H=EB=-7 7 R 5 b E C T S E R ITE=S

WindowSeript

Copyright Notice

You are permitted, even encouraged, to make one backup copy of the enclosed
programs. Beyond that is piracy and illegal.

The software (computer programs) you purchased are copyrighted by the author
with all rights reserved. Under the copyright laws, the programs may not be
copied, in whole or part, without the written consent of the copyright holder,
except in the normal use of the software or to make a backup copy. This
exception does not allow copies to be made for others, whether or not sold, but
the material purchased (together with all backup copies) may be sold, given, or
loaned to another party. Under the law, copying includes translating into another
language or format. You may use the software on any computer owned by you,
but extra copies cannot be made for this purpose. If you have several computers
requiring the use of this software, we are prepared to discuss a multi-use or site
license with you.

WindowScript ©1990-1994 Leonard Buck. All Rights Reserved.

WindowScript Manual ©1990-1994 Heizer Software. All Rights Reserved. No
part of this document and the software product that it documents may be
photocopied, reproduced, or translated to another language without the express,
written consent of the copyright holders.

The information contained in this document is subject to change without notice.
Heizer Software makes no warranty of any kind with regard to this written
material. Heizer Software and author shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this manual.

WindowScript is a trademark of Heizer Software. Macintosh and Inside
Macintosh are registered trademarks of Apple Computer, Inc. HyperCard and
HyperTalk are registered trademarks of Claris Corporation. All other brand or
product names are trademarks or registered trademarks of their respective
holders.

INNRRRENYN Ry .

I

/I

CREDITS

Project Team
Leonard Buck Developer
Brian Molyneaux Product Manager
Rob Terrell Documentation
Alan Pabst Testing
Ray Heizer Publisher
Acknowledgements

Thanks to all our beta testers, especially: Bryan McCormick, Danny Goodman,
Steve Michel, James Beldock, Dean Wette, Peter Cleaveland, Dan Shafer, George
Pytlik, Peter Nagel, Jeff Winkler, Michael Holm.

Extra special thanks to: Ron Therrien, Robertson Reed Smith, Tom Hammer,
Andrew Meit, Sanford Selznick.

Thanks also to all our Dialoger Professional customers. Your support and
comments made WindowScript possible.

TABLE OF CONTENTS

Chapter 1. Introduction

30 By e e I R 1
T T s o B v e 2

Changing Propertiess sitit o i sttt e s 6
Changing Properties Using Item NUMDbETS...................coovvvovveeeerrseomemseesserorrrrornn. 7
Changing Properties Using wsSet and WSGetovveeeeeremsrosrcrsorsrrrsn, 7

Chapter 3. Making a Dialog 9

Chapter 4. Scripting a Dialog 17

CHAE NG BIOPETHES ot it it S B o BN o Tt 18

ScriptingralButtons=sre et e e e 19

=
=
-
=
i:i?
; How Windows Are SIored: oo, oo v tiwiniiis st e ROBE S, . T 6
;
i;
F
—
-]
B
—=
|
= |

-

Chapter 5. Windows
90 Vo) b) T e e e T e e e e e e
1o) 0,2 s A B (0 T o e e R e s S R e
LoV (O o el o e o e R S U R R o R e e

Chapter 6. Menus
Lo e L B S e o e o e D

(8 0) (e BV T 110 b pieiome = S e e e R Pl N SR e A e
150y Y (S s e B R e e L o b SRR D S o e s s s e e
Sy S e i e e S R S e i e e e
(@)l 1V (D1 E et o i s i e s S B s S e e e e e o

Chapter 7. Properties and Commands

Chapter 8. Notes on Properties
CUSIOM PrOPERIOS! (0 (s Niss oot itsamsses roshiohesRissitsaateseoRaRsessssxsisss st cesdssossadhassnsita
e T 5 S B e e D R e e L e L o oo
Notesionthe Ments By e Lty e ety ez staniase o fotanatter oy
Notes on the Params PrOPELLYi it iastimsssintscus tossmsonestonssess oivordts soetussises
Notesion the Result Propertys ... i it iombiimassesomesdidenrorsizos hsssss
INotes onthe Properties PrOPEItY. .. i ra i i iinesisuisrismmssssomssnsonsasasaatsorsedas

1 T5% 610} [S Oy s e e e e i e S s e P R R L B i AR b
INOtEs O GO P By 18 s haves Cessssensnestsyeant ontassdacaast sbossame nsereosssassnsinmsta

23
23
27
28

31
31
34
34
35
35
36
36
36

37
37
50

EAR R RN

Chapter 9. Scripting 61
ODJECt SCHPS woiv.. s i amsiiaiostismsessemmiomsisti st e s 61
HitHandlers e e R 62
Variables win s o s o e e e DR 62
EitHandlerva- Object SERIpIS oo s 62
Checking the Reshll o o Aoy S BE e S - o 63
The SeripAngASSIStantoloii. st i R 63
WhenicloseField'Is Sent...o.oiii S S e 64
Speeding ILUpP..oat i ian it 65

Chapter 10. XCMDs and XFCNs .67

Appendix A. Troubleshooting 73
What Flappens When'an ErTorOCCUISY v ittt ions. 73
Scope of VaniablesiBUE .. il aii v i e i 74

Appendix B. Quick Glossary 77

AppendixiCKeyfilters o oo e L R e L 79

Appendix D. Properties and Commands by Object 81

AppendixE. Distributing WINAdoWSCIIPE ...oic i it tveete s 85
WSErOr Al e s 85

Appendix F. Licensing WindowScript 87
Distbution: Licenseisdean. o ot S b e s 93

Appendix G.Scripting Quick Reference 95

Index 99

- i -

i

i

U Tl L LT

WindowScript Infroduction

Chapter |
INTRODUCTION

WindowScript is a powerful interface design environment for HyperCard that is
as easy to use as HyperCard itself. WindowScript gives you the power to create
dialogs, windows and floating palettes quickly and easily. And WindowScript
lets you create scripts in HyperTalk to customize the behavior of these windows.

Before WindowScript, creating dialogs and floating windows required extensive
programming in other computer languages. A programmer would have to create
these windows with Pascal or C. The rich interface design features of HyperCard
were lost.

This is where WindowScript comes in. WindowScript lets you create external
windows and write the scripts that control them. WindowScript provides you
with windows that have powerful features already built into them.
WindowScript offers a powerful set of objects that can be created to fill these
windows, and a rich set of properties for those objects, making the design of
custom interfaces a snap. And all this takes place within HyperCard.

This manual assumes a certain familiarity with HyperCard,
IS as well as a working knowledge of XCMDs and XFCNs. If
you're new to HyperCard, some of the concepts presented
here may be unfamiliar. Don’t panic. Read what you can,
and refer to your HyperCard manual. WindowScript is easy!

Requirements

WindowScript requires, firstly, HyperCard. Specifically, HyperCard version
2.0v2 or later. And it’s sort of a given that you’ll have a Macintosh capable of
running HyperCard, too. This means at least a Mac Plus.

You’ll also need about 800k free on your hard drive. Two MB of RAM are
recommended and may be required depending on your specific system
configuration.

Infroduction WindowScript

Installation

Installation is a two-step process. First, copy WindowScript from the floppy disk
to your hard drive; then, install it into your Home stack. The WindowScript stack
takes care of the second part for you, but you'll have to do the first on your own.

Your WindowScript package contains:
e This manual
o The WindowScript diskette
» A product registration card

If any of these items are missing—and you can’t be missing your manual if
you're reading this—please call us at 510-943-7667. Be sure to fill out the
registration card and mail it back to us as soon as possible (if you purchased
WindowScript directly from Heizer Software you are already registered.) This
way, we can always keep you informed of fixes and updates.

To install WindowScript:
1. Insert the disk labeled “WindowScript™"” into your floppy disk drive.
2. Double click on the disk icon. Locate the stack named “WindowScript.”
3. Drag the stack onto your hard disk.
4. Drag the disk icon into the trash to eject the disk.

WindowScript is now on your hard disk. You may put it into any folder you
want.

Now double-click on the WindowScript stack itself. After a moment, the
WindowScript stack’s window will be visible. Click on the “WindowScript” title
card. A card will be displayed describing your installation options. Underneath
the help are three buttons. Click on the button “Installation...” and you will see:

AL W

WindowScript Introduction

WindowScript must be P A small addition to your Home stack’s startUp |
installed before windows handler will ensure that the “Window...” item
may be edited. After thata is always available in the Edit menu.
stack’s windows are
available from the Window
item in the Edit menu.

Click the button below to

Home
temporarily install a To distribute stacks with windows in them,
Choose.

Click Add to make this addition.

WindowScript. you need to copy a couple of resources.

[instail For Now }

Click the stack icon to choose the target stack.
Click Copy to put the resources into that stack.

Three carefully described choices are presented to you.

* If you plan on using WindowScript often, click on “Add.” This will make
your Home stack “start using” WindowScript every time you launch
HyperCard. This way, WindowScript will always be available.

* If you just want to install WindowScript temporarily, click on “Install for

now.” WindowScript does use a significant amount of memory, SO you
may wish to install it only when you need it.

e If you are going to distribute a stack that uses WindowScript, you’ll need
to add certain WindowScript resources to that stack. The “Copy” button
will do so. See the chapter “Distributing WindowScript” for details.

If you're unsure, the path of least resistance is “Install For Now.”

While you can run WindowScript in 1000K, we recommend

IS5 using a HyperCard memory partition of at least 1200k. You
can change this by selecting the HyperCard application in
the Finder and choosing the Get Info command from the File
menu; type “1200” into the “Current Size” field.

Now you're ready to create windows. You're welcome to play around with the
sample windows that come with WindowScript. If you want a tutorial to show
you the ropes, head for Chapter 3. Be sure to read the next chapter for a quick
overview of what WindowScript can do.

A

U g

-
-
-
i
:
-
=
z
5
;
.
-
ij
-

WindowScript Overview

Chapter 2
OVERVIEW

WindowScript is an external function (XFCN) for HyperCard that creates
windows, dialogs and floating palettes. Windows contain objects, such as push
buttons, popup menus and pictures. WindowScript comes with fifteen standard
objects; advanced users can create additional custom objects. The window and all
of its objects have properties which describe and control their behavior.

A property has a name and a value. For example, the visible property has a
value of true or false and governs whether an object is visible. Many
properties, such as visible, are common to all objects. Some are specific to
individual types of objects (e.g., a checkbox object has a hilite property which
defines whether or not it is checked).

Each object in a window may have a script associated with it. These scripts are
automatically invoked when appropriate. While in these scripts, or any time a
window is displayed, any property of any object may be determined using the
wsGet XFCN and changed with the wsSet XCMD. Certain objects can also be
sent predefined commands with the wsSend XCMD (e.g., send play to a
QuickTime object).

Making a Window

When WindowScript has been installed, a “Window...” item is added to
HyperCard’s Edit menu. Selecting this menu item brings up a dialog from which
you may select an existing window or create a new one. Creating windows is
done in the stack in which they’ll be used.

Once a window has been opened for editing, a modified tool palette allows
objects to be added directly to the window and a property picker windoid allows
quick access to most of the properties of each object. After objects have been
added to a window, arranged as desired, and had their properties set, the
window is saved into the stack for later use.

S

Overview WindowScript

Using a Window

To use a window, the WindowScript XFCN is called with the name of the
window to be displayed. (Alternately, a full textual description of a window may
be given.) For example, this command would a open a window previously saved
under the name “DateDialog”:

get WindowScript ("DateDialog")

and afterwards, the variable "it "™ would contain the item number of the object
used to close the dialog along with some other stuff, or empty if the user clicked
cancel. (It is possible to configure WindowScript to return additional
information; this will be discussed later when we cover the Params property.)

How Windows Are Stored

Windows are stored in a stack’s resource fork as textual descriptions of type
LENS. The LENS resources describe the windows, their objects and their
properties. It's basically a complete inventory of all the objects and properties
that make up the window. Each window you create will have exactly one LENS
resource and, depending on what the window does, may require that other
resources be in the stack as well. (A LENS resource is just a template from which
a window is created; it isn’t used while the window is open, so you can open
many windows from one LENS.)

Changing Properties

You should already be familar with properties of HyperCard objects such as the
name of a button or the lockText of a field. WindowScript properties perform
similar functions and are used in much the same way. Windows and objects are
manipulated through their properties. Properties are the individual features of
objects that set them apart: location, name, font, color and so forth.

Properties are accessed through HyperTalk statements. For example, to learn if a
window has a title bar, you could type:

put HasTitleBar of window "Untitled"

into the message box, and HyperCard would return either true or false as
appropriate. All the properties of a window are accessible in this manner, except
for modal dialogs, which cannot be accessed in this fashion. (See below for
details.)

-
==

T A U

WindowScript Overview

A slightly different syntax is required to get at an object’s properties. To refer to a
property of an individual object, the property name is preceded by the object’s
name and an underscore. Say that we have an editable text item named Bob. To
get the text that has been typed into Bob, you could say:

get Bob Text of window "Untitled"

and HyperCard would put the contents of the text item Bob into the container it.
Likewise:

set Bob Text of window "Untitled" to "Nothing Here!"

would set the text for Bob to “Nothing here!”

Changing Properties Using ltem Numbers

While WindowScript will allow two or more word names for objects, HyperCard
demands that object names be just one word. Also, the above won’t work if you
want to leave an object unnamed, or if you used the same name for several
objects.

Instead of using the object’s name, you can use an “i” and the object number and
“ " as a reference. For example:

get i3 Disabled of window "Example"

would get True or False, depending on whether the item was disabled or not. If
the name of your property is not a single word, you must refer to the object by
number when using get or set.

Changing Properties Using wsSet and wsGet

Rather than trying to remember all the special cases, you can use WindowScript's
built-in externals, wsSet and wsGet, to do the same thing as HyperCard’s set and
get. The nice thing about wsSet and wsGet is that they work all the time, for all
window types, and for all objects, regardless of name.

You can also use expressions in the property name using these externals.
Modal windows—those windows whose style is Dialog—can only be
manipulated using wsSet and wsGet. You use them like this:

get wsGet ("Example", "OK", "Disabled")
wsSet "Example",1l,"Disabled", TRUE

Overview WindowScript

which are the same as:

get OK Disabled of window "Example™
set il Disabled of window "Example" to true

These externals, however, are slower than HyperCard’s Get

ISy and Set commands. In general, you should use them when it
can’ t be avoided: when your object names have more than
one word, or when you are manipulating the objects of a
modal window. -

;

F
E
:
=
-
ii:
F
-
i
-
F
F
-
L

WindowScript Making a Dialog

Chapter 3
MAKING A DIALOG

Let’s begin by using WindowScript to create a simple dialog box. WindowScript
makes the creation of such dialogs a simple matter. Hypercard already provides
a basic dialog box through the answer command. We'll create a dialog that goes a
little further than that: we’ll create one with a custom error message, and with
two buttons.

To get started:
e If you've just installed, great.

 If you haven't yet installed WindowScript, double-click the WindowScript
stack. The stack will open. If you’ve installed in your Home stack, you’ll be
treated to a brief splash screen. If you haven’t, make sure you click on the
“Installation” button. See the previous chapter for details.

First, let’s create a new stack to play in.
e (o to the File menu and choose “New Stack...”

* Type in the name “Test Stack” or something equally banal, and hit Return.

When the stack is ready, go to the Edit menu:

Making a Dialog

WindowScript

Undo 82

fut
Lopy HE
Paste 8
{ipar

New Card 8N
Delete Card

Cut Card

Copy Card

Tosut Style,.. K
Background B
Icon... 81
Window...

Youw’ll notice a new item at the bottom of the menu: “Window...” This menu item
is like the “Icon...” item above it, only different: it takes you into an edit mode for

windows. When you select it, you are presented with this dialog:

Windows

{3
- WindowScript
- The Inferface Desi¢n Siudio -

(Delete | [New |

(o) (omeet)

[] open As Text

From this dialog, you choose the window you want to edit. You can also create a
new window, or delete an existing window. The list is empty because we haven't

created any windows in this stack yet. Let’s take care of that now:

e (Click on the “New” button.

10

(L

(L

|
.

