TMON

User s Guide and Technical Reference

\ MACINTOSH
MONITOR
DEBUGGER

-:::IIII
rl

Q
o
=
a
=
=
S
o
=
w
=
9

Return Your Registration Card

ICOM Simulations, Inc. is committed to providing quality products and the highest level of services for our
customers. To take full advantage of ICOM’s services, you must be a REGISTERED user of TMON. Please
take a few moments now to complete the registration card located in this package and forward it to ICOM as
soon as possible. As a registered user, you will be entitled to the following benefits:

Customer Service and Product Support. As a part of the service provided to our registered users, we provide
a limited warranty on software, and support and assistance by telephone. If you experience any difficulty in
using TMON, please refer to your User’s Guide and Technical Reference. If you still need assistance, call our
Technical Support Department between 9:00 AM and 5:00 PM (Central Time) Monday through Friday. Our
phone number is 312/520-4440. Please have your registration number available, as well as information relevant
to your question.

ICOM Upgrade Information. ICOM is constantly looking for ways to enhance its products by incorporating
new capabilities and features. These new upgrades will be available to our registered users. As a registered
user, you will be regularly updated by mail on new upgrades.

New Product Information. As a registered user, you will be provided with early information on new
products and special offers.

Site Licenses

Information about site licenses and volume purchases can be obtained by contacting the Marketing department
of ICOM at the number given above.

Limited Warranty on Media and Manuals

If you discover physical defects in the media on which this software is distributed, or in the documentation
distributed with the software, ICOM Simulations, Inc. will replace the media or documentation at no charge
to you, provided you return the item(s) to be replaced with proof of purchase to ICOM or an authorized
ICOM dealer during the 90-day period after you purchased the software.

ALL IMPLIED WARRANTIES ON THE MEDIA AND DOCUMENTATION, INCLUDING
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION TO NINETY (90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF THIS PRODUCT.

Even though ICOM has tested the software and reviewed the documentation, ICOM makes no warranty or
representation, either express or implied, with respect to this software or documentation, its quality,
performance, merchantability, or fitness for a particular purpose. As a result, this software and documentation
is licensed "as is," and you, the purchaser are assuming the entire risk as to its quality and performance.

In no event will ICOM be liable for direct, indirect, special, incidental, or consequential damages resulting
from any defect in the software or its manuals or any additional documentation, even if advised of the
possibility of such damages. In particular, ICOM shall have no liability for any programs or data stored in or
used with ICOM products, including the costs of recovering such programs or data.

The warranty and remedies set forth above are exclusive and in lieu of all others, oral or written, express or
implied. No ICOM dealer, agent or employee is authorized to make any modification, extension, or addition to
this warranty.

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation or exclusion may not apply to you. This warranty gives you
specific legal rights, and you may also have other rights which vary from state to state.

TMON

Version 2.8

User’s Guide and Technical Reference

ICOM SIMULATIONS, INC.
648 S.Wheeling Road Wheeling, IL 60090 312/5204440

Author
Waldemar Horwat

User Area
Darin Adler
Waldemar Horwat

User’s Guide
Paul Snively

Technical Reference
Waldemar Horwat

i

Copyright © 1987 ICOM Simulations, Inc. All rights reserved. Printed in U.S.A.
TMON and ICOM Simulations, Inc. logo are trademarks of ICOM Simulations, Inc.
Macintosh is a registered trademark of Apple Computer, Inc.

Unauthorized reproduction, adaptation, distribution, performance, or display of this document, the associated
computer program, or the audio-visual work is strictly prohibited.

Contents
Summary of Features

User’s Guide

Introduction

A Few Words About the Macintosh Keyboard.

What is a Debugger?

..........

Design Flaws
Implementation Flaws

What Are Some Common Macintosh Bugs?

Dire Straits Bugs
Everything Else

Why Should I Use TMON?

What is TMON?

ooooooo

Installing, Entering, and Leaving TMON
Loading TMON

Configuration

Getting Into TMON.,
Getting Out of TMON

The Monitor Environment

The Button Bar

The Windowing System
Typing

Basic Features

Assembly
Registers

Breakpoints

Dump

Print
Step

Trace

GoSub

Exit

Block Move

Block Compare

Fill

Find

Intermediate Features

Trap ’Imercept

Checksum
Leave TMON

Trap Record

Template
Stack Addresses

Stack Crawl

8

Load Resource

8

8

Leave application
Shut down

w
(=]

File

Advanced Features

Technical Reference
The Main Dialog

The Monitor.

The Monitor’s Functions

Exception Handling

Possible Problem Areas

Number 31

32
Trap Signal 32
Trap Discipline 33
Look for Labels Between LINK/UNLK of Ax 33
Label Table 33
Label Add/Remove 34
Label File Load 34
Heap Check, Scramble, and/or Purge 35
Heap 36
Options 37

39

40
Loading the Monitor 40
Loading a User Area 41

42
The Button Bar 42
Windows 42
Refreshing of Windows 43
The Cursor and the Editing Facilities 43
Numbers 43
Labels 46
Exiting the Monitor. 49

Reentering TMON

Permanently Leaving the Monitor

Dump

Assembly
Breakpoints

Registers

Heap..
File

Exit, GoSub, Step, and Trace

Options

Number

User

Print

Mouse Unfreeze

Normal Exception Messages.

Address and Bus Errors -

Breakpoints
System Error

Interrupt Button

Self-Check

User ‘Exceptions

Mouse Freezing

Interrupting the Vertical Retrace

Can’t Regain Control of the Monitor

222222223380822223388RRRraLss

Contents

Trace Flag On.., ceseeessstrsssessrssessstesssssssesrassesbaserante 64
Windows Crash or Are Too Slow cesssssersatttetesesssssestranattaatsttnetesssssrarns 64
Printing ProObICIMS.....cceiiererseressanssrecnssncsssnsessansssansssssnssssnsssssnesssnnassssanesssnnsssnne 64
Debugging ExiSting APPHCAHONS .c.veeieueesssresssresssseesssanessasssssssssssnssssasssssssassssssasssssssssasss 65
Using the Disk Cache, RAM Disks, and Other ngh-Memory DIQVEIS c.euvvvevenvesnnneseensannanne 65
Function Key Usage in the Monitor 65
The Configuration Menus . 66
The File MENU...cccereersissssserreccsssssnsennessssssnenssssssssssssassesssssssssssssssasssscessassesssssssssssssssess 66
The Options MeNU....ccceeesssncssnessnisssssssansessaressassessssesses 66
Communications Ceessessssssesisettasststtassastrstrttirertesseteasastsasstrtrnns 66

Vector Refresh 66

VBL Tasks . 67
Loading Position 67
Auto-Quit 67
MEMOTY SIZE.cererssnssereesssneenesssssnnneensssssssnsssesesessssesssssssssansssnssssssasses 67
Built-In User Area FUNCHONS .ccocciennseessssassesssssssanssssssssnsssesnsssssssssonssansens 68
Toggle Pages 68
Block Move 69
Block Compare 69
Fill 69
Find 69
Template 70
Stack Addresses 70
Stack Crawl 70
Load resource 70
Print n
Look for labels n
Label table ' fStretaseassessRsassbssesasRsaRaSSRR ARSI RS RS SRR OR S AR RH)
Label add/remove v . 72
Label file load 72
Registers 3
Leave TMON 3
Leave application 73
Shut down 74
Trap record 74
Record 74
Trap heap check, scramble, purge 15
Heap 76
Trap discipline 76
Trap checksum . 76
Checksum)
Trap intercept 77
Trap signal n
Creating Your Own User Functions 78
The User Configuration Area ”
Names and Local Storage in the User Area 80
What’s in a Name? 80
Parameter Count 82
The A000 Trap Intercepting Hook 82

User Routines Leaving the Monitor 83

TMON

Appendices :
Appendix A—Quick Reference

iv

" The User Label Routines

The Startup Loader

User Routines Entering the Monitor

83

83

The Heap Window Identification Routine
The User Initialization Routine >

The User Enter and Exit Routines

The User A0O00 Name Table

85

85

The System Error Table
The Window List

85

The Exception Vector Bitmaps

85

The Monitor’s Variables

85

The Monitor’s Vectors

88

89

Appendix B—TMON Warning and Error Messages

Appendix C—TMON Hints and Tips

89

Keys that May be Used in the Monitor

89

89

Keys that May be Used outside the Monitor

89

Operators Allowed in Expressions
Register References

Dump Window Flags

Assembly Window Addressing Modes.
Items Identified by the Heap Window

91

Heap Window Handle Flags

91

91

File Window Map Flags

91

File Window Resource Flags
A000 Traps in Numerical Order

91

A000 Traps in Alphabetical Order

Labels Built Into the User Area in Numerical Order

Labels Built Into the User Area in Alphabetical Order

101

101

The monitor has been damaged
Exception

101

Interrupt

101

The AO000 trap or subroutine has returned

101

101

Breakpoint

System error

101

Bus error

102

Access address

102

102

Welcome to Monitor.
No more windows can be created

102

Mouse antifreeze completed

102

I don't want to execute the next instruction

102

103

MPW Tools Gone Amok

103

Catching a Failure to Check Common Errors

103

103

Looking at Other Heap Zones
Alternate _ExitToShell

103

Restricting Trap Intercepting Functions to the Application Zone

103

104

Breakpoints in Unloaded Segments

104

Is TMON Installed?
Running Out of Room in Label Tables

104

87

Contents

Walking Through the VBL Queue. 104
TMON and Context-Switching ENVITONMENLSvveeeeeeeessssssserssssnsersesssssssssssessssssssssssssoss 105
ResumeProc Functions 105
The Mystical, Magical V and N Registers 105
What Version of the User Area Do I Have? 105
Getting Through _LoadSeg Quickly 105
Tools for Getting Into TMON 106
Viewing ROM Resources 106
Saving Your File 106
Index 107

Summary of Features

TMON is an object-level symbolic monitor/debugger for the Macintosh personal computer. It will work on v
all Macintoshes except the Macintosh XL and the Macintosh 128K. Among the features included are:

A fast implementation of windows on the screen that has these advantages:
« Information is not lost when it scrolls off the screen.

« Registers, breakpoints, program code, subroutines, data, stack, heaps, and resource files can all
be examined at the same time.

« Multiple sections of code can be viewed.

» Windows can be scrolled up or down.

« Disassembly and dump windows can be anchored to registers.

« Instruction and effective addresses in disassembly windows are identified using labels.

Wr;}dows update continuously. When one window is changed, other windows instantly reflect the
change.

An interactive 68000 assembler/disassembler.

* Includes reverse scrolling of disassembly windows.

« A000 traps are displayed by their names, not numbers.

« Labels may be used both by the disassembler and in assembling.

Label and symbol capabilities.

¢ Labels may be used in any expression.

« Labels may be recognized automatically from routine names in code.

« Labels may be loaded from .MAP files.

« Labels may be entered directly from TMON as either absolute or resource-relative.

* Names of the A00O traps are used as labels during examination of ROM routines.

Predefined labels for low-memory globals.

An Interactive hexadecimal and ASCII memory dump and change.

File windows which identify all resources in all open resource ﬂles

» Resources not currently in memory are also displayed.

* Resource flags are shown in an easy to read format.

« Resource types, IDs, names, references, and handles are shown when appropriate.

* Information displayed is checked for consistency.

Heap windows displaying the contents of the application or system heaps.

» The location, size, and type of all heap objects are displayed.

¢ The addresses of handles and flags are displayed for relocatable objects.

* The resource ID, type, and file are displayed for objects which are resources.

* Windows, controls, window regions, scraps, and various other heap objects are identified. A
user routine can be made to identify other heap objects when appropriate.

« Information displayed is checked for consistency.

Register windows which display and allow changing of all 68000 registers
* The flags are displayed in an easy to read format.

Saving, loading, and exchanging registers with an alternate register set.

Converting numbers and expressions between hexadecimal, decimal, binary, ASCII, A00O trap
names, and labels.

Use of expressions involving hexadecimal, decimal, and binary numbers, ASCII values, addition,
subtractlor:,. l:1buellt|plicatnon. division, boolean operations, indirection, parentheses, A00O trap
names, an S

TMON

Up to seven breakpoints.

Single-step execution of programs.

« All stepping and tracing features work in ROM.

« Tracing into AOOO traps is possible.

« A convenient function for skipping subroutines during tracing is included.

Searching a block of memory for a 1, 2, 3, or 4 byte value.
Word-aligned, as well as byte-aligned searches.

Block move, compare, fill, and checksum.

Interception of almost all exceptions and system errors.

Interception of any A00O traps upon request.

Interception of program at a specific point when interrupt is pressed.

Quiet recording of all or specific AG00 traps which allows the course of execution of a program to
be quickly traced. This function may also be used for performance analysis as it records the
times of the A0OQO traps.

A heap check function, which may be automatically run on A000 traps.

A highly optimized heap scramble function, which may be automatically run on A000 traps as well.
A purge option is available. The heap scramble clears the unused blocks, providing additional
debugging security.

A000 trap discipline, which checks the parameters of A00O traps, catching errors before they
cause damage.

S)g\b(g;c displays of window records, control records, TextEdit records, and file parameter
ocks.

A variable-length user area designed to allow customization of the Monitor.

Printing to a printer, external computer, or terminal.

* Any window on the screen can be printed.

« Disassemblies and dumps of arbitrarily large blocks of memory can be printed.

« Heap and resource file dumps can be printed.

« XOn/XOff and hardware handshaking are supported.

« Printing can be done from either port.

Mouse unfreeze and vector refresh options, which may be very helpful after a program crashes.

The ability to easily disable the more system-dependent Monitor functions like labels and heap
identification in case these functions fail because the system Is in an inconsistent state.

A Monitor self-test run continuously to provide extra security.

Choice of either system heap or high memory to load the Monitor allowing the Monitor to work
with virtually all programs.

The ability to quietly load the Monitor upon starting the Macintosh without any interaction.

The ability to load the Monitor as an INIT. This allows debugging of other INITs and lets another
application be the startup application.

The capability of automatically patching the Monitor code via a user area routine.

TMON 2.8 does not support the extra features of the 68020, 68030, 68881, and 63851 processors and
coprocessors that are not also found on the 68000 (i.e. it will not disassemble the extra instructions and will
not display the extra registers). TMON 2.8 does, however, work with any of these processors.

User’s Guide

TMON

Congratulations on your purchase of TMON Version 2.8!

In the two and one half years since TMON’s initial release much has changed in the Macintosh development
world. Apple introduced new ROMs which were 128K in size, and in so doing also introduced several new
wrinkles to developers: a new file system, new bugs, more power, and more flexibility. TMON evolved only
marginally to accommodate the 128K ROMs; for some time the only way that TMON could be said to be
supportive of them was that it was capable of running the Extended User Area (EUA) written by Darin
Adler, which patched TMON to work with the 128K ROMs. Fortunately, most TMON users seemed to use
EUA, since it was in the public domain.

As even more time went on, other changes were made to the Macintosh architecture as well. Modifications
such as Levco’s Prodigy 4, with its 68020 microprocessor, 68881 math coprocessor, and four megabytes of
RAM became popular as development systems because of their speed and power. Several alternative screens
also appeared on the market for those who wished for a larger screen on their Macintosh. Earlier versions of
TMON did not work well on large screens, and did not work at all on machines with a 68020 microprocessor,
such as the new Macintosh II.

For these reasons we are proud to offer you TMON Version 2.8. It is fully compatible with all Macintosh
architectures with at least 512K of RAM with the sole exception of the Macintosh XL, and is compatible
with all of the currently available Macintosh microprocessor and ROM configurations. It is also compatible
with most available third party large screen modifications. (If you find that TMON does not work properly
on your hardware configuration, please contact us and let us know what is non-standard about your system so
that we can ensure compatibility with it in a future release.) '

‘We regret that you find it necessary to use TMON (no one likes to chase lurking bugs), but we are glad that
you have chosen TMON as your tool. We hope that TMON saves you effort that would be best applied to
other areas of the development cycle. Who knows, TMON might even prove fun to usel

Before I begin, I'd like to point out that when I use the third person in the English language, I use the English
language as it was taught to me, which is to say that I use “he” to refer to either males or females, since users
of TMON can obviously be either. If someone can provide a graceful gender neutral substitute, please do. I'd
love to hear it. In the meantime, “he/she,” “him/her,” “his/her,” etc. just don’t cut it.

I'd like to take this opportunity to thank Jay Zipnick, Bill Leininger, Darin Adler, and Dave Feldman for
reviewing this manual and offering many valuable comments, most, if not all, of which you will find
incorporated here. A special thanks is also due to our beta testers, without whom TMON would not be as
reliable as it is. '

Now, allow us to show you how TMON can help you eliminate bugs in your software...

A Few Words About the Macintosh Keyboard

Before I talk about debugging I should point out that debugging a piece of software on any computer
inevitably becomes a keyboard-intensive task. This is even true on computers such as the Macintosh, which is
normally a mouse-intensive machine. It’s probably a good idea to take this opportunity to discuss some aspects
of the Macintosh keyboard that may not be immediately obvious.

Perhaps the most significant key on the Macintosh keyboard whose function is not always obvious is the
Command key, which looks like a cloverleaf (3). On some keyboards this key also has the outline of an apple
on it. This key is one of the modifier keys. Modifier keys are keys that somehow change the behavior of
another key. They normally do this when they are held down and another key is pressed at the same time. The
most obvious example of a modifier key is the Shift key. You hold down Shift and press another key, and Shift
modifies the behavior of the other key by making it generate an uppercase character, as opposed to a lowercase
character.

The Command key does what its name implies; it causes the other key to execute some command associated
with it. Examples will be given later.

Another modifier key is the Option key. Holding down the Option key and pressing another key will also
generate some other character than what you expect. Option is also used with the interrupt button on the
programmer’s switch; this function will be explained in detail later.

User's Guide

Some Macintosh keyboards have a key that is labeled “Control.” In the early days of microcomputers the
Control key served much the same function as the Command key does today. It was used primarily to issue
commands to a program. On the Macintosh the Control key is used to create still another range of ASCII
characters on the keyboard.

As a TMON user, you will find Option very useful for getting into TMON, and you will find the Command
key (hereafter referred to as the “3%™ key) useful for doing the same things that you can do with TMON’s
buttons, which will be explained later.

TMON

What is a Debugger?

There comes a time in the development cycle of any but the most trivial of computer programs that problems
will arise (although students of Hoare and/or Dijkstra will argue this point). These problems, referred to as
“bugs,” come in many shapes, sizes, flavors, and species (but they’re all ugly). Bugs can be divided into two
major categories: design flaws and implementation flaws.

Design Flaws

These bugs can be quite insidious, or they can merely be the cause of the programmer hitting himself on the
forehead and mumbling vaguely about stupidity. They are caused by implementing a solution to a problem that
is just plain wrong. Unfortunately, within the context of the current state of the art, the only debugger
capable of detecting this type of bug is the human brain. ICOM Simulations, Inc. is not currently marketing
this type of debugger. ’

Tmplementation Flaws

These bugs can also be quite insidious, or can be the cause of minor self-inflicted headaches as noted above.
Unlike design flaws, the problem with implementation flaws is that while the solution designed for the
problem at hand is perfectly fine, the manner in which the solution has been described to the computer is
faulty. Unfortunately for the programmer, these problems can manifest themselves in many ways, some of
which may bring the computer totally to its knees. (There is at least one error which Macintosh assembly
language programmers can commit which will cause an instantaneous system reset—talk about being tough to
track down!)

User's Guide

"What Are Some Common Macintosh Eugs?

Well, before we can answer this question, we need to provide a bit more clarity in describing just what some
bugs’ symptoms are. There are two major categories of Macintosh bugs: Dire Straits bugs and everything else.

Dire Straits Bugs

Occasionally in the course of using a program on a Macintosh the user is treated to a unique display which
consists of a small rectangular window containing an icon of the old stereotypical bomb (a black ball with a
burning fuse), a message saying “Sorry, a system error occurred,” and a mysterious message, “ID=xx,” where
“xx” is essentially any number from one to thirty-three (there are more of these little beasties, but I have yet
to actually see any number higher than thirty-three). One of these boxes looks something like this:

Sorry, a system error occurred.

(Restart) (Resume)

Note that there are two buttons on the box, one that says “Restart” and one that says “Resume.” Many a
Macintosh user has complained that the “Resume” button is usually grayed out and unusable, forcing them to
re-boot the machine as if they were turning it on for the first time. In reality, when you see one of these
things, it can mean that the system is in such a mess that any attempt to do anything other than restart could
result in “unpredictable behavior,” including the irrevocable loss of everything on your disk. Restarting may
just be your best bet.

The important thing to realize about “Dire Straits™ errors is that they are bad enough that the system tries to
catch them itself and, if successful, brings the normal operation of the computer to a standstill. Oftentimes
the user’s only recourse is to start over from scratch and hope that the problem doesn’t persist. Every so often
a program will actually enable the “Resume” button (it’s the application’s responsibility to do that) and try
to make it do something at least moderately helpful, such as closing all currently open files and exiting to the
Finder (whether this is advisable or even possible, depending upon the current status of the system, is open to
debate).

‘Everything Else

By definition, “everything else” bugs are a lot more common than bugs that manifest themselves by bringing
the system to a standstill (although there are some problems that can bring the system to a standstill without
bemg caught by the system and stopped via the Dire Straits alert box). One problem that was quite prevalent
in very early Macintosh software was one that caused the display to behave in a very bizarre fashion and
usually caused the Macintosh sound hardware to create sounds somewhat akin to machine gun fire. In general,
these are symptoms of a problem that proves fatal to the machine, although no Dire Straits alert box is ever
produced. The system merely dies miserably. Many other bugs are possible, most of which cause the program
to function improperly, but do not cause the machine to give up the ghost. For the most part, though,

“everything else” bugs will cause the program to behave incorrectly, but it will be entirely up to you to track
down the cause of the problem and solve it.

TMON

Now we can answer the question on the previous page, namely “What are some common Macintosh bugs?”
Perhaps the most common Macintosh bug is the one that causes the Dire Straits alert box to show up with an
ID=2. This means that the 68000, which requires data of more than one byte in length to be at an even address,
tried to access more than one byte from an odd address. This alert is quite common in programs written by
beginning Macintosh programmers; it even crops up in experienced Macintosh programmers’ code from time to
time. It’s easily recoverable in almost all circumstances; returning to the Finder somehow is usually sufficient
and even safe.

Another common Macintosh boo-boo is to ignore disk inserted events, figuring that the user will never have
either the need or the opportunity to insert another disk. This is not the case; in the vast majority of
applications (i.e. those that use GetNextEvent) the user can use %-Shift-1 or %-Shift-2 to eject a floppy
(unless your application somehow disables the function keys, a difficult, extremely obnoxious, but not
impossible thing to do). The user can then insert a different disk, and it may never even have been initialized!
Your application should handle disk inserted events correctly, or problems are guaranteed. :

Unfortunately the most common Macintosh programming error, passing one or more bad parameters to a
ROM trap, cannot be defined or explained within the scope of a single paragraph, or even within the scope of a
single book! All that this error means is that a) the programmer got cocky and thought that he could
remember the parameter list for a particular ROM trap when in reality such perfect knowledge escaped him, or
b) the bad parameter was a handle that hadn’t been dereferenced or something along those lines. The solution
to a) is to look up the argument list for a ROM trap if there’s any question at all as to what it is. That’s what
Inside Macintosh is for! The solution to b) can be quite difficult to find, and that’s what debuggers are for.

Now that we have defined our terms more clearly, we can begin to answer the question posed a few pages back:
What is a debugger?

A debugger is a tool that assists the programmer in tracking down implementation flaws. That is, a program,
once designed and written, is exhibiting undesirable behavior, whether system-killing or otherwise. A
thorough examination of the program has convinced the programmer that there is nothing wrong with the
program’s concept, therefore the problem must lie in the program’s implementation. (Note that many
programmers will insist that, at first glance, there’s nothing wrong with the implementation, either. This
attitude may even last through the second or third glances at the code! How many times have you heard a
programmer utter that famous phrase, “It must be a hardware problem?”)

The debugger exists in the system as a piece of software which is somehow out of reach of the normal
operations of the computer. It generally reserves memory for itself in some special way so as not to interfere
with the computer’s normal way of doing things (and also so as to avoid being damaged if the computer’s
memory management scheme should be broken by whatever bug the debugger is looking for). It also intercepts
almost all of the computer’s mechanisms for dealing with error conditions; the debugger provides tools for
error tracking and recovery that are considerably more robust than the computer’s own (surprising, but true)!

So, in summary, the debugger is a special program that lies “beneath” the built-in software of the computer
(in the sense that, ideally, the debugger is invisible until/unless it is asked for by the programmer or a system
error occurs, whichever comes first). When the debugger is called upon, it places the programmer in an
environment which is conducive to finding errors in the problem program.

User's Guide

Why Should | Use TMON?

Good question! Hopefully we’ll be able to provide some thought provoking answers. As part of providing
those answers, perhaps we should first answer the question...

What is TMON?

We could cop out at this point and say that TMON is a Macintosh debugger, but we’re not generally in the
habit of insulting people’s intelligence. TMON is a highly sophisticated interactive (we’ll explain what that
means in a moment) multi-window (we’ll explain why this is neat later on, too) symbolic (this is
particularly nifty) debugger for the Macintosh family of microcomputers.

TMON is interactive. This goes partially hand-in-hand with being multi-window; TMON doesn’t lock you
into any particular mode at any particular time. If you’re looking at a disassembly of part of a program and
suddenly decide that a breakpoint at a particular spot would be helpful, you don’t have to leave the
disassembly or worry that it will scroll off the screen. Just open the breakpoint window, pick one of
TMON’s seven breakpoints, and enter the appropriate address into the breakpoint line. Not only will the
breakpoint window show the address of the breakpoint, but an asterisk (“*”) will appear next to the
breakpointed instruction in the disassembly window to indicate that execution of the program will stop at
that point due to a breakpoint being set there.

TMON is a multi-window debugger. The Macintosh is a multi-window computer, so why not have a multi-
window debugger? The same thoughts that went into making the Macintosh itself easier to use went into
making TMON easier to use. TMON can have several windows open at one time, up to a maximum of
nineteen. Most TMON windows can be duplicated, i.e. there can be more than one of their type open at one
time. For example, you may wish to have two or three disassembly windows open showing disassemblies from
different addresses. This is fine with TMON. Once a window of a given type is open, to open any more you
must hold down Shift while opening the window. A window can be opened by clicking on the appropriate
button at the top of the screen or by holding down the “%™ key and typing the first letter of the button (e.g.
%A for an “Asmbly” window). There are four types of windows, however, for which multiple copies would
not make any sense. These are the breakpoints window (TMON has seven breakpoints, period), the registers
window (The 680x0 family of microprocessors has only 50 many registers, period), the options window
(options are global), and the user window (TMON can’only support one user area at a time).

TMON’s windows are a little different in appearance and operation from normal Macintosh windows. There is
a good reason for this. TMON, a debugger, must be as independent of the Macintosh operating system as it
possibly can. This means that it cannot expect the Macintosh operating system or toolbox to be in a reliable
state, because if some important aspect of the Macintosh operating system were to break under the weight of a
large bug, so would TMON! That would be intolerable. Therefore TMON implements its own windows,
handles the keyboard invisibly to the event manager, and so on. So bear with us if the somewhat strange
windows take some getting used to.

How are these windows different? Well, for starters, they cannot be resized in the horizontal direction—they
are always 512 pixels wide, like the classic Macintosh screen. For another thing, they can be dragged by
clicking just about anywhere, not just in the title bar (besides, TMON windows don’t even have an obvious
title bar). The TMON windows’ scroll bars have no “thumb” (the little white box between the arrows) and
no “gray area.” Actually, there are good technical reasons for the scroll bars being the way they are. The
upshot of not having thumbs or gray areas is that the window can be dragged by this area as well, with an
interesting difference from being dragged by other areas; dragging by the scroll bar will not bring that
window to the front.

TMON is a symbolic debugger. This means that you can refer to the code that you are debugging by whatever
you chose to call it when you created it (within certain limits). There are two ways that TMON can determine
what label to assign to a particular range of code: embedded labels and .MAP files.

Embedded labels are labels that are actually built-into the program in such a way as not to interfere with
program execution but to allow identification of particular subroutines in the program. (Specifically, they are
embedded immediately after the UNLK and RTS or JMP instructions that end a function or procedure.) These
labels will be a maximum of eight characters long. Some compilers have an option to include these labels.
This capability was first found in the Lisa Pascal compiler that most early Macintosh programs were written

9

TMON

with. Several other development systems created since then, such as Apple’s popular Macintosh Programmer’s
Workshop, support this option as well.

TMON will also read .MAP files which have been generated by the MDS and Consulair Mac C systems, as
well as .MAP files created by some other development systems, such as TML Pascal. This also provides names
for procedures and functions, with an added bonus that embedded labels don’t share; since the .MAP file is
generated by the linker, it contains labels for the libraries that the compiler uses, whereas these labels are not
embedded in the code.

Regardless of how the labels are stored, they can be used in any expression evaluation function anywhere in the
system (expressions in TMON will be explained in detail when we discuss the Number window). For
example, it is common, when programming the Macintosh in a high level language like Pascal, to have a
procedure which is capable of dealing with a long integer, half of which is a menu ID and half of which is a
menu item ID. If expressed in this fashion, this routine can be used either as a menu handler or a % key
equivalent handler. If the procedure is called DoCommand, and the label has been entered into TMON either
by being embedded after DoCommand’s code, by being read in from a .MAP file, or by being manually entered,
then it is perfectly valid to think the following:

Since menus tend to be a central part of any Macintosh application, it might prove useful to set a breakpoint at
the point at which menu handling begins. Ideally, this breakpoint will also catch the use of 38 key equivalents,
although this may or may not be the case; it’s application dependent (if you used something like DoCommand,
it will be the case). Normally what you would have to do is:

1. Enter the application.
2. Enter TMON by holding down Option and pressing the interrupt button.
3. Find the code that looked like the DoCommand code.
4. Open the breakpoint window.
5. Type in the hexadecimal address of the beginning of DoCommand.
With the symbolic nature of TMON, though, it’s much simpler:

1. Enter the application.

2, Enter TMON by holding down Option and pressing the interrupt button.
3. Open the breakpoint window.

4, Type in "DoCommand" with the quotes.

Both of these will set the same breakpoint, but one requires that you go searching your code for the
appropriate address. Not only that, it assumes that you can tell what your source compiled to.

B You can use a label anywhere an expression is being evaluated. Breakpoint setting, disassemblies,
dumps, the number window—all are candidates for having a label typed in to them. Anywhere you can
use an address, you can use a label. Be sure to type in the quotes so that TMON knows that you’re
referring to a label.

Just to make sure that it worked, you may wish to do something that will invoke a menu function (select
something from a menu or press a 3 key equivalent). Once the choice has been made, control will pass to
DoCommand to deal with it, at which point the breakpoint that you set will drop you into TMON, from
whence you can do great things, like single step, trace, etc. to see what’s going on. Neat, huh?

TMON was designed with features that had never been available with any Macintosh debugger. One example
of this is the “trap discipline” function. The concept of trap discipline first appeared as a standalone
application written by Steve Capps, a member of the original Macintosh team at Apple and one of the authors
of the Finder. This application checked some of the more arcane parameters of some of the more arcane traps
and reported things that it found out of line. Darin Adler took this concept, expanded it to cover virtually all
parameters of virtually all traps, and gave it two strengths—lenient and strict—to make it easier to determine
whether a parameter was way out of the realm of the real or whether it was just questionable. Using
discipline, it is possible to catch many errors before they happen—passing a NIL handle to TEIdle, for
example. It is features like trap discipline that set TMON apart from any other Macintosh debugger currently
available.

10

User's Guide

Installing, Entering, and Leaving TMON

Well, here it is: the portion of the manual that you’ve been waiting for. Hopefully now you have some idea as
to what using a debugger is all about, and you also have an acquaintance with what TMON is and how it
differs from other Macintosh debuggers.

Now it’s time to take a look at TMON in more detail. We'll explain how you install it, how you can get into
it, and how you can get out of it. In the sections following this one we’ll explain each function.

Loading TMON

The first thing that you have to know is how to get TMON into your system. TMON is provided on a 400K
floppy disk that is not copy protected. One upshot of this is that TMON can easily be copied to wherever you
need it; another upshot is that TMON can easily be pirated. Please respect our not giving you a copy protection
hassle by not giving us a lack-of-income hassle.-

TMON can be loaded two ways. For occasional use, it can be started as an application. This is described below.
For day-to-day use, it is best to put the TMON application, along with a file called “TMON Startup”
(mcludedonthe'lMONdisk).inyouuymfolder msisdescribedinmotedetanin'l‘he Startup Loader
section of the Technical Reference.

'IheTMONapplluﬁonis.byalloutwmdappems,awmal Macintosh application. It is executed by
clicking on TMON and choosing “Open” from the “File” menu or by double-clicking on the file. The TMON
application will be loaded. If Option, %, Shift, or the mouse button are being held down, or if any
combination of these are held down, TMON will display this dialog box:

TMON version 2.8
Written by
Illald:mar Horwat.

©1987 1COM Simulations, Inc.
648 S. Wheeling Rd.

Wheeling, IL 60090
(312) 520-4440

This dialog is “command central,” if you will, for TMON. It allows you to configure TMON to your liking
(Configure), enter the Monitor (Monitor), enter the Monitor after choosing a particular user area
(Monitor...), Transfer to another program (Transfer), or quit to the Finder (Quit). TMON comes from us
configured to what we hope is a useful set of default conditions. You can, however, change them and save them
as your customized user area file.

If you do not hold the keys or mouse button down, TMON will look in the current directory (the disk that
contains TMON for MFS users; the folder that contains TMON for HFS users) for a file called “User Area.”
If it finds one, it will try to load it as the default user area. If there is no file called “User Area” available
to TMON, it will use the user area that is built-in.

The user area is the customizable portion of TMON; it can be written or rewritten by you or some other third
party as needed. One of the things that the user area can be configured to do is force TMON to quit to the
Finder immediately upon loading. This is so that TMON can be made the startup application and be made to
install itself without any intervention on your part; this is also why it is sometimes necessary to hold down
the Option or % key or the mouse button in order to see the main dialog.

1

TMON

Probably the most commonly used function on this dialog is the “Monitor” function. Clicking on this button
will cause the debugger to be installed along with the appropriate user area. Once the debugger has been
installed, control will pass to the debugger. We’ll explain how the debugger looks in a moment.

The “Monitor...” button is for power debugger-users who use more than one user area. If you click on it, the
Standard Get File dialog will come up and allow you to select which user area file you wish to load when the
debugger is installed. That user area will then be installed with the debugger, and control will pass to the
debugger just as it does if you choose “Monitor.”

The “Transfer” button was originally intended to allow 128K Macintosh users to load TMON and then
transfer to another application, since on 128K Macintoshes there were many circumstances under which TMON
would take up too much memory to allow the Finder to run! We’ve left the “Transfer” button in as a
convenience; if you click on it, a Standard Get File dialog appears which allows you to choose the application.
Note that the TMON “Transfer” function does not switch to the System file on the new volume (assuming
that the volume is different and contains a System file).

Clicking on the “Quit” button will return you to the Finder. A great deal of debate was involved in the
decision as to whether to include this feature or not (just kidding, folks, just kidding)!

The “Configure” function takes you into another section of the program that deals with all of the things
about the debugger that can be easily changed. In the dialog box shown above, the “Configure” button has been
disabled. This is because the debugger hasn’t even been loaded yet, and the program doesn’t know which user
area file to change this information in (remember, the things about TMON that can be changed are stored in
the user area file). For detailed information on how to load the debugger, read the “Getting Into TMON”
section. When the debugger has been loaded, this button will become enabled. When you click on this button,
an empty screen with a menu bar appears.

Configuration

& File £dit Options

The configuration menu bar consists of four menus. The first three are the ones that Apple says should be in
every Macintosh application (and we try to follow the rules as much as possible—that’s why these menus are
there). They are the Apple menu, the File menu, the Edit menu, and the Options menu.

The Apple menu contains the desk accessories that you have installed in your System. They are there so that
you can use them if you need them (you may wish to note your configuration for a particular user area in the
Note Pad desk accessory, for example).

The File menu contains two items: Save User Area and Quit. Save User Area allows you to save your
configured user area on disk. Quit returns you to the main dialog. Here’s what the menu looks like:

& £dit Options
Save User fArea...

Quit 80

4

'The Edit menu is there for the sake of the desk accessories. It won’t even become enabled unless you open a
desk accessory.

12

User’s Guide

The Options menu is the one that allows you to define how you wish TMON to work. Let’s look at it now:

&€ File €dit

Communications...
Vector Refresh...
UBL Tasks...
Loading Position...
Auto-Quit...

Monitor Size... %Mj

The Options menu has seven user-configurable items. The first is the communications settings.

Baud Rate (300 Q1200 02400 (4800 @& 9600

Connection @ Printer Port O Phone Port
Handshake O HOn/HOff @CTS O None

The purpose of the communications dialog is to allow you to define how TMON will communicate with a
device that is connected to one of the Macintosh’s serial ports. Most of the time this device will be a printer.
The dialog above shows the default values, which are fine in many cases,.and are correct for the ImageWriter
and ImageWriter II. When you use any of the printing features of TMON, it will attempt to send its output
to the port specified by this dialog, using the baud rate and handshaking protocol specified here as well.

Vector Refresh is the next option. Its dialog looks like this:

This option controls the refreshing of interrupt vectors.
If you pick “refresh”, the monitor will re-load the
interrupt vectors every time it is entered. For normal
use, pick “refresh”.

@® Refresh
O Don't refresh Lok] [cancel]

The 680x0 family of microprocessors has several locations in low RAM (called vectors) which are used to
define the behavior of the system under certain conditions. Debuggers store addresses of their internal routines
in these vectors so that they have control of the system if some special circumstance arises. TMON in
particular not only puts addresses there when it is loaded, it also puts its values there every time the Monitor
is entered. This is so that, in the event of a crash of some kind, the debugger’s values will be in the correct °
locations if the debugger can be entered at all. Some programs store values in these vectors and will not work
properly unless these values are allowed to stay. For this reason, you can tell TMON not to refresh those

vectors every time it is entered. The default is not to refresh the vectors, since a few popular applications (e.g.
MacWrite) use them.

13

TMON

The next item is one that allows you to define whether vertical blanking (VBL) tasks are left running while
TMON is active or not. Previous versions of TMON left VBL tasks running, which proved useful in getting
screen snapshots from within TMON but left a great deal to be desired for those who were trying to debug
things that depended upon VBL tasks (it’s historically been very tough to debug things while they’re running).
In particular, AppleTalk development with TMON while VBL tasks are running can be a challenge. Also,
some VBL tasks expect not to be in a monitor, or use too much stack space (TMON doesn’t offer very much).
Such VBL tasks can cause system-crashing damage if left running while TMON is active, In order to provide
the user with a choice of whether to leave VBL tasks running or not, we have provided the following dialog:

Choose “Suspend UBLs” to have the Monitor
automatically suspend vertical blanking queue tasks
while it Iis active. This prevents them from crashing the
Monitor or overflowing its stack. Select “Leave UBLs

running” If you must leave them running.

@® Suspend IBLs]
O Leave UBLs running

[ok] [cancel)

Next is Loading Position. This allows you to choose whether you want the debugger to live in the system heap
or in high RAM. Its dialog looks like this:

You have a choice of places to load the Monitor.
Loading into high memory is more common, but
prevents use of alternate screen and sound buffers on
Macintosh 512K, 512Ke, Plus and SE. Loading into the
system heap causes problems with a few programs.

® High memory
O System heap Lok

[cancel]

As the dialog indicates, it is more common to load the debugger into high RAM than it is to load it into the
system heap, although each has its advantages and disadvantages. Loading into high RAM causes the alternate
screen and sound buffers to become unavailable, and loading into the system heap causes some applications to
malfunction. Specifically, applications which use _SetTrapAddress to change a ROM trap to point to the
application heap zone will fail if running on a 64K ROM machine with TMON installed in the system heap
zone. The reason is that on 64K ROM machines trap addresses had to be within 32K of either the beginning of
ROM er the beginning of the system heap zone, depending upon whether they were in ROM or RAM.
Installing a routine in the application heap zone may or may not have worked—it was dependent upon whether
the address was within 32K of the beginning of the system heap zone or not. With TMON installed in the
system heap zone, the application heap zone is never within 32K of the beginning of the system heap zone, and
the faulty application would fail miserably and mysteriously. Note that since 64K ROM machines are
becoming so scarce, this is generally not a problem anymore, and it seems preferable to have TMON installed
in the system heap zone so that the alternate screen and sound buffers are available to applications which wish
to use them. .

