
July 2, 1985

Dear Developer,

Enclosed is your copy of the final Software Supplement Update (dated May 1985). The
enclosed documentation includes:

Cover Sheet 2 pages
About the "May 1985" Software Supplement 54
Macintosh Technical Documentation Order Form 1
Switcher (Beta Draft) 16
A Software Developer's Guide to Switcher 3
Driver Bug in Pre-Release MacWorks XL 2
Technical Note #0: About Macintosh Technical Notes 2
Technical Note #16: MacWorks XL 3
Technical Note #32: Reserved Resource Types 1
Macintosh Update for End-Users 10
Trap List (1 cover page +) 16
Welcome To MAUG 3
FreeTerm 6
ResEdit: A Macintosh Resource Editor 8
AppIeTalk Information 3
AppleTalk Peek 9
AppleT alk Poke 11
MacinTalk 1.1 17
The Writeln Window 2
Low Memory in Alphabetical Order 2
Low Memory in Numerical Order 2
Putting Together A Macintosh Application 23
The Macintosh Hardware 37
The Printing Manager 31
Examples of Printing Manager Usage 2
Some Words of Wisdom About Using QuickDraw While Printing 1
The March 1985 ImageWriter: Programmers' Notes 5
Optimizing Code For The LaserWriter 6
Future Macintosh Architectures 6
Finders and Foreign Drives 1
Life After Font/DA Mover-How To Make Sure Your Desk

Accessory Still Works 2
SANELib V1.2 1
SANE Numeric Scanner and Formatter 4
DIALOG CREATOR Instructions 8
Fedit: A File And Disk Editor 22

The following enclosed documents are printed on smaller pages so they are wrapped separately:

Macintosh REdit: A Macintosh Resource Editor 20

Revision to Workshop User's Guide for the Lisa
Cover Sheet 1
Chapter 2: The File Manager (1 cover page +) 31
Chapter 4: The Editor (1 cover page +) 25
Index 15

Cover Sheet Page 1

The following documents were distributed with previous Supplement Updates but are still relevant;
they are not enclosed:

Commented Call List
Latest "Post-3.0" Lisa Pascal Compiler Enhancements
Macintosh PasLib Release 0.7
MacWorks XL User Manual
The MacDB Debugger
The MacsBug Debuggers

The thirteen disks enclosed with this Supplement Update are labelled:

Workshop 3.9 Update Disk 1
Workshop 3.9 Update Disk 2
5/85 Workshop Supplement 1
5/85 Workshop Supplement 2
5/85 Workshop Supplement 3
5/85 Examples 1
5/85 Examples 2
5/85 MacStuff 1
5/85 MacStuff 2
5/85 MacStuff 3
5/85 MacStuff 4
5/85 Mac Build Disk
MacWorks XL 3.0

If you have questions about missing or damaged materials (disks or documentation), please contact
our mailing facility at:

Apple Computer Mailing Facility/Milestone Group
467 Saratoga Avenue, Suite 621
San Jose, CA 95129

Customer Service:
(408) 988-6009
9:00 A.M - 4:00 P.M., Pacific Time

Cover Sheet Page 2

About the "Mav 1985" Software Supplement
May 3F, 1985

Table of Contents
Table of Contents 1
Future Distributions 2
Disks in the Supplement 3
Documentation Accompanying the Software Supplement 4

** Development Using the Lisa Pascal Workshop 7
** Workshop 3.9 Update Disks 8
** Installing the Workshop Supplement disks 9
** Contents of the Workshop Supplement Disks 10
** Files on 5/85 Workshop Supplement 1 10
** Files on 5/85 Workshop Supplement 2 11
** Files on 5/85 Workshop Supplement 3 12
** Workshop Pascal Interfaces 14
** Text Files 14
* Object Files 15
** Changes to Pascal Interfaces 17

Assembler Equates 19
Equate Files 19
Changes to Assembler Equate Files 20

** Workshop 3.9—New Features 21
** Workshop Shell 21
** Pascal Compiler and Code Generator 21
** Linker 21
** SANELib 22
** MacCom 22
** RMaker 23
** Workshop Editor 24
** Assembler 25
** Resource File Builder (RFB) 29
* Example Programs and Exec Files 31
* Files on 5/85 Examples 1 32
* Files on 5/85 Examples 2 33
* MacWorks™ XL 37

Mac Build Disk 38
MacStuff Disks 39

Files on 5/85 MacStuff 1 39
Files on 5/85 MacStuff 2 41
Files on 5/85 MacStuff 3 43
Files on 5/85 MacStuff 4 44

FixMath and Graf3D 47
SANE 47
RAM-Based Serial Drivers 48
Debuggers 49
Macintosh Product Availablity List 51
Macintosh Pascal 51

* MacApp 52
Smalltalk 53
Addresses 54

* = Mainly of interest to Lisa users
** = Only of interest to Lisa users

About the "May 1985" Software Supplement Page 1

Future Distributions

This is the final update of the Software Supplement For the last year we have periodically been
distributing updates to the Supplement to all buyers. Inside Macintosh and the software interfaces
and tools were frequently changing and we wanted everyone to have the most up-to-date versions.
The software in this version of the Supplement corresponds to the final version of Inside
Macintosh. As promised, Supplement purchasers will receive a copy of the final bookstore version
of Inside Macintosh when it is available this Fall.

We may periodically offer new development tools and utilities as products which can be ordered
independently. When new products are available, we will let Supplement buyers know how to
obtain them. In addition, many of these new tools and utilities will be available from MAUG via
Compuserve. Anyone with a modem can use download copies. FreeTerm, a communication
program which will allow you to do so, has been included in this Supplement. More information
on these on-line services is included in the enclosed documents titled Welcome To MAUG
and FreeTerm.

About the "May 1985" Software Supplement Page 2

Disks in the Supplement

The Macintosh Software Supplement is a package of tools, libraries, and examples to help you
develop Macintosh software. This final update to the Supplement consists of the following thirteen
disks:

Workshop 3.9 Update Disk 1
Workshop 3.9 Update Disk 2

5/85 Workshop Supplement 1
5/85 Workshop Supplement 2
5/85 Workshop Supplement 3

5/85 Examples 1
5/85 Examples 2

5/85 MacStuff 1
5/85 MacStuff 2
5/85 MacStuff 3
5/85 MacStuff 4

5/85 Mac Build Disk

Lisa Workshop 3.0 formatted disks.
Update Workshop 3.0 to Workshop 3.9.

Lisa Workshop 2.0 formatted disks;
can be used with any version of the Lisa Workshop.

Macintosh formatted disks. Contain source text of
example programs. Need Lisa Workshop to build.

Macintosh formatted disks.
Contain tools, utilities and examples which can be
used on any Macintosh.

Macintosh formatted disk. Contains standard system
software. Should be used when building a software
product disk.

MacWorks XL (version) 3.0 Special format—used on a Lisa or Macintosh XL to
run Macintosh applications.

This package contains new versions of all the above disks; we recommend putting aside any older
versions of the Supplement and using these disks exclusively (if you are using Pascal Workshop
2.0 you will need some files from the February 1985 Supplement disks).

About the "May 1985" Software Supplement Page 3

Documentation Accompanying the Software Supplement
The documents listed below have been included with this Software Supplement update. Those
marked with a are primarily of interest to Lisa users.

The Cover Sheet lists the documents included with this Supplement and the number of pages in
each. It also lists the disks in this Supplement.

About the "May 1985" Software Supplement, the document you are reading now,
describes the contents of this Software Supplement and how to use the various pieces.

The Macintosh Technical Documentation Order Form should be used to order most
Macintosh technical documentation from our mailing house.

The Switcher (Beta Draft) describes switcher 3. o (a pre-release version) from a user's
point-of-view. A more complete version of this manual will be available from from MAUG™
(via Compuserve) and from Apple dealers when Switcher is released.

A Software Developer's Guide to Switcher describes the Switcher from an application
writer's point-of-view. Updates to this document will be available from MAUG™ (via
Compuserve).

Driver Bug in Pre-Release MacWorks XL describes a serious bug in MacWorks XL
(which has been corrected in MacWorks XL 3.0) and how an application can patch MacWorks to
avoid problems.

Technical Note #0: About Macintosh Technical Notes describes our Technical Notes
service and how to subscribe. It also lists the Technical Notes which have been published to
date.

Technical Note #16: MacWorks XL describes some features of MacWorks XL. Note that
MacWorks XL version 3.0 has been released since this document was written; see Driver Bug
in Pre-Release MacWorks XL for more information.

Technical Note #32: Reserved Resource Types lists the resource type names reserved
for use by Apple. Refer to this list before naming any custom resource types.

Macintosh Update for End-Users describes Finder 4.1, Choose Printer, the Font/Desk
Accessory Mover and the corresponding System file from a user's point-of-view.

The Trap List is a list of traps including: the trap or routine name as it is described from Pascal,
the trap word, the section in Inside Macintosh where it is discussed, how the routine affects the
heap, and a list of what other traps are called by the routine.

TM TM Welcome To MAUG describes how to use MAUG , the user's group on Compuserve
through which future Macintosh development tools and utilities will be distributed.

The FreeTerm document describes FreeTerm, the simple terminal emulator tool which can be
used to access Compuserve.

ResEdit: A Macintosh Resource Editor describes release 0.5 of the Macintosh resource
editor ResEdit.

The AppleTalk Information document contains some important information for anyone
writing an application which uses the AppleTalk network. It contains a questionnaire which such
developers should complete and return to Apple.

About the "May 1985" Software Supplement Page 4

AppleTalk Peek describes the Peek utility which can be used to monitor packet traffic on an
AppleTalk network.

AppleTalk Poke describes the Poke utility which can be used to create or edit packets and send
them out on AppleTalk.

MacinTalk 1.1 describes the MacinTalk speech synthesizer which can be used by Macintosh
applications. MacinTalk software is included in this Supplement.

* The Writeln Window describes the unit WritelnWindow which can be used for debugging
Macintosh programs written in Lisa Pascal.

Low Memory in Alphabetical Order lists all the low memory equates in alphabetical order.

Low Memory in Numerical Order lists all the low memory equates in numerical order.

* Putting Together A Macintosh Application describes how to build a Macintosh
application from the Lisa Pascal Workshop. This sixth draft, dated 5/5/85, is the final revision of
this manual. It is no longer a part of Inside Macintosh.

The Macintosh Hardware is the hardware chapter for Inside Macintosh which has not
previously been released. This second draft is dated 2/13/85.

The Printing Manager is the chapter from Inside Macintosh describing how applications can
print This second draft, date 3/27/85, is significantly improved from the first draft available
previously.

Examples of Printing Manager Usage provides examples of how an application could call
the printing manager.

Some Words of Wisdom About Using QuickDraw While Printing, as the title
suggests, provides some tips on how to best use QuickDraw when printing.

The March 1985 ImageWriter: Programmers' Notes describes how to print using the
ImageWriter driver released in March 1985 and included on the 5/85 Mac Build Disk.

Optimizing Code For The LaserWriter describes how to make your application better at
printing to die LaserWriter printer.

Future Macintosh Architectures lists a number of guidelines that should help ensure that
your software will continue to run on any future Apple Macintosh hardware. All developers
should read this document; those writing in assembly language should read this document
especially carefully.

Finders and Foreign Drives describes the interaction between Finder 4.1 and non-Apple
disk drives.

Life After Font/DA Mover-How To Make Sure Your Desk Accessory Still
Works describes the Font/Desk Accessory Mover from the point of view of a desk accessory
developer.

* The document SANELib V1.2 describes how to access SANE (Standard Apple Numeric
Environment) floating point libraries from the Lisa Pascal Workshop 3.9.

About the "May 1985" Software Supplement Page 5

SANE Numeric Scanner and Formatter describes SANE's utility routines for conversion
between Decimal records and ASCII strings and how to use these routines from various
development systems.

DIALOG CREATOR Instructions describes the Dialog creator tool which can be used to
easily create resource definition files for dialogs and alerts.

Fedit: A File And Disk Editor describes Fedit, a "shareware" utility program which allows
somewhat technical users to access Macintosh disks at a low level.

Macintosh REdit: A Macintosh Resource Editor, a booklet which is wrapped separately,
describes the tools REdit and Localizer, which can be used for modifying applications for
international markets. REdit can also be used as a general purpose resource editor.

* Revision to Workshop User's Guide for the Lisa is also wrapped separately. It
updates sections of the Lisa Workshop 3.0 Users's Guide (note that the Workshop 3.9 Update
materials in this Supplement are more recent than these sections). The sections include a Cover
Sheet, Chapter 2: The File Manager, Chapter 4: The Editor, and the Index.

The following documents were distributed with previous updates to the Software Supplements but
are still relevant. They will only be included in this package if this is the first time you have
received the Software Supplement.

The Commented Call List document can be used as a quick reference to the Pascal Interfaces
for the Macintosh. It lists the Procedure and Function calls for most of the Toolbox and OS
managers (notable exclusions include Quickdraw and the Print Manager) grouped by manager.
Within each manager the calls are ordered from the most frequently used calls to dangerous or
obscure calls. The calls are accompanied by brief usage notes.

* The memo Latest "Post-3.0" Lisa Pascal Compiler Enhancements, dated February 8,
1985, describes the Pascal compiler for Workshop 3.9 which is included in this Supplement. It
includes details on the use of SANE from Pascal. Appendix A is no longer accurate and has been
removed from new copies of the document

* Macintosh PasLib Release V.0.7 describes the latest PasLib library for use from Lisa
Pascal.

* The MacWorks XL User Manual describes MacWorks XL from a user's perspective. The
information in this manual applies to MacWorks XL and MacWorks XL 3.0

The MacDB Debugger, chapter 6 of the Macintosh 68000 Development System User's
Manual. This describes MacDB, the "two-Mac debugger".

The MacsBug Debuggers, chapter 7 of the Macintosh 68000 Development System User's
Manual. This describes the MacsBug family of debuggers. Updates to this manual can be found
in the Debuggers section of About the "May 1985" Software Supplement.

About the "May 1985" Software Supplement Page 6

Development Using the Lisa Pascal Workshop

In order to develop Macintosh software using the Lisa Workshop you need a Lisa 2/5 or 2/10 (also
known as Macintosh XL) with at least a full megabyte of RAM, this Supplement, and the Lisa
Pascal Workshop, version 2.0 or 3.0. You must install the Pascal Workshop on a hard disk before
attempting to install the Supplement

If you want to have both the Lisa Office System and the Workshop with Supplement you'll find
that one five megabyte ProFile isn't enough. You'll need a Lisa 2/10 (Macintosh XL), a ten
megabyte ProFile, or separate five megabyte ProFiles. Of course, you don't need the Lisa Office
System to do Macintosh development.

Pascal Workshop 2.0 users can continue to use the 2. Oonly/ files included in the 2/15/85
Supplement. They can use all files on the Workshop Supplement disks that are not prefixed
with 3. 9oniy/. They cannot use the Workshop 3.9 Update disks. Although developers can
continue to use Workshop 2.0 we strongly recommend upgrading to Workshop 3.0.

Pascal Workshop 3.0 users can update their system to Pascal Workshop 3.9 by performing the
Workshop 3.9 Update procedure described on the following page. They can then use all of the
files on the Workshop Supplement disks (except the few that are prefixed with 2. Oonly/).

Pascal Workshop 3.0 is compatible with all versions of the Lisa 7/7 Office System and allows the
hard disk to be shared with a MacWorks volume. Other improvements over Workshop 2.0
include:

improved Editor
compiler enhancements
many new Workshop utilities
better performance
hierarchical file system (subdirectories)
improved MacCom and RMaker
improved access to SANE floating point
capability for additional enhancements by installing Workshop 3.9

(you'll need 3.0 to install the 3.9 update,
which is included in this Supplement)

Users of Lisa Pascal 2.0 can receive a new copy of Pascal Workshop 3.0 (the full product, not just
upgrade kit) by sending their original Pascal Workshop 2.0 master disk (Pascal 1) and a check for
$150 (plus local sales tax for California residents) to:

Apple Computer, Inc.
3.0 Upgrade
467 Saratoga Ave. Suite 621
San Jose, CA 95129

(408) 988-6009

You should make a copy of your Pascal 1 disk before sending in the original. Please allow
approximately 4 weeks for delivery.

This upgrade offer expires on August 31,1985. After that date new copies of the Lisa
Pascal Workshop 3.0 (Apple part #A6D0301) will continue to be available through regular Apple
channels.

About the "May 1985" Software Supplement Page 7

Workshop 3.9 Update Disks
The Workshop 3.9 Update is an update to the Pascal Workshop 3.0 release. It contains the latest,
most up-to-date Workshop tools, including a new "Post-3.0" Pascal compiler with supporting
libraries, the latest SANE libraries, and new versions of the Workshop Shell, the linker, the editor,
the assembler, RMaker, and MacCom. The only Workshop 3.0 users who should not install the
entire update are those who are still using the "Old World" SANE floating point described in the
February Supplement.

The Workshop 3.9 Update consists of two disks, Workshop 3.9 Update Disk 1 and
Workshop 3.9 Update Disk 2. These disks have been formatted using the Lisa Pascal
Workshop version 3.0, so they cannot be read from a Lisa running Workshop 2.0 or from a
Macintosh. However, there is nothing on these disks which is useful to anyone who does not have
Pascal Workshop 3.0. The disks contain the following files:

Files on Lisa Workshop 3.0 disk Workshon 3.9 Undate Disk 1:
Assembler.obj
Code.obj
Editor.obj
IOSPasLib.obj
IUManager.obj
Linker.obj
Mac.boot
MacCom.obj
StartUpdate.text
tmp/ContinueOrAbort.text
tmp/DoUpdate.text
tmp/GetDisk.text
tmp/YesNoFunc.text

Files on Lisa Workshop 3.0 disk Workshop 3.9 Update Disk 2:
intrfc/SANELib.text
obj/SANELib.obj
obj/SANELibAsm.obj
OSErrs.Err
Pascal.obj
PasErrs.Err
RMaker.obj
Shell.Workshop

How to install the Workshop 3.9 Update:
An automatic exec update procedure is provided to facilitate the installation of the new software. It
should work on all configurations of Workshop 3.0, even if Lisa 7/7 is installed on the same disk.
Before starting, make sure that you have at least 1000 blocks free on the hard disk that you will be
updating (this is recommended for any work with the Workshop). If necessary, you may be able
to free up some space by booting from another Workshop profile and Scavenging or booting from
Pascal 3.0 disk 1 and choosing "Repair"). Insert the Workshop 3.9 Update disk 1 (note
that the Workshop will not accept write-protected disks) and then invoke the "startupdate .text"
exec file by using the run command as follows:

R<-lower-StartUpdate

The update exec files will lead you through the rest of the update procedure (including allowing you
to choose which hard disk to update, prompting you to install Workshop 3.9 Update Disk 2
when necessary, deleting the tmp/ files it uses, and finally asking you to reboot).

About the "May 1985" Software Supplement Page 8

Installing the Workshop Supplement Disks

The Workshop Supplement disks (formerly called "MacSupplement" disks) contain interfaces,
equates, exec files, etc. that can be used with the Lisa Pascal Workshop. Workshop 3.0 users
should update to Workshop 3.9 and reboot before installing the Workshop Supplement disks.

Read through the descriptions of the Workshop Supplement files on the following pages and
choose the files you need. To install the Workshop Supplement disks onto your hard disk, start the
Workshop, then insert each of the disks and use the Backup command to copy the desired files
from the Workshop Supplement disk to the hard disk (note that this will automatically replace all
files with the same names as Supplement files, so you may want to look at the list of files on the
Supplement disks before copying them with Backup). If your hard disk is the default volume, the
following command will copy all the files from the currently inserted 3 1/2" disk to your hard disk:

B-lower-=,$

Note that the Workshop will not accept write-protected disks.

This Supplement supports Workshop versions 2.0 and 3.9. The disks are provided in 2.0 format,
which is readable by both versions. Most of the files provided with the Supplement are usable by
both Workshop versions; the only files which are specific to one of the two versions are prefixed
by "2 . Oonly/" or "3. 9oniy/" . After you copy all desired files use the Rename command to strip
the prefix from the files that have one. The command would look like this:

R2.0only/=,=
or

R3.9only/=,=

Note that some of these files are replacements for files you already have, so the Backup command
will ask if you want to delete the old ones before renaming. You should answer yes to this
question.

Workshop 3.9 users will not need files prefixed with " 2. Oonly/" on their hard disk.

Workshop 2.0 users will not need files prefixed with " 3. 9only/" on their hard disk (this includes
all files on the 5/85 Workshop Supplement 3 disk).

Workshop 2.0 users should note that they still need the 2 .Oonly/ files from the February 1985
Software Supplement Workshop 3.0 users who are using the "Old World" SANE will also need
some of the " 2. Oonly/" files found in the February Supplement New owners of the Supplement
should use Workshop 3.0 (and upgrade to Workshop 3.9).

If you need more room on your hard disk, you can delete some files. Appendix I of the Pascal 3.0
Reference Manual (labelled "Lisa Language" on the spine) lists the files that come with the
Workshop and indicates the purpose of each. Those marked E J7, or G are not needed for
Macintosh development (except for sys2Lib .ob j, which is needed to run Preferences). Disks 7, 8
and 9 of Pascal 3.0 are completely optional for Macintosh development. In addition, if you're not
doing any assembly language development you can delete Assembler .obj and all files which begin
with TLAsm/ (however, these are needed to build the assembly portion of some sample programs).

About the "May 1985" Software Supplement Page 9

Contents of the Workshop Supplement disks

Files on Lisa Workshop disk 5/85 Workshop Supplement 1:
intrfc/ABPasIntf.text
intrfc/FixMath.text
intrfc/Graf3D.text
intrfc/MacPrint.text
intrfc/MemTypes.text
intrfc/OSIntf.text
intrfc/Packlntf.text
intrfc/PasLiblntf.text
intrfc/QuickDraw.text
intrfc/QuickDraw2.text
intrfc/Speechlntf.text
intrfc/ToolIntf.text
intrfc/WritelnWindow.text
obj/ABPasCalls.obj
obj/ABPasIntf.obj
obj/FixAsm.obj
obj/FixMath.obj
obj/Graf3D.obj
obj/Graf3DAsm.obj
obj/MacPrint.obj
ob j/MemType s.ob j
obj/OSIntf.obj
obj/OSTraps.obj
obj/Packlntf.obj
obj/PackTraps.obj
obj/PasInit.obj
obj/PasLib.obj
obj/PasLibAsm.obj
obj/PasLiblntf.obj
obj/PrLink.obj
obj/PrScreen.obj
obj/QuickDraw.obj
obj/RTLib.obj
obj/SpeechAsm.obj
obj/Speechlntf.obj
obj/ToolIntf.obj
obj/ToolTraps.obj
obj/WritelnWindow.obj

The 5/85 Workshop Supplement 1 disk contains many i n t r f c / files, which are human
readable text versions of the Pascal interfaces the Macintosh Toolbox, OS, Packages, and
QuickDraw units; and obj/ files, which are the object files for the Pascal interfaces (used for
compiling and linking). For more information on these files see the section below titled
Workshop Pascal Interfaces. PasLib and WritelnWindow are discussed in separate
documents.

The intrfc/ and obj / files (except for WritelnWindow) are part of the Pascal Interface version 1.1
(the February Supplement contained beta versions of the 1.1 interfaces); these are the final
versions, corresponding to the forthcoming published edition of Inside Macintosh.

About the "May 1985" Software Supplement Page 10

Files on Lisa Workshop disk 5/85 Workshop Supplement 2:
2.0only/Convert/Mac2Lisal.text
2.0only/Convert/Mac2Lisa2.text
2.Oonly/Convert/TextConvert.obj
3.9only/RMaker7.14a.obj
ATalk/ABPackage.obj
ATalk/ABPackageR.text
intrfc/WritelnWindow2.text
Serial/Async/Mac.obj
Serial/Async/MacXL.obj
Serial/AsyncR.text
source/RFB.text
TLAsm/ATalkEqu.text
TLAsm/FSEqu.text
TLAsm/HardwareEqu.text
TLAsm/PackMacs.text
TLAsm/PrEqu.text
TLAsm/QuickEqu.text
TLAsm/QuickTraps.text
TLAsm/SaneMacs.text
TLAsm/SysEqu.text
TLAsm/SysErr.text
TLAsm/SysTraps.text
TLAsm/ToolEqu.text
TLAsm/ToolTraps.text

The 5/85 Workshop Supplement 2 disk contains the TLAsm/ files, the version 1.1 equate files
for the Lisa assembler. The TLAsm/ files define macros and symbols for assembly language
programs and are equivalent to the MDS Equate files on the 5/85 MacStuff 4 disk. For more
information, see the Assembly Equates Information section.

The disk also contains a number of specialized files. The 2. Ooniy/convert/ files convert
Macintosh text files to Lisa Workshop 2.0 text files (MacCom supports this for 3.0 users). This is
described in the Example Programs and Exec Files section. The file
3.9 only /RMaker7.14a. ob j is only needed by a few users; see the RMaker section of this
document. The ATalk/ files are described in the document AppleTalk Information, included
with this Supplement The file intrf c/writeinwindow2. text contains the source for the
WritelnWindow unit (it should be used with intrfc/writeinwindow .text). The serial/ files are
needed to include the latest RAM-based serial driver in a resource definition file (see the
RAM-Based Serial Drivers section of this document and the file seriai/AsyncR.text for
more details). The file source/RFB. text is source code to the Resource File Builder, described in
the Resource File Builder (RFB) section of this document.

About the "May 1985" Software Supplement Page 11

Files on Lisa Workshop disk 5/85 Workshop Supplement 3:
3.9only/convert/Mac2Lisa.text *
3.9only/DumpObj.obj
3.9only/example/ExampleList.text
3.9only/example/Exec.text *
3.9only/example/ExecAll.text
3.9only/example/ExecA112.text
3.9only/example/Graf3DLink.text
3.9only/example/MaxLink.text
3.9only/example/MinLink.text
3.9only/example/PrintLink.text
3.9only/example/SANELink.text
3.9only/example/SpeechLink.text
3.9only/example/VanillaExec.text
3.9only/example/WritelnLink.text
3.9only/Lisa/SANELib.obj
3.9only/Lisa/SANELib.text
3.9only/Lisa/SANELibAsm.obj
3.9only/ProcNames.Help.text
3.9only/ProcNames.obj
3.9only/REdit.obj
3.9only/REdit/Userguide.text
3.9only/RFB.obj
3.9only/RFB/exec.text
3.9only/RMaker.obj *
3.9only/ShowInterface.Help.text
3.9only/ShowInterface.obj
3.9only/SXref.Assembly.text
3.9only/XRef.Help.text
3.9only/XRef.obj

* = important; of interest to most developers

The 5/85 Workshop Supplement 3 disk contains files for use with Workshop 3.9. Workshop
2.0 owners should note that they will not need any files from this disk. Users of Workshop 3.9
should strip off the 3. 9oniy/ prefix either when copying the files from the disk (using the file
manager backup command B3. 9oniy/=, =) or by renaming (with the command R3. 9oniy/=, =).
Note that only the files marked with a * will be used by most developers; the others are useful in
certain situations; you may wish to only copy those you have a need for onto your hard disk.

This disk contains the latest versions of the following optional Pascal utilities: Dumpob j (v. 3.2),
ProcNames (v4. 31), showinterf ace (v. 1.5), and XRef (v. 4.39). These tools now know how
to handle the latest Pascal syntax and the results of partial links (partial Unking is described later in
this document in the Linker subsection of the Workshop 3.9--New Features section).
DumpOb j has a new "Entry points only" option. These versions of these tools should only be used
after updating to Workshop 3.9. They replace the optional Workshop utilities of the same name
found on disk 7 of Lisa Pascal Workshop 3.0. The files ProcNames .Help, text,
Showinterf ace. Help. text, and XRef. Help. text are provided on this disk for your
convenience.

The file 3. 9oniy/convert/Mac2Lisa .text is an exec file which uses MacCom to convert
Macintosh text files to Lisa Workshop text files. The 3. 9oniy/exampie/ files are exec files and
inputs to the exec files. See the Example Programs and Exec Files section of this document
for more information about all of these.

About the "May 1985" Software Supplement Page 12

The three 3. Ooniy/Lisa/ files are only required if you plan to write and execute programs
involving floating point numbers under the Lisa Operating System (not just executing them on the
Macintosh). See the document SANELib Y1.2 for more information.

3. 9oniy/Redit .ob j is a resource editor that's documented in the file Redit/userguide. text
(additional resource editors that run on the Macintosh can be found on the 5/85 MacStuff 1
disk).

The files 3. 9oniy/RFB. ob j and 3. 9oniy/RFB .exec .text are described in the Resource File
Builder (RFB) section of this document.

The file 3. 9oniy/RMaker. ob j is version 7.14b of RMaker, described in the RMaker section of
this document.

The file 3 . 9only/SXref .Assembly. text replaces the file SXref .Assembly. text found On disk
7 of Lisa Pascal Workshop 3.0. It is used by the Workshop utility SXref (which has not changed)
when formatting assembly language source.

For additional information on using the Supplement with the Pascal Workshop, see the 5/5/85
update to Putting Together a Macintosh Application which is included with this
Supplement

About the "May 1985" Software Supplement Page 13

Workshop Pascal Interfaces

A new release of the interface files needed for Lisa Pascal development for the Macintosh is
included in this supplement This release is version 1.1 (the February Supplement contained a
beta-release of version 1.1). Not too many changes have been made since the February release.
These files should be the basis for all future Macintosh development in Pascal.

Text Files

These files are for human consumption. They are the interface portions of the various libraries and
include the relevant constants, types, and routine definitions.

intrfc/ABPasIntf.text

intrfc/FixMath.text

intrfc/Graf3D.text

intrfc/MacPrint.text

intrfc/MemTypes.text

intrfc/OSIntf.text

intrfc/Packlntf.text

intrfc/PasLiblntf.text

intrfc/QuickDraw.text

intrfc/QuickDraw2.text

intrfc/SANELib.text

intrfc/Speechlntf.text

intrfc/ToolIntf.text

intrfc/WritelnWindow.text

intrfc/WritelnWindow2.text

AppleTalk Pascal interface

Fixed point math

Three-dimensional graphics routines layered on top of
QuickDraw. Use with FixMath.

Device independent printing

Common types

Operating system routines (Memory Mgr, File Mgr, Sound
Driver, RAM serial driver,...)

Packages (Standard File, International, Binary-Decimal
conversion, Disk initialization,...)

PasLib (non built-in) functions dealing with the heap and Writeln
redirection.

Graphics routines

Implementation stub for QuickDraw

Standard Apple Numerics Environment (IEEE floating point).

MacinTalk (speech synthesis)

ToolBox routines (Menu Mgr, Dialog Mgr, Window Mgr,...)

Debugging window (not for use in products)

Source to debugging window unit

About the "May 1985" Software Supplement Page 14

Object Files
These files are either for use by the Pascal compiler (indicated by $USE), in which case they
include the interface definition inside the object file, or for use by the linker (indicated by LINK), in
which case they include the actual code to implement the interface, or for both.

obj/ABPasCalls.obj

obj/ABPasIntf.obj

obj/FixAsm.obj

obj/FixMath.obj

obj/Graf3D.obj

ob j/Graf 3DAsm.obj

obj/MacPrint.obj

obj/MemTypes.obj

obj/OSIntf.obj

obj/OSTraps.obj

obj/Packlntf.obj

obj/PackTraps.obj

obj/PasInit.obj

obj/PasLib.obj

obj/PasLibAsm.obj

obj/PasLibIntf.obj

obj/Prlink.obj

obj/PrScreen.obj

AppleTalk implementation. LINK only.

AppleTalk definition. $USE only.

Fixed point Math implementation (in assembler). Required for
Graf3D. LINK with this.

Fixed point Math definition. Required for Graf3D. $USEonly.

Definition for fixed point implementation of Graf3D (requires
FixMath, does not require SANE). $USE and LINK.

Fixed point implementation of Graf3D (written in assembler).
LINK with this.

MacPrint definition. $USE only.

MemTypes definition. $USE only.

OSIntf definition. $USEonly.

OSIntf implementation. LINK with this.

Packlntf definition. $USE only.

Packlntf implementation. LINK with this.

PasLib initialization implementation of %_BEGIN, %_END and
%_TERM. LINK with this.

PasLib implementation portion in Pascal. LINK with this.

PasLib implementation portion in assembler. LINK with this.

PasLib definition. $USE only (if directly calling PasLib routines).

MacPrint high-level implementation. LINK with this or
obj/PrScreen, but not both; contains the following routines:
PrClose, PrCloseDoc, PrClosePage, PrCtlCall,
PrDrvrClose, PrDrvrOpen, PrError, PrintDefault,
PrJobDialog, PrJobMerge, PrOpen, PrOpenDoc, PrOpenPage,
PrPicFile, PrSetError, PrStlDialog, and PrValidate.

MacPrint low-level implementation. LINK with this or
ob j/PrLink, but not both; contains the following routines:
PrCtlCall, PrDrvrClose, PrDrvrDCE, PrDrvrOpen,
PrDrvrVers, PrError, PrNoPurge, PrPurge, and PrSetError.

About the "May 1985" Software Supplement Page 15

obj/QuickDraw.obj

obj/RTLib.obj

obj/SANELib.obj

obj/SANELibAsm.obj

ob j/SpeechAsm.ob j

obj/Speechlntf.obj

obj/Toollntf.obj

obj/ToolTraps.obj

ob j/WritelnWindow.obj

Quickdraw. $USE and LINK.

PasLib Run Time support—implementation of console I/O. LINK
with this.

SANE and Elems definition. $USE only.

SANE and Elems implementation. LINK with this.

MacinTalk (speech synthesis) implementation (written in
assembler). LINK with this.

MacinTalk (speech synthesis) definition. $USE only.

Toollntf definition. $USEonly.

Toollntf implementation. LINK with this.

Debugging window (not for use in products). $USE and LINK.

About the "May 1985" Software Supplement Page 16

Changes to Pascal Interfaces

The following changes were made to the Pascal interfaces since the Februaiy Software Supplement:

1) Version numbers have been added to all files. This release is version 1.1, corresponding to the
final release of Inside Macintosh.

2) Pascal equate swOverrunErr has been corrected. The file system "PB" calls' async bit is now
read correctly.

3) New equate ranges have been added to the Pascal interface: evtQWhat through evtQMBut, and
nsDrvErr through lastDskErr.

4) The implementation of several Pascal routines were changed to make them smaller. These
include InitUtil, GetCaretTime, GetDoubleTime, FlushEvents, SetEventMask, MemError, and
TEScrapHandle. These routines are now declared as INLINE $xxxx, $xxxx; rather declared as
external. Since the old interfaces required two words to call the routine in TooiTraps or
osTraps, all of the code required to implement the routine as well as the jump table entry is
saved.

5) The implementation of several routines has been rewritten because they did not work correctly.
If you reference any PB calls taking an async parameter, SetSoundVol, GetVRefNum,
SetAppBase or MoveHHi it is recommended that you relink your program with the new
obj/OSTraps .obj.

6) To use Graf3D from Pascal, $USE obj/Graf 3D. obj butlink with obj/Graf 3DAsm. obj.

7) RamSDOpen and RamSDClose have been improved; they now arbitrate the serial ports
correctly.

8) Calling StartSound asynchronously works better than it did previously.

The format of a few calls has been changed:

9) MoveHHi now returns its error via MemError.

10) The call ScreenRes has been added to return the screen's vertical and horizontal resolution in
dots per inch.

11) Text Edit's filter routines clikLoop and wordBreak are now accessed from Pascal by
SetWordBreak and SetClikLoop.

The purpose of AsmciikLoop was to allow a routine written in Pascal to be called while the mouse
button was down. The Pascal routine had to be called PasClikLoop and the clikLoop field of
the text edit record had to be set to ©AsmciikLoop.

With the new SetClikLoop routine, the Pascal routine no longer has to be called PasClikLoop.
So where before we would have the statement

hTEAA.clikLoop := SAsmClikLoop;
we now have

SetClikLoop(SMyClikLoop, hTE);

where the arbitrarily named routine MyCiikLoop replaces PasClikLoop. Note that
AsmciikLoop no longer exists.

About the "May 1985" Software Supplement Page 17

Note to developers using MacApp 0,2:

Recompile UTEView2. text after changing line 194 of that file from

anHTEA/x. clikLoop := 6AsmClikLoop;
to

SetClikLoop(SPasClikLoop, anHTE);

About the "May 1985" Software Supplement Page 18

Assembler Equates
This supplement contains a new release of the equate and macro files needed for assembly language
development for the Macintosh. This release is version 1.1 (the February Supplement contained a
beta-release of version 1.1). Not too many changes have been made since the February release.
The files are provided in both Lisa format (TLAsm files) and Macintosh (MDS, Macintosh 68000
Development System) format. The two sets of files are now completely consistent, the TLAsm
files being mechanically produced from the MDS counterparts. These files should be the basis for
all future Macintosh assembly language development.

The equates and macros are commented somewhat within the files themselves. More detailed
documentation can be found in the appropriate sections of Inside Macintosh.

Equate Files

Lisa Workshop Files

TLAsm/ATalkEqu.text

TLAsm/ FSEqu.text

TLAsm/HardwareEqu.text

TLAsm/PackMacs .text

TLAsm/PrEqu.text

TLAsm/QuickEqu.text

TLAsm/QuickTraps.text

TLAsm/SANEMacs.text

TLAsm/SysEqu.text

TLAsm/SysErr.text

TLAsm/SysTraps.text

TLAsm/ToolEqu.text

TLAsm/ToolTraps.text

MDS Files

ATalkEqu.Txt

FixTraps.Txt

FSEqu.Txt

Graf3D.Txt

HardwareEqu.Txt

MacDefs.Txt

MacTraps.Asm

PackMacs.Txt

PrEqu.Txt

QuickEqu.Txt

QuickTraps.Txt

SANEMacs.Txt

SysEqu.Txt

SysErr.Txt

SysTraps.Txt

ToolEqu.Txt

ToolTraps.Txt

Contents

AppleTalk equates and globals

Fix-point math equates and globals
(see FixMath and Graf3D section)

File system equates and globals

Graf3D (3-D graphics) equates and globals
(see FixMath and Graf3D section)

Hardware equates and globals
(for debugging use only)

Macros translating Lisa Workshop
assembler directives into MDS directives

Creates MacTraps. Sym (MDS symbol file)

Package macros

Printing equates and globals

QuickDraw equates and globals

QuickDraw traps

Numerics macros (see SANE section)

Low-level system equates and globals

System error numbers

Low-level system traps

Toolbox equates and globals

Toolbox traps

The files SysEqu, ToolEqu, and QuickEqu start with an equate such as "wholeSystem" which is
used for conditional assembly. If you do not need the less common equates after ". IF
wholeSystem" you can change wholeSystem to 0 and reduce the time and space required for your
assembly. Note that two MDS symbol files are provided for each of these (e.g. sysEqux.D with
wholeSystem on and SysEqu. D with wholeSystem o f f) .

About the "May 1985" Software Supplement Page 19

Changes to Assembler Equate Files

The following changes to the assembly language equates have been made since the February
Software Supplement:

1) Version numbers have been added to all files. This release is version 1.1, corresponding to the
final release of Inside Macintosh.

2) The following equates correspond to a pre-release version of the Memory Manager, and were
removed: FOnCheck, fChecking, mFulErr and memTrbBase. The FGZAlways and
FBGZResrv flags were added, which allow additional control when the standard GrowZone
function is called. GZCritical was obsoleted by the May 1984 system update, so it was
removed.

3) New equates were added for the fonts: Times, Helvetica, Courier, Symbol, and Taliesin.

4) New equates have been added for sysPatListID, deskPatID, goodBye, and rdVerify.

5) Some equates have had minor cosmetic work done on them to make them consistent with the
documentation. These include RestProc, renamed ResumeProc, and MrMacHook, renamed
MBarHook. The equates commandMark, checkMark, diamondMark and appleMark were
moved from menu equates to font equates. PrintVars was renamed PrintErr. SFSaveDisk and
iPrSavPFil were added back into the public domain. The file HardwareEqu was beefed up, but
please use this file for debugging only.

6) Assembly equates for AppleTalk have been added.

7) Some duplicate equates were removed. CurrPos, absPos, and relPos were removed because
they duplicated fsAtMark, etc.

8) All instances of resource system references have been removed. These include: resSysRef,
addRefFailed, rmvRefFailed, AddReference and RmveReference. These equates and traps
are being removed because, to our knowledge, no one has found a use for them. If you are
using these features, contact Macintosh Technical Support immediately.
Otherwise, the corresponding code may be omitted from future systems.

9) The assembly equates dqElLnth, HasBundle, and invisible have been corrected.

10) To support arbitration of the serial ports, equates for ChooserBits, useExtClk, aPortUsed, and
bPortUsed have been added.

11) The fixed point math, three dimensional graphics, speech synthesis, and floating point string
conversion routines are now available for MDS users.

Application writers may find it useful to note that ApplScratch in TLAsm/TooiEqu is a 12 byte
application scratch area in low memory.

About the "May 1985" Software Supplement Page 20

Workshop 3.9--New Features
Workshop Shell (v. 3.9)

The shell has been enhanced to provide better support for hierarchical directories. Subdirectory
support is now very solid. The Copy, Backup, and Transfer commands have been modified to
create any needed subdirectories when a copy spills over onto more than one disk. The size of file
names collected by the shell has been increased to prevent overflowing the file name strings when
long file names with long subdirectory names are used. The Equal command in the File
Manager now prints a summary of its comparisons. Exec files are now run with the three levels
of prefixes rather than just the main prefix, which eliminates the need to put copies of common exec
files in all your subdirectories. The NEWER command in the exec processor now works when
files which do not exist are specified (allowing you to eliminate calls to the EXISTS function
which verified that the arguments to NEWER existed, which should simplify your logic and speed
up your exec files). Files which do not exist are assumed to have a date at the beginning of time
(this does what you want). The NEWER function has also been optimized for speed. You can
now call exec functions from the workshop Run command; the function result will be displayed on
the console when the exec completes.

Pascal Compiler (v. 3.76) and Code Generator (v. 3.65)

A few additional bug fixes have been added to the "Post-3.0" compiler described in the memo titled
Latest " Post-3.0" Lisa Pascal Compiler Enhancements dated Feb. 8,1985 (included
with the February 1985 Software Supplement). Note that the SANE interface in Appendix A of
that document is out of date (and has been omitted on new copies); see the file
intrf c/SANELib. text on the 5/85 Workshop Supplement disk for the latest interface.

If you are using an exec file other than the new example/exec file provided with this Supplement,
please note the following: If you have Workshop 2.0 you should give the $M+ option to the code
generator. If you have Workshop 3.0 or 3.9 you should give the $M+ option to die Pascal
compiler and/or include it in your source code. If you are using Workshop 2.0 or an old version of
the Workshop 3.0 Pascal compiler, make sure you also give the $X- option to the compiler (this is
optional when using $M+ in the new Workshop 3.9 compiler included in this Supplement).

Linker (v. 0.9.3.1)

This linker supports all the functions necessary for development of Macintosh applications and
drivers.

Using the Lisa Workshop linker, it is possible to "pie-link" a group of object files into a single
object file for later linking convenience. Partial linking on the Lisa Workshop Linker is limited
since the units being linked may not have any unit globals. To invoke this option, specify:

+R modulename

as an option to the linker. This tells the linker that it will not find a main program in its set of input
files and will cause it to generate a "raw" object file as output. If modulename is specified, then
any procedures which are not called by modulename or anything that it calls will not be included in
the link. Such code is considered to be "dead code" and will be stripped. If modulename is not
specified, then no "dead code" will be stripped.