1Y Y

i
|

AL L

]
]

|

A

]

{

Ll

WindowScript Making a Dialog

After a moment, a new window will open, along with two floating palettes.
These palettes are what you’ll use to design your windows. One, the tool palette,
is similar to HyperCard'’s tool palette; the other is a unique window called the

property picker.
The Property Picker

]

Untitled

This is the property picker. It is used to display and set properties of objects and
the window as a whole. It is currently in its collapsed state. To see the rest of it,
click on the “Show Properties” bar at the bottom. It will zoom out to display:

TER P Num. Mame TopLeft Height Width

—

[0 | (e 202,130 |[144 |[238 |

B visible [AutoSize TextFont[Chicage W

|:] Disabled D Growltem TextSize | 12 hd |
(81eript...)(8]Params...) (8)Result..) (8 [Menus...)

HitMessage Style

B HasTitleBar

Q Di‘a]og B4 HasCloseBox
MinSize MaxSize | @ Window |] HaszoomBox

ahoo,so |[865,597 || O Windoid | [HasGrowBox

Hide Froperties €<€

These are the properties of the window. If it’s a little confusing, don’t worry for
now; we're only going to deal with a few of these things at the moment.

U T W

=11

Making a Diaclog WindowScript

The collapsed form of the property picker contains just the object list. Every
object in the window is listed in order, with the window itself being first. To view
the properties of a particular object, click on the corresponding item in the list.
The right-hand panel will then change to describe that object.

For now, let’s just change the name of this window:

e Open the property picker, either by clicking on the “Show Properties”
button or by double-clicking on the window in the item list.

e Tab over to the name field, and change it to “Oops!”

Press tab to complete the name change. If instead you hit return or enter, the
property picker will shrink back to its smaller size. This is especially handy on
smaller screens. While you’re still in the property picker, change the window
style to “Dialog”:

o Using the radio buttons in the lower middle of the property picker, change
the window style from “Window"” to “Dialog”.

e Uncheck the properties “HasTitle bar” and “HasClose Box”.

This will make the final product act as a dialog box: the window will come to the
front and demand user attention before continuing. Now hit return or enter, or
click on the “Hide Properties” button, to collapse the property picker.

Using the Tool Palette

s

Like the HyperCard tool palette, the tools at the top of the palette edit objects; the
tools at the bottom create objects. This palette also appears under the tool menu.
You can select a tool from the menu, or you can tear the menu off and place it
anywhere on the screen, just like the HyperCard tool palette.

=12

|

|

1
4

annnnnnEnnLnnnnnnnnEE

|

11‘

0

WindowScript Making a Diclog

There are fifteen object tools in the tool palette. To see a description of all the
tools, see Chapter 5. We're going to concern ourselves with just one tool for now:

(oK} The Button tool, which is used to create standard Macintosh buttons.

Either click on this tool in the palette window, or select it from the Tool menu.

You may notice that the entire menu bar has changed.

= WindowScript has its own set of menus, which are active
whenever a WindowScript window is in front. If you need
to get back to the HyperCard menus, click on the card
window.

When you click on the Button tool, the cursor will change to a crosshair cursor.
You'll also notice that the window becomes filled with a grid of dots. This grid
serves two purposes: to let you know that the window can be edited, and to
provide an easy reference for aligning objects.

Creating a Button

Now create a button in the “Oops!” window:

e Click somewhere on the window, drag down and to the right a ways, and
let go.

That’s how easy it is to create objects!

Dragging the selection cursor in the window creates a gray rectangle—this is the
rectangle your new object will fill. When you let go, the object is created. If the
rectangle you created for it is too large, it will snap back so as to hold just the
object. (This is called “autosizing” and we’ll discuss how to disable this feature
later.) After you’ve created an object, the selection cursor will become active.

You can move this button around by dragging it to a new location. When you
grab a corner of an object, you can resize it as well. The cursor will change to a
resize arrow and will resize the object instead of moving it.

You may be wondering to yourself, “Why is this button named OK?”
WindowScript automatically names the button created with a number of 1 to
“OK” and the button created with a number of 2 to “Cancel.” Usually this is a
convenience, especially if you're creating dialogs. If not, don’t worry, you can
easily rename them.

If you left the property picker open, you'll notice that the button has a property
called “AutoClose” turned on. This means that if the button is clicked, the

g

Making a Dialog WindowScript

window will be closed. Also the property “Defaultitem” is on; the default button
is the button with the thick border, and pressing return or enter is the same as
clicking the default button.

Another But ton

Let’s create the “Cancel” button:

* Click on the button tool. Move the cursor to the window “Oops!” and drag
down and to the right.

You'll notice that this button is, as expected, automatically named “Cancel.” If
you left the property picker open, you’ll also notice that the checkbox
“Cancelltem” is set to true for this object. This means, when this object is clicked,
it will cancel the window.

Now create some text for this dialog:

e Click on the static text tool
a rectangle.

Click in the window “Oops!” and drag out

This will create a text object in the window. To fill it with text, type the text you
want into the property picker:

EWd Oops!
O oK
() Cancel

Num. Name ToplLeft “Width

eight
EnE I on e Jozor]
B visible [X] AutoSize TextFont
I:] Dizabled [_| Growltern TextSize

(#]Seript...) (¢)Balloon...)

Text B LockText [Scroling [X] Plain
Oops! An error has ocourred. Q_ [] Botd
Continue Anyway % D Italic
£ [:I Underline
F|] outtine

Textalign (@ Left (O Center () Right] shadow

* Type “Oops! An error has occurred. Continue anyway?”

When you hit tab, enter or return, the text is accepted and the object changed. If
you typed enter or return, the property picker will shrink back to its smaller size.

Now the window is complete!

S

-—

D A

[

R Iy Yy .

WindowScript Making a Dialog

Oops! An error has occurred.
Continue anyway?

Save and close the window from the File menu. To try your creation out, type
this from the message box:

WindowScript ("Oops!™)

and your dialog box will appear. Notice what happens in the message box after
you dismiss the dialog with the “OK” button: the name of the button you used to
close the window is returned. WindowScript always returns the name of button
that closed it, or returns empty if the button was the cancelltem.

That’s how easy it is to create simple windows. Many of the things you'd want a
window to do are automatically taken care of. Of course, there are times when
you want something other than the expected to happen; then you’ll need to script
your windows (hence the other half of the name “WindowScript”). To learn
about scripting, go on to the next chapter.

I

WindowScript Scripting a Dialog

Chapter 4
SCRIPTING A DIALOG

Let’s add a little complexity to our dialogs. WindowScript gains much of its
power, and half of its name, from its scripting capabilities. You can create scripts
for every item in a dialog; these scripts are executed when the object is “hit,” or
clicked. You can also create scripts for the window as a whole, to respond to the
kinds of events that happen to windows. You can even write scripts to run when
the text in a WindowScript field is changed.

But first, we're going to explore the property picker. We'll start with the simple
dialog created in Chapter one.

e Open the window “Oops!” with the file menu’s “Open Window” item. If
that command is not available, use the “Windows...” item from the Edit
menu.

The window will open. If the selection cursor is not active, make it so using the
Tools window.

We want to play with the “Okay” button. Using the selection cursor, try to resize
the button and make it larger:

® Resize the button by dragging from the lower-right corner to an even lower
point.

Nothing happens, right? This is because the button has a property, called
AutoSize, that controls its sizing. To resize this button, we’d have to turn the
AutoSize off. And we do that in the property picker.

e Double-click on the “Okay” button.

=7

Scripting a Dialog WindowScript

Nurm. Name TopLeft Height Width

) Canoel [] (rm—| 2355][2s |[=0 |
Test <] visible [X] AutoSize TextFont | Ch1cago |

D Disabled D Growltern TextSize[12~ w|

(8]Script...) [8]Balloon...) BlackColon"'w'hiteCo'lor.j

E Defaultltemn [:l Cancelltern E AutoClose

.41

Hide F'rljpr?f'ﬁﬁ‘f- <<

Don't let the array of options overwhelm you. All of these properties are covered
in detail in later chapters; for now, we’ll only deal with a few of them. Feel free to
experiment as we go along. (For more on the property picker, see Chapter 5.)

Changing Properties

The property panels appear to the right of the object list. These panels are
different for each object, and change depending on which object has been
selected. Their contents represent the properties of that object. Changes made
here are reflected immediately in the window. When entering information into a
text area, changes take effect when you tab out of a field or hit enter.

Let’s turn the Autosize option off.

e Click on the checkbox named “Autosize.”
This change takes place instantly; the button will no longer AutoSize. Let’s test
this:

e Resize the button as before, either smaller or larger.
The button will shrink or grow as appropriate. You may notice that the button
looks lousy at whatever size it’s now at. (You may not, and that’s perfectly okay.)
The Autosize property is designed for just this purpose, to keep objects at their
best-looking size. Apple Computer has spent years determining the optimum
look for the various standard objects that appear in Macintosh applications.

WindowScript conforms to Apple’s recommendations wherever possible through
the autosize property.

=18z

R R R R L

WindowScript Scripting a Dialog

e Turn the Autosize property back on.

The button will return to its natural size. For buttons, you’ll probably always
want to have the AutoSize option on.

Scripting a Buiton

Mum. Name ToplLeft Height Width

[| (CrE— 235 |[2= |[so |
e B visible [AutoSize TextFont| Chwago |

D Disabled D Growltem TextSize[12 W)
(8)eript...) (¢]Balleon...) BlackColorNhiteColor.:]

@ Defaultltern D Cancelltemn E AutoClose

Ty

There is, however, a property we will want to turn off. The AutoClose property,
when on, closes the window when the object is hit. This is handy for most
buttons, where you want as much as possible done for you automatically. But
since we're writing our own script—and want to do the messy work ourselves—
turn it off.

Hide Froperties

e Uncheck to the “AutoClose” property for the button “OK.”

Now we're ready to write a script for the button. Look at the middle of the
property picker. You'll see an odd double button, known as a “Siamese” button:
one half is a latch, the other is the “Script” button. To see the object’s script, click
on the “Script” latch—not the button. The “Script” button will open a scripting
window. The latch, which is just beside the button, will let us write the script in
the lower portion of the property picker. For now, that’s all we'll need.

e Click on the “Script” latch.

~19.-

L e b

)

Scripting a Dialog WindowScript

The script property will be displayed in the lower portion of the property picker:
Num. Name TopLeft

Height ‘Width .
() Cancel , 1jIDK —” 23;59—” 28, ” 20 l

Tt E'ﬁsib]e E AutoSize TextFont| Chicago v|

DDisabledDGrowltem TextSize [12 W
(elSeript..) (8]Balloon...) BlackColor AwhiteColor]

beep| aty

S

[Propertes o

Type the script for the button in the scrolling field at the bottom of the property
picker. In this script you can execute any legal HyperTalk statement or
statements. You can call other handlers or functions, and you can call XCMDs
and XFCNS.

We'll make a simple script first, so type this into the script field:
beep

Simple and to the point, right? Switch to the arrow cursor from the Tools menu,
and click “OK”.

You should hear a beep. Wasn’t that easy? Now let’s add a little more to the
script. In complete defiance of the Macintosh Human Interface Guidelines, let’s
confirm our dialog with another dialog. Add another line to the script:

beep
Answer "I will now attempt to continue."

Switch to the arrow cursor and click “OK”. You should Bear a beep, then see the
answer dialog pop up. When you dismiss that dialog, the Oops! dialog is still
there. Close that dialog now. Add another line to the script:

beep
Answer "I will now attempt to continue."
wsSend "Oops!",0,"close"

U UVl U G UG b GO U O Wt U W

WindowScript Scripting a Dialog

The syntax is like this: we name the window that contains the object, the object
we want to send the message to—in this case it’s 0, the window itself—and the
message, “close”.

Now try it. The answer dialog will open with its message, and when you
click”OK”, both dialogs will disappear.

Radio Buttons and Check Boxes

One of WindowScript’s nicer features is that radio buttons require no scripting.
All of the radio buttons grouped—that is, in sequential order in the object list—
will work as expected: only one of the buttons may be on at a time. (The list can
be reordered at any time—just drag objects up or down. See the chapter on
Windows for more details.)

But what about check boxes? Sometimes turning on one checkbox should affect
other objects. In these cases, you’ll need a script to make it happen.

Let’s add some more objects to the window. Make two radio buttons and two
checkboxes, one of which will affect the other. Create these objects the same way
you created the earlier objects—if you need help, refer back to the earlier chapter.

e C(Create two radio buttons.
e Create two check boxes.
e Change the text to read: “Telephone options:”

Name the radio buttons “Tone” and “Pulse” and the check boxes “Dial number”
and “Prank call”. Your window should look something like this:

=27

Scripting a Dialog WindowScript

Switch to the arrow cursor and try the radio buttons. They should work as
advertised. Try the checkboxes; they work independently of each other. To make
one checkbox dependent, one will need a script. Switch back to the selection
cursor:

¢ Double-click on the “Prank call” button.
It will appear in the property picker. Click on the Script latch so we can edit its
script.

e Type the following into the check box’s script:

wsSet wdName, "Dial number", hilite, objValue

What this script says is, set the hilite of the object named “Prank call” to
whatever the hilite of this object—the object clicked on—is. Switch back to the
arrow cursor and try ‘em out; clicking on “Prank call” will hilite “Dial number”,
but not vice versa.

Moving On

That should be enough to get you started in the wild world of scripting. As
you’ve seen, WindowScript provides simple scripting power to your objects.
Look at all the example windows, and examine their scripts—that’s probably the
best education in WindowScripting. Later we’ll discuss the Script Assistant
feature of WindowScript which will help you write scripts.

i

WindowScript Windows

Chapter 5
WINDOWS

The Tool Palette

Like the HyperCard tool palette, WindowScript’s tool palette is divided into two
parts. The tools at the top are editing cursors; the tools at the bottom are objects.
This palette also appears under the tool menu. You can select a tool from the
menu, or you can tear the menu off and place it anywhere on the screen, just like
the HyperCard tool palette.

There are fifteen object tools in the palette:

The Button tool. This is used to create standard Macintosh buttons. If
a button’s defaultItem property is true, then a Return or Enter
keypress will be the same as clicking the button. If a button’s
cancelIte m property is true, then pressing command-period will
be the same as clicking it. If a button’s autoClose property is true,
then the button will close the window it belongs to. It executes its
script upon mouseUp.

2D3=

==
E
'l'.ﬂ
=
A
iﬁ
iﬁ
iﬁ
i
;
E
;
-

=

Windows

WindowScript

The Radio Button tool. This is used to create radio buttons. All radio
buttons in sequential order in the object list will be grouped, that is,
selecting one will deselect the others. The hilite property tells you if
the button is on or off. It executes its script upon mouseUp.

The Checkbox tool. This is used to create checkboxes. The check is
controlled by the hilite property. It executes its script upon
mouseUp.

The Label tool. This is used to create short labels. For text that requires
user interaction, use one of the Text tools below. The label displayed is
the same as the name of this object. It executes its script upon
mouseUp.

The Static Text tool. This is text that the user cannot change. It
executes its script upon mouseUp.

The Editable Text tool. This is text that the user enters from the
keyboard. Both text tools create the same object—a text object—but
their lockText property differs. The text displayed is contained in
the text property. It executes its script upon closeField.

The Icon tool. For displaying icons and Finder icons. You choose the
icon to be displayed with the name property; match the name of the
object to the name of the icon resource you want to display. If you
leave the name of an icon object blank, it will display nothing. Icons
can behave like buttons; the logic property controls how they
behave. Icons execute their scripts upon mouseUp.

The Picture tool. For displaying pictures in the window. You choose
the picture to be displayed with the name property; match the name of
the object to the name of the picture resource you want to display. If
you leave the name of a picture object blank, it will display nothing—
this can be useful for transparent buttons. Pictures can also be divided
into a grid of buttons. The selection logic of these buttons is chosen
with the 1ogic property. Pictures execute their scripts upon
mouseUp.

The QuickTime tool. For playing QuickTime movies. The movie file
to be played is set in the £ile property. If the scrolling property is

o4

e

WindowScript Windows

p!

true, then the movie will use the standard QuickTime controller. If the
wantFocus is true, then the movie will accept Cut, Copy and Paste
commands from the Edit menu. You can play the movie by clicking on
the play button in the controller (if it's available, that is, if the
scrolling property is true) or by sending a play command to the
object. It executes its script upon mouseUp.