14

User's Guide

The last option that changes the way in which TMON works is Auto-Quit. Auto-Quit allows you to define
whether TMON goes to the main dialog when it is loaded, or whether TMON simply installs itself and
immediately goes back to the Finder. The default is to auto-quit so that TMON can be the startup application
on your disk and be loaded every time you boot your system without any intervention on your part. The dialog
for this option looks like this:

You may, if you wish, have TMON automatically esit to
the Finder when first started. If you want later to
override this feature (to use Configure, for example),
hold down Option, Shift, %, or the mouse button after

the screen clears during booting.

@® Auto-quit
O Don't auto-quit

t 0K] [cancel]

1 said that the Auto-Quit option was the last one that allowed you to change TMON's configuration, and it is.
The last item on the menu, Monitor Size, is an informative one rather than one that causes a change. Monitor
Size provides information regarding the amount of space that the debugger currently takes up; that is, it shows
the information before any changes are made (to see the effects of your changes on the size of the debugger,
save your changes to a user area file, restart your system, load TMON with your customized user area, and
then use Monitor Size). Here is an example of what Monitor Size shows:

The Monitor's memory usage Is as follows:
19400 bytes for the Monitor code.
6336 bytes for AOCO trap name routines.
1280 bytes for Monitor's variables and local stack.

30208 bytes for the User Area (physical size).
21908 bytes for the saved screen and cursor.

79132 bytes total. '

Now you know all about what lies beneath that “Configure” button on the main dialog. Note once again that
this button will not be enabled unless the debugger has already been loaded into memory (which means that
TMON knows what user area to modify with your configuration).

Remember that once you have made your changes you must use the Save User Area option in the File menu to
save your configured user area to disk!

Getting Into TMON

Now that you know how to configure the debugger, it’s time to talk about the “Monitor” and “Monitor...”
buttons, as well as system errors and the interrupt button on the programmer’s switch. First let’s talk about
the “Monitor” button. Actually, we should talk about the “Monitor...” button first, or at least at the same
time as “Monitor” since they both do the same thing with only one difference. “Monitor...” brings up a
Standard Get File dialog and allows you to choose a user area file to use when the debugger is installed.
“Monitor,” on the other hand, simply installs the debugger according to the configuration stored in the file
called “fyser Area” (if TMON found one) or according to the built-in default user area (if there is no “User
Area” file).

TMON

In any case, when you click on either “Monitor” or “Monitor...” the display will look something like this:

Dump Asmbly Brkpts Regs Heap File Exit GoSub Step Trace Num User Options Print
Welcome 4o Monitor version 2.8
Written by Waldemar Horuat. .

Initially, this is all that you see from TMON: a “button bar” (we’ll talk more about that later) and a
window indicating what version of TMON you are using and mentioning the fact that Waldemar Horwat
wrote it (yes, Waldemar Horwat does exist).

Note that once TMON has been initialized in this fashion or installed automatically, there are a few ways that
it can be entered. One is by causing any error that would normally result in a “Dire Straits” box. Another is
by pressing the interrupt button on the programmer’s switch that Apple told you to install only if you were
a developer. Still another is to put a _Debugger trap at a point in your program at which you want to enter
TMON. Entering TMON due to a “Dire Straits” error will present you with diagnostics relating to the error;
entering by pressing interrupt will present you with a message to the effect that an interrupt has occurred.
There are variations on the interrupt method that I will discuss later.

‘Getting Out of TMON

Terrific. You can load the debugger, configure it, and get into it in one of basically five ways (“Monitor,”
“Monitor...,” a system error, interrupt, or a _Debugger trap). Once you're in it, how do you get out of it?
And how do you get rid of it completely?

To leave the debugger and go on about your business, click on the “Exit” button from the button bar or press
%, hold it down, and press the “E” key (for Exit). TMON will put you back wherever you were when you
entered TMON (assuming that you haven’t done anything to change TMON’s perception of where you were.
We’ll talk more about that later).

The only way to get rid of the debugger completely is to re-boot your machine and not let it load TMON.
Once TMON has been installed, nothing short of re-booting will get rid of it.

16

User's Guide

The Monitor Environment

This section describes the Monitor. The Monitor is the part of TMON that is installed into the machine. The
Monitor has its own user interface, with a button bar, windows, and special conventions for user input.

The heart and soul of the Macintosh is its user interface. The Macintosh embodies user interface concepts that
were avant garde at the time that they, were created—in the early 1970s. At the time, though, the hardware to
do the things imagined at Xerox PARC (Palo Alto Research Center) took up entire tables, not one and one
half square feet of desktop. Since hardware has improved in price vs. performance since then, examples of the
PARC-style user interface are becoming more common.

TMON, as was mentioned above, follows the Macintosh user interface guidelines fairly closely, although it
can’t follow them completely. If a debugger is to be able to go anywhere, including wandering around in the
operating system, it needs to be as independent of that operating system as it possibly can—particularly if the
operating system is not re-entrant, i.e. was not written with the idea of having portions of it being executed
by more than one process at a time. Since TMON had to implement its own versions of things like windows,
it seems like a good idea to explain these things briefly.

The Button Bar

The button bar lies at the top of the screen, where the menu bar normally lies for Macintosh applications.
When you click the mouse on one of these, instead of pulling down a menu, it performs a particular function.
Many of these buttons open a window. Some of them perform some specific action that doesn’t require a
window. We’ll look at the features: of each button a bit later, but not necessarily in left-to-right order across
the button bar. K

“The Windowing System

As was mentioned earlier, TMON’s windows are a bit different from what you’re used to on the Macintosh.
Let’s look at a typical TMON window and see how it differs from what you’d expect:

DUMP FROM 900000
80 F8 60 @0 FF FF FF FF 00 OE 03 DE ©0 OE 00 90
90 90 03 E2 00 OE 03 E4 00 OE 03 E6 ©8 OE 03 E8
90 OE 03 EA 00 OE 03 EC 00 OE 83 48 00 OE 03 EE
90 OE 03 FO 00 OE 03 FO ©0 OE 83 FO ©0 OE 03 FO
90 OE B3 FO ©0 OE 03 FO ©0 OE 03 FO ©0 OE 03 F@
00 OE 63 FO ©0 OE ©3 FO ©0 OE 03 FO 00 OE 03 Fo
90 OE 03 FO 00 60 71 8A 00 40 1A 84 ©0 40 1A B4
90 OE B3 F2 00 OE 03 F4 00 OE 03 F6 ©0 BE 03 F8
90 OE 83 FA 00 OE 93 FC ©0 OE 03 FE 00 OE 04 B9
00 OE B4 02 00 OE 04 04 ©0 OE 04 06 0O OE 04 08
00 OE B4 BA 00 OE 04 OC 00 OE 04 OE ©0 OE 04 18
90 OE 04 12 00 OE 04 14 00 OE 04 16 ©0 OE 04 18
90 PE 03 F@ 00 OE 03 F@ ©0 OE 03 FO ©0 BE 03 FO
00 OE 93 FO 00 OE 03 FO 00 OE 03 FO 00 GE 03 FO
91 OE 03 FO ©0 OE 03 F@ 00 OE 03 FO ©0 40 11 3C
90 40 11 3C ©0 40 11 3C ©0 02 14 9C ©0 8D D7 4E
FF FF 00 48 00 48 00 40 08 10 00 08 08 @D D7 4E
90 0O 0O B0 0O ©D 42 46 ©00 O1 14 60 00 88 16 DA
20 40 17 E@ FF FF FF FF FF FF FF FF 00 80 00 00

This, obviously, is a dump window. It was created either by clicking on the “Dump” button on the button bar
or by holding down the 3 key and pressing the “D” key.

At the top of the window it says “DUMP FROM" followed by, in this case, an address which happens to be
000000. This is as close as TMON windows get to having a title bar. Don’t be fooled by my calling it a title
bar, though; its purpose isn’t the same as a normal Macintosh window’s title bar’s. There’s nothing that says
that you have to drag a dump window by its title bar; you can drag it by practically anything. Specifically,
TMON windows can be dragged by their title bars, their contents, or the area in the scroll bar between the
arrows. The places that dragging will not work are in the close box, the grow box, and the arrowheads. As an
added bonus to all of this, dragging a window by the scroll bar area will not bring the window to the front.
This makes it easy to reorganize without disrupting your active window.

17

TMON

Speaking of active windows, TMON windows do not have the normal hilighted/unhilighted appearance that the
Macintosh normally uses to indicate which window is active and which are not. Instead, any given TMON
window may have a vertical blinking bar. Whichever window has the bar is the active window; all others are
inactive. By the way, all that “active” means in the context of TMON is that when you type, the information
will be put wherever the blinking bar is in that window (assuming that that is possible—typing ASCII that
contains invalid hexadecimal characters when the blinking bar is in the hexadecimal portion of the dump
window will accomplish nothing). However, just because you can’t type in the inactive windows, don’t assume
that they’re sitting there doing nothing! A/l TMON windows have their contents updated continually so that
as the state of the system changes the windows are updated to reflect that change.

Almost all TMON windows have a close box. The exception to this rule is the special message window which
occasionally appears near the top of the screen. It has no close box; instead it disappears upon the first mouse
click or key press after it appears. Special messages are things like the welcoming message when you first enter
TMON or notifications of what system error caused TMON to be entered. Clicking on the close box makes
the window disappear, just as you would expect.

Another common element of most TMON windows is the grow box. It too behaves as you would expect,
with one crucial difference: TMON windows are always the width of the original Macintosh’s 9" built-in
screen. In other words, TMON windows can only be resized vertically, not horizontally. Since information in
TMON is laid out in a more-or-less linear fashion (i.e. line by line), it makes sense to control the number of
lines displayed, but not as much sense to control how much of each line is displayed.

Typing

A couple of paragraphs ago, I mentioned typing information into TMON. In general, anytime there’s a
blinking vertical bar in a TMON window, you can type some kind of information there. It’s up to the window
to decide whether or not what you’re typing makes any sense (invalid hex digits in a hex dump do not). Two
things that hold true regardless of what window you're typing in. The line that the blinking bar is on is not
continually updated along with the rest of the window (in order to prevent what you’re editing from changing
on you on the fly), and if you end your input by pressing Return, TMON will only change the data from the
beginning of the line to wherever the cursor was when you pressed Return. whereas if you press the Enter key
TMON will accept the entire field from beginning to end.

B This one is important! Reread what I just said. Anytime TMON is taking keyboard input, you can
press Return if you want TMON to take everything before the cursor, or you can press Enter if you
want TMON to take everything in the field, including what comes after the cursor. This capability ig
quite useful, and specific circumstances where it is useful will be explained as we get to them.

To position the cursor at the uppermost and leftmost position of the window, just press the Tab key. To
delete a typed character use the Backspace (or Delete) key. Also, if you are typing something and wish to
cancel the entire line’s changes, just click the mouse on another line without pressmg Return or Enter. The
changes that you had typed will be ignored.

If you’re using a numeric keypad, a Macintosh Plus keyboard, or a keyboard on any machine more recent than
the Macintosh Plus, you have a few other options as well. The left and right arrow keys will move the
blinking vertical bar left and right, and the clear key will clear the entire line.

18

User’'s Guide

Basic Features
Let’s take a look at some of the most common and most useful TMON functions.

Assembly

This feature is simultaneously one of the most basic (in the sense that it’s something that’s frequently used and
should be a part of any debugger) and the most complex (in the sense that some of its capabilities are not obvious
and are rather sophisticated). Let’s take a look at one possible “Asmbly” window.

Dump Asmbly Brkpis Reg ap File Exit GoSub Step Trace HNum User Options Print

KRR PR
ROVED CATot
B CAP+,02
MOVEA.L <A7)+,A0
MOVEA.L <A7)+,A1

W #2,A7
MOVE.B $0POECA1),D8

1DC:S @0 OC 12 A6 FFFF S3 76 00 02 DF 70 00 OC 12 A6
OC11EC: FFFF RO 00 06 CC 00 00 00 00 00 00 00 00 00 08
OC11FC: 00 00 00 20 NWOON 00 80 00 F8 8000%&7
[0 REGISTERS PC=00020DE16 SR='4.5,.000,..xnzvc' _ USP=FFFF7FFE
(4 2 -3 4 3 6 7
DATA 00000006

SDP6R17A AGGOOC00 00000000 00000208 00000000 00R00e00
[RDOR 00031108 00000000 ©0OC12A6 008C140A 80835576 008C207e @eec1216 00001100

Actually, I told a little white lie. This is obviously a dump of a whole screen, not just the “Asmbly” window. The
“Asmbly” window is the one that says “DISASSEMBLY FROM 000000(PC)” at the top. It’s been sized to show
six instructions and moved next to a dump window.

There are several notable things about the “Asmbly” window. First of all, instead of being a disassembly ﬁ'om some
ubmaryaddress,msadmssemblyfromOOOOOO(PC) or whatever the current PC value is plus zero. This
capability is called “anchoring,” because it “anchors” the window to a particular register so that whenever the PC
changes, the disassembly window will automatically change to reflect the new disassembly range. There’s nothing
magical about this; to do this with a newly opened “Asmbly” window (which initially disassembles from address
zero), you just click on the address given and type “(PC)” without the quotes. Since you didn’t specify an offset,
TMON will assume that you meant “000000(PC)” and update the “Asmbly” window accordingly. Note that you can
anchor any dump or disassembly window to any register except SR, not just to the PC.

Speaking of registers, now is probably a good time to mention a crucial fact about registers in TMON. There are
times when TMON expects you to refer to a register, and there are time when TMON expects a value. TMON is
typeless; it can’t tell the difference between a register and a value on its own, especially since the names of the
680x0datam1daddr&ssreg1stersareallvahdhexadeclmalvalues (D0-D7 and A0-A7). There are times when it
becomes necessary to be able to avoid ambiguity. This is one reason that you can refer specifically to a register by
prefixing its name with an “R,” e.g. RDO0, RAS, and so on.

19

TMON

Prefixing a register name with an “R” causes the register to be treated as a value, and the value is whatever
the register contains at the time. The best way to see this is to open the “Num” window by clicking on the
“Num” button in the button bar or by pressing 38N. Try typing in things like D0, A3, and so on. Now try
typing RDO, RA3, and so on. You may want to open the “Regs” window to see why the “Num” window
shows the numbers that it does when you use the “R.”

The next thing that I should point out is the column of addresses along the left side of the window. Those are
the absolute addresses of the first byte of each disassembled instruction. In other words, the address for the
first line is the current value of the PC (and if you look at the bottom window, which is the “Regs” window,
you’ll see that the value of the PC there is the same as the address in the “Asmbly” window, but we’re
getting ahead of ourselves by looking at the “Regs” window).

Note the “P” next to the first address. That “P” stands for “PC,” and it’s just a way that TMON has of let-
ting you know that that’s what the current value of the PC is. Of course, since this particular disassembly
window is anchored to the PC, that “P” will always be by the first address.

In the next column are the labels for the instructions in this procedure or function. As I mentioned before,
these labels can be built into the code or read in from a .MAP file. They can also be manually entered, al-
though this is not often done. If no labels have been built-in, read in, or manually entered, TMON will allow
you to refer to a piece of code by its resource type (“CODE,” in this case), its resource ID (“0001”), and some
offset from the beginning of the resource. In general, it is desirable to have some non-absolute way of
referring to Macintosh code, since Macintosh code has to be position independent due to the way the Macintosh
memory manager works.

The next column contains the disassembly of the instruction. If the disassembler fails to recognize a particular
byte pattern as an 68000 instruction, it will display “??2?” as the mnemonic for the instruction. If it
encounters a ROM trap that it doesn’t recognize, it will say “ROM?” followed by the hex value of the op-

code. ROM traps which TMON does recognize are disassembled by name if you have configured TMON to do
50.

The last column may have the label (with an offset, if necessary) which is used to refer to one or the other of
the operands for the instruction. This way, when you see a reference to an address you’ll know the name of the
location. Here’s what that looks like:

DISASSEMBLY FROM 48F5A0 s
4 i 1_Launch+8844 MOUE.N <(A3)+,$0336 e "+0000
s 1_Launch+@848 LER $0910,A1 e "+0000
40F5A8: 1_Launch+0@4C MOVEQ #$20,0D0
40FSAA: 1 _Launch+BB4E _BlockMove
40FSAC: |_Launch+905@8 MOVE.W $0909,D0 3 "CurfipRef™
40F5BO: |_Launch+8054 BLE.S ~$40FS5BA 3 | _Launch+

That takes care of the visible aspects of the “Asmbly” window, but there are a couple more things that need
to be mentioned. First of all is that the scroll bar does work, and works fairly well in both directions. When
you try to scroll an “Asmbly” window backwards, TMON guesses how long the previous instruction is.
Occasionally TMON will misinterpret and get out of sync. Just keep going and TMON will get back in ‘sync
sooner or later. As an alternative, you can press the Tab key to get the cursor to the address line and press
Return, That will advance the address by two bytes, forcing TMON to disassemble from that address.
Continye this until you’re back in sync.

Another invisible aspect of the “Asmbly” window is that it is, indeed, an assembly window! Not only does it
disassemble what’s at a particular address, it allows you to type in a new instruction which replaces the old
one in RAM. Just position the cursor over the instruction to be replaced and type in the new instruction (using
spaces between fields rather than tabs). This can be quite useful for applying quickie patches to a program
during debugging (just make sure that any patches that solve a problem get implemented in the source code
sooner or later)!

20

User's Guide

Registers

The “Registers” window allows you to view and change the contents of any of the 68000 microprocessor’s
registers. It can be opened either by clicking on the “Regs” button in the button bar or by holding down the
“%” key and pressing the “R” key. The window looks like this:

[m] REEIS;ES N P0'60015.3. 24 SR:'&.S..WB-s..xnzvc' 6 USP-47FF§60€
DATA 00000008 0000001 FFFFOM 00000000 Q0000000 00000008 ©00818C22 80018F4C
ADDR 828C4C16

80008300 ©0018AB8 0BOC48AC 0VOV1BABB 0OBC4C1A ©OOC4830 0BBC47F8

This window shows the 68000 registers at a glance. The PC is the first register shown, and its field is where
the cursor goes when it goes to the “top” of the window, i.e. when you press the Tab key the cursor will be
posiﬂmedbeﬁmetheﬁmdlgitofﬂxePCvalue. making it easy to change the PC.

The Status nogim is shown next. Since the Status Register is normally interpreted on a bit-by-bit basis,
most of the bits have been given mnemonic character names in order to make their meaning more clear. The
Status Register s displayed as a string of characters for that reason. If a character is lowercase, it means that
the flag is reset: I the character is uppercase, it means that the flag is set. Periods mean “don’t care” or
“unused.” There are three bits shown which are the exception to the character rule; in the example shown
above they are all zeroes. This is the interrupt mask for the 68000. It holds the current interrupt level for the
processor. Ay lmglmpts with a priority less than this binary value (zero, in the example) will be ignored.
Sincemekvelmﬂagxamphiszuo,aumtemptswxllbehandled

In the example Status Register above, the trace bit is off, meaning that the processor will not generate a trace
exception after each instruction; the supervisor bit is on, since historically the Macintosh has always run in
supervisor mode; and all of the arithmetic flags (extend, negative, zero, overflow, carry) are off.

Next is the USP, or User Stack Pointer (as opposed to the Supervisor Stack Pointer, or SSP, which is shown in
the window as “A7"). Although the Macintosh has historically functioned in supervisor mode, and the
operating system software expected to be in supervisor mode, some applications may wish to enter user mode
briefly, or futuré operating systems may work in user mode. If they do, the stack pointers will be swapped, so
it is useful to be able to.see the USP.

The remaining two rows in the window are the 68000’s general purpose registers. They are divided into the
eight data registers and the eight address registers. Note again that A7 is synonymous with the current stack
pointer.

In the event that you need to change the contents of any of the registers, you may click somewhere within the
value shown and enter any valid hex expression and press Return. The value will be assigned to the register.
Note that this should only be done if you are certain that the register should be changed.

‘Breakpoints

Breaprmts are another feature that you will find in just about every debugger that’s of any value. A break-
point is something that you can put in your program so that when the computer tries to execute the instruction
at that location, it passes control to the debugger. When it has done that, you can use the debugger to make
sure that everything is in order. Breakpoints are a very useful tool.

TMON has one breakpoints window that can be opened by clicking on the “Brkpts™ button on the button bar
or by holding down the % key and pressing the “B” key. It looks like this:

| 0 BREARKPOINTS 1

»)
(7]
Ly

5 6 7 I

21

TMON

The breakpoints window allows you to set up to seven breakpoints in your code. To set a breakpoint, click on
the dotted line and enter something that evaluates to an address (it can be an absolute address, a label, or some
other expression), and press Return. Note that multiple breakpoints can be set if the addresses are separated by
a space. Here is what this looks like:

" [0 BREAKPOINTS _ 1 z 3 r 7
*"DoCommand” “"MainEvent®

In the above example, the user is setting two breakpoints, one at the address with the label “DoCommand”
;ndtheotherattheaddresswnhthelabel anEvent.”Notethatthelabelsaremquotesandaresepamted
y a space.
Once your breakpoints have been set, you may exit TMON by clicking ontheExitbuttonin the button bar or
by holding down the 3 key and pressing the “E” key. When the program encounters a breakpoint, TMON will
be entered with the PC value equal to the address that you set the breakpoint at. At that point you can
examine or change values in registers, the heap, low memory, etc. Note that the instruction at the breakpoint
has not yet been executed. Also note that in any open “Asmbly” windows that show the

instruction, an asterisk (“*”) will appear immediately to the right of the address of the insmxction.‘l‘his is so
that you can see breakpoints in disassemblies at a glance.

Breakpoints are cleared by entering a hyphen (“-”) in the line with the address for that breakpoint. If you have
more than one breakpoint set, you can clear any individual breakpoint by clicking at the beginning of its address
and typing the hyphen, then pressing Return. As with setting multiple breakpoints, you can clear multiple
breakpoints by separating hyphens with a space.

(2]
O

Dump

The ability to view displays of arbitrary areas of memory so that you can see or change what they contain is
also a very basic debugger feature. To open a dump window, click on the “Dump” button in the button bar or
hold down the 38 key and press the “D” key. A dump window looks something like this:

DUMP FROM 800008(A7)
0 S ©0 0D CB Co FF FF 00 68 00 0D 000008 B....
80CB1C: 96 01 53 A8 00 00 60 20 00 00 00 00 20 [- S
8DCB2C: 00 B0 00 PO 00 0O 00 00 00 00 FBBA OO eeeenes

This is a small dump window; in fact this window is as small as TMON windows get (three lines of data).
Dump windows show-a combination of hexadecimal and ASCII data, with the hex on the left and the ASCII
on the right. Note again that you can click on the line with the “000000(A7)” and type in any expression,
including labels or addresses, or you can anchor the dump to a register so that every time the register changes
the dump will follow suit. (In this example the dump is anchored to the stack pointer; this window will
always show a dump of the top $30 bytes of the stack.)

A word about dumping application globals is in order. Application globals have negative offsets from the AS
regxswr. and are usually accessed with the 680x0’s register indirect with displacement addressing mode, in
case the displacement is a four digit hexadecimal value. However, due to the way TMON handle the
bit, when using the dump window to look at globals the displacement must be expressed with the sign
hu carried out to the 24th bit, e.g. FFFC42(A5) instead of the incorrectly interpreted FC42(AS).

“Making changes in a dump window works much the same way as making changes in an assembly window. You
‘can click anywhere within either the hex data or ASCII data and type in your changes. All of the normal rules
of TMON user input apply. In addition, the dump window is smart enough not to allow you to type invalid
hex data in the hex portion of the window (although you can enter any expression that evaluates to a
hexadecimal value). Also be aware that the cursor does not automatically wrap around at the end of the
line—you must expllcltly press Return or Enter. Normally when you type ASCII in TMON it is converted
to uppercase, but this is not true in the ASCII portion of the dump window—it is case sensitive.

388
g8
888

User's Guide

Print

Actually, there are two sides to the printing coin. One is the “Print” button on the button bar. Clicking on it,
or holding down the 3 key and pressing the “P™ key, will cause the contents of the active window to be sent
to whatever port using whatever protocol you chose in the configuration of TMON. Normally this means that
the window will be printed on your ImageWriter printer (note that TMON, due to its nature, doesn’t print to
a LaserWriter via the AppleTalk network).

The flip side of this coin arises when you want a printout of a particularly long dump, disassembly, heap
analysis, or resource file listing. Then you need to use the “Print” function from the user area. To do this,
first click on the “User” button in the button bar, or hold down the 38 key and press the “U” key. You
should see something like this:

[0 USER area starts at $010BBE. FI Physical size is $7608; logical size is $7680
Toggle pages {memory functionsd:
Block move (src dst len):
Block compare €3 (adrl adr2 lend:
ELLL (80,28 SO0 it en g oz
1| te ali va on H
Template {WindowRecord)} (addr):
Stack addresses €3 Caddr): SP
Stack crauwl € Caddr):RAé
Load resource €3 C(type ID>:
Print Cdump) € 8> (bgn endd?

The “User” button brings up the closest thing to a menu that TMON has; it’s a window that contains nothing
but choices. This window is actually three pages, and the first line is how you get from one to the other. The
function is called “Toggle pages”. We don’t need to toggle pages at the moment, however, since the “Print”
option is on this window. It’s the last choice listed above.

You'll notice the word “dump” in curly braces after the word “Print.” Curly braces indicate a message that
will change under certain circumstances. In the case of “dump,” if you position the cursor after the colon on
that line and press Return or Enter without providing any parameters, the message will change. These are
your print options. In this case, the options are dump, disassembly, file, and heap. The error message also
changes,‘but only as a result of trying to print something. You cannot change it manually.

Items in parentheses are parameters to the function. You must enter these in order for the function to work.
These may also change as the nature of the function changes. For example, dumps and disassemblies require a
starting and ending address, whereas resource file content listings require a file reference number, and heap
analyses require a heap zone number.

To use the “Print” function, first position the blinking vertical bar after the colon on that line. Press Return
or Enter until the proper type of operation is listed in the braces. Supply the parameters asked for by typing
them after the colon, and press Return or Enter. That's all there is to it!

Step

The ability to execute a program literally one instruction at a time is another important basic feature of any
debugger, and TMON is, of course, no exception. Stepping through the program can be accomplished by either
clicking on the “Step” button in the button bar or by holding down the 3 key and pressing the “S” key.
Stepping through the program causes TMON to pass control back to the application being debugged for the
duration of one instruction. This way you can see the effect that any given instruction will have on the system.

Note that any windows open when you use Step will be updated to reflect whatever the instruction changes,
thanks to TMON’s constantly updated windows. So if you step through an instruction that changes some
memory location, and that location currently appears in a dump window, then the dump window will change
to reflect the new value in that memory location.

Actually, it is not quite true that stepping will execute one instruction at a time. If the instruction to be ex-
ecuted is a ROM trap, TMON will treat the trap as if it were a single instruction. In other words, using
“Step” will not allow you to go through the ROM routines one instruction at a time. However, another
function will allow you to do this. It’s called...

TMON

Trace

Trace behaves in exactly the same fashion as Step, except that when ROM traps are encountered, Trace will let
you step through the trap dispatcher and the ROM code itself. This is handy for seeing exactly what those
ROM routines are really doing to your program (Beyond Inside Macintosh, as it were). You can use Trace by
clicking on the “Trace” button in the button bar or by holding down the 3 key and pressing the “T” key.
Other than the handling of ROM traps, Trace is identical in all respects to Step.

‘GoSub

The GoSub function is identical to Step except that any JSR or BSR instructions are allowed to execute in-
divisibly. This is handy when you are debugging something and you encounter a JSR or BSR to a subroutine
that you are not interested in. You can simply GoSub and TMON will not regain control until the subroutine
has returned. You can use this function either by clicking on the “GoSub” button in the button bar or by
holding down the % key and pressing the “G” key.

Exit

The Exit function is one that has been touched on already, but the explanation of its purpose bears repeating. If
you click on the “Exit” button in the button bar or hold down the 3 key and press the “B” key, TMON will
relinquish control and let the 680x0 start executing code at wherever the PC currently points (hopefully
somewhere in a relatively bug-free environment). This is useful for letting an application execute in an all-out
fashion. (Well, almost all out; TMON still has its addresses stored in those low RAM vectors unless the
application has overwritten them and you told TMON not to refresh them.) The exit function is used when a)
the debugging session is over, or b) you have told TMON to regain control at a point that would take you
hours to Step or Trace to. A good example of this latter use is to execute the program in full gear until a
breakpoint that you've set is reached.

‘Block Move

Moving an arbitrary block of memory from one place to another is sometimes a usefuf *thing to do from
within a debugger. Among other things, it’s handy for copying values from one variable to another (assuming
that you can determine the addresses of the variables). Block Move is a user area function. It’s found in the
“memory functions” window. Click on the “User” button in the button bar or hold down the # key and press
the “U” key. The user area window will appear. If the first line (“Toggle pages™) under the title does not say
“{memory functions}”, click to the right of the colon on that line and press Return until it does. Just to
refresh your memory, here’s what the window should look like:

[0 USER area starss at $01DBBE. Physical size is $7680; logical size is $7600
Toggle pages {memory functionsd:
Block move (src dst lend:
Block compare {3 (adrl adr2 len):
Fill Cbgn end val Cvienl):
Find (byte aligned) €3 C(val CvLen Cbgn Cendl11d:
Template (WindowRecord) (addr):
Stack addresses €3 (addr):SP
Ssack craul € Caddr):RA6
Load resource O (type ID):
Primt Cdump) Cerror=0000) (bgn end):

You'll see that Block Move is the first function after the one that toggles the windows. You'll also see that
it is a simple function that takes three parameters: the source address, the destination address, and the number
of bytes to move. Type these three items after the colon on that line (click to the right of the colon to put the
cursor there), and press Return or Enter. That’s all it takes to move bytes from one place to another! Be sure
that you know what you are doing with this function; it’s basic, but powerful, and moving memory around at
random not only can crash your system, it probably will crash your system! Note that all of the rules about
entering addresses in TMON apply to user area functions as well (they can be any expression, including labels,
etc.).

24

User's Guide

‘Biock Compare

Block Compare is another user area function that compares two blocks of memory to ensure that they contain
the same values. It, too, is a user area function, and is in the same window as Block Move. It takes the same
three parameters as Block Move, namely a beginning address of the first block, a beginning address of the
second block, and a byte count. Initially the curly braces for the Block Compare function are empty. Any
mismatches will be reported there as “Mismatch at xxxxxx/yyyyyy,” where “xxxxxx” is the address of the
mismatch in the first block, and “yyyyyy” is the address of the mismatch in the second block.

il

The Fill function allows you to fill a block of memory with a particular value. This function takes four pa-
rameters: the beginning address of the block to fill, the ending address of the block, the value to fill with, and
the size of the value. The square brackets around the fourth parameter mean that it is optional. If it is not
specified, TMON will assume that it is only to use the least significant byte of the value to fill. Note that
the size can only be one through four bytes. This function is also very dangerous, so use it with extreme
caution! Like moving blocks to undefined areas, filling random memory blocks is a good way to crash a

system.

Find

Find does exactly what it sounds like. It searches for a particular value throughout a particular block of
memory, reporting any successful searches as it goes along. It is a user area function, and is in the “memory
functions” window just like Compare and Fill. It takes four parameters: the value to search for, the length of
the value, the beginning address to search from, and the ending address to search to. Note that all parameters
other than the value itself are optional, but also be aware that user area function parameters are positionally
dependent. In other words, if you want to specify a beginning address you must specify the length of the search
value, since that parameter comes before the beginning address. Note that the only valid lengths are one

. through four. If you press Return without entering any parameters, Find will toggle between doing its
searches on byte boundaries or word boundaries (word boundary searches are useful for finding 680x0
instructiong, since the 680x0 requires its instructions to lie on word boundaries. They're also useful for
finding things in data structures that you know are word aligned, such as heap blocks.)

If any matches are found, a message giving the address of the match will be displayed between the curly braces.
The address will also be assigned to TMON's pseudoregister, called “V.,”

= nis definitely worth talking about “V” now. “V” is a register that is set by many of the user area
functions that return values. The find function is one of them. This is so that when you have used a
user area function to determine a value you don’t have to type that value in whatever other portion of
TMON you are using—you can simply use V. For example, when you have found an address, you can
open a dump window and type “V” as the address to dump from. Or you can anchor a window to V
and watch your dump(s) and/or disassembly/disassemblies change as V changes. The usefulness of V
has been underestimated by many people. It is a powerful tool for making use of information that user
area functions return to you. Remember it.

<l A e

TMON

Intermediate Features

Now it’s time to explain some of the features that are not so common and which are, perhaps, slightly more
powerful than the. preceding ones.

Trap Intercept

Trap intercept is a user area function that allows you to specify a trap or range of traps that, if encountered
within the specified PC range (or anywhere, if no range is specified), will cause the debugger to be entered.
This function can be found on this “A000 trap functions” portion of the “User” window. First open the
“User” window by clicking on the “User” button in the button bar or by holding down the % key and press-
ing the “U” key. If the first line (“Toggle pages™) under the title does not say “{A000 trap functions}”,

click to the right of the colon on that line and press Return until it does. The window should look something
like this: '

[0 USER area starts at $01DBBE. Physical size is $7600; logical size is $7600
Toggle pages €ABOB trap functionsd:
Trap record <@ [+1 [PCO PC11]1>:
Record €} <(fullStop nMsg [locl>:
Trap {heap check, scramblel (zone#):
Heap €3 (zone#):
Trap discipline €lenienty (+0 [t1 LCPCB PC111):
Trap checksum <+8 C[+1 [PCO PC111):
Checksum (bgn end) €AR426):400000 41FFFF
Trap intercept <18 L[t1 [PC@ PC111):
Trap signal (4@ C+41 CPCO PC1]1):_GetNextEvent _EventAvail

Trap intercept is the second function from the bottom; it takes at least one parameter, with the remaining
parameters being optional. Note that when a user area function requires a trap or trap range, you may simply
type in the trap name preceded by an underscore (“_"), just as the trap name appears in an “Asmbly” window.
See the “Trap signal” function in the window above for an example of a trap range (_GetNextEvent through
_BventAvail). Often you will just wish to enter a single trap; in that case you can simply type in the trap
name and TMON will supply the other parameter automatically (it will be the same as the one you
entered—in other words, TMON constructs a trap range consisting of one trap). If you wish to include more
than one trap, type them in, separating them with a space. You will need to enter a range, even if it consists of
one trap, if you need to enter one or both of the optional PC values. If you enter the traps in the range in
reverse order, TMON will reverse them for you automatically (so that trap ranges always go from lowest
trap number to highest).

Note that trap numbers have changed from the 64K ROMs to newer ROMs. On 64K ROMs, only trap
numbers from $000-$1FF were valid.-On 128K: or 256K ROMs, trap numbers from $000-$FFF are valid. Also
on newer ROMs, the toolbox/OS flag bit is the definitive way to identify a trap as an OS trap or a toolbox
trap. The upshot of all of this is that you need to be conscious of what you are really saying when you type in
a trap name or number. For example, the correct way to say “do this on all traps” is to enter a numerical
range from $000 to $FFF. This will work the way that you expect it to.

One popular use of Trap intercept is to intercept _InitGraf so that when an application is launched TMON
will gain control very early in the program’s execution, since _InitGraf is executed very early in the program.

‘Checksum

The “Trap checksum” function is used to determine whether a particular range of memory has had any changes
from one ROM trap to another. This is useful, for example, for narrowing down the section of code that you
think may be trashing a variable in your program. Trap checksum is also on the “A000 trap functions” portion
of the “User” window, and, like trap intercept, it takes four parameters, the last three of which are optional.

The line below the Trap checksum line allows you to define what range of addresses to perform the checksum
on. The default values here are the beginning and ending addresses of the Macintosh ROM (which, of course,
can never change, and so the checksum will never fail). Change these addresses in order to change the area that
TMON will checksum,

26

User's Guide

Once you have defined the traps and PC range during which to checksum, and the memory range to checksum,
execution of any code that contains the traps you chose and lies within the PC range that you chose will cause
the memory that you chose to be checksummed. This checksum occurs before the trap is executed. If the
checksum does not match the previous checksum, TMON will be entered and will display a message indicating
that the checksum failed.

Leave TMON; queue events until mouse click

This function is a catch-all one that allows you to generate events which will be accepted into the applica-
tion’s event queue. TMON will regain control only-after a mouse down event (i.e. only when you click the
mouse). As the application executes its event loop, these events will eventually be acted upon. This is a good
way to force an event, such as a menu selection, into an application while you are spying on it with TMON.
This function is a user area function which is on the “control functions” portion of the “User” window. To
use it, click on the “User” button in the button bar or hold down the 3 key and press the “U” key. If the
first line (“Toggle pages”™) under the title does not say “{control functions}”, click to the right of the colon
on that line and press Return until it does. The window should look something like this:

a USER area starts at salDBBE. Physical size is $7600; logical size is $7600
Toggle T“ {control functions.

Look for labels between LINK/UNLK of A6 (B-6=register AxX)I6

Label table € {(nLabels [Clocl)

Label add/remove O (lbl Cadr tend]:l)'

Label file load:

Registers O (B=save):

Lom TMON; queue evenis until mouse click:

an npplicauon (B=ExitToShell, 1=re-launch current application):
|Shus doun (@=re-boot, imunmount volumes and re-boot):

To use this function, click after the colon on the line that says “Leave TMON; queue events until mouse
click:” and press Return or Enter. You will appear to be in the application. You can do anything that you’d
like to generate events. When you click the mouse, you will be returned to TMON. When queueing events for
your application, bear in mind that the Macintosh only maintains the number specified by your volume’s boot
blocks at boot time; any events beyond that number are lost. Once these events have been queued, the
application will receive them as they are retrieved from the queue.

Trap Record

The “Trap record” function is another highly useful one for helping to determine where a problem arose. It
allows you to define an area of memory which will be used to record important information about a set of
traps. Trap record is located on the “A000 trap functions” portion of the “User” window, and like most of
the A0QO trap functions, it takes a trap number (or range) and an optional PC range. A secondary line allows
you to indicate how many traps to record and whether recording should stop when the buffer is full.
Optionally, this line allows you to indicate where the recorded information is to be stored. Generally it is
best to leave this parameter out and let TMON allocate the space for you (TMON will allocate space in the
system heap). Any time a trap within the given range occurs within the given PC range, it will be recorded in
the buffer if fullStop is false, or if fullStop is true and the buffer is not full. Note that if you enter a non-
zero value for the fullStop parameter, the function will enter TMON and give you a message when the trap
record buffer is full. Otherwise the function will continue to record traps, overwriting the ones that were
recorded before.

To disable the trap recording, just click to the right of the colon on the line that says “Record” and press
Return. TMON will deallocate the block that contains the recorded information and return everything to
normal.

27

TMON

Creating a buffer to record traps in assigns the address of the buffer to the V register, so that you can open a
dump window anchored to the V register to see the recorded information. The information is layed out in rows
starting with the most recent trap and ending with the oldest, and each line is as follows:

Byte Description

0-1 A000 trap number

2-3 Low 16 bits of Ticks

4-7 Address of A00O trap

8-15 DO/AO for OS traps, top eight bytes of stack for toolbox traps

Note that recording $10 traps is usually enough to be quite useful in tracking down the flow of the problem
program. :

Template

Template is an attempt to allow you to look at a some typical Macintosh data structures in a meaningful way.
It takes an address and treats the data at that address as a record of whatever type you have chosen. (It’s up to
you to make sure that the data at the address you specify actually is what you are claiming that it is.)

The “Template™ function is a user area function which can be found on the “memory functions” portion of the
“User” window. It takes one parameter, the address of a data structure. If you press Return after the colon
without entering a parameter, the function will cycle through the four data structures that it currently
supports: WindowRecord, ControlRecord, TERec, and ParamBlock. Once you have chosen the appropriate data
structure type, just type an expression that evaluates to the address of the data structure and press Return or
Enter, and the “User” window will show the names and contents of the record’s fields to the best of its
ability. An example of this looks something like this:

USER area starts at¢ $0iDBBE. Physical size is $7600; logical size is $7600
Toggle pages {memory functionsd:

Block move (src dst len):

Block compare €3 (adri agrz lend:

bgn :
Find {byte aligned} €} (val [vien [bgn Cendlll):
Template {WindowRecord @84FCAS) (addr):
t address=0FA700: rowByt es=40: bounds=FFD8 FFFE 012E B1FE:portRect=0080 0000 0123 O1FC:
SvisRgn=033534:clipRgn=033530: windowKind=0008: visiblethilited: H
1 $ArucRgn=03352C: cont Rgn=033528: updat eRon=833524: def Proc=0081534: dat aHand1e=p33518:
tcontrollis4=03350C: next lindows0d0000: ref Con=p0000009: ¢ it le="TMON 2 Manual":

In this example, I have a data structure at $4FCAS that I happen to know is a WindowRecord. (How do I
know that? There’s a TMON heap window that makes these things easy to find. We’ll get to that later.) So, I
typed in 4FCAS8 after the colon and pressed Return, and the window above is what I got back from TMON.
Among the interesting things that I can learn from this window are: the window is type 8 (“zoomDocProc,”
according to Inside Macintosh), the window was visible at the time that the WindowRecord was displayed,
the window was highlighted, the window had a go away box, at least one control, and its title was “TMON 2
Manual.” Other useful pieces of information are present as well. In particular, the handles to the window’s
various regions are given, Similar displays are generated for the other three data structures.