Once partial linking is done, all the code is collapsed into a single module with many entry points;
since "dead code" stripping is done on a module basis, a library which has been partially
linked will either be included in its entirety or not at all.

About the "May 1985" Software Supplement Page 21

Note that when doing a partial link, the linker expects unresolved external references to be resolved
in a later link; therefore no warnings for unresolved external references are given during partial
link§. Remember that if you are preparing an object file for RMaker there will be no later link.

Possible uses of partial linking include:
1. Writing code that will be input to RMaker as a raw object file (e.g. a desk accessory

which must be a DRVR resource) in Pascal called by assembly language.
2. Building very large programs contained in too many files for the linker to handle.
3. Reducing link time by partially linking stable modules of an application and later

linking only with changed modules.

If you have Workshop 3.0 or 3.9, please also note that your exec files should always give the +X
option to the linker. This option is required for generating Macintosh code but it wasn't recognized
by some linkers we've distributed in the distant past so you may have removed it from your exec
files.

SANFLih fv. 1.21

SANELib includes a regular unit called SANE that complements the extended-precision IEEE
Standard arithmetic built into the new Pascal compiler described above. It also includes
compile-time and run-time floating point support for that compiler. SANELib version 1.2 fixes a
few minor bugs associated with version 0.9 (which was distributed with the February Software
Supplement). For details see the release note titled SANELib V1.2 included with this
Supplement

MacCom (v. 3.11)

The MacCom.obj file on the Workshop 3.9 Update Disk 1 is MacCom version 3.11. That
version includes support for Macintosh/Lisa shared hard disks. This is provided through the
command AltDevice. The A command can be used to tell Maccom to look on an alternate device
(lower, paraport, upper) for the Macintosh directory. You can then move files to or from the
specified Macintosh directory.

Maccom also supports conversion between Lisa and Macintosh text file formats. The command
Settings displays a second command line:

Finderlnfo, RemoveSlashes, Tabs, ConvertText, MatchTypes, Status, Help, Quit

Finderlnfo and RemoveSlashes have the same effect as on the main command line (they were left in
the main command line for exec file compatibility). Finderlnfo here also allows you to change the
defaults for the Finder type, creator, and bundle bit settings .

The ConvertText command allows for Lisa .TEXT file conversion. It asks you whether to convert
to or from Lisa .TEXT files and what pathname extension (it need not be .TEXT) to use. This
extension will be used to qualify filename searches when converting in either direction.

The Tabs command allows you to remove tabs (Macintosh to Lisa) or compress runs of blanks into
tabs (Lisa to Macintosh) when processing text files with the ConvertText option.

The MatchTypes command allows you to qualify searches on Macintosh filenames by specifying a
list of Finder types.

The Status command displays the current settings. Help displays help. Quit returns to the main
command line.

About the "May 1985" Software Supplement Page 22

RMaker (v. 7.14h)

RMaker is the resource compiler for the Lisa Workshop. The format of RMaker input files
(resource definition files) is described fully in the latest version of Putting Together a
Macintosh Application (dated 5/5/85), which included with this Supplement.

This Supplement contains several versions of RMaker for users of Workshop 3.0 and 3.9.
Running the Workshop 3.9 Update will install RMaker version 7.13b on your hard disk. The file
3. 9oniy/RMaker7.14a. obj can be found on the 5/85 Workshop Supplement 2 disk; the file
3. 9oniy/RMaker. obj on the 5/85 Workshop Supplement 3 disk is version 7.14b.

The latest versions are 7.14a and 7.14b. Both support larger resource files than earlier versions.
RMaker version 7.14b will support even larger files than 7.14a, but at the expense of a smaller
limit on the size of an item list (e.g. String Lists, DITLs, Pattern Lists, and Icon Lists). Version 7.14a
will allow item lists which take up to 4K bytes of memory in RMaker; version 7.14b allows lists which take up to 2K bytes (enough
for most applications). We recommend starting with version 7.14b and if the RMaker error " F a t a l
e r r o r . D a t a b l o c k o v e r f l o w (i t e m l i s t t o o l a r g e) ." is encountered, switching to version
7.14a (which should compile any resource definition files which worked with RMakers distributed
with earlier Supplements).

Other enhancements to all of these versions of RMaker include:

Several bugs have been fixed.

Users may specify a meta-character as part of a menu item's text by repeating the
meta-character twice; i.e., to put a left-parenthesis in a menu item, you should put ((in your
resource definition file.

The processing of CODE resources has been optimized.

RMaker will capitalize any of Apple's "reserved resource type names" (e.g. ALRT, BNDL,
and CODE) as listed in Technical Note #32: Reserved Resource Types (included
with this Supplement) but will leave all other resource type names in their original case.

About the "May 1985" Software Supplement Page 23

Workshop Editor feditor.obi dated 4/1/85)

The following enhancements have been made to the Workshop Editor:

Prompts: Prompts that require typed input now display default responses. You can get the
default by typing <Return>. Typing <Clear> aborts the prompt

Markers: The default response to Set Markers is now the first fourteen characters of the
current selection. (Fourteen characters is the maximum length of a marker name). If the
current selection matches the selection for any marker in the file, then that marker is the default
response to Delete Marker.

Find: The default Find... target string is based on the current selection. If Search is
Tokenized then the first token (delimited by spaces) is the default; otherwise, the defaults is the
entire first line of the current selection.

File Menu: The default prompts for the File menu items (e.g. "Save a Copy in...",
"Open...") are based on the current selection.

Configurable Menus & Search Options: When the editor first starts up it reads the file
-#boot-edit .menus .text to get the menu items. Users can edit this file but they should first back
it up-major changes to this file could prevent the editor from functioning.

Changing this file (such as menu tiles and menu items) will take effect the next time the editor
is started after it has been killed (either with the System Manager's Manage Process command
or by exiting the Workshop).

Users who want to add new command-key equivalents to frequently used menus can do so by
appending a menu item name with "/x" for some character x (e.g. "Throw Away Window/T'
will make Apple-T equivalent to the Throw Away Window menu item).

Users who don't want the editor to start in "Search is Tokenized" mode can change the initial
settings of the search options (Tokenized, Case Sensitive, and Wraparound). The editor now
assumes that the search option menu items toggle between "Search is <Option>" and "Search is
Not <Option>"; the presence of "Not" in the menu item name determines the startup
configuration.

Miscellaneous Editor enhancements: Typing Apple-Period aborts printing. Markers are
deleted with Cut (previously they were just hidden, now they are removed from the Marker list).
The next event after cursor movement now works correctly.

About the "May 1985" Software Supplement Page 24

Assembler (v. 3.77):

The following enhancements have been made to to the Lisa Workshop assembler (version 3.77):

1) .SYM symbol files
2) .OUT output redirection
3) .CASEOUT case-sensitive linker symbols
4) .REF32 Directive
5) .REFA5 Directive

1) .SYM files

A mechanism similar to the Macintosh 68000 Development System assembler symbols file
mechanism has been implemented in the Lisa Workshop assembler. This allows you to create a
.SYM file containing the compressed definition of your symbols (i.e. Macintosh system equates)
and then rapidly read these into your assembly.

To create the .SYM file: set up a separate assembly containing all definitions you want to include,
then the dump statement Format of dump statement is

.DUMP filename

where filename is the name of the .SYM file (.SYM is automatically appended). Comments may
occur on this line as well. A typical assembly is

. INCLUDE
, INCLUDE
. INCLUDE
. INCLUDE
. INCLUDE
.DUMP
.END

TLASM/SYSEQU
TLASM/SYSERR
TLASM/SYSTRAPS
TLASM/TOOLEQU
TLASM/TOOLTRAP S
TLASM/EQUATES

This creates the file TLASM/EQUATES . SYM, which is a compressed symbol file containing all the
symbols defined in the listed files. Local labels are not included in the file. Forward references
remain unresolved and should be avoided.

To use the .SYM file: Replace the corresponding definitions with an include of a .SYM file as
follows:

.INCLUDE TLASM/EQUATES.SYM

Note that the format is the same as the include of text files. For this reason, the .SYM suffix must
be included in the name. (If the file is not found, the text file <name>.TEXT will be searched for.)

The effect of .INCLUDE .. .SYM is to load the symbol table with the symbols previously defined.
The upper/lower case characteristics are as defined at DUMP time. The INCLUDE statement does
not cause checking for duplicate names or backpatching of values.

2) .OUT Output Redirection

The .OUT construct lets you change the assembler's output file between .PROC's or .FUNC's.
This lets you create more than one output file from a single assembly; each file will contain a
linker-legal object format with an integral number of assembly procs. The primary purpose of this
feature is to combine assemblies that have common front ends, reducing assembly time.

About the "May 1985" Software Supplement Page 25

Format:
.OUT "filename"

or
.OUT 'filename'

where filename is the name of the new .OBJ file. The .OBJ suffix is automatically appended when
not supplied. The .OUT command takes effect at the beginning of the next .PROC, .FUNC, or
.MAIN, closing the existing output file and opening the new one (overwriting any previous file of
the same name). Note that errors in opening the file may not get reported until the bottom of the
next .PROC, due to the vagaries of the object file mechanism.

An '=' may be used as a wildcard in the file name. It stands for the original output file's volume
and file name without extension. Therefore, if the first output file is -voiname - Temp. ob j, the
command

.OUT 1=21

will switch the output to the file -Volname-Temp2 .Obj (a handy feature if you want to assemble
to various volumes or subdirectories).

3) .CASEOUT case-sensitive linker symbols

The .CASEOUT directive causes ensuing newly defined symbols to be sent to the linker in their
original case. It does NOT cause case-sensitivity during the assembly. This feature is intended to
be used in linking assemblies to other case-sensitive languages, such as C.

Format:
.CASEOUT
.NOCASEOUT

All symbols that are newly defined after .CASEOUT and up to a .NOCASEOUT will be sent in
their original case to the linker. Typically, there is only a .CASEOUT at the beginning of the entire
assembly. Note that CASEOUT applies to all symbols , including procs and funcs, defs and refs,
and so on, although only some of the symbols are actually sent to the linker.

4 & 5) -RFF32 and .REFA5 Directives

The assembler now offers symbolic access to UNIT global data from Workshop Pascal and
EXTERNAL global data from Workshop C. It is now possible to reference data areas generated
by high level languages and rely on the Linker to allocate and resolve the references. However, it
is not possible to create new data areas or to specify initialization values. The assembler supports
symbolic access with the directives . REF32 and . REFA5.

4) .REF32 Directive

.REF32 NAMEX,NAMEY,NAMEZ

indicates to the assembler that NAMEX,NAMEY, and NAMEZ are the names of global data areas
that will be based accessed via 32-bit (immediate) addresses. This should not be used with
Workshop Pascal; it should only be of interest to users of Workshop C writing code to be executed
on the Lisa. REF32 does not work in code executed on the Macintosh.

About the "May 1985" Software Supplement Page 26

5) .REFA5 Directive

.REFA5 NAMEA,NAMEB,NAMEC

indicates to the assembler that NAMEA, NAMEB, and NAMEC are the names of global data areas
that will be based on register A5. For example, assume the following Pascal Unit interface (and
implementation VARs):

unit NAMEA;

interface
var

i: integer;
LI : longint;

procedure PascalA;
procedure writeA;

implementat ion
var

L2: longint;

One set of definitions to access variables i, LI, and L2 would be:
.REFA5 NAMEA

i .EQU -2 ; 0 minus sizeof i
LI .EQU -6 ; start of i minus sizeof LI
L2 .EQU -10 ; start of LI minus sizeof L2

A more easily maintained set of definitions might be :

.REFA5
FIRSTA .EQU
i .EQU
LI .EQU
L2 .EQU

NAMEA
0
FIRSTA-2
i-4
Ll-4

integer
longint
longint

Notice that Unit variables are allocated in the negative direction from 0. Both INTERFACE and
IMPLEMENTATION variables are accessible, although good programming practice would limit the
references to only the INTERFACE variables.

Instructions to modify the variables i, LI, and L2 might be:

MOVE.W
MOVEQ
MOVE.L
MOVE.W
EXT.L
MOVE.L

#2,NAMEA+i
#22,DO
DO,NAMEA+L1
#222,DO
DO
DO,NAMEA+L2

LI

:= 2 ;

:= 2 2 ;

L2 := 222

NOTES: when using symbols that have been declared REFA5, do not attempt to use the .. .(A5)
notation. (If you do, error numbers 21 and 72 will be reported by the assembler). The .. .(A5)
notation is still used for doing non-relocatable A5 references, e.g. when A5 is saved and some other
value is loaded.

REFA5 with negative offsets works properly with Workshop Pascal (for code to be executed on the
Macintosh or Lisa); it is not designed to work with Workshop C.

About the "May 1985" Software Supplement Page 27

.REFA5 Example Code Fragments

program SAMPLE;
uses {$U NAMEA.OBJ} NAMEA;

procedure ASMA; External ;

begin
Pascal A;
WriteA;
AsmA;
WriteA;

end.

.PROC ASMA

.REFA5 NAMEA
FIRSTA .EQU 0
i .EQU FIRSTA-2 ; integer
LI • EQU i-4 ; longint
L2 .EQU Ll-4 ; longint

MOVE.W #2,NAMEA+i ; i : = 2
MOVEQ #22,DO
MOVE.L DO,NAMEA+L1 ; LI : =
MOVE.W #222,DO
EXT.L DO
MOVE.L DO,NAMEA+L2 ; L2 : =
RTS
END

unit NAMEA;
interface

var i: integer;
LI: longint;

procedure PascalA;
procedure writeA;

implementation

var L2: longint;

procedure PascalA;
begin

i := 1;
LI := 11;
L2 := 111;

end;

procedure writeA;
begin

writeln (' i = ',i:l,' LI = ',L1:1, ' L2 = ',L2:1);
end;

end.

About the "May 1985" Software Supplement Page 28

Resource File Builder (RFB")

Introduction
RFB is a Resource File Builder tool for the Lisa Workshop. A version of RFB for Workshop 3.9
can be found in the file 3. 9oniy/RFB. obj on the 5/85 Workshop Supplement 3 disk. The
source for the RFB tool (including a Workshop 3.9 exec file) can be found in source/RFB. text on
the 5/85 Workshop Supplement 2 disk (see that file for more information). Workshop 2.0
users might be able to modify the source to make it work on their system.

In the course of development of "Please" (Hayes' database management package) for the
Macintosh, it became apparent that a lot of time could be saved by avoiding RMaker resource
compiles as much as possible. Further, as the program grew it was decided that it should be split
into separate files, to allow the user to have only those resources on online disks that were
necessary to perform the desired functions. None of the programs distributed with the Lisa Pascal
Workshop proved sufficient to the task, so Toby Nixon, Software Analyst at Hayes, wrote the
Resource File Builder (RFB) program.

RFB runs on the Lisa. It allows the developer to produce a Macintosh resource file on the Lisa
from one or more other existing resource files. There are several specific advantages gained by
using the program, including:

- Non-CODE resources, such as STR#s, ALRTs, DLOGs, CTRLs,etc., can be placed in an
RMaker input file and compiled once. A separate RMaker input file can be prepared which
specifies ONLY the CODE resources. After each Link, only the CODE resource file must be
reprocessed by RMaker. RFB combines the two resource files to produce the file that is
MacCom'ed.

- Resources such as FONTs and PICTs, which are extremely difficult to produce in the
Workshop, can be produced on the Mac (or Lisa under MacWorks), MacCom'ed onto the
Workshop disk, and combined with other resources with RFB to produce the final Mac
resource file.

- RFB allows an application to be easily split into separate resource files, such as a main file,
utility file, and help file. The application running on the Mac can open the auxiliary files
when necessary (usually because the user initiated a function that requires CODE or other
resources from that file) using OpenResFile. The Mac Resource Manager automatically
searches all open resources files, so no special code is needed in the application to find the
resources once the files are open.

- When several programmers or other personnel (such as technical writers working on help
text) are involved in the creation of non-CODE resources, they can separately process their
work through RMaker, and distribute their files to the others. Each would run RFB to
produce the executable version of the program, without having to wait for RMaker to process
all of the other team members' work.

Running RFB
After renaming 3. 9oniy/RFB. obj to RFB . obj, execute RFB by using the Workshop "R" (run)
command. RFB is most often run from an exec file which includes all of the RFB input to produce
the desired output. RFB requests the name of the output file to be produced. It does not check to
see if the file already exists. It does not currently append any default extension, so the entire file
name must be given. If a null entry is made, the program terminates.

About the "May 1985" Software Supplement Page 29

RFB then requests the name of the input resource file to read. The entire file name must be entered.
If the file is not found, an appropriate error message is displayed. If the file is found, it is opened
and the resource map is read into memory. If no entry is made, the output resource file map is
written, and the output file is closed. RFB then returns to allow the specification of another output
file.

RFB then requests the resource type to be copied. If a null entry is made, RFB closes the input file
and requests a new input file name. If "*" is entered, then all resources of all types are copied from
the input file to the output file. Otherwise, the type code entered is search for the the input file map,
and an appropriate error message is displayed if it is not found. If it is found, an entry is made in
the output file map for that type, and processing continues.

If the type specified is CODE, RFB asks if you want to specify code segments by name rather than
number. This is very useful if the program is under active development, with frequent addition and
deletion of code segments. If YES is specified, RFB then asks for the name of the linkmap file
associated with the current input file. The linkmap file is opened and scanned, and the names and
associated numbers of all code segments are tabulated.

After the type is entered, RFB requests the resource ID numbers to copy. If a null entry is made,
RFB returns to request the next type (if no resources have been copied for the type, the type entry
is removed from the output map). If is entered, all resources of the current type are copied to
the output file. If CODE segments are being specified by name, the name is translated to the CODE
resource ID number (segment number) for copying. If the specified resource is already in the
output map, an error message is displayed.

While specifying CODE segments by name, it is still possible to specify by number. When a
CODE segment name is requested, simply enter '#' followed by the number desired. This is
necessary when requesting the jump table (#0) and the blank segment (#1). Resources of type
VERS are handled a special way. When RFB starts, it gets the system date and time. When a
VERS resource is copied, the resource data from the input file is replaced by the 10-byte system
date-time stamp. All VERS resources written during a single run of RFB will have exactiy the
same time stamp data. This allows the application at run time to insure that auxiliary files are of the
same version as the main program resource file, by simply doing a byte-by-byte comparision of the
VERS resources in the files.

RFB Limits
RFB is currendy limited by static array bounds to:

25 resource types in the output file.
128 references to any one type.
6144 bytes maximum input resource map size.
256 CODE segments in an input link map.

RFB files included on the 5/85 Workshop Supplement 2 and 3 disks:
source/RFB. text Source code for RFB
3. 9oniy/RFB. obj Object code for RFB
3. 9oniy/RFB/exec .text The procedure file used to build Please on the Macintosh,

included as an example of an RFB exec file.

Questions can be address to Toby Nixon of Hayes Microcomputer Products at (404) 449-8791.

About the "May 1985" Software Supplement Page 30

Example Programs and Exec Files
The files included on the 5/85 Examples 1 and 2 disks are example programs designed for use
with the Lisa Workshop. These disks are in Macintosh format and the files are text-only files, so
anyone with a Macintosh editor or word processor can read the source code (all but the largest can
be read using the File editor example provided on the 5/85 MacStuff 2 disk). However the Lisa
Pascal Workshop is required to compile the examples, most of which are written in Lisa Pascal.

If you plan to read the Examples disks from a Macintosh, note that they have no System folder so
they cannot be used to boot a Macintosh; to use them you must boot another disk first It may
prove convenient to build disks with a copy of the System Folder from the 5/85 Mac Build
Disk, your editor, and files from the Examples disks that you want to read.

Macintosh 68000 Development System (MPS) users can assemble the DefProc (definition
procedure) files. The INCLUDE statements must be modified, as described in the files. MDS may
return minor warnings which may be ignored. Additional MDS examples can be found on the
5/85 MacStuff 4 disk.

Workshop exec files are provided to translate the Macintosh text only files to Lisa text files and
copy them from Macintosh disks to a Lisa hard disk. Users who do not wish to copy all the
examples (which require 1640 blocks of disk space) should move selected files onto another
Macintosh disk or modify the exec files appropriately.

Workshop 3.0 or 3.9 users should copy the exec file 3. 9only/example/convert/Mac2Lisa .text
from the 5/85 Workshop Supplement 3 disk to their hard disk, stripping off the "3. Oonly/"
prefix. Invoke the file as follows:

R<convert/Mac2Lisa
The exec file will prompt the user for the two example disks and will invoke MacCom to copy and
convert the files.

Workshop 2.0 users should copy the three 2. Oonly/ files from the 5/85 Workshop
Supplement 2 disk to their hard disk, stripping off the " 2. Oonly/" prefix. Then for each
example disk invoke the exec file Convert/Mac2Lisa 1 .text as follows:

R<convert/Mac2Lisal
This exec file takes several minutes to execute because after it copies the files using MacCom it
must translate Macintosh text files to Lisa format (by invoking convert/Mac2Lisa2 .text which
calls the program convert/Textconvert). If you want to convert just a few files, see the exec files
for more information; better yet, upgrade to Workshop 3.0.

Workshop 2.0 users should note that a few of the example programs will not compile and link on
Workshop 2.0 without modification. These include: 3. 9oniy/exampie/UNamAcc (requires partial
linking found in Workshop 3.9), 3.9only/example/soundlab (requires "Post-3.0 SANE" found
in Workshop 3.9—Workshop 2.0 users should use 2. Ooniy/exampie/soundlab from the February
1985 Software Supplement), skei (contains an optional $USES SANE statement which can be
removed), example/BoxSphere (uses BitSR function found in the Workshop 3.9 compiler), and
Example/Event Tutor (must be renamed without the blank to be used with Workshop 2.0 tools,
and its source contains two uses of the Workshop 3.9 compiler features). The
fragment/AppleTalk... files also must be renamed without a blank to be read from the Workshop
2.0 editor.

About the "May 1985" Software Supplement Page 31

The example disks contain the following files:

Files on Mac disk 5/85 Examples 1:
Desk Accessory Example Sources

Application Example Sources

Source Fragments

3.9only/example/UNamAcc.text
3.9only/example/UNamAccAsm.text
3.9only/example/UNamAccR.text
3.9only/example/UNamAccX.text
example/ADeskAcc.text
example/ADeskAccR.text

3.9only/example/SoundLab.text
3.9only/example/SoundLabR.text
example/Boxes.text
example/BoxesR.text
example/BoxSphere.text
example/BoxSphereR.text
example/Control.text
example/ControlR.text
example/DebugWindow.text
example/DebugWindowR.text
example/Event Tutor.text
example/Event TutorR.text
example/File.text
example/FileAsm.text
example/FileR.text
example/Grow.text
example/GrowR.text
example/Menu.text
example/MenuR.text
example/Modal.text
example/ModalR.text
example/Modall.text
example/ModallR.text
example/Modal2.text
example/Modal2R.text
example/Modeless.text
example/ModelessR.text
example/PicScrap.text
example/PicScrapR.text

fragment/AppleTalk l.text
fragment/AppleTalk 2.text
fragment/AppleTalk 3.text
fragment/AppleTalk 4.text
fragment/ZoomRect.text
ImageWriter/ResDef.text

About the "May 1985" Software Supplement Page 32

Files on Mac disk 5/85 Examples 2:
Application Example Sources example/Print.text

example/PrintR.text
example/QDSample.text
example/QDSampleR.text
example/Samp.text
example/SampR.text
example/Scroll.text
example/ScrollR.text
example/Scroll.C.text
example/SFSample.text
example/SFSampleR.text
example/ShowPaint.text
example/ShowPaintR.text
example/SineGrid.text
example/SineGridR.text
example/Skel.text
example/SkelR.text
example/SpeakFile.text
example/SpeakFileR.text
example/TextEdit.text
example/TextEditR.text
example/Window.text
example/WindowR.text

DefProc Sources defProcs/ButCDef.text
defProcs/MDef.text
defProcs/RDocWDef.text
defProcs/SBarCDef.text
defProcs/WDef.text

About the "May 1985" Software Supplement Page 33

The files on these disks are example programs (how to use controls, windows, dialogs, etc.),
example exec files, definition procedures, and sample desk accessories.

example/ADeskAcc.text
example/ADeskAccR.text

example/Boxes.text
exarnple/BoxesR. text

example/BoxSphere.text
example/BoxSphereR.text

example/Control.text
example/ControlR.text

example/DebugWindow.text
example/DebugWindowR.text

example/Event Tutor.text
example/Event TutorR.text

example/File.text
example/FileAsm.text
exanple/FileR.text

example/Grow.text
example/GrowR.text

example/Menu.text
exarnp le /MenuR. t ext

example/Modal.text
example/ModalR.text

example/Modall.text
example/ModallR.text

example/Modal2.text
example/Modal2R.text

example/Modeless.text
example/Modele s sR.text

example/PicScrap.text
example/PicScrapR.text

example/Print.text
example/PrintR.text

example/QDSample.text
example/QDSampleR.text

example/Samp.text
example/SampR.text

example/Scroll.text
example/ScrollR.text

example/SFSample.text
example/SFSampleR.text

example/ShowPaint.text
example/ShowPaintR.text

exairple/ S ineGrid. text
example/S ineGridR.text

example/Skel.text
example/SkelR.text

Uriah, a sample desk accessory written in assembly language
this resource definition file explains how to build it
(there is no exec file)
MDS users -see UriahMac.Asm on 5/85 MacStuff 4 instead

a Graf3D example

another Graf3D example

a Control example

a WritelnWindow example

a tool from Dartmouth to teach programmers about
events; the resulting application it is worth looking at

the File example, a text processor, has tots of stuff in it
an assembly module for File
(note: File has been cleaned up since the Feb. Supplement)

a Window example

a Menu Manager example

a Modal Dialog example

another Modal Dialog example

and another Modal Dialog example

a Modeless Dialog example

an example of how to get pictures from the
scrapbook

a Print Manager Example

a QuickDraw example

the Samp example from Inside Macintosh

a Control Manager example-scrolling

an example which displays a dialog that looks
like Standard File (e.g. SFGetFile)

how to unpack a MacPaint document

another Graf3D example

a skeleton program from Dartmouth-
definitely worth looking at

About the "May 1985" Software Supplement Page 34

example/SoundLab.text
example/SoundLabR.text

example/SpeakFile.text
example/SpeakFileR.text

example/TextEdit.text
exanple/TextEditR.text

example/Window.text
example/WindowR.text

We have also included an example of how to write a desk accessory in Pascal. It's called UNamAcc.
You need to have the new Workshop 3.9 partial linker to compile and link this.
3. 9only/example/UNamAcc. text the Pascal source
3. 9only/exampie/UNamAccAsm. text an assembly language portion
3. 9oniy/example/UNamAccR. text RMaker source (resource definition file)
3. 9only/example/UNamAccX. text the exec file for UNamAcc

There are several exec files for use with these examples on the 5/85 Workshop Supplement 3
disk. These exec files are designed to work with the 3.0 or 3.9 Workshops. If you are still running on
the 2.0 Workshop then use the old 2. Oonly/ files. Note that not all of the above Pascal source files
contain the $M+ code generator option; that option must be included in the source and/or the exec file.
We include it in our exec files.

The file 3. 9oniy/exampie/Exec .text is a general purpose, semi-smart exec file that checks to see if
the files you give it exist, and whether the files have changed since the last time you compiled or
assembled. It sets the bundle bit in RMaker if (and only if) you give it a creator. To invoke it (after you
rename 3. 9oniy/= to =) you would type;

R<example/Exec(Pascal file, assembly file, resource file, creator, link file,
source volume)

All of the items in the parentheses are optional. The default file is example/window. The assembly file
is assumed to be appended by 'Asm', and the resource file is assumed to be appended by 'R', like this:

Pascal Source example/file.text
Assembly source example/fileAsm.text
RMaker source (resource definition) exampie/f ileR. text

The link file is a file that contains the names of the files needed to link your program with. The
default file name is example /MinLink.

3. 9only/exampie/vaniiiaExec .text is an exec for those who would rather build without
worrying about the details of whether the file has a creator or what files to link with. It assumes that
the files are named using the conventions described above. It doesn't assemble. It links with
everything. All of the files linked are commented as to when you would need them. It deletes the
Desktop file when you run MacCom and it sets the bundle bit in RMaker whether you have a
creator or not To run it you enter:

R<example/VanillaExec(filename, creator)

There are also a set of files that allow you to build all of the examples at one time. They compile,
link, make the resource file, and run MacCom to build each example and load it onto a Macintosh
disk. They do not eject the disk until all the applications have been built They do not work with
the desk accessory examples.

3. 9only/example/ExecAii. text this is the main exec—type R<exampie/ExecAli to run it
3. 9only/example/ExecA112 .text This is very much like example/Exec, with some

modifications
3. 9only/exampie/ExampieList .text This file has a list of each example filename, creator, and

a Sound Driver example-uses SANE floating point in
Pascal Workshop 3.9; may blow up on a Macintosh XL
(better written sound software would not blow up)

a MacinTalk (speech synthesis) example

a Text Edit example

a Window Manager example

About the "May 1985" Software Supplement Page 35

link file if there is one. ExecAII reads this to determine
what to exec.

Note that ExecAii can be invoked with any list of files in the format of ExampieList as follows:

R<exampie/ExecAll(MyExampleList.text)

There are also a number of LINK files. These contain filesnames that are fed into the linker during
the exec process.

3.9only/example /MinLink. text The minimum of files needed to link.
3. 9only/example/MaxLink. text The maximum of files-everythina.
3. 9oniy/example/WritelnLink .text The files needed for the WritelnWindow unit.
3. 9only/example/Graf3DLink .text The files needed for Graf3D.
3. 9oniy/exampie/PrintLink. text The files needed for printing.
3. 9oniy/example/SANELink. text The files needed for SANE.
3. 9oniy/exampie/SpeechLink .text The files needed for MacinTalk (speech synthesis).

Other files on the Examples disks include fragment/ files, defProcs/ files,
example/Scroll .C .text and ImageWriter/ResDef .text. The fragment / files are Lisa Pascal
source fragments; these include the four Pascal AppleTalk example fragments from the final Inside
Macintosh (better examples will appear in a future Technical Note) and a code fragment which
draws the "zooming" rectangles which the Finder uses when opening and closing windows. The
defProcs/ files are the assembly language definition procedures for the standard buttons, menus,
scroll bars, windows, and round-cornered windows, included here in case you need to write your
own custom definitions. The file example / Scroll .c. text is the Pascal program
example/Scroll .text rewritten in a vanilla version of the language C (it may need modification
before it can be compiled with a particular C compiler). The file ImageWriter/ResDef .text is the
resource definition file fragment described in the enclosed document titled The March 1985
ImageWriter: Programmers' Notes.

About the "May 1985" Software Supplement Page 36

MacWorks™ XL
The MacWorks XL 3.0 disk allows you start up any Macintosh XL or Lisa 2 system so it will
run Macintosh software. The MacWorks XL disk included in the Supplement is version 3.0, the
new version which Apple is releasing in July 1985. Any disks you received earlier may be
pre-releases; make sure you test your software with version 3.0. Version 3.0 can be recognized
because while it is being booted it displays the following:

MACWORKS XL 3.0
COPYRIGHT 1985 - APPLE COMPUTER

MacWorks XL 3.0 allows direct startup from the hard disk and fixes numerous bugs that occurred
with older versions of MacWorks. Version 2.0 of the Hard Disk install tool (included in the
Supplement) will allow you to format all or part of a built-in hard disk or one connected to the
built-in parallel port If you run Hard Disk install and copy System and Finder to the hard disk,
MacWorks will look for the hard disk automatically after starting up from the MacWorks disk. If
you format your hard disk as a MacWorks-only disk (by choosing the "Don't Share" button) Hard
Disk install 2.0 will allow you to install or update MacWorks on your hard disk so that you can
boot MacWorks without using any diskettes. To force MacWorks XL to start from a Macintosh
3 1/2" disk, hold down the Option key while you start your machine with MacWorks. Hard Disk
install and Parallel Printer install can be found in the MacXL Tools folder on the 5/85
MacStuff 3 disk. For more information see the MacWorks XL User Manual and the
enclosed documents Technical Note #16 : MacWorks XL and Driver Bug in
Pre-Release MacWorks XL.

About the "May 1985" Software Supplement Page 37

Mac Build Disk
The Macintosh-formatted 5/85 Mac Build Disk contains the System Folder that you should ship
with your application. That folder contains the System file, the Finder (version 4.1), the
ImageWriter driver, the Note Pad File, the Scrapbook File, and the Clipboard File. The first
four of these are identical to the files on the 5/85 System Update Disk. The first three contain
proprietary information and may not be distributed without specific written permission of Apple
Computer, Inc. Licenses which permit distributing any or all of these are available for $50
annually. Contact Apple's Software Licensing Department at (408) 973-4667 for more
information.

This System file on this disk contains new printing software glue and a desk accessor called
Choose Printer (version 1.3). These make it easy for users to choose which port (printer or
modem) and printer (e.g. ImageWriter or LaserWriter) to use for printing. It will only display
printers for which there is a print driver file on the startup disk; in addition, for printers connected
over AppleTalk (e.g. LaserWriter) it will only display printers actually on the network.

This System file also contains new versions of Package 3 (Standard File), Package 4 (SANE
Floating Point Numerics), and Package 5 (Transcendental Functions). Changes enhance
performance and fix bugs (e.g. Package 5 no longer leaves itself locked) but will not affect
applications.

The System version string (STR resource 0) has been changed to "Version 2.0 08-Apr-85".

The System file contains the following desk accessories: Alarm Clock, Calculator, Choose Printer,
Control Panel, Key Caps, Note Pad, Puzzle, and Scrapbook. It also contains the following fonts:
Chicago 12, Geneva 9, Geneva 12, and Monaco 9 (the minimum set of fonts required to run
Macintosh software) and Monaco 12, New York 9, and New York 12. The above license entitles
you to include other Apple fonts in your System file. Fonts and desk accessories can be added to
or removed from the System file by use of the Font/Desk Accessory Mover (Font/DA Mover,
which can be found on the 5/85 MacStuff 3 disk).

Note that the Mac Build Disk no longer includes an empty folder. Finder 4.1 has a New Folder
menu item which allows users to create an empty folder when desired. You may still include an
empty folder on your disk.

Also note that users could recreate the Note Pad File and scrapbook File using the desk
accessories provided. The clipboard File can be created by applications or desk accessories.
However, if no version of these files is distributed in the System Folder then the files will be
created on the disk but not stored in any folder.

Directory of Macintosh formatted disk 5/85 Mac Build Disk

System Folder System
Finder
Imagewriter
Note Pad File
Scrapbook File
Clipboard File

80K Mon, Apr 8, 1985
47K Mon, Apr 8, 1985
25K Wed, Mar 6, 1985
2K Sat, Apr 21, 1984
IK Tue, Apr 16, 1985
OK Wed, Apr 10, 1985

About the "May 1985" Software Supplement Page 38

MacStuff Disks
The four Macintosh-formatted MacStuff disks contain various examples and tools that you can use
on a Macintosh. Many of the files on the MacStuff disks have notes in their "Get Info" boxes
which you can display by choosing Get Info from the Finder's File menu. Note that none of these
disks contain the Finder (Finder 4.1 can be found on the 5/85 Mac Build Disk). MacStuff
disks 1, 2, and 3 have a MiniFinder (described in the Macintosh Update for End-Users
document) and a System file which has been stripped of most fonts and desk accessories.
Applications can be launched from the MiniFinder using the Open and Open Other buttons. The
5/85 MacStuff 4 disk cannot be used to boot a Macintosh; to use it you must boot another disk
first. It may prove convenient to build disks with a copy of the System Folder from the 5/85
Mac Build Disk and copies of the files from the MacStuff and Examples disks that you use
frequently.

Files on Mac disk 5/85 MacStuff 1:
System Folder System

MiniFinder
Imagewriter

Tools ResEdit
REdit
Localizer
Dialog Creator
EXAMPLE
FreeTerm 1.6
Boot Configure
Screen Maker
DivJoin
Printer

The 5/85 MacStuff 1 disk contains a number of tools and utilities of interest to Macintosh
developers. Icons for all of these are displayed in the MiniFinder. Additional tools can be found
on MacStuff disks 2 and 3.

ResEdit.REdit. and Dialog creator are various flavors of resource editors. With these programs
you can create and modify all kinds of resources including window templates, menus, dialogs,
alerts, fonts, icons, bundles, and many more. ResEdit was written for programmers and provides
many ways to modify resources The Supplement contains ResEdit version 0.5 (this is a pre-release
version, which means that you should use it with caution; back up a disk before attempting to
modify it); a later version should be available from MAUG (via Compuserve) by the time you
read this. REdit was written primarily for translators so not all modifications are allowed;
however, it is very easy to use for certain modifications (e.g. changing the contents and size of a
dialog box). Dialog creator is useful when creating or editing RMaker resource definition
functions for dialog and alert boxes. ResEdit is described in ResEdit: A Macintosh Resource
Editor. REdit and Localizer are described in the booklet Macintosh REdit: A Macintosh
Resource Editor. Dialog creator and its example file EXAMPLE are described in DIALOG
CREATOR Instructions.

FreeTerm 1.6 is a terminal emulator which, with a modem, will allow you to access services such
as Compuserve (which hosts the users group MAUG). It is described in the FreeTerm
document Note that FreeTerm l. 6 does not work correctly on pre-release versions of MacWorks
XL; it will run on MacWorks XL 3.0 (which is included with this Supplement) but you may be
forced to reboot to select a new serial port. FreeTerm l. 7 should work well on all version of
MacWorks and should be available from MAUG (via Compuserve) by the time you read this.

Boot-Conf ipure allows you to display and set the contents of boot blocks on a 3 1/2" disk.

About the "May 1985" Software Supplement Page 39

sr-rgftnMakftr converts the top left corner of a MacPaint document to a screen image (for use as a
start up screen—a file named StartupScreen will be displayed when a disk is booted).

Pr inter is an old application which can be used to print files which have been spooled to disk or to
set up the environment for printing in some other application.

pivjoin is a new application which allows you to divide a file that is larger than a diskette in size
so that it can be moved from a hard disk onto multiple 3 1/2" diskettes. IT ONLY DIVIDES
THE DATA FORK OF THE FILE. For example, if you have large text-only files on a hard
disk, DivJoin can be used for moving them to other hard disks or backing them up onto diskettes.

To use DivJoin, open the file using the Open item in the File menu. This will bring up a window
for that file. Select Divide this File from the Div/Join menu. DivJoin will then take your
original file and divide it into sub-files, each the size of a diskette. If the original file is named f oo,
it will divide the original file into sub-files named l . f oo, 2. f oo, 3. f oo, etc. It will create as
many sub-files as needed When DivJoin is finished dividing the file the window will disappear.

Take each sub-file and put it on a diskette. The last sub-file will probably be smaller than a full
diskette. Later, when you want to recreate the original file, place all of the sub-files on the same
hard disk volume. Start up DivJoin and Open l. f oo. Choose Join this File from the Div/Join
menu. DivJoin will create the file f oo on the same volume. DivJoin does not support
automatically feeding in diskettes for copying.

Tools Which Have Been Removed

Some old tools which were included in previous Supplements have been omitted. They have been
replaced by more reliable tools which are also more functional. The tools which were removed
include: Resource Mover and IconEditor (replaced by ResEdit), Alert/Dialog Editor (replaced
by REdit; Dialog Creator or ResEdit could also be used), and Examine File, Set File, and Hex
Dump (replaced by FEdit on the 5/85 MacStufT 2 disk).

About the "May 1985" Software Supplement Page 40

Files on Mac disk 5/85 MacStuff 2:
System Folder System

MiniFinder
Imagewriter

Executable Examples Boxes
BoxSphere
Control
DebugWindow
Event Tutor
File
Instructions
More Info
Grow
Life
Menu
Modal
Modal1
Modal2
Modeless
PicScrap
Print
QDSample
Samp
Scroll
SFSample
SineGrid
ShowPaint
MacPic
Skel
Bone
SoundLab
TextEdit
Window

Disk Tools Fedit
Disk Utility

Switcher Folder Switcher 3.0

MacDB & Nubs MacDB
MacNub A
MacNub B
WorksNub

The 5/85 MacStuff 2 disk has a folder of Executable Examples which are the result of building
the example programs found on the 5/85 Examples 1 and 2 disks. The MiniFinder displays
icons for a selection of these examples including Event Tutor, which is designed to help
programmers to understand Macintosh events, and File, a simple text editor that can read multiple
text files of up to 32K characters, instructions and More info are two File-readable text files
which describe File; other data files for the examples which are found in the folder include MacPic
(a MacPaint picture used by the ShowPaint tool), and Bone (an empty data file for skel). The
Executable Examples folder also contains the game Life (the source for which is not distributed).

About the "May 1985" Software Supplement Page 41

The Disk Tools folder contains Disk utility, an old tool that allows operations on 3 1/2" disks
(it may not always work when running from a write protected disk), and Fedit. a file and disk edit
utility program for the Macintosh patterned after the ZAP type programs available on many
systems. Fedit is a powerful utility for use by average to highly technical users. It is not intended
for the uninitiated user. The program allows the user low level, direct access to several types of
disk volumes for both reading and updating. More information can be found in Fedit: A File
and Disk Editor. Unlike most other programs on the Software Supplement, Fedit was not
developed at Apple, but is shareware. If you find this program useful, we ask that you pay for it as
requested by the author on the first screen of the program and on page 2 of its documentation.

The switcher Folder contains switcher 3. o, described in Switcher (Beta Draft) and A
Software Developer's Guide to Switcher. Later versions of Switcher will be available from
MAUG (via Compuserve) and, when released, through Apple dealers.

The MacDB & Nubs folder contains the latest version of the two-Macintosh debugger described in
the chapter The MacDB Debugger distributed with a previous Software Supplement. For more
information see that document or the Debuggers section of this document.

About the "May 1985" Software Supplement Page 42

Files on Mac disk 5/85 MacStuff 3:
System Folder System

MiniFinder

AppleTalk Tools Peek
Installer
Poke
Poke Packets

MacXL Tools Hard Disk Install
Parallel Printer Install

MacinTalk VI.1 MacinTalk
Except ionEdit
SpeechLab
SpeakFile
TextToSpeak

Font Stuff Font/DA Mover
Fonts

The 5/85 MacStuff 3 disk has a System file with AppleTalk installed, to support the AppleTalk
Poke tool. The AppleTalk Tools folder contains the tools Peek, Installer, and Poke and the Poke
data file Poke Packets. For more information please refer to the enclosed documents AppleTalk
Information, AppleTalk Peek, and AppleTalk Poke.

The MacXL Tools folder contains utilities that can be run under MacWorks XL. These utilities are
described in the MacWorks XL User Manual (distributed with the February 1985 Supplement
Update) and the MacWorks XL section of this document.

The MacinTalk vi. l folder contains the MacinTalk driver file, the tools ExceptionEdit and
SpeechLab, and the executable version of the example program SpeakFile with its data file
TextToSpeak. MacinTalk is speech synthesis software for the Macintosh. For more information
see the enclosed document titled MacinTalk 1.1.

