¢

Teicphone Manager Developer's Kit
Version 1.0

RUTHSLL A

Apple Computer, Inc.
20525 Mariani Avenue, M/S 33-G
Cupertino, CA 95014

(408) 996-1010

TLX 171-576

To reorder products, please call:
1-800-282-2732 (in the United States)
1-800-637-0029 (in Canada)
1-408-562-3910 (International)

]

Telephone Manager
Developer’s Guide

& APPLE COMPUTER, INC.

This manual and the software
described in it are copyrighted,
with all rights reserved. Under the
copyright laws, this manual or the
software may not be copied, in
whole or part, without written
consent of Apple, except in the
normal use of the software or to
make a backup copy of the
software. The same proprietary
and copyright notices must be
affixed to any permitted copies as
were affixed to the original. This
exception does not allow copies
to be made for others, whether or
not sold, but all of the material
purchased (with all backup copies)
may be sold, given, or loaned to
another person. Under the law,
copying includes translating into
another language or format.

You may use the software on any
computer owned by you, but
extra copies cannot be made for
this purpose.

The Apple logo is a registered
trademark of Apple Computer,
Inc. Use of the “keyboard” Apple
logo (Option-Shift-k) for
commercial purposes without the
prior written consent of Apple
may constitute trademark
infringement and unfair
competition in violation of federal
and state laws.

© Apple Computer, Inc., 1991
20525 Mariani Avenue
Cupertino, CA 95014

(408) 996-1010

Apple, the Apple logo, APDA,
AppleLink, and Macintosh are
trademarks of Apple Computer,
Inc., registered in the United
States and other countries.

Classic is a registered trademark,
licensed to kApple Computer, Inc.

Adobe Nlustrator and PostScript
are trademarks of Adobe Systems,
Inc.

ITC Garamond and ITC Zapf
Dingbats are registered
trademarks of International
Typeface Corp.

Microsoft is a registered
trademark of Microsoft Corp.

Varityper is a registered trademark
of Varityper, Inc.

Contents

Figures and Tables / v

Preface / vii

Introduction to the Telephone Manager / 1

About the Telephone Manager / 2
Telephone Manager concepts / 4
Telephone terminals / 4

Directory numbers / 4

Call appearances / §
Telephone Manager records / 6
System requirements / 6

Inside the Telephone Manager / 7

Data structures of the Telephone Manager / 8
The telephone record / 9
Telephone record data structure: TELRecord / 10
Telephone record data structure: TELTermRecord / 12
The directory-number record / 15

Directory-number data structure / 16
The call-appearance record / 22

Call-appearance data structure / 23
Telephone Manager routines / 30
Preparing to handle calls / 31
Custom configuration of a telephone tool / 36
Interfacing with a scripting language / 40
Opening, using, and closing the terminal / 42
Handling events / 45
Handling messages / 47
Placing and receiving calls / 54
Using Drop, Hold, Transfer, Forward, and Conference / 59
Using less-common supplementary features / 65

fit

Accessing special features of switches and tools / 72
Localizing configuration strings / 75

Monitoring and controlling the terminal / 77
Controlling directory numbers / 85

Controlling call appearances / 90

Miscellaneous routines / 94

Routines your application must provide / 95

3 Writing Telephone Tools / 97

About writing a telephone tool../ 98
The six tool resources / 98
The bundle resource / 99
The validation code resource / 100
The setup-definition code resource / 102
The scripting language interface code resource / 107
The localization code resource / 109
config: the configuration record / 111

4 Writing Your Tool's Main Code Resource / 113

The main code resource / 114

Messages that the main code resource accepts / 115

Messages that the main code resource sends / 149
General call-appearance messages / 151
Incoming/outgoing call-appearance messages / 155
Call-appearance message for transferring calls / 158
Call-appearance messages for conference calls / 159

Directory-number messages / 160
Terminal messages / 162

Appendix A Result Codes for Routines / 165

Appendix B Message Codes for Applications / 169

Call-appearance message codes for applications / 170
Directory-number message codes for applications / 183
Terminal message codes for applications / 185

Appendix C Call-Appearance States / 189

Index / 191

iv Contents

CHAPTER1

CHAPTER 2

Figures

Introduction to the Telephone Manager / 1

Figure 1-1 Where the Telephone Manager fits into the Communications Toolbox / 2
Figure 1-2 How the Telephone Manager interacts with applications and tools / 3
Figure 1-3 An example state progression for an outgoing call appearance / 5

Figure 1-4 An example state progression for an incoming call appearance / 5

Figure 1-5 An example state progression for an active call appearance / §

Inside the Telephone Manager / 7

Figure 2-1 How the Telephone Manager data structures are related / 8
Figure 2-2 A sample tool-settings dialog box / 34

Preface

The Telephone Manager Developer’s Guide provides definitive information
for application software developers and telephone tool developers who want
to use services provided by the Telephone Manager. For application software
developers, this document describes and shows how to use the Telephone
Manager routines that make it easier to write telephony applications for the
Apple Macintosh computer. For telephone tool developers, this document

shows how to develop tools that can be used by the Telephone Managér.

About this document

Chapter 1 contains an overview of the Telephone Manager and describes the
hardware and software you need to run it. Chapter 2 describes the Telephone
Manager data structures and application-programming routines. Chapters 3 and
4 show how to create a telephone tool. Although tool developers need to read
Chapters 3 and 4, most application developers do not. Appendix A describes
result codes that the Telephone Manager routines return. Appendix B describes
messages that the Telephone Manager relays from telephone tools to
applications. Appendix C describes call-appearance states.

The Telephone Manager Developer's Guide is written for experienced
programmers. Readers should know how to program the Macintosh and how
to use the Macintosh Communications Toolbox, and should have some
familiarity with telephony applications. The next section lists resources for
reference information about the technical concepts used in this document.

vii

For more information

Refer to the following books in the Apple Technical Library and Apple
Communications Library, published by Addison-Wesley, for additional
information about the subjects covered in this manual:

® Designing Cards and Drivers for the Macintosh Family
Human Interface Guidelines: The Apple Desktop Interface
Inside Macintosh (Volumes I-VI, X-Ref)

Inside the Macintosh Communications Toolbox

Programmer’s Introduction to the Macintosh Family

Technical Introduction to the Macintosh Family

You may also refer to the following documents from APDA:

® Apple ISDN Telephone Tool

m Software Development for International Markets: A Technical Reference
®m Macintosh Technical Notes

APDA offers convenient worldwide access to over 300 development tools,
resources, training products, and information for anyone interested in
developing applications on Apple platforms. Customers receive the quarterly
APDA Tools Catalog featuring the most current versions of Apple
development tools and the most popular third-party development tools.
Ordering is easy; there are no membership fees, and application forms are not
required for most of our products. APDA offers convenient payment and
shipping options, including site licensing.

To order products or get additional information, contact

APDA

Apple Computer, Inc.

20525 Mariani Avenue, M/S 33-G
Cupertino, CA 95014-6299

USA

800-282-2732 (United States)
800-637-0029 (Canada)
408-562-3910 (International)
Fax: 408-562-3971

Telex: 171-576

AppleLink address: APDA

viii Telephone Manager Developer’s Guide

Conventions used in this document

The following notations are used in this document to draw attention to
particular items of information:

¢ Note: Information that is interesting or useful.
/\ Important A note of particular importance.

A Warning A point that warns you to be cautious.

Names of routines (procedures or functions), constants, and code fragments
appear in Courier, a special typeface, as in the following example:

PROCEDURE GetDown(andBoogie : ONEMORETIME);

Preface

ix

Chapter 1 Introduction to the Telephone Manager

THIS CHAPTER gives you an overview of the Telephone Manager. It
explains how the Telephone Manager works with the Macintosh
Communications Toolbox and presents key concepts relating to the

Telephone Manager.

About the Telephone Manager

The Telephone Manager is a new manager for the Macintosh Communications Toolbox. It provides a
programming interface that lets you develop a variety of telephony applications, including screen-
based telephony applications and Macintosh-based answering machines.

Using the Telephone Manager, applications can offer telephone services to users yet operate
independently of the user’s network type or telephone type. For example, a Macintosh application can
serve as a virtual telephone—whether the telephone network provides Integrated Services Digital
Network (ISDN) service or “plain old telephone service” (POTS), and whether the attached telephone
set is a speakerphone or a mobile telephone.

After you install the Telephone Manager, it works with the Communications Toolbox in much
the same way that other managers do, as shown in Figure I-1.

m Figure 1-1 Where the Telephone Manager fits into the Communications Toolbox

Application
H T\ H
= N
Communications
Toolbox
Telephone Terminal File Transfer Connection
Manager Manager Manager Manager

Communications
Resource Manager

-

Operating system

J

Macintosh hardware

2 Telephone Manager Developer's Guide

The Telephone Manager accesses the telephone network through telephone tools, which the
user installs and which the Telephone Manager manages. Telephone tools control the terminal
drivers of the telephony hardware (such as an ISDN card) installed on the user’s system. Each
telephone tool is designed for specific hardware. For example, the Apple ISDN Telephone Tool is
designed for the Apple ISDN NB Card.

Figure 1-2 shows how the Telephone Manager interacts with applications and tools. An
application makes a request of the Telephone Manager when it needs a telephone service—for
example, when it needs a call dialed. The Telephone Manager then sends this request to one of the
telephone tools it manages. The tool provides the service according to the specifics of the
telephone network protocol. While providing the service, the tool sends messages to the Telephone
Manager, passing parameters that indicate how handling of the request is proceeding. The
Telephone Manager then relays the tool's messages to the application.

m Figure 1-2 How the Telephone Manager interacts with applications and tools

Telephone applications

J

Communications
Toolbox

Telephone Manager

Other
telephone tool

Apple ISDN
Telephone Tool

=

Chapter 1: Introduction to the Telephone Manager 3

Telephone Manager concepts

To use the Telephone Manager, you first need to understand several key concepts: telephone terminals,
directory numbers, call appearances, and Telephone Manager records. This section briefly summarizes each of
these concepts.

Telephone terminals

In this book, a telephone terminal (a “terminal,” for short) is hardware, such as an ISDN card, that
provides the physical interface between a Macintosh computer and a telephone network switch—
such as a private branch exchange (PBX) or a central-office switch. A telephone terminal also
provides, optionally, the physical interface between the telephone network switch and a telephone
set attached to the Macintosh computer. A telephone set is any device, such as a table-top
telephone, used to manually dial, answer, or otherwise manipulate calls. Be careful not to confuse a
telephone set and a telephone terminal.

A terminal can consist of an integrated device (such as the Apple ISDN NB Card) or separate
devices (such as the Apple Serial NB Card and a modem). A terminal is controlled by device-driver
software, which is generally supplied by the manufacturer of the terminal and which must be
compatible with the Macintosh Device Manager.

Directory numbers

Each installed terminal has at least one directory number (DN). A directory number is a named
reference point, such as (408) 555-1212, used to initiate or receive calls on the terminal. Directory
numbers are assigned to the user of the terminal by, for instance, the local telephone company. A
terminal can have multiple directory numbers, just as a typical telephone set in an office might have
multiple buttons, one for each telephone number of that office. A directory number can, in turn,
have multiple network subaddresses.

In the Telephone Manager, directory numbers are of two types: physical and logical. Physical
directory numbers can be monitored or controlled from the user's Macintosh computer and are
physically associated with it. In contrast, logical directory numbers are not physically associated
with the user's Macintosh computer, though they may be monitored or controlled from it. For
example, a Macintosh computer, if running the Telephone Manager and connected to the control
port of a PBX, might monitor all the directory numbers of that PBX. The Telephone Manager
would treat those directory numbers as “logical,” since they would have no physical association
with the Macintosh computer.

4 Telephone Manager Developer's Guide

Call appearances

Each directory number can carry at least one call appearance (a CA, or “call,” for short). A call
appearance is a connection between two or more directory numbers, as when one telephone user
places a call to another. Directory numbers can carry multiple call appearances concurrently—as on a
telephone that has a Call Waiting feature or 2 Conference feature.

Atany particular time, each call appearance is in one particular state. For instance, the call appearance
might be in an alerting state (ringing or flashing, for example), a held state (on hold), or an active
state (meaning voice or data can flow end to end).

4 Note: The state of a call appearance can change to “idle” (telcardlestate) directly from any
other state. Refer to Appendix C for a complete list of the call-appearance states recognized by the
Telephone Manager.

Figures 1-3and 1-4 show example sequences of states through which outgoing call appearances
and incoming call appearances might progress. Figure 1-5 shows an example sequence of states
through which an active call appearance might progress.

® Figure 1-3 An example state progression for an outgoing call appearance

Reorder

Busy

| e |—»|Diauoﬂ—»| Dialing

< IRingingW“[Active |

Waiting

i

® Figure 1-4 An example state progression for an incoming call appearance
m‘ Alerting] LActive 1

. I |

cie Offered s

® Figure 1-5 An example state progression for an active call appearance

l Helﬂ”l Actfve—lﬁl Conferenced l

Conferenced held

Chapter 1: Introduction to the Telephone Manager

Telephone Manager records

For each terminal, directory number, and call appearance, the Telephone Manager maintains a
corresponding data structure—a telephone record, directory-number record, or call-appearance
record. Applications and telephone tools reference these records using handles—telephone handles,
directory-number handles, and call-appearance handles. Chapter 2 describes each of the Telephone
Manager records in detail.

System requirements

To run the Telephone Manager, you need one of the following Macintosh computers:

® 2 Macintosh Plus, Classic®, SE, SE/30, Portable, LC, I, IIx, Ilcx, IIsi, Iici, or Ilfx computer with
at least 2 megabytes of RAM and a hard disk

® a Macintosh 128K, 512K, or 512K enhanced computer with a Macintosh Plus Logic Board
Upgrade, at least 2 megabytes of RAM, and a hard disk
Your Macintosh computer must be running Macintosh system software version 7.0, of which
the Macintosh Communications Toolbox is a part.

6 Telephone Manager Developer's Guide

Chapter 2 Inside the Telephone Manager

THIS CHAPTER describes the main data structures of the Telephone

Manager and each of the routines the Telephone Manager provides.

In this chapter, the term your application refers to the application you are
writing for the Macintosh, which will implement telephone services for users.
Be careful not to confuse the services your application provides with the

services that tools provide.
To use the Telephohe Manager, you need to be familiar with

® the Communications Resource Manager and the Communications Toolbox

Utilities (described in Inside the Macintosh Communications Toolbox)

® any one of the other managers in the Macintosh Communications
Toolbox—for instance, the Connection Manager (described in Inside the

Macintosh Communications Toolbox)

Data structures of the Telephone Manager

The Telephone Manager maintains three main types of data structures—the telephone record, the
directory-number record, and the call-appearance record. In this respect, the Telephone Manager
differs from most other Communications Toolbox managers, which maintain only one main type
of data structure. For example, the Connection Manager maintains only the connection record.

Figure 2-1 shows how the main data structures of the Telephone Manager relate to one
another.

m Figure 2-1 How the Telephone Manager data structures are related

TELRecord TELTermRecord

Telephone _|
Record :>

Directory-number
record(s)

Call-appearance
records

An important aspect of the Telephone Manager data structures is that they allow the interface
of Telephone Manager routines to be network-independent. This independence lets applications use
Telephone Manager services without regard for the underlying network type or telephone type. In
other words, to place a call, an application tells the Telephone Manager what number to dial. The
Telephone Manager then invokes a telephone tool, which figures out exactly how to place a call on
the given telephone network switch.

Another important aspect of the Telephone Manager data structures is that they let
applications use multiple instances of the same tool. The same tool can be used by different
processes at the same time or by different threads in a given application.

The sections that follow explain each of the main Telephone Manager data structures.

A\ Important In the descriptions of the Telephone Manager data structures and in the
rest of this book, all strings are Pascal-style strings, unless otherwise
noted. A

8 Telephone Manager Developer's Guide

The telephone record

The telephone record describes a particular terminal and its associated tool, and contains pointers to
Telephone Manager internal data structures. The Telephone Manager uses this information to
“translate” the network-independent routines used by an application into a service implemented
according to the protocols of a particular network. Most of the fields in the telephone record are
filled in when an application calls TELNew, described later in this chapter.

The Telephone Manager creates a telephone record for each terminal an application uses. For
example, assume that a Macintosh computer has two ISDN cards and that an application needs to
communicate over both cards. The application would request that the Telephone Manager create
two telephone records, one for each card.

Because the telephone record describes how communication takes place on a given terminal, an
application can communicate on more than one terminal at the same time. The application need
only create a new telephone record for each terminal.

.\ Important Your application, in order to be compatible with future releases of the
Telephone Manager, should not directly manipulate the fields of the
telephone record, except refcon and userpata. The Telephone Manager
provides routines that applications can use to change telephone record
fields. These routines are discussed later in this chapter. A

Chapter 2: Inside the Telephone Manager

9

Telephone record data structure: TELRecord

TYPE

TELHandle x
TELPtr =
TELRecord =

proclID :

flags $
reserved

.

refCon

.

userData :

defproc 3

config
oldConfig

pTELTerm s
telPrivate 8
reservedl

reserved2 s

pTELTermSize 3
version

END;

proclD

“TELPtr;
“TELRecord;
RECORD
INTEGER;

TELFlags
INTEGER;

~e

LONGINT;
LONGINT;

ProcPtr;

J200550
PEER

TELTermPtr;
LONGINT;
LONGINT;

LONGINT;

LONGINT;
INTEGER;

procID is the telephone tool ID. This value is dynamically assigned by the Telephone Manager
when your application calls TELGetProcID.

flags

flags is a bit field that indicates certain specifics about a terminal when the telephone record is

first created. The bit masks for f£lags are as follows:

TYPE

CONST

10

flags = LONGINT;
telNoMenus = $10000;
telQuiet = $20000;

{All other bits in flags are reserved for Apple.}

Telephone Manager Developer's Guide

Your application can turn on the telNoMenus bit, the telquiet bit, or both when calling
TELNew (discussed later in this chapter). The telephone tool will not display any custom menus if
your application sets the telNoMenus bit. The telephone tool will not display any status dialog
boxes or error alerts if your application sets the telquiet bit. If your application tums the
telQuiet bit on, it is responsible for displaying status dialog boxes and error alerts that the tool

would have displayed. Applications typically use these two bits to hide the telephone tool from the
user.

reserved

reserved is reserved for the Telephone Manager. Your application must not use this field.

refCon

refCon is a 4-byte field that your application can use. This field is ignored by the Telephone
Manager.

userData

userData is a 4-byte field that your application can use. This field is ignored by the Telephone
Manager.

defproc

defproc is a procedure pointer to the main code resource of the telephone tool, and is maintained
by the Telephone Manager.

config

config is a pointer to a data block that is private to the telephone tool. It can contain information
like the directory numbers and telephone features associated with the terminal; the contents vary
from tool to tool.

Your application can store the contents of config to save the state of a tool and terminal. The
structure, size, and contents of the configuration record are set by the tool. Your application can
determine the size of the configuration record by calling Getptrsize, overwriting its contents by
using BlockMove, and then validating the contents with TELvalidate.

Your application can use TELGetconfig and TELSetConfig to manipulate fields in this
record. For details, see “Interfacing with a Scripting Language,” later in this chapter. Your application
can save the state of the telephone record by saving the string returned from TELGetconfig. Also,
your application can restore the configuration of the telephone record by passing a saved string to
TELSetConfig.

oldConfig

oldconfig isa pointer to a data block that is private to the telephone tool and contains the most
recently saved version of config. Your application is responsible for setting oldconfig when
the user saves a session document. Your application can use TELGetConfig and TELSetConfig
to manipulate fields in this record.

Chapter 2: Inside the Telephone Manager

11

PTELTerm
pTELTerm is pointer to a record of type TELTermrecord, defined in the next section.

telPrivate
telPrivate is reserved for use by telephone tools.

reservedl

reservedl is reserved for the Telephone Manager. Your application must not use this field.

reserved2
reserved2 is reserved for the Telephone Manager. Your application must not use this field.

PTELTermSize
pTELTermSize contains the size (in bytes) of the record pointed to by the field preLTerm.

version

version is the version number of the Telephone Manager for which the telephone tool is
intended. The tool fills in this value when the terminal is opened.

Telephone record data structure: TELTermRecord

TYPE

TELTermPtr = “TELTermRecord;

TELTermRecord = RECORD
tRef : INTEGER;
featureFlags 3 TELFeatureFlags;
handsetSpeakervol H INTEGER;
speakerphonevol t INTEGER;
handsetMicvol g INTEGER;
ringervol 2 INTEGER;
othervol 3 INTEGER;
ringerTypes g INTEGER;
hasDisplay 3 INTEGER;
displayRows 5 INTEGER;
numDNs 3 INTEGER;
maxAllocCA g INTEGER;
curAllocCA s INTEGER;
reserved B LONGINT;

END;

12 Telephone Manager Developer's Guide

tRef

tRef is the terminal reference number. This value is dynamically assigned by the telephone tool
when your application calls TzLvew. The tret field is private to the telephone tool; your
application must not change the value of this field.

featureFlags

featureFlags is a bit field that indicates which features and characteristics the terminal has
when it is first opened (by the routine TELOpenTerm). The bit masks for featurerlags are as
follows:

TYPE
featureFlags = LONGINT;

CONST
pcmAvail = $00000001;
hasHandset = $00000002;
hasSpeakerphone = $00000004;
canOnHookDial = $00000008;
hasRinger = $00000010;
canSetDisplay = $00000020;
hasKeypad =H $00000040;

" hasVideo = $00000080;

hasOther = $00000100;
crossDNConference = $00000200;
hasSubaddress = $00000400;
hasUserUserInfo = $00000800;

{All other bits in featureFlags are reserved for Apple.}

If a tool sets a bit in featurerlags, the terminal has the corresponding characteristic or
capability. If pemavail is set, the terminal can access pulse-code-modulated (PCM) data. If
hasHandset, hasSpeakerphone, and canonHookDial are set, the terminal has an attached
handset and a speakerphone, and can dial while the handset’s receiver is on the switch hook. If
hasRinger and canSetDisplay are set, the terminal has its own ringer (as opposed to that of
the telephone) and can write to the telephone’s display. If haskeypad and hasvideo are set, the
terminal has a typical 12-button keypad and has a videophone. The flag hasother is reserved
for Apple.

The remaining flags of featurerlags indicate whether the corresponding features are
available. If crosspNconference is set, the terminal can group calls into a conference, even if the
calls are on different directory numbers. If hassubaddress and hasuseruserInfo are set, the
network to which the terminal is attached allows subaddressing and user-to-user information.

Chapter 2: Inside the Telephone Manager

13

handsetSpeakervol

handsetSpeakervol indicates the number of levels to which the volume control of the handset
can be set. If handsetspeakervol is zero, the volume of the handset is fixed; it cannot be
adjusted.

speakerphonevol

speakerphonevol indicates the number of levels to which the volume control of the
speakerphone can be set. If speakerphonevol is zero, the volume of the speakerphone is fixed; it
cannot be adjusted.

handsetMicVol

handsetMicvol indicates the number of levels to which the volume control of the microphone
can be set. If handsetMicvol is zero, the volume of the microphone is fixed; it cannot be
adjusted.

ringervVol

ringervol indicates the number of levels to which the volume control of the ringer can be set.
If ringervol is zero, the volume of the ringer is fixed; it cannot be adjusted.

othervol

othervol is reserved by Apple for future use. Your application must not use this field.

ringerTypes
ringerTypes indicates how many types of ringing sounds the terminal can emit. If ringertypes
is zero, the terminal is not capable of emitting a ringing sound.

hasDisplay
hasDisplay indicates the number of characters per line that the telephone can display. If haspispiay
is zero, the telephone has no display.

displayRows
displayRows indicates the number of lines that the telephone can display. If haspisplay is

zero, displayRows must also be zero.

numDNs
numpNs indicates how many directory numbers are currently assigned to the terminal.

14 Telephone Manager Developer's Guide

maxAllocCAs

maxAllocCAs indicates the maximum number of call appearances that the network has allocated
to this terminal for placing independent outgoing calls. (For example, on a residential POTS line with
Call Waiting, maxalloccas would be set to 1, meaning the line can place only one outgoing call at
atime.) If maxalloccas is set to -1, there is no maximum.

curAllocCAs

curAllocCas indicates how many of the call appearances currently on the terminal are in states
other than telcardlestate.

reserved

reserved is reserved for Apple. Your application must not use this field.

The directory-number record

The Telephone Manager creates a directory-number record for each telephone number, or directory
number, associated with a particular telephone terminal. Each directory-number record describes
the characteristics of a particular directory number (such as its subscribed features) and its state
(such as “in use”). The Telephone Manager accesses this information when placing calls, receiving
calls, or otherwise handling calls for that directory number.

The fields of the directory-number record are filled in by the telephone tool when the record is
created. Because these fields are updated only at the application’s request, the directory-number
record is like a “snapshot.” It describes the characteristics and state of the directory number as of
the most recent update.

A\ Important Your application, in order to be compatible with future releases of the
Telephone Manager, should not directly manipulate the fields of the
directory-number record, except refcon and userpata.A

Chapter 2: Inside the Telephone Manager

15

Directory-number data structure

TYPE

TELDNHandle S “TELDNPtr;

TELDNPtr = ~“TELDNRecord;

TELDNRecord = RECORD
dnRef 3 INTEGER;
dn : StringPtr;
dnSubaddress 3 StringPtr;
dnPartyName 5 StringPtr;
hTEL i TELHandle;
maxAllocCAs : INTEGER;
curAllocCAs B INTEGER;
dnType : INTEGER;
featureFlags d TELDNFeatureFlags;
numPageIDs 8 INTEGER;
numIntercomIDs : INTEGER;
numPickupIDs 2 INTEGER;
forwardFlags 3 TELDNForwardFlags;
iForwardDN § StringPtr;
iForwardSubaddress 3 StringPtr;
iForwardPartyName s StringPtr;
bForwardDN : StringPtr;
bForwardSubaddress StringPtr;
bForwardPartyName : StringPtr;
naForwardDN StringPtr;
naForwardSubaddress H StringPtr;
naForwardPartyName J StringPtr;
naForwardRings S INTEGER;
telDNPrivate } LONGINT;
refCon 8 LONGINT;
userData H LONGINT;
reserved LONGINT;

END;

dnRef

dnRef is the directory-number reference number, dynamically assigned by the telephone tool to
refer to this particular directory number. Your application is permitted to read dnref but should

not change the value of the field.

16 Telephone Manager Developer’s Guide

dn

dn is a pointer to a Pascal-style string storing the name (telephone number) associated with the
directory number. Tools recognize only the following characters in this string: the digits 0 through 9,
the number sign (#), the comma (,), the asterisk (*), and the exclamation point (!). The comma is
treated as a 1-second pause; the exclamation point is treated as a flash-hook. All other characters are
parsed as spaces but do not stop the the telephone tool's processing. If your application accepts
directory-number names that include alphabetic characters, it should translate these characters to
the appropriate digits.

dnSubaddress

dnsSubaddress is a pointer to a Pascal-style string storing the network subaddress, if any,
associated with the directory number.

dnPartyName

dnPartyName is a pointer to a Pascal-style string storing the name of the person to whom this
directory number is assigned.

hTEL

hTEL contains 4 handle to the telephone record (and hence the terminal) with which this directory
number is associated.

maxAllocCAs

maxAllocCAs indicates the maximum number of call appearances that the network has allocated
to this directory number for placing independent outgoing calls. If maxalioccas issetto -1,
there is no maximum.

curAllocCAs
curalloccas is the number of calls currently allocated for this directory number.

dnType

dnType represents the type of this directory number (internal, external, and so on). Refer to the
description of the routine TELDNLookupByIndex for an explanation of directory-number types.

featureFlags

featureFlags isa bit field that indicates which features (other than call forwarding) and
characteristics a directory number has, and indicates their state—subscribed, available, or active. The
bit masks for featurerlags are as follows:

Chapter 2: Inside the Telephone Manager

17

TYPE

featureFlags = LONGINT;
CONST

dndSub = $00000001;
dndAvail = $00000002;
dndActive = 500000004;
voiceMailAccessSub = $00000008;
voiceMailAccessAvail = $00000010;
voiceMailAccessActive = $00000020;
pagingSub = $00000040;
pagingAvail = $00000080;
pagingActive = $00000100;
intercomSub = $500000200;
intercomAvail = $00000400;
intercomActive = $00000800;
dnSelectSub = $00001000;
dnSelectAvail = $00002000;
dnSelectActive = 500004000;
callPickupSub = $00008000;
callPickupAvail = $00010000;
dnInUse = $00020000;
logicalDN = §00040000;
dnAccessible = $00080000;
canInitiate = $00100000;
voiceMessageWaiting = $00200000;

{All other bits in featureFlags are reserved by Apple for future use.}

The bits dndsub, dndavail, and dndactive show the state of Do Not Disturb.
voiceMailAccessSub, voiceMailAccessAvail, and voiceMailAccessactive show the
state of the Voice Mail feature. pagingSub, PagingSubAvail, and PagingSubActive show
the state of Paging. intercomsub, intercomAvail, and intercomactive show the state of
Intercom.

The bits dnselectSub, dnSelectavail, and dnSelectActive show the state of Directory
Number Select. callpickupsub and callpickupavail show the state of Call Pickup.
dnInuse indicates whether the directory number is in use, meaning that call appearances are
currently allocated for it. 1ogicalpn indicates whether the directory number is a logical directory
number, meaning that no corresponding physical channel is connected to the terminal.
dnAccessible indicates whether the directory number can accept commands—for example,
TELSetupCall. canInitiate indicates whether the directory number can place unrestricted
calls. voiceMessagewaiting indicates whether a voice-mail message is waiting for this directory
number.

18 Telephone Manager Developer's Guide

numPagelDs

numPageIDs is the number of page IDs, or “page keys,” configured for this directory number.

numIntercomlDs

numIntercomIDs is the number of intercom IDs, or “intercom keys,” configured for this directory
number.

numPickupIDs

numPickupIDs is the number of pickup IDs configured for this directory number.

forwardFlags

forwardFlags is a bit field that indicates which capabilities of call forwarding this directory
number has and indicates the state of those capabilities (subscribed, available, and active). If a tool
sets a bit in forwardFlags, the corresponding forwarding capability is in the indicated state. The
bit masks for forwardrlags are as follows:

TYPE
forwardFlags s LONGINT;

CONST

. immediateForwardSub i = $00000001;

immediateForwardAvail = $00000002;
immediateForwardActive = $00000004;
busyForwardSub = $00000008;
busyForwardAvail = $00000010;
busyForwardActive = $00000020;
noAnswerForwardSub = $00000040;
noAnswerForwardAvail = $00000080;
naFwdActive = $00000100;
busyNAForwardSub = $00000200;
busyNAForwardAvail = $00000400;
busyNAForwardActive = $00000800;

{All other bits in forwardFlags are reserved by Apple for future use.}

The bits immediateForwardSub, immediateForwardAvail,and immediateForwardActive
indicate the state of Immediate Call Forwarding—whether it is subscribed, available, or active.
Likewise, busyForwardSub, busyForwardAvail, and busyForwardActive show the state of
Forward On Busy. The bits noanswerForwardsSub, noAnswerForwardavail, and
noAnswerForwardActive indicate the state of Forward On No Answer. The bits
busyNAForwardSub, busyNAForwardAvail, and busyNAForwardactive indicate the state of
Forward On Busy And No Answer.

Chapter 2: Inside the Telephone Manager

19

iForwardDN

iForwardDN i a pointer to a string storing either N1L or the telephone number to which calls are
forwarded when the Immediate Call Forwarding feature is active.

iForwardSubaddress

iForwardsubaddress isa pointer to a string storing either N1L or the network subaddress of the
telephone number to which calls are forwarded when the Immediate Call Forwarding feature is active.

iForwardPartyName

iForwardPartyName is a pointer to a string storing either N1L or the name of the person to
whom calls are forwarded when the Immediate Call Forwarding feature is active.

bForwardDN

bForwardDN iSa pointer to a string storing either NIL or the telephone number to which calls are
forwarded when the Forward On Busy feature is active.

bForwardSubaddress

bForwardSubaddress isa pointer to a string storing either NIL or the network subaddress of
the telephone number to which calls are forwarded when the Forward On Busy feature is active.

bForwardPartyName

bForwardpartyName isa pointer to a string storing either N1L or the name of the person to
whom calls are forwarded when the Forward On Busy feature is active.

naForwardDN

naForwardDN iS a pointer (o a string storing either w1t or the telephone number to which calls
are forwarded when the Forward On No Answer feature is active.

naForwardSubaddress

naForwardSubaddress s a pointer to a string storing either NIL or the network subaddress of
the telephone number to which calls are forwarded when the Forward On No Answer feature is
active.

naForwardPartyName

naForwardPartyName isa pointer to a string storing either N1z or the name of the person to
whom calls are forwarded when the Forward On No Answer feature is active,

naForwardRings

naForwardRings is the number of times the telephone or terminal rings before Forward On No
Answer is activated.

20 Telephone Manager Developer's Guide

telDNPrivate

telbNPrivate is reserved for use by telephone tools.

refCon

refcCon is a 4-byte field that your application can use. This field is ignored by the Telephone
Manager.

userData
userData is 2 4-byte field that your application can use. This field is ignored by the Telephone

Manager.

reserved

reserved is reserved for Apple. Your application must not use this field.

Chapter 2: Inside the Telephone Manager 21

The call-appearance record

The Telephone Manager creates a call-appearance record for each call appearance associated with a
particular directory number. Each call-appearance record describes the characteristics of a particular
call appearance (such as the directory number being called) and its state (such as “on hold"). The
Telephone Manager accesses this information when handling that call appearance.

Most of the fields of the call-appearance record are filled in by the telephone tool when the
record is created. The Telephone Manager updates the fields of the record only at your application’s
request. Thus, the call-appearance record is like a “snapshot.” It describes the characteristics and
state of the call appearance as of the most recent update.

/\ Important Your application, in order to be compatible with future releases of the
Telephone Manager, should not directly manipulate the fields of the call-
appearance record (except refCon, userData, and connectTime). A

22 Telephone Manager Developer's Guide

Call-appearance data structure

TYPE
TELCAHandle
TELCAPtr
TELCARecord
caRef

hTELDN

hTEL
caState
relatedCa
connectTime

intExt
callType
dialType
bearerType
rate

rmtDN
rmtPartyName
rmtSubaddress
routeDN
routePartyName
routeSubaddress

priority
confLimit

featureFlags
otherFeatures

telCAPrivate

refCon

userData

reserved
END;

caRef

.

"TELCAPtr;
“TELCARecord;
RECORD
INTEGER;

TELDNHandle;
TELHandle;
INTEGER;
TELCAHandle;
LONGINT;

INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;

StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;

INTEGER;

INTEGER;

TELCAFeatureFlags;
TELCAOtherFeatures;

LONGINT;
LONGINT;
LONGINT;
LONGINT;

caref is the call-appearance reference number, dynamically assigned by the telephone tool to refer
to this particular call appearance. Your application is permitted to read caref but should not

change the value of the field.

hTELDN

hTELDN is 2 handle to the directory-number record for this call appearance.

Chapter 2: Inside the Telephone Manager

23

hTEL

hTEL is a handle to the telephone record for directory number hTeLDN.

caState

castate is an integer that represents the state of the call associated with this call appearance. The
valid values of castate are as follows:

CONST
telCAIdleState = 0; {No call exists now}
telCAInUseState = 15 {This call active at another terminal}
telcaofferState = 21 {Call being offered to this terminal}
telCAQueuedState = 3% {Call being queued to this terminal}
telCAAlertingState = 4; {Call alerting at this terminal}
telCADialToneState = Sij {Initiated outgoing call has dial tone}
telCADialingState = 6; {Initiated outgoing call now dialing}
telCAWaitingState = 745 {Initiated outgoing call awaiting destination’s
response}
telCARingingState = 8; {Outgoing call now ringing}
telCABusyState = 9; {Destination busy or unreachable}
telCAHeldState = 10; {This call put on hold by this terminal}
telCAConferencedState = 1035 {This call now part of a conference}
telCAActiveState = 192% {This call active: parties can speak or
exchange data)
telCAReorderState = 15303 {This call in a reorder state}
telCAUnknownState = 15% {Call state unknown}
relatedCA

relatedca isa handle to a call-appearance record with which the current call appearance is
associated, as in a conference or a transfer,

connectTime

connectTime is the time at which the connection was made. Your application is responsible for
maintaining this field if needed.

