
® 

Tele plone Manager Developer's Kit 
Fe1:\·to11 1. 0 
F.1_11 t:SLL .\ 



Apple Computer, Inc. 
20525 Mariani Avenue, MIS 33-G 
Cupertino, CA 95014 
( 408) 99&- IO IO 
TI.Xl71-576 

To reorder products, please call: 
1-800-282-2732 (in the United States) 
1-800-637-0029 (m Canada) 
1-408-562-3910 (lntemauonal) 



Telephone Manager 
Developer's Guide 



9 APPLE COMPUTER, INC. 

This manual and the software 
described in it are copyrighted, 
with all rights reserved. Under the 
copyright laws, this manual or the 
software may not be copied, in 
whole or part, without written 
consent of Apple, except in the 
normal use of the software or to 
make a backup copy of the 
software. The same proprietary 
and copyright notices must be 
affixed to any permitted copies as 
were affixed to the original. This 
exception does not allow copies 
to be made for others, whether or 
not sold, but all of the material 
purchased (with all backup copies) 
may be sold, given, or loaned to 
another person. Under the law, 
copying includes translating into 
another language or format. 
You may use the software on any 
computer owned by you, but 
extra copies cannot be made for 
this purpose. 
The Apple logo is a registered 
trademark of Apple Computer, 
Inc. Use of the "keyboard" Apple 
logo (Option-Shift-k) for 
commercial purposes without the 
prior written consent of Apple 
may constitute trademark 
infringement and unfair 
competition in violation of federal 
and state laws. 

© Apple Computer, Inc., 1991 
20525 Mariani Avenue 
Cupertino, CA 95014 
(408)9%-1010 
Apple, the Apple logo, APDA, 
AppleLink, and Macintosh are 
trademarks of Apple Computer, 
Inc., registered in the United 
States and other countries. 
Classic is a registered trademark, 
licensed to kApple Computer, Inc. 
Adobe Illustrator and PostScript 
are trademarks of Adobe Systems, 
Inc. 
ITC Garamond and ITC Zapf 
Dingbats are registered 
trademarks of International 
Typeface Corp. 
Microsoft is a registered 
trademark of Microsoft Corp. 
Varityper is a registered trademark 
of Varityper, Inc. 



Contents 

Figures and Tables / v 

Preface / vii 

1 Introduction to the Telephone Manager / 1 
About the Telephone Manager / 2 
Telephone Manager concepts / 4 

Telephone terminals / 4 
Directory numbers / 4 
Call appearances / 5 
Telephone Manager records / 6 

System requirements / 6 · 

2 Inside the Telephone Manager / 7 
Data structures of the Telephone Manager / 8 
The telephone record / 9 

Telephone record data structure: TELRecord / 10 
Telephone record data structure: TELTermRecord / 12 

The directory-number record / 15 
Directory-number data structure / 16 

The call-appearance record / 22 
Call-appearance data structure / 23 

Telephone Manager routines / 30 
Preparing to handle calls / 31 
Custom configuration of a telephone tool / 36 
Interfacing with a scripting language / 40 
Opening, using, and closing the terminal / 42 
Handling events / 45 
Handling messages / 47 
Placing and receiving calls / 54 
Using Drop, Hold, Transfer, Forward, and Conference / 59 
Using less-common supplementary features / 65 

iii 



Accessing special features of switches and tools / 72 
Localizing configuration strings / 75 
Monitoring and controlling the terminal / 77 
Controlling directory numbers / 85 
Controlling call appearances / 90 
Miscellaneous routines / 94 
Routines your application must provide / 95 

3 Writing Telephone Tools / 97 
About writing a telephone tool../ 98 
The six tool resources / 98 

The bundle resource / 99 
The validation code resource / 100 
The setup-definition code resource / 102 
The scripting language interface code resource / 107 
The localization code resource / 109 

config: the configuration record / 111 

4 Writing Your Tool's Main Code Resource / 113 
The main code resource / 114 
Messages that the main code resource accepts / 115 
Messages that the main code resource sends / 149 

General call-appearance messages / 151 
Incoming/outgoing call-appearance messages / 155 
Call-appearance message for transferring calls / 158 
Call-appearance messages for conference calls / 159 
Directory-number messages / 160 
Terminal messages / 162 

Appendix A 

Appendix B 

Appendix C 

Result Codes for Routines / 165 

Message Codes for Applications / 169 
Call-appearance message codes for applications / 170 
Directory-number message codes for applications / 183 
Terminal message codes for applications / 185 

Call-Appearance States / 189 

Index / 191 

iv Contents 



Figures 

C H A P TE R 1 Introduction to the Telephone Manager / 1 

Figure 1-1 Where the Telephone Manager fits into the Communications Toolbox I 2 
Figure 1-2 How the Telephone Manager interacts with applications and tools / 3 
Figure 1-3 An example state progression for an outgoing call appearanceZ 5 
Figure 1-4 An example state progression for an incoming call appearance / 5 
Figure 1-5 An example state progression for an active call appearance / 5 

C H AP TE R 2 Inside the Telephone Manager / 7 

Figure 2-1 How the Telephone Manager data structures are related / 8 
Figure 2-2 A sample tool-settings dialog box I 34 

V 





Preface 

The Telephone Manager Developer's Guide provides definitive information 
for application software developers and telephone tool developers who want 
to use services provided by the Telephone Manager. For application software 

developers, this document describes and shows how to use the Telephone 
Manager routines that make it easier to write telephony applications for the 

Apple Macintosh computer. For telephone tool developers, this document 

shows how to develop tools that can be used by the Telephone Manager. 

About this document 

Chapter 1 contains an overview of the Telephone Manager and describes the 
hardware and software you need to run it. Chapter 2 describes the Telephone 
Manager data structures and application-programming routines. Chapters 3 and 
4 show how to create a telephone tool. Although tool developers need to read 
Chapters 3 and 4, most application developers do not. Appendix A describes 
result codes that the Telephone Manager routines return. Appendix B describes 
messages that the Telephone Manager relays from telephone tools to 
applications. Appendix C describes call-appearance states. 
The Telephone Manager Developer's Guide is written for experienced 
programmers. Readers should know how to program the Macintosh and how 
to use the Macintosh Communications Toolbox, and should have some 
familiarity with telephony applications. The next section lists resources for 
reference information about the technical concepts used in this document. 

vil 



For more information 

Refer to the following books in the Apple Technical Library and Apple 
Communications Library, published by Addison-Wesley, for additional 
information about the subjects covered in this manual: 
• Designing Cards and Drivers for the Macintosh Family 

• Human Interface Guidelines: The Apple Desktop Interface 
• Inside Macintosh (Volumes I-VI, X-ReO 
• Inside the Macintosh Communications Toolbox 
• Programmer's Introduction to the Macintosh Family 
• Technical Introduction to the Macintosh Family 
You may also refer to the following documents from APDA: 

• Apple ISDN Telephone Tool 

• Software Development for International Markets: A Technical Reference 

• Macintosh Technical Notes 
APDA offers convenient worldwide access to over 300 development tools, 
resources, training products, and information for anyone interested in 
developing applications on Apple platforms. Customers receive the quarterly 
APDA Tools Catalog featuring the most current versions of Apple 
development tools and the most popular third-party development tools. 
Ordering is easy; there are no membership fees, and application forms are not 
required for most of our products. APDA offers convenient payment and 
shipping options, including site licensing. 

To order products or get additional information, contact 
APDA 
Apple Computer, Inc. 
20525 Mariani Avenue, WS 33-G 
Cupertino, CA 95014-6299 
USA 
800-282-2732 (United States) 
8()()-{)37-0029 (Canada) 
408-562-3910 (International) 
Fax: 408-562-3971 
Telex: 171-576 
AppleLink address: APDA 

viii Telephone Manager Developer's Guide 



Conventions used in thJs document 

The following notations are used in this document to draw attention to 
particular items of information: 

+ Note: Information that is interesting or useful. 

6 Important A note of particular importance. 

Ai. Warning A point that warns you to be cautious. 

Names of routines (procedures or functions), constants, and code fragments 
appear in Courier, a special typeface, as in the following example: 
PROCEDURE GetDown(andBoogie: ONEMORETIME); 

Preface ix 





Chapter 1 Introduction to the Telephone Manager 

TH I S C HA P TE R gives you an overview of the Telephone Manager. It 
explains how the Telephone Manager works with the Macintosh 

Communications Toolbox and presents key concepts relating to the 
Telephone Manager. 

1 



About the Telephone Manager 
The Telephone Manager is a new manager for the Macintosh Communications Toolbox. It provides a 
programming interface that lets you develop a variety of telephony applications, including screen­ 
based telephony applications and Macintosh-based answering machines. 

Using the Telephone Manager, applications can offer telephone services to users yet operate 
independently of the user's network type or telephone type. For example, a Macintosh application can 
serve as a virtual telephone-whether the telephone network provides Integrated Services Digital 
Network (ISDN) service or "plain old telephone service" (POTS), and whether the attached telephone 
set is a speakerphone or a mobile telephone. 

After you install the Telephone Manager, it works with the Communications Toolbox in much 
the same way that other managers do, as shown in Figure 1-1. 

• Figure 1-1 Where the Telephone Manager fits into the Communications Toolbox 

Application 
I 

A A 

[ 
- .._ 

Communica1lons 
Toolbox 

Telephone Terminal File Transfer Connection 
Manager Manager Manager Manager 

" 

" " " I Tool I Tool I Tool I Tool 
" il il ' . 

"' " " 
I I I I Communications I I 
I I I I I I 
I I I I Resource Manager I I 
I I I I I I 
I I I I I I 

,. ._ ,___ 

" ·,. " " -,., " 
Operating system 

n 
Macintosh hardware 

2 Telephone Manager Developer's Guide 



The Telephone Manager accesses the telephone network through telephone tools, which the 
user installs and which the Telephone Manager manages. Telephone tools control the terminal 
drivers of the telephony hardware (such as an ISDN card) installed on the user's system. Each 
telephone tool is designed for specific hardware. For example, the Apple ISDN Telephone Tool is 
designed for the Apple ISDN NB Card. 

Figure 1-2 shows how the Telephone Manager interacts with applications and tools. An 
application makes a request of the Telephone Manager when it needs a telephone service-for 
example, when it needs a call dialed. The Telephone Manager then sends this request to one of the 
telephone tools it manages. The tool provides the service according to the specifics of the 
telephone network protocol. While providing the service, the tool sends messages to the Telephone 
Manager, passing parameters that indicate how handling of the request is proceeding. The 
Telephone Manager then relays the tool's messages to the application. 

• Figure 1-2 How the Telephone Manager interacts with applications and tools 

Telephone applications 

u 
Communkatlons 

Toolbox 

Telephone Manager 

ISDN 
driver 

n 
Macintosh with · 
ISDN card 

0 
Chapter 1: tntroduction to the Telephone Manager 3 



Telephone Manager concepts 
To use the Telephone Manager, you first need to understand several key concepts: telephone terminals, 
directory numbers, call appearances, and Telephone Manager records. This section briefly summarizes each of 
these concepts. 

Telephone terminals 

In this book, a telephone terminal (a "terminal," for short) is hardware, such as an ISDN card, that 
provides the physical interface between a Macintosh computer and a telephone network switch­ 
such as a private branch exchange (PBX) or a central-office switch. A telephone terminal also 
provides, optionally, the physical interface between the telephone network switch and a telephone 
set attached to the Macintosh computer. A telephone set is any device, such as a table-top 
telephone, used to manually dial, answer, or otherwise manipulate calls. Be careful not to confuse a 
telephone set and a telephone terminal. 

A terminal can consist of an integrated device (such as the Apple ISDN NB Card) or separate 
devices (such as the Apple Serial NB Card and a modem). A terminal is controlled by device-driver 
software, which is generally supplied by the manufacturer of the terminal and which must be 
compatible with the Macintosh Device Manager. 

Directory numbers 

Each installed terminal has at least one directory number (DN). A directory number is a named 
reference point, such as (408) 555-1212, used to initiate or receive calls on the terminal. Directory 
numbers are assigned to the user of the terminal by, for instance, the local telephone company. A 
terminal can have multiple directory numbers, just as a typical telephone set in an office might have 
multiple buttons, one for each telephone number of that office. A directory number can, in turn, 
have multiple network subaddresses. 

In the Telephone Manager, directory numbers are of two types: physical and logical. Physical 
directory numbers can be monitored or controlled from the user's Macintosh computer and are 
physically associated with it. In contrast, logical directory numbers are not physically associated 
with the user's Macintosh computer, though they may be monitored or controlled from it. For 
example, a Macintosh computer, if running the Telephone Manager and connected to the control 
port of a PBX, might monitor all the directory numbers of that PBX. The Telephone Manager 
would treat those directory numbers as "logical," since they would have no physical association 
with the Macintosh computer. 

'-......-· 

4 Telephone Manager Developer's Guide 



Call appearances 

Each directory number can carry at least one call appearance (a CA, or "call," for short). A call 
appearance is a connection between two or more directory numbers, as when one telephone user 
places a call to another. Directory numbers can carry multiple call appearances concurrently-as on a 
telephone that has a Call Waiting feature or a Conference feature. 

At any particular time, each call appearance is in one particular state. For instance, the call appearance 
might be in an alerting state (ringing or flashing, for example), a held state (on hold), or an active 
state (meaning voice or data can flow end to end). 

+ Note: The state of a call appearance can change to "idle" (telCAidlestate) directly from any 
other state. Refer to Appendix C for a complete list of the call-appearance states recognized by the 
Telephone Manager. 

Figures 1-3 and 1-4 show example sequences of states through which outgoing call appearances 
and incoming call appearances might progress. Figure 1-5 shows an example sequence of states 
through which an active call appearance might progress. 

• Figure 1-3 An example state progression for an outgoing call appearance 

~ --1 Dial tone 1--1 Dialing 

Reorder 

Busy 

Ringing 1--1 Active 

Waiting I 
• Figure 1-4 An example state progression for an incoming call appearance 

• Figure 1-5 An example state progression for an active call appearance 

~--1 Actm: 1--1 Conferenced I 
t 

J Conferenced held I 

Chapter 1: Introduction to the Telephone Manager 5 



Telephone Manager records 

For each terminal, directory number, and call appearance, the Telephone Manager maintains a 
corresponding data structure-a telephone record, directory-number record, or call-appearance 
record. Applications and telephone tools reference these records using handles-telephone handles, 
directory-number handles, and call-appearance handles. Chapter 2 describes each of the Telephone 
Manager records in detail. 

'----· 

System requirements 
To run the Telephone Manager, you need one of the following Macintosh computers: 

• a Macintosh Plus, Classic®, SE, SE/30, Portable, LC, II, Ilx, Hex, Hsi, Ilci, or Ilfx computer with 
at least 2 megabytes of RAM and a hard disk 

• a Macintosh 128K, 512K, or 512K enhanced computer with a Macintosh Plus Logic Board 
Upgrade, at least 2 megabytes of RAM, and a hard disk 
Your Macintosh computer must be running Macintosh system software version 7.0, of which 

the Macintosh Communications Toolbox is a part. 

6 Telephone Manager Developer's Guide 



Chapter 2 Inside the Telephone Manager 

TH IS CH APTER describes the main data structures of the Telephone 
Manager and each of the routines the Telephone Manager provides. 

In this chapter, the term your application refers to the application you are 
writing for the Macintosh, which will implement telephone services for users. 
Be careful not to confuse the services your application provides with the 
services that tools provide. 

To use the Telephone Manager, you need to be familiar with 

• the Communications Resource Manager and the Communications Toolbox 
Utilities (described in Inside the Macintosh Communications Toolbox) 

• any one of the other managers in the Macintosh Communications 
Toolbox-for instance, the Connection Manager (described in Inside the 
Macintosh Communications Toolbox) 

7 



Data structures of the Telephone Manager 
The Telephone Manager maintains three main types of data structures-the telephone record, the 
directory-number record, and the call-appearance record. In this respect, the Telephone Manager 
differs from most other Communications Toolbox managers, which maintain only one main type 
of data structure. For example, the Connection Manager maintains only the connection record. 

Figure 2-1 shows how the main data structures of the Telephone Manager relate to one 
another. 

• Figure 2-1 How the Telephone Manager data structures are related 

TELRecord TELTermRecord 

Telephone I I I ,----1's.. 
Record I ~ 

Directory-number 
record(s) 

Call-appearance 
records 

An important aspect of the Telephone Manager data structures is that they allow the interface 
of Telephone Manager routines to be network-independent. This independence lets applications use 
Telephone Manager services without regard for the underlying network type or telephone type. In 
other words, to place a call, an application tells the Telephone Manager what number to dial. The 
Telephone Manager then invokes a telephone tool, which figures out exactly how to place a call on 
the given telephone network switch. 

Another important aspect of the Telephone Manager data structures is that they let 
applications use multiple instances of the same tool. The same tool can be used by different 
processes at the same time or by different threads in a given application. 

The sections that follow explain each of the main Telephone Manager data structures. 

6 Important In the descriptions of the Telephone Manager data structures and in the 
rest of this book, all strings are Pascal-style strings, unless otherwise 
noted. 6 

8 Telephone Manager Developer's Guide 



The telephone record 
The telephone record describes a particular terminal and its associated tool, and contains pointers to 
Telephone Manager internal data structures. The Telephone Manager uses this information to 
"translate" the network-independent routines used by an application into a service implemented 
according to the protocols of a particular network. Most of the fields in the telephone record are 
filled in when an application calls TELNew, described later in this chapter. 

The Telephone Manager creates a telephone record for each terminal an application uses. For 
example, assume that a Macintosh computer has two ISDN cards and that an application needs to 
communicate over both cards. The application would request that the Telephone Manager create 
two telephone records, one for each card. 

Because the telephone record describes how communication takes place on a given terminal, an 
application can communicate on more than one terminal at the same time. The application need 
only create a new telephone record for each terminal. 

6 Important Your application, in order to be compatible with future releases of the 
Telephone Manager, should not directly manipulate the fields of the 
telephone record, except refcon and useroata. The Telephone Manager 
provides routines that applications can use to change telephone record 
fields. These routines are discussed later in this chapter. c:,. 

Chapter 2: Inside the Telephone Manager 9 



Telephone record data structure: TELRecord 

TYPE 

TELHandle a "TELPtr; 

TELPtr = "TELRecord; 

TELRecord a RECORD 

procID INTEGER; 

flags TELFlags; 

reserved INTEGER; 

refcon LONGINT; 

userData LONGINT; 

defproc ProcPtr; 

config Ptr; 

oldConfig Ptr; 

pTELTerm TELTermPtr; 

telPrivate LONGINT; 

reserved! LONGINT; 

reserved2 LONGINT; 

pTELTermSize LONGINT; 

version INTEGER; 

END; 

procID 

procro is the telephone tool ID. This value is dynamically assigned by the Telephone Manager 
when your application calls TELGetProcID. 

flags 

flags is a bit field that indicates certain specifics about a terminal when the telephone record is 
first created. The bit masks for flags are as follows: 
TYPE 

flags LONGINT; 

CONST 

telNoMenus = $10000; 

telQuiet = $20000; 

{All other bits in flags are reserved for Apple.} 

10 Telephone Manager Developer's Guide 



Your application can turn on the telNoMenus bit, the telQuiet bit, or both when calling 
TELNew (discussed later in this chapter). The telephone tool will not display any custom menus if 
your application sets the telNoMenus bit. The telephone tool will not display any status dialog 
boxes or error alerts if your application sets the telQuiet bit. If your application turns the 
telQuiet bit on, it is responsible for displaying status dialog boxes and error alerts that the tool 
would have displayed. Applications typically use these two bits to hide the telephone tool from the 
user. 

reserved 

reserved is reserved for the Telephone Manager. Your application must not use this field. 

refCon 

refcon is a 4-byte field that your application can use. This field is ignored by the Telephone 
Manager. 

userData 

useroata is a 4-byte field that your application can use. This field is ignored by the Telephone 
Manager. 

defproc 

defproc is a procedure pointer to the main code resource of the telephone tool, and is maintained 
by the Telephone Manager. 

config 

con fig is a pointer to a data block that is private to the telephone tool. It can contain information 
like the directory numbers and telephone features associated with the terminal; the contents vary 
from tool to tool. 

Your application can store the contents of con£ ig to save the state of a tool and terminal. The 
structure, size, and contents of the configuration record are set by the tool. Your application can 
determine the size of the configuration record by calling GetPtrSize, overwriting its contents by 
using BlockMove, and then validating the contents with TELValidate. 

Your application can use TELGetconfig and TELSetconfig to manipulate fields in this 
record. For details, see "Interfacing with a Scripting Language," later in this chapter. Your application 
can save the state of the telephone record by saving the string returned from TELGetconfig. Also, 
your application can restore the configuration of the telephone record by passing a saved string to 
TELSetConfig. 

oldConfig 

oldConfig is a pointer to a data block that is private to the telephone tool and contains the most 
recently saved version of con fig. Your application is responsible for setting o Ld'Con f ig when 
the user saves a session document. Your application can use TELGetconfig and TELSetconfig 
to manipulate fields in this record. 

Chapter 2: Inside the Telephone Manager 11 



pTELTerm 

pTELTerm is pointer to a record of type TELTermRecord, defined in the next section. 

telPrivate 

telPrivate is reserved for use by telephone tools. 

reserved! 

reserved! is reserved for the Telephone Manager. Your application must not use this field. 

reserved2 

reserved2 is reserved for the Telephone Manager. Your application must not use this field. 

pTELTermSize 

pTELTermsize contains the size (in bytes) of the record pointed to by the field pTELTerm. 

version 

version is the version number of the Telephone Manager for which the telephone tool is 
intended. The tool fills in this value when the terminal is opened. 

Telephone record data structure: TELTermRecord 

TYPE 

TELTermPtr 

TELTermRecord 

tRef 

'TELTermRecord; 

RECORD 

INTEGER; 

featureFlags TELFeatureFlags; 

handsetSpeakervol 

speakerphoneVol 

handsetMicVol 

ringerVol 

othervol 

ringerTypes 

hasDisplay 

displayRows 

INTEGER; 

INTEGER; 

INTEGER; 

INTEGER; 

INTEGER; 

INTEGER; 

INTEGER; 

INTEGER; 

numDNs INTEGER; 

maxAllocCA 

curAllocCA 

INTEGER; 

INTEGER; 

reserved LONGINT; 

END; 

12 Telephone Manager Developer's Guide 



tRef 

tRef is the terminal reference number. This value is dynamically assigned by the telephone tool 
when your application calls TELNew. The tRef field is private to the telephone tool; your 
application must not change the value of this field. 

featureFlags 

featureFlags is a bit field that indicates which features and characteristics the terminal has 
when it is first opened (by the routine TELOpenTerm). The bit masks for featureFlags are as 
follows: 
TYPE 

featureFlags LONGINT; 

CONST 
pcmAvail = $00000001; 
has Handset = $00000002; 
hasSpeakerphone = $00000004; 
canOnHookDial = $00000008; 
has Ringer .. $00000010; 
canSetDisplay = $00000020; 
has Keypad = $00000040; 
hasVideo = $00000080; 
hasOther = $00000100; 

crossDNConference .. $00000200; 
hasSubaddress .. $00000400; 
hasuseruserinfo = $00000800; 

{All other bits in featureFlags are reserved for Apple.} 

If a tool sets a bit in featureFlags, the terminal has the corresponding characteristic or 
capability. If pcmAvail is set, the terminal can access pulse-code-modulated (PCM) data. If 
hasHandset, hasspeakerphone, and canOnHookDial are set, the terminal has an attached 
handset and a speakerphone, and can dial while the handset's receiver is on the switch hook. If 
has Ringer and canSetoisplay are set, the terminal has its own ringer (as opposed to that of 
the telephone) and can write to the telephone's display. If hasKeypad and hasvideo are set, the 
terminal has a typical 12-button keypad and has a videophone. The flag hasother is reserved 
for Apple. 

The remaining flags of featureFlags indicate whether the corresponding features are 
available. If crossDNConference is set, the terminal can group calls into a conference, even if the 
calls are on different directory numbers. If hassubaddress and hasuseruserrnfo are set, the 
network to which the terminal is attached allows subaddressing and user-to-user information. 

Chapter 2: Inside the Telephone Manager 13 



handsetSpeakerVol 

handsetspeakervol indicates the number of levels to which the volume control of the handset 
can be set. If handsetSpeakervol is zero, the volume of the handset is fixed; it cannot be 
adjusted. 

speakerphoneVol 

speakerphoneVol indicates the number of levels to which the volume control of the 
speakerphone can be set. If speakerphonevol is zero, the volume of the speakerphone is fixed; it 
cannot be adjusted. 

handsetMicVol 

handsetMicvol indicates the number of levels to which the volume control of the microphone 
can be set. If handsetMicvol is zero, the volume of the microphone is fixed; it cannot be 
adjusted. 

ringervol 

r ingervol indicates the number of levels to which the volume control of the ringer can be set. 
If r ingervol is zero, the volume of the ringer is fixed; it cannot be adjusted. 

otherVol 

othervol is reserved by Apple for future use. Your application must not use this field. 

ringerTypes 

ringerTypes indicates how many types of ringing sounds the terminal can emit. If ringerTypes 
is zero, the terminal is not capable of emitting a ringing sound. 

hasDisplay 

hasoisplay indicates the number of characters per line that the telephone can display. If has Display 
is zero, the telephone has no display. 

displayRows 

displayRows indicates the number of lines that the telephone can display. If has Display is 
zero, displayRows must also be zero. 

numDNs 

numoNs indicates how many directory numbers are currently assigned to the terminal. 

-- 
14 Telephone Manager Developer's Guide 



maxAllocCAs 

maxAllocCAs indicates the maximum number of call appearances that the network has allocated 
to this terminal for placing independent outgoing calls. (For example, on a residential POTS line with 
Call Waiting, maxAlloccAs would be set to 1, meaning the line can place only one outgoing call at 
a time.) If maxAllocCAs is set to -1, there is no maximum. 

curAllocCAs 

curAlloccAs indicates how many of the call appearances currently on the terminal are in states 
other than telCAidleState. 

reserved 

reserved is reserved for Apple. Your application must not use this field. 

The directory-number record 
The Telephone Manager creates a directory-number record for each telephone number, or directory 
number, associated with a particular telephone terminal. Each directory-number record describes 
the characteristics of a particular directory number (such as its subscribed features) and its state 
(such as "in use"). The Telephone Manager accesses this information when placing calls, receiving 
calls, or otherwise handling calls for that directory number. 

The fields of the directory-number record are filled in by the telephone tool when the record is 
created. Because these fields are updated only at the application's request, the directory-number 
record is like a "snapshot." It describes the characteristics and state of the directory number as of 
the most recent update. 

6 Important Your application, in order to be compatible with future releases of the 
Telephone Manager, should not directly manipulate the fields of the 
directory-number record, except ref con and useroata. 6 

Chapter 2: Inside the Telephone Manager 15 



Directory-number data structure 

TYPE 

TELDNHandle = 'TELDNPtr; 

TELDNPtr = 'TELDNRecord; 

TELDNRecord = RECORD 

dnRef INTEGER; 

dn StringPtr; 

dnSubaddress StringPtr; 

dnPartyName StringPtr; 

hTEL TELHandle; 

maxAllocCAs INTEGER; 

curAllocCAs INTEGER; 

dnType INTEGER; 

featureFlags TELDNFeatureFlags; 

numPageIDs INTEGER; 

numintercomIDs INTEGER; 

numPickupIDs INTEGER; 

forwardFlags TELDNForwardFlags; 

iForwardDN StringPtr; 

iForwardSubaddress StringPtr; 

iForwardPartyName StringPtr; 

bForwardDN StringPtr; 

bForwardSubaddress StringPtr; '---·· 
bForwardPartyName StringPtr; 

naForwardDN StringPtr; 

naForwardSubaddress StringPtr; 

naForwardPartyName StringPtr; 

naForwardRings INTEGER; 

telDNPrivate LONG INT; 

refCon LONGINT; 

userData LONGINT; 

reserved LONG INT; 

END; 

dnRef 

dnRef is the directory-number reference number, dynamically assigned by the telephone tool to 
refer to this particular directory number. Your application is permitted to read dnRef but should 
not change the value of the field. 

16 Telephone Manager Developer's Guide 



dn 

dn is a pointer to a Pascal-style string storing the name (telephone number) associated with the 
directory number. Tools recognize only the following characters in this string: the digits O through 9, 
the number sign Is), the comma (, ), the asterisk (•),and the exclamation point (!).The comma is 
treated as a 1-second pause; the exclamation point is treated as a flash-hook. All other characters are 
parsed as spaces but do not stop the the telephone tool's processing. If your application accepts 
directory-number names that include alphabetic characters, it should translate these characters to 
the appropriate digits. 

dnSubaddress 

dnSubaddress is a pointer to a Pascal-style string storing the network subaddress, if any, 
associated with the directory number. 

dnPartyName 

dnPartyName is a pointer to a Pascal-style string storing the name of the person to whom this 
directory number is assigned. 

hTEL 

hTEL contains a handle to the telephone record (and hence the terminal) with which this directory 
number is associated. 

maxAllocCAs 

maxAlloccAs indicates the maximum number of call appearances that the network has allocated 
to this directory number for placing independent outgoing calls. If maxAllocCAs is set to -1, 
there is no maximum. 

curAllocCAs 

curAllocCAs is the number of calls currently allocated for this directory number. 

dnType 

dnType represents the type of this directory number (internal, external, and so on). Refer to the 
description of the routine TELDNLookupByindex for an explanation of directory-number types. 

featureFlags 

featureFlags is a bit field that indicates which features (other than call forwarding) and 
characteristics a directory number has, and indicates their state-subscribed, available, or active. The 
bit masks for featureFlags are as follows: 

Chapter 2: Inside the Telephone Manager 17 



TYPE 

featureFlags = LONGINT; 

CONST 
dndSub = $00000001; 

dndAvail .. $00000002; 
dndActive .. $00000004; 

voiceMailAccessSub = $00000008; 

voiceMailAccessAvail = $00000010; 
voiceMailAccessActive = $00000020; 

pagingSub = $00000040; 
pagingAvail = $00000080; 
pagingActive = $00000100; 

intercomSub = $00000200; 
intercomAvail = $00000400; 

intercomActive = $00000800; 

dnSelectSub = $00001000; 
dnSelectAvail = $00002000; 

dnSelectActive = $00004000; 

callPickupSub = $00008000; 
callPickupAvail = $00010000; 

dninUse = $00020000; 

logicalDN = $00040000; 
dnAccessible .. $00080000; 
caninitiate = $00100000; 
voiceMessageWaiting = $00200000; 

{All other bits in featureFlags are reserved by Apple for future use.} 

The bits dndSub, dndAvail, and dndActive show the state of Do Not Disturb. 
voiceMailAccessSub, voiceMailAccessAvail, and voiceMailAccessActive showthe 
state of the Voice Mail feature. pagingSub, PagingSubAvail, and PagingSubActive show 
the state of Paging. intercomSub, intercornAvail, and intercomActive show the state of 
Intercom. 
The bits dnSelectSub, dnSelectAvail, and dnSelectActive show the state of Directory 
Number Select. callP ickupsub and callP ickupAvail show the state of Call Pickup. 
dnrnuse indicates whether the directory number is in use, meaning that call appearances are 
currently allocated for it. logicalDN indicates whether the directory number is a logical directory 
number, meaning that no corresponding physical channel is connected to the terminal. 
dnAccessible indicates whether the directory number can accept commands-for example, 
TELSetupcall. caninitiate indicates whether the directory number can place unrestricted 
calls. voiceMessagewaiting indicates whether a voice-mail message is waiting for this directory 
number. 

18 Telephone Manager Developer's Guide 



numPageIDs 

numPageIDs is the number of page IDs, or "page keys," configured for this directory number. 

numintercomIDs 

numintercomIDs is the number of intercom IDs, or "intercom keys," configured for this directory 
number. 

numPickupIDs 

numPickupIDs is the number of pickup IDs configured for this directory number. 

forwardFlags 

forwardFlags is a bit field that indicates which capabilities of call forwarding this directory 
number has and indicates the state of those capabilities (subscribed, available, and active). If a tool 
sets a bit in forwardFlags, the corresponding forwarding capability is in the indicated state. The 
bit masks for forwardFlags are as follows: 
TYPE 

forwardFlags LONGINT; 

CONST 
immediateForwardSub ,. $00000001; 

immediateForwardAvail = $00000002; 

immediateForwardActive = $00000004; 

busyForwardSub = $00000008; 

busyForwardAvail = $00000010; 

busyForwardActive = $00000020; 

noAnswerForwardSub = $00000040; 

noAnswerForwardAvail = $00000080; 

naFwdActive '"' $00000100; 

busyNAForwardSub = $00000200; 

busyNAForwardAvail = $00000400; 
busyNAForwardActive - $00000800; 

{All other bits in forwardFlags are reserved by Apple for future use,} 

The bits immediateForwardSub, immediateForwardAvail, and immediateForwardActive 

indicate the state of Immediate Call Forwarding-whether it is subscribed, available, or active. 
Likewise, busyForwardSub, busyForwardAvail, and busyForwardActive show the state of 
Forward On Busy. The bits noAnswerForwardSub, noAnswerForwardAvail, and 
noAnswerForwardActive indicate the state of Forward On No Answer. The bits 
busyNAForwardSub, busyNAForwardAvail, and busyNAForwardActive indicate the state of 
Forward On Busy And No Answer. 

Chapter 2: Inside the Telephone Manager 19 



iForwardDN 

iForwardDN is a pointer to a string storing either NIL or the telephone number to which calls are 
forwarded when the Immediate Call Forwarding feature is active. 

iForwardSubaddress 

iForwardsubaddress is a pointer to a string storing either NIL or the network subaddress of the 
telephone number to which calls are forwarded when the Immediate Call Forwarding feature is active. 

iForwardPartyName 

iForwardPartyName is a pointer to a string storing either NIL or the name of the person to 
whom calls are forwarded when the Immediate Call Forwarding feature is active. 

bForwardDN 

bForwardDN is a pointer to a string storing either NIL or the telephone number to which calls are 
forwarded when the Forward On Busy feature is active. 

bForwardSubaddress 

bForwardsubaddress is a pointer to a string storing either NIL or the network subaddress of 
the telephone number to which calls are forwarded when the Forward On Busy feature is active. 

bForwardPartyName 

bForwardPartyName is a pointer to a string storing either NIL or the name of the person to 
whom calls are forwarded when the Forward On Busy feature is active. 

naForwardDN 

naForwardDN is a pointer to a string storing either NIL or the telephone number to which calls 
are forwarded when the Forward On No Answer feature is active. 

naForwardSubaddress 

naForwardSubaddress is a pointer to a string storing either NIL or the network subaddress of 
the telephone number to which calls are forwarded when the Forward On No Answer feature is 
active. 

naForwardPartyName 

naForwardPartyName is a pointer to a string storing either NIL or the name of the person to 
whom calls are forwarded when the Forward On No Answer feature is active. 

naForwardRings 

naForwardRings is the number of times the telephone or terminal rings before Forward On No 
Answer is activated. 

20 Telephone Manager Developer's Guide 



telDNPrivate 

telDNPrivate is reserved for use by telephone tools. 

refCon 

ref con is a 4-byte field that your application can use. This field is ignored by the Telephone 
Manager. 

userData 

useroata is a 4-byte field that your application can use. This field is ignored by the Telephone 
Manager. 

reserved 

reserved is reserved for Apple. Your application must not use this field. 

Chapter 2: Inside the Telephone Manager 21 



The call-appearance record 
The Telephone Manager creates a call-appearance record for each call appearance associated with a 
particular directory number. Each call-appearance record describes the characteristics of a particular 
call appearance (such as the directory number being called) and its state (such as "on hold"). The 
Telephone Manager accesses this information when handling that call appearance. 

Most of the fields of the call-appearance record are filled in by the telephone tool when the 
record is created. The Telephone Manager updates the fields of the record only at your application's 
request. Thus, the call-appearance record is like a "snapshot." It describes the characteristics and 
state of the call appearance as of the most recent update. 

6 Important Your application, in order to be compatible with future releases of the 
Telephone Manager, should not directly manipulate the fields of the call­ 
appearance record (except ref Con, userData, and connect Time). c:, 

22 Telephone Manager Developer's Guide 



Call-appearance data structure 
TYPE 

TELCAHandle = 'TELCAPtr; 
TELCAPtr = 'TELCARecord; 
TELCARecord = RECORD 

caRef INTEGER; 

hTELDN TELDNHandle; 
hTEL TELHandle; 
caState INTEGER; 
relatedCA TELCAHandle; 
connect Time LONGINT; 

intExt INTEGER; 
callType INTEGER; 
dialType INTEGER; 
bearerType INTEGER; 
rate INTEGER; 

rmtDN StringPtr; 
rmtPartyName StringPtr; 
rmtSubaddress StringPtr; 
routeDN StringPtr; 
routePartyName StringPtr; 
routeSubaddress StringPtr; 

priority INTEGER; 

confLimit INTEGER; 

featureFlags TELCAFeatureFlags; 
otherFeatures TELCAOtherFeatures; 

telCAPrivate LONGINT; 
refCon LONGINT; 
userData LONGINT; 
reserved LONGINT; 

END; 

caRef 

caRef is the call-appearance reference number, dynamically assigned by the telephone tool to refer 
to this particular call appearance. Your application is permitted to read caRef but should not 
change the value of the field. 

hTELDN 

hTELDN is a handle to the directory-number record for this call appearance. 

Chapter 2: Inside the Telephone Manager 23 



hTEL 

hTEL is a handle to the telephone record for directory number hTELDN. --- 
caState 

castate is an integer that represents the state of the call associated with this call appearance, The 
valid values of castate are as follows: 
CONST 

telCAidleState = O; 
telCAinUseState = 1; 

telCAOfferState = 2; 

telCAQueuedState = 3; 

telCAAlertingState = 4; 
telCADialToneState = 5; 

telCADialingState = 6; 

telCAWaitingState = 7 • ' 

telCARingingState = 8; 
telCABusyState = 9; 

telCAHeldState = 10; 

telCAConferencedState = 11; 

telCAActiveState = 12; 

telCAReorderState = 13; 

telCAUnknownState = 15; 

relatedCA 

{No call exists now} 
{This call active at another terminal} 
{Call being offered to this terminal} 
{Call being queued to this terminal} 
{Call alerting at this terminal} 
{Initiated outgoing call has dial tone} 
{Initiated outgoing call now dialing} 
{Initiated outgoing call awaiting destination's 
response} 

{Outgoing call now ringing} 
{Destination busy or unreachable} 
{This call put on hold by this terminal} 
{This call now part of a conference} 
{This call active: parties can speak or 
exchange data} 

{This call in a reorder state} 
{Call state unknown} 

---· 
relatedcA is a handle to a call-appearance record with which the current call appearance is 
associated, as in a conference or a transfer. 

connectTime 

connectTime is the time at which the connection was made. Your application is responsible for 
maintaining this field if needed. 

