The Would-Be Gentleman

A simulation of social mobility set during the life and reign
of Louis XIV of France, 1638 -1715

Faculty Author Development Program
Stanford University

User:

Application:

Document:

Date:

Time:

Printer:

Tom M.

MacWrite 4.5

Binder Contents

Tuesday, June 16, 1987

17:19:46

Bullwinkle

TENTS OF THIS NOTEBOOK

. DOCUMENTATION AND MANUALS*
FAD Project Report Final Summary ("The Would-Be Gentleman Final Summary”)
User's Manual for The Would-Be Gentleman
Instructor's Manual for The Would-Be Gentleman
Programmer's Manual for The Would-Be Gentleman
Programmer's Manual Appendix: Description of "Support Programs and Data Files"
Il. SOURCE CODE: SIMULATION®
(nb: simulation source code is included in both Lisa Workshop and Macintosh format)
Source Code: Sunking/4.1/Finance.text (Pascal code)
Source Code: Sunking/4.1/Financer.text {resource file)
1il. SOURCE CODE: EDITORS”
Source Code: Exec.text (executive file for compilation of code)
Source Code: Mail editor
Source Code: Office editor
Source Code: Lease editor
Source Code: Marriage editor
Source Code: File editor
Source Code: Examine (program for reading Final Stats)
V. EXECUTABLE SOFTWARE: EDITORS*
Program: Louis XIV {(main program for The Would-Be Gentleman)
Program: Mail editor
Program: Office editor
Program: Lease editor
Program: Marriage1 editor
Program: Marriage?2 editor
V. DATAFILES: *
File: Mail files (4)
File: Office file
File: Lease file
File: Marriage files (2)
File: Instructions
File: StartText
File: StartupScreen
File: Pictures
VI. The Would-Be Gentleman ver 4.3, Turbo Pascal version, with manuals.
*This material comes on Macintosh-formatted diskettes: (1) Source Code, Simuiation, (2) Support
Programs/Data Files, (3) Documentation and Manuals, (4) Pictures, and (5) The Would-Be Gentleman ver

4.1(a) and (6) Turbo compatible The Would-Be Gentleman ver 4.3.

User:

Application:

Document:

Date:

Time:

Printer:

Tom M.

MacWrite 4.5

Final Summary

Tuesday, June 16, 1987

17:21:39

Bullwinkle

FAD Project Report

Final Summary

Date: 6/16/87
Program Title: The Would-Be Gentleman
Project Leader: Tom Maliska
Programmer(s): Steve Fisher, Tom Maliska, Michael Carter, Ed McGuigan
Professor: Dr. Carolyn Lougee
Course: History 31S, The France of Louis XIV
Development System:
Lisa 2/10 with Lisa Pascal Workshop 3.9 (WBG v 4.1(a)) or
Macintosh Plus with Borland's Turbo Pascal 1.0 (WBG v 4.3)
Delivery System:
Macintosh 128K, Macintosh 512K, one disk drive
Project Description:
Category: X simulation __tutorial __ C.A.L

Use: _primary instruction X _adjunct

Briefly explain what the program does, who its intended users

are, and how it helps these users:

The Would-Be Gentleman models the economic and social life of a French
bourgeois during the life and reign of Louis XIV of France, 1638 - 1715. It
is intended for undergraduates studying the economic life of the period.
This scenario is briefly introduced to the player, who then embarks on an
ambitious plan of economic and social decision-making. The player
experiences the world of 17th century France by managing income and
properties, planning marriages and estates, and seeking influence through
official duties and alliances with powerful figures. Historical and

personal events are inter-related in the simulation. Significantly,

students develop an understanding of economic patterns and make their
judgements in terms of 17th century France. As in real life, economic
success and social prestige do not follow a fixed pattern. The program
features many economic choices clearly laden with prestige, but players
who overreach themselves can suffer shame, loss of income, and even, God
forbid, bankruptcy. The challenge of The Would-Be Gentleman is to keep
social status and economic status in balance.

User: Tom Maliska, FAD Program

Application: MacDraw 1.9

Document: Cover, User's Manual

Date: Friday, October 3, 1986

Time: 6:09:31 PM

Printer: LaserWriter Plus

The Would-Be Gentleman

A simulation of social mobility set during the life and reign
of Louis XIV of France, 1638 -1715

User's Manual

The Would-Be Gentleman User's Manual
version 4.1 (a)

Created at Stanford University by
the Faculty Author Development Program.

Copyright 1985 by
Carolyn Lougee and the Board of Trustees of
the Leland Stanford Junior University.

User:

Application:

Document:

Date:

Time:

Printer:

Tom M.

MacWrite 4.5

User's Manual

Tuesday, June 16, 1987

17:38:19

Bullwinkle

a M o

The Would-Be Gentleman
User's Manual

Tom Maliska
Faculty Author Development Program
Stanford University
September 1986

This User's Manual is intended as a guide to the simulation The Would-Be Gentleman, version
4.1(a) and version 4.3. It outlines use of the Macintosh computer and decision-making in the
simulation, and gives the first-time player the background needed to understand the simulation.
This manual is organized into the following sections:

About this Simulation

Playing the Simulation

Hints for using the Simulation
Using the Macintosh

About This Simulation
Purpose

The Would-Be Gentleman models the economic and social life of a French bourgeois during the life
and reign of Louis XIV of France, 1638 - 1715. This scenario is briefly introduced to the player,
who then embarks on an ambitious plan of economic and social decision-making. The player
experiences the world of 17th century France by managing income and properties, planning
marriages and estates, and seeking influence through official duties and alliances with powerful
figures. Historical and personal events are inter-related in the simulation. Significantly, students
develop an understanding of economic patterns and make their judgements in terms of 17th century
France. As in real life, economic success and social prestige do not follow a fixed pattern. The
program features many economic choices clearly laden with prestige, but players who overreach
themselves can suffer shame, loss of income, and even, God forbid, bankruptcy. The challenge of
The Would-Be Gentleman is to keep social status and economic status in balance.

The Would-Be Gentleman User Manual June 16, 1987

Playing the Simulation

Insert the simulation diskette into the internal drive of the Macintosh. When you turn on the
Macintosh, the simulation will begin automatically. It is advisable to copy the simulation as soon
as possible and use only the copy. The Would-Be Gentleman is not copy protected.

You will see a window on the screen with a picture of a father and his son. This will go away after
a few seconds, and the startup window will appear. This window describes the scenario to you.
Click on the mouse button to close this window and start the simulation. You can begin playing by
clicking on an investment icon. The usual strategy is to click on the investment icons in turn, using
Status from the Investments menu to learn about the year's financial events.

Overview of Play

The simulation lasts from 1638 until 1715, exactly the lifespan of Louis XIV. Each year is divided
into two six month periods marked by the seasons Fall and Spring. Each season, you can modify
your investments and personal situation. In this way, you control your destiny in the simulation.
Keep in mind the variety of things you can do each season. Among others, you can make a will,
get married, view wealth or personal information, make investments, read instructions, and even
save the game for later.

Review your investments during each season. To begin, click on the investment icon in the
investment window. You can now use the Investment menu to make decisions about that
investment. The types of investment available are Land, Rentes, Offices, Leases, and Textiles. It
is important to know them, so review them all. Textiles are available in the Fall for one year
investment; leases are available in the Spring for one year investment. Land, Offices, and Rentes
are active during both Fall and Spring. See the section Investment Decision-making below
for more details about investment planning.

All of the investments, except leases, allow you to change your mind on a purchase during the
same season (i.e., until you give the Next Interval command on the Progression menu).

Buying Leases and, in personal affairs, getting married are irrevocable, so don't purchase a lease or
choose a bride unless you are certain of your commitment.

ACIS/IRIS ™ Page 2 Faculty Author Development

The Would-Be Gentleman User Manual June 16, 1987

Measuring Success (with an explanation of livres (£) and prestige points):

Success in the simulation is measured in wealth and prestige. Total wealth and accumulated
prestige are always on display in the summary window. Wealth is a measure of financial success.
The coin of the realm is the livre, or French pound (symbol = £). It is not important to know the
historical derivation of the livre, only to think of it as a unit of money. To see your holdings in
different investments, choose the Wealth item on the View menu.

The King's prestige is rated at 100; accordingly, your prestige is measured on a scale set from O to
99. Almost all events in the simulation affect your prestige. It will vary according to the
investments and the personal decisions you've made, such as buying land, disposing of your
wealth in a will, or success and failure in finding a protector. One of the challenges of The
Would-Be Gentleman is to find investments and personal choices that bring prestige.

Investments in Brief

Investments are made using the icons in the investment window and the Investments menu. You
can click on the investment icon and then select Status from the Investments menu. Status
provides information about the market for the investment you selected and allows you to review
your holdings in that form of investment. You can then select Buy, Sell, or Manage from the
Investments menu.

All investments are seasonal. Land, and grain grown on it, can be bought or sold in any season.
You can buy and sell rentes in any season, and earn half of an annuity on rente each season.
Offices pay you an annual salary and are yours until you sell them or go bankrupt. You can buy
leases in the Spring and earn a return on them in the following Spring. You can buy textiles in the
Fall and earn a return the following Fall.

You will be paid immediately for rentes, offices, leases, and textiles when the associated
investment annuity or salary is due. To find the return on these investments, click on an investment
icon and check Status or choose Wealth on the View menu.

Land and grain must be sold using Sell on the Investments menu.

Read on for more information about investments, including information about financial calculations

and units of measure for land, rentes, offices, leases, and textiles.

ACIS/IRIS ™ Page 3 Faculty Author Development

The Would-Be Gentleman User Manual June 16, 1987

Land (with an explanation of quintels and hectares):

The Would-Be Gentleman models its financial decisions on the 17th century French economy. It is
important to understand the conventions and units of that economy to learn from the simulation.
Your family's fortunes are in your hands!

Land management relies on units of quintels and hectares. Quintels, like bushels in English
measure, are volume measurements for dry goods. Hectares are measures of land area, equal to
roughly 2.5 acres English measure. A harvest is measured in terms of the number of quintels per
hectare, and a price per quintel, as the following tables show. The better the harvest, the less likely
scarcity will drive the price higher before the next harvest.

The regional harvest determines the price of a quintel of grain.

Quality Fall price ring pri
blight = 15£ 25£

poor = 7 9

good = 5 6
excellent = 4 4

The local harvest determines the yield in quintels of grain per hectare of land. This is the amount of
grain that you receive for each hectare cultivated by sharecropping or renting in kind.

Quality Amount of grain
blight = 0 quintels per hectare
poor = 4 " " "
good = 5" oo
excellent = 6 " o

The profit you obtain by selling grain is determined by comparing the relation between the local and
the regional harvest. In general, when the local harvest is better than the regional harvest, you will
have larger amounts of grain which, at a higher price, bring in more profits.

You can manage land for the harvest in three ways: Renting in Kind, Renting for Cash, and
Sharecropping. These choices vary in the stability and range of their returns. Renting in Kind
returns grain at a rate of 5 quintels per hectare and this yield is paid regardless of the quality of the
local harvest; the value of the grain is dependent on the price determined by the regional harvest.

ACIS/IRIS ™ Page 4 Faculty Author Development

The Would-Be Gentleman User Manual June 16, 1987

Renting for Cash pays you £29 per hectare and, as the least speculative form of management, it is
paid regardless of the quality of the harvests. Profits from sharecropping equal the price of grain at
the time of sale multiplied by the yield of grain in the harvest, and are thus dependent on both local
and regional harvests.

Grain is lost to rats, fungus, rot, and damp storage. The amount is shown in Status each Fall.

Peasant revolts can occur in the transition from Fall to Spring. If a sufficient quantity of grain is
not sold in the Fall to provide for winter food, then some grain holdings can be lost to a revolt.

Titled Land (with an explanation of titled lands of types Siegneurie, Vicomté, Marquisat):

Titled land may be purchased using the Buy command on the Investments menu and clicking on
the Titled button in the window that appears. Another window will appear listing the types of
titled land and their prices. Titled land is more expensive than miscellaneous land and must be
bought in large quantities. It is included in the management of land for the harvest.

Titled land is land set aside for estates owned by noblemen and wealthy merchants. It carries a title
for the owner and it is a sign of great prestige for the owner.

Once purchased, titled land (as with inherited miscellaneous land) cannot be resold.

Land Tax:
If you are not a nobleman, taxes will be assessed in the Spring at 3 livres per hectare for all of your
holdings in miscellaneous and titled lands.

Rente (with an explanation of denier):

Rente is the term used for a form of loan of £1000. Rentes are made either to the King (King's
rente) or borrowed for personal use (Personal rente). Rentes can be treated as a speculative
investment with the strategy "buy King's rente at a low price and sell at a high price" (King's
rente), as a means of acquiring cash (Personal rente), or as a steady investment income (annuity, or
interest returned on King's rente). Denier is a measure of a rente's market value or price; one
denier is 1/14 of the value of one rente, or 1/14 x £1000. There are five market values that occur
with different frequencies during the simulation, and these values can change in any season. The
base price at the start of the simulation is denier 14, but rentes can be devalued to a base price of
denier 18. At this price, one denier is 1/18 of the value of one rente, or 1/18 x £1000.

ACIS/IRIS ™ Page 5 Faculty Author Development

The Would-Be Gentleman User Manual June 16, 1987

The following table outlines denier and associated prices in livres.

At denier 14, At denier 18,
nier or m ri price of one rente in livres price of one rente in livres
2 £143 £111
7 £500 £389
11 £786 fo611
14 £1000 £778
18 nfa £1000

King's rente:

You can buy up to 400 King's rentes at a given time. The King's rente can be resold for cash. The
market price when you sell the rente compared to the market price for which you bought it
determines profit or loss.

Personal rente:

Personal rentes are loans you can take. In some situations you might lose enough money on
investments to be forced to pay with a personal rente. You can borrow cash in any quantity, but
you must pay interest at the market price at the time that the loan is made. If a low price is in effect
when you sell a personal rente, you'll pay interest at a higher rate than you would for a loan
obtained at the full price of denier 14. At denier 2, for instance, you'll pay back seven times the
interest rate of a loan made at the denier 14. Choose Status on the Investments menu or
Wealth on the View menu to get information about payments on personal rente sold.

Annuity:

The King's rentes also return an annuity in cash each year they are held, equal to one denier per
rente purchased. At rente equal to denier 14, one denier equals 1/14 of £1000, or £71; at rente
equal to denier 18, one denier equals 1/18 of £1000, or £55. Payment of the annuity may be
voided or reduced based on the King's decree. This can be a great boon or a catastrophe
financially, depending on how much cash you have invested in rentes and when you made the
investment. The following table shows the payment, the frequency of that payment, and the
annuity paid for each rente or £1000 loaned.

Payment Returnin £ Returnin £

(as % of annuity) at denier 14 at denier 18 (after 1660)
0 0 0

62.5 44 34

100 71 (full annuity) 55 (full annuity)

ACIS/IRIS ™ Page 6 Faculty Author Development

The Would-Be Gentleman User Manual June 16, 1987

Special cases:

Personal rentes always result in a cash return at the market rate. You are essentially giving a note
for £1000 in return for the cash value of the rente at current denier. These rentes cannot be
reclaimed and interest on the loan will be assessed each year as an expense.

Some protectors provide warning signals about the price of rentes.
Some protectors do not allow you to purchase the King's rentes.

Offices:

Offices pay a salary each year. Your salary can be seen by choosing Wealth on the View menu.
Individual office salaries can be inspected by clicking on the Office icon, then selecting Buy from
the Investments menu.

Leases:

Leases, like offices, are purchased from the government. You can purchase a lease in Spring, and
collect a fee the following Spring. Leases are speculative, in that you buy them at a discount and
reap large profits or losses on your purchase. Select Status on the Investments menu in Spring
to find out what the profit or loss is on a lease.

Textiles:

Textiles return cash to you each Fall on investments from the previous Fall. The amount of the
return is given in a percentage of the investment in the status window for the Textiles investment.
Click on the Textiles icon, then select Status on the Investments menu. Your return on
investments in Textiles depends upon the health of the economy of the region, which is directly
related to the quality of the harvest.

ACIS/IRIS ™ Page 7 Faculty Author Development

The Would-Be Gentleman User Manual June 16, 1987

Personal Decision-making
Marriage

Choose Marriage from the Personal menu to consider a marriage. It is important to marry in the
simulation, since the time span of the simulation covers two generations. The menu choice
displays a window with a list of brides. For each bride, there is a button to select her. Use the
Info button to get information about her age, her father, his office, and her dowry. Use the Court
button to attempt a courtship. The simulation keeps track of success and failure. Best wishes!

Family Planning

Having and supporting children is an important task in the simulation. In the first generation, a
successful marriage to the right bride will always produce an heir. In the second generation, the
player has to use the Family Planning choice on the Personal menu to plan for children. The
firstborn son is the inheritor of the player's wealth, and the will determines how much of the
father's wealth is passed on (see the section following named Make a Will).

Generations mark progress in the simulation. Control of the family fortune is passed to the eldest
son. In the first generation, Denis Marin takes up the reins of the Marin family at the age of 30. At
the time of his death, the eldest son Jean-Frangois Marin takes on the responsibility of the family
fortune. Hyacinth-Florent Marin de Montville carries on the family name in the third generation, at
which point the simulation ends. Your skill at managing the Marin family fortune will determine
the status Denis, Jean-Frangois, and Hyacinth-Florent will achieve in their lifetimes.

Make a Will

A will allows the player to pass an inheritance on to family and other beneficiaries. Use the Make
a Will choice on the Personal menu to leave percentages of wealth to the eldest son, other sons,
other daughters, other kin, non-kin, charity, and the Church. The simulation will tell you if the
will is in accord with tradition, and, if not, allow you to try a different distribution of wealth. You
can keep a will that is not in accord with tradition, but it will cost you prestige!

ACIS/IRIS ™ Page 8 Faculty Author Development

The Would-Be Gentleman User Manual June 16, 1987

Buy a Letter of Nobility

A Letter of Nobility costs £20,000 and, in combination with titled land, gives a higher prestige
rating. Higher prestige is important for marriages and can have an influence on protectors; it can
also mean a higher cost of living, so one must be careful to plan for this purchase.

The Letter of Nobility confers two additional prestige points on the buyer. You should see the
prestige added right after buying the Letter of Nobility.

Choose a Protector

When the game begins, you inherit a friend at court named M. Cornuel. At his death, no one is left
to protect your interests. It is advisable to seek admission to the circle of associates, or coterie, of a
powerful courtier, financier, or nobleman. The Choose Protector item on the Personal menu
allows you to consider some of the leading figures of the time and seek admission to their coterie.
Requirements for acceptance differ with each protector, and the protectors change throughout the
simulation. Protectors offer financial benefits when you belong to their coterie, and each keeps you
informed of events at the palace through correspondence. Choose well, and try not to overreach
yourself, because rejection by these powerful protectors can cost you both prestige and money!

Protectors and Correspondence:

Correspondence is a means for your protector and others to communicate with you. These
messages can bring good news or bad tidings. Correspondence can include cash benefits or tell
you of costs related to social events and political tides. The correspondence you see will vary with
different protectors, so don't expect to see the same messages each time you run the simulation.

During a season, you'll be able to read each mail message one time only. When you click on the
Ready button, the message disappears.

ACIS/IRIS ™ Page 9 Faculty Author Development

The Would-Be Gentleman User Manual June 16, 1987

Hints for using the Simulation

A Quick Review of the Menus

Information Use this menu to get background on the simulation.

About the Authors View author and copyright information.

Instructions Get hints on using The Would-Be Gentleman.
Progression Use this menu to control progress in the simulation.

Next Interval Move the game ahead one turn, or six months, and calculate the

outcome of financial decisions.

Save Game Save current progress for later use.

Restore Game Restore the last simulation saved.

Quit End the simulation and eject the diskette.
Investments Use this menu to make investment decision

Status View holdings in the current investment.

Buy Make an investment.

Sell Sell Land, Grain, or Offices for cash.

Manage Allocate miscellaneous land for the harvest or convert

lesser titled lands into greater titled lands.

Personal Use this menu to manage affairs for your family.
Marriage Observe and court the brides of the season.
Family Planning In the second generation, plan for a new birth.
Make a Will Plan inheritance of your fortune.
Buy a Letter of Nobility = Become a nobleman.
Choose a Protector Seek the protection of powerful figures in government.
View Use this menu to examine your socioeconomic status.
Wealth View the state of your finances.
Personal Information View the state of your personal affairs.

ACIS/IRIS ™ Page 10 Faculty Author Development

The Would-Be Gentleman User Manual June 16, 1987

Instructions for The Would-Be Gentleman

A brief overview of The Would-Be Gentleman can be reviewed at any time during play by
selecting Instructions from the Information menu. A window appears with an overview of
The Would-Be Gentleman. The User's Manual contains more explicit information about using the
simulation effectively.

Using the Game with Different Macintoshes (MFS vs. HFS)

The Would-Be Gentleman comes on a 400K diskette formatted in the Macintosh File System
(MFS). Itis ready to run on any Macintosh model. Those who use the simulation diskette on
Macintosh-512K E and -Plus computers can copy the Louis XIV application and Game Files
folder to any 800K diskette or hard disk drive with System 2.3 and Finder 5.3 installed. If the
Hierarchical File System (HFS) is used on the 800K diskette or hard disk, then the application
Louis XIV must be placed in the Game Files folder holding the simulation data files. The
simulation data files must be removed from their separate folders and placed in the Game Files
folder.

Preparing a Backup of the Simulation Diskette
Copy the simulation diskette to a newly formatted, blank diskette.

Set The Would-Be Gentleman simulation diskette aside for a moment. Start your Macintosh with a
System diskette. In the external drive, insert a new diskette and initialize it (or choose Erase
diskette from the Special menu to re-use an old diskette). Name that diskette Backup of The
Would-Be Gentleman. When the icon for Backup... appears on the desktop, click the mouse on
the System diskette and eject it from the internal drive. Insert the original simulation diskette in the
internal drive, and when it appears on the desktop, drag its icon on top of Backup of The
Would-Be Gentleman, the newly formatted diskette icon. This begins the diskette copy procedure.
When all the files have been copied to the newly formatted diskette, select Shut Down from the
Special menu and label the new diskette Backup of The Would-Be Gentleman.

Use only the copy of the simulation and put the original in a safe place, away from heat, magnetic
fields, liquids, and dirt. You can make copies for your own use, but please do not distribute the
simulaton to others. Refer to the Academic Courseware Exchange catalog available at Kinko's
copy centers for information about new versions of The Would-Be Gentleman.

ACIS/IRIS ™ Page 11 Faculty Author Development

The Would-Be Gentleman User Manual June 16, 1987

Unlock the Simulation Diskette

Make sure the simulation diskette is unlocked before use. If you forget to unlock the diskette, you
will be unable to successfully save and restore the simulation you are working on. If this happens
while you're working on the simulation, eject the diskette with a straightened paperclip in the small
hole next to the diskette opening or press the Command-Shift-1 keys. Check the tab in the upper
right corner of the diskette. This tab protects the diskette from changes when it is in the locked or
open position. Make sure it is unlocked or closed, and reinsert the diskette in the Macintosh.

Using the Macintosh
This section is an introduction to the Macintosh mouse and windows.
The Mouse Pointer

The mouse is a pointer to things on the Macintosh screen. At different times, the mouse pointer
changes shape. Most of the time it looks like an arrow. Use this pointer with menus, buttons, and
windows that appear on the screen. You move the mouse to point at something, and press the
mouse button to see the result.

Sometimes the pointer turns into a watch. This just means that the computer is working and you
need to wait a few seconds. Don't be alarmed when this happens! As soon as the arrow returns,

continue to mouse around.
Clicking and Dragging on Menus

Take some time to get used to the mouse. It generally acts as a pointer for you. The mouse button
is used ("clicked" or "pressed") to signify your choice in a command situation, or to select menu
items ("dragging," or moving the mouse with the button down).

The most important use of the mouse is on the menu bar. You select items from the menu by
pointing at the menu bar, clicking on the menu name, dragging through the menu items, and you
activate commands by releasing the mouse button on the appropriate item. To see a menu, point the
mouse at the menu bar (the white area at the top of the scréen with the menu names Information,
Progression, Investments, Personal, and View) and click the mouse button. The menu

under the pointer will "pull down" to show you menu items. Each item represents a command that

you can give to the simulation.

ACIS/IRIS ™ Page 12 Faculty Author Development

The Would-Be Gentleman User Manual June 16, 1987

Drag the mouse down the menu (don't let the mouse button up yet!). Menus, and commands in
them, darken to show you when they are selected. If you release the mouse button when an item is
darkened, the Macintosh will execute that command.

You can leave a menu without choosing a command by dragging the pointer away from the list of
menu items and letting go of the mouse button.

About Windows

Windows are your way of communicating choices to the program, such as making investments.
Windows in this simulation also allow you to get information about your investments and life.

Making Decisions

In some windows you make decisions simply by clicking the mouse in specified areas and typing
in your responses. The Tab key will move you from one information field to another. The Enter
key should be used carefully, as it often means you are finished making commands (see the
description of the OK button in the next section).

Leaving a Window

Windows that offer choices have a CANCEL button. Clicking the mouse here allows you to exit
a window without making choices. If you do make decisions, the OK button or the Enter key
puts them into action for you. Most windows that give information have only an OK option or
simply disappear when you click the mouse button. This allows you to exit a window without
making changes or reading everything in that window. Correspondence, or mail messages, appear
in a window with a message "This is the only time you will be able to read this message" and a
Ready button.

If a window appears without a CANCEL, OK, or Ready button, read the information on the
window and click on the mouse button to make it disappear.

ACIS/IRIS ™ Page 13 Faculty Author Development

The Would-Be Gentleman User Manual June 16, 1987

Areas of the Screen

There are four visual areas in the simulation: the menu bar, the information window, the
investment window, and the player summary window.

The menu bar is located at the top of the screen. Menus, as discussed earlier, are used to give

commands to the simulation.

The text window that precedes the simulation is an example of an Information Window. During the
simulation, other information windows appear to display mail, investment information, and other
results of your decison-making. You can ask for different types of information using the Status
choice on the Investments menu or any choice on the View menu. You can choose

Instructions from the Information menu to display an overview of the simulation.

The Investment Window has icons for your various investment opportunities. These icons
represent types of investment that work with commands (Status, Buy, Sell, or Manage) from
the Investments menu.

Lastly, you have a Player Summary Window that displays the current date, your age, prestige, total

wealth, and free (uninvested) cash. This window is updated by the computer each time you make
an investment decision, and serves as a quick look at how you're doing.

ACIS/IRIS ™ Page 14 Faculty Author Development

User:

Application:

Document:

Date:

Time:

Printer:

Tom M.

MacWrite 4.5

Programmer's Manual

Tuesday, June 16, 1987

17:26:32

Bullwinkle

The Would-Be Gentleman
Programmer's Manual

Tom Maliska
Faculty Author Development Program
Stanford University
September 1986

This document contains technical information about The Would-Be Gentleman, organized into the
following sections:

Program Information

System Requirements and Compatibility
List of Procedures

Description of Segments

Data Structures

Internal Data Management

Creating a Program Diskette for Players
Releases of The Would-Be Gentleman

Program Information

The Would-Be Gentleman was developed in Lisa Pascal using Workshop 3.9. It consists of two
parts in the Lisa code: Sunking/4.1/Finance, which is the Pascal program, and
Sunking/4.1/Financer, which is the resource file containing information about icons, dialogs,
alerts, and windows. The compiled code is renamed Louis XIV and has a SunKing icon on the
Macintosh diskette. Descriptions of the coding and data structures follow in the sections List of
Procedures and Description of Segments.

A number of program and data files are required by The Would-Be Gentleman, and are created on
the Macintosh using support programs. The data files are described briefly here and in more detail
in the section Support Programs and Data Files.

Program Created using

Louis XIV (main program), 4.1(a) Sunking/4.1/Finance.text on Lisa Pascal Workshop 3.9.
Compiled with Exec.text executive program.

Louis XIV (main program), 4.3 SK.Pas and SK.R on Borland's Turbo Pascal compiler.
See the appendix to the Programmer's Manual for v. 4.3.

The Would-Be Gentleman Programmer's Manual June 16, 1987

File Created using

FirstMail.1.dat Mail editor

FirstMail.2.dat Mail editor

SecondMail.1.dat Mail editor

SecondMail.2.dat Mail editor

Office.dat Office editor

Lease.dat Lease editor

Marriagel.dat Marriage editor

Marriage2.dat Marriage editor

Final Stats Created during execution; readable by Examine program
Instructions File or another Text editor/SetFile

StartText File or another Text editor/SetFile

StartupScreen Thunderscan/MacPaint/MacDraw/ScreenMaker
Pictures Thunderscan/MacPaint/MacDraw/Scrapbook

Saved Simulation Created during execution; readable by main program.

System Requirements and Compatibility

The software comes on a 400K diskette in MDS format and runs on Macintosh-128K, -512K,
-XL, -512E, and -Plus computers. In addition to the Louis XIV application and data files, a
Macintosh System 2.0, MiniFinder and ImageWriter driver are installed on the diskette in a System
Folder. MiniFinder replaces Finder 4.1 to conserve space on 400K diskettes, since the only
executable application is the Louis XIV simulation itself. Those who use the simulation diskette
on Macintosh-512E and -Plus computers can copy the Louis XIV application and Game Files
folder to an 800K diskette or hard disk drive with System 2.3 and Finder 5.3 installed. If the
Hierarchical File System (HFS) is used on the 800K diskette or hard disk, then the application
Louis XIV should be placed in the Game Files folder holding the simulation data files.

List of procedures

The following list of procedures and functions defines the simulation program
Sunking/4.1/Finance. Numbers represent the different program segments that organize related
procedures. Some segments are not declared as contiguous blocks, but all procedures marked by
the same number are in the same segment. Segment zero is special in that it is the main segment
that always remains in memory. See the Source Code listing for more complete documentation
of procedures and functions, and see the sections Description of Segments and Data

Structures for more information about the organization of the simulation program.

ACIS/IRIS ™ Page 2 Faculty Author Development

The Would-Be Gentleman Programmer's Manual

List of Procedures

0

DebugDelay
DlogManager
GetDText
LightBtn
Numspecs
PowerOfTen
ConvertNum
Break

DoPicture ------=-=--—--

15

DoPicture
SetDrawRect (local procedure)

HidePCtl
SetupProtector
DoProctCheck
ExaProctltem
GetProct
ChooseProtector

Getlcons
DrawRectangles
Drawlcons
SetUpMenus

OffTooAmbitious
AddOffPrestige
CalcPrestige
CalcRenteVal
CalcTotalVal
GetFactors
GetHighestOff
CalcCostOfLiving
DisplayAssets

11

InitVars

SetUpTextEdit
GetText

BeginText
Initialize

HiliteIcon
UnHiliteIcon
PrintChoice
BoughtRente
En_Disable
Selecticon

ACIS/IRIS ™ Page 3

June 16, 1987

Faculty Author Development

The Would-Be Gentleman

7

Bankrupt
CalcHarvest
NextLand
NextTextiles
GetCost

LoseRentes
CalcPayment
NextRente

SellYRente

13

CheckDebt
RaiseSalary
NextOffice
NextMarriage
NextLease
CalcExpenses
KillKid
CheckSexDeath
CheckDeaths
CheckWill
AddChild
DemoGraphics

PutWillltems
DisCancel
MakeWill

SwitchGen
Displetter
NextCorr
NextProct
EndSimulation

16

12

GoToNext

DispWealth
DispSex
DispPersonal

HarvValue
DispLand
DispText
DispLease
DispOffice
DispRente
ContButton
DisplayStatus

ACIS/IRIS ™

Programmeft's Manual

Page 4

June 16, 1987

Faculty Author Development

The Would-Be Gentleman

8

DispOldManageValues
ProcessManage
ManageMLand
DoConvCheck
InitConvert
DoConvert
ItemChecked
ConvertTitles
ManageLand

BuyMiscLand
BuyTitledLand
BuyLand
BuyTextiles
AddRente
NumKRente
BuyRente
DoCheck
AdvanceOffice

ExaOffItem
GetOffBought

10

AddOffice
Credentials
OwnOffice
BuyOffice
BuyLease
Purchase

LoseLast
SellKRente
SellRente
SellAdvance
HideCtl
FewOffices
LoseOffice
SellOffice
SellLand
Sell

SetUpWindow
SetUpControls
SetUp
ScrollBits
Increase
Decrease
PageScroll
DoScroll
SetScrollMax

Treasury

ReadText

ACIS/IRIS ™

Programmer's Manual

June 16, 1987

Faculty Author Development

The Would-Be Gentleman

3

14

MarrCheck
ExaMarrltem
GetMarrChecked
DoMarriage

PlanFamily
AboutProgram
BuyNobility

SaveRente
SaveOffice
SaveKid
SaveSimulation
QuitHandler
ReadRente
ReadOffice
ReadKid
LoseKids
LoadSimulation

DoCommand

FinalStats
StopSimulation

Main

ACIS/IRIS ™

Programmer's Manual

Page 6

June 16, 1987

Faculty Author Development

The Would-Be Gentleman Programmer's Manual June 16, 1987

Description of Segments

The simulation program Sunking/4.1/Finance is divided into eighteen segments (labeled 0-16 and
DoPicture). Segments allow the program to work with limited memory, using the segment loading
features of the Macintosh Toolkit. Segments also serve as a documentation aid, since they are

divided up in a logical manner and serve specific purposes.

Segment 0: This segment is special in that all its procedures are always in memory. The
procedures in this segment are the low-level utilities (such as procedures to convert numbers to
string, light radio buttons, and get text from dialog boxes). Contained in this segment are also
procedures called regularly in the simulation, such as the section that manages the selection of
investment icons, the section that manages the information window, and the main event loop.
Finally, there are a few special purpose procedures that are called by procedures from more than
one of the other segment (such as SellYRente).

Segment DoPicture: This segment opens a resource file containing pictures and displays the
appropriate picture in a window. The picture is resized automatically to fit the window.

Segment 1: This segment is the initialization segment. Its procedures are called at the beginning
of each generation to set up the various windows and menus that make up the display, initial
settings for the player, and system variables like filenames and resource ids.

Segment 2: This segment reads and displays the instructions from an external file. The window
created has scroll bars and a go-away box.

Segment 3: This segment is the marriage handler. Its procedures display the names of the
brides, give information about brides, and manage courtships.

Segment 4: This segment handles transition between generations. One procedure (SwitchGen)
transfers the person's posessions from the player to his heir according to the will, and another
procedure (EndSimulation) handles transition into the third generation resulting in the conclusion of

the simulation.

Segment 5: This segment controls the saving and restoring of the current state of the simulation.

The procedure SaveSimulation is the overall manager for the saving process, while procedure

ACIS/IRIS ™ Page 7 Faculty Author Development

The Would-Be Gentleman Programmer's Manual June 16, 1987

LoadSimulation manages the restoration process. Procedure QuitHandler is called when the player
wishes to Quit the simulation and, if the player wishes, saves the simulation before quitting.

Segment 6: These procedures are called when the simulation is about to end, either by the menu
choice Quit, a player who completes a generation without an heir, a player who is hanged through
an injudicious purchase of a lease, or a player who successfully reaches the third generation. These
procedures save the player's position (if the player didn't just quit) and then stop the simulation.
The Final Stats file is updated and the Macintosh ejects the diskette. A text window describes the
next steps for the user. If finished, the player can simply remove the diskette and turn off the
computer. To replay the simulation, the player must reinsert the diskette and click twice on the icon
named Louis XIV.

Segment 7: This segment is called when the player chooses the Next Interval selection of the
Progression menu. New investment prices and opportunities are created, and old ones evaluated
according to the player's choices. The procedure GoToNext moves the player forward six months
and calculates the player's income and expenses for that period. Other procedures calculate
demographics (births and deaths) for that period.

Segment 8: This segment is called when Manage is chosen from the Investments menu.
Since only land is managed, these procedures handle the allocation of land for the harvest and the
conversion of titled lands from one title to another. Please note that land can only be allocated in
the Spring for harvest in the Fall, and that conversion of titled lands is only possible when titled
lands are owned in sufficient quanitities (as a Marquisat is larger than a Vicomté is larger than a

Siegneurie).

Segment 9: This segment is called when the player chooses to buy an item. Its procedures
handle the acquisition of miscellaneous and titled lands, investment in textiles, and purchase of the
King's rente, offices, and leases. The procedure Purchase is the overall manager of this segment.

Segment 10: This segment is called when the player chooses to sell an item. Its procedures
allow the player to sell either the King's rente or rente of his/her own, to sell offices, and to sell
miscellaneous land. The procedure Sell is the overall manager of this segment.

Segment 11: This segment is used to read text from an external file into a text edit record. It is

declared as a separate segment because it is called by both Segment 1 (to read in the initial text) and
by Segment 2 (to read in the instructions).

ACIS/IRIS ™ Page 8 Faculty Author Development

The Would-Be Gentleman Programmer's Manual June 16, 1987

Segment 12: This segment handles displaying the player's status in the various categories
(financial and personal). Its procedures display a player's investment status for land and grain,
leases, offices, textiles, and rentes (by choosing the appropriate investment icon and then Status

from the Investments menu).

Segment 13: This segment handles the creation of the player's will. It is called when the player
chooses Make a Will from the Personal menu. It allows the player to enter values for the will,
and determines whether or not it is in accord with traditional practice.

Segment 14: This segment consists of three miscellaneous procedures that don't really belong in
any of the other segments. One procedure handles family planning in the second generation, one
procedure tells the player about the authors of the program, and the third procedure allows the
player to purchase a letter of nobility.

Segment 15: This segment manages the selection of court protectors for the player. It is called
to set up the list of protectors available in a given year and to manage the selection of a protector by
the player through the Choose Protector selection on the Personal menu.

Segment 16: This segment calls two procedures that give the player a summary of the player's
financial and personal status through the Wealth and Personal selections on the View menu. A
third procedure, DispSex, figures out the number and sexes of children for the Personal status

window.

ACIS/IRIS ™ Page 9 Faculty Author Development

The Would-Be Gentleman Programmer's Manual June 16, 1987

Data Structures

The program has two main data structures, the DateType and the AssetsType.

DateType holds the year (as longint) and the season (as a boolean variable FALL).

AssetsType is a structured data type, consisting of many levels of records, arrays, linked lists,
and simple types (integer, longint, char). The following is a complete description of AssetsType:

Land:
HarvestType = (poor, fair, good, excellent);
Landtype = record

Yield, Price, ShareCrop, Kind, Rent, Inherited, Bought, Seigneurie, Vicomte,
Marquisat, Lost, Value : longint;

Local, Regional : HarvestType

This record tracks the player's grain yield for each harvest, grain price, allocation of lands for the
harvest, amount of land inherited (cannot be sold), amount of miscellaneous land bought by the
player (during each generation, not each season), titled lands owned by type, amount of grain lost
in storage, total value of all lands owned, and the quality of the local and regional harvests.

Rente:
RentePrtr : ARenteType;
RenteHandle : ~*RentePtr;

RenteType = record
Year, CostDenier : longint;

Fall : boolean;
Next : RenteHandle;

RenteRec= record
FaceDenier, CostDenier, Return, GotThisYear, Owe, SoldVal, Payment : longint;

IndivRentes : RenteHandle;

These records track the current face value of rente, the discount cost of rente, the amount of return
from rente, the amount owed from personal rente, the value of personal rente sold, the seasonal
payment due on personal rente sold, and a list of all rente purchased from the King, including year

of purchase.

ACIS/IRIS ™ Page 10 Faculty Author Development

The Would-Be Gentleman Programmer's Manual June 16, 1987

Office:
OfficePtr = AQOfficeRec;
OfficeHdl = AOfficePrr;

OfficeRec = record
Salary, AmtPaid, Value, Prestige : longint;

Title : Su255;
Next : OfficeHdI;
Inherited : boolean,;

OfficeType = record
TotPurchase, Number, Salary : longint;

OfficeList : OfficeHandle;
Levied, Raise : boolean;

OfficeRec stores information about individual offices in a linked list. Information includes the
salary of the office, the amount paid for the office, the full value of the office, the prestige
associated with the office, the office title, a pointer to the next office in the list, and if the office was
inherited.

OfficeType stores information about the offices purchased, such as number purchased, total
purchase price, and total salary. It keeps a linked list of all offices purchased. It tracks taxes levied
against office value and royal gratuities (such as a raise for a fee).

Lease:

LeaseType = record
FaceValue, Offer, OldOffer, NumBought, GotThisYear : longint;

Title : str255;
Hanged, Bought : boolean;

This record stores the current (this year's) lease's face value, the offered price, the last offered
price, the total number of leases purchased, the return on a lease held one year, the title of the lease.
It also records if the lease that causes hanging of the collector was purchased and if a lease was

purchased in the current year.

ACIS/IRIS ™ Page 11 Faculty Author Development

The Would-Be Gentleman Programmer's Manual June 16, 1987
Marriage:

BrideRec = record
Name, Father : str255;

Age, Dowry, Group : longint;
BrideArray = array [1..NumMarrPerYear] of BrideRec;

AvailRec = record
IsAvail :boolean;

Year : longint;

ManType = record
ThisYear : BrideArray;

Bride : BrideRec;

MarrBelow, Married : boolean;
Failures : longint;

Available : AvailRec;

These records store the current selection of brides. When a player gets married, the record stores
the bride's name, her father's name, her dowry, her prestige level, and her age. It records the
prestige related to a marriage, the player's marital status, the number of refusals from prospective
brides, and a player's availablility/eligibility according to the date of the last refusal (three years
must pass before eligibility is restored).

Children:
KidHandle = AKid Ptr;

KidPtr = AKidRec;
KidRec = record
Birth : DateType;

Next : KidHandle;

ChildRec = record
Number, NumBoys, NumGirls : longint;

Boys, Girls : KidHandle;
NextBirth : DateType;

These records store the total number of children by sex, the number of boys, and the number of
girls. They store a record for each child of a given sex in a linked list for demographic calculations.

ACIS/IRIS ™ Page 12 Faculty Author Development

The Would-Be Gentleman Programmer's Manual June 16, 1987

Will:
WillAmmay = array [1..NUMWILLCATEGORIES] of longint;

WillType= record
Distribution : WillArray;

Made, WasInAccord, InAccord : boolean;

This record tracks the player's distribution of his assets in the will, if a will was made in each
generation, concordance with tradition prior to a new birth, and concordance with traditional
distribution of wealth.

Protector:

ProctType = (Cornuel, Mazarin, Particelli, Conde, Fouquet, Colbert, Maintenon,
GrandDauphin, DukeOfBurgundy, Generic, NoProtector);

ProctArmray = array [1..5] of ProctType;

ProctRec = record
Name : ProctType;

YearFail, NumFailures, ThisProctFail : integer;

This record tracks the name of the protector associated with the player. It also tracks rejection from
a coterie by the year of the failed approach, the number of such rejections, and the number of
rejections in a season.

Mail:

MailRec = record
Content : str255;

Contact : ProctType;
Year, Cash : longint;

Fall : boolean;

This record tracks historical correspondence read from external files. It stores mail messages
according to their content, protector associated with the message, the year the message is to be sent,
the amount of gain or penalty in cash associated with the message, and the season that the message
is displayed.

ACIS/IRIS ™ Page 13 Faculty Author Development

The Would-Be Gentleman Programmer's Manual June 16, 1987

Other variables:

The AssetsType data structure controls these variables:

Pascal type longint
Grain:

Cash:

Textiles:
TotalVal:
CostOfLiving:
Debt:

Taxes:

Age:
Generation:
TooAmbitious:

OldPrestige:

Prestige:

Pascal type boolean

PresFallen:

Quit:

Won:

Noble:
ChoseProct:
BoughtLetter:
SoldGrain:

ACIS/IRIS ™

The amount of grain held.

The amount of cash held.

The amount the player has invested in textiles for the coming year.
The total value of the player's financial assets.

The player's annual cost of living.

The player's current indebtedness.

Annual taxes due.

The player's age.

The current family generation (first, second, third).

The number of times the player has tried and failed to purchase an office
(e.g. an office with a prestige rating of 80 cannot be purchased).
If the player is penalized for purchasing too prestigious an office,
AssetsType keeps track of the previous prestige.

The player's prestige level.

If the player has purchased a lease after he has achieved a prestige of 70 or
greater, this is noted.

If the player quits, successfully reaches the third generation, or is hung.

If the player has completed the simulation into the third generation.

If the player has achieved nobility.

If the player has chosen a protector during the current season.

If the player has bought a letter of nobility.

If the player has sold grain during the season in quantity adequate to stop
dissatisfaction among the peasants.

Page 14 Faculty Author Development

The Would-Be Gentleman Programmer's Manual June 16, 1987

Internal Data Management

The simulation also uses a variety of data included in the main program source code. Some data is
used to set prices for investments, while others describe parameters of family and protectors.
Although this data exists as program code, it can best be described as attributes of investment,
prestige, cost of living, wills, taxes, protectors, and family. See the previous section for more
complete information about data structures.

Investment

Land

Miscellaneous land represents the amount of arable land in the local area. Miscellaneous land can
be purchased during any season and in any quantity up to the total of 2400 hectares. It can be
resold in any quantity, unless inherited. The standard price of miscellaneous land is £575. Some
protectors benefit the player with a discount on the price of miscellaneous land.

Grain returns and pricing are calculated on the basis of the local and regional harvests. The quality
of the regional harvest determines the price of grain in livres per quintel, while the quality of the
local harvest determines the yield in quintels per hectare. The price increases from Fall to Spring,
as supplies diminish over the winter. The simulation returns the quality of a harvest as blight,
poor, good, and excellent with varying frequencies.

Price (regional harvest)
ity of H Frequency Yield (Iocal harvest) Fall - Spring
Blight 4% 0 quintels 15 - 25€
Poor 32 4 7-10
Good 32 5 5-6
Excellent 32 6 4-4

Land can be managed for the harvest in three ways: Renting in Kind, Renting for Cash, and
Sharecropping. These choices vary in the stability and range of their returns. Renting in Kind
returns grain at a rate of 5 quintels per hectare and this yield is paid regardless of the quality of the
local harvest; the value of the grain is dependent on the price determined by the regional harvest.
Renting for Cash pays £29 per hectare and, as the least speculative form of management, it is paid
regardless of the quality of the harvests. Profits from sharecropping equal the price of grain at the
time of sale multiplied by the yield of grain in the harvest, and are thus dependent on both local and

regional harvests.

ACIS/IRIS ™ Page 15 Faculty Author Development

The Would-Be Gentleman Programmer's Manual June 16, 1987

Grain is lost to rats, fungus and rot, and damp storage at a rate of 20% each Fall.

Peasant revolts can occur in the transition from Fall to Spring during years when both Regional and
Local harvests are less than Good. If a sufficient quantity of grain (10% of holdings) is not sold in
the Fall to provide for winter food, then 97% of grain holdings are lost to a revolt.

Titled lands can be purchased in lots and have great bearing on the prestige of the player. They can
be upgraded from one title to another, provided that the amount of land owned under one title is in
sufficient quantity for a lot of the higher title and the difference in price per hectare is paid. Titled
land is included in the management of lands for the harvest. Titled land cannot be sold.

Siegneurie 75-150 £700
Vicomté 300-450 £850
Marquisat 600-900 £1000
Rente

Rente is the term for a loan of £1000. Rente are made either to the King (King's rente) or
borrowed for personal use (Personal rente). Rente can be treated as a speculative investment with
the strategy "buy King's rente at a low price and sell at a high price” (King's rente), as a means of
acquiring cash (Personal rente), or as a steady investment income (annuity, or interest returned on
King's rente). Denier is a measure of a rente's market value or price; one denier is 1/14 of the
value of one rente, or 1/14 X £1000. There are four market values that occur with different
frequencies during the simulation, and these values can change in any season. The following table
outlines denier, prices, and frequency of prices.

Denier or market price Price in Livres T ncy of this price for rent
2 £143 4%

7 £500 22%

11 £786 60%

14 £1000 14%

ACIS/IRIS ™ Page 16 Faculty Author Development

The Would-Be Gentleman Programmer's Manual June 16, 1987

King's rente:
A maximum of 400 King's rente can be purchased at a given time. King's rente can be resold for
cash. The current price compared to the price at time of purchase determines profit or loss.

Personal rente:

Personal rente are loans taken out by the player. A player can borrow cash in any quantity, but the
player must pay interest at the market price at the time that the loan is made. If a low price is in
effect when a personal rente is sold, the player pays interest at a higher rate than for a loan obtained
at the full price of denier 14. At denier 2, for instance, the player pays back seven times the interest
rate of a rente sold at denier 14.

In some situations the player might lose enough money on investments to be forced to take a
personal rente in order to pay debts. The dialog for sale of personal rente appears automatically.

Annuity:

King's rente also return an annuity in cash each year they are held, equal to one denier per rente
purchased. At rente equal to denier 14, one denier equals 1/14 of £1000, or £71; at rente equal to
denier 18, one denier equals 1/18 of £1000, or £55. Payment of the annuity may be voided or
reduced based on the King's decree. The following table shows the payment, the frequency of that
payment, and the annuity paid for each rente of £1000 purchased from the King.

Payment Return in £ Return in £

(as % of annuity) Erequency nier 14 at denier 18

0 2% 0 0

62.5 33% 44 34

100 65% 71 (full annuity) 55(full annuity)
Special cases:

Personal rente always result in a cash return at the market rate. A player is essentially giving a note
for £1000 in return for the cash value of the rente at current denier. These rente cannot be
reclaimed and interest on the loan will be assessed each year as an expense.

In 1664, all rente purchased since 1656 are declared void by the King.

In 1660, rente are devalued from denier 14 to denier 18 by order of the King.

In 1648, the King made a payment of 62.5% on the annuity for King's rente.

Some protectors do not allow their associates to purchase the King's rente.

Some protectors provide warning signals about the price of rente.

ACIS/IRIS ™ Page 17 Faculty Author Development

The Would-Be Gentleman Programmer's Manual June 16, 1987

Offices

Offices can be bought and sold during any season. From 1642 to 1652 office prices are lower by
20 percent.

Special case:

In the Spring, levies may be raised against offices owned by the player. The King can decree a
20% fee on the value of each office or raise salaries by 25% while charging a one-time fee of 10%
of total salaries. This happens by chance, with the frequency of each levy set.

Frequency (yearly) Levy

3% 20% of total value of offices held
4% 10% of total salaries for offices held
Leases

Leases, like offices, are purchased from the government. They are fees paid to the player for acting
as tax collector; in essence, they are speculative investments. Leases have three prices, determined
by the market, called Official Value, Face Value, and Offered Price. The player uses the Official
Value and Face Value to judge the worth of the lease compared to the Offered Price.

A lease is bought in the Spring at the Offered Price; the return is paid the following Spring as a
percent of Face Value.

Face Value is calculated by generating a price randomly until it exceeds a minimum of £5000. The
Offered Price, which a player must pay to secure the lease, is calculated each Spring as a percentage
of the Face Value.

red Pri F Frequency
28 20% (one chance in five)
48 20%
58 20%
68 20%
78 20%

ACIS/IRIS ™ Page 18 Faculty Author Development

The Would-Be Gentleman Programmer's Manual June 16, 1987

The player makes money on a lease when the discount price paid is lower than the percentage
returned the Spring after the lease was purchased. The percent return on the Face Value of a lease
is based on the regional harvest.

Regional harvest Frequency Percent return of Face Value
Blight 4% 10

Poor 32% 40

Good 32% 65

Excellent 32% 100

Special cases:

Some protectors do not allow their associates to purchase leases.
Some protectors offer financial benefits to associates in the form of discount leases.
For more information, see the section on Protectors below.

In 1639, the lease is automatically set to "Royal toll on herring and salmon in the Carenton
District." This lease, if purchased, leads to hanging in the following year.

Textiles

Textiles are purchased in the Fall and return their value in the Fall following the purchase. Profits
in the textile market depend upon the regional harvest, the quality of which sets the price of grain
and the return on meney invested in textiles. The following table shows the relationship between
the quality of the regional harvest, the frequency of that kind of harvest, and the percentage return
on an investment in textiles.

Regional h Frequency Percentage return on investment in textiles
Blight 4% 20

Poor 32% 1

Good 32% 9

Excellent 32% 18

ACIS/IRIS ™ Page 19 Faculty Author Development

The Would-Be Gentleman Programmer's Manual June 16, 1987

Prestige

The procedure CalcPrestige computes the player's prestige index with the following rules.

The first set of rules determine the tens digit of the prestige index. The second set determines other
single digit penalties and additions.

Primary prestige points (ten's digit)

If the player begins the Spring with a prestige over 70 and buys a lease during the season, the
player can never again go into the 70's or beyond.

If the player has no offices, then prestige begins at 30.
If the player owns an office, prestige begins at 40.
If the player owns an office that is too ambitious for his standing, prestige begins in the 20's.

If the player is a nobleman and owns a Seigneurie then prestige begins at 50. If the player is a
noble man and owns either a Vicomté or Marquisat prestige begins at 60.

If the player owns both titled land and a very high office then prestige begins at 70 or 90.

Prestige cannot drop below 30 unless a player tries to enter the 80's, in which case prestige is
lowered to 20. It can go lower than 20, depending on other penalties.

Prestige can never go into the 80's.
Secondary prestige points (one's digits)

These secondary points can never move the player into a higher category, but they can drop him
into a lower one.

A player loses one point for every lease bought.
One point is given for every 100 hectares purchased.
A point is given if the player is married.

ACIS/IRIS ™ Page 20 Faculty Author Development

The Would-Be Gentleman Programmer's Manual June 16, 1987

Two points are lost for each unsuccessful courtship.

Three points are lost for marriage to a woman below one's prestige.

Two points are lost for each purchase of an office that is too ambitious for one's prestige.
Two points are given for the purchase of a letter of nobility.

One point is subtracted for rejection from a protector's coterie; three points are subtracted if a player
has been rejected more than once.

One point is given for every office rated equal to or above the starting prestige.
Nine points are given if a Marquisat is owned.

If the father's will was not in accord with tradition, a player loses four points.
If the sum of the above is greater than 9, then the one's digit is set to 9.

If the prestige is less than 20, then it is set to 20.

If the base prestige rating is greater than 20 but the calculated prestige ends up less than 30, then it
is set to 30. This preserves the 20's rating for the overly ambitious player.

Cost of Livi
The procedure CalcCostofLiving computes the player's cost of living.

It first calculates the base cost based on the player's offices. If the player owns no office, the base
cost is £600 with no titled land, £1500 with a Vicomté, or £2000 with a Marquisat.

If offices are owned, procedure GetFactors is called to get the multipliers for the offices. The
multipliers are based on the highest prestige rating of the offices owned.

ACIS/IRIS ™ Page 21 Faculty Author Development

The Would-Be Gentleman Programmer's Manual June 16, 1987

Higt . . Multiplier Percent
20, 30, 40 1 25%
50 2 50%
60 3 50%
70 4 50%
80, 90 8 50%

The base cost is then computed by multiplying the highest salary by MULT and then adding in
PERCENT percent of the rest of the salaries. If the player is not married, then the cost of living is
40% of the result.

If the player is married, the cost of living is increased 20% by each child.

If the cost of living is less than £600, then it is set to £600 as the minimum cost of living.

A dialog to create a will appears on the screen when the player selects the Make a Will choice on
the Personal menu. It also appears when the death of the simulation's character is imminent and a
will has not been made. The formula for accord with tradition follows:

The eldest son 20% plus (80 times (1/n)) where n is the number of children
Other children 100/2n% apiece

Non-Kin 1%

Other Kin 1%

Charity 1%

The Church 5%

If the player's first will is not in accord with traditional practice, it will cost the next generation 4
prestige points.

Taxes

A tax is assessed each Spring equal to £3 per hectare for all land owned.

ACIS/IRIS ™ Page 22 Faculty Author Development

The Would-Be Gentleman Programmer's Manual June 16, 1987

Protectors

This list gives information about protectors including their years in power, conditions for
acceptance to their coterie, financial benefits of association, and theconsequences of association at
their death. Cornuel is automatically assigned as protector to the first generation. Costs related to
having no protector are delivered by historical correspondence and are always deductions in a
player's cash framed as taxes, gratuities paid, and other penalties.

Name: Cornuel

Years: 1638-1640

Acceptance Conditions: Automatic

Financial Benefits: None

Consequences of association at Protector's Death: No Protector

Name: Particelli

Years: 1638 -1648

Acceptance Conditions: Must Purchase at least 3 leases

Financial Benefits: None

Consequences of association at Protector's Death: No Protector, Bankruptcy

Name: Mazarin

Years: 1640 - 1661

Acceptance Conditions: £15,000 in cash.

Financial Benefits: Leases at 3/4 price

Consequences of association at Protector's Death: No Protector

Name: Condé

Years: 1640 - 1686

Acceptance Conditions: Must own some titled land.

Financial Benefits: Misc. land at 1/2 price 'til 1653, 2/3 price 1653 - on; £5000 gift if peasant
revolt destroys your stored grain and barns.

Consequences of association at Protector's Death: Pass to Grand Dauphin's coterie.

Name: Fouquet

Years: 1654 - 1661, FALL

Acceptance Conditions: Must have cash holdings greater than £35000.
Financial Benefits: Leases at 3/4 price,

Consequences of association at Protector's Arrest: No Protector, Bankruptcy

ACIS/IRIS ™ Page 23 Faculty Author Development

The Would-Be Gentleman Programmer's Manual June 16, 1987

Name: Colbert

Years: 1656 - 1683

Acceptance Conditions: Must hold at least 2 offices and have 50+ prestige.

Financial Benefits: Informed of Rentes at 2

Consequences of association at Protector's Death: Pass to Duke of Burgundy's coterie.

Name: Mme. de Maintenon

Years: 1680 - 1715 (end of game)

Acceptance Conditions: Prestige 60+.

Financial Benefits: None

Consequences of association at Protector's Death: None; Maintenon lasts to end.

Name: Grand Dauphin

Years: 1683 - 1711

Acceptance Conditions: Must own titled land.

Financial Benefits: Misc. land at 1/2 price

Consequences of association at Protector's Death: No Protector

Name: Duke of Burgundy

Years: 1683 -1712

Acceptance Conditions: Must own two offices and have 50+ Prestige.
Financial Benefits: Informed of Rentes at 2, CANNOT buy leases
Consequences of association at Protector's Death: No Protector

All protectors have additional costs and benefits given by mail messages.

The game will be changed to show a penalty of 1 prestige point if rejected once in the protector
dialog, and a penalty of 3 points and a two year wait if rejected twice.

ACIS/IRIS ™ Page 24 Faculty Author Development

The Would-Be Gentleman Programmer's Manual June 16, 1987

Marri { Famil

Marriage

To qualify for marriage to a bride, a prospective suitor must meet two requirements. First, his
prestige group must be greater than or equal to the prestige group of the bride. Second, his total
assets must be at least twice as large as the bride's dowry.

A failed courtship costs two prestige points.

A failed courtship results in three years of ineligibility for the suitor.

Four prospective brides are available each season, and are selected randomly from the marriagel or
marriage? data files.

Family

The first generation ends in 1676, the second generation ends in 1715 at the death of Louis XIV.
In the first generation, a son is born automatically in the first generation at the end of the first year
of marriage. This son is not allowed to die, protecting the first generation of the simulation against
failure at the death of the father. Other children are born at random intervals until the mother

reaches 36.

In the second generation, children must be planned using the Family Planning item on the
Personal menu. As in the first generation, the eldest son is protected.