24 Telephone Manager Developer’s Guide

intExt

intExt indicates whether the call is internal or external. intExt has one of the following values:

telInternalCall
telExternalCall
telUnknownCallOrigin

callType

0; {Internal call}
(& {External call}
2; {Call type unknown}

callType indicates the route by which the call reached this terminal—for instance whether it was
transferred or forwarded. callType can have any of the following values:

telNormalln
telForwardedNoAnswer
telForwardedBusy
telForwardedImmediate
telTransfer
telDeflected
tellIntercepted
telDeflectRecall
telCallbackIn
telParkRecall
telPickup
telTransferRecall

dialType

H {Inbound
2; {Inbound
H {Inbound
g {Inbound
g {Inbound
{Inbound

{Pirect inbound call}

forward on no answer)
forward on busy}
forward immediate}
call transfer}
deflected call}
intercepted call}

{Recall of deflected call}

{Inbound

{Inbound

call back}

call pickup}

9; {Recall of parked call}

{Recall of transferred call}

dialType indicates the type of dialable number as one of the following values:

telDNDialable

telDNNorthAmerican

telDNInternational

telDNAlmostDialable

telDNUnknown

0;

1558

{This dn could be dialed via

TELSetupCall }

{rmtdn is standard North America
10 digit number }

{rmtDN is an international number)

{rmtDN is almost dialable; it is missing
a prefix, such as 9 or 1 }

{Unknown whether dn is dialable }

Chapter 2: Inside the Telephone Manager 25

bearerType

bearerType is unused and set to zero.

rate

rate is unused and set to zero.

rmtDN

rmtDN is a pointer to the remote telephone number associated with this call. The telephone
number is a Pascal-style string. If the remote telephone number is unknown, rmtdN is NIL.

rmtPartyName

rmtPartyName is a pointer to the name of the remote party associated with this call. The name is
a Pascal-style string. If the name of the remote party is unknown, rmtPartyName is NIL.

rmtSubaddress

rmtSubaddress is a pointer to the network subaddress of rmton. If there is no subaddress,
rmtSubaddress i$ NIL.

routeDN

routeDN is a pointer to the telephone number through which this call was routed. The telephone
number is a Pascal-style string. If the call was not routed or if the routing telephone number is
unknown, routeDdN iS NIL.

routePartyName

routePartyName isa pointer to the name of the party associated with routepn. The name is a
Pascal-style string. If the name of the party is unknown, routePartyName is NIL.

routeSubaddress

routeSubaddress isa pointer to the network subaddress of routeon. If there is no subaddress
routeSubaddress i$ NIL.

!

priority
priority is reserved by Apple for future use.

confLimit

confLimit is the maximum number of parties that can be concurrently conferenced with this call
appearance. This maximum includes the two parties initially associated with the call appearance. If
confLimit equals zero, there is no limit on the number of calls that can be conferenced.

26 Telephone Manager Developer's Guide

featureFlags

featureFlags isa bit field that indicates which features can be applied to this call appearance and
indicates their state (subscribed, available, or active). The bit masks for featureriags are as
follows:

TYPE
featureFlags = LONGINT;

CONST
holdsSub = $00000001;
holdAvail = $00000002;
holdActive = $00000004;
conferenceSub = $00000008;
conferenceAvail = $00000010;
conferenceActive = $00000020;
conferenceDropSub = $00000040;
conferenceDropAvail = $00000080;
conferenceSplitSub = $00000100;
conferenceSplitAvail = $00000200;
numToConferenceRequired = $00000400;
transferSub = $00000800;
transferavail = $00001000;
transferActive = $00002000;
caRelated = $00004000;

{All other bits in featureFlags are reserved by Apple for future use.}

The bits holdsub, holdavail,and holdActive show the state of the Hold feature;
conferenceSub, conferenceavail,and conferenceActive show the state of the
Conference feature. Likewise, conferenceDropSub, conferenceDropAvail,
conferenceSplitSub, and conferencesplitavail show the state of the features Conference
Drop and Conference Split. If numToconferenceRrequired is set, your application must indicate
the number of calls in this conference when invoking the routine TELConferencerrep. The
caRelated bit is set if this call appearance is specified in the relatedca field of another call-
appearance record. The bits transferSub, transferAvail,and transferActive show the
state of the Transfer feature.

otherFeatures

otherFeatures is a bit field that indicates which features, other than those in featurerlags,
can be applied to this call appearance and indicates their state (subscribed, available, active, or
clearable). The bit masks for otherFeatures are as follows:

Chapter 2: Inside the Telephone Manager

27

TYPE

otherFeatures LONGINT;
CONST

callbackSub $00000001;
callbackAvail $00000002;
callbackActive $00000004;
callbackClearSub $00000008;
callbackNowSub $00000010;
callbackNowAvail $00000020;
callbackBusy $00000040;
callbackNoAnswer $00000080;
callbackReturnsRef $00000100;
parkSub $00000200;
parkAvail $00000400;
parkActive $00000800;
parkRetrieveSub $00001000;
parkRetrieveWithID $00002000;
parkWithID $00004000;
rejectable $00008000;
deflectable $00010000;
acceptable $00020000;

{All other bits in otherFeatures are reserved by Apple for future use.}

The bits callbackSub, callbackAvail, callbackActive,and callbackClearSub show
the state of the Call Back feature (subscribed, available, active, or clearable). The bits
callbackNowSub and callbackNowAvail show the state of the Call Back Now feature. When
the Call Back feature is available, callbacksusy is set if the feature can be activated when the
remote party is busy. Similarly, callbackNoanswer is set if the Call Back feature can be activated
when the remote party does not answer. If calibackReturnsRef is set, the Call Back feature
returns a reference. number, allowing the user to identify multiple callbacks.

The bits parksub, parkaAvail,and parkactive show the state of the Call Park feature. If
parkRetrievesub is set, the Call Park Retrieve feature is subscribed. parkretrievewithip and
parkwithID show whether the Call Park feature assigns an ID or requests the destination
directory number when parking calls. Rejectable, deflectable,and acceptable show
whether the terminal can reject, deflect, or accept the call.

telCAPrivate
telCAPrivate is reserved for use by telephone tools.

refCon

refcon is a 4-byte field that your application can use.

28 Telephone Manager Developer’s Guide

userData

userData is a 4-byte field that your application can use.

reserved

reserved is reserved for Apple. Your application must not use this field.

Chapter 2: Inside the Telephone Manager 29

Telephone Manager routines

The sections that follow describe the routines that tools and applications can use to access Telephone
Manager services. These routines are protocol independent; your application does not need to be
familiar with the specifics of a particular network protocol in order to use these telephone services.

A\ Important

Manager routines, refer to Appendix A. A

Here is an alphabetical listing of the routines described in this section.

InitTEL / 31
TELAcceptCall / 56
TELActivate / 45
TELAlert / 82
TELAnswerCail / 56
TELCADispose / 93
TELCAEventsSupp / 53
TELCallbackClear / 66
TELCallbackNow / 66
TELCallbackSet / 65
TELCallPickup / 68
TELCALookup / 90
TELCAMsgHand / 50
TELChoose / 34
TELCloseTerm / 43
TELClrCAMsgHand / 52
TELC1rDNMsgHand / 51
TELClrTermMsgHand / 51
TELConferenceEstablish / 64
TELConferencePrep / 63
TELConferenceSplit / 04
TELConnect / 55
TELCountCAs / 90
TELCountDNs / 85
TELDefault / 33
TELDeflectCall / 58
TELDialDigits / 55
TELDispose / 43

TELDNDClear / 67
TELDNDispose / 89
TELDNDSet / 66
TELDNEventsSupp / 52

TELDNLookupByIndex / 86

TELDNLookupByName / 87
TELDNMsgHand / 49
TELDNSelect / 88
TELDrop / 59
TELEnglishToIntl / 76
TELEvent / 46
TELForwardClear / 62
TELForwardset / 62
TELGetCAFlags / 92
TELGetCAInfo / 91
TELGetCAState / 92
TELGetConfig / 40
TELGetDisplay / 83
TELGetDNFlags / 88
TELGetDNInfo / 87
TELGetHooksw / 77
TELGetInfo / 44
TELGetProcID / 31
TELGetTELVersion / 94
TELGetToolName / 94
TELGetVersion / 94
TELGetVolume / 78
TELHold / 60

TELId1le / 43
TELIntercom / 71
TELInt1ToEnglish / 75
TELMenu / 45

TELNew / 32

30 Telephone Manager Developer's Guide

For a list and description of each result code returned by the Telephone

TELOpenTerm / 42
TELOtherFeaturelImplement
/73
TELOtherFeatureList / 72
TELOtherFunction / 73
TELPaging / 70
TELParkcall / 68
TELRejectCall / 57
TELResetTerm / 42
TELResume / 45
TELRetrieve / 60
TELRetrieveParkedcall / 69
TELSetConfig / 41
TELSetDisplay / 84
TELSetHooksw / 78
TELSetupCall / 54
TELSetupCleanup / 38
TELSetupFilter / 37
TELSetupItem / 38
TELSetupPostflight / 39
TELSetupPreflight / 36
TELSetupSetup / 37
TELSetVolume / 80
TELTermEventssSupp / 52
TELTermMsgHand / 48
TELToolFunctions / 74
TELTransferBlind / 61
TELTransferEstablish / 61
TELTransferPrep / 60
TELValidate / 33
TELVoiceMailAccess / 70

Preparing to handle calls

Before your application can place calls or receive them, it must initialize the Telephone Manager (by
calling 1nierer), find outthe procin of the tool it requires (by calling TELGetProcIn), create a

telephone record (by calling TELNew), and then configure the telephone tool (by restoring config
from a saved document, or by calling either TELChoose or TELSetConfig).

InitTEL

Initializing the Telephone Manager

Function

Description

Result Codes

TELGetProclID

InitTEL initializes the Telephone Manager. Your application should call this routine only
once, before making any other calls.

Before calling nitTEL your application must initialize the Macintosh Toolbox, the
Communications Resource Manager, and the Communications Toolbox Utilities.

Warning Your application must initialize the Communications Resource Manager
(by calling 1nitcru) and then the Communications Toolbox Utilities (by calling
InitCTBUtilities), whether or not your application uses any of their calls. a

InitTEL : TELErr;

InitTEL returns an operating-system error code if appropriate. Your application must
check for the presence of the Communications Toolbox before calling this function.
Sample code under “Determining Whether the Managers are Installed” in Appendix C of
Inside the Macintosh Communications Toolbox shows you how your application can
make this check.

noErr, telNoCommFolder, telInitFailed, telNoTools

Getting the procip of a tool

Function

Description

Your application should call TELGetProcID just before creating a new telephone record,
to find the procIp of a tool.

TELGetProcID(name: Str255): INTEGER;

name specifies the filename of a telephone tool—for example, “Apple ISDN Telephone
Tool.” If there is a telephone tool with the specified name in the Extensions folder, the
procIp is returned. If there is no such telephone tool, TELGetProcIp returns -1.

Chapter 2: Inside the Telephone Manager 31

TELNew

Creating a telephone record

Function

Description

Before your application can handle calls, it must create a telephone record so the
Telephone Manager knows what type of terminal you are using. TELNew creates a new
telephone record of type TELRecord; fills in the fields it can, based on the parameters
passed to it; and returns a handle to the new record in TELHandle. In this new record,
the field version is filled in by the telephone tool. The tool also fills in any fields it can in
the record’s associated TELTermRecord.

TELNew makes two calls to TELDefault (described later in this chapter) to fill in
config and oldconfig. The Telephone Manager then loads the telephone tool main
code resource, moves it high in the current heap, and locks it. If an error occurs that
prevents a new telephone record from being created (for example, running out of
memory), TELNew passes back NIL in TELHandle.

TELNew(procID : INTEGER; refCon : LONGINT; userData : LONGINT) :
TELHandle;

procID is dynamically assigned by the Telephone Manager to tools at run time.
Applications should not store proc1p values in settings files. Instead, they should store
tool names, which can be converted to proc1ip values with the TELGetProcip
routine. Your application should use the ID that TELGetProcID returns for procip.

refCon and userData are fields that your application can use.

32 Telephone Manager Developer's Guide

TELDefault

Initializing the telephone record

Function

Description

Result Codes

TELValidate

TELDefault fills theconfig with the default configuration specified by the telephone
tool.

TELDefault (VAR theConfig: Ptr; procID: INTEGER; allocate: BOOLEAN) :
TELErr;

TELDefault iscalled by TELNew twice, when that routine fills in the config and
oldconfig fields of a new telephone record.

procID is equal to the value retumed by TELGetProcID.

If allocate is TRUE, the telephone tool allocates space for theconfig in the current
heap zone.

noErr, telUnknownErr

Validating the configuration fields

Function

Description

TELValidate validates the configuration fields and other fields of the telephone record
by comparing their values with those allowed by the telephone tool. TELNew and
TELSetConfig Call TELvalidate after they have created a new telephone record.

TELValidate(hTEL: TELHandle): BOOLEAN;

If the validation succeeds, the Telephone Manager returns Farse and the tool leaves
the configuration record unchanged. If the validation fails, the Telephone Manager
returns TRUE and the tool fills the configuration record with default values by
calling TELDefault

Your application can call TELvalidate after restoring a configuration, to verify
that the telephone record contains the correct information, as in the following
example:
BlockMove(saveCOnfig,hTEL“.config,GetPtrSize(hTEL".config));

IF TELValidate(hTEL) THEN BEGIN
{ validate failed }

END

ELSE BEGIN
{ validate succeeded }
END

Chapter 2: Inside the Telephone Manager 33

TELChoose

Configuring a telephone tool

Function

Description

An application can configure a telephone tool in one of three ways. The easiest and most
straightforward way is by calling the TELChoose routine. This routine presents the user
with a dialog box similar to the one shown in Figure 2-2.

m Figure 2-2 A sample tool-settings dialog box

Telephone Settings '
Phone Type: | fpple ISONT... + |
ISON Card Selection
=D
B! 8
i $3
Slot £
<a] I

The second way your application can configure a telephone tool is by presenting the user
with a custom tool-settings dialog box. This method is much more difficult and involves
calling six routines. The routines are described in the next section, “Custom Configuration
of a Telephone Tool.”

The third way your application can configure a telephone tool is by using the
scripting language interface, described in “Interfacing With a Scripting Language,”
later in this chapter. This method allows your application to bypass user interface
elements.

Regardless of which configuration method you use, the configuration is
stored in a telephone record, which your application refers to using a handle. If
your application reconfigures the tool by either configuration method, the
Telephone Manager returns a new handle to a new telephone record and disposes
of all handles associated with the old telephone record.

TELChoose (VAR hTEL:TELHandle; where: Point; idleProc: ProcPtr):
TELErr;

TELChoose allows users of your application to choose and configure a telephone tool by
filling in a dialog box like the one in Figure 2-2.

34 Telephone Manager Developer's Guide

hTEL is a handle to a telephone record. The fields of this record are filled in when the user
of your application selects or reconfigures a tool. Each telephone record contains the
configuration of only one tool on one terminal, yet a tool may support multiple terminals.
For this reason, applications that support multiple terminals must make multiple calls to
TELNew and then to either TELChoose or TELSetConfig.

where is the point, specified in global coordinates, where the upper-left corner of the
dialog box should appear. It is recommended that your application place the dialog box as
close as possible to the upper-left comer of the screen, because the size of the dialog box
varies from tool to tool.

idleProc is a procedure, with no parameters, that the Telephone Manager calls each time
TELChoose calls the setup dialog box filter procedure. Pass w1t if your application has
no idleproc. Refer to Inside the Macintosh Communications Toolbox for more
information about idleproc.

Result Codes noErr, telChooseAborted, telChooseCancel, telChooseDisaster,

telChooseFailed, telChooseOKMajor, telChooseOKMinor,
telChooseOKTermChanged

Chapter 2: Inside the Telephone Manager 35

Custom configuration of a telephone tool

Your application can create a custom tool-settings dialog box and present it to the user by calling the following
six Telephone Manger routines: TELSetupPreflight, TELSetupSetup, TELSetupFilter, TELSetupItem,
TELSetupCleanup, and TELSetupPostflight. Using these routines is more involved than calling
TELChoose, but they provide your application with much more flexibility.

To build a list of available telephone tools, use the routine crMGet IndToolName, which is
described in Inside the Macintosh Communications Toolbox.

TELSetupPreflight

Setting up the custom tool-settings dialog box

Function

Description

TELSetupPreflight returns a handle to a dialog item list that your application appends
to the custom tool-settings dialog box. The handle comes from the telephone tool. (The
calling application uses AppendDITL, discussed in Inside the Macintosh Communications
Toolbox.) This handle is not a resource handle. Your application is responsible for disposing
of the handle when done with it.

The telephone tool can use TELSetupPreflight to allocate a block of private
storage and to store the pointer to that block in magiccookie. The magiccookie
value should be passed to the other routines used to set up the custom tool-settings
dialog box.

TELSetupPreflight (procID: INTEGER; VAR magicCookie: LONGINT): Handle;

procIp is the ID for the telephone tool being configured. Your application should get
this value by calling the TELGetProcID routine, discussed earlier in this chapter.

Note: The refcon of the custom tool-settings dialog box should point to a data
structure (shown next) in which the first two bytes are the 100l procIp and the next
four bytes are magicCookie. UserItem routines, for example, may require procip to
obtain tool resources.

TYPE
chooseDLOGdata = RECORD
procID H INTEGER
magicCookie H LONGINT
END;

36 Telephone Manager Developer's Guide

TELSetupSetup

Setting up custom tool-settings dialog box items

TELSetupSetup tells the telephone tool to set up controls (such as radio buttons or
check boxes) in the dialog item list returned by TELSetupPreflight.

Procedure TELSetﬁpsetup(procID: INTEGER: theConfig: Ptr; count: INTEGER;
theDialog: DialogPtr; VAR magicCookie: LONGINT);
Description proc1p is the ID for the telephone tool that is being configured. Your application should
use the same value for proc1p that it passed t0 TELSetupPreflight.
theConfig is a pointer to a configuration record for the tool being configured.
count is the number of the first item in the dialog item list appended to the dialog box.
thebialog is the dialog box in which configuration is taking place.
magicCookie isa pointer to private storage for the telephone tool.
TELSetupFilter

Filtering custom tool-settings dialog box events

Function

Description

Your application calls TELSetuprilter asa filter procedure before it calls the standard
modal dialog box filter procedure for the custom tool-settings dialog box. This routine
allows telephone tools to filter events in the custom tool-settings dialog box.

TELSetupFilter(procID: INTEGER; theConfig: Ptr; count:INTEGER;
theDialog: DialogPtr; VAR theEvent: EventRecord; VAR theltem:
INTEGER; VAR magicCookie: LONGINT): BOOLEAN;

procIp is the ID for the telephone tool that is being configured. Your application should
use the same value for procrp that it passed to TELSetupPreflight.

theconfig isa pointer to the configuration record for the tool being configured.
count is the number of the first item in the dialog item list appended to the dialog box.
theDialog is the dialog box performing the configuration.

theEvent is the event record for which filtering is to take place.

theItem can return the item clicked in the dialog box.

magicCookie isa pointer to private storage for the telephone tool.

If the event passed in was handled, TELSetupFilter returns TRUE. FALSE indicates
that your application should perform standard dialog box filtering.

Chapter 2: Inside the Telephone Manager 37

TELSetupltem

Processing custom tool-settings dialog box events

Procedure

Description

TELSetupItem processes events for controls in the custom tool-settings dialog box.

TELSetupltem(procID: INTEGER; theConfig: Ptr; count: INTEGER;
theDialog: DialogPtr; VAR theItem: INTEGER; VAR magicCookie:
LONGINT) ;

procIp is the ID for the telephone tool being configured. Your application should use
the same value for procip that it passed (0 TELSetupPreflight.

theConfig isa pointer to the configuration record for the tool being configured.
count is the number of the first item in the dialog item list appended to the dialog box.
theDialog is the dialog box performing the configuration.

theItem is the item clicked in the dialog box. This value can be modified and sent back.

magicCookie isa pointer to private storage for the telephone tool.

TELSetupCleanup

Performing clean-up operations

Procedure

Description

TELSetupCleanup disposes of any storage allocated in TELSetupPreflight and
performs other clean-up operations. If your application needs to shorten a dialog box, it
should do so after calling this routine.

TELSetupCleanup(procID: INTEGER; theConfig: Ptr; count: INTEGER;
theDialog: DialogPtr; VAR magicCookie: LONGINT);

procIp is the ID for the telephone tool that is being configured. Your application should
use the same value for procip thatit passed to TELSetupPreflight.

theconfig is a pointer to the configuration record for the tool being configured.
count is the number of the first item in the dialog item list appended to the dialog box.
thepialog is the dialog box performing the configuration.

magicCookie isa pointer to private storage for the telephone tool.

38 Telephone Manager Developer's Guide

TELSetupPostflight

Closing the tool file

TELSetupPostflight closes the tool file if it is not being used by any sessions.
Procedure TELSetupPostflight(procID:INTEGER);

Description proc1D is the ID for the telephone tool that is being configured. Your application should
use the same value for procIp that it passed to TELSetupPreflight.

Chapter 2: Inside the Telephone Manager 39

Interfacing with a scripting language

Your application does not have to rely on users making selections from dialog boxes in order to
configure a telephone tool. TELGetconfig and TELsetconfig provide the services that your
application needs to interface with a scripting language.

TELGetConfig

Getting the configuration string
TELGetConfig gets a configuration string from the telephone tool.
Function TELGetConfig(hTEL: TELHandle): Ptr;

Description TELGetConfig returns a null-terminated, C-style string from the telephone tool,
containing tokens that fully describe the configuration of the telephone record. (For an
example, see the description of TELSetconfig.)If anan error occurs, TELGetConfig
returns NIL.

Your application is responsible for disposing of ptr.

Because the value that TELGetconfig returns specifies a null-terminated, C-style string,
that string is not subject to the length limitations of Pascal strings.

Result Codes None

40 Telephone Manager Developer's Guide

TELSetConfig

Setting the configuration with a string

Function

Description

Sample

Result Codes

TELSetConfig passes a configuration string to the telephone tool.

TELSetConfig(hTEL: TELHandle; thePtr: Ptr): INTEGER;

TELSetConfig passes a null-terminated, C-style string to the telephone tool for parsing.

The string, which can be of any length, is pointed to by theptr and must contain

tokens that describe the configuration of the telephone record. These tokens are defined

by the tool; the string returned by TELGetconfig contains valid tokens.

TELSetConfig ignores items it does not recognize or find relevant; such an
occurrence causes the telephone tool to stop parsing the string and to return the
character position where the error occurred. If the telephone tool successfully
parses the string, it returns noErr. If the telephone tool does not successfully
parse the string, it returns one of the following values: a number less than -1 to
indicate that an error occurred and no parsing was done, or a positive number to
indicate the character position where parsing was stopped.

Individual telephone tools are responsible for the parsing operation.

A null-terminated, C-style configuration string

SLOT 9 OTHERFIELDS XXXX OTHERBOOLEANS TRUE\O

noErr, telBadTermErr, telUnknownErr

Chapter 2: Inside the Telephone Manager

41

Opening, using, and closing the terminal

After your application has performed the required tasks described in the previous sections, it can
open and use the terminal. When the terminal is open, your application can send commands through
the Telephone Manager and telephone tool to the device drivers and terminal hardware. When the
terminal is closed, your application cannot send it commands.

TELOpenTerm

Opening a terminal

Function

Description

Result Codes

TELResetTerm

TELOpenTerm attempts to open a terminal, based on information in a telephone record.

Important Your application must call TELopenTerm before calling any of the
routines, except TELTermMsgHand, described in the rest of this chapter. Otherwise,
all calls to terminal-related routines will fail. A

TELOpenTerm(hTEL: TELHandle): TELErr;

TELOpenTerm opens the driver associated with a specific tool and a specific terminal for
the telephone record hTEL.

In addition to opening the driver, TELopenTerm finishes the initialization of the
telephone record by assigning values to any of its fields that have not yet been filled in.

noErr, telAlreadyOpen, telBadTermErr

Resetting a terminal

Function

Description

Result Codes

TELResetTerm resets a terminal, based on information in a telephone record.
TELResetTerm(hTEL: TELHandle): TELErr;

TELResetTerm resets the terminal hardware and software associated with the telephone
record hTEL, if the hardware and software have a reset capability.

noErr, telBadTermErr, telStillNeeded

42 Telephone Manager Developer’s Guide

TELCloseTerm

Closing a terminal
TELCloseTerm closes the terminal associated with the specified telephone record.
Function TELCloseTerm(hTEL: TELHandle): TELErr;

Description Your application should call TeLcloseTerm when the Macintosh computer is being shut
down or when the application is quitting. TELCloseTerm closes the terminal, if no other
application has opened it.

hTEL specifies the telephone record associated with the terminal.

Result Codes noErr, telBadTermErr, telStillNeeded

TELDispose

Stopping the monitoring of a terminal

TELDispose cancels your application’s monitoring of the terminal associated with a
specified telephone record.

Note that TELDispose does not drop call apperances currently active on the terminal.
To drop a call appearance, use the routine TELDrop.

Function TELDispose(hTEL: TELHandle): TELErr;

Description hTeL specifies the telephone record associated with the terminal.

TELDispose disposes of hter and all handles associated with directory numbers and
call appearances on hEL. In addition, TELDispose removes the terminal message handler
for hTEL, and removes any directory-number messages handlers and call-appearance
message handlers related to hTEL.

Result Codes noErr, telBadTermErr

TELIdle

Providing necessary idle time

Your application should call TeLIdle at least once every time it goes through its main
event loop, so that the connection tool can perform idle-loop tasks.

Procedure TELIdle(hTEL: TELHandle);

Description hTEL specifies the terminal for which idle-loop tasks are to be performed.

Chapter 2: Inside the Telephone Manager 43

TELGetInfo

Getting information about a terminal

TELGetInfo returns state and capability information about a terminal/tool combination.
Function TELGetInfo(hTEL: TELHandle) : TELErr;
Description hTEL specifies the terminal for which information is requested.

The information that TELGetInfo returns is a “snapshot” of the current state of the
telephone record. The Telephone Manager passes hTEL to the telephone tool. The tool
inspects the tref value in the structure and fills in the structure accordingly.

If hTeL has become invalid, the Telephone Manager returns telBadTermErr, and your
application should call TELDispose to dispose of the invalid hTEL.

Result Codes noErr, telBadTermErr

44 Telephone Manager Developer’s Guide

Handling events

The Telephone Manager event-processing routines provide useful extensions to the Macintosh Toolbox
Event Manager. This section explains the four routines that the Telephone Manager provides.

TELActivate

Activate events

TELActivate processes an activate or deactivate event (for instance, installing or
removing a custom tool menu) for a window associated with the terminal.

Procedure TELActivate(hTEL: TELHandle; activate: BOOLEAN) ;

Description hTEL specifies the telephone record associated with the terminal.

If activate is TRUE, the telephone tool processes the activate event. Otherwise, it
processes a deactivate event.

TELResume

Resume events

TELResume processes a resume or suspend event for a window associated with the

terminal.
Procedure TELResume(hTEL: TELHandle; resume: BOOLEAN) ;
Description hTEL specifies the telephone record associated with the terminal.

If resume is TRUE, the telephone tool processes a resume event. Otherwise, it processes
a suspend event.

TELMenu
Menu events
Your application must call TELMenu when the user chooses an item from a menu that is
installed by the telephone tool.
Function TELMenu(hTEL: TELHandle; menuID: INTEGER; item: INTEGER): BOOLEAN;
Description hTEL specifies the telephone record associated with the terminal.

TELMenu retums FALSE if the telephone tool did not handle the menu event. TELMenu
returns TRUE if the telephone tool did handle the menu event.

Chapter . Inside the Telephone Manager 45

TELEvent

Other events
When your application receives an event, it should check whether the refcon of the
window is a tool’s TELHand1e. Such an event occurs, for example, when the user clicks a
button in a dialog box displayed by the telephone tool. If the event does belong to 2
telephone tool's window, your application can call TELEvent.

Procedure TELEvent (hTEL: TELHandle; VAR theEvent: EventRecord);

Description A window (or dialog box) created by a telephone tool has a telephone record handle stored

inthe refcon field for windowRecord.
nTEL specifies the telephone record associated with the terminal.

theEvent is a Macintosh system event, such as a mouse-down event.

46 Telephone Manager Developer's Guide

Handling messages

The telephone tool for your application receives information from the telephone network switch

whenever, for example, a call appears for a certain directory number. This information is sent as one

or more telephone network events. The tool passes this information to the Telephone Manager
which, in turn, passes it to your application as one or more messages.

/A Important Telephone network events relay information from a telephone network
switch to a telephone tool. They are not to be confused with messages,
which tools send to applications through the Telephone Manager, or with
Macintosh system events. A

The Telephone Manager sends three main types of messages to applications: messages about the
terminal as a whole, messages about particular directory numbers, and messages about particular
call appearances. Your application must contain a message-handling routine (message handler) for
each of the three main message types.

The Telephone Manager keeps a list of all message handlers for all applications. Before your
message handlers can receive messages, your application must register them with the Telephone
Manager and must specify the kinds of messages the handlers are to receive. To register message
handlers, your application must call TELTermMsgHand, TELDNMsgHand, and TELCAMsgHand,
passing pointers to your message handlers—referred to in this book as myTrmMsghandler,

MyDNMsgHandler, and MyCaMsgHandler. (Refer to “Routines Your Application Must Provide” for

information about writing MyTrmMsgHandler, MyDNMsgHandler, and MycaMsgHandler.)

Fach time a tool processes a telephone network event, the tool sends one or more messages to

the Telephone Manager. The Telephone Manager then relays the message to all message handlers
registered to receive that kind of message. An application can register more than one message
handler of each type—for example, an application might register several directory-number message
handlers. Each such handler could be registered to receive a different set of messages.

Chapter 2: Inside the Telephone Manager

47

TELTermMsgHand

Registering a message handler for the terminal

Function

Description

Result Codes

TELTermMsgHand assigns a routine to handle messages from the terminal.

TELTermMsgHand (hTEL: TELHandle; eventMask: LONGINT; msgProc: ProcPtr;
globals: LONGINT) : TELErr;

TELTermMsgHand assigns the message handler msgproc to the telephone record nrEL.

eventMask is a bit field that specifies which types of messages msgproc is to receive.
The valid values for eventMask are as follows:

CONST
telTermHookMsg = $00000001;
telTermKeyMsg = $00000002;
telTermVolMsg = $00000004;
telTermDisplayMsg = $00000008;
telTermEnableMsg = $00000010;
telTermOpenMsg = $00000020;
termShutdownMsg = $00000040;
telTermResetMsg = $00000080;
telTermErrorMsg = $00000100;
telTermOtherMsg = $00000200;

{All other bits in eventMask are reserved by Apple for future use.}
Refer to Appendix B for descriptions of these and other message codes.

Ifabitin eventMask is set to 1, messages of the corresponding type are sent to
msgProc. If the bit is set to 0, they are not.

msgProc is a procedure pointer to your application’s message handler for terminal-related
messages.

globals isa pointer to a location in memory—for example, to your application’s global
variables (register A5). Each time procedure msgProc is called, globals is passedto it.

If, after registering this message handler, you wish to change eventMask, you must first
clear the message handler by calling TELc1rTermMsgrand and then register it again by
calling TELTermMsgHand.

noErr, telBadTermErr

48 Telephone Manager Developer's Guide

TELDNMsgHand

Registering a message handler for a directory number

TELDNMsgHand assigns a routine to handle messages for a particular directory number or,
optionally, for all directory numbers.

Function TELDNMsgHand (hTELDN: TELDNHandle; allDNs : BOOLEAN; eventMask:
LONGINT; msgProc: ProcPtr; globals: LONGINT) : TELErr;

Description TELDNMsgHand assigns the message handler msgproc to the directory-number record
hTELDN.

allpws is a Boolean variable that, when equal to TRUE, shows that msgProc handles
messages for all directory numbers assigned to the same terminal as hTELDN.

eventMask specifies which types of events msgproc is to receive. The valid values
for eventMask are as follows:

CONST
telDNForwardMsg = $01;
telDNDNDMsg = $02;
telDNVoiceMailMsg = $04;
telDNSelectedMsg = $08;
telDNOtherMsg = $8000;

{All other bits in eventMask are reserved by Apple for future use.}
Refer to Appendix B for descriptions of these and other message codes.

Ifabitin eventMask is set to 1, messages of the corresponding type are sent to
msgProec. If the bit is set to 0, they are not.

msgProc isa procedure pointer to your application’s message handler for hTELDN.

globals isa pointer to a location in memory—for example, to your application’s global
variables (register AS). Each time procedure msgproc is called, globals is passed to it.

If after registering this message handler, you wish to change eventMask, you must first
clear the message handler by calling TELC1rpNMsgHand and then register it again by
calling TELDNMsgHand.

Result Codes noErr, telBadDNErr

Chapter 2: Inside the Telephone Manager 49

TELCAMsgHand

Registering a message handler for call appearances

TELCAMsgHand assigns a routine to handle messages for all call appearances associated
with the specified directory number.

Function TELCAMsgHand (hTELDN: TELDNHandle: eventMask: LONGINT; msgProc:
ProcPtr; globals: LONGINT) ¢ TELErr;

Description TELCAMsgHand assigns the message handler msgproc to all calls associated with hTELDN.
hTELDN is a handle to a directory-number record.

eventMask specifies which types of events msgproc is to receive. The valid values
for eventmask are as follows:

CONST
telCAAlertingMsg = $00000001;
telCAOfferMsg = $00000002;
telCAProgressMsg = $00000004;
telCAOutgoingMsg = $00000008;
telCADisconnectMsg = $00000010;
telCAActiveMsg = $00000020;
telCAConferenceMsg = $00000040;
telCATransferMsg = $00000080;
telCAHoldMsg = $00000100;
telCADigitsMsg = $00000200;
telCACallrParkMsg = $00000400;
telCACallbackMsg = $00000800;
telCARejectMsg = $00001000;
CADeflectedMs = $00002000;
telCAForwardMsg = $00004000;
telCAConferenceSplitMsg = $00008000;
telCAConferenceDropMsg = $00010000;
telCAQueuedMsg = $00020000;
telCAInUseMsg = $00040000;
telCACallPickupMsg = $00080000;
telCAPagingMsg = $00100000;
telCAIntercomMsg = $00200000;
telCAModemToneMsg = $00400000;
telCAFaxToneMsg = $00800000;
telCAIdleMsg = $01000000;
telCASuccessiveAlertMsg = $02000000;
CAUserInfoMsg = $04000000;

{All other bits in eventMask are reserved by Apple for future use.}

50 Telephone Manager Developer’s Guide

Result Codes

Refer to Appendix B for descriptions of these and other message codes.

Ifabitin eventMask is set to 1, messages of the corresponding type are sent to
msgProc. If the bit is set to 0, they are not.

msgProc is a procedure pointer to your application’s message handler for call appearances
associated with hTELDN.

globals is a pointer to a location in memory—for example, to your application’s global
variables (register AS5). Each time procedure msgproc is called, globals is passed to it.

If after registering this message handler, you wish to change eventMask, you must first
clear the message handler by calling TELC1rcAMsgHand and then register it again by
calling TELCAMsgHand.

noErr, telBadCAErr

TELClrTermMsgHand

Clearing a terminal message handler

TELClrTermMsgHand removes a terminal message handler from the handler list.

Function TELClrTermMsgHand(hTEL: TELHandle; msgProc:ProcPtr): TELErr;
Description hTEL is a handle to a telephone record for a terminal.

msgProc isa procedure pointer to the terminal message handler for hTeL.
Result Codes noErr, telBadProcErr, telBadTermErr
TELClrDNMsgHand

Clearing a directory-number message handler

Function

Description

Result Codes

TELClrDNMsgHand removes a directory-number message handler from the handler list.
TELClrDNMsgHand (hTELDN: TELDNHandle; msgProc:ProcPtr): TELErr:

hTELDN is 2 handle to a directory-number record.

msgProc is a procedure pointer to the directory-number message handler for hTeLDN.

noErr, telBadDNErr, telBadProcErr, telBadTermErr

Chapter 2: Inside the Telephone Manager 51

TELClrCAMsgHand

Clearing a call-appearance message handler

TELC1rCAMsgHand removes a call-appearance message handler from the handler list.

Function TELClrCAMsgHand (hTELDN: TELDNHandle; msgProc:ProcPtr): TELErr;
Description hTELDN is a handle to a directory-number record.

msgProc is a procedure pointer to the call-appearance message handler for hTELDN.
Result Codes noErr, telBadCAErr, telBadProcErr
TELTermEventsSupp

Finding supported terminal messages

TELTermEventsSupp returns a mask indicating which terminal messages a telephone
tool supports.

Function TELTermEventsSupp(hTEL : TELHandle; VAR eventMask : LONGINT): TELErr;
Description hTEL is a handle to a telephone record for a terminal.
eventMask is a mask that indicates which terminal messages are supported by the
telephone tool for hTEL.
Result Codes noErr, telBadTermErr
TELDNEventsSupp

Finding supported directory-number messages

Function

Description

Result Codes

TELDNEventsSupp feturns a mask indicating which directory-number messages a
telephone tool supports.

TELDNEventsSupp(hTELDN : TELDNHandle; VAR eventMask : LONGINT):
TELErr;

hTELDN is a handle to a directory-number record.

eventMask is a mask that indicates which directory-number messages are supported by
the telephone tool for hTELDN.

noErr, telBadDNErr

52 Telephone Manager Developer's Guide

TELCAEventsSupp

Finding supported call-appearance messages

TELCAEventsSupp fetums a mask indicating which call-appearance messages a telephone

tool supports.

Function TELCAEGentsSupp(hTELDN : TELDNHandle; VAR eventMask : LONGINT):
TELErr;

Description hTELDN is a2 handle to a directory-number record.

eventMask isa mask that indicates which call-appearance messages are supported by the
telephone tool for hTeLDN.

