
®

For XTND 1.3 XTND Programmer’s Guide

 ®

Developer Technical Publications
© Apple Computer, Inc. 1991

 Apple Computer, Inc. States and other countries. ARE ASSUMING THE ENTIRE RISK AS

TO ITS QUALITY AND ACCURACY.Adobe Illustrator and PostScript are

registered trademarks of Adobe Systems

Incorporated.

© 1991, Apple Computer, Inc.

All rights reserved.

IN NO EVENT WILL APPLE BE LIABLE

FOR DIRECT, INDIRECT, SPECIAL,

INCIDENTAL, OR CONSEQUENTIAL

DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS

MANUAL, even if advised of the possibility

of such damages.

No part of this publication or the software

described in it may be reproduced, stored in

a retrieval system, or transmitted, in any

form or by any means, mechanical,

electronic, photocopying, recording, or

otherwise, without prior written permission

of Apple Computer, Inc., except in the

normal use of the software or to make a

backup copy of the software. The same

proprietary and copyright notices must be

affixed to any permitted copies as were

affixed to the original. This exception does

not allow copies to be made for others,

whether or not sold, but all of the material

purchased (with all backup copies) may be

sold, given, or loaned to another person.

Under the law, copying includes translating

into another language or format. You may

use the software on any computer owned by

you, but extra copies cannot be made for

this purpose.

ITC Garamond and ITC Zapf Dingbats are

registered trademarks of International

Typeface Corporation.

Microsoft is a registered trademark of

Microsoft Corporation.

Claris, MacDraw, and MacWrite are

registered trademarks of Claris

Corporation.

THE WARRANTY AND REMEDIES SET

FORTH ABOVE ARE EXCLUSIVE AND

IN LIEU OF ALL OTHERS, ORAL OR

WRITTEN, EXPRESS OR IMPLIED. No

Apple dealer, agent, or employee is

authorized to make any modification,

extension, or addition to this warranty.

DataViz is a trademark of DataViz, Inc.

QuickDraw and ResEdit are trademarks of

Apple Computer, Inc.

THINK C is a trademark of Symantec

Corporation. Some states do not allow the exclusion or

limitation of implied warranties or liability

for incidental or consequential damages, so

the above limitation or exclusion may not

apply to you. This warranty gives you

specific legal rights, and you may also have

other rights which vary from state to state.

Simultaneously published in the United

States and Canada.

LIMITED WARRANTY ON MEDIA AND

REPLACEMENT

If you discover physical defects in the

manual or in the media on which a software

product is distributed, APDA will replace the

media or manual at no charge to you

provided you return the item to be replaced

with proof of purchase to APDA.

XTND Technology © 1989-1991 Claris

Corporation. All rights reserved. This work

contains confidential and proprietary

information and therefore must be used only

in accordance with the license provided

ALL IMPLIED WARRANTIES ON THIS

MANUAL, INCLUDING IMPLIED

WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR

PURPOSE, ARE LIMITED IN DURATION

TO NINETY (90) DAYS FROM THE

DATE OF THE ORIGINAL RETAIL

PURCHASE OF THIS PRODUCT.

Printed in the United States of America.

The Apple logo is a registered trademark of

Apple Computer, Inc. Use of the “keyboard”

Apple logo (Option-Shift-K) for commercial

purposes without the prior written consent

of Apple may constitute trademark

infringement and unfair competition in

violation of federal and state laws.

Even though Apple has reviewed this

manual, APPLE MAKES NO WARRANTY

OR REPRESENTATION, EITHER

EXPRESS OR IMPLIED, WITH RESPECT

TO THIS MANUAL, ITS QUALITY,

ACCURACY, MERCHANTABILITY, OR

FITNESS FOR A PARTICULAR PURPOSE.

AS A RESULT, THIS MANUAL IS SOLD

“AS IS,” AND YOU, THE PURCHASER,

Apple Computer, Inc.

20525 Mariani Avenue

Cupertino, CA 95014-6299

408-996-1010

Apple, the Apple logo, APDA, LaserWriter,

and Macintosh are trademarks of Apple

Computer, Inc., registered in the United

Contents

Contents i

Figures and Tables iii

Chapter 1 Overview 1

About XTND 2

The XTND document model 3

The XTND User Interface 4

The XTND Programming Interface 8

Data Types and Conventions 9
General Information 9
Reserved Characters 10
Paragraph attributes 11
Units of measurement 12
Tabs 12

Chapter 2 Writing XTND-Capable Applications 15

Locating the XTND library 16

Importing a file 17
Implementation of XTNDGetFile 17
Using the XTND Translator to read in the file 24

Saving a file 31
Implementation of XTNDPutFile 31
Using XTND to write the file 32

Matching a file to a translator 39

Selecting a list of translators 41

Rebuilding the list of available translators 44

XTND localization 44
Application localization 45
Translator localization 45
Language matching algorithm 46

i

Chapter 3 Writing XTND Translators 47

Translator file structure 48
The 'FTYP' resource 48
Primary version check method—Version bytes 50
Secondary version check method—The 'FDIF' resource 51
An alternative—The 'FINI' resource 51

Translator programming interface 52
Errors 52

Writing a PICT (or Picture) import translator 53

Writing a text import translator 54
Writing the translator 54
Import translator actions 54
directive Values 55
Special characters 58
“Offset” special characters 59
Footnotes 60
Mapping objects and attributes 60

Writing a text export translator 61
Writing to the translator 61
Export translator actions 61
directive values 61
Special characters 64
Footnotes 64
Closing 65

Appendix A 'FTYP' resource format 67

Appendix B Parameter block formats 71

Picture translator parameter block 72

Appendix C Header samples 83

Import directives 84

Export directives 85

Appendix D Code samples 87

FDIF' sample code 88

Picture translator sample code 88

Text import translator sample code 89

Export translator sample code 91

ii XTND Programmer’s Reference

Figures and Tables

Figure 1-1 Objects imported and exported by XTND translators 3
Figure 1-2 Icon for an XTND translator 5
Figure 1-3 XTND System icon 5
Figure 1-4 A list of files in an Open dialog box 5
Figure 1-5 A pop-up menu in a Save As dialog box 6
Figure 1-6 XTND Translator List icon 7
Figure 1-7 Bit 7 is the most significant 10
Table 1-1 Reserved characters 10
Table 1-2 Structure of the NumParaFmts record 11
Table 1-3 Units field values and corresponding size field types 12
Table 1-4 Sample units field values and corresponding size field

types 12
Table 1-5 Tab definitions 13

Table 2-1 TransDescribe block 18
Table 2-2 SFParamBlock 20
Table 2-3 XTNDPutFile-specific parameters 31
Figure 2-1 XTND version (short integer) 45

Table 3-1 PictMisc definition 58
Table 3-2 miscData values 59
Table 3-3 headerStatus and footerStatus variables 63

Table A-1 'FTYP' resource format 68
Table B-1 Picture translator parameter block 72
Table B-2 Import translator parameter block 73
Table B-2 Import translator parameter block (Continued) 74
Table B-2 Import translator parameter block (Continued) 75
Table B-2 Import translator parameter block (Continued) 76
Table B-2 Import translator parameter block (Continued) 77
Table B-2 Import translator parameter block (Continued) 78

Figures and Tables iii

Chapter 1 Overview

This chapter is an overview of the XTND architecture. It
summarizes the XTND document model, user interface, and
programming interface. At the end of Chapter 1 is a description of
the data types and conventions used throughout this document.

1

About XTND

XTND is an architecture that allows Macintosh® applications to read and to write
files in a potentially unlimited number of file formats. The XTND architecture
includes the following components:

n XTND-capable applications, which are linked with a small library of “glue”
routines.

n The XTND System, a file dynamically loaded by the glue routines. The XTND
System enumerates the open-ended set of file translators via the standard XTND
search path by displaying a modified Standard File dialog box to select the file
and format for reading or writing, loads the appropriate translator, and steps
aside to allow the application to communicate directly with the translator.

n A standard text document model which specifies the “grammar” of text
documents, as well as an Application Programming Interface (API) for reading
and writing such standard documents. This API is used to communicate between
the application and the translator.

n An open-ended set of XTND translator files stored on the Standard XTND search
path. Each translator file contains resources for reading and writing one or more
file formats.

The benefits of this architecture include the following:

n The process of importing and exporting foreign file formats is seamlessly
integrated into the Open and Save As dialog boxes, minimizing the number of
extra steps required to read and write such files.

n Users can customize their machines by installing only the required translators.

n Applications can share translators.

n XTND-capable applications and translators can be released independently, as
long as compatibility rules are observed.

This document shows you how to implement XTND translator capability in your
application. Although this document describes only the importing and exporting of
text documents, you can use the XTND System library with other types of
translators; only the communication between the application and the translator will
change.

This document is a part of the XTND Developer’s Kit. The first chapter provides an
overview of the XTND document model, user interface, programming interface, and
programming conventions. The second chapter describes how to use XTND technology
to allow your application to communicate with external code resources, such as file
translators. The third chapter describes how to implement XTND-compatible file
translators. The appendixes include resource templates and C header files as well as
extracts from sample translators. The XTND Developer’s Kit also includes 3.5”
floppy disks containing the complete header files and other components necessary to
build XTND-capable applications and translators.

2 XTND Programmer’s Reference

u Note: Install all XTND translators and the file named "Claris XTND System"
into the Extensions folder inside your System Folder if you are using Macintosh
System 7.0 or later versions. If you are using an earlier version of the Macintosh
System Software, install all XTND translators and the file named "Claris
XTND System" into a folder named "Claris" in your System Folder.

The XTND document model

The XTND document model describes the objects that can occur in a document, along
with their attributes and sequence. In a sense, a document model is a grammar in that
it guides the parsing and generation of “grammatical” documents. Thus, a document
model describes the order of objects as well as their dependent relationships. Figure
1-1 illustrates the kinds of text objects you can import and export using XTND
translators.

n Figure 1-1 Objects imported and exported by XTND translators

Chapter 1 Overview 3

An XTND text document consists of one or more stories. In Figure 1-1,left header, every

header, right header, main body, left footer, every footer, right footer, and footnotes are all
stories. The document has attributes, such as number of columns, the width of the
gutter , the width between columns, page margins, and starting page number.

A story is a “flow” of paragraphs and pictures that can be “poured” into a page
layout.

A paragraph consists of a sequence of text runs and optional special characters and a
paragraph ending character.

A paragraph’s attributes include line leading, leading before and after the
paragraph, first line indent, left indent, right indent, and tab stops.

A text run consists of a string of characters with a homogeneous set of font, size, and
style attributes. The characters are taken from the standard Macintosh character set.

A picture is a sequence of QuickDraw™ commands recorded in the standard Macintosh
PICT format.

Special characters signify a specially-computed string value or picture to be inserted in
the running flow of text. Examples include the page number, the current date, and
footnote references.

A paragraph ending character represents an instruction to the text-flow process and is
placed in the running flow of text. Examples include page breaks, column breaks, and
hard return characters.

The XTND User Interface

The user installs XTND translators by dragging translator icons into any of the
following folders, or any subfolders within them:

n the Extensions Folder (System 7 only) (Recommended)

n the Claris folder (located in the System Folder)

An example of the icon design for a typical XTND translator is shown below:

4 XTND Programmer’s Reference

n Figure 1-2 Icon for an XTND translator

In addition, the user must install the file named Claris XTND System somewhere in
the XTND search path, which is as follows:

n the Extensions Folder (System 7 only)

n the System Folder

n the Claris folder (located in the System Folder)

Figure 1-3 shows the XTND System icon.

n Figure 1-3 XTND System icon

The XTND System implements the standard XTND user interface for specifying a file
to be opened or saved. It allows the user to choose the format of the files shown in
the Open dialog box and to specify the format of a file in the Save As dialog box.
Other functions allow an application to request a list of translators or determine the
availability of a translator that can open a specified file.

XTND applications use these packages in place of those in the Macintosh Standard
File package. When the user selects the Open or Save As menu commands, the
application calls this library package to find or name the document.

In the standard Open dialog box, the library places a pop-up menu below the file
list, as in Figure 1-4.

n Figure 1-4 A list of files in an Open dialog box

Chapter 1 Overview 5

When the default option (“All available”) is in effect, all available files that can
be opened are displayed in the file list. If the user chooses one of the pop-up menu
selections, then only files that match that file specification are displayed.

Some applications can read and write certain file formats without using external
XTND translators. These file formats are listed above a dotted line in the pop-up
menu listing of translator file formats. Although these formats appear to the user to
behave just like XTND translators, they are built into the application and need not
be installed.

During a Save As command, the pop-up menu is similarly located, between the file
list and the document name. Figure 1-5 shows an example.

n Figure 1-5 A pop-up menu in a Save As dialog box

After identifying the file and file format, the user clicks the Open (or Save) button
to initiate the Open (or Save). The appropriate XTND translator is automatically
loaded to import (or export) the file.

Applications can choose to override this user interface by supplying their own import
and export dialog boxes. These applications can use the XTND System to generate
the list of available translators and use the translators to read or write documents.

The XTND System creates a file named XTND Translator List which contains the list of
available translators. This list is updated whenever the XTND System detects a
change in the installed translators. The XTND System checks the modification
dates of the following folders to determine if the installed translators have
changed:

n a folder named Claris Translators in the application folder

n a folder named Claris Translators in the System Folder

n a folder named Claris Translators in the Claris folder (the Claris folder is within
the System Folder)

Because translators may be installed in folders other than these, however,
sometimes the list is not updated. To force an update of the list of translators, the
user can remove the XTND Translator List file. In response, the XTND System creates a
new list file in one of the following locations:

n the Preferences Folder (System 7 only);

6 XTND Programmer’s Reference

n the Claris folder (located in the System Folder);

n the System Folder (if no Claris folder exists in the System Folder);

Figure 1-6 shows the XTND Translator List icon.

n Figure 1-6 XTND Translator List icon

XTND Translator List

Important Your End User documentation should include the following
statement: "Install all translators and the file named Claris
XTND System into the Extensions folder when using System
Software version 7.0. If you are using an earlier version of System
Software, install all translators and the file named Claris XTND
System into the Claris folder located in the System folder."

Chapter 1 Overview 7

The XTND Programming Interface

The XTND library is stored in a file named Claris XTND System, which must be
located somewhere in the standard XTND search path described earlier in this
chapter. You will find Claris XTND System on the accompanying 3.5-inch disk. It
should be placed (along with the XTND translators) in the Claris folder in the user’s
System Folder, and it can be placed in the system folder if the system has no Claris

Folder. This library contains the routines that locate,organize, and select from
among the available translators. In this way, the application need not implement
these routines, and you can update the routines without affecting applications that
use the library.

The XTNDInterface.Lib.o and XTNDInterface.π libraries(also on the
accompanying 3.5-inch disk) are for MPW® and THINK C™, respectively. These
libraries allow your application to call the XTND library. They contain a procedure
to initialize the library, the XTNDGetFile and XTNDPutFile procedures, other
utility procedures, and, finally, the procedure to dispose of the library when the
application is finished with it. Prototypes for all XTND library routines, along
with other constants and data structures needed in XTND, are in the file
XTNDInterface.h if you are using C. XTNDInterFace.p contains the
corresponding Pascal definitions. To use the XTND System, you must link the
appropriate library to your application.

u Note: When creating an XTND-capable application, be sure to take into account
that memory is required to load the XTND System and to perform XTND
functions.