24 Telephone Manager Developer's Guide 



intExt 

intExt indicates whether the call is internal or external. intExt has one of the following values: 
telinternalCall 
telExternalCall 
talUnknownCallOrigin 

O; 
1; 
2; 

{Internal call} 
{Externai call} 
{Call type unknown} 

callType 

call Type indicates the route by which the call reached this terminal-for instance whether it was 
transferred or forwarded. ca 11 Type can have any of the following values: 

telNormalin 
telForwardedNoAnswer 
telForwardedBusy 
telForwardedimmediate 
tel Transfer 
telDeflected 
tel Intercepted 
telDeflectRecall 
telCallbackin 
telParkRecall 
telPickup 
telTransferRecall 

O; 
1; 
2; 

3; 
4; 

5; 

6; 

7; 

8; 
9; 

10; 
11; 

{Direct inbound call} 
{Inbound forward on no answer} 
{Inbound forward on busy} 
{Inbound forward immediate} 
{Inbound call transfer} 
{Inbound deflected call} 
{Inbound intercepted call} 
{Recall of deflected call} 
{Inbound call back} 
{Recall of parked call} 
{Inbound call pickup} 
{Recall of transferred call} 

dialType 

dial Type indicates the type of dialable number as one of the following values: 
telDNDialable O; {This dn could be dialed via 

TELSetupCall} 

telDNNorthAmerican 

telDNinternational 

telDNAlmostDialable 

telDNUnknown 

1; {rmtdn is standard North America 
10 digit number} 

2; {rmtDN is an international number} 

3; {rmtDN is almost dialable; it is missing 
a prefix, such as 9 or 1} 

15; {Unknown whether dn is dialable} 

Chapter 2: Inside the Telephone Manager ZS 



bearer'rype 

bearerType is unused and set to zero. 

rate 

rate is unused and set to zero. 

rmtDN 

rmtDN is a pointer to the remote telephone number associated with this call. The telephone 
number is a Pascal-style string. If the remote telephone number is unknown, rmtDN is NIL. 

rmtPartyName 

rmtPartyName is a pointer to the name of the remote party associated with this call. The name is 
a Pascal-style string. If the name of the remote party is unknown, rmtPartyName is NIL. 

rmtSubaddress 

rmtsubaddress is a pointer to the network subaddress of rmtDN. If there is no subaddress, 
rmtSubaddress ~ NIL. 

routeDN 

routeDN is a pointer to the telephone number through which this call was routed. The telephone 
number is a Pascal-style string. If the call was not routed or if the routing telephone number is 
unknown, routeDN is NIL. 

routePartyName 

routePartyName is a pointer to the name of the party associated with routeDN. The name is a 
Pascal-style string. If the name of the party is unknown, routePartyName is NIL. 

routeSubaddress 

routesubaddress is a pointer to the network subaddress of routeDN. If there is no subaddress, 
routeSubaddress ~ NIL. 

priority 

priority is reserved by Apple for future use. 

confLimit 

confLimit is the maximum number of parties that can be concurrently conferenced with this call 
appearance. This maximum includes the two parties initially associated with the call appearance. If 
confLimit equals zero, there is no limit on the number of calls that can be conferenced. 

26 Telephone Manager Developer's Guide 



featureFlags 

featureFlags is a bit field that indicates which features can be applied to this call appearance and 
indicates their state (subscribed, available, or active). The bit masks for featureFlags are as 
follows: 
TYPE 

featureFlags LONGINT; 

CONST 
holdSub 
holdAvail 
holdActive 

conferenceSub 
conferenceAvail 
conferenceActive 

conferenceDropSub 
conferenceDropAvail 

conferenceSplitSub 
conferenceSplitAvail 
numToConferenceRequired = 

$00000001; 

$00000002; 

$00000004; 

$00000008; 

$00000010; 

$00000020; 

$00000040; 

$00000080; 

$00000100; 

$00000200; 

$00000400; 

$00000800; 

$00001000; 

$00002000; 

$00004000; 

are reserved by Apple for future use.} 

transferSub = 
transferAvail 
transferActive = 
caRelated 
{All other bits in featureFlags 

The bits holdSub, holdAvail, and holdActive show the state of the Hold feature; 
conferenceSub, conferenceAvail, and conferenceActive show the state of the 
Conference feature. Likewise, conferenceDropSub, conferenceDropAvail, 

conferenceSplitSub, and conferenceSplitAvail show the state of the features Conference 
Drop and Conference Split. If numToconferenceRequired is set, your application must indicate 
the number of calls in this conference when invoking the routine TELConferencePrep. The 
caRel~ted bit is set if this call appearance is specified in the relatedCA field of another call­ 
appearance record. The bits transferSub, transferAvail, and transferActive show the 
state of the Transfer feature. 

otherFeatures 

otherFeatures is a bit field that indicates which features, other than those in featureFlags, 
can be applied to this call appearance and indicates their state (subscribed, available, active, or 
clearable). The bit masks for otherFeatures are as follows: 

Chapter 2: Inside the Telephone Manager 27 



TYPE 
otherFeatures = LONGINT; 

CONST 
callbackSub = $00000001; 

callbackAvail .. $00000002; 

callbackActive = $00000004; 

callbackClearSub = $00000008; 

callbackNowSub = $00000010; 

callbackNowAvail = $00000020; 

callbackBusy = $00000040; 

callbackNoAnswer = $00000080; 

callbackReturnsRef = $00000100; 

parkSub = $00000200; 

parkAvail = $00000400; 

parkActive .. $00000800; 

parkRetrieveSub = $00001000; 

parkRetrieveWithID = $00002000; 

parkWithID = $00004000; 

rejectable = $00008000; 

deflectable = $00010000; 

acceptable = $00020000; 

{All other bits in otherFeatures are reserved by Apple for future use.} 

The bits callbackSub, callbackAvail, callbackActive, and callbackClearSub show 
the state of the Call Back feature (subscribed, available, active, or clearable). The bits 
callbackNowSub and callbackNowAvail show the state of the Call Back Now feature. When 
the Call Back feature is available, callbackBusy is set if the feature can be activated when the 
remote party is busy. Similarly, callbackNoAnswer is set if the Call Back feature can be activated 
when the remote party does not answer. If callbackReturnsRef is set, the Call Back feature 
returns a reference. number, allowing the user to identify multiple callbacks. 

The bits parkSub, parkAvail, and parkActive show the state of the Call Park feature. If 
parkRetrieveSub is set, the Call Park Retrieve feature is subscribed. parkRetrieveWithID and 
parkwithro show whether the Call Park feature assigns an ID or requests the destination 
directory number when parking calls. Rejectable, deflectable, and acceptable show 
whether the terminal can reject, deflect, or accept the call. 

telCAPrivate 

telCAPrivate is reserved for use by telephone tools. 

refCon 

ref con is a 4-byte field that your application can use. 

28 Telephone Manager Developer's Guide 



userData 

useroata is a 4-byte field that your application can use. 

reserved 

reserved is reserved for Apple. Your application must not use this field. 

Chapter 2: Inside the Telephone Manager 29 



Telephone Manager routines 
The sections that follow describe the routines that tools and applications can use to access Telephone 
Manager services. These routines are protocol independent; your application does not need to be 
familiar with the specifics of a particular network protocol in order to use these telephone services. 

6 Important For a list and description of each result code returned by the Telephone 
Manager routines, ref er to Appendix A. t::. 

Here is an alphabetical listing of the routines described in this section. 

InitTEL / 31 TELDNOClear / 67 TELOpenTerm / 42 
TELAcceptCall / 56 TELDNDispose / 89 TELOtherFeatureimplement 

TELActivate / 45 TELDNDSet / 66 / 73 
TELAlert / 82 TELDNEventsSupp / 52 TELOtherFeatureList / 72 
TELAnswerCall / 56 TELDNLookupByindex / 86 TELOtherFunction / 73 
TELCADispose / 93 TELDNLookupByName / 87 TELPaging / 70 
TELCAEventsSupp / 53 TELDNMsgHand / 49 TELParkCall / 68 
TELCallbackClear / 66 TELDNSelect / 88 TELRejectCall / 57 
TELCallbackNow / 66 TELDrop / 59 TELResetTerm / 42 
TELCallbackSet / 65 TELEnglishTointl / 76 TELResume / 45 
TELCallPickup / 68 TELEvent / 46 TELRetrieve / 6o 
TELCALookup / 90 TELForwardClear / 62 TELRetrieveParkedCall / 69 
TELCAMsgHand / 50 TELForwardSet / 62 TELSetconfig / 41 
TELChoose / 34 TELGetCAFlags / 92 TELSetDisplay / 84 
TELCloseTerm / 43 TELGetCAinfo / 91 TELSetHooksw / 78 
TELClrCAMsgHand / 52 TELGetCAState / 92 TELSetupCall / 54 
TELClrDNMsgHand / 51 TELGetConfig / 40 TELSetupCleanup / 38 
TELClrTermMsgHand / 51 TELGetDisplay / 83 TELSetupFilter / 37 
TELConferenceEatabliah / 64 TELGetDNFlaga / 88 TELSetupitem / 38 
TELConferencePrep / 63 TELGetDNinfo / 87 TELSetupPostflight / 39 
TELConferenceSplit / 64 TELGetHooksw / 77 TELSetupPreflight; 36 
TELConnect / 55 TELGetinfo / 44 TELSetupSetup / 37 
TELCountCAs / 90 TELGetProcID / 31 TELSetVolume / 80 
TELCountDNs / 85 TELGetTELVersion / 94 TELTermEventsSupp / 52 
TELDefault / 33 TELGetToolName / 94 TELTermMsgHand / 48 
TELDeflectCall / 58 TELGetVersion / 94 TELToolFunctions / 74 
TELDialDigits / 55 TELGetVolume / 78 TELTransferBlind / 61 
TELDispose / 43 TELHold / 6o TELTransferEstablish / 61 

TELidle / 43 TELTransferPrep / 6o 
TELintercom / 71 TELValidate / 33 
TELintlToEnglish / 75 TELVoiceMailAccess / 70 
TELMenu / 45 
TELNew / 32 

30 Telephone Manager Developer's Guide 



Preparing to handle calls 
Before your application can place calls or receive them, it must initialize the Telephone Manager (by 
calling InitTEL), find out the procro of the tool it requires (by calling TELGetProcro), create a 
telephone record (by calling TELNew), and then configure the telephone tool (by restoring config 
from a saved document, or by calling either TELChoose or TELSetconfig). 

InitTEL 

Initializing the Telephone Manager 

rnitTEL initializes the Telephone Manager. Your application should call this routine only 
once, before making any other calls. 

Before calling rni tTEL your application must initialize the Macintosh Toolbox, the 
Communications Resource Manager, and the Communications Toolbox Utilities. 

A Warning Your application must initialize the Communications Resource Manager 
(by calling rnitcRM) and then the Communications Toolbox Utilities (by calling 
Ini tCTBUtili ties), whether or not your application uses any of their calls. _. 

Function InitTEL TELErr; 

Description 

Result Codes 

rnitTEL returns an operating-system error code if appropriate. Your application must 
check for the presence of the Communications Toolbox before calling this function. 
Sample code under "Determining Whether the Managers are Installed" in Appendix C of 
Inside the Macintosh Communications Toolbox shows you how your application can 
make this check. 

noErr, telNoCommFolder, telinitFailed, telNoTools 

TELGetProcID 

Getting the procID of a tool 

Your application should call TELGetProcro just before creating a new telephone record, 
to find the procro of a tool. 

Function TELGetProcID(name: Str255): INTEGER; 

Description name specifies the filename of a telephone tool-for example, "Apple ISDN Telephone 
Tool." If there is a telephone tool with the specified name in the Extensions folder, the 
procro is returned. If there is no such telephone tool, TELGetProcro returns -1. 

Chapter 2: Inside the Telephone Manager 31 



TELNew 

Creating a telephone record 

Before your application can handle calls, it must create a telephone record so the 
Telephone Manager knows what type of terminal you are using. TELNew creates a new 
telephone record of type TELRecord; fills in the fields it can, based on the parameters 
passed to it; and returns a handle to the new record in TELHandle. In this new record, 
the field version is filled in by the telephone tool. The tool also fills in any fields it can in 
the record's associated TELTermRecord. 

TELNew makes two calls to TELDefault (described later in this chapter) to fill in 
con£ ig and oldconf ig. The Telephone Manager then loads the telephone tool main 
code resource, moves it high in the current heap, and locks it. If an error occurs that 
prevents a new telephone record from being created (for example, running out of 
memory), TELNew passes back NIL in TELHandle. 

Function TELNew(procIO INTEGER; refCon LONGINT; userOata LONGINT) 

TELHandle; 

Description procro is dynamically assigned by the Telephone Manager to tools at run time. 
Applications should not store proc ro values in settings files. Instead, they should store 
tool names, which can be converted to procID values with the TELGetProcID 

routine. Your application should use the ID that TELGetProcro returns for procro. 

ref Con and useroata are fields that your application can use. ·-- 

32 Telephone Manager Developer's Guide 



TELDefault 

Initializing the telephone record 

TELDefault fills theconfig with the default configuration specified by the telephone 
tool. 

Function TELDefault(VAR theConfig: Ptr; procID: INTEGER; allocate: BOOLEAN): 
TELErr; 

Description 

Result Codes 

TELDefault is called by TELNew twice, when that routine fills in the config and 
oldconfig fields of a new telephone record. 

procro is equal to the value returned by TELGetProcID. 

If allocate is TRUE, the telephone tool allocates space for theconfig in the current 
heap zone. 

noErr, telUnknownErr 

TELValidate 

Validating the configuration fields 

Function 

TELValidate validates the configuration fields and other fields of the telephone record 
by comparing their values with those allowed by the telephone tool. TELNew and 
TELSetconfig call TELValidate after they have created a new telephone record. 

TELValidate(hTEL: TELHandle): BOOLEAN; 

Description If the validation succeeds, the Telephone Manager returns FALSE and the tool leaves 
the configuration record unchanged. If the validation fails, the Telephone Manager 
returns TRUE and the tool fills the configuration record with default values by 
calling TELDefault. 

Your application can call TEL validate after restoring a configuration, to verify 
that the telephone record contains the correct information, as in the following 
example: 

BloclcMove(saveconfig,hTEL··.config,GetPtrSize(hTEL··.config)); 
IF TELValidate(hTEL) THEN BEGIN 

{ validate failed} 
END 

ELSE BEGIN 

{ validate succeeded} 
END 

Chapter 2: Inside the Telephone Manager 33 



TELChoose 

Configuring a telephone tool 

An application can configure a telephone tool in one of three ways. The easiest and most 
straightforward way is by calling the TELChoose routine. This routine presents the user 
with a dialog box similar to the one shown in Figure 2-2. 

• Figure 2-2 A sample tool-settings dialog box 

Telephone Settings 

Phone Type: I Apple I SON T ... ...,. , 
f OK :1) 

[ cancel ] 

ISDN Card S•i.ction 

~ ~g~ 
Slot E 

~ 12 

The second way your application can configure a telephone tool is by presenting the user 
with a custom tool-settings dialog box. This method is much more difficult and involves 
calling six routines. The routines are described in the next section, "Custom Configuration 
of a Telephone Tool." 

The third way your application can configure a telephone tool is by using the 
scripting language interface, described in "Interfacing With a Scripting Language," 
later in this chapter. This method allows your application to bypass user interface 
elements. 

Regardless of which configuration method you use, the configuration is 
stored in a telephone record, which your application refers to using a handle. If 
your application reconfigures the tool by either configuration method, the 
Telephone Manager returns a new handle to a new telephone record and disposes 
of all handles associated with the old telephone record. 

Function TELChoose(VAR hTEL:TELHandle; where: Point; idleProc: ProcPtrJ: 
TELErr; 

Description TELChoose allows users of your application to choose and configure a telephone tool by 
filling in a dialog box like the one in Figure 2-2. 

34 Telephone Manager Developer's Guide 



hTEL is a handle to a telephone record. The fields of this record are filled in when the user 
of your application selects or reconfigures a tool. Each telephone record contains the 
configuration of only one tool on one terminal, yet a tool may support multiple terminals. 
For this reason, applications that support multiple terminals must make multiple calls to 
TELNew and then to either TELChoose or TELSetconf ig. 

where is the point, specified in global coordinates, where the upper-left corner of the 
dialog box should appear. It is recommended that your application place the dialog box as 
close as possible to the upper-left corner of the screen, because the size of the dialog box 
varies from tool to tool. 

idleProc is a procedure, with no parameters, that the Telephone Manager calls each time 
TELChoose calls the setup dialog box filter procedure. Pass NIL if your application has 
no idleProc. Refer to Inside the Macintosh Communications Toolbox for more 
information about idleProc. 

Result Codes noErr, telChooseAborted, telChoosecancel, telChooseDisaster, 
te lChooseF ailed, te lChooseOKMa j or, telChooseOKMinor, 
telChooseOKTermChanged 

Chapter 2: Inside the Telephone Manager 35 



Custom configuration of a telephone tool 
Your application can create a custom tool-settings dialog box and present it to the user by calling the following 
six Telephone Manger routines: TELSetupPreflight, TELSetupsetup, TELSetupFil ter, TELSetupitem, 

TELSetupCleanup, and TELSetupPostflight. Using these routines is more involved than calling 
TELChoose, but they provide your application with much more flexibility. 

To build a list of available telephone tools, use the routine CRMGetindToolName, which is 
described in Inside the Macintosh Communications Toolbox. 

TELSetupPreflight 

Setting up the custom tool-settings dialog box 

TELSetupPreflight returns a handle to a dialog item list that your application appends 
to the custom tool-settings dialog box. The handle comes from the telephone tool. (The 
calling application uses AppendDITL, discussed in Inside the Macintosh Communications 
Toolbox.) This handle is not a resource handle. Your application is responsible for disposing 
of the handle when done with it. 

The telephone tool can use TELSetupPreflight to allocate a block of private 
storage and to store the pointer to that block in magiccookie. The magiccookie 

value should be passed to the other routines used to set up the custom tool-settings 
dialog box. 

Function TELSetupPreflight(procID: INTEGER: VAR magicCookie: LONGINT): Handle; 

Description procID is the ID for the telephone tool being configured. Your application should get 
this value by calling the TELGetProcID routine, discussed earlier in this chapter. 

+ Note: The ref con of the custom tool-settings dialog box should point to a data 
structure (shown next) in which the first two bytes are the tool procID and the next 
four bytes are magiccookie. user Item routines, for example, may require procID to 
obtain tool resources. 

TYPE 

chooseDLOGdata 

procID 

magicCookie 

RECORD 

INTEGER 

LONGINT 

END; 

36 Telephone Manager Developer's Guide 



TELSetupSetup 

Setting up custom tool-settings dialog box items 

TELSetupsetup tells the telephone tool to set up controls (such as radio buttons or 
check boxes) in the dialog item list returned by TELSetupPreflight. 

Procedure TELSetupSetup(procID: INTEGER: theConfig: Ptr: count: INTEGER: 
theDialog: DialogPtr: VAR magicCookie: LONGINT): 

Description procID is the ID for the telephone tool that is being configured. Your application should 
use the same value for procID that it passed to TELSetupPreflight. 

theconfig is a pointer to a configuration record for the tool being configured. 

count is the number of the first item in the dialog item list appended to the dialog box. 

theDialog is the dialog box in which configuration is taking place. 

magiccookie is a pointer to private storage for the telephone tool. 

TELSetupFilter 

Filtering custom tool-settings dialog box events 

Your application calls TELSetupF il ter as a filter procedure before it calls the standard 
modal dialog box filter procedure for the custom tool-settings dialog box. This routine 
allows telephone tools to filter events in the custom tool-settings dialog box. 

Function TELSetupFilter(procID: INTEGER: theConfig: Ptr: count:INTEGER: 
theDialog: DialogPtr: VAR theEvent: EventRecord; VAR theitem: 
INTEGER; VAR magicCookie: LONGINT): BOOLEAN; 

Description procro is the ID for the telephone tool that is being configured. Your application should 
use the same value for procID that it passed to TELSetupPreflight. 

theconfig is a pointer to the configuration record for the tool being configured. 

count is the number of the first item in the dialog item list appended to the dialog box. 

theoialog is the dialog box performing the configuration. 

theEvent is the event record for which filtering is to take place. 

theitem can return the item clicked in the dialog box. 

magiccookie is a pointer to private storage for the telephone tool. 

If the event passed in was handled, TELSetupFilter returns TRUE. FALSE indicates 
that your application should perform standard dialog box filtering. 

Chapter 2: Inside the Telephone Manager 37 



TELSetupitem 

Processing custom tool-settings dialog box events 

TELSetupitem processes events for controls in the custom tool-settings dialog box. 

Procedure TELSetupitem(procIO: INTEGER; theConfig: Ptr; count: INTEGER; 
theDialog: DialogPtr; VAR theitem: INTEGER; VAR magicCookie: 
LONGINT); 

Description procrc is the ID for the telephone tool being configured. Your application should use 
the same value for procID that it passed to TELSetupPreflight. 

theconf ig is a pointer to the configuration record for the tool being configured. 

count is the number of the first item in the dialog item list appended to the dialog box. 

theoialog is the dialog box performing the configuration. 

the Item is the item clicked in the dialog box. This value can be modified and sent back. 

magiccookie is a pointer to private storage for the telephone tool. 

TELSetupCleanup 

Performing clean-up operations 

TELSetupcleanup disposes of any storage allocated in TELSetupPreflight and 
performs other clean-up operations. If your application needs to shorten a dialog box, it 
should do so after calling this routine. 

-----· 

Procedure TELSetupCleanup(procID: INTEGER; theConfig: Ptr; count: INTEGER; 
theDialog: DialogPtr; VAR magicCookie: LONGINT); 

Description procio is the ID for the telephone tool that is being configured. Your application should 
use the same value for procID that it passed to TELSetupPreflight. 

theconfig is a pointer to the configuration record for the tool being configured. 

count is the number of the first item in the dialog item list appended to the dialog box. 

theoialog is the dialog box performing the configuration. 

magiccookie is a pointer to private storage for the telephone tool. 

38 Telephone Manager Developer's Guide 



TELSetupPostflight 

Closing the tool ftle 

TELSetupPostflight closes the tool file if it is not being used by any sessions. 

Procedure TELSetupPostflight(procIO:INTEGER)i 

Description procro is the ID for the telephone tool that is being configured. Your application should 
use the same value for procID that it passed to TELSetupPreflight. 

Chapter 2: Inside the Telephone Manager 39 



Interfacing with a scripting language 
Your application does not have to rely on users making selections from dialog boxes in order to 
configure a telephone tool. TELGetconfig and TELSetconfig provide the services that your 
application needs to interface with a scripting language. 

TELGetConfig 

Getting the con.figuration string 
TELGetconfig gets a configuration string from the telephone tool. 

Function TELGetConfig(hTEL: TELHandle): Ptr: 

Description TELGetconfig returns a null-terminated, C-style string from the telephone tool, 
containing tokens that fully describe the configuration of the telephone record. (For an 
example, see the description of TELSetconfig.) If an an error occurs, TELGetconfig 

returns NIL. 

Your application is responsible for disposing of Ptr. 

Because the value that TELGetconfig returns specifies a null-terminated, C-style string, 
that string is not subject to the length limitations of Pascal strings. 

Result Codes None 
·-· 

40 Telephone Manager Developer's Guide 



TELSetConfig 

Setting the configuration with a string 

TELSetconfig passes a configuration string to the telephone tool. 

Function TELSetConfig(hTEL: TELHandle; thePtr: Ptr): INTEGER; 

Description 

Sample 

Result Codes 

TELSetconfig passes a null-terminated, C-style string to the telephone tool for parsing. 
The string, which can be of any length, is pointed to by thePtr and must contain 
tokens that describe the configuration of the telephone record. These tokens are defined 
by the tool; the string returned by TELGetconfig contains valid tokens. 

TELSetconfig ignores items it does not recognize or find relevant; such an 
occurrence causes the telephone tool to stop parsing the string and to return the 
character position where the error occurred. If the telephone tool successfully 
parses the string, it returns noErr. If the telephone tool does not successfully 
parse the string, it returns one of the following values: a number less than -1 to 
indicate that an error occurred and no parsing was done, or a positive number to 
indicate the character position where parsing was stopped. 

Individual telephone tools are responsible for the parsing operation. 

A null-terminated, C-style configuration string 

SLOT 9 OTHERFIELDS XXXX OTHERBOOLEANS TRUE\0 

noErr, telBadTermErr, telUnknownErr 

Chapter 2: Inside the Telephone Manager 41 



Opening, using, and closing the terminal 
After your application has performed the required tasks described in the previous sections, it can 
open and use the terminal. When the terminal is open, your application can send commands through 
the Telephone Manager and telephone tool to the device drivers and terminal hardware. When the 
terminal is closed, your application cannot send it commands. 

TELOpenTerm 

Opening a terminal 

TELOpenTerm attempts to open a terminal, based on information in a telephone record. 

6 Important Your application must call TELOpenTerm before calling any of the 
routines, except TELTermMsgHand, described in the rest of this chapter. Otherwise, 
all calls to terminal-related routines will fail. 6 

Function TELOpenTerm(hTEL: TELHandle): TELErr; 

Description 

Result Codes 

TELOpenTerm opens the driver associated with a specific tool and a specific terminal for 
the telephone record hTEL. 

In addition to opening the driver, TELOpenTerm finishes the initialization of the 
telephone record by assigning values to any of its fields that have not yet been filled in. 

noErr, telAlreadyOpen, telBadTermErr 

TELResetTerm 

Resetting a terminal 

TELResetTerm resets a terminal, based on information in a telephone record. 

Function TELResetTerm(hTEL: TELHandle): TELErr; 

Description 

Result Codes 

TELResetTerm resets the terminal hardware and software associated with the telephone 
record hTEL, if the hardware and software have a reset capability. 

noErr, telBadTermErr, telStillNeeded 

42 Telephone Manager Developer's Guide 



TELCloseTerm 

Closing a terminal 

TELCloseTerm closes the terminal associated with the specified telephone record. 

Function TELCloseTerm(hTEL: TELHandle): TELErr: 

Description 

Result Codes 

Your application should call TELCloseTerm when the Macintosh computer is being shut 
down or when the application is quitting. TELCloseTerm closes the terminal, if no other 
application has opened it. 

h TEL specifies the telephone record associated with the terminal, 

noErr, telBadTermErr, telStillNeeded 

TELDispose 

Stopping the monitoring of a terminal 

TELDispose cancels your application's monitoring of the terminal associated with a 
specified telephone record. 

Note that TELDispose does not drop call apperances currently active on the terminal. 
To drop a call appearance, use the routine TELDrop. 

Function TELDispose(hTEL: TELHandle): TELErr; 

Description 

Result Codes 

hTEL specifies the telephone record associated with the terminal. 

TELDispose disposes of hTEL and all handles associated with directory numbers and 
call appearances on hTEL. In addition, TELDispose removes the terminal message handler 
for hTEL, and removes any directory-number messages handlers and call-appearance 
message handlers related to hTEL. 

noErr, telBadTermErr 

TELidle 

Providing necessary idle time 

Your application should call TELidle at least once every time it goes through its main 
event loop, so that the connection tool can perform idle-loop tasks. 

Procedure 

Description 

TELidle(hTEL: TELHandle); 

hTEL specifies the terminal for which idle-loop tasks are to be performed. 

Chapter 2: Inside the Telephone Manager 43 



TELGetinfo 

Getting information about a terminal 
TELGetinfo returns state and capability information about a terminal/tool combination. 

Function 

Description 

Result Codes 

TELGetinfo(hTEL: TELHandle) : TELErr; 

h TEL specifies the terminal for which information is requested. 

The information that TELGetinfo returns is a "snapshot" of the current state of the 
telephone record. The Telephone Manager passes hTEL to the telephone tool. The tool 
inspects the tRef value in the structure and fills in the structure accordingly. 

If hTEL has become invalid, the Telephone Manager returns telBadTermErr, and your 
application should call TELDispose to dispose of the invalid hTEL. 

noErr, telBadTermErr 

44 Telephone Manager Developer's Guide 



Handling events 
The Telephone Manager event-processing routines provide useful extensions to the Macintosh Toolbox 
Event Manager. This section explains the four routines that the Telephone Manager provides. 

TELActivate 

Activate events 

TELActivate processes an activate or deactivate event (for instance, installing or 
removing a custom tool menu) for a window associated with the terminal. 

Procedure TELActivate(hTEL: TELHandle; activate: BOOLEAN); 

Description hTEL specifies the telephone record associated with the terminal. 

If activate is TRUE, the telephone tool processes the activate event. Otherwise, it 
processes a deactivate event. 

TELResume 

Resume events 

TELResume processes a resume or suspend event for a window associated with the 
terminal. 

Procedure 

Description 

TELResume(hTEL: TELHandle; resume: BOOLEAN); 

hTEL specifies the telephone record associated with the terminal. 

If resume is TRUE, the telephone tool processes a resume event. Otherwise, it processes 
a suspend event. 

TELMenu 

Menu events 

Your application must call TELMenu when the user chooses an item from a menu that is 
installed by the telephone tool. 

Function TELMenu(hTEL: TELHandle; menuID: INTEGER; item: INTEGER): BOOLEAN; 

Description hTEL specifies the telephone record associated with the terminal. 

TELMenu returns FALSE if the telephone tool did not handle the menu event. TELMenu 

returns TRUE if the telephone tool did handle the menu event. 

Chapter L: Inside the Telephone Manager 4S 



TELEvent 

Other events 
When your application receives an event, it should check whether the refcon of the 
window is a tool's TELHandle. Such an event occurs, for example, when the user clicks a 
button in a dialog box displayed by the telephone tool. If the event does belong to a 
telephone tool's window, your application can call TELEvent. 

Procedure 

Description 

TELEvent(hTEL: TELHandle; VAR theEvent: EventRecord); 

A window (or dialog box) created by a telephone tool has a telephone record handle stored 
in the refCon field for windowRecord. 

hTEL specifies the telephone record associated with the terminal. 

theEvent is a Macintosh system event, such as a mouse-down event. 

46 Telephone Manager Developer's Guide 



Handling messages 
The telephone tool for your application receives information from the telephone network switch 
whenever, for example, a call appears for a certain directory number. This information is sent as one 
or more telephone network events. The tool passes this information to the Telephone Manager 
which, in turn, passes it to your application as one or more messages. 

6 Important Telephone network events relay information from a telephone network 
switch to a telephone tool. They are not to be confused with messages, 
which tools send to applications through the Telephone Manager, or with 
Macintosh system events. l:::. 

The Telephone Manager sends three main types of messages to applications: messages about the 
terminal as a whole, messages about particular directory numbers, and messages about particular 
call appearances. Your application must contain a message-handling routine (message handler) for 
each of the three main message types. 

The Telephone Manager keeps a list of all message handlers for all applications. Before your 
message handlers can receive messages, your application must register them with the Telephone 
Manager and must specify the kinds of messages the handlers are to receive. To register message 
handlers, your application must call TELTerrnMsgHand, TELDNMsgHand, and TELCAMsgHand, 

passing pointers to your message handlers-referred to in this book as MyTrrnMsgHandler, 

MyDNMsgHandler, and MyCAMsgHandler. (Refer to "Routines Your Application Must Provide" for 
information about writing MyTrrnMsgHandler, MyDNMsgHandler, and MyCAMsgHandler.) 

Each time a tool processes a telephone network event, the tool sends one or more messages to 
the Telephone Manager. The Telephone Manager then relays the message to all message handlers 
registered to receive that kind of message. An application can register more than one message 
handler of each type-for example, an application might register several directory-number message 
handlers. Each such handler could be registered to receive a different set of messages. 

Chapter 2: Inside the Telephone Manager 47 



TELTerrnMsgHand 

Registering a message handler for the terminal 

TELTermMsgHand assigns a routine to handle messages from the terminal. 

Function TELTermMsgHand(hTEL: TELHandle; eventMask: LONGINT; msgProc: ProcPtr; 

globals: LONGINT) TELErr; 

Description 

Result Codes 

TELTermMsgHand assigns the message handler msgProc to the telephone record hTEL. 

eventMask is a bit field that specifies which types of messages msgProc is to receive. 
The valid values for eventMask are as follows: 
CONST 

telTermHookMsg 

telTermKeyMsg 

telTermVolMsg 

telTermDisplayMsg 

telTermEnableMsg 

telTermOpenMsg 

termShutdownMsg 

telTermResetMsg 

telTermErrorMsg 

telTermOtherMsg 

$00000001; 

$00000002; 

$00000004; 

$00000008; 

$00000010; 

$00000020; 

$00000040; 

$00000080; 

$00000100; 

$00000200; 

{All other bits in eventMask are reserved by Apple for future use.} 

Refer to Appendix B for descriptions of these and other message codes. 

If a bit in eventMask is set to 1, messages of the corresponding type are sent to 
msgProc. If the bit is set to 0, they are not. 

msgProc is a procedure pointer to your application's message handler for terminal-related 
messages. 

globals is a pointer to a location in memory-for example, to your application's global 
variables (register AS). Each time procedure msgProc is called, globals is passed to it. 

If, after registering this message handler, you wish to change eventMask, you must first 
clear the message handler by calling TELClrTermMsgHand and then register it again by 
calling TELTermMsgHand. 

noErr, telBadTermErr 

48 Telephone Manager Developer's Guide 



TELDNMsgHand 

Registering a message handler for a directory number 

TELDNMsgHand assigns a routine to handle messages for a particular directory number or, 
optionally, for all directory numbers. 

Function TELDNMsgHand(hTELDN: TELDNHandle; allDNs BOOLEAN; eventMask: 
LONGINT; msgProc: ProcPtr; globals: LONGINT) TELErr; 

Description 

Result Codes 

TELDNMsgHand assigns the message handler msgProc to the directory-number record 
hTELDN. 

allDNs is a Boolean variable that, when equal to TRUE, shows that msgProc handles 
messages for all directory numbers assigned to the same terminal as hTELDN. 

eventMask specifies which types of events msgProc is to receive. The valid values 
for eventMask are as follows: 
CONST 

telDNForwardMsg 
telDNDNDMsg 
telDNVoiceMailMsg 
telDNSelectedMsg 
telDNOtherMsg 

$01; 

$02; 

$04; 

$08; 

$8000; 

{All other bits in eventMask are reserved by Apple for future use.} 

Refer to Appendix B for descriptions of these and other message codes. 

If a bit in eventMask is set to 1, messages of the corresponding type are sent to 
msgProc. If the bit is set to 0, they are not. 

msgProc is a procedure pointer to your application's message handler for hTELDN. 

globals is a pointer to a location in memory-for example, to your application's global 
variables (register AS). Each time procedure msgProc is called, globals is passed to it. 

If after registering this message handler, you wish to change eventMask, you must first 
clear the message handler by calling TELClrDNMsgHand and then register it again by 
calling TELDNMsgHand. 

noErr, telBadDNErr 

Chapter 2: Inside the Telephone Manager 49 



TELCAMsgHand 

Registering a message handler for call appearances 

TELCAMsgHand assigns a routine to handle messages for all call appearances associated 
with the specified directory number. 

Function TELCAMsgHand(hTELDN: TELDNHandle: eventMask: LONGINT; msgProc: 

ProcPtr; globals: LONGINT) TELErr; 

Description TELCAMsgHand assigns the message handler msgProc to all calls associated with hTELDN. 

hTELDN is a handle to a directory-number record. 

eventMask specifies which types of events msgProc is to receive. The valid values 
for eventMask are as follows: 
CONST 

telCAAlertingMsg 

telCAOfferMsg 

telCAProgressMsg 

telCAOutgoingMsg 

telCADisconnectMsg 

telCAActiveMsg 

telCAConferenceMsg 

telCATransferMsg 

telCAHoldMsg 

telCADigitsMsg 

telCACallParkMsg 

telCACallbackMsg 

telCARejectMsg 

CADeflectedMs 

telCAForwardMsg 

telCAConferenceSplitMsg 

telCAConferenceDropMsg 

telCAQueuedMsg 

telCAinUseMsg 

telCACallPickupMsg 

telCAPagingMsg 

telCAintercomMsg 

telCAModemToneMsg 

telCAFaxToneMsg 

telCAidleMsg 

telCASuccessiveAlertMsg 

CAUserinfoMsg 

$00000001; 

$00000002; 

$00000004; 

$00000008; 

$00000010; 

$00000020; 

$00000040; 

$00000080; 

$00000100; 

$00000200; 

$00000400; 

$00000800; 

$00001000; 

$00002000; 

$00004000; 

$00008000; 

$00010000; 

$00020000; 

$00040000; 

$00080000; 

$00100000; 

$00200000; 

$00400000; 

$00800000; 

$01000000; 

$02000000; 

$04000000; 

{All other bits in eventMask are reserved by Apple for future use.} 

50 Telephone Manager Developer's Guide 



Refer to Appendix B for descriptions of these and other message codes. 

If a bit in eventMask is set to 1, messages of the corresponding type are sent to 
msgProc. If the bit is set to 0, they are not. 

msgProc is a procedure pointer to your application's message handler for call appearances 
associated with hTELDN. 

globals is a pointer to a location in memory-for example, to your application's global 
variables (register AS). Each time procedure msgProc is called, globals is passed to it. 

If after registering this message handler, you wish to change eventMask, you must first 
clear the message handler by calling TELClrcAMsgHand and then register it again by 
calling TELCAMsgHand. 

Result Codes noErr, telBadCAErr 

TELClrTermMsgHand 

Clearing a terminal message handler 

TELClrTermMsgHand removes a terminal message handler from the handler list. 

Function 

Description 

Result Codes 

TELClrTermMsgHand(hTEL: TELHandle: msgProc:ProcPtr): TELErr; 

hTEL is a handle to a telephone record for a terminal. 

msgProc is a procedure pointer to the terminal message handler for hTEL. 

noErr, telBadProcErr, telBadTermErr 

TELClrDNMsgHand 

Clearing a directory-number message handler 

TELClrDNMsgHand removes a directory-number message handler from the handler list. 

Function TELClrDNMsgHand(hTELDN: TELDNHandle: msgProc:ProcPtr): TELErr: 

Description 

Result Codes 

hTELDN is a handle to a directory-number record. 

msgProc is a procedure pointer to the directory-number message handler for hTELDN. 

noErr, telBadDNErr, telBadProcErr, telBadTermErr 

Chapter 2: Inside the Telephone Manager 51 



TELClrCAMsgHand 

Clearing a call-appearance message handler 
TELClrcAMsgHand removes a call-appearance message handler from the handler list. 