"Stack Addresses

“Stack addresses” is a function on the “memory functions” portion of the “User” window. Its purpose is
simply to take the values that it finds on the stack and attempt to “recognize” them (i.e. if they are retum
addresses within a piece of code that has a label associated with it, TMON will display the address as the
appropriate label with the appropriate offset).

The user area starts off by conveniently providing you with a default parameter to this function of “SP.” If
you click to the right of this value (it is treated as a value) and press Return or Enter, TMON will look at
the value that lies at that address and try to recognize it. The value will be displayed in the curly braces, and
any label and offset combination that applies will be displayed in the parenthesis in the braces. Continuing to
Enter will continue to walk up the stack address by address. To start over, just click to the left of the
address instead of to the right it and press Return. You can take advantage of the way in which pressing Enter

28

User’s Guide

differs from pressing Return by clicking anywhere in the parameter and pressing Enter (which re-enters the
whole line). Continuing to press Enter will cycle through the stack addresses list. Since the cursor remains to
the left of the parameter when you do this, you can start over at any time by pressing Return instead of Enter
(pressing Return at the beginning of the line clears the line). Since this is a user area function that returns a
value, that value is also assigned to the V register.

‘Stack Crawl

The “Stack crawl” function is a lot like “Stack addresses™ except that its purpose is to follow a chain of
procedures or functions which have been activated but not yet completed. This is possible because in high level
languages like Pascal and C (and in some 680x0 assembler programs as well) the A6 register is used in a LINK
instruction at the beginning of the procedure and in an UNLK at the end. The LINK instruction creates what’s
known as a “stack frame,” and the UNLK instruction destroys it. The Stack crawl function follows these
stack frames in order to determine the return address of the procedure. It then sees if it can be identified by a
label and, if so, does so.

1t’s harder to explain than it is to use. The function takes one parameter, the address register to assume is the
stack frame pointer (in most Macintosh programs, it’ll be register A6, expressed as the default parameter of
RAG). If you click after the 6 and press Return or Enter, the function will determine what the return address
for the currently active procedure is, display it in the curly braces, and display any matching label and offset in
the parenthesis in the braces. Continuing to click to the right of the address displayed as the parameter will
continue up the stack frame list until there are no more active procedures. The process can be cancelled at any
time by clicking to the left of the address and pressing Return instead of clicking to the right of it. Note that
the same Return/Enter shortcut that I described for “Stack addresses” also works here. The value displayed in
the curly braces is also assigned to the V register.

Load Resource

This is kind of an obvious function, and also rather handy. It allows you to load into RAM a resource from
any currently open resource file. It’s particularly useful for loading resources of types other than CODE that
do contain executable 680x0-code that you wish to debug (these types can be things like DRVR, INIT, CDEF,
MDEF, WDEF, and so on).

The “Load resource™ function is on the “memory functions™ portion of the “User” window. It takes two pa-
rameters, the resource type and its ID. You can express the type as a four character value using single quotes
(CODE) or the type can be any valid longword expression. If the resource is successfully read from disk, the
address of its handle will appear in the curly braces and also be assigned to the V register. Note that because
this function expects the resource manager and disk I/O functions to work properly, it is a very dangerous
function if the system has been left in an inconsistent state, either because of a problem with the application
being debugged or because you’ve entered TMON at a time when the system is in the middle of an important
operation. Always remember to hold down Option while pressing the interrupt button; precisely what this
does is discussed in the Trap Signal section.

Leave appliéation

Leave application is a user area function that takes one of two parameters: zero to ExitToShell (launch the
Finder) or 1 to re-launch the current application. All breakpoints are cleared by this function. Both of the
choices (ExitToShell or current application) are useful for “starting over from scratch” because they close all
open files and open resource files before launching. They’re also useful for attempting recovery from certain
kinds of system errors. For example, if the application that you’re debugging consistently bombs into TMON
with a System Error $1C (meaning that the stack and heap have collided) you may find it useful to try using
Leave application to ExitToShell. Hopefully it will work and you will at least have sume way to get out of
the application which is trying so desperately to destroy the heap (exiting TMON and quitting the application
won’t work; by definition you'll wind up back in TMON with a System Error $1C almost immediately,
unless you've played with the stack pointer to avoid the problem). You’ll find Leave application on the
“control functions” portion of the “User” window. Note that Leave application uses to re-launch the current
application, so you can cheat and force TMON to launch anything by editing the string found in CurApName.

29

TMON

‘Shut down

Shut down, which is also among the “control functions” of the “User” window, bears a certain functional re-
semblance to Leave application. You use it to get out of a sticky situation. The difference is that Shut down
does exactly what it says; it’s like turning your computer off and back on. There are two flavors of this
function: providing a parameter of 0 will re-boot; providing a parameter of 1 will unmount all currently
mounted volumes and re-boot. Usually using parameter 1 will save you a lot of grief.

File
The “File” function is another resource-related one that’s nice to have around. If you click on the “File” but-

ton in the button bar or hold down the 3 key and press the “F” key, a window listing all currently open
resource files by file reference number will be shown. It looks something like this:

Resource file # #
Files present: $0060 $0002

According to this window, there were two resource files open at the time: file number 2 is almost always the
System file (the first resource file the Macintosh opens, by definition). In this case, as in most cases, the other
file reference number refers to the application’s resource file.

If we type “60” after the “Resource file #” prompt, we see something like this:

‘Resource file #$0060

N ' $0808 ..P.c..s HNouhere
'CODE’ $0001 ..PL.1.. Rt $00CC44
'CODE' $0602 ..PL.... Nouwhere
'‘CODE' $0003 ..PL.... At $862BC4
'CODE*' $0004 ,..PL.... At $062100
‘CODE’ $0883 ..PL.... A4 $O5FC72
‘CODE' $0006 ..PL.... A+ $OSE6B6
'‘CODE' $0807 ..PL.... Nowhere
‘CODE' %8008 ..PL.... Nouhere
‘CODE" $0089 ,.PL.... HNouwhere
'CODE' $0BOA ..PL.... A4 $O617F6
'‘CODE' $000B ..PL.... At $OSER36
‘CODE' $00OC ..PL.... HNowhere
'CODE*' %0680 ..PL.... At

‘CODE* $OBOE ..PL.... At $06116C
'CODE' $000F ..PL.<.. At $OSFS5SA
'CODE® #0810 ,..PL.... Nouhere
'CODE' 40011 ..PL.... Nowhere
'CODE®' $0012 ..PL..ss At $OSEF78
'WIND' $0080 ..P..l.. Nouwhere
‘WIND' $0081 ..P..1.. HNowhere
‘WIND' $0082 ..P.ecl.. HNouwhere
'WIND' $0083 ..P..1.. HNouhere
‘nXAp' $0888 ,....1.. At $017746
‘nXAp' $0B81l.. AL $016658
'STAT' $0888 oseeecees Nowhere

Map a¢ $01562C Aviributes: rcu

1 deliberately made this window pretty large in order to show as much information as I could. This window is
a (partial) resource list from the application that was running at the time.

30

User's Guide

The window provides us with some useful information. First it tells us the resource type. Then it tells us the
resource ID (in hex, of course). Then it shows us the resource attributes in a format that’s a lot more in-
telligible than just 1s and Os. A period (*.”) is used if the flag is reset, otherwise a character appears. The
characters are these:

System reference

Load into system heap
Purgeable

Locked

Protected

Preloaded

Write into resource file
U flag set

Using this information, we can see from the window above that all of the CODE segments, for example, are
purgeable and locked. In addition, CODE segment number 1 is preloaded (loaded into RAM immediately when
the resource file is opened).

If you wish to look at a different file’s resource list, just click before the file number and press Return. The
list of file numbers will reappear. You can then choose another file number.

CE~3omx

‘Number

The “Number” window is essentially TMON’s answer to the programmer’s calculator—you know, the ones
that do decimal/binary/hex math and conversions. Well, TMON’s is even more powerful than that. It will
take any expression and evaluate it. Here’s what the window looks like:

P NUMBER
I =$00000060 +.2000000000¢(+.00000) '....' _Open

prompt, and TMON wilt display the result of evaluating the expression in the line below (as a hexadecimal
number assigned to the pseudoregister N, s a 32-bit decimal value, as a 16-bit decimal value, as a four
character string, as whatever ROM trap the number can be taken to represent, and as a label with some offset,
if the result happens to lie within a recognizable label range. "

Fine. What's an expression? That’s a reasonable question, and one which Waldemar has answered in great detail
in his Technical Reference, which accompanies this one. Rather than reading a great deal of redundant
information here; I suggest that you look at the Numbers section in the Technical Reference. You will leam
just how powerful TMON’s expression handling is. '

Looks pretty innocuous, doesn’t it? It can be. You simply type any valid expression after the “NUMBER”

31

TMON

Advanced l?eatures

Ah, here we are! Now for the good stuff, the stuff that really comes in handy when the pressure’s on and the
bugs are starting to resemble Sherman tanks.

Trap Signal

The “Trap signal” function really could be considered a “smart interrupt” function. What it literally does is
provide you with a way to press interrupt on the programmer’s switch and not have that interrupt take effect
until a single trap or trap within a range that you have specified occurs within a PC range that you have
specified. This could also be considered a “basic™ function, since it’s used quite frequently in TMON. This
function is on the “A000 trap functions” portion of the “User” window. It’s been a while since we’ve seen
that, 50 here it is again:

[m] [[] USER area starts at $01DBBE. Physical size is $7600; logical size is $7680
Toggle pages {ABBB trap functionsl:
Trap record <18 [+1 [PCO PC111): .
Record €} (fullStop nMsg Clocl): %,
Trap Chesp check, scramble} (zone#):
Heap {J) C(zone#):
Trap discipline {lenient) (48 Ct1 [PCO PC111):
Trap checksum (48 Ts1 CPCO PC111>:
Checksum (bgn end) (A426): 400030 41FFFF
Trap intercept <10 [t1 LPCO PC111):
Trap signal (4@ C41 CPCO PC111):_GetNextEvents _Eventfvail

Among the defaults that we’ve provided for TMON are the parameters for Trap signal. As you can see, we've
set the trap range to the traps _GetNextEvent through _EventAvail (and provided no PC range, which means
that any PC value will cause the function to work).

Once the parameters have been entered and TMON has been exited, you can get into TMON elegantly by
holding down Option and pressing interrupt. This will indicate to TMON that you want the trap signal to go
into effect. Now TMON will sort of keep an eye on things until a trap within the specified trap range and in
the specified PC range occurs. If one occurs, TMON will be entered at that time—not at the time that
interrupt was pressed. You’re not likely to notice the delay, however, since things are happening so quickly.
As far as you’re concerned the time between your pressing interrupt while holding down Option and the
Macintosh’s entry into TMON is zero most of the time.

We recommend using Option-interrupt any time that you need to get into TMON, because it guarantees that
the system will be in a consistent state when TMON is entered, whereas if you merely hit interrupt, you may
interrupt the processor at a pretty bizarre time—like right smack dab in the middle of one of the system’s
interrupt tasks, for example. Note that this will only work if the trap(s) for which the Trap Signal function
has been set are being executed somewhere after the time that you use Option-interrupt. I this is not the case,
Option-interrupt will be ignored. You may use interrupt alone, although this is somewhat risky. If neither
of those choices work, try $8-interrupt, which tries rather desperately to enter TMON, even going so far as

to clear some of its globals in the process. This causes TMON to display a message to the effect that it has
been damaged, since TMON is constantly lookmg out for its own best interests by doing a checksum of itself
as long as at least one window is open. Before using the Exit or GoSub functions, be sure to set up your
reg(sters and stack appropriately, since $-interrupt clears them. As a draconian measure of last resort (if, for
esample, 3%-interrupt causes TMON to hang), you may wish to use 3%-Option-interrupt, which does
everythmg that 38-interrupt does, and also clears the first 48 bytes of the user area so that a damaged user
area won't screw TMON up. Of course, if you do this, the debugger will also complain that it has been
damaged, and it will be virtually unusable for any purpose other than getting where you want to go by using
Exit or setting PC to !_ExitToShell and Exiting.

32

User's Guide

Trap Discipline

Trap dxscnplme is, in my opuuon, TMON's most exciting feature. It represents a significant chunk of the user
area’s size and power. It is a front end to the Macintosh’s ROM trap mechanism that, upon encountering a trap
in the range specified within the PC range specified, checks the parameters to that trap and makes sure that
they aren’t obviously screwy.

Trap discipline has two strengths. I like to think of them as personal and industrial, but Darin Adler, who
wrote the user area, refers to them as lenient and strict, and, I must admit, his terminology is at least
consistent with the idea of discipline. To choose which strength to use, just click after the colon on the “Trap
discipline” line and press Return. Once you have done that, you can set up Trap discipline with the same four
parameters as Trap intercept or Trap signal require.

When you exit TMON with Trap discipline active, nothing obvious happens right away other than the dot in
the upper left hand corner of the screen flashing on and off to let you know that TMON'’s up to something
with the ROM traps. TMON does this whenever any of the A000 trap intercepting functions (Trap record,
Heap check/scramble/purge, Trap discipline, Trap checksum, Trap intercept, or Trap signal) are in use.

If, in the process of examining the parameters to a ROM trap, TMON f{inds something that it doesn’t think is
reasonable, it will activate itself with the PC pointing to the trap whose parameters are questionable. You
may then look at the stack and/or the registers to try to determine what TMON doesn’t like. TMON will as-
sist in identifying the problem as much as possible by giving you a special message window with some
indicator as to what it thinks the problem is (“? NIL Handle,” for example). Needless to say, Trap discipline
is a real Godsend.

Look for Labels Between LINK/UNLK of Ax

This function allows you to define how local variable allocation works for the program that you are debug-
ging. The LINK and UNLK instructions of the 680x0 family of microprocessors exist precisely to facilitate
the creation of local variables. Most Macintosh programs use the LINK and UNLK instructions with address
registers A6. Some Macintosh programs, however, use another address register because they use A6 for
something else (in particular, programs written with the MACH 2™ 83-Standard FORTH development
system use A6 as the data stack pointer and A2 as the LINK/UNLK parameter).

This function is on the “control functions” portion of the “User” window. Here's what it looks like:

USER area starts at $01DBBE. Physical size is $7680; logical size is $7600

Iggzl es {control functions):
abels between LINK/UNLK of A6 (B-6=register mx):6

Label uble € (nLabels Clocl):
Label add/remove €3 (lbl LCadr LCendll):
Label file load:
Registers €3 (O=save):
Lom TMON; queue events until mouse click:

Leave appuc:uon (D-EquOSholl. 1-ro—lamch current application):
|Shus doun (@=re-boot, imunmouns volumes and re-booid:

To use this function, click after the colon on the line that says “Look for labels...” and enter the number of
the address register to use. Note that, since so many programs use A6, “6” is the default parameter for this
function.

Label Table

This function, which is also on the “control functions™ portion of the “User” window, is used to allocate
space to hold labels that refer to various points in a program. These labels are usually read with the “Label
file load” function (explained later) but not always. Labels can be added and removed manually. (I'll explain
how in a moment).

One thing that you should be aware of is that each label takes 16 bytes of RAM to store. Also, labels can be
stored either as absolute or resource relative. These issues, as well as the label format, are discussed in detail
in the Predefined User Area Functions section of the TMON Technical Reference Manual.

33

TMON

To use this function, click after the colon on the line that says “Label table” and type in the number of labels
to make room for and, optionally, the location of the table (if you leave it out, TMON will allocate the space
somewhere in the system heap for you). Press Return or Enter. The curly braces will contain a message
indicating how many labels are currently loaded; to start with this number will, of course, be zero. The table
can be deallocated by clicking to the right the colon and pressing Return without typing any parameters.

Since this user area function returns a value, that value is assigned to the V register, and you can dump the area
allocated by opening a dump window and anchoring it to V.

Note that you don’t need to use this function if your program contains embedded labels.

Label Add/Remove

This function allows you to add or remove a label to a label table on the fly. “Label add/remove” is on the
“control functions™ portion of the “User” window. Let’s look at the window again:

[m] USER area starts at SOIDBBE: Physical size is $7600; logical size is $7600

Toggle pafes {contro ions}:

Look for labels between LINK/UNLK of A6 (0-6=register Ax):6
Label 4able © (nLabels Clocl>: -

Label add/remove O <(lbl Cadr Cendll):
Label file load:
Registers {3 (B=save):

Leave TMON; queue events until mouse click:

Leave application (B=ExiiToShell, i=re-launch currenti application):
[Shus douwn (@=re-boot, imunmount volumes and re-boos):

The label table to work on must already have been allocated. “Label add/remove” takes three parameters. If no
parameters are provided the information in the curly braces is cleared. If just a label is given (it must be a

label, in quotes, so that TMON knows it’s a label) it will be removed from the table if it is present. Nothing
will happen if the label is not present.

If a label and an address are given, the address is assigned to the label. If the “Scan resources™ option in the
“Options” window (more about that later) has been enabled and the address falls within a resource, the label
is stored as resource-relative and needs no ending address. A message indicating that the label has been stored
resource-relative will appear in the curly braces.

If all three parameters are given or the label could not be stored as resource-relative, it is stored as an absolute
label starting at the address provided and ending at the ending address provided or, if no ending address was
given, at the starting address + $800. Note that the ending address is considered the first byte past the
recognition range, not the last byte in the recognition range. In other words, the ending address will not be
recognized as “label™roffset. A message to the effect that the label has been added as absolute will appear in
the curly braces.

If the label table is already full the label is not added and nothing appears in the curly braces.

One reason that you may wish to add labels manually is so that you can easily identify important sections of
code. You may also wish to use it to name important locations at which to set breakpoints during debugging
50 that you don’t have to remember breakpoint addresses.

Tabel File Load

The “Label file load” function is also on the “control functions” portion of the “User” window. As I men-
tioned earlier, some development systems create what we call “.MAP files.” We call them this because the
files have the string “.MAP” as the last four characters of the file name. The “Label file load” function can
read a .MAP file into an allocated label table. Among the development systems that create TMON-
recognizable MAP files are Apple’s MDS, Consulair’s Mac C, TML Systems’ MacLanguage Series Pascal
(more commonly known as TML Pascal), and recent versions of Manx’s Aztec C.

To use this function you must already have allocated a label table that is at least large enough to hold however
many labels are in the file (and if you haven't counted them, you can always try to overestimate). Once the
table has been allocated, just click after the line that says “Label file load:” and press Return or Enter. The

34

User's Guide

Macintosh’s standard dialog box for reading a file will appear, and it will only show .MAP files. Open the
one that you want. If TMON has trouble reading the file, or if you click the “Cancel” button instead of the

"“OK” button, the message “Bad load” will appear in a message window, otherwise the labels will be loaded

into the table. If the table is too small to hold all of the labels, TMON will load as many as it can, and then
stop. It will not provide a warning that it could not load all of the labels, so be sure that you have allocated

enough space.

Using .MAP files is encouraged if your development system provides them, since the file will even contain
labels for your development system’s library routines, which is something that cannot be accomplished by
embedding the labels directly in the code. Do be aware that this function is extremely dependent upon the
system being in a reliable state. QuickDraw, the Dialog Manager, the File Manager, the Control Manager, the
Font Manager, and TextEdit must all be working properly for this function to work properly! For this
reason, you should use this function immediately upon entering TMON for the first time, i.e. before any other
functions are used.

Heap Check, Scramble, and/or Purge

The Macintosh uses dynamic memory management. In other words, it has a pool of memory from which
programs can request blocks of a particular size. These blocks may or may not move around in this memory
pool (called the “heap™) in order to allow allocation of large blocks. It can be quite confusing, and there are
many opportunities for things to go wrong with the Macintosh’s memory.

For this reason the user area includes a function that allows you to check the heap for consistency (the heap is
actually a large, fairly complex data structure which may be “broken” by buggy programs), force a heap
scramble anytime that one may occur, and/or purge all purgeable blocks from the heap.

The “Heap check, scramble, purge” function appears in the “A000 trap functions™ portion of the “User”
window. It looks like this:

[0 USER area starts at $OIDBBE. Physical size is $7600; logical size is $7600
Toggl ons):

pages {AGOO & funcei
Trap record <10 L[+l ggo PC132):
Record O (Nll&m Clocl>:
Trap Cheap check le) (zone#):

Heap €O (zoned#):
Trap ducipum (lcnum) <10 l:u CPCO PC111):
rap checksun (48 L[4+1 CPCO PC1]]

Checksun (bgn end) (M&S) 400009 41FFFF

rap intercept (48 L[s1 CPCB PC111):

Trap signal <48 CLatl CPCO PC1J1): sﬂﬂox‘Evm ~EverdAvail

0

The “Trap {heap check, scramble} (zone#):” line is the one you’re looking for. If you click after the colon and
press Return without typing in any parameters, the message in the curly braces will cycle through:

“heap check,”

“heap check, scramble,”

“heap check, purge,” and
“heap check, scramble, purge.”

Heap check examines the heap and makes sure that its structure is consistent. If it is not, TMON will be
entered and a message window displayed which explains the problem. Note that with this function, a heap
inconsistency is the only reason that TMON will be entered. The check is performed when any of the ROM
traps listed in the next paragraph are encountered.

Heap scramble causes all relocatable blocks which can be moved to be moved. It only does so, however, when a
trap that may cause relocation is called. The idea is to see if relocation may occur and, if it may, force it to
occur. This will cause programs that rely on memory blocks not moving at particular times when they may
move to fail consistently, since the blocks will consistently move. The traps that may cause relocation are
_NewPtr, _NewHandle, _ReallocHandle, _SetPtrSize, and _SetHandleSize. Note that _SetPtrSize and .
_SetHandleSize may only cause relocation if the new size is greater than the old size. Note that the options
chosen are performed before the trap is executed.

35

TMON

Scrambling the heap will also clear free blocks to an odd non-zero value and join consecutive free blocks.
These facts go an extra step towards assuring that any program that has an invalid pointer will fail quickly.

Using the “purge” option of this function will purge all purgeable blocks from the heap before checking and
scrambling. This is useful for causing programs that assume that a purgeable block will stick around to fail
when it doesn’t. It’s interesting to note that very few programs can survive the purge option! Most Macintosh
developers simply don’t expect things to be purged out from under them, don’t check, and therefore fail when
they assume that something is still in RAM that has been purged.

Note that since the scramble and purge options occur whenever they might normally occur, they occur a lot
more often than they do in “real life,” and the result is that they slow the system down a great deal. If you
use these, be prepared to have your system perform like someone poured molasses into its vents, and be aware
that with these functions such behavior is normal.

Immediately beneath the “heap check, scramble, and/or purge” function is one that simply says “Heap {}
(zonei#):” If you click to the right of the colon, type a “0” for the system heap zone or a non-zero value for
the application heap zone, and press Return or Enter, the curly braces will contain the total number of free
bytes in the zone, the number of free contiguous bytes, and the amount that the zone can grow, in that order.
If you enter a zone parameter to right of the “heap check, scramble, and/or purge” function’s colon, the “Heap
{} (zone#):” changes to “Heap check, etc. now” depending upon what options you chose. Clicking to the right
of the colon and pressing Return or Enter will cause TMON to perform the chosen function immediately,
rather than waiting until the next appropriate A000 trap. Note that scrambling and/or purging the heap when
the memory manager is in an inconsistent state is extremely dangerous. You should only use this function if
you have entered TMON via Option-interrupt or if you can somehow be sure that you are in the application
environment at a moment when there are no dereferenced handles about to be manipulated. Hitting the ap-
plication when it isn’t looking isn’t very sportsmanlike.

Heap

Speaking of heaps, TMON wouldn’t be a very good Macintosh debugger if it didn’t provide you with some
means of taking a look at the system heap and application heap and seeing what was there. You can open a heap
window by clicking on the “Heap” button in the button bar or by holdmg down the 3 key and pressing the
“H” key. A heap window looks something like this:

[0 +Application heap is at $011480-$0C0298. B885F7C es free.
5019;20 00011C @ aﬂandlc at $018884 (lpr) o £
$019844 000012 0 Free

$01985E B0BR68 A Handle at $0114A8 (lprd <(Window @$818C22) TEHandle
$019808 800012 A, Handle at $018A10 (lpr)

$0198FC 990088 @' Handle at $0114EC (1pR) File $211C 'MENU' ID=$008S
$01998C 900229 1 Handle at $011504 (1pR) File $811C 'STR#' ID=$0080
$019BBE 00000A @ Handle at $018840 C(lprd <(Window €$019008> ClipRon
$0198D0 890006 0 Handle at $0114AC C(lprd <(Window €$018C22) WTitle
$019BDE 600808 @ Handle at $2187E8 (lpr)

$019BEE 00000A @ Handle at $018890 (lprd <(Window €$919008) ContRgn
$019C00 0000OA @ Handle at $081883C (lpr) <HWindow @$019068) UpdateRgn
$019C12 900012 8 Handle at $018A1C (lpr)

$019C2C 000014 8 Handle at $01870C (lpr)

$019C48 0000AR B Free

$019CFA 800012 @ Handle at $0187A4 (lprd

$019D014 600002 6 Handle at $0187E@ (lpr)

$019024 GOOVEC @ Handle at $0114E0 (1pR> File $011C 'MENU' ID=$0088
$019E18 BOOOIC @ Handle at $0114DC C1PR) File $011C 'DITL' ID=$0081
$019EBC 9P0POA ® Handle at $0188B8 (lpr) <(MWindow €$818AB8) ClipRgn
$019ECE 900010 8 Handle at $018818 (lprd <(Window @$018CF8) WData
$019EE6 B000PA B Handle at $0188B4 (lpr) <MWindow €$818ABB) StruciRon
$019EF8 000002 2 Handle av $018804 (lpr)

$019F04 800024 @ Handle at $011518 (lpr) <(Window €$818CF8) Control ¥
$019F36 BOPGOA @ Handle at $018814 (lpr)

This window shows the application zone. Which zone is being displayed is given on the first line of the
window, along with the location of the zone (starting and ending addresses) and the total number of free bytes
in the zone.

36

User's Guide

If you wish to see the information for the system zone, make sure that the cursor is on the first line of the
window (by pressing the Tab key) and press Return or Enter. The window will change to show the system
zone.

Each line of the heap window describes a block in that zone. First is a space if the block is relocatable or an
asterisk (“*") if it is not. This is useful for easily seeing non-relocatable blocks in the middle of the heap,
causing fragmentat.ion. Next comes the address of the first byte of the block of data. In other words, the
pointer to the data is next. After the pointer comes the size of the block. This will be the same as what was
requested of the operating system. In other words, if the program executes a _NewHandle with a requested
size of $2A bytes, a block size of $2A will appear in the heap window.

The next item—a single hex digit—takes a little explaining. It is the size correction factor for the block.
This is the number of unused bytes in the block. If the pointer to this block is X and the pointer to the fol-
lowing block is Y, then the size correction value for the block pointed to by X is literally Y-X-8-Size(X),
where Size(X) is the size given in the heap window.

Next comes.one of four phrases: “Free,” “Nonrel,” “Handle at...” or “INVALID.” “Free” means that the
block is not currently allocated to anything. “Nonrel” means that the block is non-relocatable. “Handle
at...” means that the block is normally relocatable and is referred to by a handle (a pointer to the pointer)
which is at the address given. Following the address of the handle is a group of memory manager flags, L, P,
and R. These flags are uppercase if set and lowercase if not, “L” stands for Locked, “P” stands for Purgeable,
and R stands for Resource. Finally, “INVALID” means that the block failed the consistency check for some
reason and that the zone is probably in big trouble,

Both nonrelocatable and relocatable blocks may present additional information helpful in determining what
they are. First of all, if the “R” flag is set, the handle is checked against the list of open resource files and
their resources. If a match is found, the file reference number, resource type, and resource ID for the resource
are shown. All other nonrelocatable and relocatable blocks are passed to a routine in the user area (the cus-
tomizable part of the debugger). This routine should try to identify as many blocks as it can. In the examples
above, the routine has identified many parts of windows (controls, TEHandles, visRgns, etc.). The system
zone display identifies things like the FCBs list (File Control Blocks), the WDCBs list (Working Directory
Control Blocks), DCEs (Device Control Entries), the UnitTable, and so forth. All of these are handled by a
customizable user area routine, so if there’s something that you’d like identified that isn’t currently, feel free
to rewrite the routine and add it!

You can set the V reglstcr to the address of a heap block by posmomng the cursor somewhere on the line for
that block and pressing Return. This is useful, for example, for entering short code sequences for quick and
dirty patches: find a block marked FREE, put the cursor on that line, and press Return. Now open an
“Asmbly” window anchored to V. You can enter a few bytes of code in this unused block that way.

"Options

The “Options™ window allows you to specify which of TMON’s recognition features are used and which ones
aren’t. This is useful for a couple of reasons. First, many of these features are more reliant upon the system
being in a consistent state than the heart of TMON is, and they may break and cause problems if the operating
system is in an inconsistent state. Secondly, some of these features are somewhat slow, and if you don’t need
them you can turn them off and speed TMON up significantly.

Here’s what the “Options” window looks like:

[0 OPTIONS Labels: Master suitch
Labels: Scan resources
2 Labels: Scan label table
Labels: Scan for names in code
Labels: Identify AGGO iraps
Heap windows: Scan resources
Heap windows: Identify items

EEEEEE]

There are five switches for label functions and two for heap functions. The first label switch is the master
switch; it defines whether or not labels are used at all. I find myself turning this one off whenever I am in a
tight loop and have no convenient way to get out of it (i.. it’s in ROM or something like that). The labels

37

TMON

probably aren’t doing me any good as long as I'm in this DBRA or whatever, so I can turn them off and let
TMON move a bit faster (I usually close all windows except the “Regs” window, too, for maximum speed).

The second switch defines whether TMON will recognize addresses as being within a resource. In other words,
if this switch is off, disassemblies will never indicate whether the code lies within a CODE resource or DRVR
resource or what have you. Since TMON has no way of identifying code within resources, embedded labels are
disabled by this option by definition (since TMON only looks for embedded labels if the code falls within
certain resources).

The third switch defines whether or not TMON will look for code labels in a label table. If this switch is
off, any label table that has been allocated will be ignored. If this switch is on, the table will be scanned for
labels. Note that if the “scan for resources” switch is off, any resource-relative labels in the table will be un-
recognizable, since resources won’t be recognized.

The fourth switch defines whether TMON looks for labels embedded in the code for a program. If this switch
is off, embedded labels will be ignored. Again, if resource recognition is off, then this option will be off by
definition as well.

The fifth switch defines whether or not TMON will label code that belongs to an A00Q trap. Normally
TMON labels disassemblies of A000 trap code with !_TrapName+Offset, where “TrapName” is the name of
the OS or Toolbox trap, and offset is the number of bytes away from the beginning address of the code.
Turning this switch off will cause TMON not to label such code.

The sixth switch defines whether or not the heap window will identify blocks which are resources. You may

wishtotumthlscapabmtyoﬁ'lf,forexample,abughascormptedaﬁlesresourcemap.msinsﬂwfuncﬁon
to fail.

The last switch defines whether or not TMON will attempt to identify heap blocks. Again, you may wish to
turn off this switch in order to keep this function from failing in the eventofsomehcaprelated

or just in order to improve debugger performance (assuming that, for the duration, you won't miss the *
feature).

fechnical Reference

39

TMON

The Main Dialog appears like this when there is a Monitor in memory. (The User’s Guide discusses how it

appears when there is no Monitor in memory.) This is the menu you will get if you double-click TMON or a
User Area when there already is a Monitor in memory.

TMON verslon 2.8

Written by
Waldemar Horwat.

©1987 1COM Simulations, Inc.

648 S. Wheeling Rd.
Wheeling, IL 60090 Transfer

(312) 520-4440

At this point you have a choice of five options. They may be executed by pressing the "C" key for Configure,
the "M" key for Monitor, the "." key for Monitor..., the "T" key for Transfer, or the Q" key for Quit.
Monitor... is disabled if the Monitor is installed in memory, and Configure is disabled if there is no
Monitor installed in memory. Most of these functions are discussed in the User's Guide. What follows is
some additional information about certain functions.

Loading the Monitor

‘When there is no Monitor in memory, Monitor will load and enter the Monitor using either the file called
“User Area” on the disk, or, if there is none, the built-in user area in TMON with the Monitor. More
information on user areas can be found throughout this manual.

Monitor... is the same as Monitor except that it allows a user area other than the default one to be selected
and used with the Monitor. Clicking Open will start the Monitor, while clicking Cancel will return to the
Main Dialog. Hereafter these two options will be described together.

If a Monitor is already present in memory, the Monitor button will re-initialize the Monitor and reenter it
without reloading it from the disk. Use the interrupt button to reenter the Monitor without re-initializing
it.

Q Do not use this button to re-initialize the Monitor if breakpoints have been set because the Monitor
will forget about them even though they remain set. You will then be unable to clear the breakpoints,

BF Here is some terminology clarification: “TMON™ is the program that loads the “Monitor” into
memory. The Monitor, once loaded, is a debugger that remains in memory and spies on whatever
program is currently running. You can easily tell when the Monitor is active because it has its own
special screen format. The icons that you see on the disk if you examine it with the Finder belong to
TMON. TMON, in addition to its own code, contains images of the Monitor and the “built-in” user
area (see below).

40

Technical Reference

Loading a User Area

The concept of a “user area” is used throughout this manual. A “user area” is a set of routines which are used
to customize the Monitor to one’s needs. It also contains several useful Configuration options and the current
state of the Monitor’s windows. In addition, there is a built-in user area embedded in TMON itself. The
procedure for selecting the user area to be used with the Monitor is as follows:

1. If you double-click TMON or execute it as the startup application, the file “User Area” on the disk
is used as the defanlt user area. If there is no such file, the user area within TMON is used. That area
cannot be removed or changed, and cannot be accessed unless there is no file called “User Area” on the
disk.

If you double-click a User Area, that user area will be used instead.

2. If you select Monitor in the Main Dialog while there is no Monitor in memory, the procedure is the
same as in 1. : ‘

3. If you select Monitor... in the Main Dialog, you are asked to choose a user area. Once you do so, that
user area is loaded with the Monitor.

User areas built with older versions of TMON (2.585) can not be loaded. An attempt to load an old user area
will yield the error message, “The user area is 100 0ld.” See Creating Your Own User Functions for details
on modifying an old user area 30 it will work with this TMON.

a9

TMON

The Monitor

When the Monitor starts, you will see a list of commands in a small bar at the top of the screen and a
welcome message near the top of the screen. Now you can use any of the Monitor’s features.

The Button Bar

There are fourteen commands in the button bar. To select a command, position the mouse over one of the
commands and click the mouse button. It is also possible to use the keyboard equivalent of any of the
commands in the button bar. For that hold down the ¥ key and type the first letter of the command.

¥ Note that the button bar at the top of the screen behaves differently than the standard Macintosh
menus; it is more similar to a collection of buttons. If you change your mind and don’t want to select
any function in the button bar, move the mouse below the button bar and then release it.

" One command does not appear in the button bar. It is the Mouse Unfreeze command. The only way
to invoke it is to type 38M.

Windows

The commands Dump, Assembly, Breakpoints, Registers, File, Heap, Number, Options, and
User use windows to do their functions. Executing one of these commands, either by clicking in the button
bar or typing the keyboard equivalent, causes a corresponding window to appear or be uncovered. You can
create only one each of Breakpoints, Registers, Options, and User windows; any number of Dump,
Assembly, File, Heap, and Number windows can appear simultaneously on the screen. To create additional
windows of one of these types you can’t just use the comresponding command, because that will just move the
cursor to the top of the window. Instead, you have to hold down the Shift key while either clicking in the
button bar or typing the keyboard equivalent.

B Use the Shift key to create additional windows of the same type.

The windows behave similarly to normal Macintosh windows, although there are differences which will be
explained here. All windows occupy the full width of the screen and therefore can’t be moved horizontally.
To close a window, click in the close box. To move it, press the mouse button down while the mouse is
anywhere in the window (except in the close, resize, and scroll boxes), and drag the mouse up or down. Dump,
Assembly, File, and Heap windows also have resize and scroll boxes on their right sides. Dragging the
resize box in the lower right corner of the window will make the window bigger or smaller. Clicking one of
the two scroll arrows will scroll the window one line, while holding down the mouse button there will
repeatedly scroll the window. Note that the windows can be resized or scrolled even if they are partially
covered by other windows, without being brought to the front. These windows can also be moved without
being brought to the front by dragging them in the vertical area between the two scroll boxes. No more than
nineteen windows can be open at any time; if you have exactly nineteen windows open, the last one may
disappear if you save the user area, restart the Macintosh, and reload the Monitor with that user area.

BF Windows can be dragged by pressing and dragging the mouse almost anywhere in the window, and not
just in the title bar as with normal Macintosh windows.

B®" Resizing or scrolling a window does not automatically bring it to the front. Dragging a window also
will not bring it to the front if the mouse is positioned in the area between the two scroll arrows.

The “active window” is a synonym for the frontmost window. It is a little more difficult to find which
window is active in the Monitor than in the normal Macintosh windows. The active window, if there is one, is
always the frontmost one and contains a flashing cursor. There is no active window if there is no window at
all on the screen or if there is a special message displayed near the top of the screen. (An example of a special
message is the welcoming message that appeared when you first entered the Monitor. Special messages can be
distinguished by the fact that they have no close boxes and disappear on the first keystroke or mouse button.)

42

Technical Reference

Refreshing of Windows

All windows on the screen are continuously being refreshed. This provides you with a unique real-time view
of memory contents. The refreshing is faster if there are fewer and smaller windows on the screen. To see an
example of refreshing, open a Dump window for locations $150-$180 or $800-$900. Also try opening an
Assembly window starting at location $820. ’

US® The line currently being edited (the line containing the cursor) is never refreshed. This is done to
preveat the line from changing while it is edited.

o Refreshing can sometimes become extremely slow due to the long time needed to display the
information in some windows. This is especially noticeable when there is a large Assembly window
showing a portion of ROM on the screen. The villain in this case is the label routine, as it takes more
than 70% of the time used to refresh the screen. See the Labels section for more information about
this.

The Cursor and the Editing Facilities

The cursor is the flashing bar on the screen. It appears inside the active window. You can move it to a different
place by clicking the mouse over the new place. If you experiment with this a little, you will find that some
windows will not let you put the cursor in some positions because these positions do not contain anything that
could be changed. Everything that you type appears at the cursor’s position. If your keyboard has them, you
may also use the left and right arrows to move the cursor left and right on the same line,

To enter text (more on that later) just type it after positioning the cursor to the correct place. The Backspace
(or Delete) key may be used to delete characters. Return and Enter are used to enter the data you have typed.
Enter enters the entire line, including any data you may have typed to the right of the current cursor position.
Return, on the other hand, only enters the line, starting from the leftmost position and up to the cursor.
Clear on the numeric keypad may be used to erase the entire line without entering it. More information about
whether to use Return or Enter appears in the individual command description sections which follow. You
don’t have to follow these rules if you don’t want to; every place where one of these two keys may be used,
the other may be used as well.

If you decide that you don’t want to enter the text, move the mouse to some other line and click it there. This
will undo all changes you may have made on the original line.

The Tab key may be used to move the cursor to the top left corner of the window. It is useful for entering

addresses in Dump and Assembly windows, entering the Program Counter value in a Register window,
etc.

The button bar will flash after you have pressed Return or Enter if you made a mistake somewhere on the
line.

B All text that is not between single quotes (*) is converted to upper case; therefore, you may type
anything except ASCII sirings in either case without affecting the outcome. One exception to this
rule is mentioned in the section on Dump windows.

Numbers

‘Whenever you are asked to enter a number, you may enter a number in either hexadecimal, decimal, binary, or
ASCI], the value of a register, an indirection, an AQ00 trap name, a label, or any expression containing the
above items. The default base is hexadecimal, but hexadecimal numbers may optionally be preceded by a dollar
sign. Since spaces are often used to separate values, they may not be embedded in expressions except in ASCII
values and labels. Decimal numbers are preceded with a period, and binary numbers are preceded with a percent
sign. ASCII values must be enclosed by single quotes, and may contain single quotes themselves provided that
the inside single quotes are doubled. (Example: To enter the string a'b, type *a’ 'b"'.) Labels must be
enclosed by double quotes, and must not contain double quotes themselves. Labels may be any length, but only
the first eight characters are significant. See the Labels section for more information about labels.

3

TMON

AQ00 trap names are entered by typing an underscore () followed by the name of the trap. The value generated
by doing this will be the number of the trap as if the trap were entered into an Assembly window with one
exception: the Assembly window allows the value of bits 8 through 11 to be set by following the trap name
with a number (or expression), while trap names in expressions do not allow that. Since they are in
expressions, however, the same effect may be achieved by adding the corresponding value to the trap name
(Example: _Open+$200).