The initialization routine, XTNDInitTranslators, attempts to create a handle to
some global memory, then to search for the Claris XTND System file, and finally to
locate and create a list of available XTND translators. If the attempt to locate the
Claris XTND System file or to create the global handle space fails, the initialization
routine returns an error. None of the other XTND routines (except
XTNDCloseTranslators) should be called if an error occurs in initialization.

The XTNDGetFile routine allows the user to specify a file and an XTND translator
to be used for opening the file. The application specifies the criteria that determine
which XTND translators are available, optionally specifies a dialog template,
filter procedure, and dialog hook; and then calls XTNDGetFile, which returns a
regular SFReply record and a pointer to the selected XTND translator.

8 XTND Programmer’s Reference

The XTNDPutFile routine allows the user to specify a file to be saved and an XTND
translator to be used for writing to the file. As with the XTNDGetFile routine, the
application calls XTNDPutFile, which returns a standard SFReply record and a
pointer to the selected XTND translator.

The XTNDCloseTranslators routine tidies up for the library. The application
calls XTNDCloseTranslators, which unlocks and releases all handles and
pointers and removes the library segments and resources that were loaded into
memory. It also disposes of the global handle that the application created. You
may call this routine even if the initialization was not completed successfully, but
there is no need to do so.

The XTNDMatchFile routine finds and returns a translator that opens a specified
file, or returns a result code indicating that no suitable translator could be found.

The XTNDSelectTranslator routine returns a list of translators that meet the
criteria specified by the application. This is how the application finds out which
translators are available to perform different tasks.

The XTNDRebuildTransList routine updates the list of available translators
while the application is running. This routine provides a convenient alternative to
quitting the application, discarding the XTND Translator List file, and restarting
the application. The update routine is useful when translators are installed while
the application is running.

The XTND 1.3 Developer’s Kit includes a 3.5 ” disk with sample applications.
XTEStyleSample (a Pascal example) and TESample (a C example) are sample
programs that illustrate the methods outlined here.

Data Types and Conventions

This section defines the standard data types and conventions used in the XTND
architecture.

General Information

Unless otherwise noted, the following apply:

n TRUE is 1 (0x01) and FALSE is 0 (0x00).

n All numerical fields are signed short integers (16 bits).

n All measurements are stored in fixed fields as points (that is, 1 inch is stored as
0x00480000).

Chapter 1 Overview 9

n Bit 7 is always the most significant bit in a byte, and bit 0 is always the least

significant, as shown in Figure 1-7.

n Figure 1-7 Bit 7 is the most significant

Reserved Characters

The characters in Table 1-1 have special meaning in an XTND text document.
Characters in italics are considered special characters; paragraph ending characters
are indicated by boldface.

n Table 1-1 Reserved characters

Character Value Description

2 (0x02) Page number

3 (0x03) Footnote reference (within a footnote)

4 (0x04) Picture

5 (0x05) Footnote reference (within the main body)

6 (0x06) Merge break character

7 (0x07) Hard return (return within a paragraph)

9 (0x09) Tab

11 (0x0B) Column break

12 (0x0C) Page break

13 (0x0D) Return (paragraph break)

21 (0x15) Short date

22 (0x16) Abbreviated date

23 (0x17) Long date

24 (0x18) Abbreviated with day date

25 (0x19) Long with day date

26 (0x1A) Time

10 XTND Programmer’s Reference

31 (0x1F) Discretionary hyphen

Paragraph attributes

The application creates the paragraph format record (NumParaFmts); the
translator reads (but should not modify) the elements. Table 1-2 shows the structure
of the record.

n Table 1-2 Structure of the NumParaFmts record

Length Description

4 bytes (Fixed) Offset in points of the left indent relative to the edge of the
left column

4 bytes (Fixed) Offset in points of the first line indent relative to the left
indent

4 bytes (Fixed) Offset in points of the right indent from the edge of the right
column

4 bytes Leading. This field can have different meanings, according to the
value of the leading units field, described later. (See the next
section, “Units of measurement,” for a description of the possible
values for this field.)

4 bytes Space before. Extra space before the current paragraph. This field
can take on different meanings based on the space before units field
described later. (See the next section, “Units of measurement,” for a
description of the possible values for this field.)

4 bytes Space after. Extra space after the current paragraph. This field can
have different meanings based on the space after units field as
described later. (See the next section, “Units of measurement,” for a
description of the possible values for this field.)

4 bytes Leading units. (See the next section, “Units of measurement,” for a
description of the possible values for this field.)

4 bytes Space before units. (See the next section, “Units of measurement,” for
a description of the possible values for this field.)

4 bytes Space after units. (See the next section, “Units of measurement,” for
a description of the possible values for this field.)

Chapter 1 Overview 11

Units of measurement

The Leading, Space before, and Space after fields (called size fields) are each
associated with a corresponding units field in a paragraph record. A units field
determines the unit of measurement (such as lines or inches) the user has specified for
the corresponding size field. A size field contains either a fixed-point value (which
always contains the line spacing in points) or a fixed-line spacing value (where 0
means 1 line, 1 (0x00010000) means 2 lines, and so on), based on the value in the units
field. Table 1-3 shows the possible values for the units field and the corresponding
type of entry in the size field, and Table 1-4 shows an example.

n Table 1-3 Units field values and corresponding size field types

Units Field Value Description Type of Entry In the Size Field

-1 Lines Fixed-line spacing

0 Points Fixed-point value

2 Millimeters Fixed-point value

3 Inches Fixed-point value

4 Centimeters Fixed-point value

n Table 1-4 Sample units field values and corresponding size field types

What the User Sees Units Value Size Value

1 Inch 3 72 (0x00480000)

36 Points 0 36 (0x00240000)

1 Line -1 0

2.5 Lines -1 1.5 (0x00018000)

Tabs

A tab array is comprised of 20 tabs, each of which is defined in Table 1-5.

12 XTND Programmer’s Reference

n Table 1-5 Tab definitions

Length Description

1 byte Justification:

Value Meaning

0 Left

1 Center

2 Right

3 Character-aligned

1 byte (Character) Fill character.

4 bytes (Fixed) Offset in points from the edge of the left column. A value of
-1 means that there are no more tabs.

1 byte (Character) If this is a character-aligned tab, the character on
which the tab is aligned.

1 byte unused; should be set to 0.

Chapter 1 Overview 13

Chapter 2 Writing XTND-Capable Applications

Chapter 2 describes the process of using the XTND System from the
application’s point of view. This process includes:

n locating and loading the XTND library

n calling the library to allow the user to select the file and
translator

n loading the appropriate translator and opening the data file

n calling the translator repeatedly to read (or write) objects

n calling the translator to clean up and terminate

This process can be customized in several ways. Some examples
follow:

n The application can handle "built-in" file formats internally
without using external XTND translators.

n The application can specify its own GetFile (or PutFile) dialog
box , use the XTND System to enumerate translators, and use a
translator to read and write file formats.

n The application can instruct the library to include or exclude
translators according to specific criteria.

n The application can request a list of translators, process it, and
ask the XTND System to display the modified list.

n Applications and translators can be localized into other
languages.

15

Locating the XTND library

XTNDInitTranslators is the initialization portion of the XTND Standard File
Package.
FUNCTION XTNDInitTranslators(transVersion : INTEGER; xtndSystemName,

clarisFolderName : Str255) : OSErr;

XTNDInitTranslators searches through the folders as previously specified and
locates a file named Claris XTND System. The application must pass in the strings
that name the XTND System file and the Claris folder. The Claris folder is named
"Claris". If you don't wish to use the Claris folder, you can omit this parameter by
passing either nil or an empty string. You should store these strings in resources in the
application so that they can be localized. (See the sample applications on the 3.5-
inch disk provided with the XTND 1.3 Developer's Kit.) Upon finding this file, the
function opens it, reads some resources, and checks their validity. If the version of
the library is not compatible with the library used by the application,
badXTNDVersionErr is returned. Because new features are added to the library
periodically, applications using the new features will not work correctly with older
versions of the library. Such applications should always be shipped with the
current library and with instructions to discard any older versions of the library.

If no file is found, then an error number is returned; if all is well, noERR is returned. In
versions of XTND prior to 1.3, the XTNDGetFile or XTNDPutFile procedure
contained a default routine that was executed when it was called after XTND failed
to initialize. This default routine was in CLSFLibrary.c, which is no longer
supplied. In the current version of XTND, the application must check whether
XTND was initialized before calling other XTND routines and must take
appropriate action if it was not.

After locating the library file, XTNDInitTranslators searches for any XTND
translators that the user has installed. It searches for the XTND Translator List
file (see Chapter 1 for the search path for this file) and creates the file if it does not
exist. It then checks whether the list of translators in this file needs updating. If the
list is current, then the XTND library builds a table in memory; this table contains
the location of and ‘FTYP’ information about the available translators. (See the
section “The FTYP Resource” in Chapter 3 for a description of an 'FTYP' resource.)

If the list of translators in the XTND Translator List file is not current, then the
XTND library rebuilds the translator list by searching for the installed translators.
First, if System 7 is running, it searches the Extensions folder; next, it searches for a
folder named Claris Translators in the application folder; next, it searches for a folder
named Claris Translators in the System Folder; and then it searches for a folder named
Claris in the System Folder. The library searches any folder it finds for translators.
The translators need not be at the root level in any of these folders because the
library searches all subfolders.

16 XTND Programmer’s Reference

Any translators whose version number matches the value in the transVersion
parameter is collected by the library and made available to the application.
Current translators are all version 2. The version number of the translators will not
change unless the interface to the translators changes. For this reason, translators
whose version numbers differ from that of the version of XTND in use are
incompatible with that version of XTND.

Importing a file

The XTNDGetFile routine presents a dialog box listing the names of a group of files
from which the user can select one to open.

FUNCTION XTNDGetFile(ParamPtr : SFParamPtr) : BOOLEAN;

Like SFGetFile, XTNDGetFile repeatedly gets and handles events until the user
selects a file that can be opened or clicks Cancel. The routine reports the user's
selection via the Standard File Package's reply record and through the
SFParamBlock's ioResult. The application can specify its own Get File dialog box
to be used and can specify a modal dialog filter proc and a SF dialog hook (actually
an XTNDDialogHook) to be used with its dialog.

XTNDGetFile returns the Boolean variable taken from the user’s reply record. Thus,
the application can easily check to see whether a file was actually selected.

Implementation of XTNDGetFile

The first step is to set up the Standards array. This array allows the application to
inform the XTND library of the “built-in” file formats that are handled directly by
the application. These internal file formats are listed in the pop-up menu between
“All available” and the separating dotted line. All external XTND translator
names appear below the dotted line.

The TransDescribe block is defined in XTNDInterface.h. See Table 2-1.

Chapter 2 Writing XTND-capable Applications 17

n Table 2-1 TransDescribe block

Field Name Size Default Value Description

version short 2 Low byte contains current version of
translators (in low 7 bits) and flag
(in high bit) which is TRUE if
translator can only be used by
applications that are in the same
language. High byte contains
language of translator.

translatorType ResType Translator type Current usage
'FLTI', 'FLTE' TEXT Import, Export
'PFLT' PICT Import

codeResID short 0 Used by TransDescribe to store
the resource ID of a translator.

FDIFResID short -1 Indicates that there is no need to
check for an 'FDIF', if this is an
import translator.

OR

 -2 Indicates that this is an export
translator.

numVersBytes short 0 Number of version bytes to look for
(used in IMPORT only).

versBytesOffset long Offset of version bytes from
beginning of file (used in IMPORT
only).

versBytes char[16] Version bytes to look for (used in
IMPORT only).

appWDRefNum short 0 Internal XTND use; must be zero.

unused1 short 0 Internal XTND use; must be zero.

pathLength short 0 Internal XTND use; must be zero.

flags long 0 Translator characteristics.

transIndex short 0 Internal XTND use; must be zero.

resRefNum short Reference number of the resource fork
of the translator, if open; 0 if not
open.

directoryID long Directory containing this translator.

vRefNum short Volume containing this translator.

fileName char[32] Name of this translator file.
(Continued)

18 XTND Programmer’s Reference

n Table 2-1 TransDescribe block (Continued)

Field Name Size Default Value Description

numMatches short Number of file type and creator
matches accepted for this file
type.

matches MatchInfo[] An array of MatchInfos, one for
each match in numMatches.

docCreator OSType Creator ID for this match.

docType OSType Type ID for this match.

exactMatch char TRUE: docCreator AND docType
must match.

FALSE: Only docType must match.

creatorAndTypeMask char 0 Ignore certain characters in
match.

name char[32] Name to appear in pop-up menu.

For example, this is how MacWrite II might set up the translator descriptions in the
Standards array.

for (loop = 0; loop < NUMSTDS; loop++)

{

Standards[loop].version = 2;

Standards[loop].translatorType = 'FLTI';

Standards[loop].codeResID = 0;

Standards[loop].FDIFResID = -1;

Standards[loop].numVersBytes = 0;

Standards[loop].pathLength = 0;

Standards[loop].flags = 0;

Standards[loop].numMatches = 1;

Standards[loop].matches[0].docCreator = 'MWII';

Standards[loop].matches[0].docType = (loop == 0 ? 'MW2D':'MW2S');

Standards[loop].matches[0].exactMatch = FALSE;

Standards[loop].matches[0].creatorAndTypeMask = 0;

}

Standards[2].matches[0].docType = 'TEXT';

Standards[2].matches[0].exactMatch = FALSE;

/* Get the names of each translator */

GetIndString(Standards[0].name, STRINGS, 1); /* MacWrite II */

GetIndString(Standards[1].name, STRINGS, 2); /* MacWrite II Stationery */

GetIndString(Standards[2].name, STRINGS, 3); /* Text */

You can also use this array in XTNDPutFile, unless you write different types than
you read.

Chapter 2 Writing XTND-capable Applications 19

After setting up the Standards array, you set up an SFParamBlock, as shown in
Table 2-2, specifying the types of files from which the user can choose.

n Table 2-2 SFParamBlock

In/Out (->/<-) Parameter Description

--> allowFlags Which translators are allowed to be
used.

allowText Allows text translators.

allowGraphics Allows graphic translators (future
implementation).

allowDataBase Allows database translator (future
implementation).

allowPict Allows PICT translators.

allowOtherTypes Allows other translator types (future
implementation).

allowAllTranslators Allows all translator types or any
combination (for example,

allowAllTranslators
- allowPict
= everything except PICT
translators).

--> numStandard The number of standard transDescribe.

--> standard A pointer to the Standard array of
TransDescribe.

<-- ioResult Any error that might occur during a
call.

<-> chosenTranslator On input, the number of translators in the list
being supplied by the application (optional,
used in conjunction with useTransList); on
output, the number of the selected translator.

<-> theChosenTranslator On input, a pointer to a list of translators
being supplied by the application (optional,
used in conjunction with useTransList); on
output, pointer to a TransDescribe record
that specifies which translator was selected
to open the specified file.

<-- fileReply A pointer to an SFReply record.
(Continued)

20 XTND Programmer’s Reference

n Table 2-2 SFParamBlock (Continued)

In/Out (->/<-) Parameter Description

--> applicNativeType Unused in XTNDGetFile.

