or not TMON will look for code labels in a labe1table.·If this switch is
off, any label table that bas been allocated will be ignored. If this switch is on, the table will be scanned for
labels. Note tbat if the "scan for resources" switch is off, any resource-relative labels· in the table will be un­
recognizable,sinceresources won't be recognized.

Thefourth switchdefmes whether TMON looks for labels embedded in the code for a program. If this switch
is off, embedded labels will be ignored. Again, if resource recognition is off,then this optionwill be off by
definition as well.

The fifth switch defmes whether or not TMON will label code that belongs to an AOOO ~. Normally
TMON labels disassemblies of AOOO trap code with I_TrapName+Offset, where wrrapN..,"is ·the Dame of
the OS or Toolbox trap,.and offset is the number of bytes away from the beginning address of.the code.
Turning this switch off will cause TMON not to.label such code.

Thesixth switch defines whether ornot the heap window will identify blocks whichare resources. You may
wish to turn this capability off if, for example,a bug has corrupted a rue's resourcemap, cauJDaJbo._tion
to fail.

The last switch defmes whether or notTMON will attempt to identify heap blocks. Agam,10UWwlSh to
turn off this switch in order to keep this function from failing in the event of some heap-ft'Iated .•.~
or just in order to .improvedebugger performance(assuming that, for theduration,you·won't misS ··tJJe···;~· .
feature).

Technical Reference

39

TMON

The Main Dialog

The Main Dialog appears like this whenthere is a Monitorin memory. (The User's Guide discusses how it
.appears when there is no Monitor in memory.) This is the menu you will get if you double~lick TMONor a
User Area when there already is a Monitor in memory.

TMON uerslon 2.8

Written by
Waldemar Horwat.

019811COM Simulations, Inc.

648 S. Wheeling Rd.
Wheeling, IL60090

(312) 520-4440

(configure)

(Monitor)

(Monlfor...)

(Transfer)

QUit)

At thispoint yon have a choice of five options. Theymaybe executedby pressingthe "C" key for Configure,
the "M"key for Monitor, the "." key for Monitor... , the "T" key for Transfer, or the "Q" key for Quit.
Monitor... is disabled if the Monitoris installedin memory,and Configure is disabledif there is no
Monitor installed in memory. Most of these functions are discussed in the User's Guide. Whatfollows is
some additional information about certain functions.

Loading the Monitor
When there is no Monitor in memory, Monitor will load and enter the Monitorusingeither the tile called
"User Area" on the disk, or, if there is none, the built-inuser area in TMON with the Monitor. More
information on user areas can be found throughout thismanual.

Monitor... is thesameas Monitor except thatit allowsa user area other than the default one to be selected
and used with the Monitor. Clicking Open will start the Monitor, while clicking Cancel will return to the
Main Dialog. Hereafter these two options will be described together.

H a Monitor is already present in memory, the Monitor button will re-initialize the Monitor and reenter it
without reloading it from the disk. Use the interrupt button to reenter the Monitor without re-initializing
it.

o Do not use this button to re-initialize the Monitorif breakpoints have been set becausethe Monitor
will forget about them even though they remainset. You will then be unable to clear the breakpoints.

.. Here is some terminology clarification: "TMON" is the program that loads the "Monitor" into
memory. The Monitor, once loaded, is a debugger thatremains in memory and spies on whatever
programis currentlyrunning. You can easily tell when the Monitoris activebecause it has its own
specialscreenformat.The icons thatyon see on the disk if yon examine it with the Finder belong to
TMON.TMON, in addition to its own code, contains images of theMonitorand the "built-in" user
area (see below). .

40

Technical Reference

Loading a User Area
Theconceptof a "user area" is used throughout this manual. A "user area" is a set of routines whichare used
to customize the Monitor to" one's needs. It alsocontains several useful Configuration optionsand the current
state of the Monitor's windows. In addition, there is a built-inuser area embedded in TMON itself. The
procedure for selecting the user area to be used with the Monitor is as follows:

1. IT you double-click TMONor executeit as the startupapplication, the file "User Area" on the disk
is used as the defanltuser area. IT there is no such file, the user area withinTMON is used. That area
cannotbe removed or changed, 8Dd cannot beaccessedunless there is no file called"User Area" on the
disk.
IT you double-click a User Area, dw user area will be used instead.

2. IT you select Monitor in the Main Dialogwhile there is no Monitorin memory, the procedure is the
same as in 1.

3. IT you selectMonitor••• In theMain Dialog,youare asked to choosea user area. Once youdo so, that
user area is loaded with the Monitor.

User areas built with older·WlPlonI.of TMON(2.S8S> can not be loaded. An attempt to load an old user area
will yield theerror meuaae.·"'Tbe user area is tooold." See Creating Your Own User Functions for details
on modifying anolduer ... 10 it will work with this TMON.

41

TMON

The Monitor

When the Monitor starts, you will Seea list of commands in a small bar at the top of the screen and a
welcome messagenear the top of the screen.Now you can use any of the Monitor's features.

The Button Bar
There are fourteencommands in the buttonbar. To select a command, position the mouse over one of the
commands and click the mousebutton. It is also possibleto use the keyboard equivalentof any of the
commands in the button bar. For that hold down the X key and type the flrst letter of the command.

~ Note that the button bar at the top of the screen behavesdifferently than the standard Macintosh
menus; it is more similar to a collection of buttons.If you change your mind and don't want to select
any function in the button bar, move the mouse below the button bar and then release it.

~ One command doesnot appear in the buttonbar. It is the Mouse Unfreeze command. The only way
to invoke it is to type XM.

Windows
The commands Dump, Assembly, Breakpoints, Registers, File, Heap, Number, Options, and
User use windows to do their functions. Executing one of these commands, either by clicking in the button
bar or typing the keyboardequivalent, causesa corresponding window to appearor be uncovered. Youcan
createonly one each of Breakpoints, Registers, Options, and User windows; any numberof Dump,
Assembly, File, Heap, and Number windows can appearsimultaneously on the screen.To create additional
windowsof one of these types you can't just use the corresponding command, becausethat will just move the
cursor to the top of the window. Instead, you have to hold down the Shift key while either clicking in the
button bar or typing the keyboard equivalent

~ Use the Shift key to create additional ~dows of the same type.

The windows behave similarly to normal Macintosh windows, althoughthere are differences which will be
explainedhere. All windows occupy the full widthof the screen and therefOre can't be moved horizontally.
To close a window, click in the close box. To move it, press the mousebuttondown while the mouseis
anywherein the window (except in the close, resize,and scroll boxes),and dragthe mouseup or down. Dump,
Assembly, File, and Heap windows also have resizeand scrollboxeson their right sides.Dragging the
resize box in the lower right comer of the window will make the window bigger or smaller.Clicking one of
the two scroll arrows will scroll the window one line, while holding down the mouse button there will
repeatedly scroll the window. Note that the windows can be resizedor scrolledeven if they are partially
covered by other windows, withoutbeing brought to the front. These windows can also be moved without
being brought to the front by dragging them in the verticalarea betweenthe two scrollboxes. No more than
nineteenwindowscan be open at any time; if you haveexactlynineteen windows open. the last one may
disappoarif you save the user area, restart the Macintosh, and reload the Monitor with that user area.

.. Windows can be dragged by pressing and dragging the mousealmostanywhere in the window. and not
just in the title bar as with normal Macintosh windows.

.. Resizing or scrolling a windowdoes not automatically bring it to the front Dragging a window also
will not bring it to the front if the mouse is positioned in the area between the two scroll arrows.

The "active window"is a synonym for the frontmost window. It is a little moredifficult to find which
window is active in the Monitorthan in the normalMacintosh windows. The activewindow. if there is one, is
alwaysthe frontmost one and contains a flashing cursor. There is no activewindow if there is no window at
aU on the screen or if there is a specialmessage displayed near the topof the screen. (An example of a special
message is the welcoming message that appeared whenyoufirst entered the Monitor. Specialmessages can be
distinguished by the fact that they have no close boxesand disappear on the IIl'St keystroke or mousebutton.)

42

Technical Reference

Refreshing of Windows
All windows on the screen are continuously being refreshed. This provides you with a uniquereal-timeview
of memorycontents. Therefreshing is faster if there are fewerand smallerwindows on the screen. To see an
exampleof refreshing, open a Dump window for locations $150-$180 or $800-$900. Also tty opening an
Assembly windowstartingat location$820.

Q'" Theline currently being edited (the line containing the cursor)is neverrefreshed. This is done to
prevent the line from changing while it is edited.

o RefIesbing can sometimes become extremely slow due to the long time needed to display the
information in some windows. This is especially noticeable whenthere is a largeAssembly window
showing a portionof ROMon the screen. The villain in this case is the label routine,as it takes more
than 7()1J, of tbe time used to refreshthe screen. See the Labels sectionfor more information about
this.

The Cursorandthe EditingFaclUtles
Thecursor Is tbe fJasblna baron tbe screen.It appears insidetbe activewindow. Yon can moveIt to a .different
place by clickingthemouseover thenewplace. If you experiment with this a little, you will rmel that some
windows will not let you put tbe cursorIn some positions because these positionsdo not containanything that
couldbe changed. Bverything that you type appears at tbe cursor's position. If yourkeyboaId has them. you
may also use theleft aDd riibtmows to move the cursorleft and right on the same line.

To enter text (more on that later) just type it after positioning the cursor to the correctplace. The Backspace
(or Delete) key may be used to deletecharacters. Return and Enter are used to enter thedata you have typed.
Enter enteIS the entire line, including any data you may have typed to the right of the cmrent cursorposition.
Return, on the other hand, only enters the line, starting from tbe leftmostpositionand up to tbe cursor.
Clear on tbe numeric keypadmay be used to erase the entire line withoutentering ILMoreinformation about
whether to use Return or Enter appears In tbe individual command description sections whichfollow• You
don't have to follow these rules if you don't want to; everyplace whereone of tbese two keys may be used,
the other may be usedas welL

If you decide that you don't want to enter the text, movethe mouse to someother line andclick It there. This
will undo all changes you mayhavemadeon the original line.

The Tab key may be used to move the cursor to the top left comer of thewindow. It Is useful for entering
addresses in Dumpand Assembly windows, entering theProgram Counter value in a Register window.
etc.
Thebuttonbar will flash after youhavepressed Return or Enter If youmade a mistakesomewhere on the
line.

Q'" All text that is not between single quotes (,) is converted to uppercase; therefore. youmay type
anything except ASCH stringsin either case withoutaffecting the outcome. One exception to this
rule is mentioned in the sectionon Dump windows.

Numbers
Whenever youare askedto enter a number, youmay enter a numberIn eitherhexadecimal, decimal. binary.or
AScn, the value of a register, an indirection. an AOOO trapname. a label,or any expression containing the
above items. The default base is hexadecimal, but hexadecimal numbers mayoptionally be preceded by a dollar
sign. Since spacesare oftenusedto separate values. theymay not be embedded in expressions except in ASCH
valuesandlabels. Decimal numbers arepreceded witha period,and binary numbers arepreceded with a percent
sign. ASCII valuesmust be enclosed by single quotes, and maycontain single quotesthemselves provided that
the inside singlequotesare doubled. (Example: To enter the string a 'b. type 'a' 'b'.) Labels must be
enclosed by double quotes, and mustnot containdouble quotesthemselves. Labelsmay be any length,but only
the rust eight characters are significant. See tbe Labels sectionfor moreinformation about labels.

43

TMON

AOOO trap names are enteredby typingan underscore Wfollowed by the nameof the trap. The value generated
by doing this will be the numberof the trap as if the trap wereenteredinto an As sembly window with one
exception: the Assembly windowallows the value of bits 8 through 11 to be set by following the trap name
with a number (or expression), while trap names in expressions do not allow thaL Since they are in
expressions, however, the sameeffectmaybe achieved by addingthe corresponding value to the trap name
(Example: _Open+$200).

~ There are differences between the usageof the AOOO trap namesin expressions and as Assembly
windowopcodes. The trap names may also be used in expressions in Assembly windoWS; they are not
considered opcodes. An example of an AOOO trap namein an expression in an Assembly window is
MOVE '_OpeD, DO. .

The registersmay be used in two ways. Theycan eitherbe used to provide values in expressions or to be
interpretedas actual registers.The secondoption will be called passingregisters as variables. Consider this
exampleto clarify this distinction: Suppose you type the MOVE AO, USP instruction into an assembly window.
Also suppose that the currentvalueof the user stack pointer (as displayed in the Registers window) is
$12345678. If the assemblerinterprets the USP as a value, the instruction will actually be aasemblecl as
MOVE AO, $12345678. If, on the otherhand, the USP is interpreted as a variable, the InstrUction will be
recognized as MOVE AO, USP. In this panicularexamplethe assembler wouldchoose thela1tcrioption. The
exact rules on whetherregistervaluesor variables are used are described below.

~ Make sure that you understand the difference betweenvalueand variable refeteDCeS.

Someregistershave differentnamesdepending on whetherthey are used as values or variables. If that is the
case, there is no ambiguity. If the same name is used for both the valueand the variable. the variablewillbe
selected whenever possible. Only if that is not possiblewill the value be selected. For example. in the
instruction MOVE AO, USP the USP is interpreted as a variable. On the otherhand, in MOVEDO, USP the USP
is a valuesince it cannotbe a variable(There is no MOVE instruction from a data register to the user stack
pointer). In most expressions references by variable are prohibitedso the valueswill be used.

SO The onlyplacesregistersmaybe referenced by variable are in Assembly windows andanchoring.

Thesenamesare used for the registers:

Variable Value Register name
AO to A7 RAO to RA7 AddrQSs registers.
DO to D7 RDO to RD7 Data registers.
sp* SP Sameas A7 or RA7. *Foranchoring windows only.
Ssp* SSP System stack pointer. *For anchoring windows only.
USP USP User stack pointer. (Normally unused in the Macintosh)
PC PC Program counter.
SR Status register.
CCR Condition code register.
N N The result of the last Number calculation.
V V Resultof Find, Heap, and other functions.
qlER The beginning of theuserarea.
DSPT The address of the ROMAOOO trap dispatcher.

$AO
2+2
-1*-.10

RA2+RD3*2
22/212+F&'A'

Open
:Read+$400
_Alert
_NewHand1.e
!_Open
DSPT+16
"NDefOOOO"+30

Technical Reference

Expressions canbe madeby combining numbers and register valuesusing thesebinaryoperators:

+ Addition
Subtraction

* Multiplication
1 Signeddivision
\ Signedmodulo (The result has the samesign as the quotient wouldbave.)
I LogicalOR

1\ LogicalexclusiveOR
& Logical AND

Thefollowing unary operat01'I arealso allowed:

LogicalNot
@ Indirection(The four-byte value at the givenmemory location. The given memory location must

be even; if it isn't, the button bar will flash.)
+ Positive number
N~~.. ,

1 Givea anAOOO II'Ipmunber, return that trap's address

CoDsecative lJDIrY~ areeva1ualed fromright to left. Binary operators are evaluated according to this
ClIderof~_ _.

*1\" ~tirIt,
+-

1\

I EvaluatedJut

Consecutive bJDsyoperatc:D with the same order of precedence are evaluated from left to right. Triangular
brackets « IIId » maybeused to modify the order of evaluation. Dependingon the complexity of the
expression. betweeD five and teD levelsof parentheses are allowed. All operators use 32-bit arithmetic.
Hereare a few sampleexpressiOJJS: . ..

o Evaluates asO.
AO Evaluates as $AO unless it is interpreted as a variable reference to address register

oby the assembler.
Always evaluates as $AO.
Evaluates as 4.
Evaluates as 10 ($A).Bothminus signshere are unary. Theperiod indicates that
the second number is decimal.
Thevalueof addressregister 2 plus twicethe value of data register 3.
same as <22/2> I<2+<F& 'A' ». which is $13.
Evaluates as $AOOO.
Evaluates as $A402.
Evaluates as $A98S.
Evaluates as $AI22.
Givesthe addnlsa of tbeROM Open routine.
Gives the addnlsa of the 22nd byte of the ROMtrap dispatcher.
Gives the address of the 48th byteof the NDEF 0 resource, See the next sectionfor
details on 1abelJ.

4$

TMON

Labels
Labels make the Monitor a symbolic debugger. They allow you to wode using names instead of often
meaningless or arbitrary numbers. The Monitor's label facility is powerful, but, most of all, it is flexible. If
you have code labels that are not recognized by the Monitor, and if youhave the necessary expertise,you may
write a user area function that will recognize those labels. If you are not an expert, asksomeone else to do it.

There are two basic operations that can be done with labels: convert a label into an address ("evaluatea
label") andconvert an address into a label plus an offset ("recognize the address"). The flISt operation is done
wheneveryou usea label in any expression; the label is automatically converted into an address,and the
expression is evaluatedfurther.The secondoperation is done in Assembly, Number, andpossiblyUser
windows.Assembly windows display the label and offset corresponding to the current instructionaddress on
the left side of the screen and the labelsand offsets indicating anyeffeetive addresses on the right side.
Number windowssuppose that the value typed was an addressand try to find the corresponding labeland
offset, which are displayedin the bottomright comer of the windowif they werefound.User functions may
also identify addressesusing labels.

Q" Evaluating a label is converting it into an address. Recognizi"8 an address is converting it into a label
plus an offset. -,

Q" Each label is assigned an address and a recognition ra",e. The recognition range is thel'8Dge of
memory,beginning with the label's address, any references to whichshallbe recognized as the given
label plus an offset.

C In general, no recognitionrange shouldbe greater than $FFFF. Also,most of thelabelroutines
dealing with resources will either ignoreor truncateresources whicharelongerthan $FFFFbyteS.

Labels are always displayedas eight characters, possiblypaddedon the right side withspaces if there arefewer
than eight characters. They are displayed exactly the way they appearin the label tableor code, whichmeans
that they are not converted to upper case for the purposeof displaying. Labelsareentered into expressions by
enclosing them in double quotes ("). They must not containdoublequotes themselves. More than eight
characters may be typed for a label, but all but the first eight are ignored.If fewer than eight are typed, the
remaining characters are set to spaces. Unlike ASCIIconstants, labels typed into the Monitorare converted to
upper case.The Monitor ignorescase whilesearching for labels.

Q" Type labels by enclosing them in doublequotes. Although labels are displayed in their originalcase,
case is not important when comparing labels,and you may type labels in either loweror upper case.
You may enter more than eight characters, but only the fIrSt eight are significant.

There are three basic kinds of labels plus two kindsof pseudo-labels. The labelsmay be eitherembedded name
labels,resourcellD labels, or table labels. Table labelsmay further be subdivided into absolure labelsand
resource-relative labels.Here are the explanations of these types of labels:

Embedded name labelsuse namesplacedin coderesources to identifycode routines. The namesareplacedthere
by some compilersand mayalso be included in assembly language routines by using the DC. B (or equivalent)
assembler command. The specificmethodof recognizing embedded name labels is left to the user area. The
defaultembeddedname searching user routinesearches for these labelsin CODE, CACH, CDEF, DRVR,
DS~, FKEY, FMTR, INlT, LDEF, MDEF,NBPC,PACK, PDEF,PRQC, PATe, PTCH, SERD,WDEF
retfDurceS. (This can easilybe changedin the user area.) A routineto whichan embedded namelabel is assigned
mustbeginwith a LINK A6, t__ instruction and end with either RTS or JMP (AO). An UNLKA6 mustbe
present within20bytes before the RTS or JMP (AO). The name of the routinemustbe placedimmediately
after the RTS or JMP (AO), and must be at least eight characters long. Moreover,it must consist of eight
valid ASCIIcharacters (ASCIIvalues $20 to $7E), but the first byte may optionally have its 7th bit set.
Finally,because of performance considerations there is a limit on the length of the routine: it should not be
longer thanabout 4000 bytes. If at least one of the aboveconditions is not satisfied, the label is not
recognized. If recognized, the label is set to the address of the LINK instruction, and the recognitionrange
extends to the RTS or JMP (AO).

46

Technical Reference

Note that the routine may have internal RTS or JMP (AO) instructionsas long as there is no UNLK A6
preceding them within 20 bytes. There can be no internalLINK A6, f__ instructions,since any such
instruction would be used as the beginning of the routine.

tar If you are using a compiler to generate the embeddedname labels, make sure that the necessary
compiler options are turned on.

.. Sometimes it is possible for the embeddedname label routine to recognize spurious labels. This may
happen if thereare AScn characterspresent after the end of a subroutine.

ResollTcellD labels are a convenientway of identifying resources.A resource/IDlabel consists of the resource
type in the first foUl' chamcters and its 10 in hexadecimal in the last four characters. Anything belonging to
any resource is IeCOgnized using a resource/ID label containing the correct resource type and 10. For example,
if you typed "DITL0080"+34 on the top line of a Dump window, the address of the window would be set to
the$34thbyte ofa DrrL resource with an 10 of $80. If you open As sernbly windows to code segmentswith
DO other Jabe1I in them.. they will be most likely identified by using resource/ID labels.

1bereis ooe rare cfrcumstance when this functionmightnot behave as expected.The Monitor converts the
label to upper case..lUld tbe label evaluateroutine then compares the resource type against the first four
cbal'IIcters of thelabel. This workS fine except when the resource type contains lower case characters.Such
IeIOUI'CelI CIIlDOt be specified by usinglabels in expressions. Recognitionworks fme for all resources, though.

- Using ftlIIOUl'Ce/ID labels is a quick way to open windowsto specific resources, as long as the resources
are preaeDt in memory. Ifnot, use the user area Load resource function. Also use Load
resource to find resourceswith types containing lower case letters.

Table labels are the Jabe1I you may addor modify.You may also load them from .MAP f1les via a user area
function (See Label FDe Load). You may addor removetable labels by using the Label Add/Remove user
area function. Before you can do anything with table labels,however, you must allocatespacefor a label table
by using the Lapel Table user function. As you can see, table labels are quite dependent on the user area,
which also means that they can be changedin many aspects. The informationgiven here applies to the
predefined US« area only.

Table labels may be either absolute or resource-relative. Absolute labels refer to an absolute memory location,
while resource-relative labels refer to memory locationswithin certain resourceblocks such as code segments.
Absolute labels are most useful for identifying low-memory variables and ROM addresses, Resource-relative
labelsare used as an alternate way of identifying code routines, with ~vantage that names do not have to
be entered into the code and the disadvantage that the label table has to be allocatedand loaded.

Absolute labels also have an endingaddress to preventcases such as addresses around $7FOOO being identified
using a label pointing to $400. The ending addressspecifiesthe end of the recognitionrange (it is includedin
the IeCOgnition range). Resource-relative labels do not have explicit ending addresses, but their recognition
ranges end at the ends of their resources.If an addresscould be identifiedusing more than one table label, the
one higher in memoryis used (for recognition purposes. of course. Obviously. either one may b6"'\Ised for
evaluation.An example should make it clear: suppose that there are two labels. ALPHA at $20 to $300 and
BETAat $40 to $274. Address $10 would not be recognizedat all. and neither would $500. $3F would be
recognizedas"ALPHA "+$OOlF, but $40wouldbe "BETA "+$0000. Finally.$274,$275and$300
wouIdberecognizedas "BETA "+$0234. "ALPHA "+$255, and "ALPHA "+$2EO.respectively.0nthe
other hand, nothing prevents you from typing "ALPHA"+254 to specify $274).

8 to $F
label name
label name

4 5 6 7
o -end addreaa-
-10- -offaet-

Q" In recognizing labels. wheneverthere is a conflict between two or more table labels, the one highest
in memory will be used. The results of a tie are unspecified.

Here is some more technical data on the storage format of both kinds of table labels. It is also helpful in
understanding exactly what these labels can do. Each label record contains 16 bytes to makeit easily readable
in a Dumpwindow.The bytes are assignedas follows:

Byte 0 1 2 3
Absolute 0 -begin a&heaa-
Resomce-re1ative -resource type--

47

-:
TMON

The user area has a built-in table of labels describing the Macintosh low-memory system globals, They are
listed in Appendix A. Both the user area table and the user-defmed table, if any, are scanned for labels.

The user area also recognizes labels for addresses in the AOOO dispatch table from the AOOO trap namesit
knows. The label of the four-byte address(two-byte if 64K ROMs are in use) in the dispatch table pointing to
the code of trap _Open is labeled"jOpen", etc. If a trap has no name, it is recognized as "j$Axxx", where
$Axxx is the trap's number in hexadecimal.

o These labels are not evaluated in expressions by the built-inuser area.

Fmally, there exist pseudo-labels whichare not really labels but objects recognized by the addressrecognize
routine.They are the AOOO trap entry points and the DSPTvariable. These items are recognized as if they were
labels, but do not contain any quotes.To evaluate them, type !Joutine name to :find the addressof the AOOO
trap routine and DSPT to:find the addressof the AOOO trap dispatcher. Only ROM locations and systemheap
nonrelocatable blocksare searchedwhilerecognizing thesepseudo-labels. To preventexcessive
misidentification only the first $800 bytes after an AOOO trap entry point are attributed to that label. Just like
in table labels, the AOOO trap whoseentry point is highestin memory but not above the given address is
attributed to that address.
One more issue remains to be resolved: whathappens whenseveralof the abovetypes of labelsmaybe used to
recognize a particularaddress.The label higheston the order of recognition is given. The order of recognition
is:

1. Table labels
2. Embedded name labels
3. Resource/ID labels
4. Pseudo-labels

Althoughthis happens less frequently, it is possible for a given label to be evaluated in more than one way,
for example, when there is a routinenamed "CODE0001". In this case the orderof recognition is again
followed, which means that in the example the routine wouldbe given and not the CODEresource. Ifthere
are severalembedded name routineswith the samename, one of themwill be picked,but there are no
guarantees as to whichone. Under normaloperation there cannotbe two or more table labels with thesame
name, but that situationcould arise if the label ~!eiultered directly. Again,no guarantees will be made
about whichlabel will be used. "

Since the labelsdepend on much of the systembeing in a consistent state, theymay not always be reliable
(although specialprecautions have been taken to avoidfollowing things like odd or NIL pointers). In other
cases it may be preferable to turn off one or more of the label types. Fmally,some of the label recognition
routines may not be particularly fast. Large Assembly windows with slow label routines tend to severely
degrade the Monitor's performance. Try opening a largeAssembly window to ROMand see how slowly the
Monitor responds to-typing and mouse clicking. On the bright side, the slowestlabel recognitiODlWtine, the
pseudo-label recognition routine, is calledonly whendisassembling ROMor systemheapblocks. Asselllbly
windows pointing to places like CODEblocksrun at a normalspeed unlessyouhaveseveralhundred labels
defmed in the label table.

Incidentally, you can time the relativespeeds of having various windows open on thescreenby OJlOIdDI.a IIJIall
Dump lViDdow pointing to Ticks ($I6A). Makesure that the CW'Sor is noton the second line of theDWllP
~ andobserve the changes in the valueof $16D. Openotherwindows elsewbereOD the.--and_
how ihe incrementsin $16Dget less frequent but also greater. Open a largeAssembly windoW pointiDalO
ROM, andyou can get an idea how much it slows the Monitor.

Forlhe reasons outlined in the aboveparagraphs you have the optionof turning offpll'tlof «,die e,lltire label
recognition systemin the Options window. see the description of thatwindow for more infOl'DlatiOn.

.. Use the Options window to disablethe labelsystem. Do it to preventopeIdDg
Assembly or Number windows whenthe system is in an inconsisteDt-'1peod up theMODitor'.
pace, or if you simplydo not wish to use labels.

48

Technical Reference

Exiting the Monitor
When you want to leave the Monitorand either transfer to an application, go into Configuration, or exit to
the Fmder, use the Exit function, either by typing XE or clickingin the Exit area in the buttonbar. The
MainDialog will reappear. TheMonitorwill stay in memoryand can be called by interrupt.

Reentering TMON
Even after you haveexited to the Fmder or transferred to an application, you may re-executeTMON either by
clickingon its or any usee area's icoo, although if you use a user area, it will be ignored. Doing this will
display the Main Dialog, from where you may either re-initialize the Monitor, enter Configuration and save
the useearea, transfer to an application, or simplyquit again.

PermanenUy [iivlng tfii Monitor
The Monitorc:onthmeImldtnalft JDemoryand can be calledby pressing interrupt until you either tum off the
Maclntoshor ~.l'tlteC. 'l1iere is DO otber simpleway to dispose of the Monitor.

TMON

The Monitor's Functions

Here is a discussionof some of the specificsof each of the Monitor's functions,most of whichare accessible
from the button bar.