Result Codes noErr, telBadCAErr

Chapter 2: Inside the Telephone Manager 53

Placing and receiving calls

A typical telephone provides at least three services: placing calls, receiving calls, and releasing calls.
Your application can place and receive calls by using the Telephone Manager routines described in
this section. To release calls, your application can call the Telephone Manager routine TELDrop,
described in the section “Using Drop, Hold, Transfer, Forward, and Conference,” later in this
chapter.

To place a call, your application must first prepare to place the call by calling TELSetupcall. If the
number to be dialed is incomplete, your application can then complete the number and dial it by
calling TELDialDigits. If the number to be dialed is complete, your application can dial it and
establish the call by calling TELConnect.

Your application can accept an incoming call by calling TELAcceptcall Of TELAnswerCall, reject
the call by calling TELRejectcall, or deflect the call (as when transferring) by calling
TELDeflectCall.

TELSetupCall

Setting up a call

TELSetupCall prepares to place an outbound call, either directly or for use with a
feature such as Conference or Transfer. (For information on allocating directory-number
records, refer to the section “Controlling Directory Numbers” later in this chapter.)

Function TELSetupCall(hTELDN: TELDNHandle; VAR hTELCA: TELCAHandle; destDN,
destName, destSubaddr, userUserInfo: Str255; bearerType, rate:
INTEGER;): TELErr;

Description TELSetupcall allocates an available call-appearance record for the directory number
hTELDN, and returns it in hTELCA.

hTELDN is a handle to a directory-number record.

hTELCA isa handle to a call-appearance record on the directory number specified by
hTELDN.

destDN specifies the destination phone number or network address. If destow is
specified completely, the call can be placed with TELConnect. Butif deston is NIL or
is incomplete, the call cannot be placed until network address characters are completely
sent with TELDialbDigits. A call setup with TELSetupcall could, for example, emit a
dial tone through the speaker either until TELconnect is called or until address
characters are given with TELDialDigits.

destName is the name of the party associated with the destDN.

54 Telephone Manager Developer’s Guide

destSubaddr specifies a subaddress, as defined by the ISDN S-Bus. Use this paramater only
if the network supports subaddressing. To find out whether the network supports
subaddressing, call the routine TELGetInfo and check the field hassubaddress in the
telephone record. If the network does not support subaddressing, destsubaddr is ignored.

userUserInfo is user-to-user information, as defined by some telephone network
switches. Use this parameter only on a network that supports user-to-user information.
To find out whether the network supports user-to-user information, call the routine
TELGetInfo to check the field hasuseruserinfo in the telephone record. If the
network does not support user-to-user information, the information is ignored.

bearerType and rate indicate the type of call. Your application should set
bearerType to 0 for voice calls and 1 for other calls. rate should be set to zero, which
makes the tool use the default rate; all other values are reserved for use by Apple and
should be considered positive.

Result Codes noErr, telBadDNErr, telCAUnavail
TELDialDigits
Dialing a call

TELDialDigits dials a string of network address characters for a call appearance.
Function TELDialDigits(hTELCA: TELCAHandle; digits: Str255): TELErr;
Description hTELCA is a handle to a call appearance set up by the routine TELSetupcall.

digits is a string of characters to be dialed.

TELDialDigits dials digits for hTELcA. When the telephone tool has received
enough characters to complete a telephone call, it sends call-progress messages to the call-
appearance message handler for hTeLCA.

Result Codes noErr, telBadCAErr, telBadDNErr, telBadTermErr

TELConnect

Connecting a call

TELConnect establishes a connection for a call appearance.

Function TELConnect (hTELCA: TELCAHandle): TELErr;
Description hTELca is a handle to a call appearance set up by the routine TELsetupcall.
Result Codes noErr, telBadCAErr

Chapter 2: Inside the Telephone Manager 55

TELAcceptCall

Accepting a call

Function

Description

Result Codes

TELAnswerCall

TELAcceptCall accepts a call appearance whose state is telcaofferState.
TELAcceptCall(hTELCA: TELCAHandle): TELErr;

hTELCA is a handle to an incoming call appearance.

TELAcceptcall accepts call appearance hTELcA, which must be both acceptable and in
the state telcaofferstate. (When the state of a call appearance is telcaofferState,
your application’s call-appearance message handler receivesa telcaofferMsg message
from the telephone tool. Whether the call is acceptable depends on the value of the
acceptable field in the call-appearance record hTELCA.)

After a call appearance is accepted, its state changes to telCAAlertingState. Itcan
then be answered with the routine TELAnswercall.

noErr, telBadCAErr, telCANotAcceptable, telFeatNotAvail, telFeatNotSub,
telFeatNotSupp

Answering a call

Function

Description

Result Codes

TELAnswerCall answers an incoming call appearance.
TELAnswerCall (hTELCA: TELCAHandle): TELErr;

hTELCA is a handle to a incoming call appearance.

TELAnswerCall answers the incoming call appearance hTeLca, whose state can be
telCAOfferState Of telCAAlertingstate. When the call appearance is answered,
your application receives a telCAActiveMsg message.

After an incoming call appearance is answered, its state changes to telCAactivestate
and conversation can take place.

noErr, telBadCAErr, telFeat: I vail, telFeatNotSub, telFeatNotSupp

56 Telephone Manager Developer's Guide

TELRejectCall

Rejecting a call

TELRejectCall rejects an incoming call appearance.
Function TELReject (hTELCA: TELCAHandle; reason: INTEGER): TELErr;
Description hTELCA is a handle to an incoming call appearance.

reason is reserved by Apple for future use.

TELRejectCall rejects call appearance hTELCA, whose state must be either
telCAOfferState OF telCAAlertingsState. (When the state of a call appearance is
telCAOfferState Of telCAAlertingState, your application's call-appearance
message handler receives a telcaofferMsg or telcAalertingMsg message from the
telephone tool. Whether the call is rejectable depends on the value of the rejectable
field in the call-appearance record hTELCA.)

After an incoming call appearance is rejected, its state changes to telcardlestate,
meaning that it can be disposed of by means of the routine TELDispose.

Result Codes noErr, telBadCAErr, telCANotRejectable, telFeatNotAvail, telFeatNotSub,
telFeatNotSupp

Chapter 2: Inside the Telephone Manager 57

TELDeflectCall

Deflecting a call
TELDeflectcall deflects an incoming call appearance, sending it to a remote directory
number.

Function TELDeflect (hTELCA: TELCAHandle; rmtDN, rmtName, rrtSubaddress:

Str255): TELErr;

Description hTELCA is 2 handle to an incoming call appearance.
rmtDN s the directory number to which the call is to be deflected.
rmtName is the name of the party associated with directory number rmeDN.
rmtSubaddress is a subaddress, as defined by the ISDN $-Bus.

TELDeflectcall deflects call appearance hreLCa, whose stat: must be either
telCROfferState Of telCAAlertingState.(When the state of a call appearance is
telCAOfferState Of telCAAlertingState, your application's call-appearance
message handler receives a telCAOfferMsg Of telCAAlertingMsg message from the
telephone tool. Whether the call is deflectable depends on the value of the field
deflectable in the call-appearance record hTeLCA.)

After an incoming call appearance is deflected, its state changes ty telcardlestate,
meaning that it can be disposed of by means of the routine TEL3ispose.

Result Codes noErr, telBadCAErr, telCANotDeflectable, telFeatNotivail, telFeatNotSub,
telFeatNotSupp

58 Telephone Manager Developer's Guide

Using Drop, Hold, Transfer, Forward, and Conference

Many telephone users subscribe to the supplementary features Drop, Hold, Transfer, Forward, and Conference.
If the user's terminal supports these features, your application can offer them by calling Telephone Manager
routines. The routines described in this section let your application offer Drop, Hold, Transfer, Forward, and
Conference. Routines for offering less~common supplementary features are described later in this chapter.

Not all supplementary features can be applied to all calls. For instance, if the telephone tool your application
is using does not support the Conference feature, calls cannot be conferenced. Or if a given call is currently on
hold, the Hold feature cannot be applied to it again.

The call-appearance record contains, for each supplementary feature, a set of flags showing whether the
feature can be applied to that particular call. The names of these flags are typically xxxsub, xxxavail, and
xxxactive, where xxx is the name of the feature. For instance, the flags holdsub, holdavail, and
holdActive show whether the Hold feature is subscribed, whether it is available, and whether it is active. A
feature is “subscribed” if the user’s network line provides it and if the terminal supports it. A feature is
“available” if the call appearance involved is in the state needed to use the feature. A feature is “active” if it is
currently applied to the call appearance.

Here is an example, using the Hold feature, of how the xxxsub, xxxavail, and xemctive flags work. If
the telephone record indicates that the user’s terminal can put calls on hold, the Telephone Manager sets
holdsub in each call-appearance record it allocates for the terminal. If an outgoing call can be held only after its
call-appearance state is telcaactivestate, the Telephone Manager sets holdavail only when the call
reaches that state. Later, when the user puts the call on hold, the Telephone Manager sets the flag holdactive.

TELDrop

Dropping calls
TELDrop drops an incoming call.

Function TELDrop (hTELCA: TELCAHandle; userUserInfo: Str255): TELErr;

/\ Important TELDrop und TELDNSelect are the only Telephone Manager
routines that drop calls. Routines that dispose of handles to Telephone Manager
records do not drop the associated telephone call. A

Description hTELCA is a handle to an incoming call appearance.

userUserInfo stores user-to-user information, as defined by some telephone network
switches. Use this parameter only on a network that supports user-to-user information. To
find out whether the network supports user-to-user information, call the routine
TELGetInfo (0 check the field hasuseruserinfo in the telephone record. If the network
does not support user-to-user information, the user-to-user information is ignored.

TELDrop drops the call appearance nhTELCA, which can be in any state.

Afiter a call appearance is dropped, its state changesto telcardlestate.

Result Codes noErr, telBadCAErr, telFeatNotAvail, telFeatNotSub, telFeatNotSupp

Chapter 2: Inside the Telephone Manager 59

TELHold

Putting calls on hold

Function

Description

Result Codes

TELRetrieve

TELHold putsa call on hold.
TELHold (hTELCA: TELCAHandle): TELErr;

hrELCA is a handle to a call-appearance record. In that record, the holdavail bit of the
FeatureFlag field must be set. Otherwise, TELHold fails.

noErr, telBadCAErr, telFeatActive, telFeatNotAvail, telFeatNotSub,
telFeatNotSupp

Retrieving held calls

TELRetrieve retrieves a held call.

Function TELRetrieve(hTELCA: TELCAHandle): TELErr;

Description nrELCA is 2 handle to a call-appearance record. In that record, the holdactive bit of
the Featurerlag field must be set. Otherwise, TELRetrieve fails.

Result Codes noErr, telBadCAErr, telFeatActive, telFeatNotAvail, telFeatNotSub,
telFeatNotSupp

TELTransferPrep

Preparing for a consult transfer

Function

Description

TELTransferprep prepares a call for a consult transfer, in which the user consults the
destination party before transferring the call. (For information on blind transferring, refer
to the description of TELTransferBlind, later in this section.)

TELTransferPrep(hTELCAL, hTELCA2: TELCAHandle): TELErr;

hTELCAL is 2 handle to a call appearance whose state is either telCAActiveState Of
telCAHeldState.

nTELCA2 is a handle to a second call appearance, set up by TELsetupcall but not yet
connected.

Before calling TELTransferprep your application must call TELSetupCall to setup
hTELCA2. When hTELcA2 becomes active, the user can, optionally, consult the destination
party. Your application can then call TELTransferEstablish (0 transfer the call.

60 Telephone Manager Developer's Guide

TELTransferPrep attempts to establish a connection for hTeLca2, and works much
like TELConnect.

Result Codes noErr, telBadCAErr, telBadDNErr, telFeatActive, telFeatNotAvail,
telFeatNotSub, telFeatNotSupp
TELTransferEstablish

Completing a consult transfer

Function

Description

Result Codes

TELTransferEstablish completes the consult transfer of call previously set up with
TELTransferPrep

TELTransferEstablish(hTELCAl, hTELCA2: TELCAHandle): TELErr;

hTELCAL is a handle to a call appearance for the transferee, specified as hTELCAL in
TELTransferPrep

hTELCA2 is the call appearance to which hTELCAL is to be transferred, specified
as hTELCA2 in TELTransferPrep.

noErr, telBadCAErr, telFeatActive, telFeatNotAvail, telFeatNotSub
telFeatNotSupp, telTransRej

TELTransferBlind

Blind-transferring a call

Function

Description

Result Codes

TELTransferBlind transfers a call without first letting the user consult the destination
party. (For information on consult transferring, refer to the description of
TELTransferPrep, earlier in this section.)

TELTransferBlind(hTELCAl: TELCAHandle; rmtDN, rmtName, rmtSubaddress:
Str255): TELErr;

hTELCAL specifies the call appearance to be transferred.
rmtDN specifies the remote directory number to which the call will be transferred.
rmtName specifies the name of party whose telephone number is rmeon.

rmtSubaddress specifies the network subaddress, if any, associated with rmtDN.

noErr, telBadCAErr, telBadDNErr, telFeatActive, telFeatNotAvail,
telFeatNotSub, telFeatNotSupp, telTrangsferReject

Chapter 2: Inside the Telephone Manager 61

TELForwardSet

Forwarding calls

Function

Description

Result Codes

TELForwardSet causes calls for one directory number to be forwarded to another.

TELForwardSet (hTELDN: TELDNHandle; forwardDN, forwardPartyName,
forwardSubaddr: Str255; forwardType, numRings: INTEGER): TELErr;

hTELDN is a handle to the directory number whose calls are to be forwarded.
forwardDN is the directory number that will receive the forwarded calls.
forwardPartyName is the name of the party whose directory number is hTELDN.

forwardsubaddr is a subaddress, as defined by the ISDN S-Bus. Use this parameter only
if the network suports subaddressing. (To find out whether the network supports
subaddressing, check the bit hassubaddress in the field featurerlags of the
telephone record.) If the network does not support subaddressing, the tool ignores

forwardSubaddr.

forwardType specifies the kind of forwarding being requested, and can have the
following valid values:
CONST

telForwardImmediate = 1; {forward all calls}
telForwardBusy 2; {forward if busy}

telForwardNoAnswer 3; {forward if no answer}

telForwardBusyNA = 4; {forward if busy or no answer}

numRings specifies how many rings occur before calls are forwarded to forwardon.

noErr, telBadDNErr, telBadFwdType, telFeatActive, telFeatNotAvail,
telFeatNotSub, telFeatNotSupp, telFwdTypeNotSupp

TELForwardClear

Clearing call forwarding

Function

Description

Result Codes

TELForwardClear clears the call forwarding performed by TELForwardset.
TELForwardClear (hTELDN: TELDNHandle; forwardType : INTEGER): TELErr;

hTELDN is a handle to the directory number whose calls are being forwarded.

forwardType specifies the kind of forwarding being cleared, as specified in
TELForwardSet

noErr, telBadDNErr, telBadFwdType, telFeatActive, telFeatNotAvail,
telFeatNotSub, telFeatNotSupp

62 Telephone Manager Developer's Guide

TELConferencePrep

Preparing for conferencing

Function

Description

Result Codes

TELConferencePrep prepares for one call to be conferenced with another by the
routine TELConferenceEstablish (described later in this section). Your application
must call TELConferenceprep each time a party is to be added to the conference.

TELConferencePrep(hTELCAl, hTELCA2: TELCAHandle; numToConference :
INTEGER) : TELErr:

hTELCAL is a handle to the conference initiator—an active or held call appearance whose
caRelated bit is set. All other call appearances conferenced with this one will reference
hTELCAL inthe relatedca field of their call-appearance records.

hTELCA2 is a handle to a call appearance setup by TELsetupcall but not yet
connected. In call-appearance record hTELca2, the field relatedca references
hTELCAL,

When call appearance hTeLCA2 becomes active, the user of your application can consult
the party associated with that call appearance. Your application can then call
TELConferenceEstablish to establish a three-way conference. Or, if the user does not
want to consult, your application can call TELConferenceEstablish immediately after
call appearance hTELCA2 becomes active.

numToConference specifies how many calls, including the conference initiator, will be in
this conference.

Ifthe numToconferencerequired bitis set in call-appearance record hrELCA1, your
application must supply a value for numToconference. (If numToconterence hasa
maximum value, it is specified by the field confrimit in the call-appearance record.) If
the numToconferencerequired bit is not set, numToConference can be left blank;
the tool will ignore it.

TELConferencePrep attempts to establish a connection fo nTELCA2, unless there is
one already, and works much like the routine TELConnect.

noErr, telBadCAErr, telBadDNErr, telConfLimitErr, telConfNoLimit,
telConfLimitExceeded, telConfRej, telFeatActive, telFeatNotAvail
telFeatNotSub, telFeatNotSupp

Chapter 2: Inside the Telephone Manager 63

TELConferenceEstablish

Establishing a conference

TELConferenceEstablish conferences one call with another, and should be called only
after you have prepared the conference with the routine TELConferencePrep.

Function TELConferenceEstablish(hTELCAl, hTELCA2: TELCAHandle) : TELErr;

Description hTELCAL is a handle to the conference initiator—an active or held call that initiated the
conference.
hTELCA2 is a handle to another call-appearance record, whose carelated field
references hTELCAL.

Result Codes noErr, telBadCAErr, telConfLimitErr, telBadDNErr, telConfLimitExceeded,
telConfRej, telFeatActive, telFeatNotAvail, telFeatNotSub,
telFeatNotSupp

TELConferenceSplit

Splitting a conference

Function

Description

Result Codes

TELConferencesplit splits a call from a conference established by
TELConferenceEstablish,

TELConferenceSplit (hTELCA : TELCARandle) : TELErr;

hTELCA is a handle to a call appearance to be split from the conference.

The call can be split from the conference only if, in call-appearance record hTeLCA, the
conferencesplitavail flag of the featurerlags field is set. After a split, the rest
of the conference remains intact.

noErr, telBadCAErr, telConfRej, telFeatActive, telFeatNotAvail,
telFeatNotSub, telFeatNotSupp

64 Telephone Manager Developer's Guide

Using less-common supplementary features

This section describes routines for providing less-common supplementary features: Call Back, Do
Not Disturb, Call Pickup, Call Park, Voice Mail, and Paging,

TELCallbackSet

Requesting a callback

Function

Description

Result Codes

TELCallbacksSet requests a callback, which notifies the user’s terminal when a
destination number that was previously unavailable (busy or unanswered) becomes
available.

Note: Some switch vendors refer to the Call Back feature as the Ring Again feature.

TELCallbackSet (hTELCA: TELCAHandle; VAR callbackRef : INTEGER):
TELErr;

hTELCA is a handle to the currently unavailable call appearance.

callbackRref isan identifier that the tool provides to distinguish this callback from any
others the user has requested. If callbackret equals zero, your application should
ignore it.

When the destination number becomes available, TELcallbackset causes your
application’s call-appearance message handler to receive a telcacallbackmsg message,
with a value of telcallbackNowavail,

Some network systems require that all Call Back On No Answer requests be issued by the
remote party (the person who did not answer). Usually, in such a system, the remote
party will have received a telcallbackbDesired message. The remote user can then call
TELCallbackNow, passing callbackRef values that were in the message.

noErr, telBadCAErra telBadCBErr, telFeatActive, telFeatNotAvail,
telFeatNotSub, telFeatNotSupp

Chapter 2: Inside the Telephone Manager 65

TELCallbackNow

Calling back
TELCallbackNow calls back a previously unavailable destination number, if your
application has requested the callback through TELCallbackSet.

Function TELCallbackNow(hTELCA : TELCAHandle; callbackRef : INTEGER): TELErr;

Description hTeELCA is a handle to a newly allocated call appearance. This handle will be used for the
callback.
callbackRef must have the same value as the callbackref parameter returned from
TELCallbackSet.

Result Codes noErr, telBadCAErr, telBadCBErr, telFeatActive, telFeatNotAvail,
telFeatNotSub, telNoCallbackRef, telFeatNotSupp

TELCallbackClear

Clearing pending callbacks

Function

Description

Result Codes

TELDNDSet

TELCallbackClear clears a callback requested through TELCallbackset.
TELCallbackClear(hTEL: TELHandle; callbackRef : INTEGER): TELErr;

htEL is a handle to the telephone record for the user's terminal.

callbackRef must have the same value as the callbackref parameter returned from
TELCallbackSet.

noErr, telBadCBErr, telBadTermErr, telFeatActive, telFeatNotAvail,
telFeatNotSub, telFeatNotSupp, telNoCallbackRef

Setting Do Not Disturb

Function

Description

TELDNDSet sets the Do Not Disturb feature (as implemented by the telephone network
switch) on a specified directory number.

TELDNDSet (hTELDN: TELDNHandle; dndType : INTEGER): TELErr;

hTELDN is a handle to the directory number for which Do Not Disturb is being set.

dndType specifies the kind of Do Not Disturb, and can have the following valid values:

66 Telephone Manager Developer's Guide

Result Codes

TELDNDClear

CONST

telDNDIntExt = 0;

{do not disturb on internal and external calls}
telDNDExternal = 1;

{do not disturb on external calls only}
telDNDInternal = 2;

{do not disturb on internal calls only}
telDNDNonIntercom = 3;

{do not disturb on all calls except intercom}

Your application can provide more complex Do Not Disturb capabilities than those of
TELDNDSet. To do so, inspect the alerting pattern on each incoming call, rejecting
unwanted calls with the routine TELReject.

noErr, telBadDNDType, telBadDNErr, telDNDTypeNotSupp, telFeatActive,
telFeatNotAvail,telFeatNotSub,telFeatNotSupp

Clearing Do Not Disturb

Function

Description

Result Codes

TELDNDClear clears the Do Not Disturb feature on a directory number, as implemented
by the telephone network switch.

TELDNDClear (hTELDN: TELDNHandle; dndType : INTEGER): TELErr;

hTELDN is a handle to the directory number for which Do Not Disturb is being cleared.

dndType specifies the kind of Do Not Disturb being cleared.

noErr,telBadDNDType,telBadDNErr,telDNDTypeNotSupp,telFeatActive
telFeatNotAvail, telFeatNotSub, telFeatNotSupp

Chapter 2: Inside the Telephone Manager 67

TELCallPickup

Picking up calls

Function

Description

Result Codes

TELParkCall

TELCallPickup lets the user's terminal answer a call that is alerting at another terminal.

TELCallPickup(hTELCA: TELCAHandle; pickupDN : StringPtr;
pickupGroupID : INTEGER): TELErr;

nTELCA is 2 handle to a newly allocated call appearance used to pick up the call.

pickupDN specifies the remote directory number where the call is alerting. If pickupoN
is NIL, the user can pick up an alerting call from any directory number within a pickup
group predefined by the telephone network switch.

pickupGroupId specifies the pickup group to which pickuppn belongs. Your
application must pass this value if the telephone network switch requires a pickup ID for
Call Pickup requests. (To find out whether the network switch requires a pickup ID,
check the numpickupips field of the directory-number record associated with hTELCA.
If the value of this field is greater than zero, your system requires a pickup ID.)

When your application calls TELCallpickup, the call-appearance message handler receives
4 telCAActiveMsg message, a8 when a normal alerting call is answered.

noErr, telBadDNErr, telBadPickupGroupID, telFeatActive, telFeatNotAvail,
telFeatNotSub, telFeatNotSupp

Parking calls

Function

Description

TELParkcall parks a call, making it available for retrieval at another directory number.

TELParkCall(hTELCA: TELCAHandle; VAR parkRetrievelID : Str255; parkiD
: Str255) : TELErr;

nTELCA specifies the call appearance being parked.

parkRetrieveID specifies an identifier that the user must enter at another directory
number to retrieve call appearance hTeLCA. Your application is responsible for disposing
of the string referenced by parkretrievelID.

parkip specifies an ID, such as directory number or code, that the user enters to park
the call.

68 Telephone Manager Developer's Guide

Result Codes

When parking calls, some systems return a parkretrievern, by which the call can be
retrieved at any directory number in the system. In contrast, other systems require that
the user retrieve the call with a specific ID, park1p. Still other systems require both
kinds of identifiers. To find out which method your system uses, check the field
featureFlags in call-appearance record hterca. Ifthe parkretrievewithnp flag
is set, the system returns a parkRetrieveIn; if the parkwithip flag is set, the
system requires a parkip. If parkRetrievewithIp and parkwithip are both set,
the system requires both a parkip anda parkRetrieveln.

noErr, telBadCAErr, telBadParkID, telFeatActive, telFeatNotAvail,
telFeatNotSub, telFeatNotSupp

TELRetrieveParkedCall

Retrieving parked calls

Function

Description

Result Codes

TELRetrieveParkedcall retrieves a parked call.

TELRetrieveParkedCall(hTELCA: TELCAKandle; parkRetrievelID : Str255)
TELErr;

hTELCA specifies a newly allocated call appearance on which the call is being retrieved.

parkRetrieveID is an identifier required by systems that return a park-retrieve ID
when parking calls.

When your application calls TELRetrieveParkedcall, the call-appearance message
handler receives the message telcaactiveMsg, as when answering a normal alerting call.

noErr, telBadCAErr, telBadParkID, telFeatActive, telFeatNotAvail,
telFeatNotSub, telFeatNotSupp

Chapter 2: Inside the Telephone Manager 69

TELVoiceMailAccess

Accessing voice-mail systems

Function

Description

Result Codes

TELPaging

TELVoiceMailAccess accesses the voice-mail system of the user’s private branch
exchange (PBX).

TELVoiceMailAccess (hTELCA: TELCAHandle) : TELErr;

hTELCA specifies a newly allocated call appearance on which the voice-mail system will be
accessed.

TELVoiceMailAccess requests access to a voice-mail system by passing to it hTELCA,
a handle to the call appearance on which the voice-mail system will be accessed. Your
application can obtain hTELCA either from the routine TELSetupcall or from the
message telCAOutgoingMsg.

TELVoiceMailAccess does not provide voice-mail management; it provides only the
ability to access a voice-mail system. Your application might call TELVoiceMailaccess
after, for example, receiving the message telbNvoiceMailMsg or when the user wants
to check saved voice-mail messages.

noErr, telBadDNErr, telFeatActive, telFeatNotAvail, telFeatNotSub
telFeatNotSupp

Accessing paging equipment

Function

Description

TELPaging accesses a specified paging function predefined by the network system.
TELPaging(nhTELCA: TELCAHandle; pagelD : INTEGER) : TELErr;

hTELCA specifies a newly allocated call appearance to be used for the page.

pageID is an identifier required if the user's telephone has multiple paging features. To
find out whether your system requires a page1p, check the Numpagerp field of
directory-number record associated with hteLca. If the value of this field is greater
than zero, your system requires a pagerp. Note that if NumPageID equals, for
example, 5, then pageIp must have a value between 1 and 5—not between 0 and 4.

If your telephone network switch provides a special telephone number for paging, your
application should not use TELPaging. Instead, it should use the routines TELSetup
and TELConnect. In other words, on systems where users initiate paging by pressing a
dedicated “paging button”, your application should invoke TELPaging. But on systems
where users initiate paging by placing calls to a dedicated extension—such as 3460, which
might correspond to an overhead loudspeaker—your application should invoke TELsetup
and TELConnect to place a call to extension 3460.

70 Telephone Manager Developer's Guide

Result Codes noErr, telBadDNErr, telBadPagelD, telFeatActive, telFeatNotAvail,
telFeatNotSub,telFeatNotSupp

TELIntercom

Using intercom

TELIntercom accesses a specified intercom function predefined by the network system.

Function TELIntercom(hTELCA: TELCAHandle; intercomID : INTEGER) : TELErr;

Description hTELCA specifies a newly allocated call appearance to be used for the intercom function.
If a system does not require a call appearance when placing intercom calls, hTErLca equals
zero.

intercomID is an identifier required if the user's telephone has multiple intercom
features. To find out whether your system requires an Intercomip, check the
numIntercomids field of the directory-number record associated with nteLca. This
field tells how many intercom “keys” the terminal supports. If its value is greater than
Z€ro, your system requires an Intercomrp. Note that if numIntercomIDs equals, for
example, 5, then Intercomip must have a value between 1 and 5—not between 0 and 4.

Result Codes NoErr, telBadDNErr, telBadIntercomID, telFeatActive, telFeatNotAvail,
telFeatNotSub, telFeatNotSupp

Chapter 2: Inside the Telephone Manager 71

Accessing special features of switches and tools

This section describes routines that let your application access features for which there is no
specific Telephone Manager routine.

If your application is meant to be tool-independent, you can use TELOtherFeatureList (O list
network-switch features that do not require specific parameter values. Your application can then
display items from this list as user options. To access any of the listed features, use
TELOtherFeatureImplement

If your application is tool-specific and can send a parameter block in the format the tool requires,
TELOtherFunction lets you access tool-specific features.

TELOtherFeatureList

Listing special switch features

TELOtherFeatureList lists the network-switch features that your application can
access without passing specific parameters.

Function TELOtherFeatureList (hTEL: TELHandle; VAR fList : FeatureListPtr):
TELErr;
Description nTeL is a handle to a telephone record.

FeatList isa pointer to a linked list, each item of which describes a feature and its
attributes. The list has the following format:

TYPE
FeatureListPtr = “FeatureList
Featurelist =
featurelID : INTEGER;
featureName H StringPtr;
handleType 3 INTEGER;
{values are: 0 = telHandleType
1 = telDNHandleType
2 = telCAHandleType}
nextFeature 3 FeaturelistPtr;
END

In each item of fList, featureID is a tool-defined value that identifies the feature,
and featureName points to the name of the feature. handletype specifies the kind
of record for which your application must pass a handle when accessing the feature
through TELOtherFeatureImplement. If handleType is zero (0), your application
must pass a handle to a telephone record; if 1, a handle to a directory-number record; or if
2, a handle to a call-appearance record. Your application is not responsible for disposing of
the list to which frist points.

72 Telephone Manager Developer's Guide

Result Codes

nextFeature points to the next item in the list of features, or is NI if there are no
more items.

noErr, telBadTermErr

TELOtherFeatureImplement

Implementing special switch features

TELOtherFeatureImplement accesses a network-switch feature retumed by
TELOtherFeatureList.

Function TELOtherFeatureImplement (hTEL : TELHandle; theHandle: Handle:
featureID : INTEGER): TELErr;

Description hTEL is a handle to a telephone record.
theHandle isa handle to a telephone record, directory-number record, or call-appearance
record, as specified by TELOtherFeatureList.
featureID is the feature ID returned by TELOtherFeatureList.

Result Codes noErr, telBadCAErr, telBadDNErr, telBadFeatID, telBadHandErr
telBadTermErr

TELOtherFunction

Implementing tool-specific features

Function

Description

Result Codes

TELOtherFunction accesses a tool-specific feature by passing a parameter block defined

by the tool.

Important For information about third-party tool features, consult the developer of
the tool. Such features are neither supported nor documented by Apple Computer. A

TELOtherFunction(hTEL: TELHandle; paramblock : Ptr; size : LONGINT):

TELErr;

hTeL is a handle to a telephone record.
paramblock is a parameter block defined by the specific tool.

size is the size (in bytes) of paramblock.

noErr, telBadTermErr

Chapter 2: Inside the Telephone Manager 73

TELToolFunctions

Finding out which routines a tool supports

TELToolFunctions finds out whether a tool supports a specified Telephone Manager
routine.

Function TELToolFunctions(hTEL: TELHandle; msgcode : INTEGER; VAR supportsIt :
BOOLEAN): TELErr;

Description nTeL isa handle to a telephone record.

msgcode is a message code that specifies a particular Telephone Manager routine. For
example, the message code telresetTermusg specifies the routine TELResetTerm,
and the message code telcallpickupMsg specifies the routine TELCallPickup. Most
other message codes follow this naming convention. Refer to the file Telephones.n (C)
or Telephones.p (Pascal) for a complete list of these message codes.

supportsIt is TRUE if the tool supports msgcode, and raLsk if it does not.

Result Codes noErr, telBadTermErr

74 Telephone Manager Developer's Guide

Localizing configuration strings

The Telephone Manager provides two routines that make it easier to localize configuration strings.

TELIntlToEnglish

Translating into English

Function

Description

TELInt1ToEnglish converts a configuration string, which is pointed to by inputptr,
to an American English configuration string pointed to by outputptr.

TELInt1ToEnglish(hTEL: TELHandle; inputPtr: Ptr; VAR outputPtr: Ptr;
language: INTEGER): OSErr:

The function returns an operating-system error code if any internal errors occur.
hTEL is a handle to a telephone record.
inputPtr isa pointer to the C-style configuration string to be translated.

outputPtr is a pointer to the translation, an American English C-style configuration
string.

The telephone tool allocates space for outputptr. Your application is responsible for
disposing of the pointer with pisposptr when done with it.

language specifies the language from which the string is to be converted. Valid values
for this field are shown in the description of the Script Manager in Inside Macintosh,
Volume V. If the language specified is not supported, this routine returns noErr, but
outputPtr iS NIL.

Chapter 2: Inside the Telephone Manager 75

TELEnglishToIntl

Translating from English

TELEnglishToIntl convertsan American English configuration string, which is pointed
toby inputptr, to a configuration string pointed to by outputptr.

Function TELEnglishToIntl(hTEL: TELHandle; inputPtr: Ptr; VAR outputPtr: Ptr;

language: INTEGER): OSErr;

Description The function returns an operating-system error code if any internal errors occur.

76

hTEL is a handle to a telephone record.

inputptr isa pointer to an American English C-style configuration string to be
translated.

outputPtr isa pointer to the translation, a C-style configuration string.

The telephone tool allocates space for outputptr; your application is responsible for
disposing of the pointer with pisposptr when done with it.

language specifies the language to which the string is to be converted. Valid values
for this field are shown in the description of the Script Manager in Inside Macintosh,
Volume V. If the language specified is not supported, noErr is still returned, but
outputPtr {$ NIL.

Telephone Manager Developer’s Guide

Monitoring and controlling the terminal

The Telephone Manager lets your application monitor and control the physical components
associated with a terminal, such as a hookswitch, display, speaker, or microphone. To monitor and
control these components, use the routines described in this section. :

TELGetHooksw

Monitoring a hookswitch

TELGetHooksw finds out whether a hookswitch of the specified device is physically
on-hook or off-hook.

Function TELGetHooksw(hTEL: TELHandle; htype: INTEGER; VAR onHook: BOOLEAN) :
TELErr;
Description hTEL is a handle to a telephone record.

htype specifies the type of hookswitch, and has one of the following valid values:

CONST

telHandset 1; {hand-set hookswitch}
telSpeakerphone = 2; {speakerphone "ON" switch}
{values 3 through 255 are reserved for apple}

{Values 256 through 32768 are reserved for use by tools}

onHook equals devonHook if the hookswitch of device httype ison, or devoffrook
if it is off.

Result Codes noErr, telBadHTypeErr, telBadTermErr, telHTypeNotSupp

Chapter 2: Inside the Telephone Manager 7/

TELSetHooksw

Setting a hookswitch

Function
Description

®
Result Codes
TELGetVolume

TELSetHooksw sets the physical state of a device’s hookswitch, if the device supports
this capability.

TELSetHooksw(hTEL: TELHandle; htype: INTEGER; onHook: BOOLEAN)
TELErr;

hTEL is a handle to a telephone record.

htype specifies the type of hookswitch, and has one of the following valid values:

CONST

telHandset 1; {hand-set hookswitch}
telSpeakerphone 2; {speakerphone "ON" switch}
{values 3 through 255 are reserved for Apple}

{Values 256 through 32768 are reserved for use by tools}

onHook specifies the state to which the hookswitch will be set: on-hook if onzook
equals devonHook, or off-hook if onHook equals devoffHook.

Note: If the user takes the telephone off-hook to place a call, the Telephone Manager
relaysa telcaoutgoingMsg message, and assigns a handle (type TELcanandle)toa
call-appearance record. If the user takes the telephone off-hook to receive a call, the
Telephone Manager sends a telcaactiveMsg message.

noErr, telBadHTypeErr, teiBadTermErr, telHTypeNotSupp

Monitoring the volume level and device state

Function

Description

TELGetVolume finds out the current volume level and state of a specified device.

TELGetVolume(hTEL: TELHandle; volType: INTEGER; VAR level: INTEGER;
VAR volState: INTEGER) : TELErr;

hTEL is a handle to a telephone record.

volType specifies the type of device volume being monitored. Valid values are as
follows:

78 Telephone Manager Developer’s Guide

CONST

telHandsetSpeakervol

telHandsetMicVol

telSpeakerphonevol

telSpeakerphoneMicvVol

telRingervVol

1;

{volume of handset speaker}
2;

{sensitivity of handset microphone}
3;

{volume of speakerphone}

4;

{sensitivity of speakerphone
microphone}

5:

{volume of handset ringer}

{Values 6 through 255 are reserved for the Telephone Manager}
{Values 256 through 32768 are available for use by tools}

level is the current volume level of the device, expressed as positive integer between 1

(lowest volume) and 100 (highest volume).

volstate is the current state of the device, and has one of the following values:

CONST
telvVolStateSame = 0;
{volume left in same state,
on or off}
telvolStateOn = 18
{volume on at previously
specified level}
telvVolStateOff = bd 4
{volume muted but volume
level unchanged}
{Values 3 through 255 are reserved for the Telephone Manager}
{Values 256 through 32768 are available for use by tools}
Result Codes noErr, telBadLevelErr, telBadStateErr, telBadTermErr, telBadVTypeErr,

telStateNotSupp, telVTypeNotSupp

Chapter 2: Inside the Telephone Manager 79

TELSetVolume

Setting the volume level and device state

Function

Description

TELSetVolume sets the volume level of a specified device and, optionally, mutes the
device.