--> XTNDDlogHook Pointer to an SF dialog hook that
handles your items in the dialog box
(optional).

<-> currentMenuItem The item chosen in the pop-up menu
on a previous call to GetFile.

<-> currentSaveItem Unused in GetFile.

--> where A point in normal Macintosh
coordinates where you wish the
dialog box to appear. If you choose
(0,0) it will be placed one-third of
the way down the main screen and
one-half of the way across the
screen.

--> prompt A Pascal string that is written at the
top of the Get File dialog box, above
the file list.

--> buttonTitle A Pascal string to replace the name
of the Open button title. If left
NULL, “Open” is used as the name.

--> origName Unused during a GetFile call.

--> dialogID Resource number of your GetFile
dialog template (optional).

--> SFFilterProc Pointer to your modal dialog filter
proc (optional).

--> showAllFiles TRUE if you want all files shown in
the file list; FALSE otherwise.

--> useTransList TRUE if you are supplying a list of
translators (in
theChosenTranslator, with the
count in chosenTranslator) that
is to be used to build the pop-up
menu; otherwise FALSE.

u Note: Any unused fields in this or other XTND parameter blocks should be set to
0, even if they are currently unused. They may be used in the future, and leaving
random values in these fields will cause your application to break when the
fields are used, even though it works correctly now.

Chapter 2 Writing XTND-capable Applications 21

The allowFlags field specifies the type and use of translators that you wish to
include in the pop-up menu. The GetFile routine will automatically set the usage to
allowImport, so you need specify only the translator types you wish. For word
processors, you would typically set this field to allowText, or allowText +
allowPict, if you can import QuickDraw Pictures.

Make the standard field a pointer to the transDescribe list describing your
standard types, and set the numStandard field to the number of standards in your
list.

You should set currentMenuItem to some reasonable value, usually 1 for the first
call to GetFile (“All available”). After this, current MenuItem can usually be
ignored, since the call to GetFile sets currentMenuItem to the number of the last
selected translator, and this is a good starting value for the next GetFile call. If you
change the list of translators, you should probably set currentMenuItem back to 1,
since the previous value may no longer be meaningful.

Set where to the point where you wish the top-left corner of the dialog box to
appear. If you set it to (0, 0), the dialog box is centered on the screen.

Make prompt a pointer to a string you want to put at the top of the Get File dialog
box. This string generally prompts the user to select a file. “Please select a file” is
used if you set this pointer to nil. Similarly, make buttonTitle a pointer to a string
you want to appear in the Open button. The name “Open” is used if you set this
pointer to nil.

Usually, you set useTransList to FALSE. If you wish to bypass the standard
selection process for translators and to control it yourself, you can use
XTNDSelectTranslators to request a list of translators, process it, and return a list
of the translators you wish to include in the pop-up menu. To do this, set
useTransList to TRUE, make the theChosenTranslator field point to your list
of translators (array of transDescribe), and set chosenTranslator to the
number of translators in your list. If you do this, these are the only translators
(besides the standards) to appear in the pop-up menu.

u Note: No validity checking is done on these translators, and you should set
useTransList to TRUE only if you need to have total control over which
translators appear in the pop-up menu. The same procedure is used to insert these
translators in the menu, however, so all of the normal duplicate rejection,
language checking, and sorting is still done on them.

22 XTND Programmer’s Reference

If you wish to use your own Get File dialog box in place of the XTNDGetFile dialog
box (which is used in place of the standard Get File dialog box), create your dialog
box template resource and include it in your application. Your dialog box must include
all of the dialog items that are in the XTND GetFile dialog box. You may add your
own items following these, and if you wish to hide the existing items, you can move
them offscreen (needless to say, you do this at your own risk), but they will still be
active. To use your dialog box, put the resource ID of your dialog box template in the
dialogID filed. You may also special a ModalDialogFilterProc if you wish to
process events that are not currently processed in the dialog box. XTND calls your
filter procedures after it has processed its own events, and Standard File calls the
XTND filter procedure after it processes all Standard File events. Last, you may
specify an XTNDDialogHook, which is like a SFDialogHook, only better.

The XTNDDlgHook is actually an SFDlgHook; however, three parameters have been
have added to this function to allow it to communicate more easily with the XTND
System:

Function MyXTNDDlgHook (item:integer;

theDialog:DialogPtr;

theSFParams:Ptr;

VAR changedFlag:boolean;

reserved:longint) : Integer;

n The first additional parameter is a pointer to your SFParamBlock. You may
change the fields that affect translator selection, and the pop-up menu is rebuilt
using the new parameters. Currently, the only fields used in this process are
allowFlags, showAllFiles, currentMenuItem (or currentSaveItem), and
useTransList (along with chosenTranslator and
theChosenTranslator). You should not change the selection parameters when
you receive an item number of -1 because this call initially draws the dialog box
and your changes in this case are ignored.

n The second additional parameter (changedFlag) is a pointer to a Boolean
variable used to indicate that one or more of the fields in the SFParamBlock has
been changed and that the pop-up menu is to be rebuilt. This field is set to FALSE
when your dialog hook is called, and you must change the value to TRUE if you
wish to rebuild the menu.

u Note: If you change allowFlags or any other parameter which could change
the number of translators in the menu, CurrentMenuItem (or
currentSaveItem) may no longer be valid. For this reason, you may want to set
allowFlags to 1 when you change the number of items in the menu. The list of
files is rebuilt whenever the list of translators changes.

n The third parameter is a longint and is currently unused

n The remaining parameters, item and theDialog, are the same as the Standard
File SFDialogHook parameters.

Chapter 2 Writing XTND-capable Applications 23

u Note: XTND uses the pre-System 7 Standard File dialog hook. The System 7 hook
has a different parameter list and cannot directly communicate with the XTND
interfaces. For more information, see Inside Macintosh, Volumes I and VI.

When using your own dialog box, you should start with the XTND standard file
dialog boxes 24000 and 24001 from the Claris XTND System resource fork (get them
by using ResEdit or DeRez). Add your additional items onto the ends of the dialog
boxes' DITLs. Do not remove any of the items or renumber them from the original
template, since XTND expects certain items with certain ID numbers. You are free to
resize and to relocate items in the dialog box.

These parameters allow you to change the list of currently available translators
while the dialog box is up. If other methods of selecting translators are
implemented, they are accessible using the SFParamBlock and should be available
to your dialog hook. Aside from the additional parameters, your dialog hook should
work as a standard dialog hook would. XTND calls your dialog hook before the
XTND dialog hook and passes items to it as to a standard dialog hook. You need not
return any special item number when you change the selection parameters; XTND
does not check the returned item number when the value of changedFlag is TRUE.
When the parameters have not been changed, you should return items as you would
with a standard SFDlgHook.

Now call XTNDGeFile(&SFParams), in which SFParams is your parameter block.

Using the XTND Translator to read in the file

After the user has selected the file format (and XTNDGetFile has returned a TRUE
result), then the application needs to read that file into a document. If the selected
translator is one of the “standard” items, then your application can handle it as
usual. If not, you need to use the XTND Translator to access the contents of the file.

To open the file, the XTNDGetFile procedure returns a pointer to the
TransDescribe record of the selected translator.

After receiving the translator, initialize the import parameter block. In the
following example, assume that gImportPB is an ImportParmBlock as defined in
XTNDTextTranslator.h and that MinusOne is a point declared as coordinates
(-1, -1). You should also assume that the variables ParaFmts and tabs have been
allocated and set up in accordance with the conventions given in “Data Types and
Conventions” in Chapter 1. Because the translator modifies these arrays directly,
you must allocate them correctly in your application. The markerString parameter
is a Pascal string no more than 10 characters long. The buffer parameter is a pointer
to an array of 256 characters.

Here are the initial settings of the parameter block:

24 XTND Programmer’s Reference

gImportPB.textBuffer = buffer;

gImportPB.result = noErr;

gImportPB.textLength = 0;

gImportPB.txtFace = face;

gImportPB.txtSize = 0;

gImportPB.txtFont = font;

gImportPB.txtColor = color;

gImportPB.txtJust = textLeft;

gImportPB.paraFmts = ParaFmts;

gImportPB.tabs = tabs;

gImportPB.numCols = 1;

gImportPB.currentStory = mainStory;

gImportPB.miscData = 0;

gImportPB.storyHeight = 0;

gImportPB.decimalChar = '.';

gImportPB.autoHyphenate = TRUE;

gImportPB.printRecord = NULL;

gImportPB.startPageNum = 1;

gImportPB.startFootnoteNum = 1;

gImportPB.footnoteText = markerString;

gImportPB.footnoteText[0] = 0;

gImportPB.rulerShowing = 2;

gImportPB.doubleSided = FALSE;

gImportPB.titlePage = FALSE;

gImportPB.endnotes = FALSE;

gImportPB.showInvisibles = FALSE;

gImportPB.showPageGuides = TRUE;

gImportPB.showPictures = TRUE;

gImportPB.autoFootnotes = TRUE;

gImportPB.pagePoint = MinusOne;

gImportPB.datePoint = MinusOne;

gImportPB.timePoint = MinusOne;

gImportPB.smartQuotes = TRUE;

gImportPB.fractCharWidths = FALSE;

gImportPB.hRes = 72;

gImportPB.vRes = 72;

gImportPB.theReply = theReply;

Now open the XTND Translator and load it into memory. XTND defines
gImportTranslator as a pointer to a C routine returning void, and pChosenOne as
a pointer to the selected translator.

TransProcPtr gImportTranslator;

TransDescrPtr pChosenOne = gImportPB.theChosenTranslator;

if (fserr = XTNDLoadTranslator(pChosenOne, &gImportTranslator)) {

AlertUser("\pError while trying to load translator resource");

return;

Chapter 2 Writing XTND-capable Applications 25

}

When you have loaded the XTND Translator without error, open the selected
document . Check to see whether the document has a resource fork. If it does, then you
will open the resource fork and call the translator.

if (OpenRFPerm(gtheReply.fileName, gtheReply.vRefNum, fsRdPerm) == -1)

{

if (ResError() != eofErr)

{

AlertUser("\pError while opening import file resources");

XTNDReleaseTranslator(pChosenOne);

return;

}

/* there is no resource fork for this file. Set the current
resource file to the translator we found instead. */

UseResFile(pChosenOne->resRefNum);

}

else

{

resfnum = CurResFile();

gImportPB.refNum = resfnum;

gImportPB.directive = importGetResources;

(*gImportTranslator)(&gImportPB);

if (gImportPB.result)

{

AlertUser("\pTranslator was unable to read resources");

CloseResFile(resfnum);

XTNDReleaseTranslator(pChosenOne);

return;

}

}

You are now ready to initialize the document-reading process. We define ApplePB as
a ParamBlockRec.

/* Open the file read only */

fserr = 0;

ApplePB.ioParam.ioNamePtr = gtheReply.fileName;

ApplePB.ioParam.ioVRefNum = gtheReply.vRefNum;

ApplePB.ioParam.ioVersNum = 1;

ApplePB.ioParam.ioPermssn = fsRdPerm;

ApplePB.ioParam.ioMisc = 0L;

fserr = PBOpen(&ApplePB, FALSE);

if (fserr)

{

AlertUser("\pUnable to open import file");

if (resfnum) CloseResFile(resfnum);

26 XTND Programmer’s Reference

XTNDReleaseTranslator(pChosenOne);

return;

}

fnum = ApplePB.ioParam.ioRefNum;

/* let translator do general initialization */

gImportPB.refNum = fnum;

gImportPB.directive = importInitAll;

(*gImportTranslator)(&gImportPB);

/* After completing the initialization, check for an error. */

/* If none, proceed. */

In some applications, you may wish to distinguish between opening a text file and
inserting one. For example, when MacWrite II calls the translator in response to the
Open routine, the import process includes headers and footers; but if it is calling the
translator in response to the Insert routine, only the main story and associated
footnotes are read in.

if (fromOpen)

{

gImportPB.directive = importInitRightHeader;

gImportPB.currentStory = rightHeaderStory;

}

else

{

gImportPB.directive = importInitMain;

gImportPB.currentStory = mainStory;

}

getnextstory(&gImportPB);

The routine getnextstory calls the import translator until a story is ready for
import. After the call, gImportPB is set up so you know what to import.

/***

* getnextstory *

* *

* Gets next story (header,footer,etc.) from translator *

* Input: None. *

* Output: None. *

* Changes: None. *

* Effects: None. *

**/

static void getnextstory(thePtr)

register ImportParmBlkPtr thePtr;

{

while (thePtr->directive != importAcknowledge)

{

(*gImportTranslator)(thePtr);

switch(thePtr->directive)

Chapter 2 Writing XTND-capable Applications 27

{

default:

thePtr->directive = importAcknowledge;

break;

case importInitRightHeader:

thePtr->currentStory = leftHeaderStory;

thePtr->directive = importInitLeftHeader;

break;

case importInitLeftHeader:

thePtr->currentStory = headerStory;

thePtr->directive = importInitHeader;

break;

case importInitHeader:

thePtr->currentStory = rightFooterStory;

thePtr->directive = importInitRightFooter;

break;

case importInitRightFooter:

thePtr->currentStory = leftFooterStory;

thePtr->directive = importInitLeftFooter;

break;

case importInitLeftFooter:

thePtr->currentStory = footerStory;

thePtr->directive = importInitFooter;

break;

case importInitFooter:

thePtr->currentStory = mainStory;

thePtr->directive = importInitMain;

break;

}

}

}

The application needs to set up the part of its document corresponding to the story
the translator wishes to return. After this, the application reads in the story by
repeatedly calling the translator with the importGetText directive:

/* Reading the TEXT body of the current story */

gImportPB.directive = importGetText;

gImportPB.miscData = 0;

(*gImportTranslator)(&gImportPB);

Upon return, the translator has filled in the following fields:

28 XTND Programmer’s Reference

n result (error number)

n textLength (size of text imported)

n txtSize (size of font)

n txtFace (style of character run)

n txtFont (font family ID)

n txtColor (XTND 1.3 color ID)

n txtJust (XTND 1.3 justification ID)

n miscData (used if special characters returned)

n paraFmts (paragraph array)

n tabs (tab information array)

n textBuffer (actual text returned)

If an error is returned at this time, you need to jump directly to closing the translator
(by calling it with an importCloseAll directive) and disposing of the resources in
use.

If ImportFile.directive is now set to importAcknowledge and the value of
textLength is less than or equal to 0, then this story has been completed, and the
appropriate close story call should be issued. (Instructions for closing a story appear
later in this document).

If directive is not set to importAcknowledge or the value of textLength is
greater than 0, and if no error has occurred, begin inserting the text run into your
document.

If the value of textLength is 1 (that is, only one character has been imported), you
need to see if it is a footnote or other special character (such as date or time). If it is a
special character, please refer to the section “Reserved characters” in Chapter 1 to
review how the translator returns the information.

After inserting the text, check the “floating” characters that have been imported.
These characters are imported mostly from MacWrite 5.0, but other applications
may use them also. If the value of datePoint, pagePoint, or timePoint is greater than
or equal to 0, then the translator is returning the offset from the left margin (in
points) of that special character. It is up to your application to place these
“floating” characters to best advantage. (Remember to reset the point values to -1
after you have placed the character.)