Dump
The top line of the Dump window serves to allow you to enter the beginningaddress of the window. When the
window is first opened, the address is set to zero. You can set the addres~ by typing a number or an expression
there and pressing Return or Enter. The address is automatically aligned to a word boundary. If the cursor is
already in a Dump window,a quick way to get to its top is to press Tab.

If you type Return on the top line withoutentering an address, the previousaddress of the Dump windowis
incrementedby two, and the windowis updated. This is useful for fine adjustments of the window.

It is also possible to "anchor" DumpandAs sembly windows to particular 68000 or Monitor registers. It is
done by entering the name(variablereference name) of the register in parenthesis on the top line of the
window, optionally preceded by an offset.All data andaddressregistersmay be used, as may SP, SSP, USP,
PC, N, andV. The v register is particularly useful in anchoring windows during searches.Examplesof
anchoringare: (AO), (D5) , -20 (PC) , 8 (V) , and RAO (AO) • In the last example the RAO was a value
reference, while the AO was a registervariablereference.

On the left side of the screen are the addresses of the sixteenbyteS displayedon each line of the window.
After the colons some symbolsmay be present; they are:

P The address of the line is the sameas the programcounter.
S The address of the line is the same as the systemstack pointer.
U The address of the line is the sameas the user stack pointer.

o to 6 The address of the line is the same as the value of thataddress register.
* Oneof the breakpoints is set at the address of the line.
N The address of the line is the same as the valueof the last Number calculation.
V The address of the line is the same~ tbevalueof v.

No more thantwo symbolsare displayedper line, even ifmore thantwo are applicable.

To enter data into memory, move the cursor into the data section, andchangethe numbers there. Of course you
may also enter expressions. but all valueshave to be between $00and $FF. Whenyou aredonechanging your
line, press Return. The cursor will then move to the ill'stunchanged byte. Beforeyou press Return, however,
make sure that the cursor is still in the hexadecimal part of the dump.

You may also enter AScn data by changingthe AScn part of the dump.Press Return or Enter to accept the
new data, but make sure that before doing that the cursor is in the ASCIIpart of the dump. The cursor will
then move to the ASCII value of the il1'St unchanged byte.

- Do not enter the ASCII text in the ASCIIportion of the window in single quotes. The text in ASCII
portions of Dumpwindows is not converted to upper case even thoughit is not betweenquotes.

In ASdI portions of Dump windows only, in order to avoid entering extra spaces at the endof the line,
RetUfDis made to behave like Enter in that it doesnot clear the rest of the line.

Enter may alsobe used to acceptthe new hexadecimal values. Be careful,however, because it will also accept
the \falues left in the remainder of the field as if you typedthese values yourself. This may cause problems like
this one:

Before Changes 00 11 22 33 44 55 66 77 88 99 AA BB CC DO EE IT •• -3DUfw ..
Changes 00 11 .17 .18 .19 2+2 'x'88 99 AA BB CC 00 EE IT •• -3DUfw .
After Changes 00 11 11 12 13 04 78 88 99 AA BB CC DO EE FF IT ••••••x ..

Tbebest wayto learn to enter data into a Dumpwindow is to experiment, preferably on a block of unused
memory. Locations betweenthe top of the application heap (whichmay be foundby looking at the top line of
an application Heap window) and the bottomof the stack(whichis pointedby registerA7 in the Registers

so

Technical Reference

window) are usually unused. In addition, it is sometimes convenient to locate a free block in the heap (using
the Heap window), and experiment there.

Dump windows may be scrolledand resizedas described in the Windows section.

Do not enter addressesabove ROMin the top line of the Dumpwindowunless you are sure you know
what you are doing.If you know the addresses and functions of the I/O devices,you may sometimes be
able to change their settingsdirectly from a Dump window. Remember that since the screen is
constantlybeing refreshed, the addresses shownin the Dump windoware constantlybeing read. This
prevents the displayingof sec registers,as even reading the wrong address will reinitialize the SCc,
freezing the mouse (See Mouse Unfreeze). VIAregisters, however, may be displayedand even
changed.Make sure that the byte you want to changeis the ftrst in the Dump window's line. Type a
new hexadecimal value (or expression) over theold value and press Return (not Enterl). This way
only the flI'St byte of the line will be written. If you pressed Enter, all bytes on the line would be
written. If you modifted some byte other tban thefirst and pressed Return, all bytes up to the one
after which youpressed Return woa.1d be 'Written. Bo1h of these cases may cause some very
undesirable effects.

On a 68020maclrine, if theMonitor gets a bus emr while readingmemory to display in a dump
window (<<usembly ca'1Jly odler window), it will substitutea random number instead. This will
cause a du.mp window poiJUing at nonexistem.space to constantly change.If you have a MacintoshIT,
,.CIIt _11I1Iet'fectby~ acla'mlJ wiDdow to address0 and thenscrolling it backwards one
liDe10·It _·aaddlal·$fI!FFllO<· .

Assembly
Assembly wbIdows behave~ similarly to Dump windows except that, of course, theycontain assembly
languagedata. Theaddressof the window on the top line is set in the same way as in Dumpwindows.The
symbolsafter thecolonafterthe address of each line are also the same as in Dump windows.

As in a Dump window, typingReturn on the top line without entering an address increments the previous
address by two. Use this if the window appears to be ~saligned in the instruction stream.

TheAssembly windows attempts to use labels to recognize the addressof the instruction and any effective
address that the instruction may contain.The recognition of the instruction address is displayedjust before the
instruction itself, and may not be edited. If the instruction contains an absolute, relative with offset, or
relativewith index and offset addressing mode, the address specifiedby thatmode is recognizedon the right
side of the screen in the form of a comment. If there is more tban one such addressing mode present, only the
last one is recognized. Therecognition information will not be displayed if there is not enough room on the
line.

Sometimes you may want to type an instruction on the line but cannot ftt it due to the label on the left side of
the screen. In that case, use the Options window to temporarily tum off labels, assemble your iD$truetion,
and tum the labels on again. Incidentally, the instruction that causes the longest disassembly is:
MOVEM.L A (DO.L), DO/Dl/D3/D4/D6/D7/AO/Al/A3/A4/A6/A7. (Notethe missing registers
in the register list. If D2, DS, A2, or AS were present, the disassembler would use register ranges.)

Recognition of labels can be very convenient, but it may also slow the window. See the Labels sectionfor
information on the usage of labelsand fIXes for some problems.

To assemble instructions, type or change the instructions listed and press Return or Enter. If you enteredan
entirelynew instruction, you will probably want to use Return. If you just changedan immediate value or an
address in an existinginstruction, it will probably be more advantageous to use Enter. Again,if you are
unsureaboutthe consequences, experiment on an unused areaof memory.

No spaces are necessary before the mnemonics, but theirpresence there will not harmanything. At least one
space is necessary betweenthe mnemonic and the operands,if there are any.Spaces are IIOt allowedanywhere
else exceptat the endof the line and in ASCn constantsand labels.The linemay alsohave an optional
commentat the end of the line. The comment must begin with a semicolon (;). Theprimary reason comments
are allowed is so that the assembler will ignore therecognition information provided bY the disassembler.

$1

,
i

TMON

The standardMotorola mnemonics are used for the disassembler. In the assembler the use of the Q (quick), A
(address), and I (immediate) suffixesafter the mnemonic is optional. If a suffIX is not included, the quick
form of the instruction is going to be used whenever possible. The mnemonic may, in some cases, be followed
by a •B, •W, •L, or •S extension. Extensions are prohibited in instructions that have either no or only one
size.

.... Extensions are prohibited in instructions that have no size or only one size. Thisincludesinstructions
suchas MOVE DO, SRand SWAP DO.

If the AOOO trap nameshave been loaded, the AOOO traps are displayed by their names. All trap names begin
with an underscore. Unlike the 68000mnemonics, the trap namescontain bothupper and lowercase. In some
cases the names are followed by a singlehexadecimal digit; this occursif bits 8 (10 tor staek-based traps)
through 11 of the trap wordhave been set in a nonstandard way.The standard values of bits 8/10 through11
are:

1 for_ Getzone, _MaxMem, _NewPtr, _NewHandle, _HandleZone, _RecoverHandle.
_GetTrapAddress,_ptrZone,_PurgeSpace,and_NewEmptyHandle.

2 for _HFSDispatch.
ofor all other OS traps.
8 to B for all toolbox traps.

You may also enter AOOO trap namesto be assembled. If you wish, youmayentertbc previously mentioned
hexadecimal digits afterthe names. Theymayevenbe expressions as longas theyevaluate between 0 and $F.
Of course,you do not have to worryaboutupperand lowercase whenentering AOOO ttap names, since all
input not betweenquotes is converted to uppercase anyway.

There are two extra instructions whichdo not have Motorola'smnemonics. Theyare ???? and ROM. They
both have one argumentthat is a numberbetween 0 and $FFFF. Theyare mnemonics usedfor unimplemented
instructions. The disassembler uses the ROM opcode for unnamed AOOO traps. ???? is used for all other
unimplemented instructions. The assembler doesn't distinguish between the two opcodes. It also allows the
use of theseopcodes to assemble AOOO traps evenif the namesof the corresponding AOOO trapshavebeen
loaded. -

Mostaddressing modes are standard. Numeric expressions maybe used anywhere numbers are allowed except
in the names of data and addressregisters. 'Ihere are nevertheless several differences from the standard, and
those are explained below.

The PC relativewithoffset and PC relativewith indexand offsetaddressing modes may each be specified in
one of four ways: "destination, *, *+offset, and *-offset for the PC relativewithoffsetaddressing
modeand "destination (Rn) , * (Rn), *+offset (Rn), and *-offset (Rn) for the PCrelative with
index and offset~ode. * stands for the currentprogram counter value (the address of the fU'St wordof the
instruction).

.... The" symbolmay be omittedif doingso wouldnot make the instruction ambiguous. Specifically, it
may be omittedin all branchand DBce instructions. Omitting it in an operand of a MOVE instruction
would probably cause the addressing mode to be interpreted as absolute or register indirect with
offset.

JSI Keep in mind that labeis maybe used anywhC2'e in expressions.

:a.carefulaboutusingUSP as an addressing mode. It may onlybe usedas a variable in MOVE instructions
between the user stack pointerand an address register. Since theseinstructions haveonly one size,long, a
mnemonic extension is prohibited. An attemptto use USP in any other instruction, for instance
MOVE USP, DO, will causethe USP to be intmpreted as a valueand evaluated as anabsolute addressing mode
whose address is the currentvalue of theuserstackpointer. See the Numbers section for an explanation. The
sameproblem will occur if you try to use SSP or SP in an operand.

Technical Re/erela

Theregisterlist aftera MOVEM instruction is standard. The registermaybe listed in any order and separated by
eitherdashes to indicateranges or slashes to separate two registers. All thesegenerate the same instruction:

MOVEM.L DO/D1/A3-AO/D6-D7,-(A7)
MOVEM.L DO-D1/D6-A3,-(A7)
MOVEM.L DO/D1/D6/D7/AO/A1/A2/A3,-(A7)

As in the secondexample, if a range contains bothan address and a data register, the addressregistersare
considered to "follow" the data registers. You may not enter a list that doesn't contain any registers.

Hereis a summary of the addressing modes:

Dn Data register direct
An Address register direct
(An) Register indirect
(An) + Postincrement register indirect
- (An) Predecrement register mdirect
offset (An) Register indirect with offset
offset (An, Rns) Register indirectwith offset and index
address Absolute
"'address, *, Relative with offset
*+ol/set, *-ol/set
"'address (Rns). Relative with offset and index
* (Rns),
*+offset (Rns) ,
*-offset(Rns)
humber Immediate
USP, sa, CCR Implied register

Rns is an abbreviation for either a data or an address registeroptionally followed by either a word or
lcmgword .size indication. Someexamples of Rns are DO. AO, D3.W, and A7 •L.

Next is a table of the poss1ole rangesof numbers. For the -128 to 2SS and -32768 to 6SS3S ranges the values
above 127and 32767.respectively, are just positive equi\'alents of the negative values.

1 to 8 $00000001 to $00000008 Values in ADDQ, SUBQ.
oto IS $00000000 to $00000001' TRAPv~ value after AOOO trap name.
-128 to 127 $1'1'1'1'1'1'80 to $00000071' MOVEQ vaJue..
-128 to 2SS $FFFFFF80 to $0000001'1' Byte inunediate values, offset in register indirect

with offset and indexaddressing mode.
-32768to 32767 $1'1'1'1'8000 to $000071'1'1' Absolute short addressing mode,
-32768 to 6SS3S $FFFF8000 to $00001'1'1'1' Word immediate values, offset in regist« indirect

with offset addressing mode.
oto 6SS3S $00000000 to $OOOOFFFF ???? instruction.
all $00000000 to $1'1'1'1'1'1'1'1' Absolute long addressmg mode and long immediate

values.
*-126 to *+129 Offset in relativewith indexand offset addressing

mode.
*-126 to *+129 (excluding *+2) Offset in a short branch.
*-32766 to *+32769 Offsetin a relativewith index addressing mode or a

long brancb.

During reversescrolling the disassembler tries to find the preceding instruction, but that is not always
possible. To make a guess at the lengthof the preceding instruction it goesup to 128wordsback in memory.
If it finds thatno preceding instruction exists, it goes back one wordand disasseJnbles from that location. If
more than one preceding instruction is possible, it chooses one of them. In both cases it will refteshthe entire
window, significantly slowing the reversedisassembly.

Theassembler currently supports only the 68000instruction set; 68020, 68030, 68881, and 688S1-specific
instructions and addressing modesare neither assembled nor disassembled.

TMON

Breakpoints
Onlyone Breakpoints windowcan be open at a time.It containsup to sevenbreakpoints. To enter or
changean addressof a breakpoint move the cursorto the appropriate placeon the lowerline. enter the new
addressof that breakpoint, and press Return. Avoidhaving two breakpoints at the same address. To delete a
breakpoint do the same thingexceptinstead of an address type a dash. Youmayalso changemore than one
breakpoint at a time by separating the addresses and/ordasheswith spaces. For instance:

BeforeChanges 007000 007432 012FFE
Oumges 7410 - 7422 (Return pressed here)
After Changes 007410 007422 012FFE

The breakpoints are implemented as TRAP f$F instructions. They are not put intomemory until o,fter the first
instruction is executedafter you leave the Monitor. This prevents you from having to removea breakpoint in
order to continue your programafter it hit that breakpoint. Unfortunately this also has someside effects; see
Trace FlaK Side Effects for more information and some warnings. See also Breakpoints in theException
Handling section.

o You can cause manyproblems by settingbreakpoints in sections of codethat will be subsequently
moved or written to the disk. Thebreakpoints will remain in the code,but they will be no longer
recognizedby the Monitoras breakpoints; instead. the Monitorwill treat them as TRAP t$F
instructions. Moreover, you will not be able to remove these breakpoints unlessyou know what
instructions were "under" them before they were set.

o The same problemas statedabovemayhappenif you have breakpoints set and clickthe Monitor
button in the Main Dialog to re-initialize the Monitor. Fortunately, this should not happen often
since there is little reason to set breakpoints while running the TMONloader.

Il<ir The difference betweena breakpoint anda TRAP f$F instruction is that aftera breakpoint has been
encountered the next instructionto be executed is the instruction "under" the breakpoint, while after
a TRAP f$F instruction the next instruction to be executed is the next instruction in the code.

Registers
The Registers window containssavedvaluesof all 68000registers. All registers are displayed as 8-digit
hexadecimal valuesexcept the status register, which is displayed in binary with the flags indicated as either
upper or lower case letters.The interruptmask in the status register is displayed as threebinary digits.To
changeany of the registers move the cursor to the appropriate register, enter a new value,and pressReturn or
Enter. See The Cursor and the EdltlnKFacilities for an explanation. As in Breakpoints, more than one
registercan be changecht a time.

When changing the statusregisterenter the nameof the flag in lowercase, a 0, or a period to cleara flag, or
the name of the flag in uppercase or a 1 to set the flag. Beware of changing the S flag. H its state is changed
andEnter is pressed, in the next field the other stack pointeris goingto be expected, causingthe buttonbar
to blink.1'herefore, it is best to pressReturn after changing the supervisor flag.

A trickI's used to disable the conversion of flags to uppercase. The entirestatus registeris enclosed in quotes,
allowiag you to use upper case to set flags andlowercase to clear them.

TheMonitor won't allow odd values in the program counteror either stack pointerwhenrunningon a 68000.
On a 68020, oddvaluesare allowed in the stackpointers.

TheRegisters window currently displays only the 68000registers; the extra 68020, 68030,68881,and 68851
registers are not shownand maynot be changed.

Technical Reference

Heap
TheHeap window displaysthe contentsof a heap zone.When it is f11"St opened, it displays the application
heap zone,but it may be toggledbetweenthe application and systemheap zones by pressingReturn or Enter
with the cursor on the top line. The top line displays, in addition to the name of the current heap zone, its
location and number of freebytes, both in hexadecimal. The addresses of the zonesarestored in SysZone
($2A6) for the system zone and ApplZone ($2AA) for the heap zone. These two locations aremaintained by
the Macintosh operatingsystem; you should nonnally not be changing them.

The Monitorwill crash if thecontents of either of these locations (SysZoneor ApplZone) is odd or
does not point to RAM.

The Heap windowdisplays the position,length, and other data for each block in the heap zone. For each block
the following information is displayed:

• An asterisk if theblock is immovable or a space otherwise.
• The address of the beginningof the block in hexadecimal. Memory Manager's block header for this

block is stored in the 8 preceding memory locations.
• The logical length of the block in hexadecimal.
• The size correctionas a single hexadecimal digiLThe size correctionis the difference betweenthe

logical length and physical1ength-8. The physicallength is the differencebetweenthe addressof the
next heap block and the addressof thisone. The size correctionrepresents the numberof unused bytes
in this heap block.

One of the following phrases:

Free a freeblock.
Nonrel a nonrelocatable block.
Handle at s; (LPR) a relocatable block.The address of the handle is given.The three letters in

parenthesis are the flags found in thehigh byte of the handle, set if they are in
upper case or clear if in lower.L is set if the block is locked, P is set if theblock
is purgeable, and R is set if theblock is a resource.

DlVALm any block that is DOt consistent. See the commenton reliabilitybelow.

Nonreloc:alable and relocatableblocks may thenC(lmlin further information be1pfu1 in identifying them. All
such information except theresource fue information is generated by a user routine, and is therefore subject to
cbangeand customization. If you fmd the identification of blocks inadequale. you arewelcometo try to change
it to suit yourneeds. Information on doing this is listed in Creatina Your Own User Functlens.

55

UnitTable $UC
DSAlertTab $2BA
FCBs $34E
WDCBsPtr $372
Scrap $964
WM;l'rPort $9DE
OldStrueture $9E6
OldContent $9EA
GrayRgn $9EE
SaveVisRgn $9F2
MenuList $AlC
ParamTextO-3 $MO
TESerap $AB4
Finderlnfo CurrentA5+$10
VCB$..
Resource map $••
Driver storage $.•
Window *$.., kind $••

TMON

All relocatable blocks with the R flag set are checked against the list of openresourcemes and their
resources. If they are present. their resource file number, type (ASCII letters in quotes), and ID numberare
displayed. All other blocks are passed to the user routinewhich shouldidentify as many of them as possible.
The default routine identifies the following:

A block containing all of the device controlblocks.
The Dire Straits alert table.
A block containing all of the file control blocks.
A block containing all of the working directory control blocks.
Memory scrap.
A grafPortused by the Window Manager.
A savedstructure regionusedby the Window MarJager.
A saved contentregionused by the Window MaDapr.
The rounded regiondefining the desktop.
A regionused by the Window Manager.
The currentmenu bar list.
The parameters in the last ParamText call.
TextEdit scrap.
The Fmder information handle(in system heap).
Volume control block.
Resource mapof the givenresource file.
Storage for the given driver.
A window found by following the window list. The first number is
the numberof the window (0 is the frontmost wiDdQw. 1 the next
one, etc). The secondnumberis the valueof wfDdoWICfDd for that
window.

(Thehexadecimal numbers are either handles or pointers to the items above.)

In addition to the items listed above, the components of WMgrPort and all windows on thewindowUstare
identified. These components are identified ilIStby either the phrase (Window@$ ••), which indicates the
location of the windowto which they belong, or (WMgrPort), indicating that theybelong to the
WMgrPort. Mter one of these two identifications one of the following messages is displayed:

VisRgn The regionof the windbw whichis visibleon thescreen.
Cl1pRgn The clipping region,
Piesave Data for a picturebeingsaved.
RgnSave Data for a regionbeingsaved.
PolySave Data for a polygon being saved.
StrucRgn Structure region of window.
ContRgn Content region of window.
UpdateRgn Update region of window.
WData Window-defined data.
WTitle The title string.
HElie Window's pictureused for updating.
DlgltemList Item list (dialog windows only).
TEBB.ndle TextEdit record (dialog windows only).
Item i$•• type s., An item in the window's DlgltemList (dialog windows only). The imt number is
.' the item number(fast item is 0, second 1, etc), and the second number is the item,- type.
Control Any controlbelonging to the window. This is displayed only if the control could

not be identified as an item in that window'sdialoglist.

urir If the Heap window crashes. "hangs",or causes the screento flicker when opened or scrolled, the
identification routines are gettinglost. and you should turn them off. Youalso may want to turn
them off for other reasons; for example, it is possible that identification might slow the Monitortoo
much.That is most likely to happenif you writeyour own heap identification routines,and do it
inefficienUy; the standardidentification routine is quite fast. Anyway, if for any reason youwant to
tum off either identification of non-resource objectsor identification of resources, use the Options
window.

56

Technical Reference

A Heap window may be scrolledup or down by using the arrowson the right side of the window.There are
two quick ways to scroll the windowup to the top of the heap: either close the windowand then reopen it or
type Tab, Return, Tab, Return. This will toggle the window betweenthe two heaps and back, with the side
effect that at each toggle the windowwill displaythe top portion of the heap. Since there is no quick way to
scroll the window to the bottom of the heap, it is recommended that Heap windowsbe left open as long as
they are needed. No harm will be done if the window is left open while the information in the heap changes;
the window will just update itself. It is sometimes interesting to watch an open Heap window while the
Scramble now user area functionis repeatedly executed.

lEi" Morethan one Heap window may be openedby using the Shift key. Two or more windows may even
be opened to the same heap zone withoutharmfuleffects.

Q" Sometimes it is possible for a Heap windowto turn completely blank except for the top line. This
will happen if the windowwas initiallydisplaying an area near the bottom of the heap and then the
heap contracted. In that case you can eitherdo nothing,scroll the windowup until you see the heap
blocks, or follow one of the procedures described abovefor quicklymoving the heap windowto the
top of the heap. For a demonstration of this phenomenon move the Heap windowto the bottom of
the application heap and then use the Heap function in the user area, causingsome blocks to be purged.

Youcannotenter any informationinto Heap windows. Any changesto the heap structure have to be done by
opening Dump windows to the appropriate placesand changing data in them.A Heap window may thenbe
used to verify that the changes were done correctly.

Thereis a quick way of scanningthe heap on eithera Dump or Assembly window (or in both).Openone of
thesewindows and anchor it to V by typing0 (V)•Thenplacethe cursor in a Heap window on the line of the
blockat which you would like to look and press Return or Enter. That action will cause V to be set to the
address of the block at which the cursor was locatedand then the cursor to be movedto the next block of the
Heap window. By repeatedlypressingReturn or Enter the entireheap may be scanned withouthaving to type
the addresses of the blocks. Remember, however, that the cursor in the Heap window will alwaysbe on the
lineafter the line containing the blockcurrently being displayed in the Dump or Assembly window.

.. Fmally, here is some information about error checking and reliability: aside from thevalues of
SysZone and AppIZone, the Heap window does complete errorchecking of the heap blocks it displays.
When addresses of handles are displayed, the handles are checked to make sure that theypoint to the
block. AU pointersare checkedto makesure that they are evenand non-NIL and that they point to
real memory. Any odd physical block lengths are rejectedas ere blockswith impossibly large sizes.
The heap zonepointersin the block headers of relocatable blockshave to point to the heap zone which
is currently displayed. Anyblockswhichdo not pass the error checking are displayed as INVALID.
You mayuse a Dump window to find whythey are considered invalid.

Only one area may cause problems with reliability of Heap windows. In order to make the speed of these
windows acceptable, the resource file maps are not fully checked whenrelocatable heap blocksare being
identified. Shoulda damaged map claimthat it has 10,000 resources, all will be examinedin searCh of the one
that is to be identified. Nevertheless, as with the heap zones themselves, all applicable pointers aD4 handles in
the resource file maps are rejectedif they are NIL or odd.

The supplied user routinedoes error checking on all parts of structures it examines. In this case, error checking
means that all pointers are checkedfor NIL or odd. The routine will not stray on invalid data structuresfor
long. However, should you still encounter problems with the identification routine, you may turn it off by
usingthe Options window. One indication of theseis the screenbecoming fuzzy whena Heap windowis
opened; this is causedby somememory accesses aboveROMon the Macintosh 512K,512Ke,Plus and SE.

o Blockswhichare displayed valid in theHeap window are usually valld. There is one important
exception: if, for one reasonor another, someof thehandles which are tracedby the Heap function
have been disposedbut not set to NIL, theymay still point to masterpointer blocks. If another
handle is allocated using one of the masterpointers, it will be erroneously identified as the heap
object to which that master pointerused to belong. This problem will usuallybe encountered if not
all managers have been initialized. In this casesomeheap blocks may be incorrectly identified.

57

TMON

File
A File windowdisplays the contentsof any openresourcefile, When a File windowis first opened, the
numbersof all open resource files are displayed on the secondline of the window. You may then enter the
resourcenumber of the fIle you wish to examineon the top line. The systemfIle is usually file $2 and the
applicationflIe is usually the next higher number. If, after you are done examining one file, you wish to
switch to another file, you may either enter the number of that file on the top line of the windowor press
Return there. causing a listing of the numbers of all open resourcefIles to reappear.

Once you have entered a numberof an open resource fIle, the contents of the fIle's resourcemap are displayed
in the window.The top line of the windowcontains the address of the resourcemap as well as three flags
which apply to the entire map.These threeflags are stored in the 22nd byte of the resourcemap and are
displayed as follows:

r The map is read-write R The map is read-only
c No compaction necessary C The map will be compacted
w The mapwasnot changed W The map was changedand will be written to disk

For each resource its type. ID number,flags, location, and optionally name and systemreference data are
displayed. The type is displayed first, in ASCll betweensingle quotes, followed by the resource ID displayed
as a four-digit hexadecimal number.The flags follow. They are displayed as upper case letters if they are set
or periods if they are clear. The following abbreviations are used for the flags:

Localreference R Systemreference (64K ROMs only)
Load into applicationheap H Load into systemheap
Not purgeable P Purgeable
Not locked L Locked
Not protected T Protected
Not preloaded 1 Preloaded
Don't write into file W Write into me
U flag clear U U flag set

Afterthe flags either the memory locationof the resource is displayed or now-here if theresource Isnot in
memory. The name of the resource (also in quotes) is then displayediHt is present.

File windows are very similar to Heap windows in the aspects of scrolling. In fact, the last few paragraphs
of thedescription of Heap windowsapply to fhe windows as well with the difference that File windows
do not use any identification user routines.There are two more minordifferences: in order to quickly movea
File windowto the top of the file, instead of typingTab, Return, Tab, Return, type Tab and thenEnter.
This will re-enter the current fIle number into the top line of the window, also causing the window to be
moved to the top of theme. Finally, when browsing through the fIle using a Dumpor Assembly window
anchored to V, you will find that blocks whichhave not been loadedinto memory are ignored. Pressing Return
or Enter on a line containing one will not changethe value of v.
Just as in theHeap windows, any information displayed in the File windows is checked for 8CClI1'8C)'. NlL or
oddpointers will not cause the File windows to crash. although theremay be more eJaborato ways of
crashing them. Any invalidfIles are simplynot displayed. Any invalidresources are displayedas nowhere.