TELSetVolume(hTEL: TELHandle; volType: INTEGER; VAR level: INTEGER;
volState: INTEGER) : TELErr;

hTEL is 2 handle to a telephone record.

volType specifies the type of device volume being set. Valid values are as follows:

CONST
telHandsetSpeakerVol = 1; {volume of handset speaker}
telHandsetMicVol = 2; {sensitivity of
handset microphone}
telSpeakerphonevol = 3; {volume of speakerphone}
telSpeakerphoneMicVol = 4; {sensitivity of speakerphone
microphone}
telRingervVol = 5; {volume of handset ringer}

{Values 6 through 255 are reserved for the Telephone Manager}
{Values 256 through 32768 are available for use by tools}

level is the volume level your application is requesting, expressed as an integer between
0 and 100. After the volume is set, the Telephone Manager returns the actual volume level
in level. Valid values for 1evel are as follows:

CONST
telVolSame = 0;
telVolMin = 15
telVolMax = 100;

Setting level to telvolsame leaves the volume level at its previous setting. Setting
level 10 telvolMin sets the volume level to the minimum allowed by the device.
Setting level to telvolMax sets the volume to the highest level the Telephone
Manager allows.

Different telephone tools support different maximum values for 1evel. To find the
maximum level value for a particular tool, your application can set 1evel to
telvolMax before calling TELsetvolume. When TELSetvolume teturns, the value of
level is the maximum value support by the telephone tool.

Note: Tools that do not support a level of telvolMax should instead set the volume
level to the maximum allowed by the tool and return that volume level in 1evel.

volstate is the state to which your application is setting the device. Valid values are as
follows:

80 Telephone Manager Developer’s Guide

CONST
telvolStateSame = 0;

{leave volume in current state, on or off}

telVolStateOn =iyt 815
{turn on device at previous volume level)
telvolstateoff = 2;

{mute volume; leave level setting unchanged)
{Values 3 through 255 are reserved for the Telephone Manager}
{Values 256 through 32768 are available for use by tools}

Result Codes noErr, telBadLevelErr, telBadStateErr, telBadTermErr, telBadVTypeErr,
telStateNotSupp, telVTypeNotSupp

Chapter 2: Inside the Telephone Manager 81

TELAlert

Making the terminal “ring”

Function

Description

Result Codes

TELAlert makes the terminal emit a specified alerting pattern. This routine controls the
ringer of the terminal only, not those provided by applications.

TELAlert(hTEL: TELHandle; VAR level: INTEGER; alertPattern: INTEGER)
: TELErr;

hTEL is a handle to a telephone record.

level specifies the volume level at which the alerting pattern is to sound, expressed as
an integer between 0 and 100. After the volume level is set, the Telephone Manager returns
the actual volume level in 1evel. Valid values for 1evel are as follows:

CONST
telvolsame = 0;
telvolMin = 3
telvVolMax = 100;

Setting level t0 telvolsame leaves the volume level at its previous setting. Setting
level t0 telvolMin sets the volume level to the minimum allowed by the device.
Setting level to telvVolMax sets the volume to the highest level the Telephone
Manager allows.

Note: Tools that do not support 2 level of telvolMax should instead set the volume
level to the maximum allowed by the tool and return that volume level in 1level.

alertpattern is the alerting pattern the terminal is to emit. Valid values are as follows:

CONST
telPatternO = ; {normal alerting pattern}
telPatternl = ; {alerting pattern 1}
telPattern2 = ;s {alerting pattern 2}
telPattern3 = {alerting pattern 3}

telPatternd =
telPattern$s =

{alerting pattern 4}

{alerting pattern 5}
telPatterné = {alerting pattern 6}
telPattern? = {alerting pattern 7}
telPatternOff = 15; {alerting pattern undefined}
{Values 8 through 14 and 16 through 255 are

reserved for the Telephone Manager}

{values 256 through 32768 are available for use by tools}

~N WM bW N O
-

~e we e

To find out which alerting patterns and volume levels the terminal supports, check the
fields ringerTypes and hasVolctlintekphonereaxd hTEL.

noErr, telAPattNotSupp, telBadAPattErr, telBadLevelErr, telBadTermErr

82 Telephone Manager Developer’s Guide

TELGetDisplay

Monitoring the display text

Function

Description

Result Codes

TELGetDisplay returns the current display text of the user's telephone, if the terminal
stores this text.

TELGetDisplay(hTEL: TELHandle; index: INTEGER; VAR displayMode:
INTEGER; VAR text: StringPtr) : TELErr;

hTEL is a handle to a telephone record.

index specifies which item of the display text TELGetDisplay is to return. Valid
values are as follows:

CONST
telEntireDisplay = 0; {entire display}
{values 1 through 255 are reserved for the Telephone Manager
and are otherwise invalid.}
{Values 256 through 32768 are available for use by tools.}

displayMode indicates the display mode. Valid values are as follows:

CONST
telNormalDisplayMode = 1; {Normal mode}
telInspectMode = 2; {Inspect mode}
telMiscMode = 3; {Miscellaneous mode}
telRetrieveMode = 4; {Message Retrieval mode}
telDirectoryQueryMode = 5; {Electronic Directory mode}

{values 6 through 255 are reserved for the Telephone Manager
and are invalid}
{Values 256 through 32768 are available for use by tools.}

text points to the text currently showing on the display of the telephone. Your
application is responsible for disposing of the string to which text points.

noErr, telBadIndex, telBadTermErr, telIndexNotSupp

Chapter 2: Inside the Telephone Manager 83

TELSetDisplay

Setting the display text

Function

Description

Result Codes

TELSetDisplay sets the text or display mode of the status display on the user’s
telephone.

TELSetDisplay(hTEL: TELHandle; index, displayMode: INTEGER; text:
Str255) : TELErr;

hTEL isa handle to a telephone record.

index specifies which item of the display text TELsetpisplay is to set. Valid values
are as follows:

CONST
telEntireDisplay = 0; {entire display}
{values 1 through 255 are reserved for the Telephone Manager
and are invalid} '
{Values 256 through 32768 are available for use by tools}

displayMode specifies the display mode to which the status display will be set.

text is the text that will replace item index on the display. Your application is
responsible for disposing of the string to which text points.

TELSetDisplay sets the display in mode displayMode.

noErr, telBadIndex, telBadTermErr, telIndexNotSupp, telModeNotSupp

84 Telephone Manager Developer’s Guide

Controlling directory numbers

The Telephone Manager lets your application control each directory number associated with the
user's terminal. To control directory numbers, use the routines described in this section.

TELCountDNs

Counting directory numbers

TELCountDNs returns the number of directory numbers associated with the user's
terminal. The routine counts either all directory numbers or only those of a specified type.

Function TELCountDNs(hTEL: TELHandle; dnType: INTEGER; physical: BOOLEAN) :
INTEGER;
Description hTEL is a handle to a telephone record.

dnType specifies the type of directory numbers the routine is to count. Valid values are

as follows:
CONST
telAllDNs = 0;
{All DNs}
telInternalDNs = 1:

{DNs connected to a PBX
or nonpublic switch}
telInternalDNsOnly = 25
{DNs connected to a PBX
or nonpublic switch, and
capable of placing internal
calls only}
telExternalDNsOnly = 3; (DNs connected to a
public network}
{Values 4 through 255 are reserved for the Telephone Manager
and are otherwise invalid}
{Values 256 through 32768 are reserved for use by tools}

physical specifies whether TELCountDNs will count all directory numbers of type
dnType or only those to which commands can be sent, as indicated by the field
dnAccessible of the directory-number record.

Result Codes noErr, telBadDNType, telBadTermErr

Chapter 2: Inside the Telephone Manager 85

TELDNLookupByIndex

Finding directory numbers by index

Function

Description

Result Codes

TELDNLookupByIndex returns a handle to the nth directory number of the user's terminal.
Your application must call this routine once, typically after calling TELCountDNs, t0 geta
handle to the directory-number record associated with a particular directory number.

TELDNLookupByIndex(hTEL: TELHandle; dnType: INTEGER; physical:
BOOLEAN; index: INTEGER; VAR hTELDN: TELDNHandle} : TELErr;

nhTEL is a handle to a telephone record.

dnType specifies the type of directory numbers the routine will consider when finding
the nth one. Valid values are as follows:

CONST
telAllDNs - 0:
{All DNs}
telInternalDNs = e

{DNs connected to a PBX
or nonpublic switch}
telInternalDNsOnly = 2:
{DNs connected to a PBX or
nonpublic switch, and capable
of placing internal calls only}
telExternalDNsOnly = 3l
{DNs connected to a
public network}
telDNTypeUnknown = 4;
{DN type unknown}
{values 5 through 255 are reserved for the Telephone Manager
and are otherwise invalid}
{Values 256 through 32768 are reserved for use by tools}

physical specifies whether TELDNLookupByIndex will consider all directory numbers
of type dnType when finding directory number n, or consider only those to which
commands can be sent.

index specifies which directory number TELDNLookupByIndex is to look up. The
maximum value of index is the one that TELCountDNs returns when its selection
criteria are the same as those of TELDNLookupByIndex—that is, when both calls have
the same values for dnType and physical. Note that if TELCountDNs returns, for
example, the integer 3, then the valid values of index are the integers 1 through 3—not 0
through 2.

nTELON is 2 handle to the directory-number record for the nth directory number
returned, oris NIt if no such handle is found.

noErr, telBadDNType, telBadIndex, telBadTermErr, telDNTypeNotSupp
telIndexNotSupp

86 Telephone Manager Developer's Guide

TELDNLookupByName

Finding directory numbers by name

Function

Description

Result Codes

TELGetDNInfo

TELDNLookupByName returns 4 handle to the directory number having a specified name—
for example, (408) 555-1212.

TELDNLookupByName(hTEL: TELHandle; dn: Str255; VAR hTELDN:
TELDNHandle) ¢ TELErr;

hTEL is a handle to a telephone record.
dn is the name of the directory number that TELDNLookupByName is to look up.

hTELDN is a handle to the directory-number record for dn. If the directory-number
record is not found, hTELDN is zero, and TELDNLookupByName returns
telBadTermErr

noErr, telBadDNErr, telBadTermErr

Getting information about a directory number

Function

Description

Result Codes

TELGetDNInfo makes the telephone tool update a specified directory-number record.
This updated record reflects the current state and current capabilities of the associated
directory number.

TELGetDNInfo(hTELDN: TELDNHandle) : TELErr;

hTELDN is a handle to the directory-number record for the directory number whose
information is requested.

The information retumed by TELDNInfo is a “snapshot’; it reflects the state of the
directory number as of the time the information was retrieved,

noErr, telBadDNErr

Chapter 2: Inside the Telephone Manager 87

TELGetDNFlags

Finding the state of directory-number features

TELGetDNFlags updates the fields featureFlags and forwardFlags ina specified
directory-number record and passes back the updated values of the fields. (For a
description of the fields, refer to the section “Directory-Number Data Structure,” earlier in
this chapter.)

Function TELGetDNFlags(hTELDN: TELDNHandle; VAR dnFeatureFlags: LONGINT; VAR
dnForwardFlags: LONGINT) : TELErr;

Description hTELDN is 2 handle to the directory-number record whose fields you wish to update.

dnFeatureFlags stores the updated value of the featureFlags field of directory
number hTELDN.

dnForwardFlags stores the updated value of the forwardriags field of directory
number hTELDN.

Result Codes noErr, telBadDNErr

TELDNSelect

Selecting a directory number

TELDNSelect selects or deselects a directory number ona system that has such a

feature.
Function TELDNSelect (hTELDN: TELDNHandle; select: BOOLEAN) : TELErr;
Description hreLDN is a handle to the directory-number record to be selected.

select indicates whether TELDNSelect is to select directory number hTELDN oOf
deselect it. If select issetto TRUE, the directory number is selected; otherwise, it is
deselected.

Selecting a directory number puts on hold all calls of the previously selected directory
number. Deselecting a directory number drops all call appearances associated with
hTELDN.

Result Codes noErr, telBadDNErr, telBadSelect

88 Telephone Manager Developer's Guide

TELDNDispose

Disposing of a directory-number handle

Function

Description

Resuit Codes

TELDNDispose disposes of the handle to a specified directory-number record. Your
application should call this routine when it no longer needs any information about the
directory number associated with the record.

Note that disposing of the directory-number handle does not drop call apperances on that
number. To drop a call appearance, use the routine TELDrop.

TELDNDispose (hTELDN: TELDNHandle) : TELErr;

hTELDN s a handle to a directory-number record.

TELDNDispose disposes of hTeron and all handles to call-appearance records associated
with hreLow, In addition, the routine removes any directory-number message handlers
or call-appearance message handlers registered for the directory number associated with
hTELDN.

noErr, telBadDNErr

Chapter 2: Inside the Telephone Manager 89

Controlling call appearances

The Telephone Manager lets your application control each call appearance associated with a
particular directory number. To control call appearances, use the routines described in this section.

TELCountCAs

Counting call appearances

Function

Description

Result Codes

TELCALookup

TELCountCas returns the number of non-idle call appearances currently associated with a
particular directory number. The routine counts either all such call appearances or only
those of a specified type.

TELCountCAs (hTELDN: TELDNHandle; intExt: INTEGER) : INTEGER;

hTELDN is a handle to a directory-number record.

intExt specifies the type of call appearances the routine is to count. Valid values are as
follows:

CONST

telAllCallOrigins = 0; {All call appearances}
tellnternalicCall = 1; {Internal call appearances only}
telExternalcCall = 2; {External call appearances only}

{Values 3 through 255 are reserved for the Telephone Manager
and are otherwise invalid}
{values 256 through 32768 are reserved for use by tools}

noErr, telBadDNErr, telBadIntExt, telIntExtNotSupp

Finding call appearances

Function

Description

TELCALookup returns a handle to the nth call appearance currently associated with a
specified directory number.

TELCALookup{hTELDN: TELDNHandle; intExt: INTEGER; index: INTEGER; VAR
hTELCA: TELCAHandle) : TELErr;

hTELDN is 2 handle to a directory-number record.

intExt specifies the types of call appearance the routine will count when finding the
nth one. Valid values are as follows:

90 Telephone Manager Developer’s Guide

Result Codes

TELGetCAInfo

CONST

telAllCallOrigins = 0; {(All call appearances}
telInternalcall = 1; {Internal call appearances only}
telExternalcCall = 2; {External call appearances only}

{values 3 through 255 are reserved for the Telephone Manager
and are otherwise invalid)
{Values 256 through 32768 are reserved for use by tools}

index specifies which call appearance TELCALookup is to find. The maximum value of
index is the one that TELCountCAs returns when its selection criteria are the same as
those of TELCALookup—that is, when both calls have the same values for nhTeLoy and
intExt. Note thatif TELCountcas retumns, for example, the integer 3, then the valid
values of index are the integers 1 through 3—not 0 through 2.

hTELCA is a handle to the call-appearance record for the nth call appearance returned.

In general, your application is notified of each valid call-appearance handle, either because it
placed the call or because it received a Telephone Manager message such as caoffer or
caalerting. Thus, in general, your application need not call TELCALookup to obtaina
call-appearance handle. But it is possible that some call appearances will already be in use
when your application starts. TELcaLookup lets you obtain handles for those call
appearances.

noErr, telBadDNErr, telBadIndex, telBadIntExt, telIntExtNotSupp

Getting information about a call appearance

Function

Description

Result Codes

TELGetCAInfo updates a specified call-appearance record. This updated record reflects
the current state and current capabilities of the call appearance.

TELGetCAInfo(hTELCA: TELCAHandle) : TELErr;

hTELCA is a handle to the call-appearance record being updated.

The information in the updated call-appearance record is a “snapshot”; it reflects the state
of the call appearance as of the time the information was retrieved.

noErr, telBadCAErr

Chapter 2: Inside the Telephone Manager 91

TELGetCAState

Finding the state of a call appearance

TELGetCAState requests that the telephone tool update the castate field of a
particular call-appearance record and pass back the updated value of the field.

Function TELGetCAState(hTELCA: TELCAHandle; VAR state: INTEGER) : TELErr;

Description hTELCA is a handle to a call-appearance record.

state stores the updated value of the castate field of call-appearance record hTeLCA.
(For a list of call-appearance states, refer to the description of castate in the section
“Call-Appearance Data Structure,” earlier in this chapter.)

Result Codes noErr, telBadCAErr

TELGetCAFlags

Finding the state of call-appearance features

TELGetCAFlags updates the fields featureFlags and otherreatures ofa
specified call-appearance record and passes back the updated values of the fields. (For a
description of the fields, refer to the section “Call-Appearance Data Structure,” earlier in

this chapter.)

Function TELGetCAFlags(hTELCA: TELCAHandle; VAR caFeatureFlags: LONGINT; VAR
caOtherFeatures: LONGINT) : TELErr;

Description hTELCA is a handle to the call-appearance record whose fields you wish to update.

caFeatureFlags stores the updated value of the featurerlags field of call
appearance record hTELCA.

caOtherFeatures stores the updated value of the otherFeatures field of call
appearance record hTELCA.

Result Codes noErr, telBadCAErr

92 Telephone Manager Developer's Guide

TELCADispose

Disposing of a call-appearance handle

TELCADispose disposes of the handle to a specified call-appearance record. Your
application should call this routine when it no longer needs any information about the call
appearance associated with the record.

Note that disposing of the call-appearance handle does not drop the associated call. To
drop a call, use the routine TELDrop.

Function TELCADispose(hTELCA: TELCAHandle) : TELErr:

Description hTELCA is a handle to a call-appearance record.

TELCADispose disposes of hTELCA.

Result Codes noErr, telBadCAErr

Chapter 2: Inside the Telephone Manager 93

Miscellaneous routines

The routines described in this section perform a variety of tasks.

TELGetToolName

Getting the name of a tool
TELGetToolName returnsin name the name of the tool specified by procip.
Procedure TELGetToolName(procID: INTEGER; VAR name: Str255);

Description If procip references a telephone tool that does not exist, the Telephone
Manager sets name t0 NIL.

TELGetVersion

Getting 'vers' resource information

TELGetVersion returns a handle to a relocatable block, which contains the information
in the telephone tool's *vers' resource with ID=1. Your application is responsible for
disposing of the handle when done with it.

@ Note: The handle returned is not a resource handle.

Function TELGetVersion(hTEL:TELHandle): Handle;
Description hTEL is a handle to a telephone record.
TELGetTELVersion

Getting the Telephone Manager version number

TELGetTELVersion retumns the version number of the Telephone Manager.

Function TELGetTELVersion: INTEGER;
Description The version number of the Telephone Manager described in this document is as follows:
CONST
curTELVersion = 1z

94 Telephone Manager Developer’s Guide

Routines your application must provide

To use the Telephone Manager, your application must be able to receive messages that the Telephone
Manager relays from tools. These messages are of three types: terminal messages, directory-number
messages, and call-appearance messages. These messages are listed in Apppendix B. Your application must
provide a message-handling routine for each message type, and must register the routines with the
Telephone Manager by calling TELTermMsgHand, TELDNMsgHand, Of TELCAMsgHand.

This section provides three routine templates—myTermMsgHandler, MyDNMsgHandler, and
MyCAMsgHandler—one for each of the message handlers your application must provide. These templates
show only the interface your message handlers must have. You provide the actual routines, which can have
any name. Refer to the section “Handling Messages,” earlier in this chapter, for information on registering
your message handlers with the Telephone Manager.

MyTermMsgHandler

Template for terminal message handlers

MyTermMsgHandler isa routine you must write to handle messages from an application
user's terminal.

Procedure MyTermMsgHandler (hTEL: TELHandle; msg: LONGINT; mtype, value:
INTEGER; globals: LONGINT);

Description hTEL is a handle to the telephone record for the user’s terminal.

msg specifies the type of terminal message sent. Refer to Appendix B for a list of valid
values for msgq.

mtype and value, if used, specify attributes of the message. Their exact meaning and
use vary, depending on the value of msgq.

globals isa pointer to a location in memory—for example, to your application’s globals
(register A5). Your application must previously have passed the value of globals when
calling TELTermMsgHand 10 register MyTermMsgHandler.

Chapter 2: Inside the Telephone Manager 95

MyDNMsgHandler

Template for directory-number message handlers

Procedure

Description

MyDNMsgHandler iSa routine you must write to handle messages about a particular
directory number.

MyDNMsgHandler (hTELDN: TELDNHandle; msg: LONGINT; mtype, value:
INTEGER; rmtDN, rmtName, rmtSubaddress : StringPtr; globals:
LONGINT);

hTELDN is 2 handle to a directory-number record.

msg a constant showing the type of directory-number message sent. Refer to Appendix B
for a list of valid values for msg.

mtype and value, if used, specify attributes of the message. Their exact meaning varies,
depending on the value of msg.

rmtDN, rmtName, and rmtSubaddress specify the directory number, party, and
subaddress being called, if such information is applicable to the call and is available from
the telephone network switch.

globals isa pointer to a location in memory—for example, to your application’s globals
(register AS). Your application must previously have passed the value of globals when
calling TELDNMsgHand tO register MyDNMsgHandler.

MyCAMsgHandler

Template for call-appearance message handlers

Procedure

Description

MyCAMsgHandler is a routine you must write to handle messages about a particular call
appearance.

MyCAMsgHandler (hTELCA: TELCAHandle; msg: LONGINT; mtype, value:
INTEGER; msgInfo : Ptr; globals: LONGINT);

hTELCA is a handle to a call-appearance record.

msg specifies the type of call-appearance message sent. Refer to Appendix B for a list and
description of valid values for msgq.

mtype and value, if used, specify attributes of the message. Their exact meaning varies,
depending on the value of msg.

msgInfo specifies the call appearance and person being called, if such information is
applicable to the call and is available from the telephone network switch.

globals is a pointer to a location in memory—for example, to your application’s globals
(register A5). Your application must previously have passed the value of globals when
calling TELCAMsgHand (0 register MyCAMsgHandler.

96 Telephone Manager Developer’s Guide

Chapter 3 Writing Telephone Tools

THIS CHAPTER provides information about writing a telephone tool.
It first discusses general concepts relevant to writing a tool and then
describes the six resources that are an essential part of a telephone tool. These
six resources are exactly analogous to the six resources that must be in any
communications tool intended for the Communications Toolbox. One of
these resources, the main code resource, is far more complex than the others.
For this reason, although it is introduced in this chapter, details about it are
given in a separate chapter, Chapter 4. For information about writing your

main code resource, see that chapter.

To write your own telephone tool, you need to be familiar with the
Telephone Manager, with which your tool will interface. See Chapters 1 and 2
for information about the Telephone Manager. You should also be familiar
with the Apple’s guidelines for communications tools, which are discussed in

Inside the Macintosh Communications Toolbox.

97

About writing a telephone tool

The Telephone Manager interacts with tools in much the same way that other Communications
Toolbox managers do. The application calls a routine, which the Telephone Manager handles by sending
a message to a tool. For example, when an application requires a service, such as the creation of a new
telephone record, it calls the TELNew routine. The Telephone Manager passes this request on by issuing
a message, telNewMsg, to the main code resource of the appropriate tool.

/\ Important Telephone tools differ from other tools in one important way. The main
code resource of a telephone tool not only receives messages from the
Telephone Manager, but also sends messages back—for example, to relay
information from the network switch. The messages that your main code
resource can send are described in this chapter. The Telephone Manager
routines associated with these messages are described in Chapter 2. A

The six tool resources

You need to create six resources to make your own telephone tool. All of these resources are
described in this chapter, except the main code resource, which is described in detail in Chapter 4.

There is one tool-related resource, which is optional:

"vbnd' The bundle resource contains the name of the tool and information about what
resources belong to the tool.

You also need to write five code resources, which must be part of your tool:
"vdef' The main code resource performs the basic telephone functions, such as TELNew.

‘vval’ The validation code resource validates telephone records with TELvalidate,
and also fills in configuration record default values with TELDefault.

'vset' The setup-definition code resource supports the custom tool-settings dialog
box, which allows users to configure telephone tools.

'vscr! The scripting language interface code resource handles the interface between a
scripting language and the tool.

‘vloc' The localization code resource handles localization of configuration strings.

98 Telephone Manager Developer's Guide

The bundle resource

The tool bundle contains the master list of resources that are associated with o1+ tciephone tool.
Besides the six standard resources, the tool bundle can contain references 1o any additional
resources that your tool requires, such as dialog boxes or menus. Although your tool will work
without a bundle resource, including one is good programming practice. The bundle resource allows
you to change resource IDs when conflic's .r.s¢, without having to recompile your code.

Your telephone tool can refe «ources with local IDs that the Communications Resource
Manager can map to actual resource IDs. (Your tool should use the Communications Resource
Manager routines cRMLocalToRealID and CRMRealToLocalip.) The telephone bundle resource,
shown here, provides a data structure to accommodate this mapping.

type 'vbnd' { /**/

integer = $$CountOf(TypeArray) - 1;
array TypeArray {
literal longint; /* Type */
integer = $$CountOf(IDArray) - 1;
wide array IDArray {
integer; /* Local ID */
integer; /* Actual ID */

}:

Chapter 3: Writing Telephone Tools

99

The validation code resource

The validation code resource parses two possible messages from the Telephone Manager:
telvalidateMsg and telbefaultMsg. An application or tool will request one of these services
when it requires your tool to check the values in the telephone record or to reset the telephone
record to its default values. Your telephone tool should contain the default values for the telephone
record.

The validation code resource should be a resource of type " vvai. It should be able to accept
the messages shown in this example:

FUNCTION vval(hTEL: TELHandle; msg: INTEGER; pl, p2, p3: LONGINT): LONGINT;
VAR

pConfig: ConfigPtr;
BEGIN
CASE msg OF
telvalidateMsg: { hTEL is valid here }
BEGIN
vval = DoValidate(hTEL);
END;
telDefaultMsg: { hTEL 1is not valid here }
BEGIN { pl is a pointer to the configPtr }
{ p2 is allocate or not }
{ p3 is zero }
IF p2 = TRUE THEN
BEGIN
pConfig := ConfigPtr(NewPtr(SIZEOF(ConfigRecord)));
ConfigHandle(pl)"* := pConfig;
{ real programmers check errors here }
END
ELSE
BEGIN
ConfigHandle(pl)" := pConfig;
L
END;
DoDefault(pConfig);
END;
END; { case }
END;

The messages accepted by the validation code resource and their associated values are as follows:

CONST

{ validation code resource messages }
telvalidateMsg = 0;
telDefaultMsg = i,

100 Telephone Manager Developer's Guide

For each of the messages defined here, p1, p2, and p3 take on different meanings. These
meanings are discussed in the message descriptions that follow. If your tool receives a message
other than those shown, it should return telNotSupported.

telvalidateMsg

Your tool will receive telvalidatemsg when the application requires your tool to validate the
fields in the telephone record. Your tool should compare the values in this record with the values
specified in the tool.

The example code given here shows how your tool can respond to telvalidatemsa.

After executing the code necessary to respond to telvalidatemMsg, your code should pass
back 0 if there were no errors, or 1 if the configuration record had to be rebuilt by your tool. p1, p2,
and p3 should be ignored.

{ perform validate here }
FUNCTION DoValidate(hTEL: TELHandle): LONGINT:

VAR
pPrivate: PrivatePtr;
pConfig: ConfigPtr;
BEGIN
pConfig := ConfigPtr(hTEL"".config);
pPrivate := PrivatePtr(hTEL"".private);
IF pConfig".foobar = 0 THEN
DoValidate := 0 { okey dokey }
ELSE
Dovalidate := 1; { uh-oh }
END;
telDefaultMsg

Your tool will receive telpefaultMsg when the application requires your tool to fill in the fields
of a telephone record. Default values should be specified in your tool.

After executing the code necessary to respond to telpefaultMsg, p1 should pass back a
pointer to the configuration record pointer. If p2 contained 1 when TELDefault was called,
your tool should allocate the configuration record and return the pointer in p1. If p2 was 0, then
your tool should simply use the configuration pointer obtained by dereferencing p1.

Chapter 3: Writing Telephone Tools

101

The setup-definition code resource

Applications can present users with a custom dialog box containing tool-specific items that allows
them to configure their own telephones or select a telephone tool. The Telephone Manager routines
TELSetupPreflight, TELSetupSetup,TELSetupItem,TELSetupFilter,and
TELSetupCleanup make this possible.

The telephone tool setup code resource should be a function called *vset', and should be able to
handle the following parameters:

{ main entry point for vset resource }
FUNCTION vset(pSetup: TELSetupPtr; msg: INTEGER;
pl, p2, p3: LONGINT): LONGINT;

TYPE

LocalHandle = “LocalPtr;

LocalPtr = "LocalRecord;

LocalRecord = RECORD { private tool setup context }

foobar: LONGINT;

END;

IntPtr = “INTEGER;

EventPtr = "EventRecord;

BEGIN

CASE msg OF

telSpreflightMsg:
BEGIN
theCookie := CookiePtr(NewPtr(SIZEOF(CookieRecord)));
CookieHandle(p3)” := theCookie; { send back theCookie }
vset := Preflight(pSetup, theCookie);
END;

telSsetupMsg:
BEGIN
theCookie := CookieHandle(p3)"; { get the magic cookie }
Setup(pSetup); { do the setup }
END;

telSitemMsg:
BEGIN
theCookie := CookieHandle(p3)"; { get the magic cookie }
Item(pSetup, theCookie, IntPtr(pl)); { process the items hit }
END;

102 Telephone Manager Developer's Guide

telsfilterMsg:
BEGIN
theCookie := CookieHandle(p3)"; { get the magic cookie }
vset := Filter(pSetup, theCookie, EventPtr(pl), IntPtr(p2)):;
END;

telScleanupMsg:
BEGIN
theCookie := CookieHandle(p3)“; { get the magic cookie }
DisposPtr(Ptr(theCookie)); { and get rid of it }
END;

END; { case }

END;

In the preceding code sample, magic cookie is intended to store the private data structure of
your telephone tool. Note that there is no message TELSpostflightMsg, because the
corresponding Telephone Manager routine, TELSetupPost£flight, requires no action from your
tool. TELSetupPostflight releases the 'vset' resource from memory.

Valid values for msg are as follows:

CONST
telSpreflightMsg = 0;
telSsetupMsg = 1;
telSitemMsg = 2;
telsfilterMsg = 3f
telScleanupMsg = 4;

For each of the messages just shown, p1, p2,and p3 take on different meanings. These
meanings are discussed in the message descriptions that follow. If your tool receives a message
other than those shown, it should return telNotsupported. When your tool handles these
routines, it will use a TELSetupstruct data structure.

TYPE
TELSetupPtr = “TELSetupStruct;
TELSetupStruct = RECORD
theDialog g DialogPtr;
count g INTEGER; {dialog item number of first appended item}
theConfig 3 Ptr;
procID : INTEGER
END;
telspreflightMsg

Your setup-definition code resource should perform a function similar to that shown in the
example code when it receives telspreflightsg from the Telephone Manager. This is where
your tool retrieves the 'pITL’ resource, to be appended to the TELChoose dialog.

When passed to your telephone tool, p3 will be a pointer to a LoNGINT that gets passed to
the other routines during setup definition. p3 should serve as magiccookie if the setup-
definition procedure requires some private context.

Chapter 3: Writing Telephone Tools 103

After executing the code necessary to respond to telspreflightMsg, your telephone tool
should return a handle to a dialog item list. This handle should then be disposed of by the caller of
this function.

FUNCTION Preflight(pSetup: TELSetupPtr; theCookie: LocalPtr): LONGINT;
CONST

locallD = 1; { we want DITL local ID 1 }
VAR
hDITL: Handle;
theID: INTEGER;
oldRF: INTEGER:
BEGIN
theCookie”.foobar := 0; { setup theCookie }
theID := CRMLocalToRealID(ClassTEL, pSetup”.procID, 'DITL', locallD);
IF thelID = -1 THEN
Preflight := 0 { no DITL found }
ELSE
BEGIN
0ldRF := CurResFile;
UseResFile(pSetup”.procID); { procID is the tool refnum }
hDITL := GetlResource('DITL', thelD):
UseResFile(oldRF);
IF hDITL <> NIL THEN
DetachResource(hDITL); { got it so detach it }
Preflight := LONGINT(hDITL);
END;
END;
telSsetupMsg

Your setup-definition code resource should perform a function similar to that shown in the
example code when it receives telssetupMsg from the Telephone Manager. This is where your
tool initializes all items in the 'pITL' resource retrieved by TELSetupPreflight.

When passed to your telephone tool, p3 will be a pointer to magicCookie, whichisa LONGINT.

PROCEDURE Setup(pSetup: TELSetupPtr);

CONST
myFirstItem = 1;
mySecondItem = 2;
VAR
first: INTEGER; { first item appended (0-based) }
pConfig:ConfigPtr;
BEGIN

WITH pSetup” DO

104 Telephone Manager Developer's Guide

BEGIN
first := count - 1; { count is l-based }
pConfig := ConfigPtr(theConfig); { get the config ptr }

GetDItem(theDialog, first+myFirstItem, itemKind, itemHandle,
itemRect);
SetCtlvalue(ControlHandle(itemHandle), pConfig”.foobar);

GetDItem(theDialog, first+mySecondItem, itemKind, itemHandle,
itemRect);
SetCtlvalue(ControlHandle(itemHandle), 1-pConfig”.foobar);

END; {with}
END;

telSitemMsg

Your setup-definition code resource should perform a function similar to that shown in the
example code when it receives telsitemMsg from the Telephone Manager. Your tool receives
telsitemMsg When an item belonging to your tool is hit.

When passed to your telephone tool, p1 points to an item that was selected from the dialog
box item list, and p3 contains a pointer to magicCookie. Your tool can change the selected item
by modifying the item number to which p1 points.

PROCEDURE Item(pSetup: TELSetupPtr; pItem: IntPtr);

CONST
myFirstItem = oLe]
mySecondItem = 2%

VAR .
first : INTEGER; { first item appended (0-based) }
pConfig 3 ConfigPtr;
value : INTEGER;

BEGIN
WITH pSetup” DO
BEGIN

first := count - 1; { count is l-based }
pConfig := ConfigPtr(theConfig); { get the config ptr }

CASE pItem” -first OF
myFirstItem:
BEGIN
GetDItem(theDialog,first+myFirstItem,itemKind,
itemHandle,itemRect);
value := GetCtlValue(ControlHandle(itemHandle))
value := 1 - value;

pConfig”.foobar := value; { stick into config record }
SetCtlValue(ControlHandle(itemHandle), value); { update control }
END;

Chapter 3: Writing Telephone Tools 10§

mySecondItem:
BEGIN
SysBeep(5);
FlashMenuBar(0);
END;

END; { case }

END; { with }
END;

telsfilterMsg

Your setup-definition code resource should perform a function similar to that shown in the
example code when it receives telsfiltermsq from the Telephone Manager.

When passed to your telephone tool, p1 will contain a pointer to an event record, p2 will
contain a pointer to an item clicked in the dialog box list, and p3 will contain a pointer to
magicCookie.

If the event that was passed to this function was handled, your telephone tool should return
TRUE; otherwise, it should return rarse.

FUNCTION Filter(pSetup: TELSetupPtr; theCookie: LocalPtr;
pEvent: EventPtr;pItem: IntPtr): LONGINT;

BEGIN
Filter := 0; { not hungry }
IF pEvent”.what = keyDown THEN { eat all keyDowns }
BEGIN
SysBeep(5);
Filter := 1; { processed }
END;
END;
telScleanupMsg

Your setup-definition code resource should perform a function similar to the one shown in the
example code when it receives telscleanupmsg from the Telephone Manager. This is where your
tool should dispose of any private stroage allocated during the creation of the custom tool-settings
dialog box.

When passed to your telephone tool, p3 will contain a pointer to magiccookie.

PROCEDURE myCleanup(p3: LONGINT);

BEGIN
DisposPtr(Ptr(p3)); { dispose of magicCookie }
p3 := 0;

END;

106 Telephone Manager Developer's Guide

The scripting language interface code resource

Your telephone tool's scripting language interface code resource is responsible for handling the
interface between your tool and a scripting language. Also, it must provide complete configuration
information for saving and opening documents.

Your scripting interface code resource must handle two messages: telMgetmsg and
telMsetMsg. It should be a resource of type 'vser’, and should be able to handle the parameters
that are shown in this example:

'

FUNCTION vscr(hTEL: TELHandle; msg: INTEGER; pl, p2, p3: LONGINT): LONGINT;
VAR

pConfig: ConfigPtr;
BEGIN
vscr := 0; { for now }
CASE msg OF
telMgetMsg:
vser := LONGINT(GetConfig(hTEL));
telMsetMsg:
vscr := SetConfig(hTEL, Ptr(pl)):
END; { case }
END;

Valid values for msg are as follows:

CONST
telMgetMsg = 0;
telMsetMsg = A5

For each of the messages defined here, p1, p2,and p3 take on different meanings. These
meanings are discussed in the message descriptions that follow. If your tool receives a message
other than those shown, it should return telNotsSupported.

telMgetMsg

Your tool will receive telmgetmsg from the Telephone Manager when the application requires a
string that describes the telephone record. The sample code shows how your application can handle
telMgetMsg.