The List tool. For displaying all kinds of lists. The list items are
contained in the text property, each separated by a return. If the
keyScroll property is true, then pressing a key will select the first
item that starts with that key. Arrow keys can be used to navigate the
list. There are many different list display styles available—see the
Notes Chapter. Lists execute their scripts upon mouseUp.

The Pop-up Menu tool. This pops up a menu. The text property
contains the items to be popped up, each separated by a return. The
titleItem property determines which object will be hilited as the
menu title (usually this is a label). It executes its script upon mouseUp.

The Control tool. This is used to put Macintosh controls (other than
buttons) in the window. Examples of controls include gauges,
thermometers, and scrollbars. Specify the control with the style
property. Advanced users can write their own controls in Pascal or C.
It executes its script upon mouseDown. (Note: Lists, text, and pictures
can have their own scrollbars. You don’t need to use a control object
for these.)

The Box tool. For drawing boxes. This is useful to set off a group of
radio buttons.

The RoundRect tool.

The Line tool.

To create a new object in the window, select the appropriate tool and drag out
the desired location for the object in the window. When you release the mouse
button, it will be created and placed.

Most objects will snap to a “natural” size—for instance, a button will be resized
to the standard button height; a picture will snap to its full size; an icon will snap

W W W
8

20)

Windows WindowScript

to a 32 by 32 pixel rectangle. If you want the object to be a different size, uncheck
the “Autosize” property in the property picker.

k The Arrow tool is used to “Play” a window, that is, to test a window.
In the play mode, the window acts the same as it will for a user
(except that, technically, it will be in the document layer —a
consideration you’ll probably never have to worry about).

@ The Selection tool is used to edit windows—whenever you wish to
move, resize, or delete an object. When you double-click an object
with it, the property picker opens to display that object’s properties.
(When in select mode, objects may be dragged and resized with the
mouse.)

Modifier keys may be used to do the following:
Shift—constrains movement just like HyperCard.

Control—temporarily reverses the snap-to-grid state of the window as
defined by the Grid menu item.

Option —clones the selected objects just like HyperCard. If not over an
object, option allows you to drag or resize the window as a whole.

When one or more objects have been selected, they may be nudged from the
keyboard. Once again, modifier keys may be used:

Control—temporarily reverses the snap-to-grid state of the window as
defined by the Grid menu item.

Command—resizes the bottom right of the objects rather than moving
the whole object.

Delete —deletes the selected objects.

If you drag an object but change your mind before releasing the mouse button,
simply drag the object to the menu bar. It will not be moved.

=06~

b

I

i

0 0 0 O O O

I N

WindowScript Windows

il

The Property Picker

Untitled
Tt ty
Text res
Untitled
Untitled
Untitled
: Label
Text
tres
tres

Text res

&, Untitled

Show Froperiies

He(f

-
w
-

my
=
-

EIETE]

_|

24

This is the property picker. It is currently in its collapsed state. To see the rest of
it, click on the “Show Properties” button at the bottom. It will zoom out to
display:

Intatled

2| o um. Mame Topleft Height ‘Width

= o | IERTER | 7= 152 | 120 | z2s

) Untitled B4 visible [X] AutoSize TextFont[Chicage W) f
@ Untitled [] pisabled [] Growltem TextSize[12 b4 ‘
B Untitled _ i
LBL: Label (8]Seript...) (8 Params...) (8)Result...) (8 [Menus... | !
Text Text ; '
T res r’tM"SS"ge | Syte [X] HasTitleBar 3
Text res Q D1jalog <] HasCloseBox

T res MinSize MaxSize | @ Window | 5 yaszoomBox ,
Untitled [100,50 | [865,597 || Windoid | [¢] HasGrowBox |
2

Hide Froperties €

Along the left edge of the property picker is the object list. Every object in the
window is listed. Clicking on an ob]ect in the list displays its properties in the
right-hand side of the window.

=7 =

LT L LT

Windows WindowScript

The right-hand side—the side that shows the properties—is divided into two
parts. The top half shows properties that every object shares: name, location, font,
etc. The lower half contains properties specific to each object. The lower half will
change for different objects; the upper half will always display the same
properties.

When you hit Return or Enter, the property picker shrinks back to its smaller
size. This way, if you have a screen that’s strapped for pixels, the property picker
won'’t be in your way. If you want to move to another field, hit tab instead.

Objects may be re-ordered in the list by dragging. This
= affects their stacking order, tabbing order and radio button

grouping.

There are four Siamese buttons along the middle of the window: Script...,
Params..., Result..., and Menus.... These odd-looking buttons work two ways. If
you click on the latch (on the left), the lower portion of the property picker will
become an edit field, so you can edit the contents of that property directly. If you
click on the button, a separate editing window will open, allowing you to edit the
property in that window. See the Scripting chapter for more details.

Big Message

WindowScript replaces HyperCard’s message box with its own customized
message box. The new message box works the same way, but there are a few
differences:

e The Zoom Box (in the upper right corner of the title bar) expands the
window, showing a scrolling area with the last commands you have
entered. You can re-execute a line by selecting it and hitting Enter.

e Big Message gives only one error message when it can’t understand you:
g : geg Y; 8 y
IlHuh.II

HyperCard’s message box is still available from HyperCard’s menus, and when
you put a value, it is put into HyperCard’s message box, not into Big Message.
It's easy to confuse the two, but there’s a simple way to tell them apart: the place
where you type in Big Message has a dashed underline, as opposed to
HyperCard’s gray underline.

RN e

WindowScript Windows

The benefit of Big Message is that it provides a simple way to climb back into
WindowScript when the tool palette and property picker are gone—ijust click on
Big Message, and WindowScript’s menus are back.

90

L0

|

IR RRRRREYR e e .

WindowScript Menus

Chapter 6
MENUS

When you are editing a window, HyperCard’s menus are replaced by
WindowScript’s own menus. While retaining HyperCard’s menu structure and
flavor, WindowScript’s menus deal solely with creating and editing windows.

When a HyperCard window is frontmost, HyperCard’s menus are active. When
a WindowScript window is frontmost, WindowScript’s menus are active.
WindowScript provides its own message box (accessible from the Go menu) to
facilitate switching back and forth: click on whichever message box you want.

File Menu

New Window

Creates a new, empty window. Shows the tools palette and the property picker
windoid so that items may be added and their properties examined. The exact
size, style and contents of the initially displayed window may be altered with the
Save Default menu item described below.

Open Window...

[E=—=—= Windows

WindowScript 1
- The Inferface Design Studio -

(Delete | [New)

[] Open As Text
— e —

Menus WindowScript

Presents the windows dialog. From this dialog, you pick the window to edit. You
can also create a new window, or delete an existing window. If you check the
“Open as text” checkbox, WindowScript will display the window in text format;
that is, it will display the text of the LENS resource that describes the window.
This can be useful for creating or modifying many objects at once by simply
copying and pasting descriptions.

=S[J=—— Untitled =—LF

ltemType : W IND

Rect: 128 68,356,202
Style: Window
HasTitleBar : TRUE
HasCloseBox : TRUE
HasZoomBox : TRUE
HasGrowBox : TRUE
MinSize: 100,50
MaxSize : 865,597
MName : Untitled

IternType : TEXT
Rect: 8,8,105,25
TextFont: Geneva
TextSize: 10
LockText: FALSE

)

Close Window

Closes the frontmost window. If changes have not been saved, you are asked if
you wish to do so.

Import Resource

Allows you to import any resources from any other file. For instance, if you have
created dialogs for other stacks or programs using ResEdit, you may bring them
into your stack. Dialogs (resource type DLOGs) are converted into LENS with the
same name as the resource. Dependent resources, such as pictures and icons
(PICTs and ICONSs), are not automatically imported. Make sure you import them,
too.

Save Window
Saves all changes to the frontmost window.

30

)

1[I

NN

WindowScript Menus

Save Window Into...
Allows a copy of the window to be saved into a different stack.

Save Default

Saves the current window as the default. The default is used whenever a new
window is created. It has effect only on the stack you are currently in—unless
you do this in the WindowScript stack itself. This is useful if you will be creating
a number of dialogs or windows that will share common elements such as lines,
boxes, or pictures or a standard script for the window itself, so that all windows
in a set behave in a standard fashion.

Delete Window
Deletes a window from the stack.

Page Setup...

The standard Page Setup dialog. Controls how windows will be printed by
subsequent “Print...” commands.

Print...
Prints the frontmost window. It may be either the actual window or a textual
description of that window (when it was opened with Open As Text).

Quit HyperCard
As you might guess, this will close WindowScript and quit HyperCard.

Edit Menu
Undo

Undo is not available for actions taken in WindowScript. It is provided for
consistency within the Macintosh Interface Guidelines.

Cut

If the selection cursor is active, a textual description of the currently selected
items will be placed onto the clipboard and the items will be removed from the
window. If the arrow cursor is active, it will behave as appropriate for the
context.

Copy

If the selection cursor is active, a textual description of the currently selected
items will be placed onto the clipboard. The items will not be removed from the
window. If the arrow cursor is active, it will behave as appropriate for the
context.

sZas

Menus WindowScript

Paste

If the selection cursor is active, items on the clipboard will be placed into the
window. If a picture is on the clipboard, it will be added to the stack as a
resource and to the window as an object. Likewise, icons, color icons and Finder
icons will all be added to both the stack and the window if they are on the
clipboard. If the arrow cursor is active, it will behave as appropriate for the
context.

Select All

If the selection cursor is active, all the items in the window are selected. If the
arrow cursor is active, it will behave as appropriate for the context.

Go Menu
All open WindowScript windows are listed. Select one to bring it to the front.

Message

Alternately shows and hides the WindowScript big message window. This is
similar to the regular message box, but has a zoom box. If you zoom it, it will
enlarge to show the last commands executed in a scrolling list.

Next Window

Sends the frontmost window to the back and activates the next window.

Tools Menu

Like HyperCard, the Tools menu is a palette of useful things, and can be torn off
the menubar. There are two types of tools:

Cursor Tools

The top portion of the tool palette offers two types of interaction with the
window being edited. The arrow cursor causes the window to behave
“normally”—just as it will when you invoke it directly with WindowScript. The
selection cursor allows you to select items in the window and to drag them
around.

Object Tools

The bottom portion of the palette contains item tools. To create a new object in
the window, select the appropriate tool and drag out the desired location for the
object in the window. When you release the mouse button, it will be created and
placed. Once an object has been created, the Selection cursor is automatically
chosen. For more information, see Chapter 5.

VIR

;
=
[
—
-
-
Fi
=
pe
?_j
-f—__—-_i
I
-
=
=
s
£
=
z
-

WindowScript Menus

Objects Menu

Show Info/Hide Info
Alternately shows and hides the information about the properties for the object
selected in the property picker.

Bring Closer
Moves the selected items in front of the other objects in the window.

Send Farther

Moves the selected items behind the other objects in the window.

Grid

Either turns on or turns off the grid that covers the window being edited. When
on, objects will “snap to” the grid position, making aligning objects a breeze.

Align Lefts
Align the left edges of the selected objects.

Align Tops
Align the top edges of the selected objects.

Align Rights
Align the right edges of the selected objects.

Align Bottoms
Align the bottom edges of the selected objects.

Duplicate
Duplicates the currently selected items.

Font Menu

This menu allows you to quickly change the textfont property of items selected in
the window being edited. When the arrow cursor is active, this menu will allow
you to set the font of the selected text, including popups and buttons.

Style Menu

If the selection cursor is active, this menu allows you to quickly change the
textsize and textstyle property of items selected in the window being edited. In
play mode, this affects the type in text objects.

-35-

Menus WindowScript

Color Menu

This menu allows you to quickly change the whitecolor and blackcolor properties
of the items selected in the window being edited. BlackColor is the color that will
be used to draw the parts of an object normally drawn in black, such as the
border and text of buttons; whiteColor is the color used to draw the white
portion of objects, such as the white space inside a button. (For more information,
see Chapter 7). Selections from this menu normally affect the blackcolor of the
selected items. To change the whitecolor, hold down the option key while
making a selection.

=36 =

I ey

WindowScript Properties and Commands

Chapter 7
PROPERTIES AND COMMANDS

Properties

Listed below are all the properties WindowScript uses. Not all are available from
the property picker. Properties unavailable from the property picker are marked
with an asterisk (*). To change or view a property that isn’t in the picker, you can
use set or get in the message box or from the script of an object.

AutoClose = [TRUE, FALSE]

This is a property of push buttons. If true, the window will be closed in response
to clicking on the button.

¢ Advanced Users: Returning a non-empty value in a button’s object script
will prevent it from requesting that the window be closed. (You can use
the “return” command in object scripts or handlers called by object
scripts, just like functions.)

AutoSize = [TRUE, FALSE]

Determines whether or not an object will snap back to its natural size. If true then
the bottom right of the object will be adjusted. “Natural” varies, obviously, from
object to object. A button’s natural height is 20 pixels; an icon’s natural height is
32 pixels; a text object’s natural size is an even multiple of the font size.

Balloon = [text | name | x]

This is a property of all objects. It is the text which will appear in a help balloon
when help has been enabled and the cursor is placed over the object. This
property can also be set to the name or ID of a picture resource, which will be
displayed in the balloon instead of text. (Balloon help is only available for Macs
running System 7, although you can set this property under either System.)

¢ Advanced Users: There is a set of string resources which provide default
text for each type of object. These may be changed to better suit your
particular application. There is a resource for each object, named
“Balloon4Object”, where object is the type of object.

=a7=

Properties and Commands WindowScript

BlackColor = [RED, GREEN, BLUE]

This is a property of all objects. On Macs capable of displaying color, it defines
the color that should be used in place of black when drawing the object. The
color is specified as a RGB value. Be careful when choosing colors for windows
that may be used on black and white or less colorful monitors. The colors will
map to the nearest color available, or to black if the monitor is black and white.

€ Advanced users: This property may also be set with an index into the
system CLUT id 256. The external function AnswerColor may be used
to prompt a user for a color with the standard color picker. See Chapter
10 for more details.

Cancelltem = [TRUE, FALSE]

This is a property of push buttons. If true, a command-period will be treated as
being equivalent to clicking on this object.

€ Advanced Users: This object has special significance to what is returned
for modal dialogs. When the Cancelltem closes a dialog, empty is
returned as the value from WindowScript—regardless of what value was
requested in Result or what value was explicitly set of the window as a
whole.

*Commands = [commands]
This is a read-only property of all objects. It returns the names of all the
commands supported by that object.

Defaultltem = [TRUE, FALSE]

This is a property of push buttons. If true, pressing the Enter key will be treated
as being equivalent to clicking on this object. So will a Return if the cursor is not
currently in an edit field with a visible scroll bar.

*Dirty = [TRUE, FALSE]

This is a property of text objects. This property is automatically set to true
whenever anything is typed into a field. If true, a hit will be sent when the field is
tabbed out of or the user clicks outside the field. If you set dirty to false, a hit
will immediately be sent if the field had been dirty. If that message returns a non-
empty result, the field will remain dirty.

¢ Advanced Users: This is also a read-only property of the window as a
whole. In this case, it will return the object number of the dirty edit field,
or zero if there is none.

2agis

AR EEEEYEEEEEE R

jpub——y

WindowScript Properties and Commands

Disabled = [TRUE, FALSE]

This is a property of all objects. If true, then object will appear “grayed out” and
will not respond to typing or clicking.

DoubleClickItem = [i]

This is a property of lists. If not zero, a double click on an object in the list will be
treated as being equivalent to clicking on object i. Either the actual object number
or the name of the object may be specified.

File = [file name]
This is a property of QuickTime movie objects. It is the file name of a QuickTime
movie.

Fill = [NONE, WHITE, BLACK, GRAY, LTGRAY, DKGRAY, x]
This is a property of boxes. It specifies the pattern used to fill the contents of the
box.

¢ Advanced Users: Other patterns in the system’s pattern list may be
specified by x, an index value into the system pattern list. See Inside
Macintosh Vol. 1 for more information.