The Font stuff folder contains Font/DA Mover, the Font/Desk Accessory Mover tool, and Fonts,
a corresponding data file; these can also be found on the May 1985 System Disk. The Font/DA
Mover is described in the enclosed Macintosh Update for End-Users document.

About the "May 1985" Software Supplement Page 43

Files on Mac disk 5/85 MacStuff 4:
MDS Stuff

.D Files

Trap Files

Equ Files

.Rel Files

Graf3D Example

UriahMac Desk Accessory Example

Resource Files

About the "May 1985" Software Supplement

FSEqu.D
Graf3D .D
MacTraps.D
QuickEqu.D
QuickEquX.D
SysEqu.D
SysEquX.D
ToolEqu.D
ToolEquX.D

FixTraps.Txt
MacTraps.Asm
QuickTraps.Txt
SysTraps.Txt
ToolTraps.Txt

ATalkEqu.Txt
FSEqu.Txt
Graf3D.Txt
HardwareEqu.Txt
MacDefs.Txt
PackMacs.Txt
PrEqu.Txt
QuickEqu.Txt
SANEMacs.Txt
SysEqu.Txt
SysErr.Txt
ToolEqu.Txt

FixMath.Rel
Graf3D.Rel
PrLink.Rel
SpeechAsm.Re1
DEC2STR.Rel
STR2DEC.Rel
SDOpen.Rel

BoxSphere.Asm
BoxSphere.Job
BoxSphere
BoxSphere.Link
BoxSphere.Rel

UriahMac.Asm
UriahMac.R
UriahMac.Link
UriahMac

SERD
ATalk/ABPackage

Page 44

MacsBug Folder Midibug
Maxbug
MacXLbug
TermbugA
TermbugB

Font file Taliesin Font

Desk Accessory Examples User Name Acc
ADeskAcc (Uriah)

The 5/85 MacStuff 4 disk has no System Folder (so that it could include a large number of
files). Therefore it is not a bootable disk; to use it you must boot another disk first.

That disk contains a number of files of interest to users of the Macintosh 68000 Development
System (MDS); some are also of use to developers using other compilers with the MDS linker.
These files for MDS are organized in six folders which are contained in the MDS stuff folder.

The .D Files, Trap Files, andEqu Files folders correspond to the folders of the same name
on the MDS2 disk (part of the MDS product). The folders on the 5/85 MacStuff 4 disk have
the latest (version 1.1) assembly language equates (including ATaikEqu. Txt for AppleTalk),
corresponding to the TLAsm/ files on the 5/85 Workshop Supplement 2 disk. See the
Assembler Equates section of this document and the Macintosh 68000 Development
System User's Manual for more information.

The . Rei Files folder contains assembled .Rel files which can be linked with the MDS linker.
Many of these files provide access to functions previously available only from the Lisa Workshop.

The files FixMath. Rel and Graf 3D. Rel support fixed point math and three-dimensional
Quickdraw graphics; they are described in the FixMath and Graf3D section of this
document.

The file PrLink. Rel contains the implementation of the high level printing routines; see the
Object Files subsection of the Workshop Pascal Interfaces section of this
document for more detailed information on PrLink.

The file speechAsm. Rel is the interface to the MacinTalk speech synthesis driver described
in the document MacinTalk 1.1.

The files DEC2STR . Rel and STR2DEC . Rel are the numeric formatter and scanner (for
conversion between decimal records and ASCII strings) described in the enclosed SANE
Numeric Scanner and Formatter document.

The file SDOpen. Rel contains the routines RAMSDOpen and RAMSDClose described in
the RAM-Based Serial Drivers section of this document.

The Graf 3D Example folder contains BoxSphere, an example program written with MDS which
uses the GrafiD (three-dimensional graphics) routines. See the FixMath and Graf3D section of
this document for more information.

TheuriahMac Desk Accessory Example folder contains source to Uriah, the example desk
accessory, slightly modified to assemble with MDS on a Macintosh (the original Lisa assembler
source can be found in the file exampie/ADeskAcc .text on the 5/85 Examples 1 disk).
uriahMac, the file containing the resulting desk accessory, can be installed in a System file with the
Font/DA Mover on the 5/85 MacStuff 3 disk.

About the "May 1985" Software Supplement Page 45

The Resource Files folder contains two files containing resources which can be moved into an
application's resource file using ResEdit. The resource file SERD is described in the RAM-Based
Serial Drivers section of this document. The resource file ATaik/ABPackage is described in the
enclosed AppIeTalk Information document.

The debuggers in the MacsBug Folder are documented briefly in their Get Info boxes and
extensively in the Debuggers section of this document and die chapter The MacsBug
Debuggers distributed with an earlier Supplement.

The Font File folder contains the new Taiiesin Font, a pictoral font which appeared on the May
1985 System Update disk. It can be installed in a System file with the Font/DA Mover.

The Desk Accessory Examples folder contains the desk accessories produced from the two desk
accessory examples whose source code appeared on the 5/85 Examples 1 disk. They can also
be installed in a System file with the Font/DA Mover.

About the "May 1985" Software Supplement Page 46

FixMath and Graf3D
The Graf3D unit simulates three-dimensional graphics by making calls to QuickDraw. It can now
be used from the Lisa Workshop, MDS, and other languages on the Macintosh which use the
MDS linker. The version provided in this supplement uses fixed point arithmetic (which is smaller
and faster than the floating point arithmetic used in some very old versions of Graf3D).

Programs written in Lisa Pascal using Graf3D must $USE obj /FixMath and ob j /Graf 3D; they must
link with obj /FixAsm and obj /Graf 3DAsm (note that the files to link with are different than with the
February Supplement). The file 3. 9oniy/exampie/Graf3DLink. text on the 5/85 Workshop
Supplement 3 disk contains the file names needed for this link.

Three Lisa Pascal example programs which use Graf3D are provided on the disks 5/85
Examples 1 and 2: Boxes, BoxSphere, and sineGrid. Executable versions of these programs
appear on the 5/85 MacStuff 2 disk.

Graf3D programs written on the Macintosh using MDS must Include FixTraps. Txt and
Graf 3D. Txt and be linked with FixMath. Rel and Graf 3D. Rel. FixTraps. Txt is in the Trap
Files folder, Graf 3D .Txt is in the Equ Files folder, and FixMath. Rel and Graf 3D .Rel are in the
.Rel Files folder. BoxSphere .Asm, an assembly language version of the BoxSphere example, can
be found in the Graf 3D Example folder. That folder contains all the files needed to build the
example using MDS as well as the resulting executable application. All of these folders are
contained in the MDS stuff folder on the 5/85 MacStuff 4 disk.

SANE
SANE, the Standard Apple Numeric Environment, is embodied on the Macintosh in the
Floating-Point Arithmetic Package (pack 4) and the Transcendental Functions Package (pack 5).
These provide facilities for extended-precision floating-point arithmetic and advanced numerical
applications programming. SANE is designed in strict accordance with IEEE Standard 754 for
Binary Floating-Point Arithmetic.

Users of Lisa Pascal should not need to make calls to SANE directly; the SANELib V1.2
document describes how the Workshop 3.9 Pascal compiler interacts with SANE.

To define the macros used by SANE, assembly language programmers must Include the file
TLAsm/SANEMacs. text for the Lisa Workshop assembler or SANEMacs. Txt for the MDS assembler.

If you are using assembly language or a language without built-in support for SANE, you'll need
to be familiar with the Apple Numerics Manual. This is the standard reference guide to SANE, and
describes in detail how to call the Floating-Point Arithmetic and Transcendental Functions routines
from assembly language. The Apple Numerics Manual is included in the Promotional ("phone
book") Edition of Inside Macintosh and also in Apple // Assembly Language SANE (Apple product
#A2W-0015).

Dec2Str and Str2Dec, SANE's numeric formatter and scanner (for conversion between decimal
records and ASCII strings), are described in the enclosed SANE Numeric Scanner and
Formatter document.

About the "May 1985" Software Supplement Page 47

RAM-Based Serial Drivers
For those who need the extra functionality of the RAM Serial Driver, the following two routines are
supplied in intrfc/osintf (corresponding to obj/osintf and obj/osTraps):

Function RAMSDOpen(whichport: SPortSel):OSErr;
Procedure RAMSDClose(whichport: SPortSel);

where SPortSel=(SPortA,SPortB)

These interfaces have not changed since the February 1985 Software Supplement, but the routines'
implementations have been improved so that they now arbitrate serial ports (e.g. to prevent a conflict
with AppleTalk). You should recompile any programs which use these calls.

The RAM Serial Driver can now be used from Lisa Pascal or assembler or the Macintosh 68000
Development System (MDS) assembler. When developing using the Lisa Workshop, copy the
serial/ files from the 5/85 MacSupplement 2 disk and move the text of seriai/AsyncR.text
into your resource definition file. When developing on a Macintosh using the MDS linker, link with
SDOpen. Rel (on the 5/85 MacStuff 4 disk in the .Rel Files folder) and move the two SERD
resources from the SERD file (on the 5/85 MacStuff 4 disk in the Resource Files folder) into your
resource file (using the MDS RMaker or a resource editor).

Assembly language programmers should use the following code to bring in the RAM Serial Driver:

SPORTA EQU $0000 ;".EQU" for Lisa assembler
SPORTB EQU $0100

XREF RAMSDOpen ; ".REF" for Lisa assembler

CLR.W -(SP) ; reserve space for function result
MOVE.W #SPORTB,-(SP) ; to select port B

; (use #SPORTA for port A)
JSR RAMSDOpen
MOVE.W (SP)+, DO ; get the function result

Use the following code to close the driver:

XREF RAMSDClose ; ".REF" for Lisa assembler

MOVE.W #SPORTB,-(SP)
JSR RAMSDClose

RAMSDOpen loads and installs the Mac or MacXL RAM serial driver (resource type SERD, ID=1
for Mac, ID=2 for MacXL) if the system driver is version 0. The driver is then opened for both input
and output. RAMSDClose must be called before the program ends to remove the RAM driver.

Possible errors from RAMSDOpen include:
-21.. .-23 - device manager error
-97 PortlnUse - some other driver is currently using this port
-98 PortNotCf - parameter RAM is set for some other type use
-192 ResNotFound - appropriate SERD resource not found
-108 MemFullErr - not enough memory to load driver

About the "May 1985" Software Supplement Page 48

Debuggers

MacsBug Muggers
The MacsBug Folder contains five new versions of MacsBug (named Midibug, Maxbug,
MacXLbug, TermbugA, and TermbugB). To use one of them, make a copy, rename it MacsBug,
and reboot Basic information about the MacsBug family of debuggers can be found in chapter 7
of the Macintosh 68000 Development System Users's Manual tided The MacsBug Debuggers
which was distributed with an earlier Software Supplement The information below describes
changes to the debuggers since that manual was written.

• LisaBug is now called MacXLbug.

• xMacsbug is now called Midibug.

• MacXLbug (formerly LisaBug) is usable. No more bombing on mouse movement etc. You can
even interrupt during AT and HS commands .

• There are two new commands:

EA — Exit to application...re-launch the current application.

DX - Toggle debugger entry. Normally, if either the $A9FF or $ABFF A-trap is executed
(two forms of the $1FF debugger trap), program execution halts and the debugger is activated.
DX allows you to control whether or not program execution halts. Note that the $ABFF trap
will still print a string; thus with debugger entry disabled, this causes an effect similar to the AT
command (i.e. the Mac screen alternates between the debugger and the program).

• There are two other commands not mentioned in the MDS documentation.

SC — Stack crawl. Assumes that L I N K / U N L K A 6 has been religiously performed at the
beginning/end of each procedure/function (ala Pascal). The output format is as follows:

>sc
SF @ <stack frame location> <address of call to procedure>

For example,

>sc
SF 0OD633C ProcName+3A

means that the currently executing procedure/function has its local stack frame at $D633C and
was called from ProcName+$3A (which is not the return address!).

About the "May 1985" Software Supplement Page 49

AR — A-trap record. The command has the same parameter format as AB (i.e. AR trap range,
PC address range, DO range). Whenever the parameter constraints are satisfied by an A-trap
call, information about the call is recorded. The trap name, PC, AO, DO, and time are always
saved. If the call was for an OS trap, 32 bytes pointed at by AO are recorded, otherwise 32
bytes pointed at by A7 (stack ptr) are saved. To display the current saved information, type
AR with no arguments. This command is especially useful for tracking down crashes in the
Macintosh ROM. For example,

>AR 0 1000 02AA @114

records traps 0 through 1000 (all traps) from ApplZone ($2AA) through HeapEnd ($114), so it
will record the last trap call made from anywhere in the application heap (the application's
code).

• A final feature is the ability to IL or BR on a procedure name. For example,

>IL ProcName+58

will disassemble code starting at 58 bytes (hex) into the procedure called 'ProcName', and

>BR ProcName+58

will set a breakpoint at the same location (this also works for GT, ST, DM, etc.). Note that the
$D+ option must be specified in the Pascal source (the PX command in MacsBug can be used to
disable/enable Pascal symbol display).

MacDB
MacDB (the"two Mac debugger") can be used on one Macintosh to debug programs running on
another Macintosh. MacDB and MacNubs can be found in the MacDB & Nubs folder of the 5/85
MacStuff 2 disk. This Supplement contains the versions of these files that were shipped with the
Macintosh 68000 Development System product One known bug is that MacDB indicates the target
machine is a 128K Macintosh regardless of how much memory it actually has; this is relatively
minor because MacDB can still reference all memory on the target machine. Information about
MacDB can be found in chapter 6 of the Macintosh 68000 Development System Users's Manual
titled The MacDB Debugger which was distributed with an earlier Software Supplement.

About the "May 1985" Software Supplement Page 50

Macintosh Product Availability List
The challenge of software distribution is faced by every developer: How to get information about
your product to potential buyers and, more importantly, how to get your product through the
distribution system and into the hands of the customer.

To help in this effort, the Apple Developers Group is constantly seeking better ways to "get the
word out" on products that are available for the Macintosh. One very popular tool is our
Macintosh Product Availability List. Published on a regular basis, it is distributed to over
7000 locations including our complete dealer base.

The folks at Menu.International, an International Software DataBase and fulfillment service, have
been in the business of tracking software for some time. They currently have 20,000 products
listed on their database and have shipping and purchasing arrangements for at least 3900 of these
products.

Menu has created a special business unit to address the Macintosh market. We were so impressed
with Menu's on-line service that we made arrangements for them to produce an enhanced version
(including price and two-line product descriptions) of our Availability List to distribute to our
dealers.

If you have a product that is shipping, call and confirm that Patti Barrus in the Developer
Co-Marketing Group knows about you and your product. Patti's number is (408) 973-2972.
Also, let the folks at Menu know so they can include you on the regular updates of the now famous
Availability List They can be reached at (303) 482-5000 or (800) Mac-Menu.

Macintosh Pascal
Macintosh Pascal (the Pascal interpreter) has an undocumented copy protection scheme that causes
an ExitToShell after 100 mouse clicks. If you've been running MacPascal off of a copy of your
master disk, you've no doubt experienced this problem.

To rectify this problem, simple run off of one of your master disks (two were shipped in the
package).

About the "May 1985" Software Supplement Page 51

MacApp
Apple is developing an object-oriented library called MacApp™, The Expandable Application™.
MacApp implements the standard features common to most Macintosh programs. To write an
application, you specify the differences between your particular product and MacApp. MacApp
provides a substantial portion of a Macintosh Application, including standard objects like
windows, menus, scroll bars, and documents, and standard operations like scrolling, resizing,
printing, and text editing. It facilitates the implementation of Open, Save, and Undo, as well as
multiple views of the same data. It makes it easy to conform with the user interface guidelines.

To benefit from MacApp a programmer should know Pascal and be just starting to develop a new
Macintosh application. Using MacApp, such a programmer should be able to complete a Macintosh
application in much less time than it would otherwise require.

At present, MacApp—and programs written to use it—must be written in Object Pascal, an
object-oriented extension of Pascal. We currently have an "alpha" version of the Object Pascal
compiler which runs on the Lisa Workshop 3.9 and generates code for the Macintosh. MacApp is
also in an alpha-test state. To develop an application using the alpha Workshop version of MacApp
you would need to have:

(1) A Lisa (Macintosh XL) with at least 1 MB of memory
and 5 MB of hard disk storage (10 MB recommended)

(2) Lisa Pascal Workshop version 3.9 (Workshop 3.0 + 3.9 Update —> Workshop 3.9)
(3) Inside Macintosh
(4) The May 1985 Macintosh Software Supplement
(5) A 512K Macintosh or a Macintosh XL with MacWorks XL 3.0

(MacWorks XL 3.0 is included with the May Software Supplement)

If you have the hardware and software listed above and are interested in using MacApp, write to us
at the address below; we will notify you when a released version of MacApp is available.

We would also like volunteers to test the alpha Workshop version of MacApp. Any Pascal
programmer who will soon be starting to write a new application and would like to be an
"alpha-tester" should submit a proposal of approximately three pages explaining the type of
development planned and the reason (s)he would be a good tester. We will select a small number of
alpha-testers.

Please send requests for notification and alpha-test proposals to:

MacApp Request
c/o Eileen Crombie
Apple Computer
20525 Mariani Avenue
Cupertino, CA 95014

Licenses to ship products built with MacApp will soon be available for a low annual fee.

MacApp and The Expandable Application are trademarks of Apple Computer, Inc.

About the "May 1985" Software Supplement Page 52

Smalltalk
We are currently developing a version of Smalltalk tailored to the Macintosh computer. In the
meantime, in response to requests from several universities, we have released a "pre-product"
version of the Smalltalk-80™ programming system running on the Macintosh and Macintosh XL
computers. This is a fairly complete implementation of the Smalltalk-80 system, which we believe
to be suitable for student projects and other preliminary experiments with Smalltalk.

Our current system is based on version 1 of the Xerox Smalltalk-80 system, and is
language-compatible with the current (version 2) Xerox release. Our system generally follows the
two Smalltalk-80 books by Goldberg and Robson. Several features will be found to be different or
missing. We only provide enough documentation to get you started. If you are not already fami l iar
with the Smalltalk-80 system, you will need further documentation not provided by Apple, such as
the Goldberg and Robson books.

This pre-product release supplants an earlier March release that only ran on the Macintosh XL.
Various options support stand-alone operation on the 512K Macintosh computer (minimal system),
enhanced source-code access with hard disk or file server, and full system (32K objects) on
machines with 1MB or more of memory, such as the Macintosh XL.

If you wish to try out Smalltalk, you may request an order form from the address below. We will
include a more complete description of the products, pricing information, and an optional site license
which permits the system to be installed and used throughout (but only within) your institution.
Apple cannot provide support or documentation for this pre-product release. We are charging only
enough to cover our costs of duplication and handling.

Smalltalk Request
c/o Eileen Crombie
Apple Computer, Inc.
20525 Mariani Avenue CSNet: MacST@Apple.CSNET
Cupertino, CA 95014 UUCP: {dual,nsc,voder,ios}!apple!MacST

Smalltalk-80 is a trademark of Xerox Corporation.

About the "May 1985" Software Supplement Page 53

Addresses

If you have technical comments regarding the Supplement, please write to us at:

Macintosh Technical Support
Apple Computer
Mail Stop 4-T
20525 Mariani Avenue
Cupertino, CA 95014

If you have questions about missing or damaged materials (disks or documentation), please contact
our mailing facility at:

Apple Computer Mailing Facility /Milestone Group
467 Saratoga Avenue, Suite 621
San Jose, CA 95129

Customer Service:
(408) 988-6009
9:00 A.M - 4:00 P.M., Pacific Time

About the "May 1985" Software Supplement Page 54

S S B 3 2 3 3 | | | | §gg t gg| s u a

Macintosh Soflwa rc Siinnlemcnt
The Supplement includes Macintosh and Lisa Workshop disks containing many useful developer
utilities, examples programs, and interfaces. These are required for Macintosh development using
the Lisa Pascal workshop and strongly recommended for development using only a Macintosh.
The Supplement also contains a copy of MacWorks XL and -when you order this in addition to
Inside Macintosh above- you will receive the final bookstore version of Inside Macintosh
when published.

$100.00

Inside AppleTalk
This document contains detailed hardware and software information on the AppleTalk
network. It also contains software necessary to undertake AppleTalk development.

Inside LaserWriter

This document contains information for advanced developers working with the
LaserWriter.

Purchased orders accepted with payment only. C hi- t I
Orders shipped via U.P.S. and not deliverable U 0 3

to a P.O. Box. Federal Express (Optional)
My Federal Express billing number is:

(CA. RESIDENTS ONLY)

Total Enclosed

Name:

Company:_

Street Address:

c i t y : State: Zip:

Phone:

Please send your company check to our processing facility
Apple Computer, Inc.

467 Saratoga Avenue Suite 621
San Jose , Ca 95129

Inside Macintosh
This document is the complete Macintosh development manual currently available in
draft form only. It contains 1200 pages of detailed technical documentationand is a one-
volume set

lApple Computer, Inc.
Macintosh Technical Documentation!
Order Form

o

o

c

(^Switcher (Beta Draft)

June 4 ,1985

About This Document

This is the Beta draft of the documentation aimed at not-so-naive users. This draft
corresponds with Switcher version 3.0.

About Switcher

Switcher is a unique environment for the Apple Macintosh™ computer that allows you to use
two or more applications at once. Switcher and the power of Macintosh 512 provide you
with an environment where you create your own custom "integrated" applications and switch
between them instantly. Switcher divides available memory; you allocate portions of it to
different applications. You can work on a diagram in MacDraw, switch instantly to
MacWrite when you get an inspiration for your report, then switch back to MacDraw and
continue with your sketch. And you never need return to the Finder. In fact, you can even
have the best of both worlds. With the Finder as one of your applications, you can do all
your housekeeping (copying and removing documents) without ever leaving Switcher or
quitting an application.

Switcher is powerful, flexible, and a great timesaver. You'll only need to set up a particular
combination of applications once. After you've installed the applications you want and
changed any options, you can save that information in a Switcher document. Opening a
Switcher document from the Finder tells Switcher to automatically start those applications.
What could be faster and easier?

About This Manual

This manual gives you the information you need to use Switcher to create an infinite number
of combinations of your favorite applications.

Hardware Requirements

Switcher was designed for the Macintosh 512K. An external disk drive is strongly
recommended to hold additional applications and documents. Switcher also works well with
the Macintosh XL and third-party hard disks.

Software Requirements

Switcher works with all Apple Macintosh software; MacWrite, MacPaint, MacDraw,
MacProject, MacTerminal, Macintosh Pascal and most third-party software designed for
Macintosh 128K. Some software designed exclusively for the Macintosh 512K may not
work with Switcher. Contact specific third-party publishers or ask your dealer to let you try
out any software you intend to use with Switcher before you buy.

Switcher (Beta Draft) Page 1

Switcher's Limitations

Although Apple has tested Switcher and is satisfied with its performance and reliability,
Apple cannot guarantee the reliability of any particular application or combination of
applications used with Switcher. Apple makes no warranty with respect to the quality,
performance, or fitness for a particular purpose of Switcher or any software being used with
it. As a result, the Switcher is sold "as is" and you, the purchaser, are assuming the entire
risk as to its quality and performance. The manual gives you information for maximizing the
reliability of applications by identifying potential problem areas and suggesting safe
configurations.

How to Use Switcher
You'll find working with your usual applications under Switcher is easy. This section tells
you how to use Switcher, how to use an application running under Switcher, and how to
create a Switcher document-your own custom set of applications.

Configuring Your Disks

Assuming you have two disk drives available, here is the recommended way to configure
your disks. You should only have system files on one disk. Remember that some
applications (including MacDraw and MacWrite) require the printing resource (a file in the
System folder with the same name as the printer such as Imagewriter or LaserWriter) to be
on the same disk as the application.

Startup Disk (Internal Drive) Application Disk (External drive)
System Folder & files Applications
Switcher Documents
Switcher Documents Switcher Documents
Applications (if room) No system files (except a printing
Documents (if room) resource if necessary)

Switcher (Beta Draft) Page 2

Starting Switcher

Start Switcher like any other application by double-clicking the Switcher icon or choosing
Open from the File menu. You'll see the Switcher screen:

\&\
It Double-click here to launch an application...

Double-click here to launch an application...

Double-click here to launch an application...

Double-click here to launch an application...
K>

[6 File 1:<ii1 Siuitcher

Rpplication Siuitcher

Installing Applications

The first thing to do after you start Switcher is to install the applications you want to use.
You can install all the applications you want to use at the outset, or install one, start working,
and add or remove others later.

Select a Switcher slot by double-clicking anywhere in it A dialog box presents all
applications on the Switcher startup disk. Select the application you wish to install and click
Open, or click the Drive or Eject buttons to get applications on another disk. Switcher
installs the selected application, starts it, and returns you to the Switcher screen. You can
now repeat the process to install another application.

Switcher (Beta Draft) Page 3

Using Applications With Switcher

Once you have installed and started the applications you want to use, you're ready to take full
advantage of Switcher. With Switcher you can work within any one of your applications as
you normally would, then switch to another almost instantly.

Switching To Other Applications

When you click either side of the arrow, Switcher moves you to the next or previous
application, depending upon whether you click the right or left arrow. You can begin
working immediately with the application.

You can also use a keyboard shortcut to switch: Typing Command-[switches you to the
right. Typing Command-] switches you to the left

Returning to the Switcher Screen

There are several ways you can return to the Switcher screen from an application. Use the
technique you like best

1. Click the center of the switching arrow. You return immediately to the Switcher screen.

Switcher (Beta Draft) Page 4

2. Choose Switcher from the Apple menu. Whenever you're in an application, you'll notice
a new command at the bottom, Switcher. Choose Switcher and you'll return to the
Switcher screen.

j c a File Edit Search Format Font Style
= Rbout MacLlJrite.

Scrapbook
Note Pad
Puzz le

f 1
Switcher 3.

Untitled

•x...l.?x...l...x...l...x...l...x...l.ft...l...x...l...x...l...x...l5....J....x...^...x...l...

3. Type Command-V Hold down the Command key (icon) and the back slash key (located
directly below the Backspace key).

Transfering Information Between Applications

In Switcher's preset state, you won't be able to copy information into one application's
clipboard and then paste that information into another application. To copy information
between applications, you can use the Scrapbook or you can tell Switcher to convert the
Clipboard. Hold down the Option key as you click the switching arrow to convert the
Clipboard.

You can have Switcher automatically convert the Clipboard with every switch. See page XX.

Quitting Applications

You quit an application in Switcher as you normally would; save your changes and choose
Quit from the File menu. Depending upon what options are in effect, you return to the
Switcher screen or to a neighboring application in the set. After you quit an application, that
application is removed from the Switcher environment and its Switcher slot becomes free.
To quit the Finder, see "Using the Finder With Switcher."

Installing Additional Applications

Return to the Switcher screen and repeat the steps for installing an application. Depending
on how much memory is available, you can install up to three applications with 128K
memory each, using Switcher's preset options. To install more than three requires some
memory conservation tricks and probably a hard disk to hold all the applications you'll want
to have available.

Switcher (Beta Draft) Page 5

Creating a Switcher Document

Switcher provides you with a fast way to load your favorite combination of applications,
settings, and options. The state of Switcher: its options and active applications at a given
moment in time, is called a set. You can recreate a set at any time by saving information
about the set as a Switcher document. A Switcher document contains information to
start Switcher and load all the applications and options that comprise the set

To create a Switcher document, start Switcher and install all the applications you want to use.
If you want the set to open with a particular document, use the Attach Document command.
(See below.) Select any Switcher option changes you want (Switcher menu). When you're
satisfied with the configuration, choose Save Set from the File menu. You'll be asked to
name the set.

Starting Switcher From a Switcher Document

To start Switcher with a set of predetermined applications, just open a Switcher document
from the Finder or, from within Switcher, and choose Load Set from the Switcher's File
menu.

After you've saved a set or loaded a new set, any changes you make to the set such as adding
or removing applications or documents doesn't affect the contents of the saved set in the
Switcher document

Quitting Switcher

In order quit Switcher, you must first switch to each application, save, and quit. Then return
to the Switcher screen and choose Quit from the File menu, or click the close box in the
Application Switcher window. If you want to start another application, simply quit one
application then start another from the Switcher screen.

You'll be allowed to quit Switcher if just one application is still installed. If you haven't
saved, you'll be asked to save any changes from the last application.

It is important to quit each application individually. Never just switch the Macintosh o f f .

Switcher (Beta Draft) Page 6

Customizing Switcher
Switcher's preset options are designed so that you'll probably never need to change them.
But Switcher was designed to be flexible, allowing you to control the settings, options, and
aesthetics of the Switcher environment.

Memory Allocation

Switcher automatically allocates 128K of memory for most applications, or more, if specific
Switcher options are in effect Future applications containing a SizeRsc variable will be able
to request specific amounts of memory from Switcher. However, you may be able to
allocate more or less memory than an application normally requires. If you are working with
memory based applications such as MacDraw document, you may want to allocate more
memory to MacDraw so you can work with larger documents. Switcher not only allows you
to specify the memory configuration of each application but also provides you with graphic
information to help you decide on the optimal memory configuration for each application.
The Configure Then Install command from the Switcher menu lets you determine the amount
of memory you allocate to an application.

Memory can only be allocated before an application is installed. Many applications may not
run or may have problems if any amount other than 128K is assigned. For instance, an
application may assume that if more than 128K is available, it must therefore be on a 512K
machine and demands all 512K of memory. It is also difficult to determine how little
memory an application needs to operate. (We know the Finder will work with 95K, but no
less.) The safest course is to assign 128K. If you wish to assign a different amount, please
experiment with nonessential information first!

Switcher Options

You can tailor Switcher to suit your particular needs and preferences. From the Switcher
screen, choose Options from the Switcher menu.

6 fQI Rpplication Switcher Options

• Switcher in Rotation

• Always Conuert Clipboard

Ex] Switching Animation

[3 Back a f t e r Launch

• Same One Twice

• Reuerse Switch Direction

• Room For LaserWriter

[OK 1 Cancel

You can check or uncheck various options to suit your needs.

Switcher (Beta Draft) Page 7

Switcher in Rotation. The Switcher screen itself is included in your set of applications.
As you click the switching arrow, one of the applications you switch to is the Switcher
screen.

Always Convert Clipboard. When you are using Switcher, each application maintains its
own private clipboard. If you copy a piece of text in MacWrite and then switch to MacDraw,
the text you copied won't appear in MacDraw's clipboard. Choosing Always Convert
Clipboard tells Switcher to always transfer the Clipboard from the current application to the
next application. When this option is in effect, you'll notice it takes longer to switch between
applications.

You can override the current state of Always Convert Clipboard by holding down the Option
key as you switch to the next application. For example, if Always Convert Clipboard is
unchecked, then switching while holding down the Option key will convert the Clipboard
contents for that particular switch. If Always Convert Clipboard is checked, then switching
while holding down the Option key will not convert the Clipboard contents for that particular
switch. We recommend you not check Always Convert Clipboard and use the Option key
only when you need to copy the Clipboard to the next application.

Switching Animation When this box is checked, animation is in effect; applications
appear to "roll by" on the screen. If this box is unchecked, animation is not in effect; the
next application simply appears. Although this is strictly a matter of personal preference,
using animation does take a little more time.

Back After Launch When this option is checked, you return to the Switcher screen after
you install and start a new application. When it's not checked, you remain in the application
you installed.

Same One Twice If this option is checked, you'll be able to run the same application
more than once. If it is not checked, Switcher will only allow you to start the application
once. Note that some applications create special temporary files or may not be designed to
handle events "happening behind their backs." Therefore it may not be safe to run multiple
copies of most applications. Use this option at your own risk.

Reverse Switch Direction This is purely an aesthetic feature. When you click the right
arrow, which application do you want to switch to? The one to the "right" or to the "left"?
You decide the direction you want

Room for LaserWriter An application can't print correctly on the LaserWriter with less
than 144K of allocated memory. This option changes the preferred memory size to 144K or
adds 16K if the preferred memory size is greater than 128K. If your LaserWriter output
contains gibberish (a LaserWriter symptom of not enough memory), check to see if this
option is turned on.

When this option is checked, Configure Then Install presents 144K as the preferred memory
size. Room for LaserWriter only takes effect at the time the application is started; it has no
effect on active applications. You'll need to quit any active applications and reinstall them in
order to increase the memory allocation.

Note: this feature will not appear in the released version of Switcher.

Switcher (Beta Draft) Page 8

Configuring Applications

The Configure Then Install command (Switcher menu) allows you to allocate a different
amount of memory to the application you're installing and gives several other options.

(a | 3 | MacDraw Configuration

Preferred Memory Size

Minimum Memory Size

• Saue Screen

128

I Permanent] 1 Temporary) Cancel 1

Preferred Memory Size. The amount of memory Switcher first attempts to allocate to the
application. 128K, a previously configured amount, or the amount an application requests is
displayed as the preset memory size. If you've chosen Room for LaserWriter, 16K is added
to die amount.

Minimum Memory Size. The smallest amount of memory Switcher attempts to allocate to
an application. Usually, 128K or a previously configured amount is displayed as the preset
memory size. For example, if you've configured MacPaint with a preferred memory size of
128K and a minimum memory size of 80K, Switcher looks at the minimum memory size and
compares it to available memoiy. If the available memory is 100K, Switcher will allocate
100K to MacPaint. If the available memory is less than 80K, Switcher will inform you there
is not enough memory to start MacPaint Switcher will not allow you to allocate less than
64K.

Save Screen. This option keeps the screen contents in memory as you switch from this
application to another, allowing you to see this application's screen almost instantly when
you switch to it again. Unchecking Save Screen turns this option off: Switcher must look
for a "memory map" of the application's screen and recreate it on the screen. When Switcher
saves the contents of the screen, you'll notice switching between applications seems faster.
When Save Screen is turned off, you'll notice the screen is redrawn each time you switch to
the application.

Save Screen consumes 22K of memory per application. If you choose not to save screens,
you'll free up additional memoiy. However, your switching time will increase and some
applications will not be able to redraw the screen accurately.

This option does not save your work each time you switch. You'll need to save from within
each application.

Switcher (Beta Draft) Page 9

Permanent. The Permanent button installs the application in a slot and makes the
Configure Then Install options apply to all future Switcher sessions for that particular
application. You can install the application by double-clicking a slot and the options will be
in effect every time you install that application. If you wish to change the configuration later,
quit the application and choose Configure Then Install again.

Temporary. Clicking the Temporary button installs the application and makes the changes
for this session only. The Permanent settings remain unchanged.

Cancel. Returns you to the Switcher screen without installing the application.

After you've finished configuring an application by clicking the Permanent or Temporary
buttons, you return to the Switcher screen. The application appears in a slot with the word
"Configure" to show that the application has not yet been started. To start the application,
double-click its slot. The application is started. If Back After Launch is in effect, you'll
return to the Switcher screen. Once you've started an application, you cannot change its
memory allocation. You must quit the application and choose Configure Then Install again.

Removing a Nonactive Application

A nonactive application is an application that has been installed in a Switcher slot using the
Configure Then Install command, but has not yet been started. The word "Configure"
appears in its Switcher slot.

•ssA
Eiif MacWrite

(Switcher Hints) 12SK

MacDraw (configure)
(0 |

128K

Remove a nonactive application by returning to the Switcher screen, selecting the application
you wish to remove by clicking in its slot, and choosing Remove Application from the File
menu. You cannot remove an active application in this manner. After you remove an
application, its Switcher slot becomes free.

Speed, Memory, and Safety
Most of Switcher's features have tradeoffs between speed, memory consumption, or safety.
While these tradeoffs are listed with each option, this section gives you ideas on how to
optimize Switcher for one of these factors. Speed refers to the amount of time it takes to
switch between applications. Memory refers to options that consume memory. Because
Switcher cannot predict how a particular application is designed, some options may be more
likely to cause problems. Therefore, safety refers to the safest configuration for most
applications.

Switcher (Beta Draft) Page 10

Speedy Options

To switch quickly between applications, choose Options from the Switcher menu. Turn off
(uncheck) Always Convert Clipboard and Switching Animation. Also, turn Save Screen on
for each application.

To start Switcher quickly, save your favorite configurations as Switcher documents. From
the Finder, simply open a Switcher document. See "Saving Your Configuration."

You can also designate Switcher as the startup application. This means when you turn on
your Macintosh and insert the Switcher disk, Switcher is started automatically. To set
Switcher as the startup application, go to the Finder, select the Switcher application icon, and
choose Set Startup from the Special menu. When Switcher is the startup application, you
can designate a startup Switcher document by naming the document "Switcher.startup".
Switcher will startup automatically and load the set from the document.

Saving Memory

One way to conserve memory is to allocate as little memory as possible to an application.
Another way is to not use memory-consuming options. Always Convert Clipboard, Room
for LaserWriter, and Save Screen consume memory when they are in use. Save Screen uses
22K per application. You can turn save screen off with the Configure Then Install command
(see page XX) or after an application is installed, with the Application Switcher window
itself:

=l I Rppl i rnt inn S m i t r h p r

Save Screen o
MacWrite

t 0 |

28K

Save Screen o
MacDraw M

50K

/ ^ \ Save Screen o
i MacPaint

fej

(
I28K (

By clicking the screen of the Macintosh icon in an application's slot, you can turn Save
Screen on or off. In the example above, the MacDraw and MacPaint screens are saved
between switches, but the MacWrite screen is not saved (indicated by the "No!" symbol).

Caution: Once you turn Save Screen off, you may not always have enough memory to turn
it back on, depending on what you've done in the interim. Switcher will beep if you attempt
to turn Save Screen on and you don't have enough memory.

N

Switcher (Beta Draft) Page 11

Safety

We consider the following options to be the safest settings for an application. Settings that
aren't listed here have no effect on safety.

Configure Then Install:
Preferred Memory Size 128
Minimum Memory Size 128
Save Screen On

Options:
Always Convert Clipboard Off
Same One Twice Off
Room for LaserWriter Off
Maximum # of Applications (512K) 3
Maximum # of Applications
(Macintosh XL, 1 megabyte) 7

Switcher Menus

You'll see four menus on the Switcher screen: Apple, File, Edit, and Switcher. When you
are in an application, the Apple menu includes a return-to-Switcher command at the bottom.
The Edit menu is unavailable unless you choose a desk accessory from the Apple menu.

The File Menu

3 File [P. I! (lit Switcher
| Load Set.. . 8§L

Saue Set.. . 36S
Attach Document. . . 9€A

Show Info UJindoui

-
| Quit

Load Set. This command lets you choose a Switcher document to load. You should first
quit any active applications to leave room for the applications in the set. Otherwise, Switcher
will load only as many applications as it has memory available.

Save Set. This command saves the current set of applications, options, and settings as a
Switcher document that can later be recreated with the Load Set command.

Switcher (Beta Draft) Page 12

Attach Document. When you start or load a Switcher document, this command causes an
application to open a specific document To attach a document, select an active application
slot from the Switcher screen and choose Attach Document from the File menu. If MacWrite
is the selected application, a box appears with a list of all MacWrite documents. You may
then select the specific MacWrite document you wish to work with when the application is
started.

Show Info Window. This command presents the Switcher Information window which
provides you with a graphic snapshot of the memory allocation and usage of the current set
of applications. You can use this information to help you configure your Switcher
environment.

Switcher Information

Memory Usage
• MacWrite

f inder
MacPaint m
Free Memory M

I HiU Wft IWnd M Mi
Mm •iirii^lami BlaipiapMiki

M

128K
128K
144K
21K

The bar following each application represents how much memory has been allocated. The
dark gray area shows how much memory is actually being used; the light gray area shows
how much additional memoiy is available to the application. The actual amount of memory
allocated to the application is shown at right The application that is currently selected in the
Application Switcher window is checked and visually represented. If the Switcher
Information window shows that a particular application has been allocated substantially more
memory than is actually being used, you may wish to quit the application, return to the
Switcher screen, and change the preferred memory size for the application.

You can leave the Switcher Information window on your desktop and switch between it and
the Application Switcher window. Clicking the miniature screen switches you to that
application. A miniature screen won't be displayed if Save Screen is off for a particular
application.

Quit. Exits Switcher. You won't be allowed to quit Switcher until you've quit all but one
active applications. You can accomplish the same thing by clicking the Switcher window's
close box. See also "Using the Finder."

Switcher (Seta Draft) Page 13

The Switcher Menu

Install Application... 861
Remove Rpplication S€R
Configure then Install. . .

Open ago
Switch Left 9€[
Switch Right 9€]

Options...

Install Application, Remove Application, Configure Then Install, and Open all operate on the
selected slot.

Install Application Allows you to select an application for installation in a Switcher slot.
It's the same as double-clicking one of the slots in the Application Switcher window. If you
haven't selected a slot, Switcher selects the next available slot

Remove Application Lets you remove a selected nonactive application from the current
set. A nonactive application has the word "Configure" in its Switcher slot. An active
application is removed by switching to it and choosing Quit from the File menu.

Configure Then Install Allows you to select an application to install and presents the
Configure window. If you haven't selected a slot, Switcher selects the next available slot
See "Configuring Applications."

Open Starts a selected nonactive application or switches you to the selected application.

Switch Left The same as clicking the switching arrow that points left.

Switch Right The same as clicking the switching arrow that points right

Options Presents the Options window. See page X.

Switcher Cookbook

This section gives information on specific Switcher situations.

Using Four 128K Applications at Once

You can have four 128K applications running at a time with Switcher. To do so, you'll need
to turn off all Switcher options that use memory. In the Options window, turn off Switcher
in Rotation, Always Convert Clipboard, and Room for LaserWriter. Then install each
application using Configure Then Install. Change Preferred and Minimum memory size to
128K or less and uncheck Save Screen. Use the Info Window to monitor your memory
usage as you configure.

Switcher (Beta Draft) Page 14

Using Less Than 128K of Memory

Some applications (including MacPaint and MacWrite) can run with less than 128K memory.
Try different memory allocations with the Configure TTien Install command. Most
applications will tell you immediately if they won't work.

The document size of many applications is limited by the amount of memory available. If
you create a document using 128K memory or more, you may not be able to open that
document under Switcher if you've allocated less memory to an application.

Using 512K Applications

Applications designed to work on a 512K Macintosh may be able to work with Switcher
with less than 512K memory allocated. Install the application with Configure Then Install
using different amounts of memory. The application should tell you if it will run or not.

Using Switcher With a Hard Disk

Switcher works well on a hard disk. Just copy Switcher to the hard disk. Be sure to start
Switcher from the hard disk.

Using Switcher With AppleTalk

Switcher works well with AppleTalk, although specific applications that use the network
may not function properly. If you're using LaserWriter over an AppleTalk network, be sure
to check the Room for LaserWriter option before you install applications.

The Finder a s One of Your Applications

Having the Finder as one of your set of applications gives you the speed and flexibility of
Switcher as well as all the utilities of the Finder, with no lost time returning to the Finder.
Then Finder should be installed in the first Switcher slot. Simply start the Finder in Switcher
as you would any other application. If you use Configure Then Install, you can change the
Finder's preferred memory size to as small as 96K for Macintosh 512K (you'll need 102K in
order to open a maximum of eight windows at once) and 128K for Macintosh XL.

To quit the Finder from within Switcher, switch to the Finder and start another application.

To quit Switcher when the Finder is one of the applications, quit any other active
applications, then quit Switcher. Another way to quit is to use the Finder's Shut Down
command. Shut Down ejects any disks and then restarts the Macintosh. On a Macintosh
XL, choosing Shut Down turns the power off, but not on again. This is not recommended
unless you first save or quit all other applications.