Exit. GoSub. Step. and Trace
These four functions all leave the Monitor, startingexecution at the currentPC. Theydiffer IMbe duration
befme they return to the Monitor. Trace retums to the Monitoras soon as the next mstructionJs executed;
Step is just like Trace except that it treats AOOO traps as units; if the next instrUClion is an AOOO trap, it is
allowed to complete, and only then does controt return to the Monitor. GoSub also UIre T~.ce, except that
both AOOO trapS and JSR or BSRinstructions are treated as units. GoSub is a quir.IFway Ofs:tippins
subroutines and executing just the main body of the program or a procedure. FinaIlY;'£xit: leaves the Monitor
indefinitely; that is, until the next exception. '

58

Technical Reference

All four functions restore all registers, the screen. and the cursor before they leave the Monitor. They do not
put breakpoints into memory until the secondinstruction executedto allow continuing after a breakpoint.

When the Monitoris reenteredafterGoSub, Step, or Trace, one of two messages may appearnear the top
of the screen. "Trace interrupt at $ " will usuallyappear; if, however, an entire subroutine or
AOOO trap was executed, "The AOOO trap or subroutine has returned" will appearinstead.

It is possiblefor the Monitor to refuse to proceed, displaying the interesting message, "I don't want to
execute the next instruction." This will usuallyhappenwhencontinuing wouldnot normally be to
yourbest advantage. Specifically, the Monitor will refuse to continue if the next instruction is _SysError.
(Exception to the exception: _SysError will be executed if the word value of DO is a "harmless"system
error value, where"harmless"is definedby the user area. In the defaultuser area values less than 0,30,31,
42, lindgreatetthaIl99 are harmless.) Also,for GoSub andStep only,_LoadSeg, _Launch, _Chain, and
any AOOO trapS with both the stack-based and auto-pop bits set cause the Monitorto refuse to execute the
DeXt Instruction. Theselattertraps are restricted for GoSub and Step becausethese functions do not know
where these trapS return; unlikeother AOOO traps, these do not resume at the instruction following the trap.

.. Use eitber Exit with a breakpoint or Trace if you want to continue executionwithoutlosing
control after bittinga _LoadSeg, _Launch, or _Chain. Traps with auto-pop bits set shouldonly
peaeDta problem in oldercode; the auto-pop bit is not used any more. If you do find one, examine
the'-to find the return address. set a breakpoint there, and use Exit.

e:> Due IiO the.y theseroutines function internally, be careful if the next instruction is MOVE SR, dest,
'lbe ·bICe·bit wD1 be set in the savedvalueof SR, and you shouldclear it beforecontinuing. This
problem arisesbeCiuse these exit functions, including Exit, use the trace flag to single-step the next
iDstrucdons, lind then put in the breakpoints and performother tasks (like re-entering the Monitor).

.. Even though the Monitor uses the trace flag for its internal stepping purposes, it will work correctly
if youset it in the Registers window. A trace interruptwill be generated after every instruction,
even ifyouuse Exit. Keepin mind that the trace flag is clearedby any AOOO trapsencountered.

Although GoSub and Step are quiteclever,youshould be awareof someof the problems theymay cause. In
order to obtain controlafter the subroutine or AOOO trap returns, they save the addressof the next instruction
in the Monitor's variables and pass a dummy address pointing to a Monitor routineto the trap or subroutine
about to be executed. Obviously, if that subroutine examines or changes the return address it got on the stack,
this scheme will fail. You will have to avoid skipping through subroutines or AOOO traps that examineor
change the returnaddress. A few AOOO traproutines examine the returnaddress and executepatchesif they
werecalledfrom a particular place in ROM; this is usedas a method of fixing ROMbugs. This is a mild
version of the problem described above, as it will cause trouble onlyif youuse GoSub or Step on the AOOO
trap in the ROM place to which the patch is attached; the patch will not be executed.

Another potential area of problems is interrupting the subroutine or AOOO trap that was calledby GoSub or
Step. The interrupt could be a pressof the interrupt buttonas well as a breakpoint, illegal instruction,
address error, user area AOOO trap exception, or another exception. Whatever the cause, after that interrupt you
maywishto step through yourcode at the newPC and use GoSub or Step again,on another subroutine. This
will work correctly up to eight levels of recursion. Also, nothing harmful will happen if one of the levels of
recursion is never completed. TheMonitor can keep trackof up to eightpending subroutine or AOOO trap
returns, and it will halt execution as it encounters each one.

Fmally, in a case similar to the aboveone, suppose that the subroutine or AOOO trap calledby GoSub or Step
is interrupted. Mter the interruption you choose to single-step through the rest of the subroutine, including
the flnal RTS,JMP (AO), (or whatever) statement. Insteadof getting the expected "Trace interrupt a1;
$ "message you will instead get "The AOOO trap or subroutine has returned," but
everything else will work as expected. The subroutine's return address will be removed from the Monitor's
eight-entry list of return addresses mentioned above. If you wish to examine it, the eight-entry list is stored
at USER-$2FO [longword array],and the orderof priorities of assigning the next entry. is at USER-$2F8
[byte array].

59

TMON

Options
The Options window lets you enable/disable sevenfeatures of the Monitor.You may want to disablethem
because they crash, take too much time, or don't do anything useful.Whateverthe reason, you may disable and
re-enable any of the features by movingthe cursor to the correct line and pressingReturn or Enter.

Master switch disables all label recognition.

Scan resources disables the scanningof resource mes by the label routines.This turDS off resource/ID
resourcescompletely. Since there is now no way of distinguishing CODEsegments, the embeddedname labels
arealso inoperative. Resource-relative table labels can no longer be evaluatedor recognized.

Scan label table disables the user area label table routines.
Scan for names in code disablesthe user areaembedded name label routines.
Identify AOOO traps disables the pseudo-label Monitorroutine.
Scan resources disablesthe identification of resourcetypes, IDs, and mes in Heap windows.
Identify items disablesthe identification of other Heap windowitems via a user routine.

Number
The Number windowasks youfor a numberor an expression, evaluatesit, and displays it in hexadecimal, 32
and16 bit decimal, AScrr. as an AOOO trapname, and as a recognized address. It also sets the Nvariableto the
value entered. The second line of the window contains, in orderfrom left to right, N" (if the value displayed
is equal to the current value of N), the value in hexadecimal, the value in signed 32-bit decimal, in parentheses
the lower 16 bits of the value in decimal, and in quotes the value in ASCII.The AOOO trap name corresponding
to the lower bits of the value is next, followed by the label recognition informationthat would be generated
if the value typed were an address. H the particular trap has no name, the number is displayedinstead.H there
is no recognition information availablefor the particular address in the window, the recognitionfield is left
blank.

More than one Number windowmay be openon the screenat a time. Several Number windows canserveas
temporary memories to remembervalues which you wouldotherwisehave to write on paper.

The N- indicatoris not as extraneous as it may initiallyseem.Try opening two Number windows and entering
differentnumbersinto them. H no Number windoW contains the N- indicator and you want to see the cmrent
value of N.enter Ninto any Number window.

User
The user area is one of the most powerful features of this Monitor. It allows you to create yourown
functionsor use the predefinedones. This section is just an overview of using the functions; information on
creatingnew ones and an explanation of the predefmed ones are included later.

The top line of the user area contains the beginning addressof the user area. whichis alsothevahle of the
predefinedvariable USER. Afterwards the physicaland logicalsizes of theuser areaare listed,~ physical
size is set at boot time and cannotbe changed. It indicates how muchmemory is reserved for area. 1be
logical~ is used by the Configuration functions oniyand indicates howmuchdisk space the area
wouldtake if it were saved.The logicalsize may be changed by typing a new value in its placo8Dd pesaiDs
RetUrb or Enter. It must, however, be nonzero, a iDultiple of $100, and not greater than $7POO. More
information on logicaland physicalsizes is in the Conflauration section.

To ue a function in the user area. move the cursor to the appropriate line. Type as JDl!IlY paiameterl afterthe
colon as the function requires(somerequire none),and press Return. The function will be executed and the
cursor will return to the position after the colon. The functionmay return results iDot1Jer-.,. OIl the nne.
usuallywithinthe curly (I and }) brackets. Somefunctions alsoput numbers after dieCOlOl1 SOthatyou can
justpress Enter to execute the function again. Still others affect Monitor'sre~ uually V. Functions
can be created. like Leave TMON in the predefined area. that leave theMonitor 1ltOSed*. while othersmay
justprovide additional parameters to be used by otherUser functions.

60

Technical Reference

Most functions within the predefinedarea give a listing of the parameters they expect within parenthesis
before the colon. H there is no such listing, the functionprobablydoesn't need any parameters and is executed
just by pressing Return. H the wrongnumber of parameters is supplied, the button bar will flash.

Sometimes the function name itself is displayed in parentheses. That means that several functions have been
encodedon a single line, and you can cycle throughthem by pressingReturn immediately after the colon. A
goodexample of such a functionis Print (whichshouldnot beconfusedwith the Print commandin the
button bar).

Print
This function sends the contents of the active window to a serial port. See the Configuration section for more
infonuation about which port is used andhow to changedata like the baud rate. You may stop the printing by
pressing them~ button.H a handshaking protocol is active, you may have to hold the mouse button for a
long period of time (possibly20 secondsor more), becausethe state of the mouse button isn't checked while
the MaciDlosh is waitiDa for the other RS232device to allow it to send another character. Also note thatsince
themouaeclick is executed,if)'Oll tell it to print by clicking the mouse button over the Print area in the
button bar. you. will Pvo tile Monitoranother command to print the topmost window, which is just what you
wanted toavoidt If 8Dem:lI' occurswhile printing, its error code will be stored on the Print line in the user
area if you areusin& ODe of the predefmed user areas. An error code of 1 will be stored if the printingis
intemlpted by themouaebu,tton. An error code of 2 is displayed after an attempt to use the user area's Print
file functionon ~~ teSOUICe file. See also the explanation of the Print functionin the user area
and the Prlntbij Problemssection for someof the possible communication problems.

r Nner use ••lnterrupt to stop a long printout; press the mouse button instead. H you do not heed
this advice, the Monitormay behavein waysstranger than. could be imagined.

Mouse Unfreeze
This is the only function thatdoes not appear in the buttonbar at the top of the screen. It can be executed
from the keyboardonly by holdingdown the lIll key while typing M. This function unfreezes the mouse and at
the same time turns off both serial ports.The mouse i$ probably frozen if it appears on the screen but doesn't
move or doesn't appear on the screenat all. The Monitormust respond to keyboard commands if you want to
use the unfreeze.The main causeof mousefreezing is accessing memorylocations above ROM. Programs that
crash or otherwise go out of control frequently do that. Accesses to such memory locations tend to reset the
seechip, turning off the mouse interrupts. This option will tum those interrupts back on. This is most
useful on a Macintosh512K, 512Ke or Plus.

o Note that the use of MouseUnfreeze leaves the serial ports in an unstable state. In pardcular,using
any AppleTaIk function afterhavingused MouseUnfreeze may result in a system whichis in a state
where re-entry to TMON is not possible.

If you shouldhappento freeze the mouseby opening a Dump or Assembly windowwith an addreSs in that
me~ory range, first move the cursor to the top of that window by typingTab or using lIllD or KA, then
change the address of that window to zero and press Return, and finally use the Mouse Unfreeze function. In
File windows do the same thing but press Return alone, causing just the list of fIle numbers to be displayed.
H using the unfreezenow doesn't help, follow theprocedure for Heap windows.

H a Heap window causesthe mousefreezing or if any of the aboveprocedures doesn't work, you have to close
the offending window. That requiresyou to move the mouse to the closebox. In most cases that. can be done
by moving the mouse while repeatedly typing lIllM. Themouse will move in smalljumps, but with luck you
will be able to close the window. H even this doesn't work, hold down the K key and press the Interrupt
button. Afterwards you can use the unfreezefunction. This will reset the Monitor. possibly damaging it, but
now at least you can use it.

H this optionwas performed successfully, a message window will appearnear the top of the screen informing
you that the mouse has been unfrozenand that you shouldnot try to use the serial ports. You may, however,
use the Monitor's Print functions.

61

.'~At_

TMON

Exception Handling

The Monitor interceptsall vectors except the ones essential to the functioning of the Macintosh. although you
may changewhich vectorsare intercePted by modifying the user area. For extra securitythe Monitor'svectors
are stored again into low memoryevery time the Monitor is enteredunless a Configuration optionis changed
(See Configuration). The Monitoralso has a self-check feature that will tell you if the Monitor has become
unreliable. If it detects an error, it will reset the entire Monitorand displaya message. You may then takean
appropriate courseof action.Fmally,the user area functions may themselves generateexceptions thatare
intercepted by the Monitor.

Normal Exception Messages
When an exceptionis intercepted by the Monitor, the registersare savedand breakpoints removed. Then the
currentscreen.cursor,and cursorposition are saved. the hardware is switched to display the main screen page
if the alternateone was used on a Macintosh Sl2K, Sl2Ke. Plus or SE or swapped into one-bitmodeon a
MacintoshIl, the Monitor's window and background are displayed along with a messageexplaining why the
Monitorwas entered, the user area's initialization routine is executedif present,and controlof the computer
is turned over to the Monitor. This sectiondeals primarilywith the messages that appear at this time.

The messages for most exceptions are self-explanatory. There is one thing,however, that may requirean
explanation. When the messagegives the currentvalue of the program counter, it sometimes states that the
exceptionhappened before that valueand sometimes at that value.The programcounterreportedis always the
value saved by the 680xOupon handling the exception. The 68OXO, however, sometimes saves the address of the
next instructionand at other times the currentinstruction. This is the reason for the difference.

Address and Bus Errors
The messages for addressand buserrors giveextradata on 68000 machines. The programcounteris given along
with the address that was accessedwhenthe errorhappened. The programcountervaluemost likely isn't the
address of the instruction that causedthe error; in most cases it is somewhere nearbythat instruction, although
branchand jump instructions may affect the savedvalueof the program counter.The function codeis displayed
in parenthesis after the accessaddressand tells whattype of access thattookplace:

Message displayed Function code saved by the 68000
user data 001
user program 010
supervisor data 101
supervisor program 110
exception III
illegal 000,011, or 100

The next field, instruction, tells whether the processor was executing an instruction at the time of the
error. The only time it is not executing an instruction is duringfetching an exception vector.The last field,
mode, tells whetherthe access was a read or a write.

On a 68020,only a simplebus or address errormessage is reported.

Breakpoints
The breakpoints are TRAP f$F instructions. TMON distinguishes themfrom true TRAP instructions by
checking the program counteragainst its list of breakpoints. If it is present in that list, a breakpoint message
is given; otherwise, a trap message is given.See the Breakpoints section in The Monitor', Functions for
more information.

62

Technical Reference

System Error
The system error vector is also intercepted by the Monitor. All systemerrors except the ones listed in the
User Area (30, 31, and 42 are the default) will cause the Monitorto be enteredwith an appropriatemessage.

Interrupt Button
The interrupt button on the programmer's switchon the side of the Macintosh generates interrupt exceptions
with priority levels between4 and 7 (only 7 is generated on a Macintosh m.1f the Monitor isn't currently
executing. it will be started and an appropriate message will appear at the top of the screen. If it is currently
executing. the interrupt will be ignored.

Sometimes pressingthe interrupt buttonmayhave no effect.If something goes wrong with the Monitorand
you desperately want to regaincontrol,hold down the • key whilepressing the interrupt button.This may
re-Jnitialize the Monitor to its original state. but that actionmay also erase some of the Monitor's variables.
causing a message statingthat the Monitor has beendamaged to appear on the screen.Do not use Ex!t or
GoSub afteryou have pressed••interrupt unless you initialize the program counter,staelc pointer, status
register,and any other necessary registers.

The••Interrupt actionis one of last resortand shouldnot be used often,as it may cause
unpredictable damageto the Monitor.

I:) On the Macintosh SI2K, SI2Ke,Plus,and sa. the processor'sinterruptlevel can be set high enoughso
that neither Interrupt nor••interrupt will worle. When this happens, there is no way to stop the
macbine. Eitherpress the reset button, or turn the systemoff and on again.

Self-Check
Wheneverthere is a window on the screenthe Monitor doesa self-check •If the self-check detectssome signs
of damage to the Monitor's code or a stack overflow, it will re-initialize the Monitor, just as if you pressed
X·interrupt (see the previous section). Thereare three things that couldcause the Monitorto displaya
message informing you that it has been damaged:

One of the ways the Monitorcouldbe damaged is if its code has been modified. If that happens, you will get
only a messagestating that the Monitorhas been damaged. In this case somefunction of the Monitorwill no
longerworkbecauseits codehas beenchanged.

The Monitoralso checks to make sure that its stackstays within the area of memorydesignated to it. If it
overflows, you will get a message stating that the Monitor has been damaged.

In this case some user functions will no longerworkbecausethe stack is locatedimmediately after the user
area.
The third way the Monitorcouldbe damaged is if an exception occurswhile the Monitoris executing. The
Monitoris executing anytime the Monitor's screenIsvlsible, This includes execution of a user function by
pressing Return in the user window. This does not include execution of user routines by calling them from an
outsideprogram. If this type.of an erroroccurs, you will get two messages, one stating the natureof the
exception and the other stating that the Monitor has been damaged. The moralof this is to makesure that your
user routines are "safe" by usingcode to preventexceptions such as addresserrors from happening in them.

User Exceptions
The userroutines that are calledfrom an outside program may enter the Monitor by executing TRAP '$F
instructions from within the user area. displaying the message "User trap:" folIowed by text from the
user area.Detailson this are included in the User Routines Entering the Monitor section.To see an example
of this, use the Leave TMON function in the standard user area.

6J

TMON

Possible Problem Areas

Here is a discussionof some of the problems you might encounterwhile using the Monitor.

Mouse Freezing
See the Mouse Unfreeze section in The Monitor's Functions.

Interrupting the Vertical Retrace
When you press the Interrupt button to enter the Monitor, there is a small chance that you will interrupt the
vertical retrace handler routine.This couldhave a number of effects, rangingfrom none to a system crash when
you leave the Monitor. Although this possibility can't be eliminated, its probabilitycan be significantly
decreasedby making your program's verticalretracequeueshort if it has any and by not moving the mouse
when you press the interrupt button.

Can't Regain Control of the Monitor
H Interrupt does not seem to wOIk, hold down • and press Interrupt. Should this still be unsuccessful after a
few tries, you probably will not be able to regain control of the Monitorand should give up and press reset.
See the Interrupt Button section for more information on this topic.

Trace Flag On
H you keep getting a trace interrupt after leaving the Monitor,you are either single-stepping or the trace flag
in the Status Register is set, Clear it. Remember to clear the trace flag in the saved SR if you use Ex!t,
GoSub, Step, or Trace when the next instruction is MOVE SR, dest.

Windows Crash or Are Too Slow
H the Assembly, Number, or User windowacmshwhenopened or scrolled, tum off the labelsusing the
Options window. H you can isolate the label routinethat is causing the crashes, you may tum if off and
leave the others on. H the Heap windows crash, you will have to turn off one or both of the options in the
Options windowdealing with Heap windows.

Follow the above procedure if you believe that Assembly or Heap windows are too slow to be convenient.
Remember that a large slow window visible on the screen will slow all of the Monitor's operations, not just
the ones dealing with that window. Covering such windows or decreasing their sizes may help.

Printing Problems
H you encounterproblemswith printing, make sure that the information in the Communications menu of
Confi,",aUon is correct.Make sure that the Chooserdesk accessory does not think that the serial port you're
trying SO use is connectedto AppleTalk. It is also possible that the Monitormay not print correctly if some
other~ogram has opened and used the serial port designated for printing from the Monitor. H this is the case,
try using the other port for doing printingfrom the Monitor. Also, since printing uses the Memory Manager,
it may not work if the heap is in an inconsistent state.

64

Technical Reference

Debugging Existing Applications
Using the Monitor with existing applicationspresents an array of problems. The Monitor is, nevertheless,
flexible enough to allow it to be used with almost any program written for the Macintosh. That does not
mean that you will not have to make adjustments. Some commonchangeswhich have to be made with some
applicationsaredisabling the Vector Refresh option or loading the Monitor into the system heap instead of
high memory.Thefirst of the actions listed should be done if you encounter TRAP exceptions; the last if you
find that the program you are debugging uses the alternategraphicsor sound page on a Macintosh5121{,
SI2Ke, Plus or SB.

The Mcmitor partic:ularly dislikes changing the Interrupt vectors and a few of the AOOO trap vectors. Avoid
c:banging the vectors_SysError and_PostEvent. If_SysError was changed, the Monitorwill put it
back to its previousaddressas soon as it regainscontrolunless Vector Refresh was disabled. Do not change

PostEvent in such a way thatevemssuch as key down,mousedown,and mouse up are not posted; if you
do, the Monitor will fail.

The ability of loading the MoDitor into the system heap is a conttoversial one. If all Macintosh programs
were well-written, they shouldDot be affecled by having a Monitor in the system heap. It appears, however,
that some bugs in pogramaappear only if the~ heap exceedsa certain size. For that reason the option of
loading the Monitor into high memory was ptOVided. An exampleof a bug that will appear only if the
Monitor is In the system beap is in an application numingunder the 64K ROMs that calls

SetTrapAddre88 to a I'OlItiDe iD tbe app1iCalion beap.Thatshouldn't be done, but if it is, it will cause no
ii"oblemsunleu theroutine is more tban $10000bytes above RAMBase (whichpoints to the beginning of the
system heap). You, of coune, wilIavoiclaD such errors, andmight even find it constructive to load the
Monitor In to the system beap to make IlD'e tbatDOlle are present.

In some cases you still miiht have little idea why the Monitorcan't beused with some programs. In that case,
use Trap intercept to stop theprogram at the~ (intercepting _InitGraf works well), and use
GoSub to trace the programexecution. If you find that tbe program crashes in one subroutine, you now know
where that subroutineis andcan try the process againexcept that the next time step through that subroutine.
You can then use this divide-and-conquer approachto quicklyfmd the instruction that gives the Monitor
indigestion.Once you know what is wrong, you may be able to bypass or fix it.

Using the Disk Cache, RAM Disks, and Other High-Memory Drivers
TMONrespects the space reservedfor the disk cache, RAMdisks,and otherprogramswhich reside in high
memory (hereafter called "RAM disks") as long as they do not interfere with TMON's exception vectors and
code. If there is a RAM disk in high memory,and if it hasallocatedits space properly, TMON will load
below it and set the top of memory address (BufPtr) below itself. RAM disks, on the other hand, should
respect TMON; if they don't, they will cause problems. In particular, they should not assume that BufPtr
points to thebeginningof their memory space,as it does not once TMONhasbeen loaded.

If you experienceproblemswith using TMONand a RAM disk at the same time, try reversing the order in
which you load them. If you loaded TMON fU'St, load the RAM disk first, or vice versa. If the problems
persist, try to load TMON into the system heap either before or after loading theRAM disk (See Loading
Position).

K-Shift-1 to K-Shift-4 Usage in the Monitor
These functionkeys are not active in theMonitor. Depending on which ROMsand system software you're
using,when you use a functionkey, eithernothingmay happenor it may be saved and executedafter you leave
the Monitor.

TMON

The Configuration Menus

This chapter containssome additional information about the variousitemsin the configuration menus.

The File Menu
Save User Area saves the currentuser area, whichincludes user area code, current settings of parameters to the
user routines, and the state of the Monitor's windows. If you Save a user area with the name "User Area", it
will become the default user area and be loadedevery time you start the Macintosh with the TMON Startup
loader. It is also used every timeopen the TMONiconfrom the FInder, unlessyou use anotheruser area's icon
to start TMONfrom the Finder or use the Monitor... button.If there is no defaultuser area on the disk. an
intemal copy of the user area with aU functions present will be used instead.

The user areas are saved using the logicallength given in the user area.If the logical length is greater than the
physical length, the extra space is fllled with zeros. If that user area is later loadedwith the Monitor, its
logical length will be used to set the user area's physical length.

Qj" The procedure abovemustbe followed in order to enlargeuserareas.

The Options Menu
The settingsfrom the Options menuare storedat the beginning of eachuserarea,andmaybeloaded andsaved
by loadingand savinguser areas.The Communications, Vector Refresh, and VBLTasks options takeeffect
immediately; the others will take effectonly if you save their desiredstates in a userarea, restart the
computer, and load that user area with the Monitor. That can be doneby eithersavingthe user area with the
name "User Area", or starting the Macintosh with anotherdisk and opening thatuser area's icon from the
Finder, or using Monitor... to select that user area to boot the Monitor. Monitor Size is not really an
optionbecauseit does not allow you to changeanything.

Communications
There are somecommunication options available whichare not present here; seeUser Configuration Area for
a more tecbnical description of the other options.

Any changes youmakeare effective immediately.

It is possible to change the settingsdisplayed here directly from the Monitor, which may be advantageous in
the middleof debugging when this window cannotbe invoked. See User Configuration Area for the locations
of the bits in the user area that can be changed.

Vector Refresh
Use this option only in extraordinary circumstances whenthe program you are debugging desires to handle
some of its own exceptions. If you select Refresh, which is the defaultchoice, the Monitorwill keep storing
its O.WD exception vectors every time it gains control. If you select Don't refresh, the Monitorwill store its
vectjrs only once when it is initialized. The program that you are debugging may then replacethe Monitor's
vecUlrs with its own vectors.

Ac$l1ally there are other times when the Monitorwill store its exception vectors. It will do that anytime it
~ that it has been damaged and every timeyou enter it using the Monitor buttonon theMain Dialog. No
program except the Monitor, however, may intercept the AOOO vector, trace vector, andTRAP '$F vector.

66

Technical Reference

VBLTasks
This optionallows you to keep verticalblanking tasks running while the Monitoris active.H you select
Suspend VBLs, which is the default, only the disk driver VBL task will be left running, turning off the
floppy disk motorafter a few seconds if it is spinning whenthe Monitor is entered. Leaving VBLs running is
usually undesirable exceptin some specialcases where network driversare timing out while the Monitor is
active.

Loading Position
The onlyreasons not to load the Monitor into highmemory are if you are debugging a program that uses the
alternate soundor video page (on the Macintosh 512K,512Ke, Plus, or SE) or if the program interferes with
the Monitor in high memory, whichshould not happen. Loading the Monitor into the systemheap causes the
bugsin someexisting applications to revealthemselves, and may be a good way to checkthat the program you
are debugging doesnot have the sameproblems.

S" Changing this optionwill haveno effect unless you save the new settingin a user area and use that
user area to boot the Monitor.

Auto-Quit
Auto-Quit is most useful whenusedin conjunction with the TMONStartup loader.H you set this option.
insteadof stopping at the Monitor welcome screen, TMON displays in the middleof the screena message
stating that the Monitor has been installed and then automatically exits to the Finder.The first time the
Monitor is enteredit displays the reasonfor entering alOng with the welcoming message.

It is quite easy to overridethis feature. There are two waysto do this:

• H TMONis just loading, hold downcitbel' Shlft,Optlon, or X or the mouse button. H you hold one
down while the message "Welcome to Macintosh" disappears, you will see the Main Dialogor, if
you are using TMONStartup, the MonltOr's welcome screen.

• If, on dieother hand, you hold down$1U~Optlon, X, or the mouse buttonafterTMONbegins to
load but before the "TheMonitor lt~",Jnessage appears, the loading processwill stop when
the Monitor's welcome screenappearI.

The auto-quit option~on also works if you start TMON by double-clicking on the TMON or a user area
Icon In the Fmder.

.. Hold down Shlft.Optlon, lIS, or the mousebuttonwhileTMONis booting to temporarily override
the auto-quit function.

.. Changing this option willhaveno effectunless you save the new setting in a user areaand start the
Monitor with that user area.

Memory Size
This function just prints a summary of the Monitor's memory usage. The only way to change any of the sizes
shown is to change the corresponding Confipration option. save the user area, reset the Macintosh, and then
use the user area to boot the Monitor.

S" Remember that this optionshows the amount of memory actually usedby the Monitor the way it is
presently configured; it may or may DQt correspond with the configuration in the currentuser area. In
other words. the otherfunctions in the.Options menudisplay and change the configuration in the user
area, while this function displays the configuration in the codeof the Monitor presently in memory,
whichcannotbe changed witho1tt resettin& the Macintosh.

67

TMON

Built-In UserArea Functions

This chapter will not explain the internal structure of a user area or how to create your own user functions;
thatis covered in the next chapter.

In the explanationsbelow the name of the function is in boldfacefollowed by the unabbreviated name. Any
parameters used are at the end of the line.

Do not execute any of the functions listed below with addresses above the end of ROM. Although the
functions should reject them,avoid givingnegativelengths.