After the translator returns an “end-of-story” condition (by setting directive to
importAcknowledge and making the value of textLength less than or equal to 0),
the application must close this story in the translator and open the next one.

if (gImportPB.directive == importAcknowledge && gImportPB.textLength
<= 0)

{

switch (gImportPB.currentStory)

Chapter 2 Writing XTND-capable Applications 29

{

case mainStory:

gImportPB.directive = importCloseMain;

(*gImportTranslator)(&gImportPB);

if (!fserr)

{

gImportPB.currentStory = footnoteStory;

gImportPB.directive = importInitFootnote;

(*gImportTranslator)(&gImportPB);

}

break;

case footnoteStory:

gImportPB.directive = importCloseFootnote;

(*gImportTranslator)(&gImportPB);

if (!fserr)

{

gImportPB.directive = importInitFootnote;

(*gImportTranslator)(&gImportPB);

}

break;

case rightHeaderStory:

gImportPB.directive = importCloseRightHeader;

(*gImportTranslator)(&gImportPB);

if (!fserr)

{

gImportPB.currentStory = leftHeaderStory;

gImportPB.directive = importInitLeftHeader;

getnextstory(&gImportPB);

}

break;

case leftHeaderStory:

etc.…

}

}

When all of the footnotes have been read, you must close the translator correctly.
Begin by allowing the translator to clean up all its variables and dispose of its
resources. This is done with a call to importCloseAll. After this, you can dispose
of the translator resource itself. If an error occurs during the importing of a document,
you should jump directly to this portion of the code.

gImportPB.directive = importCloseAll;

(*gImportTranslator) (&gImportPB);

if (resfnum) CloseResFile(resfnum);

FSClose(fnum);

XTNDReleaseTranslator(pChosenOne);

30 XTND Programmer’s Reference

Saving a file

FUNCTION XTNDPutFile(paramPtr: SFParamPtr) : BOOLEAN;

The XTNDPutFile function presents a dialog box, similar to SFPutFile, with a
pop-up menu of file formats. The user selects a format in which to save the current
document. Like SFPutFile, XTNDPutFile repeatedly gets and handles events until
the user names a file that can be written to or clicks Cancel. The function reports the
user’s choice via the Standard File reply record and through the SFParamBlock's
ioResult.

Implementation of XTNDPutFile

As with GetFile, the first step in saving files is to set up your application’s
standards array. Since this does not differ in any way from the one used in
GetFile, you may use the same array as long as your application writes the same
file types that it reads.

After you have set up the standards array, you will set up the SFParamBlock.
You set up all of the fields in the same manner as for importing, with the exception of
those listed in Table 2-3.

n Table 2-3 XTNDPutFile-specific parameters

In/Out (->/<-) Parameter Description

--> applicNativeType The application’s native type (for
use if the library cannot be found).

--> prompt A Pascal string that is written in the
dialog box, above the pop-up menu.

--> origName A Pascal string used as the file’s
default name.

--> buttonTitle A Pascal string to replace the name
of the Save button. If left NULL,
“Save” is used.

<-> currentMenuItem unused during a call to
XTNDPutFile.

<-> currentSaveItem The item chosen in the pop-up menu
on a previous call to XTNDPutFile.

--> showAllFiles unused during a call to
XTNDPutFile.

You should set applicNativeType to the application’s native type.

Chapter 2 Writing XTND-capable Applications 31

Make prompt a pointer to any string which you want to put above the pop-up menu.
This string generally prompts the user to select a filename and a file format. The
string “Save As… ” is used if you set this pointer to nil.

Similarly, make buttonTitle a pointer to a string you wish to appear in the Save
button. The name “Save” is used if you set this pointer to nil.

origName should be set to the default name of the file to be saved.

Set currentSaveItem to some reasonable value, usually 1 for the first call to
PutFile (native format). After this, currentSaveItem can usually be ignored,
since the call to PutFile sets currentSaveItem to the number of the last selected
translator, and this is a good starting value for the next PutFile call. If you change
the list of translators, you should probably set currentSaveItem back to 1, since
the previous value may no longer be meaningful.

After you call XTNDPutFile(&SFParams), check for any error or for a click in the
Cancel box, and then proceed with writing out the file.

showAllFiles is not used in XTNDPutFile.

Using XTND to write the file

If the selected translator is one of the items in the standards array, then your
application needs to use an internal translator to save the file using its own methods.
Otherwise, use the XTND Translator to write the file.

Use a separate parameter block, ExportParmBlock, for exporting as defined in
ExportTranslator.h. The first step in this procedure is to fill in the fields that
are required for initialization of the export translator.

u Note: The buffer used for exporting is actually accessed via a handle , whereas
the import translator uses a pointer.

You can assume that exportPB is an ExportParmBlock and MinusOne is a point.
All other definitions are to the right of the associated field.

/* Initialize the export translator */

MinusOne.h = MinusOne.v = -1;

exportPB.result = &fserr; /* short fserr; */

exportPB.refNum = &fnum; /* short fnum; */

exportPB.textLength = &runlength; /* long runlength; */

exportPB.textBuffer = NewHandle[256]; /* This is a HANDLE in export. */

exportPB.paraFmts = Paragraph; /* Fixed Paragraph[9]; */

exportPB.tabs = tabs; /* TabSpec tabs[20]; */

exportPB.txtFace = &textface; /* short textface */

32 XTND Programmer’s Reference

exportPB.txtSize = &textsize; /* short textsize; */

exportPB.txtFont = &textfont; /* short textfont; */

exportPB.txtColor = &textcolor; /* short textcolor; */

exportPB.txtJust = &textjust; /* short textjust; */

exportPB.numCols = 1;

exportPB.topMargin = 0x480000; /* 1 inch margin (72 points) */

exportPB.bottomMargin = 0x480000; /* 1 inch margin (72 points) */

exportPB.left = 0x480000; /* 1 inch margin (72 points) */

exportPB.right = 0x480000; /* 1 inch margin (72 points) */

exportPB.gutter = 0xc0000;

exportPB.totalCharCount = (**te).teLength;
/* total # of chars in doc */

exportPB.startPageNum = 1;

exportPB.startFootnoteNum = 1;

exportPB.rulerShowing = TRUE;

exportPB.doubleSided = FALSE;

exportPB.titlePage = FALSE;

exportPB.endnotes = FALSE;

exportPB.showInvisibles = TRUE;

exportPB.showPageGuides = TRUE;

exportPB.showPictures = TRUE;

exportPB.autoFootnotes = TRUE;

exportPB.footnotesExist = FALSE;

exportPB.pagePoint = MinusOne;

exportPB.datePoint = MinusOne;

exportPB.timePoint = MinusOne;

exportPB.smartQuotes = TRUE;

exportPB.fractCharWidths = TRUE;

exportPB.hRes = 72;

exportPB.vRes = 72;

exportPB.theReply = theReply;

exportPB.thisTranslator = *pChosenOne;

exportPB.currentStory = mainStory;

exportPB.printRecord = (THPrint)NewHandle(sizeof(TPrint));

if (exportPB.printRecord)

{

PrintDefault(exportPB.printRecord);
/* This assumes the print */

PrValidate(exportPB.printRecord); /* driver is already open */

}

exportPB.headerStatus = exportPB.footerStatus = 0; /*NONE */

The procedure for locating and locking down a translator for export is very similar to
the one used during import. The only difference is in the name of the routine pointing
to the export translator.

TransProcPtr gExportTranslator;

Chapter 2 Writing XTND-capable Applications 33

TransDescrPtr pChosenOne = exportPB.theChosenTranslator;

if (fserr = XTNDLoadTranslator(pChosenOne, &gExportTranslator)) {

AlertUser("\pUnable to load translator.");

return;

}

/* Now create the file so we can delete it. */

/* (Eliminates PMSP problem) */

Create(theReply.fileName, theReply.vRefNum, '????', '????');

if (FSDelete(theReply.fileName, theReply.vRefNum))

{

AlertUser("\pUnable to delete file, probably write protected.");

return;

}

Match = Trans.matches[0];

fserr = Create(theReply.fileName, theReply.vRefNum, Match.docCreator,

Match.docType);

if (fserr)

{

AlertUser("\pUnable to create output file.");

CloseResFile(resfile);

return;

}

fserr = FSOpen(theReply.fileName, theReply.vRefNum, &fnum);

if (fserr)

{

AlertUser("\pUnable to open output file.");

CloseResFile(resfile);

return;

}

Now send the correct initialization sequence to the export translator. If you created a
handle successfully for the print record, you must release the memory after the
exportCloseAll directive.

exportPB.directive = exportInitAll;

(*gExportTranslator) (&exportPB);

if (exportPB.printRecord)

DisposHandle((Handle) exportPB.printRecord);

Now your application needs to parse the document and determine what segments you
can export; within each of those segments, you need to determine the style runs.

34 XTND Programmer’s Reference

The sample program shows the exporting of a styled TextEdit document. For this
reason, the only concern is the main body of the document. Usually, you would cycle
through the segments of the document. (The Font and Size menus are not enabled
because they are used merely to display the current settings.) The sample program is
set up for MPW C 3.2 and THINK C 4.0 and needs some modification if it is compiled
in a different environment.

The sequence during export is important, so you can use a routine similar to the
following one, which determines the next segment to be sent. This routine assumes
that the headerStatus and footerStatus variables contain valid values. The
routine continuously locates the next segment of the current document, and then
attempts to call the translator with that segment. If the translator does not accept
that kind of segment, it does not return an exportAcknowledge directive value. If
the translator does not return an exportAcknowledge directive value, then cycle to
the next portion of the document.

static void GetNextOpenDirective(thePtr)

register ExportParmBlock *thePtr;

while (thePtr->directive != exportAcknowledge)

{

done = FALSE;

while (!done)

{

switch(thePtr->directive)

{

default:

done = TRUE;

break;

case exportOpenRightHeader:

if (thePtr->headerStatus & rightPage)

{

/* Application-specific statements to point */

/* to right header information */

done = TRUE;

}

else

{

thePtr->currentStory = leftHeaderStory;

thePtr->directive = exportOpenLeftHeader;

}

break;

case exportOpenLeftHeader:

if (thePtr->headerStatus & leftPage)

{

/* Application-specific statements to point */

Chapter 2 Writing XTND-capable Applications 35

/* to left header information */

done = TRUE;

}

else

{

thePtr->currentStory = headerStory;

thePtr->directive = exportOpenHeader;

}

break;

case exportOpenHeader:

if (thePtr->headerStatus & everyPage)

{

/* Application-specific statements to point */

/* to header information */

done = TRUE;

}

else

{

thePtr->currentStory = rightFooterStory;

thePtr->directive = exportOpenRightFooter;

}

break;

case exportOpenRightFooter:

if (thePtr->footerStatus & rightPage)

{

/* Application-specific statements to point */

/* to right footer information */

done = TRUE;

}

else

{

thePtr->currentStory = leftFooterStory;

thePtr->directive = exportOpenLeftFooter;

}

break;

case exportOpenLeftFooter:

if (thePtr->footerStatus & leftPage)

{

/* Application-specific statements to point */

/* to left footer information */

done = TRUE;

}

else

36 XTND Programmer’s Reference

{

thePtr->currentStory = footerStory;

thePtr->directive = exportOpenFooter;

}

break;

case exportOpenFooter:

if (thePtr->footerStatus & everyPage)

{

/* Application-specific statements to point */

/* to footer information */

done = TRUE;

}

else

{

thePtr->currentStory = footnoteStory;

thePtr->directive = exportOpenFootnote;

}

break;

case exportOpenFootnote:

if (GetNextFootnote(&thePtr->footnoteOffset))

{

/* Application-specific statements to point */

/* to footnote information */

thePtr->footnoteText = the_marker;

done = TRUE;

}

else

{

thePtr->currentStory = mainStory;

thePtr->directive = exportOpenMain;

}

break;

case exportOpenMain:

done = TRUE;

/* Application-specific statements to point */

/* to main body information */

break;

}

}

(*gExportTranslator)(thePtr);

switch(thePtr->directive)

{

default:

thePtr->directive = exportAcknowledge;

break;

Chapter 2 Writing XTND-capable Applications 37

case exportAcknowledge:

break;

case exportOpenRightHeader:

thePtr->currentStory = leftHeaderStory;

thePtr->directive = exportOpenLeftHeader;

break;

case exportOpenLeftHeader:

thePtr->currentStory = headerStory;

thePtr->directive = exportOpenHeader;

break;

case exportOpenHeader:

thePtr->currentStory = rightFooterStory;

thePtr->directive = exportOpenRightFooter;

break;

case exportOpenRightFooter:

thePtr->currentStory = leftFooterStory;

thePtr->directive = exportOpenLeftFooter;

break;

case exportOpenLeftFooter:

thePtr->currentStory = footerStory;

thePtr->directive = exportOpenFooter;

break;

case exportOpenFooter:

thePtr->currentStory = footnoteStory;

thePtr->directive = exportOpenFootnote;

break;

case exportOpenFootnote:

thePtr->currentStory = footnoteStory;

thePtr->directive = exportOpenFootnote;

break;

}

}

Once you get an exportAcknowledge directive value (by calling
GetNextOpenDirective), you can proceed with writing that segment of the
document via the translator. The exportWriteText directive is used to write the
segment. As stated previously, you send information to the translator in “runs.” These
runs are either style runs or paragraphs, as in this example:

This is the first paragraph. Contained within is one style change.

The previous line ended with a return code, but no style change.

38 XTND Programmer’s Reference

The two preceding lines above would be sent in four parts. The first would be the
Garamond Plain text up to, and including, the space before the words “one style.” The
next run would be just “one style,” with the associated text style changes. The third
run would be from the space after “one style” up to and including the return code at
the end of the line. The final run would be the entire second line.

This is how you set up the export parameter block. In this code segment, textPtr is
the pointer to the text you wish to export. You need to copy it into a handle. You must
then make the export directive exportWriteText and then you need to call the
export translator repeatedly.

BlockMove (textPtr, *exportPB.textBuffer, *exportPB.textLength)

exportPB.directive = exportWriteText;

(*gExportTranslator) (&exportPB);

Note that you are not limited to a maximum of 256 characters in a single text run as
you are during input. In practical terms, however, this is a reasonable maximum size
for you to use.

After you have obtained the style run, you need to set up the paragraph information
in Paragraph, the tab information in tabs, and the correct style information in the
correct variables. Then you set up the handle that contains the text of the run, and
call exportWriteText.

When you have sent all the text in the segment, close the appropriate segment and
open the next one.

After you have performed an exportCloseAll, you must close the data fork of the
document, open the resource fork of the document, and perform an
exportWriteResources to complete saving the file. Following this call, you must
close the resource fork of the document.

Finally, you just unlock and unload the translator, and close all the necessary files.

Matching a file to a translator

In some situations, you may need to match a file to a translator that can process it.
You can use the function XTNDMatchFile contained in the XTND library to do this.
You use MatchTranslatorBlock to provide the filename and other file
information (volume reference number and directory ID) to the XTNDMatchFile
procedure.The XTNDMatchFile procedure returns TRUE if it can find a translator to
read the file that was passed to it; otherwise, it returns FALSE.