Don't start a Switcher document from the Finder.

Switcher (Beta Draft) Page 15

Emergency Exit

If one of your applications should "hang" or "crash" (you receive a dialog box with a bomb
icon), don't click restart or turn your Macintosh off and back on. You may be able to
recover by exiting the application and returning to the Switcher screen without affecting any
other applications in Switcher. If you encounter such a situation, try holding down the
Option, Command, Shift, and period (.) keys. Depending on the type of problem the
application encountered, you could return to the Switcher screen, without affecting the other
applications.

Extras

Switcher gives you control of the power of Macintosh 512 by providing an environment
where you create your own "integrated" applications. Switcher lets you instantly switch
between different applications by dividing available memory. You determine your own
optimum configurations by deciding which combinations of applications and options you
need. And with the Finder as one of your applications, you can do all your housekeeping
(copying and removing documents) without leaving Switcher.

You need to set up any particular combination of applications only once. After you've
loaded the applications you want and changed any options, you can save that information in a
Switcher document. Opening a Switcher document automatically starts all the applications
you've designated.

Returning to the Switcher screen: From within an application, look at the Apple menu;
you'll notice a new command at the bottom, Switcher. Choose Switcher and you'll return to
the Switcher screen.

1 3 File Edit Search Format Font Style
i Rbout MacllJrite. Untitled

Scrapbook
Note Pad
Puzz le

Switcher 3.

,...l!..i l 1.5..,...^

Installing additional applications: Return to the Switcher screen and repeat the steps for
adding an application. Depending on how much memory is available, you can install up to
three applications with 128K memory each, using Switcher's preset options. To install more
than three requires some memory conservation tricks and probably a hard disk to hold all the
applications you'll want to have available.

Switcher (Beta Draft) Page 16

A Software Developer's Guide to Switcher
Andy Hertzfeld 9 Apr 85

Editor's Notes: Inside Switcher, additional information on the internal workings of Switcher, will
soon be available from MAUG™ (via Compuserve). Switcher 3.0 is a pre-release version and
may not be licensed or distributed with commercially available products; a later version will be
licensable in the near future.

The Macintosh Application Switcher creates a dynamic new software environment for the
512K (or larger) Macintosh, allowing multiple application programs to reside simultaneously in
memory and providing a way to switch between them very quickly. The Switcher tries to support
every Macintosh application, but the interface between a program and its environment is very
complex, and Switcher necessarily disturbs this delicate balance, so some programs are not
compatible with it. This document is intended for an audience of Macintosh software developers
and will provide suggestions and hints that will help your application to get the most out of the
Switcher environment

The most recent version of the Switcher is version 3.0. It can be used with the versions of
the MacsBug debuggers included with the May Software Supplement. Some earlier versions of
MacsBug had a bug that made them not work with Switcher, so be sure to use these new versions
when testing your applications out with Switcher. When you find that your application doesn't
work properly with Switcher, please try to pinpoint the difficulty as precisely as possible when
reporting the bug; bugs can be reported to Apple or to me on MAUG/Compuserve (my number is
70167,3430).

One source of developer confusion is caused by the way the Switcher fudges memory size
statistics. It turns out you have to allocate a 96K partition for an application to have approximately
the same amount of memory it has on a 128K Mac. To avoid confusion for the typical user, the
Switcher adds 32K to the size of a partition before displaying it. Thus partition sizes are
"normalized" to the well-known 128K Mac; for example, a partition that's displayed as 256K
actually only has 224K allocated to it

The Switcher knows how much memory to allocate to a given program by inspecting the
"SIZE -1" resource attached to the program file. The Switcher is capable of generating its own
SIZE blocks using the Configure command, but it would be very nice if new applications could
come "pre-configured" for their own unique memory requirements and other properties. The size
block is 10 bytes long; there is a flags word followed by 2 long integers. The first long integer is
the recommended size of the partition, followed by the minimum size. The values are 32K less
than the virtual partition size (i.e. 96K for a 128K partition). Currently, only the high two bits of
the flags word are defined. Bit 15 means "save screen" and bit 14 means "suspend/resume" events
(see below). Unassigned bits should be kept 0 for future compatibility.

While working at Apple, I had the opportunity to watch a number of fairly complicated
Macintosh applications go through their final debugging cycles. The most time-consuming and
difficult part of this process is what you might call "memory tuning", which is dealing with various
out-of-memory situations and with memory fragmentation. Typically, an application is tested and
tuned to run on both 128K and 512K Macintoshes. However, the Switcher environment supports
variable-sized partitions, so many more memory situations become possible (i.e., a 256K Mac).
The biggest problem most applications have working smoothly with the Switcher is that they were
tuned for 128K or 512K, and sometimes are freaked out by something in between, because they
make decisions like "it's not 128 so it must be 512". Switcher-friendly applications should test
memory to see how much is available and be able to deal with a wide range of memory sizes. The
best way to size memory initially is to grow the heapZone out to its maximum size by requesting an
enormous block, and then execute a "FreeMem" or "MaxMem" call (Lisa Pascal users can
alternatively use the "MaxApplZone" call). After initialization, the best way to determine if a certain
amount of memory is currently available is to use the "ReserveMem" call. Switcher also sets up the

A Software Developer's Guide to Switcher Page 1

low-memory location "MemTop" with the size of the current partition normalized to a 128K Mac,
but it is not recommeded that memory-sizing decisions be based on that. Make sure you never
make any assumptions about how much memory is available by looking at absolute addresses, as
you don't know where you are going to be loaded.

Many applications have a need to create temporary disk files using a filename generated by
the application like "EditScratch" or "Paintl". Since the Switcher environment supports running
the same application twice, file name conflicts are possible. A Switcher-friendly application should
never used a hard-wired name for a temp file; instead, it should make up one using a random
number or the time of day clock, so the names will not conflict if its running concurrently in two
different partitions. For example, instead of using "Paintl", use "Paint03:12:35".

Switcher switches contexts only when an application executes a "GetNextEvent" call, so
applications never have to fear being suspended when they are engaged in some time-critical
activity. To be compatible with Switcher, your application must call GetNextEvent periodically, as
most applications do. To be able to cut and paste under Switcher, your application must support
desk accessories by maintaining an Apple menu, and supporting cutting and pasting with desk
accesories. This is because Switcher fools your application into coercing the clipBoard into global
format by making think its cutting or pasting into a desk accessory. Watch out for an entry in the
desk accessory menu that isn't really a desk accessory. See the discussion below on
suspend/resume events for further information on the "desk-accessory charade".

To make most effective use of memory, the Switcher supports an option where it will not
save the bits of an application's screen when it switches. If this option is in effect, the program
must be able to respond to update events to regenerate the screen. Thus, switcher-friendly
programs should be prepared to handle update events.

Another class of Switcher incompatibilities is caused by asynchronous I/O. It is possible for
a suspended application to receive control via a completion routine after its been switched out.
Completion routines must be very careful about referencing low memory and globals, as they
might have been swapped out and A5 is probably different. One technique for performing
Switcher-friendly async I/O is to pass A5 at the end of the I/O parameter block, so your completion
routine (which is passed the parameter block) can reference globals. This is only relevant to
non-file I/O, as the Switcher refuses to switch if the file system is busy. Also, the Switcher
suspends any vertical retrace tasks executing in a given partition when the main application is
suspended, so your vertical retrace tasks don't have to worry about this.

Another potential danger area for Switcher compatibility involves timing. In the Switcher
environment, it is possible for an application to be suspended for an indefinite period. Some
applications use "Ticks" for relative timing; they must be careful to use 32-bit compares and
arithmetic as Switcher makes it possible for more than 64K ticks to have elapsed since the last time
you looked at it

Even though the Switcher is intended to work "behind the back" of most applications, it
includes some features that allow newly written programs to perform very smoothly with it. For
example, if an application knew it was about to be suspended, it could clean up its act by killing I/O
tasks, etc. To deal with this, the Switcher provides optional "suspend/resume" events. A suspend
event means that the next time you call GetNextEvent, you will be suspended. A resume event is
the first event you get back after you've been re-activated following a suspension. Suspend and
resume events are both reported as event 15 (formerly an application-defined event). The high
byte of the message field is set to 01 to indicate that its a suspend/resume event (eventually event 15
will be used for other purposes as well). The lowest bit of the message field (bit 0) is clear if its a
suspend event and set if its a resume event. The next bit up (bit 1) is set if clipboard coercion is
required. The Switcher uses bit 14 of the flags word in the SIZE record to indicate if a program
should receive suspend/resume events. If this bit is set, the Switcher won't put on the desk
accessory charade for clipboard coercion, as it assumes that the application is converting the
clipboard when requested to in the suspend/resume event.

A Software Developer's Guide to Switcher Page 2

An even more exciting area is that of "interlocking" applications that run fine by themselves
but are ultra-integrated when run together under the Switcher. Applications can find out the global
picture by inspecting Switcher globals. Switcher globals are accessed through a low-memory
pointer kept at address $282. If the pointer kept there is -1 or 0, it means that the application is not
currently running under the Switcher. Otherwise, its a pointer to a public table of Switcher global
variables. The first 8 longWords in the table is a list of pointers to the base of all currently active
applications, or zero if no application is present in a given slot. By inspecting this table,
applications can determine what other applications they are coexisting with and where they are
located. Apple will eventually provide complete documentation on effectively using this "world"
table, as well as detailing some other useful Switcher globals.

All in all, it is amazing to me how many programs do run properly under the Switcher. Most
developers should not have to worry or understand all of the stuff discussed here; ordinary
applications usually run just fine. It has been fun working on the Switcher. To diagnose various
crashes, I had to trace through the guts of lots of very different applications. Countless features
and strategy shifts were implemented to support this or that application. As a designer of the Mac
system, I'm one of the very few who never had the experience of trying to learn how it works. In
a way, developing the Switcher was the application programmer's revenge for that experience. It
certainly gave me a new appreciation for our strange and wonderful software base.

A Software Developer's Guide to Switcher Page 3

o

o

I

o

Driver Bug in Pre-Release MacWorks XL
This note describes a problem with some pre-released versions of MacWorks XL (a
number of copies of which have been distributed). The problem has been corrected in
version 3.0, the official released version of MacWorks XL, which displays
"MACWORKS XL 3.0 COPYRIGHT 1985 - APPLE COMPUTER" while it is being
booted. Note that the ROM version number of version 3.0 is $82FF (not $81FF as listed
in Technical Note #16).

The problem involves the way MacWorks detects that a particular call is directed at the
hard disk. It looks at each incoming I/O parameter block, looking for a "4" in the
ioVRefnum field.

This works fine for calls to the disk drivers, but not when a call is made to another
driver (e.g. serial driver, sound driver, print driver, etc.). In this case, ioVRefnum has no
meaning. Unfortunately, ioVRefnum is checked anyway; if it happens to be "4", the call
is intercepted as a disk driver call.

For driver authors, this means that your driver may miss I/O operations intended for it.
But for users, it means that the hard disk driver can erroneously write garbage to the
hard disk, corrupting data. This is why the patch is so important.

This patch checks the MacWorks version number to s e e if the patch is necessary, then
checks to s e e if the patch has been made already. If necessary and not installed, it
installs the patch. Once the patch has been installed, it should be left in place (just in
case another application is run which doesn't know about this problem).

The patch is not necessary starting with MacWorks XL version 3.0, the version which is
included in the May 1985 Software Supplement. If you ship an application without this
patch your users who have a Macintosh XL will need to use MacWorks 3.0 (which may
not be widely available before September 1985).

You can include this patch verbatim in your application source code; call it once at
application startup, before you open any driver.

Driver Bug in Pre-Release MacWorks XL Page 1 July 1 ,1985

The patch source appears below in Lisa Workshop Assembler format.

MacWorks driver bug patch
Installs JSR and patch routine for checking 10 parameter block

.INCLUDE TLAsm/Sysequ.TEXT

.INCLUDE TLAsm/Systraps.TEXT

.INCLUDE TLAsm/Toolequ.TEXT

.INCLUDE TLAsm/Toolt raps.TEXT

.INCLUDE TLAsm/Quickequ.TEXT

.INCLUDE TLAsm/Quicktraps.TEXT

; local equates
SysID .EQU $400008
RevCID • EQU $8 IFF
ReadTrap .EQU $0002
ReadOfst .EQU 18

PatchArea • EQU $410880
Patch .EQU $4EB9
BadGuy .EQU $0C68

.PR0C Patchlt,0
BRA. S Installlt

; the new routine for checking

location of ROM (MacWorks) id
id we're looking for
read trap
byte offset from start of read routine
to the offending code
use free RAM space for patch
JSR (goes to patch routine)
instruction to replace (CMPI)

go to install routine

PatchRtn
#4,IODrvNum(AO)
69
#$FFFB,IORefNum(AO)

09
PatchLnth

CMPI.W
BNE.S
CMPI.W
RTS
• EQU *-PatchRtn

; the install patch routine
Installlt

MOVE.W
CMP. W
BHI.S
MOVEQ

01

Exit

SysID,D0
#RevCID,D0
Exit
#ReadTrap,D0

_GetT rapAddre s s
ADD.L #Read0fst,AO

#BadGuy,(AO)
Exit
#Patch,(A0)+
#PatchArea,A1
Al, (AO)
PatchRtn,AO
#PatchLnth,DO
(AO)+,(Al)+
#1,D0
01

CMPI.W
BNE.S
MOVE.W
MOVE.L
MOVE.L
LEA
MOVE.W
MOVE.B
SUBQ.W
BNE.S
RTS
.END

it drive number 4 request?
no, skip problem check
incorrectly directed at Sony driver?
return with condition code set
length in bytes of patch

get MacWorks id
is this the bad version?
skip if not
else get address of read trap
gets returned in AO
bump address to offending code
is this the culprit ?
skip if not (may already be patched)
else install patch
get address of patch area
and install
next install new instructions
get patch length
install it

loop until done
and away we go

The following code will call the above patch from an application written in Lisa Pascal:

Procedure Patchlt: External;

Patchlt;

Driver Bug in Pre-Release MacWorks XL Page 2 July 1 ,1985

Macintosh™ Technical Notes O

#0: About Macintosh Technical Notes

Written by: Scott Knaster 2/10/85
Last Modified: 6/18/85

The first release of Technical Notes has been distributed; it included the following notes.
Those marked with a star (*) have been included with the May Software Supplement.

Number Title
0* About Macintosh Technical Notes
1 Desk Accessories and System Resources
4 Error Returns from GetNewDialog
5 Using Modeless Dialogs from Desk Accessories
11 Memory Based MacWrite File Format
12 Disk Based MacWrite File Format
13 MacWrite Clipboard Format
15 Finder Update
16* MacWorks XL
18 Text Edit Conversion Utility
20 Data Servers on AppleTalk
21 Quickdraw's Internal Picture Definition
32* Reserved Resource Types

Obviously, we're working on lots of other Notes (the numbering is consecutive!). If there
are any subjects which you would like to see treated in a technical note, please send us
a note at the address below.

We want Technical Notes to be distributed as widely as possible. The surest way to get
them is to subscribe, directly from Apple, for $20 per year. However, we're also going to
distribute Technical Notes to user groups and upload them to various electronic bulletin
board systems, and we're placing no restrictions on copying them (except that they may
not be resold). Also, Macintosh Registered Developers (i.e. people who have paid for
Macintosh technical support) will receive Technical Notes as part of their registration
fee.

To receive Macintosh Technical Notes for one year (12 packages, each package
containing approximately 10 notes), send $20 to

Macintosh Technical Notes
Apple Computer, Inc.
20525 Mariani Ave MS 4-T
Cupertino, CA 95014

Technical Note #0 page 1 of 2 About Macintosh Technical Notes

Remember that we're distributing our Technical Notes widely and we're encouraging
people to copy them, so you'll be able to obtain them from other sources as well;
subscribing ensures that you'll get them directly from Apple when they're published.

We hope that Macintosh Technical Notes will provide you with lots of valuable
information while you're developing Macintosh software.

Macintosh is a trademark licensed to Apple Computer, Inc.

Technical Note #0 page 2 of 2 About Macintosh Technical Notes

#16: MacWorks XL

See also: MacWorks XL Owner's Manual

Written by: Harvey Alcabes 14-May-85
Mark Baumwell

Apple is releasing MacWorks™ XL. This note describes some features of
this new version of MacWorks.

MacWorks XL

MacWorks is the software which allows a Macintosh XL (formerly called the Lisa 2/10)
or any other Lisa 2 system to run Macintosh software. Here's a quick summary of the
features of MacWorks XL:

Direct startup from the hard disk. If a Macintosh XL, Lisa 2/5, or Lisa 2/10 has a
hard disk dedicated to Macintosh software, the system boots up directly from power on.

For those Lisa systems with a shared disk, the Macintosh environment can now
be started with one diskette, like the other Macintoshes.

Support of AppleTalk™ Personal Network and the LaserWriter, in addition to
future Macintosh Office products.

Support of the parallel version of the Apple Dot Matrix Printer, for those Lisa
customers interested in using their printer with the Macintosh environment.

Upgrade Program

A copy of the released version of MacWorks XL will be included in the final update to
the Software Supplement in May. Supplement purchasers received a MacWorks XL
pre-release dated 12/10/84 in the December Software Supplement mailing.

Owners of the existing MacWorks product can upgrade to MacWorks XL by sending
one of the original MacWorks disk (Apple part number 682-0087B appears on the
label), $29 (California residents must add sales tax), and their name and address to:

Apple Computer Processing Center
Attn: MacWorks XL Upgrade Program
P.O. Box 6272
San Jose, CA 95150

Technical Note # 16 page 1 of 3 MacWorks XL

Macintosh XL Screen Modification

Users of graphics-oriented applications who are concerned about the aspect ratio of
the Macintosh XL screen (which currently displays 364 rows of 720 rectangular
pixels) may chose to purchase the Macintosh XL Screen Modification Kit (Apple part
number A6G0001). This kit is expected to be available through Apple dealers in June
and will include a copy of MacWorks XL along with parts for a modification to the
Macintosh XL hardware. A Macintosh XL with the modified hardware and MacWorks
XL software will display square pixels, producing the same aspect ratio as the 128K
and 512K Macintoshes. The 32 KBytes of Macintosh XL screen memory will be used
to display 431 rows of 608 square pixels.

A Macintosh XL modified in this way will no longer be able to run Lisa software
such a s the Workshop development system or the Lisa 7/7 Office System. Also, it will
no longer have an imbedded serial number. The hardware modification will be
an option only available through dealers. The MacWorks XL software should work
properly on modified and unmodified machines.

Reading Machine Information

The word at location $400008 contains a ROM version number. On a 128K or 512K
Macintosh it contains $0069. The version number of MacWorks 1.0 (the version
released in 1984) is $70. The version number of MacWorks XL is $81 (note that the
December pre-release had the version number $80. Lisa Pascal users can identify the
machine and ROM version number by calling the following routine (found in
intrfc/OSIntf):

PROCEDURE Environs (VAR rom, machine: INTEGER);

where machine will be one of the constants macMachine or macXLMachine.

An application should not assume anything about the screen size or aspect ratio based
on the hardware on which it is running. If aspect ratio information is needed the
program should use the words in low memory at ScrVRes ($102) and ScrHRes ($104),
which contain the screen dots per inch vertically and horizontally. A Lisa Pascal routine
will be included in the May Software Supplement to return these values. It will be
declared as follows:

PROCEDURE ScreenRes (VAR ScrVRes, ScrHRes: INTEGER);

Technical Note # 16 page 2 of 3 MacWorks XL

Screen Resolution Summary

The following table summarizes the information above; note that values preceded by a
"$" are hexadecimal, other values are decimal.

ROM Dots per inch Pixels on screen
version Vertical Horizontal Vertical Horizontal
number (ScrVRes) (ScrHRes)
($400008) ($102) ($104)

Macintosh 128 $0069 72 72 342 512
Macintosh 512 $0069 72 72 342 512

MacWorks (1.0) $70FF 60 90 364 720
MacWorks XL
unmodified hardware $81FF 60 90 364 720
modified hardware $81FF 72 72 431 608

Technical Note # 16 page 3 of 3 MacWorks XL

o

o

o

Macintosh Technical Notes

#32: Reserved Resource Types

See also: Resource Manager: A Programmer's Guide

Written by: Scott Knaster 5/13/85

Your applications and desk accessories can create their own resource types. To avoid
using type names which have been or will be used the system, Apple has reserved all
resource type names which consist entirely of lower-case ASCII characters ($61
through $7A) and "international" characters (greater than $7F).

In addition, Apple has reserved the following resource types which contain upper-case
characters and the # character:

ALRT BNDL CDEF CNTL CODE CURS
DITL DLOG DRVR DSAT FCMT FKEY
FOBJ FONT FREF FRSV FWID ICN#
ICON INIT INTL MACS MBAR MDEF
MENU MINI NBPC PACK PAPA PAT
PAT# PDEF PICT PREC SERD STR
STR# WDEF WIND

Note that most of these have been around for some time and should be familiar to you
already. This doesn't mean, of course, that you can't create your own resources of
these types; obviously, you will have your own CODE, MENU, WIND, and so on. This
list provides names which you should not use for new, custom resource types.

Technical Note #32 page 1 of 1 Reserved Resource Types

G

O

c

^Macintosh Update for End-Users

What's Included in This Document

This document has been extracted from the document titled Macintosh Update in the file named
What's New on the May 1985 System Update disk available to all Macintosh owners from Apple
dealers. It describes the new versions of the Finder and other system files. It also describes
ChoosePrinter desk accessory and the new Font/Desk Accessory Mover which lets you move
both fonts and desk accessories among disks.

Updating Your Existing Disks

The original Macintosh Update document described the System Update application. That
application does not always work properly when updating a System file that had been previously
modified. Instead of using System Update we recommend updating your disks by dragging the
System folder from the 5/85 Mac Build Disk to the disk you want to update and then reinstalling
any non-standard fonts or desk accessories. The new System folder contains Finder 4.1, a new
system file which includes the Choose Printer desk accessory, and a new Imagewriter file. If
you're using a hard disk with your Macintosh, be sure to update both the hard disk and any other
disk you use with it to start up your Macintosh.

About the New Finder
The Finder is the application you use to manage your Macintosh desktop. The new Finder
(version 4.1) is faster than the old version and it works better with hard disks. It also has some
added features such as the MiniFinder, which lets you move quickly between the applications and
documents you use most often. The new Finder works with any existing applications and
documents without your having to make any changes to them.

Full Capabilities in Any View

With the old Finder you could duplicate, move, rename, or discard documents, folders, and
applications only when directory windows were arranged by icon. With the new Finder you can
do any of your desktop work with your directories in any arrangement—by icon, name, date,
size, or kind. In any of the text views (any view other than by icon), a small icon appears to the
left of the document name. Click, double-click, drag, or Shift-click this icon just as you would
its counterpart in an icon view of the directory.

To rename a document when a directory isn't arranged by icon, select the name and edit it just as
you edit icon names in an icon view or on the desktop.

Directories in text views also indicate (with a small padlock on the right) which of your
documents are locked. If you lock a folder or if you physically lock the disk, the padlock
appears in the top left corner just below the title bar.

Macintosh Update for End-Users Page 1

6 File Edit Uiew Special

1 I D I Update
Name Size Kind Last Modified

n 1 About the System Update 30K document Mon, Apr 8 , 1985

S Font/DA Moyer 25K application Mon, Apr 8 , 1985

• Fonts 9K Font/DA Moyer do... Mon, Apr 8 , 1985

D System Folder 166K folder Mon, Apr 8 , 1985

D System Update 99K application Mon, Apr 8 , 1985

Dragging Icons

In the past, you couldn't drag an icon to a "hollow" icon; you had to drag to the icon's directory
window. Now you can drag an icon either to a directory window or to the hollow icon that
remains behind when you open an icon. If you drag to a directory window, you can place the
icon wherever you want it; if you drag to a hollow icon, the Finder will place it in the next
available spot.

Macintosh Update for End-Users Page 2

Naming Icons

In the past, typing renamed any selected icon, whether you had explicitly clicked it or not. Now
you click explicitly on an icon or icon name to edit its name, even if the icon is already selected.
This means you're less likely to rename disks accidentally. There are a couple of exceptions:
When you create a new folder by choosing New Folder, or when you duplicate or move a
document, folder, or application, typing renames what's selected, without your having to click it
first. (This is true in text views as well.)

If you give an icon a name that's the same as an icon you just dragged to the Trash, the Trash is
automatically emptied, so you can use the name again.

Ejecting Disks

Now choosing Eject always ejects a disk (if one's inserted and it isn't a hard disk), even if none
is selected. The Finder looks for any inserted disk to eject. Choosing Eject again ejects any
other inserted disk.

If you want your Macintosh to forget about a disk (and not ask for it again), drag the disk to the
Trash. This doesn't erase the disk; it just ejects it and removes the icon from the desktop. You
can't drag the current startup disk to die Trash.

You can't edit an ejected disk's comment box (in the Get Info window) or that of any of the
documents on that disk.

The Apple Menu

Rbout the Finder...

Choose Printer
Scrapbook
Rlarm Clock
Note Pad
Calculator
Key Caps
Control Panel
Puzz le

The About the Finder Command

The About the Finder command in the Apple menu now tells you the memory size of the
Macintosh you're using. (Memory used for MacWorks is subtracted on a Macintosh XL.)

The Choose Printer Desk Accessory

The Choose Printer Desk Accessory is available in the Apple menu both in the Finder and in any
application you start using an updated startup disk. See "About the Choose Printer Desk
Accessory."

Macintosh Update for End-Users Page 3

The File Menu

p i
^Neui Folder 3€N

O p e n
P r i n t
Close

m r o ;»:i
i)u () f (c<i i« >:D

Page Setup
Print Catalog

Eject 3§E

77ie New Folder Command

There's a new command —New Folder—in the File menu. Choosing this command creates a
new folder (so you no longer have to duplicate an existing folder). You can rename the folder
immediately after you create it, by typing the name you want. Rename it any other time by
selecting the name or icon and editing it in the usual way.

New folders appear in the frontmost window on the desktop. The command is dimmed if no
windows are open.

The Page Setup Command

The Page Setup command lets you set up the orientation and size of directories you print using
the Print Catalog command. In the Finder, this command works only with the Print Catalog
command; a document's page setup is controlled by the Page Setup command in the application.

Note that Close All and Put Back have been removed from the File menu.

The Print Catalog Command

There's a new Print Catalog command in the File menu that prints the contents of the active
directory window—in whatever view you have the directory arranged.

Macintosh Update for End-Users Page 4

The Special Menu

^ C l e a i n i p
E m p t y T r a s h
E r a s e D i t k
U>\ S i < i i 1 u p
Use MiniFinder...

Shut Down

The Use MiniFinder Command

To move quickly between applications, you can now place the applications and documents you
use most often in the MiniFinder. Here's how to use the MiniFinder:

• In the Finder, select what you want to place in the MiniFinder.

You can select up to a total of twelve mixed or matched documents and applications. You might,
for example, select the applications you use most often, the documents you're currently working
on, or both. (You can easily change what's in the MiniFinder whenever you want.)

The documents and/or applications you select must all be in the same directory window. Drag
them there before you select them if necessary. Any application you need to work on your
MiniFinder documents must be on the same disk as the documents. You can move between
disks in the MiniFinder.

• Choose Use MiniFinder from the Special menu.

• Click Install.

The next time you start your Macintosh using this disk or quit an application on this disk, the
MiniFinder will appear instead of the usual desktop. (The spatial order of the applications and
documents in the MiniFinder corresponds to their order in the Finder.)

• Open an application or document that's installed in the MiniFinder by
selecting it and clicking the Open button or double-clicking the icon.

You can also click any of the other buttons on the right. Clicking Finder (or pressing the Enter
key) takes you back to the Finder. Open Other opens applications that aren't installed in the
MiniFinder (as well as those that are installed), whether they're on the same or other disks.
Clicking Shut Down ejects any inserted disks and restarts the Macintosh.

• To change what's in the MiniFinder, click the Finder button to return to
the Finder, select the applications and documents you want in the MiniFinder,
choose Use MiniFinder, and click Install.

• To stop using the MiniFinder, return to the Finder, choose Use
MiniFinder, and click Remove.

Dragging the MiniFinder icon to the Trash also removes the MiniFinder.

Macintosh Update for End-Users Page 5

You can install the MiniFinder on any of your disks that contain applications, even if they're not
startup disks. When you start up your Macintosh, it uses any MiniFinder it can find, even if it's
not on the startup disk.

The Shut Down Command

There's also a new command in the Special menu. Choosing Shut Down ejects any inserted
disks (first saving any necessary information) and then restarts the Macintosh. This is a shortcut
for when you want to restart the Macintosh using a different startup disk. On a Macintosh XL,
choosing Shut Down turns the power off, but not on again.

Lost Folders

If the Finder has an error and can't reconstruct your folders exactly as they were, the top level of
the folder hierarchy will be remembered (although the names will be lost and the folders will be
renamed Unnamed #1, #2, and so forth).

The Open... Dialog Box

When you choose Open within an application, a list of files appears for you to select from. In the
past, you could type a character to select the first document starting with that character (or the
first document to follow in alphabetical order). Now as you continue to type additional
characters, any file that matches the characters you type is found and selected. If you pause
while typing, the Finder considers the next character to be a new request, rather than a
continuation of your first request. The keyboard touch (which you set in the Control Panel)
determines how long the Finder waits for additional characters in a single request.

Ann Reu O
Update

Eject

Rnn Reu 2
Rnn Reu 3
Joe 's Schedule
Mail to Louella
Projec t s
Thanks to Sandy o

Open Update

Eject

Rnn Reu 2
Rnn Reu 3
Joe 's Schedule
Mail to Louella
Projec t s
Thanks to Sandy o

[Cancel [Driue

Rnn Reu 2
Rnn Reu 3
Joe 's Schedule
Mail to Louella
Projec t s
Thanks to Sandy o

About the Choose Printer Desk Accessory

The Choose Printer desk accessory lets you print from any attached printer for which there is a
printing resource file on the current startup disk. (A printing resource file is a system file that
usually has the same name as the printer itself.)

If you're using an Imagewriter, you probably won't use the Choose Printer desk accessory. The
Macintosh is preset to print documents on an Imagewriter connected to the Printer port (Serial
port B on a Macintosh XL). You'll use Choose Printer only if you connect AppleTalk or another
piece of hardware to the Printer port and want to designate the Modem port for the Imagewriter.

Macintosh Update for End-Users Page 6

Imageuiriter Port:

& a

flppleTalk

C OK

O C o n n e <
<S) n K c « n n « < ted

D Cancel
U1.9

Printers other than the Imagewriter, such as the LaserWriter, include disks containing a Printer
Install application that installs the printing resource file (sometimes called a "driver") for that
printer. Once you install the printer on a disk, it appears as a possible printer to use when you
choose Choose Printer.

About the Font and Desk Accessory Mover

As new fonts and desk accessories become available, you may want to add some of them to your
startup disks. But fonts and desk accessories can take up a fair amount of space on a disk, so
you probably won't want your complete set on every startup disk. The Font and Desk Accessory
Mover (Font/DA Mover) is an application for copying fonts and desk accessories among disks or
removing them from disks.

The Apple and Fonts menus in any application always contain the desk accessories and fonts in
the current startup disk's System file (a file in the System Folder). You can also store collections
of fonts and accessories in special font and desk accessory files the Macintosh uses just for that
purpose. When you want to use the fonts or accessories in those files with an application, you
use Font/DA Mover to add them to the System file of the startup disk you'll be using with that
application.

Using the Font/DA Mover to Add or Remove Fonts or Desk Accessories

• Open Font/DA Mover.

Select the icon and choose Open from the File menu, or just double-click the icon. Opening any
font or desk accessory file also opens Font/DA Mover automatically.

Font/DA Mover is included on the Update disk; you can open it there or copy it to any other disk.
See "Copying a Document, Folder, or Application to a Different Disk" in Macintosh, the owner's
guide.

Macintosh Update for End-Users Page 7

(•) Font
O Desk Hccessory 0 U 8 r

Chicago 12 I * <>!>y o
Geneua 9
Geneva 12 I t emoue
Monaco 9
Monaco 12
New York 9
New Vork 12 O o

Sys tem
on Update
58K f r e e

Help ->

Close Quit Open... .]

• Click either the Font or the Desk Accessory button, depending on which
you want to add or remove.

The list on the left includes all fonts or desk accessories in the System file on the current startup
disk (whether it's in the internal or the external disk drive). The list on the right includes fonts
and desk accessories in the System file on any other inserted startup disk.

• Use the Open buttons to present lists of any other font and desk accessory
files on any inserted disk.

If necessary, first click Close to close the file currently displayed. Each Open button lets you
control what's displayed in its list Both the file you're looking at and the disk it's on are shown
below each list

Whenever you click an Open button, a dialog box with a list of files appears.

Use the Eject or Drive buttons to look at font and accessory files on other disks or other files on
the same disk. The name of the disk you're looking at is always shown in the top right.

If you have a one-drive system, clicking the Open button on the right side automatically presents
a list of font and accessory files on the same disk. If you want to look at another disk, click Eject
and insert the disk you want to work with.

Macintosh Update for End-Users Page 8

• Open the file you want to look at by selecting its name and then clicking
Open.

1
Fonts

Update Sys t em Open
n r 1

Update Sys t em

New Eject

Sys t em Sys t em

Cancel Driue

Sys t em

a ii

You can look at and work with any existing System, font, or desk accessory files. The Taliesin
Font file on the Update disk contains a pictorial font you may want to add to some of your disks.

Or create a new file for your own collection of fonts or accessories by
clicking New, naming the file, and clicking Create.

New Font File Name: Update

Eject
Carol's

Update

Eject

Update

Eject

Create Cancel Drlue
*

Select the fonts or desk accessories you want to copy or remove.

Chicago 12
Geneua 9
Geneua 12
Monaco 9
Monaco 12
New York 9
New Vork 12

Sys tem
on Paint
90K f r e e

Close

0

O

« Copy << Taliesin 18

Remoue

8 0 7 4 b y t e s
s e l e c t e d

Help

C Quit

Fonts
on Update
50K f r e e

Close

o

Taliesin 18? <&> {ftr tr=i

Macintosh Update for End-Users Page 9

You can select from either list. Click to select a single font or accessory, hold down the Shift key
while you click additional single fonts or accessories, or drag to select a group. Shift-click to
deselect a selected file. The number of bytes selected is displayed as well as the amount of space
available on the disk. Both the name of the current file and the name of the disk it's on are
displayed below each list

When a single font is selected, the name, size, and a sample of the font are shown at the bottom
of the window; when more than one font is selected, or when an accessory is selected, nothing is
displayed there.

• Click Copy to copy the selected fonts or accessories in the direction the
arrows point, or click Remove to remove the selected fonts or accessories.

This copies the fonts or desk accessories to the opposite file, or removes the fonts or accessories
from the file you opened. If you remove all fonts or accessories from a file, the file itself will be
gone the next time you click Open.

Only fonts and desk accessories in the current startup disk's System file are available to
applications you use with that disk.

• Click Quit.

In the Finder, you can drag any font or accessory files you no longer need to the Trash, or copy
or move these files between disks. See "Copying a Document, Folder, or Application to a
Different Disk" or "Moving a Document, Folder, or Application to a Different Disk" in
Macintosh, the owner's guide. Opening any font or accessory file automatically opens Font/DA
Mover.

Carol's

You can have only as many fonts available at one time in an application as will fit in the
application's Font menu. (This number varies, depending on the application.) You're limited to
15 desk accessories in a disk's System file.

You can use Font/DA Mover to create an auxiliary set of fonts or accessories. Later you can
move the current System file fonts or accessories to another font or accessory file you create, and
then copy your auxiliary file to your System file. You can alternate between the two fonts files
(or any others you create) whenever you want.

Macintosh Update for End-Users Page 10

Trap List
June 14,1985

The attached document, Trap List, is an update of the February 18 list. Minor changes were made in
order to make the list more accurate. It is a list of traps including the following:

* The trap or routine name as it is described from Pascal, (the exception is the low level File
Manager calls which are shown in pascal form, with the actual trap name.)

* The trap word where it applies.

* The section in Inside Macintosh where it is discussed.

* The "x" shows whether the routine allocates or moves objects on the heap. This means it
eventually invokes one of the following traps: MoreMasters, NewHandle, SetHandleSize,
ReallocHandle, NewPtr, SetPtrSize. What this means is the following:

> If a handle has been dereferenced, as in a WITH statement, and you call one of these
routines, the handle may become invalid. THE HANDLE SHOULD BE LOCKED
before dereferencing it.

> If you are using a dereferenced handle for the result of a function, like
MyRecHndlAA.width := TextWidth(textbuf,firstbyte,count). The expression on the right is
evaluated (dereferenced) first, then the function is called. Since TextWidth can cause an
allocation of memory, the handle may become invalid. THE HANDLE SHOULD BE
LOCKED before dereferencing it.

> If you pass a dereferenced handle to a procedure in the same segment, as in
Foo(MyRecHndlAA.width,stuff), and that procedure calls on of these routines, the handle
can become invalid. THE HANDLE SHOULD BE LOCKED before
dereferencing it. Also, if you pass a dereferenced handle to a procedure in a different
segment and the Segment Loader has to load that segment, the handle can become invalid.
Lock it before dereferencing.

> Finally, if you pass a dereferenced variable to one of these routines, it can become invalid.
THE HANDLE SHOULD BE LOCKED before dereferencing it.

This column does not indicate whether the routine allocates objects on the stack, like
DrawString. (By the way, if you received the previous version of this list, please notice that the
list no longer specifies whether a routine deallocates space on the heap.)

* Finally, it includes a list of what other traps are called by the routine, and what circumstances
under which they are called. I tried to be as accurate as possible.