Grid =[x, y]

This is a property of pictures. It specifies how the object is divided into separate
cells. For example, Grid: 2,3 would split the object into six cells, two across and
three down. A grid may not contain more than 32 cells.

Growltem = [TRUE, FALSE]

This is a property of any object. When true, the object will be resized whenever
the window is resized. Objects whose bottom exactly coincides with the grow
object’s bottom will also be resized. Likewise, objects whose right side exactly
coincides with the grow object’s right side will be resized. All objects completely
below the grow object will be moved so as to stay below it. Likewise, all objects
completely to its right will be moved to stay to its right. Only one object may be
specified as the Growltem.

*Handle = [handle]

This is a property of all objects except box, line and round box objects. It provides
access to the low-level toolbox structures used by WindowScript. Never change
information in these structures if you know what’s good for you.

€ Advanced Users: You can set the handle of a picture object to a PICT you
have somehow created or gotten a handle to. WindowScript will dispose
of the handle to the PICT for you when the window is closed.

230

Properties and Commands WindowsScript

HasCloseBox = [TRUE, FALSE]

This is a property of the window. It determines if a window will have a close box.

HasGrowBox = [TRUE, FALSE]

This is a property of the window. It determines if a window will have a grow box
in the lower right-hand corner. If a grow box is specified, scrollbars will also
appear. Since dialogs do not have grow boxes, this property is ignored for
dialogs.

HasTitleBar = [TRUE, FALSE]

This is a property of the window. It determines if a window will have a title bar.
In the case of a windoid, this property will enlarge or reduce the title bar, not
remove it.

HasZoomBox = [TRUE, FALSE]

This is a property of the window. It determines if a window will have a zoom
box. Since dialogs do not have zoom boxes, this property is ignored for dialogs.

Height = [x]
This is a property of all objects. It specifies the height of the object.

Hilite = [TRUE, FALSE]
This is a property of radio buttons, checkboxes and controls. It is true if the object
is “checked.”

¢ Advanced Users: This is also a property of icons when their logic
property has been set to Radio or Check.

HitMessage = [message name]

This is a property of the window. It is the name of the handler which will be
responsible for interacting with the user. This handler is called by WindowScript
whenever anything happens in the window. See Chapter 9 for more information.

*ID = [x]

This is a property of icons and pictures. It is the actual id of the resource to be
displayed as the object. It is also a property of the window as a whole—in this
case it is a unique identifier for the window. This id changes each time the
window is displayed with WindowScript.

*IdleDelay = [x]
This is a property of the window as a whole. It enables windows to request that
idle messages be sent to the hit handler (or the window's script, if present). X

-40-

B

iﬂ
F
e

YTy Ry

WindowScript Properties and Commands

defines how often (in ticks, which are 1/60ths of a second) the messages are to be
sent.

*ItemList = [list of objects]

This is a read-only property of the window. It returns a return delimited list of
the objects in the window.

*Inset = [x]

This is a property of text objects. It controls the amount of space between the
frame of the object and the text itself. It defaults to 3 for 12 point text and higher
and to 2 for smaller sizes. This is similar to the wideMargins property of a
HyperCard field.

*ItemType = [WIND, PUSH, RAD, CHK, CNTL, LBL, TEXT,
ICN#, ICON, PICT, LIST, POP, BOX, LINE, RBOX,
MOOV]

This is a read-only property of all objects. It specifies the kind of object it is. Only
object number 0 may be of type WIND.

*KeyFilter = [Keyf resource name or ID]

This is a property of text objects. A KeyFilter controls what characters may be
typed into a field. For examnple, OnlyDigits does not allow any keys except the
digit keys to work in a text object which uses this filter. Custom ones may be
added. See Appendix C for more information.

KeyScroll = [TRUE, FALSE]

This is a property of lists and QuickTime objects.If it is true, then all keystrokes
and edit menu commands will be intercepted by the object when it has the
focus—when it has been clicked on or tabbed to. Tab will move the focus to the
next object that wants it. Lists will scroll to and select the first item in the list
which matches the key typed. Arrow keys may also be used to manipulate the
selection.

@ Note: This is the same as the wantsFocus property.
Leap = [x]

This is a property of a control. It determines by how much the controls value
should change as a result of clicking in the “Page-Up” or “Page-Down” region of
the control.

LineHeight = [SINGLE, DOUBLE, TRIPLE, x]

This is a property of text objects. It determines the vertical line spacing of the text.
It may be set to pre-defined values which vary according to the font size, or may
be set to a fixed number.

-41-

Properties and Commands WindowScript

¢ Advanced Users: When dealing with text objects that contain mixed
styles, the rules change slightly. A 1ineheight of Single is interpreted
to mean variable line heights as needed to accommodate the various
sizes of text which potentially might appear on a line. Double and Triple
will not double and triple this line-by-line height but rather set a fixed
height for all lines based on the base style designated by the texfont
and textstyle property.

LockText = [TRUE, FALSE]
This is a property of text objects. It determines if the contents of the object may be
selected and changed.

Logic = [NONE, ANY, SINGLE, CONTIGUOUS, DRAG]

This is a property of lists. It determines what logic governs selections. NONE
prevents any selection from being made. ANY allows any set of list objects to be
selected. SINGLE allows only a single item to be selected. CONTIGUOUS allows
only a single, contiguous block of list items to be selected. DRAG allows only a
single item to be selected but also allow any item to be repositioned in the list by
dragging.

¢ Advanced Users: The List Manager keeps a field for each list, selFlags,
that governs the selection. You can set this field yourself by putting the
value you want for selFlags into the logic property. For more information
on the List Manager, see Inside Macintosh Vol. IV.

Logic= [NONE, PUSH, RADIO, CHECK]

This is a property of icons and pictures. It determines what logic governs
selections within the parts of the object (as divided by the Grid property). NONE
prevents any selection from being made. PUSH allows any single part to be
selected—it is immediately deselected. RADIO allows any single part to be
selected at a time—it remains selected. CHECK allows a set of parts to be selected

ata time.

Max = [x]
This is a property of controls. It determines the maximum value that the control
may have.

MaxSize = [x]
This is a property of the window as a whole. It defines the maximum size of the
window. It is used during zooming and resizing.

49

0§ A O O) T

}

"SIl

L

Tl

n

WindowScript Properties and Commands

*MenuBar = [MBAR resource name]

This is a property of the window as a whole. It specifies a menubar (MBAR)
resource which lists the menus for the window. It may be used instead of the
Menus property discussed below.

Menus = [m1 & return & m2 ...]

This is a property of the window as a whole. It specifies the names (or ids) of the
menus which are to appear in the menubar when the window has “edit”—when
keypresses will go to the window.

Min = [x]
This is a property of controls. It determines the minimum value that the control
may have.

MinSize = [x]
This is a property of the window as a whole. It defines the minimum size of the
window. It is used during zooming and resizing.

Name = [name]

This is a property of all objects. It is the name of the object. In the case of the
window, push buttons, radio buttons, checkboxes and controls, the name entered
into the property picker appears. In the case of text, lists, boxes and popups, the
name defaults to the first line of the text of the object, but may be set to anything.
In the case of icons or picture objects, the name is that of the graphic resource
being displayed as that object; if set, it attempts to display a picture resource by
that name.

Number = [x]

This is a property of all objects. It is a sequential number assigned to each object
in turn as it is created. The window itself always has a number of 0. This
sequence controls the front-to-back layering of objects and radio button
grouping.

*NumberOfItems = [X]
This is a property of the window as a whole. It is the count of objects in the
window, not including the window itself.

¢ Advanced Users: This property may be set to a value less than the
current one, which has the effect of deleting all objects beyond that point.

Properties and Commands WindowScript

Params = [parameter map]

This is a property of windows. It is a return-delimited list of object properties to
be set by additional parameters in the initial call to WindowScript. For more
information, see the end of this chapter.

Pen = [NONE, WHITE, BLACK, GRAY, LTGRAY, DKGRAY, x]
This is a property of boxes. It specifies the pattern used to draw the outline of the
box.

¢ Advanced Users: Other patterns in the system’s pattern list may be
specified by x, an index value into the system pattern list. See Inside
Macintosh Vol. 1 for more information.

Pensize = [x,y]
This is a property of boxes. It specifies the width (x) and height (y) of the pen
used to draw the box.

*Properties = [properties]

This property has two different meanings. When setting it, it is used to set a
group of properties all at once. The property value should look like a return-
delimited list where each line of that list is of the form:

ObjectName Property: PropertyValue

When getting it, it returns the names of all the properties of that object. (See the
Notes chapter for more details.)

¢ Advanced Users: The supported properties of each object are stored in a
TEXT resource in WindowScript.

Rect = [1,t,r,b]

This is a property of all objects. It is the rectangle in which a particular object is
displayed. The coordinates are usually given relative to the TopLeft of the
window. The window’s rect, however, is given relative to the screen as a whole.

Repeating = [TRUE, FALSE]

This is a property of QuickTime movie objects. If it is true, the movie will begin
again from the first frame when it has reached the end.

Result = [result map]

This is a property of windows. It is a return-delimited list of object properties to
be returned by the WindowScript function. For non-modal dialogs, the value of
the window is controlled by this property. For more information, see the end of
this chapter.

A=

AR T

—

BRRRER RN

r]]

WindowScript Properties and Commands

Script = [text]

This is a property of all objects. It is a set of HyperTalk statements which will be
executed when that object is “hit.” For windows, this means window events such
as activate, deactivate, and open. For objects scripts, this means when a
click appropriate for the object is detected. For instance, buttons are hit on
mouse-up; edit text objects are hit on close field. An object script takes
precedence over the window’s hit handler. See the Scripting chapter.

*Scroll = [vertical] | [vertical horizonal]

For text objects, lists and pictures, scroll indicates the value of the scrollbar’s
thumb, when present, in pixels. For QuickTime objects, it represents the value of
the scrollbar’s thumb in whatever units the movie was recorded in.

¢ Note: For a movie, the scroll divided by the timevalue equals
seconds elapsed.

Scrolling = [TRUE, FALSE]

This is a property of text objects, lists, QuickTime objects and pictures. It
determines the presence of a scrollbar attached to the object. Whereas lists and
text objects get only a vertical scrollbar, pictures get both horizonal and vertical
scrollbars. QuickTime objects get their special QuickTime controller.

*Selection = [i]

This is a property of the window. It indicates the object which is currently
selected. Only objects which can receive keystrokes are considered to be selected.
LIST objects (whose keyScrol1 is TRUE) and TEXT objects (whose lockText is
FALSE) can accept keystrokes. Windows that have menus, or that have a
cancellItemora defaultItem, can also receive keystrokes.

® Advanced Users: Setting the selection to 0 has a special meaning—it
causes the window to select the first appropriate object in the window.
This comes in handy to ensure the edit goes to a particular window.

*Selection = [s1,...,5x]

This is a property of lists, popups, QuickTime objects and grids. It is a comma-
delimited list of the selected items in the object. In the case of lists, the selection
may also be specified using ranges such as “1-5” or even groups of ranges such
as “1-5,10-35.” For QuickTime objects, it is the first and last unit of the selection,
in whatever units the movie uses (probably frames).

-45-

=

Properties and Commands WindowScript

*SelectionColor = [RGB color]

This is a property of text objects. It controls the color of the currently selected text
in the object. For text objects that don’t use mixed styles, use the blackColox
instead.

*SelectionFont = [font name]
This is a property of text objects. It controls the font of the currently selected text
in the object. For text objects which do not have mixed styles, use the TextFont

property instead.

*SelectionRect = [1,t,1,b]

This is a read-only property of lists. It returns the coordinates of the first object
selected in a list. It will scroll the list if necessary to make the selection visible.
This is very handy for making edit-in-the-list windows—this rect may be used to
place an edit object over the selection.

*SelectionSize = [font size]

This is a property of text objects. It controls the size (in points) of the currently
selected text in the object. For text objects which do not have mixed styles, use
the Text Size property instead.

*SelectionStyle = [PLAIN, BOLD, ITALIC, UNDERLINE,
SHADOW, OUTLINE, CONDENSE, EXTEND, GROUP]

This is a property of text objects. It controls the style of the currently selected text
in the object. For text objects which do not have mixed styles, use the TextStyle
property instead.

*SelectionStyle = [HILITE, INVERT, FRAME, LASSO]

This is a property of pictures and icons whose logic is not none. When a picture
or icon is selected, this property determines how that selection is indicated. Hilite
uses the hilite color (on color machines). Invert simply inverts the colors. Frame
draws a black border. Lasso shrinks the selection color so it covers just the
graphic. It shrinks the hilite to cover the area inside the blackColox of the
object. (Lasso should be used only with push logic.)

*SelectionText = [t1 & return & ... & return & tx]

This is a property of lists. It is a return-delimited list of the text of selected objects
in the list. If this property is set, the selection of the list is changed rather than the
text of the selected objects. See TextOfSelection.

46

R

T

P Y

J

anggngn

I' 1l

W)

|

|

|

IR

|

JJ

WindowScript Properties and Commands

*SelectionTime = [time start,time stop]
This is a property of QuickTime objects. It returns the selection of the movie in
seconds.

*SoundVolume= [volume]

This is a property of QuickTime movie objects. It is the volume at which the
movie’s sound will be played. You specify the volume as a percentage; for
instance, “100” would be full volume.

*Speed = [speed]
This is the speed to play the movie at, represented as a percentage of full speed.
“50” would be half speed, and “200” would be double speed.

Step = [x]
This is a property of a control. It determines by how much the controls value
should change as a result of clicking in the “Line-Up” or “Line-Down” region of
the control.

Style= [DIALOG, WINDOW, WINDOID]
This is a property of a window. It determines how the window appears and in
which layer it is placed.

¢ Advanced Users: You may specify any WDEF as the style. If you do, you
must also specify one of the above in the Logic property of the window.

Style= [CDEF Name]
This is a property of a control. It is the name of the resource which defines the
custom behavior of the object.

€ Advanced Users: You can specify the name or ID of any CDEF that exists
in the stack.

Style= [LDEF Name]

This is a property of a list. It is the name of the resource which defines the custom
behavior of the object.

¢ Advanced Users: You can specify the name or ID of any LDEF that exists
in the stack.

Style= [MDEF Name]
This is a property of a popup object. It is the name of the resource which defines
the custom behavior of the object.

¢ Advanced Users: You can specify the name or ID of any MDEF that
exists in the stack.

472

Properties and Commands WindowScript

StyleRun = [Selection; selectionFont; SelectionSize;
SelectionStyle; SelectionColor]

This property is not used while the window is open. It is only used when the

window is saved, to indicate a style for a set of characters in a text object. You

may see it if you open a window as text.

Text = [text]
This is a property of popups, lists, text objects and boxes. It is the actual contents
of those objects.

TextAlign = [LEFT, CENTER, RIGHT]

This is a property of text objects. It determines the alignment of the text within its
rect.

TextFont = [font name]

This is a property of all objects. It determines the font in which the text of the
object will be drawn. If you change the TextFont of the window, each object
within the window which had the same font will be changed also.

*TextOfSelection = [t1 & return & ... & return & tx]

This is a property of lists. It is a return-delimited list of the text of selected objects
in the list. If this property is set, the text of the selected objects is changed, rather
than the selection of the list. To do the inverse, use the selectionText
property.

TextSize = [x]

This is a property of all objects. It determines the size in which the text of the
object will be drawn. If you change the TextSize of the window, each object
within the window which had had the same TextSize will be changed also. If
you want to change the size of a portion of a text field, it must first be selected
and then its selectionSize property be set.

TextStyle = {(PLAIN, BOLD, ITALIC, UNDERLINE, SHADOW,
OUTLINE, CONDENSE, EXTEND}

This is a property of text objects. It determines what style effects are used in
drawing the text of the object. It is a comma-delimited list of all the applicable
styles. If you want to change the font of a portion of a text field, it must first be
selected and then its selectionStyle property be set.

TimeValue = [time]
This is a property of QuickTime objects. It is the number of units (probably
frames) per seconds for the movie.

¢ Note: scroll / timeValue= seconds elapsed

-48-

11 O T O A

|

141

i

WindowScript Properties and Commands

TitleItem = [x]
This is a property of popups. It specifies another object (usually a label) which is
to act as the title for the popup. This title will be hilited when the popup is

“popped.”