¥ There are differences between the usage of the A00Q trap names in expressions and as Assembly
window opcodes. The trap names may also be used in expressions in Assembly windows; they are not
considered opcodes. An example of an AQ00 trap name in an expression in an Assembly window is
MOVE #_Open, DO.

The registers may be used in two ways. They can either be used to provide values in expressions or to be
interpreted as actual registers. The second option will be called passing registers as variables. Consider this
example to clarify this distinction: Suppose you type the MOVE A0, USP instruction into an assembly window.
Also suppose that the current value of the user stack pointer (as displayed in the Registers window) is
$12345678. If the assembler interprets the USP as a value, the instruction will actually be assembled as

MOVE A0, $12345678. If, on the other hand, the USP is interpreted as a variable, the instraction will be
recognized as MOVE AQ, USP. In this particular example the assembler would choose the latter:option. The
exact rules on whether register values or variables are used are described below.

U Make sure that you understand the difference between value and variable references.

Some registers have different names depending on whether they are used as values or variables. If that is the
case, there is no ambiguity. If the same name is used for both the value and the variable, the variable will be
selected whenever possible. Only if that is not possible will the value be selected. For example, in the
instruction MOVE A0, USP the USP is interpreted as a variable. On the other hand, in MOVE DO, USP the USP
is a value since it cannot be a variable (There is no MOVE instruction from a data register to the user stack
pointer). In most expressions references by variable are prohibited so the values will be used.

5 The only places registers may be referenced by variabie are in Assembly windows and anchoring.

These names are used for the registers:

Variable Value Register name
AOtoA7 RAOtoRA7 Address registers.
DOtoD7 RDOtoRD7 Data registers.

Spx SP Same as A7 or RA7. *For anchoring windows only.
Ssp* sSSP System stack pointer. *For anchoring windows only.
usep Usp User stack pointer. (Normally unused in the Macintosh)
PC PC Program counter.

SR Status register.

CCR Condition code register.

N N The result of the last Number calculation.

v v Result of Find, Heap, and other functions.

USER The beginning of the user area.

DSPT The address of the ROM AQ00 trap dispatcher.

Technical Reference

Expressions can be made by combining numbers and register values using these binary operators:

+ Addition

Subtraction

Multiplication

Signed division

Signed modulo (The result has the same sign as the quotient would have.)
Logical OR

Logical exclusive OR

& Logical AND

The following unary operators are also allowed:

~ Logical NOT

e Indirection (The four-byte value at the given memory location. The given memory location must
be even; if it isn't, the button bar will flash.)

Positive number

- Negative pumber . .

1 Given an A000 trap number, return that trap’s address

Consecutive unary opewnu are evaluated from right to left. Binary operators are evaluated according to this
aﬂaofm
*/\ Evdnmd ﬂm

+- - \
A

| Evaluated last

Consecutive binary operators with the same order of precedence are evaluated from left to right, Triangular
brackets (< and >) may be used to modify the order of evaluation. Depending on the complexity of the
expression, between five and ten levels of parentheses are allowed. All operators use 32-bit arithmetic.

P SN %

+

Here are a few sample expressions: -

0 Evaluates as 0.

A0 Evaluates as $A0 unless it is interpreted as a variable reference to address register
0 by the assembler. e,

$a0 Always evaluates as $A0. d

242 Evaluates as 4.

~-1%-_10 Evaluates as 10 ($A). Both minus signs here are unary. The period indicates that
the second number is decimal.

RA2+RD3%*2 The value of address register 2 plus twice the value of data register 3.

22/2|2+4F&'A’ Same as <22/2>| <2+<F& 'A'>>, which is $13.

_Open Evaluates as $A000.

_Read+$400 Evaluates as $A402.

_Alert Evaluates as $A985,

_NewHandle Evaluates as $A122,

!{_Open Gives the address of the ROM _Open routine.

DSPT+16 Gives the address of the 22nd byte of the ROM trap dispatcher.

"WDe£f0000"+30 Gives the address of the 48th byte of the WDEF O resource. See the next section for

details on labels.

45 R

TMON

Labels

Labels make the Monitor a symbolic debugger. They allow you to work using names instead of often
meaningless or arbitrary numbers. The Monitor’s label facility is powerful, but, most of all, it is flexible. If
you have code labels that are not recognized by the Monitor, and if you have the necessary expertise, yon may
write a user area function that will recognize those labels. If you are not an expert, ask someone else to do it.

There are two basic operations that can be done with labels: convert a label into an address (*evaluate a

label”) and convert an address into a label plus an offset (“recognize the address™). The first operation is done
whenever you use a label in any expression; the label is automatically converted into an address, and the
expression is evaluated further. The second operation is done in Assembly, Number, and possibly User
windows. Assembly windows display the label and offset corresponding to the current instruction address on
the left side of the screen and the labels and offsets indicating any effective addresses on the right side.
Number windows suppose that the value typed was an address and try to find the corresponding label and
offset, which are displayed in the bottom right comer of the window if they were found. User functions may
also identify addresses using labels.

US° Evaluating a label is converting it into an address. Recognizing an address is converting it into a label
plus an offset. A

U™ Each label is assigned an address and a recognition range. The recognition range is the range of

memory, beginning with the label’s address, any references to which shall be recognized as the given
label plus an offset.

2 In general, no recognition range should be greater than $FFFF. Also, most of the label routines
dealing with resources will either ignore or truncate resources which are longer than $FFFF bytes.

Labels are always displayed as eight characters, possibly padded on the right side with spaces if there are fewer
than eight characters. They are displayed exactly the way they appear in the label table or code, which means
that they are not converted to upper case for the purpose of displaying. Labels are entered into expressions by
enclosing them in double quotes ("). They must not contain double quotes themselves. More than eight
characters may be typed for a label, but all but the first eight are ignored. If fewer than eight are typed, the
remaining characters are set to spaces. Unlike ASCII constants, labels typed into the Monitor are converted to
upper case. The Monitor ignores case while searching for labels.

IS Type labels by enclosing them in double quotes. Although labels are displayed in their original case,
case is not important when comparing labels, and you may type labels in either lower or upper case.
You may enter more than eight characters, but only the first eight are significant.

There are three basic kinds of labels plus two kinds of pseudo-labels. The labels may be either embedded name
labels, resourcellD labels, or table labels. Table labels may further be subdivided into absolute labels and
resource-relative labels, Here are the explanations of these types of labels:

Embedded name labels use names placed in code resources to identify code routines. The names are placed there
by some compilers and may also be included in assembly language routines by using the DC. B (or equivalent)
assembler command. The specific method of recognizing embedded name labels is left to the user area. The
default embedded name searching user routine searches for these labels in CODE, CACH, CDEF, DRVR,
DSAT, FKEY, FMTR, INIT, LDEF, MDEF, NBPC, PACK, PDEF, PROC, PATC, PTCH, SERD, WDEF
regources. (This can easily be changed in the user area.) A routine to which an embedded name label is assigned
must begin with a LINK A6, # instruction and end with either RTS or JMP (A0). An UNLK A6 must be
present within 20 bytes before the RTS or JMP (AO) . The name of the routine must be placed immediately
after the RTS or JMP (A0), and must be at least eight characters long. Moreover, .it must consist of eight
valid ASCII characters (ASCII values $20 1o $7E), but the first byte may optionally have its 7th bit set.
Finally, because of performance considerations there is a limit on the length of the routine: it should not be
longer than about 4000 bytes. If at least one of the above conditions is not satisfied, the Iabel is not
recognized. If recognized, the label is set to the address of the LINK instruction, and the recognition range
extends to the RTS or JMP (AOQ).

Technical Reference

Note that the routine may have internal RTS or JMP (A0Q) instructions as long as there is no UNLK A6
preceding them within 20 bytes. There can be no internal LINK A6, # instructions, since any such
instruction would be used as the beginning of the routine.

L you are using a compiler to generate the embedded name labels, make sure that the necessary
compiler options are turned on,

BF Sometimes it is possible for the embedded name label routine to recognize spurious labels. This may
happen if there are. ASCII characters present after the end of a subroutine.

Resourcel/lID labels are a convenient way of identifying resources. A resource/ID label consists of the resource
type in the first four characters and its ID in hexadecimal in the last four characters. Anything belonging to
any resource is recognized using a resource/ID label containing the correct resource type and ID. For example,
if you typed "DITLO080"+34 on the top line of a Dump window, the address of the window would be set to
the $34th byte of a DITL resource with an ID of $80. If you open Assembly windows to code segments with
no other labels in them, they will be most likely identified by using resource/ID labels.

There is one rare circumstance when this function might not behave as expected. The Monitor converts the
label to upper case, and the label evaluate routine then compares the resource type against the first four
characters of the label, This works fine except when the resource type contains lower case characters. Such
resources cannot be specified by using labels in expressions. Recognition works fine for all resources, though.

= Using resource/ID labels is a quick way to open windows to specific resources, as long as the resources
are present in memory. If not, use the user area Load resource function. Also use Load
resource 1o find resources with types containing lower case letters.

Table labels are the labels you may add or modify. You may also load them from .MAP files via a user area
function (See Label File Load). You may add or remove table labels by using the Label Add/Remove user
area function. Before you can do anything with table labels, however, you must allocate space for a label table
by using the Label Table user function. As you can see, table labels are qunte dependent on the user area,
which also means that they can be changed in many aspects. The information given here applies to the
predefined user area only.

Table labels may be either absolute or resource-relative. Absolute labels refer to an absolute memory location,
while resource-relative labels refer to memory locations within certain resource blocks such as code segments.
Absolute labels are most useful for identifying low-memory variables and ROM addresses. Resource-relative
labels are used as an alternate way of identifying code routines, with the.advantage that names do not have to
be entered into the code and the disadvantage that the label table has to bé allocated and loaded.

Absolute labels also have an ending address to prevent cases such as addresses around $7F000 bemg identified
using a label pointing to $400. The ending address specifies the end of the recognition range (it is included in
the recognition range). Resource-relative labels do not have explicit ending addresses, but their recognition
ranges end at the ends of their resources. If an address could be identified using more than one table label, the
one higher in memory is used (for recognition purposes, of course. Obviously, either one may béused for
evaluation. An example should make it clear: suppose that there are two labels, ALPHA at $20 to $300 and
BETA at $40 to $274. Address $10 would not be recognized at all, and neither would $500. $3F would be
recognized as "ALPHA ~ "+$001F, but $40 would be "BETA "+$0000. Finally, $274, $275 and $300
would be recognized as "BETA "+$0234, "ALPHA "+$255,and "ALPHA - "+$2EQ, respectively. On the
other hand, nothing prevents you from typing "ALPHA"+254 to specify $274).

$ mn recognizing labels, whenever there is a conflict between two or more table labels, the one highest
in memory will be used. The results of a tie are unspecified.

Here is some more technical data on the storage format of both kinds of table labels. It is also helpful in
understanding exactly what these labels can do. Each label record contains 16 bytes to make it easily readable
in a Dump window. The bytes are assigned as follows:

Byte 0 1 2 3 4 5 6 1 8tof$F
Absolute 0 -begin address- 0 -end address- label name
Resource-relative -——resource type—- ~-ID-- -offset- label name

TMON

The user area has a built-in table of labels describing the Macintosh low-memory system globals. They are
listed in Appendix A. Both the user area table and the user-defined table, if any, are scanned for labels.

The user area also recognizes labels for addresses in the A0OO dispatch table from the AQ00 trap names it
knows. The label of the four-byte address (two-byte if 64K ROMs are in use) in the dispatch table pointing to
the code of trap _Open is labeled "jOpen", etc. If a trap has no name, it is recognized as "j$Axxx", where
$Axxx is the trap’s number in hexadecimal.

o These labels are not evaluated in expressions by the built-in user area.

Finally, there exist pseudo-labels which are not really labels but objects recognized by the address recognize
routine. They are the AO00 trap entry points and the DSPT variable. These items are recognized as if they were
labels, but do not contain any quotes. To evaluate them, type ! _routine name to find the address of the A000
trap routine and DSPT to find the address of the A0OO trap dispatcher. Only ROM locations and system heap
nonrelocatable blocks are searched while recognizing these pseudo-labels. To prevent excessive
misidentification only the first $300 bytes after an A000 trap entry point are attributed to that label. Just like

in table labels, the AOOO trap whose entry point is highest in memory but not above the given address is
attributed to that address.

One more issue remains to be resolved: what happens when several of the above types of labels may be used to
.recogm'ze a particular address. The label highest on the order of recognition is given. The order of recognition
is:

1. Table labels

2. Embedded name labels

3. Resource/ID labels

4, Pseudo-labels

Although this happens less frequently, it is possible for a given label to be evaluated in more than one way,
for example, when there is a routine named "CODE0001", In this case the order of recognition is again
followed, which means that in the example the routine would be given and not the CODE resource. If there
are several embedded name routines with the same name, one of them will be picked, but there are no
guarantees as to which one. Under normal operation there cannot be twe or more table labels with the same
name, but that situation could arise if the label table 1is altered directly. Again, no guarantees will be made
about which label will be used.

Since the labels depend on much of the system being in a consistent state, they may not always be reliable
(although special precautions have been taken to avoid following things like odd or NIL pointers). In other
cases it may be preferable 10 turn off one or more of the label types. Finally, some of the label recognition
routines may not be particularly fast. Large Assembly windows with slow label routines tend to severely
degrade the Monitor’s performance. Try opening a large Assembly window to ROM and see how slowly the
Monitor responds to-typing and mouse clicking. On the bright side, the slowest label recognition routine, the
pseudo—label recognmon routine, is called only when disassembling ROM or system heap blocks. Assembly-
windows pointing to places like CODE blocks run at a normal speed unless you have several hundred labels
defined in the label table.

Incidentally, you can time the relative speeds of having various windows open on thescreenbycpezﬂng a small
pump window pointing to Ticks ($l6A) Make sure that the cursor is not on the second line of the Dump
2 and observe the changes in the value of $16D. Open other windows elsewhere on the screen and see

how ¢ inaemems in $16D get less frequent but also greater. Open a large Assembly window pointing to
ROM, and you can get an idea how much it slows the Monitor.

For the reasons outlined in the above paragraphs you have the option of turning off parts of or the entire label
recognition system in the Options window. See the description of that window for more infumation.

B¥ Use the Options window to disable the label system. Do it to prevent m wﬁenopuﬂng

Assembly or Number windows when the system is in an inconsistent m speed up the Monitor's
pace, or if you simply do not wish to use labels, :

Technical Reference

Exiting the Monitor

When you want to leave the Monitor and either transfer to an application, go into Configuration, or exit to
the Finder, use the Exit function, either by typing %¥E or clicking in the Exit area in the button bar. The
Main Dialog will reappear. The Monitor will stay in memory and can be called by interrupt.

Reentering TMON

Even after you have exited to the Finder or transferred to an application, you may re-execute TMON either by
clicking on its or any user area’s icon, although if you use a user area, it will be ignored. Doing this will
display the Main Dialog, from where you may either re-initialize the Monitor, enter Configuration and save
the user area, transfer to an application, or simply quit again.

‘Permanently Leaving the Monltor

The Monitor continues residing in memory and can be called by pressing interrupt until you either turn off the
Macintosh or press reset. There ig no other simple way to dispose of the Monitor.

TMON

Here is a discussion of some of the specifics of each of the Monitor’s functions, most of which are accessible
from the button bar.

Dump

The top line of the Dump window serves to allow you to enter the beginning address of the window. When the
window is first opened, the address is set to zero. You can set the address by typing a number or an expression
there and pressing Return or Enter. The address is automatically aligned to a word boundary. If the cursor is
already in a Dump window, a quick way to get to its top is to press Tab.

If you type Return on the top line without entering an address, the previous address of the Dump window is
incremented by two, and the window is updated. This is useful for fine adjustments of the window.

It is also possible to “anchor” Dump and Assembly windows to particular 68000 or Monitor registers. It is
done by entering the name (variable reference name) of the register in parenthesis on the top line of the
window, optionally preceded by an offset. All data and address registers may be used, as may Sp, SSP, USP,
PC, N, and V. The V register is particularly useful in anchoring windows during searches. Examples of
anchoring are: (A0), (D5),-20 (PC), 8 (V),and RAO (A0) . In the last example the RAQ was a value
reference, while the AQ was a register variable reference.

On the left side of the screen are the addresses of the sixteen bytes di.éplayed on each line of the window.
After the colons some symbols may be present; they are:

P The address of the line is the same as the program counter.
S The address of the line is the same as the system stack pointer,
U The address of the line is the same as the user stack pointer.
Oto6 The address of the line is the same as the value of that address register.
* One of the breakpoints is set at the address of the line,
N The address of the line is the same as the value of the last Number calculation.
v The address of the line is the same as the value of V.

No more than two symbols are displayed per line, even if more than two are applicable.

To enter data into memory, move the cursor into the data section, and change the numbers there, Of course you
may also enter expressions, but all values have to be between $00 and $FF. When you are done changing your
line, press Return. The cursor will then move to the first unchanged byte. Before you press Return, however,
make sure that the cursor is still in the hexadecimal part of the dump.

You may also enter ASCII data by changing the ASCII part of the dump. Press Return or Enter to accept the
new data, but make sure that before doing that the cursor is in the ASCII part of the dump. The cursor will
then move to the ASCII value of the first unchanged byte.

B& Do not enter the ASCII text in the ASCII portion of the window in single quotes. The text in ASCI
portions of Dump windows is not converted to upper case even though it is not between quotes.

In ASCHI portions of Dump windows only, in order to avoid entering extra spaces at the end of the line,
Retufn is made to behave like Enter in that it does not clear the rest of the line.

Enter may also be used to accept the new hexadecimal values. Be careful, however, because it will also accept
the values left in the remainder of the ficld as if you typed these values yourself. This may cause problems like
this one:

Before Changes 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF .."3DUfW........
Changes 00 11 .17 .18 .19 2+2 'x'88 99 AA BB CC DD EE FF ,."3DUfw.....
After Changes 00 11 1112 130478 88 99 AABBCC DDEE FFFF ,.cceeXeeeoennss

The best way to learn to enter data into a Dump window is to experiment, preferably on a block of unused
memory. Locations between the top of the application heap (which may be found by looking at the top line of
an application Heap window) and the bottom of the stack (which is pointed by register A7 in the Registers.

50

Technical Reference

window) are usually unused. In addition, it is sometimes convenient to locate a free block in the heap (using
the Heap window), and experiment there.

Dump windows may be scrolled and resized as described in the Windows section.

&

%‘ Do not enter addresses above ROM in the top line of the Dump window unless you are sure you know
what you are doing. If you know the addresses and functions of the I/O devices, you may sometimes be
able to change their settings directly from a Dump window. Remember that since the screen is
constantly being refreshed, the addresses shown in the Dump window are constantly being read. This
prevents the displaying of SCC registers, as even reading the wrong address will reinitialize the SCC,
freezing the mouse (See Mouse Unfreeze). VIA registers, however, may be displayed and even
changed. Make sure that the byte you want to change is the first in the Dump window’s line. Type a
new hexadecimal value (or expression) over the old value and press Return (not Enter!). This way
only the first byte of the line will be written. If you pressed Enter, all bytes on the line would be
written. If you modified some byte other than the first and pressed Return, all bytes up to the one
afterwhlchyoupmssedketum wouldbewdm.Bothoftheseeasesmayeansesomevery
undesirable effects.

US° On a 68020 machine, if the Monitor gets a bus error while reading memory to display in a dump
window (or assembly or any other window), it will substitute a random number instead. This will
cause a dump window pointing at nonexistent space to constantly change. If you have a Macintosh II,
ymmueﬂﬁnﬁeatrynpaﬂngadmnpwindowmadﬁessommensaoumgitbackwmdsme
line-oltmuaddrensm

Assembly

Assembly windows behave very similarly to Dump windows except that, of course, they contain assembly
language data. The address of the window on the top line is set in the same way as in Dump windows. The
symbols after the colon after the address of each line are also the same as in Dump windows.

As in a Dump window, typing Return on the top line without entering an address increments the previous
address by two. Usethxsxfthewmdowappearstobemlsahgnedmthemsu'ucnonsn'eam.

The Assembly windows attempts to use labels to recogmze the address of the instruction and any effective
address that the instruction may contain. The recogmuon of the instruction address is displayed just before the
instruction itself, and may not be edited. If the instruction contains an absolute, relative with offset, or
relative with index and offset addressing mode, the address specified by that mode is recognized on the right
side of the screen in the form of a comment. Iftherexsmorethanonesuchaddressmg mode present, only the
last one is recognized. The recognition information will not be displayed if there is not enough room on the
line.

Sometimes you may want to type an instruction on the line but cannot fit it due to the label on the left side of
the screen. In that case, use the Options window to temporarily turn off labels, assemble your instruction,
and turn the labels on again. Incidentally, the instruction that causes the longest disassembly is:

MOVEM.L # (p0.L),D0/D1/D3/D4/D6/D7/A0/A1/A3/A4/A6/A7. (Note the missing registers
in the register list. If D2, D5, A2, or A5 were present, the disassembler would use register ranges.)

Recognition of labels can be very convenient, but it may also slow the window. See the Labels section for
information on the usage of labels and fixes for some. problems.

To assemble instructions, type or change the instructions listed and press Return or Enter. If you entered an
entirely new instruction, you will probably want to use Return. If you just changed an immediate value or an
address in an existing instruction, it will probably be more advantageous to use Enter. Again, if you are
unsure about the consequences, experiment on an unused area of memory.

No spaces are necessary before the mnemonics, but their presence there will not harm anything. At least one
space is necessary between the mnemonic and the operands, if there are any. Spaces are not allowed anywhere
else except at the end of the line and in ASCII constants and labels. The line may also have an optional
comment at the end of the line. The comment must begin with a semicolon (;). The primary reason comments
are allowed is so that the assembler will ignore the recognition information provided by the disassembler.

1

TMON

The standard Motorola mnemonics are used for the disassembler. In the assembler the use of the Q (quick), A
(address), and I (immediate) suffixes after the mnemonic is optional. If a suffix is not included, the quick
form of the instruction is going to be used whenever possible. The mnemonic may, in some cases, be followed

bya.B, .W, .L, or .S extension. Extensions are prohibited in instructions that have either no or only one
size.

B¥° Extensions are prohibited in instructions that have no size or only one size. This includes instructions
such as MOVE DO, SR and SWAP DO.

If the AOOO trap names have been loaded, the A0Q0 traps are displayed by their names. All trap names begin
with an underscore. Unlike the 63000 mnemonics, the trap names contain both upper and lower case. In some
cases the names are followed by a single hexadecimal digit; this occurs if bits 8 (10 for stack-based traps)
through 11 of the trap word have been set in a nonstandard way. The standard values of bits 8/10 through 11
are:

1for_GetZone, MaxMem, NewPtr, NewHandle, HandleZone, RecoverHandle,
_GetTrapAddress,_PtrZone,_PurgeSpace, and_NewEmptyHandle.

2 for _HFSDispatch.

0 for all other OS traps.

8 to B for all toolbox traps.

You may also enter A000 trap names to be assembled. If you wish, you may enter the previously mentioned
hexadecimal digits after the names, They may even be expressions as long as they evaluate between 0 and $F.
Of course, you do not have to worry about upper and lower case when entering A000 trap names, since all
input not between quotes is converted to upper case anyway.

There are two extra instructions which do not have Motorola’s mnemonics. They are ?2?? and ROM, They
both have one argument that is a number between 0 and $FFFF. They are mnemonics used for unimplemented
instructions. The disassembler uses the ROM opcode for unnamed AQ0Q traps. 22?72 is used for all other
unimplemented instructions. The assembler doesn’t distinguish between the two opcodes. It also allows the

use of these opcodes to assemble A0OQ traps even if the names of the corresponding AOQ0 traps have been
loaded. ; ’

Most addressing modes are standard. Numeric expressions may be used anywhere numbers are allowed except
in the names of data and address registers. There are nevertheless several differences from the standard, and
those are explained below.

The PC relative with offset and PC relative with index and offset addressing modes may each be specified in
one of four ways: “destination, *, *+offset, and *-offset for the PC relative with offset addressing
mode and ~*destination(Rn), * (Rn), *+offset (Rn), and *-offset (Rn) for the PC relative with
index and offset mode. * stands for the current program counter value (the address of the first word of the
instruction).

S The ~ symbol may be omitted if doing so would not make the instruction ambiguous. Specifically, it
may be omitted in all branch and DBcc instructions. Omitting it in an operand of a MOVE instruction
" would probably cause the addressing mode to be interpreted as absolute or register indirect with
offset.
Fid

B8 Keep in mind that labels may be used anywhere in expressions.

Ba careful about using USP as an addressing mode. It may only be used as a variable in MOVE instructions
bétween the user stack pointer and an address register. Since these instructions have only one size, long, a
mnemonic extension is prohibited. An attempt to use USP in any other instruction, for instance

MOVE USP, DO, will cause the USP to be interpreted as a value and evaluated as an absolute addressing mode
whose address is the current value of the user stack pointer. See the Numbers section for an explanation. The
same problem will occur if you try to use SSP or SP in an operand.

Technical Reference

The register list after a MOVEM instruction is standard. The register may be listed in any order and separated by
either dashes to indicate ranges or slashes to separate two registers. All these generate the same instruction:
MOVEM.L DO/D1/A3-A0/D6-D7,-(A7)
MOVEM.L D0O-D1/D6-A3,- (A7)
MOVEM.L D0O/D1/D6/D7/A0/21/A2/A3, - (A7)
As in the second example, if a range contains both an address and a data register, the address registers are
considered to “follow” the data registers. You may not enter a list that doesn’t contain any registers.

Here is a summary of the addressing modes:

Dn Data register direct

An Address register direct

(An) Register indirect

(An)+ Postincrement register indirect

-~ (An) Predecrement register indirect

offset (An) Register indirect with offset

offset (An,Rns) Register indirect with offset and index
address Absolute

~address, *, Relative with offset

*+offset, *-offset
“address (Rns), Relative with offset and index

*(Rns),

*+offset (Rns),

*-offset (Rns)

#number Immediate
USP, SR, CCR Implied register

Rns is an abbreviation for either a data or an address register optionally followed by either a word or
longword size indication. Some examples of Rns are D0, A0, D3 .W, and A7. L.

Next i8 a table of the possible ranges of numbers. For the -128 to 255 and -32768 to 65535 ranges the values
above 127 and 32767, respectively, are just positive equivalents of the negative values.

1t08 $00000001 to $00000008 Values in ADDQ, SUBQ.

0w 15 $00000000 to $0000000F TRAP value gnd value after AOOO trap name.

-128 to 127 SFFFFFF80 to $0000007F MOVEQ value..

-128 to0 255 $FFFFFF80 to $000000FF Byte immediate values, offset in register indirect
with offset and index addressing mode.,

-32768 to0 32767 SFFFF8000 to $00007FFF Absolute short addressing mode,
-32768 10 65535 $FFFF8000 to $0000FFFF Word immediate values, offset in mgiswr indirect

with offset addressing mode.

0 to 65535 $00000000 to $0000FFFF ??7?7? instruction.

all $00000000 to $FFFFFFFF Absolute long addressing mode and long immediate
values.

#.126 to *+129 Offset in relative with index and offset addressing
mode.

*-126 10 *+129 (excluding *+2) Offset in a short branch.

*.32766 1o *+32769 Offset in a relative with index addressing mode or a
long branch.

During reverse scrolling the disassembler tries to find the precedmg instruction, but that is not always
possible. To make a guess at the length of the preceding instruction it goes up to 128 words back in memory.
K it finds that no precedmg instruction exists, it 80es back one word and disassembles from that location. If
more than one preceding instruction is possible, it chooses one of them. In both cases it will refresh the entire
window, significantly slowing the reverse disassembly.

The assembler currently supports only the 68000 instruction set; 68020, 68030, 68881, and 63851-specific
instructions and addressing modes are neither assembled nor disassembled.

TMON

‘Breakpoints

Only one Breakpoints window can be open at a time. It contains up to seven breakpoints. To enter or
change an address of a breakpoint move the cursor to the appropriate place on the lower line, enter the new
address of that breakpoint, and press Return. Avoid having two breakpoints at the same address. To delete a
breakpoint do the same thing except instead of an address type a dash. You may also change more than one
breakpoint at a time by separating the addresses and/or dashes with spaces. For instance:

Before Changes 007000 007432 -——————- O012FFE
Changes 7410 - 7422 (Return pressed here)
After Changes 007410 ~—————— 007422 012FFE

The breakpoints are implemented as TRAP #$F instructions. They are not put into memory until qfter the first
instruction is executed after you leave the Monitor. This prevents you from having to remove a breakpoint in
order to continue your program after it hit that breakpoint. Unfortunately this also has some side effects; see
Trace Flag Side Effects for more information and some warnings. See also Breakpoints in the Exception
Handling section.

o You can cause many problems by setting breakpoints in sections of code that will be subsequently
moved or written to the disk. The breakpoints will remain in the code, but they will be no longer
recognized by the Monitor as breakpoints; instead, the Monitor will treat them as TRAP #$F
instructions. Moreover, you will not be able to remove these breakpoints unless you know what
instructions were “under” them before they were set. '

o The same problem as stated above may happen if you have breakpoints set and click the Monitor
button in the Main Dialog to re-initialize the Monitor. Fortunately, this should not happen often
since there is little reason to set breakpoints while running the TMON loader.

U™ The difference between a breakpoint and a TRAP #$F instruction is that after a breakpoint has been
encountered the next instruction to be executed is the instruction “under” the breakpoint, while after
a TRAP #$F instruction the next instruction to be executed is the next instruction in the code.

Registers

The Registers window contains saved values of all 68000 registers. All registers are displayed as 8-digit
hexadecimal values except the status register, which is displayed in binary with the flags indicated as either
upper or lower case letters. The interrupt mask in the status register is displayed as three binary digits. To
change any of the registers move the cursor to the appropriate register, enter a new value, and press Return or
Enter. See The Cursor and the Editing Facilities for an explanation. As in Breakpoints, more than one
register can be changed at a time.

‘When changing the status register enter the name of the flag in lower case, a 0, or a period to clear a flag, or
the name of the flag in upper case or a 1 to set the flag. Beware of changing the S flag. If its state is changed
and Enter is pressed, in the next field the other stack pointer is going to be expected, causing the button bar
to blink. Therefore, it is best to press Return after changing the supervisor flag.

A trick §8 used to disable the conversion of flags to upper case. The entire status register is enclosed in quotes,
allowing you to use upper case to set flags and lower case to clear them.

The Monitor won’t allow odd values in the program counter or either stack pointer when running on a 63000.
On a 68020, odd values are allowed in the stack pointers,

The Registers window currently displays only the 68000 registers; the extra 68020, 68030, 68881, and 68851
registers are not shown and may not be changed.

Technical Reference

‘Heap

The Heap window displays the contents of a heap zone. When it is first opened, it displays the application
heap zone, but it may be toggled between the application and system heap zones by pressing Return or Enter
with the cursor on the top line. The top line displays, in addition to the name of the current heap zone, its
location and number of free bytes, both in hexadecimal. The addresses of the zones are stored in SysZone
($2A6) for the system zone and ApplZone ($2AA) for the heap zone. These two locations are maintained by
the Macintosh operating system; you should normally not be changing them,

3‘ The Monitor will crash if the contents of either of these locations (SysZone or ApplZone) is odd or
does not point to RAM.

The Heap window displays the position, length, and other data for each block in the heap zone. For each block
the following information is displayed:
¢ An asterisk if the block is immovable or & space otherwise.
¢ The address of the beginning of the block in hexadecimal. Memory Manager’s block header for this
block is stored in the 8 preceding memory locations.
¢ The logical length of the block in hexadecimal.

* The size correction as a single hexadecimal digit. The size correction is the difference between the
logical length and physical length-8. The physlcal length is the difference between the address of the
next heap block and the address of this one. The size correction represents the number of unused bytes
in this heap block.

One of the following phrases:

Free a free block.

Nonrel a nonrelocatable block.

Handle at $.. (LPR) a relocatable block. The address of the handle is given. The three letters in
parenthesis are the flags found in the high byte of the handle, set if they are in
upper case or clear if in lower. L is set if the block is locked, P is set if the block
ispurgeable.andkissetiftheblockxsaresoume

INVALID any block that is not consistent. See the comment on reliability below.

Nonrelocatable and relocatable blocks may then contain further information helpful in identifying them. All
such information except the resource file information is generated by a user routine, and is therefore subject to
change and customization. If you find the identification of blocks inadequate, you are welcome to try to change
it to suit your needs. Information on doing this is listed in Creating Your Own User Functions.

55

TMON

All relocatable blocks with the R flag set are checked against the list of open resource files and their
resources. If they are present, their resource file number, type (ASCII letters in quotes), and ID number are
displayed. All other blocks are passed to the user routine which should identify as many of them as possible.
The default routine identifies the following:

UnitTable $11C A block containing all of the device control blocks.
DSAlertTab $2BA The Dire Straits alert table.

FCBs $34E A block containing all of the file control blocks.

WDCBsPtr $372 A block containing all of the working directory control blocks.
Scrap $964 Memory scrap.

WMgrPort $9DE A grafPort used by the Window Manager.

Oldstructure $9E6 - A saved structure region used by the Window Manager.
OldContent $9EA A saved content region used by the Window Manager.

GrayRgn $9EE The rounded region defining the desktop.

SaveVisRgn $9F2 A region used by the Window Manager.

MenuList $AIC The current menu bar list.

ParanmText0-3 $ARO The parameters in the last ParamText call.

TEScrap $AB4 TextEdit scrap.

FinderInfo Currenta5+$10 The Finder information handle (in system heap)

VCB §.. Volume control block.

Resource map $. Resource map of the given resource file,

Driver storage $. Storage for the given driver.

Window #$.., kind $.. A window found by following the window list. The ﬁrst number is

the number of the window (0 is the frontmost window, 1 the next
one, etc). The second number is the value of windowKind for that
window.

(The hexadecimal numbers are either handles or pointers to the items above.)

In addition to the items listed above, the components of WMgrPort and all windows on the window list are
identified. These components are identified first by either the phrase (Window @$. .), which indicates the
Yocation of the window to which they belong, or (WMgrPort), indicating that they belong to the
WMgrPort. After one of these two identifications one of the following messages is displayed:

VisRgn The region of the window which is visible on the screen.
ClipRgn The clipping region.

Picsave Data for a picture being saved.

RgnSave) Data for a region being saved.

PolySave Data for a polygon being saved.
StrucRgn Structure region of window.

ContRgn Content region of window.

UpdateRgn Update region of window.

WData ‘Window-defined data.

WTitle The title string.

WPic Window’s picture used for updating.
DlgItemList Item list (dialog windows only).
TEHandle TextEdit record (dialog windows only).

Item #5.. type 5. An item in the window’s DlgItcmLxst (dialog windows only). The first number is
. the item number (first item is 0, second 1, etc.), and the second number is the item

v type.
" Control Any control belonging to the window. This is displayed only if the control could
not be identified as an item in that window’s dialog list.

85> If the Heap window crashes, “hangs”, or causes the screen to flicker when opened or scrolled, the
identification routines are getting lost, and you should turn them off. You also may want to turn
them off for other reasons; for example, it is possible that identification mxght slow the Monitor too
much. That is most likely to happen if you write your own heap identification routines, and do it
inefficiently; the standard identification routine is quite fast. Anyway, if for any reason you want to
tum off either identification of non-resource objects or identification of resources, use the Options
window.

56

Technical Reference

A Heap window may be scrolled up or down by using the arrows on the right side of the window. There are
two quick ways to scroll the window up to the top of the heap: either close the window and then reopen it or
type Tab, Return, Tab, Return. This will toggle the window between the two heaps and back, with the side
effect that at each toggle the window will display the top portion of the heap. Since there is no quick way to
scroll the window to the bottom of the heap, it is recommended that Heap windows be left open as long as
they are needed. No harm will be done if the window is left open while the information in the heap changes;
the window will just update itself. It is sometimes interesting to watch an open Heap window while the
Scramble now user area function is repeatedly executed.

IS More than one Heap window may be opened by using the Shift key. Two or more windows may even
be opened to the same heap zone without harmful effects.

" Sometimes it is possible for a Heap window to turn completely blank except for the top line. This
will happen if the window was initially displaying an area near the bottom of the heap and then the
heap contracted. In that case you can either do nothing, scroll the window up until you see the heap
blocks, or follow one of the procedures described above for quickly moving the heap window to the
top of the heap. For a demonstration of this phenomenon move the Heap window to the bottom of
the application heap and then use the Heap function in the user area, causing some blocks to be purged.

You cannot enter any information into Heap windows. Any changes to the heap structure have to be done by
opening Dump windows to the appropriate places and changing data in them. A Heap window may then be
used to verify that the changes were done correctly.

There is a quick way of scanning the heap on either a Dump or Assembly window (or in both). Open one of
these windows and anchor it to V by typing 0 (V). Then place the cursor in a Heap window on the line of the
block at which you would like to look and press Return or Enter. That action will cause V to be set to the
address of the block at which the cursor was located and then the cursor to be moved to the next block of the
Heap window. By repeatedly pressing Return or Enter the entire heap may be scanned without having to type
the addresses of the blocks. Remember, however, that the cursor in the Heap window will always be on the
line after the line containing the block currently being displayed in the Dump or Assembly window.

= Finally, here is some information about error checking and reliability: aside from the values of
SysZone and ApplZone, the Heap window does complete error checking of the heap blocks it displays.
Whenaddressesofhandlesared:splayed the handles are checked to make sure thattheypomttothe
block. All pointers are checked to make sure that they are even and non-NIL and that they point to
real memory. Any odd physical block lengths are rejected as are blocks with impossibly large sizes.
The heap zone pointers in the block headers of relocatable blocks have to point to the heap zone which
is currently displayed. Any blocks which do not pass the error checking are displayed as INVALID,
‘You may use a Dump window to find why they are considered invalid.

Only one area may cause problems with reliability of Heap windows. In order to make the speed of these
windows acceptable, the resource file maps are not fully checked when relocatable heap blocks are being
identified. Should a damaged map claim that it has 10,000 resources, all will be examined in search of the one
that is to be identified. Nevertheless, as with the heap zones themselves, all applicable pointers md handles in
the resource file maps are rejected if they are NIL or odd.

" The supplied user routine does error checking on all parts of structures it examines. In this case, error checking
means that all pointers are checked for NIL or odd. The routine will not stray on invalid data structures for
long. However, should you still encounter problems with the identification routine, you may turn it off by
using the Opt ions window. One indication of these is the screen becoming fuzzy when a Heap window is
opened; this is cansed by some memory accesses above ROM on the Macintosh 512K, 512Ke, Plus and SE.

Q Blocks which are displayed valid in the Heap window are usually valid. There is one important
exception: if, for one reason or another, some of the handles which are traced by the Heap function
have been disposed but not set to NIL, they may still point to master pointer blocks. If another
handle is allocated using one of the master pointers, it will be erroneously identified as the heap
object to which that master pointer used to belong. This problem will usually be encountered if not
all managers have been initialized. In this case some heap blocks may be incorrectly identified.

57

A File window displays the contents of any open resource file. When a File window is first opened, the
numbers of all open resource files are displayed on the second line of the window. You may then enter the
resource number of the file you wish to examine on the top line. The system file is usually file $2 and the
application file is usually the next higher number. If, after you are done examining one file, you wish to
switch to another file, you may either enter the number of that file on the top line of the window or press
Return there, causing a listing of the numbers of all open resource files to reappear.

Once you have entered a number of an open resource file, the contents of the file’s resource map are displayed
in the window. The top line of the window contains the address of the resource map as well as three flags
which apply to the entire map. These three flags are stored in the 22nd byte of the resource map and are
displayed as follows:

r The map is read-write R The map is read-only
c Nocompactionnecessary C The map will be compacted
w Themapwasnotchanged W The map was changed and will be written to disk

For each resource its type, ID number, flags, location, and optionally name and system reference data are
displayed. The type is displayed first, in ASCII between single quotes, followed by the resource ID displayed
as a four-digit hexadecimal number. The flags follow. They are displayed as upper case letters if they are set
or periods if they are clear. The following abbreviations are used for the flags:

. Local reference R System reference (64K ROMs only)
. Load into applicationheap H Load into system heap

. Not purgeable P Purgeable

. Not locked L Locked

. Not protected T Protected

. Not preloaded 1 Preloaded

. Don't write into file W Write into file

. U flag clear U U flag set

After the flags either the memory location of the resource is displayed or nowhere if the resource is not in
memory. The name of the resource (also in quotes) is then displayed if it is present.

File windows are very similar to Heap wmdows in the aspects of scrolling. In fact, the last few paragraphs
of the description of Heap windows apply to File windows as well with the difference that File windows
do not use any identification user routines. There are two more minor differences: in order to quickly move a
File window to the top of the file, instead of typing Tab, Return, Tab, Return, type Tab and then Enter.
This will re-enter the current file number into the top line of the window, also causing the window to be
moved to the top of the file, Finally, when browsing through the file using a Dump or Assembly window
anchored to V, you will find that blocks which have not been loaded into memory are ignored. Pressing Return
or Enter on a line containing one will not change the value of V.