If there are any questions or comments please write to us at

Macintosh Technical Support
Apple Computer

10525 Mariani Ave. MS-4T
Cupertino, CA 95014

Trap List

Name Trap Doc X Traps Called
AddDrive A04E Enqueue
AddPt A87E QD none
AddReference A9AC RM X GetHandleSize,SetHandleSize,GetHandleSize,GetEOF,SetEOF
AddResMenu A94D MN X SetResLoad,CountResources,GetIndResource,NewHandle,

EmptyHandle,GetResInfo,NewHandle,EmptyHandle,
GetResInfo,AppendMenu,GetHandleSize.SetHandleSize,
CalcMenuSize

AddResource A9AB RM none
Alert A985 DL X GetResource,FlushEvents,NewDialog,GetPort,SetPort,GetIcon,

PlotIcon,GetDItem,PenSize,InsetRect,FrameRoundRect,InsetRect,
ModalDialog,SetPortJ3isposeDialog

Allocate FL Allocate
AngleFromSlope A8C4 TU none
AppendMenu A933 MN X GetHandleSize,SetHandleSize,CalcMenuSize
ApplicZone MM none
AsmClikLoop TE none
AsmWordBreak TE none
ATPAddRsp AT X CountResources,GetIndResource)DisposeHandle,HLock,Control,

HUnlock
ATPCloseSocket AT X CountResources.GetlndResource,DisposeHandle,Control
ATPGetRequest AT X CountResources,GetIndResource,DisposeHandle,HUnlock,HLock,

HUnlock,PostEvent,HUnlock,Control
ATPLoad AT X CountResources.GetlndResource,DisposeHandle,Open,Open
ATPOpenSocket AT X CountResources.GetlndResource,DisposeHandle,Control
ATPReqCancel AT X CountResources.GetlndResource,DisposeHandle,HUnlock,HLock,

HUnlock,PostEvent,HUnlock,Control,Control
ATPRequest AT X CountResources.GetlndResource,DisposeHandle,HUnlock,HLock,

HUnlockJIUnlock,DisposeHandle
ATPResponse AT X CountResources.GetlndResource,DisposeHandle,HLock,HUnlock,

DisposeHandle,HUnlock
ATPRspCancel AT X CountResources.GetlndResource,DisposeHandle,HLock,HUnlock,

PostEventJIUnlock,Control,Control,
ATPSndRequest AT X CountResources.GetlndResource,DisposeHandle,HUnlock,HLock,

HUnlock,HUnlock,PostEvent,HUnlock,Control,Control
ATPSndRsp AT X CountResources.GetlndResource,DisposeHandle,HUnlock,HLock,

HUnlock,HUnlock,PostEvent,HUnlock,Control, Control,HUnlock,
HUnlock,PostEvent,HUnlock

ATPUnload AT X CountResouices,GetIndResourceJDisposeHandle,Close
BackColor A863 QD none
BackPat A87C QD none
BeginUpdate A922 WM X OffsetRgn,CopyRgn,SectRgn,OffsetRgn,SetEmptyRgn
BitAnd A858 TU none
BitClr A85F TU none
BitNot A85A TU none
BitOr A85B TU none
BitSet A85E TU none
BitShift A85C TU none
BitTst A85D TU none
BitXOr A859 TU none
BlockMove A02E MM none
BringToFront A920 WM X NewRgn,OffsetRgn,DiffRgn,UnionRgn,CalcVis,DisposeRgn,SetPort,

window is already in front then only SetPort
Button A974 EM X none, Control if journaling

Trap List Pagel of 16 June 14, 1985

CalcMenuSize A948 MN X LoadResource, then calls menu def. proc. for ea. menu item
(GetPort,SetPort,TextFace,StringWidth,TextFace,SetPort)

CalcVis A909 WM X SectRgn,OffsetRgn,SetEmptyRgn (if window invisible)
CalcVisBehind A90A WM X CalcVis, SectRect if more than 1 window in list
CautionAlert A988 DL X GetResource,FlushEvents,NewDialog,GetPort,SetPort,GetIcon,

PlotIcon,GetDItem,PenSize,InsetRect,FrameRoundRect,InsetRect,
ModalDialog,SetPort,DisposeDialog

Chain A9F3 SL X BlockMove,if current app then CloseResFile,BlockMove,InitApplZone,
NewHandle,BlockMove,RDrvrInstall, then OpenResFile,SysError if bad
open,GetResource,BlockMove,ReleaseResource

ChangedResource A9AA RM X GetHandleSize,SetHandleSize,GetEOF,SetEOF
CharWidth A88D QD X TextWidth
Checkltem A945 MN X SetltemMark
CheckUpdate A911 WM X GetPort, if more than 1 port then EmptyRgn,SetPort,NewRgn,

GetClip,RectRgn, if picture assoc. w/window needs update
BeginUpdate,DrawPicture,EndUpdate, then SetClip,DisposeRgn,
SetPort

ClearMenuBar A934 MN none
ClipAbove A90B WM X SectRgn
ClipRect A87B QD X RectRgn
CloseDeskAcc A9B7 DS Close
CloseDialog A982 DL X SetEmptyRgn,GetPort,SetPort,LoadResource,DisposeHandle,CloseWindov
CloseDriver DM Close
ClosePicture A8F4 QD X StdPutPic,SetHandleSize,DisposeRgn,DisposeHandle,ShowPen
ClosePoly A8CC QD X SetHandleSize,ShowPen
ClosePort A87D QD X DisposeRgn (2 for clip & vis rgns)
CloseResFile A99A RM X UpdateResFile,ReleaseResource,Close,DisposeHandle,SetGrowZone,

LodeScrap.SetVol
CloseRgn A8DB QD X ShowPen,SetHandleSize,DisposeHandle
CloseWindow A92D WM X FrontWindow,KillControls,LoadResource,ShowHide,DiposeHandle,

DisposeRgn(3),ClosePort,KillPicture,SetPort,FrontWindow,
HiliteWindow,SetPort

ClrAppFiles SL GetHandleSize
ColorBit A864 QD none
CompactMem A04C MM X BlockMove
Control DM X BlockMove,Control
CopyBits A8EC QD X ShieldCursor,StdBits,ShowCursor
CopyRgn A8DC QD X SetHandleSize
CouldAlert A989 DL X GetResource(dialog),GetResource(item list),LoadResource(for each

item in the list),GetResource(defprocs)
CouldDialog A979 DL X GetResource(dialog),GetResource(item list),LoadResource,

GetResource
CountAppFiles SL GetHandleSize
CountMItems A950 MN none
CountResources A99C RM none
CountTypes A99E RM none
Create FL Create, GetFilelnfo.SetFilelnfo
CreateResFile A9B1 RM X OpenRF to see if the file exists,Create,OpenRF.GetEOF,Write,Close

if errors
CurResFile A994 RM none
Date2Secs A9C7 OS none
DDPCloseSocket AT X CountResources,GetIndResources,DisposeHandle,Control,

HU nlock,HU nlock
DDPOpenSocket AT X CountResources,GetIndResources,DisposeHandle,HUnlock, DDPOpenSocket

PostEvent,HUnlock,Control
DDPRdCancel AT X CountResources, GetIndResources,DisposeHandle,HUnlock,DisposeHandle

Trap List Page2 of 16 June 14, 1985

DDPRead AT X CountResources.GetlndResources,DisposeHandle,HUnlock,
NewHandle,HLock,HLock,HUnlock

DDPWrite AT X CountResources,GetIndResouices,DisposeHandle,HUnlock,
NewHandle,HLock,Control,HUnlock,PostEvent,HUnlock

Delay A03B OS none
DeleteMenu A936 MN none
DeltaPoint A94F TU none
Dequeue A96E OS none
DetachResource A992 RM none
DialogSelect A980 DL X GetResourceJFrontWindow,(BegininWind),BlockMove,if mouse event

then GlobalToLocal,For each item LoadResource,PtInRect,if control
FindControl,TrackControl,if not TEClick, If it was an update then
BeginUpdate,DrawDialog,EndUpdate,if activate event then SetPort,
TEActivate if edit field & active,TEDeactivate if not, if KeyDown
event then TEKey, if it was a TAB then TEDeactivate,TECalText,
TEActivate,If event really didn't do anything then TEIdle, then
finally SetPort

DIBadMount PK X Pack 2
DiffRgn A8E6 QD X EqualRgn,CopyRgn,SetEmptyRgn,RectRgn,NewHandle,SetHandleSize,

DisposeHandle
DBFormat PK X Pack 2
DILoad PK X Pack 2
Disableltem A93A MN none
DiskEject DD X Eject,Control
DisposDialog A983 DL X CloseDialog,DisposeHandle,DisposePtr
DisposeControl A955 CM X GetPort,SetPort,NewRgn,LoadResource,SetPort,EraseRgn,InvalRgn,

DisposeRgn,GetPort,SetPort,LoadResource,SetPort
DisposeMenu A932 MN X DisposeHandle
DisposeRgn A8D9 QD X DisposeHandle
DisposeWindow A914 WM X CloseWindow,DisposePtr
DisposHandle A023 MM X Syserror if failed, none otherwise
DisposPtr A01F MM X Syserror if failed, none otherwise
DIUnLoad PK X Pack 2
DIVerify PK X Pack 2
DIZero PK X Pack 2
DlgCopy DL X TECopy
DlgCut DL X TECut
DlgDelete DL X TEDelete
DlgPaste DL X TEPaste
DragControl A967 CM X GetPort,SetPort,GetPort,SetPort,LoadResource,SetPort,NewRgn,

DragTheRgn,DisposeRgn,MoveControl,SetPort
DragGrayRgn A926 WM X GetPenStateJ>enPat,PenMode,NewRgn,CopyRgn,InsetRgn,DiffRgn,

DisposeRgn J>aintRgn,GetMouse,PtInRect,PaintRgn,WaitMouse,
PaintRgn,SetPenStateJJtInRect,MoveWindow, DisposeRgn, SetPort

DragWindow A925 WM X WaitMouse,SetClip,GetKeys,NewRgn,CopyRgn,DragGreyRgn,
MoveWindowJDisplayRgn,SetPort

DrawChar A883 QD X StdText
DrawControls A969 CM GetPort,SetPort,GetPenState,PenNormal,GetPort,SetPort, then calls

appropriate Control def. proc for each control in the list,and
finally SetPort,SetPenState,SetPort

DrawDialog A981 DL X GetPort,SetPort,locks item listvLoadResource,TECalText,
DrawControls,LoadResource,DisposeHandle,DisposeControl,HandToHai
HLockMunger,GetHandleSize,TextBox,DisposeHandle,PenSize,
InsetRect,FrameRoundRect,SetPort

DrawGrowIcon A904 WM X SetPort,CopyBits,MoveTo,LineTo,MoveTo,LineTo,LineTo
DrawMenuBar A937 MN X SetRecRgn,EraseRountRect,MoveTo,LineTo,ClipRect,then MoveTo &

Trap List Page 3 of 16 June 14, 1985

DrawNew A90F WM X

DrawPicture A8F6 QD X

DrawString A884 QD X

DrawText A885 QD X

DriveS tatus DD X

Drvrlnstall A03D X

DrvrRemove A03E X

Eject FL X

EmptyHandle A02B MM
EmptyRect A8EA QD
EmptyRgn A8E2 QD
Enableltem A939 MN
EndUpdate A923 WM X

Enqueue A96F OS
Environs
EqualPt A881 QD
EqualRect A8A6 QD
EqualRgn A8E3 QD
EqualString A03C OS
EraseArc A8C0 QD X

EraseOval A8B9 QD X

ErasePoly A8C8 QD X

EraseRect A8A3 QD X

EraseRgn A8D4 QD X

EraseRoundRect A8B2 QD X

ErrorSound A98C DL
EventAvail A971 EM X

ExitToShell A9F4 SL X

FillArc A8C2 QD X

FillOval A8BB QD X

FillPoly A8CA QD X

FillRect A8A5 QD X

FillRgn A8D6 QD X

FillRoundRect A8B4 QD X

FindControl A96C CM X

FindWindow A92C WM
FixMul A868 TU
FixRatio A869 TU
FixRound A86C TU
FlashMenuBar A94C MN X

FlushEvents A032 OSEM
FlushVol FL X

FMSwapFont A901 FM X

ForeColor A862 QD
Frame Arc A8BE QD X

FrameOval A8B7 QD X

FramePoly A8C6 QD X

DrawString for each menu,SetPort, if a menu item is disabled it
calls PenMode,PenPat,PaintRect,PenNormal, and if it is hilited
InvertRect
UnionRgn,PaintOne,PaintBehind,CalcVBehind,DisposeRgn, XOrRgn if
invisible
See page 16 for complete list.
StdText
StdText
Status,BlockMove
NewHandle
ReleaseResource,DisposeHandle
Eject
none
none
EmptyRect
none
OffsetRgn,CopyRgn,SetEmptyRgn
none
none
none
none
none
CmpString
StdArc
StdOval
StdPoly
StdRect
StdRgn
StdRRect
none
If Event in queue then OSEventAvail (if window activated or
deactivated),GetOSEvent,SystemEvent, If no Event then GetOSEvent,
CheckUpdate,GetMouse
Launch on Finder
StdArc
StdOval
StdPoly
StdRect
StdRgn
StdRRect
GetPort,SetPort,then PtlnRect & TestControl for each control in
the list, then SetPort
PtlnRgn
LongMul
none
none
HandToHand,SetClip,SetRectRgn,InvertRoundRect,InvertRect (if menu
item inverted),SetPort,CopyRgn,DisposeRgn
none
FlushVol
FixRatio,FixMul,FixRound,GetResource,FixRatio,FixMul, BlockMove,
Status(if device changed)
none
StdArc
StdOval
StdPoly

Trap List Page4 of 16 June 14, 1985

FrameRect A8A1 QD x
FrameRgn A8D2 QD X

FrameRoundRect A8B0 QD X

FreeAlert A98A DL X

FreeDialog A97A DL X

FreeMem A01C MM
FrontWindow A924 WM
FSClose FL
FSDelete FL
FSOpen FL
FSRead FL
FSWrite FL
GetAlrtStage DL
GetAppFiles SL
GetApplLimit
GetAppParms A9F5 SL
GetCaretTime EM
GetClip A87A QD X

GetCRefCon A95A CM
GetCTitle A95E CM
GetCtlAction A96A CM
GetCtlMax A962 CM
GetCtlMin A961 CM
GetCtlValue A960 CM
GetCursor A9B9 TU X

GetDateTime OS
GetDblTime EM
GetDCtlEntry X

GetDItem A98D DL X

GetDrvQHdr FL
GetEOF FL
GetEvQHdr OS
GetFInfo FL
GetFNum A900 FM X

GetFontlnfo A88B FM X

GetFontName A8FF FM X

GetFPos FL
GetFSQHdr FL
GetHandleSize A025 MM
Getlcon A9BB TU X

GetlndPattern TU X

GetlndResource A99D RM X

GetlndString TU X

GetlndType A99F RM
Getltem A946 MN
Getltemlcon A93F MN
GetltemMaik A943 MN
GetltemStyle A941 MN
GetTText A990 DL
GetKeys A976 EM X

GetMenu A9BF MN X

GetMenuBar A93B MN X

Trap List

StdRect
StdRgn
StdRRect
for item list & alert GetResource,unlocks it,GetResAttrs(to make
purgeable),LoadResource,DisposeHandle,DisposeControl,HandToHand,
HLock,Munger,GetHandleSize,TextBox,DisposeHandle,PenSize,
InsetRecUFrameRoundRect
GetResource(the dialog),GetResAttrs(make purgeable),GetResource
(the item list),GetResAttrs(make purgeable)
none
none
Close
Delete
Open
Read
Read,Write
none
GetHandleSize,BlockMove
none
BlockMove
none
CopyRgn
none
BlockMove
none
none
none
none
GetResource
none
none
Status
GetPort,SetPort,LoadResource,SetPort
none
GetEOF
none
GetFilelnfo,BlockMove
GetN amedResource.GetResInfo
StdTxMeas
GetResource,GetResInfo
GetFPos
none
none
GetResource
GetResource,BlockMove
ReadJ^ewHandleJleacU^ead
GetResource,BlockMove
none
BlockMove
none
none
none
GetHandleSize,BlockMove
none, Control if journaling
GetResource,CalcMenuSize
NewHandle,BlockMove

Page5 of 16 June 14, 1985

GetMHandle A949 MN none
GetMouse A972 EM x GlobalToLocal,Control if journaling
GetNamedResource A9A1 RM X CmdString,
GetNewControl A9BE CM X GetResource,NewControl,ReleaseResource
GetNewDialog A97C DL X GetResource,NewDialog
GetNewMBar A9C0 MN X GetMenuBar.ClearMenuBar,GetResource,InsertMenu,GetMenuBar,

ReleaseMenu.SetMenuBar,DisposeHandle
GetNewWindow A9BD WM X GetResource,NewWindow,ReleaseResource
GetNextEvent A970 EM X If Event in queue then OSEventAvail (if window activated or

deactivated),GetOSEvent,SystemEvent, If no Event then GetOSEvent,
CheckUpdate,GetMouse

GetNodeAddress AT CountResources,GetIndResources
GetOSEvent A031 OSEM OSEventAvail,Dequeue
GetPattern A9B8 TU X GetResource
GetPen A89A QD none
GetPenState A898 QD none
GetPicture A9BC TU X GetResource
GetPixel A865 QD HideCursor,ShowCursor
GetPort A874 QD none
GetPtrSize A021 MM none
GetResAttrs A9A6 RM none
GetResFileAttrs A9F6 RM none
GetResInfo A9A8 RM none
GetResource A9A0 RM X Read,NewHandle,RsrvMem,AllocHandle, if no hand & no load

NewHandle,EmptyHandle
GetScrap A9FD SM X Read,BlockMove,SetHandleSize
GetSoundVol SD none
GetString A9BA TU X GetResource
GetSysPPtr OS none
GetTime OS ReadDateTime,Secs2Date
GetTrap Address A046 OS none
GetVBLQHdr VR none
GetVCBQHdr FL none
GetVInfo FL GetVolInfo
GetVol FL GetVol
GetVRefNum none
GetWindowPic A92F WM none
GetWMgrPort A910 WM none
GetWRefCon A917 WM none
GetWTide A919 WM none
GetZone A01A MM none
GlobalToLocal A871 QD none
GrafDevice A872 QD none
GrowWindow A92B WM X SetClip,ClipAbove,GetPenState,PenNormal,PenMode,PenPat,OffsetRect,

LoadResource,DeltaPoint,GetMouse,PInRect,WaitMouseUp,SetPenState,
SetPort

GZCritical MM none
GZSaveHnd MM none
HandAndHand A9E4 OS X GetHandleSize,SetHandleSize,BlockMove
HandleZone A026 MM none
HandToHand A8E1 OS X GetHandleSize,NewHandle,BlockMove,SetHandleSize,BlockMove,

NewHandle,BlockMove
HideControl A958 CM X GetPort,SetPort^ewRgn,GetPort,SetPort,LoadResource, SetPort,

EraseRgn,InvalRgn,DisposeRgn,SetPort
HideCursor A852 QD none
HidePen A896 QD none

Trap List Page 6 of 16 June 14, 1985

HideWindow A916 WM X FrontWindow,ShowHide,FrontWindow, SelectWindow on the front windov
if there is one.

HiliteControl A95D CM X GetPort,SetPort,LoadResource if control def proc needs loading,
calls def proc for each control,SetPort

HiliteMenu A938 MN X ClipRect,InvertRect,InvertRect,SetPort
HiliteWindow A91C WM X SetPort,SetClip,ClipAbove,SetPort
HiWord A86A TU none
HLock A029 MM none
HNoPurge A04A MM none
HomeResFile A9A4 RM none
HPurge A049 MM none
HUnlock A02A MM none
InfoScrap A9F9 SM none
InitAllPacks(InitMath) A9E6 PK X InitPack
InitApplZone A02C MM X Flush V ol,RsrcZoneInit,InitZone,InitMath
InitCursor A850 QD none, falls into ShowCursor
InitDialogs A97B DL none
InitFonts A8FE FM X BlockMove,GetResource
InitGraf A86E QD none
InitMenus A930 MN X NewHandle,ClearMenu,DrawMenuBar,SetRecRgn,EraseRoundRect,

MoveTo,LineTo,ClipRect,SetPort
InitPack A9E5 PK X SetResLoad,GetResource,SetResLoad
InitPort A86D QD X RectRgn,CopyRgn
InitQueue A016 FL none
InitResources A995 RM X NewHandle,OpenRF,GetEOF,SetHandleSize,Close & DisposeHandle if

failed,Read
InitUtil A03F OS none
InitWindows A912 WM X GetPattern,NewPtr,OpenPort,PaintRect,FillRoundRect,DrawMBar,

NewRgn,HidePen,OpenRgn,FrameRoundRect,CloseRgn,ShowPen,
DiffRgn,SetClip,ShowCursor,NewRgn

InitZone A019 MM X MoreMasters
InsertMenu A935 MN X TextFont,TextFace,StringWidth,SetPort
InsertResMenu A951 MN X SetResLoad,CountResources,GetIndResource,GetResInfo,

CalcMenuSize,AppendMenu,Munger
InsetRect A8A9 QD none
InsetRgn A8E1 QD X InsetRect if rectangular, else NewHandle,DisposeHandle,

SetHandleSize
InvalRect A928 WM X NewRgn,RectRgn,DisposeRgn
InvalRgn A927 WM X OffsetRgn,UnionRgn,DiffRgn,OffsetRgn
InvertArc A8C1 QD X StdArc
InvertOval A8BA QD X StdOval
InvertPoly A8C9 QD X StdPoly
InvertRect A8A4 QD X StdRect
InvertRgn A8D5 QD X StdRgn
InvertRoundRect A8B3 QD X StdRRect
IsATPOpen AT CountResources,GetlndResources
IsDialogEvent A97F DL FrontWindow,FindWindow
IsMPPOpen AT CountResources,GetlndResources •
IUCompString PK X Pack 6
IUDatePString PK X Pack 6
IUDateString PK X Pack 6
IUEqualString PK X Pack 6
IUGetlntl PK X Pack 6
IUMaglDString PK X Pack 6
IUMagString PK X Pack 6
IUMetric PK X Pack 6

Trap List Page7 of 16 June 14, 1985

IUSetlntl PK x
IUTimePString PK X

lUTimeString PK X

KillControls A956 CM X

KilHO DM
KillPicture A8F5 QD X

KillPoly A8CD QD X

LAPCloseProtocol AT X

LAPOpenProtocol AT X

LAPRdCancel AT X

LAPRead AT X

LAPWrite AT X

Launch A9F2 SL X

Line A892 QD X

LineTo A891 QD X

LoadResource A9A2 RM X

LoadScrap A9FB SM X

LoadSeg A9F0 SL X

LocalToGlobal A870 QD
LongMul A867 TU
LoWord A86B TU
MapPoly A8FC QD
MapPt A8F9 QD
MapRect A8FA QD
MapRgn A8FB QD X

MaxApplZone MM
MaxMem A01D MM X

MemError MM
MenuKey A93E MN X

MenuSelect A93D MN X

ModalDialog A991 DL X

MoreMasters A036 MM X

Move A894 QD
MoveControl A959 CM X

MoveHHi MM X

MovePortTo A877 QD
MoveTo A893 QD
MoveWindow A91B WM X

MPPClose AT X

MPPOpen AT X

Munger A9E0 TU X

Pack 6
Pack 6
Pack 6
DisposeControl for each control in the list
KilllO
DisposeHandle
DisposeHandle
CountResources,GetIndResources,DisposeHandle>Control
CountResources,GetIndResourcesJ)isposeHandle,Control
CountResources.GetlndResources .DisposeHandle,HUnlock,
HUnlockJDisposeHandle
CountResources.GetlndResources,DisposeHandle,HLock,
NewHandle,HLock,HUnlock,HUnlock
CountResources.GetlndResources,DisposeHandle,HLock,
NewHandle,HLock,PostEvent,HLock,
HUnlock,Control,Control
BlockMove,if current app then CloseResFile,BlockMove,InitApplZone,
NewHandle,BlockMove,RDrvrInstall, then OpenResFile,
SysError if bad open,GetResource,BlockMove,ReleaseResource,
LineTo
StdLine
GetNamedResource(if the resource name is given),GetResource(if you
only have ID),if loading Read,RsrvMem,ReallocHandle,NewHandle(if
there isn't already one),Read, if no hand & no load NewHandle,
EmptyHandle
NewHandleJRead
GetResource, SysError if error (locks segment as loaded, launches
if necessary)
none
none
none
MapRect^MapPt
none
MapPt
MapRect,NewHandle,MapPt,SetHandleSize,DisposeHandle
none
none
none
HiliteMenu,SystemMenu(if desk Acc.),BlockMove
HiliteMenu,WaitMouseUp,GetPort,SetPort,ClipRect,GetMouse,ClipRect
SystemTask,GetNextEvent,FrontWindow, calls filter proc,
IsDialogEvent,DialogSelect
BlockMove if needed
none
HideControl,OffsetRect,ShowControl
CompactMem,BlockMove,EmptyHandle
none
none
SetClip,ClipAbove,NewRgn,SectRgn,HandToHand,DeltaPoint,OfsetRgn,
OfsetRect,SetClip if bringing to front,CopyBits,DiffRgn,
PaintBehind,FrontWindow,HiliteWindow,PaintOne,UnionRgn,
CalcVBehindJDisposeRgn,SetPort
CountResources.GetlndResources,Close
CountResources,GetIndResources,Open
GetHandleSize, for insert SetHandleSize,BlockMove, For delete &
finding substrings BlockMove,SetHandleSize

Trap List Page8 of 16 June 14 ,1985

NBPConfirm AT X

NBPExtract AT X

NBPLoad AT X

NBPLookup AT X

NBPRegister AT X

NBPRemove AT X

NBPUnload AT X

NewControl A954 CM X

NewDialog A97D DL X

NewHandle A022 MM X

NewMenu A931 MN X

NewPtr A01E MM X

NewRgn A8D8 QD X

NewString A906 ' TU X

NewWindow A913 WM X

NoteAlert A987 DL X

NumToString PK X

ObscureCursor A856 QD
OffsetPoly A8CE QD
OffsetRect A8A8 QD
OffsetRgn A8E0 QD
OpenDeskAcc A9B6 DS X

OpenDriver DM
OpenPicture A8F3 QD X

OpenPoly A8CB QD X

OpenPort A86F QD X

OpenResFile A997 RM X

OpenRgn A8DA QD X

OSEventAvail A030 OSEM
PackO (not used) A9E7 PK X

Packl (not used) A9E8 PK X

Pack2 A9E9 PK X

Pack3 (std file) A9EA PK X

Pack4 (floating pt) A9EB PK X

PackS (transcendentals) A9EC PK X

Pack6 (Int'l) A9ED PK X

CountResources.GetlndResources .DisposeHandle,DisposeHandle,
ControUHlock,NewHandle,HLock,NewHandle,HLock, Control,
Control.HUnlock.HUnlockJ'ostEvent,
HUnlock
CountResources,GetlndResources .DisposeHandle
CountResources,GetlndResources .DisposeHandle,Control
CountResources,GetlndResourcesJDisposeHandle,DisposeHandle,
Con trolJHock,NewHandle,HLockrNewHandlevHLock,Control,
Control,HUnlock,HUnlockJ>ostEvent,
HUnlock
CountResources,GetlndResources J)isposeHandle,DisposeHandle,
Control JDock,NewHandle,HLock,NewHandle,HLock,Control,
Control,HUnlock,HUnlock,PostEvent,HUnlock
CountResources,GetlndResourcesJDisposeHandle,Control
CountResources,GetlndResources .DisposeHandle, Control
NewHandle,SetCTide,GetResource,GetPort,LoadResource,locks handle
to proc,SetPort,calls def proc to draw control,unlocks handle,
then SetPort
NewPtr if no wstorage given, BlockMove,NewWindow.GetPort,SetPort,
TENewJDisposeHandle,SetPort,GetPort,SetPort,LoadResource,
TECalTextj,trToHand(if text),GetResource(if pic or icon),
GetNewControl,MoveControl,(if control), ValidRect(if control),
RsrvMem(to alloc as low as possible),SysError if failed, BlockMove
if needed
NewHandle,GetResource
SysError if failed, BlockMove if needed, none otherwise
NewHandle
PtrToHand
OpenPort^fovePortJ'ortSize.SetPortJfewRgn, GetResource,
NewString.StringWidth, windowdefproc called twice,
FrontWindow,PaintOne,CalcVBehind,SetPort.
GetResource,FlushEvents,NewDialog,GetPort,SetPort,GetIcon,
PlotIcon,GetDItemJ'enSize,InsetRectrFrameRoundRect,InsetRect,
ModalDialog.SetPortJDisposeDialog
Pack 7
none, falls into HideCursor
none
none
none
Open,SelectWindow,ShowWindow
none
HidePenJ'JewHandle.NewRgn.StdPutPic
HidePouNewHandle
NewHandle (2 for the clip & vis rgns)
NewHandle,OpenRF,GetEOF,Close & DisposHandle if failed, Read,
SetHandleSize>Read£etHandleSize,load preload resources,
GetResource,GetNamedResource,NewHandle,ReAllocHandle,RsrvMem,
NewHandleJlidePen
PostEvent
LoadResource, SysError if no pack
LoadResource, SysError if no pack
LoadResource, SysError if no pack
LoadResource, SysError if no pack
LoadResource, SysError if no pack
LoadResource, SysError if no pack
LoadResource, SysError if no pack

Trap List Page 9 of 16 June 14, 1985

Pack7 (conversions) A9EE PK x LoadResource, SysError if no pack
PackBits A8CF TU none
PaintArc A8BF QD X StdArc
PaintBehind A90D WM X CopyRgn1NewRgn,ClipAbove,CopyRgn,DiffRgn, ClipRect, EraseRgn,

DisposeRgn
PaintOne A90C WM X SectRgn,EmptyRgn,NewRgn,DisposeRgn, and if updating UnionRgn.
PaintOval A8B8 QD X StdOval
PaintPoly A8C7 QD X StdPoly
PaintRect A8A2 QD X StdRect
PaintRgn A8D3 QD X StdRgn
PaintRoundRect A8B1 QD X StdRRect
ParamText A98B DL X NewString, DisposeHandle
PB Allocate (_Allocate) AOlO FL Enqueue
PBClose (_Close) AOOl FL Enqueue,Read,Write
PBControl (_Control) A004 FL X LoadResource if driver was purged, SysError if error
PBCreate (_Create) A008 FL Enqueue,CmpString,Write,Read
PBDelete (_Delete) A009 FL Enqueue
PBEject (_Eject) A017 FL X FlushVol,DisposePtr,Control
PBFlshFile(FlushFile) A045 FL Enqueue,Read,Write
PBFlshVol (Flush Vol) A013 FL X Enqueue,Write,DisposePtr,Dequeue
PBGetEOF (_GetEOF) AOll FL SysError if error, none otherwise
PBGetFInfo (_GetFileInfo) AOOC FL Enqueue,CmpString,Write,Read
PBGetFPos (_GetFPos) A018 FL falls through SetFPos
PBGetVInfo (GetVolInfo) A007 FL Enqueue,CmpString
PBGetVol(GetVol) A014 FL Enqueue
PBKilllO (_KillIO) A006 DM SysError if error, none otherwise
PBMountVol(MountVol) AOOF FL X Enqueue,NewPtr,Write,Read,NewPtr,Status,DisposePtr,SysError if

error, Offline if not enough room & a vol has to go
PBOffLine (_Offline) A035 FL X Flush Vol,Enqueue,DisposePtr,Dequeue,Enqueue,Control
PBOpen (_Open) AOOO FL X Enqueue,GetNamedResource,CmpString(if in ROM),GetResInfo,

Drvrlnstall(if not installed),LoadResource,CompactMem
PBOpenRF (_OpenRF) AOOA FL X Enqueue,GetNamedResource,CmpString(if in ROM),GetResInfo,

Drvrlnstall(if not installed),LoadResource,CompactMem
PBRead (_Read) A002 FL Enqueue,Write,Read,SysError if error
PBRename (_Rename) AOOB FL Enqueue,CmpString,Write,Read
PBRstFLock(_RstFilLock) A042 FL Enqueue,CmpString,Write,Read
PBSetEOF (SetEOF) A012 FL Enqueue
PBSetFInfo (SetFillnfo) AOOD FL Enqueue,CmpString,Write,Read
PBSetFLock(SetFilLock) A041 FL Enqueue,CmpString,Write,Read
PBSetFPos (SetFilPos) A044 FL Falls through _Read
PBSetFVers (SetFilType) A043 FL Enqueue,CmpString,Write,Read
PBSetVol (_SetVol) A015 FL Enqueue,CmpString
PBStatus (Status) A005 DM X LoadResource if driver was purged, SysError if error
PBUnmountVol (UnmountVol)

AOOE FL Enqueue,falls through FlushVol
PBWrite (Write) A003 FL Enqueue,Write,BlockMove,SysError if error
PenMode A89C QD none
PenNormal A89E QD none
PenPat A89D QD none
PenSize A89B QD none
PicComment A8F2 QD X StdComment
PinRect A94E WM none
Plotlcon A94B TU X CopyBits
PortSize A876 QD none
PostEvent A02F OSEM none
PrCfgDialog PR X GetResource

Trap List Page 10of 16 June 14 ,1985

PrClose PR X GetResource,OpenResFile(to get refnum),CloseResFile
PiCloseDoc PR X GetResource
PrClosePage PR X GetResource
PrCtlCall PR X Control
PrDlgMain PR X GetResource
PrDrvrClose PR Close
PrDrvrDCE PR X Status
PrDrviOpen PR X Open
PrDrvrVers PR X PrDrvrDCE
PrError PR none
PrHack PR X GetResource
PrintDefault PR X GetResource
PrJobDialog PR X GetResource
PrJoblnit PR X GetResource
PrJobMerge PR X GetResource
PrNoPurge PR X GetResource
PrOpen PR X PrDrvrOpen,GetResource,OpenResFile
PrOpenDoc PR X GetResource
PrOpenPage PR X GetResource
PrPicFile PR X GetResource
PrPurge PR X GetResource
PrSetError PR none
PrStlDialog PR X GetResource
PrStllnit PR X GetResource
PrValidate PR X GetResource
Pt2Rect A8AC QD none
PtlnRect A8AD QD none
PtlnRgn A8E8 QD none
PtrAndHand A9EF OS X GetHandleSize,SetHandleSize, BlockMove
PtfToHand A9E3 OS X NewHandle, BlockMove
PtiToXHand A9E2 OS X SetHandleSize,NewHandle, BlockMove, NewHandle
PtrZone A048 MM none
PtToAngle A8C3 QD FixRatio,FixMul,AngleFromSlope
PurgeMem A04D MM none
PutScrap A9FE SM X PtrAndHand, Write
RamSDClose SER X BlockMove,DisposeHandle,Close
RamSDOpen SER X GetResource,locks handle,BlockMove,Open
Random A861 QD none
RDrvrlnstall A04F none
ReadDateTime A039 OS none
ReadParam OS none
RealFont A902 FM X GetResource
ReallocHandle A027 MM X none
RecoverHandle A028 MM X none
RectlnRgn A8E9 QD none
RectRgn A8DF QD X SetRectRgn
ReleaseResource A9A3 RM X DisposeHandle
Rename FL Rename
ResError A9AF RM none
ResetAlrtStage DL none
ResrvMem A040 MM X BlockMove if needed, none otherwise
Restart X none
Res tore A5 none
RmveReference A9AE RM X BlockMove,SetHandleSize,SetEOF (repeated)
RmveResource A9AD RM X BlockMove,SetHandleSize,SetEOF (repeated)
RsrcZonelnit A996 RM X CloseResFile

Trap List Page11 of 16 June 14, 1985

RstFLock FL
SaveOld A90E WM X

ScalePt A8F8 QD
ScreenRes
ScrollRect A8EF QD X

Secs2Date A9C6 OS
SectRect A8AA QD
SectRgn A8E4 QD X

SelectWindow A91F WM X

SellText . A97E DL X

SendBehind A921 WM X

SerClrBik SER X

SeiGetBrk SER X

SerHShake SER X

SerReset SER X

SerSetBrk SER X

SerSetBuf SER X

SerStatus SER X

SetApplBase A857 MM X

SetApplLimit A02D MM
SetClip A879 QD X

SetClikLoop TE
SetCRefCon A95B CM
SetCTitle A95F CM X

SetCtlAction A96B CM
SetCtlMax A965 CM X

SetCtlMin A964 CM X

SetCtlValue A963 CM X

SetCursor A851 QD
SetDAFont DL
SetDateTime A03A OS
SetDItem A98E DL X

SetEmptyRgn A8DD QD X

SetEventMask EM
SetFInfo FL
SetFLock FL
SetFontLock A903 FM X

SetFType FL
SetGrowZone A04B MM
SetHandleSize A024 MM X

Setltem A947 MN X

Setltemlcon A940 MN X

SetltemMark A944 MN X

SetltemStyle A942 MN X

SetlText A98F DL X

SetMenuBar A93C MN
SetMenuFlash A94A MN
SetOrigin A878 QD

Trap List

RstFilLock
NewRgn(2),CopyRgn(2)
none s
none
If pnloccO or updatergn is empty then SetEmptyRgn, else NewRgn,
RectRgn,SectRgn,CopyRgn,OfsetRgnJDiffRgn,ShieldCursor,ShowCursor,
DisposeRgn, SetEmptyRgn
none
none
EqualRgn,CopyRgn,SetEmptyRgn,RectRgn,NewHandle,SetHandleSize,
DisposeHandle
FrontWindow,SetPort,HiliteWindow
GetPort,SetPort,LoadResource,TECalText(if text),LoadResource,
TEDeactivate,TECalText,TEActivate)SetPort
FrontWindow,SelectWindow,CalcVBehind,PaintBehind,SetPort
Control
Status
Control
Control
Control
Control
Status
InitApplZone,SysError if failed
none
CopyRgn
none
none
HideControl, SetHandleSize, BlockMove, ShowControl(if visible)
none
GetPort,SetPort,LoadResource if control def proc needs loading,
calls def proc for each control,SetPort
GetPort,SetPort,LoadResource if control def proc needs loading,
calls def proc for each control,SetPort
GetPort,SetPort,LoadResource if control def proc needs loading,
calls def proc for each control,SetPort
HideCursor & ShowCursor if changed, none otherwise
none
none
GetPort,SetPort,LoadResource,TECalText(if text),SetPort
SetRectRgn
none
GetFilelnfo,BlockMove,SetFilelnfo
SetFilLock
LoadResource if locking,ReleaseResource if not
SetFilType
none
SysError if failed, BlockMove if needed, none otherwise
Munger,CalcMenuSize
CalcMenuSize
CalcMenuSize
CalcMenuSize
PtrToHand,GetPort,SetPort,LoadResource,TECalText(if text),SetPort,
TECalText,EraseRect, V alidRect,SetPort
BlockMove
none
OffsetRgn

Page12of 16 June 14 ,1985

SetPenState A899 QD
SetPort A873 QD
SetPortBits A875 QD
SetPt A880 QD
SetPtrSize A020 MM X

SetRect A8A7 QD
SetRectRgn A8DE QD X

SetResAttrs A9A7 RM
SetResFileAttrs A9F7 RM
SetResInfo A9A9 RM X

SetResLoad A99B RM
SetResPurge A993 RM
SetSoundVol SD
SetStdProcs A8EA QD
SetString A907 TU X

SetTagBuffer DD X

SetTime OS
SetTrapAddress A047 OS
SetupA5
SetVol FL
SetWindowPic A92E WM
SetWordBreak TE
SetWRefCon A918 WM
SetWTitle A91A WM X

SetZone A01B MM
SFGetFile PK X

SFPGetFile PK X

SFPPutFile PK X

SFPutFile PK X

ShieldCursor A855 TU
ShowControl A957 CM X

ShowCursor A853 QD
ShowHide A908 WM X

ShowPen A897 QD
ShowWindow A915 WM X

SizeControl A95C CM X

SizeResource A9A5 RM
SizeWindow A91D WM X

SlopeFromAngle A8BC TU
SoundDone SD
SpaceExtra A88E QD
StartSound SD X

Status DM X

StdArc A8BD QD X

StdBits A8EB QD X

StdComment A8F1 QD X

StdGetPic A8EE QD
StdLine A890 QD X

StdOval A8B6 QD X

StdPoly A8C5 QD X

StdPutPic A8F0 QD X

StdRect A8A0 QD X

StdRgn A8D1 QD X

StdRRect A8AF QD X

none
none
none
none
SysError if failed, BlockMove if needed, none otherwise
none
SetHandleSize
none
none
GetHandleSize,SetHandleSize,GetEOF.SetEOF,BlockMove
none
none
none
none
PtrToXHand
Control
Date2Secs,SetDateTime
none
none
SetVol
none
none
none
HandToHand,SetString,Stringwidth, window def proc (2), UnionRgn,
DiffRgn,PaintBehind,CalcVBehind,DisposeRgn,SetPort
none
Pack 3
Pack 3
Pack 3
Pack 3
HideCursor if cursor intersects shield rect, none otherwise
GetPort,SetPort,LoadResource,SetPort
none
SaveOld, if making visible it calls the window def proc, DrawNew,
SetPort
none
SelectWindow,ShowHide
HideControl,ShowControl
GetHandleSize,Read
Save01d,SetClip,ClipAbove,DrawNew,SetPort
none
none
none
NewHandle,GetHandleSize,SetHandleSize,BlockMove,Write
Status,BlockMove
If recording a picture or region it does StdPutPic
If recording a picture or region it does StdPutPic
StdPutPic,HLock,StdPutPic,HUnlock
none
If recording a picture, region, or polygon it does StdPutPic
If recording a picture or region it does StdPutPic
If recording a picture or region it does StdPutPic
SetHandleSize
If recording a picture or region it does StdPutPic
If recording a picture or region it does StdPutPic
If recording a picture or region it does StdPutPic

Trap List Page13of 16 June 14, 1985

StdText A882 QD x If recording a picture or region it does StdPutPic
StdTxMeas A8ED QD X FMSwapFont,FixRatio,FixMul
StillDown A973 EM X Button,EventAvail
StopAlert A986 DL X GetResource, FlushEvents,NewDialog,GetPort,SetPort,GetIcon,

PlotIcon,GetDItemJ>enSize,InsetRectrFrameRoundRect,InsetRect,
ModalDialog,SetPort£>isposeDialog

StopSound SD X KilHO,DisposeHandle
StringToNum PK X Pack 7
StringWidth A88C QD X TextWidth
StuffHex A866 QD none
SubPt A87F QD none
SysBeep A9C8 OS X FlashMenuB arJDelay JHashMenuB ar
SysError A9C9 OS X InitGraf,InitPort3raseRecuFrameRect,PenSize,MoveTo,LineTo,

LineTo,PenNormal,DrawText,PlotIcon
SystemClick A9B3 DS X LoadResource(wind defproc),GetPort,if no windows in list

SetPort,SetClip,ClipAbove,otherwise LoadResource and lock,
if in drag DragWindow,if goaway then TrackGoAway,CloseDeskAcc(if
actually closing), else it calls FrontWindow,SelectWindow(if not
in front),send die event, then call Control

SystemEdit A9C2 DS X GetPort,SetPort,Control,SetPort
SystemEvent A9B2 DS GetPort,SetPort
SystemMenu A9B5 DS X sends message to driver and calls Control
SystemTask A9B4 DS GetPortJ'rontWindow,SetPort
SystemZone MM none
TEActivate A9D8 TE X GetPort,SetPort^ewRgn,GetClip,ClipRect,SectRgn,HLock,

GetHandleSize,TextWidth,SetClip,DisposeRgn,SetPort
TECalText A9D0 TE X GetPort,SetPortJJewRgn,GetClip,ClipRect,SectRgn,HLock,

GetHandleSize,TextWidth,GetHandleSize,SetHandleSize,HLock,
GetHandleSize,SetClip,DisposeRgn,SetPort

TEClick A9D4 TE X GetPort,SetPorU^ewRgn,GetClip,ClipRect,SectRgn^HLock,
GetHandleSize,TickCount,

TECopy A9D5 TE X GetPort,SetPortJ^ewRgn,GetClip,ClipRect,SectRgn,HLock,
GetHandleSize J»trToXHand,SetClipJDisposeRgn,SetPort

TECut A9D6 TE X GetPort,SetPortrNewRgn,GetCUp,ClipRect,SectRgn,HLock,
GetHandleSize,TECopy,TEDelete,SetGip,DisposeRgn,SetPort

TEDeactivate A9D9 TE X GetPort,SetPortJiJewRgn,GetClip,ClipRect,SectRgnJHLock,
GetHandleSize,TextWidth,InvertRect,TextWidth,SetClip,
DisposeRgn,SetPort

TEDelete A9D7 TE X GetPort,SetPortJ'IewRgn,GetClip,ClipRect,SectRgn,HLock,
GetHandleSize JIUnlock^4unger,TextWidth,GetHandleSize,
EraseRect,TextWidthJ)rawText,TextWidth,InvertRect,
SetClipJDisposeRgn,SetPort

TEDispose A9CD TE X DisposeHandle
TEFromScrap X GetScrap
TEGetScrapLen TE none
TEGetText A9CB TE X GetPort,SetPort^ewRgn,GetClip,ClipRect,SectRgn,HLock,

GetHandleSize,SetClipJZ»isposeRgn,SetPort
TEIdle A9DA TE X GetPort,SetPorU^ewRgn,GetClip,ClipRect,SectRgn,HLock,

TEInit
TEInsert

TEKey

GetHandleSize,TickCount,TextWidth,InvertRect,SetClip,
DisposeRgn,SetPort

A9CC TE x NewHandle
A9DE TE x GetPort,SetPortJ>IewRgn,GetClip,ClipRect, Sec tRgn,HLock,

GetHandleSize,InsetRect,TextWidthrEraseRect,DrawTextJJinRect,
A9DC TE x GetPort,SetPortJJewRgn,GetClip,ClipRect,SectRgn,HLock,

GetHandleSize,ObscureCursor,TextWidthJIUnlockMunger,HLock,
GetHandleSize3raseRect,TextWidth3raseRectJDrawText,TextWidth,

Trap List Page 14 of 16 June 14 ,1985

TENew A9D2 TE X

TEPaste A9DB TE X

TEScrapHandle TE
TEScroll A9DD TE X

TESetJust A9DF TE X

TESetScrapLen TE
TESetSelect A9D1 TE X

TESetText A9CF TE X

TEToScrap X

TestControl A966 CM X

TEUpdale A9D3 TE X

TextBox A9CE TE X

TextFace A888 QD
TextFont A887 QD
TextMode A889 QD
TextSize A88A QD
TextWidth A886 QD X

TickCount A975 EM X

TopMem MM
TrackControl A968 CM X

TrackGoAway A91E WM X

UnionRect A8AB QD
UnionRgn A8E5 QD X

UniquelD A9C1 RM
UnloadScrap A9FA SM X

UnloadSeg A9F1 SL X

UnmountVol FL
UnpackBits A8D0 TU
UpdateResFile A999 RM
UprString A854 OS
UseResFile A998 RM
ValidRect A92A WM X

ValidRgn A929 WM X

VInstall A033 VR
VRemove A034 VR
WaitMouseUp A977 EM X

WriteParam A038 OS
WriteResource A9B0 RM
XOrRgn A8E7 QD X

ZeroS crap A9FC SM X

InverRect,SetClip,DisposeRgn,SetPort
NewHandle(2),GetFontMo
GetPort,SetPoi^NewRgn,GetClip,ClipRect,SectRgn,HLock,
GetHandleSize,TextW idthvHunlock,Munger,HLock)Tex tWi dth,
GetHandleSize,EraseRectJ>rawText,TextWidth,InvertRect,
SetClipJDisposeRgn, SetPort
none
GetPort,SetPort^ewRgn,GetClip,ClipRect,SectRgn,HLock,
GetHandleSize,OffsetRect^JewRgn.ScrollRect.SetClip.TextWidth,
EraseRectJ>rawText,DisposeRgn,SetClip,DisposeRgn,SetPort
GetPort,SetPortrNewRgn,GetClip,ClipRect,SectRgn,HLock,
GetHandleSize,SetClip,DisposeRgn,SetPort
none
GetPort,SetPortyNewRgn,GetClip,EraseRect,SectRgn,HLock,
GetHandleSize JEraseRect,DrawText,PtInRect
GetPort,SetPortJJewRgn,GetClip,ClipRect,SectRgn,HLock,
GetHandleSize(PtrToXHand,TECalText,SetClip,DisposeRgn, SetPort
HLock,PutScrap,HUnlock
GetPort,SetPort,LoadResource,SetPort
GetPort,SetPort^JewRgn,GetClip,ClipRect,SectRgn,HLock,
GetHandleSize,TextWidth,InvertRect,SetClip,DisposeRgn,SetPort
EraseRect,TENew,TEDispose,then TESetText,TEUpdate if there is
something in it
none
none
none
none
StdTxMeas
none, Control if journaling
none
GetPort,SetPortJHiliteControl,GetMouse,WaitMouseUp,SetPort
SetClip,ClipAbove,LoadResouice,GetMouse,WaitMouse,SetPort
none
EqualRgn, CopyRgn, SetEmptyRgn ,RectRgn,NewHandle, SetHandleSize,
DisposeHandle
Random
Open,Create,WriteJDisposeHandle
GetResource
UnMountVol
none
SetEOF,Write,BlockMove,Write,BlockMove,SetEOF
none
none
NewRgn,RectRgn,DisposeRgn
OffsetRgn,UnionRgnJDiffRgn,OffsetRgn
Enqueue
Dequeue
StillDown,GetNextEvent
none
GetHandleSize,Write,BlockMove,Write,BlockMove
EqualRgn, CopyRgn, SetEmptyRgn,RectRgn,NewHandle, SetHandleSize,
DisposeHandle
SetEOF, SetHandleSize .NewHandle

Trap List Page15of 16 June 14 ,1985

The following is a complete list of the traps called by DrawPicture.