TopLeft = [x,y]

This is a property of all objects. It specifies the location of the top-left corner of
the object’s enclosing rectangle, relative to the window. In the case of the
window, it is relative to the screen.

*Value = [SelectionText] | [Hilite] | [Text]

This is a property of all objects. It represents the most “interesting” property of
the object. In the case of push buttons, radio buttons and checkboxes, it is the
hilite. In the case of controls it is the value of the control. In the case of popups
and single selection lists, it is the SelectionText. In the case of pictures and
lists capable of multiple selection, it is the Selection. Finally, in the case of a
box, rounded box or line, it is empty.

*Version= [version]
This is a read-only property of the window. It returns the version of
WindowScript being used.

Visible = [TRUE, FALSE]
This is a property of all objects. It determines if the object is displayed or not.

WantsFocus = [TRUE, FALSE]

This is a property of lists and QuickTime objects. If it is true, then all keystrokes
and edit menu commands will be intercepted by the object when it has the
focus—when it has been clicked on or tabbed to. Tab will move the focus to the
next object that wants it. Lists will scroll to and select the first item in the list
which matches the key typed. Arrow keys may also be used to manipulate the
selection.

¢ Note: This property is the same as the keyScroll property.

WhiteColor = [RED, GREEN, BLUE] | [x]

This is a property of all objects. On Macs capable of displaying color, it defines
the color that should be used in place of white when drawing the object. The
color is specified as a RGB value. Be careful when choosing colors for windows
that may be used on black and white or less colorful monitors. The colors will
map to the nearest color available, or to white if black and white.

-49-

:

Properties and Commands WindowScript

€ Advanced users: This property may also be set with an index into the
system CLUT id 256. The external function AnswerColor may be used
to prompt a user for a color with the standard color picker.

Width = [x]
This is a property of all objects. It specifies the width of the object.

*Wordwrap = [TRUE, FALSE]
P

This is a property of text objects. It specifies whether or not the text should wrap
when it reaches the right-hand margin of the object.

Commands

AdjustSize
This command tells the object to revert to its natural size. It has the same effect as
having the object’s autosize property set to true, but it does not affect the autosize

property.

BringToFront
This puts the window in front of all the others in HyperCard’s application layer.

Clear

This command may be sent to text and QuickTime objects. It is similar to its edit
menu equivalent.

Copy

This command may be sent to text objects, or lists or QuickTime objects whose
want sFocus property is true. It is similar to its edit menu equivalent. For lists, it
places a copy of the selected line onto the clipboard. For movies, it puts a copy of
the selected frames onto the clipboard.

Cut

This command may be sent to text or QuickTime objects. It is similar to its edit
menu equivalent. This command, unlike copy, does not work with lists.

DoUpdate
Redraws the object. This is used internally; it’s rare that you would need it.

-50-

ok

WindowScript Properties and Commands
First

For QuickTime objects. This moves to the first frame of the movie.
GetBGFieldText

This command may be sent to a text object. It will cause a copy of the text found
in the background field (whose name is the same as the text object’s) to be copied
into the object. All text styling will also be copied. This only works for fields on
the current background.

GetCdFieldText

This command may be sent to a text object. It will cause a copy of the text found
in the card field (whose name is the same as the text object’s) to be copied into
the object. All text styling will also be copied. This only works for fields on the
current card.

Last ‘
For QuickTime objects. This moves to the last frame of the movie.

Paste
This command may be sent to text or QuickTime objects. It is similar to its edit
menu equivalent.

Pause
For QuickTime objects. This pauses the playing of a movie.

Play
For QuickTime objects. This plays the movie at the current speed.

Prev
For QuickTime objects. This moves to the previous frame of the movie.

Next
For QuickTime objects. This moves to the next frame of the movie.

SendToBack
For windows. This puts the window behind all the other windows in
HyperCard'’s application layer.

SnapShot
For windows. This command places a picture of the window as it appears onto
the clipboard. The picture will be in PICT format.

=51 -

Properties and Commands WindowScript

Stop
For QuickTime objects. This stops the playing of the movie.

ZoomlIn

This command causes the window to zoom in to its minimum size. If the
window has a grow box, then it will zoom in to the last size chosen by the user. If
the window has no grow box, it will zoom to the minimum size as defined by the

MinSize property.
ZoomOut

This command causes the window to zoom out to its maximum size as defined
by the MaxSize property.

i
—

0 OV)

1]

S
3
=

WindowScript Notes on Properties

Chapter 8
NOTES ON PROPERTIES

Custom Properties

Often you’ll want to associate information with a particular window, as when
you want a window to be entirely self-contained and not dependant on any card
or stack. WindowScript allows you to do this with custom properties. Basically,
you can make up any property you want and set and get its value. The only
restriction is that these property names must begin with a lowercase “x”. That is
how WindowScript knows to store the value for later retrieval.

WindowScript does not “understand” these properties; it is
= merely storing them for you.

For instance, you can create the property “user” with:
set xUser of window "myWindow" to "Bill"
and to retrieve it:
get xUser of window "myWindow"

These property values are not saved; when you close the window, the
information is lost. They may, however, be supplied as parameters in the initial
call to WindowScript using the Params property. You can also retrieve them
when your window is closed and store them in a hidden field for use the next
time the window is opened.

Notes on Style

Lists, controls, popups and windows have a Style property which allows you to
specify the exact appearance and operation of the object. This is done through a
self-contained program called a definition procedure. (These DEFs are defined by
Inside Macintosh Vol. 1.) Some have been included for your use. Additional ones
may be made in a conventional development environment, such as Pascal.

=53

-

J

Notes on Properties WindowScript

You add your own CDEFs, LDEFs, MDEFs and WDEFs by simply copying them
into the resource fork of your stack and specifying their name with the style

property.
A short description of those included in the package is provided below.

ListOflcons (LDEF)

This LDEF allows you to display a two-dimensional list of icons in a list object.
Each cell in the list is 40x40 pixels. The appropriate number of columns is
automatically calculated. The TEXT of the list should contain the resource ids of
the icons to be displayed. One handy way to obtain the ids of all available Icons
is to use the ResourceList XFCN. Color icons are used on color machines when
found.

ListOfFinderIcons (LDEF)

This LDEF allows you to display a two-dimensional list of finder icons in a list
object. Each cell in the list is 40x40 pixels. The appropriate number of columns is
automatically calculated. The TEXT of the list should contain the resource ids of
the finder icons to be displayed. One handy way to obtain the ids of all available
Finder Icons (ICN#) is to use the ResourceList XFCN.

ListOfPictures (LDEF)

This LDEF allows you to display a two-dimensional list of pictures in a list object.
Each cell in the list tries to be 100 x 100 pixels. The appropriate number of
columns is automatically calculated. The TEXT of the list should contain the
resource ids of the pictures to be displayed. One handy way to obtain the ids of
all available pictures is to use the ResourceList XFCN.

ListWithTabs (LDEF)

This LDEF allows you to display a list where each line is formated into columns.
These columns are not true list cells, like a spreadsheet, since only the whole line
may be selected. The TEXT of the list should contain the text to be placed in each
line. To denote a tab in a line, you may use either the tab character or the “0”
character (option-shift-v).

The placement of the tab stops and their alignment (left, center, right) is
controlled by an additional property: StyleInfo. For this LDEF, this contains a
string of characters where each represents a horizontal measure of 8 pixels. The
character may be a “.” which acts as a placeholder, a “>” which denotes a left
aligned tab, a “” which denotes a center aligned tab, or a “<” which denotes a
right aligned tab. For example, a Styleinfo property of “....>... <” would

define three tab stops:

-54-

-
!
e
4
3
=3
i
-
=
s
.
3
=

WindowScript Notes on Properties

1. A left align tab stop at 40 pixels
2. A center align tab stop at 80 pixels
3. A right align tab stop at 160 pixels

ListWithIcons (LDEF)

This LDEF allows you to display a list where each cell contains an icon on the left
and a text block area on the right. The cells will be adjusted in height to
accommodate at least three lines of text. The TEXT of the list should contain the
resource ids of the icons to be displayed, followed by a space and then the text to
appear to the right of the icon. One handy way to obtain the ids of all available
Icons is to use the ResourceList XFCN. Color icons are used on color machines
when found.

ListAsMenu (LDEF)

This LDEF displays a list of items as if the list were a menu. Meta-characters
(such as “/” and “(”) have the same effect as in menus. This LDEF is handy if
you need to create a menu-making window.

Digit (CDEF)
This control mimics the standard behavior of the control used in the Alarm Clock
DA. It is usually used for changing the individual fields of dates and times.

Latch (CDEF)

This control looks like a little latch which may be either up or down. Most often
this is used to control an optional portion of a window—which is either hidden
from view or shown according to the state of the latch.

PushLatch (CDEF)

This strange control should be familiar to users of the property picker. It
combines the abilities of a simple latch with a push button.

ColorPicker (CDEF)

This control displays the colors in a CLUT which is specified by the title of the
control.

Clut (MDEF)

This menu definition displays the colors in a clut which is specified by the text of
the first object in the menu. If you want the MDEF to display a previous
selection, place its offset into the clut, or the actual RGB value after the clut name,
separated by a comma. For example: if the text of the popup was “Rainbox,23”
then the colors in the Rainbow clut would be displayed with the 23rd item
indicated as the previous choice.

-55-

;

&

Notes on Properties WindowScript

Tear (MDEF)

This menu definition allows you to specify one or more pictures to be used as the
menu. Each picture may be split up into a grid similar to a picture object in
WindowScript. To specify the pictures to be used, the text of the menu should be
the names of the pictures followed by the desired grid. For example, if the text of
a popup was “Example,3,4” then the menu would display the picture named
“Example” and split it into a 3x4 grid.

A final piece of information may be appended onto a line of menu text: the initial
selection. In the above example, if we wanted the second piece of the grid to be
indicated as the prior selection, we would set the text of the object to
“Example,3,4,2". Lastly, if we want the menu to allow itself to be torn off, the
final item in the menu should be a rectangle, any rectangle. When the menu is
torn off, WindowScript will return an itemValue of 512 and this line of the
menu’s TEXT will contain the actual global coordinates of the destination of the
menu. It is then up to you to place a separately defined, but similar looking,
palette at that location.

Notes on the Menus Property

A handy feature of WindowScript is its ability to associate a set of menus with a
window. Whenever the window has the “edit,” that is, when it is to receive
keystrokes, WindowScript appends the menus in the menus property to the
current menubar.

The menus property keeps a return-delimited list of the menus to be used. You
can specify the menus by resource name or ID. If the first menu used is an Apple
menu, the menu bar is completely replaced. Otherwise, the window’s menus are
appended to the current menu bar. These menus must exist as a resource in the
stack. You create them using ResEdit or another menu resource creation utility.

Apple menu items (such as DAs) and font menu items (a list of available fonts)
will be appended automatically. Also, standard Edit menu commands Cut, Copy,
Paste will work automatically if their keyboard equivalents have been set to the
standard X, C,and V.

Unfortunately, HyperCard’s menu management commands do not work on
these menus. So, two externals have been included which allow you to do basic
menu maintenance: menuSet and menuGet. MenuSet is used as follows:

menuSet menu, menultem, property, value

S 0 50§ O) O O O O T A O O O O O

WindowScript Notes on Properties

MenuGet has a similar syntax:
menuGet (menu, menultem, property)

For more infonnation, see the chapter on XCMDs and XFCNs.

Notes on the Params Property

This window property provides a mechanism for setting the properties of objects
when a window is first opened. You can map values passed to the WindowScript
XFCN directly to properties of an object. This map is stored in the Params
property of a window.

For example, take a simple list dialog which had the list as object 3. If you set the
Params property to:

i3 Text

i3_Selection

then you could invoke the dialog like this:
get WindowScript (“"ListDialog",myList,"1-4")

which would set the text of the list to the contents of the container myList and
would select lines 1 to 4 of that list.

Parameter 1 is always the name of the window or the textual
= description of the window. So, the Params property
“begins” with parameter two.

Notes on the Result Property

This property allows you to return whatever properties are of interest from any
object in the window. These properties are collected for you whenever the Value
of the window is requested or when a modal dialog is dismissed. (This later case
is where the property gets its name since the value of the window is returned by
the WindowScript XFCN.)

For example, take a simple list dialog which had the list as object 3 (object 1 is an
OK button and object 2 is a Cancel button). If you set the Result property to:

i3 Selection

then when you invoked the dialog like this:

put WindowScript ("ListDialog",myList,"1-4") into
myContainer

Notes on Properties WindowScript

the value of myContainer would be two lines. The first line would contain the
name of the object which closed the window (i.e., OK). The second line would
contain the Selection property of the list (e.g., 1,3,8).

If a button is designated as the Cancelltem and is used to
(I dismiss the window, empty will be returned rather than the
properties you requested.

Line 1 is always the name of the object which closes the window. So, the Result
property “begins” with line two.

Some properties can span more than one line. If such a property is specified in
Result, it could corrupt the line numbering of the subsequent property values.
Therefore, unless the property is the last in the list, its value will be “scrunched”
by changing its return characters into “-=” characters. You can use the
Unscrunch XFCN to undo this. See Chapter 10 for details.

Notes on the Properties Property

Often, you'll have a batch of changes you want to make to a window. If you do a
set for each of them, the window updates will be slow and ugly. An easy way to
update a batch of properties is with the Properties property. You can collect a
list of changes in the form of:

ObjectName Property:Value [RETURN]

and then set the Properties property of the window to this container. All of
the properties contained therein will be changed.

For instance, if you wanted to make the following changes:
e Hilight radio button 1
e Unhilight radio buttons 2 and 3
e Unlock the edit text field
then you would put these changes into a container, such as it:
get "Radiol Hilite:TRUE"-
& return & "Radio2 Hilite:FALSE" -

& return & "Radio3 Hilite:FALSE" -
& return & "someText LockText:FALSE"

50 T T O T OO . O O O

WindowScript Notes on Properties

Then you set all of these at once:
set the properties of window "My window" to it

which will set the properties of the window described in it. There is no window
updating between changes, so it happens quickly and invisibly. This is the best
way to change a set of properties quickly.

You can also use the properties property to create a new object while the
window is open. You’d probably only want to do this in the most esoteric of
circumstances. To do it, you set a string container as before, but instead of
modifying properties of existing objects, you simply make a new one. This
example will create a new checkbox:

get " _itemType:CHK" &-
return & " rect:20,20,70,25"
set the properties of window "My window" to it

and the new checkbox will appear.

When you create a new object on the fly, you must define at
= least the itemType and the rect for the item.

Please note that any new objects you create will not be saved when the
window is closed. They exist only for this instance of the window. There is
no way to save these newly created objects without the WindowScript
stack. If you need new objects to appear in a window, you can also create
them beforehand and set their visible property to false until you need
them.

Invisible Buttons

If you want to be able to respond to a click on an area of a window without
obscuring other objects in the window, you can use an invisible button. For
instance, if you have several items that are related, and clicking any one should
invoke a single script, you can place an invisible button over them.

You create an invisible button by creating a picture object and setting its name to
anything that won’t display a picture—that is, any name that isn’t the name of a
PICT resource. This way, WindowScript will look for the picture to display, find
none, and display an empty object.

-59-

28

Notes on Properties WindowScript

Make sure you set the logic property of the picture, or there will be no
selection. The chosen selectionStyle will still work, selecting whatever
objects show through from underneath the picture. Whatever logic you have
chosen will work; if you choose lasso, the selection will shrink to fit objects
underneath the picture. You can still use the grid property to divide the picture
into sections.

The Lasso selectionStyle matches to the blackColor set for that picture.
That is, it begins selecting the entire picture, then shrinks the selection around the
edges until it hits the blackColor. In this way, the white space of a picture is left
white.

Notes on Group Style

The group style, like HyperCard'’s group style, can be used to group together a
string of characters. When there are characters styled as a group in a locked text
object, a hit in that object over any of the characters will select the entire group;
the hit will return all of the characters in that group in the objValue variable. This
makes creating HyperText windows a snap.

For an unlocked text object, holding down the command
02" key will temporarily lock the field.