Function TELClrCAMsgHand(hTELDN: TELDNHandle; msgProc:ProcPtr): TELErr; 

Description 

Result Codes 

hTELDN is a handle to a directory-number record. 

msgProc is a procedure pointer to the call-appearance message handler for hTELDN. 

noErr, telBadCAErr, telBadProcErr 

TELTermEventsSupp 

Finding supported terminal messages 
TELTermEventssupp returns a mask indicating which terminal messages a telephone 
tool supports. 

Function TELTermEventsSupp(hTE~ TELHandle; VAR eventMask LONGINT): TELErr; 

Description 

Result Codes 

hTEL is a handle to a telephone record for a terminal. 

eventMask is a mask that indicates which terminal messages are supported by the 
telephone tool for hTEL. 

noErr, telBadTermErr 

TELDNEventsSupp 

Finding supported directory-number messages 
TELDNEventsSupp returns a mask indicating which directory-number messages a 
telephone tool supports. 

Function TELDNEventsSupp(hTELDN: TELDNHandle; VAR eventMask LONGINT): 

TELErr; 

Description 

Result Codes 

hTELDN is a handle to a directory-number record. 

eventMask is a mask that indicates which directory-number messages are supported by 
the telephone tool for hTELDN. 

noErr, telBadDNErr 

52 Telephone Manager Developer's Guide 



TELCAEventsSupp 

Finding supported call-appearance messages 

TELCAEventaSupp returns a mask indicating which call-appearance messages a telephone 
tool supports. 

Function TELCAEventsSupp(hTELDN TELDNHandle; VAR eventMask LONGINT): 
TELErr; 

Description 

Result Codes 

hTELDN is a handle to a directory-number record. 

eventMask is a mask that indicates which call-appearance messages are supported by the 
telephone tool for hTELDN. 

noErr, telBadCAErr 

Chapter 2: Inside the Telephone Manager 53 



Placing and receiving calls 
A typical telephone provides at least three services: placing calls, receiving calls, and releasing calls. 
Your application can place and receive calls by using the Telephone Manager routines described in 
this section. To release calls, your application can call the Telephone Manager routine TELDrop, 

described in the section "Using Drop, Hold, Transfer, Forward, and Conference," later in this 
chapter. 

To place a call, your application must first prepare to place the call by calling TELSetupcall. If the 
number to be dialed is incomplete, your application can then complete the number and dial it by 
calling TELDialDigits. If the number to be dialed is complete, your application can dial it and 
establish the call by calling TELConnect. 

Your application can accept an incoming call by calling TELAcceptcall or TELAnswercall, reject 
the call by calling TELRejectcall, or deflect the call (as when transferring) by calling 
TELDeflectCall. 

TELSetupCall 

Setting up a call 

TELSetupcall prepares to place an outbound call, either directly or for use with a 
feature such as Conference or Transfer. (For information on allocating directory-number 
records, refer to the section "Controlling Directory Numbers" later in this chapter.) 

Function TELSetupCall(hTELDN: TELDNHandle; VAR hTELCA: TELCAHandle; destDN, 

destName, destSubaddr, userUserinfo: Str255; bearerType, rate: 

INTEGER;): TELErr; 

Description TELSetupcall allocates an available call-appearance record for the directory number 
hTELDN, and returns it in hTELCA. 

hTELDN is a handle to a directory-number record. 

hTELCA is a handle to a call-appearance record on the directory number specified by 
hTELDN. 

destDN specifies the destination phone number or network address. If destDN is 
specified completely, the call can be placed with TELConnect. But if destDN is NIL or 
is incomplete, the call cannot be placed until network address characters are completely 
sent with TELDialDigits. A call setup with TELSetupcall could, for example, emit a 
dial tone through the speaker either until TELConnect is called or until address 
characters are given with TELDialoigits. 

destName is the name of the party associated with the destDN. 

54 Telephone Manager Developer's Guide 



destsubaddr specifies a subaddress, as defined by the ISDN S-Bus. Use this paramater only 
if the network supports subaddressing. To find out whether the network supports 
subaddressing, call the routine TELGetinfo and check the field hassubaddress in the 
telephone record. If the network does not support subaddressing, destSubaddr is ignored. 

useruserinfo is user-to-user information, as defined by some telephone network 
switches. Use this parameter only on a network that supports user-to-user information. 
To find out whether the network supports user-to-user information, call the routine 
TELGetinfo to check the field hasuseruserinfo in the telephone record. If the 
network does not support user-to-user information, the information is ignored. 

bearerType and rate indicate the type of call. Your application should set 
bearerType to O for voice calls and 1 for other calls. rate should be set to zero, which 
makes the tool use the default rate; all other values are reserved for use by Apple and 
should be considered positive. 

Result Codes noErr, telBadONErr, telCAUnavail 

TELDialDigits 

Dialing a call 

TELDialoigits dials a string of network address characters for a call appearance. 

Function TELOialDigits(hTELCA: TELCAHandle; digits: Str255): TELErr; 

Description 

Result Codes 

hTELCA is a handle to a call appearance set up by the routine TELSetupcall. 

digits is a string of characters to be dialed. 

TELDialoigits dials digits for hTELCA. When the telephone tool has received 
enough characters to complete a telephone call, it sends call-progress messages to the call­ 
appearance message handler for hTELCA. 

noErr, telBadCAErr, telBadDNErr, telBadTermErr 

TELConnect 

Connecting a call 

TELConnect establishes a connection for a call appearance. 

Function TELConnect(hTELCA: TELCAHandle): TELErr; 

Description 

Result Codes 

hTELCA is a handle to a call appearance set up by the routine TELSetupca11. 

noErr, telBadCAErr 

Chapter 2: Inside the Telephone Manager 55 



TELAcceptCall 

Accepting a call 
TELAcceptCall accepts a call appearance whose state is telCAOfferState. 

Function TELAcceptCall(hTELCA: TELCAHandle): TELErr; 

Description 

Result Codes 

hTELCA is a handle to an incoming call appearance. 

TELAcceptcall accepts call appearance hTELCA, which must be both acceptable and in 
the state telCAOfferState. (When the state of a call appearance is telCAOfferstate, 
your application's call-appearance message handler receives a telCAOfferMsg message 
from the telephone tool. Whether the call is acceptable depends on the value of the 
acceptable field in the call-appearance record hTELCA.) 

After a call appearance is accepted, its state changes to telCAAlertingstate. It can 
then be answered with the routine TELAnswercall. 

noErr, telBadCAErr, telCANotAcceptable, telFeatNotAvail, telFeatNotSub, 
telFeatNotSupp 

TELAnswerCall 

Answering a call 
TELAnswercall answers an incoming call appearance. 

Function TELAnswerCall(hTELCA: TELCAHandle): TELErr; 

Description 

Result Codes 

hTELCA is a handle to a incoming call appearance. 

TELAnswercall answers the incoming call appearance hTELCA, whose state can be 
telCAOfferstate or telCAAlertingstate. When the call appearance is answered, 
your application receives a telCAActiveMsg message. 

After an incoming call appearance is answered, its state changes to telCAActivestate 

and conversation can take place. 

noErr, telBadCAErr, telFeat: .·.vail, telFeatNotSub, telFeatNotSupp 

56 Telephone Manager Developer's Guide 



TELRejectCall 

Rejecting a call 

TELRejectcall rejects an incoming call appearance. 

Function TELReject(hTELCA: TELCAHandle: reason: INTEGER): TELErr: 

Description 

Result Codes 

hTELCA is a handle to an incoming call appearance. 

reason is reserved by Apple for future use. 

TELRejectcall rejects call appearance hTELCA, whose state must be either 
telCAOfferstate or telCAAlertingState. (When the state of a call appearance is 
telCAOfferState or telCAAlertingState, your application's call-appearance 
message handler receives a telCAOfferMsg or telCAAlertingMsg message from the 
telephone tool. Whether the call is rejectable depends on the value of the rejectable 
field in the call-appearance record hTELCA.) 

After an incoming call appearance is rejected, its state changes to telCAidlestate, 
meaning that it can be disposed of by means of the routine TELDispose. 

noErr, telBadCAErr, telCANotRejectable, telFeatNotAvail, telFeatNotSub, 
telFeatNotSupp 

Chapter 2: Inside the Telephone Manager S7 



TELDeflectCall 

Deflecting a call 
TELDeflectcau deflects an incoming call appearance, sending it to a remote directory 
number. 

Function TELDeflect(hTELCA: TELCAHandle; rmtDN, rmtName, rntSubaddress: 
Str255): TELErr; 

Description hTELCA is a handle to an incoming call appearance. 

rmtDN is the directory number to which the call is to be deflected. 

rmtName is the name of the party associated with directory number rmtDN. 

rmtSubaddress is a subaddress, as defined by the ISDN S-Bus. 

TELDeflectcau deflects call appearance hTELCA, whose state must be either 
telCAOfferState or telCAAlertingState. (When the state of a call appearance is 
telCAOfferstate or telCAAlertingState, your application's call-appearance 
message handler receives a telCAOfferMsg or telCAAlerti11gMsg message from the 
telephone tool. Whether the call is deflectable depends on the value of the field 
deflectable in the call-appearance record hTELCA.) 

After an incoming call appearance is deflected, its state changes t,) telCAidleState, 
meaning that it can be disposed of by means of the routine TEL')ispose. 

Result Codes noErr, telBadCAErr, telCANotDeflectable, telFeatNotJ.vail, telFeatNotSub, 
telFeatNotSupp 

58 Telephone Manager Developer's Guide 



Using Drop, Hold, Transfer, Forward, and Conference 
Many telephone users subscribe to the supplementary features Drop, Hold, Transfer, Forward, and Conference. 
If the user's terminal supports these features, your application can offer them by calling Telephone Manager 
routines. The routines described in this section let your application offer Drop, Hold, Transfer, Forward, and 
Conference. Routines for offering less-common supplementary features are described later in this chapter. 

Not all supplementary features can be applied to all calls. For instance, if the telephone tool your application 
is using does not support the Conference feature, calls cannot be conferenced. Or if a given call is currently on 
hold, the Hold feature cannot be applied to it again. 

The call-appearance record contains, for each supplementary feature, a set of flags show~g whether the 
feature can be applied to that particular call. The names of these flags are typically .o:xsub, XXXAvail, and 
XXXActive, where .o:xis the name of the feature. For instance, the flags holdSub, holdAvail, and 
holdActive show whether the Hold feature is subscribed, whether it is available, and whether it is active. A 
feature is "subscribed" if the user's network line provides it and if the terminal supports it. A feature is 
"available" if the call appearance involved is in the state needed to use the feature. A feature is "active" if it is 
currently applied to the call appearance. 

Here is an example, using the Hold feature, of how the xxxsub, XXXAvail, and XXXActive flags work. If 
the telephone record indicates that the user's terminal can put calls on hold, the Telephone Manager sets 
holdSub in each call-appearance record it allocates for the terminal. If an outgoing call can be held only after its 
call-appearance state is telCAActivestate, the Telephone Manager sets holdAvail only when the call 
reaches that state. Later, when the user puts the call on hold, the Telephone Manager sets the flag holdActive. 

TELDrop 

Dropping calls 

TELDrop drops an incoming call. 

Function TELDrop(hTELCA: TELCAHandle; userUserinfo: Str255): TELErr; 

Description 

Result Codes 

6 Important TELDrop and TELDNSelect are the only Telephone Manager 
routines that drop calls. Routines that dispose of handles to Telephone Manager 
records do not drop the associated telephone call. D. 

hTELCA is a handle to an incoming call appearance. 

useruserinfo stores user-to-user information, as defined by some telephone network 
switches. Use this parameter only on a network that supports user-to-user information. To 
find out whether the network supports user-to-user information, call the routine 
TELGetinfo to check the field hasuseruserinfo in the telephone record. If the network 
does not support user-to-user information, the user-to-user information is ignored. 

TELDrop drops the call appearance hTELCA, which can be in any state. 

After a call appearance is dropped, its state changes to telCAidleState. 

noErr, telBadCAErr, telFeatNotAvail, telFeatNotSub, telFeatNotSupp 

Chapter 2: Inside the Telephone Manager 59 



TELHold 

Putting calls on hold 
TELHold puts a call on hold. 

Function 

Description 

Result Codes 

TELHold(hTELCA: TELCAHandle): TELErr; 

hTELCA is a handle to a call-appearance record. In that record, the holdAvail bit of the 
FeatureFlag field must be set. Otherwise, TELHold fails. 

noErr, telBadCAErr, telFeatActive, telFeatNotAvail, telFeatNotSub, 

telFeatNotSupp 

TELRetrieve 

Retrieving held calls 
TELRetrieve retrieves a held call. 

Function 

Description 

Result Codes 

TELRetrieve(hTELCA: TELCAHandle): TELErr: 

hTELCA is a handle to a call-appearance record. In that record, the holdActi ve bit of 
the FeatureFlag field must be set. Otherwise, TELRetrieve fails. 

noErr, telBadCAErr, telFeatActive, telFeatNotAvail, telFeatNotSub, 

telFeatNotSupp 

TELTransferPrep 

Preparing for a consult transfer 
TELTransferPrep prepares a call for a consult transfer, in which the user consults the 
destination party before transferring the call. (For information on blind transferring, refer 
to the description of TELTransferBlind, later in this section.) 

Function TELTransferPrep(hTELCAl, hTELCA2: TELCAHandle): TELErr: 

Description hTELCAl is a handle to a call appearance whose state is either telCAActivestate or 
telCAHeldState. 

hTELCA2 is a handle to a second call appearance, set up by TELSetupcall but not yet 
connected. 

Before calling TELTransferPrep your application must call TELSetupcall to set up 
hTELCA2. When hTELCA2 becomes active, the user can, optionally, consult the destination 
party. Your application can then call TELTransferEstablish to transfer the call. 

60 Telephone Manager Developer's Guide 



TELTransferPrep attempts to establish a connection for hTELCA2, and works much 
like TELConnect. 

Result Codes noErr, telBadCAErr, telBadDNErr, telFeatActive, telFeatNotAvail, 
telFeatNotSub, telFeatNotSupp 

TELTransferEstablish 

Completing a consult transfer 

TELTransferEstablish completes the consult transfer of call previously set up with 
TELTrans ferPrep. 

Function TELTransferEstablish(hTELCAl, hTELCA2: TELCAHandle): TELErr; 

Description 

Result Codes 

hTELCAl is a handle to a call appearance for the transferee, specified as hTELCAl in 
TELTransferPrep. 

hTELCA2 is the call appearance to which hTELCAl is to be transferred, specified 
as hTELCA2 in TELTransferPrep. 

noErr, telBadCAErr, telFeatActive, telFeatNotAvail, telFeatNotSub, 
telFeatNotSupp, telTransRej 

TELTransferBlind 

Blind-transferring a call 

TELTransferBlind transfers a call without first letting the user consult the destination 
party. (For information on consult transferring, refer to the description of 
TELTransferPrep, earlier in this section.) 

Function TELTransferBlind(hTELCAl: TELCAHandle; rmtDN, rmtName, rmtSubaddress: 
Str255): TELErr; 

Description 

Result Codes 

hTELCAl specifies the call appearance to be transferred. 

rmtoN specifies the remote directory number to which the call will be transferred. 

rmtName specifies the name of party whose telephone number is rmtDN. 

rmtsubaddress specifies the network subaddress, if any, associated with rmtDN. 

noErr, telBadCAErr, telBadDNErr, telFeatActive, telFeatNotAvail, 
telFeatNotSub, telFeatNotSupp, telTransferReject 

Chapter 2: Inside the Telephone Manager 61 



TELForwardSet 

Forwarding calls 
TELForwardset causes calls for one directory number to be forwarded to another. 

Function TELForwardSet(hTELDN: TELDNHandle; forwardDN, forwardPartyName, 
forwardSubaddr: Str255; forwardType, numRings: INTEGER): TELErr; 

Description 

Result Codes 

hTELDN is a handle to the directory number whose calls are to be forwarded. 

forwardDN is the directory number that will receive the forwarded calls. 

forwardPartyName is the name of the party whose directory number is hTELDN. 

forwardsubaddr is a subaddress, as defined by the ISDN S-Bus. Use this parameter only 
if the network suports subaddressing. (To find out whether the network supports 
subaddressing, check the bit hassubaddress in the field featureFlags of the 
telephone record.) If the network does not support subaddressing, the tool ignores 
forwardSubaddr. 

forwardType specifies the kind of forwarding being requested, and can have the 
following valid values: 
CONST 

telForwardimrnediate ,. 1; {forward all calls} 
telForwardBusy = 2; {forward if busy} 
telForwardNoAnswer = J; {forward if no answer} 
telForwardBusyNA = 4; {forward if busy or no answer} 

numRings specifies how many rings occur before calls are forwarded to forwardDN. 

noErr, telBadONErr, telBadFwdType, telFeatActive, telFeatNotAvail, 
telFeatNotSub, telFeatNotSupp, telFwdTypeNotSupp 

TELForwardClear 

Clearing call forwarding 
TELForwardClear clears the call forwarding performed by TELForwardSet. 

Function TELForwardClear(hTELON: TELONHandle; forwardType: INTEGER): TELErr; 

Description 

Result Codes 

hTELDN is a handle to the directory number whose calls are being forwarded. 

forwardType specifies the kind of forwarding being cleared, as specified in 
TELForwardSet. 

noErr, telBadONErr, telBadFwdType, telFeatActive, telFeatNotAvail, 
telFeatNotSub, telFeatNotSupp 

62 Telephone Manager Developer's Guide 



TELConferencePrep 

Preparing for conferencing 

TELConferencePrep prepares for one call to be conferenced with another by the 
routine TELConferenceEstablish (described later in this section). Your application 
must call TELConferencePrep each time a party is to be added to the conference. 

Function TELConferencePrep(hTELCAl, hTELCA2: TELCAHandle: numToConference 
INTEGER) : TELErr; 

Description 

Result Codes 

hTELCAl is a handle to the conference initiator-an active or held call appearance whose 
caRelated bit is set. All other call appearances conferenced with this one will reference 
hTELCAl in the relatedCA field of their call-appearance records. 

hTELCA2 is a handle to a call appearance set up by TELSetupcall but not yet 
connected. In call-appearance record hTELCA2, the field relatedcA references 
hTELCAl. 

When call appearance hTELCA2 becomes active, the user of your application can consult 
the party associated with that call appearance. Your application can then call 
TELConferenceEstablish to establish a three-way conference. Or, if the user does not 
want to consult, your application can call TELConferenceEstablish immediately after 
call appearance hTELCA2 becomes active. 

numToConference specifies how many calls, including the conference initiator, will be in 
this conference. 

If the numToConferenceRequired bit is set in call-appearance record hTELCAl, your 
application must supply a value for numToConference. (If numToConference has a 
maximum value, it is specified by the field confLimi t in the call-appearance record.) If 
the numToConferenceRequired bit is not set, numToConference can be left blank; 
the tool will ignore it. 

TELConferencePrep attempts to establish a connection fo hTELCA2, unless there is 
one already, and works much like the routine TELConnect. 

noErr, telBadCAErr, telBadONErr, telConfLimitErr, telConfNoLimit, 
telConfLimitExceeded, telConfRej, telFeatActive, telFeatNotAvail, 
telFeatNotSub, telFeatNotSupp 

Chapter 2: Inside the Telephone Manager 63 



TELConferenceEstablish 

Establishing a conference 

TELConferenceEstablish conferences one call with another, and should be called only 
after you have prepared the conference with the routine TELConferencePrep. 

Function TELConferenceEstablish(hTELCAl, hTELCA2: TELCAHandle) TELErr; 

Description 

Result Codes 

hTELCAl is a handle to the conference initiator-an active or held call that initiated the 
conference. 

hTELCA2 is a handle to another call-appearance record, whose caRelated field 
references hTELCAl. 

noErr, telBadCAErr, telConfLimi tErr, telBadDNErr, telConfLimi tExceeded, 
telConfRej, telFeatActive, telFeatNotAvail, telFeatNotSub, 
telFeatNotSupp 

TELConferenceSplit 

Splitting a conference 

TELConferenceSplit splits a call from a conference established by 
TELConferenceEstablish. 

Function TELConferenceSplit(hTELCA TELCAHandle) TELErr; 

Description 

Result Codes 

hTELCA is a handle to a call appearance to be split from the conference. 

The call can be split from the conference only if, in call-appearance record hTELCA, the 
conferenceSpli tAvail flag of the featureFlags field is set. After a split, the rest 
of the conference remains intact. 

noErr, telBadCAErr, telConfRej, telFeatActive, telFeatNotAvail, 
telFeatNotSub, telFeatNotSupp 

64 Telephone Manager Developer's Guide 



Using less-common supplementary features 
This section describes routines for providing less-common supplementary features: Call Back, Do 
Not Disturb, Call Pickup, Call Park, Voice Mail, and Paging. 

TELCallbackSet 

Requesting a callback 
TELCallbackset requests a callback, which notifies the user's terminal when a 
destination number that was previously unavailable (busy or unanswered) becomes 
available. 

• Note: Some switch vendors refer to the Call Back feature as the Ring Again feature. 

Function TELCallbackSet(hTELCA: TELCAHandle; VAR callbackRef INTEGER): 
TELErr; 

Description 

Result Codes 

hTELCA is a handle to the currently unavailable call appearance. 

callbackRef is an identifier that the tool provides to distinguish this callback from any 
others the user has requested. If callbackRef equals zero, your application should 
ignore it. 

When the destination number becomes available, TELCallbackSet causes your 
application's call-appearance message handler to receive a telcAcallbackMsg message, 
with a value of telCallbackNowAvail. 

Some network systems require that all Call Back On No Answer requests be issued by the 
remote party (the person who did not answer). Usually, in such a system, the remote 
party will have received a telcallbackDesired message. The remote user can then call 
TELCallbackNow, passing callbackRef values that were in the message. 

noErr, telBadCAErra telBadCBErr, telFeatActive, telFeatNotAvail, 
telFeatNotSub, telFeatNotSupp 

Chapter 2: Inside the Telephone Manager 65 



TELCallbackNow 

Calling back 

TELCallbackNow calls back a previously unavailable destination number, if your 
application has requested the callback through TELCallbackSet. 

Function TELCallbackNow(hTELCA TELCAHandle; callbackRef INTEGER): TELErr; 

Description 

Result Codes 

h TELCA is a handle to a newly allocated call appearance. This handle will be used for the 
callback. 

callbackRef must have the same value as the callbackRef parameter returned from 
TELCallbackSet. 

noErr, telBadCAErr, telBadCBErr, telFeatActive, telFeatNotAvail, 
telFeatNotSub, telNoCallbackRef, telFeatNotSupp 

TELCallbackClear 

Clearing pending callbacks 
TELCallbackClear clears a callback requested through TELCallbackSet. 

Function TELCallbackClear(hTEL: TELHandle; callbackRef INTEGER): TELErr; 

Description 

Result Codes 

hTEL is a handle to the telephone record for the user's terminal. 

callbackRef must have the same value as the callbackRef parameter returned from 
TELCallbackSet. 

noErr, telBadCBErr, telBadTermErr, telFeatActi ve, telFeatNotAvail, 
telFeatNotSub, telFeatNotSupp, telNoCallbackRef 

TELDNDSet 

Setting Do Not Disturb 
TELDNDSet sets the Do Not Disturb feature (as implemented by the telephone network 
switch) on a specified directory number. 

Function TELDNOSet(hTELDN: TELDNHandle; dndType INTEGER): TELErr; 

Description hTELDN is a handle to the directory number for which Do Not Disturb is being set. 

dndType specifies the kind of Do Not Disturb, and can have the following valid values: 

66 Telephone Manager Developer's Guide 



CONST 
telDNDintExt 

telDNDExternal 

telDNDinternal 

telDNDNonintercom 

- O; 

{do not disturb on internal and external calls} - 1; 

{do not disturb on external calls only} - 2; 

{do not disturb on internal calls only} - 3; 
{do not disturb on all calls except intercom} 

Your application can provide more complex Do Not Disturb capabilities than those of 
TELDNDSet. To do so, inspect the alerting pattern on each incoming call, rejecting 
unwanted calls with the routine TELReject. 

Result Codes noErr, telBadDNDType, telBadDNErr, telDNDTypeNotSupp, telFeatActive, 
telFeatNotAvail, telFeatNotSub, telFeatNotSupp 

TELDNDClear 

Clearing Do Not Disturb 

TELDNDClear clears the Do Not Disturb feature on a directory number, as implemented 
by the telephone network switch. 

Function TELDNDClear(hTELDN: TELDNHandle; dndType: INTEGER): TELErr; 

Description 

Result Codes 

hTELDN is a handle to the directory number for which Do Not Disturb is being cleared. 

dndType specifies the kind of Do Not Disturb being cleared. 

noErr, telBadDNDType, telBadDNErr, telDNDTypeNotSupp, telFeatActive, 
telFeatNotAvail, telFeatNotSub, telFeatNotSupp 

Chapter 2: Inside the Telephone Manager 67 



TELCallPickup 

Picking up calls 
TELCallPickup lets the user's terminal answer a call that is alerting at another terminal. 

Function TELCallPickup(hTELCA: TELCAHandle; pickupDN StringPtr; 
pickupGroupID: INTEGER): TELErr; 

Description 

Result Codes 

hTELCA is a handle to a newly allocated call appearance used to pick up the call. 

pickupDN specifies the remote directory number where the call is alerting. If pickupDN 
is NIL, the user can pick up an alerting call from any directory number within a pickup 
group predefined by the telephone network switch. 

pickupGroupID specifies the pickup group to which pickupDN belongs. Your 
application must pass this value if the telephone network switch requires a pickup ID for 
Call Pickup requests. (To find out whether the network switch requires a pickup ID, 
check the numPickupIDs field of the directory-number record associated with hTELCA. 

If the value of this field is greater than zero, your system requires a pickup ID.) 

When your application calls TELCallP ickup, the call-appearance message handler receives 
a telCAActiveMsg message, as when a normal alerting call is answered. 

noErr, telBadDNErr, telBadPicikupGroupID, telFeatActive, telFeatNotAvail, 
telFeatNotSub, telFeatNotSupp 

TELParkCall 

Parking calls 
TELParkcall parks a call, making it available for retrieval at another directory number. 

Function TELParkCall(hTELCA; TELCAHandle; VAR parkRetrieveID Str255; parkID 
: Str255) ; TELErr; 

Description hTELCA specifies the call appearance being parked. 

parkRetr ievero specifies an identifier that the user must enter at another directory 
number to retrieve call appearance hTELCA. Your application is responsible for disposing 
of the string referenced by parkRetrieveID. 

parkID specifies an ID, such as directory number or code, that the user enters to park 
the call. 

68 Telephone Manager Developer's Guide 



When parking calls, some systems return a parkRetrievero, by which the call can be 
retrieved at any directory number in the system. In contrast, other systems require that 
the user retrieve the call with a specific ID, park ID. Still other systems require both 
kinds of identifiers. To find out which method your system uses, check the field 
featureFlags in call-appearance record hTELCA. If the parkRetrievewithID flag 
is set, the system returns a parkRetrieveID; if the parkWithID flag is set, the 
system requires a parkID. If parkRetrieveWithID and parkWithID are both set, 
the system requires both a parkID and a parkRetrievero. 

Result Codes noErr, telBadCAErr, telBadParkID, telFeatActive, telFeatNotAvail, 
telFeatNotSub, telFeatNotSupp 

TELRetrieveParkedCall 

Retrieving parked calls 

TELRetrieveParkedcall retrieves a parked call. 

Function TELRetrieveParkedCall(hTELCA: TELCAHandle; parkRetrieveID Str255) 
TELErr; 

Description 

Result Codes 

hTELCA specifies a newly allocated call appearance on which the call is being retrieved. 

parkRetrieveID is an identifier required by systems that return a park-retrieve ID 
when parking calls. 

When your application calls TELRetrieveParkedcall, the call-appearance message 
handler receives the message telCAActi veMsg, as when answering a normal alerting call. 

noErr, telBadCAErr, telBadParkID, telFeatActive, telFeatNotAvail, 
telFeatNotSub, telFeatNotSupp 

Chapter 2: Inside the Telephone Manager 69 



TELVoiceMailAccess 

Accessing voice-mail systems 

TELVoiceMailAccess accesses the voice-mail system of the user's private branch 
exchange (PBX). 

Function TELVoiceMailAccess(hTELCA: TELCAHandle) TELErr; 

Description 

Result Codes 

hTELCA specifies a newly allocated call appearance on which the voice-mail system will be 
accessed. 

TELVoiceMailAccess requests access to a voice-mail system by passing to it hTELCA, 

a handle to the call appearance on which the voice-mail system will be accessed. Your 
application can obtain hTELCA either from the routine TELSetupcall or from the 
message telCAOutgoingMsg. 

TELVoiceMailAccess does not provide voice-mail management; it provides only the 
ability to access a voice-mail system. Your application might call TELVoiceMailAccess 

after, for example, receiving the message telDNVoiceMailMsg or when the user wants 
to check saved voice-mail messages. 

noErr, telBadDNErr, telFeatActive, telFeatNotAvail, telFeatNotSub, 
telFeatNotSupp 

TELPaging 

Accessing paging equipment 

TELPaging accesses a specified paging function predefined by the network system. 

Function TELPaging(hTELCA: TELCAHandle; pageID INTEGER) TELErr; 

Description hTELCA specifies a newly allocated call appearance to be used for the page. 

page ID is an identifier required if the user's telephone has multiple paging features. To 
find out whether your system requires a page ID, check the NumPageID field of 
directory-number record associated with hTELCA. If the value of this field is greater 
than zero, your system requires a page ID. Note that if NumPageID equals, for 
example, 5, then page ID must have a value between 1 and 5-not between O and 4. 

If your telephone network switch provides a special telephone number for paging, your 
application should not use TELPaging. Instead, it should use the routines TELSetup 

and TELConnect. In other words, on systems where users initiate paging by pressing a 
dedicated "paging button", your application should invoke TELPaging. But on systems 
where users initiate paging by placing calls to a dedicated extension-such as 346o, which 
might correspond to an overhead loudspeaker-your application should invoke TELSetup 
and TELConnect to place a call to extension 346o. 

70 Telephone Manager Developer's Guide 



Result Codes noErr, telBadDNErr, telBadPageID, telFeatActive, telFeatNotAvail, 
telFeatNotSub, telFeatNotSupp 

TEL Intercom 

Using intercom 

Function 

Description 

Result Codes 

TELintercom accesses a specified intercom function predefined by the network system. 

TELintercom(hTELCA: TELCAHandle; intercomID: INTEGER) : TELErr; 

hTELCA specifies a newly allocated call appearance to be used for the intercom function. 
If a system does not require a call appearance when placing intercom calls, hTELCA equals 
zero. 

intercomID is an identifier required if the user's telephone has multiple intercom 
features. To find out whether your system requires an Intercomro, check the 
numintercomIDs field of the directory-number record associated with hTELCA. This 
field tells how many intercom "keys" the terminal supports. If its value is greater than 
zero, your system requires an IntercomID. Note that if numrntercomIDs equals, for 
example, 5, then IntercomID must have a value between 1 and 5--not between O and 4. 

noErr, telBadDNErr, telBadintercomID, telFeatActi ve, telFeatNotAvail, 
telFeatNotSub, telFeatNotSupp 

Chapter 2: Inside the Telephone Manager 71 



Accessing special features of switches and tools 
This section describes routines that let your application access features for which there is no 
specific Telephone Manager routine. 

If your application is meant to be tool-independent, you can use TELOtherFeatureList to list 
network-switch features that do not require specific parameter values. Your application can then 
display items from this list as user options. To access any of the listed features, use 
TELOtherFeatureimplement. 

If your application is tool-specific and can send a parameter block in the format the tool requires, 
TELOtherFunction lets you access tool-specific features. 

TELOtherFeatureList 

Listing special switch features 
TELOtherFeatureList lists the network-switch features that your application can 
access without passing specific parameters. 

Function TELOtherFeatureList(hTEL: TELHandle; VAR fList FeatureListPtr): 

TELErr; 

Description hTEL is a handle to a telephone record. 

FeatList is a pointer to a linked list, each item of which describes a feature and its 
attributes. The list has the following format: 

TYPE 
FeatureListPtr 
FeatureList 

feature ID INTEGER; 

featureName StringPtr; 
handleType INTEGER; 

{values are: 0 = telHandleType 
1 = telDNHandleType 
2 a telCAHandleType} 

·FeatureList 

nextFeature FeatureListPtr; 

END 

In each item of fList, feature ID is a tool-defined value that identifies the feature, 
and featureName points to the name of the feature. handleType specifies the kind 
of record for which your application must pass a handle when accessing the feature 
through TELOtherFeatureimplement. If handleType is zero (0), your application 
must pass a handle to a telephone record; if 1, a handle to a directory-number record; or if 
2, a handle to a call-appearance record. Your application is not responsible for disposing of 
the list to which fList points. 

72 Telephone Manager Developer's Guide 



nextFeature points to the next item in the list of features, or is NIL if there are no 
more items. 

Result Codes noErr, telBadTermErr 

TELOtherFeatureimplement 

Implementing special switch features 

TELOtherFeatureimplement accesses a network-switch feature returned by 
TELOtherFeatureList. 

Function TELOtherFeatureimplement(hTEL : TELHandle; theHandle: Handle; 
featureID: INTEGER): TELErr; 

Description 

Result Codes 

hTEL is a handle to a telephone record. 

theHandle is a handle to a telephone record, directory-number record, or call-appearance 
record, as specified by TELOtherFeatureList. 

featureID is the feature ID returned by TELOtherFeatureList. 

noErr, telBadCAErr, telBadDNErr, telBadFeatID, telBadHandErr, 
telBadTermErr 

TELOtherFunction 

Implementing tool-specific features 

TELOtherFunction accesses a tool-specific feature by passing a parameter block defined 
by the tool. 

6 Important For information about third-party tool features, consult the developer of 
the tool. Such features are neither supported nor documented by Apple Computer. 6 

Function TELOtherFunction(hTEL: TELHandle; paramblock Ptr; size LONGINT): 
TELErr; 

Description 

Result Codes 

hTEL is a handle to a telephone record. 

paramblock is a parameter block defined by the specific tool. 

size is the size (in bytes) of paramblock. 

noErr, telBadTermErr 

Chapter 2: Inside the Telephone Manager 73 



TELToolFunctions 

Finding out which routines a tool supports 

TELToolFunctions finds out whether a tool supports a specified Telephone Manager 
routine. 

Function TELToolFunctions(hTEL: TELHandle; msgcode INTEGER; VAR supportsit 

BOOLEAN): TELErr: 

Description 

Result Codes 

hTEL is a handle to a telephone record. 

ms geode is a message code that specifies a particular Telephone Manager routine. For 
example, the message code telResetTermMsg specifies the routine TELResetTerm, 
and the message code telcallPickupMsg specifies the routine TELCallPickup. Most 
other message codes follow this naming convention. Refer to the file Telephones. h (C) 
or Telephones. p (Pascal) for a complete list of these message codes. 

supports It is TRUE if the tool supports ms geode, and FALSE if it does not. 

noErr, telBadTermErr 

74 Telephone Manager Developer's Guide 



localizing configuration strings 
The Telephone Manager provides two routines that make it easier to localize configuration strings. 

TELintlToEnglish 

Translating into English 

TELintlToEnglish converts a configuration string, which is pointed to by inputPtr, 
to an American English configuration string pointed to by outputPtr. 

Function TELintlToEnglish(hTEL: TELHandle; inputPtr: Ptr; VAR outputPtr: Ptr; 
language: INTEGER): OSErr; 

Description The function returns an operating-system error code if any internal errors occur. 

hTEL is a handle to a telephone record. 

inputPtr is a pointer to the C-style configuration string to be translated. 

outputPtr is a pointer to the translation, an American English C-style configuration 
string. 

The telephone tool allocates space for outputPtr. Your application is responsible for 
disposing of the pointer with DisposPtr when done with it. 

language specifies the language from which the string is to be converted. Valid values 
for this field are shown in the description of the Script Manager in Inside Macintosh, 
Volume V. If the language specified is not supported, this routine returns noErr, but 
outputPtr is NIL. 

Chapter 2: Inside the Telephone Manager 75 



TELEnglishTointl 

Translating from English 
TELEnglishTointl converts an American English configuration string, which is pointed 
to by inputPtr, to a configuration string pointed to by outputPtr. 

Function TELEnglishTointl(hTEL: TELHandle; inputPtr: Ptr; VAR outputPtr: Ptr; 
language: INTEGER): OSErr; 

Description The function returns an operating-system error code if any internal errors occur. 

hTEL is a handle to a telephone record. 

inputPtr is a pointer to an American English C-style configuration string to be 
translated. 

outputPtr is a pointer to the translation, a C-style configuration string. 

The telephone tool allocates space for outputPtr; your application is responsible for 
disposing of the pointer with oisposPtr when done with it. 

language specifies the language to which the string is to be converted. Valid values 
for this field are shown in the description of the Script Manager in Inside Macintosh, 
Volume V. If the language specified is not supported, noErr is still returned, but 
outputPtr is NIL. 

76 Telephone Manager Developer's Guide 



Monitoring and controlling the terminal 

The Telephone Manager lets your application monitor and control the physical components 
associated with a terminal, such as a hookswitch, display, speaker, or microphone. To monitor and 
control these components, use the routines described in this section. 

TELGetHooksw 

Monitoring a hookswitch 

TELGetHooksw finds out whether a hookswitch of the specified device is physically 
on-hook or off-hook. 

Function TELGetHooksw(hTEL: TELHandle; htype: INTEGER; VAR onHook: BOOLEAN) 
TELErr; 

Description 

Result Codes 

hTEL is a handle to a telephone record. 

htype specifies the type of hookswitch, and has one of the following valid values: 
CONST 

telHandset 
telSpeakerphone 

1; {hand-set hookswitch} 
2; {speakerphone "ON" switch} 

{Values 3 through 255 are reserved for Apple} 
{Values 256 through 32768 are reserved for use by tools} 

onHook equals devOnHook if the hookswitch of device ht type is on, or devOffHook 
if it is off. 

noErr, telBadHTypeErr, telBadTermErr, telHTypeNotSupp 

--- 
Chapter 2: Inside the Telephone Manager 77 



TELSetHooksw 

Setting a hookswitch 
TELSetHooksw sets the physical state of a device's hookswitch, if the device supports 
this capability. 

Function TELSetHooksw(hTEL: TELHandle; htype: INTEGER; onHook: BOOLEAN) 
TELErr; 

Description hTEL is a handle to a telephone record. 

htype specifies the type of hookswitch, and has one of the following valid values: 
CONST 

telHandset = 1; {hand-set hookswitch} 
telSpeakerphone = 2; {speakerphone "ON" switch} 
{Values 3 through 255 are reserved for Apple} 
{Values 256 through 32768 are reserved for use by tools} 

onHook specifies the state to which the hookswitch will be set: on-hook if onHook 
equals devOnHook, or off-hook if onHook equals devOffHook. 