Chapter 2 Writing XTND-capable Applications 39

When you use this routine, there are three methods of specifying the translators to
be matched against the file. In the first, the application sets the allowFlags field
of the MatchTranslatorBlock to specify the type and usage of translators to be
selected from the list of translators, which is maintained by the XTND library.
Using the standards array, the application builds the list of translators to be
matched against the file, much as it builds the pop-up menu in the XTNDGetFile
call. This list is built only on the first call to XTNDMatchFile and when the
initFlag field is set to TRUE; otherwise, the existing list is used. The
useTransList flag must be set to FALSE when this method is used, and
chosenTranslator and theChosenTranslator are ignored.

In the second method, the application supplies a list of translators. You do this by
setting the useTransList field to TRUE, making theChosenTranslator a
pointer to a transDescribe list, and setting chosenTranslator to the number of
translators in the supplied list. The list of translators to be matched against the file
is built from the supplied list and the Standards array . The list is built on the first
call and when initFlag is set to TRUE; otherwise, the existing list of translators is
used.

In the third method, the application specifies a single translator to be matched
against the supplied file. You specify the translator by making oneTrans a pointer
to the TransDescribe for the translator. When oneTrans is set, the existing list of
translators is not used, the list is not rebuilt (even if initList is TRUE), and any
other supplied parameters are ignored. The list, if built previously, is unchanged
and is available on subsequent calls. This call is useful for determining which files in
a group can be opened by a particular translator. It is designed to be very fast and
simple.

When XTNDMatchFile returns TRUE, it also returns a value indicating which
translator should be used to read the file. If this value is less than or equal to the
number of standard types, then it is a “standard” file type (0 is “All available” on
import and 1 through the value of numStandard are the standard types).
Otherwise, its value represents an offset into an array of translators.

The initFlag field is used when repeated calls are to be made to XTNDMatchFile
and the same list of translators is to be used for each. By setting this field to FALSE,
you can use the existing list of translators and reduce the time required by this call.

In the following example, an application has set up the standard array as in
MacWrite II and now wishes to determine if it can read a particular file. The
initFlag field is set to TRUE. On subsequent calls, it would be set to FALSE, unless
there was a reason to rebuild the list of translators. At present, you need to rebuilt
this list only if the value of allowFlags changes or the standard translators
change. Actually, the list is built on the first call, regardless of the value of
initFlag.

MatchTranslatorBlock MFB;

MFB.allowFlags = *allowImport + *allowText;

40 XTND Programmer’s Reference

MFB.numStandard = 3;

MFB.standard = Standards;

MFB.fileName = fileName; /* Name of file to be opened */

MFB.vRefNum = vRefNo; /* Volume of file to be matched */

MFB.ioDirID = fDirID; /* Directory ID of file to be matched */

MFB.initFlag = TRUE; /* Set this to FALSE on subsequent calls */

can_read = XTNDMatchFile(&MFB);

if (MFB.ioResult != 0) /* Check for errors the library may return */

{

/* For example, we could display an alert here describing the error
or if we are a function, we could return that error. XTNDMatchFile will
return an ioResult of noTransMatchErr if it cannot find a translator
that can read the file */

return (MFB.ioResult);

}

if (can_read)

{

if (MFB.chosenTranslator <= MFB.numStandard)

{

/* This is a “standard” file type.

Set up for reading in the normal manner */

}

else

{

/*

This is a file which we can read via an XTND
Translator MFB.theChosenTranslator points to the
translator description */

}

Selecting a list of translators

You use the function XTNDSelectTranslators to obtain, from the XTND library a
list of translators that meet specified criteria. Several criteria for selecting
translators, including version, language, type, and name, are available to the
application, and you can apply them either individually or in combination. The
application can use the list of translators (transDescribe) to create its own menus
or to select a translator, or the list can be processed and used in an XTNDGetFile or
XTNDPutFile call.

Chapter 2 Writing XTND-capable Applications 41

This function takes two parameters and returns an error status (0 if no error). The two
parameters are, respectively, a pointer to SelectParamBlock and an empty
handle. The SelectParamBlock specifies the selection criteria for the translators
which are returned in the handle. The structure of the SelectParamBlock is
specified in XTNDInterface.h. It has several fields that allow you to select
translators.

The first two fields are translatorVersion and translatorType. The
translatorVersion field specifies a version and language for the selected
translators. See the section “XTND Localization,” later in this chapter, for more
information on identifying the language of applications and translators. To have all
translators returned, set this field to 0xFF02. If a version is specified in the low byte
of this field, only translators that match the version are returned. (Currently, the
XTND system selects translators of only a single version, so a version must be
specified.) If a language is specified in the high byte of this field, only translators
that match the language are returned. To match the version and not the language, set
the high byte of this field to 0xFF and put the desired version in the low byte.

Use translatorType to select a single type of translator resource, such as 'FLTI' or
'PFLT'. If this field is 0, it is ignored; otherwise, only translators whose type
matches the type in this field are returned.

The next two fields are includeFlags and excludeFlags. These correspond to the
allowFlags field and specify the type and use of translators that will appear in
the GetFile and PutFile dialog boxes. To have translators of a particular type
and use returned, set the bits of includeFlags that correspond to the type and use of
the translator. For example, to have all text import translators returned, you would
set includeFlags to *allowText + *allowImport. To have all translators of
some type and usage returned, set this field to all 1’s. To have al l translators
returned, set this field to 0.

u Note: If you set this field to all 1’s, only those translators with some type and
use setting are returned. If they have no type or use, they are not returned. Only
those translators that match both the type and use are returned.

Use the excludeFlags field to reduce the set of translators that have been selected
via includeFlags. A translator is rejected if it matches any of the types or uses
specified in this field. For instance, you can exclude all text translators or all export
translators (you can’t exclude only text export translators, however). If you set this
field to 0, nothing is excluded. If you set both excludeFlags and includeFlags to
0, then, all translators are returned (depending on the other selection fields, of
course). For your use, the selection statement used to select translator types based on
translatorVersion, translatorType, includeFlags, and excludeFlags is
as follows:

curTypeFlags = transType.allowFlags & *allowTypeMask;

curUseFlags = transType.allowFlags & *allowUseMask;

42 XTND Programmer’s Reference

includeTypeFlags = selectPtr->includeFlags & *allowTypeMask;

includeUseFlags = selectPtr->includeFlags & *allowUseMask;

excludeTypeFlags = selectPtr->excludeFlags & *allowTypeMask;

excludeUseFlags = selectPtr->excludeFlags & *allowUseMask;

if ((selectPtr->translatorType == 0

|| transType.Type == selectPtr->translatorType)

&& ((includeTypeFlags == 0) || (curTypeFlags & includeTypeFlags))

&& !(curTypeFlags & excludeTypeFlags)

&& ((includeUseFlags == 0) || (curUseFlags & includeUseFlags))

&& !(curUseFlags & excludeUseFlags))

{ /* Accept translator type */ }

The variable transType is a record containing the type, version, and allowFlags
setting for a particular type of translator resource such as 'FLTI' or 'FLGI', and
selectPtr is a pointer to your SelectParamBlock.

The next two fields are includeTrans and excludeTrans, which are used just as
includeFlags and excludeFlags are. These fields are compared to the flags
field in the TransDescribe block for the translator. Thus, you use these fields to
select individual translators, whereas you use the includeFlags and
excludeFlags fields to select types of translators. Again, to include all translators
regardless of whether they have any flags set, set includeTrans to 0. This is
somewhat more useful in this case because translators need not have any of these
flags set. If you set excludeTrans to 0, no translators are excluded. To include all
translators regardless of their flag settings, set both of these fields to 0.

The next field, transName, is a pointer to a Pascal string (Str255). It specifies a
name for the selected translator. Only translators whose names match the supplied
name are returned. You should not select translators by name because the translator
may be localized into another language, which might cause its name to change. Also,
another translator with the same name might be substituted. To include all
translators regardless of name, set this field to 0. The selection statement used to
select translators based on these three fields is as follows:

version = selectPtr->translatorVersion & 0x00FF;

language = selectPtr->translatorVersion & 0xFF00;

if (((selectPtr->includeTrans == 0)

|| (checkTransPtr->flags & selectPtr->includeTrans))

&& !(checkTransPtr->flags & selectPtr->excludeTrans)

&& ((version == 0)

|| (version == (checkTransPtr->version & 0x00FF)))

&& ((language == 0xFF00)

|| (language == (checkTransPtr->version & 0xFF00)))

&& ((selectPtr->transName == 0)

|| !(IUCompString(selectPtr->transName, checkTransPtr->name))))

{ /* Accept translator */ }

Chapter 2 Writing XTND-capable Applications 43

The variable checkTransPtr is a pointer to the TransDescribe block for the
translator being considered.

The next field is PBVersion, which should be set to one for this version of the
SelectParamBlock.

The final field is menuSortFlag. This is used to indicate whether the list of
translators being returned should be sorted and have duplicates removed in the same
manner as the XTND library does when creating a list for the GetFile or PutFile
dialog box. If this field is set to TRUE, the list is sorted and has duplicates removed.
If this field is set to FALSE, the list contains all translators that met the selection
criteria in the order they were found. If you plan to use this list in a menu and don’t
wish to sort it yourself, you should set this field to TRUE.

Rebuilding the list of available translators

The function XTNDRebuildTransList rebuilds the list of installed translators
while the application is running. This is useful if the user needs to install or remove
translators while using an application. The alternative to this call is to quit the
application, discard the XTND Translator List file, and restart the application.
This routine is also useful in ensuring that the list of translators is current, if there is
any doubt.

XTND localization

Translators, like applications, can potentially display language-specific user
interface elements, such as dialog boxes. For this reason, future translators may need
to be localized into other languages. Because translators are installed separately
from applications and are supplied by various vendors, the user’s machine may
contain translators and applications in a multitude of languages. It is even possible,
for example, that two translators (one in English, the other in French) for the same
file format might exist on a single machine.

The XTND 1.3 release introduces a set of conventions allowing applications and
translators to identify their language to the XTND System. The XTND System has
been enhanced so that it automatically matches the application’s language to the
translator language and, when the choice of language is ambiguous, appends
language names (in parentheses) to the translator names displayed in the pop-up
menu list.

44 XTND Programmer’s Reference

Application localization

You can identify the language of an application to the XTND System by passing that
language (obtained from the 'vers' resource) in the high byte of the version when
calling XTNDInitTranslators. You may pass 0xFF in this byte if you wish to
associate the application with no language. Set the high bit of the low byte of the
version to 1 if you wish to use only translators that are localized to the language of
the application. This leaves only seven bits for the XTND version, which should be
sufficient. (The current version is 2.) If you don’t wish to be bothered with this, pass
only the XTND version, as was done in previous XTND releases. XTND interprets
this as an English application that can use translators localized into other
languages. This should present no problems for existing applications. See Figure 2-1

n Figure 2-1 XTND version (short integer)

Translator localization

Translators need not do anything different unless they have been localized into
another language. You can identify the language of a translator to the XTND System
by changing the version field in the 'FTYP' resource. The high byte of this field
contains the language of the translator. The low byte contains the version of the
translator. Set the high bit of the low byte of the version to 1 if the translator can be
used only with applications in the same language as the translator. Additionally,
the flag ftypIsLocalized identifies the translator as being localized. If the
translator has been localized, this flag should be set. This flag allows the Claris
XTND System to determine whether a translator with 0 in the high byte of the
version is an English translator or one that has not been localized.

Chapter 2 Writing XTND-capable Applications 45

Language matching algorithm

Here is a pseudo-code description of the algorithm the XTND System uses to process
and display the translator list.

If the application-language is 0xFF:

List all translators in all languages.

Append the 'language' string to each translator name when presenting
choice to the user

If there is only one language version translator for a given format:

Use it automatically

If it does not match the language of the application, and it does not
match the language of the system, append the 'language' string
when presenting to the user, otherwise don’t append it.

If more than one language-version of a given translator is available:

If one of them matches the application-language:

Use it automatically; don’t present the 'language' string to the
user

Else if one of them matches the system-language:

Use it automatically; don’t present 'language' string to the user

Else :

Present all the available language-versions of a given translator

Append the 'language' string to each translator name when
presenting choice to the user.

u Note: Languages are matched according to an internal list of equivalent
languages. Thus, Canadian French, French French, and Swiss French are
equivalent. The translator that best matches the application or the system
language is selected.

u Note: If a translator is not localized, a language string is not displayed.

u Note: If two translators with the same name are encountered in the search
process, and one is localized and the other is not, the first one found is displayed.

46 XTND Programmer’s Reference

Chapter 3 Writing XTND Translators

Chapter 3 describes the process of using the XTND System from the
translator’s point of view. First, the structure of a translator file is
described. Next, the simplest kind of translator, for PICT import, is
described. After that, the protocol for importing text is described in
detail. Finally, the protocol for exporting text is described.

47

Translator file structure

A translator file may contain several resources. The first type is 'FTYP'. It contains
all the information that the XTND System needs to determine whether a translator
can read a document.

The second resource is a code resource. This code resource contains the code that
actually performs the translation of the foreign file format. Its resource type and
identification (ID) are determined by the 'FTYP' resource. Example resource types
are 'FLTI' (text import translator), 'FLTE' (export translator), and 'PFLT' (picture
import translator).

The translator file may include a number of optional resources that are generally not
required. An 'FDIF' resource is a code resource invoked by the XTND System to
determine whether the document currently selected is readable by this particular
translator. Another optional resource is 'FINI', which is discussed later in this
chapter.

The 'FTYP' contains the resource type and ID of the translator code (the 'FLTI',
'FLTE', or 'PFLT') resource and the ID of the 'FDIF' resource. The ID number of the
'FINI' resources must be 0.

The 'FTYP' resource

The XTND System uses the translator’s 'FTYP' resource to establish the mapping
from document versions and file types to a specific translator code resource. Files that
share the same creator and type, but differ in the internal format, can be mapped
into separate translators. Conversely, files that have a distinct creator and/or type,
but share the same file format, can be mapped into a single translator. A template to
be used for creating 'FTYP' resources with ResEdit™ is included with this kit.

For example, all Microsoft® Word documents have the same creator and type, but
their internal document formats differ. You could build one translator to read all
these different formats, but it would have to be a very large translator. Instead, you
can use the fact that Microsoft has changed its internal document version number.
This allows you to create separate translators for Word 3 and Word 4 files; the
'FTYP' resources in these translators determine whether they can be used to open a
particular file.

As another example, both MacDraw® II documents and MacDraw II stationery have
the same file format, yet different file types. Instead of writing two different 'FTYP'
resources (resulting in two pop-up menu entries), you can put multiple matches into a
single 'FTYP' resource.

48 XTND Programmer’s Reference

u Note: Every 'FTYP' resource must have at least one match.

The characteristics of the translator are identified by the flags field in the 'FTYP'
resource. Six flag bits are currently defined:

n ftypIsSpecial designates a translator as a special translator. Usually,
translators determine which files should appear in the open dialog box, and the
XTND System checks all translators to see if one of them can open a selected file.
A translator may be unable to determine precisely which files it is able to open.
This problem typically occurs with files from PCs and other computer systems
that do not have their file type and creator set to meaningful values when they
are moved to the Macintosh. If the version bytes and 'FDIF' resource cannot
discriminate between files that the translator can read and those that it cannot,
the translator will attempt to open files it cannot read.

