

Scientist's Helper

 User's Manual
MacIntosh Version 2.4

for the 512K MacIntosh and Mac XL

by William Menke
College of Oceanography
Oregon State University

Corvallis OR 97331
(503) 754-2912

January 4, 1986

A Data Manipulation program designed especially for
Scientists and Engineers

for performing
arithmetic, curve fitting and time series analysis

on tabular data

Introduction. Scientist's Helper is an interactive data manipulator designed for the
kind of tabular data commonly used by scientists and engineers. The fundamental
data structure in Scientist's Helper is a table of numbers. These data can be input,
saved as files, viewed, plotted, and operated upon mathematically.

p Scientist's Helper is basically a command string oriented program. The command

set includes graphics, arithmetic, time-series analysis, curve fitting and table
management operations.

p Scientist's Helper makes full use of the MacIntosh windowing and menu selection

functions. For instance, it contains a mouse-driven table editor to facilitate inputing,
viewing, and manipulating the table.

p The contents of the table can be plotted on the Mac screen and then saved as a

MacPaint format file.

p Procedures (programs) can be written in RegTab's command language and then

executed as if they were Scientist's Helper commands. These procedures can use
string variables and a variety of control structures.

The Scientist's Helper Table. A Scientist's Helper table can contain up to 4096 rows
and 32 columns of single-precision floating-point data. In addition to the usual
numbers, table entries can be set to NaN (for not a number). Improper mathematical
operations such as division by zero will generate these entries. Thus, Scientist's
Helper will not crash from an arithmetic error.
 Scientist's Helper tables come in two variations. One type is 'interpolated',
meaning that the data in column 1 increase linearly with row number. Entries in
column 1 of interpolated tabes cannot be altered. The other type is uninter- polated, in
which column 1 is no different than any other column. Interpolated tables require less
disk storage than uninterpolated ones.
 A header is associated with the table. The header contains the basic
information about the table, and is stored along with the table when a file containing a
table is created. The header contains the following information,
which are referred to by standard names:

 rows: the number of rows in the table;
 cols: the number of columns in the table;
 title: an 80 character string describing the data;
 interpolated: a boolean flag indicating whether or not the table is
 interpolated;
 colname: a 10 character name for each column;
 samp, start: the sampling interval and starting value of the table if
interpolated. Column 1 is computed by the rule start + samp–(row-1).

 The amount of the computer's memory allocated for the table can be varied.
The default allocation when Scientist's Helper is first run is 128 rows and 2 columns.
This size can be increased by the allocate command, up to 4096 rows and 32
columns. This should be done at the beginning of the session, since reallocating the
table destroys the data in the old one (unless it is first saved in a file). The amount of
allocated memory controls the maximum permissible size of the table. The maximum
size of a table should not be confused with its current size given by rows and cols,
which may be less than or equal to the maximum size.

Windows. Scientist's Helper has four windows, named Command Window, Graphics
Window, Edit Window, and Procedure Window:
 The Command Window displays a history of what has been done during
the session, and is where new commands are typed. The contents of the Command
Window can be freely edited. Only text added to the last line and followed by a return
are interpreted as commands.
 The Graphics Window contains a plot of columns of the table. Plots are
made by typing the appropriate commands in the command window. Clicking the
mouse when the graphics window is active causes the current position of the cursor to
be printed in the command window.
 The Edit Window displays the table in tabular form and allows you to edit
its entries.

 The Procedure Window contains currently defined procedures (programs).
The can be freely edited and transferred between the window and files.

Menu Items. In addition to the desk accessories, their are several menus:
 Apple, through wich the desk accessories can be accessed.
 File, through which all disk I/O is accomplished. Note that tables can be
stored on disks in two forms: Binary and Ascii. You should normally use the Binary
form, since it is faster and the entire table header is saved. The ascii form is useful for
transferring data between Scientist's Helper and other programs. These files contain
only the column names and table values, with the items on each line separated by
tabs. Note that MacWrite files containing tables can be read into Scientist's Helper if
they are saved in the text-only mode.
 Edit, which contains the standard undo, copy, cut, paste, and clear
commands. Note that the undo and clear commands do nothing - they are provided
only for use of the desk accessories.
 Windows, which provides a way to select hidden windows.
 Abort, which allows procedures and some commands to be aborted.