• Note: If the user takes the telephone off-hook to place a call, the Telephone Manager 
relays a telCAOutgoingMsg message, and assigns a handle (type TELCAHandle) to a 
call-appearance record. If the user takes the telephone off-hook to receive a call, the 
Telephone Manager sends a telCAActiveMsg message. 

Result Codes noErr, telBadHTypeErr, telBadTermErr, telHTypeNotSupp 

TELGetVolume 

Monitoring the volume level and device state 

TELGetvolume finds out the current volume level and state of a specified device. 

Function TELGetVolume(hTEL: TELHandle; volType: INTEGER; VAR level: INTEGER; 
VAR volState: INTEGER) TELErr; 

Description hTEL is a handle to a telephone record. 

vol Type specifies the type of device volume being monitored. Valid values are as 
follows: 

78 Telephone Manager Developer's Guide 



CONST 

telHandsetSpeakerVol a 1; 

{volume of handset speaker} 
telHandsetMicVol 2; 

{sensitivity of handset microphone} 
3; 

{volume of speakerphone} 
4; 
{sensitivity of speakerphone 
microphone} 
5; 
{volume of handset ringer} 

{Values 6 through 255 are reserved for the Telephone Manager} 
{Values 256 through 32768 are available for use by tools} 

telSpeakerphoneVol 

telSpeakerphoneMicVol 

telRingerVol 

level is the current volume level of the device, expressed as positive integer between 1 
(lowest volume) and 100 (highest volume). 

volstate is the current state of the device, and has one of the following values: 
CONST 

telVolStateSame 

telVolStateOn 

telVolStateOff 

O; 
{volume left in same state, 
on or off} 

1; 
{volume on at previously 
specified level} 

2; 

{volume muted but volume 
level unchanged} 

{Values 3 through 255 are reserved for the Telephone Manager} 
{Values 256 through 32768 are available for use by tools} 

Result Codes noErr, telBadLevelErr, telBadStateErr, telBadTermErr, telBadVTypeErr, 
telStateNotSupp, telVTypeNotSupp 

Chapter 2: Inside the Telephone Manager 79 



TELSetVolume 

Setting the volume level and device state 

TELSetvolume sets the volume level of a specified device and, optionally, mutes the 
device. 

Function TELSetVolume(hTEL: TELHandle; volType: INTEGER; VAR level: INTEGER; 
volState: INTEGER) TELErr; 

Description hTEL is a handle to a telephone record. 

vol Type specifies the type of device volume being set. Valid values are as follows: 
CONST 

telHandsetSpeakerVol 
telHandsetMicVol 

1; {volume of handset speaker} 
2; {sensitivity of 

handset microphone} 
telSpeakerphoneVol = 3; {volume of speakerphone} 
telSpeakerphoneMicVol ~ 4; {sensitivity of speakerphone 

microphone} 
telRingerVol = 5; {volume of handset ringer} 
{Values 6 through 255 are reserved for the Telephone Manager} 
{Values 256 through 32768 are available for use by tools} 

level is the volume level your application is requesting, expressed as an integer between 
0 and 100. After the volume is set, the Telephone Manager returns the actual volume level 
in level. Valid values for level are as follows: 

CONST 
telVolSame 
telVolMin 
telVolMax 

O; 
1; 
100; 

Setting level to tel volSame leaves the volume level at its previous setting. Setting 
level to telVolMin sets the volume level to the minimum allowed by the device. 
Setting level to telvolMax sets the volume to the highest level the Telephone 
Manager allows. 

Different telephone tools support different maximum values for level. To find the 
maximum level value for a particular tool, your application can set level to 
telvolMax before calling TELSetVolume. When TELSetVolume returns, the value of 
level is the maximum value support by the telephone tool. 

+ Note: Tools that do not support a level of telvolMax should instead set the volume 
level to the maximum allowed by the tool and return that volume level in level. 

volstate is the state to which your application is setting the device. Valid values are as 
follows: 

80 Telephone Manager Developer's Guide 



CONST 
telVolStateSame • O; 

{leave volume in current state, on or off} 
1 • , 
{turn on device at previous volume level} 

telVolStateOff = 2; 

telVolStateOn 

{mute volume; leave level setting unchanged} 
{Values 3 through 255 are reserved for the Telephone Manager} 
{Values 256 through 32768 are available for use by tools} 

Result Codes noErr, telBadLevelErr, telBadStateErr, telBadTermErr, telBadVTypeErr, 
telStateNotSupp, telVTypeNotSupp 

Chapter 2: Inside the Telephone Manager 81 



TELAlert 

Making the terminal "ring" 
TELAlert makes the terminal emit a specified alerting pattern. This routine controls the 
ringer of the terminal only, not those provided by applications. 

Function TELAlert(hTEL: TELHandle; VAR level: INTEGER; alertPattern: INTEGER) 
TELErr; 

Description 

Result Codes 

hTEL is a handle to a telephone record. 

level specifies the volume level at which the alerting pattern is to sound, expressed as 
an integer between 0 and 100. After the volume level is set, the Telephone Manager returns 
the actual volume level in level. Valid values for level are as follows: 

CONST 
telVolSame 
telVolMin 
telVolMax 

= O; 
= 1; 

100; 

Setting level to tel vo Lsame leaves the volume level at its previous setting. Setting 
level to telvolMin sets the volume level to the minimum allowed by the device. 
Setting level to telVolMax sets the volume to the highest level the Telephone 
Manager allows. 

+ Note: Tools that do not support a level of telVolMax should instead set the volume 
level to the maximum allowed by the tool and return that volume level in level. 

alertPattern is the alerting pattern the terminal is to emit. Valid values are as follows: 

CONST 
telPattern0 
telPatternl 
te1Pattern2 = 
te1Pattern3 
te1Pattern4 
te1Pattern5 = 
te1Pattern6 ,. 
te1Pattern7 :r 

telPatternOff "' 
{Values 8 through 14 
reserved for the Telephone Manager} 

{Values 256 through 32768 are available for use by tools} 

To find out which alerting patterns and volume levels the terminal supports, check the 
fields ringerTypes and hasvo1ct1 in telephone record hTEL. 

O; {normal alerting pattern} 
1; {alerting pattern l} 

2 • {alerting pattern 2} ' 
3; {alerting pattern 3} 
4; {alerting pattern 4} 
5; {alerting pattern S} 
6; {alerting pattern 6} 
7; {alerting pattern 7} 
15; {alerting pattern undefined} 
and 16 through 255 are 

noErr, telAPattNotSupp, telBadAPattErr, telBadLevelErr, telBadTermErr 

82 Telephone Manager Developer's Guide 



TELGetDisplay 

Monitoring the display text 

TELGetoisplay returns the current display text of the user's telephone, if the terminal 
stores this text. 

Function TELGetDisplay(hTEL: TELHandle; index: INTEGER; VAR displayMode: 
INTEGER; VAR text: StringPtr) TELErr; 

Description 

Result Codes 

hTEL is a handle to a telephone record. 

index specifies which item of the display text TELGetoisplay is to return. Valid 
values are as follows: 
CONST 

telEntireDisplay = O; {entire display} 
{Values 1 through 255 are reserved for the Telephone Manager 
and are otherwise invalid.} 

{Values 256 through 32768 are available for use by tools.} 

displayMode indicates the display mode. Valid values are as follows: 
CONST 

telNormalDisplayMode 
telinspectMode 
telMiscMode 
telRetrieveMode 

1; {Normal mode} 
2; {Inspect mode} 
3; {Miscellaneous mode} 
4; {Message Retrieval mode} 

telDirectoryQueryMode = 5; {Electronic Directory mode} 
{Values 6 through 255 are reserved for the Telephone Manager 
and are invalid} 

{Values 256 through 32768 are available for use by tools.} 

text points to the text currently showing on the display of the telephone. Your 
application is responsible for disposing of the string to which text points. 

noErr, telBadindex, telBadTermErr, telindexNotSupp 

Chapter 2: Inside the Telephone Manager 83 



TELSetDisplay 

Setting the display text 

TELSetDisplay sets the text or display mode of the status display on the user's 
telephone. 

Function TELSetDisplay(hTEL: TELHandle; index, displayMode: INTEGER; text: 
Str255) TELErr; 

Description 

Result Codes 

hTEL is a handle to a telephone record. 

index specifies which item of the display text TELSetDisplay is to set. Valid values 
are as follows: 
CONST 

telEntireDisplay 0; {entire display} 
{Values 1 through 255 are reserved for the Telephone Manager 
and are invalid} 

{Values 256 through 32768 are available for use by tools} 

displayMode specifies the display mode to which the status display will be set. 

text is the text that will replace item index on the display. Your application is 
responsible for disposing of the string to which text points. 

TELSetDisplay sets the display in mode displayMode. 

noErr, telBadindex, telBadTermErr, telindexNotSupp, telModeNotSupp 

84 Telephone Manager Developer's Guide 



Controlling directory numbers 
The Telephone Manager lets your application control each directory number associated with the 
user's terminal. To control directory numbers, use the routines described in this section. 

TELCountDNs 

Counting directory numbers 

TELCountDNs returns the number of directory numbers associated with the user's 
terminal. The routine counts either all directory numbers or only those of a specified type. 

Function TELCountDNs(hTEL: TELHandle; dnType: INTEGER; physical: BOOLEAN) 
INTEGER; 

Description 

Result Codes 

hTEL is a handle to a telephone record. 

dnType specifies the type of directory numbers the routine is to count. Valid values are 
as follows: 
CONST 

telAllDNs 

telinternalDNs 

telinternalDNsOnly 

telExternalDNsOnly 

O; 
{All DNs} 
1; 
{DNs connected to a PBX 
or nonpublic switch} 
2; 

{DNs connected to a PBX 

or nonpublic switch, and 
capable of placing internal 
calls only} 
3; {DNs connected to a 
public network} 

{Values 4 through 255 are reserved for the Telephone Manager 
and are otherwise invalid} 

{Values 256 through 32768 are reserved for use by tools} 

physical specifies whether TELCountDNs will count all directory numbers of type 
dnType or only those to which commands can be sent, as indicated by the field 
dnAccessible of the directory-number record. 

noErr, telBadDNType, telBadTermErr 

Chapter 2: Inside the Telephone Manager 8S 



TELDNLookupByindex 

Finding directory numbers by index 
TELDNLookupByindex returns a handle to the nth directory number of the user's terminal. 
Your application must call this routine once, typically after calling TELCountDNs, to get a 
handle to the directory-number record associated with a particular directory number. 

Function TELDNLookupByindex(hTEL: TELHandle; dnType: INTEGER; physical: 
BOOLEAN; index: INTEGER; VAR hTELDN: TELDNHandle) TELErr; 

Description 

Result Codes 

hTEL is a handle to a telephone record. 

dnType specifies the type of directory numbers the routine will consider when finding 
the nth one. Valid values are as follows: 

CONST 
telAllDNs 

{All DNS} 

1· ' {DNs connected to a PBX 
or nonpublic switch} 
2; 
{DNs connected to a PBX or 
nonpublic switch, and capable 
of placing internal calls only} 
3; 
{DNs connected to a 
public network} 
4; 
{DN type unknown} 

{Values 5 through 255 are reserved for the Telephone Manager 

telinternalDNs 

telinternalDNsOnly 

telExternalDNsOnly 

telDNTypeUnknown 

O; 

= 

and are otherwise invalid} 
{Values 256 through 32768 are reserved for use by tools} 

physical specifies whether TELDNLookupByindex will consider all directory numbers 
of type dnType when finding directory number n, or consider only those to which 
commands can be sent. 

index specifies which directory number TELDNLookupByindex is to look up. The 
maximum value of index is the one that TELCountDNs returns when its selection 
criteria are the same as those of TELDNLookupByindex-that is, when both calls have 
the same values for dnType and physical. Note that if TELCountDNs returns, for 
example, the integer 3, then the valid values of index are the integers 1 through }-not 0 
through 2. 

hTELDN is a handle to the directory-number record for the nth directory number 
returned, or is NIL if no such handle is found. 

noErr, telBadDNType, telBadindex, telBadTermErr, telDNTypeNotSupp, 
telindexNotSupp 

86 Telephone Manager Developer's Guide 



TELDNLookupByName 

Finding directory numbers by name 

TELDNLookupByName returns a handle to the directory number having a specified name­ 
for example, (408) 555-1212. 

Function TELDNLookupByName(hTEL: TELHandle; dn: Str255; VAR hTELDN: 
TELDNHandle) TELErr; 

Description 

Result Codes 

hTEL is a handle to a telephone record. 

dn is the name of the directory number that TELDNLookupByName is to look up. 

hTELDN is a handle to the directory-number record for dn. If the directory-number 
record is not found, hTELDN is zero, and TELDNLookupByName returns 
telBadTermErr. 

noErr, telBadDNErr, telBadTermErr 

TELGetDNinfo 

Getting information about a directory number 

TELGetDNinfo makes the telephone tool update a specified directory-number record. 
This updated record reflects the current state and current capabilities of the associated 
directory number. 

Function TELGetDNinfo(hTELDN: TELDNHandle) TELErr; 

Description 

Result Codes 

hTELDN is a handle to the directory-number record for the directory number whose 
information is requested. 

The information returned by TELDNinfo is a "snapshot"; it reflects the state of the 
directory number as of the time the information was retrieved. 

noErr, telBadDNErr 

Chapter 2: Inside the Telephone Manager 87 



TELGetDNFlags 

Finding the state of directory-number features 
TELGetDNFlags updates the fields featureFlags and forwardFlags in a specified 
directory-number record and passes back the updated values of the fields. (For a 
description of the fields, refer to the section "Directory-Number Data Structure," earlier in 
this chapter.) 

Function TELGetONFlags(hTELON: TELONHandle; VAR dnFeatureFlags: LONGINT; VAR 

dnForwardFlags: LONGINT) TELErr; 

Description 

Result Codes 

hTELDN is a handle to the directory-number record whose fields you wish to update. 

dnFeatureFlags stores the updated value of the featureFlags field of directory 
number hTELDN. 

dnForwardFlags stores the updated value of the forwardFlags field of directory 
number hTELDN. 

noErr, telBadONErr 

TELDNSelect 

Selecting a directory number 
TELDNSelect selects or deselects a directory number on a system that has such a 
feature. 

Function TELONSelect(hTELON: TELONHandle; select: BOOLEAN) TELErr; 

Description 

Result Codes 

hTELDN is a handle to the directory-number record to be selected. 

select indicates whether TELDNSelect is to select directory number hTELDN or 
deselect it. If select is set to TRUE, the directory number is selected; otherwise, it is 
deselected. 

Selecting a directory number puts on hold all calls of the previously selected directory 
number. Deselecting a directory number drops all call appearances associated with 
hTELON. 

noErr, telBadDNErr, telBadSelect 

88 Telephone Manager Developer's Guide 



TELDNDispose 

Disposing of a directory-number handle 

TELDNDispose disposes of the handle to a specified directory-number record. Your 
application should call this routine when it no longer needs any information about the 
directory number associated with the record. 

Note that disposing of the directory-number handle does not drop call apperances on that 
number. To drop a call appearance, use the routine TELOrop. 

Function TELDNOispose(hTELON: TELDNHandle) TELErr; 

Description 

Result Codes 

hTELDN is a handle to a directory-number record. 

TELDNOispose disposes of hTELDN and all handles to call-appearance records associated 
with hTELDN. In addition, the routine removes any directory-number message handlers 
or call-appearance message handlers registered for the directory number associated with 
hTELON. 

noErr, telBadONErr 

Chapter 2: Inside the Telephone Manager 89 



Controlling call appearances 
The Telephone Manager lets your application control each call appearance associated with a 
particular directory number. To control call appearances, use the routines described in this section. 

·---- 

TELCountCAs 

Counting call appearances 
TELCountcAs returns the number of non-idle call appearances currently associated with a 
particular directory number. The routine counts either all such call appearances or only 
those of a specified type. 

Function TELCountCAs(hTELDN: TELDNHandle; intExt: INTEGER) INTEGER; 

Description 

Result Codes 

hTELDN is a handle to a directory-number record. 

intExt specifies the type of call appearances the routine is to count. Valid values are as 
follows: 
CONST 

telAllCallOrigins 0; {All call appearances} 
telinternalCall = 1; {Internal call appearances only} 
telExternalCall = 2; {External call appearances only} 
{Values 3 through 255 are reserved for the Telephone Manager 
and are otherwise invalid} 

{Values 256 through 32768 are reserved for use by tools} 

noErr, telBadDNErr, telBadintExt, telintExtNotSupp 

TELCALookup 

Finding call appearances 
TELCALookup returns a handle to the nth call appearance currently associated with a 
specified directory number. 

Function TELCALookup(hTELDN: TELDNHandle; intExt: INTEGER; index: INTEGER; VAR 
hTELCA: TELCAHandle) : TELErr; 

Description hTELDN is a handle to a directory-number record. 

intExt specifies the types of call appearance the routine will count when finding the 
nth one. Valid values are as follows: 

90 Telephone Manager Developer's Guide 



CONST 
telAllCallOrigins O; {All call appearances} 
telinternalCall a 1; {Internal call appearances only} 
telExternalCall a 2; {External call appearances only} 
{Values 3 through 25S are reserved for the Telephone Manager 
and are otherwise invalid} 

{Values 2S6 through 32768 are reserved for use by tools} 

index specifies which call appearance TELCALookup is to find. The maximum value of 
index is the one that TELCountCAs returns when its selection criteria are the same as 
those of TELCALookup-that is, when both calls have the same values for hTELDN and 
intExt. Note that if TELCountCAs returns, for example, the integer 3, then the valid 
values of index are the integers 1 through }-not O through 2. 

hTELCA is a handle to the call-appearance record for the nth call appearance returned. 

In general, your application is notified of each valid call-appearance handle, either because it 
placed the call or because it received a Telephone Manager message such as CAOffer or 
CAAlerting. Thus, in general, your application need not call TELCALookup to obtain a 
call-appearance handle. But it is possible that some call appearances will already be in use 
when your application starts. TELCALookup lets you obtain handles for those call 
appearances. 

Result Codes noErr, telBadDNErr, telBadindex, telBadintExt, telintExtNotSupp 

TELGetCAinfo 

Getting information about a call appearance 

TELGetCAinfo updates a specified call-appearance record. This updated record reflects 
the current state and current capabilities of the call appearance. 

Function TELGetCAinfo(hTELCA: TELCAHandle) TELErr; 

Description 

Result Codes 

hTELCA is a handle to the call-appearance record being updated. 

The information in the updated call-appearance record is a "snapshot"; it reflects the state 
of the call appearance as of the time the information was retrieved. 

noErr, telBadCAErr 

Chapter 2: Inside the Telephone Manager 91 



TELGetCAState 

Finding the state of a call appearance 
TELGetCAState requests that the telephone tool update the castate field of a 
particular call-appearance record and pass back the updated value of the field. 

Function TELGetCAState(hTELCA: TELCAHandle; VAR state: INTEGER) TELErr; 

Description 

Result Codes 

hTELCA is a handle to a call-appearance record. 

state stores the updated value of the castate field of call-appearance record hTELCA. 
(For a list of call-appearance states, refer to the description of castate in the section 
"Call-Appearance Data Structure," earlier in this chapter.) 

noErr, telBadCAErr 

TELGetCAFlags 

Finding the state of call-appearance features 
TELGetCAFlags updates the fields featureFlags and otherFeatures of a 
specified call-appearance record and passes back the updated values of the fields. (For a 
description of the fields, refer to the section "Call-Appearance Data Structure," earlier in 
this chapter.) 

Function TELGetCAFlags(hTELCA: TELCAHandle; VAR caFeatureFlags: LONGINT; VAR 
caOtherFeatures: LONGINT) TELErr; 

Description 

Result Codes 

hTELCA is a handle to the call-appearance record whose fields you wish to update. 

caFeatureFlags stores the updated value of the featureFlags field of call 
appearance record hTELCA. 

caotherFeatures stores the updated value of the otherFeatures field of call 
appearance record hTELCA. 

noErr, telBadCAErr 

92 Telephone Manager Developer's Guide 



TELCADispose 

Disposing of a call-appearance handle 

TELCADispose disposes of the handle to a specified call-appearance record. Your 
application should call this routine when it no longer needs any information about the call 
appearance associated with the record. 

Note that disposing of the call-appearance handle does not drop the associated call. To 
drop a call, use the routine TELDrop. 

Function TELCADispose(hTELCA: TELCAHandle) TELErr; 

Description 

Result Codes 

hTELCA is a handle to a call-appearance record. 

TELCADispose disposes of hTELCA. 

noErr, telBadCAErr 

Chapter 2: Inside the Telephone Manager 93 



Miscellaneous routines 
The routines described in this section perform a variety of tasks. 

TELGetToolName 

Getting the name of a tool 
TELGetToolName returns in name the name of the tool specified by procID. 

Procedure TELGetToolName(procID: INTEGER; VAR name: Str255); 

Description If procID references a telephone tool that does not exist, the Telephone 
Manager sets name to NIL. 

TELGetVersion 

Getting · vers ' resource information 
TELGetversion returns a handle to a relocatable block, which contains the information 
in the telephone tool's · vers · resource with ID=l. Your application is responsible for 
disposing of the handle when done with it. 

+ Note: The handle returned is not a resource handle. 

Function TELGetVersion(hTEL:TELHandle): Handle; 

Description hTEL is a handle to a telephone record. 

TELGetTELVersion 

Getting the Telephone Manager version number 
TELGetTELVersion returns the version number of the Telephone Manager. 

Function TELGetTELVersion: INTEGER; 

Description The version number of the Telephone Manager described in this document is as follows: 

CONST 
curTELVersion • 1; 

94 Telephone Manager Developer's Guide 



Routines your application must provide 
To use the Telephone Manager, your application must be able to receive messages that the Telephone 
Manager relays from tools. These messages are of three types: terminal messages, directory-number 
messages, and call-appearance messages. These messages are listed in Apppendix B. Your application must 
provide a message-handling routine for each message type, and must register the routines with the 
Telephone Manager by calling TELTermMsgHand, TELDNMsgHand, or TELCAMsgHand. 

This section provides three routine templates-MyTermMsgHandler, MyDNMsgHandler, and 
MyCAMsgHandler-one for each of the message handlers your application must provide. These templates 
show only the interface your message handlers must have. You provide the actual routines, which can have 
any name. Refer to the section "Handling Messages," earlier in this chapter, for information on registering 
your message handlers with the Telephone Manager. 

MyTermMsgHandler 

Template for terminal message handlers 

MyTermMsgHandler is a routine you must write to handle messages from an application 
user's terminal. 

Procedure MyTermMsgHandler(hTEL: TELHandle; msg: LONGINT; mtype, value: 
INTEGER; globals: LONGINT); 

Description hTEL is a handle to the telephone record for the user's terminal. 

msg specifies the type of terminal message sent. Refer to Appendix B for a list of valid 
values for msg. 

mtype and value, if used, specify attributes of the message. Their exact meaning and 
use vary, depending on the value of msg. 

globals is a pointer to a location in memory-for example, to your application's globals 
(register AS). Your application must previously have passed the value of globals when 
calling TELTermMsgHand to register MyTermMsgHandler. 

Chapter 2: Inside the Telephone Manager 9S 



MyDNMsgHandler 

Template for directory-number message handlers 
MyDNMsgHandler is a routine you must write to handle messages about a particular 
directory number. 

Procedure MyDNMsgHandler(hTELDN: TELDNHandle; msg: LONGINT; mtype, value: 
INTEGER; rmtDN, rmtName, rmtSubaddress : StringPtr; globals: 
LONGINT); 

Description hTELDN is a handle to a directory-number record. 

msg a constant showing the type of directory-number message sent. Refer to Appendix B 
for a list of valid values for msg. 

mtype and value, if used, specify attributes of the message. Their exact meaning varies, 
depending on the value of msg. 

rmtDN, rmtName, and rmtsubaddress specify the directory number, party, and 
subaddress being called, if such information is applicable to the call and is available from 
the telephone network switch. 

globals is a pointer to a location in memory-for example, to your application's globals 
(register AS). Your application must previously have passed the value of globals when 
calling TELDNMsgHand to register MyDNMsgHandler. 

MyCAMsgHandler 

Template for call-appearance message handlers 
MyCAMsgHandler is a routine you must write to handle messages about a particular call 
appearance. 

Procedure MyCAMsgHandler(hTELCA: TELCAHandle; msg: LONGINT; mtype, value: 
INTEGER; msginfo: Ptr; globals: LONGINT); 

Description hTELCA is a handle to a call-appearance record. 

msg specifies the type of call-appearance message sent. Refer to Appendix B for a list and 
description of valid values for msg. 

mtype and value, if used, specify attributes of the message. Their exact meaning varies, 
depending on the value of msg. 

msginfo specifies the call appearance and person being called, if such information is 
applicable to the call and is available from the telephone network switch. 

globals is a pointer to a location in memory-for example, to your application's globals 
(register AS). Your application must previously have passed the value of globals when 
calling TELCAMsgHand to register MyCAMsgHandler. 

96 Telephone Manager Developer's Guide 



Chapter 3 Writing Telephone Tools 

T H I S C H A P T E R provides information about writing a telephone tool. 
It first discusses general concepts relevant to writing a tool and then 
describes the six resources that are an essential part of a telephone tool. These 
six resources are exactly analogous to the six resources that must be in any 
communications tool intended for the Communications Toolbox. One of 

these resources, the main code resource, is far more complex than the others. 

For this reason, although it is introduced in this chapter, details about it are 
given in a separate chapter, Chapter 4. For information about writing your 
main code resource, see that chapter. 

To write your own telephone tool, you need to be familiar with the 

Telephone Manager, with which your tool will interface. See Chapters 1 and 2 
for information about the Telephone Manager. You should also be familiar 
with the Apple's guidelines for communications tools, which are discussed in 
Inside the Macintosh Communications Toolbox. 

97 



About writing a telephone tool 
The Telephone Manager interacts with tools in much the same way that other Communications 
Toolbox managers do. The application calls a routine, which the Telephone Manager handles by sending 
a message to a tool. For example, when an application requires a service, such as the creation of a new 
telephone record, it calls the TELNew routine. The Telephone Manager passes this request on by issuing 
a message, telNewMsg, to the main code resource of the appropriate tool. 

6 Important Telephone tools differ from other tools in one important way. The main 
code resource of a telephone tool not only receives messages from the 
Telephone Manager, but also sends messages back-for example, to relay 
information from the network switch. The messages that your main code 
resource can send are described in this chapter. The Telephone Manager 
routines associated with these messages are described in Chapter 2. 6. 

The six tool resources 
You need to create six resources to make your own telephone tool. All of these resources are 
described in this chapter, except the main code resource, which is described in detail in Chapter 4. 

There is one tool-related resource, which is optional: 

The bundle resource contains the name of the tool and information about what 
resources belong to the tool. 

You also need to write five code resources, which must be part of your tool: 

'vbnd' 

'vdef' The main code resource performs the basic telephone functions, such as TELNew. 

· vval' The validation code resource validates telephone records with TELValidate, 

and also fills in configuration record default values with TELDefault. 

'vset' The setup-definition code resource supports the custom tool-settings dialog 
box, which allows users to configure telephone tools. 

• vscr' The scripting language interface code resource handles the interface between a 
scripting language and the tool. 

'vloc' The localization code resource handles localization of configuration strings. 

98 Telephone Manager Developer's Guide 



The bundle resource 

The tool bundle contains the master list of resources that are associated with vour telephone tool. 
Besides the six standard resources, the tool bundle can contain references to any additional 
resources that your tool requires, such as dialog boxes or menus. Although your tool will work 
without a bundle resource, including one is good programming practice. The bundle resource allows 
you to change resource IDs when conflir- ..•• ~. without having to recompile your code. 

Your telephone tool can refer :o esources with local IDs that the Communications Resource 
Manager can map to actual resource IDs. (Your tool should use the Communications Resource 
Manager routines CRMLocalToReauo and CRMRealToLocalro.) The telephone bundle resource, 
shown here, provides a data structure to accommodate this mapping. 
type 'vbnd' { /**/ 

integer= $$CountOf(TypeArray) - 1; 

array TypeArray { 

literal longint; /*Type•! 

integer= $$CountOf(IDArray) - 1; 
wide array IDArray { 

integer; 

integer; 

/• Local ID •/ 

/• Actual ID *I 
} ; 

} ; 
} ; 

Chapter 3: Writing Telephone Tools 99 



The validation code resource 

The validation code resource parses two possible messages from the Telephone Manager: 
tel validateMsg and telDefaul tMsg. An application or tool will request one of these services 
when it requires your tool to check the values in the telephone record or to reset the telephone 
record to its default values. Your telephone tool should contain the default values for the telephone 
record. 

The validation code resource should be a resource of type · vval •. It should be able to accept 
the messages shown in this example: 

FUNCTION vval(hTEL: TELHandle; msg: INTEGER; pl, p2, pJ: LONGINT): LONGINT; 
VAR 

pConfig: ConfigPtr; 

BEGIN 

CASE msg OF 

telValidateMsg: 

BEGIN 

vval = DoValidate(hTEL); 

{ hTEL is valid here} 

END; 

telDefaultMsg: 

BEGIN 
hTEL is not valid here} 

{ pl is a pointer to the configPtr} 

p2 is allocate or not} 

pJ is zero} 
IF p2 = TRUE THEN 

BEGIN 

pConfig :s ConfigPtr(NewPtr(SIZEOF(ConfigRecord))); 
ConfigHandle(pl)' :a pConfig; 

{ real programmers check errors here} 
END 

ELSE 

BEGIN 

ConfigHandle(pl)' := pConfig; 
:= 
END; 

DoDefault(pConfig); 

END; 

END; { case } 
END; 

The messages accepted by the validation code resource and their associated values are as follows: 
CONST 

validation code resource messages} 

tel ValidateMsg = o; 
telDefaultMsg = 1; 

100 Telephone Manager Developer's Guide 



For each of the messages defined here, pl, p2, and pJ take on different meanings. These 
meanings are discussed in the message descriptions that follow. If your tool receives a message 
other than those shown, it should return telNotSupported. 

telValidateMsg 

Your tool will receive telValidateMsg when the application requires your tool to validate the 
fields in the telephone record. Your tool should compare the values in this record with the values 
specified in the tool. 

The example code given here shows how your tool can respond to tel validateMsg. 

After executing the code necessary to respond to telvalidateMsg, your code should pass 
back O if there were no errors, or 1 if the configuration record had to be rebuilt by your tool. p 1, p2, 
and pJ should be ignored. 
{ perform validate here} 
FUNCTION DoValidate(hTEL: TELHandle): LONGINT; 
VAR 

pPrivate: 
pConfig: 

PrivatePtr; 
ConfigPtr; 

BEGIN 

pConfig := ConfigPtr(hTEL'".config); 
pPrivate :• PrivatePtr(hTEL'".private); 

IF pConfig".foobar = 0 THEN 
DoValidate := O { okey dokey} 

ELSE 
DoValidate := 1; uh-oh} 

END; 

telDefaultMsg 

Your tool will receive teloefaultMsg when the application requires your tool to fill in the fields 
of a telephone record. Default values should be specified in your tool. 

After executing the code necessary to respond to telDefaultMsg, pl should pass back a 
pointer to the configuration record pointer. If p2 contained 1 when TELDef aul t was called, 
your tool should allocate the configuration record and return the pointer in pl. If p2 was 0, then 
your tool should simply use the configuration pointer obtained by dereferencing pl. 

Chapter 3: Writing Telephone Tools 101 



The setup-definition code resource 

Applications can present users with a custom dialog box containing tool-specific items that allows 

them to configure their own telephones or select a telephone tool. The Telephone Manager routines 

TELSetupPreflight, TELSetupSetup, TELSetupitem, TELSetupFilter,and 

TELSetupCleanup make this possible. 

The telephone tool setup code resource should be a function called ' vset ' , and should be able to 

handle the following parameters: 

{ main entry point for vset resource} 
FUNCTION vset(pSetup: TELSetupPtr; msg: INTEGER; 

pl, p2, p3: LONGINT): LONGINT; 
TYPE 

LocalHandle • 'LocalPtr; 
LocalPtr = 'LocalRecord; 
LocalRecord • RECORD { private tool setup context} 
foobar: LONGINT; 

END; 

IntPtr = 'INTEGER; 
EventPtr = 'EventRecord; 

BEGIN 
CASE msg OF 
telSpreflightMsg: 

BEGIN 
theCookie :• CookiePtr(NewPtr(SIZEOF(CookieRecord))); 
cookieHandle(p3)' := theCookie; { send back theCookie} 
vset := Preflight(pSetup, theCookie); 
END; 

telSsetupMsg: 
BEGIN 
theCookie := CookieHandle(p3)'; 
Setup(pSetup); 
END; 

telSiternMsg: 
BEGIN 
theCookie := CookieHandle(pJ)'; 
Item(pSetup, theCookie, IntPtr(pl)); 
END; 

{ get the magic cookie} 
{ do the setup} 

{ get the magic cookie} 
{ process the items hit} 

102 Telephone Manager Developer's Guide 



telSfilterMsg: 
BEGIN 
theCookie :• CookieHandle(pJ)A; { get the magic cookie} 
vset :• Filter(pSetup, theCookie, EventPtr(pl), IntPtr(p2)); 
END; 

telScleanupMag: 
BEGIN 
theCookie :• CookieHandle(p3)A; 
DisposPtr(Ptr(theCookie)); 

{ get the magic cookie} 
{ and get rid of it} 

END; 
END; {case} 

END; 

In the preceding code sample, magic cookie is intended to store the private data structure of 
your telephone tool. Note that there is no message TELSpostflightMsg, because the 
corresponding Telephone Manager routine, TELSetupPostflight, requires no action from your 
tool. TELSetupPostflight releases the 'vset' resource from memory. 

Valid values for mag are as follows: 

CONST 
telSpreflightMag - O; 
telSsetupMsg = 1; 
telSitemMsg = 2; 
telSfilterMsg = 3; 
telScleanupMsg = 4; 

For each of the messages just shown, pl, p2, and pJ take on different meanings. These 
meanings are discussed in the message descriptions that follow. If your tool receives a message 
other than those shown, it should return telNotSupported. When your tool handles these 
routines, it will use a TELSetupStruct data structure. 
TYPE 

TELSetupPtr 
TELSetupStruct 

theDialog 
count 
theConfig 
procID 

END; 

·TELSetupStruct; 
RECORD 
DialogPtr; 
INTEGER; {dialog item number of first appended item} 
Ptr; 
INTEGER 

telSpreflightMsg 

Your setup-definition code resource should perform a function similar to that shown in the 
example code when it receives telspreflightMsg from the Telephone Manager. This is where 
your tool retrieves the 'DITL' resource, to be appended to the TELChoose dialog. 

When passed to your telephone tool, pJ will be a pointer to a LONGINT that gets passed to 
the other routines during setup definition. pJ should serve as magiccookie if the setup­ 
definition procedure requires some private context. 

Chapter 3: Writing Telephone Tools 103 



After executing the code necessary to respond to telSpreflightMsg, your telephone tool 
should return a handle to a dialog item list. This handle should then be disposed of by the caller of 
this function. 

FUNCTION Preflight(pSetup: TELSetupPtr; theCookie: LocalPtr): LONGINT; 
CONST 

localID • l; { we want DITL local ID 1} 

VAR 

hDITL: Handle; 
theID: INTEGER; 
oldRF: INTEGER: 

BEGIN 
theCookie".foobar :• 0; { setup theCookie} 

theID := CRMLocalToRealID(ClassTEL, pSetup".procID, 'DITL', localID); 
IF theID = -1 THEN 

Pref light : = 0 { no DITL found} 
ELSE 
BEGIN 

oldRF := CurResFile; 
useResFile(pSetup".procID); { procID is the tool refnum} 
hDITL :• GetlResource( 'DITL', theID); 
UseResFile(oldRF); 

IF hDITL <> NIL THEN 
DetachResource(hDITL); { got it so detach it} 

Preflight := LONGINT(hDITL); 
END; 

END; 

telSsetupMsg 

Your setup-definition code resource should perform a function similar to that shown in the 
example code when it receives telSsetupMsg from the Telephone Manager. This is where your 
tool initializes all items in the 'DITL' resource retrieved by TELSetupPreflight. 

When passed to your telephone tool, p3 will be a pointer to magiccookie, which is a LONGINT. 

PROCEDURE Setup(pSetup: TELSetupPtr); 
CONST 

myFirstitem • 1; 
mySeconditem • 2; 

VAR 

first: INTEGER; 
pConfig:ConfigPtr; 

{ first item appended (0-based) } 

BEGIN 
WITH pSetup· DO 

104 Telephone Manager Developer's Guide 



BEGIN 

first :a count - l; { count is 1-based} 

pConfig := ConfigPtr(theConfig); { get the config ptr} 

GetDitem(theDialog, first+myFirstitem, itemKind, itemHandle, 

itemRect); 

SetCtlValue(ControlHandle(itemHandle), pConfigA.foobar); 

GetDitem(theDialog, first+mySeconditem, itemKind, itemHandle, 

itemRect); 

SetCtlValue(ControlHandle(itemHandle), 1-pConfigA.foobar); 

END; {with} 

END; 

telSitemMsg 

Your setup-definition code resource should perform a function similar to that shown in the 
example code when it receives telSitemMsg from the Telephone Manager. Your tool receives 
telSitemMsg when an item belonging to your tool is hit. 

When passed to your telephone tool, p 1 points to an item that was selected from the dialog 
box item list, and p3 contains a pointer to magiccookie. Your tool can change the selected item 
by modifying the item number to which p 1 points. 
PROCEDURE Item(pSetup: TELSetupPtr: pitem: IntPtr); 

CONST 

myFirstitem 

mySeconditem 

l; 
2; 

VAR 

first 

pConfig 

value 

INTEGER; 

ConfigPtr; 

INTEGER; 

BEGIN 

WITH pSetupA DO 

BEGIN 

first :a count - l; 

pConfig := ConfigPtr(theConfig); 

{ first item appended (0-based) } 

{ count is 1-based} 

get the config ptr 

CASE pitemA -first OF 

myFirstitem: 

BEGIN 

GetDitem(theDialog,first+myFirstitem,itemKind, 

itemHandle,itemRect); 

value:= GetCtlValue(ControlHandle(itemHandle)) 

value:• 1 - value; 

pConfigA.foobar := value; { stick into config record} 

SetCtlValue(ControlHandle(itemHandle), value); { update control} 
END; 

Chapter 3: Writing Telephone Tools lOS 



mySeconditem: 

BEGIN 

SysBeep(S); 

FlashMenuBar(O); 

END; 

END; { case } 
ENO; { with } 

END; 

telSfilterMsg 

Your setup-definition code resource should perform a function similar to that shown in the 
example code when it receives telSfilterMsg from the Telephone Manager. 