If you have more than one AOOO trap functionactive at a time, the functions are executed in the
followingorder: Trap record, Trap scramble, Trap discipline, Trap checksum, Trap
intercept, and Trap signal. If one of the functions fails and enters the Monitor, the remaining
ones are not executed. Also remember that these functions are not executed on the f'llSt instmction
after leaving the Monitorshould that instmctionhappen to be an AOOO trap. This is to avoid a
situation where having Trap intercept set wouldprevent youfrom leaving the Monitor.

The pixel in the upper left comer of the screen is turned on whileone of the AOOO trap intercepting
functions is executing (excepton a Macintosh Il), If you press the interrupt button at that time, the
intenupt will not be executedimmediately but will be made pending. After the completionof the
interceptingfunction, if an Interrupt was pending, the Monitor is entered with the message "User
trap: interrupt". In rare circumstances it is possible tointenupt the user area AOOO trap
intercepting dispatcher. If that happens, you will know it because the PC will poiJUto the user area.
Use Exit, and press interrupt again.

Be very careful with using Label file load, Load resource, and Leave TMON whileone of the
AOOO trap intercepting routines is active. Since these routines leave the Monitor, the AOOO trap
intereepting functions will be executedon any traps they execute! Trap intercept, for example,
will intercept the traps and go back to the Monitor with the PC and registers set to the user area. If
that happens, deactivate the offending trap interceptroutinesand Exit the Monitor.

A much worseproblem than the one described in the previous note arises whenone of the AOOO trap
intereepting routines intercepts a trap executedfrom an intenupt handler.One particularly common
case is the intereeption of yostEvent due to a mouseclickor keyboard activity.Usually this is
harmless if you realize what is happening, but sometimes the consequences can be strange indeed.
Considerthe following scenario.whichhappened to me severaltimes: you have Trap intercept set
to interceptall traps and are single-stepping througha programby typing lieS. Suddenly, however,
you release the key at just the right time to generate a key-upevent outside the Monitor (If you
released the key while the Monitorwas executing, nothing wouldhappen since the trap intercepting
routines are disabledthen). After the _PostEvent was intercepted, the PC points to a place in
ROM, and you are wondering what happened-all you did was single-step an instmction! You Exit,
and only then do you arrive at the instruction following the one you stepped, but with one difference:
the trace flag is now set in the status register! The Monitoruses the trace flag to single-step
instmctions, and it normally turns it off after the instruction is complete; you don't see it being used.
~In this case the Monitorgot somewhat confused because it was enteredat an unexpected time.
Afterwards it no longer remembered to clear the trace flag. No large harm has been done; you may
proceed once you clear the trace flag. The moral of the story is to avoid indiscriminately intercepting
trapssuch as _postEvent.

Toggle pages (TogglemenwrylcontrollAOOO trap functions)

Switch among the three user area pages.The currentpage's function types are displayed. The three user area
function types are memory functions, control functions, and AOOO trap functions.

68

Technical Reference

Block Move src dst len

Movea blockof memory Len bytes long fromSrc to Dst. The source and destination rangesmay overlap
without adverse effects.

Block Compare adrl adr2len

Compare two blocksof memoryagainst each other. If they match, the result is Match. If they don't match,
the address in adr.1 of the mismatch is displayed and the computer looks for the first match after that memory
location and puts that addressafter the colon alongwith a corresponding addressfrom adr2 and the numberof
bytesremaining. The numbersafter the colon are initialized so that you can look for the next area of mismatch
just by pressing Enter or Tab.

lEi" The valueof V is set to the address of the mismatch. You can anchora Dump or Assembly window
to V and then you won't have to type the address of the mismatch to see the area of memory around
the mismatch. What's more, you can actually anchortwo windows, one to v, and the otherone to V
plus an offset which is equal to the difference between adr2 and adrl , This way you can look at both
blocks at the positions of the mismatch.

If youhavea block of memorythat seems to be filled witha singlehexadecimal value, you can use Block
Compare to measurehow far it extendsby giving it the following parameters: Starting address Starting
address+! 7FFFF.

Fill bgn end val [vLen]

Fill a blockof memory with a value.The bgn andendnumbers specifythe boundaries of the block, inclusive,
and val is the number that is to be stored into the block.The flll is a byte, word, or longword rill depending
OIl val. If val is less than 256, a byte rill is pCrformed; if it is less than 65536, a wordfill is done; otherwise,
the fill is a longword fill. The vLen value may be used to overridethat by explicitly giving the length of val:
1 for a byte fill. 2 for a word fill, and 4 for a longword rill.

Finel (Find byte/word aligned) val [vLen [bgn lendlll

Search for a pattern in memory. bgn and endspecify the boundaries of the blockthat is to be searchedand val is
the targetpattern.vLenis used in the same way as in Fill, but a lengthof 3 is now a1lowed. Also, if there
is no vLen and val is between 65536and 16777215, inclusive, thel~th will be assumed to be 3.

The defaultfor bgn is O. The default end is the end of RAM, which depends on the size of memory in the
Macintosh. All parameters exceptval may be omitted, in whichcase the entire RAM is searched for val.

lEi" Ifno parameters are supplied, the Finel toggles between a byte and word alignedsearch. Word-
alignedsearch is fasterand is usually used to search for specific 680xO assembly lan8UlJ8e instructions,
whichobviously must be word-aligned. vLen is forced to be either2 or 4 in word-aligned search.

lEi" Do not use word-aligned searchto search for handles or pointers because the high bytes1Dll.y contain
flags which causesomevalidmatches to be missed. Handles and pointers shouldbe searched with a
vLen of 3.

lEi" The value of V is set to the address of the match. Youcan anchora Dump or As sembly window to V
so you won't have to type the address ¢ the matchto see the area of memory aroundit.

If val isn't found in the specified range,No Match will be displayed. If it is found, the address is given,V is
set to thataddress, and the numbers after the colonare adjusted to allow the searching for the next occurrence
of that val by simplypressingEnter.

Asidefromusing labels, one of the most common waysof flnding subroutines in yourprogramis.to search for
a string that the subroutine is knownto contain. In that case val is usually a quotedfour-letter string.

69

TMON

Template (WindowRecordiControlRecordiTEReclParamBlock) adr

'Ibis function displays many of the pertinent fields of the following Macintosh data structures:
WindowRecord. ControlRecord. TERec. and ParamBlock. Enter an expression whichrefers to the data
structure.The field names and their values will appear in the windowbelow the Template line.

II:ir Ifno parameters are supplied. the Template togglesamongthe WindowRecord. ControlRecord.
TERec. and ParamBlock data structures.

Stack Addresses adr

'Ibis function takes an address. checks to see if it is withinRAM. even. and belowCurStaekBase.1f it Is. it
checks the value at the address to makesure that it too is even. If it is. it displays the addJess and attempts to
recognize it. If recognitionis successful. the result is also displayed. adr+4 is left to tbe rigbtof tile c:oIon so
that you may continue throughthe stack by pressingReturn after the address or by pressing Enter anywhere
in the line.

II:ir The address returnedby StackAddresses is also assignedto the V registerso thatyou C8Ilanchora
window to V in order to view the data around that address.

II:ir 'Ibis function uses a defaultparameterof SP. which refers to the current valueof die It8Ck pointer.

Stack Crawl

'Ibis function takes an addressand treats it as a pointer to a stack frame created by tbe 68OxO family's LINK
instruction. It checks the value that is the saved linkageregistervalue in a stack frame. If tbiJ is a valid
address (non-nil and even) it is assignedto the N register.

Thefunction that is the return address in a stack frame is checkednext. If it is validit is assignedto the V
register and displayed. If the address is withinrange of a label and the appropriate labeling switch is on. the
label and offset will also be displayed.

Thevalue that is the addressof the next deeper stackframe in a stackframeis cbecked. If it is valid it is
displayedafter the colon so that clickingafter iJ and pressingRetum or clicJdDg anywhere within it and
pressing Enter will repeat the process for the next deeper staet frame.

II:ir The addressreturnedby Stack Crawl is also assigned to the V registerso thatyou can anchora
windowto V in order to view the data around that address.

II:ir Perhaps the easiest way to use Stack Crawl is to positionthe cursor to the right of the colon and press
Enter to cycle through the various stack frameaddresses until the parameterbecomes the default
(RA6) again.

Load resource type id

Loed atesoun:e into memory. Search for the givenType and ID in all openresource files in the order defined
by the kesoun:e Manager. If the resource doesn't exist. do nothing.If the resource is already in memory. give
its add1eJs. Otherwise attempt to read the resourcefrom the disk. If there is no error. load the resource and
give ill address.

'Ibia routineleaves the Monitorfor technical reasons (to preventproblems with crashes and disk swapping). It
reenters theMonitor as soon as the resourceis read.

.. If the resourceis in a file on a disk not currently in any drive. you may be asked to insert the disk.

70

Technical Reference

o Do not press the interrupt button while this routine is executing. Also, any mouse clicks or key
presses made after the Monitorhas been left are saved in the event queue.See Leave TMON for
details.

t The heap must be in a consistentstate for this routine.This routine may cause heap compaction.

Print (PrintDump) bgnend
Print (PrintDisassembly) bgn end
Print (PrintFile) file#
Print (PrintHeap) heap#

Print the requested information. Press the mouse button if you would like to interrupt printing in progress.
This functionis useful for printingmemoryranges that are bigger than a single Dump,Assembly, File, or
Heap window.

The heap# is zero for the system heap and non-zero for the application heap.

You can cycle through the four print routinesby pressing Return without typing any parameters. These four
functions wereplaced on the same line to savescreenspace.

Q" The error number is stored here by both tile abovefour routinesand the Print routine in the
Monitor. See the descriptionof the Print command for an explanationof the error numbers.

Look for labels between LINK/UNLK of Ax addressReg#

This functiondefmes which address register will be used when the label recognition routine looks for
embedded labels in routines enclosed withinLINK and UNLKinstructions. Sincemost Macintosh programs
use A6 as the LINK/UNLK parameterthe default value for this function is 6.

Label table [nLabels floc]]

This function must be used to allocatea table for table labels.Withouta table the table labels cannot be used.
Whenever you invoke this function, the old label table, if present, is cleared, and,if it was previously
allocated as a systemheap block, it is deallocated.

H you supplyno arguments, the old label table is deallocated. H it was a systemheap block, the block is
released. H you supplyone argument, a table of size 16*nLabels is allocated on the system heap. If there was
enough memoryfor the table, its address is then displayed in loco H there was not enough memory,no table is
allocated, and the line is cleared.

H you supply two arguments, the old table is deallocated and thenew table is assumed to begin at loco No
checks of legalityof toe are made. loc must be even!

V is set to the address of the table, if one is present.
nLabels shouldnot exceed $7FF. H it exceeds $7FF, it is treatedmodulo$800. H it is zero, the function
behaves as ifno parameters weregiven.

The system heap must be in a consistent state for this function to be used. Also, loc, if given, must be
even and point to unused RAM.

Bewareof pressingEnter on the line after allocating a tableon the system heap. This will deallocate
the table on the system heap and make the Monitor assume that the new table is in the same location
with the same length as the old one. Unfortunately, the table now resides in a free block instead of a
nonrelocatable block in the systemheap, and may corruptboth the systemheap and the Monitor if
something is later allocated in the systemheap.

71

TMON

Label add/remove [lbl[adr [endlJ

Add and remove labels in the label table. The label table must be allocated.Ifno parameters are given, do
nothing except clear the result information.The result information is displayed between the two curly
brackets and is either blank if nothing was done or gives informationabout the last operation completed. Ibl
must be a label enclosed in double quotes (not an expression!). It is the label upon which the operation is
being done.

If only lbl is given, it is removed from the table if it waspresent; otherwise, nothing happens. The
appropriate information is displayed between the curly brackets.

If Ibl and adr are given, Ibl is added (or replaced if it already exists) to the table. adr is the address assigned
to it. If the Scan resources option in the Options window is set and adr falls inside a resource. the label is
stored as a resource-relativelabel in the table, and needs no explicit endingaddress.A messagestating that the
label has been added rela1ive a given resource type is shown betweenthe curlybrackets.

If all three parameters are provided, or the label could not be stored as resource-relative, it is stored as
absolute starting at adr and ending the recognitionrange at end. If end was not provided, it is set to
adr+$800. end is the first byte past the recognitionrange, not the last byte of it. A messagestating that the
label has been added is shown betweenthe curly brackets.

If the table is already full, the label is not added, and nothing appears betweenthe curlybradteIs.

~ When adding labels this routine automaticallydetermines whethera label shouldbe stored resource­
relative or absolute. If you think you need more control, modify the label table directly. Add some
dummy labels to it and thenuse a Dump window to change their data.

Label file load (Load .MAP label me)

This function reads a .MAP fue and extracts from it labels that are inserted into the label table. Labels must
be enabled and a label table must be allocated.When executed, this function leavesthe Monitor and shows a
standard file selection dialog. All files of type TEXT are displayed. If you press Cancel, the Monitor is
reentered with the message "Bad load". If you select a file, it is opened and read. Any errors cause a return to
the Monitor with the "Bad load" message. If the label table becomesfull, any extra labels in the file are
ignored.

The function has defmitely not been optimizedfor speed in order to keep it simple. It should not be difficult
to change it to read other me formats.

This is theformat of the TEXT file. All spaces are completely ignored; they are not used as delimiters of any
kind and are removedfrom wherever they appear. This means that they can appear in the middle of numbersor
labels without being detected. Any string of charactersbeginning with a characterbelow $20 or above $7E and
ending with an equal sign (=) is considered a label. The two delimitersare. of course,not included in the text
of the label. The label, in order to be entered into the label table, must be followed by two hexadecimal
numbers separated by another delimiter,usually a colon. The frrst number is 0 for absolute labels and gives
the CODE segment number for CODE resource-relative labels.The second number gives the value for absolute
labels and gives the offset inside the CODE resource minus 4 for the relative labels. No range checking is
performed. The recognitionrange ending address for absolute labels is set to the label address plus $800. If the
label 61ready exists in the label table, the old one is replaced. Resource-relative labels relative to resources
other1ban CODE cannot be specified in .MAPmes.

This function is by far the least reliable one in the entire Monitor. It requires most of the managers
like QuickDraw, theWindow Manager,Dialog Manager,Font Manager,TextEdit, and others to be
initialized. Moreover, it uses the standard me dialog to select the file, which is very risky to do from
a Monitor. For all these reasons it is recommended that you use this functiononly from TMON when
the Monitor first appears. The only way to assure a consistent state is to execute this function the
fU'St time the Monitor screen appears (with the welcoming message) or to click Monitor in the Main
Dialog.

12

Tec1mical Rejerem:e

o This function does not restore thescreen; instead, it uses theactivate/update event mechanism of the
program currently executing. That mechanism must be capableof supporting redrawing of thearea of
thescreen contajnjng the standard file dialog.

.. Any mouseclicks or key presses made while this functionis executing aresaved in theeventqueue.
SeeLeave TMaN for moredetails.

Registers sek~

This is a set of three functions dealing with the alternate register set located in theuser area.
The three functions were placedon thesame line to save screen space. selector is used to identify thefunction
to beexecuted.

If selector is zero. the Monitor's registerset Is copied to theuser area's register set andthe other two options
become available.

If selector is one, the user area's registerset is copied to theMonitor's register set.

If Selector is two, the two register sets areexcbanged.

If 8elec:tor is noneof the above,nothinghappens.

ThePC in the user area's registerset is shown in curlybrackets.

.. This functionis veryuseful in case youareanticipating a system crash in a routine you aredebugging.
Youcan save the registers andthen execute theroutine. 'lben, even if it crashes, youcan restore the
registersanddo what you were doingpreviously. Also use this routine if you aretesting small pieces
of code from TMON. By savingregisters and later restoring them you can still use EDt to exit to the
Main Dialog without worrying about making your routine preserveregisters.

Leave TMON; queue events untilmouse click

Tbis functionleaves theMonitorandstays in a IOIItine tbat does nothingexcept dJeck for a mouse button click
and neuter theMonitor when the mousebuttonistJressed.This function also allows you to move the mouse
cura in the progmm you're debuggingwithout havingtheprogram react to tbat motion.Thatcouldbe useful
sometimes.

'lbiI functionwill fail with a system error$IC if thestack pointer isbe10w the top of the application heap.

o Do not press the Interruptbutton while this routine is executing.

.. Any mousec:licks or keystrokes arerecorded as events, but since the Monitordoes not use tbe event
queue. they will remainqueued untilyou exit the Monitor. This includes themousecJi4:k which you
use to return to the Monitor. Althoughit may beannoying 81 times, this side effect CIIl'alsobevery
useful for testinghowtheprogram youaredebuggingresponds to a rapid succession of evcmts. YOll
could, for example, use Leave THON to clickon severalbuttonsof a dialog(you wouldhave to use
Leave THON several times for this). andtben exit the Monitorandsee how the pogram rtIpOnds.
This methodcan discover somevery subtle arms.

Leave application sekclOT

Tbisfunction clears all breakpoints, closes all openfJIes includingresource files but excepting the System ­
file, and if the selectoris 0 JauDches theFmder,or if the selectoris I re-JauDches tbe cumntly active
application.

.. Leave application uses the _ExitToShell trap to return to whaIever appUcadon is named in
the low-RAM global FinderName when theselectoris O. When the selector Is I, it passes the
conteDts of the low-RAM global CurApName to the_Launch ttap.

TMON

=K-' This function relies upon the file managerand resourcemanagerdata structuresbeing in a consistent
state in order to close all open files successfully.

Shut down selector

If the selector is 0, this resets the Macintosh. If the selector is 1, it will eject all mounted disks and reset the
Macintosh.This is better than pressing the reset button because it ejects and umnounts all disks. In order for
this to succeed with a selector of 1, the volume queue and file variablesmust be in a usable state.

Trap record (to (11(l'CO PCl)}]

Whenever an AOOO trap in between to and tllocated between PCO and PCl, both inclusive, IsfOllDd, record it
in a table. The defaults are the value of to for u, 0 for PCO, and $FFFFFF for PC1. A null parameter line
turns off the recording.The table into which the traps are to be recordedmustbespecifiecl In abe Reoard
function; otherwise, nothing happens.

The traps are recorded in a table of 16-byteentries. In each entry the first word (bytes 0,1)11 the AOOO trap
that was recorded. The second word (bytes 2,3) contains the low 16 bits of the valueof Ticka($16A) when
the trap occurred. The following longword(bytes 4-7) is the address of the AOOO trap. Theva1lJes of the last
eight bytes vary dependingon the setting of bit 11 of the trap. If the bit was 0, the trap was pmbably a
register-basedtrap, and the longwordvalues of DO and AO are stored in the remaining eialU bytes. On the
other hand, if that bit was 1, the eight bytes from the top of the stack are given.

New entries are added to the beginning of the table. All remainingentries are shiftedto make room for the
new entry. The last entry is forgotten. Note that unless you specifically clear the tablebefore you exit the
Monitor, the old entries will remain in it If fewer traps than the table size were recorded while~ of the
Monitor, the old traps will still remain at the bottom of the table. You can distinguish diemfrom the new
traps by the time value in bytes 2 and 3.

The IndicatorIn the curly brackets on the Record line shows the number of new trapsrecordedsince the last
time the Monitor was exited.

There are severaluses for this function. One is to generallyview the sequenceof trapsexecutedby the program
to troubleshoot it. Another is to intercept a single trap such as _ GetResource aDd see which resources are
requirecl.by the program.Finally, this functionmay be used for limitedperfonnanceanalysis because it records
the times of executionof the traps. This function does not significantly affect the running time of the
program;moreover, its execution time is independent of the size of the table; recordinga new trap and shifting
the table is just as fast for a 2000-entry table as for a 2O-entry table. Try it! The other AOOO trap intercepting
functions, notably Heap scramble and Checksum on large ranges,do slow the program,however.

Q" You will probablywant to use a Dump windowto view the record and a Number window to f"md the
trap name ftom the number given in the records.

See also Record and the note at the beginning of this chapter for general information about the AOOO trap
intercepting routines.

Record (Wbere to record traps) {fullStop nMsg(loc]]

This fullCtion must be used to allocatea table for Trap record. Whenever you invoke this function, the old
label table, if present, is cleared,and, if it was previously allocatedas a system heap block, it is deallocated.

If you supplyno arguments, the old label table is deal1ocated. If it was a systemheap block, the block is
released. If you do not supply loe, a table of size 16*nMsg is allocatedon the system heap. If there was
enoughmemoryfor the table, its address is then displayedin loe.1f there was not enoughmemory,no table is

I . l1located, and the line is cleared.

V II let to the address of the table, if one is present
Ifyou supplyall arguments, the table is assumed to begin at loco No checks of legalityof loe are made. loc
IDUItbeevent

74

Technical Reference

1IMsg should not exceed $7FF. If it exceeds$7FF, it is treated modulo $800. If it is zero, the function behaves
as if no parameters were given.

jidlStop is a flag for use by Trap record. If it is zero, recording takes place until the Monitor is entered
again. If it is nonzero, the Monitor is automatically invokedvia a user trap at the moment the table
overflows.The trap that would cause the table to overflowis not recorded.

If youhave alreadyallocated the tableusinga loe,you may clear it by pressingEnter on the line. You do not
want to press Enter on the line if it was allocatedas a system heap block, because the routine will believe
that you are nowgiving it an addresslTo clear a table that is a systemheap block, press Return with the
cursor between tlMsgaDd loco

The iDdleator in thocurly 1ncketI shows thonumber of newtrapS recorded since the last time Monitorwas
exited.,, TIleIyatem heap 1Il1JIt be in a c:o.nsisteat stale for thisfunction to be used. Also, loc, if given, must be

even aDd poiDt 10"'lWrI.
BewIre of pnsalDa..OIl tile liDO lifter a1loc:IdDa a table on tile system heap. This will deallocate
abetIbIe OIl .,... "'1114mIb IbeMoaiIlJr... tbIt abeuew table is in the same location
widl tho 1tDJdl.. _old oae. UufoabilllllelJ.tbetableDOW resides in a free block instead of a
~ 1lJact....,.....maycorrupt both the systemheap and the Monitor if
~11_ a1klcIIId in abe.,... heap. ~

Trap heap check, .c=r~,"U9. [zone#}

Scramble the help OIl AOOO 1l'IPLl.JDlike abe other AOOO trap inten:epting routines, this one does not give you
a choiceof trapI OIl which it it a.oc:uted. 1be heap is 1CIIIDb1ed whenever a trapthatmighttrigger a heap
compaction in this range is intercepted; the Monitor is ~t entered.The traps that might trigger a heap
compactionare: _Newptr ($AOlB), _NewBandle ($A022),_ReallocBandle ($A027), and
_SetptrSize ($A020) and_SetBandleSize ($A024) if the new lengthis greater than the old length.
The Monitor is enteredif tbe heap is somehow dama&ed. (If that happens,the heap will have been partially
scrambledup to tbe locationof the e11'OI'.)

IOne# selects tbe heap to be scrambled. Use 0 for the system heap and any non-zero number for the application
heap. The scrambleis _led when the zone numberis visible.Press Return on tbe line once to tum off the
scrambling.

The"heap scramble"in tbe preceding two paragraphs maynot teally be a heap scramble.There are four Choices
possible; tbey are chosen by consecutively pressingReturn on tbe line.

The Check choicejust checks tbe heap for consistency withoutmodifying it. It is useful for locatingroutines
in your program that somehowdamagethe heap.

The Check, pJlTge choicefIrSt purgesall purgeable blocksfrom the heap and then checks it.

The Check, scramble choicechecks andmovesas manyrelocatable blocksaroundthe heap as possible. This is
used for flDding handledereferencing errors in programs, whichare surprisingly common. The checkand
scramble are done simultaneously; a part of the heap may have alreadybeen scrambled whenan error is found;
nevertheless, the heap area immediately before and after the error is never scrambled. This option is highly
optimized for speed within tbe constrains of space in the user area; still, it is quite slow.

Note that this optionalsoclears all free blocks in tbe heap except in some cases the last one (to make the
speed bearable; the last one is usuallyvery large),but not to zeros. This providesadditionalassurance that
dereferencing errors are eliminated.

The Check, scramble, purgechoicedoes all three:a purge,a check,and a scramble.

A heap scramble consistsof moving as manyunlockedrelocatable blocksin the heap as possible.This way a
heap compaction is simulated every time one could happen. Any handledereferencing errors which otherwise
wouldbe rare and randomand very difficultto fmd because they wouldoccuronly on heap compactions are
now made to occurconsistently every time,making themmuch easier to find.

75

TMON

In addition to moving the free blocks in the heap the heap scrambleerases (to a nonzero,oddvalue) all free
blocks andconsolidates any consecutive ones. The only free block that may not be completely erased is the last
one. This is done for performance reasons.

It is possible that some relocatable blocks will not be moved. This will occur in the rue situation that one
relocatableblock is caught betweentwo immovable ones.

Heap 1.0111:#

Ifno parametershave been passed to Trap check, scramble, and/orpurge, this functiondisplays the total
amount of free bytes on the heap, the maximum numberof contiguous bytes,and the number of bytes the heap
may grow. The systemheap is used if Zone# is zero, otherwise the application heap is used.

trir The heap zone is compacted and all purgeable blocks are purgedfrom it.

W' Do not use this function if the heap zone is inconsistent (has invalidblocksin it). Also avoid using it
if the application program you are debugging doesnot expectthe heap zoneto change.

If parameterswerepassed to Trap check,scramble, and/orpurge, this function changes to Check, scramble
now which,whenchosen, checks andpossibly scrambles or purgesthe heap as described above accordingto the
optionscurrentlyset in Trap heap scramble. The action is performed immediately. TIlelastheap zone
enteredinto Trap heap scramble is used.

t:> Be careful with this function (Check, scramble now). If the program you are debugging hasany
handles dereferenced at the time you invoke it, that programmay laterfail. If you are not sure
whether this is the case,use Trap intercept to fmd the nearestAOOO trap that miabtheap
scramble (see previoussection). Beforesuch a trap it is defmitely permissible to scramble tile beap.

Trap discipline (lenientlstrict) [to ttl [PCO PCl])]

This examines the parametersbeing passed to any traps about to be executedthat lie within the defined trap
range and optionalPC range. If any of the parameters are questionable or incorrect, the Monitor will be
entered with an appropriate messagebeing displayed. The message will begin with a question mark ("1") and
will provide the Toolbox type of the parameter in question, sometimes with additional information(e.g. ?
selector, ? NIL address, ? odd address, ? address, ? string, ? string length, ?
StringPtr, ? NIL Stringptr, ? jump table, ? THz, ? Zone, ? ptr, ? Handle, ? empty Handle,
etc.). Note that when the monitor is entered due to discipline, the PC points to the trap whose parameters are
questionable, and that the parameters are still on the stackor in the appropriate registers. where they can be
examinedso as to glean some idea as to what is wrong with them.

trir If no parameters are passed to this function, it toggles betweenusing lenient andstrict discipline. If
lenient discipline is being used, NTI.. string pointerswill be convertedto pointers to a zero-length
string. If strict discipline is being used, the Monitorwill be entered with an appropriate message
being displayed if a rectangle is invalid (top is greater than bottom and/or left is greater than right)
and the Monitorwill be enteredwith an appropriate message being displayed if procedures passed to
..8etTrapAddress are not in the systemheap zone.

Trap checksum [to ttl [PCO PClJJJ

Whenever an AOOO trap in betweentoand t1 locatedbetweenPCO andPCI, both inclusive, is found, do a
checksum on the range specified in the Checksum range.The defaults are the valueof to for a,0 for PCO, and
$FFFFFFfor PCl. A null parameterline turns off the checksumming. When an AOOO trap is encountered, if
the result agreeswith the checksum shownin the Checksum line, the functiondoes nothing. Otherwise, it
drops into the Monitorwith a user trap message stating that the checksum has failed.

76

Technical Reference

Note tbat once the checksum fails, it is not automatically recomputed. If you want to see when the area of
memory specified in the Checksum line changes again,youhave to pressEnter on the Checksum line to
recalculate the checksum.

Checksum was not written with emphasis on performance. It works very fast on small ranges, but was not
reallydesigned for checksumming largeones.

See also Checksum and the note at the beginning of this chapterfor generalinformation about the AOOO trap
inteIcepting routines.

Checksum bgnend

Checksum generates anddisplays a checksum generated from thatmemory range.It is used to checkif a
memory range has been changedthrough timeor for comparing two memory ranges.This checksum will flnd
most transposition errors as well as substitution errors.