Command Strings. Many Scientist's Helper operations are invoked by typing
command strings in the Command Window. Scientist's Helper command strings
contain up to six command words (where a word is a sequence of characters
containing no blanks or a quoted sequence of characters containing blanks).
Command words can be either predefined keywords or parameters.

A Typical Scientist's Helper Session. In the following tutorial, material Scientist's
Helper types is printed in bold, material the user types is printed in plain text, and
comments are printed in italic.

Scientist's Helper, Version 2.4, by William Menke
Caveat Emptor

New Table 128 by 2
> allocate 128 3 creates 128 by 3 table
> title 'my test dataset' sets title
> colname 1 'time, t' labels column 1
> colname 2 '0.987sin(t)' labels column 2
> colname 3 'sin(t)/t' labels column 3
> samp 0.1 column 1 is interpolated column
> start 0.0 with sampling interval 0.1
> interpolated true staring value 0.0
> cfunction sin 1 2 put 0.987 times sine of column 1
> cmath 2 *# 0.987 = 2 into column 2
> cmath sin 1 3 put sine of column 1 divided by
> cmath 3 / 1 = 3 column 1 into column 3
> table 1 3 1.0 sin(0)/0 now set to NaN, reset to 1
> xaxis 0 12.8 set abcissa of plotting screen

> yaxis -1 1 set ordinate of plotting screen
> clear clear graph
> plot 1 2 solid plot column 2 against 1
> plot 1 3 dotted plot column 3 against 1
> quit quit from Scientist's Helper

Scientist's Helper Variables. Variables contain strings of up to 80 characters in
length. A variable's name can be any string that does not contain a blank. Once
defined (eg. by the setvar command), the value of a variable can be used as a
command word by including its name in the command string prefaced by the @
symbol. For example, the commands:
 setvar date 'November 1, 1755'
 prompt @date
create a variable named 'date' that is set to the value 'November 1, 1755', and then
types the value of the variable in the command window. Note that variables can
contain numbers in string form. Variables are mainly useful in procedures. In addition
to variables defined by the user, Scientist's Helper also defines and automatically
updates variables set to commonly used parameters:
 The header variables: rows, cols, title, interpolated, samp,
start;
 The arguments of the last execute procedure command: arg1, arg2,
arg3, arg4;
 The endpoints of the graphics axes, xmin, xmax, ymin, ymax;
 The position of the cursor in user coordinated after the last cursor
command: xpos, ypos;
 The minimum value in a column after the min command: min;
 The maximum value in a column after the max command: max;
 The mean, standard deviation, and number of non-NaN data after a
 mean command: mean, stddev, counts;
 The slope, intercept, standard errors, and number of non-NaN data
 after a trend command: slope, intercept, errslope, errintercept,
 counts.
 Some other commands also reset counts.

Procedures. The user can write short programs, or 'procedures' consisting of
sequences of Scientist's Helper commands, variable definitions and references, and
control structures. Procedures are first written in the procedure window or read into
Scientist's Helper using the Read Procedure item in the File menu. They can then be
run using the execute command (abbreviated x).

The following sample procedure squares column 1, adds it to column 2, and puts the
results in column 3:
 label add
 cmath 1 * 1 = 1
 cmath 1 + 2 = 3
 return

This procedure is executed by typing on the last line in the Command Window:
 x add

Procedures can get input from the keyboard. The above example can be modified to
ask for a result column:
 label add
 input result 'enter result column'
 cmath 1 * 1 = 1
 cmath 1 + 2 = @result
 return
This procedure is executed by typing
 x add

Another way for a procedure to get information is through arguments entered in the
command line.
 label add
 cmath 1 * 1 = 1
 cmath 1 + 2 = @arg1
 return
This procedure is executed by typing
 x add 3
(where 3 is the result column).

Procedures can call other procedures:
 label addAndSquare
 x add
 cmath 3 * 3 = 3
 return

 label add
 cmath 1 * 1 = 1
 cmath 1 + 2 = 3
 return

Procedures can contain loops. The following procedure plots columns 2, 3, ... against
column 1.
 label plotAllColumns
 for column 2 @cols
 plot 1 @column
 next column
 return

Procedures can contain conditional statements. The following procedure plots
columns 2, 3 ... against 1, querrying each time whether to discuntinue plotting.
 label plotAllColumns
 for column 2 @cols
 plot 1 @column
 input querry 'continue? y or n'
 if @querry s= 'n'
 return
 next column
 return

Command Syntax: Command keywords are printer in bold, arguments in plain text.
Italicized command words may be omitted.