When passed to your telephone tool, pl will contain a pointer to an event record, p2 will 
contain a pointer to an item clicked in the dialog box list, and p3 will contain a pointer to 
magicCookie. 

If the event that was passed to this function was handled, your telephone tool should return 
TRUE; otherwise, it should return FALSE. 

FUNCTION Filter(pSetup: TELSetupPtr; theCookie: LocalPtr; 
pEvent: EventPtr;pitem: IntPtr): LONGINT; 

BEGIN 
Filter := O; not hungry} 

IF pEvent".what = keyDown THEN 
BEGIN 

SysBeep( 5); 
Filter := l; 

ENO; 

eat all keyoowns 

{processed} 

END; 

telScleanupMsg 

Your setup-definition code resource should perform a function similar to the one shown in the 
example code when it receives telScleanupMsg from the Telephone Manager. This is where your 
tool should dispose of any private stroage allocated during the creation of the custom tool-settings 
dialog box. 

When passed to your telephone tool, p3 will contain a pointer to magiccookie. 

PROCEDURE myCleanup(p3: LONGINT); 
BEGIN 

DisposPtr( Ptr(p3) ); 
p3 : •• O; 

{ dispose of magicCookie} 

END; 

106 Telephone Manager Developer's Guide 



The scripting language interface code resource 

Your telephone tool's scripting language interface code resource is responsible for handling the 
interface between your tool and a scripting language. Also, it must provide complete configuration 
information for saving and opening documents. 

Your scripting interface code resource must handle two messages: telMgetMsg and 
telMsetMsg. It should be a resource of type 'vscr', and should be able to handle the parameters 
that are shown in this example: 

FUNCTION vscr(hTEL: TELHandle; msg: INTEGER; pl, p2, pJ: LONGINT): LONGINT; 
VAR 

pConfig: 

BEGIN 
vscr :s O; 

ConfigPtr; 

{ for now } 

CASE msg OF 
telMgetMsg: 

vscr := LONGINT(GetConfig(hTEL)); 
telMsetMsg: 

vscr := SetConfig(hTEL, Ptr(pl)); 
END; { case } 

END; 

Valid values for msg are as follows: 
CONST 

telMgetMsg 
telMsetMsg 

0; 

1; 

For each of the messages defined here, pl, p2, and pJ take on different meanings. These 
meanings are discussed in the message descriptions that follow. If your tool receives a message 
other than those shown, it should return telNotSupported. 

telMgetMsg 

Your tool will receive telMgetMsg from the Telephone Manager when the application requires a 
string that describes the telephone record. The sample code shows how your application can handle 
telMgetMsg. 

After executing the code necessary to respond to telMgetMsg, your telephone tool should 
return NIL if there was a problem constructing the configuration string. Otherwise, it should 
return a pointer to a null-terminated string that contains American English tokens representing the 
configuration record pointed to by config in the telephone record. 
FUNCTION GetConfig(hTEL: TELHandle): Ptr; 
VAR 

thePtr: 
pconfig: 
theString, 
string2: 

Ptr; 
configPtr; 

STR255; 

Chapter 3: Writing Telephone Tools 107 



BEGIN 

pConfig := ConfigPtr(hTEL"".config); { get the config record} 

theString := 'FOOBAR '; { attribute name is FOOBAR} 

NumToString(pConfig".foobar, string2); { get the attribute value} 

theString := CONCAT(string, string2); { make the config string} 

thePtr := NewPtr(SIZEOF(LENGTH(theString)+l)); 

IF thePtr <> NIL THEN 

BEGIN 

BlockMove(Ptr(LONGINT(@theString)+l), 

thePtr, LENGTH(theString)); { copy it} 

Ptr(LONGINT(thePtr)+LENGTH(theString))" := 0; 
END; 

{ 0 terminate it} 

Getconfig := thePtr; { bye bye} 
END; 

telMsetMsg 

Your tool will receive telMsetMsg from the Telephone Manager when the application requires 
your tool to set the fields of the telephone record to values that are specified in a string. The 
Telephone Manager will pass a pointer to this string as a parameter to this call. The sample code 
shows how your tool can handle telMsetMsg. 

When passed to your telephone tool's scripting interface code resource, pl will be a pointer to an 
American English null-terminated string that contains tokens representing a configuration record. 

Your tool should return one of the following values: a number less than -1 to indicate an 
ossrr, -1 to indicate a generic error, 0 if there was no problem with the string, or a positive number 
to indicate the character position where parsing was stopped. 

The Telephone Manager automatically calls TEL validate after your tool has responded to 
telMsetMsg. 

FUNCTION SetConfig(hTEL: TELHandle; theSource: Ptr): INTEGER; 

VAR 

pConfig 
paramStr, 
valueStr 
outOfTokens 
return Val 

ConfigPtr; 

Str255; 
BOOLEAN; 
INTEGER; 

{ tool specific config record} 

{ parameter and value strings} 
{ end of the line?} 
{ what to return} 

BEGIN 

{ Init some stuff} 
pConfig := ConfigPtr(hTEL"".config); 
returnVal := noErr; 

IF (theSource· = CHR(0)) THEN 
outOfTokens := TRUE 

ELSE 

outOfTokens := FALSE; 

108 Telephone Manager Developer's Guide 



WHILE NOT outOfTokens DO BEGIN 

(* Build the first token and put it into paramStr *) 

IF (paramStr = 'FOOBAR') THEN BEGIN 
(* Build the next token and put it into valueStr *) 

pConfig',foobar :• valueStr; 

END 
ELSE BEGIN 

(* returnVal ~ location of the paramStr *) 
LEAVE; 

ENO; 

(* index to next token*) 

END; { while } 

SetConfig := returnVal; 
END; 

The localization code resource 

Your telephone tool's localization code resource is responsible for providing the services nece~sary 
to localize your tool. It must handle two messages, telL2English and telL2Intl. 

Your localization code resource should be a resource of type · vloc ·. It should be able to 
handle the parameters shown in the example code. 
FUNCTION vloc(hTEL: TELHandle; msg: INTEGER; pl, p2, p3: LONGINT) LONGINT; 

Valid values for msg are as follows: 
CONST 

telL2English 
telL2Intl 

O; 
l; 

For each of the messages defined here, pl, p2, and p3 take on different meanings. These 
meanings are discussed in the message descriptions that follow. 

telL2Englisb and telL2Intl 

Your tool will receive telL2English from the Telephone Manager when the application requires 
your tool to localize a string to English. When the parameters pl, p2, and p3 are passed to your 
tool, pl will contain a pointer to a localized null-terminated string that contains tokens 
representing a configuration record; p2 will contain a pointer that points to a second pointer. Your 
tool will have to allocate space for this pointer (by calling NewPtr), which contains the American 
English null-terminated configuration string. p3 will contain a language identifier, which is defined 
in the discussion of the Script Manager in Inside Macintosh, Volume V. 

Chapter 3: Writing Telephone Tools 109 



Your tool will receive telL2Intl from the Telephone Manager when the application requires your 
tool to localize a string to a language other than English. When the parameters pl, p2, and pJ are 
passed to your tool, pl will contain a pointer to an American English null-terminated string that 
contains tokens representing a configuration record; p2 will contain a pointer to a second pointer. 
Your tool will have to allocate space for this pointer, which contains the localized configuration 
string. p3 will contain a language identifier, which is defined in the Script Manager in Inside 
Macintosh, Volume V. The next code example shows how your tool can handle both 
telL2English and telL2Intl. 

After executing the code necessary to respond to telL2English or telL2Intl, your 
routine should return NIL if there was a Memory Manager error or if the language requested is not 
available. It should also return any appropriate error code in the status field of the telephone record. 
{ main entry point for vloc resource} 
FUNCTION vloc(hTEL: TELHandle; msg: INTEGER; pl, p2, p3: LONGINT): LONGINT; 
TYPE 

PtrPtr = ·ptr; 

VAR 

outPtr: Ptr; 
procID: INTEGER; 

BEGIN 
outPtr := PtrPtr(p2)·; 
case msg of 

telL2English: 
vloc := Translate( Ptr(pl),outPtr,p3,verUS); 

telL2Intl: 

{ get output pointer} 

vloc := Translate( Ptr(pl),outPtr,verUS,p3); 
end; {case} 
PtrPtr(p2). :s outPtr; 

END; { mytscrDEF} 
{ return output pointer 

{ Translates an input config string from one language to another} 
{ returns 0 if no problem, non zero if there is a problem} 
{ This routine needs to allocate outputStr} 
{ if language is not supported, return 0 but leave outputStr NIL} 

function Translate( inputStr: Ptr; var outputStr: Ptr; 
fromLanguage,toLanguage: longint): longint; 

BEGIN 
END; {Translate} 

110 Telephone Manager Developer's Guide 



con fig: the configuration record 
An application using your tool may save and restore the contents of a configuration record to set 
the state of the telephone at any time. The configuration record, therefore, should be self­ 
contained and should not contain any pointers or handles to other data structures. Your tool 
allocates this record in response to telDefaultMsg. The Telephone Manager, not the tool, de­ 
allocates the configuration record when the application calls TELDispose. 

Chapter 3: Writing Telephone Tools 111 



~---· 



Chapter 4 Writing Your Tool's Main Code Resource 

T H I S C H A P T E R tells you how to write the main code resource for a 
telephone tool. There are at least five other code resources that you need to 

include as part of your tool; they are described in Chapter 3. You should read 
that chapter, as well as Chapters 1 and 2, before reading this chapter. 

This chapter describes the messages, parameters, and data structures that the 
Telephone Manager passes to your tool's main code resource. It also describes 
the messages that your main code resource can send back to the Telephone 
Manager. 

113 



The main code resource 
The main code resource of your tool serves two purposes. The first is to parse messages from the 
Telephone Manager and then to branch to a routine that can handle each message. The second 
purpose is to send messages to the master message handlers of the Telephone Manager, in response 
to activity on the telephone network. 

The main code resource should be a resource of type 'vdef • and should be able to accept the 
parameters shown here: 
FUNCTION vdef(hTEL: TELHandle; pTELTerm: TELTermPtr; 

hDN: TELDNHandle; hCA: TELCAHandle; 

msg: INTEGER; pl, p2, pl: LONGINT) : INTEGER; 

For each of the messages defined here, the first five parameters · vdef' returns, namely hTEL, 

pTELTerm, hDN, hCA, and msg, have the following meanings: 
hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record assigned to terminal hTEL. 

hCA is a handle to a call-appearance record on directory number hDN. msg identifies the 
message. 

The remaining three parameters · vdef • returns, namely pl, p2, and pJ, take on different 
meanings in each message. These parameters are described in the message descriptions later in this 
chapter. 

Your tool can respond to messages by returning either an operating-system error code or one of the 
following four codes: telFeatNotSupp, telFeatNotSub, telFeatNotAvail, or 
te lFea tActi ve. 

telFeatNotsupp means that your tool does not understand the message it received. 
telFeatNotsub means that your tool supports the requested feature, but the feature is not 

subscribed. 
telFeatNotAvail means that, although your tool supports the requested feature and the 

feature is subscribed, the feature was not available when requested. 
telFeatActive means that your tool supports the requested feature, but the feature is 

already active. 

When relaying requests from applications to your tool, the Telephone Manager checks any handles 
passed in the requests, making sure they are on a list of seemingly valid handles. (This list is 
maintained by the Telephone Manager.) But the Telephone Manager can sometimes relay an invalid 
handle-one for a terminal, directory number, or call appearance that your tool no longer supports. 

If your tool receives an invalid handle, it should send one of the following three result codes: 
telBadTermErr (for terminals), telBadDNErr (for directory numbers), or telBadCAErr (for 
call appearances). In addition, your tool should set to-1 the field tRef (of the telephone record), 
dnRef (of the directory-number record), or caRef (of the call-appearance record), depending on 
the type of the invalid handle. 

114 Telephone Manager Developer's Guide 



Messages that the main code resource accepts 
The messages accepted by the main code resource, and their associated values, are as follows. For a 
listing of these messages in numerical order, see the header file TelephoneTools. p (Pascal) or 
TelephoneTools. h (C). 

CONST 

telAcceptCallMsg 

telActivateHsg 

telAlertMsg 

telAnswerCallMsg 

telCADisposeMsg 

telCAEventsSuppMsg 

telCallbackClearMsg 

telCallbackNowMsg 

telCallbackSetMsg 

telCallPickupMsg 

telCALookupMsg 

telCAMsgHandMsg 

telCloseTermMsg 

telClrCAMsgHandMsg 

telClrDNMsgHandMsg 

telClrTermMsgHandMsg 

telConfEstMsg 

telConfPrepMsg 

telConfSplitMsg 

telConnectMsg 

telCountCAsMsg 

telCountDNsMsg 

telDeactivateMsg 

telDeflectCallMsg 

telDialDigitsMsg 

telDisposeMsg 

telDNDClearMsg 

telDNDisposeMsg 

telDNDSetMsg 

telDNEventsSuppMsg 

telDNLookupByindexMsg 

telDNLookupByNameMsg 

telDNMsgHandMsg 

telDNSelectMsg 

telDropMsg 

206; 

•• 6; 

74; 

209; 

200; 

114; 

63; 

216; 

215; 

217; 

111; 

112; 

53; 

113; 

105; 

55; 

231; 

230; 

213; 

204; 

110; 

60; 

7; 

208; 

205; 

1; 

= 

123; 

101; 

122; 

106; 

61; 

62; 

104; 

100; 

210; 

Chapter 4: Writing Your Tool's Main Code Resource 115 



telEventMsg = 5 • . 
telForwardClearMsg ,. 121; 

telForwardSetMsg = 120; 

telGetCAFlagsMsg ,. 202; 

telGetCAinfoMsg ,. 203; 

telGetCAStateMsg = 201; 

telGetDisplayMsg = 75; 

telGetDNFlagsMsg = 103; 

telGetDNinfoMsg = 102; 

telGetHookswMsg = 70; 

telGetinfoMsg = 57; 

telGetVolumeMsg = 72; 

telHoldMsg = 211; 

telidleMsg = 50; 

telintercomMsg = 222; 

telMenuMsg = 4; 

telNewMsg = 0; 

telOpenTermMsg = 51; 

telOtherFeatimplMsg = 65; 

telOtherFeatListMsg = 64; 

telOtherFunctionMsg = 67; 

telPagingMsg = 221; 

telParkCallMsg = 218; 

telRejectCallMsg = 207; 

telResetTermMsg = 52; 

telResumeMsg = 3; 

telRetrieveMsg = 212; 

telRetrieveParkedCallMsg = 219; 

telSetDisplayMsg = 76; 

telSetHookswMsg = 71; 

telSetupCallMsg ,. 115; 

telSetVolumeMsg ,. 73; 

telSuspendMsg = 2 • . 

116 Telephone Manager Developer's Guide 



telTermEventsSuppMsg • 56; 

telTermMsgRandMsg .. 54; 

telToolFunctionsHsg .. 66; 

telTransfBlindMsg .. 214: 

telTransfEstMsg .. 233; 

telTransfPrepMsg .. 232; 

telVoiceMailAccessMsg .. 220; 

The rest of this section describes each of the messages your main code resource should accept 

telAcceptCallMsg 

The Telephone Manager will send telAcceptcallMsg when an application requests that your 
tool accept the incoming call appearance hCA, which must be in the state telCAOfferstate. 

telAcceptCallMsg is intended for phone systems that "offer" incoming calls instead of, or 
in addition to, causing them to alert Cring") immediately, as in most systems. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

hCA is a handle to a call-appearance record on directory number hDN. 

msg identifies the message. 
pl, p2, and p3 are unused. 
When done, your tool should return noErr if the request was handled. 

telActivateMsg 

The Telephone Manager will pass telActivateMsg or telDeactivateMsg to your tool when 
the application requires your tool to perform an action, such as installing or removing a menu from 
the menu bar in response to an activate or deactivate message. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

msg identifies the message. 
hnN, hCA, pl, p2, and p3 are unused. 

Chapter 4: Writing Your Tool's Main Code Resource 117 



telAlertMsg 

The Telephone Manager will send telAlertMsg when an application requests that your tool 
make a ringer attached to the terminal ring-for instance, so that the user can set the volume level 
of the ringer. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

msg identifies the message. 
pl is a pointer to a 2-byte field; it specifies the volume level to which your tool should set the ringer. 

Valid values for pl are O through 100. If pl equals zero, your tool should leave the volume level 
unchanged. If the value of pl exceeds the maximum volume supported by your tool, set the volume 
level to your tool's maximum volume value, and return that value in the field referenced by pl. 

p2 specifies the alerting pattern of the ringer. Your tool should return telAPattNotsupp if 
it does not support the requested alerting pattern. 

hDN, hcA, and pJ are unused. 
When done, your tool should return noErr if the request was handled. 

telAnswerCallMsg 

The Telephone Manager will send telAnswercallMsg when an application requests that your 
tool answer the alerting or offered call appearance hCA. If the castate field of the call appearance 
equals telCAOfferState, your tool should both accept the call appearance and answer it. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

hcA is a handle to a call-appearance record on directory number hDN. 

msg identifies the message. 
pl, p2, and pJ are unused. 
When done, your toot should return O if the request was handled. 

telCADisposeMsg 
Your tool will receive telCADisposeMsg when an application requests that the Telephone 
Manager dispose of a handle to a call-appearance record. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

hCA is a handle to a call-appearance record on directory number hDN. 

msg identifies the message. 
pl, p2, and pJ are unused. 
When done, your toot should perform any necessary cleanup. However, it should not dispose of 

hCA, nor should it dispose any string pointers in the call-appearance record referenced by hCA. The 
Telephone Manager disposes of these. 

6 Important Your tool should not drop a call appearance unless the tool receives the 
message teloropMsg or telDNSelectMsg. Refer to the descriptions of 
these messages for more information. 6. 

118 Telephone Manager Developer's Guide 



telCAEventsSuppMsg 

Your tool will receive telcAEventssuppMsg when an application inquires which types of call 
appearance messages your tool supports. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

msg identifies the message. 
pl points to a field containing a 4-byte mask filled in by your tool. This mask indicates which 

types of call appearance messages your tool supports. 
hCA, p2, and p3 are unused. 
The sample code provides a basic template into which you can code your tool's response ro 

telcAEventssuppMsg. When done, your tool should return O if the request was handled. 
FUNCTION myTELCAEventsSupp (hDN TELDNHandle; VAR eventMask LONGINT) 
VAR 

INTEGER; 

err OSErr; 
BEGIN 

myTELCAEventsSupp:• noErr; 
{ somewhere earlier you did this .•. 

myDNPrivatesA.mycaMessagesSupported :• telCAActiveMsg + telCAProgressMsg + 

telCAConferenceMsg + etc. } 
eventMask :• myDNPrivatesA.mycaMessagesSupported; 

END; 

telCallbackClearMsg 

Your tool will receive telCallbackclearMsg when an application requests that a previous 
callback be cleared from the user's terminal. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

msg identifies the message. 
p 1 is a callback reference value. 
hCA, p2, and p3 are unused. 
When done, your tool should return O if the request was handled. If no callback is set, your tool 

should return telCBErr. If your tool requires a callback reference, and pl is invalid, your tool 
should return telNoCallbackRef. 

telCallbackNowMsg 

The Telephone Manager will send telcallbackNowMsg when an application requests that 
your tool call back a remote terminal, regardless of who set the callback or why. Your tool is 
responsible for checking whether the callback request is valid. 
hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

hCA is a handle to a call-appearance record on directory number hDN. 

msg identifies the message, 

Chapter 4: Writing Your Tool's Main Code Resource 119 



pl is a callback reference value. If your tool has more than one outstanding callback, pl 
should specify which destination is to be called back. (Your tool specified this value previously, 
when processing the corresponding message telcallbackSetMsg.) 

p2 and p3 are unused. 
When done, your tool should return O if the request was handled. If no callback is set, your tool 

should return telCBErr. If your tool requires a callback reference, and pl is invalid, your tool 
should return telNoCallbackRef. 

The series of occurrences that precede a telcallbackNowMsg message differ depending on 
whether the terminal called was busy or unanswered. If one terminal (A) called another (B), and 
Terminal B was busy, the following steps preceded telCallbackNowMsg. First, the application on 
Terminal A called the routine TELcallbackset, causing your tool to receive the message 
telcallbacksetMsg. Next, when Terminal B was no longer busy, your tool sent the message 
callbackNowMsg, which the Telephone Manager then relayed to the application. Finally, the 
application called the routine TELCallbackNow, causing your tool to receive 
telCallbackNowMsg. Your tool should now call back Terminal B. 

On some systems, a "call back on no answer" works as follows: First, the application on 
Terminal A called the routine TELCallbackSet, causing your tool to receive the message 
telCallbackSetMsg. Then, when the network switch notified Terminal B that a callback had 
been set, your tool received the message TELCallbackNow, which the Telephone Manager relayed 
to the application. Finally, the application called the routine TELCallbackNow, causing your tool on 
Terminal B to receive telcallbackNowMsg. Your tool on Terminal B should now call back 
Terminal A. 

telCallbackSetMsg 

The Telephone Manager will send telcallbacksetMsg when an application requests that your 
tool set a callback against the remote directory number specified in call appearance hCA. When done, 
your tool should return O if the request was handled. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 
hDN is a handle to a directory-number record associated with terminal hTEL. 
hCA is a handle to a call-appearance record on directory number hDN. 
msg identifies the message. 
p 1 points to a 2-byte callback reference value. If the telephone network switch returns a 

callback reference, you should return it in the field referenced by pl. 
p2 and p3 are unused. 

telCallPickupMsg 

The Telephone Manager will send telcallPickupMsg when an application requests that your 
tool pick up a call alerting either in a predefined pickup group (p2) or at a specified directory number 
(pl). Your tool should support pl or p2, depending on the kind of network switch your tool 
supports. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 
hDN is a handle to a directory-number record associated with terminal hTEL. 

120 Telephone Manager Developer's Guide 



msg identifies the message. 
pl points to a string of type str2ss that stores the remote directory number where the call 

to be picked up is alerting. 
p2 points to a string of type str2ss that stores a pickup group ID. 
hCA and p3 are unused. 
When done, your tool should return O if the request was handled. 

telCALookupMsg 

Your tool will receive telCALookupMsg when the application wants to obtain a handle to the nth 
call appearance of a specified type. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 
hCA is a handle to the call-appearance record for the nth call appearance of type pl. 
msg identifies the message. 
pl specifies the type of call appearance-internal only (0), external only (1), or all (2). 
p2 is the index: it specifies the nth call appearance. If telcountCAsMsg returned the value 5, 

then valid index values are 1, 2, 3, 4, 5, for identical values of pl and p2. 
pJ is unused. 
When done, your tool should return O if the request was handled. If p2 is invalid, your tool 

should return telBadindex. 
If the index is valid, your tool should fill in the following fields: caState, intExt, call Type, 

dialType, bearerType, rate, confLimit, featureFlags, otherFeatures, and 
telCAPr i va te. Yourtool should not, however, fill in fields of type Str ingPtr. Such fields are 
updated by the Telephone Manager when your tool sends telCAProgressMsg messages of type 
telCAPUpdate and telCAPRouted. Your tool should not change the value of caRef, except as 
warranted by error conditions. 

For any error condition, the tool should place -1 in the caRef field. In addition, if an invalid 
index value was passed, the tool should return telBadindexErr. Or, if your tool does not support 
the call-appearance type specified by pl, it should return telBadCAType or telintExtNotSupp. 

telCAMsgBandMsg 

The Telephone Manager will send telCAMsgHandMsg each time an application requests that your 
tool start sending messages on activity related to call appearances on a specified directory number. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 
hDN is a handle to a directory-number record associated with terminal hTEL. 

hCA is unused. 
msg identifies the message. 
p 1 is the mask of events for which the tool should send messages. 
p2 is the address of the Telephone Manager's master call-appearance message handler. 
pJ points to the globals required by the master message handler p2. 
The Telephone Manager distributes each tool message to all application message handlers 

registered for that type of message. 

Chapter 4: Writing Your Tool's Main Code Resource 121 



The message mask passed in p 1 is a master mask. It is equal to the result of performing a 
logical OR operation on the event masks of all registered call-appearance message handlers. Although 
your tool can ignore the mask passed in pl, the Telephone Manager runs more efficiently if your 
tool sends only the message types specified in this mask. 

The sample code provides a basic template into which you can code your tool's response to 
telcAMsgHandMsg. When done, your tool should return noErr if the request was handled. 

FUNCTION myTELCAMsgHand(hDN : TELDNHandle; eventMask: LONGINT; 
msgHandler: ProcPtr; globals: LONGINT) : INTEGER; 

VAR 
err OSErr; 

BEGIN 
myTELCAMsgHand:• noErr; 

{note that call-appearance message handlers are registered per directory number} 
myDNPrivates·.caEventMask := eventMask; 
myDNPrivates".caMsgHandler :• msgHandler; 
myDNrivates'.caGlobals :• globals; 

END; 

telCloseTermMsg 
The Telephone Manager will send telcloseTermMsg when an application requests that your tool 
close the terminal drivers of the user's terminal. Your tool can update the fields of the telephone 
record when handling this request, but should not disconnect any calls. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 
msg identifies the message. 
hDN, hcA, pl, p2, and p3 are unused. 
The sample code provides a basic template into which you can code your tool's response to 

telCloseTermMsg. When done, your tool should return O if the request was handled. When the 
terminal is closed, you should also send a terminal message of type telTermcloseMsg. Your tool 
should keep a usecount, incrementing it each time tel0penTermMsg is received. If no one else is 
using the driver, it can be closed. 

If your tool encounters errors, it can send a generic te 1 TermErrorMsg and a specific 
tel TermotherMsg to aid in debugging. (For information about handling terminal messages, refer 
to the sections "Handling Messages" and "Routines Your Application Must Provide" in Chapter 2.) 

FUNCTION myTELCloseTerm(hTEL: TELHandle, pTELTerm: TELTermPtr) 
VAR 

err OSErr; 
BEGIN 

myTELCloseTerm:• noErr; 
myTermPrivates'.usecount :• myTermPrivates'.usecount -1; 
if (myTermPrivates'.usecount > 0) 

BEGIN 
myTELCloseTerm := telTermStillNeeded; 
EXIT(myTELCloseTerm); 

END; 

122 Telephone Manager Developer's Guide 



myTermPrivates•.buffer·.csCode :• CloseTerminal; 

err:• PBControl(@myTermPrivates·.buffer, FALSE); 

if (err~> noErr) 

myTELCloseTerm:• telBadTermErr; 

END; 

telClrCAMsgBandMsg 

The Telephone Manager will send telclrCAMsgHandMsg when an application requests that your 
tool stop sending messages about call appearances for a particular directory number. This request 
affects only the requesting application. Other applications using the Telephone Manager will 
continue to receive messages about these call appearances. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

msg identifies the message. 
pl is the new mask of events desired by the Telephone Manager. If there are no more call­ 

appearance message handlers for your tool, the event mask will be zero. 
p2 is the address of the Telephone Manager's master call-appearance message handler. p2 may 

equal zero if pl equals zero. 
hCA and pJ are unused. 
The sample code provides a basic template into which you can code your tool's response.to 

telclrCAMsgHandMsg. When done, your tool should return O if the request was handled. 
FUNCTION myTELClrCAMsgHand(hDN TELDNHandle; eventMask LONGINT; 

msgHandler: ProcPtr) : INTEGER; 
VAR 

err OSErr; 
BEGIN 

{This is where the tool updates its 
private storage regarding which messages 
to send--through eventMask--and how to 
send them--through msgHandler} 

myTELClrCAMsgHand:= O; 
myDNPrivates·.caEventMask := eventMask; 
myDNPrivates".caMsgHandler :• msgHandler; 

END; 

telClrDNMsgBandMsg 

The Telephone Manager will send telclrDNMsgHandMsg to your tool when an application 
requests your tool to stop sending messages on activity related to this directory number. This 
request affects only the requesting application. Other applications using the Telephone Manager 
will continue to receive messages about this directory number. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

msg identifies the message. 

Chapter 4: Writing Your Tool's Main Code Resource 123 



pl is the new mask of events desired by the Telephone Manager. If there are no more 
directory-number message handlers for your tool, the event mask will be zero. 

p2 is the address of the master directory-number message handler. p2 can equal zero if pl 
equals zero. 

hCA and pJ are unused. 
The sample code provides a basic template into which you can code your tool's response to 

telclrDNMsgHandMsg. When done, your tool should return O if the request was handled. 
FUNCTION myTELClrDNMsgHand(hDN TELHandle; eventMask: LONGINT; 

msgHandler: ProcPtr) : INTEGER; 

VAR 
err OSErr; 

BEGIN 
myTELClrDNMsgHand:• noErr; 
myDNPrivates',DNEventMask :~ eventMask; 
myDNPrivates".DNMsgHandler := msgHandler; 

END; 

telClrTermMsgBandMsg 

The Telephone Manager will send telclrTermMsgHandMsg to your tool when the application 
requests your tool to stop sending messages on activity related to this terminal. This request 
affects only the requesting application. Other applications using the Telephone Manager will 
continue to receive messages about the terminal. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

msg identifies the message. 
pl is the new mask of events desired by the Telephone Manager. If there are no more terminal 

message handlers for your tool, the event mask will be zero. 
p2 is the address of the master terminal message handler. p2 can equal zero if p 1 equals zero. 
hDN, hCA, and pJ are unused. 
The sample code provides a basic template into which you can code your tool's response to 

telClrTermMsgHandMsg. When done, your tool should return O if the request was handled. 
FUNCTION myTELClrTermMsgHand(hTEL: TELHandle; eventMask: LONGINT; 

msgHandler: ProcPtr) : INTEGER; 

VAR 
err OSErr; 

BEGIN 
myTELClrTermMsgHand:= O; 
myTermPrivates",termEventMask := eventMask; 
myTermPrivates',termMsgHandler := msgHandler; 

END; 

telConfEstMsg 

Your tool will receive telconfEstMsg when an application requests that one call appearance (hcA) 

be conferenced with another (pl). 

hTEL is a handle to a telephone record for the user's terminal. 

124 Telephone Manager Developer's Guide 



pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 
hDN is a handle to a directory-number record associated with terminal hTEL. 

hCA is a handle to a call-appearance record (for the conference intiator) on directory number hDN. 
msg identifies the message. 
pl is a handle to a second call-appearance record, for the call being added to the conference. 
p2 and pJ are unused 
Your tool should check that this TELConfEstMsg message was preceded by the message 

TELConfPrepHsg for call appearances hCA and pl. If so, your tool can unite the two call 
appearances in a conference. Otherwise, your tool can return an error message. 

When done, your tool should return O if the request was handled. If hCAl was not properly 
prepared, your tool should return telconfRej. 

telConfPrepMsg 

The Telephone Manager will send telconfPrepMsg when your tool should prepare one call, 
appearance to be conferenced with another specified by p 1. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

hCA is a handle to a call-appearance record (for the conference initiator) on directory number hDN. 

msg identifies the message. 
pl is a handle to a second call-appearance record, for the call being added to the conference. 

(Your tool should previously have received the message TELSetupcallMsg to set up this call.) 
p2 is the total number of calls that will make up an entire conference. If the network switch 

requires that this number be sent explicitly, your tool should already have set the 
numToConferenceRequired bit of the otherFeatures field in call-appearance record hCA. If 
the switch does not require this number, your tool should ignore p2. 

pJ is unused. 
If the second call appearance is not in an active state, the tool should proceed as with 

TELConnectMsg to get the call appearance to an active state. 
When done, your tool should return O if the request was handled. 

telConfSplitMsg 

Your tool will receive telconfspli tMsg when an application requests that a call appearance be 
removed from a current conference. Your tool should not drop this call appearance, but should only 
remove it from the conference, allowing it to exist on its own. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

hCA is a handle to a call-appearance record (for the call to be removed) on directory number hDN. 

msg identifies the message. 
pl, p2, and pJ are unused. 
When done, your tool should return O if the request was handled. 

Chapter 4: Writing Your Tool's Main Code Resource 125 



telConnectMsg 

Your tool will receive telconnectMsg when the application requests that a specified call 
appearance proceed to an active state (telCAActivestate), if possible. Your tool should use the 
information in call-appearance record hCA to place the outgoing call. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

hcA is a handle to a call-appearance record on directory number hDN. 

msg identifies the message. 
pl, p2, and p3 are unused. 
Your tool must allow directory numbers that include the following characters: the digits 0 

through 9, the number sign O), the asterisk('), the comma(,), and the exclamation point(!). The 
exclamation point should be treated as a flash-hook. All other characters should be ignored. For 
example, your tool should dial the directory number 1 (408) 555-1212 as 4085551212. 

If the destination directory number includes a comma, your tool should pause for one second 
before dialing subsequent characters. An exclamation point in the destination directory number 
signifies flashhook. 

When done, your tool should return O if the request was handled. 

telCountCAsMsg 

Your tool will receive telcountcAsMsg when the application inquires how many call appearances 
are associated with a particular directory number. Your tool should count only call appearances 
whose state is not telCAidlestate. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

msg identifies the message. 
pl specifies which call appearances should be counted-internal only (0), external only (1), or 

all (2). 
hcA, p2, and pJ are unused. 
When done, your tool should return O if the request was handled. If your tool does not support 

the value of pl, it should return the result code telintExtNotsupp. 

telCountDNsMsg 

Your tool will receive telcountDNsMsg when the application inquires how many directory 
numbers are associated with the user's terminal. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

msg identifies the message. 
pl specifies which directory numbers should be counted-internal only (0), external only (1), or 

all (2). 

126 Telephone Manager Developer's Guide 



p2 specifies whether logical directory numbers are to be counted. If p2 equals zero, all 
directory numbers (logical and physical) of type pl should be counted. If p2 equals 1, only 
physcial directory numbers of type pl should be counted. 

hDN, hCA, and pJ are unused 
When done, your tool should return O if the request was handled. If your tool does not support 

the value in pl, it should return the result code telBadDNType. 

telDeactivateMsg 

Refer to the description of telActivateMsg. 

telDeflectCallMsg 

Your tool will receive telDeflectcallMsg when the application requests that an incoming call 
appearance on one directory number be deflected to another directory number. The state of the 
incoming call appearance must be either telCAOfferState or telCAAlertingState. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

hCA is a handle to a call-appearance record on directory number hDN. 

msg identifies the message. 
pl_ points to a string of type str255 storing the destination directory number, to which the 

call appearance will be deflected. 
p2 points to a string of type str2ss storing the subaddress of the destination directory 

number. If your tool does not support subaddressing, it should ignore p2. 
p3 points to a string of type s tr 2 s s storing the name of the party associated with directory 

number pl. 
Your tool should save the values of pl, p2, and, p3, and should pass them back in the 

message telCADeflectMsg. 

When done, your tool should return O if the request was handled. 
If your telephone network switch does not support a Deflect feature, your tool can mimic this 

feature by performing a blind transfer. To do so, your tool should first answer the call and then 
immediately transfer it to directory number p 1. 

telDialDigitsMsg 

The Telephone Manager will send telDialDigitsMsg when an application requests that your 
tool transmit specified network characters over a call appearance. (For a list of valid network 
characters, refer to the description of telconnectMsg.) 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

hCA is a handle to a call-appearance record on directory number hDN. 

msg identifies the message. 
pl points to a string of type seezss storing the network characters to be transmitted. 
p2 and pJ are unused. 
When done, your tool should return O if the request was handled. 

Chapter 4: Writing Your Tool's Main Code Resource 127 



telDisposeMsg 

Your tool will receive teloisposeMsg when an application requests that the Telephone Manager 
dispose of the handle to a telephone record. Your tool cannot stop the Telephone Manager from 
disposing of the handle, but should perform any necessary cleanup now. 

6 Important Unless your tool receives the message telDropMsg or 
telDNSelectMsg, it should not drop a call appearance. Refer to the 
descriptions of those messages for more information. ,0,. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

msg identifies the message. 
hDN, hCA, pl, p2, and p3 are unused. 
When done, your tool should return O if the request was handled. 

telDNDCl~arMsg 

Your tool will receive telDNDClearMsg when an application requests that an active Do Not 
Disturb feature be cleared on a specified directory number. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

msg identifies the message. 
pl specifies the type of Do Not Disturb feature being cleared. 
hcA, p2, and p3 are unused. 
When done, your tool should return O if the request was handled, or telDNDTypeNotsupp if it 

does not support the value in pl. 

telDNDisposeMsg 

Your tool will receive telDNDisposeMsg when the application has requested that the Telephone 
Manager dispose of a handle to a directory-number record. Your tool cannot stop the Telephone 
Manager from disposing of the handle, but should perform any necessary cleanup now. Also at this 
time, your tool should dispose of the string pointers rmtDN, rmtSubaddress, and 
rmtPartyName, but no others. 

6 Important Unless your tool receives the message telDropMsg or 
telDNSelectMsg, it should not drop a call appearance. Refer to the 
descriptions of those messages for more information. ,0,. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

128 Telephone Manager Developer's Guide 



msg identifies the message. 
hCA, pl, p2, and p3 are unused. 
When done, your tool should return O if the request was handled. 

telDNDSetMsg 

The Telephone Manager will send telDNDSetMsg when your tool should set (activate) a specified 
Do Not Disturb feature on a particular directory number. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

msg identifies the message. 
p 1 specifies the kind of Do Not Disturb feature to be set. 
hCA, p2, and p3 are unused. 
When done, your tool should return O if the request was handled, or telDNDTypeNotsupp if it 

does not support the value in p 1. 

telDNEventsSuppMsg 

The Telephone Manager will send telDNEventssuppMsg when an application inquires what type 
of directory-number messages your tool supports. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

msg identifies the message. 
pl points to a 4-byte mask of message types, to be filled in by your tool. 
hDN, hcA, p2, and p3 are unused. 
The sample code provides a basic template into which you can code your tool's response to 

telDNEventsSuppMsg. When done, your tool should return O if the request was handled. 
FUNCTION myTELDNEventsSupp (hDN TELDNHandle; VAR eventMask LONGINT) 

VAR 

INTEGER; 

err OSErr; 
BEGIN 

myTELDNEventsSupp:s 0; 

{ somewhere earlier you did this ••• 
myDNPrivatesA.myDNMessagesSupported :• telDNForwardMsg + DNDMsg; 

+etc} 
eventMask :• myDNPrivatesA.myDNMessagesSupported; 

END; 

telDNLookupByindexMsg 

Your tool will receive telDNLookupByindexMsg when the application requests a handle to the 
nth directory number of the user's terminal. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

Chapter 4: Writing Your Tool's Main Code Resource 129 



msg identifies the message. 
pl specifies the type of directory numbers to be counted-internal only (0), external only (1), or 

all (2). 
p2 specifies whether logical directory numbers are to be counted. If p2 is zero, directory 

numbers, logical and physical, of type pl are counted. If p2 is 1, only physical directory numbers 
of type p 1 are counted. 

p3 is the index. It specifies the nth call directory number. If telcountDNsMsg returned the 
value 5, then valid index values are 1, 2, 3, 4, 5, for identical values of pl and p2. 