Thebgn;end, and generated checksum values are alsoused in Trap checksum, above. The defaultvaluesare
the beginning andend of the ROM,which is convenient, since the ROMdoesn't changewhile the machine is
on.

Trap intercept [to [Il [PCOPC1J]]

Intercept all AOOO traps with the trap number between to and tl, inclusive, and whichare in the block: of
memory from PCO to PCI. The defaults are the value of to for n, 0 for PCO, and $FFFFFF for PCI. A null
parameter line turns off the intercepting. When a trap is encountered, the Monitoris enteredwith a user trap
message. See also the note at the beginning of this chapter for general information about the AOOO trap
intercepting routines.

Trap signal [to [Il [PCO PC1J]]

Like the other AOOO trap intercepting functions, this one executes on AOOO traps with the trap number
between toand tl, inclusive, andwhichare in the blockof memory from PCO to PCl. The defaultsare the
valueof to for tl, 0 for PCO, and $FFFFFFfofPCI.A null parameter line turns off this function.

Unlike the other trap intercepting functions, this one does nothingmost of the time. It remains dormant until
you press interrupt whileholding downthe Option key. Once you do that, this function will drop into the
Monitor as soon as it is executed. It is very useful for stopping yourprogram at a specificpoint as opposed to
anywhere. Somepossibilities are setting to to_SystemTask or GetNextEvent or setting to andtl to all
Imps but restricting the PC to your main program. -

This function learnstbat Option-interrupt was pressed because the Monitor tells it that. If youpress Option­
interrupt while this functionis disabled or the Monitor is active,nothing happens.

!' Avoidpressing the • key too, whichwould have disastrous consequences (It doesa complete Monitor
reset).

See also the note at the beginning of this chapterfor general information about the AOOO trap intercepting
routines.

77

TMON

Creating Your Own User Functions
Theuser area is a variable-length block of memoryreservedby the Monitor. It has two purposes: to allow you
to use the predefinedand add your own functions to the Monitorand to store the Configuration and Monitor
windows settings. The Configuration setting,a few other parameters, and the user area identification number
areall stored at the beginning of the user area. They are followedby a linkedlist of names andother
parameters for the routines.Theroutines themselves are at the end of the user area.
Theuser area routinesmust be relocatable. Theuser area is placedbetweenMonitor'svariables andthe
Monitor's stack. which could be anywhere in memory. Once the user area is loaded, however. it is DeVer moved
(but it could be saved and loaded into a differentplace).

This chapter is organized roughly in the order of the data in the user area. The description of the configuratiClll
bytes is fU'St, followed by the descriptions of some special numbers and vectors thatare also stored in the
Configuration area. Then the namesandfmally the routinesare described.

It is difficult to learn how to create your own user routines without lookingat examples. You are encourqed
to look at default user area sourcefile (supplied on the disk) for any ideas.

All numbersare in decimal unless preceded by a dollar sign or the contextimplies that the numberis
hexadecimal. Bit 7 is the most significant bit of a byte and0 the least significant.

If you have an old (TMON2.585) user area. you must edit it before this TMONwill read it. Re-assemble the
user area, changing the configuration settings(bytes 0-683)at the beginning to make sure &bey make sense. At
the same time set bit 3 of the byte at offset 4 in the user area; this indicates to TMON that tbia is a new user
area.

78

Technical Reference

The User Configuration Area
As stated earlier, the first 48 bytes of a user area are used to hold the current Configuration setting and some
other interestingdata. Here is a summary of this data; some of the items will be explained in more detail
later.

Byte Bit Range
0-1 all

2-3 all

4 7
4 6
4 5

4 4
4 3
4 2-0

S 7
5 6
S 5
5 4
5 3
S 2
5 1
5 0
6 7.
6 6-0
7 7-2
7 1-0

8 7-6

8 S-4
8 3-2
8-9 1-0;7-0

10-11 all

12-13 all

14-15
16-17
18-19
20-21
22-23
24-25
26-27
28-29
30-31
32-33

all
all
all
all
all
all
all
all
all
all

Description
The length of the user area. It must be a multiple of 256, less than $8000, and
cannot be zero. .
This user area's version/lDnumber. This number is for identificationpurposes
only; no part of the program references it,
oif the vector refresh is on; 1 if it is off.
oif VBL tasks are to be disabled; 1 if VBL tasks must be left running.
oif the Monitor is to be loaded into high memory upon booting; 1 if system
heap.
1 if auto-quit is enabled; 0 if not.
1 if this is a new (I'MON 2.8) user area, 0 if it is an old (TMON 2.585) one.
Unused; formerlywas the amount of screen compressionused; 0 indicated
saving the entire screen (21888bytes on a Macintosh512K. 512Ke, Plus or SE),
1 a 10Kcompression. 2 a 4K compression. and3 no compression. The values
from 4 to 7 were illegal.
Set to 1 to inhibit calling the user identification routine for heap windows.
set to 1 to inhibit scanningresources for heap windows.
Set to 1 to inhibit table labels.
set to 1 to inhibit embeddedname labels.
Set to 1 to inhibit scanningresources for label routines.
Set to 1 to inhibit pseudo-label identification.
Set to 1 to inhibit all labels (master switch).
Reserved. Must be zero.
The port used for printing.0 is the printer port; 1 is the phone port,
Reserved. Must be zero.
Reserved. Must be zero.
The handshmg,.~for printing.0 is none, 1 is XOn/XOff, and2 is hardware.
A value of3wm~ unpredictable results.
The number of stopbits used by the serial printingroutines. I, 2, and3 are I,
1.5, and 2 stop bits, respectively.
oand2 are no parity; 1 is odd,and3 is even parity for printing.
0. I, 2, and 3 are respectively 5, 6, 7, and 8 bits per byte for printing.
A constantdetermining the baud rate being used. The value is 115200I baud rate
• 2. For instance,use 4 for 19200baud, 10 for 9600 baud, and 46 for 2400baud.
The constant is ten bits long.
Offset in the user area to an Aooo hook routine; 0 if there is no such routine.
For example, if the user area starts at $7000, and the AOOO handler routine
within the user area starts at $7320, the value stored here wOUld be a $0320.
Offset in the user area to the location to store the Print error code or 0 if
there is no such location.Wheneverthe Print function is used from the button
bar or the predef'med user area, the error code is stored at this word in the user
area.
Offset to thefirst user routine's descriptionblock or 0 if there is none.
Offset to the heap windowidentification routine or 0 if there is none.
Offset to theuser area initialization routine or 0 if there is none.
Offset to the user area entry routine or 0 if there is none.
Offset to the user area exit routine or 0 if there is none.
Offset to the user area label table recognizeroutine or 0 if there is none.
Offset to the user area embeddedlabel recognize or 0 if there is none.
Offset to the user area label table evaluateroutine or 0 if there is none.
Offset to the user area embeddedlabel evaluateor 0 if there is none,
Offset to the packedtable of user area AOOO name additions.

79

TMON

34-35 all

36-31 all
38-39 all
40-43 all
44-63 all
64-71 all

12-79 all

80-683 all

Offset to the user area table of systemerrors to be passed through to the
system.
Offset to the user area level 7 entry routineor0 if tbere is none.
Offset to the user area level 7 exit routineor0 if tbere is DODe.
Reserved for internal cursorpatch routines.
Unused; reservedfor future expansion. Must be zero.
Bitmap of exceptionvectors to be intercepted when the Monitor is first loaded
or re-initializes itself.
Bitmap of exceptionvectors to be hUerceptecl every timetheMonitor gains
control.
Intemal data pertaining to the current state of the Monitor's windows.

Names and LocalStorage In the UserArea
At the 14th byte of the user area is a pointer to a linked list of user routinedescriptm. 'lbe list 11 CCIIDpClIeCI
of entries describedbelow:

FJJ'St is the offset from the beginningof the user area to the next routine's descript« in theJist. 1be offset 11
a word. Next is another word offset from. the beginning of the user area. this time to theIIIrtiDI address of a
user routine. It is followed by the length of the routine's name andthen by the Dame itself (desc:ribedin the
next section). An extta byte may be inserted after the last characterof the name to make abo Dal field OIl a
word boundary. The parameter count byte is after the name. It containsa bitmap iDdie:atiDI diemunber of
parametersaccepted by this routine. After that is a byte containing the lengthof the user roadne's local
variable space followed by the variablespace itself. (The length of the local variable IplICe 11 DOlqer used.
It wasonce used by earlier versionsof TMON, but the current one ignores it. It may be used.,ain in the
future.) The data after the variablespace can consistof anything; in particular, it maybe theI'OIltiDe code. or
the name record of the next routine.

What'sIn a Name?
1be names are usually not pure AScn strings,althoughthey may be. Usually they _ much more
complicated, includingdisplaying of variables, ASCll values, or even conditionals. This 11 • powerfulfeature
of the Monitorthat simplifiescreating your own user areas. Some functiOlll described below refer to a pointer
called P. It is an internal Monitor variable that 11 initialized to the beginning of the user routine's local
variable space every time before the name is printed. In the followiDg section"printing" means displaying OIl
the screen, not the printer. Some excellentexamples of comrolseque:oces in namesare present in the source
code of the defaultuser area. You are encouraged to look at these to betterunderstand "names" as described
below. Here is a table of the "control codes" that can be used in a name:

$00 EndIf
Cancel a precediD& IfElse, IfPos, or IfNeg.

$01 IfElse
Flip the conditionof the last Ifpos or IfNeg.

$02 IfPos
If the byte at P is positive,execute the next sectionof code. If it is negative, skip until the next
EndIf or IfElse. In either case increment P. The conditionals may be nestableto any
reasonablelevel. Each Ifpos may beoptionally followed by IfElse, but mustbefollowedby
EndIf with one exception: it is DOt necessary to put an EndIf before the end of the string.

$03 IfNeg
If the byte at P is negative.execute the next section of code. If it is positive,skip until the next
EndIf or IfElse. In eithercase increment P. The conditionals maybe nestableto any
reasonable level. Each IfNeg may beoptionally followed by IfElse, but must be followedby
EndIf with one exception: it is DOtnecessary co put an EndIf before the eod of the strins.

80

Technical Reference

$04 Colon
This is one of the more powerful commands in names. It prints a colon, but has a much more
profound side effect. Everythingprinted after this command will appear to the right of the colon
and provide a default for the user's editing. Some pre-defmeduser functions thatuse this control
code areBlock Compare, Find, Checksum, Load resource, andTrap intercept. No
more than one Colon can be interpreted, althoughmore than one may be present (using
conditionals). Any Colon(s) encountered after the flrst one is interpreted.are ignored. If there
is no Colon in the name, an impliedone is insertedafter the end of the name, so that there
always is a colon on the line.

$05 to $OE Skip
Increment P by 1 to 10 bytes. $05 increments it by 1 byte, $06 by two bytes, etc.

$OF to $16 PrHex
Print from one to eight hex nibbles from the memorypointed by P. P is incrementedpast the
byte that contains the last nibble printed. For example,$13 causes the least signifIcantnibble of
the byte at P and both nibbles of the two following bytes to be printed as a five-digit hex
number.

$17 to $lE PrASCII
Print 1 to 8 ASCII charactersfrom memory starting at P. P is incrementedpast that memory
block. ASCll values lower than $20 or higher than $7E areprinted as tiny periods.

$lF NoOp
No operation.

$20 to $7E Print that ASCII character.

$7F Print a tiny period.

$80 DisAsmO
Print the name of the AOOO trap whosenumber is in the word at P. P is incrementedpast the
word. The numberat P is decodedin the samemanneras in a Number window: bits 0 to 11
contain the trap number,and bits 12 to 15 areignored. If the trap names arenot present or the
trap givenhas no name, its number (plus $AOOO or $A800,depending on the trap) is displayed
instead, precededby a dollar sign.

$81 DisAsm1
This is the same as DisAsmO except that the wordat P is decodedin the manner an Assembly
window would show it as opposed to a Number window. All 16 bits are significant; bits 12 to
15 should contain $A. A space and the hexadecimal digit indicating the value of bits 8 to 11 are
printed when that value differs from the default. If the trap names are not present or the trap
given has no name, this function is equivalent to the sequence' $, , PrHex+4.

$82 Recognize
Call the label recognizeroutine on the addressgiven in the longwordat P, andreport the
results. Up to 23 bytes of the destinationstring might be used. Nothing is displayedif the
addresscould not be recognized.

$83 to $FF Unimplemented. Currently behave as NoOps.

The line is truncated to 84 characters including the colon. Names that are too long may provide too little
editingspace for the user.

81

TMON

Parameter Count
The parameter count byte defmes the number of parametersallowed by the routine. A parameter is a number or
an expression typedby the user on that routine's line. The parametersare separatedby spaces and are
automatically evaluated by the Monitor. The parameter count byte is actuallya five-bit bit map contained in
the least significant bits of the byte. The tbree most significant bits are flags, which should be set to O. If bit
oof the byte is set, the user routine may be called with no parameters; if bit 1 is set, it may be called with
one parameter, etc. If the routine allows more than one amount of parameters to be present, it may find the
number of parameters actually given and provide defaults for the missing parameters.

Bit 7 of the parameter count serves a special function. If it is set, a label is expected instead of the fll'St two
parameters. The label is checkedfor syntaxbut not evaluated.The first four charactersof the label are given as
parameter 0 (in DO), and the secondfour are given as parameter 1 (in Dl).1f there are less than eight
characters, the missing ones are padded with blanks; if there are more, the extra ones are ignored. The label
counts as two normal parameters.

Bits 6 and S are unusedand reservedfor future use.

Register Conventions

Upon entry to the routine the following values are present in the 68000 registers. All values are longwords.

DO to D3 Parameters providedby the user or zeros if not present
D7 The number of parameters suppliedby the user (0 through4).
AO A pointer to this user routine's local variable storage.
Al This subroutine's starting address.
A2 The user area's startingaddress.
A5 A pointer to the Monitor's variables (described later).
A7 Monitor's stack pointer. At least 200 bytes are available on the stack.

All other registers contain zeros. The user routine does not have to preserve any registersexcept, Qfcourse,
A7. The interrupt level is set to zero upon entry to the user routine, but the user routine may set it to
anything it wishes. The status register does not have to be preservedeither.

There are, however, certain restrictions on the user routines that are called from the Monitor. They must not
cause any exceptions; in particular, this includesaddress and illegal instructionerrors and trace interrupts.
There are some ways user routines may get around these restrictionsif it is absolutely necessary, as described
in the next sections.

The AOOO TrapIntercepting Hook
At the beginning of the user area there is a word that containseither zero or an offset to a user AOOO trap
interceptingroutine. This makes functions like Trap intercept and Trap discipline possible.The user
routine pointed by the vector is executed before every AOOO trap except traps that occur while the Monitoris
executing (See the Self·Check section for a defmitionof when the Monitor is executing)and traps that occur
while the fll'St instruction is executing after leaving the Monitor (See Trace Flag Side Effects for more
information on this topic).

The AOOO trap routine must preserve all registers except the CCR. Upon entry all registers are the same as
before the AOOO trap except AS, which has been saved on the stack. AS is initializedto the beginningof
Monitor'. variables. The standard user area contains a routine which is usually linked to thishook; it is called
AOOOKook. It obtains the trap number and PC and dispatchesany user AOOO interceptroutines that are active.

The trap routine must either return to the routine that called it using RTS or restore all registers to their
original states (this includes the AS that was saved on the stack) and execute a TRAP t$F instruction,as
described in User Routines Entering the Monitor. Examinethe AOOOHook routinefor a safe way of doing
that.

82

Technical Reference

User Routines Leaving the Monitor
A user routinemay leave the Monitor if it wishes to do so. It must initialize the register area in the
Monitor's variables to the values the registers are to assume after the Monitorhas been exited. This includes
in particular the programcounter, stack pointer, and status registers. Mter doing this the routine must
execute a JMP -12 (AS) instruction. AS must contain the address of the Monitor's variables.At that time the
Monitor executes a kind of an automaticExit function. Theregister area in Monitor's variables will be
described in a later section.Refer to the Leave THON andLoad resource routinesin the user area source
for examples of leaving the Monitor andre-entering it later, although that is not the clearest example because
beforeleaving the Monitor the return status registerand programcountervalues are already pushed onto the
stack in anticipationof the TRAP f$F instructionthat will be executedafter the mouse button is pressed.

User Routines Entering the Monitor
User routines that are called from cmtside the Monitoror have exited the Monitormay reenter it by pushing a
longword anda word on the stack andexecuting TRAP '$F inside the userarea.That TRAP '$F instruction
is interpretedas an attempt to reenter the Monitoronly if it is located within the user area.
Thelongwordpushed onto the stack is the value that will be loaded into the programcounter in the
Registers window.Theword pushedonto the stack after the longwordis the status register value that
will be placed into the same window. Theother registers in the Registers windowcome directlyfrom the
values left in the registers. Some examples of the usage of this featureare the Leave THON routineandthe
routines that exit to the Monitoraftera trap has beenintercepted or anerror in the heap has beenfound.

The Heap Window Identification Routine

Locations $10 and $11 of the user area containa wordoffsetfrom the beginning of the heap to the Reap
window identification routine that is described in the Reap windowsection.Theroutine is used to identify
heap blocksand may be customized. The routineis given a flag indicating the type of bloCk in D3. A zero is a
non-relocatable block, one is a non-resource relocatable block,andtwo is a relocatable bloCk that has already
beenidentifiedas a resource. Free andinvalidbloc:ks are not passed to the identification routine.Theuser
identification routine will probably want to ip.~2 blocks.

D3 contains the flag described above.
AOcontains the address of the beginning of the user area.
Al contains the addressof the heap zone to wbichthe block be1oJJ&s.
A2 contains a pointer to the area in wbich the text identifying the bloCk is to be stored. Look at the

listing of the default user identification routine to learn how to handle A2. Make sure that you do
not run off the right edge of the string at A2.

A3 is a pointer to the heap block to be identified.
A4 is anotherpointer to the destination area. The difference betweenit andA2 is that wbile A2 points to

the fiee space.after the last wordalreadypresent in the string,A4 alwayspoints to the same place:
the positionafter the second space after the size c:orreetion digit

AS points to Monitor's variables.
A6 contains the address of the handlefor relocatable blocksonly.
A7 is the stack pointer. At least 60 byteS are fiee on thestack.

Theroutinemay destroy the contents of anyregisters except A2, AS, and, of course, A7.1f the routine was
able to identify the block, it should move A2 past the information it has written into the destination.

o Theroutine shouldnot take muchmore than 1/l00th of a second to execute; longer times will tend to
excessively slow the Monitor.

Make sure that the routine does not write outsidethe designated destination area. see the listing of
the suppliedroutine for details.

TMON

~ Theroutine should check all data structuresit uses to avoid addresserrors and following NIL
pointers. It should not assume that anything is correct except in extremely time-<:ritical cases.

The User Initialization Routine
There exists a routine in the user area that is executedimmediately before the Monitoris f"ast initialized and
immediately before the Monitor is reinitialized after clicking the Monitor button in the Main Dialog if the
Monitor is already present,Locations$12 and $13 of the user area containa wordoffset from the beginning of
the user area to the beginningof this initialization routine. These two bytes contain zeros if there is no
initialization routine.

This routine is called before the Monitor initializes itself; this means that none of the Monitor's variables
contain valid information. This also means that the Monitor's self-checking hasnot yet begunand, therefore,
the Monitor can be patched without generating the messagestating that the Monitor hasbeen damaged. In fact,
the main purpose for includingthis routine is to allow user areas that modifythe Monitorto be made. A
secondarypurpose is :0 allow self-initializing user areas.

The routine does not have to preserveany registers except the high byte of SR and A7.On entry DO contains0
if the routine is called the first time and -1 every time thereafter(It can be calledmore than once if the
Monitor button is used to re-initialize the Monitor). A5 points to the beginning of the Monitor's variables.
None of the variables themselves, however, have been initialized. A7 points to the application program's stack,
not the Monitor's stack.

~ This routine is not called if X-interrupt is pressed or the Monitorreinitializes itself due to one of the
conditions listed in the Self-Check sectionof Exception Handling.

~~ Make sure you know exactly what you are doing before attempting to patchthe Monitor! Remember
that none of Monitor's variables containvalid information when the initialization routine is executed.
Your initializationroutine also shouldnot call any of the Monitor's routines if you are not sure
whether such routines depend on the initialization of Monitor's variables.

The User Enter and Exit Routines
These user routines are called after enteringand before exiting the Monitor. 'Their offsets are in bytes $14 and
$15 for the enter and $16 and $17 for the exit routine.The routinesdo not have to preserveany registers
except the high byte of SR and A7. On entry ASpoints to the beginning of the Monitor's variables, and A7
points to the Monitor's stack. Look in the standarduser area for examples of usage of these routines.

An alternate set of enter and exit vectors is locatedat offsets$34 through$37 in the user area. Thesevectors
are identical to the above ones except that they are enteredwith interruptlevel 7. The level 7 entry routine is
called before the normal entry routine, and the level 7 exit routine is called after the normal exit routine. The
interrupt level is maintainedat 7 from the time an exception causingan entry into the Monitor takes place to
the time of the level 7 entry routine call and from the level 7 exit routine call to the actual exit from the
Monitor.

Some very large problems could arise if the user enter routinecausesan address error. The Monitor
will re-initialize itself, and, in the process, will call the enter routine again, causing anothererror.
The cycle will thus continue, and you will be unable to regain control.

The User Label Routines
There are four user routineswhich are used by the Monitor's label systemfor label evaluationand recognition.
Twoof these routinesdo recognition: _LSCAN, at $18 and $19, for label table recognition; and _CSCAN, at
$IA and $IB, for embedded namerecognition. _LFIND, at $IC and $10, evaluates tablelabels;and _CFIND,
It $IB and $IF, evaluates embedded name labels.'These routinesare calledonly if labelsare enabledand if they
• not inhibited by Options. The registerconventions are listed in the user area sourcecode. 'These routines
IhoIll4 takemeasures to avoid crashingon address errors.They shouldalsobe designed efficiently, as slow
emes will excessively slow the Monitor.

84

Technical Reference

TheUserAOOO Name Table
If the word at offset$20 in the user area is nonzero, it is assumedto be an offset into the user area table of
AOOO trap names. The AOOO name assembly anddisassembly routines scan both that table and the Monitor'S
internal table; whena name is present in the user area table, it overrides the name in the Monitor's table.The
formatof the table is documented in the user area but subjectto change.

The Monitordoes not do error cheddng on the table. It is very sensitive to the format of the table
andwill crashif the word at offset $20 points to the wrong place or if there are any errors in the
table.

The System Error Table
The wordat offset $22 in the user area is an offset to a table of system errors that are passed by the Monitor
to the system.These include the disk-switch dialog ("Please insert the disk...") and the power-offdialog. The
table is composed of longwords terminated by a zero longword. Each longword is a range of error numbers to
pass to the system.The high word is the lowerend of the range inclusive, and the low word is the higher end
of the range inclusive. All error numbersare signed. The rangesmust be listed in ascending order. An error
number not present in any of the ranges causes entry into the Monitor.

The Window List
Locations $So-$2AB of the user area are used by the Monitorfor storageof the current state of the Monitor's
windows. Byte $53 contains the currentnumber of windows (including alerts) on the Monitor's screen.
Locations $54-$2AB contain an array of up to twenty 3o-byterecords corresponding to uP to twenty windows
on the screen. The fU'St window is the topmost, the secondone is just behind the fast one, etc. Each window
recordis 30 bytes long, and its fiIst byte indicates the type of a window: $00Alert, $01 Registers, $02
Breakpoints, $03 User, $04Number, $85Dump, $86Assembly, $87File, $88Heap, and$09
Options. Type$OA is used internally. Theother bytes of a window record indicate the window's lengthand
position on tbe s=eu. and in some cases the data displayed in the window. Assembly window records, for
instance. contain the lengths of the instructiODS displayed in them.

The Exception Vector Bitmaps
Thereare two bitmaps of exceptionvectors in the user area at offsets$40and$48.Each bitmap consistsof 64
bits corresponding to the approximately 64 exception vectorspossibleon the Macintosh. The fast bitmap
indicates the exception vectorS into whichthe Monitor shouldput its vectors when it is initialized,and the
second bitmapindicates the exception vectors thatshouldbe refreshed. Setting a bit indicates that the Monitor
shouldtake overthe corresponding vector. The Monitor will never take over vectors at $00 and$04 (reset),
$64, $68,and $6C (mterrupt levels 1-3),or $F8and $PC (used intemally by the Monitor); regardless of the
settingsof the bits in thebitmap.

Clearing someof the bits (especially tbe onescorresponding to the TRAP f$F, AOOO, and trace
vectors) will likely crash the Mooitor.

The Monitor's Variables
This is an incomplete list of the Monitor'svariables. Only the moreusefulvariables are shown.You can leam
how to use them by examining the user area sourceille. The locations of variables are offsets from AS.The
lengths of the variables follow the locatiODS.

$IS (B) MONEXECUTING
This byte is used to decide whether the Monitor is currently executing or nolo $6B means it is
executing, $29 means that the fU'St instruction after an exit of the Monitoris executing,and any
othervalue means that the Monitor im't executing. Do not change this valueunless you are sure
what you are doing; the AOOO trap intercept routinein the userarea sourcecontains an example
of cbanging MONEXECUTING.

8S

TMON

$lA (L)

$lB (L)

$23 (B)

$24 (L*7)

$40 CW*7)

$4B (L)

$S2 (W)

$S4 (L)

$S8 (L)

$78 (L)

$94 (L)

$98 (L)

$9C (L)

$1F1 (B)

$lPS (L)

$200 (L)

$207 (B)

$208 (8*B)

$210 (8*L)

$SOO

86

EVENTINTERCEPT
Saved address of the OS BventManagerroutine while the Monitoris executing.

DESNIFF
Saved value of StkLowPt($110) while the Monitoris executing.

BREAKPTMAP
A bitmap of the breakpoints. The MSB is used internally by the Monitor to indicate if the
breakpoints are set at the present time or not, The sevenleast significant bits areset if the
corresponding breakpoints have been set,

BREAKPOINTS
The addresses of the breakpoints or zeros if the breakpoints are reset.

BREAKSAVES
The valuesof the words"under" the breakpoints.

REG. PC

REG.SR

REG.USP

REG. DO
Registers D1 throughD7 follow.

REG.AO
Registers Al through A6 follow.

REG.A7

REG. NOM
The current value of N.

REG.V
The currentvalue of V. Manyuser area routineschangethis 1ocalion.

MONTRACETIME
Information on what to do if a ttaee interrupt occurs and MONEXECUTING is $29. 0 means enter
the Monitor with trace flag clear. 1 enter the Monitor with ttace set. $80 put in the breakpoints
and leave.and $81 is used by GoSub to step thtOugh the JSR or BSR instruCtion.

SYSERRVECTOR
The savedsystem error vector. Jump to the address storedhere to generatea systemerror.

SYSAOOOVECTOR
The saved valueof the system AOOO line exception vector.

USERIINFORM
This variable is cleared every time the Monitorexits. It is set to $FF if the interruptbutton is
pressed(withoutOption or 1IC keys) whileMONEXECUTING is $6B. USERIINFORM is alsoset
to $01 whenever Option-interrupt is pressed(without the 1IC key). This variableis examined by
the user area INTERCEPT routine to determine if the interrupt buttonwas pressed whileone of
its dispatched routines was executing. It is also used by the Trap Signal function.

ALCPCORDER
The orderof allocation of ALCPCVALUES. 0 is the next to be allocated.

ALCPCVALUES
Up to eight return addresses for up to eight recursive invocations of OoSubor Step. see the
sectionon GoSuband Stepfor more details.

USER
This is the beginning of the user area.

Technical Reference

the Monitor's Vectors

_PUT2DIG

_PUT4DIG

_PUT6DIG

PUT8DIG
These routines take either the hex digit, byte, word, three bytes, or long word in DO and put it
in hexadecimal format at (A2). A2 is incremented by the corresponding numberof digits. DO and
DI are destroyed.

NEXTCRESFILE
Find the next me in the linked list of resource files. Checkfor NIL handles and address errors.
Ignoremes withaddress errorscaused by accessing type maps.On entty DI containsa handle to
thenext me. On exit, if Z if set, there is no next resourcemap. If Z is clear, Al points to the
type list, DO.W contains the file Jeference number, and DI bas a handleto the next me. No
other registers are affected. ',1r(:~~>

FINDRES "<"'
Find a resource givenits type and ID. Checkfor address errorsand NIL handles.On entry D2
contains the type and D3.Wthe ID. On exit, if DO is -1, the resource was not found (maybenot
loaded). If DO is 0, D2 points to the resource, andAO bas the handle to the resource. DI, 04,
AO, andAl are destroyed.