If the wrong translator attempts to open a file, the result is considerable confusion
for the user. When the ftypIsSpecial flag is set, the translator is considered a
special translator. When the user selects a file to be imported, all of the non-
special translators are tried first, then the standard (application native) types,
and then the special translators.

The drawback to designating translators as special is that opening files with
these translators is slightly less automatic. Since files to be opened by such
translators usually show up as “text” on the Macintosh, they are opened as text if
the application reads text files (most do), after which the user may select a more
appropriate translator and open them again.

n ftypNeedsResources specifies that the translator cannot be called unless its
resource fork is open because it needs to read resources out of its resource fork (this
is supported by the field in the TransDescribe record, resRefNum, which
contains the refnum of the resource fork of the translator, or 0 if the resource fork
is not open).

n ftypIsLocalized specifies that the translator has been localized to a
particular language.

Translators must be able to access their resources when they are called. The
application should ensure that the resource fork of the translator is open when the
translator is called, if this is possible. Translators, by contrast, should not depend on
being able to access their resources. With the exception of translators that have
their ftypNeedsResources bit turned on (those that have additional code
resources, for example), translators should be able to execute successfully even if they
fail to read or write their resources. You can ensure this in the case of preferences, for
example, by substituting default values for the stored preferences.

Chapter 3 Writing XTND Translators 49

u Note: Some existing translators (notably those from DataViz™) will not work
unless they can read from their resources, and they do not change the current
resource file when they are called. In order to use these translators, the
application must not only ensure that the resource fork of the translator is open,
but also that the translator is in the list of currently searched resource files.

Translators can access their resources by setting themselves to be the current resource
file using the resRefNum field in the thisTranslator field of the import or
export parameter block. This field is set before the translator is called, and if it is
non-zero then the resource fork is open. Translators should not write to their
resources; they should store preferences in a preferences file stored in the Preferences
folder. All translators from a single vendor can use a single preference file by having
each translator store its preferences in a unique resource within the preference file.
Before returning, the translator should restore the current resource file to the value it
had when the translator was called.

'FINI' and 'FDIF' resources are not intended to read or write to their resources when
they are called, and there is no way for them to tell if their resource fork is open or if
it is the current resource file.

Translators can be localized into other languages. Most existing XTND translators do
not have a user interface of their own, but future translators may require a
preferences dialog box, or perform a language-specific translation. Translators can
identify their language to the XTND System by changing the version field in the
'FTYP' resource. Please refer to the section “XTND Localization” in Chapter 2 for
details about localization of translators.

The 'FTYP' resource format is shown in Appendix A.

Primary version check method—Version bytes

The version bytes in an 'FTYP' resource are used to distinguish among files having
different versions but the same creator and file type attributes. This method of
version checking assumes that the document has an internal version number at some
fixed offset from the beginning of the file.

You can check up to 16 version bytes, where the number of bytes to check is recorded in
numVersBytes. The offset is measured from the beginning of the file and is stored in
versBytesOffset. The bytes required for a match are stored in versBytes. The
translator cannot read the file unless the bytes stored here match those at the given
offset in the file.

50 XTND Programmer’s Reference

The MacWrite 5.0 file translator, for example, cannot read the file unless the first
long word in the document has the value 6. The 'FTYP' resource for MacWrite 5.0
Import, numVersBytes is set to 2, versBytesOffset is set to 0, and the versBytes array
shows that the first two bytes should be 00 06.

Secondary version check method—The 'FDIF' resource

If the version bytes method cannot be used or the values returned are incomplete,
then an alternative is to use the 'FDIF' method instead (or in addition).

An 'FDIF' code resource simply returns a value (usually 1 or 2), according to whether
a particular document is of the correct type. It can do whatever is needed in order to
perform this check. The application opens the data fork of the file with read-only
access and passes two parameters to the 'FDIF' code resource.

Here is the prototype of this function:

void main(short *TwoWayInfo, ResType Creator, TransDescribe
*Translator);

On entry, *TwoWayInfo is the file reference number of the open document, Creator
is the creator of the file, and Translator is a description of the translator being
called. On exit, the value of *TwoWayInfo is 2 if the document is of the correct type
but is the wrong version. If the value of *TwoWayInfo is 1, then this is the correct
version of this document, and this translator can read the file. If the value is
anything else, then the application will go on to the next translator.

See Appendix D for a simple example from the MacWrite 5.0 import translator.

An alternative—The 'FINI' resource

A file translator can also create 'FTYP' resources dynamically at startup. This is
accomplished through a 'FINI' resource. This mechanism is useful if a file translator
needs to retrieve information from another source (for example, another file) to
determine which 'FTYP' resources it can support. In this case, the 'FINI' takes the
information from the file and generates the appropriate 'FTYP' resources.

A 'FINI' code resource returns a count and a handle to an array of transDescribe.
(See Translator.h.) The transDescribe structure is almost identical to the
'FTYP' structure, and 'FTYP' resources are changed into transDescribe structures
when they are read into memory. The resource ID of the 'FINI' resource must be 0.

Chapter 3 Writing XTND Translators 51

Here is the prototype of a 'FINI' resource:

void main(TransDescribe **FTYPHandle, short *FTYPCount);

On entry, FTYPHandle is a handle of size 0 and the value of *FTYPCount is 0. On
exit, FTYPHandle should contain an array of transDescribe structures, and
*FTYPCount should denote how many transDescribe structures are contained by
FTYPHandle.

Translator programming interface

Translators are written as code resources. All resources related to the translator must
be placed in a file. The translator file must be of type 'Fltr'. Remember, case is
important. When built, the translator file must be placed where the XTND System
can find it (see the section “Locating the XTND library” in Chapter 2 for more
information on this subject).

The translator interface requires the main routine, which is called by the
application. This function handles all the translator commands, from initialization
to disposal of any memory that was used. The translator’s main routine is passed a
pointer to a parameter block much as a Macintosh PBRead call is. This parameter
block contains a directive value that tells the translator what action to take.

Errors

A translator returns error codes via the result field. If no error occurs, the translator
should not change this field. In general, the translator should be able to handle any
unknown directive it receives (by doing nothing) without returning an error. The
translator should not return an importAcknowledge directive in response to an
unknown directive, nor should it return an error.

If a file error occurs while the file is being retrieved from disk, the file system error
should be returned to the application. Similarly, if a memory error or other system
error is received, it should be returned. In both cases, the application should treat
the error as if it had occurred within the application itself. The import (or export)
should be terminated unsuccessfully, and the application can present an alert box
describing the problem.

52 XTND Programmer’s Reference

If the translator cannot import the file because it does not understand the file format,
the translator should return the error code badImportFileErr, and the application
should display an alert box stating that the translator was unable to read the file.
The only exception to this is if the translator handles the error itself and puts up its
own dialog box or takes another action to inform the user that the import could not be
completed. In this case, the error code translationCanceledErr is returned, and
the application should stop the import and take no other action. At present, these
codes are returned in the error field and might be confused with system errors.
Neither badImportFileErr nor translationCanceledErr conflicts with any
system error codes, but this may not always be true.

Writing a PICT (or Picture) import translator

The PICT import translator is probably the simplest kind of translator that XTND
supports. In general, the application opens both the data and resource forks of the
document and then calls the translator and requests a picture. The translator then
returns a handle to the requested picture.

When the application calls the translator, it passes a pointer to a picture translator
parameter block. This parameter block contains fields in which the application
passes the reference numbers of the data and resource forks of the file to be read. The
translator uses other fields in the parameter block to return any error that may have
occurred and, if all goes well, the graphic picture the user wanted.

The application may request either a QuickDraw picture or a PostScript® picture
from the translator. If the translator has the requested picture representation, it
returns it, otherwise, it returns a nil handle.

The application is responsible for closing the data and resource forks. The translator
creates the picture handle, and the application disposes of it.

See Appendix B for a description of the picture translator parameter block and
Appendix D for the the code for reading a PICT file.

Chapter 3 Writing XTND Translators 53

Writing a text import translator

A text import translator reads a specified document and provides the application
with information that describes the contents of that document. Because the
application expects the information in a certain order, a number of typical document
segments have been defined. The application requests these segments (header,
footer, main body) in a fixed sequence.

Writing the translator

The text import interface requires a main routine, which is called by the
application. This routine handles all the translator commands, from initialization
to disposal of any memory that was used. The translator’s main routine is passed a
pointer to a parameter block, much as the Macintosh PBRead call is. Within this
parameter block is a directive value that tells the translator what action to take.

See Appendix B for the definition of the import translator parameter block,
Appendix C for the directives that the application can pass (through directive)
during import, and Appendix D for a sample entry point for a text import translator
(taken from the MacWrite 5.0 import translator).

Import translator actions

This section describes the actions the application expects the translator to perform
when it passes specific selection information. The application can call your
translator from one of two places: from the Open or from the Insert File menu item. If
from the former, the translator sets up the page information, width of columns,
number of columns, headers, footers, and starting page (and footnote) number.
However, if the translator is called from Insert File, only the text and graphics are
accepted, and the rest is discarded. There is no way of knowing which call invoked
the translator, and it is expected to perform the same in both situations. If the call
was invoked by Insert File, the application may not call any header or footer
routines. Two fields in the parameter block control which portion of the document is
currently being imported. They are the directive and currentStory fields. The
directive field informs the translator what task is to be performed, and the
currentStory field describes which portion of the document is being imported.

54 XTND Programmer’s Reference

directive Values

n importGetResources

If your document has a resource fork, then your translator will receive an
importGetResources call initially; otherwise, the first call it receives is
importInitAll. Your translator should be able to deal with an
importGetResources call (by doing nothing), even though it is not expecting
the document to have a resource fork.

At this point in the sequence, the application has opened the document’s resource
fork and is calling the translator to read in any necessary resources from the
document. The translator should read all the required resources and release them,
since the application closes the resource fork when this call is completed. If the
translator does not need any resources, then it should do nothing.

n importInitAll

At this point, you should initialize your global variables. This directive is
always given, whereas importGetResources is given only if the document has
a resource fork. The variables that you should initialize within this call are as
follows:

importParms->autoHyphenate

importParms->topMargin

importParms->bottomMargin

importParms->leftMargin

importParms->rightMargin

importParms->gutter

importParms->startPageNum

importParms->startFootnoteNum

importParms->rulerShowing

importParms->doubleSided

importParms->titlePage

importParms->endnotes

importParms->showInvisibles

importParms->showPageGuides

importParms->showPictures

importParms->autoFootnotes

importParms->printRecord

importParms->numCols

Chapter 3 Writing XTND Translators 55

The printRecord variable is a special case. If you use a print record, you have to
create the print handle in your initialization routine and pass back that handle.
You do not dispose of it because that is done for you. If you do not use a print record,
leave this entry NULL.

The general idea behind the remainder of the import process is that you
initialize a segment of the document and then fill that segment with information.
You do this by using directive and currentStory. The application will loop
through the segments, initializing each segment, getting text, and then closing
the segment.

n importInitRightHeader

n importInitLeftHeader

n importInitHeader

n importInitRightFooter

n importInitLeftFooter

n importInitFooter

n importInitMain

n importInitFootnote

The application calls the translator; the currentStory and directive fields
indicate where to begin to import information. The translator begins checking for
a right header by passing importInitRightHeader in directive, and
rightHeaderStory in currentStory. If the document that is being translated
contains a right header, pass back importAcknowledge in directive. The
application continues through the above values until it receives an
importAcknowledge from the translator.

The application cycles through the stories in the order listed before the preceding
paragraph. Each story is requested only once, with the exception of
importInitFootnote, which is called for each footnote passed during the
import of the main body.

u Note: The application may continue to request footnotes until the translator
indicates that no more are available. It indicates this by not returning
importAcknowledge when it receives an importInitFootnote directive from
the application.

u Note: XTND presently allows footnote references to appear only in the main
body. The translator should not return any footnote reference characters in any
other stories.

56 XTND Programmer’s Reference

To reiterate, after the main body has been imported (that is, after
importCloseMain is passed), the application calls your translator once for each
footnote in the following cycle: importInitFootnote, importGetText, and
importCloseFootnote.

n importGetText

When directive is set to importGetText, the translator is expected to return
the contents of the currentStory. Up to 256 bytes of text is returned at a time.
Each “style run” should be returned as a separate object. A style run is any
consecutive part of a story that has the same paragraph and character attributes.

For a regular style run, the following fields should be returned:
importParms->textLength The number of characters in the selection.
importParms->textBuffer The characters in the selection.
importParms->txtFace The face of the selection.
importParms->txtSize The font size of the selection.
importParms->txtFont The font family ID of the selection.
importParms->txtColor The XTND 1.3 color of the selection.
importParms->txtJust The XTND 1.3 justification of this paragraph.
importParms->paraFmts A pointer to the paragraph format for this paragraph.
importParms->tabs A pointer to the tab information for this paragraph.

If the translator is passing any of the special characters in italics (see the section
“Data Types and Conventions” in Chapter 1), such as page number, footnote
reference, or picture, then textLength must be equal to 1 and only one character is
returned via textBuffer. Information specific to each of these special characters
may also be passed to the application via the miscData long word. (See “Special
characters,” later in this chapter, for more details on how to pass these characters.)

After returning all of the information in each story, the translator should return
importAcknowledge in response to the next importGetText call from the
application. No text should be returned, and the textLength field should be set to 0
when importAcknowledge is returned. This response tells the application that the
translator has completed this story, and that the application can request the next
one. Prior to moving to that story, the application sends a “close” story command to
the translator, as follows:

n importCloseRightHeader

n importCloseLeftHeader

n importCloseHeader

n importCloseRightFooter

n importCloseLeftFooter

n importCloseFooter

n importCloseMain

n importCloseFootnote

Chapter 3 Writing XTND Translators 57

These calls allow your translator to dispose of any memory it used while importing
the story. These calls are separate because the application may run out of memory or
disk space during an import, and you may wish to close the translator in a different
manner than usual.

n importCloseAll

A call to importCloseAll signifies that the import has been completed. At this
time, the translator must clean up any handles or pointers it has created and dispose
of any resources that it read in earlier. This is always the last call made to the
translator during an import. The application makes this call even if the translator
has returned an error to a previous call.

Special characters

If the special character in textBuffer is floatingPict (0x04), then miscData is
a handle to PictMisc, which is defined in Table 3-1.

Table 3-1 PictMisc definition

Length Name Description

4 bytes thePicture A QuickDraw picture handle.

4 bytes pictSize The size of the picture.

8 bytes destRect The user-supplied picture display rectangle that the
picture is scaled to after it is cropped to the
OrigRect.

8 bytes origRect The picture display rectangle that the picture is
cropped to.

38 bytes reserved Fill with 0’s.

Both this 62-byte structure and the picture handle must be created by the translator.

Usually, for all other special characters, miscData is a long word containing 0—
indicating the default for that special character. However, Table 3-2 details other
possible values of miscData.

58 XTND Programmer’s Reference

Table 3-2 miscData values

Value Special character miscData Value

2 (0x02) Page number If non-zero, this is a “current of total”
page number character. If 0, this is a
simple page number character.

4 (0x04) Picture PictMisc handle (see previous
section).

5 (0x05) Footnote reference Zero (see following section).