If the index is valid, your tool should fill in the following fields referenced by hDN: dn, dnRef, 

dnPartyName, dnSubaddress, maxAllocCA, curAllocCA, dnType, featureFlags, 

forwarddFlags, numPageIOs, nwnintercomIOs, numPickupIDs, and telDNPrivate. 

After setting the value of dnRef, your tool should not change it. Also, your tool should not 
update the fields relating to forwarding numbers, subaddresses, or party names. These fields are 
updated each time the Telephone Manager receives the message telDNForwardMsg from your tool. 

hCA is unused. 
When done, your tool should return O if the request was handled. If an invalid index value was 

passed, the tool should return telBadindexErr. If the tool does not support the dnType specified 
by pl, it should return telDNTypeNotSupp. For any error condition, the tool should place -1 in the 
dnRef field of directory-number record hDN. The Telephone Manager will then dispose of hDN. 

telDNLookupByNameMsg 

Your tool will receive telDNLookupByNameMsg when the application requests a handle to the 
directory number specified by name. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

msg identifies the message. 
pl points to a string of type str2ss storing the directory number to be looked up. If the 

directory number is invalid, the tool should set the value in dnRef to -1 and return telBadDNErr. 
If the value of pl is valid, the tool should fill in the following fields referenced by hDN: dn, 

dnRef, dnPartyName, dnSubaddress, maxAllocCA, curAllocCA, dnType, featureFlags, 

forwarddFlags, numPageIOs, nwnintercomIOs, numPickupIDs, and telDNPrivate. 

After setting the value of dnRef, your tool should not change it. Also, your tool should not update 
the fields relating to forwarding numbers, subaddresses, or party names. These fields are updated each 
time the Telephone Manager receives the message telDNForwardMsg from your tool. 

hCA, p2, and pJ are unused. 
When done, your tool should return O if the request was handled. 

telDNMsgBandMsg 

The Telephone Manager will send telDNMsgHandMsg when an application requests that your tool 
start sending messages on activity related t() this directory number. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

130 Telephone Manager Developer's Guide 



msg identifies the message. 
p 1 stores the mask of events for which the tool should send messages. 
p2 stores the address of the Telephone Manager's master directory-number message handler. 
pl stores the globals required by the Telephone Manager's message handler. 
hCA is unused 
Please note that the address of the message handler installed by the application is not the same 

one passed by the application when calling TELDNMsgHand. All tools send all messages to master 
message handlers that are part of the Telephone Manager. The Telephone Manager takes your 
message and distributes it to all message handlers that have registered for that message. 

The message mask passed in pl is a master mask. It is equal to the result of performing a 
logical OR operation on the event masks of all registered directory-number message handlers. 
Although your tool can ignore the mask passed in pl, the Telephone Manager runs more efficiently 
if your tool sends only the message types specified in this mask. 

The sample code shows a template into which you can code your tool's response to 
telDNMsgHandMsg. When done, your tool should return O if the request was handled. 
FUNCTION myTELDNMsgHand(hDN: TELDNHandle; eventMask: LONGINT; 

msgHandler: ProcPtr; globals: LONGINT) INTEGER; 
VAR 

err OSErr; 
BEGIN 

myTELDNMsgHand:a noErr; 
myDNPrivates".dnEventMask := eventMask; 
myDNPrivates".dnMsgHandler :• msgHandler; 
myDNrivates".dnGlobals :a globals; 

END; 

telDNSelectMsg 

The Telephone Manager will send telDNSelectMsg when an application requests that your tool 
select or deselect a particular directory number for use. 

All tools should handle this message. 
hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

msg identifies the message. 
pl specifies whether the directory number is to be selected or deselected. If pl equals zero, 

the directory number is deselected; if p 1 equals 1, the number is selected. 
hCA, p2, and pl are unused. 
When done, your tool should return O if the request was handled. 
Selecting a directory number is the programmatic equivalent of pushing a directory-number button 

on a physical telephone set having multiple lines. If your tool receives a second or subsequent 
teloNselectMsg message for a different directory number, it should put on hold any call appearances 
on the currently selected directory number and then select the new directory number. 

Deselecting a directory number is the equivalent of dropping (hanging up) all call appearances on 
that directory number. After deselecting a number, your tool should not automatically select 
another number. 

Chapter 4: Writing Your Tool's Main Code Resource 131 



telDropMsg 

Your tool will receive teloropMsg when an application requests that a call appearance be dropped 
(hung up). 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

hcA is a handle to a call-appearance record on directory number hDN. 

msg identifies the message. 
pl points to a string of type str2ss storing any user-to-user information to be passed at 

the time of the drop. If your tool does not support user-to-user information, this field should be 
ignored. 

p2 and pJ are unused. 
When done, your tool should return O if the request was handled. 

telEventMsg 

The Telephone Manager will pass telEventMsg to your tool when an event occurs in a window 
associated with the telephone tool. The sample code shows a template into which you can code 
your tool's response to telEventMsg. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

msg identifies the message. 
p 1 points to the event record. 
hDN, hCA, p2, and pJ are unused. 
The reference constant field of the window record will contain the handle to the telephone 

record. 
PROCEDURE myEvent(hTEL: TELHandle; theEvent EventRecord); 
CONST 

CancelButton = 2; 
VAR 

the Dialog 

theitem 
DialogPtr; 

INTEGER; 

BEGIN 
{ Check if it is a dialog-related event} 
if IsOialogEvent(theEvent) then 
begin 

{ get the item hit} 
if DialogSelect(theEvent,theDialog,theitem) then 
begin 

if theitem z CancelButton then 
{ Cancel the connection} 

end; 
end 
~lse 

{ Handle the keyoown, updateEvt, mouseDown and any other event here} 
END; 

'--- 
132 Telephone Manager Developer's Guide 



telForwardClearMsg 

Your tool will receive telForwardclearMsg when the application requests that a particular 
Forward feature be cleared on a specified directory number. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 
hDN is a handle to a directory-number record associated with terminal hTEL. 

msg identifies the message. 
p2 is an integer specifying the type of forwarding to be cleared-for instance, Forward On No 

Answer. 
hCA, pl, and p3 are unused. 
When done, your tool should return O if the request was handled, or telFwdTypeNotsupp if it 

does not support the value in p2. Your tool should not clear the strings referenced by directory­ 
number record hDN. The Telephone Manager clears these. 

telForwardSetMsg 

Your tool will receive telForwardSetMsg when an application requests that a specified directory 
number be forwarded to another number. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hoN is a handle to a directory-number record associated with terminal hTEL. 

msg identifies the message. 
p 1 points to the following parameter block: 

TELForwardPB 
forwardDN 

forwardPartyName 

forwardSubaddress 

forwardType 

nwnRings 
END; 

In this block, forwardDN is the directory number to which calls will be forwarded. 
forwardPartyName is the name of the party associated with forwardDN. forwardSubaddress 
is the subaddress associated with forwardDN. forwardType is the type forwarding requested­ 
for example, Forward On No Answer. numRings is used only if forwardType specifies Forward 
On No Answer; it is the number of times the telephone should ring before fowarding occurs. 

hCA, p2, and p3 are unused. 
When done, your tool should return O if the request was handled, or telFwdTypeNotSupp if 

your tool does not support the value in forwardType. Your tool should not update the fields in 
hDN that relate to forwarding. These fields are updated each time the Telephone Manager receives 
the message telDNForwardMsg from your tool. 

RECORD 
StringPtr; 
StringPtr; 
StringPtr; 
INTEGER; 
INTEGER; 

telGetCAFlagsMsg 

The Telephone Manager will send telGetCAFlagsMsg when an application requests that your 
tool update the fields featureFlags and otherFeatures in a specified call-appearance record 
and that your tool return the updated values of those fields. 

Chapter 4: Writing Your Tool's Main Code Resource 133 



hTEL is a handle to a telephone record for the user's terminal, 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 
hcA is a handle to a call-appearance record on directory number hDN. This is the call appearance 

whose featureFlags and otherFeatures fields are to be updated. 
msg identifies the message. 
pl points to a 4-byte field that stores the updated value of the featureFlags field of call­ 

appearance record hCA. Your tool should update this field. 
p2 points to a 4-byte field that stores the updated value of the otherFeatures field of call­ 

appearance record hCA. Your tool should update this field. 
pJ is unused. 
When done, your tool should return O if the request was handled. If call-appearance record hCA 

is invalid, your tool should return telBadCAErr. 

telGetCAinfoMsg 

The Telephone Manager will send telGetCAinfoMsg when an application requests that your tool 
update the values in a specified call-appearance record. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

hCA is a handle to a call-appearance record on directory number hDN. 

msg identifies the message. 
pl, p2, and pJ are unused. 
Your tool should update the following fields: castate, intExt, call Type, dial Type, 

bearerType, rate, confLimit, featureFlags, otherFeatures, and telCAPrivate. 
Your tool should keep the information for each call-appearance record in the tool's private 

storage. By doing so, your tool maintains information about the call appearance. Your tool should 
update the call-appearance record only at the application's request. 

The sample code provides a basic template into which you can code your tool's response to 
telGetCAinfoMsg. When done, your tool should return O if the request was handled. If the call 
appearance has become idle, the tool should put-1 in the caRef field of call-appearance record 
hCA and return telBadCAErr. 

PROCEDURE myTELGetCAinfo(hCA: TELCAHandle) 

BEGIN 
WITH cHAA DO 
BEGIN 

caRef := myCAprivatesA.reference: 
featureFlags := conferenceSub + transferSub + holdSub: 
otherFeatures := whatever: 
{ tool should also fill in} 

END: 

END: 

134 Telephone Manager Developer's Guide 



telGetCAStateMsg 

The Telephone Manager will send telGetcAstateMsg when an application requests that your 
tool update the castate field in a specified call-appearance record and return the updated value of 
that field. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

hcA is a handle to a call-appearance record on directory number hoN. 

msg identifies the message. 
pl points to a 2-byte field that stores the updated value of the castate field of call­ 

appearance record hCA. Your tool should update this field. 
p2 and pJ are unused. 
A tool should update the castate field of call-appearance record hCA only at the 

application's request. 
The sample code provides a basic template into which you can code your tool's response to 

telGetCAStateMsg. When done, your tool should return O if the request was handled. If the hcA 

references an idle call appearance, the caRef should be set to-1 and return telBadCAErr. 

PROCEDURE myTELGetCAState(hCA: TELCAHandle; VAR pl: INTEGER) 

BEGIN 

hCA'",caState :• myprivates".lateststate; 

pl :• myprivates'.lateststate; 
END; 

telGetDisplayMsg 

Your tool will receive telGetoisplayMsg when an application requests the current display text 
of the terminal. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

msg identifies the message. 
pl is the index. It specifies which item of the display is to be retrieved. 
p2_ is a pointer to a text string allocated by your tool. 
pJ is a pointer to a 2-byte value that is the display mode. Your tool should set pJ to the 

current display mode. 
hDN and hCA are unused. 
When done, your tool should return O if the request was handled, or tel IndexNotsupp if 

your tool does not support the value in pl. 

telGetDNFlagsMsg 

The Telephone Manager will send telGetDNFlagsMsg when an application requests that your 
tool update the fields featureFlags and forwardFlags in a specified directory-number record 
and that your tool return the updated values of those fields. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

Chapter 4: Writing Your Tool's Main Code Resource HS 



hDN is a handle to a directory-number record associated with terminal hTEL. This is the 
directory-number record whose featureFlags and forwardFlags fields are to be updated. 

msg identifies the message. 
pl points to a 4-byte field that stores the updated value of the featureFlags field of 

directory-number record hDN. Your tool should update this field. 
p2 points to a 4-byte field that stores the updated value of the forwardFlags field of 

directory-number record hDN. Your tool should update this field. 
hCA and pJ are unused. 
When done, your tool should return O if the request was handled. If directory-number record 

hDN is invalid, your tool should return telBadDNErr. 

telGetDHinfoMsg 

The Telephone Manager will send telGetDNinfoMsg when an application requests that your tool 
update the values in the record referenced by hDN. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 
hDN is a handle to a directory-number record associated with terminal hTEL. 
msg identifies the message. 
hCA, pl, p2, and pJ are unused. 
Your tool should fill in the following fields referenced by hDN: dn, dnRef, dnPartyName, 

dnSubaddress, maxAllocCA, curAllocCA, dnType, featureFlags, forwarddFlags, 
numPageIDs, numintercomIDs, numPickupIDs,and telDNPrivate. 

Your tool should keep the information for each directory-number record in the tool's private 
storage. By doing so, your tool maintains information about the directory number. Your tool 
should update the directory-number record only at the application's request. 

The sample code provides a basic template into which you can code your tool's response to 
telGetDNinfoMsg. When done, your tool should return O if the request was handled. If the 
directory number is invalid, the tool should set the dnRef field to -1 and return telBadDNErr. 
PROCEDURE myTELGetDNinfo(hDN: TELDNHandle) 

BEGIN 
WITH hDN"" DO 
BEGIN 

dnRef :• myDNprivates·.reference; 
directory number :~ myDNprivates".dnName; 
featureFlags :• dndSub + intercomSub + dnSelectSub; 
forwardFlags :• immediateForwardSub + busyForwardSub; 
{ tool should also fill in partyName, maxAllocCA, curAllocCA, 
dnType, numPageIDs, numintercomIDs} 

END; 

END; 

136 Telephone Manager Developer's Guide 



t:elGetBookswMsg 

Your tool will receive telGetHookswMsg when an application inquires about the current physical 
hook state of a device attached to the terminal managed by your tool. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

msg identifies the message. 
pl is the hookswitch type. 
p2 is pointer to a Boolean variable that specifies whether the device is on- or off-hook. Your 

tool updates this value. 
hDN, hCA, and p3 are unused. 
pl specifies the device. You should return the state in the field referenced by p2. 

When done, your tool should return O if the request was handled. 

telGetinfoMsg 

The Telephone Manager will send telGetinfoMsg when an application requests that your tool 
update the values in the record referenced by hTEL. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

msg identifies the message. 
hDN, hCA, pl, p2, and p3 are unused. 
Your tool should fill in the field telPrivate and all the fields of pTELTerm. 

Your tool should keep the information for each telephone record in the tool's private storage, 
and should update the record only at the application's request. 

The sample code provides a basic template into which you can code your tool's response to 
telGetinfoMsg. When done, your tool should return O if the request was handled. If the handle 
references an invalid terminal, the tool should set the tRef field to -1 and return 
telBadTermErr. 

PROCEDURE myTELGetinfo(hTEL: TELHandle, pTELTerm: TELTermPtr) 

BEGIN 
thAA.version :s curTELVersion; 
{ other fields are all filled in by Telephone Manager or app! } 
{ but there's some stuff to fill in the TELTermRecord} 
WITH pTELTermA DO 
BEGIN 

tRef := slotnum; 
featureFlags := hasHandset + hasRinger + canOnHkDial; 
handsetSpeakerVol :s myHandsetVolMax; 
ringerVol := myRingerVolMax; 
numDNs := myDNsConfigured; 
{ etc., etc. } 

END; 

END; 

Chapter 4: Writing Your Tool's Main Code Resource 137 



telGetVolumeMsg 

The Telephone Manager will send telGetvolumeMsg when an application inquires the current 
volume setting of a device attached to the terminal managed by your tool. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 
msg identifies the message. 
p 1 is the volume type. 
p2 points to a 2-byte field that specifies the current volume level. Your tool updates this value. 
pJ points to a 2-byte field that specifies the current state of the device. Your tool updates this 

value. 
hDN and hCA are unused. 
Your tool should check the value of pl. If the value is supported, your tool should place the 

volume level in the field referenced by p2 and place the device state in the field referenced by pJ. 
When done, your tool should return O if the request was handled, or tel vol TypeNotsupp if 

your tool does not support the value in p 1. 

telHoldMsg 

Your tool will receive telHoldMsg when the application requests that a specified call appearance 
(hcA) be put on hold. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

hCA is a handle to a call-appearance record on directory number hDN. 

msg identifies the message. 
pl, p2, and pJ are unused. 
When done, your tool should return O if the request was handled. 

telidleMsg 

The Telephone Manager will send telrdleMsg when an application is giving your tool time to do 
idle processing. This time should be used to check on the progress of current calls and to check for 
the presence of new incoming calls. If progress occurs or calls come in, messages should be sent to 
the master message handler of the Telephone Manager. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

msg identifies the message. 
hDN, hCA, pl, p2, and pJ are unused. 
When done your tool should return O or, if it detects a problem, the message 

tel TermErrorMsg. 

telintercomMsg 

Your tool will receive telintercomMsg when the application requests that an intercom function 
be activated. 

hTEL is a handle to a telephone record for the user's terminal. 

'---.-· 
138 Telephone Manager Developer's Guide 



pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

hCA is a handle to a call-appearance record on directory number hDN. 

msg identifies the message. 
pl is an intercom ID that specifies which intercom function the tool should activate. (The 

application is responsible for labeling the intercom keys.) 
p2 and pJ are unused. 
If your tool supports multiple intercom functions, you should specify how many in the 

numintercomIDs field of directory-number record hDN. 

When done, your tool should return O if the request was handled. If your tool requires an 
intercom ID and the value in pl is invalid, your tool should return telBadintercomID. 

telMenuMsg 

Your tool will receive telMenuMsg when a menu event has occurred in the application. 
hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

msg identifies the message. 
pl contains the menu ID. 
p2 contains the menu item. 
hot-i, hCA, and p3 are unused. 
The sample code provides a basic template into which you can code your tool's response to 

telMenuMsg. When done, your tool should return O if the menu event was not handled, and 1 if it 
was. 
FUNCTION myMenu(hTEL TELHandle; mID INTEGER; mitem: INTEGER) LONGINT; 
BEGIN 

myMenu :2 0; 

{ if mine then 

begin 
myMenu :,. l; 

Process the menu command. 

end; 

END; 

telNewMsg 

Your tool will receive telNewMsg when the application requests that the Telephone Manager 
create a new telephone record. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

msg identifies the message. 
pl is the tool ID, a unique identifier that the Telephone Manager assigns to your tool. Your 

tool should pass the tool ID when sending messages to the Telephone Manager. 
hoN, hCA, p2, and pJ are unused. 

Chapter 4: Writing Your Tool's Main Code Resource 139 



Your tool should fill in any fields that it can in the telephone record specified by hTEL and 
pTELTerm. Your tool may need to open the terminal driver now, before receiving the message 
telOpenTermMsg, to get the configuration information needed to fill in the telephone record. 

When done, your tool should return O if the request was handled. 
It is possible to receive telNewMsg more than once-for instance, if more than one 

application is using the Telephone Manager. As a convenience, in all telNewMsg messages except 
the first, the Telephone Manager places a pointer to your tool's private storage in the telPrivate 
field of telephone record hTEL. But in the first telNewMsg message, telPrivate equals zero. 

Thus, instead of initializing private storage for each telNewMsg message, your tool can, 
optionally, check the telPrivate field and initialize the private storage only if telPrivate 
equals zero. 

telOpenTermMsg 

The Telephone Manager will send telOpenTermMsg when an application requests that your tool 
open any underlying terminal drivers and ready the terminal for use. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 
rnsg identifies the message. 
hDN, hCA, pl, p2, and p3 are unused. 
Your tool can update the information in pTELTerm at this time if any values have changed. 
The sample code provides a basic template into which you can code your tool's response to 

telopenTermMsg. When done, your tool should return O if the request was handled. Also, when 
the terminal is open, your tool should send terminal messages of type telTermopenMsg and 
tel TermEnableMsg, and should increment a use-count variable for the terminal. 

If you encounter errors, you may choose to send a generic tel TermErrorMsg and a specific 
telTermOtherMsg to aid in debugging. (For information about handling terminal messages, refer 
to the sections "Handling Messages" and "Routines Your Application Must Provide" in Chapter 2.) 
PROCEDURE rnyTELOpenTerm(hTEL: TELHandle, pTELTerm: TELTermPtr) 
VAR 

err OSErr; 
BEGIN 

myTELOpenTerm :• noErr; 
err:= OpenDriver(",COOLPHONE", @myTermPrivates".driverRefNwn); 
if (err<> noErr) 
BEGIN 

rnyTELOpenTerm := telBadTermErr; 
myTermPrivates·.usecount :• myTermPrivates·.usecount + 1; 

END; 
END; 

telOtherFeatimplMsg 

Your tool will receive telOtherFeatirnplMsg when an application requests that a feature 
returned by a call to TELOtherFeatureList is to be executed. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

140 Telephone Manager Developer's Guide 



msg identifies the message. 
pl is a handle to the Telephone Manager data structure (for instance, a call-appearance retord) 

needed to implement the fearure. Your tool should check that pl is a valid handle. 
p2 is the feature ID of the requested feature. 
hDN, hCA, and p3 are unused. 
When done, your tool should return O if the request was handled. Because the requested feature 

is specific to your tool, your tool is responsible for all processing of the request. If an error occurs, 
your tool should return a Telephone Manager result code. 

telOtherFeatListMsg 

The Telephone Manager will send telOtherFeatListMsg when the application requests a list of 
the features supported by your tool but for which there is no specific Telephone Manager message. 
Your tool should provide the list as a linked list of type FeatureListPtr. The application can then 
display the list items to the user. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

msg identifies the message. 
pl is pointer of type FeatureListPtr. It points to a list of features. 
hDN, hCA, p2, and p3 are unused. 
The features in the list should be simple ones that require only a feature descriptor and a handle 

to a telephone record, directory-number record, or call-appearance record . 
The advantage ofthis message over telOtherFunctionMsg is that any application can 

display your tool's supplementary features. 
When done, your tool should return O if the request was handled. If an error occurs, your tool 

should return a Telephone Manager result code. 

telOtherFunctionMsg 

The Telephone Manager will send telOtherFunctionMsg when the application requests that a 
tool-specific feature be invoked. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTerrnRecord, part of the telephone record hTEL. 

msg identifies the message. 
p 1 is a pointer to a parameter block. 
p2 is the size of the parameter block (in bytes). 
hDN, hCA, and p3 are unused. 
Note that you must document the parameter block passed in pl and the value passed in p2, 

as well as any result codes. 
When done, your tool should return O if the request was handled. 

telPagingMsg 

Your tool will receive telPagingMsg when the application requests that a paging function be 
activated. 

hTEL is a handle to a telephone record for the user's terminal. 

Chapter 4: Writing Your Tool's Main Code Resource 141 



pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

hCA is a handle to a call-appearance record on directory number hDN. 

ms g identifies the message. 
pl specifies which page ID the tool should implement. (The application is responsible for 

labeling the paging keys.) 
p2 and p3 are unused. 
If your tool supports multiple page functions, it should specify how many such functions in 

the numPageIDs field of the directory-number record hDN. 

When done, your tool should return O if the request was handled. If the application specified an 
invalid page ID, your tool should return telBadPagero. 

telParkCallMsg 

Your tool will receive telParkCallMsg when the application requests that a specified call 
appearance be parked. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

hCA is a handle to the active call appearance that will be parked. 
msg identifies the message. 
pl points to a string of type se ezs s: it stores the ID used to park the call. This value is filled 

in by your tool. 
p2 points to a string of type str2ss; it stores the directory number at which the call will be 

parked. 
p3 is unused. 
When done, your tool should return O if the request was handled. 
The Telephone Manager supports two types of parking. In the first, the application provides a 

park ID, usually a directory number, in p2; and the call is parked with that ID. The application can 
then retrieve the call from that directory number by means of the Telephone Manager routine 
TELRetrieveParkedcall. When using this method, the tool should set the parkWithID bit in 
the call-appearance record hCA. 

In the second method, your tool parks the call and returns parkRetrievero. The application 
can then use the parkRetrieveID to retrieve the call from any telephone connected to the 
network switch. When using this method, the tool should set the parkRetrievewi th ID bit in 
the otherFeatures field of the call-appearance record. 

In the third method, both a parkID and a parkRetrievero are required. Typically, the user 
must enter a one- to four-digit code (the parkro) and retrieve it with the same ID. 

telRejectCallMsg 

Your tool will receive telRejectcallMsg when an application requests that your tool reject a 
specified call appearance. This call appearance must be in either the state telCAAlertingstate or 
telCAOfferState. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTe.m points to a record of type TE:LTe.mRec;9:;d, part of the telephone record hTJ;;L. 

142 Telephone Manager Developer's Guide 



hDN is a handle to a directory-number record associated with terminal hTEL. 
hCA is a handle to a call-appearance record on directory number hDN. In this call-appearance 

record, your tool should set the rejectable bit if it can reject calls. 
msg identifies the message. 
pl, p2, and p3 are unused. 
When done, your tool should return O if the request was handled. If the call appearance is not in 

an alerting state, your tool should not reject the call, but instead should return the result code 
telCANotRejectable. 

telResetTermMsg 

The Telephone Manager will send telResetTermMsg when an application requests that your tool 
reset (close and then open) any underlying terminal drivers. When handling this request, your tool 
can, optionally, soft-boot any underlying hardware. Your tool can also update the information in 
the telephone record if any values have changed. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 
msg identifies the message. 
hDN, hCA, pl, p2, and p3 are unused. 
By handling this request, your tool should clear the state of the terminal, its directory numbers, 

and their call appearances. 
The sample code provides a basic template into which you can code your tool's response to 

telResetTermMsg. When done, your tool should return O if the request was handled. When the 
terminal is reset, your tool should also send a terminal message of type telTermResetMsg. 

If you encounter errors, you may choose to send a generic tel TermErrorMsg and a specific 
telTermOtherMsg to aid in debugging. (For information about handling terminal messages, refer 
to the sections "Handling Messages" and "Routines Your Application Must Provide" in Chapter 2.) 
FUNCTION myTELResetTerm(hTEL: TELHandle, pTELTerm: TELTermPtr) 
VAR 

err OSErr: 
BEGIN 

myTELResetTerm := noErr: 
myTermPrivatesA.buffer.csCode := ResetTerminal; 

err:= PBControl(@myTermPrivatesA.buffer, FALSE): 
if (err<> noErr) 

myTELResetTerm := telBadTermErr: 
END: 

telResumeMsg 

Refer to the description of telsuspend.Msg. 

telRetrieveMsg 

Your tool will receive telRetr ieveMsg when the application requests that the state of a 
specified call appearance be changed from held to active. 

hTEL is a handle to a telephone record for the user's terminal. 

Chapter 4: Writing Your Tool's Main Code Resource lot3 



pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

hCA is a handle to a call-appearance record on directory number hDN. 

msg identifies the message. 
pl, p2, and pl are unused. 
When done, your tool should return O if the request was handled. 

telRetrieveParkedCallMsg 

The Telephone Manager will send telRetrieveParkedCallMsg when an application requests 
that your tool retrieve a parked call. When an application calls the Telephone Manager routine 
TELRetrieveParkedcall, the Telephone Manager sends telSetupcallMsg to your tool before 
sending telRetr ieveParkedCallMsg. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

msg identifies the message. 
pl points to a string of type str2ss storing a parkRetrieveID. If your tool requires a 

parkRetr ieveID, it should set the parkRetrieveID bit of the otherFeatures field in the 
call-appearance record. Otherwise, your tool should ignore pl. 

hCA, p2, and pl are unused. 
When done, your tool should return O if the request was handled. 

telSetDisplayMsg 

Your tool will receive telSetoisplayMsg when an application requests that the display of the 
user's terminal be set 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

msg identifies the message. 
p 1 is the index; it specifies which item of the display will be set. 
p2 is a pointer to a string of type str2ss that contains the new text. 
pl is the display mode to be set. 
hDN and hCA are unused. 
When done, your tool should return O if the request was handled. When the display changes, 

your tool should send a terminal message of type tel TermoisplayMsg. If your tool does not 
support the value in pl, it should return telindexNotsupp. If your tool does not support the 
value in pl, it should return telDisplayModeNotsupp. 

telSetBookswMsg 

The Telephone Manager will send telSetHookswMsg when an application wants to set the 
physical hook state of a device attached to the user's terminal. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

msg identifies the message. 

144 Telephone Manager Developer's Guide 



p 1 is the device type. 
p2 specifies the desired hook state as telDeviceOnHook (on-hook) or telDeviceOffHook 

(off-hook). 
hDN, hCA, and p3 are unused. 
When done, your tool should return O if the request was handled. When the hook state changes, 

your tool should send a terminal message of type tel TermHookswMsg. If your tool does not 
support the value in pl, it should return telHTypeNotSupp. 

Your tool can support telsetHookswMsg only if it can change the physical status of the 
specified device (for instance, if it can tum on a speakerphone). 

telSetupCallMsg 

The Telephone Manager will send telsetupcallMsg when an application requests that your tool 
set up a call appearance for later use. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 
hDN is a handle to a directory-number record associated with terminal hTEL. 
hCA is a handle to a call-appearance record on directory number hDN. In this record, the 

destination directory number, name, and subaddress have been filled in by the Telephone Manager. 
Yourtool should fill in the following fields: caState, intExt, call Type, dial Type, 
bearerType, rate, confLimit, featureFlags, otherFeatures, and telCAPrivate. 

msg identifies the message. 
pl is a pointer to any user-to-user information. If your tool does not support user-to-user 

information, it should ignore this field. 
p2 is the bearer type. 
p3 is the rate. If your tool is using version 1.0 of the Telephone Manager, it must set the bearer 

type and the rate to zero. 
When done, your tool should return O if the request was handled. If any error occurs, your tool 

should place-1 in the caRef field of call-appearance record hCA, to make the Telephone Manager 
dispose of hCA. 

telSet.VolumeMsg 

The Telephone Manager will send telsetVolumeMsg when an application wants to set the 
volume of a device attached to the user's terminal. Your tool can support telsetVolumeMsg only 
if it can change the physical volume setting of the specified device. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 
ms g identifies the message. 
p 1 is the volume type (handset volume, ringer volume, and so on). 
p2 points to a 2-byte field storing the desired volume level. If this level is outside the range your 

tool allows, your tool should store your tool's maximum volume level in the field referenced by p2. 
p 3 is the desired state. 
hDN and hCA are unused. 
When done, your tool should return O if the request was handled. If your tool does not support 

the value in pl, it should return tel VTypeNotSupp. 

Chapter 4: Writing Your Tool's Main Code Resource 145 



telSuspendMsg 

The Telephone Manager will pass telSuspendMsg or telResumeMsg when an application 
requires your tool to perform an action, such as installing or removing a menu from the menu bar in 
response to a suspend or resume event. 

telTermEventsSuppMsg 

The Telephone Manager will send telTermEventssuppMsg when an application inquires what 
type of terminal messages your tool supports. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

msg identifies the message. 
p 1 points to a field containing a 4-byte mask, to be filled in by your tool. This mask indicates 

which types of terminal messages your tool supports. 
hoN, hcA, p2, and p3 are unused. 
The sample code provides a basic template into which you can code your tool's response to 

telTermEventssuppMsg. When done, your tool should return O if the request was handled. 
FUNCTION myTELTermEventsSupp (hTEL: TELHandle; VAR eventMask: LONGINT) 

VAR 

INTEGER; 

err 
BEGIN 

myTELTermEventsSupp:s noErr; 

OSErr; 

{ somewhere earlier you did this .•• 
myTermPrivates".myTermMessagesSupported := telTermHookMsg + telTermVolMsg + 

telTermOpenMsg + etc. } 
END; 

telTermMsgBandMsg 

The Telephone Manager will send telTermMsgHandMsg when an application requests that your 
tool start sending messages about activity related to this terminal. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

msg identifies the message. 
pl is the mask of events for which the tool should send messages. This is a master mask equal 

to the result of performing a logical OR operation on all event masks for registered terminal 
message handlers. 

p2 is the address of the Telephone Manager's master terminal message handler. 
p3 specifies the globals required by the Telephone Manager's message handler. 
hDN and hCA are unused. 
The sample code provides a basic template into which you can code your tool's response to 

te 1 TermMsgHandMsg. When done, your tool should return noErr if the request was handled. 

FUNCTION myTELTermMsgHand(hTEL: TELHandle; eventMask: LONGINT; 
msgHandler: ProcPtr; globals: LONGINT) : INTEGER; 

VAR 
err OSErr; 

146 Telephone Manager Developer's Guide 



BEGIN 
myTELTermMsgHand:• noErr; 
myTermPrivatesA.termEventMask :• eventMask; 
myTermPrivatesA.termMsgHandler := msgHandler; 
myTermPrivatesA.termGlobals := globals: 

END; 

telToolFunetionsMsg 

The Telephone Manager will send tel ToolFunctionsMsg when an application inquires whether 
your tool supports a specified Telephone Manager message. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

msg identifies this message (telToolFunctionsMsg). 
pl specifies the Telephone Manager message about which the application is inquiring. 
p2 points to a Boolean field that specifies whether your tool supports the Telephone Manager 

message specified in pl. This Boolean field should be set to TRUE if your tool supports the 
message, or FALSE if it does not. 

hDN, hCA, and p3 are unused. 
When done, your tool should return O if the request was handled. 

telTransfBlindMsg 

Your tool will receive TELTrans ferBlind when an application requests that a call appearance be 
transferred immediately (without consultation) to a specified directory number. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

hCA is a handle to a call-appearance record on directory number hDN. 

msg identifies the message. 
pl points to a string of type Str2 5 5 storing the directory number to which the call will be 

transferred. 
p2 points to a string of type Str2 5 5 storing the subaddress, if any, of directory number p 1. 

Unless your tool supports subaddressing, it should ignore p2. 
p3 points to a string of type str2 55 storing the name of the party associated with directory 

number pl. 
Your tool should save the value of pl, p2, and p3, and send them in the message 

telCATransferMsg. 

When done, your tool should return O if the request was handled. 

telTransfEstMsg 

Your tool will receive tel Trans fEstMsg when an application requests that one call appearance 
(hcA) be transferred to a second call appearance ( p 1). The user will have consulted with the party at 
p 1. At this time, your tool should transfer hCA to p 1. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

Chapter 4: Writing Your Tool's Main Code Resource 147 



hDN is a handle to a directory-number record associated with terminal hTEL. 

hcA is a handle to a call-appearance record on directory number hDN. This is the call appearance 
for the person being transferred. 

msg identifies the message. 
pl is a handle to a second call-appearance record. (The application should have already prepared 

call appearance hCA by calling the Telephone Manager routine TELTransferPrep.) 111is is the call 
appearance for the person to whom call appearance hCA is being transferred. 

p2 and pJ are unused. 
When done, your tool should return O if the request was handled. 

telTransfPrepMsg 

Your tool will receive telTransfPrepMsg when an application requests that an active call 
appearance be prepared for transfer to a second call appearance. 

hTEL is a handle to a telephone record for the user's terminal, 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

hCA is a handle to a call-appearance record for an active call on directory number hDN. This the 
call appearance to be transferred. 

msg identifies the message. 
pl is a handle to a second call-appearance record. (This call appearance was set up earlier, when 

the application called the Telephone Manager routine TELSetupcall .) 
p2 and pJ are unused. 
If the second call appearance is idle, your tool should proceed as with TELConnectMsg, to 

make that call appearance active. The user can then consult with the party associated with pl. 
When done, your tool should return O if the request was handled. 

telVoiceMailAccessMsg 

Your tool will receive telVoiceMailAccessMsg when an application requests that your tool 
access the voice-mail system of the telephone network switch. 

hTEL is a handle to a telephone record for the user's terminal. 
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL. 

hDN is a handle to a directory-number record associated with terminal hTEL. 

hCA is a handle to a call-appearance record on directory number hDN. 

msg identifies the message. 
pl, p2, and pJ are unused. 
When done, your tool should return O if the request was handled. 

148 Telephone Manager Developer's Guide 



Messages that the main code resource sends 
Telephone tools, like other tools of the Communications Toolbox, accept messages from their 
corresponding manager, the Telephone Manager. In addition, telephone tools send messages to the 
Telephone Manager. Specifically, the main code resource of your tool should send messages to the 
master message handlers of the Telephone Manager. This section describes each of the messages 
that your tool can send. 

6 Important Your tool sends messages by calling the master message handlers of the 
Telephone Manager. They, in tum, relay your information to application 
message handlers. (For descriptions of the messages that applications 
receive from the Telephone Manager, refer to Appendix B.) 6 

The Telephone Manager maintains three master message handlers, one each for the main 
messsage types your tool can send: terminal messages, directory-number messages, and call­ 
appearance messages. Before sending messages of a particular type, your tool must receive from 
the Telephone Manager a message that contains a procedure pointer to the master message handler 
for that type. For terminal messages, your tool must receive tel TermMsgHandMsg; for directory­ 
number messages, telDNMsgHandMsg; and for call-appearance messages, telCAMsgHandMsg. 
Each time the Telephone Manager sends one of these messages, your tool should save the 
procedure pointer contained in the message. In addition, your tool should save the event mask and 
the pointer to the Telephone Manager globals, also contained in the message. Your tool should send 
only messages whose types match those specified in the event mask. 

To send a message of a particular type, your tool should call the corresponding master message 
handler. For example, to send a directory-number message, your tool should call the directory­ 
number master message handler. When calling any master message handler, your tool must pass a 
pointer to a parameter block, which differs depending on the type of message being sent. This 
parameter block is described later in this chapter. 

The messages that can be sent by the main code resource, and their associated values, are as 
follows: 

CONST 
telCAActiveMsg = $00000020 
telCAAlertingMsg = $00000001 

telCACallbackMsg = $00000800 
telCAConferenceDropMsg ,s $00010000 
telCAConferenceMsg = $00000040 
telCAConferenceSplitMsg = $00008000 

telCADeflectMsg = $00002000 
telCADigitsMsg = $00000200 
telCADisconnectMsg = $00000010 

telCAFaxToneMsg = $00800000 
telCAForwardMsg = $00004000 

Chapter 4: Writing Your Tool's Main Code Resource 149 



telCAHoldMsg = $00000100 

telCAidleMsg = $01000000 

telCAintercomMsg = $00200000 
telCAinUseMsg .. $00040000 
telCAModemToneMsg = $00400000 

telCAOfferMsg a $00000002 
telCAOtherMsg a $80000000 
telCAOutgoingMsg = $00000008 
telCAPagingMsg = $00100000 
telCACallParkMsg a $00000400 
telCACallPickupMsg .. $00080000 
telCAProgressMsg .. $00000004 
telCAQueuedMsg = $00020000 

telCARejectMsg = $00001000 

telCASuccessiveAlertMsg = $02000000 
telCATransferMsg = $00000080 
telCAUserUserinfoMsg = $04000000 

telDNDNDMsg .. $00000002 
telDNForwardMsg = $00000001 
telDNOtherMsg = $00008000 
telDNSelectedMsg = $00000008 
telDNVoiceMailMsg = $00000004 

telTermCloseMsg = $00000040 
telTermDisplayMsg = $00000008 
telTermEnableMsg = $00000010 
telTermErrorMsg = $00000100 
telTermHookMsg = $00000001 

'--· 
telTermKeyMsg = $00000002 
telTermOpenMsg = $00000020 
telTermOtherMsg - $00000200 
telTermResetMsg = $00000080 
telTermVolMsg = $00000004 

150 Telephone Manager Developer's Guide 



General call-appearance messages 

The call-appearance messages your tool can send are of several types-for instance, messages about 
conference calls and messages about calls being disconnected. Each type requires that your tool pass 
a different parameter block. 