DrawPicture:

Verbs: ResetClipRgn

ForeColor
BackColor
BkPat
TxFont
TxFace
TxMode
TxSize
SpaceExtra
PnSize
TxRatio
Version
PnMode
PnPat
FillPat
OvalSize

Nouns: Resetting Origin

Rectangles
Round Rect
Oval
Arc
Polygon

Region

PicComment

Bit Operation

Text
Line

NewRgn (2 for clip rgns); StdGetPic (to get the type of item in the picture - noun
or verb); Depending on the type returned it does the following:

StdGetPic(NewHandle,HLock,StdGetPic,HUnlock)CopyRgn,
MapRgn,SectRgnJDisposeHandle
StdGetPic
StdGetPic
StdGetPic
StdGetPic
StdGetPic
StdGetPic
StdGetPic
StdGetPic
StdGetPic,ScalePt
StdGetPic(2),ScalePt
StdGetPic
StdGetPic
StdGetPic
StdGetPic
StdGetPic,ScalePt

StdGetPic,NewRgn,CopyRgn,MapRgn,Sec tRgn,
DisposeHandle
StdGetPic,MapRect,StdRect
StdGetPic,MapRect,StdRRect
StdGetPic,MapRect,StdOval
StdGetPic,MapRect,StdGetPic,StdArc
StdGetPic,NewHandle,HLock,StdGetPic>HUnlock,MapPoly,
StdPoly .DisposeHandle
StdGetPic,NewHandle,HLock,StdGetPic,HUnlock,MapRgn,
StdRgnJDisposeHandle
StdGetPic,NewHandle,HLock,StdGetPic,HUnlock,
StdComment
StdGetPic,MapRect,StdGetPic, if there's a mask then
StdGetPic,NewHandle,HLock,StdGetPic, if packed then
UnpackBits, then StdBits JIUnlock, DisposeHandle

StdGetPic (if not starting at current pnloc),MapPt,StdGetPic
(to get endpt),MapPt,StdLine

After drawing each item in the picture it does 2 DisposeRgn's to get rid of the cliprgns

Trap List Page16of 16 June 14 ,1985

A g E t i l a

B a a £ p 9 a

© s p g j o g ™

P.O. Box 520
Bethpage, NY 11714

H AUG i s a trademark of t h e Hicronetworked Computer U s e r s . Inc .

W®H(£(DM® TOD m a u k q ™ ^

In conjunction with Apple Computer, MAUG™ (which is the Micronetworked Apple Users
Group) is helping to provide developers with updates to Macintosh development software. These
updates will be delivered electronically through telecommunications.

To Start
If you are a developer you will want to avail yourself of a modem (to hook your Macintosh to the
telephone line) and a terminal program (the program FreeTerm and its documentation is included
with this Supplement). You will also want a Compuserve Information Services (CIS) account
number and password. This last is packaged free with most major brands of modems, including
Apple's, or is available in an inexpensive package called a "Compuserve Starter Kit" from any
computer store. Apple Certified Developers who did not receive a Compuserve subscription with

. . TM their modems can obtain a free Compuserve User ID and password by writing to MAUG at the
address above.

Both starter kits and packaged accounts will have a list of phone numbers that may be called to
connect with the CIS network. Find the phone nunber which is nearest to your location. In most
cases this will be just a local phone call.

Connect your modem to your Macintosh as the modem's instructions detail. Be certain that you use
a modem cable and not an Imagewriter cable. This is the most common error when setting up a new
Macintosh-and-modem system. Read over the FreeTerm documentation which explains how to use
this simple but powerful terminal program and how to dial the number via your modem.

Welcome to MAUG™ Page 1

Entering Compuserve
Once you have dialed the number and connected to the network you will want to sign in or "log
on". The documentation which contained the phone number will detail exactly which log-on
procedure to use with the number you are calling. But all procedures will end with asking for the
two most important pieces of information — your User ID and your password.

Your User ID is your account number (often in the form 70000,000) and that should be entered
when the remote Compuserve computer issues its "User ID:" prompt. Following that the remote
computer will output its "Password:" prompt. Keep in mind that entering your User ID is similar to
printing your name on a check, but giving the password is like signing the check. Never give
anyone your password!

The Road To MAUG™
Once you have logged onto Compuserve you will want to make your way to MAUG™ and to the
Macintosh Developers' Forum.

From the main menu take the "Personal Computing Services" choice and then follow the "groups"
choice to MAUG™. Or, you can enter the direct command GO PCS-7 (or GO MACDEV) at any
of Compuserve's exclamation point (!) prompts. This will take you to the Macintosh Developers'
Forum. MAUG™ would also like to invite to visit the Macintosh Users' Forum on PCS-51 and
the Apple II and in Users' Forum on PCS-14.

Using The Forum
A Forum is a complicated but easily-learned area to use, and the sysops (system operators) are
always standing by to help out and explain. There are also numerous online help facilities as well as
help available by voice-phone, regular mail and electronic mail. Here's how to quickly "come up to
speed."

Read over the Membership Information bulletin by choosing "bulletins" from the Forum's main
menu. The Membership Information bulletin will detail how to obtain and read the help files which
pertain to reading and leaving messages, to uploading (transmitting) files and programs and, of
course, to downloading (receiving) files and programs.

If you need additional help just leave a message addressed to "Sysop." Either Dennis Brothers (the
head sysop of the Developers' Forum) or one of the other sysop staff will answer your message.
Or, feel free to address a message to "All" and many other developer-members will help out.

Welcome to MAUG™ Page 2

The Easyplex™ electronic mail system may also be used if you wish to leave a message privately.
Address such correspondence to MAUG™'s Chief Sysop Neil Shapiro at 76703,401.

MAUG™ also may be reached via the U.S. Mail at the above address. And, you can call the
MAUG™ Help Line (voice) at (516)/735-6960 any time from 7pm to 10pm Eastern time.

Since 1978 MAUG™ has been introducing Apple users to telecommunications. We are very much
looking forward to helping Apple keep you, the Macintosh Development Team, informed and as
up-to-date as possible. See you on the Forum!

Neil Shapiro
MAUG Chief Sysop

Welcome to MAUG™ Page 3

o

C)

e

FreeTerm

What FreeTerm Does

FreeTerm is a simple 24 line by 80 character TTY (dumb) terminal emulator. It supports sending
and receiving ASCII files, copy and paste, and all ASCII characters from the keyboard.

FreeTerm can also send and receive files using the Xmodem error- correcting protocol (sometimes
known as the Christensen or Modem7 protocol) which is compatible with most telecommuncations
systems. In addition, Free Term allows you to send and receive Macintosh applications and
documents using the MacBinary format

FreeTerm will work with all types of modems that support asynchronous communications at 300,
1200, or 2400 baud. If you have a null modem cable, it may also be used to communicate between
two computers.

FreeTerm 1.6

FreeTerm version 1.6 is included in the Tools folder of the 5/85 MacStuff 1 disk. It works
correctly on a 128K or 512K Macintosh but does not always work on a Macintosh XL running the
final release of MacWorksXL included in the May Supplement (it does work with the 12/84
pre-release of MacWorks). A later version of FreeTerm which works correctly on all versions of
MacWorks will be available via MAUG on Compuserve (described in separarate document).

Starting FreeTerm

The FreeTerm application on the desktop shows an icon with a phone handset sending and
receiving data. This application may be opened throught the Finder's File menu or it may be
double-clicked.

Using FreeTerm

When you first open an unused copy of FreeTerm it will display a dialog asking which port your
modem is connected to; you may choose the modem port (port A) or the printer port (port B). If
FreeTerm can identify that a port is in use (e.g. AppleTalk is connected) die name of that port will
be dimmed and may not be selected (if both port names are dimmed the only option will be Exit
Program). After completing the initial dialog FreeTerm will open the selected port for
communication; because FreeTerm can not always tell if a port is in use, the user must be careful
not to select a port that is being used by another device (e.g. a hard disk).

After selecting a port, the user may choose Make Default, No Default, or Exit Program. Make
Default will effect future invocations of FreeTerm, causing the initial dialog to be skipped and the
selected port to be opened automatically. Both Make Default and No Default will cause the
terminal window to be displayed. Exit Program exits FreeTerm without opening any port.

While the FreeTerm terminal window is active, any key typed will be sent to the modem. If you
open or select a desk accessory window, typing on the keyboard will not affect the terminal.
However, any text received by from the modem port will be displayed in the window until it is
closed.

The FreeTerm window may be resized by selecting the size box in the window. The window
cannot be sized smaller than 4 lines by 15 characters, or larger than 24 by 80. The terminal always
remembers the last 24 lines by 80 characters. You may also double-click the tide bar to return the
window to it's full 24 by 80 size.
FreeTerm June 17, 1985 Page 1

ASCH Characters

FreeTerm allows you to transmit all 128 ASCII characters from the Macintosh keyboard. Typing
the 36 (command) key plus an alpha key (A-Z) sends a control character to the host. The following
keys send special characters to the host:

Key Character ASCECODE

Enter Hardware Break None
38 2 NuU 0
(» A to Z) Other Control Characters 1-26
36 [Escape 27
36 ' Escape 27
36 \ FS 28
36 0 FS 28
96] GS 29
36 9 GS 29
36 6 RS 30
36 - US 31
(Space to ~) Normal Characters 32-126
36 Backspace Delete 127

Apple Menu

About Free Term — Selecting11 About FreeTerm" opens a window to display version information,
the copyright notice, and other information regarding FreeTerm. To continue, click inside the
window.

Desk Accessories — All desk accessories are available to you while you are using FreeTerm. Until
it is closed, a desk accessory will remain on the desktop - even if it is hidden behind the terminal
window. You can close each desk accessory individually by using it's close box, or if it is a menu
desk accessory, selecting Quit from the desk accessory's menu.

File Menu

ASCn Capture — The terminal session or a portion of it may be recorded to a MacWrite text-only
file. When you select ASCII Capture you will be asked for a file to download the terminal session
to. The default name for the session is "Log File". ASCII Capture can be stopped by selecting
Stop Capture on the FreeTerm menu.

ASCn Send — Asks for a text-only file to be sent to the host. The upload supports x-on/x-off
protocol. Sending may be aborted by selecting Stop Sending option from the FreeTerm menu or
hitting any key on the keyboard.

Xmodem Receive — Selecting this option will start the Xmodem receive file process. You will be
asked for a file name to download to. The default name is "Rev File".

Once the Xmodem protocol starts, FreeTerm will display a dialogue showing the current volume
and file name being transferred, the number of blocks received (1 block = 128 bytes), and the error
status.

FreeTerm June 17, 1985 Page 2

If the file you are downloading is a MacBinary file, FreeTerm will ignore the file name you
selected. Instead, it will download to the name found in the first block of MacBinary file.

While FreeTerm is receiving a file, you will not be able to use a desk accessory until the file
transfer is finished, or until you have cancelled the transfer.

You may stop the Xmodem Receive process at any time by typing any key.

Xmodem Send — Selecting this option will start the Xmodem send file process. You will be asked
to select a file to upload. If the file is an Macintosh application or document, FreeTerm will upload
the document as a MacBinary file.

However, if the file you are uploading is a text-only file, FreeTerm will give you the option of
sending the document as a Text File. If you choose to send it as Text, FreeTerm will convert the
file into a standard ASCII file readable by most computer systems.

While FreeTerm is sending a file, you will not be able to use any other application or desk
accessory until the file transfer is finished, or until you have cancelled the transfer.

You may stop the send file process at any time by typing any key.

Settings — This menu option allows you to set the configuration of FreeTerm for the system that
you are connecting to. You may set the speed, data size, parity, duplex, and the port for the
terminal. In addition, you may select LF after CR ,Vax Mode, and the default configuration.

• Speed can be set for 300,1200, and 2400 baud (bits per second).

• The number of data bits (word size) can be 8 (for most BBSs) or 7 (for most
mainframes).

• Parity can be none (for most BBSs), even, or odd (there is no support for mark
and space parity).

• The duplex mode can be set to be full (for most systems) or half.

• You may choose to attach your modem to your Modem or Printer port. If
FreeTerm can identify that a port is in use (e.g. AppleTalk is connected) the name
of that port will be dimmed and may not be selected; because FreeTerm can not
always tell if a port is in use, the user must be careful not to select a port that is
being used by another device (e.g. a hard disk).

• "Prompt for port at startup" will effect future invocations of FreeTerm.
Choosing it and subsequently pressing Make Default will cause the initial port
selection dialog to be displayed at startup (like the first time FreeTerm was
opened); otherwise the initial dialog will be skipped and the selected port will be
opened automatically.

• "LF after CR" is for use with systems that do not send, or do not reliably send, a
line feed after a carriage return (symptom: all text is received on a single line).

• "Vax Mode" makes the backspace key send the ASCII delete character, and 86
backspace sends a normal backspace. In addition, if FreeTerm receives a delete
character from the host, it will treat it as an backspace.

• Make Default will make your current configuration the default for the next time
you run FreeTerm. Then it will return to the FreeTerm terminal window.

• OK will return to the FreeTerm terminal window without changing the default
configuration for the next time you run FreeTerm.

Free Term June 17, 1985 Page 3

Clear Screen — The Clear Screen menu option will erase the contents of the terminal window, but
will not send any characters to the modem.

Quit — The Quit menu option exits to the Macintosh Finder. If you are capturing your session,
FreeTerm will automatically save your file before returning to the Finder.

In addition, FreeTerm stores your current settings. Provided you do not reboot your Macintosh,
when you re-open FreeTerm, you will be set up using the same configuration that you last used.
After you reboot it will return to the settings last saved using Make Default.

Edit Menu

Undo - This menu option is for use only by desk accessories.

Cut - This menu option is for use only by desk accessories.

Copy - FreeTerm allows you to copy any portion of the terminal window to the clipboard
(replacing anything that is there) without removing it from window.

Paste - The Paste command is equivalent to uploading the Clipboard using the ASCII Send menu
option. The contents of the Clipboard (whatever was last cut or copied) will be uploaded.

Xmodem Error Messages

FreeTerm is able to recover from a considerable number of modem transmission errors when
uploading or downloading files using the the Xmodem protocol. However, under some conditions
it will not be able to recover and will abort

If an error occurs during the file transfer, FreeTerm will display the error it encountered in the
status dialogue. If more than 10 errors occur in a row, FreeTerm will abort the file transfer, and
display the last type of error.

Some common Xmodem error messages:

Timeout Error — If FreeTerm does not receive acknowledging blocks or characters from the host
within 60 seconds, you will have a timeout error.

Checksum Error — FreeTerm received a block with bad characters in it.

Duplicate Block — FreeTerm received two blocks with the same block number.

Synchronization Error — FreeTerm received a valid block number that it did not expect.

Block Number Error — FreeTerm received a bad block number.

Block Not Acknowledged — FreeTerm sent a block that was not received properly.

EOF Not Acknowleged — FreeTerm sent an end-of-file block that was not received properly.

User Abort — You typed a key to abort the file transfer.

File Corrupted - The wrong number of blocks was received in a MacBinary transfer.

Free Term June 17, 1985 Page 4

Using FreeTerm With Other Communication Software

FreeTerm will transfer text files with any other terminal program that supports ASCII or Xmodem
protocols. Macintosh files can be transferee! with any other program that uses the MacBinary
format. In addition, FreeTerm may be used in conjunction with desk accessories that use the the
Phoenix Block (such as the Q&D Dialer and Kermit Protocol desk accessories).

MacBinary Format

The MacBinary format is based on the data transfer format implemented in Apple's MacTerminal
program, by Mike Boich and Martin Haeberli. Documentation of the format and its initial proposal
as a standard was done by Dennis Brothers. An informal working group, consisting of Macintosh
terminal program developers and others with interests or expertise in the field of computer
communications, was formed during April, 1985 to discuss and refine this proposal. The group
met in the MAUG™ Special Interest Group on the CompuServe Information Service. The present
form of the MacBinary format standard represents a consensus of this group as a whole, but may
not reflect the opinion of a given individual member of the group.

Participants in the group included:
Christopher Allen
William Bond
Steve Brecher
Dennis Brothers
Ward Christensen
Dan Cochran
Mike Cohen
Bill Cook

EdEdell
Duane Harris
Yves Lempereur
Neil Shapiro
Dan Smith
Bill Steinberg
Scott Watson

The most current version of the MacBinary format proposal is available in the MAUG™
Telecommunications database, under the name MACBIN.STD.

Please address comments or questions on the MacBinary format to:
Dennis F. Brothers
197 Old Connecticut Path
Wayland, MA 01778
CompuServe: 70065,172
Delphi: DBROTHERS
MCI Mail: DBROTHERS

MAUG™

MAUG™, the Micronetworked Apple User's Group, is an on-line group of over
20,000 owners and users of Apple computers. Membership is free, and
participation is through telecommunication on the Compuserve Information Services Network.
MAUG™ makes available the latest in public-domain Apple software, hints, techniques, help, and
camaraderie. In addition, MAUG™ is a prime source of information and updates from Apple for
Macintosh software developers.

For information on joining MAUG™, write or call:
P.O. Box 520
Bethpage, NY 11714
516-735-6960 (voice, 6pm to 10pm Eastern)

(MAUG is a trademark of Micronetworked Computer Users Inc.)

- Neil Shapiro, MAUG™ Chief Sysop

FreeTerm June 17, 1985 Page 5

Credits

FreeTerm was written by William Bond, author of many programs for Dreams of the Phoenix, Inc.
This documentation was written by Christopher Allen, President of Dreams of the Phoenix, Inc.

Copies of FreeTerm may be freely distributed (but not sold) as long as the credit notice from the
"About Free Term..." menu remains intact

For more information concerning submitting freelance programs to DOTP, or the Phoenix Block,
send a self-addressed, stamped envelope to Dreams of the Phoenix, Inc., P.O. Box 10273,
Jacksonville, Florida 32247, or call (904) 396-6952.

FreeTerm is functionally equivalent to desk accessories from Quick & Dirty Utilities Volume One
published by Dreams of the Phoenix, Inc. DOTP also sells Mouse Exchange BBS and Mouse
Exchange Terminal — both support the MacBinary format

FreeTerm June 17, 1985 Page 6

ResEdit:
A Macintosh Resource Editor

About ResEdit

ResEdit is a graphically based tool for use by developers in creating the various resources
needed to produce a Macintosh application. It allows you to create, edit, copy, and paste
resources, and includes individual resource editors for specific types of resources.

ResEdit may be used to change existing resource files; for example, you can translate the
message in an alert box into another language without recompiling the program. Or it can
be used to do a quick prototype of user interfaces and to try out many different formats and
presentations of resources to find the one that's best suited for a given application.

ResEdit is still in development. When completed, it will allow you to create and edit all
resource types except CODE, and to copy and paste all resource types (including CODE).
It will also include the option of producing an output file from which the Resource
Compiler RMaker can create a resource file.

A key feature of ResEdit is its extensibility. You can create new editors to manipulate new
resource types and then add them to ResEdit The simplest type of editor, a template
editor, can even be created with ResEdit itself.

Working with Files in ResEdit

To begin using ResEdit select its icon and choose Open from the File menu, or double-
click the icon. ResEdit displays a window for each disk volume currently mounted. Each
window shows a complete list of files on that volume.

To examine the resources for a given file, select it from the list by clicking its name or by
typing the first character of the name (in which case it will be scrolled into view if it's not
visible). Then open the file by choosing Open from the File menu. You can also double-
click the file name to open the file.

If you choose Close or click the close box for a disk window, the volume will be
unmounted. If it's a 3 1/2-inch disk, the disk will be ejected. ResEdit will recognize a new
disk when it's inserted and also handles more than one drive. Be careful not to click the
close box for a disk window that represents a hard disk, since it will unmount the hard
disk.

The New command lets you create a new file.

Note: You can edit any file shown in the window, including the System file
and ResEdit itself. However, it's dangerous to edit a file that's currently
running. Edit a copy of the file instead (for example, the System file on a
non-boot volume). Note that you cannot use ResEdit to copy or delete files.

ResEdit Page 1 June 10,1985

Working within a File

Opening a file creates a window displaying a list of all the resource types in that file. When
a file window is the active window, a new resource may be created, existing resources may
be copied or deleted, and resources may be pasted in from other files. The File menu
commands have the following effects:

• New creates a new resource in the open file.

• Open opens a window displaying all resources of the resource type selected;
select the resource type by clicking it or by typing its first character. You can also
double-click the resource type to open. The resources are displayed by a
"resource selector". There's a general resource selector that displays the
resources by type, name, and ID number, and for some resource types there's a
special resource selector for that type (for example, the ICON resource selector
displays the icons graphically). If you hold down the Option key while opening,
the resource window will open with the general resource selector; do this if, for
example, you want to see icons listed by type, name, and ID.

• Close closes the file window and asks if you want to save the changes you
made. Never reboot before closing! Rebooting before closing all file
windows can leave the resource files in an inconsistent state if you have made any
changes.

• Revert changes the resource file back to the state it was in when it was last saved
to disk.

• Quit returns to the Finder.

When a file window is the active window, the Edit menu commands have the following
effects:

• Cut removes all resources of the resource types selected, placing them in the
ResEdit scrap.

• Copy copies all resources of the resource types selected into the ResEdit scrap.

• Paste copies the resources from the ResEdit scrap into the file window's
resource type list

• Clear removes all resources of the resource type selected, without placing them
in the ResEdit scrap.

The Duplicate command is currently dimmed; in the final release of ResEdit, this
command will create duplicates of all resources of the resource types selected, and assign a
unique resource ID number to each new resource.

Working within a Resource Type

Opening a resource type creates a window with a list of all the specific resources of that
type in the file. This list can take many forms, depending on the underlying resource

ResEdit Page 2 June 10,1985

selector that's invoked. If the Option key is held down during the open, the general
resource selector is invoked.

When a resource type window is the active window, the File menu commands have the
following effects:

• New creates a new resource and opens its editor. A selection window is
presented to allow you to select the resource type to create.

• Open opens the appropriate editor for the resource you selected.

• Close closes the resource type window.

• Revert changes the entire file back to what it was before opening the resource
type window.

• Quit returns to the Finder.

The Edit menu commands have the following effects:

• Undo may or may not be selectable, depending on the specific editor in use.

• Cut removes the resources that are selected, placing them in the ResEdit scrap.

• Copy copies all the resources that are selected into the ResEdit scrap.

• Paste copies the resources from ResEdit scrap into the resource type window's
resource list

• Clear removes the resources that are selected, without placing them in the
ResEdit scrap.

• Duplicate creates a duplicate of the resources that are selected and assigns a
unique resource ID number to each new resource.

Editing Individual Resources

To open an editor for a particular resource, either double-click the resource or select it and
choose Open from the File menu. All the editors use File and Edit menus similar to those
described above, but operating on individual resources or individual elements of a
resource. If you hold down the Option key when opening a resource, the general Data
editor is invoked. The Data editor allows you to edit the resource as hexadecimal data. If
both the Shift and Option keys are held down during opening, ResEdit shows you a list of
editors available for the resource. Some editors, such as the DITL editor, allow you to
open additional editors for the elements within the resource.

One or more auxiliary menus may appear, depending on the type of resource being edited.
The menus for some of the editors are discussed below. The use of the remaining editors
should be apparent from their presentation when running.

ResEdit Page 3 June 10,1985

Note: ResEdit will not edit resources larger than 16K bytes in length;
however, resources larger than this may be moved by using the Cut, Copy,
Paste, and Clear commands as described above.

Editing CURS Resources

For CURS resources the editor displays three images of the cursor. All three images may
be manipulated with the mouse.

The left image shows how the cursor will appear. The middle image is the mask for the
cursor, which affects how the cursor appears on various backgrounds. The right image
shows a gray picture of the cursor with a single point in black. This point is the hot spot
for the cursor.

The Cursor menu contains the following commands:

• Try Cursor allows you to try out the cursor by having it become the cursor in
use.

• Restore Arrow makes the cursor the standard arrow cursor.

• Data->Mask copies the cursor data to the mask image.

Editing DITL Resources

For DITL resources, the editor displays an image of the item list as your program would
display it in a dialog or alert box. When an item is selected, a size box appears in the
bottom right corner of its enclosing rectangle, allowing you to change the size of the
rectangle. The item may be moved by dragging it with the mouse. When you open an item
from the File menu or by double-clicking, the editor associated with the item is invoked; for
an ICON item, for example, the icon editor is invoked. If you hold down the Shift and
Option keys while opening, the DITM editor is invoked instead; this is a special-purpose
editor for editing items in an item list. If you hold down just the Option key while opening,
the general Data editor is invoked.

The DITL menu contains the following commands:

• Bring to Front allows you to change the order of items in the item list. Bring
to Front causes the selected item to become the last (highest numbered) item in the
list The actual number of the item is shown by the DITM editor.

• Send to Back is similar to Bring to Front, except that it makes the selected item
the first item in the list—that is, item #1.

• Grid aligns the item on an invisible 8 pixel by 8 pixel grid. If you change the
item location while Grid is on, the location will be adjusted such that the top left
corner lies on the nearest grid point above and to the left of that corner. If you
change the size, it will be made a multiple of 8 pixels in both dimensions.

ResEdit Page 4 June 10,1985

• Use RSRC rect restores the enclosing rectangle to the rectangle size stored in
the underlying resource. Note that this works on ICON, PICT, and CNTL items
only; the other items have no underlying resources.

• Resize window adjusts the window size so that all items in the item list are
visible in the window.

Editing Font Resources

For FONT resources, the editor window is divided into three panes: the text pane, the
character selection pane, and the character editing pane.

The text pane appears in the upper right of the window. It displays sample text in the font
being edited. llie text may be edited using normal Macintosh editing techniques (in case
you want a sample of other characters in the font).

The character selection pane appears below the text pane. You can select a character you
want to edit by clicking on it in the row of three characters shown. The character you select
is boxed in the center of the row with its ASCII value shown below it. If the character you
want is not displayed, click on the right character in the row to move upward through the
ASCII range, or click on the left character to move downward.

You can also select a character for editing by typing it When the insertion point is not in
the text pane, any character you type (using the Shift and Option keys if necessary) is
selected.

The character editing pane on the left side of the window contains an enlargement of the
selected character. The enlargement is similar to FatBits in MacPaint, and is edited by
clicking bits on and off. The black triangles at the bottom of the character editing pane set
the left and right bounds—that is, the character width—of the character in the font

Any changes you make in the character editing pane are reflected in the text pane and the
character selection pane. Remember that you cannot save the changes until you quit.

The Height menu contains the following commands:

• More Ascent adds one bit to the length of the font ascent each time it's chosen.

• More Descent adds one bit to the length of the font descent each time it's
chosen.

• Less Ascent subtracts one bit from the length of the font ascent each time it's
chosen.

• Less Descent subtracts one bit from the length of the font descent each time it's
chosen.

You can also change the name of a font The name of the font is stored as the name of the
resource of that font family with size 0. This resource does not show up in the normal
display of all fonts in a file (in the FONT window). To get it to be displayed, hold down
the Option key when you open FONT from the file window. This will bring up the generic
list of fonts. Select the font with the name you wish to change and choose Get Info.

ResEdit Page 5 June 10,1985

Changing the name for this one resource will change the name for all the fonts in this
family.

Editing ICN# Resources

For ICN# resources, the editor displays two panes in the window. The lower pane shows,
from left to right, what the icon will look like unselected and selected on a white
background, and unselected and selected on a gray background. The upper pane is used to
edit the icon. It contains an enlargement of the icon on the left and an enlargement of the
icon's mask on the right.

The Icn# menu contains the following command:

• Data->Mask copies the icon image to the mask editing area.

To install a new icon for your application when you already have an old one in the Finder's
desktop: Open the file called DeskTop. Open type BNDL and find the bundle that is your
application's. (This is the one that has your owner name in it.) Look through the bundle
and mark down the type and resource ID of all resources bundled together by the bundle
(i.e., the ICN#'s and FREF's). Go back to the DeskTop window and remove these
resources along with your BNDL and signature resource (the resource with type name =
your creator type). Now close the DeskTop window, save changes, and quit ResEdit.
Your new icon will be installed.

Extensibility

Since it can't anticipate the format of all the different types of resources that application
developers will use, ResEdit has been designed so it can be taught to recognize and parse
new resource types. There are two ways that ResEdit can be extended to know about new
types. One way involves programming and the other does not.

You can extend ResEdit by programming your own special-purpose resource selector
and/or editor. The selector is the code that displays all the resources of one type in the
resource type window. The editor is the code that displays and allows you to edit a
particular resource. These pieces of code are separate from the main code of ResEdit
Information on writing custom selectors and editors will be provided in the future.

Another way to extend ResEdit is by creating a template for your resource type. The
generic way of editing a resource is to fill in the fields of a dialog box. This is the way you
currently edit MENUs, DLOGs, DITLs, STR#s, STR s, INTLs, FREFs, BNDLs, etc.
using ResEdit. The layout of these dialog boxes is determined from a template in ResEdit's
resource file. You can find these templates by opening the ResEdit file and then opening
the type window for TMPLs. The template specifies the format of the resource and also
specifies what labels should be put beside the editText items in the dialog box that's used
for editing the resource. For example, if you open the template for WIND resources (this
is the TMPL with name "WIND"), you see that they consist of the following, in the order
listed:

• 4 words (a RECT) specifying the boundary of the window

ResEdit Page 6 June 10,1985

• a word that is the procID for the window (DWRD tells ResEdit to display the
word in decimal as opposed to hex)

• a Boolean inidicating whether or not the window is visible (BOOL is 2 bytes in
the resource but is displayed as a radio button in the dialog window used for
editing)

• another Boolean indicating whether or not the window has a close box

• a long that is the refCon for the window (DLNG indicates that it should be
displayed in the editor as a decimal number)

• a Pascal string; the tide of the window (PSTR)

You can look through the other templates and compare them with the structure of those
resources to get a feeling for how you might define your own resource template. The
template mechanism is flexible enough to describe a repeating sequence of items within a
resource as in STR#'s, DITLs, and MENUs. You can also have repeating sequences
within repeating sequences as in BNDLs. The different ways of terminating a repeating
sequence, and the codes to put in the template to distinguish them, are as follows:

• LSTZ-LSTE - terminated by a 0 byte (as in MENUs)

• ZCNT/LSTC-LSTE - terminated by a zero-based count that starts the sequence
(as in DITLs)

• OCNT/LSTC-LSTE - terminated by a one-based count that starts the sequence (as
in STR#s)

• LSTB-LSTE - ends at the end of the resource (no example exists in the given
templates)

The types you have to choose from for your editable data fields are:

• DBYT, DWRD, DLNG - decimal byte, word, long

• HBYT, HWRD, HLNG - hex byte, word, long

• HEXD - hex dump of remaining bytes in resource

• PSTR - a Pascal string (length byte followed by the characters)

• LSTR - long string (length long followed by the characters)

• ESTR, OSTR - Pascal string padded to even or odd length (needed for DHLs)

• CSTR - a C string

• BOOL-Boolean

• BBIT - binary bit

• TNAM - type name (like OSType and ResType, i.e., 4 characters)

ResEdit Page 7 June 10,1985

• CHAR - a single character

ResEdit will do the appropriate type checking for you when you put the editing dialog
window away.

To create your own template:

1. Open the ResEdit file window.

2. Open the TMPL type window.

3. Choose New from the File menu.

4. Select the ***** list separator.

5. Choose New from the File menu. You may now begin entering the label,type
pairs that define the template. Before closing the template editing window,
choose Get Info from the File menu and set the name of the template to the name
of your resource type.

6. Close the ResEdit file window and save changes.

The next time you try to edit or create a resource of this new type, you should get the dialog
box in the format you have specified.

ResEdit Page 8 June 10,1985

AppleTalk Information

Included in this Software Supplement is the latest release of the AppleTalk drivers and utilities.
These files are all the software you need to begin developing Macintosh programs which use
AppleTalk. However, Apple is planning to make available a newer version of the
AppleTalk drivers (as included in the AppleTalk Install utility) that fix certain known
bugs. Make sure you have are using the new drivers in any product that you ship. This updated
Install utility will be available through MAUG™ (on Compuserve) and will be sent to developers
who have ordered Inside AppleTalk or have licensed the AppleTalk drivers.

The AppleTalk Install utility lets you install the AppleTalk drivers in the System file of any
diskette. The current version is experimental software; make a backup copy of the System before
running Install on i t There is a known bug in that it does not work properly with systems
connected to hard disks; copy your hard disk System file to a diskette, disconnect the hard disk,
run Install from diskette, then copy the updatedSystem file back (note that if you have a hard disk
startup diskette, you may have to install the drivers there, too). Install requires a Macintosh with at
least 512K of RAM.

Peek is a utility to allow you to examine and record traffic over the network. It works only on
128K and 512K Macintoshes. Poke is a tool which lets you edit and send arbitrary packets on the
network. It works on all Macintoshes. Poke Packets is a file of sample packets. Documentation
for Peek and Poke is included in this package.

Last February, we included a draft copy of the AppleTalk Manager Programmer's Guide in the
Software Supplement (this guide is also included in the promotional ("phone book") edition of
Inside Macintosh, and in the current version of Inside AppleTalk). It contains information on
calling the drivers from Pascal and assembly language. Some of the example code fragments
included in that manual contain errors; updated fragments are provided on the Examples 2 disk

Routines are included on the Workshop Supplement 1 disk to make it easier to use AppleTalk from
Lisa Pascal; these routines are slightly different than the old Pascal interfaces in that they exist
within resources in the system file. A document is included which explains the changes to this
version of the interfaces.

If you're developing in assembly language or using a high-level language, you can write programs
which use AppleTalk by calling the AppleTalk drivers from assembly language. Lisa Workshop
users will find all the necessary equates and constants in TLAsm/ATalkEqu.Text on the Workshop
Supplement 2 disk. Macintosh 68000 Development System users will find the equates and
constants defined in the file ATalkEqu.Txt on the MacStuff 4 disk.

If you're currently developing AppleTalk-based software, we'd like you to take a moment to
answer and return the enclosed questionnaire. It will help us to create better tools and examples for
your development of AppleTalk software.

If you're serious about developing for AppleTalk you might want to order Inside AppleTalk. This
binder discusses the lowest-level details of AppleTalk, and is vital if you will be implementing the
AppleTalk protocols on standalone hardware (i.e., a file server, etc.). An update to this book is in
the works; you will receive it automatically if you order (or already have ordered) the existing
version. Inside AppleTalk can be obtained by sending $75 (California residents, please add sales
tax) to

Apple Computer Mailing Facility
467 Saratoga Avenue, Suite 621
San Jose, CA 95129

Note that you must license the AppleTalk drivers from Apple (in addition to the basic System
Folder) before shipping them as part of a product. AppleTalk Licenses are available for $50 a year.
Contact Apple's Software Licensing Department at (408) 973-4667 for more information.

AppleTalk Information June 13, 1985 Page 1

AppIeTalk Pascal Interface, Version 3.2
Implementation Notes

ABPasIntf Version 3.2 consists of a set of files that allow Macintosh applications to access the
AppIeTalk drivers (.MPP and .ATP) from Pascal. Currently only the Lisa Workshop fully
supports ABPasIntf. For more information on these routines, please consult the Pascal section in
the AppIeTalk Manager chapter of Inside AppIeTalk. IMPORTANT: These files have undergone
extensive changes from previous versions. If you currently have earlier versions of ABPasIntf
(e.g. Versions 1.0,1.1,3.0 or 3.1), they should replaced by these newer interface files.

To use ABPasIntf in an application you may use the following files: obj/ABPasIntf.obj,
intrfc/ABPasIntf.text, and obj/ABPasCalls.obj, all on the 5/85 Worshop Supplement 1 disk, and
ATalk/ABPackage.obj and ATalk/ABPackageRtext on the 5/85 Worshop Supplement 2 disk (or
alternately the resource file ATalk/ABPackage in the Resource Files folder of the 5/85 MacStuff 4
disk). These files are described below:

obj/ABPasIntf.obj: This file contains the compiled Pascal Unit that the application USES.

intrfc/ABPasIntf.text: The human-readable interface corresponding to obj/ABPasIntf.obj.

obj/ABPasCalls.obj: This is the Pascal "glue" that makes calls to the main part of the
ABPasIntf code. It is very small (around 270 bytes) and should be linked in with your
application's code during the Link stage of your build.

ABPackage: This file holds the actual code that implements the ABPasIntf routines. You
will use one of two files depending on how you build your application:
ATalk/ABPackage.obj (a standard Workshop object file) or ABPackage (a standard
Macintosh resource file of Type atpl; ID = 0).

To use ABPasIntf, follow these instructions:

1) Add to your application's source file the following statement under the USES section along with
any other compiled Units (e.g. Quickdraw, Toollntf, etc):

USES
{$U obj/ABPasIntf } ABPasIntf;

2) Link the file obj/ABPasCalls.obj with your application.

3) Install the ABPackage routines. There are two ways of doing this:

a) In your application's resource definition file (in the Workshop), add the following (this
text can be found in the resource definition file ATalk/ABPackageR.text):

TYPE atpl = DRVR
ATalk/ABPackage!,0 (16)

This will insert the resource atpl directly into your applications resource fork. This method is
recommended since you will not have to worry about having the resource file on your
Macintosh disk if you copy it.

b) Use a resource moving utility on the Macintosh (e.g. ResEdit) to copy the resource (Type
atpl; ID=0) from the file ABPackage into your application or the System file of the disk the
application is on. If you put the resource in the System file note that you must copy it
whenever you transfer your application onto another disk.

Note that case is significant in resource type names; the type "atpl" must be in lowercase letters.

AppIeTalk Information June 13, 1985 Page 2

AppIeTalk Developer's Questionnaire
If you're currently using AppIeTalk, please take a moment to fill out and return this questionnaire.
It will help us to better support you. Feel free to use additional sheets if necessary!

1. Are you currently developing an AppIeTalk product? Or are you currently experimenting with
AppIeTalk, with the future possibility of developing a product which uses it?

2. What level of the AppIeTalk protocols are you using? Are you implementing special protocols
yourself?

3. Do you currently use the Pascal Interfaces? Have you created interfaces of your own? What
new features would you like to see in the higher-level interfaces to AppIeTalk?

4. At what level of the Macintosh System does your software fit (i.e., is it an application, a desk
accessory, or a driver)?

Company Name:
Your Name:

Address:
City: State: Zip:

Phone: ()

Return to:
Macintosh Developer Support: AppIeTalk
Apple Computer, Inc.
20525 Mariani Avenue, MS 4-T
Cupertino, CA 95014

Thank you!
Macintosh Developer Support Group

AppIeTalk Information June 13, 1985 Page 3

c

o

c

AppleTalk Peek
Version 2.0

Richard F. Andrews and Gursharan S. Sidhu
Network Systems Development

© 1984,1985 - Apple Computer Inc.

The AppleTalk Peek program is a network tool used to monitor packet traffic on a single
AppleTalk network. Peek runs on a 128K or 512K Macintosh (with AppleTalk connected via the
Printer port), and can record all packets seen on the bus. In addition, it can detect certain errors,
measure packet arrival times, and display packet data in hexadecimal and ASCII format.

Peek has enough queue space to hold a large number of packets. This queue is used in a circular
fashion, so that Peek can continue to monitor packets even after the queue has been filled. Older
packets are discarded to make room for newer ones.

When Peek is started, the program's window is drawn. It contains the control buttons, menus,
and information display areas described below.

Peek is always in one of two states: recording or displaying packets. When the program is first
started, it is in the record state. The STRRT and STOP buttons are used to initiate and terminate
a recording session, during which Peek listens on the bus and records traffic.

When the STRRT button is pressed, packet recording is enabled. The button becomes gray to
indicate that Peek is recording (see Figure 1). Peek's internal buffers are cleared, and packets
from a previous session are lost. The STOP button halts recording and causes packets to be
displayed, if any were recorded during the session (see Figure 2).

When the STOP button is pressed, the Pkt s i n Q box shows the number of packets in
Peek's queue. This box is not dynamically updated during a recording session, since queue
wraparound makes this determination difficult. The word "Sampling" appears here while
recording, as an indication that Peek is monitoring the bus.

The size of the queue is determined by the amount of free memory, so that Peek running on a
512K Macintosh will be able to record more packets than a 128K Macintosh. Part of the queue
memory is devoted to "bookkeeping" information.

The Window

[STRRT)
[STOP 1

r P k t s in Q
0

AppleTalk Peek Version 2.0 Page l February 18,1985

The total number of packets seen by Peek since the start of the recording session appears in this
box. This count is updated dynamically, and hence provides a rudimentary visual indication of
bus traffic. Since Peek's queue can wrap around and "forget" old packets, this count may be
greater than the number of packets stored in the queue at that time.

During a particularly long recording session, this count may itself wrap around (when it reaches
32,767) and become invalid.

CRC e r r o r s : 0
Overruns: 0
Time Outs: 0

This box displays the tally of errors during a recording session. Peek can detect three types of
errors:

CRC errors are noted when the 16-bit Frame Check Sequence (FCS) at the end of the ALAP
frame does not match the calculated FCS. This indicates a possible error in transmission (due to
noise on the bus, collisions, etc.).

Overrun errors occur when the receiver reads bytes too slowly from the Macintosh's Serial
Communications Controller (SCC), and this chip's three-byte FIFO buffer overflows. Note that
if the node running Peek detects an overrun error, it does not necessarily mean that this will be
the case for other nodes. This error is sometimes detected as a
by-product of collisions on the bus.

Timeout errors are flagged when a byte is expected on the bus (the end of the packet has not
been seen, yet a byte does not appear on the bus within about 400 microseconds of the previous
byte). Every byte received thus far will be stored and displayed as "the packet", even though the
true packet end was not detected. This usually indicates a problem in the packet sender's
hardware, but it may also be a by-product of collisions on the bus.

The error fields are updated "on the fly" as packets are recorded, and are a measure of the total
number of errors seen by Peek. Therefore, in a long recording session, it is possible, due to
queue wraparound, for a packet to be received in error and not appear in the packet display,
Although the error is noted in the box.

Go-Away box
When you wish to terminate the Peek program, click in the small box in the upper left-hand
corner of the window.