A bride who is 38 years of age or older cannot bear children.

10 percent of children die before age one, 13 percent die before age 20. After age 20, children are
protected against death.

ACIS/IRIS ™ Page 25 Faculty Author Development

The Would-Be Gentleman Programmer's Manual June 16, 1987

Creating a Program Diskette for Players

Complete information on the contents of diskettes is included in the Table of Contents of this
binder. The Would-Be Gentleman diskette should be constructed to include the main program
Louis XTIV and a Game Files folder containing required external data files. If these files are not
included, or not accessible (as is the case with HFS when the main program and the data are not in
the same folder), the simulation will display an empty window where external data is required.

Compilation of version 4.1(a) with the Lisa Pascal Workshop 3.9

Compilation of the source code for the main program and support programs requires the application
source code, its resource file, and the exec.text executive program. Naming conventions are
followed:

Main program Sunking/Version/Application.text

Resource Sunking/Version/ApplicationR.text

Exec.text is invoked by the Run command from the Lisa Workshop shell as follows:
R(un)
Program to Run: <exec(Sunking/Version/Application)

Compilation with Workshop 3.9 is very reasonable for speed. Earlier versions compile extremely
slowly and should not be used with The Would-Be Gentleman code. The source code, once
compiled, is written to the Macintosh diskette as Finance. It should be renamed Louis XIV.

Compiling Gentleman version 4.3 with Turbo Pascal

For information about compilation with Borland's Turbo Pascal, see the Appendix to the
Programmer's Manual for version 4.3.

ACIS/IRIS ™ Page 26 Faculty Author Development

The Would-Be Gentleman Programmer's Manual June 16, 1987

Releases

1.0 1/85
2.0 3/1/85
3.0 8/85
4.0 10/85
4.1 3/86

4.1(a) 10/86

43(B) 5/87

By date

1/10/1985

August 1985

1/10/1986

3/2/1986

3/13/1986

10/3/1986

Nov. 1986

ACIS/IRIS ™

Releases of The Would-Be Gentleman

First release, Macintosh interface, used in seminar at Stanford University

New economic model under development

Pictures added, improved rente management

Economic model and correspondence improved

Release version, testing completed, economic model debugged

Release version, appended User's Manual

Available on request: Instructor's Manual, Programmer's Manual, Source Code
Listings, Support Programs and Data Files for Lisa Pascal Workshop 3.9.
Available on request: Instructor's Manual, Programmer's Manual, Source Code
Listings, Support Programs and Data Files for Borland's Turbo Pascal Compiler.

Event
Course used version 1.0

EDUCOM used ver 3.0 in Integrating Software into the Unversity Curriculum
Apple Computer handed out version 4.0a at the Apple University Consortium
EDUCOM handed out demonstration copies of pre-release version 4.0b
Academic Courseware Exchange released version 4.1

Academic Courseware Exchange released version 4.1(a)

EDUCOM annual conference, Pittsburg PA, Apple Computer purchased and

distributed 500 copies of release version 4.1(a) to attending EDUCOM member
schools.

Page 27 Faculty Author Development

User:

Application:

Document:

Date:

Time:

Printer:

Tom M.

MacWrite 4.5

Programmer's Manual Appendix, v

Tuesday, June 16, 1987

17:45:23

Bullwinkle

The Would-Be Gentleman Programmer's Manual Appendix version 4.3 June 16, 1987
The Would-Be Gentleman
Programmer's Manual Appendix for version 4.3

Tom Maliska
Faculty Author Development Program
Stanford University
September 1986

The Turbo Pascal compiler:

The Would-Be Gentleman version 4.3 source code compiles using the Turbo Pascal v. 1.0
compiler from Borland International. This compiler was chosen as a low-cost and readily available
language product.

Compilation:

The source code is divided into a main program (SK.Pas) and a number of units (SKSeg0.Pas,
SKSegl.Pas, SKSeg7.Pas, SKSeg11.Pas, and SKSeg15.Pas). SK is shorthand for Sun King,
Louis XIV's nickname. You may wish to change these names to suit your own application or
make them generic (Unit0.Pas, etc.) for simplicity's sake. The segment numbers in these names
correspond to the segments described in the programmer's manual. Segments must be compiled to
disk before the main program and installed in the Turbo Pascal library using the UnitMover utility
program. There are dependencies between units, so recompilation of one unit may involve
recompilation of others in the appropriate order. While this sounds tiresome, the speed with which
Turbo Pascal compiles the individual units makes this a fairly reliable and simple process. The
order in which the units must be compiled is the following:

=== (dependent only on Turbo Pascal unit libraries)
SKSeg0.Pas

=== (dependent on Turbo Pascal unit libraries and SKSeg0.Pas)
SKSegl5.Pas
SKSegll1.Pas

=== (dependent on Turbo Pascal unit libraries and multiple SK units)
SKSegl.Pas (dependent on SKSeg0.Pas and SKSeg11.Pas)
SKSeg7.Pas (dependent on SKSeg0.Pas, SKSegl1.Pas, and SKSegl.Pas)

=== (dependent on Turbo Pascal unit libraries and all SK units)
SK.Pas (Units)

Customization:

Resources for the program contain much of the interactive text for dialogs. It is advisable when
designing your program to convert these dialog boxes to suit your own simulation strategy and
topics. Resources are contained in the file SK.R; they can be edited with Turbo Pascal and
compiled with the Resource Compiler.

ResEdit and other tools can be used to change resource files of the type Myfile.Rsrc, but do not
make changes at the source level. It is advisable to make changes with SK.R and the Resource
Compiler rather than "on the fly" with ResEdit or other tools.

Much of the rest of the textual data is contained in external data files. The Programmer's Manual
for The Would-Be Gentleman describes how to modify the external data files using the Editors, or
support programs, and how the main data structures in the main program source, SK.Pas (Units),
are maintained. You may wish to read through the source code to familiarize yourself with the
many procedures in the simulation; the source code is documented at each procedure and function
header. Many changes can be made to the program merely by understanding the main data
structure, ASSETS, and changing related constants and If..Then rules in the source.

ACIS/IRIS ™ Page 1 Faculty Author Development

The Would-Be Gentleman Programmer's Manual Appendix version 4.3 June 16, 1987

All output windows must be customized for your simulation. Since output to these windows
involves many formatting steps, I have left it to you to design your own writeln statements and
make them display properly. The Windows and Dialogs have been provided and are initialized and
ready for text display. The original Gentleman output, consisting mostly of writelns, works but
has many glitches as I have not completed my own customization with formatting in mind. You
may want to explore the use of DrawString instead of writeln; see the source code for the lease
Editor in Lease.Pas for an example of this and for source to convert integer values to strings.

Note that some of the output routines are located in the body of the units rather than in the main

program; in this case, you must modify the unit code and recompile the appropriate units to test
your changes to window and dialog output.

ACIS/IRIS ™ Page 2 Faculty Author Development

User:

Application:

Document:

Date:

Time:

Printer:

Tom M.

MacWrite 4.5

License for Gentleman Source Co

Tuesday, June 16, 1987

17:46:28

Bullwinkle

Interested Party 6/2/87

Dear Interested Party,

I am writing to confirm receipt of the source code for The Would-Be Gentleman and set forth our
guidelines for the use of this source code. Please sign this letter and return it to me as
acknowledgement of receipt and agreement to these guidelines, namely:

1. That no software products developed from this source code be distributed for profit, royalty, or
pecuniary gain by any party.

2. That you acknowledge Stanford's contibution to any product developed from this source code
by incorporating this text in the About... dialog:

"This product is based on source code designed at Stanford University for
The Would-Be Gentleman, version 4.3,

Faculty Author Development team, Stanford University :
Carolyn Lougee, Steve Fisher, Michael Carter, Ed McGuigan and Tom Maliska.

Copyright 1985 Carolyn Lougee & the Board of Trustees of the Leland Stanford Junior University."
3. That a copy of any product developed from this source code be sent as a courtesy to:

IRIS, Stanford University

c/o The Would-Be Gentleman
Sweet Hall 3rd Floor

Stanford, CA 94305-3091

4. That no distribution of this source code be made to other parties for use other than cooperative
work with the addressee. Inquiries from other parties about the source code for Tshould be
directed to the address indicated in #3 above.

Thank you for your interest in our software and source code. Until August 1987, I (Tom Maliska)
will be available for limited technical support on this product. Please contact me by phone at
(415) 723-105S5 or via bitnet at maliska % portia@stanford.bitnet.

If you are interested in distributing products based on this source code, please make sure to contact
us first. As a point of information, The Would-Be Gentleman is available for $7.50 from the
Academic Courseware Exchange, a service of Kinko's Copies, Inc. A catalog of ACE products
and ordering information can be obtained by calling 1-800-235-6919.

Sincerely,

Tom Maliska
Stanford University IRIS

I hereby acknowledge receipt of the source code for The Would-Be Gentleman and agree to the
provisions for its use listed above:

SIGNED DATE
ADDRESS:

User:

Application:

Document:

Date:

Time:

Printer:

Tom M.

MacWrite 4.5

Instructor's Manual

Tuesday, June 16, 1987

17:23:50

Bullwinkle

Instructor's Manual
The Would-Be Gentleman

Professor Carolyn C. Lougee,
Faculty Author Development Program
Stanford University
September 1986

A Historical Simulation of the France of Louis XIV

"The Would-Be Gentleman" is a simulation of social mobility in seventeenth-century France,
designed for use by students in undergraduate classes on the Old Regime. It has been tested in a
sophomore/junior-level seminar at Stanford University; the amount of technical information it
teaches and the fact that its use should extend over a number of weeks probably make it
inappropriate for freshman European survey courses, but it could appropriately be used in
graduate-level courses on the seventeenth century.

The simulation begins (at logon) in September 1638, when the future Sun King Louis XIV has just
been born. It continues until September 1715, when Louis dies. In the intervening 77 years, two
generations of the Marin family attempt to raise the fortunes and status of their family. At the

outset, the player receives the following message:

[INSERT #1: Scenano Window]

The Would-Be Gentleman Instructor's Manual June 16, 1987

What follows are 154 decision points (fall and spring of each calendar year) at which Denis Marin
(and after 1676 his son Jean-Frangois Marin de Merinville) make investment, management, and
personal decisions that are appropriate for the times. The aim is to maximize prestige over the two
generations of the simulation and attain the highest possible social standing in 1715. A constant
stream of correspondence to the player identifies economic or political opportunities, warns of
risks, and informs of windfall gains or unexpected losses stemming from circumstances beyond the

player's control.

The investment decisions permit one to buy or sell land, venal offices (e.g., for 25,000 livres Denis
can become honorary secretary of the king), textile shares, leases (the term for contracts to collect
indirect taxes), or rentes (annuities). The probabilities of making a profit rather than a loss and the
size of the profit or loss vary for the different investment types to reflect the economic realities of
the seventeenth century. Thus, for example, leases are the riskiest and land the safest investment,
but the potential profit on a lease transaction if one is lucky is far higher than the monetary return on
land will ever be. Textiles are less volatile than leases but vulnerable to occasional market
collapses, and rentes are fairly steady performers but subject both to market fluctuations and to the
vagaries of royal penury which can from time to time cause the king to place a costly surtax on
them. In playing, the student discovers the short-term and long-term potential of various
investments and learns which investments make sense at any particular juncture in the simulation.

Management decisions concern land-rental and sales of the grain that they accrue as landowners.
The Marin persona can let their acreage in return for cash rents, rents in kind, or sharecropping.
They can store or sell the grain they receive as rent in kind or crop shares. Each fall's harvest is
volatile in quantity, depending upon the weather, so the amount of grain received as rent and its
market value fluctuates. These fluctuations determine the relative profitability at a given time for the
landowner of the three options for renting. Over the course of the 77 years the profitability of the
three options evens out, but in a given fall the profit accruing from the three can be very different
and the student player benefits or suffers accordingly from the choices made. Grain can be sold
immediately or stored for sale at a time when supplies may become scarce and drive the price up.
Speculation can reap a handsome profit if prices rise before spoilage reduces one's stocks, but
prices can also fall and erase the certain gain that immediate sale would have brought.

Personal decisions include choosing a wife, having children, finding a protector, making a will,
and seeking titles of nobility. Whenever one chooses to enter the marriage market Denis, or later
Jean-Frangois, is presented with information on the personal characteristics, family status, and
dowry size of four available young ladies. Marin's objective is to choose the wife who will bring
him the most tangible benefits in terms of fortune and connections, but he must be careful to

ACIS/IRIS ™ Page 2 Faculty Author Development

The Would-Be Gentleman Instructor's Manual June 16, 1987

observe the proprieties of the age; should he be so foolhardy as to court a woman whose status is
superior to what he has to-date attained, he will be humiliated with a refusal, and as a result so
shamed that no family will entertain his courtship proposal again for several years. Once married,
Denis and Jean-Frangois will begin to have progeny, which affects both their annual cost of living
and their family's future. A special feature of the simulation is the difference in reproduction
experience between the first and second of these seventeenth-century generations. In the first
generation children begin to arrive one year after the marriage and arrive regularly at 24-30 month
intervals. In the second generation children do not arrive automatically at all but only if requested,
since this was the period when (as recent demographic studies have revealed) the French
aristocracy began practicing family limitation (birth control). In both generations, children die at
old regime rates (25% in the first year, another 25% by the age of 20).

Finding a protector is as critical a move as marriage and procreation, for the security of one's
investments and social standing over the course of the 77 years depend directly upon whether one
has a powerful protector and who that protector is. In the first generation, the available protectors
are the financial-political figures who dominated the first half of the reign of Louis XIV: Cornuel,
Particelli, Mazarin, Fouquet, Colbert. If Marin does not attain the prerequisites for acceptance into
the clientele network of one of these men (usually a certain success with some form of investment,
or a wealth minimum, or a certain status ranking), then he will be hit each year with a heavy
liability (a monetary fine, a harvest failure, a confiscation). Once accepted into a clientele network,
the would-be gentleman will enjoy a series of windfall profits, but must beware the fall of his
protector and bail out into another coterie before that happens. Bailing out and joining another
coterie are, however, tricky to accomplish, as changes of allegiance were in the seventeenth
century. In the second Marin generation, the available coteries are the factions at court: those
centering on Madame de Maintenon, the Duke of Burgundy, and the Dauphin. Each faction has its
own prerequisites for inclusion and its own rewards of membership. As in the first generation, not
belonging to one or the other coterie has severe consequences on finances and prestige.

Seeking titles of nobility is the heart of the exercise, since the objective of the simulation is to raise
prestige. Investments yield only money, which does not translate directly into prestige under the
Old Regime. Converting money into land and then land into nobility is the means by which fortune
can be translated into status in the simulation, as it was in the seventeenth century. Status, the
objective of the exercise, is measured on an artificial index of 0-100; the most powerful means for
advancing on the index is acquiring titles such as vicomte, comte, and marquis. The simulation
displays two indices, wealth (expressed in Livres) and status (expressed on the 100-point scale).
Status alone, not wealth, is the measure of success at the end of the game.

ACIS/IRIS ™ Page 3 Faculty Author Development

The Would-Be Gentleman Instructor's Manual June 16, 1987

The simulation, which sounds so dry and technical in the above description, is also filled with
whimsy, which makes it fun for the students to play. Chateauvallon, the location of the Marin
estate mentioned on the opening screen, is the name of the current French television show that
imitates "Dallas."” The names of the three successive heads of the Marin family progress from plain
to extravagant, suggesting the increasing refinement and even frivolousness of the higher reaches
of the social hierarchy: Denis Marin, Jean-Frangois Marin de Merinville, Hyacinthe-Florent Marin
de Merinville. Much of the correspondence reproduces verbatim some of the more colorful letters
actually sent by members of Louis' court, for example:

[INSERT #2: Fall 1689 The Dauphin is ruled...]

ACIS/IRIS ™ Page 4 Faculty Author Development

The Would-Be Gentleman Instructor's Manual June 16, 1987

Some of the benefits of using the simulation in class come from the fun students find in it. In my
class it was an incomparable ice-breaker, stimulating dialogue among students independent of the
professor. So, for example, as I walked to the second class meeting (the first after students had
begun to work with the simulation) I could hear from far down the hall the students’ boisterous
sharing of their various vicarious experiences in Louis XIV's France. One student arrived a few
minutes late, saying he had been delayed in printing out his homework screen because a group of
his friends in the dorm were using his Macintosh to "play the game." Repeatedly in class
someone would interject "Hey, I know her!" when the name of a potential bride or a person
mentioned in the letters came up in discussion. Students, then, through this amusing and
interactive computerized exercise, established a stronger personal identification with the subject of
study than they typically do through reading alone; and the simulation made their classwork in a
sense a living historical experience.

Beyond enticing students into an engagement with the past, the simulation was very effective in
teaching students historical concepts and abstract problems that are normally very difficult to
interest students in. Students' attention can seldom be fastened on the way interest rates were
calculated in the seventeenth century, how patronage networks were formed and operated, how
endogamy was defined, or the technicalities of investments. But the fact that these all had to be
mastered in order to succeed at the exercise transformed what would otherwise be thought boring
into a motivational challenge.

The simulation was distributed to students at the first meeting of the ten-week course, with no
instructions other than how to use a Macintosh. Students were expected to work on the simulation
each week and turn in their best 1715 screen at each class meeting. The readings in the course (see
syllabus below) proceeded week by week through the topics integral to the simulation: rural
economics, demography, the structure of the court, royal finance, status representations, popular
revolts, and so on. As they learned from primary and secondary readings about each aspect of the
France of Louis XIV, students became increasingly successful at the simulation. They could apply
the readings to understand why the available choices had the consequences they had, especially
why these consequences were radically different from what they would be in twentieth-century
America.

Indeed, understanding the difference between past and present consequences of a similar action
was the overall intent of this teaching tool. When they acted from twentieth-century motivations
rather than from seventeenth-century assumptions, students fell nicely into the traps set for them.
A common way of losing the game was to arrive at 1715 with loads of cash and high status but
without any heir to pass them on to. The students explained in these cases that they had not had

ACIS/IRIS ™ Page 5 Faculty Author Development

The Would-Be Gentleman Instructor's Manual June 16, 1987

any children because "kids are so expensive!" Words to reflect upon in 1986, surely, but not an
attitude that any responsible family-builder in the seventeenth century would have had. Or again,
students were often slow to grasp the central lesson of the simulation: that wealth was not directly
connected to status/prestige then as it typically is in American society today. In the second week of
the course one especially earnest student came to my office to tell me that "there is a bug in your
program.” I was delighted to have his help in identifying flaws to correct. So he proceeded to
explain the "bug": his wealth kept going up but his status index kept going down. This he
considered "unfair." I explained to him that that might look like a bug or unfairness to
twentieth-century eyes, but that he had to learn to think as a seventeenth-century person in order to
understand why that was happening. (He had in fact been making money from leases, which are
lucrative but socially disreputable forms of activity in the seventeenth century. Each purchase of a
lease therefore costs the player status points in the simulation.) Throughout the course, students
were required to identify patterns of consequences of a given game choice, then learn to understand
them and use them to interpret a society far different from our own.

The students’ immersion in twentieth-century realities had another unexpected outcome in the early
weeks of the simulation's use, which we had to move swiftly to correct. Several students "broke
the bank" very quickly, attaining status 99 and posts as First Gentleman of the King's
Bedchamber. This clearly was not faithful to seventeenth-century experience, so I asked them how
they did it. Simple: they knew that if they waited long enough harvests would fail and grain prices
would skyrocket, so they simply hoarded their grain until that happened -- 40, 50, 60 years if
necessary. Knowing seventeenth-century conditions well, I had never thought of this strategy or
provided historically accurate obstacles to this outlandish outcome. So we added rats (a spoilage
factor that accelerates with the number of seasons one holds onto one's grain) and peasant:
rebellions (popular confiscations of grain hoards when harvest failure deprives the local community
of sustenance). By the time students did their readings on peasant rebellions they understood why
long-term speculation on grain was impossible in the seventeenth century.

The simulation is surely not yet perfectly calibrated; future students will no doubt surprise us
further with their twentieth-century ingenuity. But it is now in at least an eminently workable form.

The simulation has some value for the humanities beyond what I have sketched above. It was a
very effective means of attracting history students to the computer, which a surprising number of
them were unfamiliar with and even resistent to, and convincing them to use the machine not only
for the simulation itself but also for writing their papers. The results in improved writing were
simply astonishing. These students now feel comfortable with the computer, and I would expect
them to be positively inclined toward using it in the future for more complex tasks such as data

ACIS/IRIS ™ Page 6 Faculty Author Development

The Would-Be Gentleman Instructor's Manual June 16, 1987

analysis. Furthermore, the simulation showsed that humanistic subjects can be enhanced by
computerized learning. Social status and prestige are highly qualitative and imprecise historical
notions. Rendering them into the distinct categorization, even mathematical representation, upon
which programming rests was an awesome intellectual challenge and an example of what might be
accomplished elsewhere in the humanities with an investment of imagination and time.

SOURCES OF TECHNICAL INFORMATION

General Information

Robert and Elborg Forster, eds., European Society in the Eighteenth Century
Pierre Goubert, The Ancien Regime: French Society 1600-1750
Orest Ranum, ed., The Century of Louis XIV

Economic Data

Micheline Baulant and Jean Meuvret, Prix des cereales extraits de 1a Mercuriale de Paris
(1520-1698)

C.-E. Labrousse, Le Prix du froment en France mps de la monnai

C.-E. Labrousse, Histoire economique et sociale de 1a France

Offices, Officers, and their Families
Roland Mousnier, La Venalite des offices
Carolyn C. Lougee, L¢ Paradis des femmes: Women, Salons, and Social Stratification in

eventeenth-Cen Fran

The World of Finance
Julian Dent, Crisis in Finance: Crown, Financiers, and Society in

Seventeenth-Century France
Julian Dent, "The Role of Clienteles in the Financial Elite of France Under Cardinal

Mazarin," in J.F. Bosher, ed., French Government and Society, 1500-1850
Yves Durand, Fermi neraux au X VII

The Court
Various memoirs and letters from the period, especially Elborg Forster, ed., A Woman's
Life in the Court of the Sun King: Letters of Liselotte von der Pfalz

Emmanuel Le Roy Ladurie, "Versailles Observed: The Court of Louis XIV in 1709," in The
Mind and Meth f the Historian

ACIS/IRIS ™ Page 7 Faculty Author Development

The Would-Be Gentleman Instructor's Manual June 16, 1987
SYLLABUS USED IN THE COURSE
The France of Louis XIV: Grand Siécle or Tragedy?

This course is one of the History Department's sophomore-level seminars, the first course required
for majors. These seminars are intended to teach students “something about the process by which
archival material becomes historical description and explanation, and, secondly, what it is about the
process of interpretation itself that makes it open to disagreement and revision." The courses
"contain a series of exercises that introduce undergraduates to the problems of interpreting sources,
of constructing narrative descriptions and historical explanations, and of making sense of differing
analytic strategies and interpretations.” In the case of French history, we will study the Annales
historians' particular "menage 2 trois" for transforming the past into history: source, problem,
technique. Students are assumed to have already completed a year-long survey course in European
history.

Week 1: In Search of The France of Louis XIV

Readings: Commentaries on Louis' reign by Pellisson, Bossuet,
Leibniz, La Bruyere, Voltaire, G.P. Gooch, Boris
Porchnev, Alain Peyrefitte.

Together, these readings serve to introduce the principal lines of
conflicting interpretation, identify the key issues they involve, form
questions in students' minds that they will carry to the original sources,
and make students self-conscious about their own biases, values, and
epistemological limitations.

Week 2: Social Structure in the Ancien Regime

Readings: Pierre Corneille, "Le Cid"

Moliere, "The Bourgeois Gentleman"

Charles Loyseau, "Treatises of the Orders and Dignities"

Selected short documents on nobility from Pierre Goubert's Ancien
Regime, vol. 1 (letters of ennoblement, nobles' revenues
and expenses, views of nobility)

Paper topic :

What social values, what assumptions about the bases of social status and
prestige underlie "Le Cid" and "The Bourgeois Gentleman"? Do the two
plays espouse the same values and assumptions?

Week 3: Rural Society

Readings: John Locke's Journal of his travels in France 1675-78
Maps, Charts, and Tables extracted from Pierre Goubert's
Beauvais et les Beauvaisis (intendants reports, rent rolls,
taille rolls, land surveys, censuses, harvest reports, market
prices)

Documents on rural life and poverty from Pierre Goubert's Ancien
Regime, vol. 1

ACIS/IRIS ™ Page 8 Faculty Author Development

The Would-Be Gentleman Instructor's Manual June 16, 1987

Paper topic: A "History problem set" based upon a visit to the Beauvaisis,
a region North of Paris. Your task is to understand as well as you can the
economic situation of the peasantry. What features of the rural economy

. can you see from the documents provided? Specifically, see if you can
calculate what percentage of the population in the Beauvaisis had enough
land to feed their own families. In calculating this you will have to make
a few assumptions or "best guesses." Do you get a different answer for
the two halves of the province? As a simulation, once you've reached
your first conclusion, figure what the percentage is if the taille doubles, if
all taxes disappear, or if the size of the family changes. Or assuming that
holdings remain constant, figure whether the percentage changes across
the course of the 17th century. Render your calculations into prose.

Week 4: Popular Revolts and the Fronde

Readings: Pierre Goubert, "The French Peasantry of the Seventeenth
Century"

Precis of the conflicting views of Boris Porchnev and Roland
Mousnier on the revolts

Selected contemporary documents on the revolts (eyewitness
accounts, ordinances, legends, petitions, police reports)

Paper topics:

1) How sound is Goubert's own calculation from last week's documents?
2) Which interpretation, Porchnev's or Mousnier's, does the available
evidence best support? Why?

. Week 5: Louis Comes to Power

Readings: On the Fouquet Affair, 1661
Louis' Memoirs, Voltaire, Guizot, Madame de Sevigne,
photos of Vaux-le-Vicomte, inventory of Fouquet's wealth
On the early reign: Louis' Memoirs, documents reprinted in Orest
Ranum, The Century of Louis XIV
On Colbertism: documents reprinted in Ranum

Paper topic:
Formulate the case for the prosecution or for the defense in the Fouquet
trial.

Week 6: Religious Sensibility in the Age of Louis XTIV

Readings :Pascal, Pensees and Provincial Letters #1-3

Voltaire, "On the Pensees of Mr Pascal"

Documents on the Revocation of the Edict of Nantes and on Louis'
religious views

Paper topics:
1) Write Pascal's response to Voltaire, OR
2)What do you see in Pascal's writings that might have inclined Louis to

. endorse or oppose them?

ACIS/IRIS ™ Page 9 Faculty Author Development

The Would-Be Gentleman Instructor's Manual June 16, 1987
Week 7: The Court at Versailles as Instrument of Absolutism

Readings : Accounts of the court by Saint-Simon, De la Force,

. Locke, Lister, Sevigne, Wren, Spanheim, Louis XIV.
Modern Analyses: Le Roy Ladurie, "Versailles Observed" and Norbert
Elias, "The Sociogenesis of French Court Society"

Project (mandatory) : Using materials in the Art Library, compare the
iconography of Francis I and Fontainebleau with that of Louis XIV and
Versailles. What does the contrast suggest about the different "politics"
of the two kings? (On Versailles, pay particular attention to the Apollo and
Latona themes.)

Paper topics:
1)Write up the above contrast, OR
2)What political functions of the court do the documents suggest?

Week 8: Demographic Crisis

Readings :Three statistical case studies:
Crulai, a Norman village (fertility patterns)
The High Nobility (fertility patterns)
The Beauvaisis (mortality patterns)
Contemporaries speaking about birth and death

Paper topics:
1) According to Hippolyte Taine, "Preindustrial populations had no

. ability whatever to escape the inexorable grip of their own biology and the
caprice of their environment.... The peasant was like a man walking in a
pondwith water up to his chin. The least depression in the bottom or the
least ripple of a wave, he loses his footing and is submerged." Do the
materials available verify or force a revision in Taine's view?, OR
2) What new data does the demographic record offer for an evaluation of
how well-designed Colbertism was to deal with the economic problems
of seventeenth-century France?

Week 9: Overt Opposition: The Late Reign

Readings: Critical commentaries by La Bruyere, Vauban, Jurieu,
Saint-Simon, anonymous songwriters and poets.

ACIS/IRIS ™ Page 10 Faculty Author Development

User:

Application:

Document:

Date:

Time:

Printer:

Tom M.

MacWrite 4.5

Support Programs and Data Files

Tuesday, June 16, 1987

17:34:47

Bullwinkle

The Would-Be Gentleman
Support Programs and Data Files

Tom Maliska
Faculty Author Development Program
Stanford University
September 1986

This document contains technical information about The Would-Be Gentleman, organized into the

following sections.

Source Code for Support Programs

Data Files

Creating Data Files with Support Programs
Support Programs Technical Details

The Would-Be Gentleman requires a number of program and data files that are created on the
Macintosh using support programs. The support programs and data files are described here in
detail.

Source Code for Support Programs

Source code to be compiled includes the following items.

All of the following are compiled with Borland's Turbo Pascal compiler version 1.0.
All run on Macintosh and have File Type APPL and File Creator SIMU.

Program Pascal Source Code Resource Code
Louis XIV (main program) SK.Pas SK.R

Mail editor ‘Mail.Pas Mail.R

Office editor Office.Pas Office.R

Lease editor Lease.Pas Lease.R
Marriagel editor Marriage.Pas Marriage.R
Marriage2 editor Marriage.Pas Marriage.R
Examine Examine.Pas Examine.R

Resource files are compiled using the Resource Compiler included with Turbo Pascal. Naming
conventions have changed from Gentleman version 4.1(a), where the extension "Sunking/4.0/"

was used to designate files for the simulation.

The Would-Be Gentleman Support Programs and Data Files June 16, 1987

Data Files

Data files required on the Macintosh simulation diskette and used by Louis XIV (main program)
include the following items. File Type and Creator are specified as they must match for the main
program to be able to read the files. In most cases, the support program used to create the data file
sets File Type and Creator automatically.

FirstMail.1.dat Mail editor MAIL GENT
FirstMail.2.dat Mail editor MAIL GENT
SecondMail.1.dat Mail editor MAIL GENT
SecondMail.2.dat Mail editor MAIL GENT
Office.dat Office editor LEAS GENT
Lease.dat Lease editor LEAS GENT
Marriagel.dat Marriagel editor MARI1 GENT
Marriage2.dat Marriage? editor MARI1 GENT
Final Stats execution; readable by Examine program ENDS GENT
Instructions A text editor/SetFile CORR GENT
StartText A text editor/SetFile CORR GENT
StartupScreen Thunderscan/MacPaint/MacDraw/ScreenMaker SCAN NONE
Pictures Thunderscan/MacPaint/MacDraw/Scrapbook ~ ZSYS MACS
Saved Simulation execution; readable by main program. SAVE GENT

Creating Data Files with Support Programs

The following is a list of the support programs and information about the data files they create:

Mail
Support Program Information:
Name mail editor, Type APPL, Creator SIMU.
Compiled using: Turbo Pascal
Source code: Mail.Pas (Pascal code)
Resource code: Mail.R (resource file).

ACIS/IRIS ™ Page 2 Faculty Author Development

The Would-Be Gentleman Support Programs and Data Files June 16, 1987

Runs on: Macintosh
Action: The mail editor creates a file mail.dat that holds correspondence for the simulation. The
correspondence is shown on the screen when the appropriate date and season arrive, and the
protector of the player matches that of the recorded mail message.
DataFile Information:

Name mail.dat, Type MAIL, Creator GENT.

Notes: The mail editor reads and writes only to the files named. Since the mail editor does not
read other files, they must be renamed to avoid re-editing. To make backup files for the simulation,
mail files must be renamed on the desktop after editing. The names are arranged according to
generation (First or Second) and number, as follows: FirstMail.1.dat, FirstMail.2.dat,
SecondMail.1.dat, SecondMail.2.dat.

The Would-Be Gentleman requires four files for correspondence since Pascal does not allow a data
structure to exceed 32K. To stay within this limit, the list of files in the mail editor should not be
allowed to exceed 115 in number or an error will occur.

Messages are stored by number in the list, not sorted chronologically and by protector, so it is the
programmer's responsibility to keep the list in correct sequence. Since mail data is extensive and
requires frequent changes, an editing feature allows the insertion of messages at any point in the list
by message number. The list is automatically renumbered when the new message is inserted.
Programmers can add, delete, edit, save, quit, and list mail messages to the screen. The save
command must be given explicitly. Quit prompts you, but does not save the file automatically!

Offices

Support Program Information:
Name Office editor, Type APPL, Creator SIMU.
Compiled using: Turbo Pascal

Source code: Office.Pas (Pascal code)
Resource code: Office.R (resource file).
Runs on: Macintosh

Action: This program generates a list of offices. Included are the names of the offices, their cost,
their prestige level (either 20 (for the 80's), 40, 70, or 90), if nobility is required to own the office,
and if nobility and a title is required to own the office.

ACIS/IRIS ™ Page 3 Faculty Author Development

The Would-Be Gentleman Support Programs and Data Files June 16, 1987

DataFile Information:
Name office.dat, Type LEAS, Creator GENT.

Note: The office list is read in order by number, and it is the programmer's responsibility to keep
the list in order from lowest priced office to highest. Offices are not arranged by prestige or salary,
as both can fluctuate in the simulation. It is important to organize your work first on paper, as the
office program does not have edit and insert commands, only a delete command. New offices are
added to the end of the list.

Leases

Support Program Information:
Name Lease editor, Type APPL, Creator SIMU.
Compiled using: Turbo Pascal

Source code: Lease.Pas (Pascal code)
Resource code: Lease.R (resource file).
Runs on: Macintosh

Action: Generates a list of lease names. Other information about leases (price, return on
investment, etc.) is generated during play by the simulation program.

DataFile Information:
Name Lease.dat, Type LEAS, Creator GENT.

Note: Leases are listed in the order added. Since the simulation picks a lease randomly each
spring, order in the list is not important.

Marriages
Support Program Information:

Name Marriage editor, Type APPL, Creator SIMU.
Compiied using: Turbo Pascal

Source code: Marriage.Pas (Pascal code)
Resource code: Marriage.R (resource file).
Runs on: Macintosh

Action: This program generates a list of brides for the first generation. Included are the names of
the brides, their age at the start of simulation in Fall 1638, their prestige category, and their father's
office.

ACIS/IRIS ™ Page 4 Faculty Author Development

The Would-Be Gentleman Support Programs and Data Files June 16, 1987

DataFile Information:
Name marriagel.dat, Type MAR1, Creator GENT.

Note: Marriages are listed in the order added. Since the simulation picks a group of brides
randomly each spring, order in the list is not important.

Support Program Information:
Name Marriage editor, Type APPL, Creator SIMU.
Compiled using: Turbo Pascal

Source code: Marriage.Pas (Pascal code)
Resource code: Marriage.R (resource file).
Runs on: Macintosh

Action: This program generates a list of brides for the second generation. Included are the names
of the brides, their age at the start of the second generation in Spring 1676, their prestige category,
and their father's office.

DataFile Information:
Name marriage2.dat, Type MAR1, Creator GENT.

Note: Marriages are listed in the order added. Since the simulation picks a group of brides
randomly each spring, order in the list is not important.

Final Statistics
Support Program Information:

Name examine, Type APPL, Creator SIMU.
Compiled using: Turbo Pascal

Source code: Examine.Pas (Pascal code)
Resource code: Examine.R (resource file).
Runs on: Macintosh

Action: This program reads from the file Final Stats, which is updated by the simulation each
time a game is successfully finished or quit. This file holds standard information for each game
played with the diskette. This information includes the date on which the simulation was played,
the final prestige attained, the final date in the game, and the student's final wealth. It also tells
whether or not the game was completed, i.e., if the student reached the third generation.

ACIS/IRIS ™ Page § Faculty Author Development

The Would-Be Gentleman Support Programs and Data Files June 16, 1987

DataFile Information:
Name Final Stats, Type ENDS, Creator GENT.

Note: A game can be listed not complete if the student did not have a son in either the first or
second generation, and thus did not leave an heir, or if the student bought a lease that led to peasant
unrest and an untimely hanging.

Text files

Support Program Information:
A Macintosh text editor, Set File
Compiled using: n/a

Source code: n/a
Resource code: n/a
Runs on: Macintosh

Action: Programmers should use a text editor and the utility program Set File to generate the text
for the files Instructions and StartText. These are text only files. If MacWrite or MS Word are
used, the file must be saved as text only (also called ASCII only). If Edit (a programmer's text
editor) or File (from the Lisa Workshop example listings) are used, the document will be saved as
text only. When the text has been saved to diskette, the document holding the files should be
modified with Set File or another resource editor to change the File Type to CORR and File
Creator to GENT. The main program will read only text files with these settings.

DataFile Information:
Name Instructions, Type CORR, Creator GENT.

Name StartText, Type CORR, Creator GENT.

Pictures
Support Program Information:

Thunderscan™, MacPaint, MacDraw, and ScreenMaker.

Compiled using: n/a

Source code: n/a
Resource code: n/a
Runs on: Macintosh

ACIS/IRIS ™ Page 6 Faculty Author Development

The Would-Be Gentleman Support Programs and Data Files June 16, 1987

Action: Two data files provide pictures for display during the simulation. They are digitized
using Thunderscan™, then cleaned up with MacPaint and MacDraw. The StartupScreen is
created with the programmer's utility ScreenMaker, which changes a MacPaint picture into a screen
display that appears when the Macintosh is powered on. The file Pictures contains two images, a
picture of a Father and Son, and a picture of a Beggar. These are MacDraw objects pasted into an
empty System Scrapbook. The Scrapbook File is renamed Pictures on the Macintosh desktop
and the pictures are accessed as external resources by the main program.

DataFile Information:
Name StartupScreen, Type SCAN, Creator NONE.

Name Pictures, Type ZSYS, Creator MACS.

Notes: The Pictures file is referenced by resource ID. In the main program, the Father and Son
image is opened by the procedure DoPicture with a call to the constant FIRSTBORN (-32768),
which is the resource ID number of that image. Similarly, the Beggar image is opened by the
procedure DoPicture with a call to the constant DEBTOR (-32767), which is the resource ID
number of that image. These will be the default IDs assigned if the images are pasted into an empty
scrapbook from MacDraw; paste Father and Son first, then Beggar, as the first image pasted into
the scrapbook gets the lower ID number.

Images are digitized from woodcuts by Jacques Callot (1592-1635 A.D.) published with
accompanying English text in a collection of "Callot's Etchings" (ed. Howard Daniel, Dover
Publications, Inc., New York, 1974).

Saved Games
Support Program Information:
No support program required.
Compiled using: n/a
Source code: n/a
Resource code: n/a
Runs on: Macintosh

Action: The file Saved Simulation is created when the player chooses to Save the game. The
state of the simulation is stored using variables DATE and ASSETS. This file can be read by the

program to restore a previously saved simulation.

ACIS/IRIS ™ Page 7 Faculty Author Development

The Would-Be Gentleman Support Programs and Data Files June 16, 1987

DataFile Information:
Name Saved Simulation, Type SAVE, Creator GENT.

Notes: This file is created during main program execution, and is readable by the main program
using the Restore command on the Progression menu.

Support Program Technical Details

Getting Started

Source code for the support programs is on the diskette Data Files and Editors, along with the
compiled applications and associated data files. Double clicking on an editor executes it and opens
the data file associated with it.

Structure

All the support programs have the following basic general structure: a data structure of type record
defines the attributes of the particular thing to be stored (e.g., the name of the office, its cost, its
prestige). This record also has a boolean field named DELETED. Data is stored in an array of

records. Some initialization procedures set up the window and menu.
Operation

The menu allows the user to ADD, DELETE, SAVE, and QUIT. All the existing data is then
loaded from the appropriate data file, the DELETED fields of these records are set to false, and the
data are displayed in the window.

The ADD procedure allows the user to add more data to the end of the list. It creates a dialog
window for input and then adds data to the array.

The DELETE procedure allows an entry in the data list to be deleted. It brings up a dialog window
asking for the number of the item to be deleted. Each item has a number that is displayed in the
main window. The DELETED field of that record in the array is then set to true. Other items are
renumbered when deletion is complete, and the list redisplayed.

The SAVE procedure writes all the undeleted records (excluding the DELETED field) into a file.
The main event loop works as in other Macintosh programs to process menu choices.

ACIS/IRIS ™ Page 8 Faculty Author Development

The Would-Be Gentleman Support Programs and Data Files June 16, 1987

If the user chooses to QUIT, then the program ends. Data is not saved by the QUIT command!

The Mail Editor differs in that it allows editing of existing data items, the insertion of new data
items at any point in the list, and does not redisplay the (relatively long) list of data unless
prompted.

Protecting data files

The support programs need not (and should not) appear on the student's diskette. The editors are
meant for programmers' use to generate data and should not be given to the students. The data files
they generate (four mail files, office.dat, lease.dat, marriagel.dat, marriage2.dat), however, are
required for the program to function properly. Early versions of the simulation made these files
invisible using the Set File program so that the students were not confused or able to delete

them by accident. Later versions, including the Academic Courseware Exchange version 4.1,
locked the data files in desktop folders to prevent accidental erasure or removal of the files.

ACIS/IRIS ™ Page 9 Faculty Author Development

User:

Application:

Document:

Date:

Time:

Printer:

Tom Maliska, FAD Program

Edit

Source Code:SUNKING/4.1/FINANCE.TEXT

Tuesday, September 30, 1986

5:01:21 PM

LaserWriter Plus

{$M+]) {mac code}
{$X-} {no automatic stack expansion}
{$R-} {no range checking, paslib is buggy}

m**)

¢ Would-Be Gentleman, Faculty Author Development Program at Stanford University.
{Version 4.1, Steve Fisher (version 1.0) 12/20/84 and Tom Maliska (versions to 4.1) 3/12/86, 9/15/86.
{Faculty Author Development Team: Carolyn Lougee, Michael Carter, Ed McGuigan, Steve Fisher,
{and Tom Maliska.
{Copyright 1986 Carolyn Lougee and the Board of Trustees of the Leland Stanford Junior University.
{
{This program simulates social mobility in 17th Century France during the reign of the Sun King
{Louis XIV. It is used in a History seminar, The France of Louis XIV, at Stanford University by
{Professor Carolyn Lougee to teach economic aspects of social mobility. The simulation allows students
{to act out the life of a French bourgeois from simple peasant to possible social and political success.
{Decision making is based upon a model of French economy first developed by Michael Carter in his
{simulation program ANCIEN REGIME and modified to suit the current simulation.
{
{Virtually all procedures and functions use the variable ASSETS in some form to make calculations and
{change player status; in most cases, only explicit uses of the entire data structure ASSETS are recorded
{in the GLOBALS note. Familiarity with ASSETS is the key to understanding action in the program.

(************************************’k**

[N N S R W U SN R S)

program Finances;
(* This USES statement lists the Macintosh Libraries used by the program to compile Macintosh code. *)

uses {$U-}
{$U obj/MemTypes) MemTypes,
{$U obj/QuickDraw} QuickDraw,
{$U obj/OSIntf) OSIntf,
{$U obj/Toollntf} Toollntf,
{$U Obj/PackIntf} PackIntf,
{$U Obj/PasLibIntf} PasLiblIntf;

const NUMICONS = 5; (*These constants complement the resource file and procedures using dialogs*)

BORDER = 3;
ICONSIZE = 32;
LANDICON = 1;

RENTEICON = 2;
OFFICEICON = 3;
LEASEICON = 4;
TEXTILEICON = 5;
NONE = 0;
ABOUTITEM = 1;
INSTRITEM = 2;
STATUSITEM = 1;
BUYITEM = 2;
SELLITEM = 3;
MANAGEITEM = 4;
NEXTITEM = 1;
SAVEITEM = 3;

LOADITEM = 4;
QUITITEM = 6;
WEALTHITEM =1,
PERSITEM = 2;
MARRITEM = 1;
PLANITEM = 2;
WILLITEM = 3;
NOBLEITEM = 4;
PROCITEM = §;
HELPMENU = 1;
PROGRESSMENU = 2;
FINMENU = 3;
DECMENU = 4;
VIEWMENU = 5;
NUMMENUS = 5;
LEFTDIFF = 4;
BARDIFF = 15;

STARTAGE = 30;
STARTYEAR = 1639;
RANDDIVIDER = 328;

BLIGHTRAND = 4;
POORRAND = 36;
GOODRAND = 68;
EXCELRAND = 100;
KINDRENT = 5;
BLIGHTYIELD = 0;
POORYIELD = 4;
GOODYIELD = 5;
EXCELYIELD = 6;
FBLIGHTPRICE = 15;
FPOORPRICE = 7;
FGOODPRICE = 5;
FEXCELPRICE = 4;
SBLIGHTPRICE = 25;
SPOORPRICE = 1(;
SGOODPRICE = 6;
SEXCELPRICE = 4;
RENTVALUE = 29;
KINDITEM = 8;
CASHITEM = 9;
SHAREITEM = 10;
LANDVAL = 575;

MAXMISCLAND = 2400;

LANDTAX = 3;
GRAINLOSS = 20;
SEIGCOST = 700;
VICOMTECOST = 850;
MARQCOST = 1000;

(*These constants are used to set up the simulation*)
(*Has to be one year high, see INITVARS, GoToNext, NextMarriage, *)
(*and NextOffice*)

(*These constants control land usage and grain yields in the simulation*)

SEIGITEM = 9;
VICOMTEITEM = 10;
MARQITEM = 11;
SEIGLOWER = 75;
SEIGUPPER = 150;
VICOMTELOWER = 300;
VICOMTEUPPER = 450;
MARQLOWER = 600;
MARQUPPER = 900;
SEIGRAD = 6;
VICIRAD =7;
VIC2RAD =9;
MARQRAD = 10;
BASECOSTOFL = 600;
VCOSTOFL = 1500;
MCOSTOFL = 2000;

TEXTBUYITEM = 6; (*These constants return the item number relating to the dialog *)
LANDBUYITEM = 6; (*for the purchase or sale of investments *)

RENTEBUYITEM = 6;

RENTESELLITEM = 6;

RENTEYSELLITEM = 6;

LANDSELLITEM = 9;

GRAINSELLITEM = §;

BTEXT = 20; (*These constants control the percent return on textiles*)
PTEXT=1;

GTEXT =9;

ETEXT = 18;

WEALTHDISP = 6;

PERSDISP = 7,

DEN2PERCENT = 2; (*These constants relate to rentes*)

DENT7PERCENT = 13;

DEN14PERCENT = 20;

NOPAY = 2;

SOMEPAY = 35;

RENTEIRETURN = 71; {Scaling factor for Denier 14 Rente Values. See NextRente, BuyRente}
RENTE2RETURN = 55; {Scaling factor for Denier 18 Rente Values. See NextRente, BuyRente}
PARTPAY = 625;

FULLPAY = 1000;

MAXKRENTE = 400;

BRETURN = 10; (*These constants relate to leases*)
PRETURN = 40;

GRETURN = 65;

ERETURN = 100;

LEASEFILE = 'Lease.Dat";

LEASEMIN = 5000;

OFFICIAL = 833;

BUYBTNITEM = 1; (*These constants relate to the office investment dialogs*)
NEXTBTNITEM = 3;
PREVBTNITEM = 4;
BTNINACTIVE = 255;
BTNACTIVE = 0;

RAD1 =7,

RAD2 =8;

RAD3 =9;

RADA4 = 10;

CHECKED = 1;
NOTCHECKED = 0;
NUMOFFPERSCREEN = 4;
OFFICEFILE = 'Office.Dat’;
LEVYPERCENT = 3;
RAISEPERCENT = 7;
LEVYTAX = 20;
GLUTPERCENT = 80;
OFFDIVIDER = 4681;
ADDOFFPERCENT = 20;
SELLBTNITEM = 1;
RAISEPAY = 25;
RAISELEVY = 10;

INFOITEM = 3; (*These constants relate to the Marriage dialog, kids, and family planning*)
COURTITEM = 1;

MARRADI = 6;

MARRAD2 =7;

MARRAD?3 = §;

MARRAD4 = 9;
MARROFFSET = 5;
NUMMARRPERYEAR = 4;
MARRFILENAME = 'Marriage";
FIRSTGEN = 1;

SECONDGEN = 2;
MAXBRIDES = 15;
WAITYEARS = 3;
INELIGIBLE = 4;
TOOOLDFORKIDS = 38;

BIRTHOFFSET = 2; (*These constants relate to generation switch, death dialog*)
DEATHPERCENT = 100;

OLDDEATHPERCENT = 130;

BEATDEATH = 20;

DEATHYEAR = 1676;

ENDYEAR = 1715;

OLDSONITEM = 6; (*These constants relate to the will *)
OTHERITEM = §;

DAUGHTITEM = 10;

KINITEM = 12;

NONKINITEM = 14;
CHARITYITEM = 16;
CHURCHITEM = 18;
NUMWILLCATEGORIES =7,
. KINMIN = 1;
NONKINMIN = 1;
CHURCHMIN = §;
CHARMIN = 1;

NOBLECOST =20000; (*These constants relate to nobility, prestige, costofliving, and offices*)
SECYKING = 'secretary of the King';

PRESIDENT = "president in the Chamber of Accounts of Paris';
CHANCELLOR = 'Chancellor";

SECOFSTATE = ‘Secretary of State’;

STARTPRESTIGE = 40;

AMBITIOUS = 20;

NOOFFPRESTIGE = 30;

COLMARRIAGEFACTOR = 40;

COLKIDSFACTOR = 20;

WILLPRESRATING = 4;

ENDFILE = 'Final Stats";

PRADI1 = §; {These constants relate to the protectors and choosing protectors})
PRAD2 = 6;

PRAD3 =7;

PRAD4 =§;

PRADS5 =9;

NOPROCT = 5;

PROCTFAILMAX = 2;

. PROCTYEARS = 2;
FOUQCASHMIN = 35000;
MAZCASHMIN = 15000;
PROCTREVOLTGIFT = 5000;
REVOLTPERCLOST = 97,
COLBOFFNUM = 2;
COLBPRESTIGE = 50;
MAINTPRESTIGE = 60;
DOBOFFNUM = 2;
DOBPRESTIGE = 50;
PARTLEASENUM = 3;

(*These constants control data file access and system information*)
SAVEFILE = 'Saved simulation’;
BEEPDURATION = 3;
DRIVENUM = 1;
INSTRFILE = 'Instructions’;
FIRSTBORN = -32768;
DEBTOR = -32767;

type IconRec = record
IconHdl : Handle;

IconRect : Rect;
end; (* IconRec *)

IconArray = array {1.NUMICONS] of IconRec;

IconType = record
Defs : IconArray;
Selected : NONE.NUMICONS;
MenuDisabled,
IconWasSelected : boolean;
ChoiceRect : Rect;

end; (* IconType *)

Str13 = String [13];

MenuArray = array [1.NUMMENUS] of MenuHandle;
StrArray = packed array [1..255] of char;

ConvType = (SeigToVic, SeigToMarq, VicToMarg);

DateType = record
Year : longint;
Fall : boolean;

end; (* DateType *)

HarvestType = (Blight, Poor, Good, Excellent);

LandType = record oo

Yield,

Price,

ShareCrop,

Kind,

Rent,

Inherited,

Bought,

Seigneurie,

Vicomte,

Marquisat,

Lost,

Value : longint;

Local,

Regional : HarvestType;
end; (* Land *)

RentePtr = "RenteType;
RenteHandle = ARentePtr;
RenteType = record

Year,
CostDenier : longint;

Fall : boolean;
Next : RenteHandle;
end; (* RenteType *)

RenteRec = record

FaceDenter,

CostDenier,

Return,

GotThisYear,

Owe,

SoldVal,

Payment : longint;

IndivRentes : RenteHandle;
end; (* RenteRec *)

LeaseType = record
FaceValue,
Offer,
OldOffer,
NumBought,
GotThisYear : longint;
Title : Str255;
Hanged,
Bought : boolean;
end; (* LeaseType *)

DiogOffRec = record
Title : Str255;
Value,

Prestige : longint;

TitAndNob,

Nobility : boolean;
end; (* DlogOffRec *)

OffArray = array [1.NUMOFFPERSCREEN] of DlogOffRec;
OfficePtr = AOfficeRec;
OfficeHandle = AOfficePtr;

OfficeRec = record
Salary,
AmtPaid,
Value,
Prestige : longint;
Title : Str255;
Next : OfficeHandle;
Inherited : boolean;
end; (* OfficeRec *)

OfficeType = record
TotPurchase,

Number,

Salary : longint;
OfficeList : OfficeHandle;
Levied,

Raise : boolean;

end; (* OfficeType *)

BrideRec =record
Name,
Father : Str255;
Age,
Dowry,
Group : longint;
end; (* Bride *)

BrideArray = array [1.NUMMARRPERYEAR] of BrideRec;

AvailRec =record
IsAvail : boolean;
Year : longint;

end; (* AvailRec *)

MarrType = record
ThisYear : BrideArray;
Bride : BrideRec;
MarrBelow,

Married : boolean;

Failures : longint;

Available : AvailRec;
end; (* ManrType *)

Kidhandle = AKidPtr;
KidPtr = AKidRec;

KidRec = record
Birth : DateType;
Next : KidHandle;

end; (* KidRec *)

ChildRec = record
Number,
NumBoys,
NumGirls : longint;
Boys,
Girls : KidHandle;
NextBirth : DateType;
end; (* ChildRec *)

WillArray = array {1.NUMWILLCATEGORIES] of longint;

WillType = record

Distribution : WillArray;
Made,

WasInAccord,

InAccord : boolean;

. end; (* WillType *)

ProctType = (Cornuel, Mazarin, Particelli, Conde, Fouquet, Colbert, Maintenon, GrandDauphin,
DukeOfBurgundy, Generic, NoProtector);

ProctArray = array [1..5] of ProctType;

ProctRec = record
Name : ProctType;
YearFail,
NumPFailures,
ThisProctFail : integer;
end; (* ProctRec *)

MailRec = record
Content : Str255;
Contact : ProctType;
Year,

Cash : longint;
Fall : boolean;
end; (* MailRec *)

AssetsType = record
Land : LandType;
Rente : RenteRec;
Lease : LeaseType;

‘ Office : OfficeType;
Marriage : MarrType;
Children : ChildRec;
Will : WillType;
Protector : ProctRec;
Mail : MailRec;
Grain,

Cash,

Textiles,
TotalVal,
CostOfLiving,
Debt,

Taxes,

Age,
Generation,
TooAmbitious,
OldPrestige,
Prestige : longint;
PresFallen,
Quit,

Won,

Noble,

ChoseProct,
BoughtL etter,
SoldGrain : boolean;

end; (* AssetsType *)
'mr FinWindow, AssetWindow, WhichWindow : WindowPtr;
FWRec, AWRec : WindowRecord;
Icons : IconType;
myEvent : EventRecord;
Code, TopLine, MaxScroll, CorrRefNum, AppResFile, VRefNum : integer;
Done, Temp : boolean;
myMenus : MenuArray;
Letter : char;
Assets : AssetsType;
Date : DateType;
hTE : TEHandle;
WatchHdl : CursHandle;
Corrfile : STR25S;

{3S)

(***)

procedure DebugDelay;

(* CALLED BY: DoPicture *)
(* CALLS TO: none *)
(* GLOBALS: none *)

(* ACTION: This procedure is used during debugging and pauses the program until the button is pressed. *)

var ANEVENT : eventRecord;
TEMP : boolean;

‘gin (* DebugDelay *)

repeat
SystemTask; (*This allows for screen dumps and other system key interrupts*)
TEMP := GetNextEvent(everyEvent, ANEVENT);
until Button;
end; (* DebugDelay *)

(***)

procedure DlogManager(var Item : integer);

(* CALLED BY: SellYRente, SellKRente, SellRente, SellLand, BuyLease, BuyRente, BuyTextiles, *)
(* BuyMiscLand, BuyTitledl.and MakeWill, ManageMLand, PlanFamily, BuyNobility, DispLetter *)
(* CALLS TO: none *)
(* GLOBALS: none *)
(* ACTION: This procedure is used to handle modal dialog boxes. It repeatedly calls ModalDialog ~ *)
(* until the user presses either the OK or CANCEL buttons in the dialog box. Itretumns (in ITEM) the *)
(* item number of the button that was pushed. *)
begin (* DlogManager *)
repeat
SystemTask;

ModalDialog(nil, Item);

until Item in [OK, Cancel];
end; (* DlogManager *)

***)

ure GetDText(TheDialog: DialogPtr; ItemNum:integer; var Str:Str255);

(* CALLED BY: SellYRente, Makewill, ProcessManage, BuyMiscLand, BuyTitledLand, buyTextiles, *)

(* BuyRente, SellKRente, SellLand, Treasury *)
(* CALLS TO: none *)
(* GLOBALS: none *)
(* ACTION: This procedure gets the text from the EditText box that is item number ItemNum in dialog ~ *)
(* box TheDialog. It returns the text in Str. *

var DUMMYTYPE : integer;
ITEMHDL : Handle;
DUMMYRECT : Rect;

begin (* GetDText *)
GetDItem (TheDialog, ItemNum, DUMMYTYPE, ITEMHDL, DUMMYRECT);
GetIText ITTEMHDL, Str);

end; (* GetDText *)

(***)

procedure LightBtn (TheDialog:DialogPtr; Item, Value:integer);

(* CALLED BY: DoConvCheck, InitConvert, DoCheck, BuyOffice, FewOffices, SellOffice, MarrCheck, *)

(* DoMarriage, BuyNobility *)
(* CALLS TO: none *)
GLOBALS: none *)
ACTION: This procedure HiLites the dialog button chosen by a mouseclick. *)

var DUMMYTYPE : integer;
ITEMHDL : Handle;
DUMMYRECT : Rect;

begin (* LightBtn *)
GetDItem(TheDialog, Item, DUMMYTYPE, ITEMHDL, DUMMYRECT);
HiliteControl(Pointer(TEMHDL), Value);

end; (* LightBtn *)

(***)

procedure NumSpecs(Num;:longint; var Len:integer; var STR:Str255);

(* CALLED BY: Break, NextLand, SellYRente, CheckDebt, N.extMarriagc, PutWillltems, EndSimulation, *)

(* DispOldManageValues, DoConvert, ConvertTitles, BuyMiscLand, BuytitledLand, BuyTextiles, *)
(* BuyRente, AdvanceOffice, BuyOffice, BuyLease, SellKRente, Sell Advance, FewOffices, SellOffice, *)
(* SellLand, DoMarriage, BuyNobility *)
(* CALLS TO: none *)
(* GLOBALS: none *)
(* ACTION: This procedure returns the String representation of the number NUM in the variable STR. *)
(* The number of digits is returned through LEN. *)

var NEWNUM : String[1];

begin (* NumSpecs *)

. LEN := 0;
SIR:=";

if Num = 0 then begin
STR:=""
STR[1] :="0;
LEN :=1;
end; (* If *)
while Num <> 0 do begin
LEN:=LEN+1;
NEWNUM :=""
NEWNUM]I1] := chr(Num mod 10 + ord('0));
STR := ConcatNEWNUM, STR);
Num := Num div 10;
end; (* While *)
end; (* NumSpecs *)

(***)

function PowerOfTen(Num : integer) : longint;

(* CALLED BY: ConvertNum *)
(* CALLS TO: none *)
(* GLOBALS: none *)
(* ACTION: This function returns ten to the NUM power. *)

var I, TEMP : longint;