Just as in the Heap windows, any information displayed in the File windows is checked for accuracy. 'NIL or
odd pointers will not cause the File windows to crash, although there may be more elaborate ways of
crashing them. Any invalid files are simply not displayed. Any invalid resources are displayed as nowhere.

Exit, G_gub Step, and Trace

These four functions all leave the Monitor, starting execution at the current PC. They differ in the duration
before they return to the Monitor. Trace retums to the Monitor as soon as the next instruction is executed;
Step is just like Trace except that it treats AOOO traps as units; if the next instruction is an A000 trap, it is
allowed to complete, and only then does control return to the Monitor. GoSub also like Trace, except that
both AQ0O traps and JSR or BSR instructions are treated s units. GoSub is a quick way of skipping
subroutines and executing just the main body of the program or a procedure. Finally. Exit leaves the Monitor
indefinitely; that is, until the next exception.

58 . .

Technical Reference

All four functions restore all registers, the screen, and the cursor before they leave the Monitor. They do not
put breakpoints into memory until the second instruction executed to allow continuing after a breakpoint.

‘When the Monitor is reentered after GoSub, Step, or Trace, one of two messages may appear near the top
of the screen. “Trace interrupt at § * will usually appear; if, however, an entire subroutine or
A000 trap was executed, “The AG00 trap or subroutine has returned” will appear instead.

It is possible for the Monitor to refuse to proceed, displaying the interesting message, “I don't want to
execute the next instruction.” This will usually happen when continuing would not normally be to
your best advantage. Specifically, the Monitor will refuse to continue if the next instruction is _SysError,
(Exception to the exception: _SysError will be executed if the word value of DO is a “harmless™ system
error value, where “harmless” is defined by the user area. In the default user area values less than 0, 30, 31,
42, and greater than 99 are harmless.) Also, for GoSub and Step only, LoadSeg, Launch, Chain, and
any AQOO traps with both the stack-based and auto-pop bits set cause the Monitor to refuse to execute the
next instraction. These latter traps are restricted for GoSub and Step because these functions do not know
where these traps return; unlike other AQ00 traps, these do not resume at the instruction following the trap.

B Use either Exit witha breakpoint or Trace if you want to continue execution without losing
control after hitting a _LoadSeg, _Launch, or _Chain. Traps with auto-pop bits set should only
a problem in older code; the auto-pop bit is not used any more. If you do find one, examine
the stack to find the return address, set a breakpoint there, and use Exit.

© Due to the way these routines function intemally, be careful if the next instruction is MOVE SR, dest.
The trace bit will be set in the saved value of SR, and you should clear it before continuing. This '
problem arises because these exit functions, including Exit, use the trace flag to single-step the next
instructions, and then put in the breakpoints and perform other tasks (like re-entering the Monitor).

& Even though the Monitor uses the trace flag for its internal stepping purposes, it will work correctly
if you set it in the Registers window. A trace interrupt will be generated after every instruction,
even if you use Exit. Keep in mind that the trace flag is cleared by any AOOO traps encountered.

Although GoSub and Step are quite clever, you should be aware of some of the problems they may cause. In
order to obtain control after the subroutine or A0OQ trap returns, they save the address of the next instruction
in the Monitor’s variables and pass a dummy address pointing to a Monitor routine to the trap or subroutine
about to be executed. Obviously, if that subroutine examines or changes the return address it got on the stack,
this scheme will fail. You will have to avoid skipping through subroutines or AO0Q traps that examine or
change the return address. A few AQQO trap routines examine the return address and execute patches if they
were called from a particular place in ROM,; this is used as a method of fixing ROM bugs. This is a mild
version of the problem described above, as it will cause trouble only if you use GoSub or Step on the A000
trap in the ROM place to which the patch is attached; the patch will not be executed.

Another potential area of problems is interrupting the subroutine or A000 trap that was called by GoSub or
Step. The interrupt could be a press of the interrupt button as well as a breakpoint, illegal instruction,
address error, user area AOQO trap exception, or another exception. Whatever the cause, after that interrupt you
may wish to step through your code at the new PC and use GoSub or Step again, on another subroutine. This
will work correctly up to eight levels of recursion. Also, nothing harmful will happen if one of the levels of
recursion is never completed. The Monitor can keep track of up to eight pending subroutine or A000 trap
returns, and it will halt execution as it encounters each one.

Finally, in a case similar to the above one, suppose that the subroutine or A000 trap called by GoSub or Step
is interrupted. After the interruption you choose to single-step through the rest of the subroutine, including
the final RTS, JMP (A0), (or whatever) statement. Instead of getting the expected “Trace interrupt at
$ " message you will instead get “The AGOO trap or subroutine has returned,” but
everything else will work as expected. The subroutine’s return address will be removed from the Monitor’s
eight-entry list of return addresses mentioned above. If you wish to examine it, the eight-entry list is stored
at USER-siZFO [longword array], and the order of priorities of assigning the next entry is at USER-$2F8
[byte array

59

TMON

"Options

The Options window lets you enable/disable seven features of the Monitor. You may want to disable them
because they crash, take too much time, or don’t do anything useful. Whatever the reason, you may disable and
re-enable any of the features by moving the cursor to the correct line and pressing Return or Enter.

Master switch disables all label recognition.

Scan resources disables the scanning of resource files by the label routines. This turns off resource/ID
resources completely. Since there is now no way of distinguishing CODE segments, the embedded name labels
are also inoperative. Resource-relative table labels can no longer be evaluated or recognized.

Scan label table disables the user area label table routines.

Scan for names in code disables the user area embedded name label routines.

Identify AOOO traps disables the pseudo-label Monitor routine.

Scan resources disables the identification of resource types, IDs, and files in Heap windows.
Identify items disables the identification of other Heap window items via a user routine.

Number

The Number window asks you for a number or an expression, evaluates it, and displays it in hexadecimal, 32
and 16 bit decimal, ASCII, as an A000 trap name, and as a recognized address. It also sets the N variable to the
value entered. The second line of the window contains, in order from left to right, N= (if the value displayed
is equal to the current value of N), the value in hexadecimal, the value in signed 32-bit decimal, in paxenthm
the lower 16 bits of the value in decimal, and in quotes the value in ASCIL. The A0Q0 trap name

to the lower bits of the value is next, followed by the label recognition information that would be generated
if the value typed were an address. If the particular trap has no name, the number is displayed instead, If there

is no recognition information available for the particular address in the window, the recognition field is left
blank.

More than one Number window may be open on the screen at a time. Several Number windows can serve as
temporary memories to remember values which you would otherwise have to write on paper.

The N= indicator is not as extraneous as it may initially seem. Try opening two Number windows and entering
different numbers into them. If no Number window contains the N= indicator and you want to see the current
value of N, enter N into any Number window.

User

The user area is one of the most powerful features of this Monitor. It allows you to create your own
functions or use the predefined ones. This section is just an overview of using the functions; information on
creating new ones and an explanation of the predefined ones are included later.

The top line of the user area contains the beginning address of the user area, which is also the value of the
predefined variable USER. Afterwards the physical and logical sizes of the user area are listed, The physical
size is set at boot time and cannot be changed. It indicates how much memory is reserved for a wser area. The
logical fize is used by the Configuration functions only and indicates how much disk space the user area
would gake if it were saved. The logical size may be changed by typing a new value in its place and

Return or Enter. It must, however, be nonzero, a multiple of $100, and not greater than $7F00 More
information on logical and physical sizes is in the Conflguration section.

To use a function in the user area, move the cursor to the appropriate line. Type as many y parameters after the
colon as the function requires (some require none), and press Return. The function wm be executed and the
cursor will return to the position after the colon. The function may return results in other-places on the line,
usually within the curly ({ and }) brackets. Some functions also put numbers after the colon so that you can
just press Enter to execute the function again. Still others affect Monitor’s registers, usually V. Functions .
can be created, like Leave TMON in the predefined area, that leave the Monitor altogether, while others may
just provide additional parameters to be used by other User functions.

60

Technical Reference

Most functions within the predefined area give a listing of the parameters they expect within parenthesis
before the colon. If there is no such listing, the function probably doesn’t need any parameters and is executed
just by pressing Return. If the wrong number of parameters is supplied, the button bar will flash.

Sometimes the function name itself is displayed in parentheses. That means that several functions have been
eacoded on a single line, and you can cycle through them by pressing Return immediately after the colon. A
good example of such a function is Print (which should not be confused with the Print command in the
button bar).

Print

This function sends the contents of the active window to a serial port. See the Configuration section for more
information about which port is used and how to change data like the baud rate. You may stop the printing by
pressing the mouse button. If a handshaking protocol is active, you may have to hold the mouse button for a
long period of time (possibly 20 seconds or more), because the state of the mouse button isn’t checked while
the Macintosh is waiting for the other RS232 device to allow it to send another character. Also note that since
the mouse click is executed, if you tell it to print by clicking the mouse button over the Print area in the
button bar, you will give the Monitor another command to print the topmost window, which is just what you
wanted to avoid! If an error occurs while printing, its error code will be stored on the Print line in the user
areaifyouueuxingmeofthepredef‘meduserareas An error code of 1 will be storediftheprintingis
interrupted by the mouse buiton. An error code of 2 is displayed after an attempt to use the user area’s Print
f1ile function on a nonexistent resource file, See also the explanation of the Print function in the user area
and the Printing Problems section for some of the possible communication problems.

) Never use % -interrupt to stop a long printout; press the mouse button instead. If you do not heed
this advice, the Monitor may behave in ways stranger than could be imagined.

‘Mouse Unfreeze

This is the only function that does not appear in the button bar at the top of the screen. It can be executed
from the keyboard only by holding down the 3 key while typing M. This function unfreezes the mouse and at
the same time turns off both serial ports. The mouse is probably frozen if it appears on the screen but doesn’t
move or doesn’t appear on the screen at all. The Monitor must respond to keyboard commands if you want to
use the unfreeze. The main cause of mouse freezing is accessing memory locations above ROM. Programs that
crash or otherwise go out of control frequently do that. Accesses to such memory locations tend to reset the
SCC chip, turning off the mouse interrupts. This option will turn those interrupts back on. This is most
useful on a Macintosh 512K, 512Ke or Plus.

o Note that the use of Mouse Unfreeze leaves the serial ports in an unstable state. In particular, using
any AppleTalk function after having used Mouse Unfreeze may result in a system which is in a state
where re-entry to TMON is not possible.

If you should happen to freeze the mouse by opening a Dump or Assembly window with an address in that
memory range, first move the cursor to the top of that window by typing Tab or using ®D or 8A, then
change the address of that window to zero and press Return, and finally use the Mouse Unfreeze function. In
File windows do the same thing but press Return alone, causing just the list of file numbers to be displayed.
If using the unfreeze now doesn’t help, follow the procedure for Heap windows.

If a Heap window causes the mouse freezing or if any of the above procedures doesn’t work, you have to close
the offending window. That requires you to move the mouse to the close box. In most cases that can be done
by moving the mouse while repeatedly typing %M. The mouse will move in small jumps, but with luck you
will be able to close the window. If even this doesn’t work, hold down the % key and press the interrupt
button. Afterwards you can use the unfreeze function. This will reset the Monitor, possibly damaging it, but
now at least you can use it.

If this option was performed sﬁccessfully, a message window will appear near the top of the screen informing
you that the mouse has been unfrozen and that you should not try to use the serial ports. You may, however,
use the Monitor’s Print functions.

TMON

Exception Handling

The Monitor intercepts all vectors except the ones essential to the functioning of the Macintosh, although you
may change which vectors are intercepted by modifying the user area. For extra security the Monitor’s vectors
are stored again into low memory every time the Monitor is entered unless a Configuration option is changed
(See Configuration). The Monitor also has a self-check feature that will tell you if the Monitor has become
unreliable. If it detects an error, it will reset the entire Monitor and display a message. You may then take an
appropriate course of action. Finally, the user area functions may themselves generate exceptions that are
intercepted by the Monitor.

Normal Exception Messages

‘When an exception is intercepted by the Monitor, the registers are saved and breakpoints removed. Then the
current screen, cursor, and cursor position are saved, the hardware is switched to display the main screen page
if the alternate one was used on a Macintosh 512K, 512Ke, Plus or SE or swapped into one-bit mode on a
Macintosh II, the Monitor’s window and background are displayed along with a message explaining why the
Monitor was entered, the user area’s initialization routine is executed if present, and control of the computer
is turned over to the Monitor. This section deals primarily with the messages that appear at this time.

The messages for most exceptions are self-explanatory. There is one thing, however, that may require an
explanation. When the message gives the current value of the program counter, it sometimes states that the
exception happened before that value and sometimes at that value. The program counter reported is always the
value saved by the 680x0 upon handling the exception. The 680x0, however, sometimes saves the address of the
next instruction and at other times the current instruction. This is the reason for the difference.

Address and Bus Errors

The messages for address and bus errors give extra data on 68000 machines. The program counter is given along
with the address that was accessed when the error happened. The program counter value most likely isn’t the
address of the instruction that caused the error; in most cases it is somewhere nearby that instruction, although
branch and jump instructions may affect the saved value of the program counter. The function code is displayed
in parenthesis after the access address and tells what type of access that took place:

Message displayed Function code saved by the 68000
user data 001

user program 010

supervisor data 101

supervisor program 110

exception 111

illegal 000, 011, or 100

The next field, instruction, tells whether the processor was executing an instruction at the time of the
error. The only time it is not executing an instruction is during fetching an exception vector. The last field,
mode, tells whether the access was a read or a write.

On a.68020, only a simple bus or address error message is reported.

Breakpoints

The breakpoints are TRAP #$F instructions. TMON distinguishes them from true TRAP instructions by
checking the program counter against its list of breakpoints. If it is present in that list, a breakpoint message
is given; otherwise, a trap message is given. See the Breakpoints section in The Monitor’s Functions for
more information. ‘

Technical Reference

‘System Error

The system error vector is also intercepted by the Monitor. All system errors except the ones listed in the
User Area (30, 31, and 42 are the default) will cause the Monitor to be entered with an appropriate message.

Interrupt Button

The interrupt button on the programmer’s switch on the side of the Macintosh generates interrupt exceptions
with priority levels between 4 and 7 (only 7 is generated on a Macintosh II). If the Monitor isn’t currently
executing, it will be started and an appropriate message will appear at the top of the screen. If it is currently
executing, the interrupt will be ignored.

Sometimes pressing the interrupt button may have no effect. If somethmg goes wrong with the Monitor and
you y want to regain control, hold down the % key while pressing the interrupt button. This may
re-initialize the Monitor to its original state, but that action may also erase some of the Monitor’s variables,
causing a message stating that the Monitor has been damaged to appear on the screen. Do not use Exit or
GoSub after you have pressed %-interrupt unless you initialize the program counter, stack pointer, status
register, and any other necessary registers.

3"' The ®-Interrupt action is one of last resort and should not be used often, as it may cause
unpredictable damage to the Monitor.

o On the Macintosh 512K, 512Ke, Plus, and SE, the processor’s interrupt level can be set high enough so
that neither interrupt nor ®8-interrupt will work. When this happens, there is no way to stop the
machine, Either press the reset button, or turn the system off and on again.

‘Self-Check

Whenever there is a window on the screen the Monitor does a self-check . If the self-check detects some signs
of damage to the Monitor’s code or a stack overflow, it will re-initialize the Monitor, just as if you pressed
%-interrupt (see the previous section). There are three things that could cause the Monitor to display a
message informing you that it has been damaged:

One of the ways the Monitor could be damaged is if its code has been modified. If that happens, you will get

only a message stating that the Monitor has been damaged. In this case some function of the Monitor will no
longer work because its code has been changed.

‘The Monitor also checks to make sure that its stack stays within the area of memory designated to it. If it
overflows, you will get a message stating that the Monitor has been damaged.

In this case some user functions will no longer work because the stack is located immediately after the user
area.

The third way the Monitor could be damaged is if an exception occurs while the Monitor is executing. The
Monitor is executing anytime the Monitor’s screen is visible. This includes execution of a user function by
pressing Return in the user window. This does not include execution of user routines by calling them from an
outside program. If this type. of an error occurs, you will get two messages, one staung the nature of the
exception and the other stating that the Monitor has been damaged. The moral of this is to make sure that your
user routines are “safe” by using code to prevent exceptions such as address errors from happening in them,

User Exceptions

‘The user routines that are called from an outside program may enter the Monitor by executing TRAP #S$F
instructions from within the user area, displaying the message “User trap:” followed by text from the
user area. Details on this are included in the User Routines Entering the Monitor section. To see an example
of this, use the Leave TMON function in the standard user area.

TMON

Here is a discussion of some of the problems you might encounter while using the Monitor.

Mouse Freezing
See the Mouse Unfreeze section in The Monitor’s Functions.

Interrupting the Vertical Retrace

‘When you press the interrupt button to enter the Monitor, there is a small chance that you will interrupt the
vertical retrace handler routine. This could have a number of effects, ranging from none to a system crash when
you leave the Monitor. Although this possibility can’t be eliminated, its probability can be significantly
decreased by making your program’s vertical retrace queue short if it has any and by not moving the mouse
when you press the interrupt button.

Can't Regain Control of the Monitor

If interrupt does not seem to work, hold down ® and press interrupt. Should this still be unsuccessful after a
few tries, you probably will not be able to regain control of the Monitor and should give up and press reset.
See the Interrupt Button section for more information on this topic.

Trace Flag On

If you keep getting a trace interrupt after leaving the Monitor, you are either single-stepping or the trace flag
in the Status Register is set. Clear it, Remember to clear the trace flag in the saved SR if you use Exit,
GoSub, Step, or Trace when the next instruction is MOVE SR, dest.

Windows Crash or Are Too Slow

If the Assembly, Number, or User windows crash when opened or scrolled, tum off the labels using the
Options window. If you can isolate the label routine that is causing the crashes, you may turn if off and
leave the others on. If the Heap windows crash, you will have to turn off one or both of the options in the
Options window dealing with Heap windows.

Follow the above procedure if you believe that Assembly or Heap windows are too slow to be convenient,
Remember that a large slow window visible on the screen will siow all of the Monitor’s operations, not just
the ones dealing with that window. Covering such windows or decreasing their sizes may help.

Printing Problems

If you encounter problems with printing, make sure that the information in the Communications menu of
Conﬂﬁlraﬂon is correct. Make sure that the Chooser desk accessory does not think that the serial port you're
trying %o use is connected to AppleTalk. It is also possible that the Monitor may not print correctly if some
other program has opened and used the serial port designated for printing from the Monitor. If this is the case,
try using the other port for doing printing from the Monitor. Also, since printing uses the Memory Manager,
it may not work if the heap is in an inconsistent state.

Technical Reference

Debugging Existing Applications

Using the Monitor with existing applications presents an array of problems. The Monitor is, nevertheless,
flexible enough to allow it to be used with almost any program written for the Macintosh. That does not
mean that you will not have to make adjustments. Some common changes which have to be made with some
applications are disabling the Vector Refresh option or loading the Monitor into the system heap instead of
high memory. The first of the actions listed should be done if you encounter TRAP exceptions; the last if you
find that the program you are debugging uses the alternate graphics or sound page on a Macintosh 512K,
512Ke, Plus or SE.

The Monitor particularly dislikes changing the interrupt vectors and a few of the AO0O trap vectors. Avoid
changing the vectors _SysError and _PostEvent.If _SysError was changed, the Monitor will put it
back to its previous address as soon as it regains control unless Vector Refresh was disabled. Do not change
__PostEvent in such a way that events such as key down, mouse down, and mouse up are not posted; if you

The ability of loading the Monitor into the system heap is a controversial one. If all Macintosh programs
were well-written, they should not be affected by having a Monitor in the system heap. It appears, however,
that some. bugs in programs appear only if the system beap exceeds a certain size. For that reason the option of
loading the Monitor into high memory was provided. An example of a bug that will appear only if the
Monitor is in the system heap is in an application running under the 64K ROMs that calls
_SetTrapAddress 1o a routine in the application heap. That shouldn’t be done, but if it is, it will cause no
problems unless the routine is more than $10000 bytes above RAMBase (which points to the beginning of the
system heap). You, of course, will-avoid all such errors, and might even find it constructive to load the
Monitor in to the system heap to make sure that none are present.

In some cases you still might have little idea why the Monitor can’t be used with some programs. In that case,
use Trap intercept to stop the program at the beginning (intercepting _InitGraf works well), and use
GoSub to trace the program execution. If you find that the program crashes in one subroutine, you now know
where that subroutine is and can try the process again except that the next time step through that subroutine.
You can then use this divide-and-conquer approach to quickly find the instruction that gives the Monitor
indigestion. Once you know what is wrong, you may be able to bypass or fix it.

Using the Disk Cache, RAM Disks, and Other High-Memory Drivers

TMON respects the space reserved for the disk cache, RAM disks, and other programs which reside in high
memory (hereafter called “RAM disks”) as long as they do not interfere with TMON’s exception vectors and
code. If there is 28 RAM disk in high memory, and if it has allocated its space properly, TMON will load
below it and set the top of memory address (BufPtr) below itseif. RAM disks, on the other hand, should
respect TMON; if they don’t, they will cause problems. In particular, they should not assume that BufPtr
points to the beginning of their memory space, as it does not once TMON has been loaded.

If you experience problems with using TMON and a RAM disk at the same time, try reversing the order in
which you load them. If you loaded TMON first, load the RAM disk first, or vice versa. If the problems
persist, try to load TMON into the system heap either before or after loading the RAM disk (See Loading
Position).

38-Shift-1 to 38-Shift-4 Usage in the Monitor

These function keys are not active in the Monitor. Depending on which ROMs and system software you’re
using, when you use a function key, either nothing may happen or it may be saved and executed after you leave
the Monitor.

TMON

The Configuration Menus

This chapter contains some additional information about the various items in the configuration menus.

The File Menu

Save User Area saves the current user area, which includes user area code, current settings of parameters to the
user routines, and the state of the Monitor’s windows. If you Save a user area with the name “User Area”, it
will become the default user area and be loaded every time you start the Macintosh with the TMON Startup
loader. It is also used every time open the TMON icon from the Finder, unless you use another user area’s icon
to start TMON from the Finder or use the Moniter... button. If there is no default user area on the disk, an
internal copy of the user area with all functions present will be used instead.

The user areas are saved using the logical length given in the user area. If the logical length is greater than the
physical length, the extra space is filled with zeros. If that user area is later loaded with the Monitor, its
logical length will be used to set the user area’s physical length.

IS The procedure above must be followed in order to enlarge user areas.

The Options Menu

The settings from the Options menu are stored at the beginning of each user area, and may be loaded and saved
by loading and saving user areas. The Communications, Vector Refresh, and VBL Tasks options take effect
immediately; the others will take effect only if you save their desired states in a user area, restart the
computer, and load that user area with the Monitor. That can be done by either saving the user area with the
name “User Area”, or starting the Macintosh with another disk and opening that user area’s icon from the
Finder, or using Monitor... to select that user area to boot the Monitor. Monitor Size is not really an
option because it does not allow you to change anything.

Communications

There are some communication options available which are not present here; see User Configuration Area for
& more technical description of the other options.

Any changes you make are effective immediately.

It is possible to change the settings displayed here directly from the Monitor, which may be advantageous in
the middle of debugging when this window cannot be invoked. See User Configuration Area for the locations
of the bits in the user area that can be changed.

Vector Refresh

Use this option only in extraordinary circumstances when the program you are debugging desires to handle
some of its own exceptions. If you select Refresh, which is the default choice, the Monitor will keep storing
its own exception vectors every time it gains control. If you select Don’t refresh, the Monitor will store its
vectbes only once when it is initialized. The program that you are debugging may then replace the Monitor’s
vectbrs with its own vectors.

Actually there are other times when the Monitor will store its exception vectors. It will do that anytime it
thinks that it has been damaged and every time you enter it using the Monitor button on the Main Dialog. No
program except the Monitor, however, may intercept the A000 vector, trace vector, and TRAP #$F vector.

Technical Reference

VBL Tasks

This option allows you to keep vertical blanking tasks running while the Monitor is active. If you select
Suspend VBLs, which is the default, only the disk driver VBL task will be left running, turning off the
floppy disk motor after a few seconds if it is spinning when the Monitor is entered. Leaving VBLs running is
usually undesirable except in some special cases where network drivers are timing out while the Monitor is
active.

Loading Position

The only reasons not to load the Monitor into high memory are if you are debugging a program that uses the
alternate sound or video page (on the Macintosh 512K, 512Ke, Plus, or SE) or if the program interferes with
the Monitor in high memory, which should not happen. Loading the Monitor into the system heap causes the
bugs in some existing applications to reveal themselves, and may be a good way to check that the program you
are debugging does not have the same problems. -

BS" Changing this option will have no effect unless you save the new setting in a user area and use that ‘
user area to boot the Monitor. '

Auto-Quit

Auto-Quit is most useful when used in conjunction with the TMON Startup loader. If you set this option,
instead of stopping at the Monitor welcome screen, TMON displays in the middle of the screen a message
stating that the Monitor has been installed and then automatically exits to the Finder. The first time the
Monitor is entered it displays the reason for entering along with the welcoming message.

It is quite easy to override this feature. There are two ways to do this:

e If TMON is just loading, hold down either Shift, Option, or 3 or the mouse button. If you hold one
down while the message “Welcome to Macintosh” disappears, you will see the Main Dialog or, if
yon are using TMON Startup, the Monitot’s welcome screen.

¢ ¥, on the other hand, you hold down Shift, Option, 3%, or the mouse button after TMON begins to
load but before the “The Monitor hm\mssage appears, the loading process will stop when
the Monitor’s welcome screen appears.

The auto-quit option function also works if you start TMON by double—chchng on the TMON or a user area
icon in the Finder,

B* Hold down Shift, Option, 3, or the mouse button while TMON is booting to temporarily override
the auto-quit function.

= Changingdﬂsopﬁimwillhxvemeﬁectunlessyousaveﬂwnewseninginausérareaandm:he
Monitor with that user area.

Memory Size

This function just prints a summary of the Monitor’s memory usage. The only way to change any of the sizes
shown is to change the corresponding Configuration option, save the user area, reset the Macintosh, and then
use the user area to boot the Monitor.

6" Remember that this option shows the amount of memory actually used by the Monitor the way it is
presently configured; it may or may not correspond with the configuration in the current user area. In
other words, the other functions in the Options menu display and change the configuration in the user
area, while this function displays the configuration in the code of the Monitor presently in memory,
which cannot be changed without resetting the Macintosh.

TMON

"Built-In User Area Functions

This chapter will not explain the internal structure of a user area or how to create your own user functions;
that is covered in the next chapter. -

In the explanations below the name of the function is in boldface followed by the unabbreviated name. Any
parameters used are at the end of the line.

3‘" Do not execute any of the functions listed below with addresses above the end of ROM. Although the
functions should reject them, avoid giving negative lengths.

LS you have more than one A00O trap function active at a time, the functions are executed in the
following order: Trap record, Trap scramble, Trap discipline, Trap checksum, Trap
intercept, and Trap signal. If one of the functions fails and enters the Monitor, the remaining
ones are not executed. Also remember that these functions are not executed on the first instruction
after leaving the Monitor should that instruction happen to be an A0QQ trap. This is to avoid a
situation where having Trap intercept set would prevent you from leaving the Monitor.

BF The pixel in the upper left comer of the screen is turned on while one of the A000 trap intercepting
functions is executing (except on a Macintosh II). If you press the interrupt button at that time, the
interrupt will not be executed immediately but will be made pending. After the completion of the
intercepting function, if an interrupt was pending, the Monitor is entered with the message “User
trap: interrupt”. In rare circumstances it is possible to interrupt the user area A00O trap
intercepting dispatcher. If that happens, you will know it because the PC will point to the user area.
Use Exit, and press interrupt again.

o Be very careful with using Label file load, Load resource, and Leave TMON while one of the
A000 trap intercepting routines is active. Since these routines leave the Monitor, the A000 trap
intercepting functions will be executed on any traps they execute! Trap intercept, for example,
will intercept the traps and go back to the Monitor with the PC and registers set to the user area. If
that happens, deactivate the offending trap intercept routines and Exit the Monitor.

3% A much worse problem than the one described in the previous note arises when one of the A00O trap
intercepting routines intercepts a trap executed from an interrupt handler. One particularly common
case is the interception of _PostEvent due to a mouse click or keyboard activity. Usually this is
harmless if you realize what is happening, but sometimes the consequences can be strange indeed.
Consider the following scenario, which happened to me several times: you have Trap intercept set
to intercept all traps and are single-stepping through a program by typing 8. Suddenly, however,
you release the key at just the right time to generate a key-up event outside the Monitor (If you
released the key while the Monitor was executing, nothing would happen since the trap intercepting
routines are disabled then). After the PostEvent was intercepted, the PC points to a place in
ROM, and you are wondering what happened—all you did was single-step an instruction! You Exit,
and only then do you arrive at the instruction following the one you stepped, but with one difference:
the trace flag is now set in the status register! The Monitor uses the trace flag to single-step

. instructions, and it normally turns it off after the instruction is complete; you don’t see it being used.
+In this case the Monitor got somewhat confused because it was entered at an unexpected time.
" Afterwards it no longer remembered to clear the trace flag. No large harm has been done; you may
. proceed once you clear the trace flag. The moral of the story is to avoid indiscriminately intercepting
traps such as _PostEvent.

Toggle Pages (Toggle memoryiconirol/AG00 trap funciions)

Switch among the three user area pages. The current page’s function types are displayed. The three user area
function types are memory functions, control functions, and A000 trap functions.

Technical Reference

Block Move ' src dst len

Move a block of memory Len bytes long from Src to Dst. The source and destination ranges may overlap
without adverse effects.

Block Compare adrl adr2 len

Compare two blocks of memory against each other. If they match, the result is Match. If they don’t match,
the address in adrl of the mismatch is displayed and the computer looks for the first match after that memory
location and puts that address after the colon along with a corresponding address from adr2 and the number of
bytes remaining. The numbers after the colon are initialized so that you can look for the next area of mismatch
just by pressing Enter or Tab.

I The value of V is set to the address of the mismatch. You can anchor a Dump or Assembly window
to V and then you won’t have to type the address of the mismatch to see the area of memory around
the mismatch. What’s more, you can actually anchor two windows, one to V, and the other one to V
plus an offset which is equal to the difference between adr2 and adr1. This way you can look at both
blocks at the positions of the mismatch.

If you have a block of memory that seems to be filled with a single hexadecimal value, you can use Block
Compare to measure how far it extends by giving it the following parameters: Starting address Starting
address+1 TFFFF.

Fill bgn end val [vLen]

Fill a block of memory with a value. The bgn and end numbers speclfy the boundaries of the block, inclusive,
and val is the number that is to be stored into the block. The fill is a byte, word, or longword fill depending
on val. If val is less than 256, a byte fill is performed; if it is less than 65536, a word fill is done; otherwise,
the fill is a longword fill. The vLen value may be used to override that by explicitly giving the length of val:
1 for a byte fill, 2 for a word fill, and 4 for a longword fill.

Find (Find byte/word aligned) SRR . val [vLen [bgn [end]]]

Search for a pattern in memory. bgn and end speclfy the boundaries of the block that is to be searched and val is
the target pattern. vLen is used in the same way as in F111, but a length of 3 is now allowed. Also, if there
. Isno vLen and val is between 65536 and 16777215, inclusive, the length will be assumed to be 3.

The default for bgn is 0. The default end is the end of RAM, which depends on the size of memory in the
Macintosh. All parameters except val may be omitted, in which case the entire RAM is searched for val.

¥ Ifno parameters are supphed, the Find toggles between a byte and word aligned search. Word-
aligned search is faster and is usually used to search for specific 680x0 assembly langugge instructions,
which obviously must be word-aligned. vLen is forced to be either 2 or 4 in word-aligned search.

& Donotuse word-aligned search to search for handles or pointers because the high bytes mdy contain
flags which cause some valid matches to be missed. Handles and pointers should be searched with a
vLen of 3.

U The value of V is set to the address of the match. You can anchor a Dump or Assembly window to V
50 you won't have to type the address of the match to see the area of memory around it.

If val isn’t found in the specified range, No Match will be displayed. If it is found, the address is given, v is
set to that address, and the numbers after the colon are adjusted to allow the searching for the next occurrence
of that val by simply pressing Enter,

Aside from using labels, one of the most common ways of finding subroutines in your program is to search for
a string that the subroutine is known to contain. In that case val is usually a quoted four-letter string.

69

TMON

Template (WindowRecord/ControlRecord/TERec/ParamBlock) adr

This function displays many of the pertinent fields of the following Macintosh data structures:
WindowRecord, ControlRecord, TERec, and ParamBlock. Enter an expression which refers to the data
structure. The field names and their values will appear in the window below the Template line.

=¥ Ifno parameters are supplied, the Template toggles among the WindowRecord, ControlRecord,
TERec, and ParamBlock data structures.

Stack Addresses adr

This function takes an address, checks to see if it is within RAM, even, and below CurStackBase. If it is, it
checksthevalueattheaddresstomakesurethatittooiseven.lfitis,itdisplaystheadd:essand_anempuw
recognize it. if recognition is successful, the result is also displayed. adr+4 is left to the right of the colon so

that you may continue through the stack by pressing Return after the address or by pressing Enter anywhere
in the line.

BS5° The address returned by Stack Addresses is also assigned to the V register so that you can anchor a
window to V in order to view the data around that address.

B This function uses a default parameter of SP, which refers to the current value of the stack pointer.

Stack Crawl adr

This function takes an address and treats it as a pointer to a stack frame created by the 680x0 family's LINK
instruction. It checks the value that is the saved linkage register value in a stack frame. If this is a valid
address (non-nil and even) it is assigned to the N register.

Thefunctionthatistheremmaddressinastackframeischeckednext.lfitisvaliditisassignedtomev

register and displayed. If the address is within range of a label and the appropriate labeling switch is on, the
label and offset will also be displayed.

Thevaluethatxstheaddressofthenextdeeperstackﬁ'ameinastackﬁ'ameiscbecked.lfxtisvahditxs
displayed after the colon so that clicking after it and pressing Return or clicking anywhere within it and
pressing Enter will repeat the process for the next deeper stack frame.

B2 The address returned by Stack Crawl is also assigned to the V register so that you can anchor a
window to V inordertoviewthe data around that address.

= Perhaps the easiest way to use Stack Crawl is to position the cursor to the right of the colon and press
Enter to cycle through the various stack frame addresses until the parameter becomes the default
(RAG) again.

Load resource type id

Load urce into memory. Search for the given Type and ID in all open resource files in the order defined
by the Manager. If the resource doesn't exist, do nothing. If the resource is already in memory, give
its address. Otherwise attempt to read the resource from the disk. If there is no error, load the resource and
give its address.

This routine leaves the Monitor for technical reasons (to prevent problems with crashes and disk swapping). It
reenters the Monitor as soon as the resource is read.

BS® If the resource is in a file on a disk not currently in any drive, you may be asked to insert the disk.

70

Technical Reference

Q Do not press the interrupt button while this routine is executing. Also, any mouse clicks or key
presses made after the Monitor has been left are saved in the event queue. See Leave TMON for
details.

%(‘- The heap must be in a consistent state for this routine. This routine may cause heap compaction.

Print (Print Dump) bgnend
Print (Print Disassembly) bgnend
Print (Print File) file#
Print (Print Heap) heap#

Print the requested information. Press the mouse button if you would like to interrupt printing in progress.
This function is useful for printing memory ranges that are bigger than a single Dump, Assembly, File, or
Heap window.

The heap# is zero for the system heap and non-zero for the application heap.
You can cycle through the four print routines by pressing Return without typing any parameters. These four
functions were placed on the same line to save screen space.

U The error number is stored here by both the above four routines and the Print routine in the
Monitor. See the description of the Print command for an explanation of the error numbers.

Look for labels between LINK/UNLK of Ax addressReg#

This function defines which address register will be used when the label recognition routine looks for
embedded labels in routines enclosed within LINK and UNLK instructions. Since most Macintosh programs
use A6 as the LINK/UNLK parameter the default value for this function is 6.

Label table [nLabels [loc]]

This function must be used to allocate a table for table labels. Without a table the table labels cannot be used.
Whenever you invoke this function, the old label table, if present, is cleared, and, if it was previously
allocated as a system heap block, it is deallocated.

If you supply no arguments, the old label table is deallocated. If it was a system heap block, the block is
released. If you supply one argument, a table of size 16*nLabels is allocated on the system heap. If there was
enough memory for the table, its address is then displayed in loc. If there was not enough memory, no table is
allocated, and the line is cleared.

If you supply two arguments, the old table is deallocated and the new table is assumed to begin at loc No
checks of legality of loc are made. loc must be even!

V is set to the address of the table, if one is present.

nLabels should not exceed $7FF. If it exceeds $7FF, it is treated modulo $800. If it is zero, the function
behaves as if no parameters were given.

e
%‘ The system heap must be in a consistent state for this function to be used. Also, loc, if given, must be
even and point to unused RAM.

3
3‘ Beware of pressing Enter on the line after allocating a table on the system heap. This will deallocate
the table on the system heap and make the Monitor assume that the new table is in the same location
with the same length as the old one. Unfortunately, the table now resides in a free block instead of a
nonrelocatable block in the system heap, and may corrupt both the system heap and the Monitor if
something is later allocated in the system heap.

71

TMON

Label add/remove [1bl [adr [end]]

Add and remove labels in the label table. The label table must be allocated. If no parameters are given, do

nothing except clear the result information. The result information is displayed between the two curly

brackets and is either blank if nothing was done or gives information about the last operation completed. 1bl

gn;ust be a label enclosed in double quotes (not an expression!). It is the label upon which the operation is
ing done.

If only Ibl is given, it is removed from the table if it was present; otherwise, nothing happens. The
appropriate information is displayed between the curly brackets.

If 1bl and adr are given, Ibl is added (or replaced if it already exists) to the table. adr is the address assigned
to it. If the Scan resources option in the Options window is set and adr falls inside a resource, the label is
stored as a resource-relative label in the table, and needs no explicit ending address. A message stating that the
label has been added relative a given resource type is shown between the curly brackets.

If all three parameters are provided, or the label could not be stored as resource-relative, it is stored as
absolute starting at adr and ending the recognition range at end. If end was not provided, it is set to
adr+$800. end is the first byte past the recognition range, not the last byte of it. A message stating that the
label has been added is shown between the curly brackets.

If the table is already full, the label is not added, and nothing appears between the curly brackets.
S When adding labels this routine automatically determines whether a label should be stored resource-

relative or absolute. If you think you need more control, modify the label table directly. Add some
dummy labels to it and then use a Dump window to change their data.

Label file load (Load MAP label file)

This function reads a .MAP file and extracts from it labels that are inserted into the label table, Labels must
be enabled and a label table must be allocated, When executed, this function leaves the Monitor and shows a
standard file selection dialog. All files of type TEXT are displayed. If you press Cancel, the Monitor is
reentered with the message “Bad load”. If you select a file, it is opened and read. Any errors cause a return to
Eheohrdecanitor with the “Bad load” message. If the label table becomes full, any extra labels in the file are
ignored.

The function has definitely not been optimized for speed in order to keep it simple. It should not be difficult
to change it to read other file formats.

This is the format of the TEXT file. All spaces are completely ignored; they are not used as delimiters of any
kind and are removed from wherever they appear. This means that they can appear in the middle of numbers or
labels without being detected. Any string of characters beginning with a character below $20 or above $7E and
ending with an equal sign (=) is considered a label. The two delimiters are, of course, not included in the text
of the label. The label, in order to be entered into the label table, must be followed by two hexadecimal
numbers separated by another delimiter, usually a colon. The first number is 0 for absolute labels and gives
the CODE segment number for CODE resource-relative labels. The second number gives the value for absolute
labels and gives the offset inside the CODE resource minus 4 for the relative labels. No range checking is
performed. The recognition range ending address for absolute labels is set to the label address plus $800. If the
label dlready exists in the label table, the old one is replaced. Resource-relative labels relative to resources
other than CODE cannot be specified in .MAP files.

3“' This function is by far the least reliable one in the entire Monitor. It requires most of the managers
like QuickDraw, the Window Manager, Dialog Manager, Font Manager, TextEdit, and others to be
initialized, Moreover, it uses the standard file dialog to select the file, which is very risky to do from
a Monitor. For all these reasons it is recommended that you use this function only from TMON when
the Monitor first appears. The only way to assure a consistent state is to execute this function the
first time the Monitor screen appears (with the welcoming message) or to click Monitor in the Main
Dialog.

Technical Reference

[This function does not restore the screen; instead, it uses the activate/update event mechanism of the
program currently executing. That mechanism must be capable of supporting redrawing of the area of
the screen containing the standard file dialog.

L=y Any mouse clicks or key presses made while this function is executing are saved in the event queue.
See Leave TMON for more details.