Display box
This box is used to view packets which were saved during the recording session. Each packet is
preceded by a banner line (see Figure 2) in boldface which includes, from left to right:

• a set of square brackets which may contain blanks or one of the following characters: B
if the packet was a broadcast, C, O, or T if a CRC, overrun, or timeout error,
respectively, was detected for that packet;

• the source S and destination D node IDs of the packet, in decimal format;

AppIeTalk Peek Version 2.0 Page 2 February 18,1985

• the packet's arrival time T in milliseconds (measured relative to the first packet stored in
the queue);

• the time since the previous packet's arrival (delta time or AT);
• the packet's sequence number in parentheses (in the order in which they were received,

starting with zero for the oldest packet in the queue);
• the calculated length L of the packet (number of bytes in decimal, not including the

FCS).

Following this banner line are two displays of the packet's contents, in hexadecimal on the left
and the corresponding ASCII (if printable) on the
right. A period is substituted for any unprintable character. Note that the FCS is not shown.

On the right side of the display box is a scroll bar which is enabled whenever there is more to be
displayed than will fit in the box. The user can scroll through the display of packets by using the
scroll bar's up and down arrows, or by dragging the thumb. Clicking in the gray area above or
below the thumb shifts the display backwards or forwards one complete packet at a time. This is
useful for scrolling past large packets.

Menus

C D Control Edit Search
About the Peek Program.. .

Scrapbook
Alarm Clock
Note Pad
Calculator
Key Caps
Control Panel
P u z z l e

The Apple menu, as usual, is used to invoke a variety of desk accessories. Choosing About
t h e P e e k P r o g r a m will cause Peek to display some descriptive information, including the
version number and the size of the queue in bytes.

* Control Edit Search
Short Format
Rece ive LHP Control Pkts
Write P a c k e t s to File
Print P a c k e t s on ImagellJriter

The second menu is the Con t ro l menu, as seen above. When S h o r t Format is selected, a
check mark appears next to the menu item and packets are displayed in a more compact form.
AppleTalk Peek Version 2.0 Page 3 February 18, 1985

Only the banner line and the first line (up to the first 16 bytes) of each packet will be shown. The
display can be scrolled as before. Choosing the menu item again will change the display back to
long format. This item is inactivated during a recording session.

When R e c e i u e LHP Con t ro l P k t s is selected, all LAP control packets seen on the bus will
be recorded. These are defined as any packets whose LAP type field is $80 through $FF hex
(most significant bit set). Such packets will be recorded only when this option is selected. If
their reception is enabled in the middle of a recording session, any LAP control packets already
seen on the bus will not have been saved. Changing this option while viewing the display of a
previous session will have no effect on the display, but will affect the next recording session.

Selecting W r i t e P a c k e t s t o File will cause Peek to save away a copy of the display into a
file on disk. If there are disks in the internal and external drives, Peek will attempt to write to
whichever one has more free space. The name of the file will be "Peek Buffer 0", unless a file
by that name already exists; in which case Peek will try "Peek Buffer 1" through "Peek Buffer
9". If those ten files already exist, Peek will give up and display an error message.

If there is not enough room on the disk to save all the packets, Peek will write as many as will fit,
and notify the user that a "Write Error: -34" occurred. This means that the disk is full; you may
wish to put an empty disk in the drive and try again. The file containing saved packets will be of
type "TEXT" and creator "EDIT1.

As an alternative, you may choose P r i n t P a c k e t s on I m a g e w r i t e r . Connect an
Imagewriter to the modem port (not the printer port) before selecting this item, and Peek will
print the entire display on the printer. (This could be a time-consuming process if there are many
packets to print). Note that the S h o r t F o r m a t option (described below) has no effect on
packets written to a file or to the printer - long format is always used.

6 Control Edit Search
Cut 3§H
Copy 3SC
P a s t e 9€U

The Edit menu is used only in conjunction with the Find P a t t e r n feature, described below.
It allows you to use the standard text edit commands to create a string for which to search.

AppIeTalk Peek Version 2.0 Page 4 February 18,1985

6 Control Edit
Find Pat tern
Find Same

<H>F
3§S

Find Overrun
Find CRC Error
Find Timeout

Search is Not Case Sens i t ive

The Search menu is used to look for a particular hexadecimal or ASCII string within the
recorded packets. Selecting Find P a t t e r n (or the equivalent command key-F combination)
will cause the Find window to appear, as in Figure 3. Select H e x a d e c i m a l or Hscii, and
type in the string for which to search. The standard text editing features available in the Edit
menu may be used. Hex strings must be a sequence of bytes, each specified as a dollar sign ($)
followed by a two-digit hex number. In either format, a wild-card may be specified by the
command key-equals sign combination. This will appear in the Find window as "0", and will
match one or more characters of any value.

When the string has been entered, hit Return or the Find NeHt button. Peek will begin
searching from the first packet appearing in the display box. The display will be scrolled down
to the packet containing the string, if found, and the string will be highlighted. Otherwise, Peek
will inform you that the string was not found. Selecting Find S a m e (or the equivalent
command key-S combination) will cause Peek to look for the next occurrence of the same string,
starting from the current packet.

Find O u e r r u n , Find CRC Error , and Find T i m e o u t work in a similar fashion.
Selecting one causes Peek to search, starting from the first packet in the display box, for a packet
exhibiting the particular error. If found, the display is scrolled to bring that packet to the top of
the box (unless it is too close to the last packet to scroll up to the top). Since the error counts are
cumulative from the time the STRRT button was pressed, packets with errors may not always
appear in the queue (if they were discarded to make room for newer packets).

The search can be made case-sensitive or not case-sensitive by selecting the item S e a r c h is

Not C a s e S e n s i t i u e . The menu item will display the current state of this option.

AppleTalk Peek Version 2.0 Page 5 February 18,1985

Notes

1. The newer versions of Macs bug (1/1/85 or later, with symbols) tend to slow Peek enough
that it will frequently overrun. Use older debuggers on your Peek disk or none at all.

2. A node running Peek is in listen-only mode on an AppIeTalk network. Such a node does not
participate in the ALAP protocol and does not even consume a node ID. In fact, it is
"invisible" to other nodes.

3. Peek does not use any of the standard AppIeTalk drivers (e.g. the Macintosh Protocol
Package), but assumes direct control of the Macintosh's AppIeTalk port. However, the port
is reset when Peek terminates, so it is possible to then run other AppIeTalk software without
powering down the Macintosh and powering it up again. (Note that this is not true for
versions of Peek older than V2.0).

4. Peek will not run on a Macintosh XL under MacWorks.

5. If a packet that is longer than 4095 bytes is received by Peek, its subsequent behavior
becomes unpredictable. If Peek terminates abnormally during a recording session, there is a
strong probability that a node on the network has sent a packet of illegal size (e.g. a node is
stuck in its transmit loop).

Acknowledgements

This program borrows ideas from a former Lisa Workshop application developed by Jim
Nichols and Steve Butterfield; in particular, the circular use of a buffer. AppIeTalk Peek is a
completely new program designed to exploit the Macintosh user interface. Thanks to Mark
Neubieser and Paul Williams for implementing new features.

AppIeTalk Peek Version 2.0 Page 6 February 18, 1985

6 Control Edit Search
AppleTalk Traffic Peek

[v r a i v r l

[STOP 1
r P k t s in Q

Samp I i ng
r P k t s Rcvd

34

CRC e r r o r s : 1
Overruns: 5
Time Outs: 2

FJgure J: P e e k W i n d o w (R e c o r d i n g S t a t e)

AppleTalk Peek Version 2.0 Page 7 February 18, 1985

[Control Edit SearchT
AppIeTalk Traffic Peek

[START] r P k t s in Q-i r P k t s Rcwdn

[STOP] 2526 2597

CRC e r r o r s :
Overruns:

3
3

20 61 FF 73 64 66 6R 39 38 20 61 39 64 20 20 61 a . s d f j 9 8 a9d a &
73 70 99 3D 61 30 66 2D 3D 3B 6C 61 73 64 20 61 s p . = a O f - = ; l a s d a
73 27 14 66 3B 6F 61 64 70 72 30 33 33 6C 34 2C s 1 . f ; o a d p r 0 3 3 l 4 ,
20 20 27 61 73 66 70 OF 6F 61 5B 20 6F 61 30 64 ' a s f p . o a t oaOd
20 73 s

IB 1 S 1 0 D : 2 5 5 T : 2 5 8 8 5 AT : 3 2 < 1 5 5 0 > L : 3

FF OR 84
IB 1 S 1 0 D : 2 5 5 T : 2 5 8 8 5 AT : D < 1 5 5 1) L : 1 3 0

FF OR 01 00 7F 00 00 03 3B 6C 64 73 66 6E 65 6B ; I d s f n e k HP
7R 78 63 69 6R 20 61 06 73 64 6R 66 20 69 64 6B zxc i j a . s d j f i dk
20 61 64 6B 6R 66 11 6E 20 61 6B 6R 6B 6E 6D 69 adk j f . n a k j knm i
39 38 38 39 34 35 1B 35 6R 20 61 65 39 75 76 20 988945.5j ae9uv
20 61 FF 73 64 66 6R 39 38 20 61 39 64 20 20 61 a . s d f j 9 8 a9d a
73 70 99 3D 61 30 66 2D 3D 3B 6C 61 73 64 20 61 s p . = a 0 f - = ; l a s d a
73 27 14 66 3B 6F 61 64 70 72 30 33 33 6C 34 2C s ' . f ; o a d p r 0 3 3 1 4 ,

Ijjljj

20 20 27 61 73 66 70 OF 6F 61 5B 20 6F 61 30 64 ' a s f p . o a t oaOd o

FJgur& 2: Peek. Window (Display State)

AppIeTalk Peek Version 2.0 Page 8 February 18,1985

Target?

[Find Ne»t~

$0B$00$12$0D

s p . = a O f - = ; l a s d a
s ' . f ; oadpr033 l4 ,

' a s f p . o a t oaOd
s

(1 5 5 0) L : 3

6 Control Edit Search

(i) HeKadecimal O flscii

73 27 14 66 3B 6F 61 64 70 72 30 33 33 6C 34
o CM

20 20 27 61 73 66 70 OF 6F 61 5B 20 6F 61 30 64
20 73
S: : 1 0 D : 2 5 5 T : 2 5 8 8 5 AT : 3 2

FF OR 84
S : 1 0 D : 2 5 5 T: 2 5 8 8 5 AT : i 0

FF OR 01 00 7F 00 00 03 3B 6C 64 73 66 6E 65 6B
7fl 78 63 69 6R 20 61 06 73 64 6R 66 20 69 64 6B
20 61 64 6B 6R 66 11 6E 20 61 6B 6R 6B 6E 6D 69
39 38 38 39 34 35 1B 35 6fl 20 61 65 39 75 76 20
20 61 FF 73 64 66 6R 39 38 20 61 39 64 20 20 61
73 70 99 3D 61 30 66 2D 3D 3B 6C 61 73 64 20 61
73 27 14 66 3B 6F 61 64 70 72 30 33 33 6C 34 2C
20 20 27 61 73 66 70 OF 6F 61 5B 20 6F 61 30 64

< 1 5 5 1) L : 1 3 0

; I d s f n e k
zxc i j a . s d j f i dk

adk j f . n ak jknmi
988945.5j ae9uu

a . s d f j 9 8 a9d a
s p . = a O f - = ; l a s d a
s ' . f ; o a d p r 0 3 3 l 4 ,

' a s f p . o a t oaOd

Figure J: Find Window

AppleTalk Peek Version 2.0 Page 9 February 18,1985

c

o

o

AppleTalk Poke
Version 3.1

Gene Tyacke
Network Systems Development

© 1984,1985 - Apple Computer Inc.

AppleTalk Poke is a Macintosh application designed for use by AppleTalk developers. It
allows the user to edit/create packets and to send them out on AppleTalk. Developers are
expected to use Poke to test their protocol software/hardware implementations for AppleTalk
products. Poke uses the Macintosh Protocol Package (MPP) for AppleTalk access (details of
MPP are discussed elsewhere). This means that the system file of the boot disk must have
AppleTalk Installed (e.g. with the Install tool). This has been done to the disk Poke is on.

This document describes the features and use of Poke. It is not intended to instruct the user on
the capabilities, features, or specifications of MPP or of the various AppleTalk protocols, nor
does it discuss the normal use of the Macintosh's standard editing abilities. (For information on
AppleTalk protocols, see the corresponding specification/description document.)

Startup

After starting Poke, the MPP driver is loaded in (if it isn't currently in memory) and the main
window is brought up (figure 1). This window displays the Poke station's AppleTalk node ID
and packet information. At this stage, the packet information indicates that no packets have been
loaded into Poke (packet names are all set to empty). Next to each packet name, there is a pair of
buttons labeled ED IT and SEND. Initially, all SEND buttons are dimmed (inactive) because no
packets have been loaded. The main window includes an area for displaying any appropriate
error or status messages.

The program operates in two different states. When started up, it is in the send state with the
main window displayed. When any ED IT button is pressed, it goes into an edit state and the
packet editing window is displayed (figure 2). In this state, the selected packet can be edited.
Clicking the edit window's OK button will return you back to the main window and the send
state.

AppleTalk Poke Version 3.1 Page 1 February 15,1985

Menus and Commands:

Poke's menu bar contains four menus. These are:

* File Edit Tools

Each menu and its associated commands is displayed and described below:

*
Menu:

| File Edit Tools
nil Rbout Poke . . .
Pel:»u<ny H f 3 WIS

Scrapbook
Rlarm Clock
Note Pad
Calculator
Key Caps
Control Panel
P u z z l e

The "Apple" menu allows you to run an available desk accessory or to examine Poke's version
information ("nil Hbout Poke . . . ") . Selecting the "fill About P o k e . . . " command brings
up an information window. Clicking the mouse or pressing a key causes this window to
disappear and Poke returns to its original state.

AppIeTalk Poke Version 3.1 Page 2 February 15,1985

File
Menu:

' * File Edit Tools
Load
Saue

Quit m

The File menu allows the user to load from (or save to) a file of 10 prepared or canned packets.
The Load and Saue operations follow the standard conventions for file loading and saving.
Note: Older versions of Poke utilize a different file format You cannot load in packets created
by those versions.

Edit
Menu:

* File Edit Tools
Cut 3§H
Copy 3SC
P a s t e 9§U

The Edit menu is used only while editing a packet. Please note the keyboard's optional
command keys that can be used to invoke this menu's commands.

Tools
Menu:

6 File Edit Tools
Clone Packe t
Show Packet Length 3§L
Helpful Hints §€H
Set Repeat Factor 9€S
Abort Send If Error Occurs

Calculate Checksum

AppleTalk Poke Version 3.1 Page 3 February 15, 1985

"Clone P a c k e t " can only be selected from the main window. When selected, a dialog box
appears which asks you for the name of the packet you wish to copy (the source). It also asks
for the name of the packet which it is to be copied to (the destination). The names are searched in
a top to bottom fashion starting at the top left corner of the main window (figure 1). The first
packet whose name matches the one you entered will be chosen. If both source and destination
names are found, then the source packet will be copied verbatim to the destination. Otherwise,
an error message is displayed.

The " S h o w P o c k e t L e n g t h " command can only be used while editing a packet. It returns
the number of bytes in the packet's data field. This count does not include the packet's header,
so the actual packet size will
be larger. (See the AppIeTalk protocol documentation for information on the size of the different
headers.) If an error is detected while computing the length, an alert box will be displayed
indicating the exact location of the error. Note: If you have entered more data into a packet than
is allowed by the corresponding protocol (LAP,DDP,ATP) then Poke will truncate the data (at
the end) to the maximum allowed value.

The " H e l p f u l Hin ts" command allows you to obtain a quick summary of editing instructions.
Clicking the mouse or pressing any key will return you to the currently active Poke window.

Packets can be transmitted repeatedly at user specified intervals. The number of times a packet is
transmitted and the time interval between transmissions are set by the user by selecting the "Set
R e p e a t F a c t o r " command. This command will allow you to change transmission
information used by the SEND command (discussed later).

The delay time interval between transmissions is given in ticks (1 tick = 1/60 of a second). If
you enter a number of transmissions value equal to zero, then Poke will keep sending packets
out in a closed loop (i.e, indefinitely). When Poke is in such a loop, you can stop the SEND
operation by either clicking the mouse button or by pressing a key. If you wish to send packets
out at the fastest rate possible, enter a zero for the time interval, if this is done, packet statistics
will not be displayed in the messages box.

Note: The user specified time interval is achieved only approximately. Network loading and
ALAP overhead plus packet transmit time add to this interval.

The " R b o r t Send If Er ro r Occurs" command is used in conjunction with the SEND
operation. If selected, a checkmark will appear on the left side of the command informing the
user that this feature is active. Now, if an error occurs while sending a packet, the SEND
operation will abort To deactivate this feature, select the command again and the checkmark will
be removed. This command is especially useful when large numbers of packets are being sent
out.

The last command, " C a l c u l a t e C h e c k s u m " , may be used in the edit window to replace the
existing DDP checksum field with an updated checksum. This command is only valid with
packets utilizing the DDP long format (LAP Type field $2).

AppIeTalk Poke Version 3.1 Page 4 February 15, 1985

Preparing a Packet

When you press the edit button for a particular packet in the main window, the edit window of
figure 2 will appear and you will be shown the information of that packet This window is
divided into two main sections: the header and the data, with 18 editing fields. Only one editing
field is active at a time. This is indicated by highlighting that field's rectangular box. There are
several circular buttons, check boxes and command buttons (OK, CANCEL and CLEAR) used
in preparing the packet The standard Macintosh editing features apply to most of these controls.
Some, however, need further clarification. These are:

o Pressing the TAB key causes Poke to verify the information in the current field
before activating the next field. The same is true if you press the RETURN key
(except within the packet's data field). If an error is detected while verifying a
field, a beep will sound and Poke will return you back to the error's location.
(Possible errors are described at the end of this section.)

o Clicking the mouse on a different editing field will verify the information in the
currently active field. If there are no errors, Poke moves to the field clicked on.

o You may type data beyond that visible in the field. Leading blanks are
automatically removed in the packet header fields.

Entering the Packet's Name

The packet's name is used only to visually distinguish the various packets from others in the
main window. It may contain any sequence of printable characters, but it is suggested that you
limit the number of characters to 16.

Entering Information in the Header Fields

Information in the packet header fields can be entered in any one of three ways:

Decimal: Type in the digits (e.g. 128). This is the default entry type.
Hexadecimal: All hexadecimal (hex) numbers are preceeded by a dollar sign (e.g.,

$80 = 128).
Binary: Binary numbers are preceeded by a percent sign (e.g., % 1111 = $0F

= 15).

Leading zeros are ignored. When a field has been verified, the number entered is automatically
converted to hex format.

Possible Error Conditions:

o Value in field is out of range, (see AppleTalk Protocol documents for the
permissible ranges of the various fields)

o Unknown character in field. Valid digits for decimal format are [0..9] (where
this represents a range from zero to nine); valid digits for hex format is [0..9,
a..f, A..F], and valid digits for binary numbers are [0,1].

AppleTalk Poke Version 3.1 Page 5 February 15, 1985

Entering Packet Data Information

The following format must be followed when entering information into the packet data:

Data bytes can be entered into the packet in two ways: by typing in the ASCII character
corresponding to the byte's value or by entering the byte's value in its hex form.

To enter the hex form, type a "$" followed by the two digit hex number (e.g. $84,$01). Note
that "$1" is invalid, you must enter "$01". Byte's whose value corresponds in the ASCII code to
a graphic character can be entered by just typing in that character. Example: to enter a byte with
the value "$62", type "b"; for "$42" type "B"; for "$31" type "1". Other examples can be found
in figures 2 and 3. Note: Since the dollar sign ($) is a special character, you can only enter it in
its hex form "$24".

Poke will detect errors from the end of the data back to its beginning.

Editing Buttons

Various buttons in the edit window control the information that constitutes the packet Each set
of buttons is described below:

Packet Type: O LAP O DDP (•) ATP

The Packet Type buttons are used to choose the header type as described in the protocols
document. After clicking on a button, only the fields appropriate for that protocol type will be
shown. The default is HTP. Only one button may be selected at a time.

O Rfiq (•) Rsp O Rel

These three buttons are only used for an ATP packet. They are used to format an ATP request
response or release packet. The default is Req. As above, only one button may be chosen at a
time.

• HO • EOM DSTS

Each of these check boxes represents the corresponding bit in the ATP control field. If checked,
the corresponding ATP control field bit will be set; otherwise the bit is cleared.

- P a c k e t Data D i s p l a y
O H e x (5) ASCII

The Packet Data Display buttons allow the user to select the type of display for the packet's data:
hex strings or mixed ASCII and hex. [Note: This operation may take up to 10 seconds for large
packets J If an error occurs during the format conversion, an error message is displayed and the
conversion will abort You may enter data in either format at any time. The above buttons are
used only when the display is updated or when you wish to convert data to the format
immediately.

AppIeTalk Poke Version 3.1 Page 6 February 15,1985

CLERR

The OK button should be pressed when you are through editing the packet. All fields are
verified for correctness and the packet length is displayed before returning to the main window.
You will also have the option, at this time, to calculate a checksum for the packet If any errors
are detected, you will be returned to the edit window.

The CANCEL button terminates the editing session without saving any changes to the packet.
The packet is returned to the original form that it had prior to this editing attempt Poke returns
you to the send window.

The CLERR button clears all editing fields and inserts the default information into them.

OK CANCEL

Sending Packets

To send packets, Poke must be in the send state (i.e., displaying the main window). Any one of
the ten packets may be sent by clicking on its active SEND button. The number of times the
packet will be sent and the delay between each of these transmissions is shown at the top right
corner of the main window in the short form:

Rpt Factor = nx : d ticks

where: n = number of transmissions
d = time interval between transmissions (in ticks)

If a SEND button is inactive, you must first edit the packet. The result of the SEND operation is
displayed in the message area at the bottom of the main window.

Possible Error Conditions:

o No error; packet was sent to destination node (or broadcast)
o -95; Packet was unable to be sent because either the destination node did not

respond or the line was sensed "in use" 32 times.

Startup Notes:

When Poke starts up, the MPP driver is opened and initialized. If the open call fails and you are
returned a -35 error, you will be forced to exit the program. Most likely the cause of this error
will be that the MPP driver is not installed in the System resource file. In addition, if the system
heap is fragmented such that the MPP driver cannot get enough memory to load, the same error
will be returned.

If the serial port configuration byte (SPConfig) is not set correctly, you will get a -98 error when
Poke starts. See the AppleTalk Manager manual for additional information on location and
contents of this byte.

AppleTalk Poke Version 3.1 Page 7 February 15, 1985

Caveats:

o Editing of the packet's data field will slow down appreciably as its size increases.
Whenever possible, display it under the ASCII mode to minimize the number of
screen characters.

o While in the ASCII display, all characters in the printable ASCII range ($20-$7E)
and RETURN ($0D) will be displayed in their ASCII form, even if they were
entered as hex strings.

o The packet data field is limited to 55 lines. Even short packets (e.g., entering
more than 55 carriage returns in the packet's data field in ASCII mode) can go
out of the scrolling range.

o Numbers cannot be entered into the packet's data field in decimal or binary
format.

o In no case can the size of the packet be greater than 603 bytes, including ALAP
header.

o If an error occurs while verifying or converting the packet's data field, the
information at the error location may change, as Poke tries to back out of the
error gracefully.

o If you have chosen DDP or ATP packet types from the edit window, DDP long
format will always be displayed, even if the ALAP type of $01 (short format)
was entered.

o If you enter more than 600 bytes of packet data, the checksum calculation may not
work correctly until you have exited and reentered the editing window. (This
will truncate off all excess data from the end of the packet).

AppIeTalk Poke Version 3.1 Page 8 February 15, 1985

r 6 File Edit Tools

Figure 1. Main Wmdov

AppleTalk Poke Version 3.1 Page 9 February 15, 1985

AppleTalk Poke 3.1

AppleTalk s t a t i o n ID = 98 Rpt Fac to r = 1 x : 2 t i c k s

SEND <empty>

DDP long header <empty>

<empty> <empty>

<empty>

<empty> <empty>

• Messages —
Packe t * 1 Pkt Length = 125 Error r e sponse = - 9 5

r 6 File Edit Tools

P a c k e t Name:
• Header Data -
LAP

ATP DDP long P a c k e t Type: Q LAP O DDP <§) HTP

Dest Node flddr: I $45 I LAP Type: I$2 I

DDP

ATP

Hop Count: l$0
DDP Type: \$3.

BE

Checksum: 1$1202

Dest Skt ®:
Dest Node flddr: l$FF I
Dest Net «: l$1 I

Src Skt #:
Src Node flddr
Src Net * : § 2

h e
S H

(5) R e q O R s p O R e l Trans ID: l$FFF

[jo B i t l lap:]
] [21KO • EOM D S T S

U1: l$1 I U2: I$2 I U3: l$3 I U4: [$4 I

r Packet Data
T h i s i s ASCII da ta . I f I w ish
c h a r a c t e r s l i k e : $00,$01.

d - en te r u n p r i n t a b l e c h a r a c t e r s , I en te r o

o
Packet Data D i sp lay —

O H e K (§) HSCII OK CANCEL CLERR

Figure 2. Edit Wrndov (ASCII Diaplay)

AppIeTalk Poke Version 3.1 Page 10 February 15, 1985

* File Edit Tools

P a c k e t Name:
• Header Data -
LAP

DDP long h e a d e r P a c k e t Type: O LRP (•) DDP O RTP

DDP

ATP

Dest Node flddr: ffil 1 LAP TuDe: l$2 1

Hop Count ISO 1 Dest Skt * : l$fl 1 Src Skt #: l$B I
DDP Type: IS5 1 Dest Mode flddr: l$FF 1 Src Node flddr: |$17 |
Checksum: l$CBF2 1 Dest Net * : l$1 | Src Net «: |$2 Checksum: Dest Src

r Packet Data
$54$68$69$73$20$69$73$20$41 $53$43$49$49$20$64$61$74$61$2E$20$20$49$66$20$49$
20$77$69$73$68$20$74$6F$20$65$6E$74$65$72$20$75$6E$70$72$69$6E$74$61$62$6C$6
5$20$63$68$61$72$61$63$74$65$72$73$2C$20$49$20$65$6E$74$65$72$20$63$68$61$72
$61$63$74$65$72$73$20$6C$69$6B$65$3fl$20$00$2C$01$2C$24$20$5B$64$6F$6C$6C61
72$20$73$69$67$6E$5D$2E

o

o
Packet Data D i sp lay —

(5) He« O RSCII OK CRN ̂ l] CLERR

Figure 3. Edit Wirtdov (Hex Data Display)

AppleTalk Poke Version 3.1 Page 11 February 15, 1985

MACINTALK 1.1

THE MACINTOSH SPEECH SYNTHESIZER

Contents 1

Introduction 2

Procedure calls 2

Overflow processing 4

RAM requirements 4

DON'T PANIC (misc. notes) 5

READER 6

Exceptions editor 7

SPEECHLAB 8

Phonetic writing (How to) 9

Phoneme table 14

Example of English and phonetic texts 16

Building Applications Using MacinTalk 17

Licensing MacinTalk 17

MacinTalk June 13, 1985 Page 1

MACINTALK 1.1

INTRODUCTION:

The Macintosh speech synthesizer (MACINTALK) is a software driver which runs under the
MACINTOSH operating system. Running in real time, MACINTALK converts an ASCII string
of phonetic codes to high quality synthetic speech utilizing a male, non-regional, standard
American dialect. The MACINTALK driver also provides for user control of the speaking rate
and pitch. Another program, READER, converts unrestricted English text into phonetic codes
directly usable as input to MACINTALK.

Also provided are an application, SpeechLab, for experimenting with the system, and
ExceptionEdit, an exceptions editor for creating custom rule sets for READER.

The MACINTALK driver consists of the following procedures and functions:

FUNCTION SpeechOn(ExceptionsFile: Str255; VAR theSpeech: SpeechHandle): SpeechErr;

SpeechOn initializes the Macintalk speech driver and takes the following actions depending on the
setting of "ExceptionsFile".

ExceptionsFile null ==> Bring in READER using only the default rules.
ExceptionsFile := 'noReader' ==> Do not use READER package (phonetic input only).
ExceptionsFile := Filename' ==> Bring in READER with Filename1 exceptions file.

SpeechOn allocates a handle to the required static buffers and sets default speaking rate, baseline
pitch, pitch mode, and speaker sex. This function should be called exactly once, before any other
speech routine. The default parameter values set by SpeechOn are:

SpeechOn returns a handle to the driver's internal parm block in the variable "theSpeech". This
parm block should not be modified by the user, but must be passed to each MacinTalk routine.

SpeechOn return code:

Speaking Rate:
Baseline Pitch:
Pitch Mode:
Speaker Sex:

150 words/minute
110 Hz
Natural
Male

noErr
memFullErr
resFNotFound
resNotFound

fullUnitT

- driver open was successful
- the required buffers cannot be allocated
- the specified exceptions file can't be found
- one of the required resources

DRVR, TALK, or RULZ can't be found
(these resources are found in the MacinTalk file, which
must be on the same disk as the application)

- the driver unit table is full

MacinTalk June 13,1985 Page 2

PROCEDURE SpeechOff(theSpeech: SpeechHandle);

SpeechOff closes the speech driver and cleans up. The driver is removed from the unit table, any
still existing buffers are released, and all resource files are closed.

PROCEDURE SpeechRate(theSpeech: SpeechHandle; theRate: INTEGER);

SpeechRate sets the speaking rate, in words per minute. The rate is constrained to lie between 85
and 425 words per minute.

PROCEDURE SpeechPitch(theSpeech: SpeechHandle;
thePitch: INTEGER; theMode: FOMode);

SpeechPitch sets the MACINTALK'S baseline pitch in Hertz, and it's pitch mode (either Natural or
Robotic).

In the "Natural" mode, a sentence's pitch follows a complex, generally declining, contour of rises
and falls, approximating the natural intonations of human speech. In this mode, thePitch is the
frequency around which the sentence's pitch gestures are made. In the "Robotic" mode, the pitch
is held constant throughout the sentence, giving the speech a mechanical or robot-like quality and is
primarily for use in games where such perversions are commonplace.

If the specified mode is "NoChange", the mode will not be changed. This allows the user to
change the baseline pitch without effecting the pitch mode. In either mode, the pitch is constrained
to lie between 65 and 500 Hertz. If the input parm "thePitch" lies outside this range, the
synthesizer's pitch will not be changed from its last value. This allows the user to change the pitch
mode without effecting the baseline pitch.

PROCEDURE SpeechSex(theSpeech: SpeechHandle; theSex: Sex);

Reserved for future implementation.

FUNCTION MacinTalk(theSpeech: SpeechHandle; Phonemes: Handle): SpeechErr;

The input handle is a doubly indirect pointer to a packed array of ASCII characters containing the
phonemes to be spoken. The input string must be in upper case, and consist only of valid phonetic
codes, stress numbers, and prosodic indicators (see "How to Write Phonetically..."). The input is
terminated upon encountering a "#" or after processing "GetHandleSize(Phonemes)" number of
characters. This is done so that the handle size need not agree with the actual size of the phoneme
array.

MacinTalk June 13, 1985 Page 3

Macintalk return codes are:

noError - No error.
nilHandleErr - Input handle or master pointer NIL.
+ive integer - Phoneme code error. Value of return code

is the location in the input array of the
error. Possible errors are: invalid phoneme
code, attempt to stress a non-vowel, or use
of lower case letter or ASCII control code.

Overflow Processing:

MACINTALK will break the input into sentences, treating each sentence as a separate utterance,
attempting to get a buffer large enough for the entire utterance (approx. 800 bytes per second of
speech). MACINTALK also has some potentially overflowable buffers within i t They can hold
512 phonemes or 128 syllables, whichever fills up first. If any buffer overflows, MACINTALK
will attempt to intelligently and recursively break the utterance into smaller fragments at punctuation
marks. If this still overflows, MACINTALK will attempt to break the utterance into groups of
words, single words, or if necessary, into parts of words. This last-gasp attempt would only be
used in the highly unlikely event of a sentence having no spaces. This may split a phoneme code in
half causing an error; eg. '...DHAXMAE5KINTAOKSPI Y5CHSffl5NTfflXSAYZER...'

phoneme error A

IY split

RAM requirements:
Code + Static buffers: 20K

Dynamic buffers: allocated as needed. Typically, 800 bytes
per second of uninterrupted speech, and nearly all sentences of
reasonable size are less than 10 seconds long.

MacinTalk June 13,1985 Page 4

DON'T PANTC

Some Notes on MacinTalk

• The MacinTalk speech driver arbitrates the unit (aka driver)
number at run time. If the driver table is full, the SpeechOn
will return a "fullUnitT' (-4000 decimal) error.

• To install MacinTalk on a user diskette, simply move the
MacinTalk icon and any user defined exceptions dictionaries
to that diskette.

• The MacinTalk driver must be on the same diskette as the
application using it.

• The volume of the speaking voice is controlled via the control
panel. A separate volume call may be added at a later time.

• The ExceptionEdit program creates and edits a user defined exceptions
dictionary. This is a first release, so care should be taken in
its use. In particular, always copy a pre-existing exceptions
file before attempting to modify i t Tliis will protect you in
case of a system crash.

• The sex and language options are not included in this release.
They may be implemented in the future.

• The SpeechLab and ExceptionEdit applications supplied with the MacinTalk
driver may have some bugs.
These bugs are in the applications and not in the driver.

MacinTalk June 13, 1985 Page 5

READER

ENGLISH TEXT TO PHONETICS CONVERTER

READER is a Macintosh package which converts English text to phonetic codes acceptable in
format to the MACINTALK speech driver. The input string can consist of unrestricted English
text, including letters, symbols (such as "$" and and digits. The output of READER
consists of a handle to a packed array of characters which contains the phonetic codes. This handle
can be edited, saved on disk, and/or directly input to the MACINTALK speech driver.

The READER package should only be used when the text to be spoken is not known in advance by
the programmer. READER should be used on text that comes from the outside world, such as
modem or user supplied input. When the text to be spoken is "canned", contained within the
application, it should be in human encoded phonetic form. READER may be used to translate
small words, names or phrases which you can then insert into previously written phonetic strings
(MAD-LIBS style).

FUNCTION Reader (theSpeech: SpeechHandle; Englishlnput: Ptr;
InputLength: Longlnt;
PhoneticOutput: Handle): SpeechErr;

"Englishlnput" is a pointer to a packed array of characters containing the English string to be
translated.

"InputLength" is a Longint which specifies the length of the input text. Translation of the input will
terminate upon encountering either a "##" in the input, or by processing "InputLength" number of
characters, whichever comes first

"PhoneticOutput" is a possibly empty (NOT NIL!!!) handle whose master pointer will, upon
return, point to a packed array of characters which will contain the phonetic codes to be spoken.
READER will dynamically grow this handle as needed to accomodate the size of the output.

READER returns:

noError - Good return.
nilHandleErr - Invalid output handle.
memFullEiTor - Cannot get enough memory to hold the output.

RAM Requirements: 10K + output buffer.

In general, the output buffer can be expected to be approximately 1.5 times the input buffer
in size.

MacinTalk June 13, 1985 Page 6

USING THE EXCEPTIONS EDITOR
The READER package uses in excess of 400 context sensitive rules to derive the phonetic spelling
of English text, but even with that many rules it is still subject to errors. This is because it has no
knowledge of parts of speech, grammar, entymology, etc. Fortunately, we can eliminate some of
the more annoying errors by using an "exceptions" dictionary for when the word does not "fit the
rule". For example, if we are listening to a paper on somebody named "Michael", we might get a
little tired of hearing about "Mitch ale". So we enter that name into an exceptions dictionary along
with the proper pronunciation, MAY5KUL. We can tailor these dictionaries to various fields such
as medicine, computing, or sports. The ability to create separate dictionaries allows us to get
higher performance in a given application without using up vast amounts of memory.

To enter words into an exceptions dictionary, launch the "ExceptionEdit" application. You must
now do one of the following: if the dictionary you wish to work with does not yet exist, you must
create one by pulling down the "File" menu and selecting the "Create New Exceptions File" item.
If you are adding to an existing file, select "Open". Both of these items use the standard file
package, and their use should be self-explanatory. Note, however, that exceptions files are special.
Do not try to edit one by any means other than ExceptionEdit

You are now ready to enter words. Click in the "Say" window, type the English word in question
and hit <return> to have it translated. The phonetic equivalents will appear below in the
"As" window and be spoken. Now click in the "As" window and edit the phonetic code until it is
to your liking. Use the "Say It" button to hear the text currently in the "As" window. When you
are satisfied with the pronunciation, click on the "Add" button to enter the exception into the
dictionary. The "As" window may contain any legal string of phonetic characters, including blanks
and punctuation, but remember to enter letters in upper case only. The word will now be literally
translated into the string below. A typical example may be:

Say: NYSE
As: NUW5 YOH2RK STAA5K EHKSCHE Y 5N J

Typing the word in the "Say" window again and hitting <return> should result in the new
pronunciation appearing in the "As" window. Repeat the above procedure for all the words you
wish to add. Each word that is to be entered into an exceptions dictionary must be done one at a
time.

Should you decide to remove something from the exceptions dictionary, enter that word into the
"Say" window and hit return (or enter). When the translation appears in the "As" window, click
on the "Delete" button. Re-entering the word in the "Say" window should cause the "default"
pronounciation to appear in the "As" window.

"ExceptionEdit" will automatically checkpoint your file from time to time as you add words, so if
you want to keep an old version, copy it before you begin.

When you are finished with your session, pull down the "File" menu and select "Save". You may
now work on a new file or quit by selecting the "Quit" item from the "File" menu.

Selecting the "Quit" item before saving your file will result in the loss of entries made after the last
checkpoint was performed.

MacinTalk June 13,1985 Page 7

USING SPEECHLAB

SpeechLab is an application program designed to get you familiar with the MACINTALK system,
and in particular with phonetic spelling. When SpeechLab is launched, two windows appear and
you may select and edit text in either one. Remember to type a or '?' at the end of your
sentence(s).

The window for English text will accept any sequence of characters and attempt to translate them
into phonetic code using the default rule set. If you want to bring in one of your own exception
files, pull down the "File" menu and select "Use Exceptions File". The result appears in the
phonetic input window and is spoken. You may then select the phonetic code window, edit the
phonetics and hear the text spoken again.

You may also enter phonetic code directly in the phonetic window adhering to the spelling rules
given in the "How to Write Phonetically for MacinTalk" document. You may type more than one
sentence in the window and terminate the last sentence with a '#' ('##' in the English window). If
you make a phonetic spelling error, MACINTALK will say all the sentences up to the one
containing the error and then say nothing. To stop the use of exceptions, select "Use Basic Rules
Only".

The various menus allow you to change the operating parameters of the synthesizer and are self
explanatory. Remember that the ranges are constrained.

A word of advice:
It is recommended that the phonetic spelling system not be learned from the READER package. In
other words, don't use READER to give you a "first shot" at the phonetic spelling. It's much
easier to type phonetics from scratch. Believe us, we know. The authors of MACINTALK want
good quality speech flowing from the applications that use it. Therefore we strongly urge you to
take the one day necessary to learn and become proficient in the use of the phonetic spelling
system.

MacinTalk June 13, 1985 Page 8

HOW TO WRITE PHONETICALLY FOR MACINTALK
INTRODUCTION

This section will describe in detail the procedure used to specify phonetic strings to the Macintalk
speech synthesis driver. No previous experience with phonetics is required. The only thing you
may need is a good pronouncing dictionary for those times when you doubt your own ears. The
beauty of writing phonetically is that you do not have to know how a word is spelled, just how it is
said.

The Macintalk speech synthesizer works on utterances at the sentence level. Even if you want to
say only one word, Macintalk will treat it as a complete sentence. Therefore, Macintalk wants one
of two punctuation marks to appear at the end of every sentence. These are the period (.) and the
question mark (?). If no punctuation appears at the end of a string, Macintalk will append a period
to it. The period is used for almost all utterances and will cause a final fall in pitch to occur at the
end of a sentence. The question mark is used at the end of yes/no questions only, and results in a
final rise in pitch. For example, the question, "Do you enjoy using your Macintosh?", would take
a question mark at the end because the answer to the question is either yes or no. The question,
"What is your favorite color?" would not take a question mark, and should be followed with a
period. Macintalk recognizes other punctuation marks as well, but these will be left for later
discussion.

PHONETIC SPELLING
Utterances are usually written phonetically using an alphabet of symbols known as I.P.A., for
International Phonetic Alphabet. This alphabet is found at the front of most good dictionaries.
The symbols can be hard to learn and are not available on computer keyboards, so the Advanced
Research Projects Agency (ARPA) came up with Arpabet, a way of representing each symbol
using one or two upper case letters. Macintalk uses an expanded version of Arpabet to specify
phonetic sounds.

What is a phonetic sound or "phoneme"? It is a basic speech sound, almost a speech atom.
Working backwards, we break sentences into words, words into syllables, and syllables into
phonemes. The word "cat" has three letters and (coincidentally) three phonemes. Looking at the
table of phonemes we find the three sounds that make up the word "cat". They are: K, AE and T,
written as KAET. The word "cent" translates as: S, EH, N and T, or SEHNT. Notice that both
words begin with a "c" but because the "c" says "k" in "cat" we use the phoneme K. In "cent" the
"c" savs "s" so we use the phoneme S. You might also have noticed that there is no C phoneme.
The above example clearly illustrates that a word rarely sounds like it looks in English spelling.
These examples introduce you to a very important concept: spell it like it sounds, not like it
looks.

CHOOSING THE RIGHT VOWEL
Phonemes, like letters, are divided into the two catagories of vowels and consonants. A loose
definition of a vowel is that it is a continuous sound made with the vocal cords vibrating and air
exiting the mouth (as opposed to the nose). All vowels use a two letter code. A consonant is any
other sound, such as those made by rushing air (like S or TH), or by interruptions in air flow by
the lips or tongue (like B or T). Consonants use a one or two letter code.

In English we write with only five vowels: a, e, i, o and u. Things would be easy if we only said
five vowels. Unfortunately we say in excess of 15 vowels. Macintalk provides for most of them.
The way to choose the proper vowel is to listen to it Say the word out loud, perhaps extending the
vowel sound you want to hear. Compare the sound you are making to the sounds made by the
vowels in the example words to the right of the phoneme list. For example, the "a" in "apple"
sounds the same as the "a" in "cat", not like the "a" in "about", "talk" or "made". Notice also that

MacinTalk June 13,1985 Page 9

some of the example words in the list do not even use any of the same letters contained in the
phoneme code, like AA as in "hot".

Vowels are divided into two groups, those which maintain the same sound throughout their
durations and those which change their sound. The ones which change are called "diphthongs".
They are the last six vowels listed in the table. Say the word "made" out loud very slowly. Notice
how the "a" starts out like the "e" in "bet" but ends up like the "e" in "beet". The "a" therefore is a
diphthong in this word and we would use EY to represent it. Some speech synthesis systems
require you to specify the changing sounds in diphthongs as separate elements, but Macintalk takes
care of the assembly of diphthongal sounds for you.

CHOOSING THE RIGHT CONSONANT
Consonants are divided into many catagories by phoneticians, but we need not concern ourselves
with most of them. Picking the correct consonant is very easy if you pay attention to just two
catagories: voiced and unvoiced. A voiced consonant is one made with the vocal cords vibrating,
and an unvoiced one is made when they are silent. Sometimes English uses the same letter
combinations to represent both. Compare the "th" in "thin" and in "then". Notice that the first is
made with air rushing between the tongue and upper teeth. In the second, the vocal cords are
vibrating also. The voiced "th" phoneme is DH, the unvoiced is 1H. Therefore "thin" is spelled
TH, IH, N or THIHN and "then" is spelled DH, EH, N or DHEHN. A sound that is particularly
subject to mistakes is voiced and unvoiced "s" spelled Z or S. To put it clearly, "bats" ends in S,
"suds" ends in Z. What kind of "s" does "closet" have? How about "close"? Say all of these
words out loud to find out. Actually "close" changes its meaning when the "s" is voiced or
unvoiced: "I love to be close to you." versus "What time do you close?"