‘egin (* PowerOfTen *)

TEMP := 1;
for I := 1 to Num do begin
TEMP := TEMP * 10;
end; (* For *)
PowerOfTen := TEMP;
end; (* PowerOfTen *)

(***)

procedure ConvertNum(StrNum : Str255; var Num : longint; var ConvOK : boolean);

(* CALLED BY: SellYRente, MakeWill, ProcessManage, BuyMiscLand, BuyTitledLand, BuyTextiles, *)

(* BuyRente, SellKRente, SellLand, Treasury *)
(* CALLS TO: none . *)
(* GLOBALS: none *)

(* ACTION: This procedure converts the number in String representation (contained in STRNUM) o its ~ *)
(* numerical form through NUM. If STRNUM does not represent an unsigned longint, then CONVOK *)
(* returns false. *)
var I, TEMP : longint;

begin (* ConvertNum *)

TEMP := 0;
if Length(StrNum) <> 0 then begin
for I := 1 to Length(StrNum) do begin
if not (StrNum(I] in {'0"..'9']) then begin

ConvOK := false;
end; (* If *)

TEMP := TEMP + (ord(StrNum([I]) - ord('0")) * PowerOfTen(Length(SarNum) - I);
end (* For *)
end; (* If *)
Num := TEMP;
end; (* ConvertNum *)

(***)

procedure Break(N : integer);

(* CALLED BY: Not Called in release version 4.1 *)
(* CALLS TO: NumSpecs *
(* GLOBALS: none *)
(* ACTION: This procedure allows you to set numbered breakpoints for debugging. *)

var LEN : integer;
BRKNUM : str255;

begin (*Break*)
NumSpecs(N, LEN, BRKNUM);
ParamText(BRKNUM, ", “, ");
Len := StopAlert(337,nil);

end; (*Break*)

Q***)

procedure DoPicture (PicNum : Integer);

(* CALLED BY: Bankrupt, Demographics, Main *)
(* CALLS TO: SetDrawRect (local procedure) *)
(* GLOBALS: AppResFile *)
(* ACTION: This procedure reads a picture from a resource and fits it to the window display. *)

var DrawWindow : windowptr;
DRAWRECT, TEMPRECT : Rect;
CopyPicHandle : pichandle;
WREC : WindowRecord;
ExResFile : integer;

T local procedure--SETDRAWRECT -----asnn-m=---- }
{* CALLED BY: DoPicture *)
(* CALLS TO: none *)
(* GLOBALS: none *)
(* ACTION: Centers pictures smaller than the window rectangle in that rectangle *)

(* GLOBALS AFFECTED OR USED:none
(* CALLED BY: DoPicture

rocedure SetDrawRect(WindowRect:rect;
OriginalPicRect:rect;
var DrawRect:rect);

var
WINDOSIZE:integer;
PICSIZE:integer;

begin

WINDOSIZE := WindowRect.right - WindowRect.left;
PICSIZE := OriginalPicRect.right - OriginalPicRect.left;
if WINDOSIZE > PICSIZE then
begin

DrawRect.left := (WINDOSIZE - PICSIZE) div 2;

DrawRect.right := DrawRect.left + PICSIZE;
end else

begin
DrawRect.left := WindowRect.left;

DrawRect.right := WindowRect.right;
end; {else}

WINDOSIZE := WindowRect.bottom - WindowRect.top;
PICSIZE := OriginalPicRect.bottom - OriginalPicRect.top;
if WINDOSIZE > PICSIZE then
begin

DrawRect.top := (WINDOSIZE - PICSIZE) div 2;

DrawRect.bottom := DrawRect.top + PICSIZE;
end else

begin
DrawRect.top := WindowRect.top;

DrawRect.bottom := WindowRect.bottom;
end; {else}

end; {procedure SetDrawRect)}

begin (*DoPicture*)

DrawWindow := GetNewWindow(261, @ WRec, Pointer(-1));

SetPort(DrawWindow);
PLSetWrPort (DrawWindow);

HideCursor;

{set up external resource file})

ExResFile := OpenResFile('Pictures’);
UseResFile(ExResFile);

CopyPicHandle := GetPicture(PicNum);

)
*)

TEMPRECT := CopyPicHandleAN picframe;
SetDrawRect(DrawWindow”.portRect, TEMPRECT,DRAWRECT);

ClipRect(DRAWRECT);
EraseRect(DRAWRECT);

DrawPicture (CopyPicHandle, DRAWRECT);
DebugDelay;

{restore original resfile}
UseResFile(AppResFile);
CloseResFile(ExResFile);

EraseRect(DrawWindow”.PortRect);

CloseWindow(Draw Window);
ShowCursor;

end; (* DoPicture *)

{$S Seg15}

(***)

procedure HidePCtl(ProctDialog: DialogPtr; Item:integer);

(* CALLED BY: SetUpProtector, Main *)
* CALLS TO: none *)
GLOBALS: none *)
(* ACTION: This procedure hides an item choice in a dialog window. *)

var DUMMYTYPE : integer;
ITEMHDL : Handle;
DUMMYRECT : Rect;

begin (* HidePCtl *)
GetDItem(ProctDialog, Item, DUMMYTYPE, ITEMHDL, DUMMYRECT);
HideControl(PointerITEMHDL));

end; (* HidePCtl *)

(***)

procedure SetUpProtector (ProctDialog: DialogPtr; Date:DateType; var Procts:ProctArray);

(* CALLED BY: ChooseProtector *
(* CALLS TO:HidePCtl *)
(* GLOBALS: Date *)
(* ACTION: This procedure sets up the protector choices available in a given year. *)

var DUMMYTYPE : integer;
ITEMHDL : Handle;

DUMMYRECT : Rect;

begin (* SetUpProtector *)
Procts[NOPROCT] := NoProtector;
. withk Date do begin

if Year < 1640 then begin
ParamText (‘Cornuel’, Particelli',",");
Procts[1] := Cornuel;
Procts[2] := Particelli;
HidePCt(PROCTDIALOG, PRAD3);
HidePCti(PROCTDIALOG, PRAD4);
end else begin
if Year < 1648 then begin
ParamText("Mazarin', 'Particelli’, '‘Condé', ");
Procts[1] := Mazarin;
Procts[2] := Particelli;
Procts[3] := Conde;
HidePCd(PROCTDIALOG, PRAD4);
end else begin
if Year < 1654 then begin
ParamText(‘Mazarin', ‘Condé’, ", ");
Procts[1] := Mazarin;
Procts[2] := Conde;
HidePCtI(PROCTDIALOG, PRAD3);
HidePCU(PROCTDIALOG, PRADA4);
end else begin
if Year < 1656 then begin
ParamText("Mazarin', '‘Condé€', Fouquet', ");
Procts[1] := Mazarin;
. Procts[2] := Conde;
Procts|3] := Fouquet;
HidePCtl(PROCTDIALOG, PRAD4);
end else begin
if Year < 1661 then begin
ParamText ('Fouquet', 'Colbert’, 'Condé’, 'Mazarin');
Procts[1] := Fouquet;
Procts[2] := Colbert;
Procts[3] := Conde;
Procts[4] := Mazarin;
end else begin
if (Year < 1661) or ((Year = 1661) and (not Date.Fall)) then begin
ParamText('Fouquet', ‘Colbert’, 'Condé€’, ");
Procts{1] := Fouquet;
Procts[2] := Colbert;
Procts[3] := Conde;
HidePCt(PROCTDIALOG, PRAD4);
end else begin
if Year < 1680 then begin
ParamText('Colbert’, 'Condé’, ", ";
Procts[1] := Colbert;
Procts{2] := Conde;
HidePCti(PROCTDIALOG, PRAD3);

HidePCt(PROCTDIALOG, PRAD4);
end else begin

if Year < 1683 then begin
ParamText('Colbert’, ‘Condé', 'Maintenon’, ™);
. Procts[1] := Colbert;
Procts[2] := Conde;
Procts[3] := Maintenon;
HidePCtl(PROCTDIALOG, PRAD4);
end else begin
if Year < 1686 then begin
ParamText('Condé¢', 'Maintenon', ‘Duke of Burgundy', ‘Grand Dauphin');
Procts[1] := Conde;
Procts[2] := Maintenon;
Procts[3] := DukeOfBurgundy;
Procts[4] := GrandDauphin;
end else begin
if Year < 1711 then begin
ParamText('Duke of Burgundy', 'Maintenon', ‘Grand Dauphin', *);
Procts{1] := DukeOfBurgundy;
Procts[2] := Maintenon;
Procts[3] := GrandDauphin;
HidePCtl(PROCTDIALOG, PRAD4);
end else begin
if Year < 1712 then begin
ParamText('Duke of Burgundy', 'Maintenon', ", ");
Procts[1] := DukeOfBurgundy;
Procts[2] := Maintenon;
HidePCt1(PROCTDIALOG, PRAD3);

HidePCtl(PROCTDIALOG, PRAD4);
. end else begin
ParamText('Maintenon’, ", “, ");

Proctsf1] := Maintenon;
HidePCtl(PROCTDIALOG, PRAD2);
HidePCU(PROCTDIALOG, PRAD3);
HidePCtl(PROCTDIALOG, PRAD4);
end; (* If *)
end; (* If *)
end; (* If *)
end; (* If ¥)
end; (* If *)
end; (*'If *)
end; (* If *)
end; (* If *)
end; (* If *)
end; (* If *)
end; (* If *)
end; (* With *)
GetDItem(ProctDialog, PRADS, DUMMYTYPE, ITEMHDL, DUMMYRECT);
SetCuVal(PointerITEMHDL), CHECKED);
end, (* SetUpProtector *)

(***)

procedure DoProctCheck(ProctDialog: DialogPtr; Item:integer);

(* CALLED BY: ChooseProtector *)

(* CALLS TO: none *)
Q GLOBALS: none *)
ACTION: This procedure checks the protector dialog for the choice made by the player. *)

var DUMMYTYPE : integer;
ITEMHDL, RADHDL : Handle;
DUMMYRECT : Rect;
VAL : integer;

begin (* DoProctCheck *)

GetDItem(ProctDialog, Item, DUMMYTYPE, ITEMHDL, DUMMYRECT);

VAL := GetCtlValue(Pointer(ordITEMHDL)));

if VAL = NOTCHECKED then begin
VAL := CHECKED;
GetDItem(ProctDialog, PRAD1, DUMMYTYPE, RADHDL, DUMMYRECT);
SetCtlValue(Pointer(RADHDL), NOTCHECKED);
GetDItem(ProctDialog, PRAD2, DUMMYTYPE, RADHDL, DUMMYRECT);
SetCdValue(Pointer(RADHDL), NOTCHECKED);
GetDItem(ProctDialog, PRAD3, DUMMYTYPE, RADHDL, DUMMYRECT);
SetCtValue(Pointer(RADHDL), NOTCHECKED);
GetDItem(ProctDialog, PRAD4, DUMMYTYPE, RADHDL, DUMMYRECT);
SetCtlValue(Pointer(RADHDL), NOTCHECKED);
GetDItem(ProctDialog, PRADS, DUMMYTYPE, RADHDL, DUMMYRECT);
SetCtlValue(Pointer(RADHDL), NOTCHECKED);

end; (* If *)

SetCtlValue(Pointer(ITEMHDL), VAL),

nd; (* DoProctCheck *)

(***)

procedure ExaProctltem(ProctDialog:DialogPtr; Item, ItemNum:integer; var NewProct:ProctType;

Procts:ProctArray);
(* CALLED BY: GetProct)
(* CALLS TO: none *)
(* GLOBALS: none *)
(* ACTION: This procedure examines the dialog item returned by DoProctCheck and assigns the *
(* appropriate protector chosen into NewProct from the enumerated type declared above. *)

var DUMMYTYPE, VAL : integer;
ITEMHDL : Handle;
DUMMYRECT : Rect;

begin (* ExaProctltem *)
GetDItem(ProctDialog, Item, DUMMYTYPE, ITEMHDL, DUMMYRECT);
VAL := GetCtlValue(Pointer(TEMHDL));
if VAL = CHECKED then begin
NewProct := Procts{ItemNum];
end; (* If *)
end; (* ExaProctltem *)

*)

(***)

procedure GetProct(ProctDialog: DialogPtr; Procts:ProctArray; var NewProct:ProctType);

Q- CALLED BY: ChooseProtector *)

* CALLS TO: ExaProctltem *)
(* GLOBALS: none *)
(* ACTION: This procedure polls the dialog items for choices. *)
begin (* GetProct *)

ExaProctlitem(ProctDialog, PRADI, 1, NewProct, Procts);

ExaProctItem(ProctDialog, PRAD2, 2, NewProct, Procts);

ExaProctltem(ProctDialog, PRAD3, 3, NewProct, Procts);

ExaProctItem(ProctDialog, PRAD4, 4, NewProct, Procts);

ExaProctltem(ProctDialog, PRADS, 5, NewProct, Procts);
end; (* GetProct *)

(***)

procedure ChooseProtector(var Assets:AssetsType; Date:DateType);

(* CALLED BY: DoCommand *)
(* CALLS TO: DoProctCheck, GetProct *
(* GLOBALS: Assets, Date)
(* ACTION: This procedure sets up the dialog box and keeps track of failures, qualifications, etc. *

var PROCTDIALOG : DialogPtr;
ITEM : integer;
PROCTS : ProctArray;
NEWPROCT : ProctType;
. PROCTOK : boolean;

begin (* ChooseProtector *)
if Date.Year < Assets.Protector.YearFail + PROCTYEARS then ITEM := StopAlert(312, nil)
else
if Assets.ChoseProct then ITEM := StopAlert(329, nil)
else
begin
REPEAT
PROCTDIALOG := GetNewDialog(277, nil, Pointer(-1));
SetUpProtector(PROCTDIALOG, Date, PROCTS);
repeat
SystemTask;
ModalDialog(nil, ITEM);
if ITEM in [PRADI1, PRAD2, PRAD3, PRAD4, PRADS5] then begin
DoProctCheck(PROCTDIALOG, ITEM);
end; (* If *)
until ITEM in {OK, Cancel];
GetProctPROCTDIALOG, PROCTS, NEWPROCT);
PROCTOK := true;
if ITEM = OK then begin
with Assets do begin

case NEWPROCT of
Particelli : if Lease.NumBought < PARTLEASENUM then begin
PROCTOK := false;
end; (* If *)
Mazarin ; if Cash < MAZCASHMIN then begin
PROCTOK := false;
end; (* If *)
Conde : if Land.Seigneurie + Land.Vicomte + Land.Marquisat = NONE then begin
PROCTOK := false;
end; (*If *)
Fouquet : if Cash < FOUQCASHMIN then begin
PROCTOK := false;
end; (* If ¥)
Colbert : if (Office.Number < COLBOFFNUM) or (Prestige < COLBPRESTIGE) then begin
PROCTOK := false;
end; (* If *)
Maintenon : if Prestige < MAINTPRESTIGE then begin
PROCTOK := false;
end; (* If *)
DukeOfBurgundy : if (Office.Number < DOBOFFNUM) or (Prestige < DOBPRESTIGE) then begin
PROCTOK := false;
end; (* If ¥)
GrandDauphin : if Land.Seigneurie + Land.Vicomte + Land.Marquisat = NONE then begin
PROCTOK := false;
end; (* If *¥)
end; (* Case *)
if not PROCTOK then begin
ITEM := StopAlert(311, nil);
Protector.NumFailures := Protector.NumFailures + 1;
Protector.ThisProctFail := Protector.ThisProctFail + 1;
Prestige := Prestige - Protector.NumPFailures; {-1 on first, -2 on second}
if Protector.ThisProctFail >= PROCTFAILMAX then begin
Protector.ThisProctFail := NONE,
Protector.Name := NoProtector;
Protector.YearFail := Date.Year;
PROCTOK := true;
ITEM := Stopalert(312, nil);
ITEM := Stopalert(318,nil);
end; (* If *)
end else begin
Assets.ChoseProct := true;
Protector.Name := NEWPROCT;
If NEWPROCT <> NoProtector then begin
ITEM := StopAlert(317, nil);
Protector. ThisProctFail := NONE;
Protector.YearFail := NONE;
end else begin
ITEM := StopAlert(318, nil);
end; (* If *)
end; (* If *)
end; (* With *)
end; (* If in OK *)

DisposDialog(PROCTDIALOG);
UNTIL PROCTOK;
end; (* If *)

nd; (* ChooseProtector *)
QBS Segl}

(***)

procedure GetIcons (var Icons:IconType);

(* CALLED BY: Initialize *)
(* CALLS TO: none *)
(* GLOBALS: Icons *

(* ACTION: This procedure gets the icon definitions for the financial icons from the resource file and puts *)
(* them into the array in the Defs field of Icons. It then initializes the other fields of Icons and sets the *)
(* rectangles in which the icon is to be displayed. Itis these rectangles that are shown when that *)
(* particular icon is selected. *

var 1:integer;

begin (* Geticons *)
for I:= 1 to NUMICONS do begin
Icons.Defs([I].IconHd! := Getlcon(255 + I);
HNoPurge(Icons.Defs[I].IconHdl);

end; (* For *)

Icons.Selected := NONE;

Icons.IconWasSelected := false;

Icons.MenuDisabled := true;

SetRect(Icons.ChoiceRect, 20, 158, 95, 173);

SetRect(Icons.Defs[1].IconRect, ICONSIZE + 3 * BORDER, BORDER + 3, 2 * ICONSIZE +
3 * BORDER, BORDER + ICONSIZE + 3);

SetRect(Icons.Defs[2].IconRect, BORDER, ICONSIZE + 3 * BORDER + 3, BORDER + ICONSIZE,

2 * JICONSIZE + 3 * BORDER + 3);

SetRect(Icons.Defs[3].IconRect, ICONSIZE + 3 * BORDER, ICONSIZE + 3 * BORDER + 3,
2 * ICONSIZE + 3 * BORDER, 2 * ICONSIZE + 3 * BORDER + 3);

SetRect(Icons.Defs{4].IconRect, 2 * ICONSIZE + S * BORDER, ICONSIZE + 3 * BORDER + 3,
3 * ICONSIZE + 5 * BORDER, 2 * ICONSIZE + 3 * BORDER + 3);

SetRect(Icons.Defs[5].IconRect, ICONSIZE + 3 * BORDER, 2 * ICONSIZE + 5 * BORDER + 3,
2 * JCONSIZE + 3 * BORDER, 3 * ICONSIZE + 5 * BORDER + 3);

end; (* Getlcons *)

(***)

procedure DrawRectangles (FinWindow:WindowPtr);

(* CALLED BY: Drawlcons *)
(* CALLS TO: none *)
(* GLOBALS: FinWindow *)
(* ACTION: This procedure draws the rectangles that surround the icons when they are displayed. *)

var IRECT : Rect;
I: integer;

begin (* DrawRectangles *)
SetPort(FinWindow);
PLSetWrPort (FinWindow);
SetRect(IRECT, ICONSIZE + 2 * BORDER + 1, 4, 2 * ICONSIZE + 4 * BORDER - 1,
. ICONSIZE + 2 * BORDER + 2);
FrameRect(IRECT);
forI:=0to 2 do begin
SetRect(IRECT, 2 * I * BORDER + I * ICONSIZE + 1, 3 * BORDER + ICONSIZE + 1,
(I+ 1) *ICONSIZE + I+ 1) * 2 * BORDER - 1, 2 ¥ ICONSIZE + 4 * BORDER + 2);
FrameRect(IRECT);
end; (* For *)
SetRect(IRECT, ICONSIZE + 2 * BORDER + 1, 2 * ICONSIZE + 5 * BORDER + 1,
2 * ICONSIZE + 4 * BORDER - 1, 3 * ICONSIZE + 6 * BORDER + 2);
FrameRect(IRECT);
end; (* DrawRectangles *)

(***)

procedure Drawlcons (Icons:IconType; FinWindow: WindowPtr);

(* CALLED BY: Initialize, LoadSimulation)
(* CALLS TO: DrawRectangles)
(* GLOBALS: FinWindow, Icons *)
(* ACTION: This procedure displays the financial icons on the screen surrounded by bordering rectangles. *)
(* It also displays the fact that no investment has been selected. *)
var IRECT : Rect;

I: integer;
begin (* Drawlcons *)

SetPort(FinWindow);

PLSetWrPort(FinWindow);

for I := 1 to NUMICONS do begin
PlotIcon(Icons.Defs{I].IconRect, Icons.Defs[I}.IconHdl);
end; (* For *)
DrawRectangles(FinWindow);
MoveTo(23, 135);
DrawString(Investment');
MoveTo(21,150);
DrawString(" Selected’;
MoveTo(30,170);
FrameRect(Icons.ChoiceRect);
if not Icons.IconWasSelected then begin
DrawString(' None");

end; (* If *)

end; (* Drawlcons *)

(***)

procedure SetUpMenus(var myMenus:MenuArray);

(* CALLED BY: Initialize *)
(* CALLS TO: none *)
(* GLOBALS: myMenus *)

(* ACTION: This procedure reads in the menus from the resource file and assigns them to the array *)
(* myMenus. It then inserts them into the menu bar and displays the menu bar. Since no investmentis *)
(* initially selected, the investment menu is disabled. *)

.: I: integer;

begin (* SetUpMenus *)
for I:= 1 to NUMMENUS do begin
myMenus[I] := GetMenu(l);
InsertMenu(myMenus{I], 0);
end; (* For *)
Disableltem(myMenus[FINMENU], 0);
DrawMenuBar;
end; (* SetUpMenus *)

{$S}

(***)

function Off TooAmbitious(OfficeList:OfficeHandle) : boolean;

(* CALLED BY: CalcPrestige *)
(* CALLS TO: none *)
(* GLOBALS: none *)
(* ACTION: This function determines whether or not the player has chosen an office that is not *
(* qualified for because only people with old families may buy those offices. *)

var STOP : boolean;

begin (* OffTooAmbitious *)
STOP := false;
OffTooAmbitious := false;
while (OfficeList <> nil) and (not STOP) do begin
if OfficeListM Prestige = AMBITIOUS then begin
OffTooAmbitious := true;
STOP := true;
end else begin
OfficeList := OfficeListM . Next;
end; (* If ¥)
end; (* While *)
end; (* OffTooAmbitious *)

(***)

procedure AddOffPrestige(var Second:longint; LookUp:longint; OfficeList:OfficeHandle);

(* CALLED BY: CalcPrestige *)
(* CALLS TO: none *)
(* GLOBALS: none *)
(* ACTION: This procedure adds in the prestige rating for offices. The player gets an extra point for every *)
(* office held that is at least rated at his prestige level, excepting the first office that is of that prestige. *)
begin (* AddOffPrestige *)

while OfficeList <> nil do begin

if OfficeList™M Prestige >= LookUp then begin
SECOND := SECOND + 1;
end; (* If ¥)
OfficeList := OfficeList" Next;
. end: (* While *)
SECOND := SECOND - 1;
end; (* AddOffPrestige *)

(***)

procedure CalcPrestige(var Assets:AssetsType);

(* CALLED BY: DisplayAssets *)
(* CALLS TO: OffTooAmbitious, AddOffPrestige *)
(* GLOBALS: Assets *)

(* ACTION: This procedure computes the player's prestige index. If the player has a prestige over 70 and *)
(* buys a lease, the player can never again go into the 70's or beyond. If the player has no offices, then *)
(* he is put into the 30's. Otherwise he starts in the 40’s. If he is noble and has a Seigneurie then he *)
(* goes into the 50's. If he has a Vicomté or Marquisat he goes into the 60's. If he also has a very *)
(* high office he can go into the 70's or 90's. He can never go into the 80's. He also gets one point for *)
(* every 100 hectare purchased, and for every office his prestige or higher, except the first one. He also *
(* gets a point if he's married, and loses two points for unsuccessful marriages or for trying to go into *)
(* the 80's. If his father's will was not in accord with tradition, he loses 4 points, and he loses one *)
(* point for every lease bought. These secondary points can never move the player into a higher category, *)
(* but they can drop him into a lower one. The player, however, can never go below 30 unless he triesto *)
(* go into the 80's, in which case he can go below 20. *)

var FIRST, SECOND, PROCTSHAMEPENALTY, TITLED : longint;
begin (* CalcPrestige *)

with Assets do begin
. if (Prestige >= 70) and (Lease.Bought) then begin
PresFallen := True;
end; (* If *)
{FIRST calculates the ten's digit of the Player's Prestige}
if Office.OfficeList = nil then begin
FIRST := NOOFFPRESTIGE;
end else begin
if OffTooAmbitious(Office.OfficeList) then begin
FIRST := AMBITIOUS;
if (Prestige div 10) <> (AMBITIOUS div 10) then begin
OldPrestige := Prestige;
end; (* If *)
end else begin
FIRST := Office.OfficeList™ Prestige;
end; (* If *)
end; (* If *)
if (FIRST > STARTPRESTIGE) and ({not Noble) or ((Land.Vicomte = NONE) and
(Land.Marquisat = NONE)) or (Lease.Bought)) then begin
FIRST := STARTPRESTIGE,;
end; (* If %)
if FIRST = STARTPRESTIGE then begin
if (Noble) and (Land.Seigneurie > NONE) then begin

FIRST := 50;
end; (* If *)
if (Noble) and ((Land.Vicomte > NONE) or (Land.Marquisat > NONE)) then begin
FIRST := 60;

. end; (* If %)
end; (* If %)

if (Prestige >= 70) and (PresFallen) then begin

FIRST := 60;
end; (* If *)
{SECOND calculates the one's digit of the Player's Prestige}
SECOND := NONE;
SECOND := SECOND - Lease.NumBought;
SECOND := SECOND + (Land.Bought div 100);
if Marriage.Married then begin

SECOND := SECOND + 1;
end; (* If ¥)
if Marriage.MarrBelow then begin

SECOND := SECOND - 3;
end; (* If *)
SECOND := SECOND - 2 * Marriage.Failures;
SECOND := SECOND - 2 * TooAmbitious;
if BoughtLetter then SECOND := SECOND + 2;
if Protector.NumFailures <= 1 then PROCTSHAMEPENALTY := Protector.NumFailures

else PROCTSHAMEPENALTY := 3;
SECOND := SECOND - PROCTSHAMEPENALTY;
if (FIRST >= STARTPRESTIGE) and (Prestige < 70) then begin
AddOffPrestige(SECOND, STARTPRESTIGE, Office.OfficeList);

end else begin

if FIRST >= 70 then begin

AddOffPrestige(SECOND, FIRST, Office.OfficeList);
. end; (* If *)

end; (* If ¥)
if Land.Marquisat > NONE then begin

SECOND := SECOND + 9;
end; (* If *)
if (not Will. WasInAccord) then begin

SECOND := SECOND - WILLPRESRATING;

end; (* If *)

if SECOND > 9 then begin
SECOND :=9;

end; (* If *)

Prestige := FIRST + SECOND;

if Prestige < AMBITIOUS then begin
Prestige := AMBITIOUS;

end; (* If *)

if (FIRST > AMBITIOUS) and (Prestige < NOOFFPRESTIGE) then begin
Prestige := NOOFFPRESTIGE;

end; (* If *)

end; (* With *)
end; (* CalcPrestige *)

(***)

function CalcRenteVal (Rente:RenteRec) : longing;

(* CALLED BY: CalcTotalVal, DispWealth *)

* CALLS TO: none *)
‘ GLOBALS: Assets *)
ACTION: This function counts the number of King's Rentes held by the player and multiplies by *)

(* 1000 for total value. *)

var NUM : longint;
MARKER : RenteHandle;

begin (* CalcRenteVal *)
with Assets do begin
MARKER := Rente.IndivRentes;
NUM :=0;
while MARKER <> nil do begin
NUM :=NUM + 1;
MARKER := MARKERAA Next;
end; (* While *)
CalcRenteVal := NUM * 1000;
end; (* With ¥)
end; (* CalcRenteVal *¥)

(***)

procedure CalcTotalVal(var Assets: AssetsType);

(* CALLED BY: DisplayAssets *)

(* CALLS TO: CalcRenteValue *)

(* GLOBALS: Assets *)
. ACTION: This procedure computes the total wealth of the player. It computes the number of Rentes ~ *)
the player own and returns the face value of King's Rentes held. It then calculates the value of the *)

(* player's land. To these values are added the player's cash, grain value, amount invested in textiles,and ~ *)

(* the amount paid for offices. *)

var RENTEVAL : longint;

begin (* CalcTotalVal *)
with Assets do begin
RENTEVAL := CalcRenteVal(Rente);
Land.Value := ((Land.Inherited + Land.Bought) * LANDVAL) + (Land.Seigneurie * SEIGCOST) +
(Land.Vicomte * VICOMTECOST) + (Land.Marquisat * MARQCOST);

TotalVal := Cash + (Grain * Land.Price) + Land.Value + Textiles + Office.TotPurchase + RENTEVAL;
end; (* With *)
end; (* CalcTotalVal *)

(***)

procedure GetFactors(var Mult, Percent:longint; Prestige:longint);

(* CALLED BY: CalcCostofLiving *)
(* CALLS TO: none *)
(* GLOBALS: none *)

(* ACTION: This procedure is used when computing the cost of living. Mult is the amount by which the *)
(* player's highest salary is mutiplied to give an initial cost of living. Percent gives the percentage of the ¥*)
(* other salaries that are added in to give rest of the basic cost of living. NOTE: these percentages *)
Qj change as the prestige rate climbs, which changes cost of living dramatically! *)

gin (* GetFactors *)
case (Prestige div 10) of
2,3, 4 : begin
Mult ;= 1;
Percent := 25;
end; (* 4 *)
S5 : begin
Mult ;= 2;
Percent := 50;
end; (* 5 %)
6 : begin
Mult := 3;
Percent := 50;
end; (*6 *)
7 : begin
Mult := 4;
Percent := 50;
end; (* 7 %)
8, 9 : begin
Mult := 8§;
Percent := 50;
end; (* 9 *)
end; (* Case *)
end; (* GetFactors *)

**)

procedure GetHighestOff(OfficeList:OfficeHandle; var Off:DlogOffRec);

(* CALLED BY: CalcCostofLiving *)
(* CALLS TO: none *)
(* GLOBALS: none *)
(* ACTION: This procedure returns the salary and the title of the office with the highest salary. *)
begin (* GetHighestOff *)

Off.Value := NONE;
while OfficeList <> nil do begin
if OfficeListM\.Salary > Off.Value then begin
Off.Value := OfficeListM .Salary;
Off.Title := OfficeList* . Title;
end; (* If *)
OfficeList := OfficeListM.Next;
end; (* While *)
end; (* GetHighestOff *)

(***)

procedure CalcCostOfLiving(var Assets:AssetsType);

(* CALLED BY: DisplayAssets, SellOffice *)

(* CALLS TO: GetFactors, GetHighestOffice *)

(* GLOBALS: Assets *)

{(* ACTION: This procedure computes the player's cost of living. It first calculates the base cost. Thisis *¥)
‘ based on the player’'s offices. If the player has no offices, the base cost is BASECOSTOFL with no *)
titled land, VCOSTOFL with a Vicomté, or MCOSTOFL with a Marquisat. If offices are owned, *)

(* procedure GetFactors is called to get the multipliers for the offices. The base cost is then computed *)

(* by multiplying the highest salary by MULT and then adding in PERCENT percent of the rest of the *)

(* salaries. If the player is not married, then the cost of living is 40% of this. The cost of living is then ~ *)

(* increased 20% by each kid. *)

var MULT, PERCENT, KIDSPERCENT : longint;
OFF : DlogOffRec;
MARKER : OfficeHandle;
I : integer;

begin (* CalcCostOfLiving *)
with Assets do begin

(* Sets base cost of living*)
CostOfLiving := BASECOSTOFL;

if land.vicomte <> 0 then begin
Costofliving := VCOSTOFL;
end; (* If)

if Jand.marquisat <> 0 then begin
Costofliving := MCOSTOFL;
end;

. (* Calculates the prestige factors and adds in percentage of offices to c. o. 1. ¥)
if (Prestige div 10) = (AMBITIOUS div 10) then begin
GetFactors(MULT, PERCENT, OldPrestige);
end else begin
GetFactors(MULT, PERCENT, Prestige);
end; (* If *)
GetHighestOff(Office.OfficeList, OFF);
CostOfLiving := MULT * OFF.VALUE;
MARKER := Office.OfficeList;
while MARKER <> nil do begin
if MARKERAA. Title <> OFF.Title then begin
CostOfLiving := CostOfLiving + ((MARKERA Salary * PERCENT) div 100);
end; (* If *)
MARKER := MARKERA Next;
end; (* While *)

(* Calculates the number of children and adds a percentage to c. o. . for each child *)
if not Marriage.Married then begin
CostOfLiving := ((CostOfLiving * COLMARRIAGEFACTOR) div 100);
end; (* If *)
KIDSPERCENT := COLKIDSFACTOR * Children.Number;
CostOfLiving := CostOfLiving + ((CostOfLiving * KIDSPERCENT) div 100);

if CostOfLiving <= BASECOSTOFL then begin
CostOfLiving := BASECOSTOFL;
end; (* If *)
end; (* With *)
d; (* CalcCostOfLiving *)

(***)

procedure DisplayAssets (var Assets:AssetsType; Date:DateType);

(* CALLED BY: Bankrupt, CheckDebt, NextCorr, EndSimulaton, ManageL and, BuyOffice, Treasury, *)

* DoCommand, Main *)
(* CALLS TO: CalcTotalVal, CalcPrestige, CalcCostOfLiving *)
(* GLOBALS: AssetWindow, Assets, Date *

(* ACTION: This procedure displays the date, the season, the player's status and the player's total wealth. *)

var DISPRECT : Rect;

begin (* DisplayAssets *)
CalcTotal Val(Assets);
CalcPrestige(Assets);
CalcCostOfLiving(Assets);
SetPort(AssetWindow);
PLSetWrPort(AssetWindow);
SetRect(DISPRECT, 0, 0, 114, 120);
EraseRect(DISPRECT);
MoveTo(0,30);
if Date Fall then begin

write(" Fall, ");

end else begin

write(' Spring,);
. end; (* If *)

writeln(Date.Year:0);
writeln;
writeln('Age: ',Assets.Age:0);
writeln('Prestige: ',Assets.Prestige:0);
writeln('Total Wealth: ");
writeln('f’, Assets.TotalVal:0);
write('Cash: £',Assets.Cash:0);

end; (* DisplayAssets *)

($S Segl}

(***)

procedure InitVars (var Assets:AssetsType; var Date:DateType);

(* CALLED BY: Initialize, Bankrupt *)
(* CALLS TO: none *)
(* GLOBALS: Assets, Date *
(* ACTION: This procedure initializes program variables as required. *)

var TEMPOFFICE : OfficeRec;
I: integer;

begin (* InitVars *)
Assets.Land.ShareCrop := 0;
Assets.Land.Kind := 0;
Assets.L.and Rent := 0;
Assets.Land.Inherited := 42;
Assets.Land.Seigneurie := NONE;
Assets.Land.Vicomte := NONE;
Assets.Land.Marquisat := NONE;
Assets.Land.Lost := 0;
Assets.Generation := FIRSTGEN;
Date.Fall := false;
Assets.Grain = 0;
Assets.Cash := 5054;
Assets.Land.Bought := 0;
Date.Year := STARTYEAR - 1;
Assets.Textiles := 0;
Assets.Rente.IndivRentes := nil;
Assets.Debt := 0;
Assets.Lease.FaceValue := 0;
Assets.Lease.Hanged := false;
Assets.Rente.Owe = 0;
Assets.Rente.SoldVal := 0;
Assets.Rente.CostDenier := 11;
Assets.Lease.GotThisYear := Q;
Assets.Lease. NumBought := NONE;
Assets.Office.Salary := 2000;
Assets.Office.TotPurchase := 21000;
Assets.Office Number := 1;
TEMPOFFICE.Title := ‘Auditeur en la Chambre des Comptes de Rouen’;
. TEMPOFFICE.Value := 21000;
TEMPOFFICE.Salary := 2000;
TEMPOFFICE.AmtPaid := 21000;
TEMPOFFICE Prestige := STARTPRESTIGE;
TEMPOFFICE.Next := nil;
Assets.Office.OfficeList := Pointer(NewHandle(SizeOf(TEMPOFFICE)));
Assets.Office.OfficeList™M™ := TEMPOFFICE;
Assets.Office.Levied := false;
Assets.Office Raise := false;
Assets.Age := STARTAGE,
Assets.Marriage.Married := false;
Assets.Marriage.Available.IsAVail := true;
Assets.Marriage.Failures := Q;
Assets.Marriage. MarrBelow := false;
Assets.Children. Number := 0;
Assets.Children.NumBoys := 0;
Assets.Children. NumGirls := 0;
Assets.Children.Boys := nil;
Assets.Children.Girls := nil;
Assets.Children.NextBirth.Year := 0;
Assets.Will. Made := false;
Assets.Will. WasInAccord := true;

for I:= 1 to NUMWILLCATEGORIES do begin
Assets.Will.Distribution{I} := NONE;
end; (* For *)
. Assets.Noble := false;

. Assets.TooAmbitious := NONE;
Assets.PresFallen := false;
Assets.CostOfLiving := NONE;
Assets.Won := false;

Assets.Quit := false;
Assets.SoldGrain := false;
Assets.Boughtl etter := false;
Assets.ChoseProct := true;
Assets.Protector.Name := Cornuel;
Assets.Protector.YearFail := NONE;
Assets.Protector.NumFailures := NONE;
Assets.Protector. ThisProctFail := NONE;
end; (* InitVars *)

{$S Segl1}

(***)

procedure SetUpTextEdit(var hTE:TEHandle; TextWindow:WindowPtr);

(* CALLED BY: BeginText, Setup, Main *)
(* CALLS TO: none *)
(* GLOBALS: hTE *
(* ACTION: This procedure sets us the text portion of dialog windows. *)
begin (* SetUpTextEdit ¥)

. hTE := TENew(TextWindow?.portRect, TextWindowA.portRect);
hTEM ViewRect.Left := hTEAM . ViewRect.Left + LEFTDIFF;
hTEM.ViewRect.Right := hTEAM. ViewRect.Right - BARDIFF;
hTEM.DestRect.Left := hTEA . DestRect.Left + LEFTDIFF;
hTEM .DestRect.Right := hTEAM . DestRect.Right - BARDIFF;
hTEM. ViewRect.Bottom := hTEM ViewRect.Bottom - BARDIFF;
hTEAM DestRect.Bottom := hTEM . DestRect.Bottom - BARDIFF;
end; (* SetUpTextEdit *)

(ks koo ok ookl ok sk ok koo ook s ok ook koo ok ok ook Aok oK)

procedure GetText(FileName:Str13; var hTE:TEHandle; VRefNum:integer);

(* CALLED BY: BeginText, ReadText *)
(* CALLS TO: none *)
(* GLOBALS: VRefNum, hTE *)
(* ACTION: This procedure reads text from a file on disk. *)

Var REFNO, IO : integer;
LOGEOF: LongInt;

begin (* GetText *)

IO := FSOpen (FileName, VRefNum, REFNO);
10 := GetEOF (REFNO, LOGEOF);

SetHandleSize (WTEM.hText, LOGEOF);
IO := FSRead (REFNO, LOGEOF, hTEAM hText?);
IO := FSClose (REFNOQO);
hTEM teLength := LOGEQOF,;
TESetSelect(0, 0, hTE);
TECalText(hTE);
end; (* GetText ¥)

{$S Segl}

(***)

procedure BeginText (VRefNum:integer);

(* CALLED BY: Initialize *)
(* CALLS TO:GetText, SetUpTextEdit *)
(* GLOBALS: VRefNum *)
(* ACTION: This procedure reads text from the StartText file and displays it in a dialog window. *)

var WREC : WindowRecord;
TEXTWINDOW : WindowPtr;
hTE : TEHandle;
TEMP : boolean;
ANEVENT : EventRecord;

begin (* BeginText *)
TEXTWINDOW := GetNewWindow(260, @ WREC, Pointer(-1));
HideCursor;
SetPort(TEXTWINDOW);
PLSetWrPort(TEXTWINDOW);
SetUpTextEdit(hTE, TEXTWINDOW);

. hTEM.ViewRect.Bottom := hTEAM. ViewRect.Bottom + 1;
hTEA DestRect.Bottom := hTEA DestRect.Bottom + 1;
GetText('StartText', hTE, VRefNum);
hTEM txFont := NewYork;
hTEM.xSize = 10;

TESetJust(teJustCenter, hTE);
TECalText(hTE);
TEUpdate (TEXTWINDOWA. portRect, hTE);
repeat
SystemTask;
TEMP := GetNextEvent(everyEvent, ANEVENT),
until button;
CloseWindow(TEXTWINDOW);
TEDispose(hTE);
ShowCursor;
end; (* BeginText *)

(***)

procedure Initialize (var FinWindow, AssetWindow:WindowPtr; var Icons:IconType; var myMenus:MenuArray;
var Assets:AssetsType; var Date:DateType; var WatchHdl:CursHandle; var hTE: TEHandle;
var Corrfile:STR255; var CorrRefNum, VRefNum:integer);

(* CALLED BY: Main
(* CALLS TO: Getlcons, Drawlcons, SetupMenus, Initvars

(* GLOBALS: FinWindow, AssetWindow, FWRec, AWRec, Icons, CorrRefNum, AppResFile,

(* VRefNum, myMenus, Assets, Date, hTE, WatchHdl, Corrfile

* ACTION: This procedure initializes the various system managers, sets up the menus and windows,
dravs the financial icons, and initializes the various program variables.

var ERR, DUMMYINT : integer;
SIZE : longint;
VOLNAME : Str255;

begin (* Initialize *)

MaxApplZone;

MoreMasters;

MoreMasters;

MoreMasters;

MoreMasters;

InitGraf(@thePort);

AppResFile := CurResFile;

randSeed := TickCount;

InitFonts;

FlushEvents(everyEvent, 0);

InitWindows;

TElInit;

InitDialogs(nil);

InitMenus;

InitCursor;

WatchHdl := GetCursor(4);

HNoPurge(Pointer(WatchHdl));

ERR := GetVol (@ VOLNAME, VRefNum);
. BeginText (VRefNum);

FlushEvents(everyEvent, 0);

FinWindow := GetNewWindow(256, @FWRec, Pointer(-1));

AssetWindow := GetNewWindow(258, @ AWRec, Pointer(-1));

SetUpMenus(myMenus);

Getlcons(Icons);

DrawIcons(Icons, FinWindow);

InitVars(Assets, Date);

CORRFILE:="FirstMail.1.dat";

ERR := FSOpen(CORRFILE, 0, CorrRefNum);

SIZE := SizeOf(integer);

ERR := FSRead(CorrRefNum, SIZE, @ DUMMYINT);

SIZE := SizeOf(MailRec);

ERR := FSRead(CortRefNum, SIZE, @ Assets.Mail);
end; (* Initialize *)

{$S}

*)
*)
*)
*)
)
)

(***)

procedure HiliteIcon (Icons:IconType; IconNum:integer);

(* CALLED BY: Selectlcon

)

(* CALLS TO: none *)

(* GLOBALS: Icons *)
(* ACTION: This procedure hilightes an icon when the player selects that icon by clicking it. It does this *)
(* by erasing the icon, plotting the icon, and then drawing the rectangle that the icon fits in. *)

.egin (* HiliteIcon *)

EraseRect(Icons.Defs[IconNum].IconRect);
PlotIcon(Icons.Defs[IconNum].IconRect, Icons.Defs[IconNum].IconHdl);
PenSize(2,2);
FrameRect(Icons.Defs[IconNum].IconRect);
PenNormal,

end; (* HiliteIcon *)

(***)

procedure UnHiliteIcon (Icons:IconType; IconNum:integer);

(* CALLED BY: Selectlcon *)
(* CALLS TO: none *)
(* GLOBALS: Icons *)
(* ACTION: This procedure unhilights an icon when the player has selected another investment choice. *)
(* It does this by erasing the rectangle that the icon sits in and then plotting the icon. *)
begin (* UnHiliteIcon *)

EraseRect(Icons.Defs[IconNum].IconRect);
PlotIcon(Icons.Defs{IconNum].IconRect, Icons.Defs[IconNum].IconHdl);
end; (* UnHiliteIcon *)

(***)

procedure PrintChoice(Choice:integer; SelRect:Rect);

.* CALLED BY: Selectlcon *)

(* CALLS TO: none *)

(* GLOBALS: none *)

(* ACTION: This procedure prints out the name of the investment represented by the selected icon. It *)

(* erases the old name and prints the correct one, as determined by the parameter Choice. *)
begin (* PrintChoice *)
EraseRect(SelRect);
FrameRect(SelRect);

MoveTo(30, 170);

case Choice of
LANDICON : DrawString(' Land’);
RENTEICON : DrawString(' Rente’);
OFFICEICON : DrawString(" Office");
LEASEICON : DrawString(' Lease');
TEXTILEICON : DrawString(' Textile');

end; (* Case *)

end; (* PrintChoice *)

(Rt koo koo skl ok o koo sl ok ko ok koo kol sk okt ki ok ookl

function BoughtRente(Rentes:RenteHandle; Date:DateType) : boolean;

(* CALLED BY: Not called in this version of the Gentleman; reserved for more complex transactions *)

(* at later date. *)

(* CALLS TO: none *)

* GLOBALS: Date *

‘ ACTION: This function determines whether or not the player bought a Rente this year. It goesto the ~ ¥)

(* end of the list of Rentes and checks to see if that Rente was bought at the current date. If so, the *)

(* function returns TRUE. Otherwise it returns FALSE. *)
begin (* BoughtRente *)

BoughtRente := false;
if Rentes <> nil then begin
while Rentes™ . Next <> nil do begin
Rentes := RentesM. Next;
end; (* While *)
if (RentesA Year = Date.Year) and (RentesA . Fall = Date.Fall) then begin
BoughtRentes := true;
end; (* If *)
end; (* If *¥)
end; (* BoughtRente *)

(***)

procedure En_Disable (Date:DateType; FinMenu:MenuHandle; var Icons:IconType; var Assets:AssetsType);

(* CALLED BY: Selecticon, GoToNext *)
(* CALLS TO: none *)
(* GLOBALS: Icons, Assets, Date *
(* ACTION: This procedure controls which items in the investment menu are to be enabled, and thus *)
(* hilighted, based on which investment choice has been selected. It first enables all the item in the *)
(* investment menu, and then enables the menu itself, if necessary. It then unhilights the appropriate *)

* choices, depending on whether it is Spring or Fall, and on which investment was selected. For example, *)

* leases can never be sold, and so the SELL choice is disabled whenever leases are chosen. *)

var I:integer;

begin (* En_Disable *)

Enableltem(FinMenu, STATUSITEM);
Enableltem(FinMenu, MANAGEITEM);
Enableltem(FinMenu, BUYITEM);
Enableltem(FinMenu, SELLITEM);
if (Icons.MenuDisabled) then begin

Enableltem(FinMenu, 0);

DrawMenuBar;

Icons.MenuDisabled := false;
end; (* If *)
case Date.Fall of

true :

case Icons.Selected of
LANDICON : if (Assets.Land.Bought = 0) and (Assets.Grain = 0) then begin
Disableltem(FinMenu, SELLITEM);
end; (* If *)

RENTEICON : Disableltem(FinMenu, MANAGEITEM);

OFFICEICON : begin
Disableltem(FinMenu, MANAGEITEM);
‘ if Assets.Office.OfficeList = nil then begin
‘ Disableltem(FinMenu, SELLITEM);
end; (* If *)
end; (* OFFICEICON *)

LEASEICON : begin
Disableltem(FinMenu, MANAGEITEM);
Disableltem(FinMenu, SELLITEM);
Disableltem(FinMenu, BUYITEM);
end; (* LEASEICON *)

TEXTILEICON : begin
DisablelItem(FinMenu, MANAGEITEM);
Disableltem(FinMenu, SELLITEM);

end; (* TEXTILEICON *)

end; (* case *)

false :
case Icons.Selected of
LANDICON : if (Assets.Land.Bought = 0) and (Assets.Grain = () then begin

Disableltem(FinMenu, SELLITEM);
end; (* If ¥)

RENTEICON : Disableltem(FinMenu, MANAGEITEM);

OFFICEICON : begin
. Disableltem(FinMenu, MANAGEITEM);
if Assets.Office.OfficeList = nil then begin
Disableltem(FinMenu, SELLITEM);
end; (* If *)
end; (* OFFICEICON *)

LEASEICON : begin
Disableltem(FinMenu, MANAGEITEM);
Disableltem(FinMenu, SELLITEM);
if Assets.Lease.Bought then begin
Disableltem(FinMenu, BUYITEM);
end; (* If *)
end; (* LEASEICON *)

TEXTILEICON : begin
Disableltem(FinMenu, BUYITEM);
Disableltem(FinMenu, MANAGEITEM);
Disableltem(FinMenu, SELLITEM);

end; (* TEXTILEICON ¥*)

end; (* Case *)
end; (* Case *)
end; (* En_Disable *)

(***)
procedure SelectIcon(var Icons:IconType; myEvent:EventRecord; myMenus:MenuArray; Date:DateType; var Assets:AssetsType),

* CALLED BY: Main *)
CALLS TO: UnHiliteIcon, PrintChoice *)
GLOBALS: Icons, MyEvent, myMenus, Assets, Date *)

(* ACTION: This procedure is called when the player pushes the button in the window that contains the ~ *)
(* financial icons. It determines which icon was selected by finding which icon's rectangle contains the *)
(* point of the mouse-down event. If an icon was selected, if then unhilights the previously selected icon, *)
(* if there was one, and hilights the new icon, if it wasn't the currently selected icon. If this was the *)
(* first time an icon was selected, it enables the investment menu and displays the choice. *)

var I:integer;

begin (* Selectlcon *)
GlobalToLocal(myEvent.Where);
I:=1;
while (not PtInRect(myEvent. Where, Icons. Defs[I].IconRect)) and (I < NUMICONS) do begin
I=1I+1;
end; (* While *)
if PtInRect(myEvent.Where, Icons.Defs[I].IconRect) then begin
if not (Icons.Selected in [NONE, I]) then begin
UnHiliteIcon(Icons, Icons.Selected);
PrintChoice(l, Icons.ChoiceRect);
end; (* if *)
if Icons.Selected <> I then begin
HiliteIcon(Icons, I);
end; (* If *)
if not Icons.IconWasSelected then begin
‘ Icons.IconWasSelected := true;
Icons.MenuDisabled := false;
PrintChoice(l, Icons.ChoiceRect);
Enableltem(myMenus[FINMENU], 0);
DrawMenuBar;
end; (* If *)
Icons.Selected :=1;
En_Disable(Date, myMenus[FINMENU], Icons, Assets);
end; (* If *)
end; (* SelectIcon *)

($S Seg7}

(AR AR R Rk koo ok Rk ok otk ok ookl kb koo ok ootk ook ok oR)

procedure Bankrupt(var Assets:AssetsType; Date:DateType; Really, ShowPic:boolean);

(* CALLED BY: CheckDebt, NextProct, LoadSimulation *)
(* CALLS TO: DoPicture, DisplayAssets, InitVars *)
(* GLOBALS: Assets, Date)
(* ACTION: This procedure is called when the player is thrown into bankruptcy. Every financial asset *)
(* the player owns is removed except for miscellaneous land gained through inheritance. *)

var OLDDATE : DateType;

OLDAGE, OLDGEN, OLDAMBITION, OLDLEASENUM, OLDSHARE, OLDRENT,
OLDKIND, OLDLAND : longint;
RMARKER, RDISPMARK : RenteHandle;
OMARKER, ODISPMARK : OfficeHandle;
. OLDPROCT : ProctRec;
LEN : integer;
KIDS : ChildRec;
WIFE : MarrType;
OLDFALLEN, OLDNOBLE, OLDLETTER : boolean;
OLDWILL : WillType;

begin (* Bankrupt *)
if Really then begin
LEN := StopAlert(271, nil);
end; (* If ¥)
with Assets do begin
OLDDATE := Date;
OLDNOBLE := Noble;
OLDPROCT := Protector;
OLDAGE := Age;
KIDS := Children;
WIFE := Marriage;
OLDGEN := Generation;
OLDAMBITION := TooAmbitious;
OLDLEASENUM := Lease.NumBought;
OLDSHARE := Land.ShareCrop;
OLDRENT := Land.Rent;
OLDKIND := Land.Xind;
OLDLAND := Land.Inherited;
OLDFALLEN := PresFallen;
. OLDLETTER := BoughtLetter;
OLDWILL := Will;
RMARKER := Rente.IndivRentes;
while RMARKER <> nil do begin
RDISPMARK := RMARKER;
RMARKER := RMARKERA Next;
DisposHandle(Pointer(RDISPMARK));
end; (* While *)
OMARKER := Office.OfficeList;
while OMARKER <> nil do begin
ODISPMARK := OMARKER;
OMARKER := OMARKERA Next;
DisposHandle(Pointer(ODISPMARK));
end; (* While *)
InitVars(Assets, Date);
Date := OLDDATE;
Noble := OLLDNOBLE;
Protector := OLDPROCT;
Age := OLDAGE;
Children := KIDS;
Marriage = WIFE;
Cash := 0;

Generation := OLDGEN;

TooAmbitious := OLDAMBITION;
Lease.NumBought := OLDLEASENUM,;
Land.ShareCrop := OLDSHARE;

. LandRent := OLDRENT:
Land.Kind := OLDKIND;

Land.Inherited := OLDLAND;
PresFallen := OLDFALLEN;
BoughtLetter := OLDLETTER;
Will := OLDWILL;
Office.Salary := 0;
Office.TotPurchase := 0;
Office.Number := 0;

DisposHandle(Pointer(Office.OfficeList))

Office.OfficeList := nil;
DisplayAssets(Assets, Date);
end; (* With *)
if ShowPic then begin
DoPicture(DEBTOR);
end; (* If *)
end; (* Bankrupt *)

1

(***)

procedure CalcHarvest(var Harvest:HarvestType);

(* CALLED BY: GoToNext, Main
(* CALLS TO: none
(* GLOBALS: none

(* ACTION: This procedure determines what type of harvest there was. It calculates a random number
‘ from one to 100 and then uses that number to determine what the harvest is, based on percentages

defined in constants.
var TEMP : integer;

begin (* CalcHarvest *)

TEMP := abs(Random) div RANDDIVIDER;

if TEMP <= BLIGHTRAND then Harvest := Blight

else if TEMP <= POORRAND then Harvest := Poor

else if TEMP <= GOODRAND then Harvest := Good

clse if TEMP <= EXCELRAND then Harvest := Excellent;

end; (* CalcHarvest *)

*)
)
*)
*)
*)
*)

(Frriokok Rt kAR sk dkodedofofoodofok ookt sesof ook ok sk kol sk ok ool ks doledol o ook okt oK R K

procedure NextLand(var Assets: AssetsType; Date:DateType);

(* CALLED BY: GoToNext
(* CALLS TO: NumSpecs
(* GLOBALS: Assets, Date

(* ACTION: This procedure calculates the cash value of a quintel of grain. In the fall, it finds the yield on
(* the land a player is renting in kind and sharecropping, and how much cash was gained by renting for

(* cash.

var TOTLAND, GIFT : longint;
LEN : integer;
GIFTSTR : STR255;

‘in (* NextLand *)

with Assets.Land, Date do begin
case Local of
Blight : Yield := BLIGHTYIELD;
Poor : Yield := POORYIELD;
Good : Yield := GOODYIELD;
Excellent : Yield := EXCELYIELD;
end; (* Case *)
case Fall of
true :
case Regional of
Blight : Price := FBLIGHTPRICE;
Poor : Price := FPOORPRICE,;
Good : Price := FGOODPRICE;

Excellent : Price := FEXCELPRICE;
end; (* Case *)
false :

case Regional of
Blight : Price := SBLIGHTPRICE;
Poor : Price := SPOORPRICE;
Good : Price := SGOODPRICE;

Excellent : Price := SEXCELPRICE;
end; (* Case *)

end; (* Case *)

if Fall then begin

Assets.SoldGrain := false;
TOTLAND := Bought + Inherited + Seigneurie + Vicomte + Marquisat;

Assets.Cash ;= Assets.Cash + ((Rent * TOTLAND) div 100) * RENTVALUE)
Lost := (Assets.Grain * GRAINLOSS) div 100;

Assets.Grain := Assets.Grain + (Yield * ((ShareCrop * TOTLAND) div 100))
+ (KINDRENT * ((Kind * TOTLAND) div 100)) - Lost;

end; (* If *)
if not Fall then begin
Case Regional of
Blight, Poor :
case Local of

Blight, Poor : if not Assets.SoldGrain then
begin

if (Assets.Grain <> 0) and ((Sharecrop <> 0) or (Kind <> 0)) then
begin
LEN := StopAlert(325, nil);
Assets.Grain = Assets.Grain - (REVOLTPERCLOST * Assets.Grain) div 100);

If Assets.Protector.Name = Conde then
begin
GIFT := PROCTREVOLTGIFT;
NumSpecs(GIFT, LEN, GiftStr);

ParamText(GiftSTR,",",");
LEN := StopAlert(326, nil)
end; (* If *)

end; (* If *)

. end; (* If *)
end; (* Case Local *)
end; (* Case Regional *)
end; (* If *)
end; (* With *)
end; (* NextLand *)

(***)

procedure NextTextiles (var Assets:AssetsType; Date:DateType);

(* CALLED BY: GoToNext *)
(* CALLS TO: none *)
(* GLOBALS: Assets , Date *)

(* ACTION: This procedure, in the fall, calculates the return from investments in textiles the previous *)
(* fall. The return is based on the harvest, since the better the harvest, the richer the peasantry, and the *)
(* more cash available to spend for clothing. *)

begin (* NextTextiles *)
if Date.Fall then begin
with Assets do begin
case Land.Regional of
Blight : Cash := Cash + Textiles - (BTEXT ¥ Textiles) div 100);
Poor : Cash := Cash + Textiles + (PTEXT * Textiles) div 100);
Good : Cash := Cash + Textiles + ((GTEXT * Textiles) div 100);
Excellent : Cash := Cash + Textiles + ((ETEXT * Textiles) div 100);
end; (* Case *)
Textiles := 0;
end; (* With *)
end; (* If ¥)
end; (* NextTextiles *)

(***)

procedure GetCost(var Cost:longint);

(* CALLED BY: NextRente *
(* CALLS TO: none *)
(* GLOBALS: none C *)
(* ACTION: This procedure calculates at what rate Rentes are to be sold during the next year. It *)
(* computes a number from one to 100 and then, based on probabilities, determines whether the Kingis *)
(* selling for denier 2, denier 7, denier 11, or denier 14. *)

var TEMP : integer;

begin (* GetCost *)
TEMP := (abs(Random) div RANDDIVIDER) div 2;
if TEMP <= DEN2PERCENT then begin
Cost := 2;
end else begin

if TEMP <= DEN7PERCENT then begin
Cost := 7;

end else begin
if TEMP <= DEN14PERCENT then begin

. Cost := 14;
end else begin

Cost := 11;
end; (* If *)
end; (* If *)
end; (* If *)
end; (* GetCost *)

(***)

procedure LoseRentes(var IndivRentes:RenteHandle);

(* CALLED BY: NextRente *)
(* CALLS TO: none *)
(* GLOBALS: none *)
(* ACTION: This procedure is used in 1664, when all Rentes since 1656 are made void. It goes through *)
(* the list of Rentes, deleting all those bought between 1656 and 1664. *)

var MARKER, DISPMARK : RenteHandle;

begin (* LoseRentes *)
MARKER := IndivRentes;
while MARKERAM Next <> nil do begin
if MARKERAM NextA . Year > 1656 then begin
DISPMARK := MARKERAM Next;
MARKERAM Next := MARKERAM Next™M Next;