RECOGNIZE
Can the recognize routine. On entty D2 contains the address to be recognized, and A2 must point
to a destination stringat least 23 bytes long. Upon exit, A2 is advanced past the recognition data
stored in the string,and DO is either 0 if the recognize was successful, or -1 otherwise. DI-04,
Ao, andAl are destroyed. All of the Options switches are obeyed.

CALLDISAOOO
Call the AOOO disassembly routine. On entty D2 contains the AooO trap to be disassembled
(only the low 12 bits are significanO, and A2 must point to a destination string at least 23 bytes
long. The low byte of DO is either $00 to display the digit indicatoror $FF to inhibit it Upon
exit, A2 is advanced past the disassembly of the instruction, which is either the trap's name
preceded by an underscore or the the trap's hexadecimal four-digit number precededby a dollar
sign. DO-04,AO, and Al are destroyed.

-$38(AS)

-$34(AS)

-$3C(AS)

Thisa list of Monitor'svectors whichmay be accessed by jumping to or callingsubroutines at offset(A5).

408(AS) PRINT1
This is for use of the printingroutineonly. See PRINT in the listing of the defaultuser area.

-$OC(AS) EXITMON
This routine is used for exitingTMONandbas been described earlier.

-$I4(AS) PRINT2
This is for useof the printingroutineonly. See PRINT in the listing of the defaultuser area.

-$18(AS) PUTASCII
Given a byte in DO andA2 pointing to a destination area, _ PUTASCII storeseitherDO if it is a
valid ASCII character or $7F (a tiny period) if it isn't in (A2). A2 is incremented one byte. DO
is destroyed.

_PUTlDIG

-$30(AS)

-$IC(AS)

420(AS)

424(AS)

428(AS)

42C(AS)

87

TMON

The Startup Loader

The TMON diskette contains a me named "TMONStartup." This me contains an INlT resource which loads
the Monitor into RAM during the executionof INlT resources. This is useful in debugging any INlT
resources which areexecutedafter TMONStartup.To use TMON Startup, place it in your System Folder
along with a copy of TMONandany userareafile that you wish to use. When the systemis re-booted,
TMON Startup will load the Monitor into RAM according to the configuration found in the user area. The
name of the resource file that TMON Startupuses to load the Monitorinto RAM is in resource STR with an
ID of 1000. Normally this string contains"TMON."It can be changedwith a resource editor.

TMON Startup can be prevented from loading the Monitor into RAM by holding down the mouse button
before TMON Startupexecutes.Conversely, TMONcanbe entered immediately after havUJ& been loaded by
TMON Startup by holding down the Shift, ., or Option key.

TMON Startup indicates its progress by displaying an icon near the bottom left comer of thescreen. If it
displays the TMON icon, all is well. If it displays the TMON icon with a question made superimposed, it
failed to find the me named in STR 1000.If it displays the TMONicon with a slasbedcirclesuperimposed,
there was a resource errorin openingthe me named in STR 1000.If it displays the TMONic:cm witha sbll
and crossbones superimposed, there was a disk error in reading the Monitorinto RAM.

It may be desirable to have TMON Startupbe the first INlT me executed. If that is the case, its name must
be changedso that it comes first in the SystemFolder, becauseexternalINlTs are executee:l in alphabetical
order by file name. For example, "1 TMON Startup", will come before any INlTs with uamea beginning with
a letter.

Technical Reference

Appendix A-Quick Reference

This is a compilation of tbe frequently used tables in the manual. See tbe appropriate sectionsof tbe manual
for more detailed information.

Keys that May be usea In the Monitor
Tab Move cursor to the top left position of the current window
Return Process the conteors of theline left of tbe cursor.
Enter Process tho entire line.
Clear (keypad) Clear the line.
-. Move cursor left.
+- Move CI1IIOI' rigbt.
aA BriDI aaemb1y windOw to front.
aB BrfDI breatpoblta ·wlDdow to front.
aD • BrfDI dump wiDdow to front.
aEBxlt.
all' BrfDI me wlDdow 10froaL
IIG 00Sab.
au Briq heap wiDdow to fred.
aM Unfreeze IDOII&
aN BriDa D1IIDJJer wIDdow to front.
lIP . PriDt CCIIlteDII of froaImost window.
ICR BriDa ·resislen wiDdow to front.
as step.
aT 'l'mce.
ao Bring options window to front.
au Bring user window to front.
a-shlft a·shift-A, a·Shift·D,a·Shift-F, a·Shift·H, and a·Shift-N generateadditional

windows of tbe ~.,r,ype. See corresponding a keys above.
"'~\;-'.~~-; .

Keys that May be Used outside tl18Monltor
Interrupt Enters the Monitor.
Option-interrupt Activates the user area signalfunction.
a-interrupt Reinitializes the Monitorin emergencies.

Operators Allowed In expressions
Binary Arithmetic Dinary Logieal
+ Addition I LogicalOR
- Subtraction. A Logicalexclusive OR
* Multiplication , Logical AND
/ Signeddivision
\ Signedmodulo

< and> may be usedasparemheses.

Unary
+ Positivenumber
- Negative number
- LogicalNOT
@ Long word indirection
1 AOOO t1ap address

Precedence
<>

unary +--@I
*/\

&
+-

TMON

Register References
Variable Value
AO toA7 RAO toRA7
DO to D7 RDO to RD7
SP* SP
SSp* SSP
USP USP
PC PC
SR
CCR
N N
V V
USER
DSPT

Dump Window Flags
P Program counter
S Systemstack pointer
U User stack pointer

oto 6 Address register

Register Dame
Address registers.
Data registers.
Sameas A7 or RA7. *For anchoring windows only.
System stack pointer. *For anchoring windows only.
User stack pointer. (Nonnally unused in the Macintosh)
Program counter.
Status register.
Condition code register.
The result of the last Number calculation.
Resultof rind, Heap, and other functions.
Thebeginning of theuser area.
The address of the ROM AOOO trap dispatcher.

* Breakpoint
N N register
V V register

'number
USP, SR, CCR

Assembly Window Addressing Modes
Dn Data register direct
An Address register direct
(An) Register indirect
(An) + Postincrement register indirect
- (An) Predecrement register indirect
ojfset(An) Register indirect with offset•""
offset (An, Rna) Register indirect with offset,.
address Absolute . ,- .
"address, *, *+oJJset, or *-oJJset

Relative with offset
"address (Rna), * (Rna), *+ojfset(Rna) , or *-offset (Rna)

Relative with offset and index
Immediate
Implied register

AppendixA---Quick Re/ereTK:e

Items Identified by theHeap Window
UnitTable $l1C A block containing all of the device control blocks.
DSAlertTab $2M The Dire Straits alert table.
FCBs $34E A block containing all of the file control blocks.
WDCBsptr $372 A block containing all of the working directory control blocks.
Scrap $964 Memory scrap.
~rPort $9DE A grafPort used by the Window Manager.
OldStructUIe $9E6 A saved structure region used by the Window Manager.
Old:ontent $9EA A saved content region used by the Window Manager.
GrayRgn $9EE The rounded region defining the desktop.
SaveVisRgn $9F2 A region used by the Window Manager.
MenuList $AlC The current menu bar list.
ParamTextO-3 $AM The parameters in the last ParamText call.
TEScrap $AB4 TextEdit scrap.
Finderlnfo CurrentA5+$10 The Fmder information handle (in system heap).
VCB s., Volume control block.
Resource map s., Resource map of the given resource file.
Driver storage s., Storage for the given driver.
Window 4$••, kind $.. A window found by following the window list, The first number is

the number of the window (0 is the fronttnost window, 1 the next
one, etc). The second number is the value of windowKind for that
window.

Heap Window Handle Flags
1 L Locked p P Purgeable r R Resource

Filewirido.,Uap Aags
r R ~y map c C Map will be compacted w If Map will be wriuen to disk

File Window Resource Flags
• R System reference (64K ROMs only)
• H Load into system heap (opposite is application heap)
• P Purgeable
• L Locked
• T Protected
• 1 Preloaded
• If Write into resource file
• U U flag set

TMON

A034: VRemove AOBS: GoDriver A80S: SndPlay AS4D: F1xDiv
A03S: Offline AOB6: WattOntl1 A806: SndControl AS4E: GetltenOrd
A036: M:lreMasters AOB7: synCWait A807: SndNeWChannel AS4F: setItenOrd
A037: ReadParam AOB8: SoundDead A808: InitProcMenu ASSO: InitCursor
A038: WriteParam AOB9: Disptch AS09: GetCVariant ASSl: SetCUrsor
A039: ReadDateT1me AOBA: IAZlnit ASOA: GetlllTariant AS52: BideCursor
A03A: setDateT1me AOBB: IAZPostInit ASOB: PopOpMenUSelect ASS3: Sh<*CUrsor
A03B: Delay AOBC: Iaunchlnit ASOC: ElGetResource AS5S: ShieldCursor
A03C: CIlpstrinq AOBD: CacheFlush ASOD: CountlResources ASS6: a:>scw:ecw:sor
A03D: Drvrlnstall AOBF: Lq2Phys ASOE: GetlIxResource ASS8: BitAnd
A03E: DrvrRemove AOCO: FlushCache ASOF: GetlIxType ASS9: BitXor
A03F: lnitutl1 AOCl: GetBloclt ASlO: OniquelID ASSA: BitNot
A040: ResrvMem AOC2: MarkBloclt ASU: TESelView ASSB: BitOr
A041: setFi1Lock AOC3: RelBloclt ASl2: TEPinScroll ASSC: BitShift
A042: RstF11Lock AOC4: TrashBloclts A8l3: TEAutoView AS5D: BitTst
A043: setFllType AOCS: 1TashVBlks A814: SetFractEnable ASSE: Bitset:
A044: setFPos AOC6: CacheWrIP ASlS: SCSIDispatch AS5F: Bitclr
A04S: FlushFlle AOC7: CacheRdIP A8l6: Pack8 AS6l: Randcm
Al46: GetTrapl\ddress AOC8: BasicIO ASl7: CopyMask AS62: FOJ:8CQlor
A047: setTrapl\ddress AOC9: RdBloclts ASl8: F1xAtan2 AS63: BacIlColor
Al48: ptrzone AOCA: WIBloclts ASl9: XMunqer AS64: Colol:B1t
A049: BPurqe AOCB: SetOpTags ASlA: XGetzone AS6S: Get1'1xel
A04A: BNoPurqe AOCC: BTClose ASlB: XSetzone AS66: stuffHex
A04B: setGrowZone AOCD: B'1Delete ASlC: CountlTypes AS67: LclI1QItl1
A04C: CoIlpactMem AOCE: BTFlush ASlD: XMaxMem AS68: FixItll
A04D: PurqeMem AOCF: BTGetRecord ASlE: XNewPtr AS6!h !'1lcaat1o
A04E: AddDrive AODO: BTInsert ASlF: GetlResource AS6A: B:IJroDi
A04F: RDrvrlnstall AODl: ~n AS20: GetlNamedResource ASG: Lolforc1
AOSO: Relstrinq AOD2: BTSearch AS2l: MaxSizeRsrc AS6C: F1xRcund
AOSl: ReadXPRam AOD3: BTOpclate AS22: XNewHandle AS6D.: IrI1Uort
AOS2: WritexPRam AOD4: GetNode A823: XDisposHandle ASUt IrI1tGraf
AOS3: ClkNoMem AODS: Re1Node AS24: XSetHandleSize AS6F: 0penP0rt
AOS4: Oprstrinq AOD6: AllocNode AS2S: XGetHandleSize AS70: LocalToGlc:bal
AOSS: Stripllddress AOD7: FreeNocle AS26: InsMenultem AS71: Glc:balToLocal
AOS7: setAppllase AOD8: ExtBTFlle AS27: BideDltem AS72: GrafDev1ce
AOS8: InsT1me AOD9: DeallocFlle AS28: SholiDltem AS73: setport
AOS9: RmvT1me AODA: ExtendFlle AS29: XHLock AS74: .Getport
AOSA: Pr1meT1me AODB: TruncateFlle AS2A: XBOnloclt AS7S: set:PBits
AOSB: PowerOff AODC: CMSetop AS2B: Pack9 AS76: Portsize
A05D: 5wapM«lMode AODE: DtDIII11 AS2C: PacklO AS77: MovePortTO
A260: HFSDispatch AODF: B1kAlloc AS2D: Packll AS78: setOr1q1n
A06l: MaxBloclt AOEO: BlkDealloc ASa: Packl2 AS79: setel1p
Al62: PurqeSpace AOEl: Flle<lpen AS2F1 Packl3 AS7A: GetCl1p
A063: MaxAR>lzone AOE2: PeDllSsnChk AS30: Packl4 AS7B: Cl1pRect
A064: MoveBBi AOE3: FndFilName AB3l: PacklS A87C: BackPat
A06S: stackSpace AOE4: RfNCall AB32: XFlushEvents AB7D: ClosePort
Al66: NewEllptyHandle AOES: AdjEOF A833: SCrnBitMap AB7E: M:IPt
A067: BsetRB1t AOE6: Pixel2Char AB34: setFSCaleDisable AB7F: SUbpt
A068: BClrRBit AOE7: Char2Pixel AB3S: FontMetrics AB80: setpt
A069: BGetState AOE8: Bil1teText AB36: GetMaskTable AB8l: Equa1pt
A06A: BsetState AOEE: CkExtFS AB37: MeasureText AB82: stdText
A06C: lnitFS AOEF: DTJ:n«I3 AB38: CalcMask AB83: DraWChar
A06D: InitEvents AOFO: BlChk AB39: seedFill AB84: DrawStrtnq
A06E: SlotManilger AOFl: TstM:ld A83A: ZOOntfindow AB8S: Drawrext
A06F: SlotVInstall AOF2: LoCCRec A83B: TrackBox AB86: TextWidth
A070: SlotVRenDve AOF3: Treesearch AB3C: TEGetoffset AB87: TextFont
A07l: AttachVBL AOF4: MapFBloclt AB3D: TEDispatch AB88: TextFace
AD72: DoVBLTask AOFS: XFSearch A83E: TEStyleNeW AB89: TextMode
AD77: CountADBs AOF6: ReadBM A83F: Long2Fix AB8A: TextSize
AD78: GetlndADB AOF7: DoEject AB40: Fix2Lonq AB8B: GetFontInfo
AD79: GetADBlnfo AOF8: seqStack A841: Fix2Frac AB8C: str1nqWidth
A07A: setADBlnfo AOF9: SUperLoad AB42: Frac2Fix AB8D: ChaEWidth
AD7B: ADBRelnit AOFA: QlpFrm AB43: F1x2X AB8E: SpaceExtra
AD7C: ADBOp AOFB: NewMIIp A844: X2Fix AB90: StdL1ne
AD7D: GetDefaultStartup AOFC: chec:lcLaad A84S: Frac2X AB9l: L1neTo
AD7E: setDefaultStartup AOFD: TETrinMeuw:e AB46: X2Frac A892: Line
AD80: GetVideoDefault AOFE: TEFincllford AB47: FracCos AB93: MoveTo

1081: setVideoDefault AOFF: TEFindL1ne AB48: Fracsin AB94: M:Ml
AD82: DTInstall ABOl: sndDisposeChannel AB49: FraCSqrt AB9S: ShutDolln
1083: GetOSDefault AB02: Sndl\dclMod1f1er AB4A: FracM1l AS96: BidePen
1084: setOSDefault AB03: Snc:lDoConlnand AB4B: FracDiv AB97: ShowPen
1601 SysEnv1rcxls AB04: SndDoInmed1ate AB4C: XConpactMem AB98: GetPenState

92

Appendix A-Qulck Rtfe,,1U¥

M99: setPenState ASE2: Enpt~ M2B: GroNWindolr A973: st11lDclwn
M9A: GetPen ASE3: Equalllon M2c: FindWindolr M74: Button
M9B: PenSize ASE4: sectRqn A92D: CloseW1ndolr M75: TickCount
M!lC: PenMDde ASE5: UnionRgn A92E: setWindawPic M76: Getxeys
M9D: PenPat ASE6: DiffRQn M2F: GetWindawPic M77: waitM:>useUp
M9E: PenNonral ABE7: XorRQn M30: lnitMenus M78: UpdtDialoq
M9F: tJlliIlpl_nted ASE8: ptInRgn M31: NewMenU M79: COOl.cI>ialoq
MAO: stdRect ASE9: RectlnRgn M32: DisposMenu A97A: FreeDialog
MAl: FrameRect MEA: setstdProcs M33: llppenclMenu M7B: lnitDialogs
MA2: PaiiltRect A8EB: stdBits A934: ClearMenuBar M7C: GetNewDialog
MA3: EraseRe<:t A8EC: CqlyBits M35: InsertMenu M7D: NewDialog
MA4: InverRect MEn: Std'rXMeas M36: DeleteMenu M7E: selIText
MAS: Fil1Rect A8EE: StdGetpic A937: DraliMenuBar M7F: IsDialogEvent
MA6: Equa1Rect ASEF: SCro11Rect M38: BiliteMenu M80: Dialog5elect
MA7: setRect ASFO: stdPutpic M39: Enableltem M81: DrawDialog
MA8: OffsetRect ASF1: stc:r:annEmt M3A: Disableltem M82: CloseDialoq
A8A9: InsetRect ASF2: PiOCClmlmt M3B: GetMenuBar M83: DisposDialog
A8AA: sectRect ASF3: OpenPic:tme M3C: setMenuBar M84: Fincl>Item
A8AB: UnionRect ASF4: ClosePicture M3D: Menuselect M85: Alert
A8AC: pt2Rect ASF5: KillPicture M3E: MenuKey M86: stcpPJ.ert
A8AD: ptlnRect ASF6: DraliPic:tme A93F: GetItmIcon M87: NoteAlert
MAE: EnptyRect ASF8: Sca1ePt AMO: setltmIcon M88: eauticnAlert
AlIAF: StdRRect ASF9: MIIpPt AM1: GetIblStyle M89: COUlcW.ert
ASBO: FrameRoundRect ASFA: MapR8Ct AM2: setlblStyle A98A: FreeAlert
ASB1: PaintRoundRect A8FB: MlIpRgn AM3: GetItnMarlt M8B: Paramrext
MB2: EraseRoUndRect A8FC: MapPoly A944: setltnMarlt M8C: ErrorSollllCl
A8B3: InverRoundRect A8FD: Printinq AM5: Checltltem M8D: GetDltem
MB4: Fill.RoundRect A8FE: lnitFonts AM6: GetItem M8E: setDltem
MB5: SCriptot11 MIT: GetFN-. AM7: setItem M8F: setI'J.'eXt
ASB6: st«lva1 MOO: Getnbll AM8: calcMenUSize M90: GetI'J.'eXt
ASB7: FrameOval MOl: FMSwapFcnt AM9: GetMHandle M91: ModalDialoq
ASB8: PaintOval M02: RealFcnt A94A: setwlash A992: DetachReIlOUrCll
ASB9: Eraseoval A903: setFcntLoclt A94B: PlotIcon A993:~
AlBA: InvertOval A904: DrawGrowIocn AMC: FlaabMenuBar M94: CUzRiUFile
A8BB: FillOYa1 M05: DraQGrayRgn A94D: JlddResMenu M95: InitResources
MBC: S1qleF~le M06: Newstrinq A94E: PinRect A996: RsrcZcnelnit
AB: lltdarc A907: setstrinq A94F: DeltaPoint A997: qp8nResFile
MBB: F~ M08: ShowBide M50: CountMItems A998: tJaeResFile
MBF: h1ntArc A909: calcVis M51: InsertMsMenu A999: OpdateResFile
MeO: EraseArc A90A: calCYBeh1n4 M52: De1MenuItem A99A: CloseReaFile
Mel: InvertArc MOB: Cli~' • ;.1M', A953: ~l M9B: setResLo8d
MC2: FiUArc MOC: :=~.~;;,:.~.: M54: NewCCIItrol M!lC: COImtResourc:es
Me3: ptTollnq1e MOD: A955: DispclllCcntlOl M9D: GetIndilesourc:e
Me4: AnqleFlXllIISlope MOE: lIave01d M56: Kil1Ccntrola M9E: OOUntTypes
MC5: stc:lPoly A90F: Dr&IINeW A957: SbcMIControl M9F: GetlndType
Me6: FraJIIIPoly M10: GetIlMpl'ort M58: RidsCoatrol A9A0: GetResource
Me7: Paintpoly Mll: CbecltDpdate A959: IbveControl A9Al:~
Me8: BrasePoly M12: InitJf1.ndolls M5A: GetcRefCCll A9A2: LoedResow:ce
A8C9: InvertPoly M13: Newlfindolr M5B: setcRefcon A9A3: RlleueRaourl:le
MCA: FillPoly M14: Dispoldlindolr M5C: SizeControl A9A4: IIclmBResFile
A8CB: qp8nPoly M15: ShOIIlUncIow M5D: BiliteCClltlOl A9A5: S1zellsrc
MCC: ClosePgon M16: Biclslfindow M5E: GetCTitle A9A6: GlItRISAttn
MCI): KillPoly M17: GetWRefCCll M5F: seteTitle A9A7: IetRlsAttn
MCB: Offsetpo1y M18: setWRefcon A960: GetCtlValue AMI: GetRIsslnfo
MCF: PacltBits M19: GetWl'itle M61: GetMinCtl A9A9: 8etRIsslnfo
NlDO: onpacItBits MlA: setWl'itle M62: GetMaxCtl A9AA: ChIIngeclResource
NlD1: stdRgn MlB: Iklv8W1ndoIf M63: setCtlValue AW: AddIleeource
NlD2: FraDlIlAgn M1C: BiliteWindDlf A964: setMinCtl Aile: JlddReference
ASD3: PaintllQn MlD: SiBelfincbf M65: setMaxCtl A!lN): RaveResource
A8D4: ErUeRQn MIl: Trac:ltGallley M66: 'l'estCClltrol A9AB: Jlmvelleference
MD5: Inve~ MlF: selectllindolr A967: DragContlOl A!lAF: RlsError
ASD6: Fi11RQn M20: Bring'loFrcnt M68: 'lracltcontrol A980: writeRellOUrCll
A8D8: NeIiRQn M21: sendBehind M69: DrawContlOls A9Bl: CresteResFile
ASD9: DisposRQn M22: BeginOpdate A96A: GetctlAction A!lB2: Systen£Vent
NIDA: c:pmRgn M23:~ A96B: setctlAction A9B3: SysteaC11c:lt
ASDB: CloseRQn M24: FrcntJf1ndolr M6C: Fin<i:ontrol A9B4: Systelltl'ult
ASDe: CopyRon M25: DragWindow A96D: Drawlcontrol A9B5: SysteaMenu
A8DD: setEnptyRQn M26: Drag'DleAgn M6E: Dequeue A9B6: qp8nDeskAcc
ASDE: setllecRQn M27: InvalRgn M6F: Enqueue AIlB7: e10seDeskAcc
MDF: RectRqn A928: InvalRect A970: GetNextEvent A9B8: Getpat.tern
MEO: OfsetRQn A929: ValidRQn M71: EventAvail AIlB9: GetCUrsor
MBl: InsetRQn M2A: Val1dRect M72: GetMause AllM: GetStrinq

93

TMON

A9BB: GetIcon A9E8: Packl JIAl5: RGBBackColor AA42: GetAuxWin
A9BC: Getplcture A9E9: pack2 JIAl6: setCPlxel AA43: setctlColor
A!lBD: GetNewWindow MEA: Pack3 JIAl7: GetCPlxel AA44: GetAuxCtl
A9BE: GetNewControl A9EB: FP68K JIAl8: GetCTable AA45: NellClfindow
A9BF: GetRMenu A9EC: ElelllS68K JIAl9: GetForecolor AA46: GetNellClf1ndow
A9C0: GetNeWMBar A9ED: pack6 1lA1A: GetBackColor AA47: 5etDeskCPat
A9Cl: Oniquem A9EE: Pack7 JIAlB: Getceursor AM81 GetIlfgrCPort
A9C2: SysEdit A9EF: ptrAndBand JIAlC: setCCUrsor AA491 S&veEntries
A9C3: KeyTrans A9F0: LoadSeq JIAlO: AllOCCUrsor AA4A: RestoreEntr1es
A9C4: OpenRFPeIIII A9Fl; OnloadSeq JIAlE: GetCIcon AA4BI NetlCD1aloq
A9C5: RsrcMapEntry A9F2: Launch JIAlF: PlotCIcon AA4C: DelSN.t:ch
A9C': Secls~ate A9F3: Chain :AA20: OpenCPlcture AMO: DelCalp
A9C7: Date2seca A9F4: ExitTo::;heU :AA2l: OpColor AA4E1 setStct:Procs
A9C.. : $y..a..ep ~5: GetAppPdD... :AA22: Hil1t..color AA4P: calc:e::Muk
A9C9: SylSErmr A9F6: GetRe..Fllt=Attr.. :AA23: ClllsrExtr.. AASOI s.ecl:f'Ul
A9CA: PutIcou A9F7: z;etRe..Fllt=Attrs :AA24: 01sposCTable ».601 o.1ICBntd••
A9CB. TEGeeText A9F8: MethodDlspatch :AA25: 01spo..CIcon ».61: GootJ«:xnfo
A9CC: TEInit A9F9: InfOSCrap :AA26: 01sposecursor ».62: setM::hIfo
A9CD1 TED1spose A9FA: OnlodeScrap :AA27: GetMaxDevlce ».63:~
A9CE1 TextBox A9FB: LodeScrap :AA28: GetCTSeed ».64: ::=..A9CF: TESetText A9Fc: Zeroscrap :AA29: GetDev1ceList ».65:
A9D0: TECalText A9FD: GetScrap AA2A: GetMa1nDevice ».66:~
A9Dl: TESetselect A9FE: PutScrap :AA2B: GetNextDevice MIlO; Irl1~te.
A9D2: TENew A9FF: DebuQger :AA2C: TestDeviceAttr1bute MIlli~
A9D3: TEOpdate JlAOO: OpenCPort :AA20: SetDevlceAttribute MIl2: ~a1.ette
A9D4: TECl1ck MOl: InitePort :AA2E: InitGDev1ce MIl3: ~alette
A9D5: TECcpy M02: CloseCPort :AA2F: NeliGDevlce MM: ~vatePalette
A9D6: TECUt JlA03: NewPlxMap JlA30: 01sposGDevice M95: lethl\ttte
A9D7: TEDelete JlA04: 01sposPixMap JlA31: setGDevlce MIl61

~A9D8: TEAct!vate M05: COpyPixMap JlA32: GetGDevlce MIl7:
A9D9: n:Deactlvate M06: setCPortPix JlA33: COlor2Index MIlS: ~r
A9DA: TEIdle M07: NewPlxPat JlA34: Index2Color MIl9: An1aateBntry
A9DB: TEPaste M08: 01sposPixPat JlA35: InvertColor MIlA: An1IaltePalette
A9DC: TEKey M09: CopyPixPat ».36: RealColor M9B1 GetEntryColor
A9D0: TEScroll MOA: PenPlxPat ».37: GetSUbTable Mlle: se~ntryCOlor

A9DE: TEInsert MOB: BackPixPat ».38: ~tePixMap M9D: GetEntryOsage
A9DF: TESetJ'Ullt MOC: GetplxPat ».39: MakeITable AA9E: setEntryOlla!l'l
A9E0: MInger MOD: MakeRGBPat AA3A: AddSearch M9F: CTab2Palette
A9EI: BandToHand MOE: Fll1CRect ».3B: Add:<xtp Ml\.0: Palette2CTab
A9E2: ptrToXHand MOF: FlllCOval AA3C: setcl1entm MI\.l: CopyPalette
A9E31 l't%ToHand AAlO: Fl11CRoundRect ~~ .:P;otectEntry MFa: st~Proc

A9E41 BandAndBand JIAlI: FlllCArc ~t'lleserveEntry ABFF: Debugstr
A9E51 Initpack AAl2: Fll1CRqn AA3ti"setEntry .
A9E6: InltAllPacks JIAl3: FlllCPoly AMO: g)Erxor
A9E7: PackO AAl4: RGBForeColor M41: setW1nColor