Registers ’ selector
This is a set of three functions dealing with the alternate register set located in the user area.

The three functions were placed on the same line to save screen space. Selector is used to identify the function
to be executed.

If Selector is zero, the Monitor's register set is copied to the user area’s register set and the other two options
become available.

If Selector is one, the user area’s register set is copied to the Monitor’s register set.

If Selector is two, the two register sets are exchanged.

If Selector is none of the above, nothing happens.

The PC in the user area’s register set is shown in curly brackets.

¥ This function is very useful in case you are anticipating a system crash in a routine you are debugging.
You can save the registers and then execute the routine. Then, even if it crashes, you can restore the
registers and do what you were doing previously. Also use this routine if you are testing small pieces

of code from TMON. By saving registers and later restoring them you can still use Exit to exit to the
Main Dialog without worrying about making your routine preserve registers.

Leave TMON; queue events untilmouse ¢click

m:tnncﬁonleavestheMoniwrmdmysiﬂamﬁnematdoesmminguceptcheckfmamousebunmcﬁck
and reenter the Monitor when the mouse button is pressed. This function also allows you to move the mouse
cursor in the program you'’re debugging without having the program react to that motion. That could be useful
sometimes.

This function will fail with a system error $1C if the stack pointer is below the top of the application heap.
(o Do not press the interrupt button while this routine is executing,

= Any mouse clicks or keystrokes are recorded as events, but since the Monitor does not use the event

' queue, they will remain queued until you exit the Monitor. This includes the mouse click which you
use to return to the Monitor. Although it may be annoying at times, this side effect can'also be very
useful for testing how the program you are debugging responds to a rapid succession of events. You
could, for example, use Leave TMON to click on several buttons of a dialog (you would have 1o use
Leave TMON several times for this), and then exit the Monitor and see how the program responds.
This method can discover some very subtle errors.

Leave application selector

This function clears all breakpoints, closes all open files including resource files but excepting the System ~
file, and if the selector is O launches the Finder, or if the selector is 1 re-launches the currently active
application.

B8 1eave application usesthe _ExitToShell trap to retumn to whatever application is named in
the low-RAM global FinderName when the selector is 0. When the selector is 1, it passes the
contents of the low-RAM global CurApName to the _Launch trap.

TMON

3"- This function relies upon the file manager and resource manager data structures being in a consistent
state in order to close all open files successfully.

Shut down selector

If the selector is 0, this resets the Macintosh. If the selector is 1, it will eject all mounted disks and reset the
Macintosh. This is better than pressing the reset button because it ejects and unmounts all disks. In order for
this to succeed with a selector of 1, the volume queue and file variables must be in a usable state.

Trap record [0 {tI [PCO PCI]]]

‘Whenever an A0Q0 trap in between t0 and t1 located between PC0 and PC1, both inclusive, is found, record it
in a table. The defaults are the value of t0 for t1, 0 for PCO, and $FFFFFF for PC1. A mull parameter line
turns off the recording. The table into which the traps are to be recorded must be specified in the Record
function; otherwise, nothing happens.

The traps are recorded in a table of 16-byte entries. In each entry the first word (bytes 0,1) is the A00O trap
that was recorded. The second word (bytes 2,3) contains the low 16 bits of the value of Ticks ($16A) when
the trap occurred. The following longword (bytes 4-7) is the address of the AOOQ trap. The values of the last
eight bytes vary depending on the setting of bit 11 of the trap. If the bit was 0, the rap was probably a
register-based trap, and the longword values of DO and A0 are stored in the remaining eight bytes. On the
other hand, if that bit was 1, the eight bytes from the top of the stack are given.

New entries are added to the beginning of the table, All remaining entries are shifted to make room for the
new entry. The last entry is forgotten, Note that unless you specifically clear the table before you exit the
Monitor, the old entries will remain in it. If fewer traps than the table size were recorded while out of the
Monitor, the old traps will still remain at the bottom of the table., You can distinguish them from the new
traps by the time value in bytes 2 and 3.

The indicator in the curly brackets on the Record line shows the number of new fraps recorded since the last
time the Monitor was exited.

There are several uses for this function, One is to generally view the sequence of traps executed by the program
to troubleshoot it. Another is to intercept a single trap such as _GetResource and see which resources are
required.by the program. Finally, this function may be used for limited performance analysls because it records
the times of execution of the traps. This function does not significantly affect the running time of the
program; moreover, its execution time is independent of the size of the table; recording a new trap and shifting
the table is just as fast for a 2000-entry table as for a 20-entry table. Try it! The other AOOO trap intercepting
functions, notably Heap scramble and Checksum on large ranges, do slow the program, however.

¥ You will probably want to use a Dump window to view the record and a Number window to find the
trap name ftom the number given in the records.

See also Record and the note at the beginning of this chapter for general information about the A000 trap
intercepting routines.

Record ('Where to record traps) [fullStop nMsg [loc]]

This function must be used to allocate a table for Trap record. Whenever you invoke this function, the old
label table, if present, is cleared, and, if it was previously allocated as a system heap block, it is deallocated.

If you supply no arguments, the old label table is deallocated. If it was a system heap block, the block is
released. If you do not supply loc, a table of size 16*aMsg is allocated on the system heap. If there was
enough memory for the table, its address is then displayed in loc. If there was not enough memory, no table is
allocated, and the line is cleared.

v is set to the address of the table, if one is present.

I you supply all arguments, the table is assumed to begin at loc. No checks of legality of loc are made. loc
must be even!

74 \ .

- S .

- €% % 2 D PR DY NN A

Technical Reference

nMsg should not exceed $7FF. If it exceeds $7FF, it is treated modulo $800. If it is zero, the function behaves
as if no parameters were given.
SullStop is a flag for use by Trap recoxrd. If it is zero, recording takes place until the Monitor is entered

again. If it is nonzero, the Monitor is automatically invoked via a user trap at the moment the table
overflows. The trap that would cause the table to overflow is not recorded.

If you have already allocated the table using a loc, you may clear it by pressing Enter on the line. You do not
want to press Enter on the line if it was allocated as a system heap block, because the routine will believe
that you are now giving it an address! To clear a table that is a system heap block, press Return with the
cursor between aMsg and loc.

The indicator in the curly brackets shows the number of new traps recorded since the last time Monitor was
exited.

T The system heap must be in a consistent state for this fanction to be used. Also, loc, if given, must be
even and point to ynused RAM. ,

’6" Beware of pressing Enter on the line after allocating a table on the system heap. This will deallocate
the table on the system heap and maks the Monitor assume that the new table is in the same location
wimmmlu:ﬂsmoldmwm the table now resides in a free block instead of a
nonrelocatable biock in the sysiem beap, and may coerupt both the system heap and the Monitor if

mahhghmdhmdhﬂnlymm

Trap heap ch‘c‘k,‘ 'l_é:rppbu{p_urqo) [zone#]
Scramble the heap on A000 traps. Unlike the other A00O trap intercepting routines, this one does not give you
a choice of traps on which it is executed. The heap is scrambled whenever a trap that might trigger a heap
compaction in this range is intercepted; the Monitor is not entered. The traps that might trigger a heap
compaction are: _NewPtr (SAO1E), NewHandle ($§A022), ReallocHandle ($A027), and
_SetPtrSize ($A020) and _SetHandleSize ($A024) if the new length is greater than the old length.
The Monitor is entered if the heap is somehow damaged. (If that happens, the heap will have been partially
scrambled up to the location of the error.)

zone# selects the heap to be scrambled. Use O for the system heap and any non-zero number for the application
heap. The scramble is enabled when the zone number is visible. Press Return on the line once to turn off the
scrambling.

The “heap scramble” in the preceding two paragraphs may not really be a heap scramble. There are four choices
possible; they are chosen by consecutively pressing Return on the line.

The Check choice just checks the heap for consistency without modifying it. It is useful for locating routines
in your program that somehow damage the heap,

The Check, purge choice first purges all purgeable blocks from the heap and then checks it.

The Check, scramble choice checks and moves as many relocatable blocks around the heap as possible. This is
used for finding handle dereferencing errors in programs, which are surprisingly common. The check and
scramble are done simultaneously; a part of the heap may have already been scrambled when an error is found;
nevertheless, the heap area immediately before and after the error is never scrambled. This option is highly
optimized for speed within the constrains of gpace in the user area; still, it is quite slow.

Note that this option also clears all free blocks in the heap except in some cases the last one (to make the
speed bearable; the last one is usually very large), but not to zeros. This provides additional assurance that
dereferencing errors are eliminated.

The Check, scramble, purge choice does all three: a purge, a check, and a scramble.

A heap scramble consists of moving as many unlocked relocatable blocks in the heap as possible. This way a
heap compaction is simulated every time one could happen. Any handle dereferencing errors which otherwise
would be rare and random and very difficult to find because they would occur only on heap compactions are

now made to occur consistently every time, making them much easier to find.

75

TMON

In addition to moving the free blocks in the heap the heap scramble erases (to a nonzero, odd value) all free
blocks and consolidates any consecutive ones. The only free block that may not be completely erased is the last
one. This is done for performance reasons.

It is possible that some relocatable blocks will not be moved. This will occur in the rare 'simation that one
relocatable block is caught between two immovable ones.

Heap zoneit

If no parameters have been passed to Trap check, scramble, and/or purge, this function displays the total
amount of free bytes on the heap, the maximum number of contiguous bytes, and the number of bytes the heap
may grow. The system heap is used if Zone# is zero, otherwise the application heap is used.

" The heap zone is compacted and all purgeable blocks are purged from it.

X

Do not use this function if the heap zone is inconsistent (has invalid blocks in it). Also avoid using it
if the application program you are debugging does not expect the heap zone to change.

If parameters were passed to Trap check, scramble, and/or purge, this function changes to Check, scramble
now which, when chosen, checks and possibly scrambles or purges the heap as described above according to the
options currently set in Trap heap scramble. The action is performed immediately. The last heap zone
entered into Trap heap scramble is used.

© Be careful with this function (Check, scramble now). If the program youn are debugging has any
handles dereferenced at the time you invoke it, that program may later fail, If you are not sure
whether this is the case, use Trap intercept to find the nearest AO0O trap that might cause & heap
scramble (see previous section). Before such a trap it is definitely permissible to scramble the heap.

Trap discipline (lenient/strict)) [10 [t] [PCO PC1]]]

This examines the parameters being passed to any traps about to be executed that lie within the defined trap
range and optional PC range. If any of the parameters are questionable or incorrect, the Monitor will be
entered with an appropriate message being displayed. The message will begin with a question mark (*?") and
will provide the Toolbox type of the parameter in question, sometimes with additional information (e.g. ?
selector, ? NIL address, ? odd address, ? address, ? string, ? string length, ?
StringPtr, ? NIL StringPtr, ? jump table, ? THz, ? Zone, ? Ptr, ? Handle, ? empty Handle,
etc.). Note that when the monitor is entered due to discipline, the PC points to the trap whose parameters are
questionable, and that the parameters are still on the stack or in the appropriate registers, where they can be
examined so as to glean some idea as to what is wrong with them.

85 If no parameters are passed to this function, it toggles between using lenient and strict discipline, If
lenient discipline is being used, NIL string pointers will be converted to pointers to a zero-length
string. If strict discipline is being used, the Monitor will be entered with an appropriate message
being displayed if a rectangle is invalid (top is greater than bottom and/or left is greater than right)
and the Monitor will be entered with an appropriate message being displayed if procedures passed to
_SetTrapAddress are not in the system heap zone.

Trap checksum [10 [11 [PCO PC1]]]

Whenever an A000 trap in between t0 and t1 located between PCO and PC1, both inclusive, is found, do a
checksum on the range specified in the Checksum range. The defaults are the value of 10 for ¢1, 0 for PCO, and
$FFFFEF for PC1. A null parameter line turns off the checksumming. When an A000 trap is encountered, if
the result agrees with the checksum shown in the Checksum line, the function does nothing. Otherwise, it
drops into the Monitor with a user trap message stating that the checksum has failed.

76

Technical Reference

Note that once the checksum fails, it is not automatically recomputed. If you want to see when the area of -
memory specified in the Checksum line changes again, you have to press Enter on the Checksum line to
recalculate the checksum.

Checksum was not written with emphasis on performance. It works very fast on small ranges, but was not
really designed for checksumming large ones.

See also Checksum and the note at the beginning of this chapter for general information about the AQ0O trap
intercepting routines.

Checksum bgn end

Checksum generates and displays a checksum generated from that memory range. It is used to check if a
memory range has been changed through time or for comparing two memory ranges. This checksum will find
most transposition errors as well as substitution errors.

The bgn, end, and generated checksum values are also used in Trap checksum, above. The default values are
the beginning and end of the ROM, which is convenient, since the ROM doesn’t change while the machine is
on.

Trap intexcept {10 (11 [PCO PC1]]]

Intercept all AOOO traps with the trap rumber between 10 and t1, inclusive, and which are in the block of
memory from PCO to PC1. The defaults are the value of 10 for t1, 0 for PCO, and $FFFFFF for PC1. A null
parameter line tums off the intercepting. When a trap is encountered, the Monitor is entered with a user trap
message. See also the note at the beginning of this chapter for general information about the A0QQ trap
intercepting routines.

Trap signal [0 [t [PCO PC1]]]

Like the other A0O0 trap intercepting functions, this one executes on A000 traps with the trap number
between t0 and t1, inclusive, and which are in the block of memory from PCO to PC1. The defaults are the
value of t0 for t1, 0 for PCO, and $FFFFFF for PC1. A null parameter line turns off this function.

Unlike the other trap intercepting functions, this one does nothing most of the time. It remains dormant until
you press interrupt while holding down the Option key. Once you do that, this function will drop into the
Monitor as soon as it is executed. It is very useful for stopping your program at a specific point as opposed to
anywhere, Some possibilities are setting 10 to _SystemTask or_GetNextEvent or setting {0 and ¢] to all
traps but restricting the PC to your main program.

This function leams that Option-interrupt was pressed because the Monitor tells it that. If you press Option-

interrupt while this function is disabled or the Monitor is active, nothing happens.

3(' Avoi;l pressing the 3 key too, which would have disastrous consequences (It does a complete Monitor
reset).

See also the note at the beginning of this chapter for general information about the AGO0 trap intercepting
routines.

TMON

Creating Your Own User Functions

The user area is a variable-length block of memory reserved by the Monitor. It has two purposes: to allow you
to use the predefined and add your own functions to the Monitor and to store the Configuration and Monitor
windows settings. The Configuration setting, a few other parameters, and the user area identification number
are all stored at the beginning of the user area. They are followed by a linked list of names and other
parameters for the routines, The routines themselves are at the end of the user area.

The user area routines must be relocatable. The user area is placed between Monitor’s variables and the
Monitor’s stack, which could be anywhere in memory. Once the user area is loaded, however, it is never moved
(but it could be saved and loaded into a different place).

This chapter is organized roughly in the order of the data in the user area. The description of the configuration
bytes is first, followed by the descriptions of some special numbers and vectors that are also stored in the
Configuration area. Then the names and finally the routines are described.

It is difficult to learn how to create your own user routines without looking at examples. You are encouraged
to look at default user area source file (supplied on the disk) for any ideas.

All numbers are in decimal unless preceded by a dollar sign or the context implies that the number is
hexadecimal. Bit 7 is the most significant bit of a byte and O the least significant,

If you have an old (TMON 2.585) user area, you must edit it before this TMON will read it. Ré-assemble the
user area, changing the configuration settings (bytes 0-683) at the beginning to make sure they make sense. At
the same time set bit 3 of the byte at offset 4 in the user area; this indicates to TMON that this is & new user
area.

78

Technical Reference

The User Configuration Area

As stated earlier, the first 48 bytes of a user area are used to hold the current Configuration setting and some
other interesting data. Here is a summary of this data; some of the items will be explained in more detail

later.

Byte
0-1

2-3

Sbhh bbhn

000000 00 ==L

10-11

12-13

14-15
16-17
18-19
20-21
22-23

26-27
28-29
30-31
3233

Bit Range
all

NO=NWAUAN

A
=

72
1-0

7-6

54
3.2
1-0;7-0

all

all

all
all
alt
all
all
all
all
all
all
all

Description

The length of the user area. It must be a multiple of 256, less than $8000, and
can not be zero. '

This user area’s version/ID number. This number is for identification purposes
only; no part of the program references it.

0 if the vector refresh is on; 1 if it is off.

0 if VBL tasks are to be disabled; 1 if VBL tasks must be left running.

0 if the Monitor is to be loaded into high memory upon booting; 1 if system

heap.

1 if auto-quit is enabled; O if not.

1 if this is a new (TMON 2.8) user area, 0 if it is an old (TMON 2.585) one.
Unused; formerly was the amount of screen compression used; 0 indicated
saving the entire screen (21888 bytes on a Macintosh 512K, 512Ke, Plus or SE),
1 a 10K compression, 2 a 4K compression, and 3 no compression. The values
from 4 to 7 were illegal.

Set to 1 to inhibit calling the user identification routine for heap windows.
Set to 1 to inhibit scanning resources for heap windows.

Set to 1 to inhibit table labels.

Set to 1 to inhibit embedded name labels.

Set to 1 to inhibit scanning resources for label routines.

Set to 1 to inhibit pseudo-label identification.

Set to 1 to inhibit all labels (master switch).

Reserved. Must be zero.

The port used for printing. 0 is the printer port; 1 is the phone port.
Reserved. Must be zero.

Reserved. Must be zero.

The handshake used for printing. 0 is none, 1 is XOn/XOff, and 2 is hardware.
A value of 3'will: cause unpredictable results.

The number of stap bits used by the serial printing routines. 1, 2, and 3 are 1,
1.5, and 2 stop bits, respectively.

0 and 2 are no parity; 1 is odd, and 3 is even parity for printing.

0, 1, 2, and 3 are respectively 5, 6, 7, and 8 bits per byte for printing.

A constant determining the baud rate being used. The value is 115200 / baud rate
- 2. For instance, use 4 for 19200 baud, 10 for 9600 baud, and 46 for 2400 baud.
The constant is ten bits long.

Offset in the user area to an A000 hook routine; 0 if there is no such routine.
For example, if the user area starts at $7000, and the AOOO handler routine
within the user area starts at $732D, the value stored here would be a $032D,
Offset in the user area to the location to store the Print error code or 0 if
there is no such location. Whenever the Print function is used from the button
bar or the predefined user area, the error code is stored at this word in the user
area.

Offset to the first user routine’s description block or 0 if there is none.

Offset to the heap window identification routine or 0 if there is none.

Offset to the user area initialization routine or 0 if there is none.

Offset to the user area entry routine or 0 if there is none.

Offset to the user area exit routine or 0 if there is none.

Offset to the user area label table recognize routine or 0 if there is none.,
Offset to the user area embedded label recognize or 0 if there is none.

Offset to the user area label table evaluate routine or 0 if there is none.

Offset to the user area embedded label evaluate or 0 if there is none.

Offset to the packed table of user area A00Q name additions.

TMON

3435 all Offset to the user area table of system errors to be passed through to the
system.

36-37 all Offset to the user area level 7 entry routine or 0 if there is none,

38-39 all Offset to the user area level 7 exit routine or 0 if there is none.

4043 all Reserved for internal cursor patch routines.

44-63 all Unused; reserved for future expansion. Must be zero.

64-71 all Bitmap of exception vectors to be intercepted when the Monitor is first loaded
or re-initializes itself,

72-719 all Bitmap of exception vectors to be intercepted every time the Monitor gains
control.

80-683 all Internal data pertaining to the current state of the Monitor's windows.

‘Names and Local Storage in the User Area

At the 14th byte of the user area is a pointer 10 a linked list of user routine descriptors. The list is composed
of entries described below:

First i the offset from the beginning of the user area to the next routine’s descriptor in the list. The offset is
a word. Next is another word offset from the beginning of the user area, this time to the starting address of a
user routine. It is followed by the length of the routine’s name and then by the name itself (described in the
next section). An extra byte may be inserted after the last character of the name to make the next field on a
word boundary. The parameter count byte is after the name. It contains a bit map indicating the mumber of
parameters accepted by this routine. After that is a byte containing the length of the user routine’s local
variable space followed by the variable space itself. (The length of the local variable space is no longer used.
It was once used by earlier versions of TMON, but the current one ignores it. It may be used again in the
future.) The data after the variable space can consist of anything; in particular, it may be the routine code, or
the name record of the next routine.

‘What's in a Name?

The names are usually not pure ASCIH strings, although they may be. Usually they are much more
complicated, including displaying of variables, ASCII values, or even conditionals. This is a powezful feature
of the Monitor that simplifies creating your own user areas. Some functions described below refer to a pointer
called P. 1t is an internal Monitor variable that ig initialized to the beginning of the user routine’s local
variable space every time before the name is printed. In the following section “printing™ means displaying on
the screen, not the printer. Some excellent examples of control sequences in names are present in the source
code of the default user area. You are encouraged to look at these to better understand “names” as described
below. Here is a table of the “control codes™ that can be used in a name:

$00 EndIf

Cancel a preceding I1fE1se, IfPos, or IfNeg.
$01 IfElse

Flip the condition of the last IfPos or IfNeg.
$02 IfPos

If the byte at P is positive, execute the next section of code. If it is negative, skip until the next
EndIf or IfElse. In either case increment P, The conditionals may be nestable to any
reasonable level. Each IfPos may be optionally followed by IfE1se, but must be followed by
EndIf with one exception: it is not necessary to put an EndI£ before the end of the string.

$03 IfNeg .
If the byte at P is negative, execute the next section of code. If it is positive, skip until the next

EndIf or IfElse. In either case increment P. The conditionals may be nestable to any
reasonable level. Each IfNeg may be optionally followed by IfElse, but must be followed by
EndIf with one exception: it is not necessary to put an EndIf before the end of the string.

Technical Reference

4 lon

50 "I:‘lc:is is one of the more powerful commands in names. It prints a colon, but has a much more
profound side effect. Everything printed after this command will appear to the right of the colon
and provide a default for the user’s editing. Some pre-defined user functions that use this control
code are Block Compare, Find, Checksum, Load resource, and Trap intercept. No
more than one Colon can be interpreted, although more than one may be present (using
conditionals). Any Colon(s) encountered after the first one is interpreted, are ignored. If there
is no Colon in the name, an implied one is inserted after the end of the name, so that there
always is a colon on the line.

$05to $OE Skip
Increment P by 1 to 10 bytes. $05 increments it by 1 byte, $06 by two bytes, etc.

$0F to $16 PrHex
Print from one to eight hex nibbles from the memory pointed by P. P is incremented past the
byte that contains the last nibble printed. For example, $13 causes the least significant nibble of
the byte at P and both nibbles of the two following bytes to be printed as a five-digit hex
number.

$17 t0 $1E PrASCII
Print 1 to 8 ASCII characters from memory starting at P. P is incremented past that memory
block. ASCII values lower than $20 or higher than $7E are printed as tiny periods.

$1F NoOp
No operation.

$20 to $7E Print that ASCII character.
$TF Print a tiny period.

$80 DisAsmO
Print the name of the A000 trap whose number is in the word at P, P is incremented past the
word. The number at P is decoded in the same manner as in a Number window: bits 0 to 11
contain the trap number, and bits 12 to 15 are ignored. If the trap names are not present or the
trap given has no name, its number (plus $A000 or $A800, depending on the trap) is displayed
instead, preceded by a dollar sign.

$81 DisAsml
This is the same as DisAsmO except that the word at P is decoded in the manner an Assembly
window would show it as opposed to a Number window. All 16 bits are significant; bits 12 to
15 should contain $A. A space and the hexadecimal digit indicating the value of bits 8 to 11 are
printed when that value differs from the default. If the trap names are not present or the trap
given has no name, this function is equivalent to the sequence '$', PrHex+4.

$82 Recognize
Call the label recognize routine on the address given in the longword at P, and report the
results. Up to 23 bytes of the destination string might be used. Nothing is displayed if the
address could not be recognized.

$83 to SFF Unimplemented. Currently behave as NoOps.

The line is truncated to 84 characters including the colon. Names that are too long may provide too little
editing space for the user.

81

TMON

‘Parameter Count

The parameter count byte defines the number of parameters allowed by the routine. A parameter is a number or
an expression typed by the user on that routine’s line. The parameters are separated by spaces and are
automatically evaluated by the Monitor. The parameter count byte is actually a five-bit bit map contained in
the least significant bits of the byte. The three most significant bits are flags, which should be set to 0. If bit
0 of the byte is set, the user routine may be called with no parameters; if bit 1 is set, it may be called with
one parameter, etc. If the routine allows more than one amount of parameters to be present, it may find the
number of parameters actually given and provide defaults for the missing parameters.

Bit 7 of the parameter count serves a special function. If it is set, a label is expected instead of the first two

ters. The label is checked for syntax but not evaluated. The first four characters of the label are given as
parameter O (in D0), and the second four are given as parameter 1 (in D1). If there are less than eight
characters, the missing ones are padded with blanks; if there are more, the extra ones are ignored. The label
counts as two normal parameters.

Bits 6 and § are unused and reserved for future use.
Register Conventions _
Upon entry to the routine the following values are present in the 68000 registers. All values are longwords.

DOtoD3 Parameters provided by the user or zeros if not present.
D7 The number of parameters supplied by the user (0 through 4).
A0 A pointer to this user routine’s local variable storage.
Al This subroutine’s starting address.
A2 The user area’s starting address.
AS A pointer to the Monitor’s variables (described later).
A7 Monitor’s stack pointer. At least 200 bytes are available on the stack.

All other registers contain zeros. The user routine does not have to preserve any registers except, of course,
A7. The interrupt level is set to zero upon entry to the user routine, but the user routine may set it to
anything it wishes. The status register does not have to be preserved either.

There are, however, certain restrictions on the user routines that are called from the Monitor. They must not
cause any exceptions; in particular, this includes address and illegal instruction errors and trace interrupts.
There are some ways user routines may get around these restrictions if it is absolutely necessary, as described
in the next sections.

1
I

“The A0QO Trap Intercepting Hook

At the beginning of the user area there is a word that contains either zero or an offset to a user AG00 trap
intercepting routine. This makes functions like Trap intercept and Trap discipline possible, The user
routine pointed by the vector is executed before every AQO0 trap except traps that occur while the Monitor is
executing (See the Self-Check section for a definition of when the Monitor is executing) and traps that occur
while the first instruction is executing after leaving the Monitor (See Trace Flag Side Effects for more
information on this topic).

The AO0O trap routine must preserve all registers except the CCR. Upon entry all registers are the same as
before the AOOO trap except A5, which has been saved on the stack. A5 is initialized to the beginning of
Monitor’s variables. The standard user area contains a routine which is usually linked to this hook; it is called
A00OHooOX. It obtains the trap number and PC and dispatches any user AO0Q intercept routines that are active.

The trap routine must either return to the routine that called it using RTS or restore all registers to their
original states (this includes the AS that was saved on the stack) and execute a TRAP #$F instruction, as
described in User Routines Entering the Monitor. Examine the A0OOOHook routine for a safe way of doing
that. .

Technical Reference

User Routines Leaving the Monitor

A user routine may leave the Monitor if it wishes to do so. It must initialize the register area in the
Monitor’s variables to the values the registers are to assume after the Monitor has been exited. This includes
in particular the program counter, stack pointer, and status registers. After doing this the routine must
execute a JMP ~12 (AS) instruction. A5 must contain the address of the Monitor’s variables. At that time the
Monitor executes 2 kind of an automatic Exit function. The register area in Monitor’s variables will be
described in a later section. Refer to the Leave TMON and L.oad resource routines in the user area source
for examples of leaving the Monitor and re-entering it later, although that is not the clearest example because
before leaving the Monitor the return status register and program counter values are already pushed onto the
stack in anticipation of the TRAP #$F instruction that will be executed after the mouse button is pressed.

User Routines Entering the Monitor

User routines that are called from outside the Monitor or have exited the Monitor may reenter it by pushing a
longword and a word on the stack and executing TRAP #S$F inside the user area. That TRAP #$F instruction
is interpreted as an attempt to reenter the Monitor only if it is located within the user area.

The longword pushed onto the stack is the value that will be loaded into the program counter in the
Registers window. The word pushed onto the stack after the longword is the status register value that
will be placed into the same window. The other registers in the Registers window come directly from the
values left in the registers. Some examples of the usage of this feature are the Leave TMON routine and the
routines that exit to the Monitor after a trap has been intercepted or an error in the heap has been found.

“The Heap Window Identification Routine

Locations $10 and $11 of the user area contain 8 word offset from the beginning of the heap to the Heap
window identification routine that is described in the Heap window section. The routine is used to identify
heap blocks and may be customized, The routine is given a flag indicating the type of block in D3, A zero is a
non-relocatable block, one is a non-resource relocatable block, and two is a relocatable block that has aiready
been identified as a resource. Free and invalid blocks are not passed to the identification routine. The user
identification routine will probably want to ignore type-2 blocks.

D3 contains the flag described above. -

AQ contains the address of the beginning of the user area.

Al contains the address of the heap zone to which the block belongs.

A2 contains a pointer to the area in which the text identifying the block is to be stored. Look at the

listing of the default user identification routine to learn how to handle A2. Make sure that you do
not run off the right edge of the string at A2,

A3 is a pointer to the heap block to be identified.

A4 is another pointer to the destination area. The difference between it and A2 is that while A2 points to
the free space after the last word already present in the string, A4 always points to the same place:
the position after the second space after the size correction digit.

A5 points to Monitor’s variables.

A6 contains the address of the handle for relocatable blocks only.

A7 is the stack pointer. At least 60 bytes are free on the stack,

The routine may destroy the contents of any registers except A2, A5, and, of course, A7. If the routine was
able to identify the block, it should move A2 past the information it has written into the destination.

© The routine should not take much more than 1/100th of a second to execute; longer times will tend to
excessively slow the Monitor.

T Make sure that the routine does not write outside the designated destination area. See the listing of
the supplied routine for details.

TMON

%l“ The routine should check all data structures it uses to avoid address errors and following NIL
pointers. It should not assume that anything is correct except in extremely time-critical cases.

The User Initialization Routine

There exists a routine in the user area that is executed immediately before the Monitor is first initialized and
immediately before the Monitor is reinitialized after clicking the Monitor button in the Main Dialog if the
Monitor is already present. Locations $12 and $13 of the user area contain a word offset from the beginning of
the user area to the beginning of this initialization routine. These two bytes contain zeros if there is no
initialization routine.

This routine is called before the Monitor initializes itself; this means that none of the Monitor’s variables
contain valid information. This also means that the Monitor’s self-checking has not yet begun and, therefore,
the Monitor can be patched without generating the message stating that the Monitor has been damaged. In fact,
the main purpose for including this routine is to allow user areas that modify the Monitor to be made. A
secondary purpose is 0 allow self-initializing user areas.

The routine does not have to preserve any registers except the high byte of SR and A7. On entry DO contains 0
if the routine is called the first time and -1 every time thereafter (It can be called more than once if the
Monitor button is used to re-initialize the Monitor). A5 points to the beginning of the Monitor’s variables.
None of the variables themselves, however, have been initialized. A7 points to the application program’s stack,
not the Monitor’s stack.

BF° This routine is not called if %-interrupt is pressed or the Monitor reinitializes itself due to one of the

conditions listed in the Self-Check section of Exception Handling.

N
%‘ Make sure you know exactly what you are doing before attempting to patch the Monitor! Remember
that none of Monitor’s variables contain valid information when the initialization routine is executed.
Your initialization routine also should not call any of the Monitor’s routines if you are not sure
whether such routines depend on the initialization of Monitor’s variables.

The User Enter and Exit Routines

These user routines are called after entering and before exiting the Monitor. Their offsets are in bytes $14 and
$15 for the enter and $16 and $17 for the exit routine. The routines do not have to preserve any registers
except the high byte of SR and A7. On entry A5 points to the beginning of the Monitor’s variables, and A7
points to the Monitor’s stack, Look in the standard user area for examples of usage of these routines.

An alternate set of enter and exit vectors is located at offsets $34 through $37 in the user area. These vectors
are identical to the above ones except that they are entered with interrupt level 7. The level 7 entry routine is
called before the normal entry routine, and the level 7 exit routine is called after the normal exit routine. The
interrupt level is maintained at 7 from the time an exception causing an entry into the Monitor takes place to
the time of the level 7 entry routine call and from the level 7 exit routine call to the actual exit from the
Monitor.

’6" Some very large problems could arise if the user enter routine causes an address error. The Monitor
will re-initialize itself, and, in the process, will call the enter routine again, causing another error.
The cycle will thus continue, and you will be unable to regain contxol.

The User Label Routines

There are four user routines which are used by the Monitor’s label system for label evaluation and recognition.
Two of these routines do recognition: _LSCAN, at $18 and $19, for label table recognition; and _ CSCAN, at
$1A and $1B, for embedded name recognition. _LFIND, at $1C and $1D, evaluates table labels; and _CFIND,

a8 $1E and $1F, evaluates embedded name labels. These routines are called only if labels are enabled and if they
are not inhibited by Opt 1ons. The register conventions are listed in the user area source code. These routines
should take measures to avoid crashing on address errors. They should also be designed efficiently, as slow
ones will excessively slow the Monitor.

84

Technical Reference

The User A0O0 Name Table

If the word at offset $20 in the user area is nonzero, it is assumed to be an offset into the user area table of
AQ000 trap names. The A00O name assembly and disassembly routines scan both that table and the Monitor’s
internal table; when & name is present in the user area table, it overrides the name in the Monitor’s table. The
format of the table is documented in the user area but subject to change.

3(' The Monitor does not do error checking on the table. It is very sensitive to the format of the table
and will crash if the word at offset $20 points to the wrong place or if there are any errors in the
table.

The System Error Table

The word at offset $22 in the user area is an offset to a table of system errors that are passed by the Monitor
to the system. These include the disk-switch dialog (“Please insert the disk...”) and the power-off dialog. The
table is composed of longwords terminated by a zero longword. Each longword is a range of error numbers to
pass to the system. The high word is the lower end of the range inclusive, and the low word is the higher end
of the range inclusive. All error numbers are signed. The ranges must be listed in ascending order. An error
number not present in any of the ranges causes entry into the Monitor.

The Window List

Locations $50-$2AB of the user area are used by the Monitor for storage of the current state of the Monitor’s
windows. Byte $53 contains the current number of windows (including alerts) on the Monitor’s screen.
Locations $54-$2AB contain an array of up to twenty 30-byte records corresponding to up to twenty windows
on the screen. The first window is the topmost, the second one is just behind the first one, etc. Each window
recard is 30 bytes long, and its first byte indicates the type of a window: $00 Alert, $01 Registers, $02
Breakpoints, $03 User, $04 Number, $85 Dump, $86 Assembly, $87 File, $83 Heap, and $09
Options. Type $0A is used internally. The other bytes of a window record indicate the window’s length and
position on the screen, and in some cases the data displayed in the window. Assembly window records, for
instance, contain the lengths of the instructions displayed in them,

The Exception Vector Bitmaps

There are two bitmaps of exception vectors in the user area at offsets $40 and $48. Each bitmap consists of 64
bits corresponding to the approximately 64 exception vectors possible on the Macintosh, The first bitmap
indicates the exception vectors into which the Monitor should put its vectors when it is initialized, and the
second bitmap indicates the exception vectors that should be refreshed. Setting a bit indicates that the Monitor
should take over the corresponding vector. The Monitor will never take over vectors at $00 and $04 (reset),
$64, $68, and $6C (interrupt levels 1-3), or $F8 and $FC (used internally by the Monitor), regardless of the
settings of the bits in the bitmap.

Clearing some of the bits (especially the anes corresponding to the TRAP #$F, A000, and trace
vectors) will likely crash the Monitor.

The Monitor's Variables

This is an incomplete list of the Monitor’s variables. Only the more useful variables are shown. You can leamn
how to use them by examining the user area source file. The locations of variables are offsets from AS. The
lengths of the variables follow the locations.

$15(B) MONEXECUTING
This byte is used to decide whether the Monitor is currently executing or not. $6B means it is
executing, $29 means that the first instruction after an exit of the Monitor is executing, and any
other value means that the Monitor isn’t executing. Do not change this value unless you are sure
what you are doing; the AOOO trap intercept routine in the user area source contains an example
of changing MONEXECUTING,

TMON

$1A (L) EVENTINTERCEPT
Saved address of the OS Event Manager routine while the Monitor is executing.

$1E (L) DESNIFF
Saved value of StkLowPt ($110) while the Monitor is executing.

$23 (B) BREAKPTMAP
A bitmap of the breakpoints. The MSB is used internally by the Monitor to indicate if the
breakpoints are set at the present time or not. The seven least significant bits are set if the
corresponding breakpoints have been set. '
$24 (L*7) BREAKPOINTS
The addresses of the breakpoints or zeros if the breakpoints are reset.

$40 (W*7) BREAKSAVES
The values of the words “under” the breakpoints.

$4E (L) REG.PC
$52 (W) REG.SR
$54 (L) REG.USP

$58 (L) REG.DO
Registers D1 through D7 follow.

$78 (L) REG.AO
Registers A1 through A6 follow.

$94 (L) REG.A7

$98 (L) REG.NUM
The current value of N.

$9C (L) REG.V
The current value of V. Many user area routines change this location.

$1F7 (B) MONTRACETIME
Information on what to do if a trace interrupt occurs and MONEXECUTING is $29. 0 means enter
the Monitor with trace flag clear, 1 enter the Monitor with trace set, $80 put in the breakpoints
and leave, and $81 is used by GoSub to step through the JSR or BSR instruction,

$1F8 (L) SYSERRVECTOR
The saved system error vector. Jump to the address stored here to generate a system error.

$200 (L) SYSAOGOVECTOR
The saved value of the system A0OQ line exception vector,

$207 (B) USERIINFORM
This variable is cleared every time the Monitor exits. 1t is set to $FF if the interrupt button is
pressed (without Option or % keys) while MONEXECUTING is $6B. USERIINFORM is also set
to $01 whenever Option-interrupt is pressed (without the 3% key). This variable is examined by
the user area INTERCEPT routine to determine if the interrupt button was pressed while one of
its dispatched routines was executing. It is also used by the Trap Signal function,

$208 (8*B) ALCPCORDER
The order of allocation of ALCPCVALUES. 0 is the next to be allocated.

$210 (8*L) ALCPCVALUES
Up to eight return addresses for up to eight recursive invocations of GoSub or Step. See the
section on GoSub and Step for more details.

$500 USER
This is the beginning of the user area.

86

Technical Reference

The Monitor’s Vectors
This a list of Monitor’s vectors which may be accessed by jumping to or calling subroutines at offset(AS).

-$08(A5)
-$0C(A5)
-$14(A5)

-$18(A5)

-$1C(A5)
-$20(A5)
$24(A5)
-$28(A35)
-$2C(A5)

-$30(A5)

-$34(A5)

-$38(A5)

-SSC(AS)

PRINT1
This is for use of the printing routine only. See PRINT in the listing of the default user area.

_EXITMON
This routine is used for exiting TMON and has been described earlier.

PRINT2
This is for use of the printing routine only. See PRINT in the listing of the default user area.

_PUTASCII
Given a byte in DO and A2 pointing to a destination area, PUTASCII stores either DO if it is a
valid ASCII character or $7F (a tiny period) if it isn’t in (A2). A2 is incremented one byte. DO
is destroyed.

_PUT1DIG
_PUT2DIG
_PUT4DIG

_PUT6DIG

_PUT8DIG
These routines take either the hex dlglt, byte. word, three bytes, or long word in D0 and put it
in hexadecimal format at (A2). A2 is incremented by the corresponding number of digits. DO and
D1 are destroyed.

_NEXTCRESFILE
Find the next file in the linked list of resource files. Check for NIL handles and address errors.
Ignore files with address errors caused by accessing type maps. On entry D1 contains a handle to
the next file. On exit, if Z if set, there is no next resource map. If Z is clear, Al points to the
type list, DO.W contains the ﬁlereference number, and D1 has a handle to the next file. No
other registers are affected.

_FINDRES
Findaresourcegwmimtypeandm Check for address errors and NIL handles. On entry D2
contains the type and D3.W the ID. On exit, if DO is -1, the resource was not found (maybe not
loaded). If DO is 0, D2 points to the resource, and A0 has the handle to the resource. D1, D4,
AQ, and A1 are destroyed.

RECOGNIZE
Call the recognize routine. On entry D2 contains the address to be recognized, and A2 must point
to a destination string at least 23 bytes long. Upon exit, A2 is advanced past the recognition data
stored in the string, and DO is either 0 if the recognize was successful, or -1 otherwise. D1-D4,
A0, and Al are destroyed. All of the Options switches are obeyed.

_CALLDISA000

Call the AQOQ disassembly routine. On entry D2 contains the AOOO trap to be disassembled
(only the low 12 bits are significant), and A2 must point to a destination string at least 23 bytes
long. The low byte of DO is either $00 to display the digit indicator or $FF to inhibit it. Upon
exit, A2 is advanced past the dlsassembly of the instruction, which is either the trap’s name
preceded by an underscore or the the trap’s hexadecimal four-digit number pmcedcd by a dollar
sign. D0-D4 AQ, and A1 are destroyed.