. DisposHandle(Pointer(ord(DISPMARK)));
end else begin
MARKER := MARKERAA Next;
end; (* If %)

end; (* While *)
if IndivRentes™.Year > 1656 then begin
DISPMARK := IndivRentes;
IndivRentes := IndivRentes M Next;
DisposHandle(Pointer(ord(DISPMARK)));
end; (* If *)
end; (* LoseRentes *)

(***)

function CalcPayment(Date:DateType) : integer;

(* CALLED BY: NextRente *)
(* CALLS TO: none)
(* GLOBALS: Date *)
(* ACTION: This function determines how much the King pays on his Rentes. The King either pays *)
(* nothing (rarely), a partial payment, or full payment. In 1648 he only made a partial payment. *)

var TEMP : integer;

begin (* CalcPayment *)
if Date.Year = 1648 then begin
CalcPayment ;= PARTPAY;
end else begin
TEMP := abs(Random) div RANDDIVIDER;
IF TEMP <= NOPAY then begin
CalcPayment := 0;
end else begin
if TEMP <= SOMEPAY then begin
CalcPayment := PARTPAY;
end else begin
CalcPayment := FULLPAY;
end; (* If *)
end; (* If *)
end; (* If *)
end; (* CalcPayment *)

(***)

procedure NextRente(var Assets: AssetsType; Date:DateType);

(* CALLED BY: GoToNext *)
(* CALLS TO: GetCost, LoseRentes *)
(* GLOBALS: Assets, Date *)

(* ACTION: This procedure calculates how much money the player receives from Rentes for the previous *)
(* half-year. It checks to see what the year is and sets the face value accordingly. It then determines the *)
(* rate for Rentes for the coming year and, if it is 1664, deletes all the Rentes purchased since 1656. *)
(* If it is Spring, the program then determines how much the King will pay on his Rentes for the *)
(* coming year. It finally calculates how much the player will receive from Rentes from the coming year *)
(* and adds half this amount to the player's cash. Only half is added since this procedure is called twice *)

* a year. *)

var MARKER : RenteHandle;
LEN : integer;

begin (* NextRente *)
with Assets.Rente do begin
if Date.Year < 1660 then begin
FaceDenier := 14;
Return := RENTEIRETURN; {RENTEIRETURN is 71}
end else begin
FaceDenier := 18;
Return := RENTE2RETURN; {RENTE2RETURN is 55}
end; (* If *)
if (Date.Year = 1660) and (not Date.Fall) then begin
LEN := StopAlert(303, nil);
end; (* If *)
GetCost(CostDenier);
if (Date.Year = 1664) and (IndivRentes <> nil) and (not Date.Fall) then begin
LoseRentes(IndivRentes);
LEN := StopAlert(302, nil);
end; (* If *)
MARKER := IndivRentes;

GotThisYear := 0;

if not Date.Fall then begin
Payment := CalcPayment(Date);
end; (* If *)

. while MARKER <> nil do begin
GotThisYear := GotThisYear + Return * Payment div 1000;
MARKER := MARKERAA Next;
end; (* While *)
Assets.Cash := Assets.Cash + (GotThisYear div 2);
end; (* With *)
end; (* NextRente *)

(85}

(***)

procedure SellYRente(var Assets: AssetsType; Date:DateType);

(* CALLED BY: CheckDebt, SellRente *)
(* CALLS TO: NumSpecs, SellText, GetDText, ConvertNum *)
(* GLOBALS: Assets, Date)

(* ACTION: This procedure is used to borrow money by selling personal Rentes. The best rate the player *)
(* can get is the going rate for the King's Rente. The player can get this rate if borrowing less than half of *)
(* his total wealth. From that point the rate increases linearly up to the player's total wealth, at which *)
(* point the rate is denier 2 (50%). The player cannot borrow more than total wealth. When total wealth ~ *)
(* is calculated, money that was gained through Rentes previously sold is not counted. *

var RENTEDIALOG, SELLDIALOG : DialogPtr;
ITEM, LEN, PERCENT : integer;
CONVOK : boolean;
AMT, SOLDSTR, DENVALSTR, CASHVALSTR : Str255;
TEMP, HALF, SELLDEN : longint;

begin (* SellYRente *)
with Assets.Rente do begin
RENTEDIALOG := GetNewDialog(265, nil, Pointer(-1));

repeat

NumSpecs(CostDenier, LEN, AMT);
NumSpecs(SoldVal LEN, SOLDSTR);

ParamText(AMT, SOLDSTR, ", ');

CONVOK := true;

SELLDEN := CostDenier;

SellText(RENTEDIALOG, RENTEYSELLITEM, 0, 255);
DlogManager(ITEM);

if ITEM = OK) then begin
GetDText(RENTEDIALOG, RENTEYSELLITEM, AMT);
ConvertNum(AMT, TEMP, CONVOK);

if not CONVOK then begin
LEN := StopAlert(256, nil);

end else begin
if TEMP <> NONE then begin

if TEMP > Assets.TotalVal - (2 * SoldVal) then begin
LEN := CautionAlert(266, nil);
CONVOK := false;

end else begin
SELLDIALOG := GetNewDialog(266, nil, Pointer(-1));
HALF := (Assets.TotalVal - (2 * SoldVal)) div 2;
PERCENT := 100 div CostDenier;

if TEMP <= HALF then begin
SELLDEN := CostDenier;
end else begin
if HALF <> 0 then begin

SELLDEN := 10000 div ((((TEMP - HALF) * 100) div HALF) * (50 -
PERCENT) + (PERCENT * 100));
end else begin
SELLDEN := 2;

end; (*If*)
end; (* If *)
NumSpecs(SELLDEN, LEN, AMT),
ParamText(AMT, ", ",);

ENE TR T 4]

DlogManager(ITEM);
DisposDialog(SELLDIALOG);

if ITEM = Cancel then begin
CONVOK := false;
end; (* If CANCEL¥*)
end; (* If Assets Allow sale¥*)
end; (* If TEMP < (%)
end; (* If not CONVOK*)
end; (* If ITEM = OK¥)
until CONVOK;
if ITEM = OK) and (TEMP <> () then begin
Assets.Cash := Assets.Cash + TEMP;
SoldVal := SoldVal + TEMP;
Owe := Owe + ((TEMP * (100 div SELLDEN)) div 100);
NumSpecs(SELLDEN, LEN, DENVALSTR);
NumSpecs(TEMP, LEN, CASHVALSTR);

ParamText(DENVALSTR, CASHVALSTR, ", ");
LEN := NoteAlert(336, nil);

end; (* If *)
end; (* With *)

DisposDialog(RENTEDIALOG);
end; (* SellYRente *)

{$S Seg7)

(***)

procedure CheckDebt(var Cash, Debt:longint; var Assets: AssetsType; Date:DateType);

(* CALLED BY: CalcExpenses *)
(* CALLS TO:DisplayAssets, NumSpecs, Bankrupt, SellYRente *)
(* GLOBALS: Assets, Date *)
(* ACTION: This procedure checks whether or not the player has gone into debt, i.e. has negative *)
(* cash-flow. If the debt is greater than the player's total value, then Rente cannot be sold to pay off *)
(* the debt and therefore is thrown into bankruptcy. Otherwise the player is forced to sell a personal Rente *)
(* to payoff his debt. *)

var LEN : integer;
STOP : boolean;
AMT : Str255;

begin (* CheckDebt *)
repeat
Cash := Cash - Debt;
DisplayAssets(Assets, Date);
if Cash < 0 then begin
. Debt := abs(Cash);
Cash :=0;
if Debt > (Assets.TotalVal - (2 * Assets.Rente.SoldVal)) then begin
Bankrupt(Assets, Date, true, true);
end else begin
STOP := false;
NumSpecs(Debt, LEN, AMT);
ParamText(AMT, ", ", ™;
LEN := StopAlert(270, nil);
SellYRente(Assets, Date);
end; (* If *)
end else begin
Debt := 0;
STOP := true;
end; (* If *)
until STOP;
end; (* CheckDebt *)

(***)

procedure RaiseSalary(var OfficeList:OfficeHandle; var Salary:longint);

(* CALLED BY: NextOffice *)

(* CALLS TO: none *)

(* GLOBALS: none *)
(* ACTION: This procedure is called when the King decides to raise the player's salary. *)
(* Each office's salary is raised the appropriate percentage, as is the total salary counter for all offices. *)

MARKER : OfficeHandle;

begin (* RaiseSalary *)
MARKER := OfficeL.ist;
while MARKER <> nil do begin
Salary := Salary - MARKERA Salary;
MARKERA Salary := MARKERAA Salary + (MARKERAA Salary * RAISEPAY) div 100);
Salary := Salary + MARKERAA Salary;
MARKER := MARKERA Next;
end; (* While *)
end; (* RaiseSalary *)

(***)

procedure NextOffice(var Assets:AssetsType; Date:DateType);

(* CALLED BY: GoToNext *)
(* CALLS TO:RaiseSalary *)
(* GLOBALS: Assets, Date *
(* ACTION: This procedure is used to advance the offices in time through to the next interval. During *)
(* the Spring the salaries are added in. Then, if the percentages are right, the King may levy a fee *)
(* on each office or may raise the salaries of the offices while charging a one-time fee. *)

var TEMP, LEN : integer;

gin (* NextOffice *)
with Assets.Office do begin
if not Date.Fall then begin
Assets.Cash := Assets.Cash + Salary;
TEMP := abs(Random) div RANDDIVIDER;
if (TEMP <= LEVYPERCENT) and (Date.Year <> STARTYEAR) then begin
Assets.Cash := Assets.Cash - ((TotPurchase * LEVYTAX) div 100);
LEN := StopAlert(304, nil);
Levied := true;
end else begin
if (TEMP <= RAISEPERCENT) and (Date.Year <> STARTYEAR) then begin
Assets.Cash := Assets.Cash - (((Salary * RAISEPAY) div 100) * RAISELEVY),
RaiseSalary(OfficeList, Salary);
Raise := true;
LEN := StopAlert(305, nil);
end; (* If ¥)
end; (* If *)
end else begin
Levied := false;
Raise := false;
end; (* If *)
end; (* With ¥)
end; (* NextOffice *)

(***)

procedure NextMarriage(var Assets: AssetsType; Date:DateType);

* CALLED BY: SwitchGen, GoToNext)
CALLS TO: NumSpecs *)
(* GLOBALS: Assets, Date *)
(* ACTION: This procedure selects which brides will be available for the coming interval. If the person ~ *)
(* has just become eligible to marry again after having to wait because of a failed courtship, then the *)
(* player is marked available again. It then reads in the information for the available brides and *)
(* calculates their ages. *)

var DUMMYMARR : BrideRec;
CHOSENSET : set of 1.MAXBRIDES;
FILENAME, GEN : Str255;
NUMBER, REFNO, LEN, I, J : integer;
TEMP, SIZE, STRSIZE, LONGSIZE, RECSIZE : longint;
10 : OSErr;

begin (* NextMarriage *)
with Assets.Marriage do begin
if not Available.IsAvail then begin
if Available.Year = Date.Year - WAITYEARS then begin
Available IsAvail := true;
end; (* If *)
end; (* If *¥)
NumSpecs(Assets.Generation, LEN, GEN);
FILENAME := Concat(MARRFILENAME, GEN);
CHOSENSET :=[J;
10 := FSOpen(FILENAME, 0, REFNO);
. SIZE := SizeOf(NUMBER),
STRSIZE := SizeOf(Str255);
LONGSIZE := SizeOf(longint);
RECSIZE := SizeOf(BrideRec);
10 := FSRead(REFNO, SIZE, @NUMBER);
for I := 1 to NUMMARRPERYEAR do begin
repeat
TEMP := (abs(Random) div (32767 div NUMBER)) + 1;
until (TEMP <= NUMBER}) and (not (TEMP in CHOSENSET));
IO := SetFPos(REFNQ, 1, 0);
IO := FSRead(REFNO, SIZE, @NUMBERY);
forJ := 1 to TEMP - 1 do begin
10 := FSRead(REFNO, RECSIZE, @ ThisYear{I]);
end; (* For *)
CHOSENSET := CHOSENSET + {TEMP];
IO := FSRead(REFNO, RECSIZE, @ ThisYear([1});
if Assets.Generation = FIRSTGEN then begin
ThisYear[I].Age := ThisYear[I].Age + (Date.Year - STARTYEAR);
end else begin
ThisYear[I].Age := ThisYear[I].Age + (Date.Year- DEATHYEAR);
end; (* If ¥)
end; (* For *)

10 := FSClose(REFNO);
end; (* With *)
end; (* NextMarriage *)

I I***)

ced re NextLease(var Assets: AssetsType; Date:DateType; WatchHdl:CursHandle);
(* CALLED BY: GoToNext

%
)
(* CALLS TO: none *)
(* GLOBALS: Assets, Date, WatchHdl *)
(* ACTION: This procedure manages the annual leases. It calculates the return on a held lease, *
(* if it is due and one was owned, and adds this amount to the player's cash. Then, if it is the Spring, *)

(* it determines which lease is to be made available for the coming year by going through the lease file *)
(* and randomly picking one of the leases. It then determines what the face value is and how much the *)
(* can get it for. It then marks this lease as not yet bought. NOTE: special year 1639, lease on fish toll. %)

var REFNO, IO, NUMBER, TEMP, I, RETURN : integer;
SIZE : longint;
LEASEDIALOG : DialogPtr;

begin (* NextLease *)
with Assets.Land, Assets.Lease do begin
if (not Date.Fall) and (Bought) then begin
case Regional of
Blight : RETURN := BRETURN;
Poor : RETURN := PRETURN;
Good : RETURN := GRETURN;
Excellent : RETURN := ERETURN;
end; (* Case *)
GotThisYear := (FaceValue * RETURN) div 100;
. FaceValue := 0;
Assets.Cash := Assets.Cash + GotThisYear;
end; (* If ¥)
if not Date. Fall then begin
if Date.Year = 1639 then begin
Title := Royal toll on herring and salmon in the Carenton district';
FaceValue := 6000;
Ol1dOffer := Offer;
Offer := 2499,
end else begin
Hlock(Pointer(WatchHdl));
SetCursor(WatchHdIMN);
Hunlock(Pointer(WatchHdl));
10 := FSOpen(LEASEFILE, 0, REFNO);
SIZE := SizeOf(NUMBER);
IO := FSRead(REFNO, SIZE, @NUMBER);
repeat
TEMP := (abs(Random) div (32767 div NUMBER)) + 1;
until TEMP <= NUMBER;
SIZE := SizeOf(Title);
forI:=1 o TEMP do begin
10 := FSRead(REFNO, SIZE, @Tite);

end; (* For *)
IO := FSClose(REFNO);
SetCursor(Arrow);
FaceValue := ord4(Random) + ord4(LEASEMIN) + ord4(32768);

. O1dOffer := Offer;
repeat

Offer := abs(Random) div (32767 div 5);
until Offer <= 4;
Offer := (FaceValue * (((Offer + 3) *10)+8)) div 100;
if (Assets.Protector.Name = Mazarin) or (Assets.Protector.Name = Fouquet) then begin
Offer := (Offer * 3) div 4;
end; (*If %)
end; (* If *¥)
Bought := false;
end else begin
GotThisYear := 0;
end; (* If *)
end; (* With *)
end; (* NextLease *)

(***)

procedure CalcExpenses(var Assets:AssetsType; Date:DateType);

(* CALLED BY: GoToNext *)
(* CALLS TO: CheckDebt *)
(* GLOBALS: Assets, Date *)
(* ACTION: This procedure computes half-year expenses. During the Spring the taxes are computed. Then *)
(* cost of living is computed, based on the player's prestige. The taxes and half the cost of living are *)

(* subtracted from the player's cash, along with the player's debt and half the amount owed from personal *)
* Rentes. Only these half-amounts are subtracted because this procedure is called twice a year. If the *)
player's cash is negative, then the cash is set to zero and the amount owed is assigned to the debt. *)

begin (* CalcExpenses *)
with Assets do begin
Taxes := 0;
if (not Date.Fall) and (not Assets.Noble) then begin
Taxes := LANDTAX * (Land.Inherited + Land.Bought + Land.Seigneurie
+ Land.Vicomte + Land.Marquisat);
end; (* If *)
Cash := Cash - Taxes - (CostOfLiving div 2) - (Rente.Owe div 2);
CheckDebt(Cash, Debt, Assets, Date);
end; (* With ¥)
end; (* CalcExpenses *)

(***)

procedure KillKid(var Marker:KidHandle; var Number, NumSex:longint);

(* CALLED BY: CheckSexDeath *)
(* CALLS TO: none *)
(* GLOBALS: none *)
(* ACTION: This procedure is called when a kid has died. Marker™M Next points to the deceased, and *)
(* the kid is killed by deletion of his/her KidHandle in the list of kids. *)

*)

var DISPMARK : KidHandle;
LEN : integer;

in (* KillKid *)
ISPIMARK := Marker™ .Next;

MarkerM Next := Marker™.NextM Next;
DisposHandle(Pointer(DISPMARK));
LEN := StopAlert(277, nil);
Number := Number - 1;
NumSex := NumSex - 1;

end; (* KillKid *)

(***)
procedure CheckSexDeath(var List:KidHandle; var TotNum, NumSex:longint; Str:Str255;
Date:DateType; Gen:longint);

(* CALLED BY: CheckDeaths *)
(* CALLS TO: KillKid *)
(* GLOBALS: Date *)
(* ACTION: This procedure checks to see if any of the kids pointed to by List have died. *)
(* DEATHPERCENT of the kids die before age one, and OLDDEATHPERCENT die before age 20. *)
(* The oldest son automatically survives. *)

var TEMP, LEN : integer;
MARKER, DISPMARK : KidHandle;

begin (* CheckSexDeath *)
if NumSex <> 0 then begin

MARKER := List;
‘ while MARKERAM Next <> nil do begin
if (MARKERM Next™ Birth. Year = Date. Year) or (MARKERAM Next M. Birth.Year = Date.Year - 1)
and (MARKERA NextM Birth.Fall = not Date.Fall) and (not Date.Fall)) then begin
TEMP := abs(Random) div (32767 div 4);
if TEMP = 0 then begin

ParamText(Str, ", ", ");
KillKid(MARKER, TotNum, NumSex);
end else begin
MARKER := MARKERA Next;
end; (* If *)
end else begin

if Date.Year - MARKERAA. NextAM Birth. Year <= BEATDEATH then begin
TEMP := abs(Random) div (32767 div 10000);
if TEMP <= DEATHPERCENT then begin

ParamText(Str, “, ", ");
KillKid(MARKER, TotNum, NumSex);
end else begin
MARKER := MARKERAMA Next;

end; (* If *)
end else begin

MARKER := MARKERAA Next;
end; (* If *)

end; (* If *)
end; (* While *)
if (Str = 'daughters’) or (Gen = SECONDGEN) then begin
TEMP := abs(Random) div (32767 div 10000);
if (TEMP <= OLDDEATHPERCENT) and (Date.Year - List* Birth.Year <= BEATDEATH) then begin
. ParamText(Str, ", ", ");
DISPMARK := List;
List := List Next;
DisposHandle(Pointer(DISPMARK));
TotNum := TotNum - 1;
NumSex := NumSex - 1;
LEN := StopAlert(277, nil);
end; (* If *)
end; (* If *)
end; (* If *)
end; (* CheckSexDeath *)

(***)

procedure CheckDeaths(var Assets: AssetsType; Date:DateType);

(* CALLED BY: Demographics *)
(* CALLS TO: CheckSexDeath)
(* GLOBALS: Assets, Date *)
(* ACTION: This procedure checks to see if any boys or girls have died, and, if so, kills them. *)
begin (* CheckDeaths *)

with Assets.Children do begin

CheckSexDeath(Boys, Number, NumBoys, 'sons’, Date, Assets.Generation);
CheckSexDeath(Girls, Number, NumGirls, 'daughters’, Date, Assets.Generation);
end; (* With *)
d; (* CheckDeaths *)

(***)

procedure CheckWill(var Assets:AssetsType);

(* CALLED BY: AddChild, Demographics, MakeWill *)
(* CALLS TO: none *)
(* GLOBALS: Assets *)

(* ACTION: This procedure determines whether or not the will is in accord with traditional distribution. ~ *)
(* The oldest son gets at least 20% plus (80 times (1/n))%, where 'n' is the number of children. The rest of *)
(* the children must get at least 100/2n %. Nonkin, Otherkin, and charity must get at least 1%, and the *)
(* Church must get at least 5%. *)

var MINIMUM : WillArray;
I: integer;

begin (* CheckWill *)
with Assets.Will do begin
if Assets.Children. Number <> NONE then begin
MINIMUM([1] := 20 + (80 div Assets.Children.Number);
MINIMUM][2] := (100 div (2 * Assets.Children.Number)) * (Assets.Children.NumBoys - 1);
MINIMUM([3] := (100 div (2 * Assets.Children.Number)) * (Assets.Children.NumGirls);

end; (* If *)
end; (* While *)
if (Str = 'daughters”) or (Gen = SECONDGEN) then begin
TEMP := abs(Random) div (32767 div 10000);
if (TEMP <= OLDDEATHPERCENT) and (Date.Year - List* Birth.Year <= BEATDEATH) then begin
. ParamText(Str, ", ", ");
DISPMARK := List;
List := ListM Next;
DisposHandle(Pointer(DISPMARK));
TotNum := TotNum - 1;
NumSex := NumSex - 1;
LEN := StopAlert(277, nil);
end; (* If *)
end; (* If *)
end; (*If *)
end; (* CheckSexDeath *)

(***)

procedure CheckDeaths(var Assets: AssetsType; Date:DateType);

(* CALLED BY: Demographics)
(* CALLS TO: CheckSexDeath *)
(* GLOBALS: Assets, Date)
(* ACTION: This procedure checks to see if any boys or girls have died, and, if so, kills them. *)
begin (* CheckDeaths *)

with Assets.Children do begin

CheckSexDeath(Boys, Number, NumBoys, 'sons’, Date, Assets.Generation);
CheckSexDeath(Girls, Number, NumGirls, ‘daughters’, Date, Assets.Generation);
end; (* With *)
d; (* CheckDeaths *)

(FdRdRiok ok ook ook ook ool ok ol ook koo kb ko sk ook kool kool Aok o kb kok)

procedure CheckWill(var Assets: AssetsType);

(* CALLED BY: AddChild, Demographics, MakeWill *
(* CALLS TO: none *)
(* GLOBALS: Assets)

(* ACTION: This procedure determines whether or not the will is in accord with traditional distribution. ~ *)
(* The oldest son gets at least 20% plus (80 times (1/n))%, where 'n' is the number of children. The rest of *)
(*.the children must get at least 100/2n %. Nonkin, Otherkin, and charity must get at least 1%, and the *)
(* Church must get at least 5%. *)

var MINIMUM : WillArray;
I: integer;

begin (* CheckWill *)
with Assets.Will do begin
if Assets.Children.Number <> NONE then begin
MINIMUM[1] := 20 + (80 div Assets.Children.Number);
MINIMUM{[2} := (100 div (2 * Assets.Children.Number)) * (Assets.Children.NumBoys - 1);
MINIMUM(3] := (100 div (2 * Assets.Children.Number)) * (Assets.Children.NumGirls);

end else begin
MINIMUM([1] := NONE;
MINIMUM][2] := NONE;
MINIMUM][3] := NONE;

end; (* If *)
‘ if Assets.Children.Number = 1 then begin
MINIMUM[1] := 90;
end; (* If *¥)
MINIMUM[4] := KINMIN;
MINIMUMEYS] := NONKINMIN;
MINIMUM[6] := CHARMIN;
MINIMUM]7] := CHURCHMIN;
InAccord := true;
for I := 1 to NUMWILLCATEGORIES do begin
if Distribution[I] < MINIMUM(I] then begin
InAccord := false;
end; (* If *)
end; (* For *)
end; (* With *)
end; (* CheckWill ¥)

(***)

procedure AddChild(var TotNum, NumSex:longint; var List:.KidHandle; Date:DateType; var Assets:AssetsType;

PersMenu:MenuHandle);
(* CALLED BY: Demographics *)
(* CALLS TO: CheckWill *)
(* GLOBALS: Assets, Date *)
(* ACTION: This procedure inserts a child into the list of children. It increments the total number of *)
* children and the number of children of that sex. It allocates a handle to that child and inserts that handle *)
end of the list pointed to by LIST. *)
var NEWKID, MARKER : Kidhandle;
LEN : integer;
begin (* AddChild *)

TotNum := TotNum + 1;
NumSex := NumSex + 1;
NEWKID := Pointer(Newhandle(SizeOf(KidRec)));
NEWKIDM Birth := Date;
NEWKIDA Next := nil;
if List = nil then begin
List := NEWKID;
end else begin
MARKER := List;
while MARKERM Next <> nil do begin
MARKER := MARKERAM Next;
end; (* While *)
MARKERAM Next := NEWKID;
end; (* If *)
if (Assets.Will.Made) and (Assets.Will.InAccord) then begin
CheckWill(Assets);

if not Assets.Will.InAccord then begin
LEN := StopAlert(285, nil);

end; (* If *)

end; (* If *)

. if (Assets.Generation = SECONDGEN) then begin

Enableltem(PersMenu, PLANITEM);

end; (* If *)

end; (* AddChild *)

(***)

procedure DemoGraphics(var Assets: AssetsType; Date:DateType; PersMenu:MenuHandle);

(* CALLED BY: GoToNext, DoMarriage *)
(* CALLS TO: CheckDeaths, CheckWill, AddChild *)
(* GLOBALS: Assets, Date *)
(* ACTION: This procedure computes births and deaths. It increases the bride's age every year. If nochild *)
(* has been bormn, it sets the first birth for the next year. It then checks to see if any kids have *)
(* died. If a baby is due and the mother is not too old, a baby is then born and, if the first generation, *)
(* a new baby's birthdate is computed. In the second generation, FAMILY PLANNING is used to compute *)
(* the birthdates. *)
var TEMP, LEN : integer;

NUM : longint;
begin (* DemoGraphics *)

with Assets.Marriage do begin

if (Married) and (not Date.Fall) then begin
Bride.Age := Bride.Age + 1;
end; (* If *)

end; (* With *)
. with Assets.Children do begin

if (NextBirth.Year = NONE) and (Assets.Generation = FIRSTGEN) then begin
NextBirth.Year := Date.Year + 1;
NextBirth.Fall := Date.Fall,;
end else begin
NUM := Number;
CheckDeaths(Assets, Date);
if (Number < NUM) and (Assets.Will.Made) and (Assets. W111 InAccord) then begin
CheckWill(Assets);
if not Assets.Will.InAccord then begin
LEN := StopAlert(306, nil);
end; (*If *)
end; (* If *)
if (NextBirth.Year = Date. Year) and (NextBirth.Fall = Date.Fall) and
(Assets.Marriage.Bride.Age <= TOOOLDFORKIDS) then begin
TEMP := abs(Random) div (32767 div 2);
if (TEMP = 0) or ((Number = 0) and (Assets.Generation = FIRSTGEN)) then begin
ParamText('boy', ", ", ");
LEN := NoteAlert(276, nil);
AddChild(Number, NumBoys, Boys, Date, Assets, PersMenu);
if NumBoys = 1 then begin
DoPicture(FirstBorn);

end; (* If *)
end else begin
ParamText('girl', ", “, ");
LEN := NoteAlert(276, nil);
. AddChild(Number, NumGirls, Girls, Date, Assets, PersMenu);
end; (* If *)
if Assets.Generation = FIRSTGEN then begin
TEMP := abs(Random) div (32767 div 2);
NextBirth.Year := NextBirth.Year + TEMP + BIRTHOFFSET;
TEMP := abs(Random) div (32767 div 2);
case TEMP of
0 : NextBirth Fall := true;
1 : NextBirth.Fall ;= false;
end; (* Case *)
end; (* If *)
CheckWill(Assets);
end; (* If ¥)
end; (* If *)
end; (* With *)
end; (* Demographics *)

{$S Segl3}

(***)

procedure PutWillltems(WillDialog: DialogPtr; ItemNums, Distribution:WillArray);

(* CALLED BY: MakeWill, Main *
(* CALLS TO: NumSpecs *)
(* GLOBALS: none *)

* ACTION: This procedure puts the current distribution of the player's will into the Dialog box. *

var I, DUMMYTYPE, LEN : integer;
ITEMHDL : Handle;
DUMMYRECT : Rect;
AMT : Sur255;

begin (* PutWillltems *) .
for I:=1 to NUMWILLCATEGORIES do begin
GetDitem(WillDialog, ItemNums[I], DUMMYTYPE, ITEMHDL, DUMMYRECT);
NumSpecs(Distribution[I], LEN, AMT);
SetIText(ITEMHDL, AMT);
end; (* For *)
end; (* PutWillltems *)

(st ok ok koo ok ook ko ook kool dok ok ok ok koo koo koo ook ok sk ok ok ok

procedure DisCancel (TheDialog: DialogPtr);

(* CALLED BY: MakeWill *)
(* CALLS TO: none *)
(* GLOBALS: none *)
(* ACTION: This procedure cancels the CANCEL button in TheDialog. *)

var DUMMYTYPE : integer;

ITEMHDL : Handle;
DUMMYRECT : Rect;

gin (* DisCancel *)

GetDItem(TheDialog, Cancel, DUMMYTYPE, ITEMHDL, DUMMYRECT);

HiliteControl(PointerITEMHDL), BTNINACTIVE);

end; (* DisCancel ¥)

(***)

procedure MakeWill(var Assets:AssetsType; InTestate:boolean);

(* CALLED BY: SwitchGen, DoCommand

(* CALLS TO: PutWillltems, DisCancel, SellText, ConvertNum CheckWill

(* GLOBALS: Assets

(* ACTION: This procedure is called when the player wants to make out a will. It displays the will and,
(* if the player is about to die, disables the CANCEL button. It then reads in the new percentages. It
(* determines whether or not the will is in accord with traditional practice and, if not, gives the player

(* a chance to redo it. It then stores the new will.

var WILLDIALOG : DialogPtr;

CONVOK, GOOD, OLDMADE : boolean;
TOTAL, TEMP : longint;

ITEM, LEN, I : integer;

NEWAMT, STR : Su255;

ITEMNUMS, OLDDIST : WillArmray;

begin (* MakeWill *)

ITEMNUMS[1] := OLDSONITEM,;
ITEMNUMS[2] := OTHERITEM,;
ITEMNUMS([3] := DAUGHTITEM,;
ITEMNUMS[4] := KINITEM,;
ITEMNUMS(5] := NONKINITEM;
ITEMNUMSI6] := CHARITYITEM;
ITEMNUMS(7] := CHURCHITEM;
WILLDIALOG := GetNewDialog(272, nil, Pointer(-1));
with Assets.Will do begin
OLDDIST := Distribution;
OLDMADE := Made;
PutWillltems(WILLDIALOG, ITEMNUMS, Distribution);
if InTestate then begin
DisCancel(WILLDIALOG);
end; (* If *)
repeat
CONVOK := true;
SellText(WILLDIALOG, ITEMNUMS[1], 0, 255);
DlogManager(ITEM);
if ITEM = OK then begin

GetDText(WILLDIALOG, ITEMNUMS[1], NEWAMT);

ConvertNum(NEWAMT, Distribution{1], CONVOK);
TOTAL := Distribution{1];
for I := 2 to NUMWILLCATEGORIES do begin

*)
)
)
*)
)
*)
*)

GetDText(WILLDIALOG, ItemNums{I], NEWAMT);
GOOD := true;

ConvertNum(NEWAMT, Distribution[I], GOOD);

if not GOOD then begin

. CONVOK := false;
end else begin

TOTAL := TOTAL + Distribution[I];
end; (* If *)
end; (* For *)
if not CONVOK then begin
LEN := StopAlert(256, nil);
end else begin
if TOTAL > 100 then begin
CONVOK := false;
LEN := StopAlert(281, nil);
end else begin
CheckWill(Assets);
if not InAccord then begin
LEN := CautionAlert(283, nil);
if (LEN = Cancel) then begin
CONVOK := false;
end else begin
Made := true;
end; (* If *)
end else begin
LEN := StopAlert(319, nil);
Made := true;
end; (*If *)
end; (* If *)
end; (* If *)
. end else begin
Distribution := OLDDIST;
Made := OLDMADE,;
CheckWill(Assets);
end; (* If *)
until CONVOK;
DisposDialog(WILLDIALOG);
end; (* With *)
end; (* MakeWill *)

{$S Seg4)

(***)

procedure SwitchGen(var Assets:AssetsType; var Done:boolean; PersMenu:MenuHandle; var Date:Date Type;
Third:boolean; var Cortfile: Sur255);

(* CALLED BY: EndSimulation, GoToNext, Main *)
(* CALLS TO: MakeWill, NextMarriage *)
(* GLOBALS: CorrRefNum, Done, Assets, Date, Corrfile *)
(* ACTION: This procedure is used to switch generations. If the player had no sons, then the *)
(* simulation ends. Otherwise, if no will has been made, it forces the player to make a will. It then *)
(* proceeds to distribute the player's assets to the oldest son according to the latest *)

(* will. Also, all the player's personal aspects, such as marriage and kids, are reset for the son.

var LEN, I, NUM, ERR, DUMMYINT : integer;
MARKER, DISPMARK : KidHandle;
PERCENT, VAL, SIZE : longint;
RMARKER : RenteHandle;
OMARKER, ODISPMARK : OfficeHandle;
STOP : boolean;

begin (* SwitchGen *)
with Assets do begin
if Children.NumBoys = NONE then begin
LEN := StopAlert(279, nil);
Done := true;
end else begin
if not Will. Made then begin
LEN := NoteAlert(282, nil);
MakeWill(Assets, true);
end; (* If *)
if not Third then begin
LEN := StopAlert(278, nil);
(*end; If™)
Age := Date.Year - Children.Boys**.Birth.Year;
if (Age < STARTAGE) and (not Third) then begin
LEN := StopAlert(280, nil);
Date.Year := Date.Year + (STARTAGE - Age);
Age := STARTAGE;
end; (* If *)
Generation := SECONDGEN;
Marriage.Married := false;
. Marriage.Available.IsAvail := true;
Marriage Failures := NONE;
Marriage.MarrBelow := false;
MARKER := Children.Boys;
for I := 1 to Children.NumBoys do begin
DISPMARK := MARKER;
MARKER := MARKERA Next;
DisposHandle(Pointer(DISPMARK));
end; (* For *)
MARKER := Children.Girls;
for I := 1 to Children Num@Girls do begin
DISPMARK := MARKER;
MARKER := MARKERA" Next;
DisposHandle(Pointer(DISPMARK));
end; (* For ¥)
Children.Number := 0;
Children.NumBoys := 0;
Children.NumGirls := 0;
Children.Boys := nil;
Children.Girls := nil;
Children NextBirth.Year := 0;
Enableltem(PersMenu, MARRITEM);

W)

Disableltem(PersMenu, PLANITEM);
PERCENT := Will.Distribution[1];
Will.Made := false;
for I := 1 to NUMWILLCATEGORIES do begin
Will.Distribution{I} := NONE;
end; (* For *)
Will. WasInAccord := Will.InAccord;
Cash := Cash - Marriage.Bride.Dowry;
if Cash < 0 then begin
Cash :=(;
end; (* If *)
Cash := ((Cash * PERCENT) div 100);
Land.Inherited := (((Land.Inherited + Land.Bought) * PERCENT) div 100);
Land.Bought := NONE;
Land.Seigneurie := ((Land.Seigneurie * PERCENT) div 100);
Land.Vicomte := ((Land.Vicomte * PERCENT) div 100);
Land.Marquisat := ((Land.Marquisat * PERCENT) div 100);
Grain := ((Grain * PERCENT) div 100);
Rente.Owe = ((Rente.Owe * PERCENT) div 100);
Rente.SoldVal := ((Rente.SoldVal * PERCENT) div 100);
Rente.GotThisYear := NONE;
RMARKER := Rente.IndivRentes;
NUM := NONE;
while RMARKER <> nil do begin
NUM :=NUM + I;
RMARKER := RMARKERA Next;
end; (* While ¥)
NUM := NUM - ((NUM * PERCENT) div 100);
for I := 1 to NUM do begin
RMARKER := Rente.IndivRentes;
Rente.IndivRentes := Rente.IndivRentes™ Next;
DisposHandle(Pointer(RMARKERY));
end; (* For *)
VAL := ((Office.TotPurchase * PERCENT) div 100);
Office.TotPurchase := NONE;
Office Number := NONE;
Office.Salary := NONE;
OMARKER := Office.OfficeList;
STOP := false;
if OMARKER <> nil then begin
repeat
OMARKERAA Inherited := true;
Office.TotPurchase := Office.TotPurchase + OMARKERM. AmtPaid;
Office.Number := Office. Number + 1;
Office.Salary := Office.Salary + OMARKERAA Salary;
if Office.TotPurchse < VAL then begin
OMARKER := OMARKERA Next;
end else begin
STOP := true;
end; (* If ¥)
until (OMARKER = nil) or (STOP);
if OMARKER <> nil then begin

while OMARKERA . Next <> nil do begin
ODISPMARK := OMARKERAA Next;
OMARKERAM Next := OMARKERAM NextM Next;
DisposHandle(Pointer(ODISPMARK));

. end; (* While *)
end; (* If *)

end; (* If ¥)
ERR := FSClose (CorrRefNum);
Cortfile := 'SecondMail.1.dat’;
ERR := FSOpen(CORRFILE, 0, CorrRefNum);
SIZE := SizeOf(integer);
ERR := FSRead(CorrRefNum, SIZE, @ DUMMYINT);
Assets.Mail.Year := NONE;
SIZE := SizeOf(MailRec),
with Assets do begin
while (Mail. Year < Date.Year) or ((Mail. Year = Date.Year) and (Mail.Fall = Date.Fall)) or
((Date.Fall) and (Mail.Year = Date.Year)) do begin
ERR := FSRead(CorrRefNum, SIZE, @Mail);
end; (* While *)
end; (* With *)
TooAmbitious := NONE;
PresFallen := false;
Lease. NumBought := NONE;
Marriage.Failures := NONE;
Protector.YearFail := NONE;
Protector.NumFailures := NONE;
Protector. ThisProctFail := NONE;
NextMarriage(Assets, Date);
end; (*If*)
end; (* If *)
end; (* With *)
end; (* SwitchGen *)

(***)

procedure DispLetter (Letter:Str255; CorrWindow: WindowPtr);

(* CALLED BY: NextCorr *)
(* CALLS TO: none *)
(* GLOBALS: none *)
(* ACTION: This procedure displays a window for correspondence. *)

var ASTRING : StrArray;
TEXTRECT : Rect;
ITEM, I : integer;
CONTDLOG : DialogPtr;

begin (* DispLetter *)
SetPort(CorrWindow);
PLSetWrPort(CorrWindow);
SetRect(TEXTRECT, 10, 15, 370, 200);
for I := 1 to Length(Letter) do begin
ASTRINGI{I] := Letter{I];

end; (* For *)

TextBox(@ASTRING, Length(Letter), TEXTRECT, TEJustLeft);
{ STRHDL := NewString(Letter);

TextBox(Pointer(STRHDLA), LEN, TEXTRECT, TEJustLeft);
. DisposHandle(Pointer(STRHDL)); }

MoveTo(0, 200);

writeln(’ %

writeln;

writeln("This is the only time you will see this letter.";

writeln("Are you ready to go on?’);

CONTDLOG := GetNewDialog(256, nil, Pointer(-1));

DlogManager(ITEM);

DisposDialog(CONTDLOG);
end; (* DispLetter *)

(***)

procedure NextCorr(var Assets:AssetsType; Date:DateType; CorrRefNum:integer);

(* CALLED BY: GoToNext *)
(* CALLS TO: DisplayAssets, DispLetter *)
(* GLOBALS: ConrRefNum, Assets, Date, Corrfile *)
(* ACTION: This procedure reads the correspondence for a given date and protector. Generic denotes mail *)
(* for all. Rente value of 2 provides mail for followers of M. Colbert and the Duke of Burgundy. *)

var CORRWINDOW : WindowPtr;
TITLE : Stu255;
WREC : WindowRecord;
ERR, I, DUMMYINT : integer;
SIZE : longint;
ACTIVE : boolean;

begin (* NextCorr *)
SIZE := SizeOf(MailRec);
ACTIVE := false;

with Assets, Assets.Mail do begin
ERR := NONE;

If Date.Year = 1656 then begin
ERR := ESClose (CorrRefNum);
Corrfile := FirstMail.2.dat';
ERR := FSOpen(CORRFILE, 0, CorrRefNum);
SIZE := SizeOf(integer);
ERR := FSRead(CorrRefNum, SIZE, @ DUMMYINT);
Assets.Mail.Year := NONE;
SIZE := SizeOf(MailRec);
with Assets do begin
while (Mail.Year < Date.Year) or (Mail.Year = Date.Year) and (Mail.Fall = Date.Fall)) or
((Date.Fall) and (Mail.Year = Date.Year)) do begin
ERR := FSRead(CorrRefNum, SIZE, @Mail);
end; (* While *)
end; (* With *)

end; (*If*)

If Date.Year = 1695 then begin

ERR := FSClose (CorrRefNum);
Corrfile := 'SecondMail.2.dat';

. ERR := FSOpen(CORRFILE, 0, CorrRefNum);
SIZE := SizeOf(integer);
ERR := FSRead(CorrRefNum, SIZE, @ DUMMYINT);
Assets.Mail.Year := NONE;
SIZE := SizeOf(MailRec);
with Assets do begin .

while (Mail.Year < Date.Year) or (Mail.Year = Date.Year) and (Mail.Fall = Date.Fall)) or
((Date.Fall) and (Mail.Year = Date.Year)) do begin
ERR := FSRead(CorrRefNum, SIZE, @Mail);
end; (* While *)
end; (* With *)
end; (*If ¥)

while (Date.Year = Year) and (Date.Fall = Fall) and (Contact <> Generic) and
(Contact <> Protector.Name) and (ERR = NONE) do begin
ERR := FSRead(CorrRefNum, SIZE, @Mail);
end; (* While Mail Record not Current *)

if ((Date.Year = Year) and (Date.Fall = Fall) and ((Contact = Generic) or (Contact = Protector.Name)))

or ((Rente.CostDenier = 2) and ((Protector Name = Colbert)
or (Protector.Name = DukeOfBurgundy))) then begin
CORRWINDOW := GetNewWindow(257, @ WREC, Pointer(-1));
TITLE := 'Correspondence’;
SetWTitle(CORRWINDOW, TITLE);
ShowWindow(CORRWINDOW);
. ACTIVE := true;

DisplayAssets(Assets, Date);

end; (* If ¥)

while (Date.Year = Year) and (Date.Fall = Fall) and (ERR = NONE) do begin
if (Contact = Generic) or (Contact = Protector.Name) then begin
Assets.Cash := Assets.Cash + Cash;
if Cash <> NONE then begin
DisplayAssets(Assets, Date);
end; (* If ¥)
DispLetter(Content, CORRWINDOW);
end; (* If *)
ERR := FSRead(CorrRefNum, SIZE, @Mail);
end; (* While *)

if (Rente.CostDenier = 2)

and ((Protector.Name = Colbert) or (Protector.Name = DukeOfBurgundy)) then begin
TITLE := "Your sources inform you that the King is selling Rentes at a discounted rate.",;
DispLetter(TITLE, CORRWINDOW);
end; (* If *)
end; (* With *)
if ACTIVE then begin

CloseWindow(CORRWINDOW);
end; (* If *)
end; (* NextCorr *)

**)

ocedure NextProct (var Assets: AssetsType; Date:DateType);

(* CALLED BY: GoToNext

(* CALLS TO: Bankrupt

(* GLOBALS: Assets, Date

(* ACTION: This procedure lists the dates of death or disfavor for each protector; it bankrupts followers of

(* Fouquet and Particelli in their last year.
var LEN : integer;

begin (* NextProct *)
with Date, Assets.Protector do begin

Assets.ChoseProct := false;

if ((Year = 1640) and (Name = Cornuel)) or
((Year = 1648) and (Name = Particelli)) or
((Year = 1661) and (Name = Mazarin)) or
((Year = 1661) and (Name = Fouquet) and (Fall)) or
((Year = 1684) and (Name = Colbert)) or
((Year = 1686) and (Name = Conde)) or
((Year = 1711) and (Name = GrandDauphin)) or
((Year = 1712) and (Name = DukeOfBurgundy)) then begin

if Name = Particelli then begin {Bankruptcy routines}
LEN := StopAlert(315, nil);
Bankrupt(Assets, Date, false, true);

. end; (* If *)

if Name = Fouquet then begin
LEN := StopAlert(313, nil);
Bankrupt(Assets, Date, false, true);
end; (* If *)

if (Name = Fouquet) or (Name = Particelli) or (Name = Cornuel) or
(Name = Mazarin) or (Name = Maintenon) or (Name = GrandDauphin)
or (Name = DukeofBurgundy) then begin
LEN := StopAlert(314, nil); {Assigns default of NoProtector)
Name := NoProtector;
ThisProctFail := NONE;
end; (* If *)

if Name = Conde then begin { Assigns new protector for special coteries}
Name := GrandDauphin;
ThisProctFail := None;
Assets.ChoseProct := true;
Paramtext('Grand Dauphin',",",");
LEN := StopAlert(338, nil);
end; (*If*)

*)
)
*)
)
*)

if Name = Colbert then begin
Name := DukeOfBurgundy;
ThisProctFail := None;
. Assets.ChoseProct := true;
Paramtext('Duke of Burgundy', ",",");
LEN := StopAlert(338, nil);
end; (*If*%)

end; (* If *)
end; (* With *)
end; (* NextProct *)

(***)

procedure EndSimulation(var Assets: AssetsType; var Done:Boolean; PersMenu:MenuHandle; var Date:DateType);

(* CALLED BY: GoToNext *)
(* CALLS TO: SwitchGen, NumSpecs, DisplayAssets *
(* GLOBALS: Done, Assets, Date, Corrfile *)
(* ACTION: This procedure is called in 1715 when the simulation is about to end. It moves the player *)
(* into the third generation and recounts the player's achievements in the simulation. *

var LEN, count : integer;
PRESSTR : Str255;

begin (* EndSimulation *)
SwitchGen(Assets, Done, PersMenu, Date, true, Corrfile);

. DisplayAssets(Assets, Date);

if not Done then begin
NumSpecs(Assets.Prestige, LEN, PRESSTR);
ParamText(PRESSTR, ", ", ™);
LEN := Alert(299, nil);
Done := true;
Assets.Won := true;

end; (* If *)

end; (* EndSimulation *)

{$S Seg7})

(***)

procedure GoToNext(var Assets: AssetsType; var Date:DateType; var Icons:IconType;
FinMenu, PersMenu:MenuHandle; var Done:boolean; WatchHdl:CursHandle; CorrRefNum:integer);

(* CALLED BY: DoCommand, Main *)
(* CALLS TO: CalcHarvest, NextLand, NextTextiles, NextRente, NextLease, NextOffice, NextMarriage, *)
Demographics, En_Disable, NextCorr, NextProct, CalcExpenses, SwitchGen, EndSimulation *)
(* GLOBALS: Icons, CorrRefNum, Done, Assets, Date, WatchHdl, Corrfile *)

(* ACTION: This procedure is called to advance the player to the next half-year period. It changes the *)
(* season. If it is Fall, the local and regional harvests are computed. If it is Spring, the year is advanced. *)
(* Then the statistics for all the various financial matters are updated and the appropriate menu items)

‘* are enabled and disabled. *)
ar LEN : integer;
PRESSTR : Str255;

begin (* GoToNext *)

Date.Fall := not Date.Fall;

if Date.Fall then begin
CalcHarvest(Assets.Land.Local);
CalcHarvest(Assets.Land.Regional);

end else begin
Date.Year := Date.Year + 1;
Assets.Age := Assets.Age + 1;

end; (* If *)

if (Date.Year = 1641) and (Assets.Lease.Hanged) then begin
Done := true;
LEN := Alert(269, nil);

end else begin
NextLand(Assets, Date);
NextTextiles(Assets, Date);
NextRente(Assets, Date);
NextLease(Assets, Date, WatchHdl);
NextOffice(Assets, Date);
if (not Assets.Marriage Married) then begin

Hlock(Pointer(WatchHdl));

. SetCursor(WatchHd1AN);
Hunlock(Pointer(WatchHdl));
NextMarriage(Assets, Date);
SetCursor(Arrow);

end else begin
Demographics(Assets, Date, PersMenu);

end; (* If *)

if Icons.IconWasSelected then begin
HiliteMenu(0),
En_Disable(Date, FinMenu, Icons, Assets);

end; (* If *)

if (Date.Year = DEATHYEAR) and (not Date.Fall) then begin
SwitchGen(Assets, Done, PersMenu, Date, false, Corrfile);

end; (* If *)

NextCorr(Assets, Date, CorrRefNum);

NextProct(Assets, Date);

CalcExpenses(Assets, Date);

if (Date.Year = ENDYEAR) and (Date.Fall) then begin
EndSimulation(Assets, Done, PersMenu, Date);

end; (* If *)

end; (* If *)
end; (* GoToNext *)

{$S Segl6)

(***)

procedure DispWealth (var Assets:AssetsType; InfoWindow:WindowPtr; Date:DateType);

‘ALLED BY: DisplayStatus, Main
(* CALLS TO: none
(* GLOBALS: Assets, Date
(* ACTION: This procedure displays a summary of the player's financial position. It states the player's
(* name and various financial attributes such as cash, grain, land value, salaries, cost of living, etc.

var TITLE : Str255;
RENTEVAL : longint;

begin (* DispWealth *)
case Assets.Generation of
FIRSTGEN : TITLE := 'Denis Marin';
SECONDGEN : TITLE := 'Jean-Francois Marin';
end; (* Case *)
TITLE := Concat(Financial Statement for ', TITLE);
SetWTitle(InfoWindow, TITLE);
ShowWindow(InfoWindow);
with Assets do begin
MoveTo(0,15);
if (Cash > 0) or (Debt = 0) then begin
writeln(" Cash: £',Cash:0,.";
end else begin
writeln(’ Debt: £',Debt:0,".";
end; (* If *)
writeln('Land: £'.Land.Value:0,.";

. writeln('Grain: ',Grain:0," quintels at £'Land.Price:0,’ per quintel.);
writeln(Purchase value of offices: £',0ffice.TotPurchase:0,.");
writeln('Invested in textiles: £',Textiles:0,".";
writeln(Total value of personal Rentes sold: £'Rente.SoldVal:0,.");
RENTEVAL := CalcRenteVal(Rente);
writeln('Total value of Rentes purchased from the King: £', RENTEVAL:0,.";
writeln;
writeln('Annual salaries from offices: £',Office.Salary:0,.");
if not Date.Fall then begin

writeln('Income from Leases: £'Lease.GotThisYear:0,.";
end; (* If *)
writeln('Income from Rentes: £',Rente.GotThisYear div 2:0,".");
writeln;
if (not Date Fall) and (not Noble) then begin

writeln('Paid this year in taxes: £',Taxes:0,.");
end; (* If *)
writeln('’Annual Cost of living: £',CostOfLiving:0,".";
writeln('Annual payment on personal Rentes: £',Rente.Owe:0,.");
if Date.Fall then begin

writeln;
end; (* If %)
writeIn('At today”s prices, these assets give you a total value');

*)
*)
*)
*)
*)

write('of £,Assets.TotalVal:0,.";
end; (* With *)
end; (* DispWealth *)

‘***)

roceaure DispSex(Str:Str255; Number:longint; List:KidHandle; Date:DateType);

(* CALLED BY: DisplayPersonal *)
(* CALLS TO: none *)
(* GLOBALS: Date *)
(* ACTION: This procedure displays the number of children of a sex and their ages. *)

var 1:integer;

begin (* DispSex *)
if Number = 1 then begin
if Date.Year <> List™ Birth. Year then begin
writeln("You have one ',Date.Year - List*.Birth. Year:0,' year old ',Str,".");
end else begin
writeln("You have one new-born ', Str,.");
end; (* If *)
end else begin
write("You have ',Number:0,' ',Str,’s, aged *);
for I := 1 to Number do begin
if I <> Number then begin
write(Date.Year - ListA Birth. Year:0);
if Number <> 2 then begin
write(',);
end else begin

write(' ');
. end; (* If *)
end else begin
writeln('and ‘,Date.Year - List* Birth.Year:0,'.");

end; (* If *)

List := List*.Next;

end; (* For *)
end; (*If *)
end; (* DispSex *)

(***)

procedure DispPersonal(var Assets: AssetsType; InfoWindow: WindowPtr; Date:DateType);

(* CALLED BY: DispStatus *)
(* CALLS TO: DispSex *)
(* GLOBALS: Assets, Date *)
(* ACTION: This procedure summarizes the player's personal status. It lists the wife's name, her age, and *)
(* her father's name. It tells how many children he has and their ages. It then displays the *)
(* distribution of the player's will and whether or not it is in accord with tradition. It tells *)
(* the player status on nobility, and status on the current protector. *)

var TITLE : Str255:

begin (* DispPersonal *)
case Assets.Generation of
FIRSTGEN : TITLE := 'Denis Marin';
SECONDGEN : TITLE := 'Jean-Francois Marin';

end; (* Case *)

. TITLE := Concat(Personal information about ", TITLE);
SetWTitle(InfoWindow, TITLE),
ShowWindow(InfoWindow);

MoveTo(0, 15);
with Assets.Marriage do begin
if Married then begin
writeln(' You are married to ', Bride.Name, .");
writeln('She is ', Bride.Age:0, ' years old and had a dowry worth £ ,Bride.Dowry:0,".";
writeln("Her father is ",Bride.Father,'.");
writeln;
end else begin
writeln(" You are not married.");
end; (* If *)
end; (* With *)
with Assets.Children do begin
if NumBoys > NONE then begin
DispSex(‘'son’, NumBoys, Boys, Date);
end; (* If *)
if NumGirls > NONE then begin
DispSex('daughter’, NumGirls, Girls, Date);
end; (* If ¥)
end; (* With *)
with Assets.Will do begin
if Made then begin
writeln;
. writeln("You have distributed your estate as follows:");
writeln;
writeln("Oldest son: ', Distribution[1]:0,'%.");
writeln(Other sons: ',Distribution{2]:0,'%. Non-kin: ',Distribution[5]:0,'%.",
! Daughters: ',Distribution[3]:0,'%.";
writeln('Charity: ‘,Distribution[6]:0,'%. Other kin: ‘,Distribution[4]:0,'%.',
! The Church: 'Distribution[7]:0,'%.");
writeln;
write('This distribution is *);
if not InAccord then begin
write('not);
end; (* If *)
writeln('in accord with regular practice.”);
end else begin
writeln;
writeln("You have not yet made up a will.");
end; (* If *)
end; (* With *)
writeln;
if Assets.Noble then begin
write('You have achieved nobility');
end else begin

write("You are not of the nobility");

end; (* If *)

if (Assets.Protector.Name = Generic) or (Assets.Protector.Name = NoProtector) then begin
write(" and you have no protector.');

end else begin

. write (.);
writeln;

write ("Your protector is ');
case Assets.Protector.Name of
Cornuel : write('M. Cornuel');
Mazarin : write("Cardinal Mazarin');
Particelli : write("M. Particelli");
Conde : write('Condé');
Fouquet : write('M. Fouquet');
Colbert : write('M. Colbert');
DukeOfBurgundy : write('The Duke of Burgundy');
Maintenon : write(Mme. de Maintenon');
GrandDauphin : write('The Grand Dauphin’);
end; (* Case *)
write('.");
end; (* If *)
end; (* DispPersonal *)

{$S Seg12}

(***)

procedure HarvValue (Harvest:HarvestType; var Value:Str255);

(* CALLED BY: DispLand, Main *)
(* CALLS TO: none *)
GLOBALS: none *)
ACTION: This procedure returns in Value the string representing the yield value of the harvest. *)
begin (* HarvValue *)
case Harvest of

Blight : Value := 'blighted’;
Poor : Value := 'poor’;
Good : Value := 'good’;
Excellent : Value :='excellent’;
end; (* Case *)
end; (* HarvValue *)

(***)

procedure DispLand(var Assets: AssetsType; InfoWindow: WindowPtr; Date:DateType);

(* CALLED BY: DisplayStatus *)
(* CALLS TO: HarvValue *)
(* GLOBALS: Assets, Date *)
(* ACTION: This procedure displays the status of the various attributes related to the land. It tells how the *)
(* harvests went and, during the fall, how much grain was lost. It then tells what the player received *)
(* during the Fall from managing the land and tells how the land is currently being allocated. Finally, it ~ *)
(* tells the player how land is distributed among miscellaneous and titled lands. *)

var VAL : Str255;

AMOUNT : longint;

gin (* DispLand *)

etW Title(Infowindow, 'Land Status”);
ShowWindow(InfoWindow);
with Assets.Land do begin

AMOUNT := Bought + Inherited + Seigneurie + Vicomte + Marquisat;
MoveTo(0,15);

HarvValue(Local, VAL);

writeln(' This fall the Local harvest was ',VAL,', and the Regional’);
HarvValue(Regional, VAL);

writeln(harvest was ", VAL,".");

writeln('Grain is going for £',Price:0,’ per quintel, and landowners receive:");

writeln(' Renting in kind: ' KINDRENT:0,' quintels per hectare, worth £, PRICE * KINDRENT:0,.");
writeln(' Renting for cash: £ RENTVALUE:0, per hectare.");

writeln(ShareCropping: ',Yield:0, quintels per hectare, worth £, (PRICE * Yield):0, .";

writeln("You are now managing your ,AMOUNT:0," hectares as follows:");
writeln(Rented in kind: ' Kind:0,'%. Yield ', KINDRENT * ((Kind * AMOUNT) div 100):0,’ quintels, worth £,
PRICE * KINDRENT * ((Kind * AMOUNT) div 100):0,.";
writeln(Rented for cash: "Rent:0,'%. Income this year £, RENTVALUE * ((Rent * AMOUNT) div 100):0,.%;
writeln(Sharecropping: ',ShareCrop:0,'%. Yield ',
(Yield * ((Sharecrop * AMOUNT) div 100)):0,' quintels, worth £',
((PRICE * Yield)) * ((Sharecrop * AMOUNT) div 100):0,.";

if Assets.Grain > 400 then
write('Damp storage ruined ', Lost:0," quintels of grain, ')

else if Assets.Grain > 200 then
write('Fungus and rot ruined ', Lost:0,’ quintels of grain, ")

else write('Rats destroyed ', Lost:0,' quintels of grain, ");
write('worth £', Lost * PRICE:0,.");
writeln;
writeln("Your ', AMOUNT:0, hectares are distributed as follows:");
writeln(Miscellaneous: ‘Bought + Inherited:0, hectares.");
writeln(' Seigneuries: ',Seigneurie:0," hectares.');

writeln(Vicomté: " Vicomte:0, hectares.");
write(' Marquisat: ', Marquisat:0," hectares.");
end; (* With *)

end; (* DispLand *)

(***)

procedure DispText(var Assets:AssetsType; InfoWindow:WindowPir);

(* CALLED BY: DisplayStatus)
(* CALLS TO: none *)
(* GLOBALS: Assets, Date *)
(* ACTION: This procedure tells the player about the return on money invested in textiles. The return *)