0 O T O T O O O S L

WindowScript Scripting

Chapter 9
SCRIPTING

WindowScript gains much of its power through its scripting capabilities. You can
write scripts to be executed when an object is “hit”, that is, clicked on. These
scripts exist either internal to the object or within a handler in the stack. Both are
useful for different situations.

WindowScript, unlike HyperCard, doesn’t allow you to write scripts for each
event associated with an object. WindowScript sends a hit only on the most
interesting event for that object.

What are hits? Usually, hits correspond to either a mouseUp (when the object has
something to do on mouseDown, like a popup) or a mouseDown (when it
doesn’t, like a box). In the case of editable text objects, WindowScript sends a hit
on closeField. Also, a variety of special hit messages are sent to the window
as whole, reporting such actions as the window being opened, zoomed, closed,
etc.

Window events:

ISy Open CloseBox
Close ZoomBox
Suspend GrowBox
Resume TitleBar

Given a pair of WindowScript windows, when you switch between them, you
will receive an activate event first, then the deactivate. This is the reverse of what
you would normally expect. This is an “anomaly” of HyperCard.

Object Scripts

Object scripts are contained in an object’s script property. When an object has a
script, the script is executed upon receiving a hit. If the window has a hit
handler—that is, a handfer in the stack that is executed for every hit—the hit
handler is ignored if the object in question has its own script.

6=

Scripting WindowScript

Unlike HyperCard, you can’t create more than one handler in a script. An object
script is just that—the lines of HyperTalk to be executed when the object is hit.
You can’t create functions or handlers that are local to that object, as you can for a
HyperCard button or field.

Hit Handlers

Sometimes it’s easier to create one large script to deal with everything for a
window, rather than writing a script for each object. In this case, you can create a
single hit handler to deal with all of a window’s events. You specify the handler
with the HitMessage property of a window. The HitMessage is sent whenever
an object is hit or a window event is registered. (If the hit object has an object
script, the HitMessage is suppressed.) A hit handler can be in the card,
background or stack script.

For example, if the HitMessage property is “BillsWindowHit”, this would be
sent to the card:

BillsWindowHit wdID, wdName, objNo, objName,
objVvalue

Variables

WindowScript provides local variables to object scripts to let them know what
has happened when there is a hit. These variables contain:

wdID the ID of the window

wdName the name of the window

objNo the number of the object that was hit
objName the name of the object that was hit
objValue the value of the object hit

These same variables are passed as parameters to Hit handlers.

Hit Handler vs. Object Scripts

Which should you use, a hit handler in the stack or scripts in your objects? It all
depends. There are benefits to both methods. Benefits of hit handlers:

¢ Hit handlers can use HyperCard’s debugger
* One hit handler can be used by many windows
e HyperCard will precompile the script into memory for you, so it’s faster

=7

S 0 O O T Y O O N OO O T O O O

WindowScript Scripting

Object scripts, on the other hand:

e Will travel with windows, so windows can be self-contained entities
e Don’t have a huge if...then...else statement to deal with
* Are easier to enter and modify, being in the property picker

In general, it’s easier to write and debug everything in a hit handler first, then
move the appropriate parts of the handler into the objects.

Checking the Result
Some hit messages use the result to modify their behavior:

* A handler that returns a non-empty result in response to a closefield
will cause the cursor to remain in that field.

* A handler that returns a non-empty result in response to the window’s
close message will cause the window to stay open.

These are useful when you want to validate field values when a window is
closed, and keep the window open if the values are not valid. (You can return a
value from any handler, not just from function handlers.)

The Scripting Assistant

When you are using a separate window for editing scripts—when you’ve clicked
on the “script” button in the property picker—a menu appears: the Assistant
menu. This menu can help you write a script for that object. You can use the
scripting assistant to get a property, set a property, send a command, or open
another WindowScript window. The assistant window looks like:

Scripting

WindowScript

[tem Name

Property Name

B4 Dops!

O Cancel

Script
TestFont
TeutSize

1
e

Topleft
Uisible
WhiteColor
Width

%=t Qops! An error oc

HyperTalk Statement
get wsGet(wdID,"0OK","Visible")

[[] Always Use Item Number

You can select the object and property you want to change, and when you click
Insert, the HyperTalk fragment in the text box will be placed into the script
where the insertion point was before the dialog was opened.

The checkbox “Always use item number” is helpful because, if you write a script
now and change names of objects later, your script will use the old names. Using
item numbers is a handy way around this. (Of course, item numbers can change,
too, if you reorder the objects in a window.) Also, using item numbers is faster.

When closeField Is Sent

CloseField messages are sent to a “dirty” field when one of the following
happens:

o The user clicks on any other object (inclﬁding the closebox but not the

cancel object)
e The user tabs out of the field (even if there is no other field)

e The user hits Enter or Return
e The window loses edit (in the case of windoids)

They are also sent when some properties are set:

e When the Dirty property is changed
e When the Text property of a dirty object is set

— 64 -

oIS OO0 O U V3 0 A W0) O O8O0 Y O

WindowScript Scripting

Speeding It Up

Use HyperCard’s Get /Set syntax when possible. It tends to be quicker than
wsGet/wsSet. Also, it is faster to accumulate a number of property sets into a
local container and set them all at once using the properties property, than to
do them all individually.

wyyyyyen

I IR IO AT AT

WindowScript XCMDs and XFCNs

Chapter 10
XCMDS AND XFCNS

WindowScript works its magic through external commands and functions. These
are usually stored in the WindowScript stack itself; when you install
WindowScript, you are really just adding a “start using” to your Home
stack’s startup handler.

To use WindowScript in stacks you plan to distribute, you’ll need to copy the
appropriate XCMDs and XFCNis to that stack. WindowScript’s installer card can
do this for you. See the chapter “Distributing WindowScript.”

Listed below are all externals that come with WindowScript. Some are essential
to its operation; others are just helpful. You can use all of these in your stacks.
There are other externals that WindowScript uses “behind the scenes.” These are
not listed here, as they are for internal WindowScript use only, and are not
supported as stand-alone externals.

answerColor(prompt, inColor)

This external function returns the three-part number which represents the color
selected in the color picker (also known as an RGB value) dialog. If cancel is
clicked, empty is returned.

prompt The text which is to appear in the color picker dialogas a prompt
for the user. If omitted, no prompt is given.

inColor The initial color which is being altered

menuGet(menu, menultem, property)
This command gets the property of a menu item.

menu The name or id of a menu
menuItem The name or number of a menu item

property One of the properties described below

67

I‘J

XCMDs and XFCNs WindowScript

The properties and their potential values are:
Name The text of the menu item
CheckMark True or false
CmdChar Any single character
MarkChar Any single character
TextStyle The style of the object’s text

Disabled True or False

Style The MDEF used by the menu
Text Text of the whole menu (with menuitem = 0)
hasQT(

This external function returns either TRUE or FALSE, indicating whether or not
QuickTime is present on this machine.

resourceList (file name, type, format)
This external function returns a return delimited list of resources from the
specified file.

file name The full pathname of the file whose resources are to be listed. If
omitted, all open resource forks are scanned. If empty, only the
first resource file in the resource chain (usually the current stack)

is scanned.

type The type of the resources to be listed. If omitted, all resources are
listed.

format Determines what information is returned. It is either a selector

for a built-in format or a prototype line for the result. Recognized
selectors are:

ID Each line contains the id of the resource.

Name Each line contains the name of the resource. Only
named resources are listed.

S 0 O) T T T T O O O A A O O O A

WindowScript XCMDs and XFCNs

Either Each line contains the name of the resource if it has one
otherwise it contains the number preceeded by a #
sign.

Both Each line contains the id number left justified in a
seven characters space followed by the name of there is
one.

A prototype line may be supplied instead. Each line will then
contain that prototype with resource information filled in where
the following words appear (they must be in all uppercase).

ID Will be replaced by the resource’s id.
NAME Will be replaced by the resource’s name.
TYPE Will be replaced by the resource’s type.
SIZE Will be replaced by the resource’s size.

If you executed the following statement in the WindowScript
stack:

answer resourcelist("", "MENU", "ID,NAME")

you would see:

3128,Apple
3129,File
3130,Edit
3131,60
3132,Tools
4129,File
4132,Assistant
3134,Font
3135,5tyle
3136,Color
3133,0bjects

screenlnfo (MAIN | DEEPEST | rect | point)

This command returns information about the display screens being used. If you
pass main, it returns information for the main screen. If you pass deepest, it
returns information for the deepest. If you pass a rect, it returns the info for the
deepest display that intersects that rect. If you pass a point, it returns the screen

569~

XCMDs and XFCNs WindowScript

menu
menultem
property

value

Name

CheckMark
CmdChar
MarkChar
TextStyle
Disabled
Style

Text

that contains that point. If you pass nothing, it returns a return-delimited list of
all screens currently attached.

The information it returns is in the form:
colors 1,t,z,b

where first is the number of colors available on that screen, followed by the
rectangle of that screen.

: menuSet menu, menultem, property, value
‘ This command sets the property of a menu item.

is the name or id of a menu

is the name or number of a menu item
is one of the properties described below
is the value of the property

The properties and their potential values are:

The text of the menu item
True or false

Any single character

Any single character

The style of the object’s text
True or False

The MDEF used by the menu

Text of the whole menu (with menuitem = 0)

scrunch (text)

This external function returns the text with all return characters replaced by "~

(option-L) characters, thereby reducing it to one line as defined by HyperCard.

text

The text which is to scrunched.

=70~

B O) O O O O O O O O O O O O O O

WindowScript XCMDs and XFCNs

This is useful when initializing the text property of text objects in the initial call
to windowScript:

windowScript ("myWindow" & return & "bob_ text:" &
scrunch(bg £1d4 3))

unscrunch (text)

This external function returns the text with all “=" characters replaced by return
characters, thereby expanding it from one line as defined by HyperCard. This is
most often used to undo the effect of scrunch.

text The text which is to unscrunched.

windowScript (window name | window description)
WindowScript is an XFCN that accepts a single parameter. This parameter may
be either a texual description of a window to be displayed, or the name of a
resource of type LENS which contains such a description. The XFCN returns the
ID of the window followed by the window name in quotes (except in the case of
modal dialogs, in which case WindowScript does not return until the user has
dismissed the window; WindowScript then returns the value of the dialog).

The description used by WindewScript is simply a textual listing of the objects
which compose the window and the properties of those objects. Each property of
each object is presented on a different line and is of the form:

Property: PropertyValue
If you open a window as text you will see this description.

If a property consists of multiple lines, it needs to be scrunched (i.e., returns need
to be converted to —'s). WindowScript will change them back for you. If you ever
need to scrunch data, you can use the XFCN Scrunch which has been included.

To initialize object values, you may pass a list of object properties and values
after the LENS name. For instance, to place the container stuff into a list, you
could:

get windowScript ("my window"& return &
"theText Text:"& stuff)

would put stuf£ into the list object named theText.

wsGet (window, object, property)
This function returns the value of a property.

ST

s

XCMDs and XFCNs WindowScript
window The name of the window that contains the object
object The object being examined. It is either the name of the object or

its item number.
property The property to get

This can be used instead of HyperCard’s get command, although HyperCard’s
command is faster. However, wsGet must be used for modal dialogs. See
Overview for examples.

wsSet window, object, property, value
This external command sets properties for an object.

window The name of the window that contains the object

object The object being manipulated. It is either the name of the
objector its item number.

property The property to set
value The value to set it to

This can be used instead of HyperCard’s set command, and indeed must be
used for modal dialogs. HyperCard’s set command is faster, however. See
Overview for examples.

wsSend window, object, command
This will send a command to an object. If you specify 0 for object, the command
will be sent to the window.

window The name of the window that contains the object

object The object being commanded. It is either the name of the object
or its item number.

command The command to send

This can be used instead of HyperCard’s send command for modal dialogs.

1 O T O O 0

WindowScript Troubleshooting

Appendix A
TROUBLESHOOTING

What Happens When an Error Occurs?

Script Error

Error encountered in object’s script
or window’s hit handler.

Hindow ID: 9051492
Hindows Name: Oops! 2
Object Number: 5
Object Name: Prank call
Object Value: TRUE

Nested Hessages:

mousellp
wsError

[

O]

When WindowScript detects an error in a script, it informs you of the problem
with a dialog box. This dialog box gives certain information about the error
condition:

e window name and ID which had the error
e name and ID of the object that caused the error
e what its value was

The list titled “Nested messages” lists the chain of events that led to the error; in
this case, a mouseUp caused the window to be opened. The handler “wsError”

=73

__

A

= s s A

Troubleshooting WindowScript

will always be listed, as it is the message sent by WindowScript to show the error
dialog box.

The Message Watcher is very helpful in debugging hit

IS8 handlers. Whereas tracing often causes window events
(suspend and resume) and therefore interferes with the
process, MW does not.

When WindowScript detects an error, it sends the message “wsErrox” up the
hierarchy. The WindowScript stack responds to this message with the above
dialog. If you have taken the WindowScript stack out of the hierarchy—e.g.,
you’ve done “stop using” or something similar—you’ll need to handler the
error message yourself. See the next chapter for more details.

Scope of Variables Bug

As of version 2.1, HyperCard is unable to give full stand-alone handler status to
object scripts. This means that an object script shares the same variables as the
handler (or other object script) which caused it to be executed. For example, if
you have the following script:

on mouseUp

put true into testCase

get windowScript ("TestDialog")
answer testCase
end mouseUp

And the window “TestDialog” has a button with a script:
put "Button Clicked" into testCase

The value that appears in the answer dialog might not be “true”! The value
which would appear in the answer dialog would be “Button Clicked” if the
button had been clicked.

What's happening is that, when WindowScript sends its scripts to HyperCard to
be executed, HyperCard doesn’t create a clean slate of variable space for the
script; it just runs in the variable space already there—and that comes from the
last handler executed.

The bottom line:

e Variables in object scripts of dialogs are the same as those in the script
which invoked the dialog.

T

B

1 T T T T A O A O

g

WindowScript Troubleshooting

* Variables in object scripts of windows and windoids are usually globals. It
is possible to send messages to windows (either directly, like close window
untitled, or indirectly like quit HyperCard) which cause item scripts to be
executed (the window's script in the two examples). In this case, the
variables in the script are not globals, but rather are the same as those in
the script which caused the message to be sent.

This is a bug, not a feature. Don’t count on this behavior in
= your windows; we expect it to disappear in a future version
of HyperCard.

WindowScript Quick Glossary

Appendix B
QUICK GLOSSARY

Activate Event: This event is sent to a window when it is activated. For instance,
if a window behind all the others is clicked on, it comes to the front and is sent an
activate event.

Hit: The most interesting event for an object. Depending on the object, it can be
eithera closeField, mouseDown, or mouseUp.

Hit Handler: A HyperTalk script, residing in the card, background, or stack
script, that receives all hit messages for a window and responds to them
accordingly. It will not be called if the object hit has its own script.

Modal Dialog: A modal dialog enters a “mode,” so that nothing else can be done
while the dialog is open. Menus are generally unavailable, and clicking outside
the dialog window generates a beep. (HyperCard’s answer dialog is an example
of a modal dialog.)

Modeless Dialog: A modeless dialog box is like a modal dialog box, except that
it doesn’t enter a mode; it peacefully coexists with other windows. The menus are
available and other windows can be clicked on and switched to. (Most word
processors’ Find dialogs are examples of modeless dialogs.)

Property: An attribute of an object that controls its appearance or behavior.

Resume Event: This event is sent to a window when it is about to become the
frontmost (active) window.

RGB: Stands for Red, Green, Blue. This is a method for choosing a color by
specifying the amount of individual red, green, and blue in the color. Values may
range from 0 to 65535 for each. (The AnswerColor XFCN always returns a valid
RGB value.)

Suspend Event: This event is sent to a window just before another window is
moved in front of it.

Quick Glossary WindowScript

o).

Update Event: This event is sent to a window whenever it needs an update. For
instance, if a dialog box temporarily obscures a portion of the window, when the
dialog is closed the window is sent an update event so it can redraw its contents.

XCMD: An external command for HyperCard. By creating external commands, a
user can add features to HyperCard that were never intended for it.

)

XFCN: An external function for HyperCard. By creating external functions, a
user can add features to HyperCard (like WindowScript).