This section describes the general call-appearance messages: those not requiring an extended 
parameter block. The other types of call-appearance messages are described later in this chapter. 

Here is a list of the general call-appearance messages: 

telCAActiveMsg 
telCADeflectMsg 
telCADisconnectMsg 
telCAForwardMsg 
telCAidleMsg 
telCAinUseMsg 
telCAPagingMsg 
telCACallPickupMsg 
telCAQueuedMsg 
telCASuccessiveAlertMsg 

To send a general call-appearance message, your tool must call the call-appearance master 
message handler passed in the Telephone Manager message telCAMsgHandMsg. When calling this 
message handler, your tool must pass a pointer to the following parameter block: 

telCACallbackMsg 
telCADigitsMsg 
telCAFaxToneMsg 
telCAHoldMsg 
telCAintercomMsg 
telCAModemToneMsg 
telCACallParkMsg 
telCAProgressMsg 
telCARejectMsg 

TELCAGenericMsgPB = RECORD 
toolID : INTEGER; 
tRef INTEGER; 
dnRef INTEGER; 
caRef INTEGER; 

msg LONGINT; 
mtype INTEGER; 

value INTEGER; 
rmtDN StringPtr; 
rmtName : StringPtr; 
rmtSubaddress : StringPtr; 
dialType INTEGER; 

END; 

tool ID is a unique identifier that the Telephone Manager assigns to your tool when sending 
the message telNewMsg. Your tool should save tool ID in private storage. 

tRef is the reference number that your tool assigns to this particular terminal. Do not change 
the value of tRef while the terminal is open. 

dnRef is the reference number that your tool assigns to this particular directory number. Do 
not change the value of dnRef while the directory number is valid. 

caRef is the reference number that your tool assigns to this particular call appearance. Do not 
change the value of caRef while the call appearance is valid. 

msg identifies the message that your tool is sending. 

mtype and value vary in meaning, depending on the message being sent, and are described 
in the description of each message. 

Chapter 4: Writing Your Tool's Main Cod~ Resource 151 



rmtDN points to a string of type seezs s that stores a remote directory number-for 
instance, the directory number being called. 

rmtName points to a string of type Str255 storing a name associated with rmtoN. 

rmtSubaddress points to a string of type str255 storing the subaddress, if any, 
associated with rmtDN. 

dial Type specifies the type of directory number and name contained in rmtDN and 
rmtName (10-digit North Amercan, non-dialable, and so on). 

The rest of this section describes each of the general call-appearance messages that your tool can 
send. 

telCAActiveMsg 

Your tool should send telCAActiveMsg each time an outgoing or incoming call appearance 
becomes active. mtype, value, rmtDN, rmtName, rmtsubaddress, and dial Type are unused 
and set to zero. 

telCACallbackMsg 

Your tool should send telCACallbackMsg each time Call Back activity occurs on a particular call 
appearance. 

mtype returns a callback reference value, if there is one; otherwise, mtype returns 0. value 
specifies whether the callback was set, established, failed, and so on. rmtDN and rmtName specify 
the remote directory number associated with the callback. Set rmtDN, rmtName, rmtSubaddress, 
and dial Type to zero if directory-number information is unavailable or not supported by your 
tool. 

telCADeflectMsg 

Your tool should send telCADeflectMsg each time Call Deflect activity occurs on a particular call 
appearance. Your tool should also send telcAoeflectMsg each time a call is automatically 
deflected as a result of forwarding, if your system provides this information. 

mtype is unused and set to zero. value specifies whether the attempt to deflect the call 
succeeded. rmtoN, rmtName, rmtsubaddress, and dial Type specify the directory number, 
party name, subaddress, and dial type to the call that was deflected. 

telCADigitsMsg 

Your tool should send telCADigitsMsg to indicate that one or more keys were pressed at the 
remote directory number associated with this call appearance. 

mtype specifies whether the key pressed corresponds to an audible dual-tone multiple 
frequency (DTMF) tone. value specifies the ASCII value of the keys pressed. rmtoN, rmtName, 
rmtsubaddress, and dial Type are unused and set to zero. 

152 Telephone Manager Developer's Guide 



telCADisconnectMsg 

Your tool should send telCADisconnectMsg each time an active, held, or conferenced call 
appearance is dropped (hung up) by the local party or the remote party. 

rrntDN, rrntName, rrntSubaddress, and dial Type are unused and set to zero. 

telCAFax'roneMsg 

Your tool should send telCAFaxToneMsg to indicate that a fax tone has been detected on a 
particular call appearance. 

mtype is unused and set to zero. value specifies whether the tone is still present. rmtDN, 
rrntName, rmtSubaddress, and dial Type are unused and set to zero. 

telCAForwardMsg 

Your tool should send telCAForwardMsg to indicate that an outgoing call has been forwarded to 
a new destination. 

mtype is unused and set to zero. value specifies the type of forwarding that occurred. 
rmtDN, rmtName, rmtSubaddress, and dial Type specify the directory number, party name, 
subaddress, and dial type to which the call was forwarded. 

telCAHoldMsg 

Your tool should send telCAHoldMsg each time Hold activity occurs for a call appearance. 
mtype is unused and should be set to zero. value specifies whether the call was held or 

retrieved, or an attempt to hold a call failed. rmtDN, rmtName, rmtsubaddres s, and dial Type 
are unused and set to zero. 

telCAidleMsg 

Your tool should send telCAidleMsg each time a call appearance becomes idle. 
mtype, value, rmtDN, rmtName, rrntSubaddress, and dial Type are unused and set to 

zero. 

telCAintercomMsg 

Your tool should send telCAintercomMsg each time Intercom activity occurs on a particular call 
appearance. 

mtype is unused and set to zero. value specifies whether the attempted Intercom operation 
succeeded. rmtDN, rmtName, rmtSubaddress, and dial Type are unused and set to zero. 

telCAinUseMsg 

Your tool should send telCAinuseMsg to indicate that a particular call appearance is in use, but at 
another terminal. This message is applicable only to multiple-access directory numbers (MADNs). 

mtype, value, rmtDN, rmtName, rmtsubaddress, and dial Type are unused and set to zero. 

Chapter 4: Writing Your Tool's Main Code Resource 153 



telCAModem~oneMsg 

Your tool should send telCAModemToneMsg to indicate that a modem tone has been detected on 
a particular call appearance. 

mtype is unused and set to zero. value specifies whether the tone is still present. rmtDN, 
rmtName, rmtSubaddress, and dial Type are unused and set to zero. 

telCAPagingMsg 

Your tool should send telCAPagingMsg each time that there is paging activity for a call 
appearance. 

mtype is unused and set to zero. value specifies whether the attempt to page succeeded. 
rmtDN, rmtName, rmtSubaddress, and dial Type are unused and set to zero. 

telCACallParkMsg 

Your tool should send telCACallParkMsg each time Call Park activity occurs on a particular call 
appearance. 

mtype is unused and should be set to zero. value specifies whether the call was parked, 
retrieved, or recalled, or failed to be parked or retrieved. rmtDN, rmtName, rmtSubaddress, and 
dial Type specify the directory number, party name, subaddress, and dial type against which the 
call was parked, if this information is available. If Call Park is not available or is not supported by 
your tool, rmtDN, rmtName, rmtSubaddress, and dial Type should be set to zero. 

telCACallPiekupMsg 

Your tool should send telCACallP ickupMsg each time Call Pickup activity occurs on a particular 
call appearance. 

mtype is unused and set to zero. value specifies whether the pickup was successful or failed. 
Messages are also sent to originators if the call was picked up at a directory number other than the 
one dialed. rmtDN, rmtName, rmtSubaddress, and dial Type specify the directory number 
whose call was picked up successfully or unsuccessfully. In the case of a message sent to the 
originator, rmtDN, rmtName, rmtsubaddress, and dial Type specify the directory number that 
picked up the call. 

telCAProgressMsg 

Your tool should send telCAProgressMsg to indicate each change in the state of an outgoing call 
appearance. 

mtype is unused and should be set to zero. value specifies the progress indicator. If value 
is telCAPUpdate or telCAPRouted, rmtDN, rmtName, rmtSubaddress, and dial Type 
specify the updated directory number, party name, subaddress, and dial type. If value is neither 
telCAPUpdate nor telCAPRouted, rmtDN, rmtName, rmtSubaddress, and dial Type are set 
to zero. 

154 Telephone Manager Developer's Guide 



telCAQueuedMsg 

Your tool should send telCAQueuedMsg each time an incoming call is queued for this terminal. 
mtype, value, rmtDN, rmtName, rmtSubaddress, and dial Type are unused and set to 

zero. 

telCARejectMsg 

Your tool should send telCARejectMsg each time Call Reject activity occurs on a particular call 
appearance. This message should also be sent if an outgoing call was rejected by the destination. 

mtype is unused and set to zero. value specifies whether the reject succeeded or failed. 
rmtDN, rmtName, rmtSubaddress, and dial Type are unused and setto zero. 

telCASuccessiveAlertMsg 

Your tool should send telCASuccess i veAlertMsg each time the attached telephone set "rings." 
The application can thereby count rings, answering on the nth ring. 

mtype, value, rmtDN, rmtName, rmtSubaddress, and dial Type are unused and set to 
zero. 

telCAUserUserinfoMsg 

Your tool should send telCAUseruserrnfoMsg each time user-to-user information arrives for a 
call appearance. 

rmtDN stores the user-to-user information. mtype, value, rmtName, rmtSubaddress, and 
dial Type are unused and set to zero. 

Incoming/outgoing call-appearance messages 

This section describes incoming/outgolng call-appearance messages: messages specific to a call 
appearance that is currently corning in or going out. The incoming/outgoing call-appearance 
messages are as follows: 

telCAAlertingMsg 
telCAOfferMsg 
telCAOUtgoingMsg 

Each time your tool sends one of these messages, the Telephone Manager creates a handle to 
the specified call-appearance record and passes this handle to the appropriate applications. If an 
application has already created a call-appearance handle for a particular outgoing call (using the 
routine TELSetupCall), the Telephone Manager creates call-appearance handles for any other 
applications monitoring that call. 

To send an incoming/outgoing call-appearance message, your tool must call the call-appearance 
master message handler passed in the Telephone Manager message telCAMsgHandMsg. When 
calling this message handler, your tool must pass a pointer to the following parameter block: 

Chapter 4: Writing Your Tool's Main Code Resource 155 



TELCAinOutMsgPB 

toolID 

tRef 

dnRef 

caRef 

msg 

mtype 

value 

rmtDN 

rmtName 

rmtSubaddress 

call Type 

dialType 

bearerType 

rate 

routeDN 

routeName 

routeSubaddress 

featureFlags 

otherFeatures 

= RECORD 

telCAPrivate 

INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
LONGINT; 
INTEGER; 
INTEGER; 
StringPtr; 
StringPtr; 
StringPtr; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
StringPtr; 
StringPtr; 
StringPtr; 
LONGINT; 
LONGINT; 
LONGINT; 

END; 

toolID is a unique identifier that the Telephone Manager assigns to your tool when sending 
the message telNewMsg. Your tool should save toolID in private storage. 

tRef is the reference number that your tool assigns to this particular terminal. Do not change 
the value of tRef while the terminal is open. 

dnRef is the reference number that your tool assigns to this particular directory number. Do 
not change the value of dnRef while the directory number is valid. 

caRef is the reference number that your tool assigns to this particular call appearance. Do not 
change the value of caRef while the call appearance is valid. 

ms g identifies the message that your tool is sending. 

mtype is the message type, if any. 

value is the message value, if any. 

rmtoN points to a string of type str2ss that stores a remote directory number-for 
instance, the directory number being called. 

rmtName points to a string of type Str255 storing a name associated with rmtDN. 

rmtsubaddress points to a string of type Str255 that stores the subaddress, if any, 
associated with rmtDN. 

call Type specifies whether the call appearance is direct-inbound, transferred-inbound, 
recalled, and so on. 

dial Type specifies the type of directory number and name contained in rmtoN and 
rmtName (10-digit North Amercan, non-dialable, and so on). 

156 Telephone Manager Developer's Guide 



bearerType and rate are unused but are reserved by Apple for future use. Set these fields 
to zero. 

routeDN points to a string of type str255 that stores a remote directory number. 

routeName points to a string of type str255 that stores a name associated with 
routeDN. 

routesubaddress points to a string of type Str2 55 that stores the subaddress, if any, 
associated with routeDN. 

featureFlags indicates the inital state of the features in the field featureFlags of the 
call-appearance record for caRef. 

otherFeatures indicates the inital state of the features in the field otherFeatures of the 
call-appearance record for caRef. 

telCAPrivate is private data that your tool wants stored in the call-appearance record for 
caRef. 

The rest of this section describes each of the incoming/outgoing call-appearance messages that 
your tool can send. 

telCAAlertingMsg 

Your tool should send telCAAlertingMsg to indicate that an incoming call is in the state 
telCAAlertingState. 

mtype is unused and should be set to zero. 
value is the alerting pattern. It has one of the following values: 

telPattern0 = 0; { Normal Alerting Pattern} 
telPatternl = l; { Alerting Pattern - type 1} 

te1Pattern2 "'2; { Alerting Pattern - type 2} 
te1Pattern3 = 3; { Alerting Pattern - type 3} 
te1Pattern4 = 4; { Alerting Pattern - type 4} 
te1Pattern5 = 5; { Alerting Pattern - type 5} 
te1Pattern6 = 6; { Alerting Pattern - type 6} 
te1Pattern7 = 7; { Alerting Pattern - type 7} 
telPatternOff = 8; { Alerting Pattern - turned off} 
telPatternUndefined = 15; { Alerting Pattern undefined} 

telCAOfferMsg 

Your tool should send telCAOfferMsg to indicate that an incoming call is in the state 
telCAOfferState. 

mtype and value are unused and should be set to zero. 

Chapter 4: Writing Your Tool's Main Code Resource 157 



telCAOutgoingMsg 

Your tool should send telCAOutgoingMsg to indicate that an outgoing call has been initiated 
from the user's terminal. 

mtype is unused and should be set to zero. value is one of the following values: 

telPhysical 

telProgrammatic 

O; 
{ user lifted handset and initiated call} 
1; 
{ Outgoing call initiated programmatically} 

Call-appearance message for transferring calls 

This section describes telCATransferMsg, a message that your tool should send each time 
activity occurs on the Call Transfer feature of a call appearance. 

To send telCATransferMsg, your tool must call the call-appearance master message handler 
passed in the Telephone Manager message telCAMsgHandMsg. When calling this message handler, 
your tool must pass a pointer to the following parameter block: 

TELCATransfMsgPB = RECORD 
toolIO INTEGER; 
tRef INTEGER; 
dnRef INTEGER; 
caRef INTEGER; 
msg LONG INT; 
mtype INTEGER; 
value INTEGER; 
rmtDN StringPtr; 
rmtName StringPtr; 
rmtSubaddress StringPtr; 
dialType INTEGER; 

END; 

toolio is a unique identifier that the Telephone Manager assigns to your tool when sending 
the message telNewMsg. Your tool should save toolID in private storage. 

tRef is the reference number that your tool assigns to this particular terminal. Do not change 
the value of tRef while the terminal is open. 

dnRef is the reference number that your tool assigns to this particular directory number. Do 
not change the value of dnRef while the directory number is valid. 

caRef is the reference number that your tool assigns to this particular call appearance. Do not 
change the value of caRef while the call appearance is valid. 

msg identifies the message that your tool is sending. 

mtype is the message type, if any. 

value is the message value, if any. 

158 Telephone Manager Developer's Guide 



rmtDN points to a string of type Str2 s s that stores the remote directory number to which 
the call wtll be transferred. 

rmtName points to a string of type str2 s s storing a name associated with rmtDN. 

rmtSubaddress points to a string of type Str255 storing the subaddress, if any, 
associated with rmtDN. 

Call-appearance messages for conference calls 

This section describes call-appearance messages that apply to calls being united in a conference: 
telCAConferenceMsg 
telCAConferenceSplitMsg 
telCAConferenceoropMsg 

To send any of these messages, your tool must call the call-appearance master message bandier 
passed in the Telephone Manager message telCAMsgHandMsg. When calling this message handler, 
your tool must pass a pointer to the following parameter block: 

TELCAGenericPB = RECORD 
toolID INTEGER; 
tRef INTEGER; 
dnRef INTEGER; 
caRef INTEGER; 
msg : LONGINT; 
mtype INTEGER; 
value : INTEGER; 

END; 

tool ID is a unique identifier that the Telephone Manager assigns to your tool when sending 
the message telNewMsg. Your tool should save toolID in private storage. 

tRe f is the reference number that your tool assigns to this particular terminal. Do not change 
the value of tRef while the terminal is open. 

dnRef is the reference number that your tool assigns to this particular directory number. Do 
not change the value of dnRef while the directory number is valid. 

caRef is the reference number that your tool assigns to this particular call appearance. Do not 
change the value of caRef while the call appearance is valid. 

ms g identifies the message that your tool is sending. 

mtype is the message type, if any. 

value is the message value, if any. 

The rest of this section describes each of the call-appearance messages for conference calls. 

Chapter 4: Writing Your Tool's Main Code Resource 159 



telCAConferenceDropMsg 

Your tool should send telCAConferenceoropMsg to indicate that a specified call appearance has 
been dropped, not merely split from a conference. 

mtype is unused and should be set to zero. 
value should be set to one of the following values: 
telConferenceDropFailed • O; { CA could not be dropped} 

telConferenceDropped • l; { CA dropped successfully} 

ConfDropByinitiator • 2; { CA dropped because initiator was dropped} 

telCAConferenceMsg 

Your tool should send telCAConferenceMsg to indicate activity-other than the splitting or 
dropping of call-on the Conference feature of a particular call appearance. 

mtype is unused and should be set to zero. 
value should be set to one of the following values: 
telConferencePrepFailed • O; { conference could not be prepared} 

telConferencePending s 1; { conference prepared successfully} 

telConferenceEstFailed a 2; { conference could not be established} 

telConferenceEst s 3; { conference established} 

telCAConferenceSplitMsg 

Your tool should send telcAconferenceSplitMsg to indicate that a specified call appearance 
has been split from a conference (but not dropped). 

mtype is unused and should be set to zero. 
value should be set to one of the following values: 
telconferenceDropFailed • O; { CA could not be dropped} 

telConferenceDropped = l; { CA dropped successfully} 

Directory-number messages 

This section describes directory-number messages: messages your tool can send regarding a 
particular directory number. To send a directory-number message, your tool must call the call­ 
appearance master message handler passed in the Telephone Manager message telDNMsgHandMsg. 

When calling this message handler, your tool must pass a pointer to the following parameter block: 

160 Telephone Manager Developer's Guide 



TELDNMsgPB 

toolID 

tRef 

dnRef 

msg 

mtype 

value 
rmtDN 

rmtName 

rmtSubaddress 
END; 

= RECORD 
INTEGER; 
INTEGER; 
INTEGER; 
LONGINT; 
INTEGER; 
INTEGER; 
StringPtr; 
StringPtr; 
StringPtr; 

tool ID is a unique identifier that the Telephone Manager assigns to your tool when sending 
the message telNewMsg. Yourtool should save toolID in private storage. 

tRe f is the reference number that your tool assigns to this particular terminal. Do not change 
the value of tRef while the terminal is open. 

dnRef is the reference number that your tool assigns to this particular directory number. Do 
not change the value of dnRef while the directory number is valid. 

msg identifies the directory-number message your tool is sending. 

mtype and value vary in meaning according to the message being sent, and are described in 
the description of each message. 

rmtDN points to a string of type str 2 5 5 that stores a remote directory number-for 
instance, the directory number being called. 

rmtName points to a string of type Str2 55 storing a name associated with rmtDN. 

rmtsubaddress points to a string of type str25 5 storing the subaddress, if any, 
associated with rmtDN. 

The rest of this section describes each of the directory-number messages that your tool can send. 

telDNDNDMsg 

Your tool should send telDNDNDMsg to indicate a change in the status of the Do Not Disturb 
feature on particular directory number. 

value specifies whether the Do Not Disturb feature has been activated or cleared, or whether 
an attempt to do so has failed. mtype specifies the type of Do Not Disturb feature affected. 
rmtDN, rmtName, and rmtsubaddress are unused and should be set to zero. 

telDNForwardMsg 

Your tool should send telDNForwardMsg to indicate a change in the status of the Call Forward 
feature on a particular directory number. 

value specifies whether call forwarding has been activated or cleared, or whether an attempt 
to do so has failed. mtype specifies the type of call forwarding affected. rmtDN specifies the 
remote directory number to which calls are forwarded. rmtName and rmtName are a name and 
subaddress associated with rmtDN. 

Chapter 4: Writing Your Tool's Main Code Resource 161 



telDNOtherMsg 

Your tool should send telDNOtherMsg to convey directory-number messages other than those 
listed in this section. 

value and mtype can be set to any values; those values should be described in your tool 
documentation. 

telDNSelectedMsg 

Your tool should send telDNSelectedMsg after selecting or deselecting a directory number. 
value specifies whether the directory number was selected or deselected. mtype, rmtDN, 

rmtName, and rmtSubaddress are unused and should be set to zero. 

telDNVoiceMailMsg 

Your tool should send telDNVoiceMailMsg to indicate a change in the status of the voice-mail 
feature associated with a particular directory number. 

value specifies either that a new voice-mail message is waiting or that all messages have been 
cleared. mtype is unused and should be set to zero. rmtName, rmtDN, and rmtSubaddress 
specify the name, number, and subaddress of the party who left the voice-mail message. If any of 
these items are not available, the corresponding fields should be set to zero. 

Terminal messages 

This section describes terminal messages: messages that your tool can send regarding a particular 
terminal as a whole. To send a terminal message your tool must call the call-appearance master 
message handler passed in the Telephone Manager message telTermMsgHandMsg. When calling 
this message handler, your tool must pass a pointer to the following parameter block: 

TELTermMsgPB 
toolID 

tRef 

msg 
mtype 

value 

END; 

= RECORD 
INTEGER; 

INTEGER; 

LONGINT; 
INTEGER; 

INTEGER; 

toolID is a unique identifier that the Telephone Manager assigns to your tool when sending 
the message telNewMsg. Your tool should save tool!o in private storage. 

tRef is the terminal reference number that your tool assigns to this particular terminal. Do 
not change the value of tRef while the terminal is open. 

msg identifies the terminal message your tool is sending. 

mtype and value vary in meaning according to the message being sent, and are described in 
the description of each message. 

The rest of this section describes each of the terminal messages that your tool can send. 

162 Telephone Manager Developer's Guide 



telTermCloseMsg 

Yourtool should send telTerrnCloseMsg after closing the terminal driver. value and mtype 
are unused and should be set to zero. 

telTermDisplayMsg 

Your tool should send telTermDisplayMsg after changing the display. value specifies the 
type of display information that changed. mtype specifies the current display mode. 

telTermEnableMsg 

Your tool should send tel TermEnableMsg once it can communicate with the terminal. mtype is 
unused and should be set to zero. value indicates whether communication with the terminal is 
enabled. 

telTermErrorMsg 

Your tool should send telTermErrorMsg after a terminal error has occurred. value and mtype 
are unused and should be set to zero. 

This message tells the application only that an error has occurred; it does not specify the exact 
error. Send telOtherMsg to specify the exact error. 

telTermHookMsg 

Your tool should send tel TermHookMsg each time the physical state of an attached device 
changes. For instance, if someone lifts the hookswitch of a phone that is attached to the terminal, 
your tool should send telTermHookMsg. value specifies the state of the hookswitch, and 
mt ype specifies the device type. 

telTermKeyMsg 

Your tool should send tel TermKeyMsg each time a key is physically pressed on an attached 
telephone set. 

value specifies either the ASCII value of the key or a key feature code. mtype specifies 
whether the the key pressed was a keypad key (a digit between O and 9, the number sign, or the 
asterisk) or a feature key (such as Hold or Conference). 

telTermOpenMsg 

Your tool should send telTermopenMsg after opening the terminal driver. value and mtype 
are unused and should be set to zero. 

Chapter 4: Writing Your Tool's Main Code Resource 163 



telTermOtherMsg 

Your tool should send telTermotherMsg to convey terminal-related messages other than those 
listed in this section. For example, to alert an application that a terminal driver has encountered an 
error, you could define and send a telTermotherMsg message. 

value and mtype can be set to any values; those values should be described in your tool 
documentation. 

telTermResetMsg 

Your tool should send telTermResetMsg after resetting the terminal driver. 
value and mtype are unused and should be set to zero. 

telTermVolMsg 

Your tool should send telTermvolMsg after changing the volume of a device. 
value specifies the new volume level. mtype specifies the device on which the volume has 

been changed. 

164 Telephone Manager Developer's Guide 



Appendix A Result Codes for Routines 

T H I S A P P E N D I X lists and describes the result codes returned by 
Telephone Manager routines. 

Each result code is of data type TELErr, which is the same as the data type 
ossrr. For information about osse-, refer to Volume II of Inside 
Macintosh and the include file types. p. 



Result Code 

noErr 

telAlreadyOpen 

telAPattNotSupp 

telBadAPattErr 

telBadBearerType 

telBadCAErr 

telBadDNErr 

telBadDNDType 

telBadDNType 

telBadFeatureID 

telBadFunction 

telBadFwdType 

telBadHandErr 

telBadHTypeErr 

telBadindex 

telBadinterComID 

telBadintExt 

telBadLevelErr 

telBadPageID 

telBadParkID 

telBadPickupGroupID 

telBadProcErr 

telBadRate 

telBadSelect 

telBadStateErr 

telBadTermErr 

telBadVTypeErr 

Meaning 

The routine finished without error. 

The terminal is already open. 

The tool does not support this alerting pattern. 

The alerting pattern is invalid. 

The bearer type is invalid. 

The call-appearance handle is invalid or not found. 

The directory-number handle is invalid or not found. 

The Do Not Disturb type is invalid. 

The directory-number type is invalid. 

The feature ID is invalid. 

The message code is invalid. 

The forward type is invalid. 

The handle is invalid. 

The hook type is invalid. 

The index is invalid. 

The intercom ID is invalid. 

The internal/external specifier is invalid. 

The volume-level setting is invalid. 

The page ID is invalid. 

The park ID is invalid. 

The pickup-group ID is invalid. 

msgProc is invalid. 

The rate is invalid. 

Cannot select or deselect the directory number. 

The device state is invalid. 

The telephone record handle is invalid or not found. 

The volume type is invalid. 

166 Telephone Manager Developer's Guide 



telCANotAcceptable 

telCANotDeflectable 

telCANotRejectable 

telCAUnavailable 

telCBErr 

telChooseAborted 

telChooseCancel 

telChooseDisaster 

telChooseFailed 

telChooseOKMajor 

telChooseOKMinor 

telChooseOKTerrnChanged 

telConfErr 

telConfLimitErr 

telConfLirnitExceeded 

telConfNoLimit 

telConfRej 

telDNDNotSupp 

telDNTypeNotSupp 

This call appearance is not "acceptable." 

This call appearance is not "deflectable." 

This call appearance is not "rejectable." 

A new call appearance is not "available." 

The specified Call Back feature has not been previously set. 

The application user tried to change the tool settings while 
the terminal was running-that is, after the application has 
called TELOpenTerm and before the application has called 
TELCloseTerm. 

The user clicked the Cancel button of the dialog box. 

The routine failed because no tools were found in the 
Extensions folder. The telephone record has been destroyed. 
NIL is returned in the telephone record handle. 

Attempt to choose a tool or to change settings of the 
current tool failed. The telephone record remains unchanged. 

The application user clicked the OK button of the dialog box 
after choosing a different tool or changing the settings of 
the current tool. 

The application user clicked the OK button of the dialog box 
but did not change the settings of the telephone tool. 

The application user clicked on the OK button of the dialog 
box after choosing a different tool or changing the settings 
of the current tool. The terminal reference number (tRef) 
has changed. 

The call appearance specified in hTELCAl is not the 
conference initiator. 

The limit specified is too high for this configuration. 

Attempted to conference more call appearances than the 
network switch allows. 

A limit is required, but none was specified. 

The conference request was rejected. 

The Do Not Disturb type is not supported. 

The directory-number type is not supported. 

Appendix A: Result Codes for Routines 167 



telFeatActive 

telFeatNotAvail 

telFeatNotSubscr 

telFeatNotSupp 

telFwdTypeSupp 

telHTypeNotSupp 

telindexNotSupp 

telintExtNotSupp 

telinitFailed 

telModeNotSupp 

telNoCallbackRef 

telNoCommFolder 

telNoMemErr 

telNoOpenErr 

telNoSuchTool 

telNoTools 

telPBErr 

telStateNotSupp 

telStillNeeded 

telTerrnNotOpen 

telTransfErr 

telTransfRej 

telUnknownErr 

telVTypeNotSupp 

This feature is already active. 

This feature is subscribed but not available. 

This feature is not subscribed. 

The tool does not support the specified feature program call. 

The tool does not support this type of forwarding. 

The tool does not support this hook type. 

The tool does not support this index. 

The tool does not support this intExt type. 

Cannot initialize the Telephone Manager. 

The tool does not support this display mode. 

You must supply a callback reference value. 

Cannot find the Extensions folder. 

No memory to allocate a handle or internal storage. 

Cannot open the terminal. 

Cannot find a tool with specified name. 

Cannot find any telephone tools in the Extensions folder. 

The format of the parameter block is invalid. 

Device state is not supported by the tool. 

Another user still needs the terminal driver. 

The terminal has not yet been opened by the TELOpenTerm 

routine. 

The implicit transfer was not prepared. 

The transfer request was rejected. 

Cannot set the configuration. 

Volume type is not supported by this tool. 

168 Telephone Manager Developer's Guide 



Appendix B Message Codes for Applications 

T H I S A P P E N D I X lists and describes the message codes that 
application message handlers receive from the Telephone Manager. The 
message codes are listed alphabetically and are presented in three groups: call­ 
appearance message codes, directory-number message codes, and terminal 
message codes. 

169 



Call-appearance message codes for applications 
The message codes in this section relate to specific call appearances. For information on the format 
and parameters of call-appearance messages, refer to the template for call-appearance message 
handlers (MyCAMsgHandler) in the section "Routines Your Application Must Provide" in Chapter 2. 

telCAActiveMsg 

Description telCAActiveMsg indicates that the call appearance hTELCA has been successfully 
connected to the destination and that conversation or data is free to flow over the 
connection. Your application receives this message if you connect with TELConnect or 
if the user has placed a call manually. This message is received at the destination when a 
successful call is made to TELAnswer or when the remote party manually answers the 
telephone. mtype, value, and msginfo are unused and set to zero. 

telCAAlertingMsg 

Description telcAAlertingMsg specifies that an incoming call hTELCA is alerting at this terminal. 

mtype is unused and set to zero. 

value is the alerting pattern, if any. Some switches assign certain ring patterns to certain 
calls. For instance, a switch might assign one pattern for outside calls, another for data 
calls, and so on. value is assigned one of the following values: 

telPattern0 = 0; { Normal Alerting Pattern} 
telPatternl = 1; { Alerting Pattern - type 1 

te1Pattern2 = 2; { Alerting Pattern - type 2 
telPatternJ = 3; { Alerting Pattern - type 3 
te1Pattern4 = 4; { Alerting Pattern - type 4 

telPatternS = S; { Alerting Pattern - type 5 } 

te1Pattern6 = 6; { Alerting Pattern - type 6 ·} 
te1Pattern7 = 7; { Alerting Pattern - type 7 } 

telPatternOff = 8; { Alerting Pattern - turned off} 
telPatternUndefined "'15; { Alerting Pattern undefined} 

msginfo is unused and set to zero. 

170 Telephone Manager Developer's Guide 



telCACallbackMsg 

Desert ption telCACallbackMsg gives information about activities related to Call Back features. This 
message is sent when the user presses the Call Back key or when your application calls 
TELCallbackSet or TELCallbackClear. 

hTELCA is set to zero if value equals telCallbackNowAvail. 

mType returns a callback reference value, if one is used when value e9uals 
telCallbackNowAvail, telCallbackDesired, or telCallbackDesiredCleared. 

Otherwise, mType is unused and set to zero. 

value is as follows: 
telCallbackCleared 
telCallbackEst 
telCallbackNowAvail 

telCallbackDesired 

,. 0; { 

1; { 
,. 2; { 

= 4; { 

telCallbackDesiredCleared 

telCalledback 

Callback has been cleared, hTELCA is zero.} 
Callback has been setup/established,} 
Call can be called back with TELCallbackNow. 
CA is NIL, } 
A user has called this terminal, 
received no answer, and requests that 
this terminal call the user back. 
hTELCA is zero.} 

5; { Callback for no answer no longer desired. 
hTELCA is zero.} 

6; { Callback has successfully occurred. } 

msgrnfo points to the following structure: 
TYPE 
CAGenericMsgRec 

rmtDN 
rmtName 
rmtSubaddress 
dialType 

END 

= RECORD 
StringPtr; 
StringPtr; 
StringPtr; 
INTEGER; 

If value is telCallbackCleared, telCallbackEst, or telCallbackFailed, 

rmtDN specifies the remote directory number for which callback has been set, and 
rmtName specifies the name of the party associated with that directory number. If 
value is telCallbackNowAvail, rmtDN and rmtName specify the directory number 
and party name to be called back. If value is telCallbackDesiredCleared or 
telcallbackoesired. rmtoN specifies the remote directory number for which 
callback is desired and rmtName specifies the name of the party associated with that 
directory number. 

rmtsubaddress indicates the subaddress, if any, associated with rmtDN. dial Type 

indicates the "dialability" of the number specified in rmtDN. 

Appendix B: Message Codes for Applications 171 



telCAConferenceDropMsg 

Description telCAConfereneeDropMsg specifies that hTELCA has been dropped from a conference. 
This message will be sent when the application calls TELDrop and the hTELCA is part 
of a conference. mtype is unused and set to zero. value is set to one of the following 
values: 

telConferenceDropFailed 
telConferenceDropped 

= O; 
= 1; 

{ CA could not be dropped} 
{ CA dropped successfully} 

msginfo points to the following structure: 

TYPE 
CAConfMsgRec 
relatedCA 
END 

RECORD 
TELCAHandle; 

relatedCA specifies a handle to the conference initiator (hTELCA • •. relatedcA) 

telCAConferenceMsg 

Description telCAConferenceMsg specifies that conference activity is occurring for hTELCA. This 
activity could be occurring because of calls to TELConferencePrep or 
TELConferenceEstablish, or because the user is manually initiating a conference. 
mtype is unused and set to zero. value is set to one of the following values: 

telConferencePrepFailed = O; { conference could not be prepared} 

telConferencePending = 1; { conference prepared successfully 

telConferenceEstFailed = 2; { conference c~uld not be established 

telConferenceEst = 3; { conference established} 

msginfo points to the following structure: 
TYPE 
CAConfMsgRec 
relatedCA 
END 

RECORD 
TELCAHandle; 

relatedCA specifies a handle to the conference initiator for values of 
telConferenceEstFailed and telConferenceEst. Otherwise, relatedCA is zero. 

telCAConferenceSplitMsg 

Description telCAConferenceSplitMsg specifies that conference-splitting activity is occurring for 
hTELCA. This message will be sent when the application calls TELConferenceSplit. 

mtype is unused and set to zero. value is set to one of the following values: 

172 Telephone Manager Developer's Guide 



telConferenceSplitFailed 
telConferenceSplitEst 

=- Oi 
= 1; 

CA could not be split} 
CA split successfully} 

msgrnfo points to the following structure: 
TYPE 
CAConfMsgRec "' RECORD 
relatedCA : TELCAHandle; 
ENO 

relatedCA specifies a handle to the conference initiator. 

telCADef lec:tMsg 

Description telCADeflectMsg gives information about activities related to Call Deflect features. 
This message is sent when the user presses the Call Deflect button or when your 
application calls TELDeflectcall. This message can be received on either end of a call 
appearance. mtype is unused and set to zero. value is as follows: 

telCallDeflectFailed = 0; 
telCallDeflectEst = 1; 
telCallDeflectRecall = 2; 
telCallDeflected = 3; 

telAutoDeflectNoAnswer = 4; 

telAutoDeflectBusy = 5; 

telAutoDeflectimmediate 6; 

{ attempt to deflect call has failed} 
{ call successfully deflected} 

deflected call has been recalled} 
message to originator that call 
was deflected to rmtDN} 
a call was automatically deflected 
from this terminal as a result 
of call forwarding on noanswer} 

{ a call was automatically deflected 
from this terminal as a result 
of call forwarding on busy} 

{ a call was automatically deflected 
from this terminal as a result 
of immediate call forwarding} 

msginfo points to the following structure: 
TYPE 
CAGenericMsgRec = RECORD 

rmtDN StringPtr; 
rmtName StringPtr; 
rmtSubaddress StringPtr; 
dial Type INTEGER; 

ENO 

rmtDN and rmtName specify the directory number and user name to which the call was 
deflected. dial Type indicates the "dialability" of the number specified in rmtDN. 

Appendix B: Message Codes for Applications 173 



telCADigitsMsg 

Description telCADigitsMsg indicates that digits are being pressed by the destination user. (The 
physical terminal message handler would handle keys pressed at the local keypad.) mtype 
specifies whether or not the signaling is audible (in-band DTMF). 

telDigitAudible 

telDigitNotAudible 

= O; 
= l; 

{ Digits audible} 

{Digits not audible} 

value specifies the ASCII keypad digit sent by the remote user (a digit between' 0 and 9, 
the number sign, or the asterisk). msginfo is unused and set to zero. 

telCADisconnectMsg 

Description telCADisconnectMsg specifies that a call has been disconnected. 

mtype specifies the party responsible for the disconnect: 

telLocalDisconnect 

telRemoteDisconnect 

O; 
l; 

{ This user responsible for disconnect} 

{ Remote party responsible for disconnect} 

Value specifies the reason for the disconnect and is set to one of the following values: 

telCADNormal = 1; { Normal disconnect} 

telCADBusy •• 2; { Remote user busy} 

telCADNoResponse = 3; { Remote not responding 

telCADRejected = 4; { Call rejected} 

telCADNumberChanged = 5; { Number changed} 

telCADinvalidDest : 6; { Invalid destination address} 

telCADFacilityRejected ~ 7; { Requested facility rejected} 

telCADUnobtainableDest - 9; { Destination not obtainable} 

telCADCongested '" 10; { Network congestion} 

telCADincompatibleDest •• 11; { Incompatible destination} 

telCADTimeout = 12; { Call timed out 

telCADUnknown = 15; { Reason unknown} 

msginfo is unused and set to zero. 

useruserinfo points to any user-to-user information sent with the disconnect from 
the remote end. Not all switches support the sending of user-to-user information at 
disconnect time. 