(* is based on the regional harvest, with better harvests yielding better returns.

var RETURN : integer;

gin (* DispText *)
SetWTide(InfoWindow, Textile Status');
ShowWindow(InfoWindow);
MoveTo(0,60);
if Date.Fall then begin

case Assets.Land.Regional of
Blight : RETURN := BTEXT;
Poor : RETURN := PTEXT;
Good : RETURN := GTEXT;
Excellent : RETURN := ETEXT;
end; (* Case *)
writeln(' You have £',Assets.Textiles:0,' invested in textiles');
writeln(' for the coming year.");
writeln;
writeln(' Due to peasant demand, investors received their');
write(" initial investment ');
if Assets.Land.Regional = Blight then begin
write('less ');
end else begin
write('plus);
end; (* If ¥)
writeIn(RETURN:Q, '%";
writeln;
writeln(' {To change the amount you have invested in textiles, *);
writeln(' choose BUY on the Investments menu and enter ');
writeln(' a new sum. The new amount will be invested,’);
writeln(" the old amount discarded.}")

end else begin

if Assets.Textiles <> NONE then begin
writeln(You have £',Assets. Textiles:0, invested in textiles’);
writeln(" for this year.");

end else begin
writeln(' You did not invest in textiles during the Fall.");

end; (* If *)

end; (* If *)

end; (* DispText *)

*)

(***)

procedure DispLease(var Assets: AssetsType; InfoWIndow:WindowPtr; Date:DateType);

(* CALLED BY: DisplayStatus
(* CALLS TO: none
(* GLOBALS: Assets, Date

(* ACTION: This procedure displays the status of the leases. It tells the player what lease is owned
(* and how much was returned from an investment in the previous year's lease, if purchased.

begin (* DispLease *)

SetWTitle(InfoWindow, Lease Status");

ShowWindow(InfoWindow);
with Assets.Lease do begin
MoveTo(0, 30);
if not Bought then begin
writeln(' You don"t own any leases.");
. end else begin
write(' You own a one-year lease to collect the');
if not Date.Fall then begin
if Date.Year = 1639 then begin
write (' new');
end else begin
end; (*If*)
end; (* If *);
writeln;
writeln(Title,".");
end; (* If *)
if (not Date.Fall) and (GotThisYear <> 0) then begin
writeln;
writeln('This past year you collected ',GotThisYear:0,' livres on a lease’);
writeln('which you bought for ',01dOffer:0," livres.");
end; (* If *)
end; (* With *)
end; (* DispLease *)

(***)

procedure DispOffice (var Assets:AssetsType; InfoWindow:WindowPtr);

(* CALLED BY: DisplayStatus *)

(* CALLS TO: none)

* GLOBALS: Assets, Date *)

q ACTION: This procedure displays the status of the offices. From 1642 to 1652 the market was glutted, *)

* so offices were discounted. Also, the King at various times charges a fee on the offices, or elects *)

(* to raise the salaries while charging a fee at the same time. The procedure then tells how many offices *)

(* the player owns and the player's total salary.)
begin (* DispOffice *)

SetWTitle(InfoWindow, 'Office Status’);
ShowWindow(InfoWindow);
with Assets.Office do begin
MoveTo(0,30);
if (Date.Year >= 1642) and (Date.Year <= 1652) then begin
writeln(' The market for offices has been glutted!!");
writeIn('As a result, ALL offices are worth 20% LESS than their');
writeln;
end; (* If ¥)
if Levied then begin
writeln(" The King has just realized that you purchased your offices’);
writeln('for LESS than their TRUE value!!!');
writeln('To correct this oversight, you must pay 20% of the purchase');
writeln('prices of your offices to the crown.");
writeln;

end; (* If *)
if Raise then begin
writeln(' The King has graciously raised all office salaries by ',RAISEPAY:0,'%.");
writeln('In compensation for the raise, however, he has levied a');
writeln(one-time payment of ,RAISELEVY:0,' times the amount of the raise.’);
. writeln;
end; (* If *)
if Number = 0 then begin
writeln(" You don"t own any offices.");
end else begin
if Number = 1 then begin
writeln(' You own one office and are paid ',Salary:0,' livres for');
writeln('it each Spring.");
end else begin
writeln(' You own ',Number:0, offices and are paid ', Salary:0,’ livres');
writeln('them each Spring.";
end; (* If *)
end; (* If *)
writeln;
writeln;
writeIn('{ To see which offices you own, select SELL from the’);
writeln(' INVESTMENTS menu. This will give you a listing of);
writeln(’ your offices. If you don"t wish to sell any');
writeln(’ offices, just click on the CANCEL button when you’);
writeln(' are done reviewing the list.}');
end; (* With *)
end; (* DispOffice *)

(***)

‘rocedure DispRente (var Assets:AssetsType; InfoWindow: WindowPtr; Date:DateType);

(* CALLED BY: DisplayStatus *)
(* CALLS TO: none *)
(* GLOBALS: Assets, Date *)
(* ACTION: This procedure tells the player about both the King's Rentes that are owned and the personal *)
(* Rentes were sold to make money. In 1660 the King devalued all Rentes to denier 18 and in 1664 *
(* made all Rentes purchased sonce 1656 void. The procedure then tells the player how many of the *)
(* four quarterly payments the King actually made. It then tells the player how much was made in Rentes *)
(* in the past interval andhow much is owed on his personal Rentes. *)
begin (* DispRente *)

SetWTitle(InfoWIndow, Rente Status');
SHowWIndow(InfoWindow);
with Assets.Rente do begin
MoveTo(0,30);
if (Date.Year = 1660) and (not Date.Fall) then begin
writeln(All Rentes were reduced from denier 14 to denier 18 by');
writeln(' order of the King!!!");
writeln;
end; (* If *)
if (Date.Year = 1664) and (not Date.Fall) then begin

writeln(" The King has decreed that all Rentes purchased since');
writeln(' 1656 are VOID!!!");
writeln;
end; (* If *)
. if Payment = 0O then begin
writeln(" Our King, in his infinite wisdom, has chosen t0");
writeln(' withhold payments on Rentes this year.");
end else begin
if Payment = PARTPAY then begin
writeln(The King has paid you for your Rentes generously!’);
writeln(" (Although only for 2 1/2 quarters!)’);
end else begin
writeln(' Our Gracious King has generously given payment on');
writeln(' Rentes for ALL four quarters of the year!!");
end; (* If *)
end; (* If *)
writeln;
write(" The going price for Rentes is Denier ', CostDenier:0,".");
writeln;
write(" You thus made ', GotThisYear div 2:0," livres on Rentes since last *);
if Date.Fall then begin
writeln('Spring.");
end else begin
writeln('Fall.’);
end; (* If *)
if Owe <> 0 then begin
writeln;
writeln(' You also have to pay ',Owe:0,’ livres on your own Rentes");
writeln(' every year.”;
end; (* If ¥)
end; (* With *)
end; (* DispRente *)

(AR ook ook koo olook kool ko kool sk okl ook ookl saokoo kol oo okkkdoR Kok skok)

procedure ContButton;

(* CALLED BY: DisplayStatus *)
(* CALLS TO: none *)
(* GLOBALS: myEvent *)

(* ACTION: This procedure simply pauses until the button is pressed. Same as procedure DebugDelay. *)

var TEMP : boolean;
ANEVENT : EventRecord;

begin (* ContButton *)
repeat
SystemTask;
TEMP := GetNextEvent(everyEvent, MYEVENT);
until (Button);,
end; (* ContButton *)

{88}

(***)

procedure DisplayStatus(var Assets:AssetsType; Choice:integer; Date:DateType);

CALLED BY: DoCommand *)

CALLS TO: DispLand, DispRente, DispOffice, DispLease, DispText, DispWealth, DispPersonal, *)
(* ContButton *)
(* GLOBALS: Assets, Date *)
(* ACTION: This procedure is used to display the status of either an investment selection or one of the *)
(* summary options. CHOICE determines what status is to be displayed, and the procedure calls the *)
(* appropriate procedure to display the desired status. *)

var INFOWINDOW : WindowPir;
WREC : WindowRecord;

begin (* DisplayStatus *)

INFOWINDOW := GetNewWindow(257, @ WREC, Pointer(-1));

SetPort(INFOWINDOW);

PLSetWrPort (INFOWINDOW),

case Choice of
LANDICON : DispLand(Assets, InfoWindow, Date);
RENTEICON : DispRente(Assets, InfoWindow, Date);
OFFICEICON : DispOffice(Assets, InfoWindow);
LEASEICON : DispLease(Assets, InfoWindow, Date);
TEXTILEICON : DispText(Assets, InfoWindow);
WEALTHDISP : DispWealth(Assets, Infowindow, Date);
PERSDISP : DispPersonal(Assets, InfoWindow, Date);

end; (* Case *)

ContButton;

CloseWindow (INFOWINDOW);
.\d; (* DisplayStatus *)

{$S Seg8)

(***)

procedure DispOldManageValues (ManDialog: DialogPtr; Land:LandType);

(* CALLED BY: ManageMLand)
(* CALLS TO: NumSpecs *)
(* GLOBALS: none *)
(* ACTION: This procedure displays the amount of land managed by Renting in Kind, Renting for Cash, *)
(* and Sharecropping,. *)

var ITEMHDL : Handle;
DUMMYRECT : Rect;
STR : Str255;
LEN, DUMMYTYPE : integer;

begin (* DispOldManage Values *)
with Land do begin
NumSpecs(ShareCrop, LEN, STR);
GetDItem(MANDIALOG, SHAREITEM, DUMMYTYPE, ITEMHDL, DUMMYRECT);

SetIText(ITEMHDL, STR);
NumSpecs(Kind, LEN, STR);
GetDItem(MANDIALOG, KINDITEM, DUMMYTYPE, ITEMHDL, DUMMYRECT);
SetIText(ITEMHDL, STR);

. NumSpecs(Rent, LEN, STR);
GetDItem(MANDIALOG, CASHITEM, DUMMYTYPE, ITEMHDL, DUMMYRECT);
SetIText(ITEMHDL, STR);

end; (* With ¥)
end; (* DispOldManageValues *)

(***)

procedure ProcessManage(var Land:LandType; var ManageOK : boolean; MANDIALOG : DialogPtr);

(* CALLED BY: ManageMLand *)
(* CALLS TO: ConvertNum *)
(* GLOBALS: none *)
(* ACTION: This procedure reads the amounts from the manage land dialog and stores them, after *)
(* checking for errors. *)
var STR : Str255;

LEN : integer;
CONVOK : boolean;

begin (* ProcessManage *)
with Land do begin
CONVOK := true;
GetDTextMANDIALOG, SHAREITEM, STR);
ConvertNum(STR, ShareCrop, CONVOK);
GetDText(MANDIALOG, KINDITEM, STR);
ConvertNum(STR, Kind, CONVOK);
‘ GetDText(MANDIALOG, CASHITEM, STR);
ConvertNum(STR, Rent, CONVOK);
if not CONVOK then begin
MANAGEOQOK := false;
LEN := StopAlert(256, nil);
end else begin
if ShareCrop + Kind + Rent > 100 then begin
MANAGEOK := false;
LEN := StopAlert(257, nil);
end; (* If *)
end; (* If ¥)
end; (* With *)
end; (* ProcessManage *)

(R koo ookl ol ok sk kol ook s eskolook ook e ok ok ook sk ko kol ks ok kool ok)

procedure ManageMLand (var Land:LandType);

(* CALLED BY: ManageLand *)
(* CALLS TO: SellText, DispOldManageValues, ProcessManage *)
(* GLOBALS: none *)
(* ACTION: This procedure displays a dialog window for managing miscellaneous land. *)

var MANDIALOG : DialogPtr;
LEN, ITEM, OLDSHARE, OLDKIND, OLDRENT : integer;
STR : Str255;
MANAGEOQK : boolean;

.egin (* ManageMLand *)
MANDIALOG := GetNewDialog(257, nil, Pointer(-1));
with Land do begin
OLDSHARE := ShareCrop;
OLDRENT := Rent;
OLDKIND := Kind;
repeat
MANAGEOK := true;
DispOldManageValues(tMANDIALOG, Land);
SellText(MANDIALOG, KINDITEM, 0, 255);
DlogManager(ITEM);
if ITEM <> Cancel then begin
ProcessManage(Land, MANAGEOK, MANDIALOG);
end else begin
ShareCrop := OLDSHARE;
Kind := OLDKIND;
Rent := OLDRENT;
end; (* If *)
until MANAGEOK;
end; (* With *)
DisposDialog(MANDIALOG);
end; (* ManageMLand *)

(***)

‘rocedure DoConvCheck(ConvDialog:DialogPtr; Item:integer);

(* CALLED BY: InitConvert, ConvertTitles
(* CALLS TO: LightBtn
(* GLOBALS: none

(* ACTION: This dialog checks the dialog for converting lesser titled lands for the chosen conversion.

var DUMMYTYPE : integer;
ITEMHDL : Handle;
DUMMYRECT : Rect;

begin (* DoConvCheck *)
if Item = SEIGRAD then begin

GetDItem(ConvDialog, VICIRAD, DUMMYTYPE, ITEMHDL, DUMMYRECT);

SetCtiValue(Pointer(ITEMHDL), NOTCHECKED);

LightBtn(ConvDialog, VIC2RAD, BTNACTIVE);
end else begin

if Item = VIC1RAD then begin

GetDItem(ConvDialog, SEIGRAD, DUMMYTYPE, ITEMHDL, DUMMYRECT);

SetCtlValue(Pointer(ITEMHDL), NOTCHECKED);,

GetDItem(ConvDialog, VIC2RAD, DUMMYTYPE, ITEMHDL, DUMMYRECT);

SetCtlValue(Pointer(ITEMHDL), NOTCHECKED);

GetDItem(ConvDialog, MARQRAD, DUMMYTYPE, ITEMHDL, DUMMYRECT),

)
)
)
)

SetCtlValue(Pointer(TEMHDL), CHECKED);
LightBtn(ConvDialog, VIC2RAD, BTININACTIVE);
end else begin
GetDItem(ConvDialog, VIC2RAD, DUMMYTYPE, ITEMHDL, DUMMYRECT);
SetCtlValue(Pointer(ITEMHDL), NOTCHECKED);
. GetDItem(ConvDialog, MARQRAD, DUMMYTYPE, ITEMHDL, DUMMYRECT);
SetCdValue(Pointer(ITEMHDL), NOTCHECKED);
end; (* If *)
end; (* If *)
GetDItem(ConvDialog, Item, DUMMYTYPE, ITEMHDL, DUMMYRECT),
SetCtlValue(Pointer(TEMHDL), CHECKED);
end; (* DoConvCheck *)

(***)

procedure InitConvert(var Assets:AssetsType; ConvDialog:DialogPtr);

(* CALLED BY: ConvertTitles *)
(* CALLS TO: LightBtn, DoConvCheck *)
(* GLOBALS: Assets)

(* ACTION: This procedure sets up the conversion dialog with initial values corresponding to lands owned. *)

begin (* InitConvert *)
with Assets.Land do begin

if (Seigneurie = NONE) and (Vicomte = NONE) then begin
LightBtn(ConvDialog, SEIGRAD, BTNINACTIVE);
LightBtn(ConvDialog, VICIRAD, BTNINACTIVE);
LightBtn(ConvDialog, VIC2RAD, BTNINACTIVE);
LightBtn(ConvDialog, MARQRAD, BTNINACTIVE);
LightBtn(ConvDialog, OK, BTININACTIVE);

end else begin
. if Seigneurie = NONE then begin
LightBtn(ConvDialog, SEIGRAD, BTNINACTIVE);
LightBtn(ConvDialog, VIC2RAD, BTNINACTIVE);
DoConvCheck(ConvDialog, VICIRAD);
DoConvCheck(ConvDialog, MARQRAD);
end else begin
if Vicomte = NONE then begin
LightBtn(ConvDialog, VICIRAD, BTNINACTIVE);
DoConvCheck(ConvDialog, SEIGRAD);
DoCOnvCheck(ConvDialog, VIC2RAD);
end else begin
DoConvCheck(ConvDialog, SEIGRAD);
DoConvCheck(ConvDialog, VIC2RAD);
end; (* If *)
end; (* If *)
end; (* If *)
end; (* With ¥)
end; (* InitConvert *)

(***)

procedure DoConvert(var TitleNum, NewTitle, Cash:longint; Bound, Cost:longint; var ConvOK:boolean);

(* CALLED BY: ConvertTitles *)

(* CALLS TO: NumSpecs *)
(* GLOBALS: none *)
(* ACTION: This procedure checks for the proper number of acres and subtracts the cost of a *

" conversion. *)

var LEN : integer;
BOUNDSTR, COSTSTR : Stur255;

begin (* DoConvert *)
if TitleNum < Bound then begin
NumSpecs(Bound, LEN, BOUNDSTR);
ParamText(BOUNDSTR, “, ", ");
LEN := StopAlert(294, nil);
ConvOK := false;
end else begin
NewTitle := NewTitle + TitleNum;
TitleNum := NONE;
Cash := Cash - Cost;
NumSpecs(Cost, LEN, COSTSTR);
ParamText(COSTSTR, ",",");
LEN := NoteAlert(332, nil);
end; (* If ¥)
end; (* DoConvert *)

(***)

function ItemChecked(TheDialog: DialogPtr; Item:integer) : boolean;

(* CALLED BY: ConvertTitles)
* CALLS TO: none *)
" GLOBALS: none *)
(* ACTION: This function returns the value of an item in the dialog. *)

var DUMMYTYPE, VAL : integer;
ITEMHDL : Handle;
DUMMYRECT : Rect;

begin (* ItemChecked *)
GetDItem(TheDialog, Item, DUMMYTYPE, ITEMHDL, DUMMYRECT);
VAL := GetCtlValue(Pointer(ITEMHDL));
if VAL = CHECKED then begin
ItemChecked := true;
end else begin
ItemChecked := false;
end; (* If ¥)
end; (* ItemChecked *)

(***)
procedure ConvertTitles(var Assets:AssetsType);

(* CALLED BY: ManageLand *)
(* CALLS TO: InitConvert, DoConvCheck, NumSpecs *)

(* GLOBALS: Assets *)
(* ACTION: This procedure converts lesser titled lands into greater titled lands.

*)
var CONVDIALOG : DialogPitr;
ITEM, LEN : integer;
CONVOK : boolean;
DIFF, COST : longint;
DIFFSTR, COSTSTR : Str255;
CHANGED : ConvType;

begin (* ConvertTitles *)
CONVDIALOG := GetNewDialog(276, nil, Pointer(-1));
with Assets.Land do begin
InitConvert(Assets, CONVDIALOG),
repeat
CONVOK := true;
repeat
SystemTask;
ModalDialog(nil, ITEM);
if ITEM in {SEIGRAD, VICIRAD, VIC2RAD, MARQRAD] then begin
DoConvCheck(CONVDIALOG, ITEM);
end; (* If *)
until ITEM in [OK, Cancel];
if ITEM = OK then begin
if ItemChecked(CONVDIALOG, SEIGRAD) then begin
if ItemChecked(CONVDIALOG, VIC2RAD) then begin

DIFF := VICOMTECOST - SEIGCOST;
CHANGED := SeigToVic;

end else begin
DIFF := MARQCOST - SEIGCOST;
. CHANGED := SeigToMarg;
end; (* If *)
COST := DIFF * Seigneurie;
end else begin

DIFF := MARQCOST - VICOMTECOST;
COST := DIFF * Vicomte;
CHANGED := VicToMargq;
end; (* If *)
NumSpecs(DIFF, LEN, DIFFSTR);
NumSpecs{COST, LEN, COSTSTR);
ParamText(DIFFSTR, COSTSTR, ", ");
if Assets.Cash < COST then begin
LEN := StopAlert(292, nil);
CONVOK := false;
end else begin
LEN := CautionAlert(293, nil);
if LEN = OK then begin
case CHANGED of

SeigToVic : DoConvert(Seigneurie, Vicomte, Assets.Cash, VICOMTELOWER, COST, CONVOK});

SeigToMarq : DoConvert(Seigneurie, Marquisat, Assets.Cash, MARQLOWER, COST, CONVOK);

VicToMarq : DoConvert(Vicomte, Marquisat, Assets.Cash, MARQLOWER, COST, CONVOK);
end; (* Case *)

end else begin
CONVOK := false;
end; (* If ¥)
end; (* If ¥)
. end; (* If *)
until CONVOK;
end; (* With *)
DIsposDialog(CONVDIALOG);
end; (* ConvertTitles *)

(***)

procedure ManageLand(var Assets: AssetsType; Date:DateType);

(* CALLED BY: DoCommmand, Main *)
(* CALLS TO: ConvertTitles, ManageMLand, DisplayAssets *
(* GLOBALS: Assets, Date *)
(* ACTION: This procedure calls ConvertTitles if the season is Fall, and gives a choice of Managing *)
(* Miscellaneous land or converting titled lands if the season is Spring. *)

var LEN: integer;

begin (* ManageLand *)
if Date.Fall then begin
ConvertTitles(Assets);
end else begin
LEN := Alert(289, nil);
if LEN = OK then begin
ManageMLand(Assets.Land);
end else begin
ConvertTitles(Assets);
‘ end; (* If ¥)
end; (* If *)
DisplayAssets(Assets, Date);
end; (* Managel_and *)

{$S Seg9}

(***)

procedure BuyMiscLand(var Assets: AssetsType; FinMenu:MenuHandle; Date:DateType);

(* CALLED BY: BuyLand *)
(* CALLS TO: NumSpecs, ConvertNum *)
(* GLOBALS: Assets, Date)
(* ACTION: This procedure sets prices and quantities for the purchase of miscellaneous land. *)

var LANDDIALOG : DialogPtr;
LEN, ITEM : integer;
AMT, AVAILSTR, LANDCOST, BOUGHTSTR, COSTSTR, MAXPURSTR : Str255;
CONVOK : boolean;
TEMPLANDPUR, TEMP, COST, MISCLANDAVAIL : longint;

begin (* BuyMiscLand *)

COST := LANDVAL;
MISCLANDAVAIL := (MaxMiscLand - Assets.Land.Inherited - Assets.Land.Bought);
if (Assets.Protector.Name = Conde) or (Assets.Protector. Name = GrandDauphin) then
begin
if (Date.Year >= 1653) and (Assets.Protector.Name = Conde) then
COST := (LANDVAL * 3) div 4
else
COST :=LANDVAL div 2;
end; (* If *)
If (Assets.Cash div COST) <= MISCLANDAVAIL then
TEMPLANDPUR := Assets.Cash div COST
else
TEMPLANDPUR := MISCLANDAVAIL;
NumSpecs(Assets.Cash, LEN, AMT);
NumSpecs(TEMPLANDPUR, LEN, MAXPURSTR);
NumSpecs(COST, LEN, LANDCOST);
NumSpecs(MISCLANDAVAIL, LEN, AVAILSTR);
ParamText(AMT, MAXPURSTR, LANDCOST, AVAILSTR);
LANDDIALOG := GetNewDialog(260, nil, Pointer(-1));

repeat
CONVOK := true;
SellText (LANDDIALOG, LANDBUYITEM, 0, 200);
DlogManager(ITEM);
if ITEM = OK then begin
GetDText(LANDDIALOG, LANDBUYITEM, AMT);
ConvertNum(AMT, TEMP, CONVOK);
if not CONVOK then LEN := StopAlert(256, nil) (* Checks for incorrect typing *)
else (* Level one *)
if TEMP * COST > Assets.Cash then begin
LEN := StopAlert(258, nil);
CONVOK := false;
end (* If too little cash *)
else (* Level two *)
if TEMP > MISCLANDAVAIL then begin
LEN := StopAlert(323, nil);
CONVOK := false;

end; (* If too much land *)
end; (* If Item OK¥)

until CONVOK;
if (ITEM = OK) and (TEMP <> NONE) then begin

Assets.Land.Bought := Assets.Land.Bought + TEMP;
Assets.Cash := Assets.Cash - (TEMP * COST);
NumSpecs(TEMP, LEN, BOUGHTSTR);
NumSpecs(TEMP * COST, LEN, COSTSTR);
ParamText(BOUGHTSTR, COSTSTR, ", ™);
LEN := Notealert(324, nil);
Enableltem(FinMenu, SELLITEM);

end; (* If *)

DisposDialog(LANDDIALOG);

end; (* BuyMiscLand *)

(***)

.rocedure BuyTitledLand(var Assets: AssetsType);

(* CALLED BY: BuyLand

(* CALLS TO: NumSpecs, ConvertNum, SellText

(* GLOBALS: Assets

(* ACTION: This procedure displays a dialog for the purchase of titled lands.

var TITLEDIALOG : DialogPtr;

ITEM, LEN : integer;

SEIGSTR, VICOMTESTR, MARQSTR, CASHSTR, COSTSTR: Stur255;
SEIGNUM, VICOMTENUM, MARQNUM, VAL : longint;

CONVOK : boolean;

begin (* BuyTitledLand *)

NumSpecs(SEIGCOST, LEN, SEIGSTR);
NumSpecs(VICOMTECOST, LEN, VICOMTESTRY);
NumSpecs(MARQCOST, LEN, MARQSTR),
NumSpecs(Assets.Cash, LEN, CASHSTR);
ParamText(SEIGSTR, VICOMTESTR, MARQSTR, CASHSTR);
TITLEDIALOG := GetNewDialog(275, nil, Pointer(-1));

repeat

CONVOK := true;
SellText(TITLEDIALOG, SEIGITEM, 0, 255);
DlogManager(ITEM);
if ITEM = OK then begin
GetDText(TITLEDIALOG, SEIGITEM, SEIGSTR);
GetDText(TITLEDIALOG, VICOMTEITEM, VICOMTESTR);
GetDText(TITLEDIALOG, MARQITEM, MARQSTR);
ConvertNum(SEIGSTR, SEIGNUM, CONVOK);
ConvertNum(VICOMTESTR, VICOMTENUM, CONVOK);
ConvertNum(MARQSTR, MARQNUM, CONVOK);
if not CONVOK then begin
LEN := StopAlert(256, nil);
end else begin
if ((SEIGNUM < SEIGLOWER) and (SEIGNUM <> 0)) or (SEIGNUM > SEIGUPPER) or
((VICOMTENUM < VICOMTELOWER) and (VICOMTENUM <> 0)) or
(VICOMTENUM > VICOMTEUPPER) or
(MARQNUM < MARQLOWER) and (MARQNUM <> 0)) or
(MARQNUM > MARQUPPER) then begin
CONVOK := false;
LEN := StopAlert(290, nil);
end else begin
VAL := (SEIGCOST * SEIGNUM) + (VICOMTECOST * VICOMTENUM) +

(MARQCOST * MARQNUM);

if Assets.Cash < VAL then begin
CONVOK := false;
LEN := StopAlert(291, nil);
end else begin

)
*)
*)
*)

Assets.Cash := Assets.Cash - VAL;
Assets.Land.Seigneurie := Assets.Land.Seigneurie + SEIGNUM;
Assets.Land.Vicomte := Assets.Land.Vicomte + VICOMTENUM;
Assets.Land. Marquisat := Assets.Land.Marquisat + MARQNUM,;
. VAL := (SEIGCOST * SEIGNUM) + (VICOMTECOST * VICOMTENUM) +
(MARQCOST * MARQNUM);
NumSpecs(VAL, LEN, COSTSTR);
ParamText(COSTSTR, ",",");
if VAL <> 0 then begin
LEN := NoteAlert(332, nil);
end; (* If *)
end; (* If ¥)
end; (* If ¥)
end; (* If *)
end; (* If ¥)
until CONVOK;
DisposDialog(TITLEDIALOG);
end; (* BuyTitledLand *)

(***)

procedure BuyLand(var Assets: AssetsType; FinMenu:MenuHandle; Date:DateType);

(* CALLED BY: *
(* CALLS TO: BuyMiscLand, BuyTitledLand *)
(* GLOBALS: Assets, Date *)
(* ACTION: This procedure queries the user on land purchase: Miscellaneous or Titled lands? and calls *
(* those proceduresin response to the dialog button chosen. *)

var LANDDIALOG : DialogPtr;

ITEM : integer;
Qegin (* BuyLand *)

LANDDIALOG := GetNewDialog(270, nil, Pointer(-1));

DlogManage(ITEM);

DisposDialog(LANDDIALOG);

if ITEM = OK then begin
BuyMiscLand(Assets, FinMenu, Date);

end else begin
BuyTitledLand(Assets);

end; (* If *¥)

end; (* BuyLand *)

(***)

procedure BuyTextiles(var Assets: AssetsType; Date:DateType);

(* CALLED BY: Purchase)
(* CALLS TO: NumSpecs, SellText, ConvertNum *)
(* GLOBALS: Assets, Date *
(* ACTION: This procedure displays a dialog for investment in textiles. *)

var TEXTDIALOG : DialogPtr;
CONVOK : boolean;

ITEM, DUMMYTYPE, LEN : integer;
ITEMHDL : Handle;

DUMMYRECT : Rect;

AMT, AMTINV : Str255;

. OLD, TEMP : longint;

begin (* BuyTextiles *)
OLD := Assets.Textiles;
Assets.Cash := Assets.Cash + OLD;
Assets.Textiles := 0;
TEXTDIALOG := GetNewDialog(258, nil, Pointer(-1));
NumSpecs(Assets.Cash, LEN, AMT);
ParamText(AMT, ", ", ™);
GetDItem(TEXTDIALOG, TEXTBUYITEM, DUMMYTYPE, ITEMHDL, DUMMYRECT);
NumSpecs(OLD, LEN, AMT),
SetdText(ITEMHDL, AMT);
SellText(TEXTDIALOG, TEXTBUYITEM, 0, 255);
repeat
CONVOK := true;
SellText (TEXTDIALOG, TEXTBUYITEM, 0, 200);
DlogManager(ITEM);
if ITEM = OK then begin
GetDText(TEXTDIALOG, TEXTBUYITEM, AMT);
ConvertNum(AMT, TEMP, CONVOK);

if not CONVOK then begin
LEN := StopAlert(256, nil);
end else begin
if TEMP > Assets.Cash then begin
LEN := CautionAlert(258, nil);
CONVOK := false;
. end; (*If %
end; (* If ¥)
end; (* If ¥)
until CONVOK;

if ITEM = OK then begin
Numspecs(TEMP, LEN, AMTINV);
Paramtext(AMTINV,".",");
LEN := NoteAlert(328, nil);
Assets. Textiles := TEMP;
Assets.Cash := Assets.Cash - TEMP;
end else begin
Assets.Cash := Assets.Cash - OLD;
Assets. Textiles := OLD;
end; (* If *)

DisposDialog(TEXTDIALOG);
end; (* BuyTextiles *)

(***)

procedure AddRente(CostDenier:integer; Date:DateType; var IndivRentes:RenteHandle);

(* CALLED BY: BuyRente *)

(* CALLS TO: none *)
(* GLOBALS: Date *)
(* ACTION: This procedure adds a rente to the renteList with appropriate Rentetype information. *

REC : RenteType;
MARKER : RenteHandle;

begin (* AddRente *)
REC.Year := Date.Year;
REC.Fall := Date.Fall;
REC.CostDenier := CostDenier;
REC.Next := nil;
if IndivRentes = nil then begin
IndivRentes := Pointer(ord(NewHandle(SizeOf(Rente Type))));
IndivRentesM := REC;
end else begin
MARKER := IndivRentes;
while MARKERM .Next <> nil do begin
MARKER := MARKERA Next;
end; (* While ¥)
MARKERM Next := Pointer(ord(NewHandle(SizeOf(Rente Type))));
MARKERAM NextM := REC;
end; (* If *)
end; (* AddRente *)

(***)

function NumKRente (IndivRentes:RenteHandle) : longint;

(* CALLED BY: BuyRente, SellKRente *)
¥ CALLS TO: none b))
GLOBALS: none *
(* ACTION: This function retruns the number of King's Rentes held by the player. *)

var TEMP : longint;

begin (* NumKRente *)
TEMP := 0;
while IndivRentes <> nil do begin
TEMP := TEMP + 1;
IndivRentes := IndivRentesA Next;
end; (* While *)
NumKRente := TEMP;
end; (* NumKRente *)

(***)

procedure BuyRente(Date:DateType; var Assets: AssetsType);

(* CALLED BY: Purchase *)
(* CALLS TO: NumSpecs, SellText, ConvertNum, NumKRente, AddRente *)
(* GLOBALS: Assets, Date *)

(* ACTION: This procedure displays a dialog for the purchase of rentes, and calls AddRente to store them. *)

var RENTEDIALOG : DialogPtr;
ITEM, LEN, I : integer;

FACESTR, COSTSTR, CASHSTR, RENTESTR, AMT, PRICESTR, NUMRENTESTR : Str255;
PRICE, TEMP : longint;

. CONVOK : boolean;

begin (* BuyRente *)
RENTEDIALOG := GetNewDialog(259, nil, Pointer(-1));
with Assets.Rente do begin
NumSpecs(FaceDenier, LEN, FACESTR);
NumSpecs(CostDenier, LEN, COSTSTR);
NumSpecs(Assets.Cash, LEN, CASHSTR),
ParamText(FACESTR, COSTSTR, CASHSTR, ");
repeat
CONVOK := true;
SellText (RENTEDIALOG, RENTEBUYITEM, 0, 200);
DlogManager(ITEM);
if ITEM = OK then begin
GetDText(RENTEDIALOG, RENTEBUYITEM, AMT);
ConvertNum(AMT, TEMP, CONVOK);
if not CONVOK then begin
LEN := StopAlert(256, nil);
end else begin
if TEMP + NumKRente(IndivRentes) > MAXKRENTE then begin
Numspecs(MAXKRENTE ,LEN, RENTESTR);
Paramtext(RENTESTR,",",");
LEN := StopAlert(308, nil);
CONVOK := false;
end else begin
PRICE := ((Return * 1000) div (1000 div CostDenier)) * TEMP;
. if PRICE > Assets.Cash then begin
LEN := StopAlert(259, nil);
CONVOK := false;
end; (* If *)
end; (* If ¥)
end; (* If *)
end; (* If ¥)
until CONVOK;
if ITEM = OK) and (TEMP > 0) then begin
Assets.Cash := Assets.Cash - PRICE;
for I:= 1 to TEMP do begin
AddRente(CostDenier, Date, IndivRentes);
end; (* For *)
NumSpecs(TEMP, LEN, NUMRENTESTR);
NumSpecs(FaceDenier, LEN, FACESTR);
NumSpecs(PRICE, LEN, PRICESTR);
ParamText(NUMRENTESTR, FACESTR, PRICESTR, ™);
LEN := NoteAlert(333, nil);
end; (* If ¥)
end; (* With *)
DisposDialog(RENTEDIALOG);
end; (* BuyRente *)

(***)

procedure DoCheck(OfficeDialog: DialogPtr; Item:integer; NumOffices:longint);

CALLED BY: BuyOffice, SellOffice *)
CALLS TO: LightBtn *)
(* GLOBALS: none *)

(* ACTION: This procedure checks the office dialog for checked items and returns a checked value in Item. *)

var DUMMYTYPE : integer;
ITEMHDL., RADHDL : Handle;
DUMMYRECT : Rect;
VAL : integer;

begin (* DoCheck *)
GetDItem(OfficeDialog, Item, DUMMYTYPE, ITEMHDL, DUMMYRECT);
VAL := GetCtlValue(Pointer(ord(TEMHDL)));
if VAL = CHECKED then begin
VAL := NOTCHECKED;
LightBtn(OfficeDialog, BUYBTNITEM, BTNINACTIVE);
if NumOffices > NUMOFFPERSCREEN then begin
LightBm(OfficeDialog, NEXTBTNITEM, BTNACTIVE);
LightBtn(OfficeDialog, PREVBTNITEM, BTNACTIVE);
end; (* If ¥)
end else begin
VAL := CHECKED;
LightBtn(OfficeDialog, BUYBTNITEM, BTNACTIVE);
LightBtn(OfficeDialog, NEXTBTNITEM, BTNINACTIVE);
LightBtn(OfficeDialog, PREVBTNITEM, BTNINACTIVE);
GetDItem(OfficeDialog, RAD1, DUMMYTYPE, RADHDL, DUMMYRECT);
. SetCdValue(Pointer(RADHDL), NOTCHECKED);
GetDItem(OfficeDialog, RAD2, DUMMYTYPE, RADHDL, DUMMYRECT);
SetCdValue(Pointer(RADHDL), NOTCHECKED);
GetDItem(OfficeDialog, RAD3, DUMMYTYPE, RADHDL, DUMMYRECT);
SetCtValue(Pointer(RADHDL), NOTCHECKED);
GetDItem(OfficeDialog, RAD4, DUMMYTYPE, RADHDL, DUMMYRECT);
SetCtlValue(Pointer(RADHDL), NOTCHECKED);
end; (* If *)
SetCtlValue(Pointer(ITEMHDL), VAL);
end; (* DoCheck *)

(***)

procedure AdvanceOffice(var Pos: integer; Direction, NumOffices, RefNum:integer; var ShownOffices:Off Array;

Date:DateType);
(* CALLED BY: BuyOffice *)
(* CALLS TO: NumSpecs *)
(* GLOBALS: Date *)
(* ACTION: This procedure displays a new set of offices in the buy office dialog. *)

var ERR : OSErm;
STRLEN, VALLEN BOOLLEN, OFFRECLEN, VALUE, ALTEREDVAL, PRESTIGE : longint;

TITLE, VALSTR : St255;

I, LEN : integer;

STR : array [1.NUMOFFPERSCREEN] of Str255;
NOBILITY, TITANDNOB : boolean;

gin (* AdvanceOffice *)
if Direction = PREVBTNITEM then begin

Pos := Pos - (2 * NUMOFFPERSCREEN);
if Pos < O then begin
Pos := NumOffices + Pos;
end; (* If *)
if Pos < O then begin
Pos := NumOffices + Pos;
end; (* If *)

end; (* If *)
STRLEN := SizeOf(TITLE);

VALLEN := SizeOf(VALUE);

BOOLLEN := SizeOf(boolean);

OFFRECLEN := STRLEN + (2 * VALLEN) + (2 * BOOLLEN);
for 1 := 1 to NUMOFFPERSCREEN do begin

ERR := SetFPos(RefNum, 1, Pos * OFFRECLEN + SizeOf(integer))

Pos := Pos + 1;

if Pos >= NumOffices then begin
Pos = 0;

end; (* If *)

ERR := FSRead(RefNum, STRLEN, @TITLE),

ERR := FSRead(RefNum, VALLEN, @ VALUE),

ERR := FSRead(RefNum, VALLEN, @PRESTIGE);

ERR := FSRead(RefNum, BOOLLEN, @TITANDNOB);

ERR := FSRead(RefNum, BOOLLEN, @NOBILITY);

if (Date.Year >= 1642) and (Date.Year <= 1652) then begin
ALTEREDVAL := (VALUE * GLUTPERCENT) div 100;
NumSpecs(ALTEREDVAL, LEN, VALSTR);

end else begin
NumSpecs(VALUE, LEN, VALSTR);

end; (* If *)

STR[I] := Concat(’t', VALSTR,' -- ", TITLE);

ShownOffices[I].Title := TITLE;

ShownOffices[I].Value := VALUE;

ShownOffices[I}.Prestige := PRESTIGE;

ShownOffices[I].Nobility := NOBILITY;

ShownOffices[I].TitAndNob := TITANDNOB;

end; (* For *)
ParamText(STR[1], STR{2], STR[3], STR[4));

end; (* AdvanceOffice *)

{$S}

(***)

procedure ExaOffltem(OfficeDialog: DialogPtr; Item, ItemNum:integer; var NewOffice:DlogOffRec;

ShownOffices:OffArray; var Found:boolean);

(* CALLED BY: GetOfficeBought *)
(* CALLS TO: none *
(* GLOBALS: none *)
(* ACTION: This procedure reads the value of a checked item in the office dialog and sets NewOfficeto *)

. that value. *)

var DUMMYTYPE, VAL : integer;
ITEMHDL : Handle;
DUMMYRECT : Rect;

begin (* ExaOffltem *)
GetDItem(OfficeDialog, Item, DUMMYTYPE, ITEMHDL, DUMMYRECT);
VAL := GetCtValue(Pointer(TEMHDL));
if VAL = CHECKED then begin
NewOffice := ShownOffices[ItemNum];
Found := true;
end; (* If *)
end; (* ExaOffltem *)

(***)

procedure GetOffBought(OfficeDialog:DialogPtr; ShownOffices:OffArray; var NewOffice:DlogOffRec);

(* CALLED BY: BuyOffice, SellOffice *)
(* CALLS TO: ExaOffItem *)
(* GLOBALS: none *)

(* ACTION: This procedure polls the buy office dialog for checked items and returns the choice made. *)
var FOUND : boolean;

gin (* GetOffBought *)

FOUND := false;

ExaOffItem(OfficeDialog, RAD1, 1, NewOffice, ShownOffices, FOUND);
ExaOffItem(OfficeDialog, RAD2, 2, NewOffice, ShownOffices, FOUND);
ExaOfflItem(OfficeDialog, RAD3, 3, NewOffice, ShownOffices, FOUNDY);
ExaOffItem(OfficeDialog, RAD4, 4, NewOffice, ShownOffices, FOUND);

if not FOUND then begin
NewOffice.Value := NONE;
end; (* If *¥)

end; (* GetOffBought *)

{$S Seg9)

(***)

procedure AddOffice(NewOffice:DlogOffRec; var Office:OfficeType; Date:DateType);

(* CALLED BY: BuyOffice *)
(* CALLS TO: none *)
(* GLOBALS: Date *)
(* ACTION: This procedure adds an office record to the list of offices held by the player. *)

var TEMP : longint;
TEMPOFFICE : OfficeRec;

MARKER : OfficeHandle;
STOP : boolean;

begin (* AddOffice *)
TEMP := abs(Random) div OFFDIVIDER + 10;
with Office do begin
TEMP := ((NewOffice.Value * TEMP) div 100);
Salary := Salary + TEMP;
TotPurchase := TotPurchase + NewOffice.Value;
if (Date.Year >= 1642) and (Date. Year <=1652) then begin
TotPurchase := TotPurchase - ((NewOffice.Value * LEVYTAX) div 100);
end; (* If *)
Number := Number + 1;
TEMPOFFICE.Inherited := false;
TEMPOFFICE.Title := NewOffice.Title;
TEMPOFFICE.Value := NewOffice.Value;
TEMPOFFICE.Salary := TEMP;
TEMPOFFICE.AmtPaid := NewOffice.Value;
if (Date.Year >= 1642) and (Date.Year <=1652) then begin

TEMPOFFICE.AmtPaid := TEMPOFFICE.AmtPaid - ((NewOffice.Value * LEVYTAX) div 100);

end; (* If *)
TEMPOFFICE.Next := nil;
TEMPOFFICE Prestige := NewOffice.Prestige;
if OfficeList = nil then begin
OfficeList := Pointer(NewHandle(SizeOf(TEMPOFFICE)));
OfficeList*\ := TEMPOFFICE;
end else begin
if TEMPOFFICE .Prestige >= OfficeList™ .Prestige then begin
TEMPOFFICE.Next := OfficeList;
OfficeList := Pointer(NewHandle(SizeOf(TEMPOFFICE)));
. OfficeListM := TEMPOFFICE;
end else begin
MARKER := OfficeList;
STOP := false;
while (MARKERAA Next <> nil) and (not STOP) do begin
if TEMPOFFICE Prestige >= MARKERM Next™M .Prestige then begin
STOP := true;
end else begin
MARKER := MARKERA Next;
end; (* If *)
end; (* While *)
TEMPOFFICE.Next := MARKERAM Next;
MARKERAM Next := Pointer(NewHandle(SizeOf(TEMPOFFICE)));
MARKERA NextM .= TEMPOFFICE;
end; (* If *)
end; (* If *)
end; (* With *)
end; (* AddOffice *)

(Foriok koo ok dekok ok ook koo ok ok ok ko ok ook ookl ok ook dokolofkkokdok R ko)

function Credentials(Title, ReqTitle:Str255; OfficeList:OfficeHandle) : boolean;

(* CALLED BY: BuyOffice

(* CALLS TO: none

(* GLOBALS: Assets

(* ACTION: This function checks special offices for appropriate credentials of age, other offices held or
* inherited. It returns a value of true if credentials are appropriate.

var OLDENUF, HOLDOFFICE, INHERITEDOQFF : boolean;

begin (* Credentials *)

Credentials := true;

If (Title = CHANCELLOR) or (Title = SECOFSTATE) then

begin
Credentials := false;
HOLDOFFICE := false;
OLDENUF := false;
INHERITEDOFF := false;

if OfficeList <> nil then begin
while (OfficeList* Next <> nil) and (not HOLDOFFICE) do
begin
if OfficeListM.Title = ReqTitle then
HOLDOFFICE := true;
if OfficeList* .Inherited then INHERITEDOFF := true
else
OfficeList := OfficeList" Next;
end; (* While *)
if OfficeList™ . Title = ReqTitle then begin
HOLDOFFICE := true;
if OfficeList™ Inherited then INHERITEDOFF := true

end; (* If ¥)
. end; (* If *)
if (Title = CHANCELLOR) and (Assets.Age >= 45) then OLDENUF := true;
if (Title = SECOFSTATE) and (Assets.Age >= 35) then OLDENUF := true;

if (OLDENUF and HOLDOFFICE and INHERITEDOFF) then CREDENTIALS := true;
end; (* While *)
end; (* Credentials *)

)
*)
*)
)
*)

(***)

function OwnOffice(Title:Str255; OfficeList:OfficeHandle) : boolean;

(* CALLED BY: BuyOffice
(* CALLS TO: none
(* GLOBALS: none

(* ACTION: This function checks the player's office list to see if an office is already held by the player.

begin (* OwnOffice *)
TEMP := false;
if OfficeList <> nil then begin
while (OfficeListA Next <> nil) and (not TEMP) do begin
if OfficeList*\ . Title = Title then begin

)
)
)
*)

TEMP := true;
end else begin
OfficeList := OfficeList* Next;
end; (* If *)

end; (* While ¥*)
. if OfficeList*.Title = Title then begin
TEMP := true;
end; (* If ¥)
end; (* If *)
OwnOffice := TEMP;
end; (* OwnOffice *)

(***)

procedure BuyOffice (var Assets:AssetsType; Date:DateType; FinMenu, PersMenu:MenuHandle);

(* CALLED BY: Purchase *)
(* CALLS TO: AdvanceOffice, LightBtn, DoCheck, GetOffBought, DisplayAssets, OwnOffice, Credentials*)
(* GLOBALS: Assets, Date *)
(* ACTION: This procedure displays a dialog for the purchase of offices and checks for cash, title,)
(* nobility, and credentials needed for purchase. *)

var OFFICEDIALOG : DialogPtr;
ITEM, LEN, NUMOFFICES, REFNUM, POS: integer;
RECLEN, COST, TITLAND: longint;
ERR : OSEr;
SHOWNOFFICES : OffArray;
NEWOFFICE : DlogOffRec;
BUYOK : boolean;
COSTofLSTR, SALARYSTR, REQTITLE : Str255;

.egin (* BuyOffice *)
ERR := FSOpen(OFFICEFILE, 0, REFNUM);
RECLEN := SizeOf(NUMOFFICES);
ERR := FSRead(REFNUM, RECLEN, @ NUMOFFICES);
POS :=0;
AdvanceOffice(POS, NEXTBTNITEM, NUMOFFICES, REFNUM, SHOWNOFFICES, Date);
OFFICEDIALOG := GetNewDialog(267, nil, Pointer(-1));
LightBtn(OfficeDialog, BUYBTNITEM, BTNINACTIVE);
repeat
BUYOK := true;
repeat
SystemTask;
ModalDialog(nil, ITEM);
if ITEM in [RAD1, RAD2, RAD3, RADA4] then begin
DoCheck(OFFICEDIALOG, ITEM, NUMOFFICES);
end; (* If *)
if ITEM in ([NEXTBTNITEM, PREVBTNITEM] then begin
AdvanceOffice(POS, ITEM, NUMOFFICES, REFNUM, SHOWNOFFICES, Date);
Draw Dialog(OFFICEDIALOG);
end; (* If *)
until ITEM in [BUYBTNITEM, Cancel];
if ITEM = BUYBTNITEM then

begin
GetOffBought(OFFICEDIALOG, SHOWNOFFICES, NEWOFFICE);
COST := NEWOFFICE.Value;
TITLAND := Assets.Land.Seigneurie + Assets.Land.Vicomte + Assets.Land.Marquisat;
REQTITLE := PRESIDENT;
if (Date.Year >= 1642) and (Date.Year <= 1652) then
COST := COST - ((NEWOFFICE.Value * LEVYTAX) div 100);

if NEWOFFICE.Value = NONE then BUYOK := false
else (* one *)
if Assets.Cash < COST then begin
LEN := CautionAlert(267, nil);
BUYOK := false
end
else (* two *)
if OwnOffice(NEWOFFICE.Title, Assets.Office.OfficeList) then begin
LEN := CautionAlert(268, nil);
BUYOK := false
end
else (* three *)
if (NEWOFFICE.Nobility) and (not Assets.Noble) then begin
LEN := StopAlert(307, nil);
BUYOK := false
end
else (* four *)
if NEWOFFICE.TitAndNob) and ((not Assets.Noble) or (TITLAND = 0)) then begin
LEN := StopAlert(309, nil);
BUYOK := false
end
else (* five *)
if not Credentials(NEWOFFICE.Title, REQTITLE, Assets.Office.OfficeList) then
begin
LEN := StopAlert(327, nil);
BUYOK := false
end
else (* six *)
begin
AddOfficeNEWOFFICE, Assets.Office, Date);
if NEWOFFICE Prestige = AMBITIOUS then
Assets.TooAmbitious := Assets.TooAmbitious + 1;
Enableltem(FinMenu, SELLITEM);
Assets.Cash := Assets.Cash - COST;

if NEWOFFICE.Title = SECYKING then
begin
LEN := NoteAlert(287, nil);
Assets.Noble := true;

DisablelItem(PersMenu, NOBLEITEM);
end; (* If *)

ParamText(NEWOFFICE.Title, ", “, ");
LEN := Notealert(321, nil);

DisplayAssets(Assets, Date);
NumSpecs(Assets.Office.Salary, LEN, SALARYSTR);
NumSpecs(Assets.CostOfLiving, LEN, COSTofLSTR);
ParamText(SALARYSTR, COSTofLSTR, ", ");
. LEN := Notealert(320, nil)
end; (* else six and IF*)

end; (* If *)
until BUYOK;
ERR := FSClose(REFNUM);
DisposDialog(OFFICEDIALOG);
end; (* BuyOffice *)

(***)

procedure BuyLease(var Assets:AssetsType; FinMenu:MenuHandle; Date: DateType);

(* CALLED BY: Purchase *)
(* CALLS TO: NumSpecs *)
(* GLOBALS: Assets, Date *)
(* ACTION: This procedure displays a dialog for the purchase of leases. *)

var LEN, ITEM : integer;
LEASEDIALOG : DialogPtr;
FACESTR, OFFSTR, OFFERSTR : Str255;

begin (* BuyLease *)
if Assets.Protector.Name = DukeOfBurgundy then begin
LEN := StopAlert(316, nil);

end else begin
. with Assets.Lease do begin
NumSpecs(FaceValue, LEN, FACESTR);
NumSpecs(Offer, LEN, OFFERSTR);
NumSpecs((FaceValue * OFFICIAL) div 1000, LEN, OFFSTR);
LEASEDIALOG := GetNewDialog(263, nil, Pointer(-1));
ParamText(Title, FACESTR, OFFSTR, OFFERSTRY);
DlogManager(ITEM);
if ITEM = OK then begin
if Assets.Cash < Offer then begin
ITEM := CautionAlert(264, nil);
end else begin . .
Assets.Cash := Assets.Cash - Offer;
Assets.Lease.Bought := true;
Assets.Lease. NumBought := Assets.Lease NumBought + 1;
ParamText(Title, ",",");
LEN := NoteAlert(335, nil);
Disableltem(FinMenu, BUYITEM);
if Date.Year = 1639 then begin
Hanged := true;
end; (* If *)
end; (* If *)
end; (* If *)

DisposDialog(LEASEDIALOG);
end; (* With *)
end; (* If *)
end; (* BuyLease *)

****s***#***********************************)

procedure Purchase(var Assets: AssetsType; Choice:integer; Date:DateType; FinMenu, PersMenu:MenuHandle),

(* CALLED BY: DoCommand, Main *)
(* CALLS TO: BuyLand, BuyRente, BuyOffice, BuyLease, BuyTextiles *)
(* GLOBALS: Assets, Date *)
(* ACTION: This procedure checks the investments icons for the appropriate investment and calls *)
(* purchase procedures. *)
begin (* Purchase *)

case Choice of
LANDICON : BuyLand(Assets, FinMenu, Date);
RENTEICON : BuyRente(Date, Assets);
OFFICEICON : BuyOffice(Assets, Date, FinMenu, PersMenu);
LEASEICON : BuyLease(Assets, FinMenu, Date);
TEXTILEICON : BuyTextiles(Assets, Date);

end; (* Case *)

i end; (* Purchase *)

{$S Seg10)

(***)

procedure LoseLast(var IndivRentes:RenteHandle);
|

L (* CALLED BY: SellKRente *
.‘ CALLS TO: none *)
* GLOBALS: none *)

(* ACTION: This procedure disposes of the last handle in the rente list. *)

var MARKER, DISPMARK : RenteHandle;

begin (* LoseLast *)
if IndivRentesA Next = nil then begin
DisposHandle(Pointer(ord(IndivRentes)));
IndivRentes := nil;
end else begin
MARKER := IndivRentes;
while MARKERA NextAM Next <> nil do begin
MARKER := MARKERA Next;
end; (* While *)
DISPMARK := MARKERAA Next;
MARKERAM Next := nil;
DisposHandle(Pointer(ord(DISPMARK)));
end; (* If ¥)
end; (* LoseLast *)

(***)

procedure SellKRente(var Assets: AssetsType);

(* CALLED BY: SellRente
(* CALLS TO: NumSpecs, ConvertNum, LoseLast

. GLOBALS: Assets
ACTION: This procedure displays a dialog for the sale of the King's rentes.

var RENTEDIALOG : DialogPtr;
NUM, TEMP, PRICE : longint;
LEN, ITEM : integer;

NUMSTR, COSTSTR, AMT, NUMSOLDSTR, CASHVALSTR : Str255;

CONVOK : boolean;

begin (* SellKRente *)
RENTEDIALOG := GetNewDialog(261, nil, Pointer(-1));
with Assets.Rente do begin
NUM := NumKRente(IndivRentes);
NumSpecs(NUM, LEN, NUMSTR);
NumSpecs(CostDenier, LEN, COSTSTR);
ParamText(NUMSTR, COSTSTR, ", ");
repeat
CONVOK := true;
SellText (RENTEDIALOG, RENTESELLITEM, 0, 200);
DlogManager(ITEM);
if ITEM = OK then begin
GetDText(RENTEDIALOG, RENTESELLITEM, AMT);
ConvertNum(AMT, TEMP, CONVOK);
if not CONVOK then begin
LEN := StopAlert(256, nil);

end else begin
. if TEMP > NUM then begin

LEN := CautionAlert(260, nil);
CONVOK := false;
end; (* If *)
end; (*If*)
end; (* If *)
until CONVOK; :)
if (TEM = OK) and (TEMP > 0) then begin
for LEN := 1 to TEMP do begin
LoseLast(IndivRentes);
end; (* For *)
PRICE := ((Return * 1000) div (1000 div CostDenier)) * TEMP;
Assets.Cash := Assets.Cash + PRICE;
NumSpecs(TEMP, LEN, NUMSOLDSTR);
NumSpecs(CostDenier, LEN, COSTSTR);
NumSpecs(PRICE, LEN, CASHVALSTR);
ParamText(NUMSOLDSTR, COSTSTR, CASHVALSTR, ");
LEN := NoteAlert(334, nil);
end; (* If ¥)
end; (* With *)
DisposDialog(RENTEDIALOG);
end; (* SellKRente *)

*)
*)
*)
*)

(***)

procedure SellRente(var Assets:AssetsType; Date:DateType);

* CALLED BY: Sell *)
CALLS TO: SellKRente, SellYRente *)
(* GLOBALS: Assets, Date *)
(* ACTION: This procedure queries the player for the sale of rentes: King's or Yours? and calls *
(* corresponding procedures. *)

var RENTEDIALOG : DialogPtr;
ITEM : integer;

begin (* SellRente *)
RENTEDIALOG := GetNewDialog(264, nil, Pointer(-1));
DlogManager(ITEM);
DisposDialog(RENTEDIALOG);
if ITEM = OK then begin
if Assets.Rente.IndivRentes = nil then begin
ITEM := CautionAlert(265, nil);
end else begin
SellKRente(Assets);
end; (* If ¥)
end else begin
SellYRente(Assets, Date);
end; (* If ¥)
end; (* SellRente *)

(***)

rocedure SellAdvance(var Pos: integer; Direction, NumOffices:integer; var ShownOffices:Off Array;
‘ Date:DateType; OfficeList:OfficeHandle);

(* CALLED BY: SellOffice)
(* CALLS TO: NumSpecs *)
(* GLOBALS: Date)

(* ACTION: This procedure advances the list of offices owned by a player displayed in the sell office dialog.*)

var VALUE, ALTEREDVAL, ThisSALARY : longint;
TITLE, VALSTR, SALARYSTR : Str255;
I, J, LEN : integer;
STR : array [1.NUMOFFPERSCREEN] of Str255;
MARKER : OfficeHandle;

begin (* SellAdvance *)
if Direction = PREVBTNITEM then begin
Pos := Pos - (2 * NUMOFFPERSCREEN);
if Pos < O then begin
Pos := NumOffices + Pos;
end; (* If *)
if Pos < 0 then begin
Pos := NumOffices + Pos;
end; (* If *)

end; (* If *)
for I := 1 to NUMOFFPERSCREEN do begin
MARKER := OfficeList;
for J := 1 to Pos do begin
. MARKER := MARKERAA Next;
end; (* For *)
Pos := Pos + 1;
if Pos >= NumOffices then begin
Pos = 0;
end; (* If ¥)
TITLE := MARKERAA Title;
VALUE := MARKERM Value;
ThisSALARY := MARKERAM Salary;
if (Date.Year >= 1642) and (Date.Year <= 1652) then begin
ALTEREDVAL := (VALUE * GLUTPERCENT) div 100;
NumSpecs(ALTEREDVAL, LEN, VALSTR);
end else begin
NumSpecs(VALUE, LEN, VALSTR);
end; (* If ¥)
NumSpecs(ThisSALARY, LEN, SALARYSTR);
STR[I] := Concat('f', VALSTR,' -- ", TITLE, ' -- Salary £/, SALARYSTR);
ShownOffices[I].Title := TITLE;
ShownOffices[I]. Value := VALUE;
end; (* For *)
ParamText(STR[1], STR[2], STR(3], STR[4]);
end; (* SellAdvance *)

(***)

procedure HideCtl(OfficeDialog: DialogPtr; Item:integer);

CALLED BY: FewOffices *)
(* CALLS TO: none *)
(* GLOBALS: none *)
(* ACTION: This procedure hides radio buttons in the sell office dialog. *)

var DUMMYTYPE : integer;
ITEMHDL. : Handle;
DUMMYRECT : Rect;

begin (* HideCt *)
GetDItem(OfficeDialog, Item, DUMMYTYPE, ITEMHDL, DUMMYRECT);
HideControl(Pointer(TEMHDL));

end; (* HideCt *)

(***)

procedure FewOffices(OfficeDialog: DialogPtr; Number:longint; OfficeList:OfficeHandle;

var ShownOffices:Off Array);
(* CALLED BY: SellOffice *)
(* CALLS TO: HideCtl, NumSpecs, LightBtn *)
(* GLOBALS: Date *)
(* ACTION: This procedure lists the appropriate number of radio buttons and offices in the sell office *)

(* dialog.

var I, LEN : integer;

MARKER : OfficeHandle;

TITLE, VALSTR, SALARYSTR : Stu255;
ThisSALARY, VALUE, ALTEREDVAL : longint;
STR : array[1. NUMOFFPERSCREEN] of Str255;

begin (* FewOffices *)

for I := 1 to NUMOFFPERSCREEN do begin

STR[I} ="

end; (* For *)
case Number of

1: begin
HideCtl(OfficeDialog, RAD2);
HideCtl(OfficeDIalog, RAD3);
HideCtl(OfficeDialog, RAD4);
end; (* One *)

2 : begin
HideCtl(OfficeDialog, RAD3);

HideCtl(OfficeDialog, RAD4);
end; (* Two *)

3 : HideCtl(OfficeDialog, RAD4);

end; (* Case *)
MARKER := OfficeList;
for I :=1 to Number do begin

TITLE := MARKERAA Title;

VALUE := MARKERAM Value;

ThisSALARY := MARKERA Salary;

if (Date.Year >= 1642) and (Date.Year <= 1652) then begin
ALTEREDVAL := (VALUE * GLUTPERCENT) div 100;
NumSpecs(ALTEREDVAL, LEN, VALSTRY);

end else begin
NumSpecs(VALUE, LEN, VALSTR);

end; (* If *)

NumSpecs(ThisSALARY, LEN, SALARYSTR);

STR(I] := Concat('f', VALSTR,' -- ,TITLE, ' -- Salary £, SALARYSTR);

ShownOffices({I].Title := TITLE;
ShownOffices[I].Value := VALUE;
MARKER := MARKERAM Next;

end; (* For *)

ParamText(STR[1], STR{2], STR[3], STR[41]);
LightBmn(OfficeDialog, NEXTBTNITEM, BTNINACTIVE);
LightBtn(OfficeDialog, PREVBTNITEM, BTNINACTIVE);

end; (* FewOffices *)

W)

(***)

procedure LoseOffice(var Offices:Office Type; NewOffice:DlogOffRec; Date:DateType);

(* CALLED BY: SellOffice

)

(* CALLS TO: none
(* GLOBALS: Date

(* ACTION: This procedure removes an office from the office list by disposing of its handle.