AOOO Traps in Alphabetical Order
».94: Act!vatePalette A87C: BackPat AOOO: BTInsert Mll: ChecklJpdate
A07C: ~ MOB: BackPixPat AOOI: BTOpen AOEE: CkExtFS
A07B: ADBR.eInit AOC8: BaslcIO AOD2: BTSearch M34: ClearMllnuBar
AA3B: ~<xtp M22: BeqinUpdate A003: BTUpdate MOB: Cl1pllbove
A04E: 1lddDr1ve A858: BltMd M74: Button A87B: Cl1pRect
A87B: JlddPt A85F: Bitclr AOOO: CCl.cheFlush A053: ClkNcMem
MaC: JddAefenlnce A8SA: BitNet AOC7: CCl.cheRdIP AOOI: Close
AND: MdAesMenu A85B: BitOr AOC6: CacheWrIP AA02: CloseCPort

A!WS: JlddRescurce A85E: Bltset M4F: CalcCMask A9B7: CloseDeskAcc
AA3A1 Mr:ISearch A85C: BltShift A838: Calc:Mask M82: CloseDialoq

AllE5: M:lD' A850: BitTst M48: CCl.lcMenuSlze A8CC: ClosePqon

M85: Alut A859: Bitxor MOA: CalcVBehind A8F4: ClosePlcture

AOlOI Allocate AOOF: BlkAlloc M09: CalcV!s A8701 ClosePort

MlD: AllOCCUrsor AOEO: BlkDea1loc M88: eaut!onAlert A99A: ClosellesFlle

MD6. AllocNode A02E: BlockMove A9F3: Chain A8DB: CloseRqn

.4: AngleFromSlql8 AOFO: BIChk MAA: ChanQlldReSOUrce M20: CloseW!ndow

MIt: AnimateEntry M20: BrlnqToFront AGE7: Char2Plxel AOFA: OIpFIIII.. AnimatePalette AOCC: BTClose ».23: ChazExtra A03C: CIlpStrinq

AlP: JlppeneItenu AOCD: BTDelete A880: Ch.uWldth AODCI CMSetOp

.1011: AttachVBL AOCE: BTFlush A945: CheckItem ».33: COlor2Index

M$I1 ~r AOCF: BTGetRecord AOFC: CheckLoad A864: COloJ:B1t

94

TMON

A9E5: InitPack AA45: NeWCWindow A876: PortSize JlA3C: SetCl1entID
AA90: InitPalettes A97D: NewDialoq A02F: PostEvent AS79: Setel1p
A86D: InitPort Al66: NewErrptyHandle A05B: PoweIOff Ml6: SetCPixel
ABOS: InitprocMenu AA2F: NewGDevice A05A: PrineT1me AA06: SetCPortpix
A016: InitQueue Al22: NewHandle A8FD: Printing A95B: SeteRefCon
A995: InitResources AOFB: NewMap AA3D: ProtectEntry A95F: SetCTitle
A03F: Initutll A931: NewManu ABAC: pt2Rect A96B: SetctlAction
A912: InitWindows AA91: NewPalette A8AD: ptInRect AM3: SetCtlColor
A019: InitZOne AA03: NewPixMap A8ES: ptInRgn A963: SetetlValue
A935: InsertMenu AA07: NewPixPat A9EF: ptrAndlland AS51: SetCUrsor
A951: InsertResMenu Al1E: Newptr A9E3: ptrToHand A03A: set:DateT1ma
MA9: InsetRect ASD8: NewRgn A9E2: ptrToXHand A07E: SetDefaultstartup
ASE1: InsetRgn A906: NewStrinq Al48: ptrZone M47: SetDeskCPat
A826: InsMenuItem A913: NeWifindow ABC3: PtToAngle JlA2D: SetDevlceAttr1J:lute
A058: InsT1me A987: NoteAlert A04D: PurqeMem MSE: SetDltem
A928: InvalRect A856: ObscureCUrsor Al62: PurqeSpace A8DD: SetBaptyRgn
A927: InvalRgn A035: Offline A9CA: PutIoon M3F: SetEntry
MA4: InverRect A8CE: Offsetpoly A9FE: PutScrap M!IC: SetEntryColor
A8D5: InveJ:Rqn A8A8: OffsetRect AA40: (J)Error M9E: Se~
ASB3: InverRoundRect ABEO: OfsetRgn A861: Random 1.012: Set8CF
ASC1: InvertArc AA21: OpColor AOC9: RdBlocks AOOD: sett1leInfo
AA35: InvertColor AOOO: cpen A04F: RDrvrInstall 1.041: 8et!'1lLoc:t
ABBA: InvertOVal AA20: OpencPicture A002: aead A043: 8etl'1l1'ype
ABC9: Invertpoly AAOO: OpenCPort AOF6: ReadBM A903: setFcntLock
A97F: IsDialogEvent A9B6: OpenDeSkAcc A039: ReadDateT1me A044: ~
A9C3: KeyTrans ABF3: OpenPicture A037: ReadParam AS14: letl'ractEnable
A956: KillControls ABCB: OpenPoly A051: ReadXPRam AS34: 8et!'8caleDlsable
A006: lCillIO A86F: OpenPort AA36: Realt:olor JlA31: setGDIIv1ce
A8F5: KillPicture A997: OpenResFlle A902: RealFont 1.00: setG::owZcne
ABCD: KillPoly AOOA: OpenRF A027: ReallocHandle 1.024: 8etBand1es1Ze
A9F2: Launch A9C4: OpenRFPerm Al28: ReooverHandle A947: SetItem
AO!lC: LaunchInit A8DA: OpenRgn A8E9: RectInRgn AS4F: 811tIt..cd
AOBF: Lq2Phys A030: OSEventAvail A8DF: RectRgn M8F1 Setn'eld:
AB92: Line A9E7: PackO AOC3: RelBlock A940: SetltIIlIaon
A891: LineTo A9E8: Packl A9A3: ReleaseResource A944: SetIblMark
A9A2: LoadResource A82C: Pack10 AOD5: RelNode A942:, SetItmstyle
A9FO: LoadSeq AB2D: Packll A050: Relstrinq A965: SetMaxCtl
AS70: LocalToGlobal A82E: Pack12 AOOB: Renane M65: SetM::Entries
AOF2: LocCRec A82F: Pack13 A9M': ResError M62: SetM::Info
A9FB: Lodescrap A830: Pack14 AA3E: ReserveEntry M3C: SetMenuBar
AS3F: Lonq2Flx A831: Pack15 1.040: ResrvMem A94A: setwlash
AB67: LonqK11 A9E9: Pack2 ~ RestoreEntries A964: SetMinctl
AB6B: LoWord A9EA: Pack3 Act4: RfNCall AS7S: SetOriq1n
JlA39: MakeITable A9ED: Pack6 Ml5: RGBBackColor 1.084: SetOSDefault
MOD: MakeRGBPat A9EE: Pack7 Ml4: RGBForeColor AA95: Setpalette
AOF4: MapFBlock A816: Pack8 A80C: RGetResource AB75: Set:PBits
ABFC: MapPoly A82B: Pack9 A9AE: RmveReference AS99: SetpenState
ASF9: MapPt ABCF: PackBits A9AD: RmveResource AS73: Setport
ABFA: MapRect A8BF: PaintArc A059: RmvT1me ABSO: Setpt
ASFB: MapRgn A90D: PaintBehind A9C5: RsrcMapEntry 1.020: SetptrSlze
AOC2: MarkBlock A90C: PaintOne A996: RsrCZoneInit ASDE: SetRec1lQn
A063: MaxlIpplZOne A8B8: PaintOVal A042: RstFilLock ABA7: SetRect
A061: MaxBlock ABC7: Paintpoly AA49: saveEntries A9A7: SetResAttrs
AllD: MaxMem A8A2: PaintRect A90E: saveold A9F7: SetResFlleAttrs
AS2l: MaxSizeRsrc ASD3: PaintRgn A8F8: Sca1ePt A9A9: SetResInfo
AS37: MeasureText ASBl: PaintRoundRect A8B5: ScriptUtll A99B: SetResLoad
M66: MenuChoice AAAO: Palette2CTab A833: SCrnBitMap A993: Set!lesPurge
M3E: MenuKey A9811: Parantrext A8EF: ScrollRect M4E: SetStdCProcs
A93D: MenuSelect A89C: PenMode A815: SCSIDispatch A8EA: SetStdProcs
A9F8: MethodDispatch AS9E: PenNormU A9C6: Secs2Date M07: Setstrinq
A991: ModalDialoq A89D: PenPat A8AA: SectRect 1.047: SetTrapAddress
1.036: MoreMasters AAOA: PenPixPat A8E4: SectRgn AOCB: Set~aqs

AOOF: McuntVol A89B: PenSize AASO: seecQ'ill AOS1: SetVldeoDefault
AS94: MM! AOE2: PermssnChk AB39: seedF1l1 1.015: SetVOl
A959: ttweControl ABF2: PicCarment AOF8: SeqStack M41: SetW1nColor
A064: M:>veHHi A94E: PinRect A91F: SelectWindow M2E: SetWlndowPlc

cAS77: MovePortTo AOE6: Pixe12Char A97E: SelIText A91S: SetWRefCon
ae93: MoveTo AA1F: PlotCIcon A921: Sendllehind A9iA: SetWTitle
'M1B: MoveWindow A94B: PlotIcon A07A: SetADBInfo A01B: SetZOne
,MEO: Klnqer AA9S: pMB<i.ckColor A057: SetAppBase AS55: ShieldCursor
'~B: NewCDialoq AA!l7: PMForeColor A02D: SetApplLim1.t A957: ShowControl
,M54: NeliControl ABOB: PopUpMenUSelect MlC: setcCUrsor AS53: ShowCursor

96

TMON

2M: SysZene ~: En:ode 944: PrintVars MA: FPState
2M: JlpplZene 3M: Params 944: PrintErr A50: TopMapHndl
2llE: RlMBase 306: FSTellp8 946: ChooseIBits ASh sysMapBndl
282: RAMBase D: FSTeJ!P4 954: CoreEdit ASS: SysMap
286: Bas1cGlab D: FSlOErr 960: ScrapVars ASI.: CIuMap
2BM DSAlertTab 3E2: FSQueueHook 960: scrapS1ze A5C: ResReac:t>nly
2IlE: ExtStsDT 3£6: ExtFSHook 964: scrapHandle ASE: ResLoad
2CB: SCCASts 3FA: DskSwtchHook 968: scrapCount Jl6O: ReSErr
2CF: SCCBSts 3EE: Reqstvol 96A: scrapState A62: TaskLock
200: lk:lrialVars 3F2: ToExtFS 96C: &crapNarle 1163: FScaleD1sable
208: ABusVars 3F6: FSFCBLen 970: SCrapTaq Jl64: CUrAct1vate
2DC: ABusDCE 3F8: DSAlertRect 980: RarFontO W: ew:Deact1ve
2EO: F1ncleINaae 400: DispatchTab 9ll4: JlpFontID A6C: De&kIIook
2FO: Dot.Iblt<T1ne 800: JB1deCurllOr 986: I>d.veFondFlag>. A70: TE.I>O'nooct
2F4: car-.tT1mIo lI04: JShOllC\lr:>u:c 986: GotScrik.. A74: ~
2F8: ~ 808: JShie ldClilrso:c 987: FMDef..ult:.1ze A78: JIIlp1:lcr..t..b
2F9: SC%DJIpType 8OC: JScrrIM:1r 988. CloIFMInput A84: Ghoat"1naoW
:lB: T.tQData 810: JScrnSize 988: CDrFMFam1.ly .ll88: ClClllolOrnHook
2FC: BufTQFNUm 814: JIn1tCrsr 9SA: CDrFMS1ze Me: ReSUlllllPtoCl
300: BufToFFlQ' 818: JSetersr 9BC: CUrFMFace A90: savePtoCl
302:~ 81C: .x:rsr<bscure 980: CUl:FM'leedB1ts AM: savesp
304: BufTgDate 820: JOpdateProc 98E: CUrFHJev1ce A98: JIRUnbilr
308: Drv(lIIdr 824: SCrnBase 990: CUJ:F!filJmer A9lU JCcunt
312: Neuf2 828: Ml'et!p 994: CUIFM)enom A9C: DUMper
316: IE'lIPtr 82C: RawMouse 998: FOutRec MIl: ~1Dga
3lA: ID3Bytes 830: Meuse 998: FOUtError ABO: ~~
3lB: M1nstaclt 834: crsrPin 991\: FOUtFontBandle 1l84: 1UCqlIf""dJ•
322: Defitstack 83C: crsIRect 99£: FOutBold

_:
~.

326: Ill)efFlaqs 844: 'lhecrsr 99F: FOutltal1c JDll: s~
328: GZRootHnd 888: ersrllddr !lAO: FOutCLOffset Jll!JC:~
32C: GZRootptr 8BC: ersJ:Save 9A1: FOutOLShadow JIFO: DSBaCcldIt
330: GZMcweBnd 8BC: .JlUlocCrsr 9ll2: FOutOLThick JlF2: Ae.artPxoc
334: DSl)rAl4'roc 890: JSetcersr 91\3: FOutShadow »'6: ."...,EMk
338: Eject:Not1fy 894: JCpcodeProc 9M: FOUtExtra An: D1IJFcnt
33C: IAZNotify 898: CrsJ:Base 9A5: FOutAscent BOO: Trapllqa1n
340: CUIOB 89C: CrsrDev1ce !ll'.6: FOUtDescent 804: JreyMVars
340: CkdDB SAO: SrcDev1ce !ll'.7: FOutW1dMax 806: JOMapHndl
342: NxtDB SA4: Ma1nDev1ce !ll'.8: FOUtLead1ng BO&: PllMBuf1
342: FllCallAsync 8A8: DeviceL1st !ll'.9: FOUtOnused BOB: BootMask
344: MIxDB llllC: CrsrRow 9lIA: FOu~ 810: . ·W1dthPtr

346: FlushOnly 8CC: crsrV1s !ll'.B: FOutDenom 814: ATalkHk1
347: ReQRarc ll<D: CrsrBusy 9S21 FIIlotsPerlncb Bl8: ATalkHk2
348: FLckDnlck 8CE: CrsrNew !Il6: FtlJtyleTab B22: HWCflJFlaqs
349: FrCSync Q: crsrCouple 9CE: 'loo1Scratch 826: Tc:pMenultem
34A: NllWMoUnt 800: CrsrState 9D61 W1ndcwL1st 828: AtMenuBottom
348: NoEject 802: CrsJ:<bscure h: SIlWq,date B2A: w1dthTabBandle
34C: DzMstrBlk 803: CrsrScale tt: Pa1ntllh1te B2E: SCSIDrvrs
34E: FCBSPtr 806: MouseMask !leE: IiMqtl'Ort 530: T!meVars
352: DefVCBPtr h: Meuseoffset 9£2: DeskPort 834: BtDskRfn
356: Vt:BQHdr 111:£: JournalFlaq 9£6: OldStructure B36: Boot'D1p8
360: FSQHdr 8EO: JSwapFont 9FA: Old::ontent B3F: T1AI:b1trate
360: FSBusy 8E4: W1dthListBand 9EE: GrayRl;ln B40: JD1skSel
362: FSQllead 8E4: JFontInfo 9F2: saveV1sRl;ln B44: JSencr::mc1
366: FSQTail 8E8: Journa1Ref 9F6: DragHook B48: JDCDReset
3Q: RgSvArea llEC:: CrsrThresh 9fll.: scratch8 B4C: LastSPExtra
36lU BFSVars SEE: JCrsrTask A02: OneOne 850: lHO!d
3Ql BFsstkLen 8F2: llWEXist A06: MinU50ne 854: MenuD1sable_:

BFS8tkPtr 8F3: g:lExist AOA: AtMenuBottom BS8: MBDFHndl
3721 tlX:BllPtr 8F4: JFetch AOA: TopMenultem B5C: MBSaveLoc
376: BFSFlags 8F8: JStash ACE: lconB1tmap B9E: ROMMaplnsert
sn« caewla} 8FC: JIOOOIle AlC: MenuList B9F: TIlpResLoad

378:~ 900: LoadITars 1120: MBarEnable BlID: IntlSpec

37C: SyaVOlCPtr 900: eurJlpRefnum 1122: CDrDeKind BlID: IntlSpec

380: lY8CtlCPtr 902: LaunchFlag 1124: MenuF1ash W: IromRedraw
3841 8eMlefNum 903: FondState 1126: 'lheMenu Bll6: SysFontFam

386:._ BfSPPtr 904: CDrrentAS 1128: savedHandle 1Wl: sysFcnts1ze... BFSTlIQData 908: CDrStack Jl2C: MBarHook 8M: MBarHe1ght

i
BFSDSErr 910: CurApNamII J\30: MenuHook BllC: TESysJ'ust
caebeVars 930: saveseqHandle A34: DragPattem BilE: BiHeapMark

CU%D1rstore 934: CDrJ'l'Offset A3C: DeskPattem BB2: seqH1Enab1e

QICbeCom 936: CUJ:1>lIQllOptioft A44: DrllQFlaq BB3: FDevD1sable

...-. ~ts 93A: IQadeJ:1>Block A46: CUrOraqAction BCO: NellOnused

98

Appendix A~uick Reference

BC2: LastFam C2D: Victtype CF8: ADBBase 042: FMExist
BC6: F<H>ID C2E: VidMode CFC: warmstart 050: MenuClnfo
BC8: App2Packs C2F: SCSIPoll DOO: TimeDBRA 060: ChunkyDepth
EIE8: MlIErrProc C30: SEVarBase D02: T1meSCCDB 062: Crsrptr
BBC: MASuperTap CBO: !MJFlaqs D04: Slota>T 066: PortList
BF4: FractEnable CBl: !MlType D08: Slotpr'Ibl 06A: MickeyBytes
BF5: 08edFWidths CIl2: IMMxle DOC: SlotVBLQ 06E: a>Err
BF6: FScalellFact CB4: !M71bl 010: ScrnVBLPtr 070: VIA2DT
BFA: FSca1eVFact CB8: !M71blSize 014: SlotTicks 090: sInitFlaqs
coo: scsmase CBC: sInfoPtr 01C: AGBHandle 092: DTOueue
C04: SCSIDMA cx:o: ASCBase 020: Tableseed 094: DTskQHdr
C08: SCSIBsk CX:4: SM3labals 024: sRsrc'n>lptr 098: OTskQTail
coc: SCSIGlabals cx:8: theGDevice 028: JVBLTask D9C: JDTlnstall
ClO: RGBB1ack cxx:: CQDGlabala D2C: NM:lrcPort
Cl6: RGBWhite coo: Aul(WinBead 030: VertRRate
C20: RowBits CD4: AuxCtlBeacl 032: SynListHandle
C22: ColLines CDS: DeskCPat 036: LastFore
C24: SCreenBytes ax::: LastBinPat D3E: LastMode
C2C: NMIFlaq CE4: DeskPatEnable 040: LastDepth

Labels BuiltInto the User Area In Alphabetical Order
2DC: ABusDCE 898: CrsIBase 222: OiskVars 99F: FOutltalic
208: ABusvars BCD: crsIBusy 400: OispatchTab 9A8: FOutLeading
A!llI.: JICOunt 8CF: crsrCouple »'A: OlgFont 9AA: FOutNumeer
CF8: ADBBase 89C: CrsrDevice 2FO: Doub1eT1me 998: FOutRec

c: AddrError BeE: CrsENew A44: OragFlag 9A3: FOutShadow
01C: AGBHandle 802: crsXCbscure 9F6: Oraqllook 9AO: FOutULOffset
2lF: Alarmstate 834: CrsrPin Jl34: OragPattern 9Al: FOutULShadow
A98: JlNuntler 062: Crsrptr 34C: OzMstrBlk 9A2: FOutCLThick
984: JlpFontIO 83C: Crsl:Rect 308: OrvoHdr 9A9: FOutunused
BC8: llW2Packs 8IlC: CrsrRow 3F8: OSAlertRect 9A7: FOutWidMax
130: llWlLimit 8BC: CrsrSaVe 2Bl'.: OSAlertTab A4A: FPState
A78: llW1Scratch 803: Crsrscale 334: OSOrawProc BF4: FractEnable
2M: llWlZone 800: crsrState NO: OSErrcode 349: FrCSync
JIB8: ~s BEe: Crsr11lresh 142: DskErr 360: FSBusy
llI!C: AppP~e scx:: CrsJ:Vis 124: OskRtnAdr A63: FScaleDisable
ceo: ASCBase A64: CUrActivate 3EA: OskswtchHook BF6: FscalellFact
B14: A:ralJcHk1 910: CUr1\pNamll"" ., .. 12C: OskVerify BFA: FScaleVFact
Bl8: A:ralJcHk2 900:

~::e~:d~~~~1~i
150: OSwndlJpdate 342: FSCallAsync

828: AtMenuBottom 340: 092: DTQueue 3F6: FSFCBLen
AVA: AtMenuBottOlll A68: 094: OTskQHdr 3DE: FSIOErr
CD4: AuxCtlHeacl A22: curDeKind 098: OTskQTail 360: FSQHdr
coo: AuXWinHead 3911: CurOirStore 338: EjectNotify 362: FSQHead
2B6: BasicGlob A46: CUxDraqAction 31\2: Ercode 366: FSQTail
B50: IHUId 994: CUrFMlenom 14A: EventQueue 3E2: FSQueueHook
210: BootDrive 988: CUrFMlevice 154: EvtBufcnt 3OE: FSTerrp4
BOB: BootMask 98C: CurFMFace 3E6: ExtFSHook 306: FSTerrp8
836: BootTrrp8 988: CUrFMFamily 2BE: ExtStsDT A84: Ghostwindow
834: BtDskRfn 988: CUrFMInput 34E: FCBSPtr 986: GotStrike
lOC: Bumr 980: CUrFmeedBits BB3: FDevDisable 9EE: GraYRQl!
304: BufTgOate 990: CUrF~r 2E0: FinderName 330: GZMoveHnd
302: BufTgFBkNum 98A: CUrF'MSize 348: FLckUnlck 328: GZRootHnd
300: BufTgFFlg 934: CurJTOffset 25E: FlEventMask 32C: GZRootptr
2FC: BufTgFNum A5A: CU~ 346: FlushOnly 114: HeapEnd

8: BusError 936: CUrPageOption 987: FMlefaultsize 392: HFSDSErr
39C: CacheCom 280: CUrPitch 982: FMDotsPerlnch 376: IIFSFlaqs
3TI: CacheFlag 904: CUrrentAS 042: FMExist 361\.:, IIFSStkLen
394: CacheVars 908: CUrStack 986: FMStyleTab 36E: IIFSstkPtr
2F4: CaretT1me A9C: DABeeper 39E: FmtDefaults 38A: IIFSTagData
18: ChkError AAO: OAStrings BC6: FONDID 36A: IIFSVars

946: ChooserBits 322: DefltStack 903: FondState Bl\E: HiHeapMark
060: ChunkyDepth 352: OefVt:BPtr 15E: FontFlag 822: HWCfgFlags
340: CkdDB 384: DefVRefNum 9A5: FOutAscent 33C: IAZNotify
AB8: CloseOrnHook CDS: DeskCPat 99E: FOutBold AGE: loonBitm:lp
C22: ColLines A6C: DeskHook 9AE: FOUtDenom 10: Illegal
954: CoreEd1t CE4: DeskPatEnable 9A6: FOUtDescent 15F: IntFlag
12F: CPUFlaq A3C: DeskPattern 998: FOUtError BAa: IntlSpec
cxx:: CODGlabals 9E2: DeskPort 9A4: FOUtExtra BAa: IntlSpec
888: Crsrllddr 8A8: DeviceList 99A: FOUtFontHandle lEO: DiM

99

TMON

252: JMIDisk 344: MaxDB 2llE: lU!Base lF8: SPValld
8SC: .:JlUlocc:ar 1120: MBarEnable 980: RalFontO 208: SPVolCtl
242: oXontml BllA: MBarBe1ght B06: RO!I'JapIIndl 8M: Sn::Device
8lC: JCrsx<bscure JI2C: MBarHook B9E: llOMMapInsert 024: sRsrcTblPtr
SEE: JCrsrTask 858: MBOFHndl C20: RoWB1ts 110: StkIAlwPt
B48: JDCDReset B5C: MBSaveLoc: 28A: RSOHndl 282: swltcheIOata
226: JDiskPr1Jne 172: MBstate 1128: savedlland1e 002: SynListBandle
B40: JDislcSel lEE: MBTicks 986: saveFondFlags 378: SyslH:Ptr
D9C: JDTIn.stall 220: MemError A90: savePmc 380: SysCtlCPtr
8F4: JFetch 108: Mtmtrop 930: saveseoBandle 146: SysEvtBuf
222: JFigTrkSpd 286: MBIrIfoSwitch A94: saveSP 144: 51sEvtMask
8E4: JFontInfo 050: MenUCInfo !lOA: saveOpdate 1lIl6: Si"FontFam
291.: JGNEFilter 854: MenuDisable 9F2: sa""V!sRqn Mill SyaFcntSlze
SOD: JB1dooCunor 1124: Ml>nuFlash 2CE: SCCASts ASS: Sy8Mlop
814: JInltCnr A30: MenuHook 2CF: SCCBSts AS4: SfaMl4lRndl
8FC: JICllon. AlC: McnuList 1DlI: SCCRd lF8: SyaPanam
2lA: JKybdTask DQ.: MickeyBytes lOC: SCCWr JDll: 51-"-
24E: JMak..spdlbl 31E: MinStack 968: scrapCount 1SP.: ay,.veraton
894: ~mc A06: MinUSOne 964: scrapHandle 37C:~
81E: JournaJ.Flaq 326: !MlefFlags 96C: scrapName 2M: 51azcne
SES: JournaJ.Ref l2E: MnInOK 960: scrapSize •• T1azb1tmte
22A: .mdAddr CBO: IMlFlags 9611.: scrapState b20: 'fe1eSeed
22E: JR<I>ata CB2: tMMxle 970: 5crapTag 2FA: TAIgData
23E: JReca1 CB4: IM1lbl 960: ScrapVars W: TaekLDck
24A: JReSeelt CB8: tMm>1Size lE4: scratch20 1.70: Tmctlext
8OC: JSCrnAddr CBl: !MlType 9FA: scratch8 1.74: '1DIcal
810: JSCmSize 100: MonkeyLives 2F8: ScrDnpEnb Mt: ~.
236: JSeek 830: Meuse 2F9: Scl:DllpType ABO:~
B44: JSe~ llO6: MeuseMaslt C24: SCreenBytes BIlC: ~.
890: JSetCCrsr ti: Meuseoffset 106: ScreenRow »'6: ~.
818: JSetCrsr 316: MPWPtr 292: SCreenVars 844: 1beCnr:
256: JSetSpeed 828: Ml'eIIp 104: SCrlllles OC8: t:heGDW1ce
23ll: JSetlJpPoll 34A: NewMcwlt 824: SCrnBase 1126: fteMBnU
212: JShell BCO: Newonused 010: SCmVBLPtr 118: i'tieZone
808: JShieldCursor 2511.: Nibl1bl 102: SCl:'Ylles 161b T1clta
804: JShowcursor C2C: rmFlaq COO: SCSIBase 2OC: '1'JmB
8F8: JStash 348: NoEject CD4: SCSmw. 000: T1mBDBRA
SEQ: JSwapFont 342: NxtDB B2E: scsmrvrs 002: T1JneSCCDB
820: ~tePmc 9FA: Ol<i:ontent coc: SCSIG1cilela 830: T1JneVars
028: .JVBLTaslt 9E6: oldStructure C08: SCSIlf.Bk &: ilIpResLoad
246: ilIIaIteDp AD2: 0ne0ne C2F~ SCSII1011 173: 1'ocks
232: JllIOata !llC: PaintWhlte 2Q.I SdBnab1. ~: ToExtFS
21E: I<bdType 3M: Params 260: SClVOJ._ b: T001Scratch
216: KbdVars 386: PMSPPtr 1lB2: 8e!OB1EMb1e A50: TopMapIInd1
29£:: KeylTrans 13E: Po1lProc 200: senalVars B26: TcpMenuItem
2112: Key2Trans 128: PollRtnAddr C30: SlMI11lue ADA: TcpMenuItem
184: KeyLast 13P.: PollStack 15C: SEvtBnb 24: Trace
174: KeyMap 290: PortAOse 214: SF5aveDisk BOO: Trapllqain
B04: KeyMITars 291: PortBOse CIlC: sInfoPtr lC: TrapVError
17C: KeypadMap D66: PortList 090: SInitF1llQS 1D2: On1tNtryCnt
190: KeyRepThresh 944: PrintErr D08: Slotpr1bl E1F5: tJsedFWidths
18A: KeyRepT1JIle 944: PrintVars 004: Slot(J)T l1C: UTableBue
leE: Key'l'hresh 20: Privilegevio1ation D14: SlotTicks 160: VBL()leue

186: KeyT1JIle BOA: PWMBufl DOC: SlotVBLQ 356: VCBQHdr
ClC: LastBinPat 312: PiiMBUf2 CX:4: SK;lobals 030: VertRRate
040: LastDepth 138: PliMValue 134: SonyVars 104: VIA
1lC21 LastFalD DEE: lJ)Err 27E: SCUndAc:t1ve D70: 'VIJ\2DT
036: LastFOR 8F3: lJ)ElCist 266: SoundBase C2E: VidMode

D3BI LastMode 2B2: RAMBase 27A: SOI1lldDCE C2D: VidType

1MC: LastBPBxtra 82C: RaWltlUse VE': 5oundLew1 Q'C: 1Ial:IIStart
llO2: LmIlIdIFlMl 347: RegRsrc 262: SOUIIdPtr 372: llDCBSPtr
281 L1nel0l0 B: ReqstVo1 261'.: SCUndVBL 8E4: WidthListHand

31A: Lo3Bytn A6O: ResErr 200: SPA1arm BlO: WidthPtr
B: ~I1'Block »'2: ResEn1'mc 1F9: SPATalItA m: 1f1dthTabBllndle
120: ~rap A5E: ResLoad In.: SPATalkB 906: WindowList
900.; IQadl7ars ASC: ResIleadOnly 209: SPC11ltCaret ll2C:

_ICPort
UII Lv1lDT ASC: ReSllllllPmc 1m: SPConfiq SIE: 1M',JJ:Port•• 1Nl2DT CIO: RGBBlack 204: SPFont W: WordRedraw

*: IIIlc.lIp C16: llGBWhite 206: SPI<1xl. 8F2: tlllExist
.1 MlErrPmc 361'.: Rg$VAJ:ea 20A: SPMiscl 14: zealDivide.., 1Ia1nDev1ce 156: RndSeed 208: SPMisc2
i1c1 IIUUpeX'rap 28&: lUI85 207: SPPrint

]00

Appendix 8-TMON Warning and Error Messages

Thefollowing are the messages that will showup in the Monitor's alert window. Each one is accompanied by
a short explanation of when to expect that message.