After executing the code necessary to respond to telMgetMsg, your telephone tool should
return NIL if there was a problem constructing the configuration string. Otherwise, it should
return a pointer to a null-terminated string that contains American English tokens representing the
configuration record pointed to by config in the telephone record.

FUNCTION GetConfig(hTEL: TELHandle): Ptr;

VAR
thePtr: Ptr;
pConfig: ConfigPtr;
theString,
string2: STR255;

Chapter 3: Writing Telephone Tools

107

BEGIN

pConfig := ConfigPtr(hTEL"".config);

theString := 'FOOBAR ';

NumToString(pConfig”.foobar, string2);

theString := CONCAT(string, string2);

{ get the config record }

{ attribute name is FOOBAR }
{ get the attribute value }
{ make the config string }

)

thePtr := NewPtr (SIZEOF(LENGTH(theString)+1));

IF thePtr <> NIL THEN

{ 0 terminate it }

BEGIN
BlockMove (Ptr{LONGINT(@theString)+1),
thePtr, LENGTH(theString)); ({ copy it }
Ptr(LONGINT(thePtr)+LENGTH(theString))" := 0;
END;
GetConfig := thePtr; { bye bye }
END;
telMsetMsg

Your tool will receive telmsetmsg from the Telephone Manager when the application requires
your tool to set the fields of the telephone record to values that are specified in a string. The
Telephone Manager will pass a pointer to this string as a parameter to this call. The sample code
shows how your tool can handle telMsetmsg.
When passed to your telephone tool's scripting interface code resource, p1 will be a pointer to an
American English null-terminated string that contains tokens representing a configuration record.
Your tool should return one of the following values: a number less than -1 to indicate an
osErr, -1 to indicate a generic error, 0 if there was no problem with the string, or a positive number
to indicate the character position where parsing was stopped.
The Telephone Manager automatically calls TELvalidate after your tool has responded to
telMsetMsg

FUNCTION SetConfig(hTEL: TELHandle; theSource: Ptr): INTEGER:

VAR

BEGIN

108

pConfig : ConfigPtr; {
paramStr,

valueStr s Stra2s5s; {
outOfTokens : BOOLEAN;

returnval : INTEGER; {

{ Init some stuff}
pConfig := ConfigPtr(hTEL"".config);
returnval := noErr;

IF (theSource” = CHR(0)) THEN
outOfTokens := TRUE
ELSE

outOfTokens := FALSE;

Telephone Manager Developer’s Guide

tool specific config record }

parameter and value strings }

{ end of the line? }

what to return }

WHILE NOT outOfTokens DO BEGIN
(* Build the first token and put it into paramStr *)

IF (paramStr = 'FOOBAR') THEN BEGIN
(* Build the next token and put it into valueStr *)

pConfig”.foobar := valueStr;

END

ELSE BEGIN
(* returnval = location of the paramStr *)
LEAVE;

END;

(* index to next token *)
END; { while }

SetConfig := returnval;
END;

The localization code resource

Your telephone tool's localization code resource is responsible for providing the services necessary
to localize your tool. It must handle two messages, telL2English and telL2Intl.

Your localization code resource should be a resource of type *v1oc'. It should be able to
handle the parameters shown in the example code.

FUNCTION vloc(hTEL: TELHandle; msg: INTEGER; pl, p2, p3: LONGINT) : LONGINT;

Valid values for msg are as follows:

CONST
telL2English = 0;
telL2Intl = 3

For each of the messages defined here, p1, p2, and p3 take on different meanings. These
meanings are discussed in the message descriptions that follow.

telL2English and tell2Intl

Your tool will receive telrL2english from the Telephone Manager when the application requires
your tool to localize a string to English. When the parameters p1, p2, and p3 are passed to your
tool, p1 will contain a pointer to a localized null-terminated string that contains tokens
representing a configuration record; p2 will contain a pointer that points to a second pointer. Your
tool will have to allocate space for this pointer (by calling Newptr), which contains the American
English null-terminated configuration string. p3 will contain a language identifier, which is defined
in the discussion of the Script Manager in Inside Macintosh, Volume V.

Chapter 3: Writing Telephone Tools

109

Your tool will receive telr2zntl from the Telephone Manager when the application requires your
tool to localize a string to a language other than English. When the parameters p1, p2, and p3 are
passed to your tool, p1 will contain a pointer to an American English null-terminated string that
contains tokens representing a configuration record; p2 will contain a pointer to a second pointer.
Your tool will have to allocate space for this pointer, which contains the localized configuration
string. p3 will contain a language identifier, which is defined in the Script Manager in Inside
Macintosh, Volume V. The next code example shows how your tool can handle both
telL2English and telL2Intl.

After executing the code necessary to respond t0 telL2English Of telL2Intl, your
routine should return n1v if there was a Memory Manager error or if the language requested is not
available. It should also return any appropriate error code in the status field of the telephone record.

{ main entry point for vloc resource }
FUNCTION vloc{(hTEL: TELHandle; msg: INTEGER; pl, p2, p3: LONGINT): LONGINT;
TYPE

PtrPtr = “Ptr;

VAR
outPtr: Ptr;
procID: INTEGER;

BEGIN
outPtr := PtrPtr(p2)”; { get output pointer }
case msg of
telL2English:
vloc := Translate(Ptr(pl),outPtr,p3,verUS);
telL2Intl:
vloc := Translate(Ptr(pl),outPtr,verUS,p3);
end; {case}
PtrPtr(p2)”" := outPtr; { return output pointer }
END; { mytscrDEF }

Translates an input config string from one language to another }
returns 0 if no problem, non zero if there is a problem }

This routine needs to allocate outputStr }

if language is not supported, return 0 but leave outputStr NIL }

L I e B e Wi e

function Translate(inputStr: Ptr; var outputStr: Ptr;
fromLanguage,tolLanguage: longint): longint;

BEGIN

END; { Translate }

110 Telephone Manager Developer's Guide

config: the configuration record

An application using your tool may save and restore the contents of a configuration record to set
the state of the telephone at any time. The configuration record, therefore, should be self-
contained and should not contain any pointers or handles to other data structures. Your tool
allocates this record in response to telpefaultMsg. The Telephone Manager, not the tool, de-
allocates the configuration record when the application calls TELDispose.

Chapter 3: Writing Telephone Tools 111

Chapter 4 Writing Your Tool's Main Code Resource

THIS CHAPTER tells you how to write the main code resource for a
telephone tool. There are at least five other code resources that you need to
include as part of your tool; they are described in Chapter 3. You should read

that chapter, as well as Chapters 1 and 2, before reading this chapter.

This chapter describes the messages, parameters, and data structures that the
Telephone Manager passes to your tool's main code resource. It also describes
the messages that your main code resource can send back to the Telephone

Manager.

113

The main code resource

The main code resource of your tool serves two purposes. The first is to parse messages from the
Telephone Manager and then to branch to a routine that can handle each message. The second
purpose is to send messages to the master message handlers of the Telephone Manager, in response
to activity on the telephone network.

The main code resource should be a resource of type *vdef' and should be able to accept the
parameters shown here:

FUNCTION vdef (hTEL: TELHandle; pTELTerm: TELTermPtr;
hDN: TELDNHandle; hCA: TELCAHandle;

msg: INTEGER; pl, p2, p3: LONGINT) : INTEGER;

For each of the messages defined here, the first five parameters 'vdet' retums, namely hTEL,
pTELTerm, hDN, hca, and msg, have the following meanings:

hTEL is a handle to a telephone record for the user's terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

hoN is a handle to a directory-number record assigned to terminal hTEL.

nca is a handle to a call-appearance record on directory number hoN. msg identifies the
message.

The remaining three parameters 'vdes' returns, namely p1, p2,and p3, take on different
meanings in each message. These parameters are described in the message descriptions later in this
chapter.

Your tool can respond to messages by returning either an operating-system error code or one of the
following four codes: telFeatNotSupp, telFeatNotSub, telFeatNotAvail,oOf
telFeatActive,

telFeatNotSupp means that your tool does not understand the message it received.

telFeatNotSub means that your tool supports the requested feature, but the feature is not
subscribed.

telFeatNotavail means that, although your tool supports the requested feature and the
feature is subscribed, the feature was not available when requested.

telFeatActive means that your tool supports the requested feature, but the feature is
already active.

When relaying requests from applications to your tool, the Telephone Manager checks any handles
passed in the requests, making sure they are on a list of seemingly valid handles. (This list is
maintained by the Telephone Manager.) But the Telephone Manager can sometimes relay an invalid
handle—one for a terminal, directory number, or call appearance that your tool no longer supports.

If your tool receives an invalid handle, it should send one of the following three result codes:
telBadTermerr (for terminals), telBadpNErr (for directory numbers), or telBadcaerr (for
call appearances). In addition, your tool should set to ~1 the field tre¢ (of the telephone record),
dnref (of the directory-number record), or caret (of the call-appearance record), depending on
the type of the invalid handle.

114 Telephone Manager Developer's Guide

Messages that the main code resource accepts

The messages accepted by the main code resource, and their associated values, are as follows. For a
listing of these messages in numerical order, see the header file TelephoneTools.p (Pascal) or
TelephoneTools.h (C).

CONST

telAcceptCallMsg
telActivateMsg
telAlertMsg
telAnswerCallMsg

telCADisposeMsg
telCAEventsSuppMsg
telCallbackClearMsg
telCallbackNowMsg
telCallbackSetMsg
telCallpPickupMsg
telCALookupMsg
telCAMsgHandMsg

telCloseTermMsg
telClrCAMsgHandMsg
telClrDNMsgHandMsg
telClrTermMsgHandMsg

telConfEstMsg
telConfPrepMsg
telConfSplitMsg
telConnectMsg
telCountCAsMsg
telCountDNsMsg

telDeactivateMsg
telbeflectCallMsg
telDialDigitsMsg
telDisposeMsg

telDNDClearMsg
telDNDisposeMsg
telDNDSetMsg
telDNEventsSuppMsg
telDNLookupByIndexMsg
telDNLookupByNameMsg
telDNMsgHandMsg
telDNSelectMsg
telDropMsg

206;
6;
74;
209;

200;
114;
63;

216;
215;
20575
1A8;
112;

53;
1813}
105;
55

231;
230;
213;
204;
110;
60;

208;
205;
1;

123; i
101;
122;
106;
61;
62;
104;
100;
210;

Chapter 4: Writing Your Tool's Main Code Resource

115

116

telEventMsg

telForwardClearMsg

telForwardSetMsg

telGetCAFlagsMsg
telGetCAInfoMsg
telGetCAStateMsg
telGetDisplayMsg
telGetDNFlagsMsg
telGetDNInfoMsg
telGetHookswMsg
telGetInfoMsg
telGetVolumeMsg

telHoldMsg

telIdleMsg
telIntercomMsg

telMenuMsg
telNewMsg

telOpenTermMsg

telOtherFeatImplMsg
telOtherFeatListMsg
telOtherFunctionMsg

telPagingMsg
telparkCallMsg

telRejectCallMsg
telResetTermMsg
telResumeMsg
telRetrieveMsg

telRetrieveParkedCallMsg

telSetDisplayMsg
telSetHookswMsg
telSetupCallMsg
telSetVolumeMsg
telSuspendMsg

Telephone Manager Developer's Guide

211;

50;
2224}

22117
218;

207;
523
3;
212;
219;

JI6F
g
115;
73;
2;

telTermEventsSuppMsg = 56;

telTermMsgHandMsg = 54;
telToolFunctionsMsg = 66;
telTransfBlindMsg = 214;
telTransfEstMsg = 233;
telTransfPrepMsg = 232;
telVoiceMailAccessMsg = 220;

The rest of this section describes each of the messages your main code resource should accept.

telAcceptCallMsg

The Telephone Manager will send telacceptcallmsg when an application requests that your
tool accept the incoming call appearance nca, which must be in the state telcaofferstate.

telAcceptCallMsg is intended for phone systems that “offer” incoming calls instead of, or
in addition to, causing them to alert (“ring”) immediately, as in most systems.

hTEL is a handle to a telephone record for the user’s terminal.

PTELTerm points to a record of type TELTermRrecord, part of the telephone record hreL.

hon s a handle to a directory-number record associated with terminal nrer.

hca is a handle to a call-appearance record on directory number hpw.

msg identifies the message.

pl, p2,and p3 are unused.

When done, your tool should return noerr if the request was handled.

telActivateMsg
The Telephone Manager will pass telactivateMsg Or telDeactivateMsg (o your tool when
the application requires your tool to perform an action, such as installing or removing a menu from
the menu bar in response to an activate or deactivate message.
hTEL is a handle to a telephone record for the user's terminal.
PTELTerm pOints to a record of type TELTermRecord, part of the telephone record hreL.
msg identifies the message.
hDN, hca, p1, p2,and p3 are unused.

Chapter 4: Writing Your Tool's Main Code Resource

117

telAlertMsg

The Telephone Manager will send telalertMsg when an application requests that your tool
make a ringer attached to the terminal ring—for instance, so that the user can set the volume level
of the ringer.

nTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

msg identifies the message.

p1 is a pointer to a 2-byte field; it specifies the volume level to which your tool should set the ringer.
valid values for p1 are 0 through 100. If p1 equals zero, your tool should leave the volume level
unchanged. If the value of p1 exceeds the maximum volume supported by your tool, set the volume
level to your tool's maximum volume value, and return that value in the field referenced by p1.

p2 specifies the alerting pattern of the ringer. Your tool should return telarattNotsSupp if
it does not support the requested alerting pattern.

hoN, heca, and p3 are unused.

When done, your tool should return nokrr if the request was handled.

telAnswerCallMsg

The Telephone Manager will send telanswercallusg when an application requests that your
tool answer the alerting or offered call appearance hca. If the castate field of the call appearance
equals telcaotferstate, your tool should both accept the call appearance and answer it.

hTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermrecord, part of the telephone record hTEL.

hon is a handle to a directory-number record associated with terminal hTEL.

hca is a handle to a call-appearance record on directory number how.

msg identifies the message.

pl, p2,and p3 are unused.

When done, your tool should return 0 if the request was handled.

telCADisposeMsg
Your tool will receive telcapisposeMsg when an application requests that the Telephone
Manager dispose of a handle to a call-appearance record.

hTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

non is a handle to a directory-number record associated with terminal hTEL.

hea is a handle to a call-appearance record on directory number hDN.

msg identifies the message.

pl, p2,and p3 areunused.

When done, your tool should perform any necessary cleanup. However, it should not dispose of
nea, nor should it dispose any string pointers in the call-appearance record referenced by hca. The
Telephone Manager disposes of these.

/\ Important Your tool should not drop a call appearance unless the tool receives the
message telDropMsg Of telDNSelectMsg. Refer to the descriptions of
these messages for more information. A

118 Telephone Manager Developer's Guide

telCAEventsSuppMsg

Your tool will receive telcaEventssuppMsg when an application inquires which types of call
appearance messages your tool supports.

hTEL is 2 handle to a telephone record for the user’s terminal.

PTELTerm points to a record of type TELTermRecord, part of the telephone record hrEL.

hon is a handle to a directory-number record associated with terminal hrEL.

msg identifies the message.

pl points to a field containing a 4-byte mask filled in by your tool. This mask indicates which
types of call appearance messages your tool supports.

hca, p2,and p3 are unused.

The sample code provides a basic template into which you can code your tool’s response to
telcAEventssuppMsg. When done, your tool should retum 0 if the request was handled.

FUNCTION myTELCAEventsSupp (hDN : TELDNHandle; VAR eventMask : LONGINT) : INTEGER;
VAR
err : OSErr;
BEGIN
myTELCAEventsSupp:= noErr;
{ somewhere earlier you did this...
myDNPrivates”.mycaMessagesSupported := telCAActiveMsg + telCAProgressMsg +
telCAConferenceMsg + etc. }
eventMask := myDNPrivates”.mycaMessagesSupported;

END;

telCallbackClearMsg

Your tool will receive telcallbackclearMsg when an application requests that a previous
callback be cleared from the user’s terminal.

hTEL isa handle to a telephone record for the user’s terminal.

PTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

msg identifies the message.

pl isa callback reference value.

hca, p2,and p3 are unused.

When done, your tool should return 0 if the request was handled. If no callback is set, your tool
should return telcBerr. If your tool requires a callback reference, and p1 is invalid, your tool
should return telNoCallbackRef,

telCallbackNowMsg

The Telephone Manager will send telcallbackNowMsg when an application requests that
your tool call back a remote terminal, regardless of who set the callback or why. Your tool is
responsible for checking whether the callback request is valid.

hTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

hoN is a handle to a directory-number record associated with terminal hTEL.

hca is a handle to a call-appearance record on directory number hon.

msg identifies the message.

Chapter 4: Writing Your Tool's Main Code Resource 119

pl is a callback reference value. If your tool has more than one outstanding callback, p1
should specify which destination is to be called back. (Your tool specified this value previously,
when processing the corresponding message telcallbackSetMsg.)

p2 and p3 are unused.

When done, your tool should return 0 if the request was handled. If no callback is set, your tool
should return telcBEcrr. If your tool requires a callback reference, and p1 is invalid, your tool
should return telNocallbackRref.

The series of occurrences that precede a telcallbackNowMsg message differ depending on
whether the terminal called was busy or unanswered. If one terminal (A) called another (B), and
Terminal B was busy, the following steps preceded telcallbackNowMsg. First, the application on
Terminal A called the routine TELcallbackset, causing your tool to receive the message
telcallbacksetMsg. Next, when Terminal B was no longer busy, your tool sent the message
callbackNowMsg, which the Telephone Manager then relayed to the application. Finally, the
application called the routine TELcCallbackNow, causing your tool to receive
telCallbackNowMsg. Your tool should now call back Terminal B.

On some systems, a “call back on no answer” works as follows: First, the application on
Terminal A called the routine TELCallbackset, causing your tool to receive the message
telcallbackSetMsgq. Then, when the network switch notified Terminal B that a callback had
been set, your tool received the message TELCallbackNow, which the Telephone Manager relayed
to the application. Finally, the application called the routine TELcCallbackNow, causing your tool on
Terminal B to receive telcallbackNowMsg. Your tool on Terminal B should now call back
Terminal A.

telCallbackSetMsg

The Telephone Manager will send telcallbacksetMsg when an application requests that your
tool set a callback against the remote directory number specified in call appearance hca. When done,
your tool should return 0 if the request was handled.

hTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

hoN is a handle to a directory-number record associated with terminal hTEL.

nca is a handle to a call-appearance record on directory number hon.

msg identifies the message.

pl points to a 2-byte callback reference value. If the telephone network switch returns a
callback reference, you should return it in the field referenced by p1.

p2 and p3 are unused.

telCallPickupMsg

The Telephone Manager will send telcalipickupMsg when an application requests that your
tool pick up a call alerting either in a predefined pickup group (p2) or at a specified directory number
(p1). Your tool should support p1 or p2, depending on the kind of network switch your tool
supports.

hTEL is a handle to a telephone record for the user’s terminal.

PTELTerm points to a record of type TELTermRecord, part of the telephone record hrEL.

hon s a handle to a directory-number record associated with terminal nTEL.

120 Telephone Manager Developer's Guide

msg identifies the message.

pl points to a string of type str2ss that stores the remote directory number where the call
to be picked up is alerting.

p2 points to a string of type str2ss that stores a pickup group ID.

hca and p3 are unused.

When done, your tool should return 0 if the request was handled.

telCALookupMsg

Your tool will receive telcarookupMsg when the application wants to obtain a handle to the nth
call appearance of a specified type.

hTEL is a handle to a telephone record for the user’s terminal.

PTELTerm points to a record of type TELTermRecord, part of the telephone record hTEeL.

hoN is 2 handle to a directory-number record associated with terminal hTer.

hca is a handle to the call-appearance record for the nth call appearance of type p1.

msg identifies the message.

pl specifies the type of call appearance—internal only (0), external only (1), or all (2).

p2 is the index: it specifies the th call appearance. If telcountcasmsg returned the value 5,
then valid index values are 1, 2, 3, 4, 5, for identical values of p1 and p2.

p3 is unused.

When done, your tool should return 0 if the request was handled. If p2 is invalid, your tool
should return telBadindex.

If the index is valid, your tool should fill in the following fields: castate, intExt, callType,
dialType, bearerType, rate, confLimit, featureFlags, otherFeatures, and
telcaprivate. Your tool should not, however, fill in fields of type stringper. Such fields are
updated by the Telephone Manager when your tool sends telcaprogressMsg messages of type
telCAPUpdate and telcAProuted. Your tool should not change the value of caref, except as
warranted by error conditions.

For any error condition, the tool should place -1 in the caref field. In addition, if an invalid
index value was passed, the tool should return te1BadindexEerr. Or, if your tool does not support
the call-appearance type specified by p1, it should retumn telBadcaType or telIntExtNotSupp.

telCAMsgHandMsg

The Telephone Manager will send telcaMsgHandMsg each time an application requests that your
tool start sending messages on activity related to call appearances on a specified directory number.

hTEL is a handle to a telephone record for the user's terminal.

pTELTerm points to a record of type TELTermRecozd, part of the telephone record hTEL.

hoN is a handle to a directory-number record associated with terminal hTEL.

hca is unused.

msg identifies the message.

p1 is the mask of events for which the tool should send messages.

p2 is the address of the Telephone Manager's master call-appearance message handler.

p3 points to the globals required by the master message handler p2.

The Telephone Manager distributes each tool message to all application message handlers
registered for that type of message.

Chapter 4: Writing Your Tool's Main Code Resource

121

The message mask passed in p1 is a master mask. It is equal to the result of performing a
logical OR operation on the event masks of all registered call-appearance message handlers. Although
your tool can ignore the mask passed in p1, the Telephone Manager runs more efficiently if your
tool sends only the message types specified in this mask.

The sample code provides a basic template into which you can code your tool’s response t0
telCAMsgHandMsg. When done, your tool should return noErr if the request was handled.

FUNCTION myTELCAMsgHand(hDN : TELDNHandle; eventMask : LONGINT;
msgHandler: ProcPtr; globals: LONGINT) : INTEGER;

VAR
err H OSExr;
BEGIN
myTELCAMsgHand:= noErr;
{note that call-appearance message handlers are registered per directory number}
myDNPrivates”.caEventMask := eventMask;
myDNPrivates”.caMsgHandler := msgHandler;
myDNrivates".caGlobals := globals;
END;
telCloseTermMsg

The Telephone Manager will send telcloseTermMsg when an application requests that your tool
close the terminal drivers of the user's terminal. Your tool can update the fields of the telephone
record when handling this request, but should not disconnect any calls.

nTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

msg identifies the message.

hDON, hca, pl, p2,and p3 are unused.

The sample code provides a basic template into which you can code your tool's response to
telcloseTermMsg. When done, your tool should return 0 if the request was handled. When the
terminal is closed, you should also send a terminal message of type telTermCloseMsg. Your tool
should keepa usecount, incrementing it each time telopenTermmsg is received. If no one else is
using the driver, it can be closed.

If your tool encounters errors, it can send a generic telTermerrormsg and a specific
telTermotherMsg to aid in debugging. (For information about handling terminal messages, refer
to the sections “Handling Messages” and “Routines Your Application Must Provide” in Chapter 2.)

FUNCTION myTELCloseTerm(hTEL: TELHandle, pTELTerm: TELTermPtr)
VAR
err H OSErr;
BEGIN
myTELCloseTerm:= noErr;
myTermPrivates”.usecount := myTermPrivates”.usecount -1;
if (myTermPrivates”.usecount > 0)
BEGIN
myTELCloseTerm := telTermStillNeeded;
EXIT(myTELCloseTerm);
END;

122 Telephone Manager Developer’s Guide

myTermPrivates”.buffer”.csCode := CloseTerminal;
err := PBControl(€myTermPrivates”.buffer, FALSE);
if (err <> noErr)
myTELCloseTerm:= telBadTermErr;
END;

telClrCAMsgHandMsg

The Telephone Manager will send telclrcamsgrandMsg when an application requests that your
tool stop sending messages about call appearances for a particular directory number. This request
affects only the requesting application. Other applications using the Telephone Manager will
continue to receive messages about these call appearances.

hTEL is a handle to a telephone record for the user’s terminal.

PTELTerm points to a record of type TELTermRecord, part of the telephone record nrEeL.

hon is a handle to a directory-number record associated with terminal hTEeL.

msg identifies the message.

p1 is the new mask of events desired by the Telephone Manager. If there are no more call-
appearance message handlers for your tool, the event mask will be zero.

p2 is the address of the Telephone Manager's master call-appearance message handler. p2 may
equal zero if p1 equals zero.

hea and p3 are unused.

The sample code provides a basic template into which you can code your tool's response.to
telClrCAMsgHandMsg. When done, your tool should return 0 if the request was handled.

FUNCTION myTELClrCAMsgHand(hDN : TELDNHandle; eventMask : LONGINT;
msgHandler: ProcPtr) : INTEGER;
VAR
err g OSErr;
BEGIN
{This is where the tool updates its
private storage regarding which messages
to send--through eventMask--and how to
send them--through msgHandler }
myTELClrCAMsgHand:= 0;
myDNPrivates”.caEventMask := eventMask;
myDNPrivates”.caMsgHandler := msgHandler;
END;

telClrDNMsgHandMsg

The Telephone Manager will send telclrpNMsgHandMsg to your tool when an application
requests your tool to stop sending messages on activity related to this directory number. This
request affects only the requesting application. Other applications using the Telephone Manager
will continue to receive messages about this directory number.

hTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

hDN is a handle to a directory-number record associated with terminal hTEL.

msg identifies the message.

Chapter 4: Writing Your Tool's Main Code Resource

123

p1 is the new mask of events desired by the Telephone Manager. If there are no more
directory-number message handlers for your tool, the event mask will be zero.

p2 is the address of the master directory-number message handler. p2 can equal zero if p1
equals zero.

hca and p3 are unused.

The sample code provides a basic template into which you can code your tool's response to
telclrDNMsgHandMsg. When done, your tool should return 0 if the request was handled.

FUNCTION myTELClrDNMsgHand(hDN : TELHandle; eventMask : LONGINT;
msgHandler: ProcPtr) : INTEGER;

VAR
err : OSErr;
BEGIN
myTELClrDNMsqHand:= noErr;
myDNPrivates” .DNEventMask := eventMask;
myDNPrivates” .DNMsgHandler := msgHandler;
END;

telClrTermMsgHandMsg

The Telephone Manager will send telclrTermMsgHandMsg to your tool when the application
requests your tool to stop sending messages on activity related to this terminal. This request
affects only the requesting application. Other applications using the Telephone Manager will
continue to receive messages about the terminal.

hTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

msg identifies the message.

pl is the new mask of events desired by the Telephone Manager. If there are no more terminal
message handlers for your tool, the event mask will be zero.

p2 is the address of the master terminal message handler. p2 can equal zero if p1 equals zero.

hDN, hea, and p3 are unused.

The sample code provides a basic template into which you can code your tool's response to
telClrTermMsgHandMsg. When done, your tool should return 0 if the request was handled.

FUNCTION myTELClrTermMsgHand(hTEL : TELHandle; eventMask : LONGINT;
msgHandler: ProcPtr) : INTEGER;

VAR
err $ OSELES
BEGIN
myTELClrTermMsgHand:= 0;
myTermPrivates”.termEventMask := eventMask;
myTermPrivates”.termMsgHandler := msgHandler;
END;
telConfEstMsg

Your tool will receive telconfEstMsg when an application requests that one call appearance (hca)
be conferenced with another (p1).
hTEL is a handle to a telephone record for the user’s terminal.

124 Telephone Manager Developer's Guide

pTELTerm points to a record of type TELTermRecord, part of the telephone record hrEL.

how is 2 handle to a directory-number record associated with terminal hrer.

hea isa handle to a call-appearance record (for the conference intiator) on directory number hon.

msg identifies the message.

p1 isa handle to a second call-appearance record, for the call being added to the conference.

p2 and p3 are unused.

Your tool should check that this TELconfEstMsg message was preceded by the message
TELConfPrepMsg for call appearances hca and p1. If 5o, your tool can unite the two call
appearances in a conference. Otherwise, your tool can return an error message.

When done, your tool should return 0 if the request was handled. If hca1 was not properly
prepared, your tool should return telconfrej.

telConfPrepMsg

The Telephone Manager will send telconfprepMsg when your tool should prepare one call,
appearance to be conferenced with another specified by p1.

hTEL is a handle to a telephone record for the user’s terminal.

PTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

hon is a handle to a directory-number record associated with terminal hrEL.

hca is a handle to a call-appearance record (for the conference initiator) on directory number how.

msg identifies the message.

pl is a handle to a second call-appearance record, for the call being added to the conference.
(Your tool should previously have received the message TELSetupcallMsg to set up this call.)

p2 is the total number of calls that will make up an entire conference. If the network switch
requires that this number be sent explicitly, your tool should already have set the
numToConferenceRequired bitof the otherFeatures field in call-appearance record nca. If
the switch does not require this number, your tool should ignore p2.

p3 is unused.

If the second call appearance is not in an active state, the tool should proceed as with
TELConnectMsg to get the call appearance to an active state.

When done, your tool should return 0 if the request was handled.

telConfSplitMsg

Your tool will receive telconfsplitMsg when an application requests that a call appearance be
removed from a current conference. Your tool should not drop this call appearance, but should only
remove it from the conference, allowing it to exist on its own.

hTEL is a handle to a telephone record for the user’s terminal.

PTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

hoN s 2 handle to a directory-number record associated with terminal hTEL.

hca isa handle to a call-appearance record (for the call to be removed) on directory number how.

msg identifies the message.

pl, p2,and p3 areunused.

When done, your tool should return 0 if the request was handled.

Chapter 4: Writing Your Tool's Main Code Resource

125

telConnectMsg

Your tool will receive telconnectmsg when the application requests that a specified call
appearance proceed to an active state (telcAactivestate), if possible. Your tool should use the
information in call-appearance record hca to place the outgoing call.

hTEL is 2 handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hrEL.

hon is a handle to a directory-number record associated with terminal hTEL.

hca is a handle to a call-appearance record on directory number how.

msg identifies the message.

pl, p2,and p3 are unused.

Your tool must allow directory numbers that include the following characters: the digits 0
through 9, the number sign (#), the asterisk (*), the comma (,), and the exclamation point (). The
exclamation point should be treated as a flash-hook. All other characters should be ignored. For
example, your tool should dial the directory number 1 (408) 555-1212 as 4085551212.

If the destination directory number includes a comma, your tool should pause for one second
before dialing subsequent characters. An exclamation point in the destination directory number
signifies flashhook.

When done, your tool should return 0 if the request was handled.

telCountCAsMsg
Your tool will receive telcountcasmsg when the application inquires how many call appearances
are associated with a particular directory number. Your tool should count only call appearances
whose state is not telcaIdleState.

nTEL is a handle to a telephone record for the user's terminal.

PTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

now is a handle to a directory-number record associated with terminal hTEL.

msg identifies the message.

p1 specifies which call appearances should be counted—internal only (0), external only (1), or
all (2).

hca, p2,and p3 are unused.

When done, your tool should return 0 if the request was handled. If your tool does not support
the value of p1, it should return the result code telintExtNotSupp.

telCountDNsMsg

Your tool will receive telcountbNsMsg when the application inquires how many directory
numbers are associated with the user’s terminal.

hTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hrEL.

non is a handle to a directory-number record associated with terminal hTEL.

msg identifies the message.

pl specifies which directory numbers should be counted—internal only (0), external only (1), or
all).

126 Telephone Manager Developer's Guide

p2 specifies whether logical directory numbers are to be counted. If p2 equals zero, all
directory numbers (logical and physical) of type p1 should be counted. If p2 equals 1, only
physcial directory numbers of type p1 should be counted.

hDN, hca, and p3 are unused.

When done, your tool should return 0 if the request was handled. If your tool does not support
the value in p1, it should retum the result code telBadDNType.

telDeactivateMsg
Refer to the description of telactivatemsg.

telDeflectCallMsg

Your tool will receive telpefiectcalliMsg when the application requests that an incoming call
appearance on one directory number be deflected to another directory number. The state of the
incoming call appearance must be either telcaofferstate or telCAAlertingState.

hTEL is a handle to a telephone record for the user’s terminal.

PTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

hoN is a handle to a directory-number record associated with terminal hrEeL.

hca is a handle to a call-appearance record on directory number non.

msg identifies the message.

pl points to a string of type str255 storing the destination directory number, to which the
call appeamnce will be deflected.

p2 points to a string of type str255 storing the subaddress of the destination directory
number. If your tool does not support subaddressing, it should ignore pa2.

p3 points to a string of type str2ss5 storing the name of the party associated with directory
number pi.

Your tool should save the values of p1, p2,and, p3, and should pass them back in the
message telCADeflectMsg.

When done, your tool should return 0 if the request was handled.

If your telephone network switch does not support a Deflect feature, your tool can mimic this
feature by performing a blind transfer. To do so, your tool should first answer the call and then
immediately transfer it to directory number p1.

telDialDigitsMsg

The Telephone Manager will send telpialpigitsMsg when an application requests that your
tool transmit specified network characters over a call appearance. (For a list of valid network
characters, refer to the description of telconnectMsg.)

hTEL isa handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hrEL.

hoN is a handle to a directory-number record associated with terminal hTEL.

hca is a handle to a call-appearance record on directory number how.

msg identifies the message.

pl points to a string of type str25s storing the network characters to be transmitted.

p2 and p3 are unused.

When done, your tool should return 0 if the request was handled.

Chapter 4: Writing Your Tool's Main Code Resource

127

telDisposeMsg

Your tool will receive telpisposeMsg when an application requests that the Telephone Manager
dispose of the handle to a telephone record. Your tool cannot stop the Telephone Manager from
disposing of the handle, but should perform any necessary cleanup now.

/\ Important Unless your tool receives the message telDropMsg oOr
telDNSelectMsg, it should not drop a call appearance. Refer to the
descriptions of those messages for more information. A

hTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermrecord, part of the telephone record hTEL.
msg identifies the message.

hDN, hca, pl, p2,and p3 are unused.

When done, your tool should return 0 if the request was handled.

telDNDClearMsg

Your tool will receive telpnpclearMsg when an application requests that an active Do Not
Disturb feature be cleared on a specified directory number.

hTEL is a handle to a telephone record for the user's terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

non is a handle to a directory-number record associated with terminal hrer.

msg identifies the message.

p1 specifies the type of Do Not Disturb feature being cleared.

hca, p2,and p3 are unused.

When done, your tool should return 0 if the request was handled, or telpnprypenotsupp if it
does not support the value in p1.

telDNDisposeMsg

Your tool will receive telpnpisposeMsg when the application has requested that the Telephone
Manager dispose of a handle to a directory-number record. Your tool cannot stop the Telephone
Manager from disposing of the handle, but should perform any necessary cleanup now. Also at this
time, your tool should dispose of the string pointers rmtDN, rmtSubaddress, and
rmtPartyName, but no others.

A\ Important Unless your tool receives the message telDropMsg Of
telDNSelectMsg, it should not drop a call appearance. Refer to the
descriptions of those messages for more information. A

hTEL is a handle to a telephone record for the user’s terminal.
pTELTerm POints to a record of type TELTermRecord, part of the telephone record hTEL.
noN s a handle to a directory-number record associated with terminal hTEL.

128 Telephone Manager Developer's Guide

msg identifies the message.
hcA, pl, p2,and p3 are unused.
When done, your tool should return 0 if the request was handled.

telDNDSetMsg

The Telephone Manager will send telpnpsetMsg when your tool should set (activate) a specified
Do Not Disturb feature on a particular directory number.

hTeL is a handle to a telephone record for the user's terminal.

PTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

hoN is a handle to a directory-number record associated with terminal hTEL.

msg identifies the message.

p1 specifies the kind of Do Not Disturb feature to be set.

hca, p2,and p3 are unused.

When done, your tool should return 0 if the request was handled, or telpnprypeNotsupp if it
does not support the value in p1.

telDNEventsSuppMsg

The Telephone Manager will send telDNEventssuppMsg when an application inquires what type
of directory-number messages your tool supports.

hTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermrecord, part of the telephone record nTEL.

hoN s a handle to a directory-number record associated with terminal hTEL.

msg identifies the message.

pl points to a 4-byte mask of message types, to be filled in by your tool.

hDN, hCa, p2,and p3 are unused.

The sample code provides a basic template into which you can code your tool's response to
telDNEventsSuppMsg. When done, your tool should return 0 if the request was handled.

FUNCTION myTELDNEventsSupp (hDN : TELDNHandle; VAR eventMask : LONGINT) : INTEGER;
VAR

err : OSErr;
BEGIN

myTELDNEventsSupp:= 0;

{ somewhere earlier you did this...

myDNPrivates”.myDNMessagesSupported := telDNForwardMsg + DNDMsg;

+ etc }

eventMask := myDNPrivates”.myDNMessagesSupported;

END;

telDNLookupByIndexMsg
Your tool will receive telDNLookupByIndexMsg when the application requests a handle to the
nth directory number of the user’s terminal.
hTEL is a handle to a telephone record for the user’s terminal.
pTELTerm points to a record of type TELTermrecord, part of the telephone record hTEL.
hoN is a handle to a directory-number record associated with terminal hTEL.