FOUND : boolean;
MARKER, DISPMARK : OfficeHandle;

begin (* LoseOffice *)
with Offices do begin
FOUND := false;
MARKER := OfficeList;
while not FOUND do begin
if MARKERAA Title = NewOffice.Title then begin
FOUND := true;
end else begin
MARKER := MARKERAA Next;
end; (* If *)
end; (* While *)

Salary := Salary - MARKERA?A. Salary;
TotPurchase := TotPurchase - MARKERAM AmtPaid;
if OfficeListM . Title = NewOffice.Title then begin
DISPMARK := OfficeList;
OfficeList := OfficeList".Next;
DisposHandle(Pointer(DISPMARK));
end else begin
FOUND := false;
MARKER := OfficeList;
while not FOUND do begin
if MARKERA NextM . Title = NewOffice. Title then begin

FOUND := true;
. DISPMARK := MARKERA Next;
MARKERAM Next := MARKERA NextM Next;
DisposHandle(Pointer(DISPMARK));
end else begin
MARKER := MARKERAA Next;
end; (* If *)
end; (* While *)
end; (* If *)
end; (* With *)
end; (* LoseOffice ¥*)

*)
*)
)

(***)

procedure SellOffice(var Assets:AssetsType; FinMenu:MenuHandle; Date:DateType);

(* CALLED BY: Sell

(* CALLS TO: FewOffices, SellAdvance, LightBtn, DoCheck, GetOffBought, NumSpecs,
(* CalcCostOfLiving, LoseOffice

(* GLOBALS: Assets, Date

)
*)
)
)

(* ACTION: This procedure sets up a dialog for selling offices held by the player. If the office selected is *)

(* Secretary of the King, the sale is not allowed. FewOffices or SellAdvance are called, depending on

(* whether the list of held offices is longer than one screenful.

)
*)

var OFFICEDIALOG : DialogPtr;
POS, ITEM, LEN : integer;
SHOWNOFFICES : OffArray;
SELLOK : boolean;
NEWOFFICE : DlogOffRec;
COST : longint;
SALARYSTR, COSTofLSTR : STR255;

begin (* SellOffice *)

OFFICEDIALOG := GetNewDialog(268, nil, Pointer(-1));
with Assets.Office do begin

if Number <= NUMOFFPERSCREEN then begin

FewOffices(OFFICEDIALOG, Number, OfficeList, SHOWNOFFICES);
end else begin

POS :=0;
SellAdvance(POS, NEXTBTNITEM, Number, SHOWNOFFICES, Date, OfficeList);
end; (* If *)
LightBtn(OFFICEDIALOG, SELLBTNITEM, BTNINACTIVE);
repeat
SELLOK := true;
repeat
SystemTask;
ModalDialog(nil, ITEM);
if ITEM in [RAD1, RAD2, RAD3, RAD4] then begin
DoCheck(OFFICEDIALOG, ITEM, Number);
end; (*If *)

if ITEM in (NEXTBTNITEM, PREVBTNITEM] then begin

SellAdvance(POS, ITEM, Number, SHOWNOFFICES, Date, OfficeList);
DrawDialog(OFFICEDIALOG);

end; (* If *)
. until ITEM in [SELLBTNITEM, Cancel];
if ITEM = SELLBTNITEM then begin
GetOffBought(OFFICEDIALOG, SHOWNOFFICES, NEWOFFICE);
if NEWOFFICE.Value = NONE then begin
SELLOK := false;
end else begin

if NEWOFFICE.Title = SECYKING then begin
LEN := StopAlert(301, nil);
SELLOK := false;

end else begin

COST := NEWOFFICE.Value;

if (Date.Year >= 1642) and (Date.Year <= 1652) then begin
COST := COST - ((COST * LEVYTAX) div 100);
end; (* If *)
Assets.Cash := Assets.Cash + COST;
LoseOffice(Assets.Office, NEWOFFICE, Date);
ParamText(NEWOFFICE.Title, ", ", ");
LEN := Notealert(322, nil);
CalcCostofLiving (Assets);

NumSpecs(Assets.Office.Salary, LEN, SALARYSTR);
NumSpecs(Assets.CostOfLiving, LEN, COSTofLSTR);
ParamText(SALARYSTR, COSTofLSTR, ", ")

b

LEN := Notealert(320, nil);
if OfficeList = nil then begin
Disableltem(FinMenu, SELLITEM);
end; (* If *)

. Number := Number - 1;

end; (* If *)
end; (* If *)
end; (* If %)
until SELLOK;
end; (* With ¥)
DisposDialog(OFFICEDIALOG);
end; (* SellOffice *)

(***)

procedure SellLand(var Assets:AssetsType; FinMenu:MenuHandle);

(* CALLED BY: Sell *)
(* CALLS TO: NumSpecs, SellText, ConvertNum *)
(* GLOBALS: Assets, Date *)

(* ACTION: This procedure displays a dialog for the sale of land and grain held by the player. Prices *)
(* are posted and grain amounts are deducted, cash is increased for each sale. Incorrect values and inherited *)
(* Iand (which can't be sold) are doublechecked. *)

var LANDDIALOG : DialogPtr;
LEN, ITEM : integer;
GRAINSTR, LANDSTR, AMT, PRICESTR,
LANDPRICESTR, LANDSOLDSTR, LANDPROFITSTR,
GRAINSOLDSTR, GRAINPROFITSTR, NEWAMTSTR : Str255;
CONVOK : boolean;
. LANDTEMP, TEMP, VALTEMP : longint;

begin (* SellLand *)
LANDDIALOG := GetNewDialog(262, nil, Pointer(-1));
with Assets do begin
VALTEMP := LANDVAL,;
if (Assets.Protector.Name = Conde) or (Assets.Protector.Name = GrandDauphin) then begin
if (Date.Year >= 1653) and (Assets.Protector Name = Conde) then begin
VALTEMP := (LANDVAL * 3) div 4;
end else begin
VALTEMP := LANDVAL div 2;
end; (* If ¥)
end; (* If *)

NumSpecs(Grain, LEN, GRAINSTR);
NumSpecs(Land.Bought + Land.Inherited, LEN, LANDSTR),
NumSpecs(Land.Price, LEN, PRICESTR);
NumSpecs(VALTEMP, LEN, LANDPRICESTR);
ParamText(LANDSTR, GRAINSTR, PRICESTR, LANDPRICESTR);
repeat
CONVOK := true;
SellText (LANDDIALOG, LANDSELLITEM, 0, 200);

DlogManager(ITEM);
if ITEM = OK then begin
GetDText(LANDDIALOG, LANDSELLITEM, AMT);
ConvertNum(AMT, LANDTEMP, CONVOK);
if not CONVOK then begin
LEN := StopAlert(256, nil);
end else begin
if LANDTEMP > Land.Bought + Land.Inherited then begin
LEN := CautionAlert(261, nil);
CONVOK := false;
end else begin
if LANDTEMP > Land.Bought then begin
LEN := CautionAlert(262,nil);
CONVOK := false;
end; (* If *)
end; (* If *)
end; (* If *)
if CONVOK then begin
GetDText(LANDDIALOG, GRAINSELLITEM, AMT);
ConvertNum(AMT, TEMP, CONVOK);
if not CONVOK then begin
LEN := StopAlert(256, nil);
end else begin
if TEMP > Grain then begin
LEN := StopAlert(263, nil);
CONVOK := false;
end; (* If *)
end; (* If *)
end; (* If *)
end; (* If *)
until CONVOK;
if ATEM = OK) and (LANDTEMP > 0) then begin
Land.Bought := Land.Bought - LANDTEMP;
Assets.Cash := Assets.Cash + (LANDTEMP * VALTEMP);
NumSpecs(Land.Bought, LEN, NEWAMTSTR);
NumSpecs(LANDTEMP * VALTEMP, LEN, LANDPROFITSTR);
NumSpecs(LANDTEMP, LEN, LANDSOLDSTRY);
ParamText(NEWAMTSTR, LANDPROFITSTR, LANDSOLDSTR,");
LEN := NoteAlert(330, nil);
end; (* If *)
if (ITEM = OK) and (TEMP > 0) then begin
Grain := Grain - TEMP;
Cash := Cash + (TEMP * Land.Price);
NumSpecs(Grain, LEN, NEWAMTSTRY);
NumSpecs(TEMP * Land.Price, LEN, GRAINPROFITSTR);
NumSpecs(TEMP, LEN, GRAINSOLDSTR);

ParamText(NEWAMTSTR, GRAINPROFITSTR, GRAINSOLDSTR,");

LEN := NoteAlert(331, nil);

if TEMP >= ((Grain + TEMP) div 10) then Assets.SoldGrain := true;
end; (* If ¥)
if (Land.Bought = 0) and (Grain = 0) then begin

Disableltem(FinMenu, SELLITEM);

end; (* If *)

end; (* With *)
DisposDialog(LANDDIALOG);

end; (* SellLand *)

**)

procedure Sell(var Assets: AssetsType; Choice:integer; Date:DateType; FinMenu:MenuHandle);

(* CALLED BY: DoCommand, Main *)
(* CALLS TO: SellLand, SellRente, SellOffice *)
(* GLOBALS: Assets, Date *)
(* ACTION: This procedure checks the investment icons for the appropriate transaction and calls the *)
(* procedure. *)
begin (* Sell ¥)

case Choice of

LANDICON : SellLand(Assets, FinMenu);
RENTEICON : SellRente(Assets, Date);
OFFICEICON : SellOffice(Assets, FinMenu, Date);
LEASEICON : ;
TEXTILEICON : ;
end; (* Case *)
end; (* Sell *)

{$S Seg2})

(***)

procedure SetUpWindow(var TextWindow:WindowPtr);

(* CALLED BY: SetUp *)

* CALLS TO: none *)

GLOBALS: none *)

(* ACTION: This procedure creates a window for text display, with a grow icon. *)
begin (* SetUpWindow *)

TextWindow := GetNewWindow(259, nil, Pointer(-1));
DrawGrowIcon(TextWindow);
SetPort(TextWindow);
PLSetWrPort(TextWindow);
end; (* SetUpWindow *)

(***)

procedure SetUpControls(var ScrlBar:ControlHandle; TextWindow:WindowPtr);

(* CALLED BY: SetUp *)
(* CALLS TO: none *)
(* GLOBALS: none *)
(* ACTION: This procedure sets up the scroll bar control on a textwindow. *)

begin (* SetUpControls *)
ScriBar := GetNewControl(256, TextWindow);
ShowControl(ScriBar);

end; (* SetUpControls *)

(***)

procedure SetUp(var TextWindow: WindowPtr; var ScriBar:ControlHandle; var TopLine:integer; var hTE:TEHandle);

. CALLED BY: ReadText *)

CALLS TO: SetUpWindow, SetUpControls, SetUpTextEdit *)

(* GLOBALS: TopLine, hTE *)

(* ACTION: This procedure initiates display of a text window with grow icon, scroll bars, and text display. *)
begin (* SetUp *)
TopLine := 0;

SetUpWindow(TextWindow);

SetUpControls(ScriBar, TextWindow);

SetUpTextEdit(hTE, TextWindow);
end; (* SetUp *)

(***)

procedure ScrollBits(ScriBar:ControlHandle; var TopLine:integer; var hTE:TEHandle);

(* CALLED BY: Increase, Decrease, PageScroll, DoScroll *)
(* CALLS TO: none *)
(* GLOBALS: TopLine, hTE *)
(* ACTION: This procedure readjusts the top line of display in a window for scrolling. *)
var OLDVERT,

HEIGHT : integer;

begin (* ScrollBits *)

OLDVERT := TopLine;

TopLine := GetCtlValue(ScriBar);

HEIGHT := hTEAM LineHeight;

TEScroll(0, (OLDVERT - TopLine) * HEIGHT, hTE);
end; (* ScrollBits *)

(***)

procedure Increase(theControl:ControlHandle; partCode:integer);

(* CALLED BY: DoScroll *)
(* CALLS TO: ScrollBits *)
(* GLOBALS: TopLine, hTE)
(* ACTION: This procedure reads the up arrow for amount scrolled, and moves the top line of display *)
(* to match. *)

var VAL : integer;

begin (* Increase *)
if partCode = inUpButton then begin
VAL := GetCtlValue(theControl);
if VAL <> 0 then begin
SetCttValue(theControl, VAL - 1);
ScrolBits(theControl, TopLine, hTE);
end; (* If *)

end; (* If *)
end; (* Increase *)

(***)

.ocedure Decrease(theControl:ControlHandle; partCode:integer);

(* CALLED BY: DoScroll *)
(* CALLS TO: ScrollBits *)
(* GLOBALS: TopLine, MaxScroll, hTE *)
(* ACTION: This procedure reads the down arrow for amount scrolled, and moves the top line of display ~ *)
(* to match. *)

var VAL : integer;

begin (* Decrease *)
if partCode = inDownButton then begin
VAL := GetCtlValue(theControl);
if VAL < MaxScroll then begin
SetCtlValue(theControl, VAL + 1);
ScrollBits(theControl, TopLine, hTE);
end; (* If ¥)
end; (* If *)
end; (* Decrease *)

(***)

procedure PageScroll(Which:integer; var ScriBar:ControlHandle; var hTE:TEHandle);

(* CALLED BY: DoScroll *)
(* CALLS TO: ScrollBits *)
* GLOBALS: TopLine, hTE *)
ACTION: This procedure scrolls text on a page using the values read in from the controls in the *)

(* scroll bar. *)

var PT : Point;
AMOUNT, HEIGHT : integer;
TEMPRECT : Rect;

begin (* PageScroll *)

if Which = inPageUp then begin
AMOUNT :=-1;

end else begin
AMOUNT = 1;

end; (* If *)

repeat
GetMouse(PT);

if TestControl(ScriBar, PT) = Which then begin
TEMPRECT := hTEM.ViewRect;
HEIGHT := hTEAA LineHeight;
with TEMPRECT do begin
SetCtlValue(ScriBar, GetCtlValue(ScriBar) + AMOUNT * (Bottom - Top) div HEIGHT);
end; (* With *)
ScrollBits(ScriBar, TopLine, hTE);

end; (* If ¥)
until not StillDown;
end; (* PageScroll *)

**)

ure DoScroll(var hTE:TEHandle;var ScriBar:ControlHandle; AnEvent:EventRecord; TextWindow:WindowPtr);

(* CALLED BY: ReadText *)
(* CALLS TO: ScrollBits *)
(* GLOBALS: TopLine, hTE *
(* ACTION: This procedure scrolls text in a display window by reading the scroll control bar. *)

var MOUSELOC : Point;
CTLPART : integer;
OLDVALUE, VALUE : integer;
THECONTROL : ControlHandle;

begin (* DoScroll *)
MOUSELOC := AnEvent.where;
GlobalToLocal(MOUSELOC);
CTLPART := FindControlMOUSELOC, TextWindow, THECONTROL);
if THECONTROL = ScriBar then begin
OLDVALUE := GetCtlValue(ScriBar);
case CTLPART of
inUpButton : VALUE := TrackControl(ScriBar, MOUSELOC, @Increase);
inDownButton : VALUE := TrackControl(ScriBar, MOUSELOC, @Decrease);
inPageUp : PageScroll(CTLPART, ScrlBar, hTE);
inPageDown : PageScroll(CTLPART, ScriBar, hTE);
inThumb : begin
VALUE := TrackControl(ScriBar, MOUSELOC, nil);
. ScroliBits(ScriBar, TopLine, hTE);
end; (* InThumb *)
end; (* Case *)
if VALUE = 0 then begin
SetCtlValue(ScrlBar, OLDVALUE);
end; (* If *)
end; (* If *)
end; (* DoScroll *)

(***)

procedure SetScrollMax(var hTE: TEHandle; ScriBar:ControlHandle; var TopLine, MaxScroll:integer);

(* CALLED BY: ReadText W
(* CALLS TO: none)
(* GLOBALS: TopLine, MaxScroll, hTE *)
(* ACTION: This procedure sets initial and maximum values for scrolling in a display window. *)

begin (* SetScrollMax *)
MaxScroll := h'TEM nLines - (hTEAM.viewRect.bottom - hTEM.viewRect.top + 1) DIV (hTEA lineHeight);

if MaxScroll < 0 then begin 3y
MaxScroll := 0;
end; (* If *)

SetCtlMax (ScriBar, MaxScroll);

TopLine := 0;

SetCtlValue (ScriBar, TopLine);
end; (* SetScroliMax *)

S)

(***)

procedure Treasury(var Assets: AssetsType; Date:DateType);

(* CALLED BY: Main *)
(* CALLS TO: ConvertNum, DisplayAssets *
(* GLOBALS: Assets, Date *)

(* ACTION: This procedure is a debugging tool. By pressing option-command-shift-capslock-s the user ~ *)
(* gets a dialog in which to enter any amount of cash desired. This is transfered to the player's cash value. *)

var TreasuryDIALOG : DialogPtr;
ITEM : integer;
STR : Su255;
NUM : longint;
CONVOK : boolean;

begin (* Treasury *)
TreasuryDIALOG := GetNewDialog(269, nil, Pointer(-1));
repeat
SystemTask;
ModalDialog(nil, ITEM);
until ITEM = OK;
GetDText(TreasuryDIALOG, 2, STR);
ConvertNum(STR, NUM, CONVOK); -
Assets.Cash ;= NUM;
Assets.Debt := 0;
DisposDialog(TreasuryDIALOG);
DisplayAssets(Assets, Date);
end; (* Treasury *)

{$S Seg2)

(***)

procedure ReadText(var TopLine, MaxScroll:integer; var hTE:TEHandle; WatchHdl:CursHandle; VRefNum:integer);

(* CALLED BY: DoCommand, Main *)
(* CALLS TO: GetText, SetUp, SetScrollMax, DoScroll *
(* GLOBALS: Code, TopLine, MaxScroll, VRefNum, hTE, WatchHdl *)
{(* ACTION: This procedure sets the cursor and event manager to wait for a mouse down event in a *)
(* window before closing it. This allows the player to read a window and put it away when finished. *)

var STOP : boolean;
TOP, TEMP : boolean;
TEXTWINDOW, WHICHWINDOW : WindowPrr;
ANEVENT : EventRecord;
SCRLBAR : ControlHandle;

begin (* ReadText *)
STOP := false;
Hlock(Pointer{WatchHdl));
SetCursor(WatchHdIMY);
Hunlock(Pointer(WatchHdl));
SetUp(TEXTWINDOW, SCRLBAR, Topline, hTE);
GetText(INSTRFILE, hTE, VRefNum);
SetScroliMax(hTE, SCRLBAR, TopLine, MaxScroll);
TEUpdate(TextWindow.portRect, hTE);
SetCursor(Arrow);
repeat
SystemTask;
TEMP := GetNextEvent(everyEvent, ANEVENT);
case ANEVENT.what of
MouseDown : begin
CODE := FindWindow(ANEVENT.where, WHICHWINDOW);
if WHICHWINDOW <> TEXTWINDOW then begin
SysBeep(BEEPDURATION);
end else begin

case Code of
inContent : DoScroli(hTE, SCRLBAR, ANEVENT, TEXTWINDOW),

inGoAway : if TrackGoAway(WHICHWINDOW, ANEVENT.where) then begin
STOP := true;
TEDispose(hTE);
hTE := nil;
KillControls(TEXTWINDOW);
DisposeWindow(TEXTWINDOW);
SetPort(thePort);
. PLSetWrPort(thePort);

end; (* If *)
inSysWindow : SystemClick(ANEVENT, WHICHWINDOW);
end; (* Case *)
end; (* If *¥)
end; (* MouseDown *)
end; (* Case *)
until STOP;
end; (* ReadText *)

{$S Seg3}

(***)

procedure MarrCheck(MarrDialog: DialogPtr; Item:integer);

(* CALLED BY: DoMarriage

(* CALLS TO: LightBtn,

(* GLOBALS: none

(* ACTION: This procedure examines the marriage dialog for mouse down events, that is, choices.

var DUMMYTYPE : integer;

ITEMHDL, RADHDL : Handle;
DUMMYRECT : Rect;

*)
*)
)
)

VAL : integer;

begin (* MarrCheck *)

GetDItem(MarrDialog, Item, DUMMYTYPE, ITEMHDL, DUMMYRECT);

VAL := GetCtlValue(Pointer(ord I TEMHDL)));

if VAL = CHECKED then begin
VAL := NOTCHECKED;
LightBtn(MarrDialog, COURTITEM, BTNINACTIVE);
LightBtn(MarrDialog, INFOITEM, BTNINACTIVE);

end else begin
VAL := CHECKED;
LightBtn(MarrDialog, COURTITEM, BTNACTIVE);
LightBtn(MarrDlalog, INFOITEM, BTNACTIVE);
GetDItem(MarrDialog, MARRAD1, DUMMYTYPE, RADHDL, DUMMYRECT);
SetCtlValue(Pointer(RADHDL), NOTCHECKED);
GetDItem(MarrDialog, MARRAD2, DUMMYTYPE, RADHDL, DUMMYRECT);
SetCtValue(Pointer(RADHDL), NOTCHECKED);
GetDItem(MarrDialog, MARRAD3, DUMMYTYPE, RADHDL, DUMMYRECT);
SetCtlValue(Pointer(RADHDL), NOTCHECKED);
GetDItem(MarrDialog, MARRAD4, DUMMYTYPE, RADHDL, DUMMYRECT);
SetCtlValue(Pointer(RADHDL), NOTCHECKED);

end; (* If *)

SetCtlValue(Pointer(TEMHDL), VAL);

end; (* MarrCheck *)

(***)

procedure ExaMarrItem(MarrDialog:DialogPtr; Item, ItemNum:integer; var ThisBride:BrideRec;
ThisYear:BrideArray; var Found:boolean);

CALLED BY: GetMarrChecked *)
CALLS TO: none *)
(* GLOBALS: none *)
(* ACTION: This procedure checks to see if an item is chosen. It returns the bride, year, and sets *)
(* choice found true. *)

var DUMMYTYPE, VAL : integer;
ITEMHDL : Handle;
DUMMYRECT : Rect;

begin (* ExaMarrltem *)
GetDitem(MarrDialog, Item, DUMMYTYPE, ITEMHDL, DUMMYRECT);
VAL := GetCtlValue(Pointer(TEMHDL));
if VAL = CHECKED then begin
ThisBride := ThisYear[ItemNum};
Found := true;
end; (* If *)
end; (* ExaMarrltem *)

(***)

procedure GetMarrChecked(MarrDialog: DialogPtr; ThisYear:Bride Array; var ThisBride:BrideRec);

(* CALLED BY: DoMarriage *)

(* CALLS TO: ExaMarrltem *)

(* GLOBALS: none *)
(* ACTION: This procedure polls the radio buttons in the marriage dialog for choices, and returns a *)
(* bride if found. *)
FOUND : boolean;
begin (* GetMarrChecked *)
FOUND := false;

ExaMarrItem(MarrDialog, MARRADI, 1, ThisBride, ThisYear, FOUND);
ExaMarrltem(MarrDialog, MARRAD?2, 2, ThisBride, ThisYear, FOUND);
ExaMarrltem(MarrDialog, MARRAD?3, 3, ThisBride, ThisYear, FOUND);
ExaMarrltem(MarrDialog, MARRAD4, 4, ThisBride, ThisYear, FOUND);
if not FOUND then begin
ThisBride.Age := NONE;
end; (* If ¥)
end; (* GetMarrChecked *)

(***)

procedure DoMarriage(var Assets: AssetsType; Date:DateType; PersMenu: MenuHandle);

(* CALLED BY: DoCommand, Main *)
(* CALLS TO: LightBtn, MarrCheck, NumSpecs, GetMarrChecked, Demographics *
(* GLOBALS: Assets, Date *)
(* ACTION: This dialog displays a marriage dialog and responds to choices made. *)

var MARRDIALOG : DialogPtr;
ITEM, LEN : integer;
THISBRIDE : BrideRec;
AMT, AGESTR : Str255;
MARROK : boolean;

begin (* DoMarriage *)
with Assets.Marriage do begin
if Available.IsAvail then begin
ParamText(ThisYear{1].Name, ThisYear[2] Name, ThisY ear{3].Name, ThisYear{4].Name);
MARRDIALOG := GetNewDialog(271, nil, Pointer(-1));
LightBtn(MARRDIALOG, COURTITEM, BTNINACTIVE);
LightBtn(MARRDIALOG, INFOITEM, BTNINACTIVE);
repeat
MARROK := true;
repeat
SystemTask;
ModalDialog(nil, ITEM);
if ITEM in [MARRADI1, MARRAD2, MARRAD3, MARRADA4] then begin
MarrCheck(MARRDIALOG, ITEM);
end; (* If *)
if ITEM = INFOITEM then begin
GetMarrChecked(MARRDIALOG, ThisYear, THISBRIDE);
NumSpecs(THISBRIDE . Dowry, LEN, AMT);
NumSpecs(THISBRIDE.Age, LEN, AGESTR);
ParamText(THISBRIDE.Name, AMT, THISBRIDE.Father, AGESTR);

LEN := Alert(272, nil);
ParamText(ThisYear(1).Name, ThisYear{2].Name, ThisYear{3].Name, ThisYear[4].Name);
end; (* If *)
until ITEM in [COURTITEM, Cancel];
. if ITEM = COURTITEM then begin
GetMarrChecked(MARRDIALOG, ThisYear, THISBRIDE);
if THISBRIDE.Age <> NONE then begin
if (THISBRIDE.Group div 10 <= Assets.Prestige div 10) and
(Assets.TotalVal >= 2 * THISBRIDE.Dowry) then begin
Bride := THISBRIDE;
Married := true;
Assets.Cash := Assets.Cash + Bride.Dowry;
DisableItem(PersMenu, MARRITEM);
if (Assets.Generation = SECONDGEN) then begin
Enableltem(PersMenu, PLANITEM);
end; (*If *)
Available.Year := Date.Year;
ParamText(Bride.Name, ", ", ');
LEN := Alert(273, nil);
if THISBRIDE.Group div 10 < Assets.Prestige div 10 then begin
MarrBelow := true;
LEN := StopAlert(310, nil);
end; (* If *)
DemoGraphics(Assets, Date, PersMenu);
if not Date.Fall then begin
Assets. Marriage. Bride. Age := Assets.Marriage.Bride.Age - 1;
end; (* If *)
end else begin
Available.IsAvail := false;
Available.Year := Date.Year;
. Failures := Failures + 1;
ParamText(THISBRIDE.Name, ", ", ");
LEN := StopAlert(275, nil);
end; (* If *)
end else begin
MARROK := false;
end; (* If *)
end; (* If *)
until MARROK;
DisposDialog(MARRDIALOG);
end else begin
LEN := StopAlert(274, nil);
end; (* If *)
end; (* With ¥)
end; (* DoMarriage *)

($S Segl4}

(***)

procedure PlanFamily(var Assets: AssetsType; Date:DateType; PersMenu:MenuHandle);

(* CALLED BY: DoCommand, Main *)

(* CALLS TO: none *)

(* GLOBALS: Assets, Date *)
(* ACTION: This procedure determines if a wife is too old for children, and, if not, records the *)
(* wish to have a child. *)

PLANDIALOG : DialogPtr;
ITEM : integer;

begin (* PlanFamily *)
if Assets.Marriage.Bride.Age > TOOOLDFORKIDS then begin
ITEM := StopAlert(288, nil);

end else begin
PLANDIALOG := GetNewDialog(273, nil, Pointer(-1));
DlogManager(ITEM);

if ITEM = OK then begin
Assets.Children.NextBirth. Year := Date.Year + 1;
Assets.Children.NextBirth.Fall := Date.Fall;
Disableltem(PersMenu, PLANITEM);

end; (* If *)

DisposDialog(PLANDIALOG);

end; (* If *)
end; (* PlanFamily *)

(***)

procedure AboutProgram;

(* CALLED BY: DoCommand *)
(* CALLS TO: none *)
(* GLOBALS: none *)
 ACTION: This procedure displays an alert describing the authors and designers of the program. *)

var LEN : integer;

begin (* AboutProgram *)
LEN := Alert(286, nil);
end; (* AboutProgram *)

(***)

procedure BuyNobility(var Assets: AssetsType; PersMenu:MenuHandle);

(* CALLED BY: DoCommand *)
(* CALLS TO: NumSpecs, LightBtn, *)
(* GLOBALS: Assets *)
(* ACTION: This procedure displays a dialog for the purchase of a letter of nobility. If purchased, *)
(* it sets Noble to true. *)

var NOBLEDIALOG : DialogPtr;
LEN : integer;
COSTSTR, CASHSTR : Str255;

begin (* BuyNobility *)
with Assets do begin

NumSpecs(NOBLECOST, LEN, COSTSTR);
NumSpecs(Cash, LEN, CASHSTR);
ParamText(COSTSTR, CASHSTR, ", ");
NOBLEDIALOG := GetNewDialog(274, nil, Pointer(-1}));
. if Cash < NOBLECOST then begin
LightBm(NOBLEDIALOG, OK, BTNINACTIVE);
end; (* If *)
DlogManager(LEN);
if LEN = OK then begin
Cash := Cash - NOBLECOST;
Noble := true;
Boughtletter := true;
Disableltem(PersMenu, NOBLEITEM);
end; (* If *)
DisposDialog(NOBLEDIALOG);
end; (* With *)
end; (* BuyNobility *)

{$S Seg5}

(***)

procedure SaveRente(RMarker:RenteHandle; Size:longint; Refnum:integer);

(* CALLED BY: SaveSimulation *)
(* CALLS TO: none *)
(* GLOBALS: none *)
(* ACTION: This procedure writes the rente held by the player to disk for later recovery. *)

var DONE : boolean;

BSIZE : longint;
. ERR : OSErr;

REC : RenteType;

begin (* SaveRente *)
BSIZE := SizeOf(boolean);
DONE := false;
while RMarker <> nil do begin
ERR := FSWrite(Refnum, BSIZE, @ DONE);
REC := RMarker™;
ERR := FSWrite(Refnum, Size, @REC);
RMarker := RMarkerA Next;
end; (* While *)
DONE := true;
ERR := FSWrite(Refnum, BSIZE, @ DONE);
end; (* SaveRente *)

(***)

procedure SaveOffice(OMarker:OfficeHandle; Size:longint; Refnum:integer);

(* CALLED BY: SaveSimulation *)
(* CALLS TO: none *)
(* GLOBALS: none *)

(* ACTION: This procedure writes the offices held by the player to disk for later recovery. *)

var DONE : boolean;
BSIZE : longint;
ERR : OSErr;
REC : OfficeRec;

begin (* SaveOffice *)
BSIZE := SizeOf(boolean);
DONE := false;
while OMarker <> nil do begin
ERR := FSWrite(Refnum, BSIZE, @DONE);
REC := OMarker™,;
ERR := FSWrite(Refnum, Size, @REC);
OMarker := OMarker™ . Next;
end; (* While *)
DONE := true;
ERR := FSWrite(Refnum, BSIZE, @ DONE);
end; (* SaveOffice *)

(***)

procedure SaveKid(KMarker:KidHandle; Size:longint; Refnum:integer);

(* CALLED BY: SaveSimulation *)
(* CALLS TO: none *)
(* GLOBALS: none *)
(* ACTION: This procedure saves information about children to disk for later recovery. *)

var DONE : boolean;
BSIZE : longint;
ERR : OSErm;
REC : KidRec;

begin (* SaveKid *)
BSIZE := SizeOf(boolean);
DONE := false;
while KMarker <> nil do begin
ERR := FSWrite(Refnum, BSIZE, @ DONE);
REC := KMarker;
ERR := FSWrite(Refnum, Size, @REC);
KMarker := KMarker*.Next;
end; (* While *)
DONE := true;
ERR := FSWrite(Refnum, BSIZE, @ DONE);
end; (* SaveKid *)

(koo ook ook ok ok ok koo ok ok ok koo ok ks ok sl ook ok Aok ook ok)

procedure SaveSimulation(var Assets: AssetsType; Date:DateType; WatchHdl:CursHandle);

(* CALLED BY: QuitHandler, DoCommand, Main *)
(* CALLS TO: SaveRente, SaveOffice, SaveKid *)
(* GLOBALS: Assets, Date, WatchHdl *)

(* ACTION: This procedure saves information about the player to disk for later recovery. *)

var LEN, REFNUM : integer;
SIZE : longint;

. ERR : OSErr;

begin (* SaveSimulation *)
LEN := CautionAlert(295, nil);
if LEN = OK then begin
Hlock({Pointer(WatchHdl));
SetCursor(WatchHdiAN);
Hunlock(Pointer(WatchHdl));

ERR := FSDelete(SAVEFILE, 0);

ERR := Create(SAVEFILE, 0, 77?7", 'SAVE");

ERR := FSOpen(SAVEFILE, 0, REFNUM);

SIZE := SizeOf(DateType);

ERR := FSWrite(REFNUM, SIZE, @Date);

SIZE := SizeOf(AssetsType);

ERR := FSWrite(REFNUM, SIZE, @ Assets);
SaveRente(Assets.Rente.IndivRentes, SizeOf(RenteType), REFNUM);
SaveOffice(Assets.Office.OfficeList, SizeOf(OfficeRec), REFNUM);
SaveKid(Assets.Children.Boys, SizeOf(KidRec), REFNUM);
SaveKid(Assets.Children.Girls, SizeOf(KidRec), REFNUM);

ERR := FSClose(REFNUM);

end; (* If *)
end; (* SaveSimulation *)

(***)

procedure QuitHandler(var Assets: AssetsType; Date:DateType; var Done:boolean; WatchHdl:Curshandle);

.* CALLED BY: DoCommand *)
(* CALLS TO: SaveSimulation *
(* GLOBALS: Done, Assets, Date, WatchHdl *)
(* ACTION: This procedure asks a player to either save their game or quit without saving. *)

var LEN : integer;

begin (* QuitHandler *)
LEN := CautionAlert(296, nil);
Done := true;
Assets.Quit := true;
case LEN of
OK : SaveSimulation(Assets, Date, WatchHdl);
Cancel : begin
Done := false;
Assets.Quit ;= false;
end; (* Cancel *)
end; (* Case *)
end; (* QuitHandler *)

(ko ook ok ook ook ok dakoloR ook kool ook ko ok R R Rk Rk ok ko ok
procedure ReadRente(var RMarker:RenteHandle; Size:longint; Refnum:integer);

ERR := FSRead(Refnum, Size, @REC);
REC.Next := nil;
OMarker := Pointer(NewHandle(Size));
OMarker™ := REC;
. ERR := FSRead(Refnum, BSIZE, @DONE);
MARKER := OMarker;
while not DONE do begin
ERR := FSRead(Refnum, Size, @REC);
REC.Next := nil;
TEMPHANDLE := Pointer(NewHandle(Size));
MARKERAM Next := TEMPHANDLE;
MARKERAA NextA .= REC;
MARKER := MARKERAA Next;
ERR := FSRead(Refnum, BSIZE, @ DONE);
end; (* While *)
end; (* If *)
end; (* ReadOffice *)

(***)

procedure ReadKid(var KMarker:KidHandle; Size:longint; Refnum:integer);

(* CALLED BY: LoadSimulation

*)
(* CALLS TO: none *)
(* GLOBALS: none *)
(* ACTION: This procedure reads the kids information stored on the disk into a list. *)

var DONE : boolean;
BSIZE : longint;
ERR : OSErr;

REC : KidRec;
. MARKER, TEMPHANDLE : KidHandle;

begin (* ReadKid *)
BSIZE := SizeOf(boolean);
ERR := FSRead(Refnum, BSIZE, @ DONE);
if not DONE then begin
ERR := FSRead(Refnum, Size, @REC);
REC.Next := nil;

KMarker := Pointer(NewHandle(Size));

KMarker™M := REC;

ERR := FSRead(Refnum, BSIZE, @ DONE);

MARKER := KMarker;

while not DONE do begin

ERR := FSRead(Refnum, Size, @REC);
REC.Next := nil;

TEMPHANDLE := Pointer(NewHandle(Size));
MARKERA Next := TEMPHANDLE;
MARKERAA NextAA .= REC;
MARKER := MARKERA Next;
ERR := FSRead(Refnum, BSIZE, @ DONE);

end; (* While *)

end; (* If *)

end; (* ReadKid *)

(***)

procedure LoseKids(var KMarker:KidHandle);

. CALLED BY: LoadSimulation)
(* CALLS TO: none *)
(* GLOBALS: none *)
(* ACTION: This procedure disposes of a list of kids by disposing of their handles. *)

var KDISPMARK : KidHandle;

begin (* LoseKids *)
while KMarker <> nil do begin
KDISPMARK := KMarker;
KMarker := KMarkerA Next;
DisposHandle(Pointe KDISPMARK));
end; (* While *)
end; (* LoseKids *)

(***)

procedure LoadSimulation(var Assets:AssetsType; var Date:DateType; WatchHdl:CursHandle; FinMenu,
PersMenu:MenuHandle; var Icons:IconType; FinWindow:WindowPtr; var CorrRefNum:integer);

(* CALLED BY: DoCommand *)
(* CALLS TO: ReadRente, LoseKids, Bankrupt, ReadOffice, ReadKid, Drawicons *)
(* GLOBALS: FinWindow, Icons, CorrRefNum, Assets, Date, WatchHdl, Corrfile *)
(* ACTION: This procedure restores a previously saved game from the disk to the Macintosh. *)

ar LEN, REFNUM, DUMMYINT : integer;
‘ ERR : OSEr;
SIZE : longint;
KMARKER, KDISPMARK : KidHandle;
FINRECT : Rect;

begin (* LoadSimulation *)
LEN := CautionAlert(297, nil);
if LEN = OK then begin
ERR := FSOpen(SAVEFILE, 0, REFNUM);
if ERR <> NONE then begin
LEN := StopAlert(298, nil);
end else begin
Hlock(Pointer(WatchHdl));
SetCursor(WatchHdIAN);
Hunlock(Pointer(WatchHdl));
Bankrupt(Assets, Date, false, false);
LoseKids(Assets.Children.Boys);
LoseKids(Assets.Children.Girls);
SIZE := SizeOf(DateType);
ERR := FSRead(REFNUM, SIZE, @Date);
SIZE := SizeOf(AssetsType);
ERR := FSRead(REFNUM, SIZE, @ Assets);

Assets.Quit := false;
ReadRente(Assets.Rente.IndivRentes, SizeOf(RenteType), REFNUM);
ReadOffice(Assets.Office.OfficeList, SizeOf(OfficeRec), REFNUM),
ReadKid(Assets.Children.Boys, SizeOf(KidRec), REFNUM);
ReadKid(Assets.Children.Girls, SizeOf(KidRec), REFNUM);
Icons.Selected := NONE;
Icons.MenuDisabled := true;
Icons.IconWasSelected := false;
SetPort(FinWindow);
PLSetWrPort(FinWindow);
SetRect(FINRECT, 0, 0, 114, 183);
EraseRect(FINRECT);
DrawlIcons(Icons, FinWindow);
Disableltem(FinMenu, 0);
if Assets.Marriage.Married then begin
Disableltem(PersMenu, MARRITEM);
end else begin
Enableltem(PersMenu, MARRITEM);
end; (* If *)
if Assets.Noble then begin
Disableltem(PersMenu, NOBLEITEM);
end else begin
Enableltem(PersMenu, NOBLEITEM);
end; (* If *)
if (Assets.Generation = SECONDGEN) and (Assets.Marriage. Married) and
(Assets.Children NextBirth. Year <= Date.Year) and
((Assets.Children NextBirth. Year <> Date.Year) or (Assets.Children NextBirth.Fall <> true)
or (Date.Fall <> false)) then begin
Enableltem(PersMenu, PLANITEM),
end else begin
Disableltem(PersMenu, PLANITEM);
end; (* If ¥)

HiliteMenu(0);
DrawMenuBar;
end; (* If *)
If (Assets.Generation = SECONDGEN) and (Date.Year < 1695) then Corrfile := 'SecondMail.1.dat’
else if (Assets.Generation = SECONDGEN) and (Date.Year >=1695) then Corrfile := 'SecondMail.2.dat'
else if Date.Year < 1656 then Corrfile := FirstMail.1.dat'
else Corrfile := FirstMail.2.dat’;
ERR := FSClose(REFNUM);
ERR := FSClose (CorrRefNum);
ERR := FSOpen(CORRFILE, 0, CorrRefNum);
SIZE := SizeOf(integer);
ERR := FSRead(CorrRefNum, SIZE, @ DUMMYINT);
Assets.Mail.Year := NONE;
SIZE := SizeOf(MailRec);
with Assets do begin
while (Mail.Year < Date.Year) or ((Mail.Year = Date.Year) and (Mail.Fall = Date.Fall)) or
((Date.Fall) and (Mail.Year = Date.Year)) do begin
ERR := FSRead(CorrRefNum, SIZE, @Mail);
end; (* While *)

end; (* With *)
end; (* If *)
end; (* LoadSimulation *)

i)

(***)

procedure DoCommand (mResult:longInt; var Icons:IconType; var Done:boolean; var Assets: AssetsType;
myMenus:MenuArray; var Date:DateType; var hTE:TEHandle; var TopLine, MaxScroll:integer;
WatchHdl:CursHandle; FinWindow:WindowPtr; var CorrRefNum, VRefNum:integer);

(* CALLED BY: Main)
(* CALLS TO: AboutProgram, ReadText, GoToNext, QuitHandler, SaveSimulation, LoadSimulation, *)
(* DisplayStatus, Purchase, Sell, ManageLand, DisplayStatus, DoMarriage, PlanFamily, *)
(* MakeWill, BuyNobility, ChooseProtector, DisplayAssets *)
(* GLOBALS: FinWindow, Icons, TopLine, MaxScroll, CortRefNum, VRefNum, Done, myMenus, *)
(* Assets, Date, hTE, WatchHdl *)
(* ACTION: This procedure reads the menuitem and calls the appropriate procedure in response to the *)
* command given. *)
var theltem,

theMenu : integer;

begin (* DoCommand *)
Done := false;
randSeed := TickCount;
theMenu := HiWord(mResult);
theltem := LoWord(mResult);
case theMenu of

HELPMENU :
case theltem of
ABOUTITEM : AboutProgram;
INSTRITEM : ReadText(TopLine, MaxScroll, hTE, WatchHdl, VRefNum);
end; (* Case *)

PROGRESSMENU :
case theltem of
NEXTITEM : GoToNext(Assets, Date, Icons, myMenus{FINMENU], myMenus[DECMENU], Done,
WatchHdl, CorrRefNum);
SAVEITEM : SaveSimulation(Assets, Date, WatchHdl);
LOADITEM : LoadSimulation(Assets, Date, WatchHdl, myMenus(FINMENU], myMenus[DECMENU],
Icons, FinWindow, CorrRefNum);
QUITITEM : QuitHandler(Assets, Date, Done, WatchHdl);
end; (* Case *)

FINMENU :
case theltem of
STATUSITEM : DisplayStatus(Assets, Icons.Selected, Date);
BUYITEM : Purchase(Assets, Icons.Selected, Date, myMenus{FINMENU], myMenus[DECMENU]);
SELLITEM : Sell(Assets, Icons.Selected, Date, myMenus[FINMENU]);
MANAGEITEM : ManageLand(Assets, Date);

end; (* Case *)

VIEWMENU :
case theltem of
WEALTHITEM : DisplayStatus(Assets, WEALTHDISP, Date);
. PERSITEM : DisplayStatus(Assets, PERSDISP, Date);
end; (* Case *)

DECMENU :

case theltem of
MARRITEM : DoMarriage(Assets, Date, myMenus[DECMENU]);
PLANITEM : PlanFamily(Assets, Date, myMenus| DECMENUYJ);
WILLITEM : MakeWill(Assets, false);
NOBLEITEM : BuyNobility(Assets, myMenus{DECMENU]);
PROCITEM : ChooseProtector(Assets, Date);

end; (* Case *)

end; (* Case *)
if theItem <> NONE then begin
DisplayAssets(Assets, Date);
end; (*If *)
SetCursor(Arrow);
if not Done then begin
HiliteMenu(0);
end; (* If %)
end; (* DoCommand *)

{$S Seg6)

***)

‘occdure FinalStats(var Assets:AssetsType; Date:DateType);

(* CALLED BY: Main

(* CALLS TO: none

(* GLOBALS: Assets, Date

(* ACTION: This procedure stores final stats for later review using Examine.

var REFNUM : integer;
ERR : OSEr;
SIZE, WHEN : longint;

begin (* FinalStats *)
ERR := FSOpen(ENDFILE, 0, REFNUM);
if ERR <> NONE then begin
ERR := FSClose(REFNUM);
ERR := Create(ENDFILE, 0, 77?77", ENDS");
ERR := FSOpen(ENDFILE, 0, REFNUM);
end else begin
ERR := SetFPos(REFNUM, 2, 0);
end; (* If *)
ERR := ReadDateTime(WHEN);
SIZE := SizeOf(Assets.Prestige);

*)
)
%)
)

ERR := FSWrite(REFNUM, SIZE, @ WHEN);
ERR := FSWrite(REFNUM, SIZE, @ Assets.Prestige);
ERR := FSWrite(REFNUM, SIZE, @Assets.TotalVal);
SIZE := SizeOf(boolean);
ERR := FSWrite(REFNUM, SIZE, @ Assets.Won);
SIZE := SizeOf(DateType);
ERR := FSWrite(REFNUM, SIZE, @Date),
ERR := FSClose(REFNUM);

end; (* FinalStats *)

(***)

procedure StopSimulation(CorrRefNum:integer);

(* CALLED BY: Main *)
(* CALLS TO: none *)
(* GLOBALS: CorrRefNum)
(* ACTION: This procedure stops the simulation. It closes the mail file, calls up the *)
(* how-to-start-again window,and ejects the disk from the Macintosh. *)

var ERR : OSErr;
VOLNAME : Su255;
VREFNUM : integer;
FREEBYTES : longint;
ENDDIALOG : DialogPtr;

begin (* StopSimulation *)
ERR := FSClose(CorrRefNum);
ENDDIALOG := GetNewDialog(278, nil, Pointer(-1));
DrawDialog(ENDDIALOG);
ERR := GetVInfo(0, @ VOLNAME, VREFNUM, FREEBYTES);
. ERR := Eject(@VOLNAME, VREFNUM);
end; (* StopSimulation *)

{38}

(* CALLED BY: This is the Main Program Loop. *)
(* CALLS TO: Initialize, CalcHarvest, GoToNext, DisplayAssets, DoCommand, Selectlcon, Treasury, *)
(* FinalStats, SEGMENTS *)

(* GLOBALS: FinWindow, AssetWindow, WhichWindow, Icons, myEvent, Code, TopLine, MaxScroll, *)
* CorrRefNum, VRefNum, Done, Temp, myMenus, Letter, Assets, Date, hTE, WatchHdl, Corrfile *)
(* ACTION: Here begins the Main program. Variables are initialized, the first season's investments are ~ *)
(* calculated, and the simulation awaits a response from the player. Responses to the player begin here. *)

begin (* Main Program*)

Initialize(FinWindow, AssetWindow, Icons, myMenus, Assets, Date, WatchHdl, hTE,
Corrfile, CorrRefNum, VRefNum);

CalcHarvest(Assets.land.Local);

CalcHarvest(Assets.Land.Regional);

GoToNext(Assets, Date, Icons, myMenus[FINMENU], myMenus{DECMENU], Done,
WatchHdl, CorrRefNum);

DisplayAssets(Assets, Date);

Done := false;

repeat

SystemTask;
. Temp := GetNextEvent(everyEvent, myEvent);

case myEvent.what of

mousedown : begin
. Code := FindWindow(myEvent.where, WhichWindow);
if WhichWindow <> nil then begin
SetPort(WhichWindow);
PLSetWrPort(WhichWindow);
end; (* If *)
case Code of
inMenuBar : DoCommand(MenuSelect(myEvent. Where), Icons, Done, Assets, myMenus, Date,
hTE, TopLine, MaxScroll, WatchHdl, FinWindow, CorrRefNum, VRefNum);
inSysWindow : SystemClick(myEvent, WhichWindow);
inContent : if WhichWindow = FinWindow then begin
SelectIcon(Icons, myEvent, myMenus, Date, Assets);
end; (* If *)
end; (* Case *)
end; (* MouseDown *)

KeyDown : begin
Letter := chr(myEvent.message mod 256);
if BitAnd(myEvent.modifiers, 256) <> 0 then begin
DoCommand(MenuKey(Letter), Icons, Done, Assets, myMenus, Date, hTE, TopLine,
MaxScroll, WatchHdl, FinWindow, CorrRefNum, VRefNum);
end; (* If *)
if (myEvent.modifiers = 3968) and (myEvent.message = 490) then begin
Treasury(Assets, Date);
end; (* If *)
end; (* KeyDown *)

. end; (* Case ¥)

UnloadSeg(@ SwitchGen);
UnloadSeg(@SaveSimulation);
UnloadSeg(@ReadText);
UnloadSeg(@Initialize);
UnloadSeg(@DoMarriage);
UnloadSeg(@FinalStats);
UnloadSeg(@GoToNext);
UnloadSeg(@ManageLand);
UnloadSeg(@Purchase);
UnloadSeg(@Sell);
UnloadSeg(@SetUpTextEdit);
UnloadSeg(@HarvValue);
UnloadSeg(@PutWillltems);
UnloadSeg(@PlanFamily);
UnloadSeg(@HidePCtl);
UnloadSeg(@DispWealth);
UnloadSeg(@DoPicture);

until Done;

if (not Assets.Quit) then begin
FinalStats(Assets, Date);

end; (* If *)
StopSimulation(CorrRefNum);
end, (* Main ¥)

User: Tom Maliska, FAD Program

Application: Edit

Document: Source Code:SUNKING/4.1/FINANCER. TEXT

Date: Monday, September 22, 1986

Time: 9:38:20 PM

Printer: LaserWriter Plus

*{The Would-Be Gentleman, Faculty Author Development Program at Stanford University.
*{Version 4.1, Steve Fisher (version 1.0) 12/20/84 and Tom Maliska (versions to 4.1) 3/12/86, 9/15/86.
*{Faculty Author Development Team: Carolyn Lougee, Michael Carter, Ed McGuigan, Steve Fisher,
*{and Tom Maliska.
QCopyright 1986 Carolyn Lougee and the Board of Trustees of the Leland Stanford Junior University.
unKing/4.1/Finance.RSRC

Type SIMU = STR
0
History Simulation (version 4.1) by Steve Fisher (12/20/84) and Tom Maliska (3/13/86)

Type FREF
128 (32)
APPL 0

Type BNDL
,128

SIMU 0

2

ICN# 1

0128

FREF 1

1128

Type ICN#
,128 (32)
2

00000000

00000000

000000
020000

00020000

01020400

00820800

00421000

003FE000

00401000

20800820

1D0005CO

02000200

02525200

02525200

02225200

7TE5253F8

02522200

(02522200

02000200

02000200

1D0005CO

20800820

(00401000

003FEQ00

N Nt At Mt Nt

00421000
00820800
01020400
00020000
o
0000
00000000
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFEFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF

‘;’F FFFFF
FFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF

Type DITL

256 (4)
1

Btnltem Enabled
002060
Ready

257 (32)

10
Btnltem Enabled

240 46 260 116
OK

Btnltem Enabled
240 260 260 330
cel

StatText Disabled
20 137 40 400
ALLOCATE LAND

StatText Disabled
50 585 365
Please enter the percentage of your land you would like to be allocated in the following ways:

StatText Disabled
105 4 125 245
Percentage of land to rent in kind

StatText Disabled
145 4 165 245
Percentage of land to rent for cash

StatText Disabled
185 4 205 245
Percentage of land to sharecrop

EditText Enabled

105 260 120 320

EditText Enabled
145 266 160 320

EditText Enabled
185 260: 200 320

,258 (32)
2

Binltem Enabled
60 13 80 83
OK

StatText Disabled
8 60 50 330

Only whole numbers may be entered. Please check your answers.

1259 (32)
2

Btnltem Enabled
70 13 90 83

()
StatText Disabled

8 60 60 300
You have tried to allocate more than 100% of your land. Please try again.

,260 (32)
6
Btnltem Enabled
15046 170 116
Invest

Btnltem Enabled
150 260 170 330
Cancel

StatText Disabled
20 125 40 400
PURCHASE TEXTILES

StatText Disabled
50 4 70 400
You have A0 livres of cash to invest.

StatText Disabled
120 4 135 245
ount of cash to invest in textiles

EditText Enabled
120 255 135 310

,261 (32)
2

Btnltem Enabled
70 1390 83
OK

StatText Disabled
8 60 60 300
You don't have that much cash. Please try again.

,262 (32)
6

Btnltem Enabled

150 46 170 116
Buy

Btnltem Enabled
150 260 170 330
Cancel

StatText Disabled
10 130 25 400
PURCHASE RENTES

StatText Disabled

35 10 100 350
The King is offering Rentes of 1000 livres on the city of Paris. Their face value is denier A0;
you can get them at denier 1. You have A2 livres of cash to spend.

StatText Disabled
1154 130 170
Number you wish to buy

EditText Enabled
115 180 130 260

,263 (32)
2

Btnltem Enabled
70 1390 83
OK

StatText Disabled:
8 60 60 300
ou don't have enough cash to purchase that many Rentes.

264 (32)
6
Btnltem Enabled
15046 170 116
Buy

Btnltem Enabled
150 260 170 330
Cancel

StatText Disabled
20 136 40 400
PURCHASE LAND

StatText Disabled
50 20 95 350
You have A0 livres of cash to purchase from A3 available hectare(s), and land costs A2 livres per hectare.

StatText Disabled
120 4 135 260

Hectares to buy (*1 max)

EditText Enabled
120 265 135 355

1265 (32)
6
Binltem Enabled
15046 170 116
Sell

Bmitem Enabled
150 260 170 330
Cancel

StatText Disabled
20 136 40 400
SELL RENTES

StatText Disabled
50 20 95 350
You own A0 Rente(s), and Rente is currently going for denier ~1.

StatText Disabled
120 20 135 220
Number of Rentes to sell

EditText Enabled
120 230 135 310

,266 (32)
2

Btnltem Enabled
70 1390 83
OK

StatText Disabled
8 60 60 300
You don't own that many Rentes. Please try again.

267 (32)
2

Binltem Enabled
70 13 90 83
OK

StatText Disabled

8 60 60 300
You don't own that much miscellaneous land. Please try again.

,268 (32)
2

. Binltem Enabled
70 13 90 83
OK

StatText Disabled
8 60 60 300
You cannot sell land that was gained through inheritance. Please try again.

,269 (32)
2

Binltem Enabled
70 1390 83
OK

StatText Disabled
8 60 60 300
You don't own that much grain. Please try again.

270 (32)
9
Btnltem Enabled
240 46 260 116
Sell

Btnltem Enabled
240 260 260 330
Cancel

StatText Disabled
30 146 50 400
SELL LAND

StatText Disabled
70 20 100 350
You own *1 quintel(s) of grain, with grain selling for A2 livres per quintel.

StatText Disabled
1154 130 210
Number of quintels to sell

StatText Disabled
14520 175 350
You own) hectare(s) of miscellaneous land, with land going for A3 livres per hectare.

StatText Disabled
190 4 205 210
Number of hectares to sell

EditText Enabled
115 220 130 270

‘ EditText Enabled
190 220 205 270

271 (32)
4

BmiItem Enabled
180 46 200 116
Buy

Btnltem Enabled
180 260 200 330
Cancel

StatText Disabled
20 130 35 400
PURCHASE LEASES

StatText Disabled

50 10 200 350
The King is offering a one-year lease to collect the AQ. Its face value is A1 livres, making the
official price A2 livres. You, however, can get it for A3 livres. Do you wish to buy it?

272 (32)
2

. Btnltem Enabled

70 13 90 83
OK

StatText Disabled
8 60 60 300
You don't have enough cash to purchase that Iease.

273 (32)
3

Btnltem Enabled
9046 110 116
King's

Btnltem Enabled
90 260 110 330
Yours

StatText Disabled
10 10 80 360
You may either sell Rentes you have purchased from the King, or else Rentes of your own.

Which would you like to sell?

274 (32)
®

Btnltem Enabled
145 46 165 116

Sell

Binltem Enabled
145 260 165 330
Cancel

StatText Disabled
10 120 25 360
SELL PERSONAL RENTE

StatText Disabled
30 15 75 360
The King is currently selling Rentes for denier A0 and you have already sold £21 worth of personal Rentes.

StatText Disbaled
85 15 100 250
Sell Rente for how many livres?

EditText Enabled
85 260 100 350

.2275 (32)

Btnltem Enabled
70 1390 83
OK

StatText Disabled
8 60 60 300
You don't own any of the King's Rente, so you can't sell any.