TMON

The Startup Loader

The TMON diskette contains a file named "TMON Startup.” This file contains an INIT resource which loads
the Monitor into RAM during the execution of INIT resources. This is useful in debugging any INIT
resources which are executed after TMON Startup. To use TMON Startup, place it in your System Folder
along with a copy of TMON and any user area file that you wish to use. When the system is re-booted,
TMON Startup will load the Monitor into RAM according to the configuration found in the user area. The
name of the resource file that TMON Startup uses to load the Monitor into RAM is in resource STR with an
ID of 1000. Normally this string contains “TMON.” It can be changed with a resource editor.

TMON Startup can be prevented from loading the Monitor into RAM by holding down the mouse button
before TMON Startup executes. Conversely, TMON can be entered immediately after having been loaded by
- TMON Startup by holding down the Shift, %, or Option key. .

TMON Startup indicates its progress by displaying an icon near the bottom left comer of the screen. If it
displays the TMON icon, all is well. If it displays the TMON icon with a question mark superimposed, it
failed tp find the file named in STR 1000. If it displays the TMON icon with a slashed circle in

there was a resource error in opening the file named in STR 1000. If it displays the TMON icon with a skull
and crossbones superimposed, there was a disk error in reading the Monitor into RAM,

It may be desirable to have TMON Startup be the first INIT file executed. If that is the case, its name must
be changed so that it comes first in the System Folder, because external INITs are executed in alphabetical
order by file name, For example, “! TMON Startup”, will come before any INITs with names beginning with
a letter. :

Appendix A—Quick Reference

Technical Reference

This is a compilation of the frequently used tables in the manual. See the appropriate sections of the manual

for more detailed information.

Keys that May be Used in the Monitor

Tab Move cursor to the top left position of the current window
Return Process the contents of the line left of the cursor.
Enter Process the entire line.

Clear (keypad) Clear the line. »

- Move cursor left.

< Move cursor right.

%A Bring assembly window to front.
%B Bring breakpoints window to front.
%D - Bﬂngdmnpwindowwﬁom.

2/E CUBxit,

K|F Bring file window to front.

%G GoSub.

8H Brhguapwhdowwm

M Unfreeze mouse.

8N Bring number window to front.

xp : - Print contents of frontmost window.
%R Bring registers window to front.

t 1 Step.

%T Trace. .

%0 Bring options window to front.

8U Bring user window to front.
%-Shift

R-Shift-A, 8-Shift-D,%-Shift-F, 8-Shift-H, and %-Shift-N generate additional

windows of the indmted;ype. See comesponding 3 keys above.

‘Keys that May be Used outside tﬁe Monltor

interrupt Enters the Monitor.
Option-interrupt Activates the user area signal function.
R-interrupt Reinitializes the Monitor in emergencies.

Operators Allowed in Expressions

Binary Arithmetic Binary Logical Unary
+ Addition | Logical OR + Positive number
- Subtraction ~ Logical exclusive OR - Negative number
* Multiplication & Logical AND ~ Logical NOT
/ Signed division @ Long word indirection
\ Signed modulo ! A000 trap address
< and > may be used as parentheses.

Precedence
<>
unary +-~@!
*/\

&
+=
A

TMON

Register References

Variable Value Register name

AOtoA7 RAO1RA7?7 Address registers.
DOtoD7 RDOtoRD7 Data registers.

SP* sp Same as A7 or RA7. *For anchoring windows only.
Ssp* ssp System stack pointer. *For anchoring windows only. -
Usp USP User stack pointer. (Normally umused in the Macintogh)
PC PC Program counter.
SR Status register.
CCR Condition code register.
N N The result of the last Number calculation.
v v Result of Find, Heap, and other functions.
USER The beginning of the user area.
DSPT The address of the ROM AQ0O trap dispatcher.
Dump Window Flags
P Program counter * Breakpoint
S System stack pointer N N register
U User stack pointer V V register

0 to 6 Address register

Assembly Window Addressing Modes

Dn Data register direct

An Address register direct

{an) Register indirect

(An) + Postincrement register indirect

- (An) Predecrement register indirect

offset (An) Register indirect with offset - ..
offset (An, Rns) Register indirect with offset mﬁyx
address . Absolute T

~address, *, *+gffset, or *-offset
Relative with offset
Aaddress (Rns), * (Rns), *+offset (Rns),or *-gffset(Rns)

Relative with offset and index
#number Immediate
USP, SR, CCR Implied register

Appendix A—Quick Reference

ltems Identified by the Heap Window

UnitTable
DSAlertTab
FCBs
WDCBsPtr
Scrap
WMgrPort
OldStructure
OldContent
GrayRgn
SaveVisRgn
MenuList
ParamText0-3
TEScrap
FinderInfo
VCB §..

Resource map $..

$11C
$2BA
$34E
$372
$964
$9DE
$9E6
$9EA
$9EE
$9F2
$AlC
SAAO
SAB4
CurrentA5+$10

Driver storage $.
Window #5.., kind $..

A block containing all of the device control blocks.

The Dire Straits alert table.

A block containing all of the file control blocks.

A block containing all of the working directory control blocks.
Memory scrap.

A grafPort used by the Window Manager.

A saved structure region used by the Window Manager.

A saved content region used by the Window Manager.

The rounded region defining the desktop.

A region used by the Window Manager.

The current menu bar list.

The parameters in the last ParamText call.

TextEdit scrap.

The Finder information handle (in system heap).

Volume control block.

Resource map of the given resource file.

Storage for the given driver.

A window found by following the window list. The first number is
the number of the window (0 is the frontmost window, 1 the next
one, etc). The second number is the value of windowKind for that
window.

Heap Window Handle Flags

1 L Locked

p P Purgeable

r R Resource

File Window Map Flags

rR Read-onlymap

c C Map will be compacted

w W Map will be written to disk

File Window Resource Flags

« R System reference (64K ROMs only)

. H Load into system heap (opposite is application heap)

. P Purgeable

. L Locked

. T Protected

« 1 Preloaded

. W Write into resource file

.U U flag set
A000 Traps in Numencal Order
A000: Open AQOD: SetFilelInfo AllA: GetZone A027: ReallocHandle
‘A001: Close AOOE: UnmountVol A01B: Setzone Al28: RecoverHardle
A002: Read AOOF: Mountvol AOIC: FreeMem A029: Hlock
A003: Write A010: Allocate AllD: MaxMem A02A: HUnlock
A004: Control A011: GetECF AllE: NewPtr AO2B: EnptyHandle
A005: Status A012: SetEOF AOIF: DisposPtr A02C: InitApplzZone
A006: XillIO A013: Flushvol A020: SetPtrsize AO2D2 SetApplLimit
A007: GetVolInfo A014: Getvol A021: GetPtrsize AOZE: BlockMove
AQ008: Create A015: Setvol Al122: NewHandle AO2F: PostEvent
AQ09: Delete A016: InitQueue A023: DisposHandle A030: OSEventAvail
ACOA: OpenRP A017: Eiject A024: setHandlesize A031l: GetOSEvent
AOOB: Rename A018: GetFPos A025: GetHandlesize A032: FlushEvents
A00C: GetFilelInfo A019: 1InitZone Al26: HandleZone A033: VInstall

91

TMON

A034:
A035:
A036:
A037:
A038:
A039:
A03A:
A03B:
A03C:
A03D:
AO3E:
AO3F:
A040:
A041:
A042:
A043:
A044:
A045:
Al46:
A047:
Al48:
A049:
AO4A:
A04B:
AD4C:
A04D:
AQ4E:
AD4F:
A050:
A051:
A052:
A053:
A054:
A05S:
A057:
A0S8:
A059:
AO5A:
AOSB:
A0SD:
A2603
A061:
Al62:
A063:
A064:
A065:
Al66:
A067:
A068:
A069:
AO6A:
AO6C:
AQ6D:
AO6E:
AO6F:
A070:
R071:
A072:
A077:
A078:
A079:
AOTA:
A07B:
AO7C:
AOTD:
AO7E:
A080:
A081:
A082:
A083:
Msd:
A090:

VRemove
0ffline
MoreMasters
ReadParam
WriteParam
ReadDateTime
SetDateTime
Delay
Cmpstring
Drvrinstall
DrvrRemove
InitUtil
ResrvMem
SetFilLock
RstFilLock
SetFilType
SetFPos
FlushFile
GetTrapAddress
SetTrapAddress
PtrZone
HPurge

HNoPurge
SetGrowZone
ConpactMem
PurgeMem
AddDrive
ROrvrinstall
Relstring
ReadXPRam
WriteXPRam
ClkNoMem
Uprstring
StripAddress
SetAppBase
InsTime
RmvTime
PrimeTime
PoweroOff

SwapMMIMode
HFSDispatch
MaxBlock
PurgeSpace
MaxApplZone
MoveHH1
StackSpace
NewEmptyHandle
HSetRBit
BClrRBit
HGetstate
Hsetstate
InitFs
InitEvents
SlotManager
SlotVinstall
SlotVRemove
AttachVBL
DoVELTask
CountADBs
GetIndaADB
GetADBInfo
SetADBInfo
ADBReInit
ADBOp
GetDefaultStartup
SetDefaultstartup
GetVideoDefault
SetVideoDefault
DTInstall
GetOsDefault
SetOsbefault
SysEnvirons

GoDriver
WaltUntil
SyncWait
soundDead
Disptch
IAZInit
IAZPostInit
LaunchInit
cacheFlush
Lg2Phys
FlushCache
GetBlock
MarkBlock
RelBlock
TrashBlocks
TrashVBlks
CacheWrIP
CacheRdIP
BasicIO
RdBlocks
WrBlocks
SetUpTags
BIClose
BTDelete
BTFlush
BIGetRecord
BTInsert
BTOpen
BTsearch
BIUpdate
GetNode
RelNode
AllocNode
FreeNode
ExtBIFile
DeallocFile
ExtendFile
TruncateFile

HiliteText
CKExXtFS
DTv3

BMChk

TstMod
LocCRec
TreeSearch
MapFBlock
XFSearch
ReadBM
DoEject
SegStack
Superload
CrpFrm

NewMap
ChecklLoad
TETrimMeasure
TEFindiord
TEFindLine
sndDisposeChannel
SndaddModifier

SndDoImmediate

ABO05:
AB06:
A807:
28083
A809:
ABOA:
AB0B:
A8(C:
AB0D:
AS0E:
A80F:
A810:
ABll:
A812:
A813:
A814:
A815:
A816:
2817:
A818:
A819:
AB1A:
A81B:
AslC:
A81D:
AB1E:
AB1F:
AB20:
A821:
A822:
A823:
AB24:
A8252
AB826:
AB27:
A828:
2A829:
AB2A:
A82B:
AB2C:
A82D:
A82E:

AB2F::

A830:
A831:
A832:
AB33:
A834:
A835:
AB36:
A837:
AB38:
RA839:
A83A:
A83B:
AB3C:
A83D:
A83E:
A83F:
AB40:
A841:
AB42:
AB43:
AB44:
A845:
AB46:
AB47:
A848:
A849:
AB4A:
AB4B:
AB4C:

sndPlay
Sndcontrol
SndNewChannel
InitProcMenu
GetCvariant
GetWvVariant

" PopUpMenuSelect

RGetResource
Count1lResources
GetlIxResource
Get1IXType
UniquellD
TESelView
TEPinScroll
TEAutoView
SetFractEnable
SCsiDispatch
Packs
CopyMask
FixAtan2
XMunger
XGetZone
XsetZone
CountlTypes
XMaxMem
XNewPtr
GetlResource
Get1NamedResource
MaxSizeRsrc
XNewHandle
XbisposHandle
XsetHandleSize
XGetHandleSize
InsMenultem
HideDItem
ShowDItem
XHLock
XHUnlock
Pack9
Packl0
Packll
Packl2
Packl3
Packl4
Packl5
XFlushEvents
ScrnBitMap
SetFScaleDisable
FontMetrics
GetMaskTable
MeasureText
CalcMask
SeedFill
ZoomWindow
TrackBox
TEGetOffset
TEDispatch
TEStyleNew
Long2Fix
Fix2long
Fix2Frac
Frac2Fix
Fix2X
X2Fix
Frac2X
X2Frac
FracCos
Fracsin
Fracsqrt
FracMul
FracDiv
XConpactMem

AB6E: -

AB6F:
AB70:
A871:
A8723
A873:
AB74:
A87S5:
A876:
A877:
AB78:
AB879:
AB7A:
A87TB:
AS7C:
A87D:
A87E:

A880:
A881:
AB82:
A883:
A884:
A885:
A886:
AB87:
AB88:
A889:
ABBA:
A88B:
A8sC:
ABSD:
AS8E:
A890:
A891:
AB92:
AB93:
AB94:
A895:
AB896:
A897:
AB98:

Fixdiv
GetItemCmd
SetItemCmd
InitCursor
SetCursor
HideCursor
ShowCursor
ShieldCursor
CbscureCursor
Bitand
Bitxor
BitNot

Bitor
Bitshift
BitTst

OpenPort
LocalToGlobal
GlcbalToLocal
GrafDevice
SetPort
GetPort
SetPBits
Portsize
MovePortTo
SetOrigin
SetClip
GetClip
ClipRect
BackPat
ClosePort
AddPt
SubPt
SetPt
EqualPt
StdText
DrawChar
DrawsString
DrawText
TextWidth
TextFont
TextFace
TextMode
Textsize
GetFontInfo
Stringwidth
CharWidth
SpaceExtra
StdLine
LineTo
Line
MoveTo
Move
ShutDown
HidePen
ShowPen
GetPenState

BEREEE

[

H L

§

444111111

HHIE

ERE

NS 6 8 S¢ 2% e 48 Gu B0 86 08 8% 00 08 oe ¢ Ak 88 ee 80 00 O

B

‘ Appendix A—Quick Reference

SetPenState RSE2: EnptyRgn A92B: Growdindow A973: stillbown
GetPen ASE3: EqualRgn A92C: FindWindow A974: Button
Pensize ASE4: SectRgn A92D: CloseWindow A975: TickCount
PenMode ABE5: UnionRgn A92E: SetWindowPic A976: GetXeys
PenPat ABE6: DiffRgn A92F: GetWindowPic A977: WaitMouseUp
PenNormal ABE7: XorRgn A930: InitMenus A978: UpdtDialog
Unimplemented ASES: PtInRgn A931: NewMenu A979: Couldbialog
StdRect ABE9: RectInRgm A932: DisposMenu A97A: FreeDialog
FrameRect ASEA: SetStdProcs A933: AppendMenu A97B: InitDialogs
PaintRect ASEB: StdBits . A934: ClearMenuBar A97C: GetNewDialog
EraseRect ASEC: CopyBits A935: InsertMenu A97D: NewDialog
InverRect ABED: StdTxMeas A936: DeleteMenu A97E: SellText
FillRect . ASEE: StdGetPic A937: DrawMenuBar A97F: 1IsbialogEvent
EqualRect ABEF: ScrollRect A938: HiliteMenu A980: DialogSelect
SetRect ASF0: StdPutPic A939: Enableltem A981: DrawDialog
Of fsetRect ASF1: StdComment A93A: DisableItem A982: CloseDialog
InsetRect ASF2: PicConment A93B: GetMenuBar A983: DisposDialog
SectRect ABF3: OpenPicture A93C: SetMenuBar A984: FinddItem
UnionRect ASF4: ClosePicture A93D: MenuSelect A985: Alert
Pt2Rect ABFS: KillPicture A93E: MenuKey A986: StopAlert
PtInRect ASF6: DrawPicture A93F: GetItmlIcon h987: Notehlert
EmptyRect ASF8: ScalePt A940: SetItmIcon A988: CautionAlert
StdRRect ASF9: MapPt A941: GetItmStyle A989: CouldAlert
FrameRoundRect ASFA: MapRect A942: SetItmStyle A98A: FreeAlert
PaintRoundRect ASFB: MapRgn A943: GetItnMark h98B: ParamText
EraseRoundRect RSFC: MapPoly A944: SetItmMark A98C: Brrorsound
InverRoundRect ASFD: Printing A945: CheckItem A98D: GetDItem
FillRoundRect ASFE: InitFonts A946: GetItem A9BE: SetDItem
ScriptUtil ASFF: GetFName A947: SetItem AS98F: SetIText
Stdoval A900: GetFNum A948: CalcMenuSize A990: GetIText
FrameOval AS01: FMSwapFont A949: GetMHandle A991: ModalDialog
PaintOval 2A902: RealFont A94A: SetMFlash A992: DetachResource
EraseOval A903: SetFontlock A94B: PlotIcon A993: SetResPurge
InvertOval A904: DrawGrowIcon A94C: FlashMenuBar A994: CurResFile
Filloval AS05: DragGrayRgn A94D: AddResMenu A995: InitResources
SlopeF romangle A906: Newstring A94E: PinRect A996: RsrcZonelnit
Stdare A907: SetString AS4F: DeltaPoint A997: OpenResFile
FrameArc A908: Showflide A950: CountMItems A998: UseResFile
PaintArc AS09: cCalcVis . A951: InsertReasMenu A999: UpdateResFile
EraseArc A90A: CalcvBehind A952: DelMenultem A99A: CloseResFile
InvertArc L uE A99B: SetReslLoad
Fillare A99C: CountResources
PtToAngle A99D: GetIndResource
AngleFromSlope A99E: CountTypes
stdpoly A99F: GetIndType
FramePoly ASAO: GetResource
PaintPoly ASAl: GetNamedResource
EBrasePoly A9A2: loadResource
InvertPoly A9A3: ReleaseResource
Fillpoly ASA4: HomeResiile
OpenFoly A9AS: SizeRsrc
ClosePgon ASA6: GetResAttrs
Killproly ASA7: SetResAttrs
OffsetPoly A9A8: GetResInfo
PackBits A919: GetwTitle A961: GetMinCtl ASA9: SetResInfo
UnpackBits A91A: SetWritle A962: GetMaxCtl ASAA: ChangedResource
StdRgn A91B: MoveWindow A963: SetCtlvValue A9AB: AddResource
FrameRgn A91C: HiliteWindow A964: SetMinCtl ASAC: AddReference
PaintRgn A91D: Sizewindow A965: SetMaxcCtl A9AD: RmveResource
EraseRgn A91E: TrackGoAway A966: TestControl ASAE: RmveReference
InverRgn A91F: SelectWindow A967: DragControl ASAF: ResError
FillRrgn A920: BringToFront A968: TrackControl A9B0: WriteResource
NewRgn A921: SendBehind A969: DrawControls A9Bl: CreateResFile
DisposRgn A922: BeginUpdate A96A: GetCtlAaction A9B2: SystemEvent
OpenRgn A923: EndUpdate A96B: SetCtlAction A9B3: SystemClick
CloseRgn A924: FrontWindow A96C: FindControl A9B4: SystenTask
A925: DragwWindow A96D: DrawlControl A9BS: SystemMenu
SetEmptyRgn R926: DragTheRgn A96E: Dequeue A9B6: OpenDeskAcc
SetRecRgn A927: InvalRgn A96F: Enqueue A9B7: CloseDeskAcc
RectRgn A928: InvalRect A970: GetNextEvent A9B8: GetPattern
OfsetRgn A929: ValidRgn A971: Eventhvail A9B9: GetCursor
InsetRgn A92A: ValidRect A972: GetMouse A9BA: GetString

93

14

HHEHHE

BREEEEEEE

AR94:
A07C:
AQ7B:

GetIcon A9E8: Packl AA1S: RGBBackColor AA42: GetAuxwWin
GetPicture A9ES: Pack2 AAl6: SetCPixel ABd3: SetCtlcColor
GetNewWindow A9EA: Pack3 AAl7: GetCPixel AAM4: GetAuxcCtl
GetNewControl A9EB: FP68K AR18: GetCTable BA45: NewCWindow
GetRMenu A9EC: Elems68K AA19: GetForeColor ARd6: GetNewCWindow
GetNewMBar A9ED: Packé AAlA: GetBackColor AAd7: SetDeskCPat
UniqueID A9EE:; Pack7 AAlIB: GetCCursor hn48: GetWMgrCPort
SysEQit AYEF: PtrAndHand AAlIC: SetCCursor AA49: SaveEntries
KeyTrans A9F0: LoadSeg AAID: AllocCursor AMA: RestoreEntries
OpenRFPerm A9F1l: UnloadSeqg AAlE: GetCIcon AAdB: NewCDialog
RsrcMapEntry A9F2: Launch AAIF: PlotCIcon AMC: DelSearch
Secs2ZDate A9F3: Chain AA20: OpenCPicture AAMD: DelComp
Date2Secs A9F4: ExitToshell AAz1: OpColor AME: SetStdCProcs
SysBeep A9¥FS5: GetAppParius AA22: HiliteColor AAF: CalcCMask
SysError A9F6: GetResFileAttrs AA23: CharbExtra AAS0: SwedCEill
PutIcou A9F7: setResFileAttrs AA24: DisposCTable AA60: DelMCEntries
TEGetText A9F8: MethodDispatch AR25: DisposCIcon AA6l: GetMCInfo
TEInit A9F9: InfoScrap AR26: DisposCCursor AA62: SetMCInfo
TEDispose AYFA: UnlodeScrap AR27: GetMaxDevice AA63: DispMCInfo
TextBox A9FB: LodeScrap AA28: GetCTSeed ARG4: GetMiEntry
TESetText AYFC: 2eroScrap AM29: GetDeviceList ANGS: SetMCEntries
TECalText A9FD: GetScrap AA2A: GetMainDevice AR66; MsmuChoice.
TESetSelect A9FE: PutScrap AA2B: GetNextDevice AA90: InitPalettes
TENew A9FF: Debugger AA2C: TestDeviceAttribute AR91: P
te AAOO: OpenCPort AR2D: SetDeviceAttribute AM92: GetNewPalette

TEC1ick An01: InitCPort ARJE: InitGDevice 2293: DisposePalette
TECopy AA02: CloseCPort AR2F: NewGDevice AAG4: ActivatePalette
TECut AA03: NewPixMap AA30: DisposGDevice AA9S: SetPalette
TEDelete ARO4: DisposPixMap AA3l: SetGDevice p VUL T ;
TEActivate AR0S: CopyPixMap AA32: GetGDevice AA97: PMPoreColor
TEDeactivate ARO6: SetCPortPix AA33: Color2Index An98: - PMBackColor
TEIdle AA07: NewPixPat AR34: Index2Color AA99: AnimateEntry
TEPaste AAQ8: DisposPixPat AA35: InvertColor AARGA: AnimatePalette
TEKey AA09: CopyPixPat AA36: RealColor AASB: GetEntryColor
TEScroll AROA: PenPixPat AA37: GetSubTable AASC: SetEntryColor
TEInsert AAQB: BackPixPat AA38: UpdatePixMap AASD: GetEntryUsage
TESetJust AROC: GetPixPat AA39: MakeITable AASE: SetEntryUsage
Munger AAOD: MakeRGBPat AA3A: AddSearch AMJF: CTab2Palette
HandToBand AAOE: FillCRect AA3B: AddComp AMAO: Palette2CTab
PtrToXHand AROF: FillcoOval AA3C: SetClientID AMAl: CopyPalette
PtrToHand AA10: FillCRoundRect 3 ABF8: StdOpcodeProc
HandAndHand AAll: FillCarc ABFF: Debugstr
InitPack AA12: FillCRgn

InitAllPacks AA13: FillCPoly

Pack0 AAl4: RGBForeColor

A00O Traps in Alphabetical Order

ActivatePalette AB87C: BackPat AODO: BTInsert A911: CheckUpdate
ADBOp AROB: BackPixPat AODl: BTOpen AOEE: CKExtFS
ADBReInit A(OC8: BasicIO AQD2: BTSearch A934: ClearMenuBar
AddComp A922: BeginUpdate AOD3: BTUpdate A90B; Clipabove
AddDrive A858: BitAnd A974: Button A87B: ClipRect
AddPt A85F: BitClr AOBD: CacheFlush A053: ClkNoMem
AdReference A85A: BitNot A0C7: CacheRdIP A001: Close
AddResMenu A85B: BitOr A0C6: CacheWrIP AAO2: CloseCPort
AddResource ABSE: BitSet AA4F: CalcCMask A9B7: CloseDeskAcc
Midsearch A85C: Bitshift A838: CalcMask A982: CloseDialog
MIEF A85D: BitTst A948: CalcMenuSize ASCC: ClosePgon
Alert A859: BitXor A90A: CalcVBehind ASF4: ClosePicture
Allocate AODF: BlkAlloc A909: CalcVis A87D: ClosePort
AllocCursor AOEQ: BlkDealloc A988: CautionAlert A99A: CloseResFile
Allocode AO02E: BlockMove A9F3: Chain ASDB: CloseRgn
AngleFromSlope AQF0: BMChk A9AA: ChangedResource A92D: CloseWindow
AnimateEntry A920: BringToFront AQE7: Char2pixel AOFA: CmpFmm
AnimatePalette AOCC: BIClose AA23: CharExtra A03C: Onpstring
AppendMenu AOCD: EBIDelete A88D: CharWidth AODC: CMSetUp
AttachVBL AOCE: BTFlush A945: CheckItem AA33: Color2Index
BackColoxr AOCF: BTGetRecord AQOFC: CheckLoad AB64: ColorBit

AA4D:
A009:
R936:
AR60:
A952:
An4C:
A94F:
A96E:
A992:
2A980:

CompactMem
Control
CopyBits
CopyMask
CopyPalette
CopyPixMap
CopyPixPat

CopyRgn
CouldAlert
Couldbialog
Count1Resources
Countl1Types
CountADBs
CountMItems
CountResources
CountTypes
Create
CreateResFile
CTab2Palette
CurResFile
Date2Secs
DeallocFile
Debugger
Debugstr
Delay
DelComp
Delete
DeleteMenu
DelMCEntries
DelMenultem
DelSearch
DeltaPoint
Dequeue
DetachResource
DlalogSelect
DLffRgn
DisableItem
DispMCinfo
DisposCCursor
DisposCIcon
DisposControl

DoEject
DOVBLTask
DragControl
DragGrayRgn
DragTheRgn
Dragwindow
DrawiControl
DrawChar
DrawControls
DrawDialog
DrawGrowIcon
DrawMenuBar
DrawNew
DrawPicture
Drawstring
Drawlext
Drvrinstall
DrvrRemove
DTInstall

A032:
A04S:
AD13;
A901:

AB35:
AB62:
A9EB:
AB42:
AB4S:
AB47:
AB4B:
AB4A:
AB48:
AB49:
ABBE:
ABB7:
ABC6:

ABD2:
A8BO:
A98A:

Appendix A—Quick Reference

FreeDialog
FreeMem
FreeNode
FrontWindow
Get1IxResource
Get1IxType
GetINamedResource
Get1lResource
GetADBInfo
GetAppParms
GetAuxCtl
GetAuxWin
GetBackColor
GetBlock
GetCCursor
GetCIcon
GetClip
GetCPixel
GetCRefCon
GetCTable
GetCTitle
GetCtlAction
GetCtlvalue
GetCTSeed
GetCursor
GetCVariant
GetDefaultStartup
GetDevicelist
GetDItem
GetEntryColoxr
GetEntryUsage
GetECF
GetFileInfo
GetFName
GetFNum
GetFontInfo
GetForeColor
GetFPos
GetGDevice
GetHandleSize
GetIcon
GetIndADB
GetIndResocurce
GetIndType
GetItem
Getltemtmd
GetIText
GetItmIcon
GetItmMark
GetItmsStyle
GetKeys
GetMainDevice
GetMaskTable
GetMaxCtl
GetMaxDevice
GetMCEntry
GetMCInfo
GetMenuBar
GetMHandle
GetMinCtl
GetMouse
GetNamedResource
GetNewControl
GetNewCwWindow
GetNewDialog
GetNewMBar
GetNewPalette
GetNewwindow
GetNextDevice
GetNextEvent
GetNode
GetOsDefault

A031:
ARN96:
A9B8:
A89A:
AB98:
A9BC:
A865:
AAQOC:
A874:
2021:
A9AG:
A9F6:
A9A8:
A9AQ:
A9KF':
A9FD:
A9BA:
AA37:
Al46:
A080:
A014:
R007:
A92F:
AA48:
A910:
A917:
A919:
AB0A:
‘AllA:
A871:
AOBS:
A872:
A92B:
A9E4:
Al26:
A%El:
A068:
A260:
A069:
A958:
A852:
AB27:
A896:
A916:
AA22:
A95D:
A938:
AOES:
A91C:
A86A:
A029:
A04A:
A9A4:
AD49:
A067:
AO6A:
AD2A:
AOBA:
AOBB:
AA34:
A9F9:
A9YE6:
Af2C:
ARO1:
A850:
R97B:
AQ6D:
ASFE:
AD6C:
AAZE:
AS6E:
A930:

GetOSEvent
GetPalette
GetPattern
GetPen
GetPensState
GetPicture
GetPixel
GetPixPat
GetPort
GetPtrsize
GetResAttrs
GetResFlleAttrs
GetResInfo
GetResource
GetRM:nu
GetScrap
GetString
GetSubTable
GetTrapA«dress
GetVideoDefault
GetVol
GetVolinfo
GetWindowPlic
GetWMgrCPort
GetWMgrPort
GetWRefCon
GetWTitle
GetWvariant
GetZone
GlabalToLocal
Gobriver
GrafDevice
GrowWindow
HandAndHand
HBandleZone
HandToHand
HC1rRBit
HBFSDispatch
HGetState
HideControl
HideCursor
HideDItem
HidePen
HidewWwindow
HiliteColor
HiliteControl
HiliteMenu
HiliteText
HiliteWindow
Hiword
HLock
HENoPurge
HomeResFile
HPurge
HSetRBit
HSetState
HOnlock
IAZInit
IAZPostInit
Index2Color
InfoScrap
InitAllPacks
InitApplZone
InitCPort
InitCursor
InitDialogs
InitEvents
InitFonts
InitFs
InitGDevice
InitGraf
InitMenus

1]

TMON

A9ES5:
AR90:
AB6D:
A808:
AQ16:
29953
A03F:
A912:
A019:
A935:
A951:
A8A9:
ASE1l:
A826:
A058:
A928:
A927:
A8A4:
ASDS5:
A8B3:
ASCl:
AA35:
ABBA:
ABCY:
A9TF:
A9C3:
A956:
AQ006:
A8F5:
ASBCD:
A9F2:
AOBC:
AOBF:
A892:
A891:
A9A2:
A9FO:
2870:
AOF2:
A9FB:
AB3F:
AB67:
AB6B:
AA39:
AAOD:
AOF4:
ASFC:
ASF9:
ABFA:
ASFB:
AQC2:
A063:
A061:
AllD:
AB821:
AB37:
AA66:
A93E:
A93D:
ASFS:
A991:
A036:
AOOF:
AB94:
A959:
AD64:
ABT7:
AB93:
‘A91B:

‘AMB:
T K954

InitPack
InitPalettes
InitPort
InitProcMenu
InitQueue
InitResources
InitUtil
InitWindows
InitZone
InsertMenu
InsertResMenu
InsetRect
InsetRgn
InsMenultem
InsTime
InvalRect
InvalRgn
InverRect
InverRgn
InverRoundRect
Invertarc
InvertColor
InvertOval
InvertPoly
IsDialogEvent
KeyTrans
KillControls
Killro
KillPicture
Killproly
Launch
LaunchInit
Lg2Phys

Line

LineTo
LoadResource
Loadseg
LocalToGlcobal
LocCRec
LodeScrap
Long2Fix
LongMul
LoWord
MakeITable
MakeRGBPat
MapFBlock
MapPoly

MapPt
MapRect

MapRgn
MarkBlock
MaxApplZone
MaxBlock
MaxMem
MaxSizeRsrc
MeasureText
MenuChoice
MenuKey
MenuSelect
MethodDispatch
Modalbialog
MoreMasters
Mountvol
Mowve
MoveControl
MoveHH1
MovePortTo
MoveTo
MoveWindow
Munger
NewCDialog
NewcControl

AR4S:
A97D:
Al166:
AA2F:
Al22:
AQFB:
A931:
AR9l:
AA03:
AAOT:
AllE:
ASDS:
A906:
A913:
A987:
AB56:
A035:
ASCE:
ABA8:
ABEO:
AA21:
A000:
AR20:
AA0O:
A9B6:
ABF3:
A8CB:
A86F:
A997:
AQQA:
A9C4:
ABDA:
A030:
A9E7:
AJES:
AB2C:
AB82D:
A82E:
AB2F:
A830:
A831:
A9E9:
AOEA:
A9ED:
A9EE:
A8l6:
A82B:
ASCF:
A8BF:
A90D:
A90C:
A8B8:
A8C7:

ABD3:
A8Bl:
AAAQ:
A98B:
A89C:
A89E:
A89D:
AROA:
A89B:
AQE2:
ABF2:
A94E:
AQE6:
AALF:
A94B:
AA9S:
AAST7:
A80B:

NewCWindow
NewDialog
NewEmptyHandle
NewGDevice
NewHandle
NewMap
NewMenu
NewPalette
NewPixMap
NewPixPat
NewPtr
NewRgn
NewString
NewWindow
NoteAlert
ObscureCursor
Offline

Of £setPoly
offsetRect
OfsetRgn
OpColor
Open
OpenCPicture
OpenCPort
OpenDeskAcc
OpenPicture
OpenPoly
OpenPort
OpenResFile
OpenRF
OpenRFPerm
OpenRgn
OSEventavail
Pack0

Packl
Packl0
Packll
Packl2
Packl3
Packl4
Packl5
Pack2

Pack3

Packé

Pack7

Pack8

Pack9
PackBits
PaintArc
PaintBehind
PaintOne
PaintOval
PaintPoly
PaintRect
PaintRgn
PaintRoundRect
Palette2CTab
ParamText
PenMode
PenNormal
PenPat
PenPixPat
PensSize
PermssnChk
PicComment
PinRect
Pixel2Char
PlotCIcon
PlotIcon
PMBackColor
PMForeColor
PopUpMenuSelect

Portsize
PostEvent
PowerOff
PrimeTime
Printing
ProtectEntry
Pt2Rect
PtInRect
PtInRgn
PtrAndiand
PtrToHand
PtrToXHand
PtrZone
PtToAngle
PurgeMem
PurgeSpace
PutIcon
PutScrap
QDError
Random
RdBlocks
RDrvrinstall
Read

ReadBM
ReadDateTime
ReadParam
ReadXPRam
RealColor
RealFont

. ReallocHandle

RecoverHandle
RectInRgn
RectRgn
RelBlock
ReleaseResource
RelNode
Relstring
Rename
ResError
ReserveEntry
ResrvMem
RestoreEntries
RfNCall
RGBBackColor
RGBForeColor
RGetResource
RmveReference
RmveResource
RmvTime
RsrcMapEntry
RsrcZoneInit
RstFillock
SaveBntries
saveOld
ScalePt
Scriptutil
ScrnBitMap
ScrollRect
SCSIDispatch
Secs2Date
SectRect
SectRgn
SeedCFill
SeedFill
SegStack
SelectWindow
SelIText
SendBehind
SetADBInfo
SetAppBase
SetApplLimit
SetCCursor

A814:
AB34:
AA31:
AO4B:
A024:
A947:

AS8Fs
A940:
A944:
A942:
A965:

R964:
AB78:
A084:
BAA9S:
A875:
A899:
A873:
A880:
A0203
ASDE:
ABA7:
A9AT:
A9F7:
A9A9:
A99B:
A993:
AME:

A907:
AD47:
AOCB:
A081:
A015:
AAdl:
A92E:
A918:
A91A:
A01B:
A855:
A957:
A853:

SetClientID
SetClip
SetCPixel
SetCPortPix
SetCRefCon
SetCritle
SetCtlAaction
SetCtlcColor
SetCtlvalue
SetCursor

SetDateTime
SetDefaultstartup
SetDeskCPat

SetDeviceAttribute

SetDItem
SetEmptyRgn
SetEn

SetItemCmd
SetIText
SetItmIcon ¥
SetItmMark i
SetItmStyle
SetMaxCtl
SetMCEntries
SetMCInfo
SetMenuBar
SetMFlash
SetMinCtl
Setorigin
SetOsDefault
SetPalette
SetPBits
SetPenState
SetPort
SetPt
SetPtrsize
SetRecRgn
SetRect
SetResAttrs
SetResFileAttrs
SetResInfo
SetResLoad
SetResPurge
SetStdCProcs
SetstdProcs
Setstring
SetTrapAdiress
SetUpTags
SetVideobefault
SetVol
SetWinColor
SetWindowPic
SetWRefCon
SetWritle
SetZone
ShieldCursor
ShowControl
ShowCursor

TEPinScroll

Appendix A—Quick Reference

A828: ShowDItem A973: stillDown AB12: A953: UpdtControl
A908: showHide R986: StopAlert A9DD: TEScroll A978: UpdtDialog
A897: ShowPen A88C: sStringWidth A811: TESelView A054: UprString
A915: ShowWindow A055: stripAddress A9DF: TESetJust A998: UseResFlle
A895: shutDown A866: StuffHex A9D1: TESetSelect AS2A: ValidRect
A95C: SizeControl A87F: SubPt AYCF: TESetText 2929: vValidRgn
A9AS: SizeRsre AOF9: SuperLoad A966: TestControl A033: Vinstall
A91D: SizeWindow AO5D: AA2C: TestDeviceAttribute A034: VRemove
ASBC: SlopeFromangle AOB7: SyncWait AB3E: TEStyleNew A977: WaitMouseUp
AO6E: SlotManager A9C8: SysBeep AQFD: TETrimMeasure A0B6: WaitUntil
AD6F: SlotVinstall A9C2: SysEdit A9D3: TEUpdate AOCA: WrBlocks
AQ70: SlotVRemove A090: sSysEnvirons A9CE: TextBox A003: Write
A802: Sndaddmodifier A9C9: SysError A888: TextFace A038: WriteParam
A806: sndControl A9B3: SystemClick A887: TextFont A9B0: WriteResource
A801: sSndDisposeChannel A9B2: SystemEvent A889: TextMode A052: WriteXPRam
A803: SndDoCommand A9BS5: SystemMenu A88A: Textsize A844: XoFix
A804: sSndDoImmediate A9B4: SystenmTask AB86: TextWidth AB846: X2Frac
A807: SndNewChannel A9D8: TEActivate 2975: TickCount A84C: XCompactMem
AB0S: sSndPlay A813: TERutoView A83B: TrackBox A823: XDisposHandle
AOB8: SourxiDead A9D0: TECalText A968: TrackControl A832: XFlushEvents
R88E: SpaceExtra A9D4: TEClick A91E: TrackGoAway AQFS: XFsearch
A065: StacksSpace A9D5: TECopy AOC4: TrashBlocks A825: XGetHandleSize
AQ0S: status A9D6: TECut A0C5: TrashvBlks A81A: XGetZone
ABBD: StdArc A9D9: TEDeactivate AOF3: TreeSearch AB829: XHLock
ASEB: StdBits A9D7: TEDelete AODB: TruncateFile A82A: XHUnlock
ASF1: StdComment A83D: TEDispatch AQFl: TstMod A81D: XMaxMem
ASEE: StdGetPic ASCD: TEDispose ABYF: Unimplemented A819: XMunger
A890: StdLine AQFF: TEFindLine ASAB: UnionRect A822: XNewHandle
ABF8: StdOpcodeProc AOFE: TEFindWord A8E5: UnionRgn AB1E: XNewPtr
A8B6: Stdoval A83C: TEGetOffset A810: UniquellD A8E7: XorRgn
A8C5: stdPoly A9CB: TEGetText A9Cl: UniqueID AB824: XsetHandleSize
ASF0: StdPutPic A9DA: TEIdle A9F1l: UnloadSeg AB1B: XSetZone
ABAO: StdRect A9CC: TEInit A9FA: UnlodeScrap A9FC: ZeroScrap
ABDl: StdRgn A9DE: TEInsert AOOE: UnmountVol
ASBAF: StdRRect A9DC: TEKey A8D0: UnpackBits
A882: StdText A9D2: TENew AA38: UpdatePixMap
ASED: StdIxMeas A9DB: TEPaste A999: UpdateResFile
Labels Bullt Into the User Area in Numerical Order

8: BusError 13E: PollProc 1E0: IwM 236: Jseek

C: AddrError 142: DskBrr 1E4: scratch20 23a: JsetUpPoll

10: Illegal 144: sSysEvtMask 1F8: SysParam 23E: JRecal

14: ZeroDivide 146: SysEvtBuf 1F8: SPvalid 242: Jcontrol

18: ChkError 14A: EventQueue 1F9: SPATalkA 246: JWakeUp

1C: TrapVError 154: EvtBufCnt IFA: SPATalkB 24A: JReSeek

20: PrivilegeViolation 156: RndSeed IFB: SPConfig 24E: JMakeSpdIbl

24: Trace 15A: SysvVersion 200: sPAlarm 252: JAdrDisk

: Iinel010 15C: SEvtEnb 204: SPFont 256: Jsetspeed

100: MonkeyLives 15D: DswndUpdate 206: SPKbd 25A: NiblTbl
102: ScrVRes 15E: FontFlag 207: SPPrint 25E: FlEventMask
104: ScrHRes 15F: IntFlag 208: SPVolCtl 260: Sdvolume
106: ScreenRow 160: VBLQueue 209: spClikCaret 261: SdEnable
108: MentTop 16A: Ticks 20A: SPMiscl 262: SoundPtr
10C: BufPtr 168: MBTicks 20B: SPMisc2 2663 SoundBase
1102 StkLowPt 172: MBstate 20C: Time 26A: SoundVBL
114: HeapEnd 173: Tocks 210: BootDrive 27A: SoundDCE
118: TheZone 174: KeyMap 212: Jshell 27B: SsoundActive
11C: UTableBase 17C: KeypadMap 214: SsFsaveDisk 27F: soundlevel
120: Macap 184: KeyLast 216: KdVars 280: CurPitch
124: DskRtnAdr 186: KeyTime 21A: JKybdTask 282: SwitcherData
128: PollRtnAddr 18A: KeyRepTime 21E: KbdType 286: MemToSwitch
12C: DskVerify 18E: KeyThresh 2]F: AlarmState 28A: RSDHndl
12D: loadTrap 190: KeyRepThresh 220: MemError 28E: ROM8SS
12B: MmInOX 192: LvllpT 222: Diskvars 290: PortAUse
12F: CPUFlag 1B2: 1vi2DT 222: JFigTrkspd 291: PortBUse
130: ApplLimit 1D2: UnitNtryCnt 226: JDiskPrime 292: ScreenvVars
134: SsonyVars iD4: VIA 22A: JRAAMAr 29A: JGNEFilter
138: PwMvalue 1D8: SCCRdA 228: JRdData 29E: KeylTrans
13a: Pollstack IDC: SCCWr 232: JWrData 2A2; Key2Trans

ﬂ
S
=

BEERLs e NN RNEROUNNNDYREES

8EREE

8 PEEREEBEERININNBEEERLRLERES

SSUMNHELRENTEE

peses

818:

AR ERERgBREOORERAEARELE

8F4:

ErCode
Params
FSTemp8
FSTempd
FSIOErr
FSQueueHook
ExtFSHook
DskswtchHook
Regstvol
ToEXtFS
FSFCBLen
DSAlertRect
DispatchTab
JHideCursor
JShowCursur
JShieldCursor
JScrnAddr
Jscrnsize
JInitCrsr
JsetCrsr

CrsrBase
CrsrDevice
SrcDevice
MainDevice
Devicelist
CrsrRow
CrsrVis
CrsrBusy
CrsrNew
CrsrCouple
CrsrState
CrsrObscure
CrsrScale
MouseMask
MouseOffset
JournalFlag
JSwapFont
widthListHand
JrontInfo
JournalRef
CrsrThresh
JcrsrTask
WWExist
QDExist
JFetch
Jstash
JIODone
Loadvars
CurhpRefnum
LaunchFlag
Fondstate
CurrenthAS
CurStack

CurApName
SaveSegHandle
CurJTOffset
CurPageOption
LoaderPBlock

£

1N RN T b S R

g

PrintVars
PrintErr
ChooserBits
CoreEdit
ScrapVars
scrapsize
scrapHandle
scrapCount
scrapState
scrapName
ScrapTag
RomFont0
AgFontlD

SaveFondFlags.