21 (0x15) Short date If nonzero, this date character is
never updated, and this field
reflects the time at which this
character was inserted (in seconds
since January 1, 1904). If 0, this
character always reflects the current
date.

22 (0x16) Abbreviated date Same as Short date.

23 (0x17) Long date Same as Short date.

24 (0x18) Abbreviated with day date Same as Short date.

25 (0x19) Long with day date Same as Short date.

26 (0x1A) Time If nonzero, this time character is
never updated, and this field
reflects the time at which this
character was inserted (in seconds
since January 1, 1904). If 0, this
character always reflects the current
time.

“Offset” special characters

The document being imported may have date, time, or page characters that are
offset into the header or footer by some QuickDraw point. If so, the translator must
return the offset (as a point) from the top-left corner of the story in the respective
parameter block field (that is, datePoint, timePoint, or pagePoint). When the
application reads in the story, it inserts the correct character into the story at the
specified point.

Chapter 3 Writing XTND Translators 59

Footnotes

XTND allows footnotes only within the main story. The application should handle
the automatic numbering of the footnotes that are sent by the translator if the
autoFootnotes field is set to TRUE. If autoFootnotes is set to FALSE, then the
text string with which the footnote reference is to be marked must be returned by the
translator in the footnoteText field. The footnoteText field is a Pascal-based
string containing no more than nine characters.

Remember that the text of the footnote is not inserted at this time but after the main
body has been completed. After the main story has been read in, the application
calls the translator once for each footnote. At that time, the application invokes the
translator with a call to importInitFootnote and then a call to importGetText.
Remember that each footnote must be returned in the order in which it appears in the
main body.

Mapping objects and attributes

Because the current XTND document model provides only one header and footer,
multiple headers and footers, found in some file formats, are ignored. Your translator
also has to map your file format’s text attributes to similar XTND attributes. For
example, the original application may support double underlining but use a different
value than XTND does.

60 XTND Programmer’s Reference

Writing a text export translator

To understand this section, you should first understand the previous section, “Writing
a Text Import Translator,” because a number of the concepts are the same.

A text export translator writes to a specified document, which the application
creates and opens and for which it supplies the translator with a refNum. The
application then provides information that describes the contents of that document.
The application supplies the information in a prescribed sequence, and the translator
must be able to accept it in that sequence. The translator is repeatedly called with
information regarding the document, and the translator builds a file from the
information provided.

Writing to the translator

The text export interface requires a main routine, which is called by the application.
This function handles all the translator commands, from initialization to disposal of
any memory that was used. The translator’s main routine is passed a pointer to a
parameter block, much as a Macintosh PBWrite call is. This pointer contains a
directive that tells the translator to supply a particular segment of information.

See Appendix B for the definition of the export parameter block, Appendix C for the
directives that the application can pass (through directive) during export, and
Appendix D for a sample entry point for a text export translator (taken from the
header of the MacWrite 5.0 export translator).

Export translator actions

This section describes the actions the application expects you to perform when your
translator is passed specific selection information. Two fields in the parameter block
control which portion of the document is currently being exported. They are the
directive and currentStory fields. directive informs the translator which
task is to be performed, and currentStory describes which portion of the document
is being exported.

directive values

n exportInitAll

Chapter 3 Writing XTND Translators 61

This is the first call received by your export translator. It allows you to set up
your translator global variables and other variables. The application sets up the
following elements of the parameter block, thus you can determine the layout of
the document you are creating:

exportParms->result

exportParms->refNum

exportParms->topMargin

exportParms->bottomMargin

exportParms->leftMargin

exportParms->rightMargin

exportParms->numCols

exportParms->gutter

exportParms->startPageNum

exportParms->startFootnoteNum

exportParms->rulerShowing

exportParms->doubleSided

exportParms->titlePage

exportParms->endnotes

exportParms->showInvisibles

exportParms->showPageGuides

exportParms->showPictures

exportParms->autoFootnotes

exportParms->printRecord

exportParms->headerStatus

exportParms->footerStatus

exportParms->totalCharCount

exportParms->autoFootnotes

refNum contains the reference number of the data fork of the file to which you are
writing.

The headerStatus and footerStatus variables are status bytes that tell
whether headers and footers exist, in case any special preparation must be done
for documents containing headers and footers. The associated information is
shown in Table 3-3.

62 XTND Programmer’s Reference

n Table 3-3 headerStatus and footerStatus variables

Bits Meaning

0 TRUE if every page.
1 TRUE if left page.
2 TRUE if right page.

n exportOpenRightHeader

n exportOpenLeftHeader

n exportOpenHeader

n exportOpenRightFooter

n exportOpenLeftFooter

n exportOpenFooter

n exportOpenFootnote

n exportOpenMain

These commands are called in the exact sequence listed here to initialize each
segment of the document. The application is searching for the first valid
document portion that the translator can process. If your document can support a
particular segment (for example, right headers), the translator should return
exportAcknowledge in the directive field when it receives this Open call.
As with import, the translator should take no action when it receives an unknown
directive and should not return an error; nor should it return
exportAcknowledge.

When the translator returns an exportAcknowledge, the application responds
with an exportWriteText command, which is described in the following
section. At the end of the story, the application sends the relevant exportClose
command and cycles through to the next story type. As with the import
translator, footnotes are the exception, in that footnotes are sent until they have
all been exported.

n exportWriteText

A style run is any consecutive part of a story that has the same paragraph and
character attributes. The application fills in the following fields in the
parameter block:
exportParms->textLength Number of characters in the selection.
exportParms->textBuffer A handle containing the text.
exportParms->txtFace Pointer to the face of this selection.
exportParms->txtSize Pointer to the font size of the selection. (This is

actually the QuickDraw font size multiplied by four.)
exportParms->txtFont Pointer to the font family ID of the selection.
exportParms->txtColor Pointer to the XTND 1.3 color ID of the selection.
exportParms->txtJust Pointer to the justification of this selection.
exportParms->paraFmts Pointer to the paragraph information (see “Writing a

graphic import translator,” earlier in this chapter).

Chapter 3 Writing XTND Translators 63

exportParms->tabs Pointer to the tab information (see Import).
exportParms->pagePoint QuickDraw Point location of the page number

character.
exportParms->datePoint QuickDraw Point location of the date number

character.
exportParms->timePoint QuickDraw Point location of the time number

character.

Special characters

Special characters are dealt with differently during export than they are during
import. During import, all special characters are passed individually, whereas
during export, page, date, and time characters can be passed in the text stream.
XTND does not currently allow the export of the extended data associated with
these special characters.

If a picture is being exported, then the Picture character is passed by itself, and the
field picture contains a PicHandle, and the field pictRect contains a rectangle
that is the duplicate of the QuickDraw subfield picFrame.

If the main story is currently being exported and a footnote character is encountered,
then the footnote character is also sent individually. The additional field used by
the footnote is footnoteText, which is a Pascal string. If this string is empty (the
length byte is 0), then the footnote is automatically numbered; otherwise, this string
is the footnote marker.

Footnotes

Footnotes are treated as special cases during export, just as they are during import.
During import, footnotes are passed after the main body, but during export, footnotes
are passed before the main body. This is done for files that must place the footnotes
within the main body text, since such translators must store the text of either the
main body or the footnotes.

Each footnote is a story by itself and is passed as such. Each time the translator is
called with directive set to exportWriteText, the currentStory is
footnoteStory, footnoteOffset is the offset into the document where this
footnote occurs. The application sets up both footnoteOffset and footnoteText
when it invokes the translator with a call to exportOpenFootnote.

64 XTND Programmer’s Reference

Closing

Upon completion of each story, the application calls the translator with the
appropriate Close directive. In order, they are as follows:

n exportCloseRightHeader

n exportCloseLeftHeader

n exportCloseHeader

n exportCloseRightFooter

n exportCloseLeftFooter

n exportCloseFooter

n exportCloseFootnote

n exportCloseMain

These calls signify the end of that story, so the translator can close the story in
your document.

n exportCloseAll

This call is sent after all the main body has been read and closed. At this time,
the translator must dispose of any memory that was used. This is the last chance
to write to the data fork of your document. The application should make this call
even if the translator has returned an error to a previous call.

n exportWriteResources

Finally, the translator is called with this directive. If you must write any
resources to your document, this is the time to do it. When this call is sent,
refNum is a pointer to the file reference number of the resource fork of your
document. The translator must not close the resource fork of the document; the
application will close the resource fork.

Chapter 3 Writing XTND Translators 65

Appendix A 'FTYP' resource format

67

n Table A-1 'FTYP' resource format

Offset Length (bytes) Description

0 (0x0000) 2 version Translator revision number.
Currently 2 (0x02).

2 (0x0002) 4 translatorType Translator type. Examples are:

'FLTI' = Text Import Translator.
'FLTE' = Text Export Translator.
'PFLT' = Picture Import

Translator.

6 (0x0006) 2 codeResID The resource number of the
translator type.

8 (0x0008) 2 FDIFResID 'FDIF'' resource number. If this
is set to -2, this translator is an
export translator (and as such
needs no 'FDIF'' resource). If
set to -1, there is no 'FDIF''
resource.

10 (0x000A) 2 numVersBytes Number of version difference
bytes.

12 (0x000C) 4 versBytesOffset Offset into document of version
difference bytes.

16 (0x0010) 16 versBytes Byte values for this translator.

32 (0x0020) 2 appWDRefNum WDRefNum of the application
folder. This field is set
internally by the XTND
System.

34 (0x0022) 2 unused1 Reserved for future use—must
be 0 for this version.

36 (0x0024) 2 pathLength This field is set internally by
the XTND System.

38 (0x0026) 2 flags This field contains bits that are
used to designate the
characteristics of this
translator. Flag bits are
defined as follows:

Value Meaning

0x0001 ftypIsSpecial. Designates
this as a special translator.

(Continued)

68 XTND Programmer’s Reference

n Table A-1 'FTYP' resource format (Continued)

Offset Length (bytes) Description

0x0002 ftypHasPreferences.
Indicates this translator has a
preferences dialog box.

0x0004 ftypNeedsResources. Means
this translator cannot run
without having its resources
available.

0x0008 ftypWritesResources.
Indicates this translator will
try to write to its resources.

0x0010 ftypOnlyPreferences.
Indicates this can be used only
to set its preferences.

0x0020 ftypIsLocalized. Means
this translator has been
localized into a particular
language.

40 (0x0028) 2 transIndex Index of this translator in the list stored
by the 'FINI' resource. This field is set
internally by the XTND System.

42 (0x002A) 2 resRefNum Reference number of the resource fork of
this translator. This field is set
internally by the XTND System.

44 (0x002C) 4 directoryID Directory ID of the folder containing this
translator. This field is set internally by
the XTND System.

48 (0x0030) 2 vRefNum Volume reference number of the volume
containing this translator. This field is
set internally by the XTND System.

50 (0x0032) 32 fileName Name of the file containing this
translator. This field is set internally by
the XTND System.

82 (0x0052) 2 numMatches Number of matches (n, described below).

(Continued)

Appendix A 'FTYP' Resource Format 69

n Table A-1 'FTYP' resource format (Continued)

Offset Length (bytes) Description

84 (0x0054) 10*n matches A match has the following
format:

Length Meaning

4 Document creator. For example:
'MACA' = MacWrite 5.0

4 Document type. For example:
'WORD' = MacWrite 5.0

1 (Boolean) Set to TRUE if the
creator must match as well as
the file type.

1 This bit field allows particular
bytes of the file type (bits 4-7)
and creator type (bits 0-3) to be
ignored. If a bit is set, the
corresponding byte is ignored.
For example, a translator that
accepted all files of type
'XAAA' and creator 'CCXC',
where 'X' doesn’t matter, would
set bits 7 and 1 of this byte.

84 + 10*n 32 name Name of this translator as a
Pascal string. This name
appears in pop-up menus
displayed by the XTND
System.

70 XTND Programmer’s Reference

Appendix B Parameter block formats

71

Picture translator parameter block

Table B-1 depicts the picture translator parameter block.

n Table B-1 Picture translator parameter block

Offset Length (bytes) Description

0 (0x0000) 2 result On entry, it is set to ioErr.
Remember to set the field to
noErr if you were successful.

2 (0x0002) 2 dataRefNum File reference number of the
data fork of the graphics file.

4 (0x0004) 2 resRefNum File reference number of the
resource fork of the graphics
file.

6 (0x0006) 4 thePicture On entry, not defined; on exit, it
should contain a valid
QuickDraw picture handle.

10 (0x000A) 2 directive The desired action to be taken
by the translator. MacWrite II
calls a 'PFLT' translator only
once and sets this field to
pictGetPicture (1).
Other Claris applications may
set this field to other values.
Your 'PFLT' should respond
only to directives that it
understands.

(Continued)

72 XTND Programmer’s Reference

n Table B-1 Picture translator parameter block (Continued)

Offset Length (bytes) Description

12 (0x000C) 4 dataHandle This placeholder can be used by
the translator. For example,
some compilers do not allow
global variables in a code
resource, and this field could
hold a handle that contains all
necessary global variables. If
that were the case, the
translator would be responsible
for allocating and disposing of
the handle.

16 (0x0010) 74 theReply Standard reply record. This
record is set up to describe the
file being translated.

90 (0x005A) thisTranslator A TransDescribe record (see
XTNDTextTranslator.h).
This is the translator
description for the translator
being called.

Table B-2 depicts the import translator parameter block.

n Table B-2 Import translator parameter block

Offset Length (bytes) Description

0 (0x0000) 4 textBuffer Pointer to 256 bytes of data.

4 (0x0004) 2 directive Indicates the desired action to
be taken by the translator. Also
used by the translator to return
its response to the application.

6 (0x0006) 2 Error Return a 0 here if successful, or
a number representing the error.

8 (0x0008) 4 textLength The number of characters of
information the translator is
returning.

(Continued)

Appendix B Parameter Block Formats 73

n Table B-2 Import translator parameter block (Continued)

Offset Length (bytes) Description

12 (0x000C) 2 translatorState Available for translator use;
typically used to keep track of
location use in the document.

14 (0x000E) 2 refNum Reference number of the fork
currently being read by the
translator.

16 (0x0010) 2 txtFace Current text face. (Values are
defined in the header
XTNDTextTranslator.h.)

18 (0x0012) 2 txtSize Current font size.

20 (0x0014) 2 txtFont Font family number.

22 (0x0016) 2 txtColor XTND 1.3 color value. (Note
that these are different from
QuickDraw values.)

Value Meaning
0 White
1 Black
2 Red
3 Green
4 Blue
5 Cyan
6 Magenta
7 Yellow
8-255 reserved

24 (0x0018) 2 txtJust Justification value of the text.
Values are as follows:

Value Meaning
0 Left
1 Center
2 Right
3 Justified

(Continued)

74 XTND Programmer’s Reference

n Table B-2 Import translator parameter block (Continued)

Offset Length (bytes) Description

26 (0x001A) 2 unused1 This value should always be 0.

28 (0x001C) 4 paraFmts A pointer to this paragraph’s
format array. The paragraph
format record is defined in the
section “Data Types and
Conventions” in Chapter 1.

32 (0x0020) 4 tabs A pointer to the array of tabs
for this paragraph. The
TabSpec format is defined in
the section “Data Types and
Conventions” in Chapter 1.

36 (0x0024) 1 unused2 A currently unused Boolean.