,276 (32)
3

Btnltem Enabled

8046 100 116
OK

Btnltem Enabled

80 260 100 330
Cancel

StatText Disabled

20 10 70 360
The best deal you can get for a Rente of that value is denier A0.

‘77 32)

Bwnltem Enabled
70 13 90 83
OK

StatText Disabled
8 60 60 300
You don't have enough wealth for collateral to back a Rente this large.

,278 (32)
14

Btnitem Enabled
230 30 250 100
Buy

Btnltem Enabled
230270 250 340
Cancel

Btnltem Enabled
260 30 280 100
Next

. Btnltem Enabled
260 270 280 340
Previous
StatText Disabled
512520300
PURCHASE OFFICE

StatText Disabled
27 5 57 365
Please check the office you wish to buy or choose NEXT or PREVIOUS to scan through the offices.

Radioltem Enabled
85 10 100 30

Radioltem Enabled
120 10 135 30

Radioltem Enabled
155 10 170 30

Radioltem Enabled
190 10 205 30

. Sta‘Text Disabled

8535 115 360
N

StatText Disabled
120 35 150 360
A

StatText Disabled
155 35 185 360
~

StatText Disabled
190 35 220 360
A3

279 (32)
2

Btnltem Enabled
70 1390 83
OK

StatText Disabled
8 60 60 300
. ou don't have enough cash to purchase that office.

,280 (32)
2

Btnltem Enabled
70 1390 83
OK

StatText Disabled
8 60 60 300
You already own that office.

,281 (32)
14

Btnltem Enabled
230 30 250 100
Sell

BtnItem Enabled
230 270 250 340

Cancel

Btnltem Enabled
260 30 280 100
ext

Btnltem Enabled
260 270 280 340
Previous

StatText Disabled
5 140 20 300
SELL OFFICE

StatText Disabled
27 5 57 365

Please check the office you wish to sell or choose NEXT or PREVIOUS to scan through the offices.

Radioltem Enabled
70 10 85 30

Radioltem Enabled
110 10 125 30

Radioltem Enabled
150 10 165 30

Radioltem Enabled
190 10 205 30

StatText Disabled
70 35 105 360
2

StatText Disabled
110 35 145 360

M

StatText Disabled
150 35 185 360
~)

StatText Disabled
190 35 225 360
3

282 (32)
3

Btnltem Enabled
90 13 110 83
QK

. StatText Disabled

56075 300
Because you purchased the lease to collect the Royal Toll on herring and salmon in the Carenton district,
you were just hanged!!!

Iconltem Disabled
10 20 42 52
261

,283 (32)
2

StatText DIsabled
10 75 25 300
Welcome to the King's Treasury!

EditText Enabled
40 60 55 300

284 (32)
2

Btnltem Enabled

90 13 110 83
K

StatText Disabled

560 75 300
You do not have enough cash to pay off your debt of £40. You must sell a personal Rente in order to
get the cash.

285 (32)
3

Btnltem Enabled
9031110 131
Miscellaneous

Binltem Enabled
90 245 110 345
Titled

StatText Disabled

10 10 80 360
You may purchase either miscellaneous properties or special titled properties. Which would you like to buy?

,286 (32)
3

Btnltem Enabled
Q 170 13 190 83
K

StatText Disabled
5 60 55 300
You do not have enough collateral wealth to use personal Rentes to pay off your debts.

StatText Disabled

60 60 150 300
You are therefore forced to declare bankruptcy and to liquidate all holdings except for the miscellaneous land
you inherited from your father.

287 (32)
13

Bmltem Enabled
260 30 280 100
Court

Btnltem Enabled
260 270 280 340
Cancel

Btnltem Enabled
260 145 280 215

o

StatText Disabled
5 140 20 300
MARRIAGE

StatText Disabled
27 562 365
Please select a prospective bride. Choose INFO for information about her, or COURT to try to marry her.
Radioltem Enabled
85 10 100 30

Radioltem Enabled
120 10 135 30

Radioltem Enabled
15510 170 30

Radioltem Enabled

190 10 205 30
StatText Disabled
% 85 35 115 360

StatText Disabled
120 35 150 360
A

StatText Disabled
155 35 185 360
2

StatText Disabled
190 35 220 360
~3

,288 (32)
2

Btnltem Enabled
851310583
OK

StatText Disabled
10:10 75 300
is A3 years old, has a dowry worth £241, and her Father is 2.

,289 (32)
3

BmlItem Enabled
90 13 110 83
OK

StatText Disabled
56075 300
After a hectic courtship, A0's father has agreed to the marriage. Congratulations!!

Iconltem Disabled
102042 52
262

290 (32)
2

Btnltem Enabled

90 13 110 83
OK

StatText Disabled
560 75 300
Since you were refused marriage for attempting a foolish courtship, no prospective bride will pay
ention to you at this time.

291 (32)
2

Binltem Enabled
75139583
OK

StatText Disabled
8 60 60 300
A0 has refused your proposal of marriage.

292 (32)
2

Btnltem Enabled
75139583
OK

StatText Disabled
8 60 60 300
Congratulations!! You have just had a bouncing baby 0!

,293 (32)
o
Btnltem Enabled

75139583
OK

StatText Disabled
8 60 60 300
It was with great sadness that you learned of the death of one of your A0.

294 (32)
2

Binltem Enabled
75139583
OK

StatText Disabled
8 60 60 300

You have just died! Your life now continues through the person of your son, Jean-Francois Marin!

,295 (32)
2

Binltem Enabled
951311583
OK

. StatText Disabled

8 60 75 300
You have just died! Since you never had a son, your family name dies with you and the simulation ends
in failure!

,296 (32)
2

Binltem Enabled
75139583
OK

StatText Disabled
8 60 60 300
Since Jean-Francois is under-age, the years pass uneventfully until he reaches his majority.

297 (32)
2

BmlItem Enabled
70 13 90 83
OK

StatText Disabled
8 60 60 300
ou have exceeded 100%. Please try again.

,298 (32)
18

Bmltem Enabled
260 30 280 100
Submit

Btnltem Enabled
260 270 280 340
Cancel

StatText Disabled
10 135 25 300
Make a will

StatText Disabled

37 10 105 350
In order to distribute your estate you must divide your holdings among the following categories.
Please enter the percentage of your estate which you would like to go to each category.

StatText Disabled
125 5 140 100
Oldest Son

' EditText Enabled
125 105 140 170

StatText Disabled
1555170 100
Other Sons

EditText Enabled
155 105 170 170

StatText Disabled
185 5200 100
Daughters

EditText Enabled
185 105 200 170

StatText Disabled
2155230 100
Other Kin

EditText Enabled

. 215 105 230 170

StatText Disabled
140 180 155 275
Non-Kin

EditText Enabled
140 280 155 345

StatText Disabled
170 180 185 275
Charity

EditText Enabled
170 280 185 345

StatText Disabled
200 180 215 275
The Church

EditText Enabled
200 280 215 345

.299 32)
2

Btnltem Enabled
751395 83
OK

StatText Disabled
8 60 60 300
Age and wise counsel persuade you to consider your son's fortunes. You decide to make out a will.

,300 (32)
3

Btltem Enabled
70 13 90 83

Keep

Btnltem Enabled
7522395303
Redo

StatText Disabled
8 60 60 300
Your will is not in accord with tradition. Do you wish to redo it?

302 (32)
2

Btnltem Enabled
75139583
OK

StatText Disabled
8 60 60 300
Because of your new-born baby your will is no longer in accord with what is traditionally acceptable.

303 (32)
4

Btnltem Enabled
9546 115116
Yes

Btnltem Enabled

95 260 115 330
No

StatText Disabled

15 130 30 400
FAMILY PLANNING

. StatText Disabled
W 40 10 75 350

Do you wish to have a baby during the coming year?

,304 (32)
2

Btnltem Enabled
17513 195 103
Continue

StatText Disabled

8 10 160 300
The Would-Be Gentleman 4.1. Faculty Author Development team: Carolyn Lougee, Steve Fisher,
Michael Carter, Ed McGuigan and Tom Maliska. Copyright 1985 Carolyn Lougee & the Board of
Trustees of the Leland Stanford Junior University.

,305 (32)
3

Btnltem Enabled
9541 115111
Yes

Btnltem Enabled

' 95 260 115 330
(0}

StatText Disabled
10 10 75 350
A letter of nobility costs £40, and you have £21 in cash to spend. Do you wish to buy a Letter of Nobility?

,306 (32)
)

Btnltem Enabled
75139583
OK
StatText Disabled
8 60 60 300
That office automatically bestows nobility upon you!

307 (32)
2

Btnltem Enabled
751395103

Continue

StatText Disabled
8 60 60 300
.our wife is too old to bear children.

308 (32)
11
Btnltem Enabled
25041 270 111
Buy

Binltem Enabled
250 265 270 335
Cancel

StatText Disabled
5126 20 400
BUY TITLED LAND

StatText Disabled
30 10 65 359
There are three types of titled land, differing in size and price per hectare.

StatText Disabled
70 10 105 350
Please enter the number of hectares of each you wish to buy. You have £43 of cash to spend.

StatText Disabled

125 4 140 290
eigneuries--75-150 hectares, at £40.

StatText Disabled
160 4 175 290
Vicomté--300-450 hectares, at £/1.

StatText Disabled
195 4 210 290
Marquisat--600-900 hectares, at £42,
EditText Enabled
125 295 140 345 -

EditText Enabled
160 295 175 345

EditText Enabled
195 295 210 345

,309 (32)
10

Btnltem Enabled
26041 280 111
onvert

Binltem Enabled
265 265 285 335
Cancel

StatText Disabled
10 110 25 300
CONVERT TITLED LAND

StatText Disabled
35 10 85 350

The cost of conversion is the difference between the cost of the greater titled land and the cost of the
lesser titled land.

StatText Disabled
100 20 115 350
Which title would you like to convert from?

Radioltem Enabled
125 115 140 300

Seigneury

Radioltem Enabled

145 115 160 300
.icomté

StatText Disabled
175 20 190 350
Which title would you like to convert to?

Radioltem Enabled
200 115 215 300
Vicomté

Radioltem Enabled
220115235300
Marquisat

310 (32)
3

Btnltem Enabled
9036 110 126
Allocate

Btnltem Enabled

90 250 110 340
Convert

StatText Disabled
10 10 80 360 _
ou may either allocate your land for the harvest or else convert lesser titled lands into greater titled lands.

311 (32)
2

Btnltem Enabled
70 1390 83
OK

StatText Disabled
8 60 60 300
You can only buy within the specified ranges. Please try again.

312 (32)
2

Btnltem Enabled
70 1390 83
OK

StatText Disabled
8 60 60 300
You don't have enough cash to purchase those lands.

313 (32)
2

Btnltem Enabled
105 13 125 83
OK

StatText Disabled

8 60 90 300
Since the difference in cost between those titles is £/0 per hectare, that conversion would cost £/1.
You don't have that much cash.

314 (32)
3

Binltem Enabled
90 13 110 83
Yes

Btnltem Enabled

90 223 110 303
No

StatText Disabled

8 60 75 300
Since the difference in cost between those titles is £40 per hectare, that conversion will cost £41.
Will you convert?

.315 32)

>

2

Binltem Enabled
70 13 90 83
OK

StatText Disabled
8 60 60 300
You must have at least AQ hectares of that title to do that conversion.

,316 (32)
3

Btnltem Enabled
75139583
Save

Btnltem Enabled
75 223 95 303
Cancel

StatText Disabled
8 60 60 300
.we you sure you want to save the game?

,317 (32)
4

Bmltem Enabled
65138583
Yes

Bmltem Enabled
100 223 120 303
Cancel

Btnltem Enabled
100 13 120 83
No

StatText Disabled
8 60 40 300
Do you wish to save the game before you quit?

318 (32)
3

Binltem Enabled
75139583

‘estore
Btnltem Enabled

75 223 95 303
Cancel

StatText Disabled
8 60 60 300
Are you sure you want to restore a previously saved game?

319 (32)
2

Btnltem Enabled
75139583
OK

StatText Disabled
8 60 60 300
There was no previously saved game.

320 (32)
5

Btnltem Enabled
2151323583
ne

StatText Disabled
10 10 45 350
With the deaths of both Jean-Francois Marin and King Louis XIV, this simulation comes to an end.

StatText Disabled
50 10 85 350
Jean-Francois' son, Hyacinthe-Florent Marin de Montville will carry on the family name.

StatText Disabled

90 10 140 350
The simulation began under Denis Marin in 1638 with a prestige rating of 40 and, after 77 years,
the third generation inherits a rating of 0.

StatText Disabled
14510 195 350
Thanks for using our simulation. We hope it has been both an enjoyable and an educational experience.

322 (32)
2

Binltem Enabled

751395 83
OK

StatText Disabled
8 60 60 300
ince that office confers nobility, it cannot be sold.

323 32)
2

Btnltem Enabled
70 1390 83
OK

StatText Disabled
8 60 60 300
The King has decreed that all Rentes purchased since 1656 are void.

324 (32)
2

Btnltem Enabled
70 1390 83
OK

StatText Disabled
8 60 60 300
All Rentes were reduced from denier 14 to denier 18 by order of the King.

,325 (32)
3

Bwmltem Enabled
12513 145 83
OK

StatText Disabled
8 60 60 300
The King has just realized that you purchased your offices for LESS than their TRUE value!!!

StatText Disabled
6560 112 300
To correct this oversight, you must pay 20% of the purchase prices of your offices to the crown.

326 (32)
3

Btnltem Enabled
130 13 150 83
OK

StatText Disabled

8 60 40 300
The King has graciously raised all office salaries by 25%.

StatText Disabled
45 60 110 300 '
compensation for the raise, however, he has levied a one-time payment of 10 times the amount of the raise.

327 (32)
2

BtnItem Enabled
75 1395 83
OK

StatText Disabled
8 60 60 300
Because of the death of your child, your will is no longer in accord with traditional practice.

,328 (32)
2

Btnltem Enabled
751395 83
OK

StatText Disabled
8 60 60 300
That office requires that the owner is noble.

.329 32)

Btnltem Enabled
70 13 90 83
OK

StatText Disabled
8 60 60 300
You cannot own more than A0 of the King's Rente.

330 (32)
2

Btnltem Enabled
75139583
OK
StatText Disabled
8 60 60 300
That office requires that the owner is noble and has a title.

331 (32)

Btnltem Enabled
751395 83

StatText Disabled
8 60 60 300
You have lost face among your peers for having married beneath you!

332 (32)
14

Btnltem Enabled
260 30 280 100
Choose

Btnltem Enabled
260 270 280 340
Cancel

StatText Disabled
5 100 20 300
CHOOSE PROTECTOR

StatText Disabled
27 562 365

Please select your choice for Protector. Click the CHOOSE button to act on this choice.
Radioltem Enabled
8510100 30

Radioltem Enabled
120 10 135 30

Radioltem Enabled
15510 170 30

Radioltem Enabled
190 10 205 30

Radioltem Enabled
225 10 240 30

StatText Disabled
8535115 360
N

StatText Disabled

120 35 150 360
Al

StatText Disabled

. 155 35 185 360
2

StatText Disabled
190 35 220 360
3

StatText Disabled
225 35 255 360
None

333 (32)
2

Binltem Enabled
751395 83
OK

StatText Disabled
8 60 60 300
That Protector refuses to count you among his clientele.

334 (32)
2

Btnltem Enabled

. 90 13 110 83
OK

StatText Disabled

8 60 75 300
Because you seem to be unable to choose a proper Protector, nobody will pay attention to you at this time.

335 (32)
2

Bmitem Enabled
751395 83
OK

StatText Disabled
8 60 60 300
Fouquet has been arrested and all his followers have been thrown into bankruptcy!!

,336 (32)
2

Btnltem Enabled

75139583
OK

StatText Disabled
Q 8 60 60 300
our Frotector is no longer able to assist you. You must seek a new one.

337 (32)
3

StatText Disabled
20 175 36 400
To restart the game:

StatText Disabled
140 130 157 480
and double-click the Louis XIV' Icon.

StatText Disabled
180 20 300 480
If you are done, you do not need to insert the disk. Simply remove the disk and turn the Macintosh off.

338 (32)
2

Btnltem Enabled
90 13110 83
OK

StatText Disabled
8 60 75 300
Particelli, your Protector, has been ruined. All his followers have been thrown into bankruptcy!

339 (32)
2

Btltem Enabled
75139583
OK

StatText Disabled
8 60 60 300
The Duke Of Burgundy will not allow you to buy leases!

,340 (32)
2

Binltem Enabled
75139583
OK

StatText Disabled

8 60 60 300
Congratulations on your acceptance. May your family prosper!

341 (32)

BtnlItem Enabled
751395 83
OK

StatText Disabled
8 60 60 300
You have no protector at this time. Beware the vagaries of fortune!

342 (32)
2

Binitem Enabled
75139583
OK

StatText Disabled
8 60 60 300
Your will is in accord with traditional practice.

,343 (32)
2

Btnltem Enabled

95 13 115 83
@

StatText Disabled
8 60 80 300
This decision makes your annual salaried income £20. Your cost of living is now £21.

344 (32)
2
Bmltem Enabled
951311583
OK

StatText Disabled
8 60 80 300
Congratulations on your appointment as ~0. May you serve well!

,345 (32)
2

Bmltem Enabled
95 1311583

OK

StatText Disabled
8 60 80 300

‘ou have relinquished your post as *0.

,346 (32)
2

Btnltem Enabled
70 13 90 83
OK

StatText Disabled
8 60 60 300
There are A3 hectare(s) of miscellaneous cultivable land available in your local area.

,347 (32)
2

Binltem Enabled
951311583
OK

StatText Disabled
8 60 80 300
You have added A0 hectare(s) to your holdings, at a cost of £/1.

,348 (32)
2

. Btnltem Enabled

100 13 120 83
Ok

StatText Disabled

8 60 90 300
The peasants have requisitioned your store of grain and burned your bams because you sold little or
no grain last fall. The grain has been distributed to the local population.

349 (32)
2

Btnltem Enabled
100 13 120 83
OK

StatText Disabled
8 60 90 300

M. Condé apologizes for his inability to act in time to quell the peasant revolt with troops. He begs
you accept a stipend of A0 as a token of his good faith.

,350 (32)
2

Binltem Enabled
Q 951311583
K

StatText Disabled
8 60 80 300
Regrettably, you do not have the credentials to bid for this office.

,351 32)
2
Btnltem Enabled
70 13 90 83
OK

StatText Disabled
8 60 60 300
Your total investment in textiles for the coming year is £10.

,352 32)
2

Btltem Enabled
951311583
OK

StatText Disabled
8 60 80 300
is unwise and potentially disgraceful to change protectors so quickly. Bide your time, M. Marin!

353 (32)
2

Btnltem Enabled
951311583
OK

StatText Disabled
8 60 80 300)
You have sold A2 hectare(s) of miscellaneous land for £A1. Your current saleable holdings are now A0 hectare(s).

354 (32)
2

Btnltem Enabled
951311583
OK

StatText Disabled
8 60 80 300

You have sold A2 quintel(s) of grain for £21. Your granaries now hold A0 quintel(s) of grain.

,355 (32)

Btnltem Enabled
951311583
OK

StatText Disabled
8 60 80 300
At a cost of £10, you have added titled lands to your family's holdings. May you continue to prosper!

,356 (32)
2

Btnltem Enabled
951311583
OK

StatText Disabled
8 60 80 300
You have purchased A0 Rente(s) with face value of denier A1 at a cost of £/42. May the tides of fortune favor you!

357 (32)
2

Btnltem Enabled
951311583
StatText Disabled

8 60 80 300
You have sold A0 Rente(s) at denier A1. Your return in cash was £/2.

,358 (32)
2

Btnltem Enabled
951311583
OK

StatText Disabled
8 60 80 300
You have been appointed to collect the 0. May this venture profit you well!

,359 (32)
2

Btnltem Enabled

11513 135 83
OK

StatText Disabled
8 60 80 300
‘ ou have sold a personal Rente at denier A0. Your return in cash was £/1.

,360 (32)
2

Btnltem Enabled
70 13 90 83
OK

StatText Disabled
8 60 60 300
This is break point A0.

,361 (32)
2

BmItem Enabled
75 13 95 83
OK

StatText Disabled
8 60 60 300
Upon his deathbed, your Protector has provided for you. You are welcomed by the A0.

Type ALRT
256 (32)
150 130 250 500
258

257 (32)

150 130 250 500
259

4444

,258 (32)

150 130 250 500
261

4444

259 (32)

150 130 250 500
263

4444

260 (32)

150 130 250 500
266

4444

,261 (32)
150 130 250 500

.4444

,262 (32)

150 130 250 500
268

4444

,263 (32)
150 130 250 500

269
4444

,264 (32)
150 130 250 500

272
4444

,265 (32)
150 130 250 500

275
4444

,266 (32)
150 130 250 500

271

. 4444

,267 (32)
150 130 250 500

279
4444

,268 (32)
150 130 250 500

280
4444

,269 (32)
60 155 195 471

282
4444

,270 (32)
60 155 195 471

284
4444

271 (32)

60 155 265 471
286
4444

.272 (32)
60 155 185 471

288
4444

273 (32)

60 155 185 471
289

4444

274 (32)

60 155 195 471
290

4444

275 (32)

60 155 180 471
291

4444

,276 (32)

60 155 180 471
292

4444

277 (32)

60 155 180 471
293

4444

278 (32)

60 155 180 471
294

4444

279 (32)

60 155 195 471
295

4444

280 (32)

60 155 180 471
296

4444

281 (32)

150 130 250 500
297

4444

282 (32)
60 155 180 471

o
4444

,283 (32)

150 130 250 500
300

4444

,285 (32)

60 155 180 471
302

4444

,286 (32)

60 155 265 471
304

4444

287 (32)

60 155 180 471
306

4444

,288 (32)
60 155 180 471

@

,289 (32)

34 130 154 500
310

4444

,290 (32)

150 130 250 500
311

4444

291 (32)

150 130 250 500
312

4444

,292 (32)

60 155210 471
313

4444

,293 (32)
60 155 195 471
314

.4444
294 (32)
150 130 250 500
315

4444

,295 (32)

60 155 180 471
316

4444

,296 (32)

60 155 195471
317

4444

297 (32)

60 155 180 471
318

4444

,298 (32)

60 155 180 471
319

4444

‘,299 32)

34 130 289 500
320
4444

301 (32)

60 155 180 471
322

4444

,302 (32)

150 130 250 500
323

4444

303 (32)

150 130 250 500
324

4444

,304 (32)
60 155 225 471

325
4444

305 (32)

.so 155 230 471
326

4444

306 (32)
60 155 180 471
327

4444

307 (32)

60 155 180471
328

4444

,308 (32)

150 130 250 500
329

4444

309 (32)

60 155 180 471
330

4444

310 (32)

.601 155 180 471
331

311 (32)
60 155 180 471
333

i A4

312 (32)

60 155 195 471
334

4444

313 (32)

60 155 180 471
335

4444

314 (32)

60 155 180 471
336

4444

315 (32)
60 155 195 471
338

@

316 (32)

60 155 180 471
339

4444

317 (32)

60 155 180 471
340

4444

318 (32)

60 155 180 471
341

4444

319 (32)

60 155 180 471
342

4444

,320 (32)
60 155 200 471
343

‘II'}4444
,321 (32)
60 155 200 471
344

4444

322 (32)

60 155 200 471
345

4444

323 (32)

150 130 250 500
346

4444

324 (32)

60 155 200 490
347

4444

325

60 155 220 471
348
4444

°:
60 155 220 471

349
4444

327 (32)

60 155 200 471
350

4444

,328 (32)

150 130 250 500
351

4444

,329 (32)

60 155 200 471
352

4444

330 (32)

60 155 190 471
353

4444

331 (32)
60 155 190 471

354
4444

332 (32)

60 155 190 471
355

4444

333 (32)

60 155 190 471
356

4444

334 (32)

60 155 210471
357

4444

335 (32)
50 155 190 471
358

4444

336 (32)
34 130 225 500

o
4444

337 (32)

60 155 180 471
360

4444

338 (32)

60 155 180 471
361

4444

Type DLOG

1256 (4)

290 400 310 460
Visible 1 NoGoAway 0
256

257 (32)

34 130 325 500
Visible 1 NoGoAway 0
257

258 (32)
4 130 225 500
Visible 1 NoGoAway 0
260

259 (32)

34 130 225 500
Visible 1 NoGoAway 0
262

,260 (32)

34 130 225 500
Visible 1 NoGoAway 0
264

261 (32)

34 130 225 500
Visible 1 NoGoAway 0
265

,262 (32)
34 130 325 500
Visible 1 NoGoAway 0

270

263 (32)

34 130 245 500
Visible 1 NoGoAway 0
271

264 (32)

34 130 154 500
Visible 1 NoGoAway 0
273

,265 (32)

34 130 225 500
Visible 1 NoGoAway 0
274

,266 (32)

34 130 144 500
Visible 1 NoGoAway 0
276

267 (32)

34 130 325 500
Visible 1 NoGoAway 0
278

268 (32)

34 130 325 500
Visible 1 NoGoAway 0
281

,269 (32)

34 130 114 500
Visible 1 NoGoAway 0
283

,270 (32)

34 130 154 500
Visible 1 NoGoAway 0
285

271 (32)

34 130 325 500
Visible 1 NoGoAway 0
287

,272 (32)

34 130 325 500
Visible 1 NoGoAway 0
298

273 (32)

34 130 159 500
Visible 1 NoGoAway 0
303

.,274 32)

34 130 159 500
Visible 1 NoGoAway 0
305

275 (32)

34 130 325 500
Visible 1 NoGoAway 0
308

,276 (32)

30 130 330 500
Visible 1 NoGoAway 0
309

277 (32)

34 130 325 500
Visible 1 NoGoAway 0
332

278 (32)

30 12 330 500

Visible 1 NoGoAway 0
337

.fype WIND

256 (4)

Finance Selector
171200 115
Visible NoGoAway
2

0

257 (4)

39 120 330 500
InVisible NoGoAway
0

0

258 (4)

Assets
2151335115
Visible NoGoAway
2

0

259 (32)
Instructions

39 120 330 500
Visible GoAway

o
,260 (32)
Beginning
3012 330 500
Visible NoGoAway

1
0

,261 (32)

Art

30 135 330 500
Visible NoGoAway
1

0

Type CNTL
256 (4)
Vertical Scroll Bar
0 365 276 380
Visible
16
0
00100

1 (4)

Information
The Authors
Instructions

2 @4y
Progression
Next Interval/N
-
Save Game
Restore Game
(-
Quit

3@
Investments
Status
Buy
Sell
Manage

4@

Personal Decisions
Marriage
(Family Planning
Make a will
Buy Letter of Nobility
Choose Protector

S (4)

View
Wealth
Personal Info

Type ICON

* Office Icon
258 4)
001B C000
002D A000
00F6 FO00
00AA D000
00FD B000
01A6 7800
0160 2800
01EO0 3400
01A0 3600
02E0 2E00
07C0 3A00
0480 1600
0740 3400

. 0540 1E00

03C0 OE0O
0080 0800
0000 0080
0000 0100
00FF FF00
0112 0280
0222 0640
0442 0620
087E 0010
1FFF FFF8
2918 1894
2573 CEA4
2400 0024
18FF FF18
1B00 00D8
1800 0018
3800 001C
3000 000C

* Rente Icon

25714
0000 0000

0000 0000
0000 0000
0000 0000
0000 0000

.0007 F800
000F FCO0
001C 0600
001C 0200
001C 0000
001C 0000
001C 0000
001C 0000
001C 0000
00FF 8000
OOFF 8000
001C 0000
001C 0000
001C 0000
001C 0000
001C 0000
001C 0000
001C 0000
001C 0100
001C 0300
00FF FE00
00FF FC00
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000

* Land Icon
256 (4)
0000 0000
0288 0000
0174 0000
008B 0000
012A 8000
0000 4000
0000 E000
0000 2000
0000 503F
0000 78E4
SFFF C992
08A2 4ESE
2400 4B60
027F F892
28BF E40B
111F F249
0208 0A49
4AC9 2A2D

2209 2A25
12C8 0A25
03FF FF00
3C00 01E0

0030 283E
0C83 0303
0000 6040
0330 0A18
6003 0100
1060 0060
0COC 6008
6100 0600
1881 80CO
0820 3000

* Lease Icon
259 (4)
0000 0000
0000 0000
0000 0000
TFFF FFCE
C000 005A
AC02 016E
A9B7 6B9%4
9DB2 4D24
9000 0648
F39E 0888
1001 1110
11E7 2230
1000 4450
.13C4 8890
1001 9110
1B75 2258
0803 4C08
099E 91C8
0402 6004
059B 8774
0403 0004
06DB 1DB6
0202 0002
015F 38EA
010E 0002
1F4D 1CD2
313C 8006
233C 9DC4
3638 800C
OFFF FFF8
003F 8000
0000 0000

* Textile Icon
260 (4)

0000 0000
0000 0000
0000 0000
0000 0000
.001F F800
0068 1600
00A4 2500
0112 4880
0209 9040
0426 6420
0442 4220
0440 0220
0441 8220
0440 0220
0440 0220
0221 8440
013C 3C80
0144 2280
0089 9100
0090 0900
00A0 0500
00C1 8300
0020 0400
0040 0200
0061 8600
0038 1C00
000F F000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000

* Hang Icon
261 (32)
FFFF FFFF
8000 2001
8000 2001
8000 2001
8000 2001
8000 2001
8000 4001
8000 4001
8000 C001
8000 8001
8000 8001
800F 8001
8010 8001
8029 4001
8020 4001
8016 8001
8010 8001

800F 0001
800F 0001
8030 C001
8060 6001
8040 2001
804C 2001
8050 A001
8050 A001
8070 E001
8030 C001
8010 8001
81F0 F801
8210 8401
8410 8201
FFFF FFFF

* Heart Icon
,262 (32)
00000000
00000000
00000000
00000000
00000040
00000040
00000170
00000100
000001C0
00F1E200
010A1400
02040800
04001400
08314200
08444200
0884 E200:
08812200
08802200
022088061
01111000
008 A2000:
00A08000
05110000
060A0000
07040000
00000000
00000000
00000000
00000000
00000000

Type CODE

SunKing/4.1/FinanceL.,0

User:

Application:

Document:

Date:

Time:

Printer:

Tom Maliska, FAD Program

Edit

Support Programs:SUNKING/4.0/EXEC. TEXT

Thursday, September 18, 1986

11:51:41 PM

LaserWriter Plus

$EXEC {3.0only/example/exec.text}

$({3.0 version, assumes automatic generator invocation }

$

${ This exec file compiles the programs Sunking/4.0/= and Sunking/4.1/=.}

‘{ It is invoked with the Lisa Workshop run command and the syntax }

<exec(filename), e.g. <exec(Sunking/4.1/finance) compiles the main program. }

$

${ This single exec file can generate a Macintosh resource file from most of the }

${ example source files. The source can be Pascal, or assembly, or both. The }

${ naming convention is that assembly files have 'ASM' appended to the file name, }

${ and resource files have an added 'R', although this can easily be changed below. }

$

${ The exec file is run by typing 'R’ from the command line, then typing a line of }

${ of the form: }

$

${ <Example/Exec[([pascal_source], [assembler_source], [resource_file], }
${ [source_volume], [library_volume])] }

$

${ Each of the elements in the square brackets are optional. The default values are}

$

${ Defaults: pascal_source = ‘example/file' }

${ assembler_source = pascal_source’ASM' }

${ resource_file = pascal_source'R' }

${ source_volume = prefix volume }

g{ library_volume = prefix volume }

${ This will work for Samp, File, Grow, Scroll, ShowPaint,SoundLab, PicScrap,
${ Modal,and most other applications, including Gentleman support programs. }
${ However it does not set the creator or bundle bit in MacCom to add an icon }

{ (e.g.: for File set creator = CARY and set bundle bit Yes) }
{ To build applications which use Graf3D (e.g. Boxes and SineGrid) change }
{ this exec to link with two additional files (see below) }

${ It will not work for desk accessories (e.g. ADeskAcc) }

$

$DEFAULT %0 TO 'SunKing/4.0/finance’'

{Sets file name defaults for the Would-Be Gentleman.}
$DEFAULT %1 TO CONCAT(%0, 'Asm’)
$DEFAULT %2 TO CONCAT(%0, 'R")

$
$IF %3 <> " THEN {If a source volume is specified, }

$SET %8 TO CONCAT(-, %3, -") {set '%8' to the name of the source volume}
$ELSE

$SET %8 TO " {otherwise use the prefix volume }
$ENDIF
$IF %4 <> " THEN {If a library volume is specified, }

$SET %7 TO CONCAT(-', %4, -") {set '%7' to the name of the library volume}
$ELSE

$SET %7 TO "
$ENDIF

$

$SET %9 TO 'F' { Start out assuming there is no file to assemble}

$IF EXISTS(CONCAT(%8, %0, 'L.OBJ")) THEN
$IF NEWER(CONCAT(%S8, %1, " TEXT'), CONCAT(%8, %0, 'L.OBJ")) THEN
$SET %9 TO 'T'
$ENDIF
$ELSE
$SET %9 TO 'T'
$ENDIF
$ENDIF
$ENDIF
$

$

$IF %9 = 'T' THEN
L{ink}%®6

?

+X

%70bj/QuickDraw
%70bj/ToolTraps
%70bj/OS Traps
%70bj/PrLink
%7obj/PackTraps
%Tobj/SaneLibAsm
{To use "The Old World" of SANE replace this with %70bj/Sane, %70bj/SaneAsm,}
{%70bj/Elems, and %70bj/ElemsAsm}
%T70obj/PasLib {Mac PasLib is composed of the next four files}
%70bj/PasLibAsm
%77obj/PasInit
%70bj/RTLib
$IF EXISTS(CONCAT(%S8, %1, .TEXT')) THEN
$IF CONCAT(%8, %1, .OBJ) <> %6 THEN
8%1.0bj
$ENDIF
$ENDIF

%8%0L.OBJ
$ENDIF

$

$

R{un}%7RMaker
%8%2

$

$

R{un}%7MacCom
R{emove example/} Y
FYL%0.RSRC

%0

APPL{type APPL}
SIMU({creator 77??}
Y {o bundle bit --- change if you want it set}E{ject}Q{uit}F{iler}D{elete }%0.errors.text
Y {es}Q{uit}
$ENDEXEC

$IF EXISTS(CONCAT(%8, %1, '"TEXT")) THEN {If a text ASM file exists, }
$IF NOT(EXISTS(CONCAT(%S8, %1, '.OBJ))) THEN ({and if no code file exists,}
$SET %9 TO 'T {then assemble it
$ELSEIF NEWER(CONCAT(%8, %1, '"TEXT"), CONCAT(%8, %1, '.OBJ')) THEN
$SET %9 TO 'T' {Otherwise assemble if the text is newer than the code }

$ENDIF
gENDIF
$IF %9 = 'T' THEN { Assemble if the assembly file is true}
$WRITELN CONCAT('Assemble: ', %8, %1, "TEXT') {a debugging statement}
A{ssemble}%8%1 { &8 is the volume prefix, and &1 is the file name}
{this blank line is for the listing file}
{this blank line is for the default output file}
$ENDIF
$
$
$SET %9 TO 'F' { Assume there is no Pascal program}

$IF EXISTS(CONCAT(%8, %0, "TEXT")) THEN
$IF NOT(EXISTS(CONCAT (%8, %0, '.OBJ"))) THEN
$SET %9 TO 'T"
$ELSEIF NEWER(CONCAT(%8, %0, '.'TEXT"), CONCAT(%S8, %0, '.OBJ")) THEN
$SET %9 TO 'T'
$ENDIF
%ENDIF
$IF %9 = 'T' THEN
$WRITELN CONCAT('Compile: ', %8, %0, .TEXT")
P{ascal }$M+
%8%0

‘8%0

$ENDIF
$
$
$SET %6 TO "
$SET %9 TO 'F'
$IF EXISTS(CONCAT(%8, %0, ' TEXT'")) THEN
$SET %6 TO CONCAT(%8, %0, '.OBJ)
$IF EXISTS(CONCAT(%8, %0, 'L.OBJ")) THEN
$IF NEWER(CONCAT(%8, %0, "TEXT"), CONCAT(%8, %0, 'L.OBJ')) THEN
$SET %9 TO 'T'
$ENDIF
$ELSE
$SET %9 TO 'T'
$ENDIF
$ENDIF
$
$IF %9 = 'F' THEN
$IF EXISTS(CONCAT(%8, %1, "TEXT") THEN
$IF %6 =" THEN
$SET %6 TO CONCAT(%8, %1, '.OBI')
$ENDIF

User: Tom Maliska, FAD Program

Application: Edit

Document: Support Programs:SUNKING/4.0/EXAMINE.TEXT

Date: Thursday, September 18, 1986

Time: 11:10:15 PM

Printer: LaserWriter Plus

{$M+} {mac code}
{$X-} {no automatic stack expansion}
{$R-} {no range checking, paslib is buggy}

‘l}he Would-Be Gentleman, Faculty Author Development Program at Stanford University.
ersion 4.1, Steve Fisher 12/20/84 and Tom Maliska, 3/12/86.

{Faculty Author Development Team: Carolyn Lougee, Michael Carter, Ed McGuigan,
{Steve Fisher, and Tom Maliska.

{Copyright 1986 Carolyn Lougee and the Board of Trustees of the Leland Stanford
{Junior University.

program Examine;
{ ACTION: This support program opens the file FINAL STATS recorded during the
{simulation. This aids the instructor's evaluation of student progress.

uses {$U-}
{$U obj/MemTypes} MemTypes,
{$U obj/QuickDraw} QuickDraw,
{$U obj/OSIntf} OSIntf,
{$U obj/ToolIntf} ToolIntf,

{$U Obj/PackIntf} PackIntf,
{$U Obj/MacPrint} MacPrint,
{$U Obj/PasLibIntf} PasLiblntf;

const ENDFILE = 'Final Stats";

type DateType =record
Year : longint;

Fall : boolean;
. end; (* DateType *)

var myWindow : WindowPtr;
procedure Initialize(var myWindow:WindowPtr);

begin (* Initialize *)
InitGraf(@thePort);
InitFonts;
FlushEvents(everyevent, 0);
InitWindows;
TElInit;
InitDialogs(nil);
InitMenus;
InitCursor;
myWindow := GetNewWindow(256, nil, Pointer(-1));
SetPort(myWindow);
PLSetWrPort(myWindow);
MoveTo(0,30);
TextSize(9);
TextFont(Monaco);

end; (* Initialize *)

Syt g/

procedure Displnfo;

var ERR : OSErr;
REFNUM : integer;
SIZE, PRESTIGE, WHEN, WEALTH : longint;
WON : boolean;
DATE : DateType;
DATEREC : DateTimeRec;

begin (* Displnfo *)
ERR := FSOpen(ENDFILE, 0, REFNUM);
if ERR <> (then begin
writeln(’ This player has never finished any games.');
end else begin
writeln(' Date Played Prestige Game Status Final Game Date Wealth');
writeln; -
while ERR = 0 do begin
SIZE := SizeOf(longint);
ERR := FSRead(REFNUM, SIZE, @ WHEN);
if ERR = 0 then begin
ERR := FSRead(REFNUM, SIZE, @PRESTIGE);
ERR := FSRead(REFNUM, SIZE, @WEALTH);
SIZE := SizeOf(boolean);
ERR := FSRead(REFNUM, SIZE, @WON);
SIZE := SizeOf(DateType);
ERR := FSRead(REFNUM, SIZE, @DATE),
Secs2Date(WHEN, DATEREC);
write(' ,DATEREC.Month:2,/,DATEREC.Day:2,"/,DATEREC.Year:4,' ");
write(PRESTIGE);
. if WON then begin
write(complete %
end else begin
write(" not complete');
end; (* If *)
if DATE.Fall then begin
write(' Fall, ");
end else begin
write(" Spring, ");
end; (* If *)
write(DATE.Year:0);
writeln(’ £ ' WEALTH.:0);
end; (* If *)
end; (* While *)
end; (* If ¥)
ERR := FSClose(REFNUM);
end; (* Displnfo *)

procedure DoneButton;

var DONEDIALOG : DlalogPtr;
ITEM : integer;

begin (* DoneButton *)
DONEDIALOG := GetNewDialog(256, nil, Pointer(-1));
repeat
SystemTask;
ModalDialog(nil, ITEM);
until ITEM = OK;
DisposDialog(DONEDIALOG);
end; (* DoneButton *)

begin (* Main *)
Initialize(myWindow);
DisplInfo;
DoneButton;

end. (* Main *)

User:

Application:

Document:

Date:

Time:

Printer:

Tom Maliska, FAD Program

Edit

Support Programs:SUNKING/4.0/EXAMINER. TEXT

Thursday, September 18, 1986

11:30:41 PM

LaserWriter Plus

*{The Would-Be Gentleman, Faculty Author Development Program at Stanford University. }
*{Version 4.1, Steve Fisher 12/20/84 and Tom Maliska, 3/12/86.
*{Faculty Author Development Team: Carolyn Lougee, Michael Carter, Ed McGuigan,
*{Steve Fisher, and Tom Maliska.
‘{Conyright 1986 Carolyn Lougee and the Board of Trustees of the Leland Stanford
{Junior University.

e’ Nt \myt Smge! gt

SunKing/4.0/Examine.RSRC

Type DITL
,256 (4)
1

Btnltem Enabled
002060

Quit

Type DLOG
,256 (4)
290 400 310 460
Visible 1 NoGoAway 0
256

Type WIND

,256 (4)

Finance Selector
00342512
Visible NoGoAway

¥

Type CODE
SunKing/4.0/ExamineL.,0

User: Tom Maliska, FAD Program

Application: Edit

Document: Support Programs:SUNKING/4.0/LEASE. TEXT

Date: Thursday, September 18, 1986

Time: 11:37:26 PM

Printer: LaserWriter Plus

{$M+} {mac code}
{$X-} {no automatic stack expansion}
{$R-} {no range checking, paslib is buggy}

ﬂhe Would-Be Gentleman, Faculty Author Development Program at Stanford University.
ersion 4.1, Steve Fisher 12/20/84 and Tom Maliska, 3/12/86.
{Faculty Author Development Team: Carolyn Lougee, Michael Carter, Ed McGuigan,
{Steve Fisher, and Tom Maliska.
{Copyright 1986 Carolyn Lougee and the Board of Trustees of the Leland Stanford
{Junior University.

program Lease;
{ACTION: This program creates the Lease data file required by the simulation.
uses {$U-}

{$U obj/MemTypes} MemTypes,

{$U obj/QuickDraw} QuickDraw,

{$U obj/OSIntf} OSIntf,

{$U obj/Toollntf} Toollntf,

{$U Obj/PackiIntf} PacklIntf,
{$U Obj/MacPrint} MacPrint,
{$U Obj/PasLibIntf} PasLiblintf;

const Addltem =1;
Deleteltem = 2;
Saveltem = 3;
Quitltem = 4;
DelTextltem = 3;
AddTextltem = 3;

DriveNum =0;
. FileName = 'Lease.Dat";
NumlLeases = 100;

type LeaseRec = record
Title : Str255;
Deleted : boolean;
end; (* LeaseRec *)

LeaseArray = array [1..NumLeases] of LeaseRec;

LeaseType = record
List : LeaseArray;
Number, (* Deleted plus undeleted *)
RealNum : integer; (* Only undeleted *)
end; (* LeaseType *)

var WhichWindow, TextWindow : WindowPtr;
Done,
Temp : boolean;
myEvent : EventRecord;
Code : integer;
Letter : char;

myMenu : MenuHandle;
Leases : LeaseType;

procedure DebugDelay;

gin (* DebugDelay *)
repeat
SystemTask;
until Button,;
end; (* DebugDelay *)

procedure SetUpMenus(var myMenu:MenuHandle);

begin (* SetUpMenus *)
InitMenus;
myMenu := GetMenu(256);
InsertMenu(myMenu, 0);
DrawMenuBar;

end; (* SetUpMenus *)

procedure SetUpWindow(var TextWindow:WindowPtr);

begin (* SetUpWindow *)
TextWindow := GetNewWindow(256, nil, Pointer(-1));
SetPort(TextWindow);
PLSetWrPort (TextWindow);

end; (* SetUpWindow *)

procedure Initialize(var myMenu:MenuHandle; var TextWindow:WindowPtr; var Leases:LeaseType);

.egin (* Initialize *)

InitGraf(@thePort);
InitFonts;
FlushEvents(everyEvent, 0);
InitWindows;
SetUpMenus(myMenu);
SetUpWindow(TextWindow);
TElInit;
InitDialogs(nil);
InitCursor;
Leases.Number :=0;
Leases.RealNum :=0;

end; (* Initialize *)

procedure GetLeases (var Leases:LeaseType);

var ERR : OSErr;
REFNUM, I, NUM : integer;
RECLEN : longint;
TITLE : Str255;

begin (* GetLeases *)

ERR := FSOpen(FileName, 0, REFNUM),
if ERR = 0 then begin
RECLEN := SizeOf(Leases.RealNum);
ERR := FSRead(REFNUM, RECLEN, @NUM);
. Leases.RealNum := NUM;
Leases.Number := Leases.RealNum;
RECLEN := SizeOf(Str255);
for I:=1 to Leases.Number do begin
ERR := FSRead(REFNUM, RECLEN, @TITLE),
Leases.List[I].Title := TITLE,;
Leases.List[I].Deleted := false;
end; (* For *)
ERR := FSClose(REFNUM);
end; (* If *)
end; (* GetLeases *)

procedure DisplayLeases (Leases:LeaseType; TextWindow:WindowPir);

var 1:integer;
DISPRECT : Rect;

begin (* DisplayLeases *)
SetPort(TextWindow);
PLSetWrPort (TextWindow);
SetRect(DISPRECT, 0, 0, 512, 342);
EraseRect(DISPRECT);
MoveTo(0,30);
for I:=1 to Leases.Number do begin
if not Leases.List{I].Deleted then begin
. writeln(1:0,' ", Leases.List[I].Title);
end; (* If *)
end; (* For *)
end; (* DisplayLeases *)

procedure AddLeases (var Leases:LeaseType);

var LEASEDIALOG : DialogPtr;
ITEM, DUMMYTYPE : integer;
DUMMYRECT : Rect;
ITEMHDL : Handle;

begin (* AddLeases *)

LEASEDIALOG := GetNewDialog (257, nil, Pointer(-1));

repeat
SystemTask;
ModalDialog(nil, ITEM);

until ITEM in {OK, Cancel];

if ITEM = OK then begin
Leases.Number := Leases.Number + 1;
Leases.RealNum := Leases.RealNum + 1;
GetDItem(LEASEDIALOG, AddTextltem, DUMMYTYPE, ITEMHDL, DUMMYRECT);
GetlTextUITEMHDL, Leases.List[Leases.Number].Title);

Leases.List[Leases.Number].Deleted := false;
end; (* If ¥)
DisposDialog(LEASEDIALOG);
end; (* AddLeases *)

nction PowerOfTen(Num : integer) : integer;
var I, TEMP : integer;

begin (* PowerOfTen *)
TEMP :=1;
for I := 1 to Num do begin
TEMP := TEMP * 10;
end; (* For ¥)
PowerOfTen := TEMP;
end; (* PowerOfTen *)

function ConvertNum(StrNum : Str255) : integer;
var I, TEMP : integer;

begin (* ConvertNum ¥)

TEMP :=0;

if Length(StrNum) <> 0 then begin
for I := 1 to Length(StrNum) do begin

TEMP := TEMP + (ord(StrNum{I}) - ord('0")) * PowerOfTen(Length(StrNum) - I);

end (* For *)

end; (* If ¥)

ConvertNum := TEMP;

nd; (* ConvertNum *)

procedure Delleases (var Leases:LeaseType);

var LEASEDIALOG : DialogPtr;
ITEM, DUMMYTYPE, NUM : integer;
DUMMYRECT : Rect;
ITEMHDL : Handle;
NUMSTR : Str255;

begin (* DelLeases *)
LEASEDIALOG := GetNewDialog (256, nil, Pointer(-1));
repeat
SystemTask;
ModalDialog(nil, ITEM);
until ITEM in [OK, Cancel];
if ATEM = OK) then begin
Leases.RealNum := Leases.RealNum - 1;
GetDItem(LEASEDIALOG, AddTextltem, DUMMYTYPE, ITEMHDL, DUMMYRECT);
GetlText(ITEMHDL, NUMSTR);
NUM := ConvertNum(NUMSTR);
if NUM <= Numl eases then begin
Leases.ListfNUM].Deleted := true;

end; (* If *)
end; (* If *)
DisposDialog(LEASEDIALOG);
end; (* DellLeases *)

.ocedure SaveLeases (Leases:LeaseType);

var RECLEN : longint;
REFNUM, I, NUM : integer;
ERR : OSEr;
TITLE : Str255;

begin (* SaveLeases *)
RECLEN := SizeOf(Leases.RealNum);
ERR := FSDelete(FileName, 0);
ERR := Create(FileName, 0, '7?7?', 'LEAS");
ERR := FSOpen(FileName, 0, REFNUM);
NUM := Leases.RealNum;
ERR := FSWrite(REFNUM, RECLEN, @ NUM);
RECLEN := SizeOf(TITLE);
forI:=1 to Leases.Number do begin
if not Leases.List[I]. Deleted then begin
TITLE := Leases.List[I].Title;
ERR := FSWrite(REFNUM, RECLEN, @TITLE);
end; (* If *)
end; (* For ¥*)
ERR := FSClose(REFNUM);
end; (* SaveLeases *)

procedure DoCommand(mResult:longint; var Done:boolean; var Leases:LeaseType);

‘: theltem : integer;

begin (* DoCommand *)
Done := false;
theltem := LoWord(mresult);
case theltem of
AddItem : AddLease(Leases);
Deleteltem : DellLease(Leases);
Saveltem : Saveleases(Leases);
Quitltem : Done := true;
end; (* Case *)
if not Done then begin
HiliteMenu(0);
end; (* If *)
end; (* DoCommand *)

begin (* Main *)
Initialize(myMenu, TextWindow, Leases);
GetLeases(Leases);
Done := false;
repeat

SystemTask;
Temp := GetNextEvent(everyEvent, myEvent);

case myEvent.what of

. MouseDown : begin

Code := FindWindow(myEvent.where, WhichWindow);
case Code of
inMenuBar : DoCommand(MenuSelect(myEvent.where), Done, Leases);
inSysWindow : SystemClick(myEvent, WhichWindow);
end; (* Case *)
end; (* MouseDown *)

KeyDown : begin
Letter := chr(myEvent.message mod 256);
if BitAnd(myEvent.modifiers, 256) <> 0 then begin
DoCommand(MenuKey(Letter), Done, Leases);
end; (* If ¥)
end; (* KeyDown *)

UpdateEvt : begin
BeginUpdate(TextWindow);
EndUpdate(TextWindow);
Displayleases(Leases, TextWindow);

end; (* UpdateEvt *)

end; (* Case *)
until Done;
end. (* Main *)

User:

Application:

Document:

Date:

Time:

Printer:

Tom Maliska, FAD Program

Edit

Support Programs:SUNKING/4.0/LEASER.TEXT

Thursday, September 18, 1986

11:40:06 PM

LaserWriter Plus

*{The Would-Be Gentleman, Faculty Author Development Program at Stanford University. }
*{Version 4.1, Steve Fisher 12/20/84 and Tom Maliska, 3/12/86.

*{Faculty Author Development Team: Carolyn Lougee, Michael Carter, Ed McGuigan,
*{Steve Fisher, and Tom Maliska.

*{ Copyright 1986 Carolyn Lougee and the Board of Trustees of the Leland Stanford
{Jurior University.

SunKing/4.0/Lease.RSRC

S et ! g gt

Type Menu
,256
Main Menu
Add Lease /A
Delete Lease/D
Save Data/S

Quit/Q

Type WIND
,256 (32)
Display
00342512
Visible NoGoAway
1
0

Type DITL
,256 (32)
4

BtnItem Enabled
.) 501370 83
K

Btnitem Enabled
5030070 370
Cancel

EditText Enabled
10 170 25 230

StatText Disabled
10525160
Number tc delete

,257 (32)
4

Btnltem Enabled
8013100 83
OK

BtnItem Enabled
80 300 100 370
Cancel

EditText Enabled
35550330

StatText Disabled
10525230
This is a lease to collect the...