-78-

B T O O O O

WindowScript Keyfilters

Appendix C
KEYFILTERS

Keyfilters are tiny pieces of code that either accept or reject the text that has been
entered into a text field. You can use them, for instance, to keep characters out of
a numeric field, or to verify that a correct entry has been given. One keyfilter,
OnlyDigits, has been provided for your use.

You set the keyfilter property not from the property picker, but from a script
somewhere, or as part of the window initialization. Alternately, you can edit the
window as text and add the property “Keyfilter:x” to an object yourself.

A short keyfilter, written in Pascal, is shown below.
unit OnlyDigitsUnit;
interface

uses
hyperXCMD, Utilities;

function Main (paramptr: XCMDPtr;
theText: handle): boolean;

implementation
{$R-}

function OnlyDigits (paramptr: XCMDPtr;
theText: handle): boolean;

forward;

function Main (paramptr: XCMDPtr;
theText: handle): boolean;
begin
Main : = OnlyDigits(paramptr, theText);
end;

290

Key Filters WindowScript

function OnlyDigits (paramptr: XCMDPtr;
theText: handle): boolean;
var
readPtr, endPtr: ptr;
asStr:=stx255;

begin
OnlyDigits : = TRUE;
readPtr : = theText”;
endPtr : = pointer(ord4 (theText”) +

GetHandleSize (theText)) ;

while readPtr <> endPtr do
if (readPtr” < orxrd('0')) | (readPtr” > oxd('9'))

then begin
OnlyDigits : = FALSE;
readPtr : = EndPtr;
end
else
readPtr : = pointer (ord4 (readPtr) + 1);

end; {OnlyDigits}
end. {unit}

%i

WindowScript

Properties and Commands

Properties

Appendix D
PROPERTIES AND COMMANDS BY OBJECT

Universal properties

AutoSize
Balloon
BlackColor
Disabled
Height
Rect

Name
Number
Script
TextFont
TextSize
TopLeft
Visible
WhiteColor
Width
Value

Window properties
Dirty
HasCloseBox
HasGrowBox
HasTitleBar
HasZoomBox
HitMessage
IdleTime
Menus
NumberOfltems
Params
Result

=81=

AutoClose
Cancelltem
Defaultltem

Radio buttons

Hilite

Check boxes

Hilite

Labels

Text

LineHeight
LockText
Scrolling
Scroll
Selection
SelectionText
Text
TextAlign
TextOfSelection
TextStyle
Wordwrap

= ... - = =
Properties and Commands WindowScript
£ Icons Popups
1D Selection
Grid SelectionText
Logic Style
Text
Pictures TextOfSelection
ID TitleItem
Grid
Logic Controls
Scroll Hilite
Scrolling Leap
SelectionStyle Max
z Min
I QuickTime Objects Step
File Style
Repeanng Value
Selection
SelectionTime Pt
SoundVolume Boxes and RoundRects
Scrolling Fill
Speed Pen
TimeValue PenSize
| Lists Lines
DoubleClickItem Pen
KeyScroll PenSize
Logic
Scroll
Scrolling
Selection
SelectionRect
SelectionText
Style
Text
TextOfSelection
~82-

WindowScript

Properties and Commands

Commands

Universal commands
AdjustSize
DoUpdate

Window commands
BringToFront
SendToBack
SnapShot
Zoomlin

Text objects
Cut

Copy

Paste

Clear
GetBGFieldText
GetCdField Text

QuickTime objects
Cut
Copy
Paste
Clear
Prev
Next
Play
Stop
Pause
First
Last

List objects
Copy

I - WindowScript Distributing WindowScript
i =
—

Appendix E
= DISTRIBUTING WINDOWSCRIPT

You can create a stand-alone stack that uses WindowScript to display your
windows. All that is required is that you copy the required resources. Use the
installer dialog’s “Copy” button to copy the required resources into your stack.
This will display the following dialog box:

N Copg Resources

Select a single resource
from the list at left for a
description. Be sure to
select all those to be
copied.

LDEF ListOflcons
LDEF ListOfPictures
LDEF ListOfFinder|con
LDEF ListWithTabs..
LDEF ListWithMetas

CDEF Latch

CDEF LatchPush
CDEF ProgressBox
CDEF Digit

<

Simply select the XCMDs, XFCNs and resources you are using. Be certain to copy
the first four: WindowScript, wsGet, wsSet, and wsSend. If you're not sure, it
won't hurt to copy everything.

If you plan to distribute your stack, you must first arrange licensing. See
Appendix F for the license form and terms.

-85-

=" =

= =

Distributing WindowScript WindowScript

M

wsError handler

WindowScript sends the message “wsError” when there’s an error in a script it
attempts to execute. The WindowScript stack has a handler for this message, and
that handler displays the standard WindowScript error dialog. (This is described
in the Troubleshooting chapter.)

If you want to ship a product that uses WindowScript, or just make a stack that
you can distribute, you may have to handle errors in some other way. You can
trap the “wsExrror” call in one of your own handlers, and do whatever you need
to do. The WindowScript error dialog will only be displayed if the “wsError”
message travels all the way up the hierarchy to WindowScript.

A simple handler could be:

on wsError wdName, wdID, objName, objNum, objValue
answer "WindowScript error:" & wdName & -
return & "objName"
end wsError

which would just report the window and object that the error occurred in. The
error handler should probably be in the stack script, unless you are certain of the
background or card that will be used while your windows are open.

If you don’t trap wsError in a stand-alone stack, nothing bad
ISy will happen. The message will just pass all the way up the
hierarchy and disappear.

T T T G O 1 1 A O A O O O O O

-

WindowScript Licensing WindowScript

Appendix F
LICENSING WINDOWSCRIPT

Fees

If your product is sold through retail channels OR is provided to one or more of
your clients for a fee, and such clients are not registered users of WindowScript,
OR you otherwise intend to distribute your product for value, then your license
fee is One Hundred US Dollars (US$100) payable before you begin distribution of
your product. No further fees will be required.

If you are a consultant, your clients must own their own copy of WindowScript,
or you must pay the license fee.

If your product will be public domain or shareware, you can avoid any fees by
displaying the LENS resource “Distribution Splash” for at least four (4) seconds
when your product opens or closes (your choice). This is easily done from the
stack script:

on openStack
get windowScript ("Distribution Splash")
wait 4 seconds
close window "Distribution Splash™

end openStack

The LENS for the window “Distribution Splash” is automatically copied into
your stack by the installer when you copy the WindowScript XFCN. All you
need to do is display it. You may not modify this LENS resource in any way . If
you do not display this LENS resource, you must pay the fee stated above.

There is a license form at the end of this Appendix, as well as on the product
diskette. Fill this form out and mail it back to us with a check. Whether a fee is
required or not, you must complete the form and return it to Heizer Software before you
begin distribution.

=87

Licensing WindowScript WindowScript

Terms:

This license is non-exclusive and non-transferable and grants the Licensee the
right to distribute the WindowScript resources in the product named in the
Distribution License, provided the following terms are complied with and for the

fee detailed above.

Display of copyright and trademark The following must be displayed to users of
your product:
“This product uses certain copyrighted resources from
WindowScript™ which are included under license from
Heizer Software.

WindowScript ©1990-94 Leonard Buck. All Rights Reserved.
WindowScript is a trademark of Heizer Software.”

The above notice must be displayed in a prominent location in Licensee’s
product on a title screen, an about box, or other similar location. The LENS
resource “Distribution Splash” contains the above text and may be displayed to

satisfy this requirement.
The first occurrence of any mention of WindowScript in Licensee’s product,
literature, or advertising must include a trademark symbol following the word

WindowScript (e.g., WindowScript™) and the following line must appear in an
appropriate location on the same material:

WindowScript is a trademark of Heizer Software.

o0, .

1

T T A 0 O A

t

T T T

I'%

WindowScript Licensing WindowScript

Licensed Resources The following WindowScript resources are covered by this
license:

XFCN WindowScript LDEF ListAsMenu
XFCN wsGet LDEF ListOfFinderIcons
XFCN AnswerColor LDEF ListOfIcons
XFCN AnswerQT LDEF ListOfLabeled Art
XFCN HasQT LDEF ListOfLargeArt
XFCN menuGet LDEF ListOfPictures
XFCN ResourceList LDEF ListOfScaledPictures
XFCN ScreenInfo LDEF ListOfTruncPictures
XFCN Scrunch LDEF ListWithIcons
XFCN Unscrunch LDEF ListWithMetas
LDEF ListWithTabs...
XCMD menuSet
XCMD wsSend CDEF Digit
XCMD wsSet CDEF Latch
CDEF LatchPush
Karl Marx CDEF Progress?
Karl Napolean CDEF ProgressBox
Karl Waldo CDEF PushDown
CDEF Working
WDEF Windoid
MDEF Clut
Keyf OnlylLine MDEF MenuOfColors
Keyf OnlyDigits MDEF MenuOfFinderlcons
Keyf OnlyMath MDEF MenuOfPatterns
Keyf OnlyNever MDEF Tear

These are the only resources which may be distributed under the terms of this
license.

Documentation No documentation on the use of the licensed WindowScript
resources may be provided.

Title Licensee acknowledges the WindowScript resources are the sole property of
Licensor. Licensee is not granted any title whatsoever in the WindowScript
resources.

Warranty No warranty of any kind is extended to Licensee’s product.

-89-

=

Licensing WindowScript WindowScript

Acceptance Licensor reserves the right to refuse to license the WindowScript
resources to any party at its sole discretion. If Licensor rejects a license, any fee
received will be promptly returned to Licensee. Upon acceptance, Licensor will
send Licensee a signed copy of the license agreement.

Effective Date The effective date of a license will be the date that Licensor signs
the agreement.

Termination If licensee breaches any of the terms of this license, Licensor may
terminate this license by notifying Licensee in writing. Licensee will have 30 days
from the date notice is received to correct the breach or otherwise renegotiate this
license, otherwise this license will terminate. In the event of termination, Licensor
will NOT return any license fees which may have been paid by Licensee.

Right to Monitor Licensor may at any time and at its sole discretion, request a
copy of Licensee’s product covered by this license and/or any related manuals,
literature, or advertising copy which make mention of WindowScript in order to
monitor Licensee’s compliance with the terms of this license. If Licensor exercises
this right, any materials received will be kept in confidence and will be used
solely to monitor compliance with the terms of this agreement. In no event will
Licensor redistribute any materials received under this clause nor will Licensor
return said materials to licensee.

Future Versions This License shall apply to only one product at a time. If more
than one version of a product is distributed at the same time (e.g., a “Lite”
version and a “Full” version) then each version will require a separate license.
However, if a new version is released and the previous version is discontinued,
this license will continue to be valid and will apply to the new version (e.g., v1.0,
vl.1, v1.2.5, etc.).

Validity In the event that any portion of this license shall be rendered in a court
of law as invalid, unenforceable, or illegal, all remaining portions of this

agreement shall remain in effect.

Governing Law This license shall be governed in accordance with the laws of the
State of California.

Amendments Licensor may amend this license from time to time as new versions
of WindowScript are released. Such amendments will only apply to Licensee if

—90=

WindowScript Licensing WindowScript

Licensee chooses to incorporate the upgraded version of WindowScript into
Licensee’s product.

Nothing in this license shall be construed as the formation of a partnership or
joint venture between the parties.

This license supersedes any and all oral or written communications between the
parties and is the entire agreement between the parties.

WindowScript Distribution License

WindowScript Distribution License

If you will be. distributing a product that uses WindowScript, you must fill in this license form and agree to the
terms stated in Appendix F of the WindowScript manual and return this form to Heizer Software along with a
check for the license fee if required. Photocopy this form as needed for additional licenses. No Faxes will be
accepted: all license requests must be mailed fo Heizer Software, ATTN: Licensing, PO Box 232019, Pleasant
Hill, CA 94523, If your product requires a custom version of WindowScript or otherwise has special licensing
requirements, call us at 510-943-7667. We'll do our best to meet your needs.

This license Is between Heizer Software (Licensor), acting for and on behalf of Leonard Buck and theResult
Software, Inc., and

Licensee:

name company

address

city state Zip daytime phone ()

Licensee wishes to purchase a license to use the WindowsScript resources, as set forth in Appendix F of the
WindowsScript manual, with the following product:

Product Name:

Brief Description (attach a product brochure if you prefer):

| agree with and understand the license terms stated in the WindowScript manual.

name and title

signature date

[A check for $100 is enclosed (No. 30-0514) [J My product does not require a fee (No. 30-0515)

Upon acceptance of this License by Heizer Software,
a signed copy of this agreement will be returned for your records.

A license is hereby granted to Licensee by Heizer Software:

name and title

signature date

Rev 1.54/15/94 © 1994 by Heizer Software. All Rights Reserved.

WindowScript Scripting Quick Reference

Appendix G
SCRIPTING QUICK REFERENCE

To set properties use either HyperCard’s set command or the wsSet XCMD. The
syntax for setting properties is:

wsSet <windowRef>, <itemRef>, <propertyName>,<value>
set <propertyRef> of window <windowRef> to <value>

Example: wsSet wdID,2,"text",myContainer
set i2 text of window id wdID to myContainer

To get properties use either HyperCard's get command or the wsGet XFCN. The
syntax for getting properties is:

get wsGet (<windowRef>, <itemRef>, <propertyName>)

get <propertyRef> of window <windowRef>

Example: get wsGet (wdlD,2,"Text")
get i2 Text of window id wdID

To send commands to windows and window items use either HyperCard'’s send
command or the wsSend XCMD. The syntax for sending commands is:

wsSend <windowRef>, <itemRef>, <command>
send <commandRef> to window <windowRef>

Example: wsSend wdID, 2, "Copy"
send i2 Copy to window id wdID

windowRef: the name or ID of the window

itemRef: the name or item number of the desired item

propertyName: the property of the object that you are interested in

value: what the property is being set to

propertyRef: itemRef + + PropertyName (e.g. MyField Text,or if a by
number then preceed with i as in i2 Text)

commandRef : itemRef + + Command (e.g. MyField Copy, or if a by number
then preceed with i as in i2 Copy)

command: the command being sent to the window or window item

For modal dialogs wsSet, wsGet and wsSend must be used. For more
information on using these properties and commands, please refer to Chapter 7.