WARNINGI The monitor has been damaged. Be very careful!
Theinternal checksum routine thatexamines theMonitordetected achange in the Monitor's code.

Illegal instruction at $XXXXXX.
Divide by zero at $XXXXXX.
Divide by zero before $XXXXXX.
CHK exception at $XXXXXX.
CHK exception before $XXXXXX.
TRAPcc exception at $XXXXXX.
TRAPV exception before $XXXXXX.
Privilege violation at $XXXXXX.
Trace Interrupt at $XXXXXX.
Address error. PC=$XXXXXX.
Trap #$Yat $ZZZZZZ
Trap #$Y before $ZZZZZZ
One of the above messages will be shownwhena 68OXO instruction exception occurs.It shouldbe noted that a
trace interrupt will occur whenever you use singlestep or trace.See the Exception Handlin, sectiOn of the
Tec1lnical Reference for more information.

Unassigned Interrupt #$XXX (format $Y)at $ZZZZZZ.
Unassigned Interrupt at $XXXXXX.
Level X Interrupt at $ YYYYYY. ',':,;,
This message will be shown whena hardware bttetrnpt bas been detected by TMON. See theException
\HandliD, sectionof the Tec1lnical Reference for more information.

The AOOO trap or subroutine has returned.
Thismessage willbe shown after control returnsto TMON from a GoSub ora Stepthrough an AOOO Tmp.

Breakpoint at $XXXXXX.
ThIsJDeSSB8e will be shownwhena user defined TMON break: point is encountered.

System error#$XXXXat $YYYYY~
An error was reported to the system via the _SysError trap.

101

TMON

Bus error. PC=$XXXXXX.
Access address: $XXXXXX (user data), Instruction: yes, mode: read.
Access address: $XXXXXX (user program), Instruction: yes, mode: write.
Access address: $XXXXXX (supervisor data), Instruction: no, mode: write.
Access address: $XXXXXX (supervisor program), instruction: no, mode: read.
Access address: $XXXXXX (exception), Instruction: yes, mode: read.
Access address: $XXXXXX (illegal), instruction: no, mode: write.
A bus error has occurred. The additional data defmes the type of bus cyclepresent on the bus at the time of the
error. The 68020bus error exception is more complicated and this information will not be shown. See the
Exception Handling sectionof the Technical Reference for more information.

Welcome to Monitor version 2.8
Written by Waldemar HorwaL
This message will be displayed upon initial entry to TMON.

No more windows can be created.
There is a limit of 19 total windows that TMONcan open at anyone time.Youbave tried to open another
window after reaching this limit.

Mouse antifreeze completed. Be careful with the serial ports.
This messageis displayed whenever youuse the mouseunfreeze command. SeetheMouseUnfreeze sectiop of
the Technical Reference for further information. . I

I don't want to execute the next instruction.
Using step or GoSub on the next instruction will make it impossible for TMON to regain control.To '
continue execution, you can use Exit or Trace. The only.~c:eption to this is when the next instruction is a
_SysError. in whichcase you cannotcontinue execution~that address. S~ the Exit, GoSub, Step, and
Trace sectionof the Technical Reference form~ iilf~

102

Appendix C-TMON Hints and Tips

Manypeoplehavebeen using TMONfor some timenow. A greatdeal of wisdom hasbeen accumulated re­
garding how to use TMONto fmd andrecoverfrom bugs. Someways in whichTMONis usefulare obvious;
othersare not so obvious. I want to use this appendix to providesome ideas as to what you can do with
TMONthat may not be immediately obvious (although many of these hints fall into the "why didn't 1 think
of that?" category). We owe a special thanks to AppleTeclmical Support. who have written several of these
tipsup in variousTech Notes.

MPWTools Gone Amok
If you are an MPWuser, chancesare that you've gotteninto a situationwherea tool wasrunning andyou
wanted to stop it dead in its tracks. Perhapsfor one reason or anotherhitting as-. doesn't work. or the tool
has crashedinto TMONandyou need to recover. If you have TMONinstalled. you can stop the tool very
quickly by holding down the Optionkey andpressing the interruptswitch.Press asR to openthe "Regs"
window. Press the Tab key to put the cursorby the PC field. Now type "STOPTOOL" including the quotes,
andpress the Returnkey. Now press asE to exiLYou've changedthe PC to point to an MPWroutine that
stops tools dead in their tracks. andall should be well.

catching a Failure to Check Common Errors
Oneproblemwith some Macintosh programs anddesk accessories is that they neglect to check the resultsof
memory manageror resourcemanager operations. Thiscan havedisastrous consequences. One way that TMON
can help to catch bugs like this is by usingTMON's checksumming capability to see if eitherof two important
low RAM globals has changed. You can do a checksum from "MemBrr" to "MemBrr"+l or from "ResBrr"
to "ResBrr"+l on all traps, and anytimethat the bytes within the range change,TMONwill be enteredon the
~t trap. It's a good idea to use this in conjunction withTrap Recordso that you can see a historyof what
trap{s) may have generatedthe error that TMONcaughL

LOOking at Othe~Heap Zones
Someapplications andprogramming~_te at least oneheap zonebesidesthe Macintosh'snormal
two, the application zone and the systemzone. In orclet to enableTMONto see one of these other zones,
assuming that you know its starting address, just opeh. dump window at "ApplZone" (don't forget the
quotesl) andmake a note of the address there (a good way to do this is to open a "Num" windowand type
@"ApplZone"). Positionthe cursor at the beg!nning of the address, -and enter the address of the zone that you
wish to see. Press the Returnkey. Now openthe heap window. It will say that it's showing the application
zone,but it's really showing the customzone.Don't forget to change"ApplZone"back to the application
zone's address whenyouaredonel

Alternate _ExitToShell
The user area's function to ExitToShell is smart; it tries to close all open files andresource files before doing
the ..ExitToShell. However,there are times when the process of trying to close all files doesn't work. The
Flle Manager may be screwed up somehow. If you want to try to ..ExitToShell without all the extra
overhead. just open the "Regs" window and changethe PC to l..ExitToShell. Now use the "Exit" function.
Since the PC points to the address of the ..ExitToShell routine, you shouldgo back to the Fmder (or whatever
the shell application is). However, theremay be openfiles andso forth lying around. so it is a good idea to
immediately shut down your systemandstart over.Note that you can cheat andlaunch anything by editing the
string at FmderName.

Restricting Trap Intercepting Functions to the Application Zone
This sounds a lot tougher than it actuallyis. Thereare times when you want to performsome trap-related
function such as Trap intercept, but you only want it to take effecton traps in yourprogram, i.e. in the ap-

103

TMON

plication zone. You can restrict trap intercepting functions to certain PC ranges.There's an easy way to re­
strict them to the applicationheap: using the indirectionoperator(described in the TechnicalReference
Manual) and TMON's built-in labels. You can combine the two on a trap function command line like this:

000 FFF @"ApplZone" @"ApplLimit"
These options for the trap intercepting functions will cause them to take effect for all traps, but only for PC
values between the contents of ApplZone and the contents of ApplLimit. Le,within the application zone.

Breakpoints in Unloaded Segments
If you're writing a multi-segment application. something thatyou may have come across is the necessity to set
a breakpointat some point in the programthatisn't withina loadedcode segmenL Youmay have spent some
time wondering what to do. The answer is to use the user area's ability to load a resource to load in the CODE
resource thatyou need. Even thoughthe intersegment jump tablehasn't been updatedwhen you do that, the
code is where it will be when the jump table is updated. You may therefore set breakpoints in iL

Is TMON Installed?
Every now and then you may have to write a programthat needs to know whether TMONis installed or nOL
For example,during debugging you may wish to place .J>ebugger trapsat important points in the program.
..J)ebuggerwill crash the systemwith a bombbox if no debuggeris installed, so you need to execute
..J)ebugger only if TMON is around.You can determine if TMON is installedby lookingat tI:Ie longword
stored at $FC and, if it is in RAMand is even, looking at the word stored there.If the word is equal to
"WH" then TMON is installed. ("WH" are TMON's signature bytes, and are Waldemar Horwat', initials.)
The word following the "WH" is TMON's internal version number.

Running Out of Room in Label Tables
If you are developing a large application andusing .MAPfiles to provideTMONwith labels for your code,
you may fmd that you can't allocate a label table large enough to hold all of the labels. If this is the case, use
a disk block editing tool such as FEdit to edit your volume's boot blocks.You can increase the size of the
systemheap that way. Change it to allow you to allocatehO'Wel"er muchspace you need. Be aware thatyou
also must changethe version number of the boot blocks so that it is at least $21 on 128KROMs or newer,
otherwisethe changes will be ignored.

Walking Through the VBl Queue
TMON allows you to configureit so that VBL tasks remain running whileTMON is active. Sometimes there
are undesirable interactions betweenTMONand VBL tasks that are active.It's nice to be able to trackdown
all currently active VBL tasks.The way to do this is to walk through the VBL queue.

First open two windows,a dump windowand a disassembly window. Make sure that the dump window is
activeand position th4;:.cursor in the addressfield (you can do this by clicking anywhere in the window and
pressing the Tab key).lnstead of typing an address or anchoring to a register, type@<"VBLQueue"+2> and
press the Return key. This will cause the dump window to display startingat the first VBL record in the
queue.
The fust Iongword is a pointer to the next VBL record in the queue.We'll use it in a moment. Another im­
ponantfield is six bytes (counting from zero) past the beginningof the record. It's the addressof the VBL
task. If you activate the disassembly windowandposition the cursor in the addressfield, you can simplytype
@<VBLRecord+6> replacing VBLRecord with whatever addressis showing in the address field of the dump
window. In other words, if the dump window is dumping from $17D6, then type @<17D6+6> in the
disassembly window. This will disassemble the VBL task. To continue throughthe queue, just enter the f11'St
lorJIWord shown in the VBL record as the address to dump from. If the longword at $17D6 is $00002596,
thenenter2596 (or@17D6) as the dumpaddress. You can then enter@<2596+6> in the disassembly window
to show the next VBL task. This may be continued until the first longword of the VBLrecord is zero,
iDcJIcatin& theend of the queue.

104

Appendix e-Hints and Tips

Note that if you know the entry numberof a VBL record in the queue, you can dump it immediately by pre­
fIXing the dump expression with the correct number of indirectionoperators. In other words, if you want to
dumpthe fourthVBLrecord in the queue, type @@@@<"VBLQueue"+2> as the dumpaddress.For a complete
explanation of what these expressions mean, see the "Numbers"section of the TechnicalReference Manual.

TMON and Context-Switching Environments
As a rule, TMON works well with environments like Switcherand Fmder 6.0 as long as TMON is installed
before the context-switching system software.TMON Startup was designed to load TMON in these
cin:umstanees. If you wish to use TMON with Switcheror Fmder 6.0, use TMON Startup.

ResumeProc Functions
Everyonce in a great while an application will implement a ResumeProc. A ResumeProc is a routine which
handles the "Resume" button on the bomb box thatshows up when somethingis really wrong. Most
applications don't do this.

If you are using TMON with an application thathas installeda ResumeProc and a system error occurs, you'll
windup in TMON rather than at a bomb box. TMONhas no obviousResumebutton, so what you can do is
this: open the "Regs" window, position the cursor over the PC value, and type @"ResumeProc" quotes and
all. Before you do this, you shouldmake sure that the value at "ResumeProc" is non-zero.Once you've set the
PC to @"ResumeProc" using the Exit functionwill pass control back to the applicationat the point that it
wouldbe if you hadclicked on the "Resume"button in the bombbox.

The Mystical. Magical V and N Registers
Using the "Num" window always sets the N register to whatever the evaluatedresult is. This is handy for
calcalating values whichcan then be used in otherexpressions. An even handierregisteris V, becauseso many
TMON functions set it. Many user area functions do, andit can alsobe set by pressing Return when the cursor
is ona-heap wiDdow line. For example,open an "Asmbly"windowandanchor it to the V register. Now open
the heap window, and fmd, for example, a "CDEF"resource. Place the cursor on that line in the heap window
and press Return. The "Asmbly" windowwill".ahow a disassembly of that CDEFI Another example: if
you have just used the Find functionin the 1iIer~"$C8rCh for _OetResource in "CODE0003," you can
disassemble starting at the location where it was~bYanchoring an "Asmbly"window to V.

What Version of the UserArea DoI Have?
A connnon questionwith an extendable debuggerwith severalcustomized user areas is: what version do I
have?The easiest way to determine that(and, coincidenta1ly, the size of the user area) is to open a "Num"
window and type @USER with no quotes. N will be set to a longword consisting of the user area size (in the
high word) and the user area version(in the low word).The 16-bitdecimal value is the user area version;

Getting Through_LoadSeg Quickly
...LoadSeg is one of the traps thatTMONrefuses to step or OoSubthrough, becauseit never returns (it passes
control to the segmentbeing loaded). Your only choice, if you need to continue,is to Trace through it. If the
segmezu in questionhas many entry points, this can take some time.

Appleprovided a cleverundocumented shortcut. If the byte atLoadTrap ($120) is non-zero, a J)ebugger trap
will be executed beforeJ.oadSeg passescontrol to the newly-loaded segment, Thanks to this, you can open a
dumpwindow (if you use 120 as the address the dump will actually be from 12C;be aware of this) and
change the byte at 120 to something other than 00. Now go ahead andExit TMON.TMON will be re-entered
with the PC pointingto the instructionafter the J)ebugger trap in _LoadSeg. Steppingtwice will put the PC
at the first instruction of the entry pointof the new segment.Don't forget to set 120 to 00 again afterward.

105

TMON

Tools for Getting Into TMON
A handy thing to have is a tool that gets you into TMON.Since the J>ebugger trap will enter TMON, all
that you need is an FKEYresourceor a desk accessorythat executes a J>ebugger trap.

Viewing ROM Resources
Anothernice thing to be able to do is to see what resourcesyou have in your Macintosh's ROM. To do this,
fl1'St use Trap Intercept to intercepta resourcemanager trap LGetResource is a goodchoice). Use Trace to
trace into the trap dispatcher in ROM. Now set the byte at "ROMMapJnsert" to FFand the next byte to
whateverthe value of "ResLoad" is. Now use GoSub. If_GetResource is not in ROM, use GoSubuntil youget
to ROM. Use GoSub to execute the first two subroutinecalls. Now open the file window. GoSub again unti1
a file referencenumberof 1 appears. FIle 1 is actually the ROMresourcemap,whichyoucan'" in thefile
window to your heart's content.

Saving Your File
Here is a reason to keep TMONloadedin memoryat all times,even whenyou are not debuggiD& a program.
We have all probablyexperienced the agonyof a systembombjust as we were aboutto save tile documentwe
had beenworking on for the last two hours. TMON will sometimes allow you to recovec Ibe lOll data. The
idea is to f"md the top of the event loop in the application you were running and restartlt~ This will.
sometimesreturn you to the programin just a stable enough condition to save your file. Plrltmake sure that
AS is correct.Open the register window and type @"CurrentA5" in the ASposition.Nowopeo theheap
windowand the user area window.Get the address and length of the first coderesource. Doa search on
_GetNextEvent for 2 bytes startingat the beginning of the code resource and goingtot1Ie. Repeatthip
for each code resourceuntil you f"md _GetNextEvent. Open an assembly window to thisalddress. If you
start scrolling down the code, you will generally f"md a jump or branch (usually UJlCClIlditional) to a point just
above the _GetNextEvent. This is usually the top of the event loop. Set the PC in the register windQt,r to
the address you just found. Hit the exit button and pray. If you find yourselfback in yourprogram, do 8 Save
As... to a floppy disk and then re-boot. Remember that the state of the system is pretty uncertain, so.cave and
get out as fast as possible. Good luck.

106

Index

6802051, 53, 54, 62
6803053,54
6885153,54
6888153,54
AOOO traps 8, 14,20,23,24,26,27,31,32, 33, 35,

38, 44, 52, 58, 59, 60, 68, 82, 103
activewindow 18, 42
address error 62
addressingmodes52, 53
alternate screen page 62
anchoring 19,22,50
AppleTWkI4,23,61,64
application heap 14, 36, 55
ApplZone 55, 57, 103
arrow keys (see keys, arrow)
Asmbly (see windows, assembly)
assembly (see windows, assembly)
auto-pop bit 59
auto-quit (see options, auto-quit)
Backspace (see keys, Backspace)
blockcompare25, 69
blockmove 24, 69
breaIqtoints 9, 10, 22, 40, 62, 101, 104
Brkpts(Sk windows, breakpoints)
BSR58
BufPtr 65
bugs 6, 7 "
buserror51, 62, 102
button bar 16, 17,42
buttons

Configure 12,40
intenupt 4, 10, 15, 16, 32, 63
Monitor 12, 15,40
Monitor... 12, 15,40,66
Quit 12, 40
reset49,63,64,74
Tnmsfer12, 40

cache (see diskcache)
Chain 59
changing memory 50
checksum 26, 76, 77
Clear (see keys, Clear)
cloverleaf (see keys, Command)
Command (see keys,Command)
Command-intelTUpt 77, 84
communications (see options,comnninications)

configuration 12, 79
Configure (see buttons, Configure)
Control (see keys, Control)
ControlRecord 28
copy protection 11
CurApName 29, 73
damaged Monitor63, 101
data structures 28
IX:F3 37
debugger 6, 8
Delete(seekeys, Backspace)
desk accessories 12
dire straits 7, 16
disassembly (see windows, assembly)
discipline (see trap discipline)
diskcache 65
dollar sign 43
DSAlertTab 56, 91
Dump (see windows, dump)
Enter (see keys, Enter)
entering TMON 15, 16, 32, 49, 106
EUA (see extended user area)
EventAvail 26, 32
events8, 27
exception handling 62
exceptions 62, 63, 85, 101
exit 58
exiting TMON 16, 24, 32, 49
ExitToShell 29, 73, 103
expressions 10, 31, 43, 44, 45, 90
extended user area 4
FCBs37, 56, 91
files

label 34 r­

map 9, 10,20, 34, 72, 104"
recovery 106
System30
user area 40

default 15
saving 12, 15

fill memory 25, 69
find 25,69
FInder 6.0 105
Finderlnfo56, 91
FmderName 73
FKEYs (seekeys,function)

Index

107

TMON

free 37, 55
function keys (see keys. function)
GetNextBvent 8,26,32. 106
GetResource 74, 106
OetTrapAddress 52
GetZone52
globala

dumping 22
gosub24, 5S. 106
GrayRgn S6, 91
bandleat 37, 55
HandleZone 52
heap (see also windows. heap) 35, 75, 76, 103
heapcheck 35
heap purge 35
heap SCI'lIDlble 35, 75
HFS 11
HFSDispatch 52
high memory 6S

. "I don't want to execute the next instruction." 59,
102

ImageWriter 13,23
infinite loop (see mutually recursive)
INlT88
InitGraf 26
installing TMON 104
intenupt (see buttons, interrupt)
intenupt button (see buttons, interrupt)
INVALID 37, 55, 57
JMP 9,46
lSR58
keyboard 4
keys

mow 18
Backspace 18,43
Clear 43
cloverleaf (see Command)
Command 4, 9, 11.42
Control 5
Delete(see Backspace)
Enter18, 43, 51
flmctico 8, 6S
~.4, 10, 11, 32
Reta.1i 18, 20, 43, 50, 51
Shlft4,9, 11,42
1iIlb 18, 20, 21, 43, 50

.,it
"48ble 33, 38, 47, 60, 71, 104
..9,10,20,33,34,37,43,45,46,47,51,60,71,

72,104

108

absolute47
built-inuserarea48
embedded 9, 38
precedence48
resource-relative 20, 47

LaserWriter 23
launch 12. 29, 59, 103, lOS
launch application 29
leavingTMON27, 73, 83
LINK 29, 33, 46, 71
loadresource29, 70
loading label files (see files. label)
loading position(see options, loadiDB posidori)
loadingTMON 11 . ,
LoadSeg 59, 105
LoadTrap 105
low-memory (see vectors andsystem.at~)
main dialog 40
MaxMem 52
MemErr 103
MenuList 56,91
menus 12

Apple 12
Edit 12
File 12
Options 13, 66

message window 33
MFSU
JDiSIIIfUd instruction 51
Art Yfibil$ 52
Monitor.(see buttons, Monitor)
Monitor... (see buttons, Monitor...)
mouse 11,17

unfreeze 42. 61, 102
MOVEM 51, 53
MPW 103
mutually recursive (see infinite loop)
NewEmptyHandle 52
NewHandle 35, 37, 52. 75
NewPtr 35, 52, 75
nonrel37, 55
Num (see windows, number)
Number(see windows, number)
numbers 53
numeric keypad 18
OldContent 56, 91
OldStructure 56, 91
operators 45
Option(see keys, Option)
Option-interrupt 77

options 12, (see windows. options)
auto-quit 15. 67
communications 13,64, 66
loading position 14. 67
vector refresh 13. 65. 66
vertical blanking 14.66,67

ParamBlock 28
ParamText 56, 91
percent sign43
period 43
PostEvent65. 68
printing 13. 23, 61. 64. 71
problems64
PtrZone 52
PurgeSpace 52
Quit (see buttons. Quit)
quotes (see also single quotes)43. 46
RAMdisks65
re-boot30
ReallocHand1e 35, 75
RecoverHandle 52
registers 19, 44. 50. 53. 54. 73. 90. 105

A233
. A6 29, 33
A7 21, 50
N60.105
pselIdmegister (seeN andV)
SP28,52
SR21
SSP 21. 52
status rtgister(see SR)
supervisor stackpointer (see SSPJ

user staek pointer (seeUSP)
USP 21, 52
V 25, 29, 34, 37, 50, 105

Regs (see windows. registers)
removing TMON 16, 49
R.esErrl03
reset (see buttons, reset)
ftlSOUlCe

load 70
resource map58
resources 37,38,47

ClOde29
file (see windows, file)
load 29
ROM 106
viewing47

ResumeProc 105
Return(see keys. Return)

return addresses (see stack addresses)
ROM

128K4. 26. 104
256K26,104
64K 14. 26. 48. 58. 65. 91

ROM calls (see AOOO traps)
ROM routines (see AOOO ttaps)
ROM traps (see AOOO traps)
RTS 9,46
SaveVisRgn 56. 91
sec 51. 61
scramble(seeheap scramble)
Scrap 56.91
serial pan 13
SetHandleSize 35. 75
SetPttSize 35. 75
SetTrapAddress 14
Shift (see keys. Shift)
shut down 30. 74
single quotes 43
single-step (see step, trace and gosub)
stackaddresses 28. 70
stack crawl 29. 70
step 23. 58
Switcher 105
symbolic 9. 46
SysError59. 65. 101. 102
system errors 29, 63. 85, 101
Systemfile (see files. System)
system globals 48
systemheap 14, 27, 36. 55. 65
SysZone 55,57
Tab (seekeys,Tab)
table labels (see label table)
template 28, 70
TERec28
TEScrap 56. 91
Ticks48, 74
tips 103
TMON2.585 41, 78
TMON Startup II, 88
togglepages 23, 68
trace 24, 58
trace flag 59, 64
trace interrupt (see trace flag)
Transfer (see buttons, Transfer)
TRAP I#$P 54, 62. 63, 66, 83
trap checksum 26
trap discipline 10, 33, 76
trap dispatchtable48

Index

109

TMON

trap dispatCher 24. 44. 48. 106
trap intercept26. 77. 103
trap numbers 26
trap record 27. 74
trap signal 32, 77
trapS (see AOOO traps)
underscore 44
undo43
unfreeze mouse (seemouse, unfreeze)
UnitTable37.56.91
UNLK 9. 29. 33. 46. 71
user area 11. 33. 41. 60. 68. 78. lOS

built-in (see default)
default 11. 40
size 60

user input 43
variables8S
VBL (see options. verticalblanking)
VBLqueue104
VCB 56. 91
vector refresh (see options.vector refresh)
vectors 13. 62, 85
vertical blanking (see options. verticalblanking)
VIA 51

110

"WARNlNGI The monitor bas been damaged" (see
damaged Monitor)

warnings 101
WDCBs37
WDCBsPlJ' 56. 91
WindowRecord 28
windows 9.17.42, 43. 8S

active (seeactivewindow)
assembly 19.20.44. 46., 47. 48, 51
breakpoint 9. 10
breakpoints 21. 54
closing 18. 42, 61
disassembly 9
dragging 9.17.42
dump22, 47. SO
file 30.58
heap 36. SO. 55. 83
number 20. 46. 60
options34. 37. 48. 51. 60
registers 20. 21. SO. 54
resizing 9. 42
scrolling9. 20. 42
sizing 18
user 46. 60

WMgrPort 56. 91

===-~~~~'--------
1--_111
ICOM SIMULATIONS, INC.

648 S.Wheeling Road
Wheeling, IL60090

312/5204440

	User1ocr
	oc
	ic1
	ic2
	ic3
	tc1
	tc2
	tc3
	tc4
	tc5
	sum1
	sum2
	p3
	p4
	p5
	p6
	p7
	p8
	p9
	p10
	p11
	p12
	p13
	p14
	p15
	p16
	p17
	p18
	p19
	p20
	p21
	p22
	p23
	p24
	p25
	p26
	p27
	p28
	p29
	p30
	p31
	p32a
	p33
	p34
	p35
	p36
	p37
	p38

	Binder1ocr
	p039
	p040
	p041
	p042
	p043
	p044
	p045
	p046
	p047
	p048
	p049
	p050
	p051
	p052
	p053
	p054
	p055
	p056
	p057
	p058
	p059
	p060
	p061
	p062
	p063
	p064
	p065
	p066
	p067
	p068
	p069
	p070
	p071
	p072
	p073
	p074
	p075
	p076
	p077
	p078
	p079
	p080
	p081
	p082
	p083
	p084
	p085
	p086
	p087
	p088
	p089
	p090
	p091
	p092
	p093
	p094
	p095
	p096
	p097
	p098
	p099
	p100
	p101
	p102
	p103
	p104
	p105
	p106
	p107
	p108
	p109
	p110
	bc