Essential Commands:
 quit
 allocate1 maximum_rows maximum_columns

Commands that effect the header:2

 rows number_of_rows
 cols number_of_cols
 title any_string
 colname column_number any_string
 _ true
 interpolated |
 Ó false
 samp sampling_interval
 start starting_value

Notes.
1. maximum table size is 4096 by 32, although in practice this is less and depends on
the amount of memory on the system.
2. Commands that change the header automatically update the header variables.

Commands for using variables:1

 setvar variable_name any_string
 input variable_name prompt_string
 prompt any_string_1 any_string2 ... any_string_5
 type variables
 delete variable variable_name

 _ table row col
 set variable_name | colname col
 Ó coefficient2 n
 _ + _
 vmath input_value_1 | - | input_value_2 = variable_name
 | * |
 Ó / Ô
 _ sin _
 | cos |
 | tan |
 | asin |
 vfunction | acos | input_value variable_name
 | atan |
 | sqrt |
 | ln |
 | exp |
 | erf |
 | erfc |
 Ó row3 Ô
 concat variable_name any_string_1 any_string_2 any_string_3

Notes:
1. A variables name (any string containing no blanks) is distinct from its value,
which is its name preceeded by the symbol @.
2. The coefficients are those determined by least-squares methods using the polyfit
and multifit commands.
3. The row function returns the row number of a value in col 1 of an interpolated table,
based on the current value of samp and start. The row is always in the range
1<row<rows.

Graphics Commands:
 clear1

 _ solid _
 | dotted |
 | dashed |
 plot abcissa_col ordinate_col | bold |
 | dots |
 | circles |
 | crosses |
 | stars |
 Ó x Ô
 scale2 abcissa_col ordinate_col
 xaxis minimum_value maximum_value
 yaxis minimum_value maximum_value
 cursor3 any_prompt_string
 axes4

Commands for using procedures:
 execute5 label
 sleep number_of_seconds
Notes.
1. Clears (erases) the graphics screen.
2. Sets the xaxis and yaxis values on the basis of the data in two columns.
3. Used to pick values off of a plot using the mouse. The variables xpos and ypos are
set to the cursor position when the mouse is clicked.
4. Plots axes.
5. Automatically updates variables arg1, arg2, arg3, arg4.

Control commands to be used within procedures:
 label any_string
 for1 variable_name starting_integer ending_integer increment
 next1 variable_name
 goto label
 return
 _ s= _
 | s<> |
 | = |
 if2 any_string_1 | <> | any_string_2 num_of_lines
 | < |
 | > |
 | <= |
 Ó >= Ô

Notes.
1. The for-next statement pair are used for loops, the for statement being placed at
the beginning of the loop and the next being placed at the end. Loops can be nested.
2. The if statement permits the following num_of_lines to be executed only if the
comparison is true. The comparisons s= and s<> test the ascii representation of
strings. The comparison =, <>, <, >, <=, and >= c assume that the strings contain
numbers and tests the value of these numbers.

Commands for column arithmetic and related operations:

 _ + _
 cmath input_col_1 | - | input_col_2 = output_col
 | * |
 Ó / Ô

 _ #+ _
 cmath constant | #- | input_col = output_col
 | #* |
 Ó #/ Ô

 _ +# _
 cmath input_col | -# | constant = output_col
 | *# |
 Ó /# Ô

 _ sin _
 | cos |
 | tan |
 | asin |
 cfunction | acos | input_col output_col
 | atan |
 | sqrt |
 | ln |
 | exp |
 | erf |
 | erfc |
 Ó row1 Ô

 constant2 value col_number first_row last_row

 _ type input_col _
 mean3 | keep input_col output_col |
 | remove input_col output_col |
 Ó compute input_col Ô

 _ type input_col_1 input_col_2 _
 trend4 | keep input_col_1 input_col_2 output_col |
 | remove input_col_1 input_col_2 output_col |
 Ó compute input_col_1 input_col_2 Ô
 min5 col_number
 max5 col_number
 sort col_number