174 Telephone Manager Developer's Guide 



telCAFaxToneMsg 

Description telCAFaxToneMsg specifies that a fax tone has been detected on hTELCA. mType is 
unused and set to zero. value is as follows: 

telFaxToneoetected 

telFaxToneCleared 

= O; 
~ 1; 

Fax Tone was detected} 

Fax Tone went away} 

msginfo is unused and set to zero. 

telCAForwardMsg 

Description telCAForwardMsg is sent to the originator of a call appearance when the call has been 
forwarded to a new directory number. The receiver of the forwarded call will receive a 
telCAAlertingMsg or telCAOfferMsg message specifying that the incoming call has 
been forwarded by another directory number. The set that forwarded the call will receive 
a telcAoeflectMsg message. 

mtype is unused and set to zero. value indicates the type of call forwarding that 
occurred and is set to one of the following values: 

telForwardimmediate = 1; 

telForwardBusy = 2; 

telForwardNoAnswer = 3; 

Call forwarding immediate} 

Call forwarding on busy} 

{ Call forwarding on no answer} 

msginfo points to the following structure: 
TYPE 
CAGenericMsgRec 

rmtDN 

rmtName 
rmtSubaddress 
dialType 

END 

RECORD 

StringPtr; 

StringPtr; 

StringPtr; 

Short; 

rmtDN, rmtName, and rmtSubaddress specify the directory number, user name, and 
subaddress (if any) to which the call was forwarded. dial Type indicates the "dialability" 
of the number specified in rmtDN. 

AppendiX B: Message Codes for Applications 175 



telCAHoldMsg 

Description telCAHoldMsg specifies that hold activity is occurring on this call appearance. This 
message is sent when the user presses the Hold key or when your application calls 
TELHold or TELRetrieve. mtype is unused and set to zero. value is set to one of 
the following values: 

telHoldCleared 

telHoldEst 

telHoldFailed 

• O; 
1; 

:z: 2; 

{ hold was cleared} 

{ hold established} 

{ hold could not be established} 

msginfo is unused and set to zero. 

telCAidleMsg 

Description telCAidleMsg indicates that the state of the call has changed to telCAidlestate. 

mtype, value, and msginfo are unused and set to zero. 

telCAintercomMsg 

Description telCAintercomMsg specifies that activity relating to the Intercom feature has 
occurred. This message is received after a call to TEL Intercom. mType specifies the 
intercom ID, if any. value is as follows: 

telintercomEst 

telintercomComplete 

telintercomFailed 

O; 
= l; 

2; 

Intercom was successful} 

{ Intercom activity completed} 

{ intercom failed} 

msginfo is unused and set to zero. 

telCAinUseMsg 

Description telCAinuseMsg indicates that the specified call appearance is part of a multiple-access 
directory number (MADN) and is in use. mtype and msginfo are unused and set to 
zero. value is set to one of the following values: 

inUsePrivate = O; { MAON in use; cannot be accessed} 

inUseCanAccess = l; { MAON in use; others can join in} 

inusecanMakePrivate = 2; { MAON in use; any MAON group member can 

access it and make it private} 

inUseClear = 3; { MAON no longer in use} 

176 Telephone Manager Developer's Guide 



telCAModemToneMsg 

Description telCAModemToneMsg specifies that a modem tone has been detected on hTELCA. 

mType is unused and set to zero. value is as follows: 
telModemToneDetected s 0; 
telModemToneCleared = 1; 

{ Modem Tone was detected} 
{ Modem Tone went away} 

msginfo is unused and set to zero. 

telCAOfferMsg 

Description telCAOfferMsg specifies that an incoming call hTELCA is being offered to this 
terminal. 

mtype and value are unused and set to zero. msginfo is unused and set to zero. 

telCAOtherMsg 

Description telCAOtherMsg is available for use by tools to relay tool-specific messages. 

The tool defines the value of mtype, value, and msginfo. 

telCAOutgoingMsg 

Description telCAOutgoingMsg specifies that an outgoing call has been initiated. mType is unused 
and set to zero. value is as follows: 
telPhysical 
telProgrammatic 

0; 
1; 

User lifted handset and initiated call} 
Outgoing call initiated programmatically} 

If value is telPhysical, a new call appearance has been allocated, and its handle is 
available in hTELCA. If instead value is telProgrammatic, and your application 
initiated the telephone call, the value of hTELCA is equal to the hTELCA value returned 
by TELSetupcall. (If your application does not recognize hTELCA, some other 
application initiated the call.) 

rmtDN is unused and set to zero. If the application wishes to know the rmtoN and 
name, it should inspect the record pointed to by hTELCA. 

Appendix B: Message Codes for Applications 177 



telCAPagingMsg 

Description telCAPagingMsg specifies that activity relating to paging has occurred. This message is 
received after a call to TELPaging. mType specifies the paging ID, if any. value is as 
follows: 

telPageEst 
telPageComplete 
telPageFailed 

= O; 
=- 1; 
a 2; 

{ Paging was successful} 
{ Paging activity completed} 
{ Paging failed} 

msginfo is unused and set to zero. 

telCACallParkMsg 

Description telCACallParkMsg gives information about activities related to Call Park features. This 
message is sent when the user presses a Call Park key or when your application calls 
TELCallParkSet or TELCallParkclear. mType is unused and set to zero. value is 
as follows: 

telCallParkEst = 1; 
telCallParkRetrieveEst = 2; 

telCallParkFailed = 3; 
telCallParkRetrieveFailed = 4; 

telCallParkRecall = 5; 

msginfo points to the following structure: 

TYPE 

Call has been successfully parked 
Parked call has been successfully 
retrieved} 
Attempt to setup call park has failed 
Attempt to retrieve parked call 
failed} 
Call park has been recalled} 

CAGenericMsgRec 
rmtDN 
rmtNarne 
rmtSubaddress 
dialType 

= RECORD 
StringPtr; 
StringPtr; 
StringPtr; 
INTEGER; 

END 

rmtDN, rmtNarne, and. rmtSubaddress specify the directory number, user name, and 
subaddress against which the call was parked, if the network switch parks calls against 
directroy numbers. dial Type indicates the "dialability" of the number specified in 
rmtDN. 

178 Telephone Manager Developer's Guide 



telCACallPickupMsg 

Description telCACallPickupMsg specifies the success or failure of a call pickup at the pickup end, 
or specifies to the call originator that the call was picked up at a different directory 
number. mType is unused and set to zero. value is as follows: 

telCallPickupEst = O; { Call pickup was successful} 
telcallPickupFailed • 1; { Call pickup failed} 
telCallPickedUp = 2; { Message to originator that call was picked 

up at a different dn} 

msginfo points to the following structure: 
TYPE 
CAGenericMsgRec - RECORD 

rmtDN StringPtr; 
rmtName StringPtr; 
rmtSubaddress StringPtr; 
dial Type INTEGER; 

END 

For telCallPickupEst and telCallPickupFailed, rmtDN and rmtSubaddress 
identify the directory number and subaddress whose call was picked up successfully or 
unsuccessfully. For telCallPickedup, rmtDN and rmtsubaddress specify the 
directory number and subaddress at which the call was picked up. 

rmtName identifies the name of the user associated with rmtDN. dial Type indicates 
the "dialability" of the number specified in rmtDN. 

Appendix 8: Message Codes for Applications 179 



telCAProgressMsg 

Description telCAProgressMsg reports on any progress of an outgoing call appearance specified by 
hTELCA. mtype is unused. value specifies the progress as one of the following value: 

telCAPDialTone 
telCAPRinging 
telCAPDialing 
telCAPReorder 
telCAPBusy 
telCAPRouted 
telCAPRoutedOff 

- l; 
~ 2; 

= 3; 
= 4; 

- 5; 
a; 6; 

- 7; 

{ Dial tone} 
{ Destination CA is alerting} 
{ One or more digits has been dialed} 
{Reorder} 
{Busy} 
{ Call routed; rmtDN will hold the routing} 
{ Call routed off-network; no further progress 
will be available} 

telCAPTimeout •• 8; { Call timed out} 
telCAPUpdate = 9; { name and rmtDN information has been updated} 
telCAPPrompt = 10; { The network is prompting for more 

information} 
telCAPWaiting = 11; {Callis proceeding, but there is no response 

yet from the destination} 
telCAPUnknown = 15; { Call Progress state unknown} 

msginfo points to the following structure: 

TYPE 
CAGenericMsgRec 
rmtDN 
rmtName 
rmtSubaddress 
dialType 
END 

RECORD 
StringPtr; 
StringPtr; 
StringPtr; 
INTEGER; 

"----· 

If value is telCAPUpdate, rmtDN, rmtName, and rmtSubaddress specify the 
updated directory number, name, and subaddress of the remote end, if this information is 
available. The Telephone Manager stores these values in the call-appearance record 
referenced by hTELCA. If value is telCAPRouted, rmtDN, rmtName, and 
rmtsubaddress specify the updated directory number, name, and subaddress of the 
routing directory number. If value is neither telCAPUpdate nor telCAPRouted, 

rmtDN, rmtName, and rmtSubaddress are empty. 

dial Type indicates the "dialability" of the number specified in rmtDN, 

180 Telephone Manager Developer's Guide 



telCAQueued.Msg 

Description telCAQueued.Msg specifies that a call is being queued for this terminal. mtype, value, 

and msginfo is unused and set to zero. 

telCARejectMsg 

Description telCARejectMsg gives information about activities related to Call Reject features. This 
message is sent when the user presses a Call Reject key or when your application calls 
TELRejectca11. mtype is the reason for disconnect, but is unused and set to zero. 
value is as follows: 

telCallRejectFailed = O; { attempt to reject call has failed} 
telCallRejectEst = l; { call successfully rejected 
telCallRejected = 2; { message to originator that call 

was rejected} 

msginfo is unused and set to zero. 

telCASuccessiveAlert 

Description telCASuccessiveAlert is sent by the tool each time the attached phone "rings." 

mtype, value, and msginfo are unused and set to zero. 

Appendix B: Message Codes for Applications 181 



telCATransferMsg 

Description telCATransferMsg specifies that transfer activity is occurring for hTELCA. This 
activity could be occurring because of calls to TELTransferPrep, 

TELTransferEstablish, or TELTransferBlind, or because the user is manually 
initiating a transfer. mtype is unused and set to zero. value is set to one of the 
following values: 
telTransferPrepFailed = 0; 
telTransferPending = 1; 
telTransferEst = 2; 
telTransferFailed = J; 
telTransferred = 4; 

transfer could not be prepared} 
{ transfer prepared successfully} 
{ consult or blind transfer suc~essful} 
{ consult or blind transfer failed} 
{ message to originator of CA specifying 

that the call was transferred to rmtDN 
and that CAProgress messages will give 
new rmtDN} 

msgrnfo points to the following structure: 

TYPE 
CATransfMsgRec 

rmtDN 
rmtName 
rmtSubaddress 
dialType 
prepCA 

END 

RECORD 
StringPtr; 
StringPtr; 
StringPtr; 
INTEGER; 
TELCAHandle; 

ff value equa~ telTransferEst or telTransferFailed, prepCA specifies a 
handle to the prepared hTELCA; rmtDN, rmtName, and rmtSubaddress specify the 
directory number, user, and subaddress to which the call was transferred. ff value is 
neither telTransferEst nor telTransferFailed, then prepCA, rmtDN, rmtName, 

and rmtSubaddress are set to zero. 

telCAUserUserinfoMsg 

Description telCAUseruserinfoMsg specifies that transfer activity is occurring for hTELCA. 

mtype and value are unused and set to zero. 

msginfo points to the following structure: 

TYPE 
CAUserUserinfoMsgRec = RECORD 

userUserinfo StringPtr; 
END 

useruserrnfo points to any user-to-user information sent with the disconnect from 
the remote end. Not all switches support the sending of user-to-user information at 
disconnect time. 

182 Telephone Manager Developer's Guide 



Directory-number message codes for applications 
The message codes in this section relate to specific directory numbers. For information on the 
format and parameters of directory-number messages, refer to the template for directory-number 
message handlers (HyDNHsgHandler) in the section "Routines Your Application Must Provide," in 
Chapter 2. 

telDNDNDMsga 

Description telDNDNDHsg gives information about activities related to Do Not Disturb features. 
This message is sent after application calls to TELDNDSet and TELDNDClr. mType is 
the type of Do Not Disturb feature, as follows: 

telDNDintExt = O; { Do Not Disturb for all inside and outside calls} 
telDNDExternal = l; { Do Not Disturb for outside calls only} 
telDNDinternal - 2; { Do Not Disturb for inside calls only} 

telDNDNonintercom 2 3: { DND for all calls except intercom calls} 

value is as follows: 
telDNDCleared = O; { Do Not Disturb has been cleared} 
telDNDEst = 1; { Do Not Disturb has been established 
telDNDFailed = 2; { Attempt to setup Do Not Disturb has failed} 

rmtDN, rmtNarne, and rmtSubaddress are unused. 

telDNForwardMsg 

Description telDNForwardMsg gives information about activities related to call forwarding. This 
message is received when TELForwardSet and TELForwardClr are called. mType is 
the type of Call Forward feature, as follows: 

telForwardimmediate = 1; { Immediately forward calls 

telForwardBusy = 2; { Forward on Busy} 
telForwardNoAnswer = 3; { Forward on No answer} 

telForwardBusyNA ::a 4; { Forwarding for busy and no answer} 

value is as follows: 
telForwardCleared ., O; { Forwarding has been cleared} 

telForwardEst - 1; { Forwarding has been established} 

telForwardFailed - 2: { attempt to setup forwarding has failed} 

rmtDN specifies the remote directory number to which the call was forwarded. rmtName 

specifies the name of the party associated with the remote directory number, if this 
information is available. rmtSubaddress specifies the subaddress, if any, of the remote 
directory number. 

Appendix B: Message Codes for Applications 183 



telDNOtherMsg 

Description The custom message parameters are defined by individual telephone tools for use specific 
to those tools. 

telDNSelectedMsg 

Description telDNSelectedMsg indicates that the directory number specified in this message has 
been either selected or deselected. This message is sent in response to a TELDNSelect 
call. value is one of the following values: 

telDNDeselected 
telDNSelected 

All other fields are unused. 

= O; 
= 1; 

{ dn has been deselected} 
{ dn has been selected} 

telDNVoiceMailMsg 

Description telDNVoiceMailMsg specifies that a voice-mail message has arrived for this directory 
number. mtype is unused. value is assigned the following values: 

telAllVoiceMessagesRead = O; { all messages have been read, 
none are waiting to be read} 

1; {anew message has arrived, or 
messages are waiting for this dn} 

telNewVoiceMessage 

rmtDN specifies the calling directory number of the party leaving the message, if available. 
rmtName specifies the name of the party leaving the message, if available. 
rmtSubaddress specifies the subaddress, if any, of rmtDN. 

184 Telephone Manager Developer's Guide 



Terminal message codes for applications 
The message codes in this section relate to a specific terminal. For information on the format and 
parameters of terminal messages, refer to the template for terminal message handlers 
(MyTermMsgHandler) in the section "Routines Your Application Must Provide," in Chapter 2. 

telTermCloseMsg 

Description telTermCloseHsg specifies that the terminal has shut down. This message is sent after 
a successful TELCloseTerm call. mtype and value are unused and set to zero. 

telTermDisplayMsg 

Description telTermoisplayMsg specifies that the display has changed. This message is sent when 
the terminal display has been changed-for instance, as a result of a new incoming call. 
mtype contains the display mode and is one of the following values: 

telNormalDisplayHode = l; { Normal display mode 
telinspectMode = 2; { Inspect display mode} 
telMiscMode = 3; { Miscellaneous display mode} 
telRetrieveMode a 4; { Message retrieval mode} 
tel:: ectoryQueryMode = 5; { Electronic directory mode} 

value contains the type of information which has changed in the display and is one of 
the following values: 

telEntireDisplay = O; { Entire display} 
CallAppID - 1; { Network assigned CA ID} 
CalledDN = 2; { Called party dn} 
CallingDN a J; { Calling party dn} 
CalledName = 4; { Called party name} 
CallingName a 5; { Calling party name} 
OrigPermissions = 6; { Originating permissions} 
DateandTime = 7; { Date and time of day} 
tool specific {This value for other types that 

may be supported by a particular 
Telephone Tool. Values range from 256 
to 32768} 

{values from 8 to 255 are reserved by the Telephone Manager, and 
will not be passed in this message} 

Appendix B: Message Codes for Applications 185 



telTermEnableMsg 

Descriptlon telTermEnableMsg specifies whether the tool is able to communicate with the 
terminal. If so, commands can be sent and messages can be received. 

mtype is unused and set to zero. 

value has one of the following values: 
terminalEnabled 
terminalDisabled 

• O; { Can communicate with the terminal} 
~ 1; { Cannot communicate with the terminal} 

telTermErrorMsg 

Description telTermErrorMsg specifies that the terminal has had some kind of hard equipment 
failure. mtype and value are reserved. 

telTermHookMsg 

Description tel TermHookMsg specifies that the hookswitch state has changed. This message is sent 
when the telephone is physically placed on-hook or off-hook, or when TELSetHookSw is 
called. 

value specifies the hookswitch state and is one of the following values: 

deviceOnHook 
deviceOffHook 

= O: 
= 1; 

device on hook} 
{ device off hook} 

mtype specifies the type of device and is one of the following values: 

telHandset 
telSpeakerphone 

::s 1; 
~ 2; 

{ handset hookswitch} 
{ speakerphone 'on' switch} 

toolspecific {This value for other types that may be supported 
by a particular Telephone Tool. values range 
from 256 to 32768} 

{values from 3 to 255 are reserved by the Telephone Manager and will 
not be passed in this message} 

telTermKeyMsg 

Description tel TermJ<eyMsg specifies that keys on the telephone pad or feature keys have been 
pressed. This message is sent if the keys are pressed on the handset. If keys are "pressed" 
programmatically, the application will be notified through normal use of directory­ 
number and call-appearance message handlers. 

186 Telephone Manager Developer's Guide 



If the user presses a key on the Macintosh keypad, value contains the ASCII value of 
the key. If the user presses a feature key, value contains one of the following values: 

telHangupKey = 1; { Drop, or release, key pressed} 
telHoldKey = 2; { Hold Key pressed} 
telconferenceKey a 3; { Conference Key pressed} 
telTransferKey =- 4; { Transfer Key pressed} 
telForwardKey •• 5; { Call Forward Key pressed} 
telCallbackKey ZS 6; { Callback Key pressed} 
telDNDKey = 7; { Do Not Disturb Key pressed} 
telCallPickupKey = 8; { Call Pickup Key pressed} 
telCallParkKey - 9; { Call Park Key pressed} 
telCallDeflectKey = 10; { Call Deflect Key pressed} 
telVoiceMailAccessKey - 11; { Message Waiting Key pressed} 
telCallRejectKey = 12; { Call Reject Key pressed} 
VoiceMailKeyPressed = 13; { Voice Mail Key pressed} 
telOtherKey = 16; { Other Key pressed} 

rntype contains one of the following values: 

telKeyPadPress 
telFeatureKeyPress 

1; 
= 2; 

{ Key pressed on 12-digit keypad} 
{ Feature Key Pressed} 

telTerrnOtherMsg 

Description telTerrnOtherMsg is a vendor-defined message: Its meaning varies, depending on the 
tool that sends it. value should contain an error code, and rntype should be set if 
appropriate. 

telTerrnOpenMsg 

Description tel TermopenMsg specif es that the terminal has been opened. This message is sent after 
a successful TELOpenTerm call. mtype and value are unused and set to zero. 

telTerrnResetMsg 

Description tel TermResetMsg specifies that the terminal has been reset. This message is sent after a 
successful TELResetTerrn call. rntype and value are unused and set to zero. 

Appendix B: Message Codes for Applications 187 



telTermVolMsg 

Description telTermvolMsg specifies that the volume type mtype has been changed to the level 
value. This message will be sent if the user changes the volume, either using the handset 
or by means of TELSetvolume or TELAlert. 

mtype contains one of the following values: 

telHandsetSpeakerVol = 1; { volume of the handset speaker} 

telHandsetMicVol = 2; { sensitivity of the handset mic} 

telSpeakerphoneVol = 3; { speakerphone volume} 
telSpeakerphoneMicVol = 4; { sensitivity of the spkrphone mic 
telRingerVol = 5; { volume of the ringer} 

value contains the new volume level, which can range from 1 to telVolMax. 

188 Telephone Manager Developer's Guide 



Appendix C Call-Appearance States 

T H I S A P P E N D I X lists and describes the call-appearance states 
recognized by the Telephone Manager. 

189 



State Code 

telCAActiveState 

telCAAlertingState 

telCABusyState 

telCAConferencedHeldState 

telCAConferencedState 

telCADialingState 

telCADialToneState 

telCAHeldState 

telCAidleState 

telCAinUseState 

telCAOfferState 

telCAQueuedState 

telCAReorderState 

telCARingingState 

telCAUnknownState 

telCAWaitingState 

Meaning 

This call is active; parties are free to exchange information. 

A call is alerting at this terminal. 

The destination is busy or cannot be reached. 

This call is part of a conference and has been put on hold by this 
terminal. 

This call is now part of a conference. 

This initiated outgoing call is dialing. 

This initiated outgoing call has a dial tone. 

This call has been put on hold by this terminal. 

No call exists at this time. 

The call is active at another terminal. 

A call is being offered to this terminal. 

A call is being queued at this terminal. 

This call is in the reorder state. 

This outgoing call is ringing. 

The state of this call is unknown. 

This initiated outgoing call is waiting for a response from the 
destination. 

190 Telephone Manager Developer's Guide 



Index 

A 
active state, description of 5 
alerting state, description of 5 
application, your 
call-appearance record and 22 
definition of 7 
directory-number record and 15 
message handler templates for 96 

B 
bearerType field 26 
bForwardDN field 20 
bForwardPartyName field 20 
bForwardSubaddress field 20 
blind transfer 61, 147 
bundle resource 98-99 

C 
CA. See call appearances 
call-appearance messages 
for conference calls 159-160 
descriptions of 170-182 
general 151-155 
incoming/ outgoing 155-158 
for transferring calls 158-159 

call-appearance record 22-29 
call appearances. See also outgoing call 

appearances 
accepting 56, 117 
answering 56, 118 
connecting 126 
controlling 90-93 
counting 90, 126 
deflecting 58 
description of 5 
disposing of handle for 93, 118 

dropping 59,132,153,160 
finding 90-91 
finding state of features of 92 
finding state of 92 
finding supported messages 53 
forwarding 62 
getting information about 91 
maximum number of 15, 17 
message handler for 
clearing 52 
registering 50-51 
template for 96 

parking 68--69, 142 
picking up 68 
putting on hold 60, 138 
queuing 155 
reference number for 23 
rejecting 57, 142-143 
retrieving those held 60, 143-144 
retrieving those parked 69, 144 
sending message on activity of 

121-122 
setting up 145 
states of 190 

Call Back feature 152 
clearing 119 
messages for 171 
requesting 65 
setting 120 
showing state of 28 

Call Back Now feature ()6, 119-120 
showing state of 28 

Call Deflect feature 127, 152 
messages for 173 

Call Forward feature 62, 153 
change in status of 161 
clearing 133 

messages for 175, 183 
setting 133 

Call Park feature 68-69, 142, 154 
messages for 178 
showing state of 28 

Call Park Retrieve feature 28 
Call Pickup feature 68, 120-121, 154 

messages for 179 
showing state of 18-19 

Call Reject feature 155 
messages for 181 

ca 11 Type field 25 
caRef field 23 
caState field 24 
updating 135 

Communications Resource Manager 99 
Conference Drop feature 27 
Conference feature 

call-appearance messages for 
159-160 

establishing 64, 124-125 
maximum number of parties for 26 
messages for 172-173 
preparing for 63, 125 
showing state of 27 

Conference Split feature 64, 125 
showing state of 27 

config field 11 
configuration fields, validating 33 
configuration record 111 
configuration strings 40-41, 109-110 
converting 75-76 

confLimit field 26 
connectTime field 24 
Consult transfer 60-61 
controls, setting up 37 

191 



curAllocCAs field 
in directory-number data structure 17 
in TELTermRecord data 

structure 15 

D 
data structures 8-29 

call appearance 23-29 
for directory-number record 15-21 
for telephone record 10-15 

defproc field 11 
device states 
monitoring 78-79 
setting 80-81 

dialType field 25 
directory-number messages 160-162 

descriptions of 183-184 
directory numbers 

call appearances and 5 
controlling 85-89 
counting 14,85, 126-127 
description of 4 
disposing of handle for 89, 128-129 
features supported by 129 
finding by index 86 
finding by name 87 
finding state of features of 88 
finding supported messages 52 
getting information about 87 
locating 129-130 
message handler for 

clearing 51 
registering 49 
template for 96 

reference numbers for 16 
selecting 88, 131, 162 

Directory Number Select feature 18 
displayRows field 14 
display text 14 

changing 163 
getting current 135 
messages for 185 
monitoring 83 
setting 84, 144 

DN. See directory numbers 
dn field 17 
dnPartyName field 17 
dnRef field 16 
dnSubaddress field 17 
dnType field 17 

Do Not Disturb feature 18, 66-67 
change in status of 161 
clearing 128 
messages for 183 
setting 129 

Drop feature 59 

E 
English,American 75-76, 109-110 
events 

activate 45 
for custom tool-settings dialog box 

37-38 
menu 45 
message for 132 
resume 45 

F, G 
Fax tone 153,175 
featureFlags field 13 

in call-appearance data structure 27 
in directory-number data structure 

17-19 
updating 

in call-appearance record 133-134 
in directory-number record 

135-136 
flags field 10-11 
Forward feature. See Call Forward 

feature 
forwardFlags field 19 
Forward On Busy And No Answer 

feature 19 
Forward On Busy feature 19-20 
Forward On No Answer feature 19-20 

H 
handles 17 
call appearances and 23 
disposing of 128 

call-appearance 93 
directory-number 89 

handsetMicVol field 14 
handsets 14 
handsetSpeakerVol field 14 
hardware 3-4 

failure messages for 186 
hasoisplay field 14 
held state, description of 5 

Hold feature 60 
messages for 138, 153, 176 
showing state of 27 

hookswitch 
fmding current state of 137 
messages for 186 
monitoring 77 
setting 78, 144-145 

hTELDN field 23 
hTEL field 

in call-appearance data structure 24 
in directory-number data structure 17 

I,J,K 
idle state 138, 153 

description of 5 
messages for 176 

idel-loop tasks 43 
iForwardDN field 20 
iForwardPartyName field 20 
iForwardSubaddress field 20 
Immediate Call Forwarding feature 

19-20 
incoming call appearances 

messages 155-158 
state progression of 5 

information, getting from a terminal 44 
Ini tTEL routine 31 
Intercom feature 18--19, 153 

activating 138--139 
messages for 176 
using 71 

interface, physical 4 
intExt field 25 
ISDN 2 

L 
localization code resource 98, 109-110 
logical directory numbers 4 

M 
Macintosh Communications Toolbox 2 
Macintosh computers 6 
Telephone Manager concepts and 4 

Macintosh Device Manager 4 
main code resource 98, 114 

messages accepted by 115-116 
messages sent by 149-150 

master message handlers 149 

192 Index 



maxAllocCAs field 
in directory-number data structure 17 
in TELTermRecord data 

structure 15 
menu events 45, 139 
message handler templates ')6J)7 
messages 

handling 47 
sending 3 

microphones 14 
modem tone 154, 177 
multiple-access directory numbers 

153,176 
MyCAMsgHandler routine 96 
MyDNMsgHandler routine 96 
MyTermMsgHandler routine 95 

N 
naForwardDN field 20 
naForwardPartyName field 20 
naForwardRings field 20 
naForwardSubaddress field 20 
networks 

telephone 2 
Telephone Manager routines and 8 

network switches 4, 47 
implementing features for 73 
listing features for 72-73 

numDNs field 14 
numintercomIDs field 19 
numPageIDs field 19 
numPickupIDs field 19 

0 
oldConfig field 11 
otherFeatures field 27-28 
updating 

in call-appearance record 133-134 
in directory-number record 

135-136 
otherVol field 14 
outgoing call appearances 

change of state in 154 
connecting 55 
dialing 55 
messages 155-158 
setting up 54-55 
state progression of 5 

P,Q 
Paging feature 18-19, 154 
accessing 70-71 
activating 141-142 
messages for 178 

parameters, passing of 3 
physical directory numbers 4 
priority field 26 
procID field 10 
getting 31 

pTELTerm field 12 
pTELTermSize field 12 

R 
rate field 26 
records 6 
refCon field 

in call-appearance data structure 28 
in directory-number data structure 21 
in TELRecord data structure 11 

relatedCA field 24 
reserved! field 12 
reserved2 field 12 
reserved field 

in call-appearance data field 29 
in directory-number data structure 21 
in TELRecord data structure 11 
in TELTermRecord data 

structure 15 
resource IDs 99 
result codes 166--168 
r ingerTypes field 14 
r ingerVol field 14 
rmtDN field 26 
rmtPartyName field 26 
rmtSubaddress field 26 
routeDN field 26 
routePartyName field 26 
routeSubaddress field 26 

s 
scripting language 
code resource 98, 107-109 
interfacing with 40-41 

setup-definition code resource 98, 
102-lo6 

speakerphones 14 
speakerphoneVol field 14 

strings 
configuration 40-41, 109-110 

converting 75-76 
Pascal-style 8 

system requirements 6 

T 
telAcceptCallMsg message 117 
TELAcceptCall routine 56 
telActivateMsg message 117 
TELActivate routine 45 
telAlertMsg message 118 
TELAlert routine 82 
telAnswerCallMsg message 118 
TELAnswercall routine 56 
telCAActiveMsg message 152 
description of 170 
telCAAlertingMsg message 157 
description of 170 
telCACallbackMsg message 152 
description of 171 
telCACallParkMsg message 154 
description of 178 
telCACallPickupMsg message 

154 
description of 179 
telCAConferenceDropMsg 

message 160 
description of 172 
telCAConferenceMsg message 

160 
description of 172 
telCAConferenceSplitMsg 

message 160 
description of 172-173 
telCADeflectMsg message 152 
description of 173 
telCADigitsMsg message 152 
description of 174 
telCADisconnectMsg message 

153 
description of 174 
telCADisposeMsg message 118 
TELCADispose routine 93 
telCAEventsSuppMsg message 

119 
TELCAEventsSupp routine 53 
telCAFaxToneMsg message 153 
description of 175 
telCAForwardMsg message 153 
description of 175 

Index 193 





APPLE COMPUTER, INC. SOFfWARE llCENSE 

PLEASE READ THIS llCENSE CAREFULLY BEFORE USING 11IE 
SOFfWARE. BY USING 11IE SOFfWARE, YOU ARE AGREEING 
TO BE BOUND BY TIIE TERMS OF THIS llCENSE. IF YOU DO 
NOT AGREE TO TIIE TERMS OF THIS llCENSE, PROMPTLY 
RETURN TIIE UNUSED SOFfWARE TO TIIE PIACE WHERE YOU 
OBTAINED IT AND YOUR MONEY Will BE REFUNDED. 

1. License. The application, demonstration, system and other software 
accompanying this License, whether on disk, in read only memory, or on 
any other media (the "Apple Software") and related documentation are 
licensed to you by Apple. You own the disk on which the Apple Software 
is recorded but Apple and/or Apple's Licensor(s) retain title to the Apple 
Software and related documentation. This License allows you to use the 
Apple Software on a single Apple computer and make one copy of the 
Apple Software in machine-readable form for backup purposes only. You 
must reproduce on such copy the Apple copyright notice and any other 
proprietary legends that were on the original copy of the Apple Software. 
You may also transfer all your license rights in the Apple Software, the 
backup copy of the Apple Software, the related documentation and a copy 
of this License to another party, provided the other party reads and agrees 
to accept the terms and conditions of this License. 

2. Restrictions. The Apple Software contains copyrighted material, 
trade secrets and other proprietary material and in order to protect them 
you may not decompile, reverse engineer, disassemble or otherwise 
reduce the Apple Software to a human-perceivable form. You may not 
modifv, network, rent, lease, loan, distribute or create derivative works 
based upon the Apple Software in whole or in pan. You may not 
electronically transmit the Apple Software from one computer to another 
or over a network. 

3. Support. You acknowledge and agree that Apple may nor offer 
any technical support in the use of the Software. 

4. Termination. This License is effective until terminated. You may 
terminate this License at any time by destroying the Apple Software and 
related documentation and all copies thereof. This License will terminate 
immediately without notice from Apple if you fail to comply with any 
provision of this License. Upon termination you must destroy the Apple 
Software and related documentation and all copies thereof. 

5. Export Law Assurances. You agree and certify that neither the 
Apple Software nor any other technical data received from Apple, nor the 
direct product thereof, will be exported outside the United States except as 
authorized and as permitted by the laws and regulations of the United 
States. 

6. Government End Users. If you are acquiring the Apple Software 
on behalf of any unit or agency of the United States Government, the 
following provisions apply. The Government agrees: 

(i) if the Apple Software is supplied to the Department of Defense 
(DoD), the Apple Software is classified as "Commercial Computer 
Software" and the Government is acquiring only "restricted rights" in the 
Apple Software and its documentation as that term is defined in Clause 
252.227-7013(c)(l) of the DFARS; and 

(ii) if the Apple Software is supplied to any unit or agency of the 
United States Government other than DoD, the Government's rights in the 
Apple Software and its documentation will be as defined in Clause 52.227- 
19(c)(2) of the FAR or, in the case of NASA, in Clause 18-52.227-SG(d) of 
the NASA Supplement to the FAR. 

7. Limited Warranty on Media. Apple warrants the disks on which the 
Apple Software is recorded to be free from defects in materials and 
workm_anship unfer normal use for a period of ninety (90) days from the 
date ol purchase as evidenced by a copy of the receipt. Apple's entire 
liability and your exclusive remedy will be replacement of the disk not 

meeting Apple's limited warranty and which is returned to Apple or an 
Apple authorized representative with a copy of the receipt. Apple will 
have no responsibility to replace a disk damaged by accident, abuse or 
misapplication. ANY IMPLIED WARRANTIES ON THE DISKS, INCLUDING 
THE IMPLIED WARRANTIES OF MERCHANTABILI1Y AND FITNESS FOR 
A PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO NINE1Y (90) 
DAYS FROM THE DATE OF DELIVERY. THIS WARRAN1Y GIVES YOU 
SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HAVE OTHER RIGHTS 
WHICH VARY FROM STATE TO STATE. 

8. Disclaimer of Warranty on Apple Software. You expressly 
acknowledge and agree that use of the Apple Software is at your sole risk. 
The Apple Software and related documentation are provided "AS IS" and 
without warranty of any kind and Apple and Apple's Licensor(s) (for the 
purposes of provisions 8 and 9, Apple and Apple's Licensorfs) shall be 
collectively referred to as 'Apple") EXPRESSLY DISCLAIM ALL 
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, 
THE IMPLIED WARRANTIES OF MERCHANTABILI1Y AND FITNESS FOR 
A PARTICULAR PURPOSE. APPLE DOES NOT WARRANT THAT THE 
FUNCTIONS CONTAINED IN THE APPLE SOFTWARE WILL MEET YOUR 
REQUIREMENTS, OR THAT THE OPERATION OF THE APPLE SOFTWARE 
WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTS IN THE 
APPLE SOffi'vARE \'(T]LL BE CORRECTED. FURTHERMORE, Al'PLE 
DOES NOT WARRANT OR MAKE ANY REPRESENTATIONS REGARDING 
THE USE OR THE RESULTS OF THE USE OF THE APPLE SOffi'vARE OR 
RELATED DOCUMENTATION IN TERMS OF THEIR CORRECTNESS, 
ACCURACY, RELIABILl1Y, OR OTHER\'(T]SE. NO ORAL OR \\'TRITTEN 
INFORMATION OR ADVICE GIVEN BY APPLE OR AN APPLE 
AUTHORIZED REPRESENTATIVE SHALL CREATE A WARRANTY OR IN 
ANY WAY INCREASE THE SCOPE OF THIS WARRAN1Y. SHOULD THE 
APPLE SOFTWARE PROVE DEFECTIVE, YOU (AND NOT APPLE OR AN 
APPLE AUTHORIZED REPRESENTATIVE) ASSUME THE ENTIRE COST OF 
ALL NECESSARY SERVICING, REPAIR OR CORRECTION. SOME STATES 
DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE 
ABOVE EXCLUSION MAY NOT APPLY TO YOU. 

9, Limitation of Liability. UNDER NO CIRCUMSTANCES INCLUDING 
NEGLIGENCE, SHALL APPLE BE LIABLE FOR ANY INCIDENTAL, 
SPECIAL OR CONSEQUENTIAL DAMAGES THAT RESULT FROM THE USE 
OR INABILI1Y TO USE THE APPLE SOffi'vARE OR RELATED 
DOCUMENTATION, EVEN IF APPLE OR AN APPLE AUTHORIZED 
REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILI1Y OF SUCH 
DAi\-lAGES. SOME STATES DO NOT ALLOW THE LIMITATION OR 
EXCLUSION OF LIAB!LI1Y FOR INCIDENT AL OR CONSEQUENTIAL 
DAi\-lAGES SO THE ABOVE LIMITATION OR EXCLUSION ~,JAY NOT 
APPLY TO YOU. 
In no event shall Apple's total liability to you for all damages, losses, and 
causes of action (whether in contract. ton (including negligence) or 
otherwise) exceed the amount paid by you for the Apple Software. 

10. Controlling Law and Severability. This License shall be governed 
by and construed in accordance with the laws of the United States and the 
State of California, as applied to agreements entered into and to be 
performed entirely within California between California residents. If for 
any reason a court of competent jurisdiction finds any provision of this 
License, or portion thereof, to be unenforceable, that provision of the 
License shall be enforced to the maximum extent permissible so as to effect 
the intent of the parties, and the remainder of this License shall continue in 
full force and effect. 

11. Complete Agreement. This License constitutes the entire 
agreement between the parties with respect to the use of the Apple 
Software and related documentation, and supersedes all prior or 
contemporaneous understandings or agreements, written or oral, 
regarding such subject matter, No amendment to or modification of this 
License will be binding unless in writing and signed by a duly authorized 
representative of Apple. 

7/15/91 
001-0158-A 