Chapter 4: Writing Your Tool's Main Code Resource 129

msg identifies the message.

p1 specifies the type of directory numbers to be counted—internal only (0), external only (1), or
all (.

p2 specifies whether logical directory numbers are to be counted. If p2 is zero, directory
numbers, logical and physical, of type p1 are counted. If p2 is 1, only physical directory numbers
of type p1 are counted.

p3 is the index. It specifies the nth call directory number. If telcountpNsMsg returned the
value 5, then valid index values are 1, 2, 3, 4, 5, for identical values of p1 and p2.

If the index is valid, your tool should fill in the following fields referenced by hon: dn, dnRref,
dnPartyName, dnSubaddress, maxAllocCA, curAllocCA, dnType, featureFlags,
forwarddFlags, numPageIDs, numIntercomIDs, numPickuplDs, and telDNPrivate.

After setting the value of dnref, your tool should not change it. Also, your tool should not
update the fields relating to forwarding numbers, subaddresses, or party names. These fields are
updated each time the Telephone Manager receives the message telDNForwardMsg from your tool.

hca is unused.

When done, your tool should return 0 if the request was handled. If an invalid index value was
passed, the tool should retumn telBadIndexErr. If the tool does not support the dntype specified
by p1, it should retumn telpNTypeNotsupp. For any error condition, the tool should place -1 in the
dnref field of directory-number record how. The Telephone Manager will then dispose of how.

telDNLookupByNameMsg

Your tool will receive telDNLookupByNameMsg when the application requests a handle to the
directory number specified by name.

hTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

noN is a handle to a directory-number record associated with terminal hrEL.

msg identifies the message.

p1 points to a string of type str2ss storing the directory number to be looked up. If the
directory number is invalid, the tool should set the value in dnref to -1 and retum telBadDNErr.

If the value of p1 is valid, the tool should fill in the following fields referenced by hon: dn,
dnRef, dnPartyName, dnSubaddress, maxAllocCA, curAllocCA, dnType, featureFlags,
forwarddFlags, numPageIDs, numIntercomIDs, numPickupIDs, and telDNPrivate.

After setting the value of dnRef, your tool should not change it. Also, your tool should not update
the fields relating to forwarding numbers, subaddresses, or party names. These fields are updated each
time the Telephone Manager receives the message telDNForwardMsg from your tool.

hcA, p2,and p3 are unused.

When done, your tool should return 0 if the request was handled.

telDNMsgBRandMsg
The Telephone Manager will send telpnMsgHandMsg when an application requests that your tool
start sending messages on activity related to this directory number.
hTEL is a handle to a telephone record for the user’s terminal.
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.
hoN is a handle to a directory-number record associated with terminal hTEL.

130 Telephone Manager Developer's Guide

msg identifies the message.

pl stores the mask of events for which the tool should send messages.

p2 stores the address of the Telephone Manager's master directory-number message handler.

p3 stores the globals required by the Telephone Manager’s message handler.

hca is unused.

Please note that the address of the message handler installed by the application is not the same
one passed by the application when calling TELDNMsgHand. All tools send all messages to master
message handlers that are part of the Telephone Manager. The Telephone Manager takes your
message and distributes it to all message handlers that have registered for that message.

The message mask passed in p1 is a master mask. It is equal to the result of performing a
logical OR operation on the event masks of all registered directory-number message handlers.
Although your tool can ignore the mask passed in p1, the Telephone Manager runs more efficiently
if your tool sends only the message types specified in this mask.

The sample code shows a template into which you can code your tool's response to
telDNMsgHandMsg. When done, your tool should return 0 if the request was handled.

FUNCTION myTELDNMsgHand(hDN : TELDNHandle; eventMask : LONGINT;
msgHandler: ProcPtr; globals: LONGINT) : INTEGER;

VAR
err : OSErr;

BEGIN
myTELDNMsgHand:= noErr;
myDNPrivates”.dnEventMask := eventMask;
myDNPrivates”.dnMsgHandler := msgHandler;
myDNrivates”.dnGlobals := globals;

END;

telDNSelectMsg

The Telephone Manager will send telboNselectMsg when an application requests that your tool
select or deselect a particular directory number for use.

All tools should handle this message.

hTEL is a handle to a telephone record for the user's terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record nTEL.

hDN is a handle to a directory-number record associated with terminal hTEL.

msg identifies the message.

p1 specifies whether the directory number is to be selected or deselected. If p1 equals zero,
the directory number is deselected; if p1 equals 1, the number is selected.

hca, p2,and p3 are unused.

When done, your tool should return 0 if the request was handled.

Selecting a directory number is the programmatic equivalent of pushing a directory-number button
on a physical telephone set having multiple lines. If your tool receives a second or subsequent
telDNSelectMsg message for a different directory number, it should put on hold any call appearances
on the currently selected directory number and then select the new directory number.

Deselecting a directory number is the equivalent of dropping (hanging up) all call appearances on
that directory number. After deselecting a number, your tool should not automatically select
another number.

Chapter 4: Writing Your Tool's Main Code Resource

131

telDropMsg

Your tool will receive telpropMsg when an application requests that a call appearance be dropped
(hung up).

hTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermrecord, part of the telephone record hTEL.

hDN s a handle to a directory-number record associated with terminal hTEL.

hea is a handle to a call-appearance record on directory number how.

msg identifies the message.

pl points to a string of type str25s storing any user-to-user information to be passed at
the time of the drop. If your tool does not support user-to-user information, this field should be
ignored.

p2 and p3 are unused.

When done, your tool should return 0 if the request was handled.

telEventMsg

The Telephone Manager will pass telEventMsg to your tool when an event occurs in a window
associated with the telephone tool. The sample code shows a template into which you can code
your tool's response to telEventMsg.

hTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

msg identifies the message.

pl points to the event record.

hDN, hca, p2,and p3 are unused.

The reference constant field of the window record will contain the handle to the telephone
record.
PROCEDURE myEvent (hTEL : TELHandle; theEvent : EventRecord);

CONST
CancelButton = 2;

VAR
theDialog : DialogPtr;
theItem H INTEGER; ,
BEGIN
{ Check if it is a dialog-related event }
if IsDialogEvent(theEvent) then
begin
{ get the item hit }
if DialogSelect(theEvent,theDialog,theltem) then
begin
if theItem = CancelButton then
{ Cancel the connection }
end;
end
alse
{ Handle the keyDown, updateEvt, mouseDown and any other event here }
END;

132 Telephone Manager Developer's Guide

telForwardClearMsg

Your tool will receive telrorwardclearMsg when the application requests that a particular
Forward feature be cleared on a specified directory number.

hTEL is a handle to a telephone record for the user's terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hrEL.

hoN is a handle to a directory-number record associated with terminal hTEL.

mag identifies the message.

p2 is an integer specifying the type of forwarding to be cleared—for instance, Forward On No
Answer.

hca, pl, and p3 are unused.

When done, your tool should return 0 if the request was handled, or telFwdTypeNotsupp fif it
does not support the value in p2. Your tool should not clear the strings referenced by directory-
number record hon. The Telephone Manager clears these.

telForwardSetMsg
Your tool will receive telForwardsetMsg when an application requests that a specified directory
number be forwarded to another number.
nTEL is a handle to a telephone record for the user’s terminal.
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.
noN is a handle to a directory-number record associated with terminal nrTEL.
msg identifies the message.
pl points to the following parameter block:

TELForwardPB = RECORD
forwardDN : StringPtr;
forwardPartyName 3 StringPtr;
forwardSubaddress g StringPtr;
forwardType R INTEGER;
numRings 3 INTEGER;
END;

In this block, forwardpn is the directory number to which calls will be forwarded.
forwardpartyName is the name of the party associated with forwardpn. forwardsubaddress
is the subaddress associated with forwardpN. forwardType is the type forwarding requested—
for example, Forward On No Answer. numRings isused only if forwardType specifies Forward
On No Answer, it is the number of times the telephone should ring before fowarding occurs.

hca, p2, and p3 are unused.

When done, your tool should return 0 if the request was handled, or telFwdTypeNotsupp if
your tool does not support the value in forwardrype. Your tool should not update the fields in
non that relate to forwarding. These fields are updated each time the Telephone Manager receives
the message telDNForwardMsg from your tool.

telGetCAFlagsMsg

The Telephone Manager will send telGetcarlagsMsg when an application requests that your
tool update the fields featurerlags and otherFeatures in a specified call-appearance record
and that your tool return the updated values of those fields.

Chapter 4: Writing Your Tool's Main Code Resource

133

hTEL is a handle to a telephone record for the user’s terminal.

pTELTerm pOints to a record of type TELTermRecord, part of the telephone record hTEL.

noN is a handle to a directory-number record associated with terminal hrEeL.

hca is a handle to a call-appearance record on directory number now. This is the call appearance
whose featureFlags and otherFeatures fields are to be updated.

msq identifies the message.

pl points to a 4-byte field that stores the updated value of the featurerlags field of call-
appearance record hca. Your tool should update this field.

p2 points to a 4-byte field that stores the updated value of the otherFeatures field of call-
appearance record hca. Your tool should update this field.

p3 is unused.

When done, your tool should return 0 if the request was handled. If call-appearance record hca
is invalid, your tool should return telBadCaErr.

telGetCAInfoMsg

The Telephone Manager will send telcetcaIinfoMsg when an application requests that your tool
update the values in a specified call-appearance record.

hTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record htEeL.

how s 4 handle to a directory-number record associated with terminal hTEL.

hea s a handle to a call-appearance record on directory number how.

msg identifies the message.

pl, p2,and p3 are unused.

Your tool should update the following fields: castate, intExt, callType, dialType,
bearerType,rate,confLimit,featureFlags,otherFeatures,and telCAPrivate.

Your tool should keep the information for each call-appearance record in the tool’s private
storage. By doing so, your tool maintains information about the call appearance. Your tool should
update the call-appearance record only at the application’s request.

The sample code provides a basic template into which you can code your tool's response to
telGetCAInfoMsg. When done, your tool should return 0 if the request was handled. If the call
appearance has become idle, the tool should put-1inthe caret field of call-appearance record
hca and return telBadCAErr.

PROCEDURE myTELGetCAInfo(hCA: TELCAHandle)

BEGIN
WITH cH"" DO
BEGIN
caRef := myCAprivates”.reference;
featureFlags := conferenceSub + transferSub + holdSub;
otherFeatures := whatever;
{ tool should also fill in }
END;
END;

134 Telephone Manager Developer's Guide

telGetCAStateMsg

The Telephone Manager will send telGetcastateMsg when an application requests that your
tool update the castate field in a specified call-appearance record and return the updated value of
that field.

hTEL is a handle to a telephone record for the user’s terminal.

PTELTerm points to a record of type TELTermRecord, part of the telephone record hrEeL.

how s a handle to a directory-number record associated with terminal hTEL.

hca is a handle to a call-appearance record on directory number how.

msg identifies the message.

pl points to a 2-byte field that stores the updated value of the castate field of call-
appearance record hca. Your tool should update this field.

p2 and p3 are unused.

A tool should update the castate field of call-appearance record nhca only at the
application’s request.

The sample code provides a basic template into which you can code your tool’s response to
telGetCAStateMsg. When done, your tool should return 0 if the request was handled. If the hca
references an idle call appearance, the caref should be setto-1and retumn telBadcakrr.

PROCEDURE myTELGetCAState(hCA: TELCAHandle; VAR pl: INTEGER)

BEGIN
hCA"“.caState := myprivates”.lateststate;
pl := myprivates”.lateststate;

END;

telGetDisplayMsg
Your tool will receive telGetpisplayMsg when an application requests the current display text
of the terminal.

hTEL isa handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

msg identifies the message.

pl is the index. It specifies which item of the display is to be retrieved.

p2_is a pointer to a text string allocated by your tool.

p3 is a pointer to a 2-byte value that is the display mode. Your tool should set p3 to the
current display mode.

hoN and hca are unused.

When done, your tool should return 0 if the request was handled, or telindexnotsupp if
your tool does not support the value in p1.

telGetDNFlagsMsg
The Telephone Manager will send telgetDNFlagsMsg when an application requests that your
tool update the fields featureFlags and forwardrlags in a specified directory-number record
and that your tool return the updated values of those fields.

hTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

Chapter 4: Writing Your Tool's Main Code Resource

135

hon is a handle to a directory-number record associated with terminal ntew. This is the
directory-number record whose featurerlags and forwardrlags fields are to be updated.

msg identifies the message.

pl points to a 4-byte field that stores the updated value of the featurerlags field of
directory-number record hon. Your tool should update this field.

p2 points to a 4-byte field that stores the updated value of the forwardriags field of
directory-number record hon. Your tool should update this field.

hca and p3 are unused.

When done, your tool should return 0 if the request was handled. If directory-number record
noN s invalid, your tool should return telBadDNErr.

telGetDNInfoMsg

The Telephone Manager will send telGetpNInfoMsg when an application requests that your tool
update the values in the record referenced by now.

hTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hreL.

hoN is a handle to a directory-number record associated with terminal hTEL.

msg identifies the message.

hca, pl, p2,and p3 are unused.

Your tool should fill in the following fields referenced by hon: dn, dnref, dnPartyName,
dnSubaddress, maxAllocCA, curAllocCA, dnType, featureFlags, forwarddFlags,
numPageIDs,numIntercomIDs,numPickupIDs,and telDNPrivate.

Your tool should keep the information for each directory-number record in the tool's private
storage. By doing so, your tool maintains information about the directory number. Your tool
should update the directory-number record only at the application’s request.

The sample code provides a basic template into which you can code your tool's response to
telGetDNInfoMsg. When done, your tool should return 0 if the request was handled. If the
directory number is invalid, the tool should set the dnref field to -1 and return telBadDNErE.

PROCEDURE myTELGetDNInfo(hDN: TELDNHandle)

BEGIN
WITH hDN"" DO
BEGIN
dnRef := myDNprivates”.reference;
directory number := myDNprivates”.dnName;
featureFlags := dndSub + intercomSub + dnSelectSub;
forwardFlags := immediateForwardSub + busyForwardSub;
{ tool should also fill in partyName, maxAllocCA, curAllocCAa,
dnType, numPagelIDs, numIntercomIDs }
END;
END;

136 Telephone Manager Developer’s Guide

telGetHookswMsg

Your tool will receive telGetsookswMsg when an application inquires about the current physical
hook state of a device attached to the terminal managed by your tool.

hTEL is a handle to a telephone record for the user's terminal.

PTELTerm points to a record of type TELTermRecord, part of the telephone record hrEL.

msg identifies the message.

p1 is the hookswitch type.

p2 is pointer to a Boolean variable that specifies whether the device is on- or off-hook. Your
tool updates this value.

hDN, hca, and p3 are unused.

p1 specifies the device. You should retumn the state in the field referenced by pa2.

When done, your tool should return 0 if the request was handled.

telGetInfoMsg

The Telephone Manager will send telcetInfoMsg when an application requests that your tool
update the values in the record referenced by hreL.

hTEL isa handle to a telephone record for the user’s terminal.

PTELTerm points to a record of type TELTermRecord, part of the telephone record hrEeL.

msq identifies the message.

hDN, hcCA, pl, p2,and p3 are unused.

Your tool should fill in the field telprivate and all the fields of pTELTerm.

Your tool should keep the information for each telephone record in the tool's private storage,
and should update the record only at the application’s request.

The sample code provides a basic template into which you can code your tool’s response to
telGetInfoMsg. When done, your tool should return 0 if the request was handled. If the handle
references an invalid terminal, the tool should set the tre¢ field to -1 and return
telBadTermErr

PROCEDURE myTELGetInfo(hTEL: TELHandle, pTELTerm: TELTermPtr)

BEGIN
th”~.version := curTELVersion;
{ other fields are all filled in by Telephone Manager or app! }
{ but there's some stuff to fill in the TELTermRecord }
WITH pTELTerm” DO
BEGIN
tRef := slotnum;
featureFlags := hasHandset + hasRinger + canOnHkDial;
handsetSpeakerVol := myHandsetVolMax;
ringerVol := myRingerVolMax;
numDNs := myDNsConfigured:
{ etc., etc. }
END;
END;

Chapter 4: Writing Your Tool's Main Code Resource

137

telGetVolumeMsg

The Telephone Manager will send telGetvolumeMsg when an application inquires the current
volume setting of a device attached to the terminal managed by your tool.

hTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

msg identifies the message.

p1 is the volume type.

p2 points to a 2-byte field that specifies the current volume level. Your tool updates this value.

p3 points to a 2-byte field that specifies the current state of the device. Your tool updates this
value.

hoN and hca are unused.

Your tool should check the value of p1. If the value is supported, your tool should place the
volume level in the field referenced by p2 and place the device state in the field referenced by p3.

When done, your tool should return 0 if the request was handled, or telvolTypeNotsupp if
your tool does not support the value in p1.

telHoldMsg

Your tool will receive telnoldMsg when the application requests that a specified call appearance
(hca) be put on hold.

nTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

hon is a handle to a directory-number record associated with terminal hTEL.

hca is a handle to a call-appearance record on directory number how.

msg identifies the message.

pl, p2,and p3 are unused.

When done, your tool should return 0 if the request was handled.

telIdleMsg
The Telephone Manager will send tel1dlemsg when an application is giving your tool time to do
idle processing. This time should be used to check on the progress of current calls and to check for
the presence of new incoming calls. If progress occurs or calls come in, messages should be sent to
the master message handler of the Telephone Manager.

nTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEeL.

msg identifies the message.

hDN, hCA, pl, p2,and p3 are unused.

When done your tool should return 0 or, if it detects a problem, the message
telTermErrorMsg.

tellIntercomMsg

Your tool will receive telIintercomMsg when the application requests that an intercom function
be activated.
hTEL is a handle to a telephone record for the user’s terminal.

138 Telephone Manager Developer's Guide

PTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

how is a handle to a directory-number record associated with terminal hTEL.

hca is a handle to a call-appearance record on directory number now.

msg identifies the message.

pl is an intercom ID that specifies which intercom function the tool should activate. (The
application is responsible for labeling the intercom keys.)

p2 and p3 are unused.

If your tool supports multiple intercom functions, you should specify how many in the
numIntercomIDs field of directory-number record how.

When done, your tool should return 0 if the request was handled. If your tool requires an
intercom ID and the value in p1 is invalid, your tool should retumn telBadintercomip.

telMenuMsg

Your tool will receive telmenuMsg when a menu event has occurred in the application.

hTEL is a handle to a telephone record for the user’s terminal,

PTELTerm points to a record of type TELTermRecord, part of the telephone record hrEeL.

msg identifies the message.

pl contains the menu ID.

p2 contains the menu item.

hDN, hca,and p3 are unused.

The sample code provides a basic template into which you can code your tool’s response to
telMenuMsg. When done, your tool should return 0 if the menu event was not handled, and 1 if it
was.

FUNCTION myMenu(hTEL : TELHandle; mID : INTEGER; mItem: INTEGER) : LONGINT;
BEGIN
myMenu := 0;
{ if mine then
begin
myMenu := 1;
Process the menu command.
end;

END;

telNewMsg

Your tool will receive telnewMsg when the application requests that the Telephone Manager
create a new telephone record.

hTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

msg identifies the message.

pl is the tool ID, a unique identifier that the Telephone Manager assigns to your tool. Your
tool should pass the tool ID when sending messages to the Telephone Manager.

hDN, hCA, p2,and p3 are unused.

Chapter 4: Writing Your Tool's Main Code Resource

139

Your tool should fill in any fields that it can in the telephone record specified by hreL and
pTELTerm. Your tool may need to open the terminal driver now, before receiving the message
telOpenTermMsg, to get the configuration information needed to fill in the telephone record.

When done, your tool should return 0 if the request was handled.

It is possible to receive telNewMsg more than once—for instance, if more than one
application is using the Telephone Manager. As a convenience, in all telNewMsg messages except
the first, the Telephone Manager places a pointer to your tool's private storage in the telPrivate
field of telephone record hTeL. But in the first telNewMsg message, telPrivate equals zero.

Thus, instead of initializing private storage for each telNewMsg message, your tool can,
optionally, check the telrrivate field and initialize the private storage only if telprivate
equals zero.

telOpenTermMsg

The Telephone Manager will send telopenTermMsg when an application requests that your tool
open any underlying terminal drivers and ready the terminal for use.

hTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

msg identifies the message.

hDN, hCA, pl, p2,and p3 are unused.

Your tool can update the information in pTELTerm at this time if any values have changed.

The sample code provides a basic template into which you can code your tool’s response to
telopenTermMsg. When done, your tool should return 0 if the request was handled. Also, when
the terminal is open, your tool should send terminal messages of type telTermopenMsg and
telTermEnableMsgq, and should increment a use-count variable for the terminal.

If you encounter errors, you may choose to send a generic telTermErrorMsg and a specific
telTermOtherMsg to aid in debugging. (For information about handling terminal messages, refer
to the sections “Handling Messages” and “Routines Your Application Must Provide” in Chapter 2.)

PROCEDURE myTELOpenTerm(hTEL: TELHandle, pTELTerm: TELTermPtr)
VAR
err : OSErr;
BEGIN
myTELOpenTerm := noErr;
err := OpenDriver(".COOLPHONE", @myTermPrivates”.driverRefNum);
if (err <> noErr)
BEGIN
myTELOpenTerm := telBadTermErr;
myTermPrivates”.usecount := myTermPrivates”.usecount + 1;
END;
END;

telOtherFeatImplMsg
Your tool will receive telotherFeatImplMsg when an application requests that a feature
returned by a callto TELOtherFeatureList isto be executed.

hTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hrEL.

140 Telephone Manager Developer's Guide

msg identifies the message.

pl is a handle to the Telephone Manager data structure (for instance, a call-appearance retord)
needed to implement the feature. Your tool should check that p1 is a valid handle.

p2 is the feature ID of the requested feature.

hDN, hcA and p3 are unused.

When done, your tool should return 0 if the request was handled. Because the requested feature
is specific to your tool, your tool is responsible for all processing of the request. If an error occurs,
your tool should return a Telephone Manager result code.

telOtherFeatListMsg

The Telephone Manager will send telotherFeatListMsg when the application requests a list of
the features supported by your tool but for which there is no specific Telephone Manager message.
Your tool should provide the list as a linked list of type Featureristptr. The application can then
display the list items to the user.

hTEL isa handle to a telephone record for the user's terminal.

PTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

msg identifies the message.

pl is pointer of type FeatureListPtr. It points to a list of features.

hDN, hca, p2,and p3 are unused.

The features in the list should be simple ones that require only a feature descriptor and a handle
to a telephone record, directory-number record, or call-appearance record .

The advantage of this message over telotherFunctionMsg is that any application can
display your tool's supplementary features.

When done, your tool should return 0 if the request was handled. If an error occurs, your tool
should return a Telephone Manager result code.

telOtherFunctionMsg

The Telephone Manager will send telotherFunctionMsg when the application requests that a
tool-specific feature be invoked.

hTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

msg identifies the message.

pl isa pointerto a parameter block.

p2 is the size of the parameter block (in bytes).

hDN, hca,and p3 are unused.

Note that you must document the parameter block passed in p1 and the value passed in p2,
as well as any result codes.

When done, your tool should return 0 if the request was handled.

telPagingMsg
Your tool will receive telPagingMsg when the application requests that a paging function be
activated.

hTEL isa handle to a telephone record for the user’s terminal.

Chapter 4: Writing Your Tool's Main Code Resource

141

pTELTerm points to a record of type TELTermRecord, part of the telephone record hrEL.

non is a handle to a directory-number record associated with terminal hTEL.

hca is a handle to a call-appearance record on directory number hox.

msg identifies the message.

p1 specifies which page ID the tool should implement. (The application is responsible for
labeling the paging keys.)

p2 and p3 are unused.

If your tool supports multiple page functions, it should specify how many such functions in
the numpage1ps field of the directory-number record hon.

When done, your tool should return 0 if the request was handled. If the application specified an
invalid page ID, your tool should return telBsadpagern.

telParkCallMsg

Your tool will receive telrparkcallMsg when the application requests that a specified call
appearance be parked.

hTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

how is a handle to a directory-number record associated with terminal hreL.

hca is a handle to the active call appearance that will be parked.

msg identifies the message.

pl points to a string of type str2ss; it stores the ID used to park the call. This value is filled
in by your tool.

p2 points to a string of type str2ss; it stores the directory number at which the call will be
parked.

p3 isunused.

When done, your tool should return 0 if the request was handled.

The Telephone Manager supports two types of parking. In the first, the application provides a
park ID, usually a directory number, in p2; and the call is parked with that ID. The application can
then retrieve the call from that directory number by means of the Telephone Manager routine
TELRetrieveParkedCall. When using this method, the tool should set the parkwithip bitin
the call-appearance record hca.

In the second method, your tool parks the call and returns parkretrieve1n. The application
can then use the parkretrieveID (o retrieve the call from any telephone connected to the
network switch. When using this method, the tool should set the parkretrievewithip bitin
the otherFeatures field of the call-appearance record.

In the third method, botha parkip anda parkretrieveId are required. Typically, the user
must enter a one- to four-digit code (the park1p) and retrieve it with the same ID.

telRejectCallMsg
Your tool will receive telRejectcallMsg when an application requests that your tool reject a
specified call appearance. This call appearance must be in either the state telcAalertingState or
telCAOfferState.

hTEL is a handle to a telephone record for the user’s terminal.

pTELTesrm points to a record of type TELTermRecozd, part of the telephone record hrEL,

142 Telephone Manager Developer's Guide

hDN s a handle to a directory-number record associated with terminal hTEL.

hcA isa handle to a call-appearance record on directory number hoN. In this call-appearance
record, your tool should set the rejectable bit if it can reject calls.

msg identifies the message.

pl, p2,and p3 are unused.

When done, your tool should return 0 if the request was handled. If the call appearance is not in
an alerting state, your tool should not reject the call, but instead should return the result code
telCANotRejectable.

telResetTermMsg

The Telephone Manager will send telResetTermMsg when an application requests that your tool
reset (close and then open) any underlying terminal drivers. When handling this request, your tool
can, optionally, soft-boot any underlying hardware. Your tool can also update the information in
the telephone record if any values have changed.

hTEL is a handle to a telephone record for the user’s terminal.

PTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

msg identifies the message.

hDN, hCA, pl, p2,and p3 are unused.

By handling this request, your tool should clear the state of the terminal, its directory numbers,
and their call appearances. ;

The sample code provides a basic template into which you can code your tool's response to
telResetTermMsg. When done, your tool should return 0 if the request was handled. When the
terminal is reset, your tool should also send a terminal message of type telTermresetMsg.

If you encounter errors, you may choose to send a generic telTermErrorMsg and a specific
telTermOtherMsg to aid in debugging. (For information about handling terminal messages, refer
to the sections “Handling Messages” and “Routines Your Application Must Provide” in Chapter 2.)
FUNCTION myTELResetTerm(hTEL: TELHandle, pTELTerm: TELTermPtr)

VAR
err H OSErr;
BEGIN
myTELRegsetTerm := noErr;
myTermPrivates” .buffer.csCode := ResetTerminal;
err := PBControl(@myTermPrivates”.buffer, FALSE);
if (err <> noErr)
myTELResetTerm := telBadTermErr;
END;

telResumeMsg
Refer to the description of telsuspendMsg.

telRetrieveMsg

Your tool will receive telRetrieveMsg when the application requests that the state of a
specified call appearance be changed from held to active.
hTEL isa handle to a telephone record for the user's terminal.

Chapter 4: Writing Your Tool's Main Code Resource

143

pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.
noN is a handle to a directory-number record associated with terminal hTEL.

hea is a handle to a call-appearance record on directory number hon.

msg identifies the message.

pl, p2,and p3 are unused.

When done, your tool should return 0 if the request was handled.

telRetrieveParkedCallMsg

The Telephone Manager will send telretrieveparkedcallmsg when an application requests
that your tool retrieve a parked call. When an application calls the Telephone Manager routine
TELRetrieveParkedCall, the Telephone Manager sends telsetupcallMsg to your tool before
sending telRetrieveParkedCallMsg.

hTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

hoN is a handle to a directory-number record associated with terminal hTEL.

msg identifies the message.

pl points to a string of type str255 storing a parkretrieve1. If your tool requires a
parkRetrieveID, it should set the parkretrievelp bit of the otherFeatures field in the
call-appearance record. Otherwise, your tool should ignore p1.

hca, p2,and p3 are unused.

When done, your tool should return 0 if the request was handled.

telSetDisplayMsg
Your tool will receive telsetpisplayMsg when an application requests that the display of the
user's terminal be set.

hTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hrEL.

msg identifies the message.

p1 is the index; it specifies which item of the display will be set.

p2 is a pointer to a string of type str2s5 that contains the new text.

p3 is the display mode to be set.

hoN and hca are unused.

When done, your tool should return 0 if the request was handled. When the display changes,
your tool should send a terminal message of type telTermpisplayMsg. If your tool does not
support the value in p1, it should return telindexNotsupp. If your tool does not support the
value in p3, it should return telbisplayModeNotSupp.

telSsetHookswMsg
The Telephone Manager will send telsetHookswMsg when an application wants to set the
physical hook state of a device attached to the user’s terminal.
hTEL is a handle to a telephone record for the user’s terminal.
pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.
msg identifies the message.

144 Telephone Manager Developer's Guide

pl is the device type.

p2 specifies the desired hook state as telbeviceontook (on-hook)or telbeviceoffHook
(off-hook).

hDN, hCA,and p3 are unused.

When done, your tool should return 0 if the request was handled. When the hook state changes,
your tool should send a terminal message of type telTermHookswMsg. If your tool does not
support the value in p1, it should retumn teluTypeNotsupp.

Your tool can support telsetHookswMsg only if it can change the physical status of the
specified device (for instance, if it can tum on a speakerphone).

telSetupCallMsg

The Telephone Manager will send telsetupcallMsg when an application requests that your tool
set up a call appearance for later use.

hTEL is a handle to a telephone record for the user’s terminal.

PTELTerm points to a record of type TELTermRecord, part of the telephone record hrEL.

hDN is a handle to a directory-number record associated with terminal hTEL.

hcA is a handle to a call-appearance record on directory number how. In this record, the
destination directory number, name, and subaddress have been filled in by the Telephone Manager.
Your tool should fill in the following fields: castate, intExt, callType, dialType,
bearerType, rate, confLimit, featureFlags, otherFeatures,and telCAPrivate.

msg identifies the message.

pl is a pointer to any user-to-user information. If your tool does not support user-to-user
information, it should ignore this field.

p2 is the bearer type.

p3 is the rate. If your tool is using version 1.0 of the Telephone Manager, it must set the bearer
type and the rate to zero.

When done, your tool should return 0 if the request was handled. If any error occurs, your tool
should place -1 in the caref field of call-appearance record hca, to make the Telephone Manager
dispose of hca.

telSetVolumeMsg

The Telephone Manager will send telsetvolumeMsg when an application wants to set the
volume of a device attached to the user’s terminal. Your tool can support telsetvolumeMsg only
if it can change the physical volume setting of the specified device.

hTEL is a handle to a telephone record for the user's terminal.

PTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

msg identifies the message.

pl is the volume type (handset volume, ringer volume, and so on).

p2 points to a 2-byte field storing the desired volume level. If this level is outside the range your
tool allows, your tool should store your tool’s maximum volume level in the field referenced by p2.

p3 is the desired state.

hDN and hcA are unused.

When done, your tool should retum 0 if the request was handled. If your tool does not support
the value in pl, it should return telvTypeNotSupp.

Chapter 4: Writing Your Tool's Main Code Resource

145

telSuspendMsg

The Telephone Manager will pass telSuspendMsg Of telResumeMsg When an application
requires your tool to perform an action, such as installing or removing a menu from the menu bar in
response to a suspend or resume event.

telTermEventsSuppMsg

The Telephone Manager will send telTermeventssuppMsg when an application inquires what
type of terminal messages your tool supports.

hTEL is 2 handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

msg identifies the message.

pl points to a field containing a 4-byte mask, to be filled in by your tool. This mask indicates
which types of terminal messages your tool supports.

hDN, hcA, p2,and p3 are unused.

The sample code provides a basic template into which you can code your tool's response to
telTermEventsSuppMsg. When done, your tool should return 0 if the request was handled.

FUNCTION myTELTermEventsSupp (hTEL : TELHandle; VAR eventMask : LONGINT) : INTEGER;
VAR
err : OSErr;
BEGIN
myTELTermEventsSupp:= noErr;
{ somewhere earlier you did this...
myTermPrivates”.myTermMessagesSupported := telTermHookMsg + telTermVolMsg +
telTermOpenMsg + etc. }
END;

telTermMsgHandMsg

The Telephone Manager will send telTermMsgHandMsg when an application requests that your
tool start sending messages about activity related to this terminal.

hTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hrEL.

msg identifies the message.

p1 is the mask of events for which the tool should send messages. This is a master mask equal
to the result of performing a logical OR operation on all event masks for registered terminal
message handlers.

p2 is the address of the Telephone Manager's master terminal message handler.

p3 specifies the globals required by the Telephone Manager's message handler.

hon and hca are unused.

The sample code provides a basic template into which you can code your tool's response to
telTermMsgHandMsg. When done, your tool should return noErr if the request was handled.

FUNCTION myTELTermMsgHand(hTEL : TELHandle; eventMask : LONGINT;

msgHandler: ProcPtr; globals: LONGINT) : INTEGER;
VAR

err : OSErr;

146 Telephone Manager Developer's Guide

BEGIN
myTELTermMsgHand:= noErr;
myTermPrivates”.termEventMask := eventMask;
myTermPrivates”.termMsgHandler := msgHandler;
myTermPrivates”.termGlobals := globals:

END;

telToolFunctionsMsg

The Telephone Manager will send telToolFunctionsMsg when an application inquires whether
your tool supports a specified Telephone Manager message.

hTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

msg identifies this message (te1ToolFunctionsMsg).

pl specifies the Telephone Manager message about which the application is inquiring.

p2 points to a Boolean field that specifies whether your tool supports the Telephone Manager
message specified in p1. This Boolean field should be set to TRUE if your tool supports the
message, or FALSE if it does not.

hDN, hca,and p3 are unused.

When done, your tool should return 0 if the request was handled.

telTransfBlindMsg

Your tool will receive TELTransferBlind when an application requests that a call appearance be
transferred immediately (without consultation) to a specified directory number.

hTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

hDN is a handle to a directory-number record associated with terminal hTEL.

hca is a handle to a call-appearance record on directory number hbn.

msg identifies the message.

pl points to a string of type str255 storing the directory number to which the call will be
transferred.

p2 points to a string of type str255 storing the subaddress, if any, of directory number p1.
Unless your tool supports subaddressing, it should ignore p2.

p3 points to a string of type str255 storing the name of the party associated with directory
number p1.

Your tool should save the value of p1, p2,and p3, and send them in the message
telCATransferMsg.

When done, your tool should return 0 if the request was handled.

telTransfEstMsg
Your tool will receive telTransfEstMsg when an application requests that one call appearance
(hca) be transferred to a second call appearance (p1). The user will have consulted with the party at
p1l. At this time, your tool should transfer hca to p1.

hTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

Chapter 4: Writing Your Tool's Main Code Resource

147

hoN is a handle to a directory-number record associated with terminal hreL.

nca is a handle to a call-appearance record on directory number hon. This is the call appearance
for the person being transferred.

msg identifies the message.

pl isa handle to a second call-appearance record . (The application should have already prepared
call appearance hca by calling the Telephone Manager routine TELTransferPrep.) This is the call
appearance for the person to whom call appearance nca is being transferred.

p2 and p3 are unused.

When done, your tool should return 0 if the request was handled.

telTransfPrepMsg
Your tool will receive telTransfPrepMsg when an application requests that an active call
appearance be prepared for transfer to a second call appearance.

hTEL is a handle to a telephone record for the user’s terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

how s a handle to a directory-number record associated with terminal hTEL.

nca is a handle to a call-appearance record for an active call on directory number how. This the
call appearance to be transferred.

msg identifies the message.

pl is a handle to a second call-appearance record . (This call appearance was set up earlier, when
the application called the Telephone Manager routine TELSetupcall.)
" p2 and p3 are unused.

If the second call appearance is idle, your tool should proceed as with TELConnectMsg, to
make that call appearance active. The user can then consult with the party associated with p1.

When done, your tool should return 0 if the request was handled.

telVvoiceMailAccessMsg

Your tool will receive telvoiceMailaccessMsg when an application requests that your tool
access the voice-mail system of the telephone network switch.

hTEL is a handle to a telephone record for the user's terminal.

pTELTerm points to a record of type TELTermRecord, part of the telephone record hTEL.

hoN is 2 handle to a directory-number record associated with terminal hTEL.

nca s a handle to a call-appearance record on directory number hox.

meg identifies the message.

pl, p2,and p3 are unused.

When done, your tool should return 0 if the request was handled.

148 Telephone Manager Developer's Guide

Messages that the main code resource sends

Telephone tools, like other tools of the Communications Toolbox, accept messages from their
corresponding manager, the Telephone Manager. In addition, telephone tools send messages to the
Telephone Manager. Specifically, the main code resoutce of your tool should send messages to the
master message handlers of the Telephone Manager. This section describes each of the messages
that your tool can send.