=195~

Scripting Quick Reference: Properties Table WindowScript
Prop. |Read/ Editable
Pg | Picker | Write Push Radio Text
Ref |Access [Status | Window Buttons Buttons | Checkbox Labels Fields
AutoClose | 37 Y, RW BOOL
AutoSize |37 Y RW BOOL BOOL BOOL BOOL BOOL BOOL
Balloon | 37 Y RW TEXT TEXT TEXT TEXT TEXT TEXT
BlackColor | 38 Y RW RGB RGB RGB RGB RGB RGB
Cancelltem | 38 Y RW BOOL
Commands | 38 N RO TEXT TEXT TEXT TEXT TEXT TEXT
Cursor N RW |STR[INT] |STR[INT] |STR[INT] |STR[INT] |STR[INT] |STR[INT]
Defaultitem | 38 Y RW BOOL
Dirty | 38 N RW BOOL
Disabled | 39 Y RW BOOL BOOL BOOL BOOL BOOL
DoubleClickitem | 39 Y RW
Flle | 3 Y RW
Fill | 39 Y RW
Grid | 3 Y RW
Group N RW
Growitem | 39 Y RW BOOL BOOL BOOL BOOL BOOL
Handle | 39 N RO INT INT INT INT INT INT
HasCloseBox | 40 Y RW BOOL
HasGrowBox | 40 Y RW BOOL
HasTitleBar | 40 Y RW BOOL
HasZoomBox | 40 Y RW BOOL
Height | 40 Y RW INT INT INT INT INT INT
Hilite | 40 Y RW BOOL BOOL
HitMessage | 40 Y W TEXT
D |40 N RW
IdieDelay | 40 N RW INT
Inset | 41 N RW INT
ItemList | 41 N RO STR
ItemType | 41 N RO STR STR STR STR STR STR
KeyFilter | 41 N RW STR
KeyScroll | 41 Y RW
Leap | 41 Y RW
LineHeight | 41 Y RW STR[INT]
LockText |42 Y RW BOOL
Logic | 42 Y RW STR
Max | 42 Y RW
MaxSize | 42 Y RW INT
Menubar | 43 N RW |INT [STR]
Menus |43 | Y RW |INT[STR]
Min | 43 Y RW
MinSize | 43 Y RW INT
Neme | 43 Y W STR STR STR STR STR STR

BOOL boolean (True or False)

INT
RGB
STR
TEXT

integer

can be either an RGB (“integer. infeger. integer”) or a color index (integer)

single line string (max 255 characters)

string which may contain multiple lines (max 32K characters)

-96-

A T O I I O O O O

"

WindowsScript Scripting Quick Reference: Properties Table
Static ICONs & Quick- Boxes &
Text Finder Time List Popup Round Rect
Fields Icons Pictures Movies Boxes Menus Controls Boxes Lines
BOOL BOOL BOOL BOOL BOOL BOoL* BOOL* :
TEXT TEXT TEXT TEXT TEXT TEXT TEXT TEXT TEXT
RGB RGB RGB RGB RGB RGB RGB RGB _RGB
TEXT TEXT TEXT TEXT TEXT TEXT TEXT TEXT TEXT
STR[INT] |[STR[INT] [STR[INT] [STR[INT] [STR[INT] |STR [INT] |STR[INT] | STR[INT] [STRI[INT]
BOOL | BOOL BOOL BOOL BOOL BOOL BOOL BOOL BOOL
INT
STR STR
STR [INT]
INT \
STR
BOOL BOOL BOOL BOOL BOOL BOOL BOOL BOOL BOOL
INT INT INT INT INT INT INT
INT INT INT INT INT INT INT INT INT
BOOL
INT INT
INT
STR STR STR STR STR STR STR STR STR
BOOL
INT
STR[INT]
BOOL
STR STR STR [INT]
INT
INT
STR STR STR STR STR STR STR STR STR
() alternate value type (your choice)
R/W read or write
R/O read only

Supported by some, but not all, CDEFs and MDEFs

-97-

-

Scripting Quick Reference: Properties Table WindowScript
Prop. |Read/ Editable
Pg | Picker | Write Push Radio Text
Ref [Access |Status | Window Buttons Buttons | Checkbox Labels Fields
Number | 43 Y R/W INT INT INT INT INT | INT
NumberOfitems | 43 N RO INT
Params | 44 Y RW TEXT
Pen | 44 Y R/W
PenSize | 44 Y R/W
Properties | 44 N RW TEXT
Rect | 44 Y. R/W INT INT INT INT INT INT
" Repeating | 44 Yy RIW
Result | 44 Y R/W TEXT
Script | 45 Y RW TEXT TEXT TEXT TEXT TEXT TEXT
Scroll | 45 N R/W INT INT
Scrolling | 45 Y RW BOOL BOOL
Selection | 45 N R/W INT
SelectionColor | 46 N RW RGB
SelectionFont | 46 N RW STR
SelectionRect | 46 N RO
SelectionSize | 46 N RW INT
SelectionStyle | 46 N RW STR
SelectionText | 46 N RW TEXT
SelectionTime | 46 N RW
SoundVolume | 47 N R/W
speed [47| N RIW
Step | 47 Y R/W
Style | 47 Y RW STR
StyleRun |48 | N STR
Text | 48 Y R/W TEXT
TextAlign | 48 Y: RW STR
TextFont | 48 Y RW STR STR STR STR STR STR
TextOfSelection 48 N R/W TEXT
TextSize |48 Y RW INT INT INT INT INT INT
TextStyle |48 Y R/W STR
Time | 48 Y: RIW
TimeScale N RO
Titleltem | 49 Y RIW
ToplLeft | 49 Y R/W INT INT INT INT INT INT
Value | 49 N RIW TEXT INT INT INT TEXT
Version | 49 N RO INT
Visible | 49 Y: RW BOOL BOOL BOOL BOOL BOOL BOOL
WantsFocus | 49 N R/W
WhiteColor | 49 Y RW RGB RGB RGB RGB RGB RGB
Width | 50 Y R/W INT INT INT INT INT INT
Wordwrap | 50 N RW BOOL

BOOL boolean (True or False)

INT
RGB
STR
TEXT

integer

can be either an RGB (“integer. infeger. infeger”) or a color index (integer)

single line string (max 255 characters)

string which may contain multiple lines (max 32K characters)

-98-

o

O O

=

nEr,

0 T N A T T T O O O

WindowsScript Scripting Quick Reference: Properties Table

Static ICONs & Quick- Boxes &
Text Finder Time List Popup Round Rect
Fields Icons Pictures Movies Boxes Menus Controls Boxes Lines
INT INT INT INT INT INT INT INT INT
STRINT] [STRI[INT]
INT INT
INT INT INT INT INT INT INT INT INT
BOOL
TEXT TEXT TEXT TEXT TEXT TEXT TEXT TEXT TEXT
INT INT INT INT
BOOL BOOL BOOL BOOL
INT INT INT INT INT
RGB
STR
INT
INT
STR STR STR
TEXT TEXT
INT
INT
INT
INT
STR STR STR
STR
TEXT TEXT TEXT
STR
STR STR STR STR STR
TEXT TEXT TEXT
INT INT INT INT INT
STR
INT
INT
INT
INT INT INT INT INT INT INT INT INT
TEXT STR INT INT STR INT
BOOL BOOL BOOL BOOL BOOL BOOL BOOL BOOL BOOL
BOOL
RGB RGB RGB RGB RGB RGB RGB RGB RGB
INT INT INT INT INT INT INT INT INT
BOOL
(%) alternate value type (your choice)
R/W read or write

R/O read only
5 Supported by some, but not all, CDEFs and MDEFs

-99-

g

Scripting Quick Reference: Commands Table WindowScript
Editable | Static
Page Push | Radio | Check Text Text
| Ref. | Window | Buttons | Buttons box Labels Fields Fields
. AdjustSize | 5 | X X =7 X X e e
BringToFront | 50 X :
e e T e N
__ Close X '
S Cut 16250 X X
DoUpdate | 50 =X X 7 X X X X
At | 51 ;
‘GetBGFieldText | 51 X X
GetCdFieldText 51 2K X
Next | 51
Paste | 51 X X
Pause 51
Pay | 51
~ Prev | s
SetBGFieldText | NEW X X
SetCdFieldText | NEW. X X
SnapShot 51 X
. Stop| =& i
Zoomin 52 X
. ZoomOut | = X

BOOL
INT
RGB
STR
TEXT

boolean (True or False)

integer

can be either an RGB (Tinteger, integer. integer”) or a color index (integer)
single line string (max 255 characters)
string which may contain multiple lines (max 32K characters)
commands supported by item

-100-

:
-

WindowScript Scripting Quick Reference: Commands Table

Boxes &
ICONSs & Quick- Round
Finder Time List Popup Rect
Icons Pictures | Movies Boxes Menus | Controls Boxes Lines
AdjusiSize X X X X X
BringToFront
Clear X
Close
Copy X X
Cut X
DoUpdate X X X X X X X X
First X
GetBGFieldText
GetCdFieldText
Last X
Next X
Paste X
Pause X
Play X
Prev X
SendToBack
SetBGFieldText
SetCdFieldText
SnapShot
X
Zoomin
ZoomOut
BOOL boolean (True or False)
INT integer
RGB can be either an RGB (“integer, integer. integer”) or a color index (integer)
SIR single line sfring (max 255 characters)
TEXT string which may contain multiple lines (max 32K characters)
X commands supported by item

-101-

%gi.aﬁﬁﬁzﬁﬁaﬂ;;ﬁg

E
=
-

R

WindowScript Index

INDEX
A E
AdjustSize 51, 87 Edit Menu 34
Align Bottoms 36
Align Lefts 35 F
Align Rights 36 File 39, 86
Align Tops 36 File Menu 31
answerColor 69 Fill 39, 86
Assistant menu 65 First 52, 87
AutoClose 37, 85 Font Menu 36
AutoSize 37, 85 G
B GetBGFieldText 52, 87
Balloon 37, 85 GetCdFieldText 52, 87
Big Message 28 Go Menu 34
BlackColor 38, 85 Grid 35, 39, 86
Bring Closer 35 GrowlItem 39
BringToFront 51, 87 H
C Handle 40
Cancelltem 38, 60, 85 HasCloseBox 40, 85
Clear 51, 87 HasGrowBox 40, 85
Close Window 33 hasQT 70
Clut 58 HasTitleBar 40, 85
Color Menu 36 HasZoomBox 40, 85
ColorPicker 57 Height 40, 85
Commands 38, 51 Hilite 40, 85, 86
Copy 34, 51, 87 hit handler 63
Cursor Tools 35 HitMessage 41, 64, 85
Custom Properties 55
Cut 34,51, 87 I
D ID 41, 86

IdleDelay 41
Defaultitem 38, 85 IdleTime 85
Delete Window 33 Import Resource 33
Digit 57 Inset 41
Dirty 38, 85 ItemList 41
Ilglsabled 39, 85 ItemType 41
oubleClickItem 39, 86

DoUpdate 51, 87
Duplicate 36

-

|

Index WindowScript
K 0]
KeyFilter 41 Object Tools 35
KeyScroll 42, 86 Objects Menu 35
objName 64
L objNo 64
Last 52, 87 objValue 64
Latch 57 Open Window... 32
Leap 42, 86
LineHeight 42, 85 P
List objects 87 Page Setup... 33
ListAsMenu 57 Params 44, 85
ListOfFinderIcons 56 Params Property 59
ListOfIcons 56 Paste 34, 52, 87
ListOfPictures 56 Pause 52, 87
ListWithlIcons 57 Pen 44, 86
ListWithTabs (LDEF) 56 Pensize 44, 86
LockText 42, 85 Play 52, 87
Logic 42, 43, 86 Prev 52, 87
Print... 33
M Properties 37, 44, 85
Max 43, 86 Property Picker 27
MaxSize 43 PushLatch 57
MenuBar 43
menuGet 59, 69 Q
Menus 43, 85 QuickTime objects 87
menuSet 59, 72 Quit HyperCard 33
Message 34
Min 43, 86 R
MinSize 43 Rect 45, 85
Repeating 45, 86
N resourceList 70
Name 43, 85 Result 45, 85
Next 52, 87 Result Property 59
Next Window 35
Number 44, 85
NumberOfltems 44, 85

-104-

WindowScript

|
|

Index

S

Save Default 33

Save Window 33
Save Window Into... 33
screenlnfo 72

Script 45, 85
scripting assistant 65
Scroll 45, 85, 86
Scrolling 46, 85, 86
scrunch 73

Select All 34
Selection 46, 85, 86
SelectionColor 46
SelectionFont 46
SelectionRect 46, 86
SelectionSize 47
SelectionStyle 47, 86
SelectionText 47, 85, 86
SelectionTime 47, 86
Send Farther 35
SendToBack 52, 87
SnapShot 53, 87
SoundVolume 47, 86
Speed 47, 86

Step 48, 86

Stop 53, 87

Style 48, 55, 86

Style Menu 36
StyleRun 48

T

Tear 58

Text 49, 85, 86
Text objects 87
TextAlign 49, 85

-105-

TextFont 49, 85
TextOfSelection 49, 85, 86
TextSize 49, 85

TextStyle 49, 86

the Menus Property 58
the Properties Property 60
TimeValue 49, 86
TitleItem 50, 86

Tool Palette 23

Tools Menu 35

TopLeft 50, 85

U

Universal commands 87
unscrunch 73

\'

Value 50, 85, 86
Version 50
Visible 50, 85

w

WantsFocus 50
wdName 64
WhiteColor 50, 85
Width 51, 85
Window commands 87
Window events 63
windowScript 73
Wordwrap 51, 86
wsGet 74

wsSend 74

wsSet 74

Z
ZoomlIn 53, 87
ZoomOQOut 53, 87

WindowsScript Limited Warranty
LIMITED WARRANTY
ON MEDIA AND REPLACEMENT

If you discover physical defects in the manual or media distributed with this
product, Heizer Software will replace the media or manual at no charge to you,
provided you return the item to be replaced with proof of purchase to Heizer
Software during the 90-day period after you purchased this product.

ALL IMPLIED WARRANTIES ON THE MEDIA AND MANUAL, INCLUDING
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO NINETY (90)
DAYS FROM THE DATE OF THE ORIGINAL RETAIL PURCHASE OF THIS
PRODUCT.

Even though Heizer Software has tested the software and reviewed the
documentation, HEIZER SOFTWARE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
SOFTWARE, ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR
FITNESS FOR A PARTICULAR PURPOSE. AS A RESULT, THIS SOFTWARE IS
SOLD “ASIS,” AND YOU, THE PURCHASER, ARE ASSUMING THE ENTIRE
RISK AS TO ITS QUALITY AND PERFORMANCE. IN NO EVENT WILL
HEIZER SOFTWARE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT IN THE SOFTWARE OR DOCUMENTATION, even if advised of the
possibility of such damages. In particular, Heizer Software shall have no liability
for any programs or data stored in or used with this product, including the costs
of recovering such programs or data. Should the programs prove defective
following their purchase, the buyer assumes the entire risk, including any and all
necessary servicing, repair or correction, as well as any and all incidental or
consequential damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL OR WRITTEN, EXPRESS OR IMPLIED.
No Heizer Software employee, dealer, agent, or distributor is authorized to make
any modification, extension, or addition to this warranty.

Some states do not allow the exclusion or limitation of implied warranties or
liability for incidental or consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives you specific legal rights,
and you may also have other rights which vary from state to state.

-106=

00 0 0 T O O A O O O O O O O O

WindowScript is a tool for the design of
Macintosh® user-interfaces within Claris
HyperCard®. In the past there were HyperCard
stacks and Macintosh applications — each with
its own distinctive interface objects and feel.
WindowSecript brings to HyperCard the look and
feel of a real Macintosh user-interface.

WindowScript is integrated into HyperCard —
it's always available when you need it.
WindowScript's interface editor is WYSIWYG —
the objects you add are usable immediately,
letting you test your interface as you develop it.

All standard objects in most Macintosh
applications are available in this powerful

interface design studio:
< Dialog boxes, windows and floating
palettes.

% Scrolling lists of text, icons and pictures.
%% QuickTime® movies.

« Standard, tear-off, color palette and
pop-up menus.

< Text fields with mixed fonts, styles,
sizes, even color text.

Icons, including color Finder icons.

<

< Color pictures, including scrolling
pictures.

<

Standard radio buttons, round rect
buttons and checkboxes.

< Simple graphic objects like lines
and boxes.

All objects have properties which can be
controlled through HyperTalk®. Object properties
include color, System 7 Balloon Help®, location,
style, labels, and object-specific properties such
as text of a field, items in a menu, or selection
logic of a list.

©1992 Helzer Software. All Rights Reserved. WindowScript and Dialoger are d
d Inc. HyperCard and HyperTalk are regis

and Balloon Help are regis! ks of Apple Comp

WindowScript

The Ultimate Design Tool for Hypercard!

The Interface
Design Studio

Some History

WindowScript is a new product from Leonard
Buck of theResult Software, Inc. Buck is the
author of Dialoger Professional, winner of the
1990 MacWorld SuperStacks Contest as Best
Developer Tool. WindowScript, which offers far
more power, ease of use and flexibility, replaces
Dialoger Professional

Licensing Policy

If you create an interface using WindowScript,
you must include the WindowScript XCMD
when you distribute your stack. You must
purchase a separate license for each product
you distribute commercially that includes the
WindowScript XCMD. Each license has a one-
time, flat fee of $100. Shareware or public
domain stacks need only display a splash screen
(no fee is required). Stacks developed for “in
house” or personal use do not require licensing.

System Requirements: 2 MB RAM. System
6.05 or higher. HyperCard 2.0v2 or higher. Any
Macintosh that can run HyperCard, and a hard
disk. Requires color QuickDraw” for QuickTime
and System 7 to display Balloon Help.

—Heizer Software— — —

PO Box 232019
Pleasant Hill, CA 94523 510-943-7667
rks of Heizer h, QuickDraw, QuickTime
of Claris Corp

of their holders.

All other brand or p! names are

BIS

4

4 o ~J e
‘“. .

8
IOy

e

i

AT AT

Ky

Y717