37 (0x0025) 1 numCols Number of columns in the
document.

38 (0x0026) 2 currentStory The story currently being read.
(The stories are defined in
XTNDTextTranslator.h.)

Value Meaning

1 rightHeaderStory

2 leftHeaderStory

3 headerStory

4 rightFooterStory

5 leftFooterStory

6 footerStory

7 footnoteStory

8 mainStory

40 (0x0028) 4 miscData A long word that is used in the
importing of pictures and other
special characters.

44 (0x002C) 2 storyHeight Height of the story. If
storyHeight is set to 0, the
application should calculate
the correct height for the story.

46 (0x002E) 1 decimalChar The default character on which
to align a decimal tab.

(Continued)

Appendix B Parameter Block Formats 75

n Table B-2 Import translator parameter block (Continued)

Offset Length (bytes) Description

47 (0x002F) 1 autoHyphenate TRUE if this document is
automatically hyphenated.

48 (0x0030) 4 printRecord A handle to the print record.
This is initialized to nil — if
your document is associated
with a print record, you must
create the handle and pass
that back.

52 (0x0034) 4 topMargin (Fixed) The top page margin (in
points). Default is 72
(0x00480000), which is 1 inch.

56 (0x0038) 4 bottomMargin (Fixed) The bottom page
margin (in points). Default is 72
(0x00480000), which is 1 inch.

60 (0x003C) 4 leftMargin (Fixed) The left page margin
(in points). Default is 72
(0x00480000), which is 1 inch.

64 (0x0040) 4 rightMargin (Fixed) The right page margin
(in points). Default is 72
(0x00480000), which is 1 inch.

68 (0x0044) 4 gutter (Fixed) The space between
columns (in points). Possible
values are 3 (0x00030000)
through 288 (0x0120000) (4
inches). Default value is
0x000C0000.

72 (0x0048) 2 startPageNum Starting Page Number.

74 (0x004A) 2 startFootnoteNum Starting Footnote number.

76 (0x004C) 4 footnoteText This is a pointer to a Pascal-
type string of up to 9 characters.
The first character is a length
byte. If the length byte is 0,
then an auto footnote is
assumed.

80 (0x0050) 1 rulerShowing TRUE if the ruler is to be
shown.

81 (0x0051) 1 doubleSided TRUE if document is to have
left/right pages.

(Continued)

76 XTND Programmer’s Reference

n Table B-2 Import translator parameter block (Continued)

Offset Length (bytes) Description

82 (0x0052) 1 titlePage TRUE if document is to have a
title page.

83 (0x0053) 1 endnotes TRUE if footnotes are to be
displayed as endnotes.

84 (0x0054) 1 showInvisibles TRUE if invisible characters
are to be shown.

85 (0x0055) 1 showPageGuides TRUE if page guides are to be
shown.

86 (0x0056) 1 showPictures TRUE if pictures are to be
shown.

87 (0x0057) 1 autoFootnotes TRUE if footnotes are to be
numbered automatically.

88 (0x0058) 4 pagePoint Use this value if your
document’s page character is
placed at a QuickDraw point
offset from the top of the
header or footer.

92 (0x005C) 4 datePoint Use this value if your
document’s date character is
placed at a QuickDraw point
offset from the top of the
header or footer.

96 (0x0060) 4 timePoint Use this value if your
document’s time character is
placed at a QuickDraw point
offset from the top of the
header or footer.

100 (0x0064) 4 globalHandle A place to store your global
variables. You have to create
the handle and ensure that
you dispose of it when you are
through. The application will
not use, change, or dispose of
this handle. While THINK C
allows you to create a code
resource that can have global
variables, others may not
have this luxury.

Appendix B Parameter Block Formats 77

104 (0x0068) 1 smartQuotes TRUE if smart quotes feature
(automatically placed “curly”
quotation marks) is to be turned
on.

(Continued)

n Table B-2 Import translator parameter block (Continued)

Offset Length (bytes) Description

105 (0x0069) 1 fractCharWidths TRUE if fractional character
widths are to be turned on.

106 (0x006A) 2 hRes The horizontal resolution of
the document. Default is 72.

108 (0x006C) 2 vRes The vertical resolution of the
document. Default is 72.

112 (0x0070) 8 windowRect A standard QuickDraw
rectangle representing the
document window. If you do not
change this field, the window
will be placed in the default
location.

120 (0x0078) 74 theReply Standard reply record. This
record is set up to describe the
file being translated.

194 (0x00C2) 216 thisTranslator A TransDescribe record (see
XTNDTextTranslator.h).
This is the translator
description for the translator
being called.

78 XTND Programmer’s Reference

Table B-3 depicts the export translator parameter block.

n Table B-3 Export translator parameter block

Offset Length (bytes) Description

0 (0x0000) 2 directive Indicates the desired action to
be taken by the translator. Also
used by the translator to return
its response to the application.
This field, unlike the
directive field in the import
parameter block, is defined as
an enumeration, which is not
the same as a short. Since the
enumeration contains fewer
than 256 elements, it uses only
one byte of this field, and the
other byte is a filler to
maintain word alignment of the
surrounding fields.

2 (0x0002) 4 result A pointer to a short integer,
which should contain 0 if there
is no error.

6 (0x0006) 4 refNum A pointer to a short integer.
This variable contains the file
reference number of the open
fork currently being written to.

10 (0x000A) 4 textLength A pointer to a long word
representing the number of
characters being exported.

14 (0x000E) 4 globalHandle A place to store your global
variables. You have to create
the handle and ensure that you
dispose of it when you are
through. The application will
not use, change, or dispose of
this handle.

18 (0x000E) 4 reserved1 Do not adjust these values.
(Continued)

Appendix B Parameter Block Formats 79

n Table B-3 Export translator parameter block (Continued)

Offset Length (bytes) Description

22 (0x0016) 4 textBuffer A handle to the text being
exported.

26 (0x001A) 4 txtFace A pointer to a short word
describing the current text face.

30 (0x001E) 4 txtSize A pointer to a short word
describing the current text size.

34 (0x0022) 4 txtFont A pointer to a short word
containing the current font
family ID.

38 (0x0026) 4 txtColor A pointer to a byte describing
the MacWrite II color of the
text.

42 (0x002A) 4 txtJust A pointer to a short word
describing the justification of
the text.

46 (0x002D) 4 paraFmts A pointer to a paragraph
format array.

50 (0x0032) 4 tabs A pointer to a tab-specification
array.

54 (0x0036) 4 thePicture A QuickDraw PicHandle.

58 (0x003A) 8 pictRect A rectangle describing the
display rectangle of the above
picture.

66 (0x0042) 2 headerStatus

68 (0x0044) 2 footerStatus Fields to show if headers or
footers appear on the right
page,on the left page, or on
every page. (described later in
this table.)

70 (0x0046) 2 currentStory The current story.

72 (0x0048) 2 numCols The number of columns in the
document.

74 (0x004A) 4 topMargin (Fixed) The top page margin (in
points).

78 (0x004D) 4 bottomMargin (Fixed) The bottom page
margin (in points).

82 (0x0052) 4 leftMargin (Fixed) The left page margin
(in points).

(Continued)

80 XTND Programmer’s Reference

n Table B-3 Export translator parameter block (Continued)

Offset Length (bytes) Description

86 (0x0056) 4 rightMargin (Fixed) The right page margin
(in points).

90 (0x005A) 4 gutter (Fixed) The space between
columns (in points). Possible
values are 3 (0x00030000)
through 288 (0x0120000, or 4
inches).

94 (0x005D) 4 totalCharCount Total number of characters in
document.

98 (0x0062) 4 footnoteOffset Footnote offset into document.

102 (0x0066) 4 footnoteText Pointer to a Pascal string that
contains the text for a footnote
marker, if it is not an
automatic footnote.

106 (0x006A) 2 startPageNum Starting page number.

108 (0x006C) 2 startFootnoteNum Starting footnote number.

110 (0x006E) 1 rulerShowing TRUE if ruler is showing.

111 (0x006F) 1 doubleSided TRUE if document contains
left/right pages.

112 (0x0070) 1 titlePage TRUE if document has a title
page.

113 (0x0071) 1 endnotes TRUE if the user has opted to
put footnotes at the end of the
document.

114 (0x0072) 1 showInvisibles TRUE if the document has
invisible elements.

115 (0x0073) 1 showPageGuides TRUE if the page guides are
visible.

116 (0x0074) 1 showPictures TRUE if pictures are displayed.

117 (0x0075) 1 autoFootnotes TRUE if footnotes are numbered
automatically.

118 (0x0076) 1 footnotesExist TRUE if footnotes are being
exported.

(Continued)

Appendix B Parameter Block Formats 81

n Table B-3 Export translator parameter block (Continued)

Offset Length (bytes) Description

120 (0x0078) 4 printRecord This document’s THPrint.

124 (0x007C) 4 pagePoint Use this value if your
document’s page character is
placed at a QuickDraw point
offset from the top of the
header or footer.

128 (0x0080) 4 datePoint Use this value if your
document’s time character is
placed at a QuickDraw point
offset from the top of the
header or footer.

132 (0x0084) 4 timePoint Use this value if your
document’s time character is
placed at a QuickDraw point
offset from the top of the
header or footer.

136 (0x0088) 1 smartQuotes TRUE if smart quotes feature
(automatically placed “curly”
quotation marks) is turned on.

137 (0x0089) 1 fractCharWidths TRUE if fractional character
widths are turned on.

138 (0x008A) 2 hRes The horizontal resolution of
the document. Default is 72.

140 (0x008C) 2 vRes The vertical resolution of the
document. Default is 72.

142 (0x008E) 8 windowRect A standard QuickDraw
rectangle representing the
document window. If you
change this field, the window
is placed in the default
location.

150 (0x0096) 74 theReply Standard reply record. This
record is set up to describe the
file being translated.

224 (0X00E0) 216 thisTranslator A TransDescribe (see
XTNDTestTranslator.h).
This is the translator
description for the translator
being called.

82 XTND Programmer’s Reference

Appendix C Header samples

Appendix C contains import and export directives from the C header
file XTNDTextTranslator.h.

83

Import directives

enum

{

importAcknowledge = -1,/* Set by translator to acknowledge an
action */

importGetResources,

importInitAll,

importInitRightHeader,

importInitLeftHeader,

importInitHeader,

importInitRightFooter,

importInitLeftFooter,

importInitFooter,

importInitMain,

importInitFootnote,

importGetText,

importCloseRightHeader,

importCloseLeftHeader,

importCloseHeader,

importCloseRightFooter,

importCloseLeftFooter,

importCloseFooter,

importCloseMain,

importCloseFootnote,

importCloseAll

};

84 XTND Programmer’s Reference

Export directives

enum Directives

{

exportAcknowledge = -1, /* Translator acknowledges
directives */

exportInit,

exportOpenRightHeader,

exportOpenLeftHeader,

exportOpenHeader,

exportOpenRightFooter,

exportOpenLeftFooter,

exportOpenFooter,

exportOpenFootnote,

exportOpenMain,

exportWriteText,

exportCloseRightHeader,

exportCloseLeftHeader,

exportCloseHeader,

exportCloseRightFooter,

exportCloseLeftFooter,

exportCloseFooter,

exportCloseFootnote,

exportCloseMain,

exportCloseAll,

exportWriteResources

};

Appendix C Header Samples 85

Appendix D Code samples

Appendix D contains sample code for 'FDIF', picture translators, text
import translators, and export translators.

87

'FDIF' sample code

void main(TwoWayInfo, Creator)

register short *TwoWayInfo;

register ResType Creator;

{

register short fnum = *TwoWayInfo;

long count = 2, dBytes;

if (Creator != 'MACA')

{ /* FTYP will not allow this, so we can’t get here */

*TwoWayInfo = 0;
This should only be for file errors */

return; /* Incorrect creator, so return 0 */

}

*TwoWayInfo = FSRead(fnum, &count, &dBytes);

if (*TwoWayInfo) return;

if (dBytes == 6L)

TwoWayInfo = 1; / Correct version, so return 1 */

else

TwoWayInfo = 2; / Incorrect version, so
return 2 */

}

Picture translator sample code

void main(ourPtr)

register PictFltrParamBlkPtr ourPtr;

{

long pictSize, savePictSize;

Handle thePicture;

ourPtr->Error = noErr;

/* only respond to directives we understand */

if (ourPtr->directive != pictGetPicture) return;

/* Determine the size of the picture (= size of the file
- 512) */

GetEOF(ourPtr->dataRefNum, &pictSize);

pictSize = pictHeaderSize;

savePictSize = pictSize;

88 XTND Programmer’s Reference

/* Create the picture handle */

thePicture = NewHandle(pictSize);

if (ourPtr->result = MemError()) return;

/* skip over the header information */

if (ourPtr->result = SetFPos(ourPtr->dataRefNum, fsFromStart,
pictHeaderSize)) return;

/* Read in the picture */

if (ourPtr->result = FSRead(ourPtr->dataRefNum, &pictSize,
*thePicture)) return;

if (savePictSize != pictSize) {

DisposHandle(thePicture);

ourPtr->result = ioErr;

return;

}

/* We have successfully read in a picture!! */

ourPtr->thePicture = (PicHandle) thePicture;

}

Text import translator sample code

void main(importParms)

ImportParmBlkPtr importParms;

{

switch(importParms->directive) {

case importGetResources:

MacWriteGetResources();

break;

case importInitAll:

InitMacWrite();

break;

case import_INIT_HEADER:

InitHeaders();

break;

case import_INIT_FOOTER:

InitFooters();

break;

Appendix D Code samples 89

case importInitMain:

InitMain();

break;

case importGetText:

GetText();

break;

case importCloseAll:

MacWriteCleanUp();

break;

/* These calls are not recognized by this
translator */

case importInitRightHeader:

case importInitLeftHeader:

case importInitRightFooter:

case importInitLeftFooter:

case importInitFootnote:

case importCloseRightHeader:

case importCloseLeftHeader:

case importCloseHeader:

case importCloseMain:

case importCloseFootnote:

break;

}

90 XTND Programmer’s Reference

Export translator sample code

void main(exportParms)

ExportParmBlkPtr exportParms;

{

switch (exportParms->directive)

{

case exportInit:

InitMacWrite();

break;

case exportOpenRightHeader:

case exportOpenHeader: /* cannot have both of
these */

InitHeader();

break;

case exportOpenLeftHeader:

/* Only accept left headers if there are no right headers */

if (!(exportParms->headerStatus & rightPage))

InitHeader();

break;

case exportOpenRightFooter:

case exportOpenFooter: /* cannot have both of
these */

InitFooter();

break;

case exportOpenLeftFooter:

/* Only accept left footers if there are no right footers */

if (!(exportParms->footerStatus & rightPage))

InitFooter();

break;

case exportOpenMain:

InitMain();

break;

case exportWriteText:

WriteText();

break;

case exportCloseRightHeader:

case exportCloseLeftHeader:

Appendix D Code samples 91

case exportCloseHeader:

case exportCloseRightFooter:

case exportCloseLeftFooter:

case exportCloseFooter:

case exportCloseMain:

CloseStory();

break;

case exportCloseAll:

TidyUp();

break;

case exportWriteResources:

WriteResources();

break;

}

}

92 XTND Programmer’s Reference