Gotstrike
FMDefaultsize
CurFMInput
CurFMFamily
CurFMsize
CurFMFace
CurFMNeedBits
CurFMDevice
CurFMlumer
CurFMDenom
FOutRec
FOutError

FOutFontHandle

FOutBold
FOutItalic
FOutULOffset
FOutULShadow
FOutULThick
Foutshadow
FOutExtra
FOutAscent
FOutDescent
FOutWidMax
FOutLeading

DeskPort
Oldstructure
OldContent
GrayRgn
SaveVisRgn
DragHook
scratch8
Onelne
MinusOne
AtMenuBottom
TopMenultem
IconBitmap
MenuList
MBarEnable
CurDeKind
MenuFlash
TheMenu
SavedHandle
MBarHook
MenuHook
DragPattern
DeskPattern
DragFlag
CurDragAction

BECERERRERREE

A% S0 S8 53 60 86 Su 20 20 0000 86 U8 60 65 o0 o1 08 se 08 se O

>3
383

BEEEREE

BYEER

BEEENEEE

g

RRRERERE

SESRERERE

BEEEEEREREIERLE

BERER

FPState

TopMapHndl
SysMapHndl
SysMap

CurMap
ResReadOnly
ResLoad
ResBErr
TaskLock
FScaleDisable
CurActivate
CurDeactive
DeskBook
TEDOText
Telescal
Applscratiyh
GhostWindow
ClosueOrnHook
ResumeProc -
SaveProc

 BootMask

WidthPtr

'ATalkBk1

ATalkHk2
HWCfgFlags
TopMenultem
AtMenuBottom
widthTabHRandle
SCsIDrvrs
TimeVars
BtDskRfn
BootTmp8
TlArbitrate
JDisksel
Jsendcmd
JDCDReset
LastSPExtra
BNMOEd
MenuDisable
MBDFHNnd1l
MBsaveloc
ROMMapInsert
TrmpResLoad
IntlSpec
IntlSpec
WordRedraw
SysFontFam
SysFontSize
MBarHeight
TESysJust
HiHeapMark
SegHiEnable
FDevDisable
NewUnused

Appendix A—Quick Reference

BC2: LastFOND C2b: VidType CF8: ADBBase D42: FMExist
BC6: FONDID C2E: VidMode CFC: WarmStart DS0: MenuCInfo
BC8: App2Packs C2F: SCSIPoll D00: TimeDBRA D60: ChunkyDepth
BE8: MAErrProc C30: SEVarBase D02: TimeSCCDB D62: CrsrPtr
BEC: MASuperTap CB0: MMUFlags D04: SlotQDT D66: PortList
Br4: FractEnable CBl: MUType D08: SlotPribl D6A: MickeyBytes
BFS: UsedFwidths CB2: MMUMode DOC: SlotVBIQ D6E: QDErr
BF6: FScaleHFact CB4: MMUILL D10: ScrnVBLPtr D70: VIA2DT
BFA: FScaleVFact CcB8: MMUTblSize D14: SlotTicks D90: sInitFlags
C00: SCsIBase CBC: sInfoPtr DIC: AGBHandle D92: DTQueue
C04: SCSIDMA Cc0: AsCBase D20: Tableseed D94: DTskQHAr
€08: SCSIHsk cc4: SMslobals D24: sRsrcIblPtr D98: DTskQTall
C0C: SCSIGlobals cc8: theGDevice D28: JVBLTask DI9C: JDTInstall
C10: RGBBlack coc: CODGlcbals D2C: WMgrCPort
Cl6: RGBwhite CD0: AuxWinHead D30: VertRRate
C20: RowBits CD4: AuxCtlBead D32: SynListHandle
C22: Collines CD8: DeskCPat D36: lLastFore
C24: ScreenBytes CDC: . LastBinPat D3E: LastMode
C2C: NMIFlag CE4: DeskPatEnable D40: LastDepth
‘Labels Built Into the User Area in Alphabetical Order
20C: ABusDCE 898: CrsrBase 222: Diskvars 99F: FoutItalic
208: ABusvVars 8&D: CrsrBusy 400: DispatchTab 9A8: FoOutlLeading
A9A: RACount 8CF: CrsrCouple AFA: DlgFont 9AA: FOutNumeer
CF8: ADBBase 80¢: CrsrDevice 2r0: DoubleTime 998: FOutRec
C: AddrError 8CE: CrsrNew A44: DragFlag 9A3: FoOutShadow
DIC: AGBHandle 8D2: CrsrcCbscure 9%6: Draghook 9A0: FOutULOffset
21F: Alarmstate 834: CrsrPin A34: DragPattern 9Al: FOutULShadow
A98: ANumber D62: CrsrPtr 34C: DrMstrBlk 9A2: FOutULThick
984: 2ApFontID 83C: CrsrRect 308: DrvQHdr 929: FoOutUnused
BC8: App2Packs 8AC: CrsrRow 3F8: DsAlertRect 9A7: FOutWidMax
130: ApplLimit 88C: CrsrSave 2BA: DSAlertTab AdA: FPState
ATB: Applscratch 8D3: CrsrScale 334: DSDrawProc BF4: FractEnable
2AA: ApplZone 800: CrsrState AF0: DSErrcode 349: Fresyne
AB8: AppPacks 8EC: CrsrThresh 142: DskErr 360: FSBusy
AEC: AppParwBandle 80C: CrsrVis 124: DskRtnAdr A63: FScaleDisable
OC0: ASCBase .1 H 3EA: DskSwtchHook BF6: FScaleHFact
Bl4: ATalkHkl 910: 12C: DskVerify BFA: FscaleVFact
Bl8: ATalkHk2 900: 15D: DsWndUpdate 342: FsCallAsync
B28: AtMenuBottom 340: D92: DTQueue 3F6: FSFCBLen
A0A: AtMenuBottom A68: D94: DTskQHdr 3DE: FSICErr
CD4: AuxCtlHead A22: curDeKind D98: DTskQTail 360: FSQHAr
C0: AuxWinHead 398: CurDirstore 338: EjectNotify 362: FsQHead
286: BasicGlob A46: CurDragAction : ErCode 366: FsQTail
B50: BNMDHA 994: CurFMbenom 14A: EventQueue 3E2: FSQueueHook
210: ' BootDrive 98E: CurFMDevice 154: EvtBufcnt 3DE: FSTempd
BOE: BootMask 98C: CurFMFace 3E6: ExtFSHook 3D6: FSTerp8
B36: BootTmp8 988: CurFMFamily 2BE: ExtStsDT AB4: GhostWindow
B34: BtDskRfn 988: CurFMInput : FCBSPtr 986: GotStrike
10C: BufPtr 98D: CurFMNeedBits BR3: FDevDisable 9EE: GrayRgn
304: BufTgDate 990: CurFMiumer 2E0: FinderName 330: G2MoveHnd
302: BufTgFBkNum 98A: CurFMsize 348: FLckUnlck 328: GZRootHnd
300: BufTgFFlg 934: CurJTOffset 25E: FlEventMask 32C: GZRootPtr
2FC: BufTgFNum ASA: CurMap 346: FlushOnly 114: HeapEnd
8: BusError 936: CurPageOption 987: FMDefaultsize 392: HFSDSErr
39C: CacheCom 280: CurPitch 982: FMDotsPerInch 376: HFSFlags
377: CacheFlag 904: CurrentAS D42: FMExist 36A:+ HFSStklLen
394: CacheVars 908: CurStack 986: FMStyleTab 36E: HFSStkPtr
2F4: CaretTime A9C: DABeeper 3%E: FmtDefaults 38A: HFSTagData
18: ChkError AA0: DAStrings BC6: FONDID 36A: HFSVars
946: ChooserBits 322: Defltstack 903: Fondstate BAE: HiHeapMark
D60: ChunkyDepth 352: DefVCBPtr 15E: FontFlag B22: HWCfgFlags
340: CkdDB 384: DefVRefNum 9AS: FOutAscent 33C: IAZ2Notify
A88: CloseOrnHook CD8: DeskCPat 99E: FOutBold A0E: IconBitmap
C22: ColLines A6C: DeskHook 3 FOutDenom 10: Illegal
954: CoreEdit CE4: DeskPatEnable 9A6: FOutDescent 15F: IntFlag
12F: CPUFlag AX: DeskPattern 998: FOutError BAQ: Intlspec
CX: CODGlchals 9E2: DeskPort 924: FOutExtra BAO: IntlSpec
888: CrsrAddr 8A8: DeviceList 99A: FOutFontHandle 1E0: 1IvM

9

TMON

EENIRERE

p928y

™
2

SHENEH

§

810:

JAdrDisk
JAllocCrsr
Jontrol
JCrsribscure
JCrsrTask
JDCDReset
JDiskPrime
Jbisksel
JDTInstall
JFetch
JFigTrkspd
JFontInfo
JGNEFilter
JHideCursor
JInitCrsr
JI0Done
JKybdTask
JMakeSpdThl

JReSeek
JScrnAddr
JscrnSize
Jseek
JSendcmd
JSetCCrsr
JsSetCrsr
JsetSpeed
JSetUpPoll
Jshell
JshieldCursor
JshowCursor
JStash
JSwapFont
JUpdateProc
JVBLTask
JWakeUp
JMata
KbdType
Kbdvars
KeylTrans
Key2Trans
Keylast
KeyMap
KeyMvars
KeypadMap
KeyRepThresh
KeyRepTime
KeyThresh
KeyTime
LastBinpat
LastDepth

REREES

&

SE000Q0N EEPRE

RE8gEapaEzag

gegERgLe

156¢

MBarEnable
MBarHeight
MBarHook
MBDFHnd1
MBSaveLoc
MBState
MBTicks
MenError
MenCop -
MenToSwitch
MenuCInfo
MenuDisable
MenuFlash
MenuHook
Mcnuldst
MickeyBytes
MinStack
MinusOne
MDefFlags
MnInOK
MMOFlags
MMOMode
MUTbl
‘MMUTDb1Size

MMUType
MonkeylLives
Mouse
MouseMask
MouseOffset
MOWPLY
MTerp
NewMount
NewUnused
WiblTbl
NMIFlag
NoEject
NxtDB
OldContent
Oldstructure
OneOne
Paintwhite
Params
PMSPPtr
PollProc
PollRtnAddr
PollStack
PortAUse
PortBUse
PortList
PrintErr
PrintvVars
Privilegeviolation
PWMBufl
PwWMBuf2
PWMvalue
QDErr
QDExist
RAMBase
RawMouse
RegRsrc
Regstvol
ResEBrr
ResErxProc
Resload
ResReadOnly
ResumeProc
RGBBRlack
RGBWhite
RgSvArea
RndSeed
ROMBS

288

BERRLRCE

g
édpBoorenradaHcy £e

SaE2gEEREEEONNNE RS ERRRRHERNNEE

338

QR2222RRHAYE

134:

ROMBase
RomFont0

ROMMapHndl
ROMMapInsert
RowBits
RSDHnd1
SavedHandle
SaveFondFlags
SaveProc
SaveSegHandle
SaveSP
SaveUpdate
SaveVisRgn
SCCASts
SCCBSts

SCCRA

SCCWr
scrapCount
scrapHandle
scrapName
scrapSize

. scrapState

ScrapTag
ScrapVars
scratch20
scratch8
ScrDmpEnb
ScrbnpType
ScreenBytes
ScreenRow
Screenvars
ScrHRes
ScrnBase
ScrnVBLPtr
ScrVRes
SCSIBase
SCSIDMA
SCSIDrvrs
SCSIGlchals
SCSIHsk
SCSIPoll
SdEnable
Sdvolume
SegHiEnable
SerialVars
SEVarBase
SEVtEnb
SFSaveDisk
sinfoPtr
sInitFlags
SlotPrbl
SlotQDT !
SlotTicks
S1otVBLQ
SMGlobals
SonyVars
SoundActive
SoundBase
SoundDXE
Soundlevel
SoundPtr
SoundvBL
SPAlarm
SPATalkA
SPATalkB
SPClikCaret
SPConfig
SPFont
SPKbd
SPMiscl
SPMisc2
SPPrint

BESEIRBERERY

41

ER3

R

p20:

EfNaRERERS

EnBnER

EENA0R3EBEEEERE:

BESABREREEEE

=RERREE

SPvalid
SPVolctl
SrcDevice
SRsrcTblPtr
StkiowPt
SwitcherData
SynListBandle
SYysBMCPtr
Sysctlcptr
SysEvtBuf
SysEvtMask
SysFontFam
SysFontSize
Syadhap
SyaMapHndl
SysParam
SysResNume
SysVersion
8ysVolCPtr

SysZone
TiArbitrate

‘ TableSeed

Appendix B—TMON Warning and Error Messages
The following are the messages that will show up in the Monitor’s alert window. Each one is accompanied by
a short explanation of when to expect that message.

WARNING! The monitor has been damaged. Be very careful!
The internal checksum routine that examines the Monitor detected a change in the Monitor's code.

Tilegal instruction at $XXXXXX.
Divide by zero at $XXXXXX.

Divide by zero before $XXXXXX.
CHK exception at $XXXXXX.

CHK exception before $XXXXXX.
TRAPcc exception at $XXXXXX.
TRAPV exception before $XXXXXX.
Privilege violation at $XXXXXX.
Trace interrupt at $XXXXXX.
Address error. PC=$XXXXXX.

Trap #$Y at $222222.

Trap #$Y before $222222.

One of the above messages will be shown when a 680x0 instruction exception occurs. It should be noted that a

trace interrupt will occur whenever you use single step or trace. See the Exception Handling section of the
Technical Reference for more information.

“Unassigned Interrupt #3XXX (format $Y) at $22222Z.
Unassigned interrupt at $XXXXXX.
Level Xinterruptat $YYYYYY. %

- This message will be shown when a hardware imetmpt has been detected by TMON. See the Exception
Handling section of the Technical Reference for more information.

The A0G0D trap or subroutine has returned.
This message will be shown after control returns to TMON from a GoSub or a Step through an A000 Trap.

‘Breakpoint at $XXXXXX.
This message will be shown when a user defined TMON break point is encountered.

‘System error #3XXXXat $YYYYYY.
An error was reported to the system via the _SysError trap.

101

TMON

Bus error. PC=$XXXXXX.

Access address: $XXXXXX (user data), Instruction: yes, mode: read.

Access address: $XXXXXX (user program), instruction: yes, mode: write.
Access address: $XXXXXX (supervisor data), Instruction: no, mode: write.
Access address: $XXXXXX (supervisor program), instruction: no, mode: read.
Access address: $XXXXXX (exception), instruction: yes, mode: read.

Access address: $XXXXXX (illegal), instruction: no, mode: write..

A bus error has occurred. The additional data defines the type of bus cycle present on the bus at the time of the

error. The 68020 bus error exception is more complicated and this information will not be shown. See the
Exception Handling section of the Technical Reference for more information.

‘Welcome to Monitor version 2.8
Written by Waldemar Horwat.

This message will be displayed upon initial entry to TMON.

No more windows can be created.

There is a limit of 19 total windows that TMON can open at any one time. You have tried to open another
window after reaching this limit,

Mouse antifreeze completed. Be careful with the serial ports.

This message is displayed whenever you use the mouse unfreeze command. See the Mouse Unfreeze section of
the Technical Reference for further information.

1 don't want to execute the next instruction.

Usmg Step or GoSub on the next instruction will make it impossible for TMON to regain control. To -
continue execution, you can use Exit or Trace. The only exception to this is when the next instruction is a

SysError, in which case you cannot continue execution from that address. See the Exit, GoSub, Step, and
Trace section of the Technical Reference for more iitformation.

102

Appendix C—TMON Hints and Tips

Many people have been using TMON for some time now. A great deal of wisdom has been accumulated re-
garding how to use TMON to find and recover from bugs. Some ways in which TMON is useful are obvious;
others are not so obvious. I want to use this appendix to provide some ideas as to what you can do with
TMON that may not be immediately obvious (although many of these hints fall into the “why didn’t I think
of that?” category). We owe a special thanks to Apple Technical Support, who have written several of these
tips up in various Tech Notes.

MPW Tools Gone Amok

If you are an MPW user, chances are that you've gotten into a situation where a tool was running and you
wanted to stop it dead in its tracks. Perhaps for one reason or another hitting ®-. doesn’t work, or the tool
has crashed into TMON and you need to recover. If you have TMON installed, you can stop the tool very
quickly by holding down the Option key and pressing the interrupt switch. Press %R to open the “Regs”
window. Press the Tab key to put the cursor by the PC field. Now type “STOPTOOL” including the quotes,
and press the Return key. Now press #E to exit. You’ve changed the PC to point to an MPW routine that
stops tools dead in their tracks, and all should be well.

“Catching a Failure to Check Common Errors

One problem with some Macintosh programs and desk accessories is that they neglect to check the results of
memory manager or resource manager operations. This can have disastrous consequences. One way that TMON
can help to catch bugs like this is by using TMON’s checksumming capability to see if either of two important
low RAM globals has changed. You can do a checksum from “MemErr” to “MemEmr”+1 or from “ResErr”
to0 “ResErr”+1 on all traps, and anytime that the bytes within the range change, TMON will be entered on the
next trap. It’s a good idea to use this in conjunction with Trap Record so that you can see a history of what
trap(s) may have generated the error that TMON caught.

Looking at Gther Heap Zones

Some applications and programming environments greate at least one heap zone besides the Macintosh’s normal
two, the application zone and the system zone, In order 10 enable TMON to see one of these other zones,
assuming that you know its starting address, just opeh & dump window at “ApplZone” (don’t forget the
quotes!) and make a note of the address there (a good way to do this is to open a “Num” window and type
@"ApplZone™). Position the cursor at the beginning of the address,and enter the address of the zone that you
wish to see. Press the Return key. Now open the heap window. It will say that it’s showing the application
zone, but it’s really showing the custom zone. Don’t forget to change “ApplZone™ back to the application
zone’s address when you are done!

Alternate _EXxitToShell

The user area’s function to ExitToShell is smart; it tries to close all open files and resouxce files before doing
the _ExitToShell. However, there are times when the process of trying to close all files doesn’t work. The
File Manager may be screwed up somehow. If you want to try to _ExitToShell without all the extra
overhead, just open the “Regs” window and change the PC to !_ExitToShell. Now use the “Exit” function.
Since the PC points to the address of the _ExitToShell routine, you should go back to the Finder (or whatever
the shell application is). However, there may be open files and so forth lying around, so it is & good idea to
immedxately shut down your system and start over. Note that you can cheat and launch anythmg by editing the
string at FinderName,

"Restricting Trap Intercepting Functions to the Application Zone

This sounds a lot tougher than it actually is. There are times when you want to perform some trap-related
function such as Trap intercept, but you only want it to take effect on traps in your program, i.e. in the ap-

103

TMON

plication zone. You can restrict trap intercepting functions to certain PC ranges. There’s an easy way to re-
strict them to the application heap: using the indirection operator (described in the Technical Reference
Manual) and TMON’s built-in Iabels. You can combine the two on a trap function command line like this:

000 FFF @"ApplZone" @"ApplLimit"

These options for the trap intercepting functions will cause them to take effect for all traps, but only for PC
values between the contents of ApplZone and the contents of ApplLimit, i.e. within the application zone.

‘Breakpoints in Unloaded Segments

If you're writing a multi-segment application, something that you may have come across is the necessity to set
a breakpoint at some point in the program that isn’t within a loaded code segment. You may have spent some
time wondering what to do. The answer is to use the user area’s ability to load a resource to load in the CODE
resource that you need. Even though the intersegment jump table hasn’t been updated when you do that, the
code is where it will be when the jump table is updated. You may therefore set breakpoints in it.

Ts TMON Installed?

Every now and then you may have to write a program that needs to know whether TMON is installed or not.
For example, during debugging yon may wish to place _Debugger traps at important points in the program.
_Debugger will crash the system with a bomb box if no debugger is installed, so you need to execute
_Debugger only if TMON is around. You can determine if TMON is installed by looking at the longword
stored at $FC and, if it is in RAM and is even, Jooking at the word stored there. If the word i equal to
“WH” then TMON is installed. (“WH” are TMON’s signature bytes, and are Waldemar Horwat’s initials.)
The word following the “WH” is TMON’s internal version number. g

‘Running Out of Room In Label Tables

If you are developing a large application and using .MAP files to provide TMON with labels for your code,
you may find that you can’t allocate a label table large enough to hold all of the labels. If this is the case, use
a disk block editing tool such as FEdit to edit your volume’s boot blocks. You can increase the size of the
system heap that way. Change it to allow you to allocate howewver much space you need. Be aware that you
also must change the version number of the boot blocks s that it is at least $21 on 128K ROMs or newer,
otherwise the changes will be ignored.)

Walking Through the VBL Queue

TMON allows you to configure it so that VBL tasks remain running while TMON is active. Sometimes there
are undesirable interactions between TMON and VBL tasks that are active. It’s nice to be able to track down
all currently active VBL tasks. The way to do this is to walk through the VBL queue.

First open two windows, a dump window and a disassembly window. Make sure that the dump window is
active and position the.cursor in the address field (you can do this by clicking anywhere in the window and
pressing the Tab key). Instead of typing an address or anchoring to a register, type @<"VBLQueue"+2> and
press the Return key. This will cause the dump window to display starting at the first VBL record in the
queue.

The first longword is a pointer to the next VBL record in the queue. We’ll use it in a moment. Another im-
ponant field is six bytes (counting from zero) past the beginning of the record. It’s the address of the VBL
task. If you activate the disassembly window and position the cursor in the address field, you can simply type
@<VBLRecord+6> replacing VBLRecord with whatever address is showing in the address field of the dump
window. In other words, if the dump window is dumping from $17D6, then type @<17D6+6> in the
disassembly window. This will disassemble the VBL task. To continue through the queue, just enter the first
longword shown in the VBL record as the address to dump from. If the longword at $17D6 is $00002596,
then enter 2596 (or @17D6) as the dump address. You can then enter @<2596+6> in the disassembly window
to show the next VBL task. This may be continued until the first longword of the VBL record is zero,
indicating the end of the queue.

104

Appendix C—Hints and Tips

Note that if you know the entry number of a VBL record in the quene, you can dump it immediately by pre-
fixing the dump expression with the correct number of indirection operators. In other words, if you want to
dump the fourth VBL record in the queue, type @@@@<"VBLQueue"+2> as the dump address. For a complete
explanation of what these expressions mean, see the “Numbers” section of the Technical Reference Manual.

TMON and Context-Switching Environments

As a rule, TMON works well with environments like Switcher and Finder 6.0 as long as TMON is installed
before the context-switching system software. TMON Startup was designed to load TMON in these
circumstances. If you wish to use TMON with Switcher or Finder 6.0, use TMON Startup.

"ResumeProc Functions

Every once in a great while an application will implement a ResumeProc. A ResumeProc is a routine which
handles the “Resume” button on the bomb box that shows up when something is really wrong. Most
applications don’t do this.

If you are using TMON with an application that has installed a ResumeProc and a system error occurs, you'll
wind up in TMON rather than at a bomb box. TMON has no obvious Resume batton, so what you can do is
this: open the “Regs”™ window, position the cursor over the PC value, and type @"ResumeProc” quotes and
all. Before you do this, you should make sure that the value at “ResumeProc” is non-zero. Once you've set the
PC to @"ResumeProc” using the Exit function will pass control back to the application at the point that it
would be if you had clicked on the “Resume” button in the bomb box.

The Mystical, Magical V and N Registers

Using the “Num” window always sets the N register to whatever the evaluated result is. This is handy for
calculating values which can then be used in other expressions. An even handier register is V, because so many
~ TMON functions set it. Many user area functions do, and it can also be set by pressing Return when the cursor
is on a-heap window line. For example, open an “Asmbly” window and anchor it to the V register. Now open
the heap window, and find, for example, a “CDEF” resource. Place the cursor on that line in the heap window
and press Return. The “Asmbly” window will now.show a disassembly of that CDEF! Another example: if
you have just used the Find function in the user ares g search for _GetResource in “CODE0003,” you can
disassemble starting at the location where it wasﬁ% by anchoring an “Asmbly” window to V.

‘What Version of the User Area Do | Have?

A common question with an extendable debugger with several customized user areas is: what version do I
have? The easiest way to determine that (and, coincidentally, the size of the user area) is to open & “Num”
window and type @USER with no quotes. N will be set to a longword consisting of the user area size (in the
high word) and the user area version (in the low word). The 16-bit decimal value is the user area version,

‘Getting Through _LoadSeg Quickly

LoadSeg is one of the traps that TMON refuses to step or GoSub through, because it never returns (it passes
control to the segment being loaded). Your only choice, if you need to continue, is to Trace through it. If the
segment in question has many entry points, this can take some time.

Apple provided a clever undocumented shortcut. If the byte at LoadTrap ($12D) is non-zero, a _Debugger trap
will be executed before _LoadSeg passes control to the newly-loaded segment. Thanks to this, you can open a
dump window (if you use 12D as the address the dump will actually be from 12C; be aware of this) and
change the byte at 12D to something other than 00. Now go ahead and Exit TMON, TMON will be re-entered
with the PC pointing to the instruction after the _Debugger trap in _LoadSeg. Stepping twice will put the PC
at the first instruction of the entry point of the new segment. Don't forget to set 12D to 00 again afterward.

105

TMON

Tools for Getting Into TMON

A handy thing to have is a tool that gets you into TMON. Since the _Debugger trap will enter TMON, all
that you need is an FKEY resource or a desk accessory that executes a _Debugger trap.

‘Viewing ROM Resources

Another nice thing to be able to do is to see what resources you have in your Macintosh’s ROM. To do this,
first use Trap Intercept to intercept a resource manager trap (_GetResource is a good choice). Use Trace to
trace into the trap dispatcher in ROM. Now set the byte at "ROMMapInsert” to FF and the next byte to)
whatever the value of "ResLoad" is. Now use GoSub. If _GetResource is not in ROM, use GoSub until you get
to ROM. Use GoSub to execute the first two subroutine calls. Now open the file window. GoSub again until
a file reference number of 1 appears. File 1 is actually the ROM resource map, which you can view in the file
window to your heart's content.

"Saving Your File

Here is a reason to keep TMON loaded in memory at all times, even when you are not debugging a program.
We have all probably experienced the agony of a system bomb just as we were about to save the document we
had been working on for the last two hours. TMON will sometimes allow you to recover the lost data. The
idea is to find the top of the event loop in the application you were running and restart it there. This will
sometimes return you to the program in just a stable enough condition to save your file. First make sure that
AS5 is correct. Open the register window and type @"CurrentA5" in the A5 position. Now open the heap
window and the user area window. Get the address and length of the first code resource. Do a search on
_GetNextEvent for 2 bytes starting at the beginning of the code resource and going to the end. Repeat thig
for each code resource until you find _GetNextEvent. Open an assembly window to this address. If you
start scrolling down the code, you will generally find a jump or branch (usually unconditional) to a point just
above the _GetNextEvent. This is usually the top of the event loop. Set the PC in the register window to
the address you just found. Hit the exit button and pray. ¥ you find yourself back in your program, do d Save
As... 1o a floppy disk and then re-boot. Remember that the state of the system is pretty uncertain, sosave and
get out as fast as possible. Good luck. : :

106

Index

. -

Index

68020 51, 53, 54, 62 configuration 12, 79

68030 53, 54 Configure (see buttons, Configure)
68851 53, 54 Control (see keys, Control)

68881 53, 54 ControlRecord 28

A000 traps 8, 14, 20, 23, 24, 26, 27, 31, 32, 33, 35,
38, 44, 52, 58, 59, 60, 68, 82, 103
active window 18, 42
address error 62
addressing modes 52, 53
alternate screen page 62
anchoring 19, 22, 50
AppleTalk 14, 23, 61, 64
application heap 14, 36, 55
ApplZone 55, 57, 103
arrow keys (see keys, arrow)
Asmbly (see windows, assembly)
assembly (see windows, assembly)
auto-pop bit 59
auto-quit (see options, auto-quit)
Backspace (see keys, Backspace)
block compare 25, 69
block move 24, 69
breakpoints 9, 10, 22, 40, 62, 101, 104
Brkpts (ste windows, breakpoints)
BSR 58
BufPtr 65
. bugs 6,7 .
bus error 51, 62, 102
batton bar 16, 17, 42
buttons
Configure 12, 40
interrupt 4, 10, 15, 16, 32, 63
Monitor 12, 15, 40
Monitor... 12, 15, 40, 66
Quit 12, 40
reset 49, 63, 64, 74
Transfer 12, 40
cache (see disk cache)
Chain 59
changing memory 50
checksum 26, 76, 77
Clear (see keys, Clear)
cloverleaf (see keys, Command)
Command (se¢ keys, Command)
Command-interrupt 77, 84
communications (see options, communications)

copy protection 11
CurApName 29, 73

damaged Monitor 63, 101
data structures 28

DCEs 37

debugger 6, 8

Delete (see keys, Backspace)
desk accessories 12

dire straits 7, 16

disassembly (see windows, assembly)
discipline (see trap discipline)
disk cache 65

dollar sign 43

DSAlertTab 56, 91

Dump (see windows, dump)
Enter (see keys, Enter)
entering TMON 15, 16, 32, 49, 106
EUA (see extended user area)
EventAvail 26, 32

events 8, 27 »
exception handling 62

- exceptions 62, 63, 85, 101

exit 58
exiting TMON 16, 24, 32, 49
ExitToShell 29, 73, 103
expressions 10, 31, 43, 44, 45, 90
extended user area 4
FCBs 37, 56, 91
files
label 34 -
map 9, 10, 20, 34, 72, 104"
recovery 106
System 30
user area 40
default 15
saving 12, 15
fill memory 25, 69
find 25, 69
Finder 6.0 105
FinderInfo 56, 91
FinderName 73
FKEYs (see keys, function)

107

TMON

free 37, 55 absolute 47
function keys (see keys, function) built-in user area 48
GetNextEvent 8, 26, 32, 106 embedded 9, 38
GetResource 74, 106 precedence 48
GetTrapAddress 52 resource-relative 20, 47
GetZone 52 LaserWriter 23
globals launch 12, 29, 59, 103, 105
dumping 22 launch application 29
gosub 24, 58, 106 leaving TMON 27, 73, 83
GrayRgn 56, 91 LINK 29, 33, 46, 71
handle at 37, 55 load resource 29, 70
HandleZone 52 loading label files (see files, label)
heap (see also windows, heap) 35, 75, 76, 103 loading position (see options, loading position)
heap check 35 loading TMON 11 '
heap purge 35 LoadSeg 59, 105
heap scramble 35, 75 LoadTrap 105 e
HFS 11 low-memory (see vectors and system globals)
HFSDispatch 52 main dialog 40 '
high memory 65 MaxMem 52
" “I don't want to execute the next instruction.” 59, MemErr 103
102 MenulList 56, 91
infinite loop (see mutually recursive) Apple 12
INIT 88 Edit 12
InitGraf 26 File 12
installing TMON 104 Options 13, 66
interrupt (see buttons, interrupt) message window 33
interrupt button (see buttons, interrupt) MFES 11
INVALID 37, 55, 57 misgligned instruction 51
IMP 9, 46 Teibhics 52
JSR 58 ' Monitor (see buttons, Monitor)
keyboard 4 Monitor... (see buttons, Monitor...)
keys mouse 11, 17
arrow 18 unfreeze 42, 61, 102
Backspace 18, 43 MOVEM 51, 53
Clear 43 . MPW 103
cloverleaf (see Command) mutually recursive (see infinite loop)
Command 4, 9, 11, 42 NewEmptyHandle 52
Control § NewHandle 35, 37, 52, 75
Delete (see Backspace) NewPtr 35, 52, 75
Enter 18, 43, 51 nonrel 37, 55
function 8, 65 Num (see windows, number)
Optign 4, 10, 11, 32 Number (see windows, number)
Retani 18, 20, 43, 50, 51 numbers 53
sm4o 9v ll, 42 numeric keypad 18
Tab 18, 20, 21, 43, 50 OldContent 56, 91
Ishet 31 OldStructure 56, 91
«table 33, 38, 47, 60, 71, 104 operators 45
" 9' ‘or 201 33. 349 37: 43, 45, 46, 47l 519 609 71! Option (See keys, Option)
.12, 104 Option-interrupt 77

108

options 12, (see windows, options)
auto-quit 15, 67
communications 13, 64, 66
loading position 14, 67
vector refresh 13, 65, 66
vertical blanking 14, 66, 67
ParamBlock 28
ParamText 56, 91
percent sign 43
period 43
PostEvent 65, 68
printing 13, 23, 61, 64, 71
problems 64
PurZone 52
PurgeSpace 52
Quit (see buttons, Quit)
quotes (see also single quotes) 43, 46
RAM disks 65
re-boot 30
ReallocHandle 35, 75
RecoverHandle 52
registers 19, 44, 50, 53, 54, 73, 90, 105
A2 133
.A629,33
A7 21, 50
N 60, 105
psendaregister (see N and V)
SP 28, 52
SR 21
SSP21,52
statns register-(see SR)
supervisor stack pointer (see SSP,
user stack pointer (see USP)
USP 21, 52
V 25, 29, 34, 37, 50, 105
Regs (see windows, registers)
removing TMON 16, 49
ResErr 103
reset (see buttons, reset)
resource
load 70
resource map 58
resources 37, 38, 47
code 29 '
file (see windows, file)
load 29
ROM 106
viewing 47
ResumeProc 105
Return (see keys, Return)

return addresses (see stack addresses)
ROM

128K 4, 26, 104

256K 26, 104

64K 14, 26, 48, 58, 65, 91
ROM calls (see A00O traps)
ROM routines (see A000O traps)
ROM traps (see AOOO traps)
RTS 9, 46
SaveVisRgn 56, 91
SCC 51, 61
scramble (see heap scramble)
Scrap 56, 91
serial port 13
SetHandleSize 35, 75
SetPuSize 35, 75
SetTrapAddress 14
Shift (see keys, Shift)
shut down 30, 74
single quotes 43
single-step (see step, trace and gosub)
stack addresses 28, 70
stack crawl 29, 70
step 23, 58
Switcher 105
symbolic 9, 46
SysError 59, 65, 101, 102
system errors 29, 63, 85, 101
System file (see files, System)
system globals 48
system heap 14, 27, 36, 55, 65
SysZone 55, 57
Tab (see keys, Tab)
table labels (see label table)
template 28, 70
TERec 28
TEScrap 56, 91
Ticks 48, 74
tips 103
TMON 2,585 41, 78
TMON Startup 11, 88
toggle pages 23, 68
trace 24, 58
trace flag 59, 64
trace interrupt (see trace flag)
Transfer (see buttons, Transfer)
TRAP #3$F 54, 62, 63, 66, 83
trap checksum 26
trap discipline 10, 33, 76
trap dispatch table 48

Index

109

TMON

trap dispatcher 24, 44, 48, 106
trap intercept 26, 77, 103
trap numbers 26
trap record 27, 74
trap signal 32, 77
traps (see AQOO traps)
underscore 44
undo 43
unfreeze mouse (see mouse, unfreeze)
UnitTable 37, 56, 91
UNLK 9, 29, 33, 46, 71
user area 11, 33, 41, 60, 68, 78, 105
built-in (see default)
default 11, 40
size 60
user input 43
variables 85
VBL (see options, vertical blanking)
VBL queue 104
VCB 56, 91
vector refresh (see options, vector refresh)
vectors 13, 62, 85
vertical blanking (see options, vertical blanking)
VIA 51

110

“WARNING! The monitor has been damaged” (sce
damaged Monitor)
warnings 101
WDCBs 37
WDCBsPtr 56, 91
‘WindowRecord 28
windows 9, 17, 42, 43, 85
active (see active window)
assembly 19, 20, 44, 46, 47, 48, 51
breakpoint 9, 10
breakpoints 21, 54
closing 18, 42, 61
disassembly 9
dragging 9, 17, 42
dump 22, 47, 50
file 30, 58
heap 36, 50, 55, 83
number 20, 46, 60
options 34, 37, 48, 51, 60
registers 20, 21, 50, 54
resizing 9, 42
scrolling 9, 20, 42
sizing 18
user 46, 60
WMgrPort 56, 91

ICOM SIMULATIONS, INC.

648 S. Wheeling Road
Wheeling, IL 60090
312/520-4440

200000

	User1ocr
	oc
	ic1
	ic2
	ic3
	tc1
	tc2
	tc3
	tc4
	tc5
	sum1
	sum2
	p3
	p4
	p5
	p6
	p7
	p8
	p9
	p10
	p11
	p12
	p13
	p14
	p15
	p16
	p17
	p18
	p19
	p20
	p21
	p22
	p23
	p24
	p25
	p26
	p27
	p28
	p29
	p30
	p31
	p32a
	p33
	p34
	p35
	p36
	p37
	p38

	Binder1ocr
	p039
	p040
	p041
	p042
	p043
	p044
	p045
	p046
	p047
	p048
	p049
	p050
	p051
	p052
	p053
	p054
	p055
	p056
	p057
	p058
	p059
	p060
	p061
	p062
	p063
	p064
	p065
	p066
	p067
	p068
	p069
	p070
	p071
	p072
	p073
	p074
	p075
	p076
	p077
	p078
	p079
	p080
	p081
	p082
	p083
	p084
	p085
	p086
	p087
	p088
	p089
	p090
	p091
	p092
	p093
	p094
	p095
	p096
	p097
	p098
	p099
	p100
	p101
	p102
	p103
	p104
	p105
	p106
	p107
	p108
	p109
	p110
	bc