Type DLOG
256 (32)
5040 140 472
Visible 1 NoGoAway 0
256

257 (32)

5040 160 472

Visible 1 NoGoAway 0
257

Type CODE
SunKing/4.0/LeaseL,0

User:

Application:

Document:

Date:

Time:

Printer:

Tom Maliska, FAD Program

Edit

Support Programs:SUNKING/4.0/MAIL. TEXT

Thursday, September 18, 1986

11:41:17 PM

LaserWriter Plus

{$M+} {mac code}
{$X-} {no automatic stack expansion}
{$R-} {no range checking, paslib is buggy}

e Would-Be Gentleman, Faculty Author Development Program at Stanford University. }
‘:rsion 4.1, Steve Fisher 12/20/84 and Tom Maliska, 3/12/86. }
{Faculty Author Development Team: Carolyn Lougee, Michael Carter, Ed McGuigan, }
{Steve Fisher, and Tom Maliska. }
{Copyright 1986 Carolyn Lougee and the Board of Trustees of the Leland Stanford }
{Junior University. }

program Mail;

{ACTION: This program creates a mail file "Mail.dat". This file can be renamed to make
{the correspondence files FirstMail.1.dat, FirstMail.2.dat, SecondMail.1.dat, and
{SecondMail.2.dat used by the simulation.

et St Nt

uses {$U-}
{$U obj/MemTypes} MemTypes,
{$U obj/QuickDraw} QuickDraw,
{$U obj/OSIntf} OSIntf,
{$U obj/ToolIntf} Toollntf,

{$U Obj/PackIntf} PacklIntf,
{$U Obj/MacPrint} MacPrint,
{$U Obj/PasLibIntf} PasLibIntf;

const AddItem =1;
Deleteltem = 2;
Editltem = 3;
Saveltem = 4;
: Quitltem = 5;
. Listltem = 6;
DelTextltem = 3;
EdTextItem = 3;
ContTextltem = 3;
CashTextItem = 20;
YearTextltem = 16;
GENITEM = 13;
FALLITEM = 17;
SPRINGITEM = 18;
NUMITEM = 22;
CONOFFSET = 3;
NUMCONTACTS =11;
NUMDISP = 40;
DriveNum = 0;
FileName = '"Mail.Dat";
MaxMail = 115;
FontSize = 9;
SCREENFUL = 20;

type ProctType = (Cornuel, Mazarin, Particelli, Conde, Fouquet, Colbert, Maintenon, GrandDauphin,
DukeOfBurgundy, Generic, NoProtector);

MailRec =record
Content : Str255;
Contact : ProctType;
Year,

Cash : longint;
rall : boolean;
end; (* MailRec *)

MailArray = array [1..MaxMail] of MailRec;

MailType = record
List : MailArray;
Number : integer;

end; (* MailType *)

var WhichWindow, TextWindow : WindowPtr;
Done,
Temp : boolean;
myEvent : EventRecord;
Code, VRefNum : integer;
Letter : char;
myMenu : MenuHandle;
Mails : MailType;

procedure DebugDelay;

begin (* DebugDelay *)
repeat
SystemTask;
Temp := GetNextEvent(everyEvent, myEvent);
until Button;
nd; (* DebugDelay *)

procedure SetUpMenus(var myMenu:MenuHandle);

begin (* SetUpMenus *)
InitMenus;
myMenu := GetMenu(256);
InsertMenu(myMenu, 0);
DrawMenuBar;

end; (* SetUpMenus *)

procedure SetUpWindow(var TextWindow:WindowPtr);
begin (* SetUpWindow *)
TextWindow := GetNewWindow(256, nil, Pointer(-1));
SetPort(TextWindow);
PLSetWrPort(TextWindow);
end; (* SetUpWindow *)

procedure Initialize(var myMenu:MenuHandle; var TextWindow:WindowPtr; var Mails:MailType);

begin (* Initialize *)
InitGraf(@thePort);
InitFonts;
FlushEvents(everyEvent, 0);
InitWindows;

. SetUpMenus(myMenu);
SetUpWindow(TextWindow);
TEInit;

InitDialogs(nil);

InitCursor;

Mails.Number :=0;
end; (* Initialize *)

procedure GetMails (var Mails:MailType);

var ERR : OSErr;
REFNUM, I, NUM : integer;
RECLEN : longint;
MAIL : MailRec;

begin (* GetMails *)
ERR := FSOpen(FileName, 0, REFNUM);
if ERR = 0 then begin
RECLEN := SizeOf(Mails.Number);
ERR := FSRead(REFNUM, RECLEN, @NUM);
Mails.Number := NUM;
RECLEN := SizeOf(MailRec);
for I := 1 to Mails.Number do begin
ERR := FSRead(REFNUM, RECLEN, @MAIL),
Mails.List[I] := MAIL;
. end; (* For *)
ERR := FSClose(REFNUM);
end; (* If *)
end; (* GetMails *)

procedure DisplayNote (TextWindow:WindowPtr);

var I, J, K, LEN : integer;
DISPRECT : Rect;
SEASON, CONT : Str255;

begin (* DisplayNote *)

SetPort(TextWindow);

PLSetWrPort(TextWindow);

SetRect(DISPRECT, 0, 0, 512, 342);

EraseRect(DISPRECT);

TextFont(Geneva);

TextSize(FontSize);

MoveTo(0,30);

writeln(" Give a command from the menu or type Apple + L to list all mail items. Maximum number =",
MaxMail:0);

writeln;

TextFont(0);
TextSize(0);
end; (* DisplayNote *)

.)cedure DisplayMails (var Mails:MailType; TextWindow:WindowPtr);

var I, J, K, LEN : integer;
DISPRECT : Rect;
SEASON, CONT : Str255;

begin (* DisplayMails *)
SetPort(TextWindow);
PLSetWrPort(TextWindow);
SetRect(DISPRECT, 0, 0, 512, 342);
EraseRect(DISPRECT);
TextFont(Geneva);
TextSize(FontSize);
MoveTo(0,30);
K :=0;
for1:=1 to Mails.Number do begin
with Mails.List{I] do begin
write('I0,") ');
if Length(Content) < NUMDISP then begin
LEN := Length(Content);
end else begin
LEN := NUMDISP;
end; (* If *)
if Fall then begin
SEASON :='Fall’;

end else begin
. SEASON := 'Spring’;

end; (* If *)

case Contact of
Cornuel : CONT := 'Cornuel’;
Mazarin : CONT := 'Mazarin";
Particelli : CONT := 'Particelli’;
Conde : CONT :="'Conde",
Fouquet : CONT := 'Fouquet';
Colbert : CONT := 'Colbert’;
DukeOfBurgundy : CONT := 'Duke of Burgundy';
Maintenon : CONT := 'Maintenon";
GrandDauphin : CONT := 'Grand Dauphin'
Generic : CONT := 'Generic";
NoProtector : CONT := 'No Protector’;

end; (* Case *)

for J := 1 to LEN do begin
write(Content[J]);

end; (* For *)

writeln(" ',CONT, ' Year:0,) 'SEASON, ',Cash:0);

K=K+1;

if K >= SCREENFUL then

begin

writeln;

writeln(" Press the Mouse Button to See More Mail.");
K:=0;

DebugDelay;

. end; (*If ¥)
end; (* With *)
end; (* For ¥*)
TextFont(0);
TextSize(0);
end; (* DisplayMails *)

function PowerOfTen(Num : integer) : longint;
var I, TEMP : longint;

begin (* PowerOfTen *)
TEMP :=1;
for I := 1 to Num do begin
TEMP := TEMP * 10;
end; (* For ¥*)
PowerOfTen := TEMP;
end; (* PowerOfTen *)

function ConvertNum(StrNum : Str255) : longint;
var I, TEMP : longint;

begin (* ConvertNum *)
TEMP :=0;
if Length(StrNum) <> 0 then begin
. for I := 1 to Length(StrNum) do begin
TEMP := TEMP + (ord(StrNum([I]) - ord('0")) * PowerOfTen(Length(StrNum) - I);
end (* For *)
end; (*If *)
ConvertNum := TEMP;
end; (* ConvertNum ¥)

procedure NumSpecs(Num:longint; var Len:integer; var STR:Str255);

(* This procedure returns the String representation of the number NUM in the variable STR. The number of *)
(* digits is returned through LEN. *)

var NEWNUM : String([1];

begin (* NumSpecs *)

LEN :=0;

STR:="

if Num = 0 then begin
STR:=""
STR[1] :="'0}
LEN:=1;

end; (* If ¥)

while Num <> 0 do begin
LEN:=LEN +1;
NEWNUM :="";
NEWNUM[1] := chr(Num mod 10 + ord('0");
STR := ConcattNEWNUM, STR);
Num := Num div 10;

end; (* While *)

end; (* NumSpecs *)

procedure GetOldVals(MailDialog:DialogPtr; var Mails:Mail Type; Number:longint);

var DUMMYTYPE : integer;
ITEMHDL : Handle;
DUMMYRECT : Rect;
LEN : integer;
TEMP : Str255;

begin (* GetOldVals *)
with Mails.List{fNumber] do begin
GetDItem(MailDialog, ContTextltem, DUMMYTYPE, ITEMHDL, DUMMYRECT);
SetIText(ITEMHDL, Content);
GetDItem(MailDialog, CONOFFSET + ord(Contact) + 1, DUMMYTYPE, ITEMHDL, DUMMYRECT);,
SetCtlVal(Pointer{(TEMHDL), 1);
NumSpecs(Year, LEN, TEMP);
GetDItem(MailDialog, YearTextltem, DUMMYTYPE, ITEMHDL, DUMMYRECT);
SetlTextITEMHDL, TEMP);
if Cash < 0 then begin
NumSpecs(0 - Cash, LEN, TEMP),
TEMP := Concat (-, TEMP);

end else begin
. NumSpecs(Cash, LEN, TEMP),
end; (* If *)
GetDItem(MailDialog, CashTextltem, DUMMYTYPE, ITEMHDL, DUMMYRECT);
SetIText(ITEMHDL, TEMP);
NumSpecs(Number, LEN, TEMP);
GetDItem(MailDialog, NUMITEM, DUMMYTYPE, ITEMHDL, DUMMYRECT);
SetITextITEMHDL, TEMP);
if Fall then begin
GetDItem(MailDialog, FALLITEM, DUMMYTYPE, ITEMHDL, DUMMYRECT);
end else begin o
GetDItem(MailDialog, SPRINGITEM, DUMMYTYPE, ITEMHDL, DUMMYRECT);
end; (* If *)
SetCdVal(Pointer(TEMHDL), 1);
end; (* With *)
end; (* GetOldVals *)

procedure AddMail (var Mails:Mail Type; Editing:boolean; Number:longint);
var MAILDIALOG : DialogPtr;
ITEM, DUMMYTYPE, VAL, I, NUM, J : integer;

DUMMYRECT : Rect;
ITEMHDL. : Handle;

AMT : Str255;

begin (* AddMail *)
MAILDIALOG := GetNewDialog (257, nil, Pointer(-1));
if not Editing then begin
GetDItem(MAILDIALOG, GENITEM, DUMMYTYPE, ITEMHDL, DUMMYRECT);
SetCtlValue(Pointer(TEMHDL), 1);
GetDItem(MAILDIALOG, FALLITEM, DUMMYTYPE, ITEMHDL, DUMMYRECT);
SetCtlValue(Pointerf(TEMHDL), 1);
end else begin
GetOldVals(MAILDIALOG, Mails, Number);
end; (* If ¥)
repeat
SystemTask;
ModalDialog(nil, ITEM);
if ITEM in [(CONOFESET + 1)..(CONOFFSET + NUMCONTACTS)] then begin
for I := 1 to NUMCONTACTS do begin
GetDItem(MAILDIALOG, I + CONOFFSET, DUMMYTYPE, ITEMHDL, DUMMYRECT);
SetCtlValue(Pointer(TEMHDL), 0);
end; (* For *)
GetDItem(MAILDIALOG, ITEM, DUMMYTYPE, ITEMHDL, DUMMYRECT);
SetCtlVal(Pointer(TEMHDL), 1);
end; (* If *)
if ITEM in [FALLITEM..SPRINGITEM] then begin
GetDItem(MAILDIALOG, FALLITEM, DUMMYTYPE, ITEMHDL, DUMMYRECT);
SetCtlVal(Pointer(TEMHDL), 0);
GetDItem(MAILDIALOG, SPRINGITEM, DUMMYTYPE, ITEMHDL, DUMMYRECT);
SetCtlVal(Pointer('TEMHDL), 0);
GetDItem(MAILDIALOG, ITEM, DUMMYTYPE, ITEMHDL, DUMMYRECT);
SetCtlVal(Pointer(TEMHDL), 1);
. end; (* If *)
until ITEM in [OK, Cancel];
if ITEM = OK then begin
Mails.Number := Mails.Number + 1;
GetDItem(MAILDIALOG, NUMITEM, DUMMYTYPE, ITEMHDL, DUMMYRECT);
GetITextITEMHDL, AMT),
NUM := ConvertNum(AMT);
if NUM = 0 then begin
NUM := Mails.Number;
end else begin
for I := Mails.Number downto NUM + 1 do begin
Mails.List[I] := Mails.List[I - 1];
end; (* For *)
end; (* If *)
GetDItem(MAILDIALOG, FALLITEM, DUMMYTYPE, ITEMHDL, DUMMYRECT);
VAL = GetCtlVal(Pointer(TEMHDL));
case VAL of
0 : Mails.List{ NUM].Fall := false;
1 : Mails.ListfNUM].Fall := true;
end; (* Case *)
GetDItem(MAILDIALOG, ContTextltem, DUMMYTYPE, ITEMHDL, DUMMYRECT);
GetlText(ITEMHDL, Mails.ListfNUM].Content);

Mails.ListfNUM].Contact := Cornuel;
forI:=1to NUMCONTACTS do begin
GetDItem(MAILDIALOG, I + CONOFFSET, DUMMYTYPE, ITEMHDL, DUMMYRECT);
VAL :=GetCtlVal(Pointer(TEMHDL));
if VAL = 1 then begin
. forJ:=1to1-1 dobegin
Mails.List{NUM].Contact := succ(Mails.ListtNUM].Contact);
end; (* For ¥)
end; (* If *)
end; (* For *)
GetDItem(MAILDIALOG, CashTextltem, DUMMYTYPE, ITEMHDL, DUMMYRECT);
GetlText(ITEMHDL, AMT);
if AMT[1] = '-' then begin
delete(AMT, 1, 1);
Mails.List{]NUM].Cash := 0 - ConvertNum(AMT);
end else begin
Mails.ListfNUM].Cash := ConvertNum(AMT);
end; (* If *)
GetDItem(MAILDIALOG, YearTextltem, DUMMYTYPE, ITEMHDL, DUMMYRECT);
GetlTextITEMHDL, AMT);
Mails.ListfNUM].Year := ConvertNum(AMT);
end; (* If *)
DisposDialog(MAILDIALOG);
end; (* AddMail *)

procedure DelMail (var Mails:MailType);

var MAILDIALOG : DialogPtr;
ITEM, DUMMYTYPE, I : integer;
NUM : longint;
) DUMMYRECT : Rect;
ITEMHDL : Handle;
NUMSTR : Str255;

begin (* DelMail *)
MAILDIALOG := GetNewDialog (256, nil, Pointer(-1));
repeat
SystemTask;
ModalDialog(nil, ITEM);
until ITEM in [OK, Cancel];
if dTEM = OK) then begin
GetDItem(MAILDIALOG, DelTextltem, DUMMYTYPE, ITEMHDL, DUMMYRECT);
GetlTextAITEMHDL, NUMSTR);
NUM := ConvertNum(NUMSTR);
if NUM <= Mails.Number then begin
for I := NUM + 1 to Mails.Number do begin
Mails.List[I-1] := Mails.List{I];
end; (* For *)
Mails. Number := Mails.Number - 1;
end; (* If *)
end; (* If *)
DisposDialog(MAILDIALOG),

end; (* DelMail *)
procedure EditMail (var Mails:MailType);

MAILDIALOG : DialogPtr;
ITEM, DUMMYTYPE, I : integer;
NUM : longint;

DUMMYRECT : Rect;
ITEMHDL : Handle;
NUMSTR : Str255;

begin (* EditMail *)
MAILDIALOG := GetNewDialog (258, nil, Pointer(-1));
repeat
SystemTask;
ModalDialog(nil, ITEM);
until ITEM in [OK, Cancel];
if (ITEM = OK) then begin
GetDItem(MAILDIALOG, EdTextltem, DUMMYTYPE, ITEMHDL, DUMMYRECT);
GetITextITEMHDL, NUMSTR);
NUM := ConvertNum(NUMSTR);
AddMail(Mails, true, NUM);
end; (* If *)
DisposDialog(MAILDIALOG);
end; (* EditMail *)

procedure SaveMails (var Mails:MailType);

var RECLEN : longint;
REFNUM, I, NUM : integer;
ERR : OSErr;
TITLE : Str255;
MAIL : MailRec;

begin (* SaveMails *)
RECLEN := SizeOf(Mails.Number);
ERR := FSDelete(FileName, 0);
ERR := Create(FileName, 0, '77??', ' MAIL");
ERR := FSOpen(FileName, 0, REFNUM);
NUM := Mails.Number;
ERR := FSWrite(REFNUM, RECLEN, @NUM);
RECLEN := SizeOf(MailRec);
forI :=1 to Mails.Number do begin
MAIL := Mails.List[I];
ERR := FSWrite(REFNUM, RECLEN, @MAIL);
end; (* For *)
ERR := FSClose(REFNUM);
end; (* SaveMails *)

procedure DoCommand(mResult:longint; var Done:boolean; var Mails:MailType);

var theltem : integer;

begin (* DoCommand *)
Done := false;
theltem := LoWord(mresult);
case theltem of

‘ AddlItem : AddMail(Mails, false, 0);
Deleteltem : DelMail(Mails);
Editltem : EditMail(Mails);
Saveltem : SaveMails(Mails);
Quitltem : Done := true;

ListItern : DisplayMails(Mails, TextWindow);
end; (* Case *)
if not Done then begin
HiliteMenu(0);
end; (* If ¥)
end; (* DoCommand *)

begin (* Main *)
Initialize(myMenu, TextWindow, Mails);
GetMails(Mails);
Done := false;
repeat
SystemTask;
Temp := GetNextEvent(everyEvent, myEvent);

case myEvent.what of

MouseDown : begin
Code := FindWindow(myEvent.where, WhichWindow);

‘ case Code of
inMenuBar : DoCommand(MenuSelect(myEvent.where), Done, Mails);
inSysWindow : SystemClick(myEvent, WhichWindow);
end; (* Case *)
end; (* MouseDown *)

KeyDown : begin
Letter := chr(myEvent.message mod 256);
if BitAnd(myEvent.modifiers, 256) <> 0 then begin
DoCommand(MenuKey(Letter), Done, Mails);
end; (* If *)
end; (* KeyDown *)

UpdateEvt : begin
BeginUpdate(TextWindow);
EndUpdate(TextWindow);
DisplayNote(TextWindow);

end; (* UpdateEvt *)

end; (* Case *)

until Done;
end. (* Main *)

User: Tom Maliska, FAD Program

Application: Edit

Document: Support Programs:SUNKING/4.0/MAILR. TEXT

Date: Thursday, September 18, 1986

Time: 11:42:29 PM

Printer: LaserWriter Plus

*{ The Would-Be Gentleman, Faculty Author Development Program at Stanford University. }
*{Version 4.1, Steve Fisher 12/20/84 and Tom Maliska, 3/12/86.

*{Faculty Author Development Team: Carolyn Lougee, Michael Carter, Ed McGuigan,
*{Steve Fisher, and Tom Maliska.

X { Copyright 1986 Carolyn Lougee and the Board of Trustees of the Leland Stanford
.{J unior University.

St Sy g’ et gt

SunKing/4.0/Mail. RSRC

Type Menu

,256

Main Menu
Add Mail /A
Delete Mail/D
Edit Mail/E
Save Data/S
Quit/Q
List/L

Type WIND
,256 (32)
Display
00342512
Visible NoGoAway
1

0

Type DITL
256 (32)
4

. Btnltem Enabled
50137083
OK

Btnltem Enabled
5030070 370
Cancel

EditText Enabled
10 170 25 230

StatText Disabled
10525 160
Number to delete

,257 (32)
22

Btnltern Enabled
215330235 400

OK

Btnltem Enabled
250 330 270 400
cel

EditText Enabled
1010110422

Radioltem Enabled
125 10 140 90
Cornuel

Radioltem Enabled
125 100 140 190
Mazarin

Radioltem Enabled
125 200 140 290
Particelli

Radioltem Enabled
125 300 140 390
Conde

Radioltem Enabled
15510170 90
Fouquet

Radioltem Enabled
QOISS 100 170 190
Ibert

Radioltem Enabled
155200 170 290
Maintenon

Radioltem Enabled
155 300 170 420
Grand Dauphin

Radioltem Enabled
185 10200 190
The Duke Of Burgundy

Radioltem Enabled
185 300 200 420
Generic

Radioltem Enabled

21510230 130
No Protector

StatText Disabled
250 10265 40
Year

. EditText Enabled
250 50265 120

Radioltem Enabled
250 160 265 215
Fall

Radioltem Enabled
250 245 265 305
Spring

StatText Disabled
280 10295 50
Cash

EditText Enabled
280 55295 150

StatText Disabled
280 200 295 295
Mail Number

EditText Enabled
280 300 295 390

.4;58 (32)

Btnltem Enabled
50137083
OK

Btnltem Enabled
5030070 370
Cancel

EditText Enabled
1017025 230

StatText Disabled
10525160
Number to edit

Type DLOG

,256 (32)
5040 140 472

Visible 1 NoGoAway 0
256

257 (32)
208 40 333 472
.Jisible 1 NoGoAway 0
257
258 (32)
50 40 140 472

Visible 1 NoGoAway 0
258

Type CODE
SunKing/4.0/MailL,0

User: Tom Maliska, FAD Program

Application: Edit

Document: Support Programs:SUNKING/4.0/MARRIAGE1.TEXT

Date: Thursday, September 18, 1986

Time: 11:43:41 PM

Printer: LaserWriter Plus

{$M+} {mac code}
{$X-} {no automatic stack expansion }
{$R-} {no range checking, paslib is buggy}

¢ Would-Be Gentleman, Faculty Author Development Program at Stanford University.
ersion 4.1, Steve Fisher 12/20/84 and Tom Maliska, 3/12/86.
{Faculty Author Development Team: Carolyn Lougee, Michael Carter, Ed McGuigan,
{Steve Fisher, and Tom Maliska.
{Copyright 1986 Carolyn Lougee and the Board of Trustees of the Leland Stanford
{Junior University.

program Marriage;
{ACTION: This program creates the Marriage data file for the first generation required by }
{the simulation. The Marriage program for the second generation differs only in the }

{FILENAME constant "Marriage2".

uses {$U-}
{$U obj/MemTypes} MemTypes,
{$U obj/QuickDraw} QuickDraw,
{$U obj/OSIntf} OSIntf,
{$U obj/ToollIntf} ToolIntf,

{$U Obj/PackiIntf} PacklIntf,
{$U Obj/MacPrint} MacPrint,
{$U Obj/PasLibIntf} PasLiblIntf;

const Addltem = 1;
Deleteltem = 2;
Saveltem = 3;
Quitltem = 4;

. NameTextltem = 3;
DadTextltem = 5;
AgeTextltem =7,
DowryTextltem = 9;
GroupTextltem = 11;
DelTextltem = 3;
FileName = 'Marriagel'; {"Marriage2" for the second generation marriage list filename}
NumMarrs = 30;
FontSize = 9;

type MarrRec = record
Father,
Name : Str255;
Age,
Dowry,
Group : longint;
Deleted : boolean;

end; (* MarrRec *)

MarrArray = array [1..NumMarrs] of MarrRec;

MarrType = record

List : MarrArray;

Number, (* Deleted plus undeleted *)

RealNum : integer; (* Only undeleted *)
end; (* MarrType *)

WhichWindow, TextWindow : WindowPtr;
Done,
Temp : boolean;
myEvent : EventRecord;
Code, VRefNum : integer;
Letter : char;
myMenu : MenuHandle;
Marrs : MarrType;

procedure DebugDelay;

begin (* DebugDelay *)
repeat
SystemTask;
until Button;
end; (* DebugDelay *)

procedure SetUpMenus(var myMenu:MenuHandle);

begin (* SetUpMenus *)
InitMenus;
myMenu := GetMenu(256);
InsertMenu(myMenu, 0);
DrawMenuBar;
nd; (* SetUpMenus *)

e
Qrocedure SetUpWindow(var TextWindow:WindowPtr);

begin (* SetUpWindow *)
TextWindow := GetNewWindow(256, nil, Pointer(-1));
SetPort(TextWindow);
PLSetWrPort (TextWindow);

end; (* SetUpWindow *)

procedure Initialize(var myMenu:MenuHandle; var TextWindow:WindowPtr; var Marrs:MarrType);

begin (* Initialize *)
InitGraf(@thePort);
InitFonts;
FlushEvents(everyEvent, 0);
InitWindows;
SetUpMenus(myMenu);
SetUpWindow(TextWindow);
TEInit;
InitDialogs(nil);
InitCursor;
Marrs.Number := 0;

Marrs.RealNum :=0;

end; (* Initialize ¥)

procedure GetMarrs (var Marrs:MarrType);

‘: ERR : OSEm;

REFNUM, I, NUM : integer;
STRLEN, LONGLEN, AGE, DOWRY, GROUP : longint;
NAME, FATHER : Str255;

begin (* GetMarrs *)

ERR := FSOpen(FileName, 0, REFNUM);
if ERR =0 then begin
LONGLEN := SizeOf(Marrs.RealNum);
ERR := FSRead(REFNUM, LONGLEN, @NUM);
Marrs.RealNum := NUM;
Marrs.Number := Marrs.RealNum;
STRLEN := SizeOf(Str255);
LONGLEN := SizeOf(longint);
for I := 1 to Marrs.Number do begin

ERR := FSRead(REFNUM, STRLEN, @NAME);
ERR := FSREAD(REFNUM, STRLEN, @FATHER);
ERR := FSRead(REFNUM, LONGLEN, @AGE);
ERR := FSRead(REFNUM, LONGLEN, @DOWRY);
ERR := FSRead(REFNUM, LONGLEN, @GROUP);
Marrs.List[I]. Name := NAME;

Marrs.List[I].Father := FATHER,;

Marrs.List[I].Age := AGE;

Marrs.List[I].Dowry := DOWRY;

Marrs.List{I].Group := GROUP;
Marrs.List[I]).Deleted := false;

end; (* For *)
ERR := FSClose(REFNUM);
end; (* If *)

end; (* GetMarrs *)

procedure DisplayMarrs (Marrs:MarrType; TextWindow:WindowPtr);

var 1 :integer;

DISPRECT : Rect;

begin (* DisplayMarrs *)

SetPort(TextWindow);

PLSetWrPort (TextWindow);

SetRect(DISPRECT, 0, 0, 512, 342);

EraseRect(DISPRECT);

TextFont(Geneva);

TextSize(FontSize);

MoveTo(0,30);

for I := 1 to Marrs.Number do begin
with Marrs.List{I] do begin

if not Marrs.List[I].Deleted then begin

writeln(" ,I:0,' ', Name, Age, Dowry, Group, Father);
end; (* If *)
end; (* With *)
end; (* For *)
TextFont(0);
TertSize(0);
d; (* DisplayMarrs *)

function PowerOfTen(Num : integer) : longint;
var I, TEMP : longint;

begin (* PowerOfTen *)
TEMP :=1;
forI:= 1 to Num do begin
TEMP := TEMP * 10;
end; (* For ¥*)
PowerOfTen := TEMP;
end; (* PowerOfTen *)

function ConvertNum(StrNum : Str255) : longint;
var I, TEMP : longint;

begin (* ConvertNum *)
TEMP =0,
if Length(StrNum) <> 0 then begin
for I := 1 to Length(StrNum) do begin
TEMP := TEMP + (ord(StrNum(I]) - ord('0")) * PowerOfTen(Length(StrNum) - I);
end (* For *)
end; (* If *¥)
ConvertNum: := TEMP;
end; (* ConvertNum *)

procedure AddMarrs (var Marrs:MarrType);

var MarrDIALOG : DialogPtr;
ITEM, DUMMYTYPE : integer;
DUMMYRECT : Rect;
FTEMHDL : Handle;
AMT : Str255;

begin (* AddMarrs *)
MarrDIALOG := GetNewDialog (257, nil, Pointer(-1));
repeat
SystemTask;
ModalDialog(nil, [ITEM);
until ITEM in [OK, Cancel};
if ITEM = OK then begin
Marrs.Number := Marrs.Number + 1;
Marrs.RealNum := Marrs.RealNum + 1;
GetDItem(MarrDIALOG, NameTextIltem, DUMMYTYPE, ITEMHDL, DUMMYRECT);

GetIText(ITEMHDL, Marrs.List{Marrs.Number].Name);

GetDItem(MarrDIALOG, DadTextltem, DUMMYTYPE, ITEMHDL, DUMMYRECT);
GetlText(ITEMHDL, Marrs.List{Marrs. Number].Father);

GetDItem(MarrDIALOG, AgeTextltem, DUMMYTYPE, ITEMHDL, DUMMYRECT);
GetITextITEMHDL, AMT);

Marrs.List[Marrs.Number].Age := ConvertNum(AMT);

GetDItem(MarrDIALOG, DowryTextltem, DUMMYTYPE, ITEMHDL, DUMMYRECT);,
GetIText(ITEMHDL, AMT);

Marrs.List{Marrs.Number].Dowry := ConvertNum(AMT);

GetDItem(MarrDIALOG, GroupTextltem, DUMMYTYPE, ITEMHDL, DUMMYRECT);
GetlTextITEMHDL, AMT);

Marrs.List[Marrs.Number].Group := ConvertNum(AMT);
Marrs.List{Marrs.Number].Deleted := false;

end; (¥ If *)
DisposDialog(MarrDIALOG);

end; (* AddMarrs *)

procedure DelMarrs (var Marrs:MarrType);

var MARRDIALOG : DialogPtr;

ITEM, DUMMYTYPE : integer;
NUM : longint;

DUMMYRECT : Rect;
ITEMHDL : Handle;

NUMSTR : Str255;

begin (* DelMarrs *)

MARRDIALOG := GetNewDialog (256, nil, Pointer(-1));
repeat

SystemTask;
ModalDialog(nil, ITEM);

until ITEM in [OK, Cancel];
if 0TEM = OK) then begin

Marrs.RealNum := Marrs.RealNum - 1;
GetDItem(MARRDIALOG, DelTextltem, DUMMYTYPE, ITEMHDL, DUMMYRECT);
GetlText(ITEMHDL, NUMSTR);
NUM := ConvertNum(NUMSTR);
if NUM <= NumM arrs then begin
Marrs.ListfNUM].Deleted := true;
end; (* If *)

end; (* If *)
DisposDialog(MARRDIALOG);

end; (* DelMarrs *)

procedure SaveMarrs (Marrs:MarrType);

var STRLEN, LONGLEN, AGE, DOWRY, GROUP : longint,

REFNUM, I, NUM : integer;
ERR : OSEr;
NAME, FATHER : Str255;

begin (* SaveMarrs *)

LONGLEN := SizeOf(Marrs.RealNum);

ERR := FSDelete(FileName, 0);

ERR := Create(FileName, 0, '7?7??', ' MAR1");

ERR := FSOpen(FileName, 0, REFNUM),

NUM := Marrs.RealNum;

ERR := FSWrite(REFNUM, LONGLEN, @NUM);

STRLEN := SizeOf(Str255);

LONGLEN := SizeOf(longint);

for I := 1 to Marrs.Number do begin

if not Marrs.List[I]. Deleted then begin
NAME := Marrs.List[I].Name;
FATHER := Marrs.List[I].Father;
AGE := Marrs.List[I].Age;
DOWRY := Marrs.List{I].Dowry;
GROUP := Marrs.List[I]. GROUP;
ERR := FSWrite(REFNUM, STRLEN, @NAME);
ERR := FSWrite(REFNUM, STRLEN, @FATHER);
ERR := FSWrite(REFNUM, LONGLEN, @AGE);
ERR := FSWrite(REFNUM, LONGLEN, @DOWRY);
ERR := FSWrite(REFNUM, LONGLEN, @GROUP);
end; (* If ¥)
end; (* For *)
- ERR := FSClose(REFNUM);
end; (* SaveMarrs *)

procedure DoCommand(mResult:longint; var Done:boolean; var Marrs:MarrType);

var theltem : integer;

gin (* DoCommand *)
‘e Done := false;
theltem := LoWord(mresult);
case theltem of
AddItem : AddMarrs(Marrs);
Deleteltem : DelMarrs(Marrs);
Saveltem : SaveMarrs(Marrs);
Quitltem : Done := true;
end; (* Case *)
if not Done then begin
HiliteMenu(0);
end; (* If *)
end; (* DoCommand *)

begin (* Main *)
Initialize(myMenu, TextWindow, Marrs);
GetMarrs(Marrs);
Done := false;
repeat
SystemTask;
Temp := GetNextEvent(everyEvent, myEvent);

case myEvent.what of

MouseDown : begin
Code := FindWindow(myEvent.where, WhichWindow);
case Code of
inMenuBar : DoCommand(MenuSelect(myEvent.where), Done, Marrs);
inSysWindow : SystemClick(myEvent, WhichWindow);
end; (* Case *)
end; (* MouseDown *)

KeyDown : begin
Letter := chr(myEvent.message mod 256);
if BitAnd(myEvent.modifiers, 256) <> 0 then begin
DoCommand(MenuKey(Letter), Done, Marrs);
end; (* If *)
end; (* KeyDown *)

UpdateEvt : begin
BeginUpdate(TextWindow);
EndUpdate(TextWindow);
DisplayMarrs(Marrs, TextWindow);

end; (* UpdateEvt *)

end; (* Case *)
until Done;

end. (* Main *)

User: Tom Maliska, FAD Program

Application: Edit

Document: Support Programs:SUNKING/4.0/MABRIAGE1 R.TEXT
Date: Thursday, September 18, 1986

Time: 11:45:.02 PM

Printer: LaserWriter Plus

*{The Would-Be Gentleman, Faculty Author Development Program at Stanford University. }
*{Version 4.1, Steve Fisher 12/20/84 and Tom Maliska, 3/12/86.

*{Faculty Author Development Team: Carolyn Lougee, Michael Carter, Ed McGuigan,
*{Steve Fisher, and Tom Maliska.

g Copyright 1986 Carolyn Lougee and the Board of Trustees of the Leland Stanford
Junior University.

SunKing/4.0/Marriage1 . RSRC

Type Menu
256
Main Menu
Add Bride /A
Delete Bride/D
Save Data/S

Quit/Q

Type WIND
,256 (4)
Display
00342512
Visible NoGoAway
1
0

Type DITL
,256
4

Btnltem Enabled
Q 50 13 70 83
K

Btnltem Enabled
50 30070 370
Cancel

EditText Enabled
10170 25 230

StatText Disabled
10525160
Number to delete

257
12

Btnltem Enabled

160 13 180 83
OK

Btnltem Enabled
160 300 180 370
Cancel

EditText Enabled
10 60 25 390

StatText Disabled
1052550
Name

EditText Enabled
35 60 65 390

StatText Disabled
3556550
Father is...

EditText Enabled
756090 120

StatText Disabled
75590 50
Age

EditText Enabled

. 100 60 115 150

StatText Disabled
100511550

Dowry

EditText Enabled
125 60 140 120

StatText Disabled
1255140 50
Group

Type DLOG
,256
5040 140 472

Visible 1 NoGoAway 0

256

257
50 40 240 472

Visible 1 NoGoAway 0
257

Type CODE
‘unKingM.O/ManiagelL,O

User: Tom Maliska, FAD Program

Application: Edit

Document: Support Programs:SUNKING/4.0/MARRIAGE2. TEXT

Date: Thursday, September 18, 1986

Time: 11:46:01 PM

Printer: LaserWriter Plus

{$M+} {mac code}
{$X-} {no automatic stack expansion }
{$R-} {no range checking, paslib is buggy}

qhe Would-Be Gentleman, Faculty Author Development Program at Stanford University.
ersion 4.1, Steve Fisher 12/20/84 and Tom Maliska, 3/12/86.
{Faculty Author Development Team: Carolyn Lougee, Michael Carter, Ed McGuigan,
{Steve Fisher, and Tom Maliska.

{Copyright 1986 Carolyn Lougee and the Board of Trustees of the Leland Stanford
{Junior University.

program Marriage;
{ACTION: This program creates the Marriage data file for the second generation required

{by the simulation. The Marriage program for the first generation differs only in the
{FILENAME constant "Marriagel".
uses {$U-}

{$U obj/MemTypes} MemTypes,

{$U obj/QuickDraw} QuickDraw,

{$U obj/OSIntf} OSIntf,

{$U obj/Toollntf} Toollntf,

{$U Obj/PackiIntf} Packlntf,
{$U Obj/MacPrint} MacPrint,
{$U Obj/PasLibIntf} PasLibIntf;

const Addltem =1;

Deleteltem = 2;
Saveltem = 3;
Quitltem = 4;
NameTextltem = 3;

. DadTextltem = §;
AgeTextltem =7,
DowryTextltem = 9;
GroupTextltem = 11;
DelTextltem = 3;) i
FileName = ‘Marriage2'; {'Marriagel' for the first generation marriage list filename}
NumMarrs = 30;
FontSize = 9;

type MarrRec = record
Father,
Name : Str255;
Age,
Dowry,
Group : longint;
Deleted : boolean;

end; (* MarrRec *)

MarrArray = array [1..NumMarrs] of MariRec;

MarrType = record
List : MarrArray;

Number, (* Deleted plus undeleted *)
RealNum : integer; (* Only undeleted *)
end; (* MarrType *)

WhichWindow, TextWindow : WindowPtr;
Done,
Temp : boolean;
myEvent : EventRecord;
Code, VRefNum : integer;
Letter : char;
myMenu : MenuHandle;
Marrs : MarrType;

procedure DebugDelay;

begin (* DebugDelay *)
repeat
SystemTask;
until Button;
end; (* DebugDelay *)

procedure SetUpMenus(var myMenu:MenuHandle);

begin (* SetUpMenus *)
InitMenus;
myMenu := GetMenu(256);
InsertMenu(myMenu, 0);
DrawMenuBar;

end; (* SetUpMenus *)

.ocedure SetUpWindow(var TextWindow:WindowPtr);

begin (* SetUpWindow *)
TextWindow := GetNewWindow(256, nil, Pointer(-1));
SetPort(TextWindow);
PLSetWrPort(TextWindow);

end; (* SetUpWindow *)

procedure Initialize(var myMenu:MenuHandle; var TextWindow:WindowPtr; var Marrs:MarrType);

begin (* Initialize *)
InitGraf(@thePort);
InitFonts;
FlushEvents(everyEvent, 0);
InitWindows;
SetUpMenus(myMenu);
SetUpWindow(TextWindow);
TElnit;
InitDialogs(nil);
InitCursor;
Marrs.Number := 0;
Marrs.RealNum := 0;

end; (* Initialize *)
procedure GetMarrs (var Marrs:Marr Type);

ERR : OSErT;
REFNUM, I, NUM : integer;
STRLEN, LONGLEN, AGE, DOWRY, GROUP : longint;
NAME, FATHER : Str255;

begin (* GetMarrs *)
ERR := FSOpen(FileName, 0, REFNUM);
if ERR = 0 then begin
LONGLEN := SizeOf(Marrs.RealNum);
ERR := FSRead(REFNUM, LONGLEN, @NUM);
Marrs.RealNum := NUM,;
Marrs.Number := Marrs.RealNum;
STRLEN := SizeOf(Str255);
LONGLEN := SizeOf(longint);
forI := 1 to Marrs.Number do begin
ERR := FSRead(REFNUM, STRLEN, @NAME);
ERR := FSREAD(REFNUM, STRLEN, @FATHER);
ERR := FSRead(REFNUM, LONGLEN, @AGE);
ERR := FSRead(REFNUM, LONGLEN, @DOWRY);
ERR := FSRead(REFNUM, LONGLEN, @GROUP);
Marrs.List{I].Name := NAME;
Marrs.List[I].Father := FATHER;
Marrs.List[I].Age := AGE;
Marrs.List[I].Dowry := DOWRY;
Marrs.List{I].Group := GROUP;
Marrs.List[I].Deleted := false;
. end; (* For *)
ERR := FSClose(REFNUM),
end; (* If *)
end; (* GetMarrs *)

procedure DisplayMarrs (Marrs:Marr Type; TextWindow:WindowPtr);

var 1:integer;
DISPRECT : Rect;

begin (* DisplayMarrs *)
SetPort(TextWindow);
PLSetWrPort(TextWindow);
SetRect(DISPRECT, 0, 0, 512, 342);
EraseRect(DISPRECT);
TextFont(Geneva);
TextSize(FontSize);
MoveTo(0,30);
for I := 1 to Marrs.Number do begin
with Marrs.List[I} do begin)
if not Marrs.List[I].Deleted then begin
writeln(" ,1:0,' ', Name, Age, Dowry, Group, Father);

end; (* If *)
end; (* With *)
end; (* For *)
TextFont(0);
TextSize(0);
d; (* DisplayMarrs *)

function PowerOfTen(Num : integer) : longint;
var I, TEMP : longint;

begin (* PowerOfTen *)
TEMP :=1;
for I := 1 to Num do begin
TEMP := TEMP * 10;
end; (* For *)
PowerOfTen := TEMP;
end; (* PowerOfTen *)

function ConvertNum(StrNum : Str255) : longint;
var I, TEMP : longint;

begin (* ConvertNum ¥)
TEMP :=0;
if Length(StrNum) <> 0 then begin
for I := 1 to Length(StNum) do begin
TEMP := TEMP + (ord(StrNum[I]) - ord('0")) * PowerOfTen(Length(StrNum) - I);
end (* For *)
end; (* If *)
ConvertNum := TEMP;
end; (* ConvertNum *)

procedure AddMarrs (var Marrs:MarrType);

var MartDIALOG : DialogPtr;
ITEM, DUMMYTYPE : integer;
DUMMYRECT : Rect;
ITEMHDL : Handle;
AMT : Str255;

begin (* AddMarrs *)

MarrDIALOG := GetNewDialog (257, nil, Pointer(-1));

repeat
SystemTask;
ModalDialog(nil, ITEM);

until ITEM in [OK, Cancel];

if ITEM = OK then begin
Marrs.Number := Marrs.Number + 1;
Marrs.RealNum := Marrs.RealNum + 1;
GetDItem(MarrDIALOG, NameTextltem, DUMMYTYPE, ITEMHDL, DUMMYRECT);
GetlText(ITEMHDL, Marrs.List{fMarrs.Number].Name);

GetDItem(MarrDIALOG, DadTextltem, DUMMYTYPE, ITEMHDL, DUMMYRECT);
GetIText{TEMHDL, Marrs.List{fMarrs.Number].Father);

GetDItem(MarrDIALOG, AgeTextltem, DUMMYTYPE, ITEMHDL, DUMMYRECT);
GetIText(ITEMHDL, AMT);

Marrs.ListfMarrs.Number].Age := ConvertNum(AMT);

GetDItem(MarrDIALOG, DowryTextltem, DUMMYTYPE, ITEMHDL, DUMMYRECT);
GetIText(ITEMHDL, AMT);

Marrs.ListfMarrs.Number].Dowry := ConvertNum(AMT);

GetDItem(MarrDIALOG, GroupTextltem, DUMMYTYPE, ITEMHDL, DUMMYRECT);
GetlText(ITEMHDL, AMT);

Marrs.List[Marrs.Number].Group := ConvertNum(AMT);
Marrs.ListfMarrs.Number].Deleted := false;

end; (* If *)
DisposDialog(MarrDIALOG);

end; (* AddMarrs *)

procedure DelMarrs (var Marrs:MarrType);
var MARRDIALOG : DialogPtr;

ITEM, DUMMYTYPE : integer;
NUM : longint;

DUMMYRECT : Rect;
ITEMHDL : Handle;

NUMSTR : St255;

begin (* DelMarrs *)

MARRDIALOG := GetNewDialog (256, nil, Pointer(-1));
repeat

SystemTask;
ModalDialog(nil, ITEM);

until ITEM in [OK, Cancel];
if {TEM = OK) then begin

Marrs.RealNum := Marrs.RealNum - 1;
GetDItem(MarrDIALOG, DelTextltem, DUMMYTYPE, ITEMHDL, DUMMYRECT);
GetlITextITEMHDL, NUMSTR);
NUM := ConvertNum(NUMSTR);
if NUM <= NumMarrs then begin
Marrs.ListfNUM].Deleted := true;
end; (* If *)

end; (* If *)
DisposDialog(MARRDIALOG);

end; (* DelMarrs *)

procedure SaveMarrs (Marrs:MarrType);

var STRLEN, LONGLEN, AGE, DOWRY, GROUP : longint;

REFNUM, I, NUM : integer;
ERR : OSErm;
NAME, FATHER : Str255;

begin (* SaveMarrs *)

LONGLEN := SizeOf(Marrs.RealNum);

ERR := FSDelete(FileName, 0);

ERR := Create(FileName, 0, '77?7', 'MAR1");

ERR := FSOpen(FileName, 0, REFNUM);

NUM := Marrs.RealNum;

ERR := FSWrite(REFNUM, LONGLEN, @NUM);

STRLEN := SizeOf(Str255);

LONGLEN := SizeOf(longint);

forI :=1 to Marrs.Number do begin

if not Marrs.List[I]. Deleted then begin
NAME := Marrs.List{I}.Name;
FATHER := Marrs.List{I].Father;
AGE := Marrs.List[I].Age;
DOWRY := Marrs.List[I}.Dowry;
GROUP := Marrs.List[I].GROUP;
ERR := FSWrite(REFNUM, STRLEN, @NAME);
ERR := FSWrite(REFNUM, STRLEN, @FATHER);
ERR := FSWrite(REFNUM, LONGLEN, @AGE);,
ERR := FSWrite(REFNUM, LONGLEN, @DOWRY);
ERR := FSWrite(REFNUM, LONGLEN, @GROUP);
end; (* If *)
end; (* For *)
ERR := FSClose(REFNUM);
end; (* SaveMarrs *)

procedure DoCommand(mResult:longint; var Done:boolean; var Marrs:MarrType);
var theltem : integer;

begin (* DoCommand *)
Done := false;
theltem := LoWord(mresult);
case theltem of
Addltem : AddMarrs(Marrs);
Deleteltem : DelMarrs(Marrs);
Saveltem : SaveMarrs(Marrs);
Quitltem : Done := true;
end; (* Case *)
if not Done then begin
HiliteMenu(0);
end; (* If *)
end; (* DoCommand *)

begin (* Main *)
Initialize(myMenu, TextWindow, Marrs);
GetMarrs(Marrs);
Done := false;
repeat
SystemTask;
Temp := GetNextEvent(everyEvent, myEvent);

case myEvent.what of

MouseDown : begin
Code := FindWindow(myEvent.where, WhichWindow);
case Code of
inMenuBar : DoCommand(MenuSelect(myEvent.where), Done, Marrs);
inSysWindow : SystemClick(myEvent, WhichWindow);
end; (* Case *)
end; (* MouseDown *)

KeyDown : begin
Letter := chr(myEvent.message mod 256);
if BitAnd(myEvent.modifiers, 256) <> 0 then begin
DoCommand(MenuKey(Letter), Done, Marrs);
end; (* If ¥)
end; (* KeyDown *)

UpdateEvt : begin
BeginUpdate(TextWindow);
EndUpdate(TextWindow);
DisplayMarrs(Marrs, TextWindow);

end; (* UpdateEvt *)

end; (* Case ¥)
until Done;

end. (* Main *)

User: Tom Maliska, FAD Program

Application: Edit

Document: Support Programs:SUNKING/4.0/MARRIAGE2R.TEXT

Date: Thursday, September 18, 1986

Time: 11:47:14 PM

Printer: LaserWriter Plus

*{The Would-Be Gentleman, Faculty Author Development Program at Stanford University. }
*{Version 4.1, Steve Fisher 12/20/84 and Tom Maliska, 3/12/86.
*{Faculty Author Development Team: Carolyn Lougee, Michael Carter, Ed McGuigan,
*{Steve Fisher, and Tom Maliska.
Copyright 1986 Carolyn Lougee and the Board of Trustees of the Leland Stanford
Junior University.

SunKing/4.0/Marriage2.RSRC

Type Menu
256
Main Menu
Add Bride/A
Delete Bride/D
Save Data/S

Quit/Q

Type WIND
,256 (4)
Display
00342512
Visible NoGoAway
1
0

Type DITL
256
4

Btnltem Enabled
Q 50 13 70 83
K

Btnltem Enabled
50 300 70 370
Cancel

EditText Enabled
10170 25 230

StatText Disabled
10525160
Number to delete

257
12

Btnltem Enabled

160 13 180 83
OK

Btnltem Enabled
160 300 180 370
Cancel

 EditText Enabled
10 60 25 390

StatText Disabled
1052550
Name

EditText Enabled
35 60 65 390

StatText Disabled
3556550
Father is...

EditText Enabled
756090 120

StatText Disabled
75590 50
Age

EditText Enabled

. 100 60 115 150

StatText Disabled
100511550

Dowry

EditText Enabled
125 60 140 120

StatText Disabled
1255140 50
Group

Type DLOG
256
50 40 140 472

Visible 1 NoGoAway 0

256

257
5040240472

Visible 1 NoGoAway 0
257

Type CODE
‘unKingM.O/MarriageZL,O

User: Tom Maliska, FAD Program

Application: Edit

Document: Support Programs:SUNKING/4.0/OFFICE. TEXT

Date: Thursday, September 18, 1986

Time: 11:48:24 PM

Printer: LaserWriter Plus

{$M+} {mac code}
{$X-} {no automatic stack expansion}
{$R-} {no range checking, paslib is buggy}

e Would-Be Gentleman, Faculty Author Development Program at Stanford University.
ersion 4.1, Steve Fisher 12/20/84 and Tom Maliska, 3/12/86.
{Faculty Author Development Team: Carolyn Lougee, Michael Carter, Ed McGuigan,

{Steve Fisher, and Tom Maliska.

{Copyright 1986 Carolyn Lougee and the Board of Trustees of the Leland Stanford

{Junior University.

rogram Office;
{ACI‘ION This program creates the Office list data file required by the simulation.
uses {$U-}

{$U obj/MemTypes} MemTypes,

{$U obj/QuickDraw} QuickDraw,

{$U obj/OSIntf} OSIntf,
{$U obj/ToolIntf} Toollntf,

{$U Obj/PackIntf} PackIntf,
{$U Obj/MacPrint} MacPrint,
{$U Obj/PasLibIntf} PasLiblntf;

const Addltem = 1;

Deleteltem = 2;
Saveltem = 3;
Quitltem = 4;
DelTextltem = 3;
AddTextltem = 3;
CostTextltem = 5;
PresTextltem =7,
DriveNum = 0;
FileName = 'Office.Dat";
NumOffices = 100;
FontSize = 9,
Nobltem = 9;
TitleItem = 10;

type OfficeRec =record

Title : Str255;

Cost,

Prestige : longint;

Nobility,

TitAndNob,

Deleted : boolean;
end; (* OfficeRec *)

OfficeArray = array [1..NumOffices] of OfficeRec;
OfficeType = record

List : OfficeArray;
Number, (* Deleted plus undeleted *)

St Syt Nt gt g gt

RealNum : integer; (* Only undeleted *)
end; (* OfficeType *)

var WhichWindow, TextWindow : WindowPtr;
Done,
Temp : boolean;
myEvent : EventRecord;
Code, VRefNum : integer;
Letter : char;
myMenu : MenuHandle;
Offices : OfficeType;

procedure DebugDelay;

begin (* DebugDelay *)
repeat
SystemTask;
until Button;
end; (* DebugDelay *)

procedure SetUpMenus(var myMenu:MenuHandle);

begin (* SetUpMenus *)
InitMenus;
myMenu := GetMenu(256);
InsertMenu(myMenu, 0);
DrawMenuBar;

end; (* SetUpMenus *)

q:ocedure SetUpWindow(var TextWindow:WindowPtr);

gin (* SetUpWindow *)
TextWindow := GetNewWindow(256, nil, Pointer(-1));
SetPort(TextWindow);
PLSetWrPort (TextWindow);
end; (* SetUpWindow *)

procedure Initialize(var myMenu:MenuHandle; var TextWindow:WindowPtr; var Offices:OfficeType);

begin (* Initialize *)
InitGraf(@thePort);
InitFonts;
FlushEvents(everyEvent, 0);
InitWindows;
SetUpMenus(myMenu);
SetUpWindow(TextWindow);
TElnit;
InitDialogs(nil);
InitCursor;
Offices.Number := 0;
Offices.RealNum := 0,

end; (* Initialize *)

procedure GetOffices (var Offices:OfficeType);

var ERR : OSErr;
REFNUM, I, NUM : integer;
RECLEN, COSTLEN, COST, PRESTIGE, BOOLLEN : longint;
TITLE : Str255;
TITANDNORB,
NOBILITY : boolean;

begin (* GetOffices *)
ERR := FSOpen(FileName, 0, REFNUM);
if ERR =0 then begin
RECLEN := SizeOf(Offices.RealNum);
ERR := FSRead(REFNUM, RECLEN, @NUM);
Offices.RealNum := NUM,;
Offices.Number := Offices.RealNum;
RECLEN := SizeOf(Str255);
COSTLEN := SizeOf(COST);
BOOLLEN := SizeOf(boolean);
for I := 1 to Offices.Number do begin
ERR := FSRead(REFNUM, RECLEN, @TITLE);
ERR := FSREAD(REFNUM, COSTLEN, @COST);
ERR := FSRead(REFNUM, COSTLEN, @PRESTIGE);
ERR := FSRead(REFNUM, BOOLLEN, @ TITANDNOB);,
ERR := FSRead(REFNUM, BOOLLEN, @NOBILITY);
Offices.List[I].Title := TITLE;
Offices.List[I].Cost := COST;
, Offices.List[I].Prestige := PRESTIGE;
Offices.List[I].Nobility := NOBILITY;
. Offices List[T]. TitAndNob := TITANDNOB;
Offices.List[I].Deleted := false;
end; (* For *)
ERR := FSClose(REFNUM);
end; (* If *¥)
end; (* GetOffices *)

procedure DisplayOffices (Offices:OfficeType; TextWindow:WindowPtr);

var | :integer;
DISPRECT : Rect;

begin (* DisplayOffices *)
SetPort(TextWindow);
PLSetWrPort(TextWindow);
SetRect(DISPRECT, 0, 0, 512, 342);
EraseRect(DISPRECT);
TextFont(Geneva);
TextSize(FontSize);
MoveTo(0,30);
for I := 1 to Offices.Number do begin

if not Offices.List[1].Deleted then begin

zvritfcln(' .0, ' Offices.List[I].Title,Offices.List[I].Cost," ", Offices.List[I].Prestige,' ',Offices.List
end; (* If ¥)

end; (* For ¥)

TextFont(0);

TextSize(0);

d; (* DisplayOffices *)

function PowerOfTen(Num : integer) : longint;
var I, TEMP : longint;

begin (* PowerOfTen *)
TEMP :=1;
forI:=1 to Num do begin
TEMP := TEMP * 10;
end; (* For *)
PowerOfTen := TEMP;
end; (* PowerOfTen *)

function ConvertNum(StrNum : Str255) : longint;
var I, TEMP : longint;

begin (* ConvertNum *)

TEMP :=(;

if Length(StrNum) <> 0 then begin
for I := 1 to Length(StrNum) do begin

TEMP := TEMP + (ord(StrNum(I]) - ord('0")) * PowerOfT: en(Length(StrNum) - I);

end (* For *)

end; (* If ¥)

ConvertNum := TEMP;

nd; (* ConvertNum *)

procedure AddOffices (var Offices:OfficeType);

var OFFICEDIALOG : DialogPtr;
ITEM, DUMMYTYPE, VAL : integer;
DUMMYRECT : Rect;
ITEMHDL, ITEM1HDL, ITEM2HDL : Handle;
AMT : Str255;

e oA GG - GetNewDialog (257, nil, Pointer(-1))

OFFICEDIALOG := GetNewDialog , nil, Pointer(-1)); .
GetDItem(OFFICEDIALOG, NOBITEM, DUMMYTYPE, ITEM1HDL, DUMMYRECT);
SetCtlValue(Pointer(TEM1HDL), 0); .
GetDItem(OFFICEDIALOG, TITLEITEM, DUMMYTYPE, ITEM2HDL, DUMMYRECT);
SetCtlValue(Pointer(ITEM2HDL), 0);
repeat

SystemTask;

ModalDialog(nil, ITEM);)

if ATEM = NOBITEM) or (ITEM = TITLEITEM) then begin

case ITEM of

NOBITEM : ITEMHDL := ITEM1HDL,;
TITLEITEM : ITEMHDL := ITEM2HDL;
end; (* Case *)
VAL := GetCtlValue(Pointer(ITEMHDL));
if VAL = 0 then begin
. SetCtlValue(Pointer(ITEMHDL), 1);
end else begin
SetCtlValue(Pointer('TEMHDL), 0);
end; (* If *)
end; (* If *)
until ITEM in [OK, Cancel];
if ITEM = OK then begin
Offices.Number := Offices.Number + 1;
Offices.RealNum := Offices.RealNum + 1;
VAL := GetCtValue(Pointer(TEM1HDL));
if VAL =0 then begin
Offices.List[Offices.Number].Nobility := false;
end else begin
Offices.List[Offices.Number].Nobility := true;
end; (* If *)
VAL := GetCtlValue(Pointer(TEM2HDL)));
if VAL =0 then begin
Offices.List[Offices.Number]. TitAndNob := false;
end else begin
Offices.List[Offices.Number].TitAndNob := true;
end; (* If *)
GetDItem(OFFICEDIALOG, AddTextItem, DUMMYTYPE, ITEMHDL, DUMMYRECT);
GetIText(ITEMHDL, Offices.List[Offices.Number].Title);
GetDItem(OFFICEDIALOG, CostTextItem, DUMMYTYPE, ITEMHDL, DUMMYRECT);
GetlTextITEMHDL, AMT);

. Offices.List[Offices.Number].Cost := ConvertNum(AMT);
GetDItem(OFFICEDIALOG, PresTextltem, DUMMYTYPE, ITEMHDL, DUMMYRECT);
GetlText(ITEMHDL, AMT);
Offices.List[Offices.Number].Prestige := ConvertNum(AMT);
Offices.List[Offices.Number].Deleted := false;

end; (* If ¥)
DisposDialog(OFFICEDIALOG);
end; (* AddOffices *)

procedure DelOffices (var Offices:OfficeType);

var OFFICEDIALOG : DialogPtr;
ITEM, DUMMYTYPE : integer;
NUM : longint;
DUMMYRECT : Rect;
ITEMHDL. : Handle;
NUMSTR : Str255;

begin (* DelOffices *)
OFFICEDIALOG := GetNewDialog (256, nil, Pointer(-1));
repeat
SystemTask;

ModalDialog(nil, ITEM);

until ITEM in [OK, Cancel];

if ITEM = OK) then begin
Offices.RealNum := Offices.RealNum - 1;
GetDItem(OFFICEDIALOG, AddTextltem, DUMMYTYPE, ITEMHDL, DUMMYRECT);

. GetITextITEMHDL, NUMSTR);
NUM := ConvertNum(NUMSTR);
if NUM <= NumOffices then begin
Offices.ListfNUM].Deleted := true;

end; (* If *)

end; (* If ¥)

DisposDialog(OFFICEDIALOG);

end; (* DelOffices *)

procedure SaveOffices (Offices:OfficeType);

var RECLEN, COSTLEN, BOOLLEN, COST, PRESTIGE : longint;
REFNUM, I, NUM : integer;
ERR : OSErr;
TITLE : Str255;
TITANDNOB,
NOBILITY : boolean;

begin (* SaveOffices *)

RECLEN := SizeOf(Offices.RealNum);

ERR := FSDelete(FileName, 0);

ERR := Create(FileName, 0, 7?77, 'LEAS");

ERR := FSOpen(FileName, 0, REFNUM);

NUM := Offices.RealNum;

ERR := FSWrite(REFNUM, RECLEN, @NUM);

RECLEN := SizeOf(TITLE);

COSTLEN := SizeOf(COST);

BOOLLEN := SizeOf(boolean);

for I :=1 to Offices.Number do begin

if not Offices.List[I]. Deleted then begin
TITLE := Offices.List[I].Title;
COST := Offices.List[I].Cost;
PRESTIGE := Offices.List[I].Prestige;
NOBILITY := Offices.List[I].Nobility;
TITANDNOB := Offices.List[I]. TitAndNob;
ERR := FSWrite(REFNUM, RECLEN, @TITLE);
ERR := FSWrite(REFNUM, COSTLEN, @COST);
ERR := FSWrite(REFNUM, COSTLEN, @PRESTIGE);
ERR := FSWrite(REFNUM, BOOLLEN, @TITANDNOB);
ERR := FSWrite(REFNUM, BOOLLEN, @NOBILITY);
end; (* If *)
end; (* For *)
ERR := FSClose(REFNUM);
end; (* SaveOffices *)

procedure DoCommand(mResult:longint; var Done:boolean; var Offices:OfficeType),

var theltem : integer;

begin (* DoCommand *)
Done := false;
theltem := LoWord(mresult);
‘ case theltem of
Addltem : AddOffice(Offices);
Deleteltem : DelOffice(Offices);
Saveltem : SaveOffices(Offices);
Quitltem : Done := true;
end; (* Case *)
if not Done then begin
HiliteMenu(0);
end; (* If *)
end; (* DoCommand *)

begin (* Main *)
Initialize(myMenu, TextWindow, Offices);
GetOffices(Offices);
Done := false;
repeat
SystemTask;
Temp := GetNextEvent(everyEvent, myEvent);

case myEvent.what of

MouseDown : begin
Code := FindWindow(myEvent.where, WhichWindow);
case Code of
inMenuBar : DoCommand(MenuSelect(myEvent.where), Done, Offices);
. inSysWindow : SystemClick(myEvent, WhichWindow);
end; (* Case ¥)
end; (* MouseDown *)

KeyDown : begin
Letter := chr(myEvent.message mod 256);
if BitAnd(myEvent.modifiers, 256) <> 0 then begin
DoCommand(MenuKey(Letter), Done, Offices);
end; (* If *)
end; (* KeyDown *)

UpdateEvt : begin
BeginUpdate(TextWindow);
EndUpdate(TextWindow);
DisplayOffices(Offices, TextWindow);
end; (* UpdateEvt *)

end; (* Case *)

until Done;
end. (* Main *)

User:

Application:

Document:

Date:

Time:

Printer:

Tom Maliska, FAD Program

Edit

Support Programs:SUNKING/4.0/OFFICER. TEXT

Thursday, September 18, 1986

11:49:22 PM

LaserWriter Plus

*{The Would-Be Gentleman, Faculty Author Development Program at Stanford University. }

*{Version 4.1, Steve Fisher 12/20/84 and Tom Maliska, 3/12/86.

*{Faculty Author Development Team: Carolyn Lougee, Michael Carter, Ed McGuigan,

*{Steve Fisher, and Tom Maliska.

*{ Copyright 1986 Carolyn Lougee and the Board of Trustees of the Leland Stanford
Junior University.

e Smap? Syt S St

SunKing/4.0/Office.RSRC

Type Menu
,256
Main Menu
Add Office /A
Delete Office/D
Save Data/S
Quit/Q

Type WIND
,256 (32)
Display
00342512
Visible NoGoAway
1
0

Type DITL
256 (32)
4

BtnItem Enabled
501370 83
K

Btnltem Enabled
50 300 70 370
Cancel

EditText Enabled
10 170 25 230

StatText Disabled
10525160
Number to delete

,257 (32)
10

Btnltem Enabled

130 13 150 83
OK

Btnltem Enabled
130 300 150 370
Cancel

EditText Enabled

. 10 70 40 390

StatText Disabled
1052565
Office

EditText Enabled
50 70 65 140

StatText Disabled
5056565
Cost

EditText Enabled
757090 120

StatText Disabled
75 590 65
Prestige

ChklItem Enabled
1005115170

‘!obility Required
Chkltem Enabled
100 200 115 450

Nobility and Title Required

Type DLOG
256 (32)
5040 140 472
Visible 1 NoGoAway 0
256

257 (32)

50 40 220 472

Visible 1 NoGoAway 0
257

Type CODE
SunKing/4.0/OfficeL,0

User:

Application:

Document:

Date:

Time:

Printer:

Tom Maliska, FAD Program

MacDraw 1.9

Credits/Startup Screen

Friday, September 19, 1986

1:09:16 AM

LaserWriter Plus

5066900660

THE WOULD-BE GENTLEMAN
H1STORY 318

PROF. CAROLYN LOUGEE

®1985 Carolyn Lougee and the Board of
Trustees of Leland Stanford Junior
University

Created by the Faculty Author
Development Program, Stanford
University

@0@@03éé@@@éee@9@9&@36@@@@@@@@@@@@@

@0@@9@@0@@6@@90@00@@000@00@@

Digitized art for the Would-Be Gentleman. This woodcut is
displayed when the simulation is started.

User: Tom Maliska, FAD Program

Application: MacDraw 1.9

Document: Beggar

Date: Friday, September 19, 1986

Time: 12:53:38 AM

Printer: LéserWriter Plus

1623

Beggar with
Large Rosary,

Jacques Callot

Digitized art for the Would-Be Gentleman.

displayed when a player goes bankrupt.

This woodcut is

User: Tom Maliska, FAD Program

Application: MacDraw 1.9

Document: Painter and Son

Date: Friday, September 19, 1986

Time: 12:55:23 AM

Printer: LaserWriter Plus

Portrait of the
Painter Claude
Deruet and His
Son, 1632

Jacques Callot

Digitized art for the Would-Be Gentleman. This woodcut is
displayed at the birth of the firstborn son, and at the start
of play with the credits for the simulation.

	SC0589_b02_WBG_000
	SC0589_b02_WBG_001
	SC0589_b02_WBG_002
	SC0589_b02_WBG_003
	SC0589_b02_WBG_004
	SC0589_b02_WBG_005
	SC0589_b02_WBG_006
	SC0589_b02_WBG_007
	SC0589_b02_WBG_008
	SC0589_b02_WBG_009
	SC0589_b02_WBG_010
	SC0589_b02_WBG_011
	SC0589_b02_WBG_012