/A Important Your tool sends messages by calling the master message handlers of the
Telephone Manager. They, in turn, relay your information to application
message handlers. (For descriptions of the messages that applications
receive from the Telephone Manager, refer to Appendix B) A

The Telephone Manager maintains three master message handlers, one each for the main
messsage types your tool can send: terminal messages, directory-number messages, and call-
appearance messages. Before sending messages of a particular type, your tool must receive from
the Telephone Manager a message that contains a procedure pointer to the master message handler
for that type. For terminal messages, your tool must receive telTermMsgHandMsg; for directory-
number messages, telDNMsgHandMsg; and for call-appearance messages, telcaMsgHandMsg.
Each time the Telephone Manager sends one of these messages, your tool should save the
procedure pointer contained in the message. In addition, your tool should save the event mask and
the pointer to the Telephone Manager globals, also contained in the message. Your tool should send
only messages whose types match those specified in the event mask. '

To send a message of a particular type, your tool should call the corresponding master message
handler. For example, to send a directory-number message, your tool should call the directory-
number master message handler. When calling any master message handler, your tool must pass a
pointer to a parameter block, which differs depending on the type of message being sent. This
parameter block is described later in this chapter.

The messages that can be sent by the main code resource, and their associated values, are as
follows:

CONST
telCAActiveMsg = 500000020
telCAAlertingMsg = $00000001
telCACallbackMsg = $00000800
telCAConferenceDropMsg = §00010000
telCAConferenceMsg = $00000040
telCAConferenceSplitMsg = $00008000
telCADeflectMsg = $00002000
telCADigitsMsg = $00000200
telCADisconnectMsg = $00000010
telCAFaxToneMsg = $00800000
telCAForwardMsg = $00004000

Chapter 4: Writing Your Tool's Main Code Resource

149

150

telCAHoldMsg
telCAIdleMsg
telCAIntercomMsg
telCAInUseMsg
telCAModemToneMsqg

telCAaOfferMsg
telCAOtherMsg
telCAOutgoingMsg
telCAPagingMsg
telCACallParkMsg
telCACallPickupMsg
telCAProgressMsg
telCaQueuedMsg

telCARejectMsg
telCASuccessiveAlertMsg
telCATransferMsg
telCAUserUserInfoMsg

telDNDNDMsg
telDNForwardMsg
telDNOtherMsg
telDNSelectedMsg
telDNVoiceMailMsg

telTermCloseMsg
telTermDisplayMsg
telTermEnableMsg
telTermErrorMsg
telTermHookMsg

telTermKeyMsg
telTermOpenMsg
telTermOtherMsg
telTermResetMsg
telTermVolMsg

$00000100
$01000000
$00200000
$00040000
$00400000

$00000002
$80000000
$00000008
$00100000
$00000400
$00080000
$00000004
$00020000

$00001000
$02000000
$00000080
$04000000

$00000002
$00000001
$00008000
$00000008
$00000004

$00000040
$00000008
$00000010
$00000100
$00000001

$00000002
$00000020
$00000200
$00000080
$00000004

Telephone Manager Developer's Guide

General call-appearance messages

The call-appearance messages your tool can send are of several types—for instance, messages about
conference calls and messages about calls being disconnected. Each type requires that your tool pass
a different parameter block.
This section describes the general call-appearance messages: those not requiring an extended
parameter block. The other types of call-appearance messages are described later in this chapter.
Here is a list of the general call-appearance messages:

telCAActiveMsg telCACallbackMsg
telCADeflectMsg telCADigitsMsg
telCADisconnectMsg telCAFaxToneMsg
telCAForwardMsg telCAHoldMsg
telCAldleMsg telCAIntercomMsg
telCAInUseMsg telCAModemToneMsg
telCAPagingMsg telCACallParkMsg
telCACallPickupMsg telCAProgressMsg
telCAQueuedMsg telCARejectMsg

telCASuccessiveAlertMsg

To send a general call-appearance message, your tool must call the call-appearance master
message handler passed in the Telephone Manager message telCaMsgHandMsg. When calling this
message handler, your tool must pass a pointer to the following parameter block:

* TELCAGenericMsgPB = RECORD
toollD : INTEGER;
tRef : INTEGER;
dnRef : INTEGER;
caRef : INTEGER;
msg ¢+ LONGINT;
mtype : INTEGER;
value : INTEGER;
rmtDN : StringPtr;
rmtName s+ StringPtr;
rmtSubaddress :+ StringPtr;
dialType ¢ INTEGER;
END;

toolID isa unique identifier that the Telephone Manager assigns to your tool when sending
the message telNewMsg. Your tool should save toolID in private storage.

tRef is the reference number that your tool assigns to this particular terminal. Do not change
the value of tRef while the terminal is open.

dnRef is the reference number that your tool assigns to this particular directory number. Do
not change the value of dnref while the directory number is valid.

caRef is the reference number that your tool assigns to this particular call appearance. Do not
change the value of caref while the call appearance is valid.

msg identifies the message that your tool is sending.

mtype and value vary in meaning, depending on the message being sent, and are described
in the description of each message.

Chapter 4: Writing Your Tool's Main Code Resource

151

rmtDN points to a string of type str2ss that stores a remote directory number—for
instance, the directory number being called.

rmtName points to a string of type strzss storing a name associated with rmtDN.

rmtSubaddress points to a string of type str255 storing the subaddress, if any,
associated with rmtpw.

aialType specifies the type of directory number and name contained in rmeon and
rmtName (10-digit North Amercan, non-dialable, and so on).

The rest of this section describes each of the general call-appearance messages that your tool can
send.

telCAActiveMsg

Your tool should send telcaactiveMsg each time an outgoing or incoming call appearance
becomes active. mtype, value, rmtDN, rmtName, rmtSubaddress,and dialType are unused
and set to zero.

telCACallbackMsg

Your tool should send telcacallbackMsg each time Call Back activity occurs on a particular call
appearance.

mtype retumns a callback reference value, if there is one; otherwise, mtype returns 0. valiue
specifies whether the callback was set, established, failed, and so on. rmtpn and rmtname specify
the remote directory number associated with the callback. Set rmtpN, rmtName, rmtSubaddress,
and dialType to zero if directory-number information is unavailable or not supported by your
tool.

telCADeflectMsg

Your tool should send telcabeflectMsg each time Call Deflect activity occurs on a particular call
appearance. Your tool should also send telcapeflectMsg each time a call is automatically
deflected as a result of forwarding, if your system provides this information.

mtype is unused and set to zero. value specifies whether the attempt to deflect the call
succeeded. rmtDN, rmtName, rmtSubaddress,and dialType specify the directory number,
party name, subaddress, and dial type to the call that was deflected.

telCADigitsMsg

Your tool should send telcapigitsmsg to indicate that one or more keys were pressed at the
remote directory number associated with this call appearance.

mtype specifies whether the key pressed corresponds to an audible dual-tone multiple
frequency (DTMF) tone. value specifies the ASCII value of the keys pressed. rmtpN, rmtName,
rmtSubaddress, and dialType are unused and set to zero.

152 Telephone Manager Developer's Guide

telCADisconnectMsg

Your tool should send telcapisconnectMsg each time an active, held, or conferenced call
appearance is dropped (hung up) by the local party or the remote party.
rmtDN, rmtName, rmtSubaddress,and dialType are unused and setto zero.

telCAFaxToneMsg

Your tool should send telcAFaxToneMsg to indicate that a fax tone has been detected on a
particular call appearance.

mtype is unused and set to zero. value specifies whether the tone is still present. rmtDN,
rmtName, rmtSubaddress,and dialType are unused and set to zero.

telCAForwardMsg

Your tool should send telcAForwardMsg to indicate that an outgoing call has been forwarded to
a new destination.

mtype is unused and set to zero. value specifies the type of forwarding that occurred.
rmtDN, rmtName, rmtSubaddress,and dialType specify the directory number, party name,
subaddress, and dial type to which the call was forwarded.

telCAHoldMsg

Your tool should send telcaHoldMsg each time Hold activity occurs for a call appearance.
mtype is unused and should be set to zero. value specifies whether the call was held or
retrieved, or an attempt to hold a call failed. rmtDN, rmtName, rmtSubaddress,and dialType

are unused and set to zero.

telCAIdleMsg

Your tool should send telcazdleMsg each time a call appearance becomes idle.
mtype, value, rmtDN, rmtName, rmtSubaddress,and dialType are unused and setto
zero.

telCAIntercomMsg

Your tool should send telcCAIntercomMsg each time Intercom activity occurs on a particular call

appearance.
mtype is unused and set to zero. value specifies whether the attempted Intercom operation

succeeded. rmtDN, rmtName, rmtSubaddress,and dialType are unused and set to zero.

telCAInUseMsg

Your tool should send telcainuseMsg to indicate that a particular call appearance is in use, but at
another terminal. This message is applicable only to multiple-access directory numbers (MADNS).
mtype, value, rmtDN, rmtName, rmtSubaddress,and dialType are unused and setto zero.

Chapter 4: Writing Your Tool's Main Code Resource

153

telCAModemToneMsg

Your tool should send telCAModemToneMsg to indicate that a modem tone has been detected on
a particular call appearance.

mtype is unused and set to zero. value specifies whether the tone is still present. rmtDN,
rmtName, rmtSubaddress,and dialType are unused and setto zero.

telCAPagingMsg

Your tool should send telcAPagingMsg each time that there is paging activity for a call
appearance.

mtype is unused and set to zero. value specifies whether the attempt to page succeeded.
rmtDN, rmtName, rmtSubaddress,and dialType are unused and set to zero.

telCACallParkMsg

Your tool should send telcacallparkMsg each time Call Park activity occurs on a particular call
appearance.

mtype is unused and should be set to zero. value specifies whether the call was parked,
retrieved, or recalled, or failed to be parked or retrieved. rmtDN, rmtName, rmtSubaddress,and
dialType specify the directory number, party name, subaddress, and dial type against which the
call was parked, if this information is available. If Call Park is not available or is not supported by
yourtool, rmtDN, rmtName, rmtSubaddress,and dialType should be setto zero.

telCACallPickupMsg

Your tool should send telcacallpickupMsg each time Call Pickup activity occurs on a particular
call appearance.

mtype is unused and set to zero. value specifies whether the pickup was successful or failed.
Messages are also sent to originators if the call was picked up at a directory number other than the
one dialed. rmtDN, rmtName, rmtSubaddress,and dialType specify the directory number
whose call was picked up successfully or unsuccessfully. In the case of a message sent to the
originator, rmtDN, rmtName, rmtSubaddress,and dialType specify the directory number that
picked up the call.

telCAProgressMsg

Your tool should send telCAProgressMsg to indicate each change in the state of an outgoing call
appearance.

mtype is unused and should be set to zero. value specifies the progress indicator. If value
iS telCAPUpdate Or telCAPRouted, rmtDN, rmtName, rmtSubaddress, and dialType
specify the updated directory number, party name, subaddress, and dial type. If value is neither
telCAPUpdate nor telCAPRouted, rmtDN, rmtName, rmtSubaddress, and dialType are set
to zero.

154 Telephone Manager Developer's Guide

telCAQueuedMsg

Your tool should send telcaQueuedMsg each time an incoming call is queued for this terminal.

mtype, value, rmtDN, rmtName, rmtSubaddress,and dialType areunused and setto
Zero.

telCARejectMsg

Your tool should send telcarRejectMsg each time Call Reject activity occurs on a particular call
appearance. This message should also be sent if an outgoing call was rejected by the destination.

meype is unused and set to zero. value specifies whether the reject succeeded or failed.
rmtDN, rmtName, rmtSubaddress,and dialType are unused and setto zero.

telCASuccessiveAlertMsg

Your tool should send telcAsuccessiveAlertMsg each time the attached telephone set “rings.”
The application can thereby count rings, answering on the nth ring.

mtype, value, rmtDN, rmtName, rmtSubaddress,and dialType are unused and setto
zero.

telCAUserUserInfoMsg

Your tool should send telcauseruserInfoMsg each time user-to-user information arrives for a
call appearance.

rmtDN stores the user-to-user information. mtype, value, rmtName, rmtSubaddress,and
dialType are unused and set to zero.

'

Incoming/outgoing call-appearance messages

This section describes incoming/outgoing call-appearance messages: messages specific to a call
appearance that is currently coming in or going out. The incoming/outgoing call-appearance
messages are as follows:

telCAAlertingMsg
telCAOfferMsg
telCAOutgoingMsg

Each time your tool sends one of these messages, the Telephone Manager creates a handle to
the specified call-appearance record and passes this handle to the appropriate applications. If an
application has already created a call-appearance handle for a particular outgoing call (using the
routine TELSetupcCall), the Telephone Manager creates call-appearance handles for any other
applications monitoring that call.

To send an incoming/outgoing call-appearance message, your tool must call the call-appearance
master message handler passed in the Telephone Manager message telCAMsgHandMsg. When
calling this message handler, your tool must pass a pointer to the following parameter block:

Chapter 4: Writing Your Tool's Main Code Resource

155

156

TELCAInOutMsgPB = RECORD

toollID : INTEGER;
tRef ¢+ INTEGER;
dnRef : INTEGER;
caRef : INTEGER;
msg ¢+ LONGINT;
mtype : INTEGER;
value : INTEGER;
rmtDN : StringPtr;
rmtName : StringPtr;
rmtSubaddress : StringPtr;
callType ¢+ INTEGER;
dialType + INTEGER;
bearerType ¢ INTEGER;
rate ¢+ INTEGER;
routeDN ¢ StringPtr;
routeName : StringPtr;
routeSubaddress ¢ StringPtr;
featureFlags : LONGINT;
otherFeatures ¢ LONGINT;
telCAPrivate : LONGINT;

END;

toolID isa unique identifier that the Telephone Manager assigns to your tool when sending
the message telNewMsg. Your tool should save tool1p in private storage.

tref is the reference number that your tool assigns to this particular terminal. Do not change
the value of tref while the terminal is open.

dnref is the reference number that your tool assigns to this particular directory number. Do
not change the value of dnref while the directory number is valid.

caref is the reference number that your tool assigns to this particular call appearance. Do not
change the value of caref while the call appearance is valid.

msg identifies the message that your tool is sending.
mtype is the message type, if any.
value is the message value, if any.

rmtDN pOints to a string of type str2ss that stores a remote directory number—for
instance, the directory number being called.

rmtName points to a string of type str25s storing a name associated with rmtDN.

rmtSubaddress points to a string of type str2ss that stores the subaddress, if any,
associated with rmtDN.

callType specifies whether the call appearance is direct-inbound, transferred-inbound,
recalled, and so on.

dialType specifies the type of directory number and name contained in rmtpn and
rmtName (10-digit North Amercan, non-dialable, and so on).

Telephone Manager Developer's Guide

bearerType and rate are unused but are reserved by Apple for future use. Set these fields
to zero.

routeDN points to a string of type str255 that stores a remote directory number.

routeName points to a string of type str255 that stores a name associated with
routeDN

routeSubaddress points to a string of type str255 that stores the subaddress, if any,
associated with routebN.

featureFlags indicates the inital state of the features in the field featureFlags of the
call-appearance record for caref.

otherFeatures indicates the inital state of the features in the field otherFeatures of the
call-appearance record for caref.

telCAPrivate is private data that your tool wants stored in the call-appearance record for
caRef.

The rest of this section describes each of the incoming/outgoing call-appearance messages that
your tool can send.

telCAAlertingMsg

Your tool should send telcaalertingMsg to indicate that an incoming call is in the state
telCAAlertingState.

mtype is unused and should be set to zero.

value is the alerting pattern. It has one of the following values:

telPattern0 = 0; { Normal Alerting Pattern }
telPatternl = 1; { Alerting Pattern - type 1 }
telPattern2 = 2; { Alerting Pattern - type 2 }
telPattern3 = 3; { Alerting Pattern - type 3 }
telPatternd = 4; { Alerting Pattern - type 4 }
telPattern5 =5; { Alerting Pattern - type S5 }
telPatterné = 6; { Alerting Pattern - type 6 }
telPattern? S48 { Alerting Pattern - type 7 }
telPatternOff = 8; { Alerting Pattern - turned off }
telPatternUndefined = 15; { Alerting Pattern undefined }
telCAOfferMsg

Your tool should send telcAOf ferMsg to indicate that an incoming call is in the state
telCAOfferState
mtype and value are unused and should be set to zero.

Chapter 4: Writing Your Tool's Main Code Resource 157

telCAOutgoingMsg

Your tool should send telcaoutgoingMsg to indicate that an outgoing call has been initiated
from the user's terminal.
ntype is unused and should be set to zero. value is one of the following values:

telPhysical = 0;
{ User lifted handset and initiated call }
telProgrammatic = 1;

{ Outgoing call initiated programmatically }

Call-appearance message for transferring calls

This section describes telcaTransferMsg, a message that your tool should send each time
activity occurs on the Call Transfer feature of a call appearance.

Tosend telCATransferMsg, your tool must call the call-appearance master message handler
passed in the Telephone Manager message telcaMsgHandMsg. When calling this message handler,
your tool must pass a pointer to the following parameter block:

TELCATransfMsgPB = RECORD
toollID : INTEGER;
tRef : INTEGER;
dnRef ¢+ INTEGER;
caRef : INTEGER;
msg : LONGINT;
mtype : INTEGER;
value : INTEGER:
rmtDN : StringPtr;
rmtName : StringPtr;
rmtSubaddress : StringPtr;
dialType : INTEGER;

END;

toolID is a unique identifier that the Telephone Manager assigns to your tool when sending
the message telNewMsg. Your tool should save toolID in private storage.

tRef is the reference number that your tool assigns to this particular terminal. Do not change
the value of tref while the terminal is open.

dnRref is the reference number that your tool assigns to this particular directory number. Do
not change the value of dnre¢ while the directory number is valid.

caref is the reference number that your tool assigns to this particular call appearance. Do not
change the value of caret while the call appearance is valid.

msg identifies the message that your tool is sending.
mtype is the message type, if any.

value is the message value, if any.

158 Telephone Manager Developer's Guide

rmtDN points to a string of type str255 that stores the remote directory number to which
the call will be transferred.

rmtName points to a string of type Sstr255 storing a name associated with rmtDN.

rmtSubaddress points o astring of type str255 storing the subaddress, if any,
associated with rmtDN.

Call-appearance messages for conference calls

This section describes call-appearance messages that apply to calls being united in a conference:

telCAConferenceMsg
telCAConferenceSplitMsg
telCAConferenceDropMsg

To send any of these messages, your tool must call the call-appearance master message handler
passed in the Telephone Manager message telCAMsgHandMsg. When calling this message handler,
your tool must pass a pointer to the following parameter block:

TELCAGenericPB = RECORD
toolID : INTEGER;
tRef : INTEGER;
dnRef : INTEGER;
caRef : INTEGER;
msg : LONGINT;
mtype : INTEGER;
value ¢+ INTEGER;

END;

toolID isa unique identifier that the Telephone Manager assigns to your tool when sending
the message telNewMsg. Your tool should save toolID in private storage.

tRef is the reference number that your tool assigns to this particular terminal. Do not change
the value of trRef while the terminal is open.

dnRef is the reference number that your tool assigns to this particular directory number. Do
not change the value of dnrRef while the directory number is valid.

caRef is the reference number that your tool assigns to this particular call appearance. Do not
change the value of caref while the call appearance is valid.

msg identifies the message that your too! is sending.
mtype is the message type, if any.
value isthe message value, if any.

The rest of this section describes each of the call-appearance messages for conference calls.

Chapter 4: Writing Your Tool's Main Code Resource

159

telCAConferenceDropMsg

Your tool should send telcAconferencebropMsg to indicate that a specified call appearance has
been dropped, not merely split from a conference.

mtype is unused and should be set to zero.

value should be set to one of the following values:

telConferenceDropFailed = 0; { CA could not be dropped }
telConferenceDropped = 1; { CA dropped successfully }
ConfDropBylInitiator = 2; { CA dropped because initiator was dropped }

telCAConferenceMsg

Your tool should send telcaconferenceMsg to indicate activity—other than the splitting or
dropping of call—on the Conference feature of a particular call appearance.

mtype is unused and should be set to zero.

value should be set to one of the following values:

telConferencePrepFailed = 0; { conference could not be prepared }

telConferencePending = 1; { conference prepared successfully }
telConferenceEstFailed = 2; { conference could not be established }
telConferenceEst = 3; { conference established }

telCAConferenceSplitMsg

Your tool should send telcaconferencesplitMsg to indicate that a specified call appearance
has been split from a conference (but not dropped).

mtype is unused and should be set to zero.

value should be set to one of the following values:

telConferenceDropFailed = 0; { CA could not be dropped }
telConferenceDropped = 1; { CA dropped successfully }

Directory-number messages

This section describes directory-number messages: messages your tool can send regarding a
particular directory number. To send a directory-number message, your tool must call the call-
appearance master message handler passed in the Telephone Manager message telDNMsgHandMsg.
When calling this message handler, your tool must pass a pointer to the following parameter block:

160 Telephone Manager Developer's Guide

TELDNMsgPB = RECORD

toollD : INTEGER;
tRef : INTEGER;
dnRef ¢ INTEGER;
msg : LONGINT;
mtype : INTEGER;
value : INTEGER;
rmtDN : StringPtr;
rmtName : StringPtr;
rmtSubaddress : StringPtr;

END;

toollID isa unique identifier that the Telephone Manager assigns to your tool when sending
the message telNewMsg. Your tool should save toolID in private storage.

tRef is the reference number that your tool assigns to this particular terminal. Do not change
the value of tref while the terminal is open.

dnRref is the reference number that your tool assigns to this particular directory number. Do
not change the value of dnref while the directory number is valid.

msg identifies the directory-number message your tool is sending.

mtype and value varyin meaning according to the message being sent, and are described in
the description of each message.

rmtDN points to a string of type str2ss that stores a remote directory number—for
instance, the directory number being called.

rmtName points to a string of type str255 storing a name associated with rmtDN.

rmtSubaddress points to a string of type str255 storing the subaddress, if any,
associated with rmtDN.

The rest of this section describes each of the directory-number messages that your tool can send.

telDNDNDMsg

Your tool should send telpNDNDMsg to indicate a change in the status of the Do Not Disturb
feature on particular directory number.

value specifies whether the Do Not Disturb feature has been activated or cleared, or whether
an attempt to do so has failed. mtype specifies the type of Do Not Disturb feature affected.
rmtDN, rmtName, and rmtSubaddress are unused and should be set to zero.

telDNForwardMsg

Your tool should send telDNForwardMsg to indicate a change in the status of the Call Forward
feature on a particular directory number.

value specifies whether call forwarding has been activated or cleared, or whether an attempt
to do so has failed. mtype specifies the type of call forwarding affected. rmtDN specifies the
remote directory number to which calls are forwarded. rmtName and rmtName are a name and
subaddress associated with rmtDN.

Chapter 4: Writing Your Tool's Main Code Resource

161

telDNOtherMsg

Your tool should send telpNothermsg to convey directory-number messages other than those
listed in this section.

value and mtype can be set to any values; those values should be described in your tool
documentation.

telDNSelectedMsg

Your tool should send telpnselectedMsg after selecting or deselecting a directory number.
value specifies whether the directory number was selected or deselected. mtype, rmtDN,
rmtName, and rmtSubaddress are unused and should be set to zero.

telDNVoiceMailMsg

Your tool should send telDNvoiceMailMsg to indicate a change in the status of the voice-mail
feature associated with a particular directory number.

value specifies either that a new voice-mail message is waiting or that all messages have been
cleared. mtype is unused and should be set to zero. rmtName, rmtpN, and rmtSubaddress
specify the name, number, and subaddress of the party who left the voice-mail message. If any of
these items are not available, the corresponding fields should be set to zero.

Terminal messages

This section describes terminal messages: messages that your tool can send regarding a particular
terminal as a whole. To send a terminal message your tool must call the call-appearance master
message handler passed in the Telephone Manager message telTermMsgHandMsg. When calling
this message handler, your tool must pass a pointer to the following parameter block:

TELTermMsgPB = RECORD
toollD : INTEGER;
tRef ¢ INTEGER;
msg ¢ LONGINT;
mtype : INTEGER;
value : INTEGER;
END;

toolID is a unique identifier that the Telephone Manager assigns to your tool when sending
the message telNewMsg. Your tool should save tool1p in private storage.

tref is the terminal reference number that your tool assigns to this particular terminal. Do
not change the value of tret while the terminal is open.

msg identifies the terminal message your tool is sending.

mtype and value vary in meaning according to the message being sent, and are described in
the description of each message.

The rest of this section describes each of the terminal messages that your tool can send.

162 Telephone Manager Developer's Guide

telTermCloseMsg

Your tool should send telTermCloseMsg after closing the terminal driver. value and mtype
are unused and should be set to zero.

telTermDisplayMsg

Your tool should send telTermpisplayMsg after changing the display. value specifies the
type of display information that changed. mtype specifies the current display mode.

telTermEnableMsg

Your tool should send telTermEnableMsg once it can communicate with the terminal. mtype is
unused and should be set to zero. value indicates whether communication with the terminal is
enabled.

telTermErrorMsg

Your tool should send telTermErrorMsg aftera terminal error has occutred. value and mtype
are unused and should be set to zero.

This message tells the application only that an error has occurred; it does not specify the exact
error. Send telotherMsg to specify the exact error.

telTermHookMsg

Your tool should send telTermHookMsg each time the physical state of an attached device
changes. For instance, if someone lifts the hookswitch of a phone that is attached to the terminal,
your tool should send telTermHookMsg. value specifies the state of the hookswitch, and
mtype specifies the device type.

telTermKeyMsg

Your tool should send telTermkeyMsg each time a key is physically pressed on an attached
telephone set.

value specifies either the ASCII value of the key or a key feature code. mtype specifies
whether the the key pressed was a keypad key (a digit between 0 and 9, the number sign, or the
asterisk) or a feature key (such as Hold or Conference).

telTermOpenMsg

Your tool should send telTermopenMsg after opening the terminal driver. value and mtype
are unused and should be set to zero.

Chapter 4: Writing Your Tool's Main Code Resource

163

telTermOtherMsg

Your tool should send telTermotherMsg to convey terminal-related messages other than those
listed in this section. For example, to alert an application that a terminal driver has encountered an

error, you could define and senda telTermotherMsg message.
value and mtype can be set to any values; those values should be described in your tool

documentation.

telTermResetMsg

Your tool should send telTermresetMsg after resetting the terminal driver.
value and mtype are unused and should be set to zero.

telTermVolMsg

Your tool should send telTermvolmsg after changing the volume of a device.
value specifies the new volume level. mtype specifies the device on which the volume has
been changed.

164 Telephone Manager Developer's Guide

Appendix A Result Codes for Routines

THIS APPENDIX lists and describes the result codes returned by

Telephone Manager routines.

Each result code is of data type TELErr, which is the same as the data type
oskrr. For information about oserr, refer to Volume II of Inside

Macintosh and the include file types.p.

165

Result Code

noErr
telAlreadyOpen
telAPattNotSupp
telBadAPattErr
telBadBearerType
telBadCAErr
telBadDNErr
telBadDNDType
telBadDNType
telBadFeaturelID
telBadFunction
telBadFwdType
telBadHandErr
telBadHTypeErr
telBadIndex
telBadInterComID
telBadIntExt
telBadLevelErr
telBadPagelID

telBadParkID

telBadPickupGroupID

telBadProcErr
telBadRate
telBadSelect
telBadStateErr
telBadTermErr

telBadVTypeErr

Meaning

The routine finished without error.

The terminal is already open.

The tool does not support this alerting pattern.
The alerting pattern is invalid.

The bearer type is invalid.

The call-appearance handle is invalid or not found.
The directory-number handle is invalid or not found.
The Do Not Disturb type is invalid.

The directory-number type is invalid.

The feature ID is invalid.

The message code is invalid.

The forward type is invalid.

The handle is invalid.

The hook type is invalid.

The index is invalid.

The intercom ID is invalid.

The internal/external specifier is invalid.

The volume-level setting is invalid.

The page ID is invalid.

The park ID is invalid.

The pickup-group ID is invalid.

msgProc is invalid.

The rate is invalid.

Cannot select or deselect the directory number.
The device state is invalid.

The telephone record handle is invalid or not found.

The volume type is invalid.

166 Telephone Manager Developer's Guide

telCANotAcceptable
telCANotDeflectable
telCANotRejectable
telCAUnavailable
telCBErr

telChooseAborted

telChooseCancel

telChooseDisaster

telChooseFailed

telChooseOKMajor

telChooseQOKMinor

telChooseOKTermChanged

telConfErr

telConflimitErr

telConfLimitExceeded

telConfNoLimit
telConfRej
telDNDNotSupp

telDNTypeNotSupp

This call appearance is not “acceptable.”

This call appearance is not “deflectable.”

This call appearance is not “rejectable.”

A new call appearance is not “available.”

The specified Call Back feature has not been previously set.

The application user tried to change the tool settings while
the terminal was running—that s, after the application has
called TELOpenTerm and before the application has called

TELCloseTerm.

The user clicked the Cancel button of the dialog box.

The routine failed because no tools were found in the
Extensions folder. The telephone record has been destroyed.
NIL is returned in the telephone record handle.

Attempt to choose a tool or to change settings of the

current tool failed. The telephone record remains unchanged.

The application user clicked the OK button of the dialog box
after choosing a different tool or changing the settings of
the current tool.

The application user clicked the OK button of the dialog box
but did not change the settings of the telephone tool.

The application user clicked on the OK button of the dialog
box after choosing a different tool or changing the settings
of the current tool. The terminal reference number (tref)
has changed.

The call appearance specified in hTELCAL is not the
conference initiator.

The limit specified is too high for this configuration.

Attempted to conference more call appearances than the
network switch allows.

A limit is required, but none was specified.
The conference request was rejected.
The Do Not Disturb type is not supported.

The directory-number type is not supported.

Appendix A: Result Codes for Routines

167

telFeatActive
telFeatNotAvail
telFeatNotSubscr
telFeatNotSupp
telFwdTypeSupp
telHTypeNotSupp
telIndexNotSupp
telIntExtNotSupp
telInitFailed
telModeNotSupp
telNoCallbackRef
telNoCommFolder
telNoMemErr
telNoOpenErr
telNoSuchTool
telNoTools
telPBErr
telStateNotSupp
telStillNeeded

telTermNotOpen

telTransfErr
telTransfRej
telUnknownErr

telVTypeNotSupp

This feature is already active.

This feature is subscribed but not available.

This feature is not subscribed.

The tool does not support the specified feature program call.
The tool does not support this type of forwarding.

The tool does not support this hook type

The tool does not support this index.

The tool does not support this intExt type.

Cannot initialize the Telephone Manager.

The tool does not support this display mode.

You must supply a callback reference value.

Cannot find the Extensions folder.

No memory to allocate a handle or internal storage.
Cannot open the terminal.

Cannot find a tool with specified name.

Cannot find any telephone tools in the Extensions folder.
The format of the parameter block is invalid.

Device state is not supported by the tool.

Another user still needs the terminal driver.

The terminal has not yet been opened by the TELOpenTerm
routine.

The implicit transfer was not prepared.
The transfer request was rejected.
Cannot set the configuration.

Volume type is not supported by this tool.

168 Telephone Manager Developer's Guide

Appendix B Message Codes for Applications

THIS APPENDIX lists and describes the message codes that
application message handlers receive from the Telephone Manager. The
message codes are listed alphabetically and are presented in three groups: call-
appearance message codes, directory-number message codes, and terminal

message codes.

169

Call-appearance message codes for applications

The message codes in this section relate to specific call appearances. For information on the format
and parameters of call-appearance messages, refer to the template for call-appearance message
handlers (Mycamsgrandler) in the section “Routines Your Application Must Provide” in Chapter 2.

telCAActiveMsg

Description telCAActiveMsg indicates that the call appearance htELca has been successfully
connected to the destination and that conversation or data is free to flow over the
connection. Your application receives this message if you connect with TELConnect or
if the user has placed a call manually. This message is received at the destination when a
successful call is made to TELAnswer or when the remote party manually answers the
telephone. mtype, value,and msgInfo are unused and set to zero.

telCAAlertingMsg

Description telcAAlertingMsg specifies that an incoming call hTerca is alerting at this terminal.
mtype is unused and set to zero.

value is the alerting pattem, if any. Some switches assign certain ring patterns to certain
calls. For instance, a switch might assign one pattern for outside calls, another for data
calls, and so on. value is assigned one of the following values:

telPattern0 = 0; { Normal Alerting Pattern }
telPatternl = 15 { Alerting Pattern - type 1 }
telPattern2 = 2; { Alerting Pattern - type 2 }
telrPattern3 = 3; { Alerting Pattern - type 3 }
telPatternd = 4; { Alerting Pattern - type 4 }
telPatternS = 5; { Alerting Pattern - type 5 }
telPatterné =6 . { Alerting Pattern - type 6 '}
telPattern? = 7; { Alerting Pattern - type 7 }
telPatternOff = 8; { Alerting Pattern - turned off }
telPatternUndefined = 15; { Alerting Pattern undefined }

msgInfo is unused and set to zero.

170 Telephone Manager Developer's Guide

telCACallbackMsg

Description telcAcallbackMsg gives information about activities related to Call Back features. This
message is sent when the user presses the Call Back key or when your application calls
TELCallbackSet Of TELCallbackClear

hTELCA is setto zero if value equals telcallbackNowAvail.

mType returns a callback reference value, if one is used when value equals
telCallbackNowAvail, telCallbackDesired, Of telCallbackDesiredCleared
Otherwise, mType is unused and set to zero.

value is as follows:

telCallbackCleared = 0; { Callback has been cleared, hTELCA is zero.)}

telCallbackEst = 1; { Callback has been setup/established.}

telCallbackNowAvail = 2; { Call can be called back with TELCallbackNow.
CA is NIL. }

telCallbackDesired = 4; { A user has called this terminal,

received no answer, and requests that
this terminal call the user back.
hTELCA is zero.}

5; { Callback for no answer no longer desired.
hTELCA is zero.}

telCalledback = 6; { Callback has successfully occurred. }

telCallbackDesiredCleared

msgInfo points to the following structure:

TYPE

CAGenericMsgRec = RECORD
rmtDN : StringPtr;
rmtName : StringPtr;

rmtSubaddress : StringPtr;
dialType INTEGER;

*

END

If value is telCallbackCleared, telCallbackEst, Or telCallbackFailed
rmeDN specifies the remote directory number for which callback has been set, and
rmtName specifies the name of the party associated with that directory number. If
value iS telCallbackNowAvail, rmtDN and rmtName specify the directory number
and party name to be called back. If value is telcallbackDesiredCleared Of
telCallbackDesired. rmtDN specifies the remote directory number for which
callback is desired and rmtname specifies the name of the party associated with that
directory number.

rmtSubaddress indicates the subaddress, if any, associated with rmtoN. dialType
indicates the “dialability” of the number specified in rmtpn.

Appendix B: Message Codes for Applications 171

telCAConferenceDropMsg

Description telCAConferenceDropMsg specifies that hTerca has been dropped from a conference.
This message will be sent when the application calls TELDrop and the hTELCA is part
of a conference. mtype is unused and set to zero. value is set to one of the following

values:
telConferenceDropFailed = 0; { CA could not be dropped }
telConferenceDropped = 1; { CA dropped successfully }

msgInfo points to the following structure:

TYPE

CAConfMsgRec = RECORD
relatedCA : TELCAHandle;
END

relatedca specifies a handle to the conference initiator (hTELCA® " . relatedCa)

telCAConferenceMsg

Description telCAConferenceMsg specifies that conference activity is occurring for hterca. This
activity could be occurring because of calls to TELConferencePrep oOr
TELConferenceEstablish, or because the user is manually initiating a conference.
mtype is unused and set to zero. value is set to one of the following values:

telConferencePrepFailed conference could not be prepared }

telConferencePending

.
’
.
’

conference prepared successfully }

telConferenceEstFailed

’

conference cguld not be established }

0
1
2.
3;

telConferenceEst = conference established }

msgInfo points to the following structure:

TYPE

CAConfMsgRec = RECORD
relatedCa :+ TELCAHandle;
END

relatedca specifies a handle to the conference initiator for values of
telConferenceEstFailed and telConferenceEst. Otherwise, relatedca is zero.

telCAConferenceSplitMsg

Description telCAConferenceSplitMsg specifies that conference-splitting activity is occurring for
nreLca. This message will be sent when the application calls TELConferencesplit.
mtype is unused and set to zero. value is set to one of the following values:

172 Telephone Manager Developer’s Guide

telConferenceSplitFailed = 0; { CA could not be split }

telConferenceSplitEst

= 1; { CA split successfully }

msgInfo points to the following structure:

TYPE
CAConfMsgRec
relatedCA
END

= RECORD
TELCAHandle;

relatedca specifies a handle to the conference initiator.

telCADeflectMsg

Description telcapeflectMsg gives information about activities related to Call Deflect features.
This message is sent when the user presses the Call Deflect button or when your
application calls TELDeflectcall. This message can be received on either end of a call
appearance. mtype is unused and set to zero. value is as follows:

telCallpDeflectFailed
telCallDeflectEst
telCallDeflectRecall

telCallDeflected

telAutoDeflectNoAnswer

telAutoDeflectBusy

telAutoDeflectImmediate

attempt to deflect call has failed }
call successfully deflected }
deflected call has been recalled }
message to originator that call

was deflected to rmtDN }

4; { a call was automatically deflected

o~ A e

.
'
.
’
.
’
3
’

3

from this terminal as a result
of call forwarding on noanswer }
55 { a call was automatically deflected
from this terminal as a result
of call forwarding on busy }
6; { a call was automatically deflected
from this terminal as a result
of immediate call forwarding }

msgInfo points to the following structure:

TYPE

CAGenericMsgRec
rmtDN
rmtName
rmtSubaddress
dialType

END

RECORD
StringPtr;
StringPtr;
StringPtr;
INTEGER;

rmeDN and rmtName specify the directory number and user name to which the call was
deflected. dialType indicates the “dialability” of the number specified in rmton.