 _ type input_col_1 input_col_2 _
 polyfit6 order | keep input_col_1 input_col_2 output_col |
 | remove input_col_1 input_col_2 output_col |
 Ó compute input_col_1 input_col_2 Ô
 _ type indepdent_col_list dependent_col _
 multifit7 | keep indepdent_col_list dependent_col output_col |
 | remove indepdent_col_list dependent_col output_col |
 Ó compute indepdent_col_list dependent_col Ô
Notes.
1. The row function returns the row number of a value in col 1 of an interpolated table,
based on the current value of samp and start. The row is always in the range
1<row<rows.
2. The constant command sets the rows of a column between starting_row and
ending_row to the given constant value. If the row limits are omitted, they default to 1 and
rows respectively.
3. The mean command computes the mean of a row and updates the variables mean,
stddev and counts (the number of non-NaN column entries). 'type' types the result on the
terminal, 'keep' puts it in a column, 'remove' subtracts it from a column, and 'compute' has
no action except updating the header variables.
4. Trend computes a least-squares fit between two columns and updates the header
variables slope, intercept, errslope, errintercept, counts. See note 3 for explanation of
keywords.
5. The commands min and max automatically update the variables min and max.
6. Least-squares fit of polynomials of order in range 1-6. This command resets the
variable counts. Variables can be set to the values of the coefficients with the set
command.
7. Least-squares linear multivariate regression. This commandn resets the variable
counts. Variables can be set to the values of the coefficients with the set command. The
independent column list consists of columns numbers separated by commas, spaces, or
tabs. If spaces or tabs are used, the list must be surrounded by quotes. For example:
multifit type 1,2,3,4 5 6

Time series analysis commands:

 bandpass1 low_frequency high_frequency input_col output_col
 integrate2 x_col _number y_col _number output_col_number
 differentiate3 x_col _num y_col _num output_col_num
 histogram minimum_value maximum_value number_of_bins
 sum4 input_col_number couput_col_number
 _ amplitude _
 spectrum | power |
 Ó phase Ô
 _ ascending x_col output_col start_row end_row _
 taper5 | |
 Ó descending x_col output_col start_row end_row Ô
 convolve6 input_col# operator_col# operator_length output_col#
 noise mean standard_deviation output_col_num

Notes.
1.Second order Chebyshev recursive filter.
2. Integration, È0

x y(x') dx' by trapezoidal rule.
3. Differentiation dy/dx by first order finite differences.
4. Running sum of input column values.
5. Cosine taper, cos(x) that rises from zero to one or falls from one to zero.
6. Brute-force convolution; operator length better be short. Points off the beginning of the
input column are assummed to be zero.

Commands for table manipulations:
 _ col input_col output_col _
 copy |
 |
 Ó row input_row output_row Ô
 _ col input_col_1 input_col_2 _
 swap | |
 Ó row input_row_1 input_row_2 Ô
 _ col input_col number_of_cols _
 insert | |
 Ó row input_row number_of_rows Ô
 _ col input_col number_of_cols _
 delete | |
 Ó row input_row number_of_rows Ô
 type col col_number

 _ row_number col_number1 _
 table | |
 Ó row_number col_number value2 Ô

 interpolate sampling_interval

Notes:
1. Writes the current table value in the command window
2. Sets the given table entry

Helpful Hints:

1) Allocate a table large enough for all your needs, right at the beginning of a Scientist's
Helper session. Then, if you want to work with a smaller table, just declare it to be
smaller using the rows and cols commands. Doing this usually speeds things up, since
re-allocating space is time consuming.

2) Decreasing the active size of a table with the rows and cols command does not
actually distroy any data. Thus one can always recover the data by increasing the table
size. This fact allows one to merge two tables stored in two different files: allocate a
large table with enough columns to hold both tables, read in the first table, increase the
number of actiove columns with the cols command and copy the columns to the right
hand part of the table. The read in the second table and increase the table size using the
cols command, thus recovering the data from the first table.

3) Material from the Command Window can be copied and pasted into the procedure
window, and quickly edited into a short procedure.

4) When reading as ascii table into MacWrite, choose the option wherby MacWrite
interprets carriage returns as paragraphs. Then put enough tabs in the ruler so that all
the columns line up properly.

5) If you transfer data to the MacIntosh from another computer using MacTerminal, you
will lose any tabs between the columns (MacTerminal converts them to spaces).
Therefore, don't send tabs, send one space between each entry. Then use MacWrite to
change each space to a tab. You can'y type a tab into the change dialog box, but you
can paste it in.