Appendix B: Message Codes for Applications 173

telCADigitsMsg

Description telCADigitsMsg indicates that digits are being pressed by the destination user. (The
physical terminal message handler would handle keys pressed at the local keypad.) mtype
specifies whether or not the signaling is audible (in-band DTMF).

telDigitAudible = 0; { Digits audible }
telDigitNotAudible = 1; {Digits not audible }

value specifies the ASCII keypad digit sent by the remote user (a digit between 0 and 9,
the number sign, or the asterisk). msgInfo is unused and set to zero.

telCADisconnectMsg

Description telCADisconnectMsg specifies that a call has been disconnected.

mtype specifies the party responsible for the disconnect:

tellocalDisconnect = 0; { This user responsible for disconnect}
telRemoteDisconnect = 1; { Remote party responsible for disconnect}

Value specifies the reason for the disconnect and is set to one of the following values:

telCADNormal = 1; { Normal disconnect }
telCADBusy = 2; { Remote user busy }
telCADNoResponse = 3; { Remote not responding }
telCADRejected = 4; { Call rejected }
telCADNumberChanged =53 { Number changed }
telcAaDInvalidDest = 6; { Invalid destination address }
telCADFacilityRejected =1 |7 { Reﬁuested facility rejected }
telCADUnobtainableDest =1 197 { Destination not obtainable }
telCADCongested = 10; { Network congestion }
telCADIncompatibleDest =1 46 { Incompatible destination }
telCADTimeout = 12; { call timed out }
telCADUnknown = 15; { Reason unknown }

msgInfo isunused and set to zero.

UserUserInfo points to any user-to-user information sent with the disconnect from
the remote end. Not all switches support the sending of user-to-user information at
disconnect time.

174 Telephone Manager Developer’s Guide

telCAFaxToneMsg

Description telCAFaxToneMsg specifies that a fax tone has been detected on hTELCA. mType is
unused and set to zero. value is as follows:

telFaxToneDetected = 0; { Fax Tone was detected }
telFaxToneCleared = 1; { Fax Tone went away}

msgInfo isunused and set to zero.

telCAForwardMsg

Description telCAForwardMsg is sent to the originator of a call appearance when the call has been
forwarded to a new directory number. The receiver of the forwarded call will receive a
telCAAlertingMsg Of telCAOfferMsg message specifying that the incoming call has
been forwarded by another directory number. The set that forwarded the call will receive
a telCADeflectMsg message.

mtype is unused and set to zero. value indicates the type of call forwarding that
occurred and is set to one of the following values:

telForwardimmediate = 1; { Call forwarding immediate }
telForwardBusy = 2; { Call forwarding on busy }
telForwardNoAnswer = 3; { Call forwarding on no answer }

msgInfo points to the following structure:

TYPE

CAGenericMsgRec = RECORD
rmtDN : StringPtr;
rmtName + StringPtr;
rmtSubaddress : StringPtr;
dialType ¢ Short;

END

rmtDN, rmtName, and rmtSubaddress specify the directory number, user name, and
subaddress (if any) to which the call was forwarded. dialType indicates the “dialability”
of the number specified in rmeDN.

Appendix B: Message Codes for Applications 175

telCAHoldMsg

Description telCAHoldMsg specifies that hold activity is occurring on this call appearance. This
message is sent when the user presses the Hold key or when your application calls
TELHold Of TELRetrieve. mtype is unused and set to zero. value is set to one of
the following values:

telHoldCleared = 0; { hold was cleared }
telHoldEst = 1; { hold established }
telHoldFailed = 2; { hold could not be established }

msgInfo isunused and setto zero.

telCAIdleMsg

Description telCAIdleMsg indicates that the state of the call has changed to telcardlestate.

mtype, value, and msgInfo are unused and set to zero.

telCAIntercomMsg

Description telCAIntercomMsg specifies that activity relating to the Intercom feature has
occurred. This message is received after a call to TELIntercom. mType specifies the
intercom ID, if any. value is as follows:

telIntercomEst = 0; { Intercom was successful }
telIntercomComplete = 1; { Intercom activity completed}
telIntercomfailed = 2; { intercom failed}

msgInfo isunused and set to zero.

telCAInUseMsg

Description telCAInUseMsg indicates that the specified call appearance is part of a multiple-access
directory number (MADN) and is in use. mtype and msgInfo are unused and setto
zero. value s set to one of the following values:

inUsePrivate = 0; { MADN in use; cannot be accessed }
inUseCanAccess = 1; { MADN in use; others can join in }
inUseCanMakePrivate = 2; { MADN in use; any MADN group member can

access it and make it private }
inUseClear = 3; { MADN no longer in use }

176 Telephone Manager Developer’s Guide

telCAModemToneMsg

Description telCAModemToneMsg specifies that a modem tone has been detected on hTELCA.
mType is unused and set to zero. value is as follows:

telModemToneDetected = 0; { Modem Tone was detected }
telModemToneCleared = 1; { Modem Tone went away}

msgInfo isunused and set to zero.

telCAOfferMsg

Description telcaofferMsg specifies that an incoming call hTELCA is being offered to this
terminal.

mtype and value are unused and set to zero. msgInfo is unused and set to zero.

telCAOtherMsg

Description telcAaotherMsg is available for use by tools to relay tool-specific messages.

The tool defines the value of mtype, value, and msgInfo.

telCAOutgoingMsg

Description telCAOutgoingMsg specifies that an outgoing call has been initiated. mType is unused
and set to zero. value is as follows:

telPhysical = 0; { User lifted handset and initiated call }
telProgrammatic

1y { Outgoing call initiated programmatically }

If value is telPhysical,a new call appearance has been allocated, and its handle is
available in nTeELCA. If instead value is telProgrammatic, and your application
initiated the telephone call, the value of hTELCA is equal to the hTeLca value returned
by TELSetupcall. (If your application does not recognize hTELca, some other
application initiated the call.)

rmtDN is unused and set to zero. If the application wishes to know the rmton and
name, it should inspect the record pointed to by hreLCA.

Appendix B: Message Codes for Applications 177

telCAPagingMsg

Description telcaPagingMsg specifies that activity relating to paging has occurred. This message is
received after a call to TELPaging. mType specifies the paging ID, if any. value isas
follows:
telPageEst = 0; { Paging was successful }
telPageComplete = 1; { Paging activity completed }
telPageFailed = 2; { Paging failed }

msgInfo is unused and set to zero.

telCACallParkMsg

Description telcAcallParkMsg gives information about activities related to Call Park features. This
message is sent when the user presses a Call Park key or when your application calls
TELCallParkSet Of TELCallParkClear. mType is unused and set to zero. value is
as follows:

telCallParkEst = 1; { Call has been successfully parked }
telCallParkRetrieveEst = 2; { parked call has been successfully
retrieved }
telCallParkFailed = 3; { Attempt to setup call park has failed }
telCallparkRetrieveFailed = 4; { Attempt to retrieve parked call
failed }
telCallParkRecall = §; { Call park has been recalled }
msgInfo points to the following structure:
TYPE
CAGenericMsgRec = RECORD
rmtDN + StringPtr;
rmtName : StringPtr;
rmtSubaddress : StringPtr;
dialType INTEGER;
END
rmtDN, rmtName, and rmtSubaddress specify the directory number, user name, and
subaddress against which the call was parked, if the network switch parks calls against
directroy numbers. dialType indicates the “dialability” of the number specified in
rmtDN.
178 Telephone Manager Developer's Guide

telCACallPickupMsg

Description telCacallPickupMsg specifies the success or failure of a call pickup at the pickup end,
or specifies to the call originator that the call was picked up at a different directory
number. mType is unused and set to zero. value is as follows:

telCallPickupEst = 0; { Call pickup was successful }
telCallPickupFailed = 1; { Call pickup failed }
telCallPickedtp = 2; { Message to originator that call was picked

up at a different dn }

msgInfo points to the following structure:

TYPE

CAGenericMsgRec = RECORD
rmtDN : StringPtr;
rmtName : StringPtr;
rmtSubaddress : StringPtr;
dialType : INTEGER;

END

For telcallrickupEst and telCallPickupFailed, rmtDN and rmtSubaddress
identify the directory number and subaddress whose call was picked up successfully or
unsuccessfully. For telcallpickedup, rmtDN and rmtSubaddress specify the
directory number and subaddress at which the call was picked up.

rmtName identifies the name of the user associated with rmton. dialType indicates
the “dialability” of the number specified in rmton.

Appendix B: Message Codes for Applications 179

telCAProgressMsg

Description telCAProgressMsg reports on any progress of an outgoing call appearance specified by

180

hTELCA. mtype is unused. value specifies the progress as one of the following value:

telCAPDialTone = 1; { Dial tone }

telCAPRinging = 2; { Destination CA is alerting }

telCAPDialing = 3; { One or more digits has been dialed }
telCAPReorder = 4; { Reorder }

telCAPBusy = 5; { Busy }

telCAPRouted = 6; { Call routed; rmtDN will hold the routing }
telCAPRoutedOff = 7; { Call routed off-network; no further progress

will be available }

telCAPTimeout = 8; { Call timed out }
telCAPUpdate = 9; { name and rmtDN information has been updated }
telCAPPrompt = 10; { The network is prompting for more
information }
telCAPWaiting = 11; { Call is proceeding, but there is no response
yet from the destination }
telCAPUnknown = 15; { Call Progress state unknown }

msgInfo points to the following structure:

TYPE

CAGenericMsgRec = RECORD
rmtDN : StringPtr;
rmtName : StringPtr;
rmtSubaddress : StringPtr;
dialType : INTEGER;
END

If value iS telCAPUpdate, rmtDN, rmtName,and rmtSubaddress specify the
updated directory number, name, and subaddress of the remote end, if this information is
available. The Telephone Manager stores these values in the call-appearance record
referenced by hrerca. If value is telCAPRouted, rmtDN, rmtName, and
rmtSubaddress specify the updated directory number, name, and subaddress of the
routing directory number. If value is neither telcarupdate nor telCAPRouted,
rmtDN, rmtName, and rmtSubaddress are empty.

dialType indicates the “dialability” of the number specified in rmetpn,

Telephone Manager Developer's Guide

telCAQueuedMsg

Description telCAQueuedMsg specifies that a call is being queued for this terminal. mtype, value,
and msgInfo isunused and set to zero.

telCARejectMsg

Description telCARejectMsg gives information about activities related to Call Reject features. This
message is sent when the user presses a Call Reject key or when your application calls
TELRejectCall. mtype is the reason for disconnect, but is unused and set to zero.
value is as follows:

telCallRejectFailed = 0; { attempt to reject call has failed }
telCallRejectEst = 1; { call successfully rejected }
telCallRejected = 2; { message to originator that call
was rejected }
msgInfo is unused and set to zero.
telCASuccessiveAlert
Description telCASuccessiveAlert is sent by the tool each time the attached phone “rings.”

mtype, value, and msgInfo are unused and set to zero.

Appendix B: Message Codes for Applications 181

telCATransferMsg

Description telCATransferMsg specifies that transfer activity is occurring for hrerca. This
activity could be occurring because of calls to TELTransferprep,
TELTransferEstablish, Of TELTransferBlind, Of because the user is manually
initiating a transfer. mtype is unused and set to zero. value is set to one of the
following values:
telTransferPrepFailed = 0; { transfer could not be prepared}
telTransferPending = 1; { transfer prepared successfully}
telTransferEst = 2; { consult or blind transfer sucgessful}
telTransferFailed = 3; { consult or blind transfer failed }
telTransferred = 4; { message to originator of CA specifying
that the call was transferred to rmtDN
and that CAProgress messages will give
new rmtDN }
msgInfo points to the following structure:
TYPE
CATransfMsgRec = RECORD
rmtDN : StringPtr;
rmtName : StringPtr;
rmtSubaddress : StringPtr;
dialType :+ INTEGER;
prepCa : TELCAHandle;
END
If value equals telTransferEst Or telTransferFailed, prepCA specifiesa
handle to the prepared hTELCA; rmtDN, rmtName, and rmtSubaddress specify the
directory number, user, and subaddress to which the call was transferred. If value is
neither telTransferEst NOfr telTransferFailed, then prepCA, rmtDN, rmtName,
and rmtSubaddress are set to zero.
telCAUserUserInfoMsg
Description telCAUserUserInfoMsg specifies that transfer activity is occurring for hTELCA.

mtype and value are unused and set to zero.

msgInfo points to the following structure:

TYPE

CAUserUserInfoMsgRec = RECORD
userUserInfo : StringPtr;

END

userUserInfo points to any user-to-user information sent with the disconnect from
the remote end. Not all switches support the sending of user-to-user information at
disconnect time.

182 Telephone Manager Developer's Guide

Directory-number message codes for applications

The message codes in this section relate to specific directory numbers. For information on the
format and parameters of directory-number messages, refer to the template for directory-number
message handlers (yoNMsgHandler) in the section ‘Routines Your Application Must Provide,” in
Chapter 2.

telDNDNDMsga
Description telDNDNDMsg gives information about activities related to Do Not Disturb features.
This message is sent after application calls to TELDNDSet and TELDNDClr. mType is
the type of Do Not Disturb feature, as follows:
telDNDIntExt = 0; { Do Not Disturb for all inside and outside calls }
telDNDExternal = 1; { Do Not Disturb for outside calls only }
telDNDInternal = 2; { Do Not Disturb for inside calls only }
telDNDNonlIntercom = 3; { DND for all calls except intercom calls }
value is as follows:
telDNDCleared = 0; { Do Not Disturb has been cleared }
telDNDEst = 1; { Do Not Disturb has been established }
telDNDFailed = 2; { Attempt to setup Do Not Disturb has failed }
rmtDN, rthame,and rmtSubaddress are unused.
telDNForwardMsg
Description telDNForwardMsg gives information about activities related to call forwarding. This

message is received when TELForwardsSet and TELForwardclr are called. mType is
the type of Call Forward feature, as follows:

telForwardImmediate = 1; { Immediately forward calls }
telForwardBusy = 2; { Forward on Busy } |
telForwardNoAnswer = 3; { Forward on No answer }
telForwardBusyNA = 4; { Forwarding for busy and no answer }

value is as follows:

telForwardCleared = 0; { Forwarding has been cleared }
telForwardEst = 1; { Forwarding has been established }
telForwardFailed = 2; { attempt to setup forwarding has failed }

rmeDN specifies the remote directory number to which the call was forwarded. rmtname
specifies the name of the party associated with the remote directory number, if this
information is available. rmtsubaddress specifies the subaddress, if any, of the remote
directory number.

Appendix B: Message Codes for Applications 183

telDNOtherMsg

Description The custom message parameters are defined by individual telephone tools for use specific
to those tools.

telDNSelectedMsg

Description telDNSelectedMsg indicates that the directory number specified in this message has
been either selected or deselected. This message is sent in response toa TELDNSelect
call. value is one of the following values:

telDNDeselected = 0; { dn has been deselected }
telDNSelected = 1; { dn has been selected }
All other fields are unused.
telDNVoiceMailMsg
Description telDNVoiceMailMsg specifies that a voice-mail message has arrived for this directory

number. mtype is unused. value is assigned the following values:

telAllvVoiceMessagesRead = 0; { all messages have been read,
none are waiting to be read}
telNewVoiceMessage = 1; { a new message has arrived, or
messages are waiting for this dn}

emeDN specifies the calling directory number of the party leaving the message, if available.
rmtName specifies the name of the party leaving the message, if available.
rmtSubaddress specifies the subaddress, if any, of rmton.

184 Telephone Manager Developer’s Guide

Terminal message codes for applications

The message codes in this section relate to a specific terminal. For information on the format and
parameters of terminal messages, refer to the template for terminal message handlers
(MyTermMsqgHandler) in the section “Routines Your Application Must Provide,” in Chapter 2.

telTermCloseMsg

Description

telTermCloseMsg specifies that the terminal has shut down. This message is sent after
a successful TELCloseTerm call mtype and value are unused and set to zero.

telTermDisplayMsg

Description

telTermbisplayMsg specifies that the display has changed. This message is sent when
the terminal display has been changed—for instance, as a result of 2 new incoming call.
mtype contains the display mode and is one of the following values:

telNormalDisplayMode
telInspectMode
telMiscMode
telRetrieveMode

tel:t ectoryQueryMode

Normal display mode }

~e we

Inspect display mode }
Miscellaneous display mode }

Message retrieval mode }

i
v o W N
~e ve e

e N N e R e

Electronic directory mode }

value contains the type of information which has changed in the display and is one of

the following values:

telEntireDisplay
CallAapplD
CalledDN
CallingDN
CalledName
CallingName
OrigPermissions
DateandTime
toolspecific

= 0; { Entire display }

=05 { Network assigned CA ID }
= 2; { Called party dn }

my 3 { Calling party dn }

= 4; { Called party name }

= 5; { Calling party name }

= 6; { Originating permissions }

= 7; { Date and time of day }

{This value for other types that

may be supported by a particular
Telephone Tool. Values range from 256
to 32768}

{values from 8 to 255 are reserved by the Telephone Manager, and
will not be passed in this message }

Appendix B: Message Codes for Applications 185

telTermEnableMsg

Description telTermEnableMsg specifies whether the tool is able to communicate with the
terminal. If so, commands can be sent and messages can be received.

mtype is unused and set to zero.

value has one of the following values:

terminalEnabled = 0; { Can communicate with the terminal }
terminalDisabled = 1; { Cannot communicate with the terminal }
telTermErrorMsg
Description telTermErrorMsg specifies that the terminal has had some kind of hard equipment

failure. mtype and value are reserved.

telTermHookMsg

Description telTermHookMsg specifies that the hookswitch state has changed. This message is sent
when the telephone is physically placed on-hook or off-hook, or when TELSetHooksW is
called.

value specifies the hookswitch state and is one of the following values:

deviceOnHook = 0; { device on hook }
deviceOffHook = 1; { device off hook }

mtype specifies the type of device and is one of the following values:

telHandset = 1; { handset hookswitch }
telSpeakerphone = 2; { speakerphone 'on' switch }
toolspecific {This value for other types that may be supported

by a particular Telephone Tool. Values range
from 256 to 32768}
{values from 3 to 255 are reserved by the Telephone Manager and will
not be passed in this message }

telTermKeyMsg

Description telTermKeyMsg specifies that keys on the telephone pad or feature keys have been
pressed. This message is sent if the keys are pressed on the handset. If keys are “pressed”
programmatically, the application will be notified through normal use of directory-
number and call-appearance message handlers.

186 Telephone Manager Developer's Guide

If the user presses a key on the Macintosh keypad , value contains the ASCII value of
the key. If the user presses a feature key, value contains one of the following values:

telHangupKey =15 { Drop, or release, key pressed }
telHoldKey = 2; { Hold Key pressed }
telConferencekKey & 3 { Conference Key pressed }
telTransferKey = 4; { Transfer Key pressed }
telForwardKey =) 1§ { Call Forward Key pressed }
telCallbackKey = 6; { Callback Key pressed }
telDNDKey = 7; { Do Not Disturb Key pressed }
telCallPickupKey = 8; { Call Pickup Key pressed }
telCallParkKey = 9; { Call Park Key pressed }
telCallDeflectKey = 10; { Call Deflect Key pressed }
telVoiceMailAccessKey = 11; { Message Waiting Key pressed }
telCallRejectKey = 12; { Call Reject Key pressed }
VoiceMailKeyPressed = 13; { Voice Mail Key pressed }
telOtherKey = 16; { Other Key pressed }

mtype contains one of the following values:

telKeyPadPress = 1; { Key pressed on 12-digit keypad}
telFeatureKeyPress = 2; { Feature Key Pressed }
telTermOtherMsg
Description telTermOtherMsg is a vendor-defined message: Its meaning varies, depending on the
tool that sends it. value should contain an error code, and mtype should be set if
appropriate.
telTermOpenMsg
Description telTermopenMsg specifes that the terminal has been opened. This message is sent after

a successful TELOpenTerm call. mtype and value are unused and set to zero.

telTermResetMsg

Description telTermResetMsg specifies that the terminal has been reset. This message is sent after a
successful TELResetTerm call. mtype and value are unused and set to zero.

Appendix B: Message Codes for Applications 187

telTermVolMsg

Description

188

telTermvolMsg specifies that the volume type mtype has been changed to the level

value. This message will be sent if the user changes the volume, either using the handset
ot by means of TELSetvolume Of TELAlert.

mtype contains one of the following values:

telHandsetSpeakervol
telHandsetMicVol
telSpeakerphonevVol
telSpeakerphoneMicVol
telRingervol

L[]
v o W N

~e we we we

.
’

P e N N)

volume of the handset speaker }
sensitivity of the handset mic }
speakerphone volume }

sensitivity of the spkrphone mic }
volume of the ringer }

value contains the new volume level, which can range from 1 to telvolMax.

Telephone Manager Developer’s Guide

Appendix C Call-Appearance States

THIS APPENDIX lists and describes the call-appearance states
recognized by the Telephone Manager.

189

State Code
telCAActiveState
telCAAlertingState
telCABusyState

telCAConferencedHeldState

telCAConferencedState
telCADialingState
telCADialToneState
telCAHeldState
telCAIdleState
telCAInUseState
telCAOfferState
telCAQueuedState
telCAReorderState
telCARingingState
telCAUnknownState

telCAWaitingState

Meaning

This call is active; parties are free to exchange information.
A call is alerting at this terminal.

The destination is busy or cannot be reached.

This call is part of a conference and has been put on hold by this
terminal.

This call is now part of a conference.

This initiated outgoing call is dialing.

This initiated outgoing call has a dial tone.
This call has been put on hold by this terminal.
No call exists at this time.

The call is active at another terminal.

A call is being offered to this terminal.

A call is being queued at this terminal.
This call is in the reorder state.

This outgoing call is ringing.

The state of this call is unknown.

This initiated outgoing call is waiting for a response from the
destination.

190 Telephone Manager Developer’s Guide

Index

A

active state, description of 5
alerting state, description of 5
application, your
call-appearance record and 22
definition of 7
directory-number record and 15
message handler templates for 96

bearerType field 26
bForwardDN field 20
bForwardPartyName field 20
bForwardSubaddress field 20
blind transfer 61, 147

bundle resource 98-99

C

CA. See call appearances
call-appearance messages

for conference calls 159-160

descriptions of 170-182

general 151-155

incoming/outgoing 155-158

for transferring calls 158-159
call-appearance record 22-29
call appearances. See also outgoing call

appearances

accepting 56, 117

answering 56, 118

connecting 126

controlling 90-93

counting 90, 126

deflecting 58

description of 5

disposing of handle for 93, 118

dropping 59, 132, 153, 160
finding 90-91
finding state of features of 92
finding state of 92
finding supported messages 53
forwarding 62
getting information about 91
maximum number of 15, 17
message handler for
clearing 52
registering 50-51
template for 96
parking 68-69, 142
picking up 68
putting on hold 60, 138
queuing 155
reference number for 23
rejecting 57, 142-143
retrieving those held 60, 143-144
retrieving those parked 69, 144
sending message on activity of
121-122
setting up 145
states of 190
Call Back feature 152
clearing 119
messages for 171
requesting 65
setting 120
showing state of 28
Call Back Now feature 66, 119120
showing state of 28
Call Deflect feature 127, 152
messages for 173
Call Forward feature 62, 153
change in status of 161
clearing 133

messages for 175, 183
setting 133
Call Park feature 68-69, 142, 154
messages for 178
showing state of 28
Call Park Retrieve feature 28
Call Pickup feature 68, 120-121, 154
messages for 179
showing state of 18-19
Call Reject feature 155
messages for 181
callType field 25
caRef field 23
caState field 24
updating 135
Communications Resource Manager 99
Conference Drop feature 27
Conference feature
call-appearance messages for
159-160
establishing 64, 124-125
maximum number of parties for 26
messages for 172-173
preparing for 63, 125
showing state of 27
Conference Split feature 64, 125
showing state of 27
config field 11
configuration fields, validating 33
configuration record 111
configuration strings 40-41, 109-110
converting 75~76
confLimit field 26
connectTime field 24
Consult transfer 60-61
controls, setting up 37

191

curAllocCas field
in directory-number data structure 17
in TELTermRecord data
structure 15

D
data structures 8-29
call appearance 23-29
for directory-number record 15-21
for telephone record 10-15
defproc field 11
device states
monitoring 78-79
setting 80-81
dialType field 25
directory-number messages 160-162
descriptions of 183-184
directory numbers
call appearances and 5
controlling 85-89
counting 14, 85, 126-127
description of 4
disposing of handle for 89, 128-129
features supported by 129
finding by index 86
finding by name 87
finding state of features of 88
finding supported messages 52
getting information about 87
locating 129-130
message handler for
clearing 51
registering 49
template for 96
reference numbers for 16
selecting 88, 131, 162
Directory Number Select feature 18
displayRows field 14
display text 14
changing 163
getting current 135
messages for 185
monitoring 83
setting 84, 144
DN. See directory numbers
dn field 17
dnPartyName field 17
dnRef field 16
dnSubaddress field 17
dnType field 17

192 Index

Do Not Disturb feature 18, 66-67
change in status of 161
clearing 128
messages for 183
setting 129

Drop feature 59

E

English, American 75-76, 109110
events

activate 45

for custom tool-settings dialog box

37-38

menu 45

message for 132

resume 45

F,G
Fax tone 153, 175
featureFlags field 13
in call-appearance data structure 27
in directory-number data structure
17-19
updating
in call-appearance record 133-134
in directory-number record
135-136
flags field 10-11
Forward feature. See Call Forward
feature
forwardFlags field 19
Forward On Busy And No Answer
feature 19
Forward On Busy feature 1920
Forward On No Answer feature 19-20

H

handles 17
call appearances and 23
disposing of 128
call-appearance 93
directory-number 89
handsetMicvol field 14
handsets 14
handsetSpeakervol field 14
hardware 34
failure messages for 186
hasDisplay field 14
held state, description of 5

Hold feature 60
messages for 138, 153, 176
showing state of 27

hookswitch
finding current state of 137
messages for 186
monitoring 77
setting 78, 144-145

hTELDN field 23

hTEL field
in call-appearance data structure 24
in directory-number data structure 17

LJ,K
idle state 138, 153
description of 5
messages for 176
idel-toop tasks 43
iForwardDN field 20
iForwardpPartyName field 20
iForwardSubaddress field 20
Immediate Call Forwarding feature
19-20
incoming call appearances
messages 155-158
state progression of 5
information, getting from a terminal 44
InitTEL routine 31
Intercom feature 18-19, 153
activating 138-139
messages for 176
using 71
interface, physical 4
intExt field 25
ISDN 2

L

localization code resource 98, 109-110
logical directory numbers 4

M

Macintosh Communications Toolbox 2
Macintosh computers 6
Telephone Manager concepts and 4
Macintosh Device Manager 4
main code resource 98, 114
messages accepted by 115-116
messages sent by 149-150
master message handlers 149

maxAllocCAas field
in directory-number data structure 17
in TELTermRecord data
structure 15
menu events 45, 139
message handler templates 96-97
messages
handling 47
sending 3
microphones 14
modem tone 154, 177
multiple-access directory numbers
153, 176
MyCAMsgHandler routine %
MyDNMsgHandler routine %6
MyTermMsgHandler routine 95

N

naForwardDN field 20
naForwardPartyName field 20
naForwardRings field 20
naForwardSubaddress field 20
networks
telephone 2
Telephone Manager routines and 8
network switches 4, 47
implementing features for 73
listing features for 72-73
numDNs field 14
numIntercomIDs field 19
numPagelDs field 19
numPickupIDs field 19

o

oldconfig field 11
otherFeatures field 27-28
updating
in call-appearance record 133-134
in directory-number record
135-136
othervol field 14
outgoing call appearances
change of state in 154
connecting 55
dialing 55
messages 155-158
setting up 54-55
state progression of 5

P,Q
Paging feature 18-19, 154
accessing 70-71
activating 141-142
messages for 178
parameters, passing of 3
physical directory numbers 4
priority field 26
prociD field 10
getting 31
pTELTerm field 12
pTELTermSize field 12

R

rate field 26
records 6
refCon field
in call-appearance data structure 28
in directory-number data structure 21
in TELRecord data structure 11
relatedCA field 24
reservedl field 12
reserved2 field 12
reserved field
in call-appearance data field 29
in directory-number data structure 21
in TELRecord data structure 11
in TELTermRecord data
structure 15
resource IDs 99
result codes 166-168
ringerTypes field 14
ringervol field 14
rmtDN field 26
rmtPartyName field 26
rmtSubaddress field 26
routeDN field 26
routePartyName field 26
routeSubaddress field 26

S
scripting language
code resource 98, 107-109
interfacing with 40-41
setup-definition code resource 98,
102-106
speakerphones 14
speakerphonevol field 14

strings
configuration 4041, 109-110
converting 75-76
Pascal-style 8
system requirements 6

T

telAcceptCallMsg message 117
TELAcceptCall routine 56
telActivateMsg message 117
TELActivate routine 45
telAlertMsg message 118
TELAlert routine 82
telAnswerCallMsg message 118
TELAnswerCall routine 56
telCAActiveMsg message 152
description of 170
telCAAlertingMsg message 157
description of 170
telCACallbackMsg message 152
description of 171
telCACallParkMsg message 154
description of 178
telCACallPickupMsg message
154
description of 179
telCAConferenceDropMsg
message 160
description of 172
telCAConferenceMsg message
160
description of 172
telCAConferenceSplitMsg
message 160
description of 172-173
telCADeflectMsg message 152
description of 173
telCADigitsMsg message 152
description of 174
telCADisconnectMsg message
153
description of 174
telCADisposeMsg message 118
TELCADispose routine 93
telCAEventsSuppMsg message
119
TELCAEventsSupp routine 53
telCAFaxToneMsg message 153
description of 175
telCAForwardMsg message 153
description of 175

193

Index

~

APPLE COMPUTER, INC. SOFTWARE LICENSE

PLEASE READ THIS LICENSE CAREFULLY BEFORE USING THE
SOFTWARE. BY USING THE SOFTWARE, YOU ARE AGREEING
TO BE BOUND BY THE TERMS OF THIS LICENSE. IF YOU DO
NOT AGREE TO THE TERMS OF THIS LICENSE, PROMPTLY
RETURN THE UNUSED SOFTWARE TO THE PLACE WHERE YOU
OBTAINED IT AND YOUR MONEY WILL BE REFUNDED.

1. License. The application, demonstration, system and other software
accompanying this License, whether on disk, in read only memory, or on
any other media (the “Apple Software”) and related documentation are
licensed to you by Apple. You own the disk on which the Apple Software
is recorded but Apple and/or Apple's Licensor(s) retain title to the Apple
Software and related documentation. This License allows you to use the
Apple Software on a single Apple computer and make one copy of the
Apple Software in machine-readable form for backup purposes only. You
must reproduce on such copy the Apple copyright notice and any other
proprietary legends that were on the original copy of the Apple Software.
You may also transfer all your license rights in the Apple Software, the
backup copy of the Apple Software, the related documentation and a copy
of this License to another party, provided the other party reads and agrees
to accept the terms and conditions of this License.

2. Restrictions. The Apple Software contains copyrighted material,
trade secrets and other proprietary material and in order to protect them
you may not decompile, reverse engineer, disassemble or otherwise
reduce the Apple Software 10 a human-perceivable form. You may not
modify, network, rent, lease, loan, distribute or create derivative works
based upon the Apple Software in whole or in part. You may not
electronically transmit the Apple Software from one computer to another
or over a network.

3. Support. You acknowledge and agree that Apple may not offer
any technical support in the use of the Software.

4. Termination. This License is effective until terminated. You may
terminate this License at any time by destroying the Apple Software and
related documentation and all copies thereof. This License will terminate
immediately without notice from Apple if you fail 10 comply with any
provision of this License. Upon termination you must destroy the Apple
Software and related documentation and all copies thereof.

5. Export Law Assurances. You agree and certify that neither the
Apple Software nor any other technical data received from Apple, nor the
direct product thereof, will be exported outside the United States except as
authorized and as permitted by the laws and regulations of the United
States.

6. Government End Users. If you are acquiring the Apple Software
on behalf of any unit or agency of the United States Government, the
following provisions apply. The Government agrees:

(i) if the Apple Software is supplied to the Department of Defense
(DoD), the Apple Software is classified as “Commercial Computer
Software™ and the Government is acquiring only “restricted rights” in the
Apple Software and its documentation as that term is defined in Clause
252.227-7013(cX(1) of the DFARS; and

(ii) if the Apple Software is supplied to any unit or agency of the
United States Government other than DoD, the Government's rights in the
Apple Software and its documentation will be as defined in Clause 52.227-
19(c)(2) of the FAR or, in the case of NASA, in Clause 18-52.227-806(d) of
the NASA Supplement to the FAR.

7. Limited Warranty on Media. Apple warrants the disks on which the
Apple Software is recorded to be free from defects in materials and
workmanship ungler normal use for a period of ninety (90) days from the
date of purchase ‘as evidenced by a copy of the receipt. Apple’s entire
liability and your exclusive remedy will be replacement of the disk not

meeting Apple's limited warranty and which is returned to Apple or an
Apple authorized representative with a copy of the receipt. Apple will
have no responsibility to replace a disk damaged by accident, abuse or
misapplication. ANY IMPLIED WARRANTIES ON THE DISKS, INCLUDING
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO NINETY (90)
DAYS FROM THE DATE OF DELIVERY. THIS WARRANTY GIVES YOU
SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HAVE OTHER RIGHTS
WHICH VARY FROM STATE TO STATE.

8. Disclaimer of Warranty on Apple Software. You expressly
acknowledge and agree that use of the Apple Software is at your sole risk.
The Apple Software and related documentation are provided “AS 1S" and
without warranty of any kind and Apple and Apple's Licensor(s) (for the
purposes of provisions 8 and 9, Apple and Apple's Licensor(s) shall be
collectively referred to as "Apple") EXPRESSLY DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. APPLE DOES NOT WARRANT THAT THE
FUNCTIONS CONTAINED IN THE APPLE SOFTWARE WILL MEET YOUR
REQUIREMENTS, OR THAT THE OPERATION OF THE APPLE SOFTWARE
WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTS IN THE
APPLE SOFTWARE WILL BE CORRECTED. FURTHERMORE, APPLE
DOES NOT WARRANT OR MAKE ANY REPRESENTATIONS REGARDING
THE USE OR THE RESULTS OF THE USE OF THE APPLE SOFTWARE OR
RELATED DOCUMENTATION IN TERMS OF THEIR CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE. NO ORAL OR WRITTEN
INFORMATION OR ADVICE GIVEN BY APPLE OR AN APPLE
AUTHORIZED REPRESENTATIVE SHALL CREATE A WARRANTY OR IN
ANY WAY INCREASE THE SCOPE OF THIS WARRANTY. SHOULD THE
APPLE SOFTWARE PROVE DEFECTIVE, YOU (AND NOT APPLE OR AN
APPLE AUTHORIZED REPRESENTATIVE) ASSUME THE ENTIRE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION. SOME STATES
DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE
ABOVE EXCLUSION MAY NOT APPLY TO YOU.

9. Limitation of Liability. UNDER NO CIRCUMSTANCES INCLUDING
NEGLIGENCE, SHALL APPLE BE LIABLE FOR ANY INCIDENTAL,
SPECIAL OR CONSEQUENTIAL DAMAGES THAT RESULT FROM THE USE
OR INABILITY TO USE THE APPLE SOFTWARE OR RELATED
DOCUMENTATION, EVEN [F APPLE OR AN APPLE AUTHORIZED
REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. SOME STATES DO NOT ALLOW THE LIMITATION OR
EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL
DAMAGES SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT
APPLY TO YOU.

In no event shall Apple's total liability to you for all damages, losses, and
causes of action (whether in contract, tort (including negligence) or
otherwise) exceed the amount paid by you for the Apple Software.

10. Controlling Law and Severability. This License shall be govemed
by and construed in accordance with the laws of the United States and the
State of California, as applied to agreements entered into and to be
performed entirely within California between California residents. If for
any reason a court of competent jurisdiction finds any provision of this
License, or portion thereof, to be unenforceable, that provision of the
License shall be enforced to the maximum extent permissible so as to effect
the intent of the parties, and the remainder of this License shall continue in
full force and effect.

11. Complete Agreement. This License constitutes the entire
agreement between the parties with respect to the use of the Apple
Software and related documentation, and supersedes all prior or
contemporaneous understandings or agreements, written or oral,
regarding such subject matter. No amendment to or modification of this
License will be binding unless in writing and signed by a duly authorized
representative of Apple.
7/15/91
001-0158-A