Another sound that causes some confusion is the "r" sound. There are two different r-like
phonemes in the Macintalk alphabet, R under the consonants and ER under the vowels. When do
you use which? Use ER if the "r" sound i& the vowel sound in the syllable. Words that take ER
are "absurd", "computer" and "flirt". Use R if the "r" sound precedes or follows another vowel
sound in that syllable, such as in: "car", "write" or "craft". "Rooster" uses both kinds of "r". Can
you tell which is which?

CONTRACTIONS AND SPECIAL SYMBOLS
There are several phoneme combinations that appear very often in English words. Some of these
are caused by our laziness in pronunciation. Take the word "Macintosh" for example. The "i" in
the second syllable is almost swallowed out of existence. We would not use the IH phoneme, but
would use the IX instead. It is because of this "relaxation" of vowels that we find ourselves using
AX and IX very often. Since this relaxation frequently occurs before 1, m and n, Macintalk has a
shortcut for typing these combinations. So instead of "Macintosh" being spelled
MAEKIXNTAASH, we can spell it MAEKINTAASH, making it a little more readable.
"Anomaly" goes from AXNAAMAXLIY to UNAAMULIY, and KAAMBIXNEYSHIXN
becomes KAAMBINEYSHIN for "combination". Sometimes it may be hard to decide whether to
use the AX or IX brand of relaxed vowel. The only way to find out is to try both and see which
sounds best.

The other special symbols are used internally by Macintalk. Sometimes they are inserted into, or
substituted for part of your input sentence. You can type them in directly if you wish. The most
useful is probably the Q or glottal stop; an interruption of air flow in the glottis. The word
"Atlantic" has one between the "t" and the "1". Macintalk knows there should be a glottal stop there
and saves you the trouble of typing i t But Macintalk is only close to perfect, so sometimes a word
or word pair might slip by that would have sounded better with a Q stuck in someplace.

MacinTalk June 13, 1985 Page 10

STRESS AND INTONATION
It isn't enough to tell Macintalk what you want said. For the best results you must also tell it how
you want it said. This way you can alter a sentence's meaning, stress important words and specify
the proper accents in polysyllabic words. These things improve the naturalness and thus the
intelligibility of Macintalk's spoken output.

Stress and intonation are specified by numbers. These numbers are single digits 1-9 following a
vowel phoneme code. Stress and intonation are two different things but are specified by a single
number. Stress is, among other things, the elongation of a syllable. It is a logical term, that is, a
syllable is either stressed or not. The presence of a number after the vowel in a syllable indicates
stress on that syllable. The value of the number indicates the intonation. From this point onward,
these numbers will be referred to as "stress marks". Intonation here means the pitch pattern or
contour of an utterance. The higher the stress mark, the higher the potential for an accent in pitch (a
rise and fall). A sentence's basic contour is comprised of a quickly rising pitch gesture up to the
first stressed syllable in the sentence, followed by a slowly declining tone throughout the sentence,
and finally a quick fall to a low pitch on the last syllable. The presence of additional stressed
syllables causes the pitch to break its slow, declining pattern with rises and falls around each
stressed syllable. Macintalk uses a very sophisticated procedure to generate natural pitch contours
based on your marking the stressed syllables.

HOW AND WHERE TO PUT THE STRESS MARKS
The stress marks go immediately to the right of vowel phoneme codes. The word "cat" has its
stress marked after the AE so we get KAE5T or KAE9T. You generally have no choice about the
location of a number, that is, there is definitely a right and wrong. Either a number should go after
a vowel or it shouldn't. Macintalk won't flag an error if you forget to put a stress mark in or if
you place one on the wrong vowel. It will only tell you if a stress mark is in the wrong place, such
as after a consonant.

The simple rules are:
1) Always place a stress mark in a "content" word. A content word is one that contains some
meaning. Nouns, verbs, and adjectives are all content words. "Boat", "huge", "tonsils" and
"hypertensive" are all content words; they tell the listener what you're talking about. Words like
"but", "the", "if" and "is" are not content words. They don't convey any real world meaning at all,
but are required to make the sentence function. So they are given the name "function" words.
2) Always place a stress mark on the accented syllable(s) of polysyllabic words, whether content or
function. A polysyllabic word is any word of more than one syllable. "Macintosh" has its stress
(or accent as it is often called) on the first syllable and would be spelled MAE5KINTAASH.
"Computer" is stressed on the second syllable, giving KUMPYUW5TER. If you are in doubt
about which syllable gets the stress, look the word up in a dictionary and you will find an accent
mark over the stressed syllable. If more than one syllable in a word receives stress, they usually
are not of equal value. These are referred to as primary and secondary stresses. The word
"understand" has its first and last syllables stressed, with "stand" getting primary stress and "un"
secondary, giving AH1NDERSTAE4ND. Syllables with secondary stress should be marked with
a value of only 1 or 2. Compound words (words with more than one root) such as "base/ball",
"soft/ware", "lunch/wagon" and "house/boat" can be written as one word but should be thought of
as separate words when marking stress. So "lunchwagon" would be spelled
LAH5NCHWAE2GIN. Notice that "lunch" got a higher stress mark than "wagon". This is
common in compound words; the first word usually receives the primary stress.

WHAT STRESS VALUE DO I USE?
If you get the spelling and stress mark positions correct, you are 95% of the way to a good
sounding sentence. The next thing to do is decide on the stress mark values. They can be roughly
related to parts of speech, and as a guide, you can use the following table to assign values:

MacinTalk June 13,1985 Page 11

Nouns 5
Pronouns 2
Verbs 4
Adjectives 5
Adverbs 7
Quantifiers 7
Exclamations 9
Articles 0 (no stress)
Prepositions 0
Conjunctions 0
Secondary stress 1,2

The above values merely suggest a range. If you want attention directed to a certain word, raise its
value. If you want to downplay one, lower it. Sometimes even a function word can be the focus
of a sentence. It is quite conceivable that the word "to" in the sentence "Please deliver this to Mr.
Wozniak." could receive a stress mark of 9. This would add focus to the word "to" indicating that
the item should be delivered to Mr. Wozniak no less than in person.

PUNCTUATION
In addition to the period or question mark that is required at the end of a sentence, Macintalk
recognizes several other punctuation marks. These are the dash, comma, and parenthesis. The
comma goes where you would normally put a comma in an English sentence. It causes Macintalk
to pause with a slightly rising pitch, indicating that there is more to come. The use of additional
commas, that is, more than would be required for written English is often helpful. They serve to
set clauses off from one another. There is a tendency for a listener to lose track of the meaning of a
sentence if the words run together. Read your sentence aloud pretending to be a newscaster. The
locations for additional commas should leap out at you.

The dash serves almost the same purpose as the comma, except that the dash does not cause the
pitch to rise so severely. A rule of thumb is: Use dashes to divide phrases, commas to divide
clauses. For a definition of these terms, consult a high school English book.

The parentheses provide additional information to Macintalk's intonation routine. They should be
put around noun phrases of two or more content words. This means that the noun phrase, "a giant
yacht" should be surrounded with parentheses because it contains two content words, "giant" and
"yacht". The phrase "my friend" should not have paren's around it because it contains only one
content word. Noun phrases can get pretty big like, "the silliest guy I ever saw" or "a big basket of
fruit and nuts". The paren's really are most effective around these large phrases; the smaller ones
can sometimes go without. The effect of the paren's is a subtle one and in some sentences you
might not even notice their presence, but in sentences of great length they help provide for a very
natural contour.

CONCLUDING REMARKS
This guide should get you off to a good start in phonetic writing for Macintalk. Of course, the only
way to get really proficient is to practice. Many people become good at it in as little as one day.
Others make continual mistakes because they find it hard to let go of the rules of English spelling (if
there are any).

MacinTalk June 13,1985 Page 12

HINTS FOR INTELLIGIBILITY
There are a few tricks you can use to improve the intelligibility of a sentence. Often, a polysyllabic
word is more recognizable than a monosyllabic word. For instance, instead of saying "Mac", say
"Macintosh". The longer version contains information in every syllable, thus giving the listener
three times the chance to hear it correctly. This can be taken to extremes, so try not to do things
like "This program has several insects in it".

Another good practice is to keep sentences to an optimal length. Writing for reading and writing
for talking are two different things. Try not to write a sentence that cannot be spoken in one breath.
This tends to give the impression that the speaker has an infinite lung capacity. Try to keep
sentences confined to one main idea. Run-on sentences tend to loose their meaning after a while.

New terms should be highly stressed the first time they are heard. If you are doing a tutorial or
something similar, stress a new term at its first occurrence. All subsequent occurences of that term
need not be stressed as highly because it is now "old news".

The above techniques are but a few ways to enhance the performance of Macintalk. You will
probably find some of your own. Have ftin.

MacinTalk June 13,1985 Page 13

MACINTALK PHONEME TABLE c
VOWELS

IY
EH
AA
AO
ER
AX

beet
bet
hot
talk
bird
about

IH
AE
AH
UH
OH
IX

EY
OY
OW

R
W
M
NX
S
F
Z
V
CH
/H
B
D
G

DIPHTHONGS
made
boil
low

CONSONANTS
red
away
men
sing
sail
fed
has
very
check
hole
but
dog
guest

AY
AW
UW

L
Y
N

SH
TH
ZH
DH
J
/C
P
T
K

bit
bat
under
look
border
solid

AX and IX should never be used in stressed syllables

hide
power
crew

yellow
yellow
men

rush
thin
pleasure
then
judge
loch
put
toy
camp

MacinTalk June 13, 1985 Page 14

SPECIAL SYMBOLS
DX pity Q kitt_en
(tongue flap) (glottal stop)

RX car LX call
(postvocalic R and L)

QX = silent vowel

UL - AXL IL = IXL
UM = AXM IM = IXM
UN = AXN IN = IXN

(contractions, see text)

digits 1 -9 stress marks

sentence terminator
? sentence terminator

phrase delimeter
clause delimeter

() noun phrase delimeters

MacinTalk June 13,1985 Page 15

Example of English and Phonetic Texts

Cardiomyopathy. I had never heard of it before, but there it was
listed as the form of heart disease that felled not one or two but
all three of the artificial heart recipients. A little research
produced some interesting results. According to an article in the
Nov. 8, 1984, New England Journal of Medicine, cigarette smoking
causes this lethal disease that weakens the heart's pumping power.
While the exact mechanism is not clear, Dr. Arthur J. Hartz
speculated that nicotine or carbon monoxide in the smoke somehow
poisons the heart and leads to heart failure.

KAA1RDIY0WMAYAA5PAXTHIY. AY /HAED NEH1VER /HER4D AXV IHT BIXF0H5R,
BAHT DHEH5R IHT WAHZ - LIH4STIXD AEZ (DHAX F0H5RM AXV /HAA5RT
DIHZIY5Z) DHAET FEH4LD (NAAT WAH5N OHR TUW5), BAHT (A07L THRIY5 AXV
DHIY AA5RTAXFIHSHUL /HAA5RT RIXSIH5PIYINTS). (AH LIH5TUL
RIXSER5CH) PR0HDUW5ST (SAHM IH5NTRIHSTIHNX RIXZAH5LTS) .
AHK0H5RDIHNX TUW (AEN AA5RTIHKUL IHN DHAX N0WVEH5MBER EY2TH
NAY 5NTIYNEYTIYF0H1R NUW IY5NXGLIND JER5NUL AXV MEH5DIXSIN) ,
(SIH5GEREHT SM0W5KIHNX) KA04ZIHZ (DHIHS LIY5THUL DIHZIY5Z) DHAET
WIY4KINZ (DHAX /HAA5RTS PAH4MPIHNX PAW2ER). WAYL (DHIY IHGZAE5KT
MEH5KINIXZUM) IHZ NAAT KLIY5R, DAA5KTER AA5RTHER JEY2 /HAA5RTS
SPEH5KYULEYTIHD DHAET NIH5KAXTIY1N OHR KAA5RBIN MUNAA5KSAYD IHN
DHAX SM0W5K - SAH5M/HAW1 P0Y4ZINZ DHAX /HAA5RT - AEND LIY4DZ TUW
(/HAA5RT FEY5LYER).

MacinTalk June 13,1985 Page 16

Building Applications Using MacinTalk

Program using MacinTalk written in Lisa Pascal must include the statement

$USES {obj/Speechlntf} Speechlntf;

Such programs (and Lisa Assembler programs) must be linked with the file obj/speechAsm.obj.
The file intrf c/speechintf. text contains a human readable interface. All of these files are on
the 5/85 Workshop Supplement 1 disk.

Macintalk programs can also be written with the Macintosh 68000 Development System (MDS) or
with languages which use the MDS linker. Link these programs with the file speechAsm.Rei,
which can be found in the .Rel Files folder within the MDS Stuff folder on the 5/85
MacStuff 4 disk.

All the MacinTalk routines described in this document are stack-based; assembly language
programs should simply push the routine parameters on the stack before doing a JSR to the routine.
As usual, space for any function result is pushed on the stack first, followed by parameters are in
left to right order; just pass the address of any parameters larger than a longword (e.g. a parameter
of type Str255). For more information please refer to Programming Macintosh Applications in
Assembly Language in Inside Macintosh.

Regardless of your development system, make sure that a copy of the Macintalk driver file is on the
same disk as the application. The MacinTalk file can be found on the 5/85 MacStuff 3 disk in
the MacinTalk V l . l folder. That folder also contains the tools speechLab and
ExeceptionEdit and the example program speakFile with its data file TextToSpeak. The Lisa
Pascal source to SpeechLab can be found in the file example/speakFile. text in the
Application Example Sources folder on the 5/85 Examples 2 disk.

Licensing MacinTalk

You may not distribute a product which uses MacinTalk without the specific written permission of
Apple Computer, Inc. Licenses which permit distributing the latest MacinTalk software are
available for a moderate annual fee. Contact Apple's Software Licensing Department at
(408) 973-4667 for more information.

There may be updates to MacinTalk, but we don't expect the interface to change; i.e. software
which works with MacinTalk 1.1 will compile without changes with any subsequent version. If
there are updates to the MacinTalk software they will be sent to people who have licensed it
Contact the Licensing Department to determine the latest version before shipping a product which
uses MacinTalk.

MacinTalk June 13,1985 Page 17

The Writeln Window

PasLib (Versions 0.6 and later) allows programmers to capture all Writeln output and
handle it in any convenient way. Using this capability, we have written WritelnWindow, a
Pascal unit that captures writelns and displays them in a regular window. This unit is
intended for DEBUGGING PURPOSES ONLY. DO NOT USE IT IN A PRODUCT FOR
RELEASE.

Features
• Automatically saves the last N lines of output. N can be any number subject

to memory limitations.
• The unit handles all events directed to the output window, including update,

activate, and mouse down events. The unit also handles resizing the window
and scrolling back through the output.

• Requires .5K of initialization code and 2K of resident code.
• Can be used with any standard Macintosh program.

Release Information

The 5/85 Workshop Supplement 1 disk contains he interface to the unit in the files
intrfc/WritelnWindow.text (human readable) and obj/WritelnWindow.obj (machine
readable). The source to the unit is in intrfc/WritelnWindow2.text on the 5/85 Workshop
Supplement 2 disk.

To use this unit, you must hook it into your Lisa Pascal application in a number of places.
NOTE: You must use V.0.7 of Paslib. (PasLib V.0.7 consists of several files; it is included
on the 5/85 Workshop Supplement 1 disk). To use the unit, you should include the
following lines
in your USES statements:

{$U obj/PasLiblntf } PasLiblntf,
{$U obj/WritelnWindow } WritelnWindow;

At the start of your application, call WWInit.

PROCEDURE WWInit (numLines, numCharsPerLine: INTEGER);

After you have initialized the Toolbox, call WWNew. Pass this procedure the bounds for
the window, its title, whether it should have a goAway box and be visible, and the font and
font size to use for output. WWNew will allocate a window (in global storage) and setup
MacPasLib to send Writeln output to the window.

PROCEDURE WWNew (bounds: Rect; windowTitle: Str255; goAway: BOOLEAN;
visible: BOOLEAN; linesToSave, outputFont, outputSize:
INTEGER);

Writeln Window 1 June 12, 1985

The unit contains five other procedures; they must be called from your event loop. In each
case, you must determine if the event is directed to the output window. The global variable
gDebugWindowPtr contains the WindowPtr for the output window. Test the contents of
this variable against the window receiving the event.

The four kinds of events are:

1. Activate Events: call WWActivate and pass in the modifiers field of the
event record.

PROCEDURE WWActiveateEvent (modifiers: INTEGER);

2. Update Events: call WWUpdateEvent.

PROCEDURE WWUpdateEvent;

3. Mouse Down Events: call WWMouseDown and pass in the value
returned by FindWindow, the mouse point (from the event record) and the
modifiers (also from the event record).

PROCEDURE WWMouseDown (where: INTEGER;
pt: Point;
modifiers: INTEGER);

4. Key Down Events: call WWReadChr or WWReadLn to capture characters
in your window.

FUNCTION WWReadChr: char;

PROCEDURE WWReadLn (Vars:str255);

The above is the minimum amount of code you need to use this unit in your program. You
might want to do other things; for example, if your window has a goAway box, the unit will
automatically hide the window if the user clicks in it. Your program would then need to
provide a way for the user to make the window visible again. (Call ShowWindow,
passing it the global variable gDebugWindowPtr.) If you want to handle your own
scrolling, you can call WWScroll. If you want to handle sizing the window, you also have
WWInvalGrowBox and WWGrown.

The file example/DebugWindow.text on the 5/85 Examples 1 disk is an example
application which uses the WritelnWindow to display debugging information.

Writeln Window 2 June 12, 1985

File: LoAlpha.Tex! (12 Apr 85)

This m a s t e r e q u a t e file s h o w s all of low memory in alphabetical order .
It is a useful debugging tool, though the p rogrammer should not d e p e n d on
oca t jons that a r e not in the n o r m a e q u a t e fnes; the u s e of the undocumen ted
locations will mos t probably c h a n g e . Labels enc losed in b r a c e s don't really
exist but a r e i n d u d e d for comple t eness ; t h e s e may b e c o m e official labels in
the f u t i r e J n i s fileis not intended to b e u s e d a s an a s s e m b l e r e q u a t e file.
Copyright 1 9 8 3 , 1 9 8 4 , 1 9 0 5 Apple Computer , Inc.

ABusVars
A Count
(AddrErr]
AlarmSta te
ANumber
ApFontID
ApplLimit
Appl Scra tch
ApplZone
A p p P a c k s
AppParmHand le
Aufalntl
Autolnt2
Autolnt3
Autolnt4
AutolntS
Autoint6
Autolnt7
BasicGlob
BootDrive
BufPtr eufTgDate

ufTgFBkNum
BufTgFFIg
Buf tgFNum
IBusError]
Care tTime
IChkErrqr}
ChogserBi ts
CkdDB
CloseOrnHook
[Coproces]
CoreEdi tVars

Crs rCoup le
Cr s rNew
Crs rObscure
CrsrPin
CrsrRect
C r s r S a v e
Crs rSca l e
CrsrSta te
Crs rThresh
CrsrVis
CurActivate
CurApName
CurApRefNum
CurDeac t ive
CurOeKind

SurDraaAction
urFMDenom

CurFMDevice
CurFMFace
CurFMFamily
CurFMInput
CurFMNeedBits
CurFMNumer
CurFMSize
CurJTOffset
^ Ul I l l U f #
- r P a g e O p t i c

C u r P i t c h ~ r t l 0 n

CurrentAS
C u r S t a c k B a s e
DABeeper
DAStrings
g e f t t S t a d i

OeskHook
DeskPat te rn
JpeskPort}
DiskVars
DisgatchTab
DlgFont
DoubleTime
Drag F lag
DragHook
DragPa t te rn

BrMstrBlk
rvQHdr

DSAIertRect
DSAIertTab
D S D r a w P r o c
D S E r r C o d e
DskErr
DskRtnAdr
DskSwtchHook
DskVerify
DskWrl 1
D S W n d U p d a t e
EjectNotify
endofvars
E rCode
Even tQueue

BufCnt

EQU
EQU

ExtFSHgpk
ExtStsDT
FCBSPtr
FileVars
Filler3A

II8CF

|8to
1834
I83C

$ 8 0 3 BDO ~C
X _ J C
| A 6 4
9 1 0
S 0 0
iA68
1A22

: >A46
S 9 4
I98E S8C
888
888
S 8 D
8 9 0
;98A
8 3 4

! 1A5A
S 3 6
280
S 0 4
S08
A 9 C

: AAO
3 2 2
3 5 2

! iA6C
IIA3C
! I9E2
222
4 0 0

! AFA
! I2F0
IIA44
II9F6

IA34
3 4 C

18
. . . 8
| 2 B A

3 3 4
iAFO
1142
i l24

i12C
1112F
;15D
3 3 8

: 3 4 0
! 3 A 2
1114A
11154
3 E 6

0 8 local variables u s e d by AppleTalk
0 2 # t imes this alert called [word]
04 a d d r e s s error

§2 &^ i i8& p e d ' B i t 0 = e n a b l e [b y t e l
02 resource ID of application font [word]
0 4 application limitTpointer]
OC application scratch a r e a [12 Bytes]
0 4 application h e a p z o n e [pointer!
2 0 p a c k a g e s ' c o d e [8 handles]

hand le to hold application pa rame te r s
evel 1 auto-vector
evej 2 auto-vector

3 auto-vector
4 auto-vector

evel 5 auto-vector
evel 6 auto-vector
evel 7 auto-vector

04 Basic globals [pointer]
0 2 drive number of boot drive [word]
0 4 top of application memoiy [pointer]
0 2 tome s t a m p [word]
02 logical block number [word]
02 flags [word]
0 4 file number [long]
0 4 bus error
0 4 ca re t blink ticks [long]
04_CHK, CHK2 insfrucfion error
bit 7 = 0 . don t run; bit 6 = 0, gray out ATalk
0 2 u s e d w h e n searching the directory
0 4 hook for closing d e s k o rnaments
0 4 cop roces so r protocol violation
0 C c o r e edit variables [12 bytes]
0 4 Addre s s of d a t a under cursor Hong]
01 Cursor locked ou t? [byte]
01 cursor coupled to m o u s e ? [byte]
01 Cursor c h a n g e d ? [byte]
01 Cursor obscure s e m a p h o r e [byte]
0 8 cursor pinning rectangle [8 bytes]
0 8 Cursor hit rectangle [8 bytes]
4 0 d a t a under the cursor [64 bytes]
01 cursor s c a l e d ? [byte!
02 Cursor nest ing level]word]
0 2 del ta threshold for m o u s e scaling [word]
01 Cursor visible? [byte]
04 window slated for activate event [pointer]
2 0 n a m e of application [STRINGI31 if
0 2 refNum of ^ p l i c a t i o n ' s resFile [word]
0 4 window slated for deact ivate event [pointer]
0 2 window kind of deact ivated windowTwordi
0 8 implicit act ionProc for dragControi [pointer]
0 4 current denominator of sca le factor
0 2 current font device
01 current font face
current font family
04 quickdraw FMInput Record [pointer]
01 boolean specifying whe ther it n e e d s strike
0 4 current numerator of sca le factor
0 2 current font s ize
0 2 current jump table offset [word]
02 r e fe rence number of current m a p [word]
0 2 current p a g e 2 configuration [word]
0 2 current pitch value [word]
0 4 current value of ASTpoinfer]
0 4 current s tack b a s e [pointer!
0 4 b e e p routine [pointer]
10 paramTextsuos tu tu t ion strings [4 handles]
0 4 defaul t s ize of s tack [long]
04 pointer to default VCB

8 t S ^ M n »] d e s k [p o i n t B r]
0 4 (reserved)
Disk driver variables [62 bytes]
A-Trap dispatch table [1024 bytes]
02 defaul t dialog font ID [word]
0 4 double click ticks [long]
0 4 implicit pa ramete r to DragControi [word]
0 4 u s e r hook during dragging [pointer]
0 8 DragTheRgn pattern IB bytes]
0 2 m a s t e r directory block in a volume
OA q u e u e heade r of drives in sys tem [10 bytes]
0 8 rectangle for disk-switch alert [8 bytes]
0 4 sys tem error alerts [pointer]
04 a l t e r n a t e s y s e r r o r a r a w p r o c e d u r e [p o i n t e r]
0 2 last sys tem error alert ID
0 2 disk routine result c o d e [word]
0 4 t e m p for disk driver [pointer]
0 4 hook for disk-switch dialog
01 u s e d by 3 .5 disk driver for read/verify [byte]
01 try 1-1 disk writes? fbytel ' l r J

01 GNE not to paintBenind L)S AlertRect? [byte]
0 4 e jec t notify p rocedure [pointer]
end of final defined vars

a s y n c routines he re

Finder
F inderName
FLckUnlck
FlushOnlv
FMDefaultSize
FMDotsPerlnch
FMgrOutRec
FMStvleTab
FontFlag.
[FormatEr]
FQutAscent
FQutBold
FQutDenom
Fgu tDescen t

FOutFontHandle
FOutltalic
FOutLeading
FOutNumer
FOutRec
FOutShadow

FrcSync
FSBusv
F S g l e b i s a b i e

F S O H e a d
FSQTail
F S Q u e u e H o o k
F S T e m p 4
F S T e m p 8
fsVarEnd
Ge tPa ram
GhostWindow
GotStrike
GrafBegin
GrafEna
GrafVar

GZ^toveHnd
GZRoottHnd
GZRootPtr
HeapEnd

HpChkl
AZNotHy
IconBitmap

llegal]
ntFrag WM
AdrDisk
Control
Crs rObscure
CrsrTask
DiskPrime
Fetch
FigTrkSpd
Fontlnfo
GNEFilter
HideCursor
InitCrsr
lODone
KybdTask
M a k e S p d T
ournalFlaa

lakeSpdTbl ' 49 toumalRei
RdAddr
RdData
Recal

- R e S e e k
JScrnAddr
J S c r n S i z e
J S e e k
JSe tCr s r
J S e t S p e e d
JSetUpPol l
JShe l l
JSh i e ldCur so r
J S h o w C u r s o r
J S t a s h
J S w a p F o n t
J U p d a t e P r o c
J W a k e U p
JWrData
KbdTyi

0 4 oom m a nd done hook
lysEvtBuf - 1 [word]

10 ^ 5 C ^ g ^ t s secondary dispatch tbl. [16 bytes]

file sys tem'vara [184 bytes]
u s e a by s tandard file

I Vars
<ey1 Trans
<ey2Trans
(eyLast
<eyMap
(e y p a d M a p
<eyRepThresh
<eyRepTime
(eyThresh
(eyTime
.astLGIobal
.astPGIobai
.astTGLobal
. aunchFlag
.GraUump
. ine1010
. ine1111
.o3Bytes
.oaderPBIock
LoadFiller)
.oadTrap

QU
QU
QU
QU
: o u
QU
QU
QU
Q U
QU
QU
QU

_QU
.EQU
" Q U

QU
QU
QU
QU
QU
QU
QU
QU
Q U
QU
QU
QU
QU

m
QU
QU

EQU

| 8 u
EQU

IAE
| 9 A 6
! 1998
J I9A4

9 9 A
I99F

J 9 A 8
| 9 A A
£ 9 9 8
; 9 A 3
. 9 A 0

9 A 1
9 A 2
I9A9

: : 9 A 7
A 4 A
3 4 9
•60
IA63
3 6 0
3 6 2
3 6 6
3 E 2
3 D E
3 D 6
3 F 6
i1E4
IA84
>986 B00

J 8 F 2
$ 8 2 4

9 E E
3 3 0
3 2 8

i 3 2 C
! (114
JOBOO
$316

3 3 C
IAOE 110
I15F
1 E 0

2 4 2
» 1 C

m
J8F4
p.22

8E4
29A
BOO
i814
I8FC 121A

J 2 4 E
' 8DE
S8E8

22A
>22E
23E

i 124A
; a o c
810
2 3 6

p 1 8
p 5 6
I23A

; 2 1 2
£8 ;

^ 8 m)
[20
>46

$232 21E
1216
;29E

J2A2
$184
1174
i17C
1190
18A
18E

.186
$944
S 5 4

; AFC
>902
I824

m
>31A
I93A

01 private Finder flags [byte]
16 Tinder" n a m e [STRINgH
01 flag u s e d by SetFilLock.HstFilLock
01 flag u sed by UnMountVol.FlushVol,
01 default s ize [bytej
04. h,v dotsPerfnch of current device
quickdraw FontOutput Record [pointer]
18 style heuristic table supplied by device
01 font manage r loop flag [byte]
04 format error
01 height a b o v e base l ine
01 boloina factor
04 point for denominators of sca le factor
01 height below base l ine
02 error c o d e
01 extra horizontal width
04 handle to font bits
01 italic factor
01 s p a c e be tween lines
04 point for numerators of s ca l e factor
Font Manager output record
01 shadow factor
01 underline offset
01 underline halo
01 underline thickness
01 (reserved)
01 maximum width of charac ter
06 floating point s ta te [6 bytes]
01 when set , all fs calls a re syne 'ed

(10 bytes)
04 ptr to 1 st q u e u e d cmd: 0 w h e n queue empty
04 ptr to last q u e u e e l ement
04 hook to capture all F S calls
04 used by r ename , ckfilmod
0 8 used by r e n a m e
end of file sys tem variables
sys tem parameter scratch 2 0 bytes]
04 window hidden from FrontWindow [pointer]
01 Do w e have the strike? [bytej
graf global a r e a
end of graphics globals

04 rounded gray desk region [handle]
04 moving handle for GrowZone [handle]
04 root handle for GrowZone [handle]
04 root pointer for GrowZone [pointer]
04 end of h e a p [pointer]
start of the old sys t em h e a p
old-world n a m e tor MacPgm
04 world s w a p s notify procedure [pointer]
0E bitmap used for plotting things
04 illegal instruction
01 reduce interrupt disable time w h e n bit 7 = 0
04 IWM b a s e a d d r e s s [pointer]
04
04
04
04 a d d r e s s of CrsrVBLTask [long]

04 fetch a byte routine for drivers [pointer]

04 jump entry for FMFontMetrics [long]
02 GetNextEvent filter proc [pointer]
04
04
04 lODone entry location [pointer]
04 keyboard VBL task hook [pointer]
04
02 journaling s ta te [word]
02 Journalling driver's retnum [word]
04
04
04
04
04
04
04
04
04
04
02 journaling shell s t a t e [word]

04
04 s t a sh a byte routine for drivers [pointer]
04 jump entry for FMSwapFont [long]
04
04
04
01 keyboard model number [byte]
04 Keyboard m a n a g e r variables [4 bytes]
04 keyboard translator p rocedure [pointer]
04 numeric keypad translator procedure [pointer]
02 ASCII for last valid k e y c o d e [word]
08 bitmap of the k e y b o , — ' ' 1

04 bitmap for numeric p
02 key repea t s p e e d [word]
04 fickcountwhen key w a s last repea ted [long]
02 threshold for key repea t fword]
04 tickcount when KEYLAST w a s ree'd [long]
a d d r e s s pas t last loader global
a d d r e s s of last printer global
04 (reserved)
01 from launch or chain [byte]

04 1010 emulator trap (sys tem routines)
04 1111 emulator trao (reserved)
04 cons tan t$00FFFFFF[long]
OA pa ram block for ExitToShell [10 bytes]
04 (reserved)
01 trap before launch? [byte]

Low Memory in Alphabetical Order Page 1

LoadVars
L v l l D T
Lvl2DT
[MacJmp]
MacPom
MaskBC
MaskHandle
MaskPtr
MaxDB
MBarEnable
MBarHook
MBState
M B n d o
MemErr
MemTop
MenuFlash
MenuHook
MenuList
Microsoft
WinStack
MinusOne
MMDe (Flags
MmlnOK
MonkeyLives
MouseMask
MouseOffset
MrMacHook
MTemp
NewMount
N i b l T b l
N x t D B
OldContent
OldStructure
OneOne
PaintWhite
Params
PollProc
P o l l R t n A d d r
PollStack
PortAUse
PortBUse
P r i n t rr
PnntVars

® £ G e
S i s .
Safe"9

Spaa fesPPCi
PfsErrProc

ffiass0*!

S
'ZWJ™'
laveS^Handle

m *

-M"
S%lfs°nT

S ^ ' e
gggig*

j s r
g"a'Vars
^ S a j e O i s k

^oundAclive

QU
QU
QU
QU au
QU

QU
§y
§y
QU
QU
QU
QU

QU
QU
QU
QU
QU

QU
QU
QU
QU
QU

au

19)

•undi
oundi

Soundl
joundl

Base

Last
evel

oundPtr
SoundVars
SoundVBL
jPAIarm
sPATalkA
SPATalkB

JlikCaret

SPfSS?0

EOU
.EQU
.EQU
.EQU

§81
EQU

P EQU

I i9E6
A02

::9DC
3A4

S13E :;128
: ;13A
! 290
1291
! 944
8 4 4

!i20
312 : ;igs 3

| 282
I82C
347

I3EE
I28A 0
1A60
1AF2 : o

: A5E
: A5C
:;A8C
:;A8C
J36A
1156

! 2AE
S 8 0
IA28

: LA90
I 830
! A9 .

IA „ 2
i ? C E

868
880

:S64
i 8 6 0
: 86C aso
: 196A
! 870

S1F9
S1FA

loader variables [68 bytes]
20 Interrupt level 1 dispatch table [32 bytes]
20 Interrupt level 2 dispatch table [32 bytes]
04 (reserved)
04 reserved lor MDS 2 [long]
Memory Manager Byte Count Mask pong]
Memory Manager Handle Mask [long]
Ktemory Manager Pointer Mask [long)

02 menuBar enable for desk accessories[word]
04 user hook before MenuHook [pointer]
01 current mouse button state [byte]
04 tick count @ last mouse button [long]
02 last memory manager error [word]
04 top of memory [pointer]
02 flash feedback count [word]
04 user hook during menuSelect [pointer]
04 current menuBar list structure [handle]
old-world name for ApplScratch
04 min stack size used in InitApplZone Hong]
04 constant $FFFFFFFF pong]
02 default zone flags [word]
01 initial memory mgr checks ok? [byte]
02 monkey lives if > - 0 [word]
04 V-H mask for ANDing with mouse [long]
04 V-H offset for adding after ANDing [long]
old-world name for MBarHook
04 Low-level interrupt mouse location [long]
02 used by MountVol to flag new mounts
04
02

. . „ [long]
02 erase newty drawn windows? [word]
32 50 bytes long. For I/O parameter blocks.
04 SCC poll data procedure [pointer]
04 'other driver locals [pointer]
04 SCC poll data start stack location [pointer]
01 bits 0-3: port type-bit 7 : 0 = in use
01 port B use, s ame format as PortAUse
Current print error. Set to iPrAbort to abort
10 print code variables [16 bytes]
04 privilege violation
04 PWM Duffer 1 (or 2 if sound) [pointer]
02 current PWM value [word]
01 guickdraw is initialized [byte]
04 RAM base address [pointer]
04 un-jerked mouse coordinates [long]
01 flag used by OpenRF, FileOpen
04 ptrto VCB of on-line or ext fs volume
04 resource driver handle (-1 until initialized)
08 reserved for reset vector
02 Resource error code [word]
04 Resource error procedure [pointer]
08 reserved for reset vector
02 Auto-load feature [word]
02 (reserved)
old-world name for ResumeProc
04 Resume procedure from InitDialogs [pointer]
38 reg save during async calls.
04 random seed/number Oong]
04 ROM base address [pointer]
04 system font [handle]
04 saved bits under a menu [handle]
04 address of Save failsafe procedure
04 seg 0 handle [handle]
04 Sate SP for restart or save
02 Enable update accumulation? [word]
04 temporarily saved visRegion [handle]
01 SCC read reg 0 last ext/sts rupt - A [byte]
01 SCC read reg 0 last ext/sts rupt - B byte]
04 SCC base read address [pointerl
04 SCC basewrite address {pointer]
02 validation byte [word]
end of scrap vars
04 memoiy scrap [handle]
scrap length [long]
04 pointer to scr ip name [pointer]

M k §gPortA
m
M m

fa fecherj
l y s f e
life1®*
f s B R "
I t e r iysZone I|0Oata
TFr̂ rck
icUoTexi

J^effpRect Recal handle
Crsr

iOeMenu

&
f § g »
t sF * *
$ & •
fess|l

flwST
p r

i f

EQU

scrap tile name [STRINGM 5]]
scrap manaoer variables [32 oyfes]
14 scratch [20 bytes]
08 scratch 8 bytes]
01 screen dump enabled? [byte]
01 FF dumps screen, FE dumps front window [byte]
02 rowBytes of screen [v dl
08 Screen driver variables [8 bytes] (MacsBug)
02 screen horizontal dots/inch [word]
04 Screen Base [pointer]
02 screen vertical dotsrtnch [word]
01 old-world name for Finder
01 Global v me(sound) control [byte]
10 async driver variables [16 bytes]
01 enable SysEvent calls Trom GNE [bvte]
02 last vRefNum seen by standard filelword]
04 3-1/2 disk dnver vars [pointer]
01 sound is active? (byte!
04 sound bitMap [pointer]
04 sound driver DCE [pointer]
address past last sound variable
01 current level in buffer [bytel
04 4VE sound definition table [pointer]
Sound driver variables [32 bytes]
10 vertical retrace control element [16 bytes]
04 alarm time [long]
01 Appletalk node number hint for port A
01 AppleTalk node number hint for port B
01 double dick/caret time in 4/60ths[2 4-bit]
01 config bits: 4-7 A, 0-3 B
02 default application font number minus 1 [word]

01 kbd repeat thresh in 4/60ths [2 4-bit]
01 miscellaneous (1 byte]
01 miscellaneous [1 byte]
02 SCC port A configuration [word]
02 SCC port B configuration word
01 print stuff [byte]
04 spurious interrupt
01 validation field ($A7)
01 volume control [byte]
04 Lowest stack a s measured in VBL task [pointer
08 reserved for application switcher (8 bytes)
start of system communication area
04 system event queue element buffer [pointer]
02 system event mask [word]
02 reference number of system map [word]
04 system map [handle]
system parameter memory [20 bytes]
10 Name of system resource file [STRING[15]]
02 version # of RAM-based system [word]
04 system heap zone [pointer]
02 sector tag info for disk drivers [14 bytes]
01 re-enteringSystemTask [byte]
04 textEdit doText proc hook [pointer]
scratch rectangle]8 bytes]
04 textEdit recalText proc hook [pointer]
04 textEdit Scrap [handle]
02 textEdit Scrap Length [word]
04 default word break routine [pointer]
44 Cursor data, mask & hotspot [68 bytes]
02 ID of hilited menu [word]
04 current heap zone [pointer]
04 Tick count, time since boot [long]
04 clock time (extrapolated) [long]
01 Lisa sub-tick count [byte]
04 hook for external file systems
base address of toolbox gtobals
08 scratch area [8 bytes]
toolbox variables
04 topmost map in list [handle]
04 trace
40 TRAP #0-15 instruction vectors
04 cpTRAPcc, TRAPcc, TRAPV instruction error
20 unassigned, reserved by Motorola
40 unassigned, reserved by Motorola
04 unassigned, reserved by Motorola
04 uninitialized interrupt
02 count of entries in unit table [word]
04 unit I/O table [pointer]
OA VBL queue header [10 bytes]
OA VCB queue header
04 VIA base address (pointer]
04 Z-ordered linked list of windows [pointer]
04 window manager 's grafport [pointer]
01 window manager initialized? [byte]
04 zero divide

Low Memory in Alphabetical Order Page 2

File: LoNumeric.Text (12 Apr 85)

This master equate file shows all of low memory in numerical order.
It is a useful debugging tool, though the programmer should not depend on
ocations that a re not in the normal equate files; the u s e of the undocumented
locations will most probably change . Labels enclosed in braces don't really
exist but are included for completeness; these may become official labels in
the future. This file is not intended to be used a s an assembler equate file.
Copynght 1983 ,1984 ,1985 Apple Computer, Inc.

$0
: no
i ;14

! >20
! 124

130
134

140
180
! 6 4

: 70
I 74
I 7 8
! 7C

1100 o
1102

.EQU 1104
' 1106

1108
HOC
1110
1114
1118
111C
1120
1124

: 1128

: 112F
11130
11134
11138
I113A
113E

11142
! 1144
11146
1I14A
11154
1156

1115A
! 1150 H15D

.EQU

l I1S

111F9
: I1FA
! 11FB
i HFC
! 11 FE
200
2 0 4

J 0 7
$208
! 2 0 9
1120A

08 reserved for reset vector
I bus error

04 address error
04 illegal instruction
04 zero divide
04 CHK, CHK2 instruction error
04 cpTRAPcc.TRAPcc.TRAPV instruction error
04 privilege violation

04 1010 emulator trap (system routines)
04 1111 emulator trap (reserved)
04 unassigned, reserved by Motorola
04 coprocessor protocol violation
04 format error
04 uninitialized interrupt
20 unassigned, reserved by Motorola
04 spurious interrupt
04 level 1 auto-vector
04 level 2 auto-vector
04 level 3 auto-vector
04 level 4 auto-vector
04 level 5 auto-vector
04 level 6 auto-vector
04 level 7 auto-vector
40 TRAP #0-15 instruction vectors
40 unassigned, reserved by Motorola
start of system communication a rea
02 monkey lives if >= 0 [ird]
02 screen vertical dots/inch [word]
02 screen horizontal dots/inch [word]
02 rowBytes of screen word]
04 top of memory [pointer]
04 top of application memory [pointer]
04 Lowest stack a s measured in VBL task [pointer]

I end of h e a p [pointer]
04 current heap zone [pointer]
04 unit f O table [pointer]
04 (reserved)
04 temp far disk driver fpointer]
04 "other" driver locals [pointer]
01 used by 3 .5 disk driver for read/verify [byte]
01 trap before launch? [byte]
01 initial memory, mgr checks ok? [byte]
01 try 1-1 disk writes? [byte]
04 application limit pointer]
04 3-1/2 disk driver vars [pointer]

ent PWM value [word]
c k t a 04 SCCpo l data start &tacklocation [pointer]

04 SCC poll da ta procedure [pointer]
02 disk routine result code [word]
02 system event mask [word]
04 system event queue element buffer [pointer]
OA event queue header [10 bytes]
02 max number of events in SvsEvtBuf-1 [word]
04 random seed/number [long]
02 ve r s ion#ofRAl ledsys temjword]
01 enable SysEvent calls from GNETbytej
01 GNEnonopa in tBeh ind DSAIertRect? [byte]
01 font manager loop flag [byte]
01 reduce interrupt disable time when bit 7 = 0

VBL queue header [10 bytes]
04 Tick count J m e since boot [long]
04 tick count @ last mouse buflonTlong]
01 current mouse button state [byte]
01 Lisa sub-tick count [byte]
08 bitmap of the keyboard [2 longs]
04 bitmap for numeric pad-18bits [long]
02 ASCIIfor last valid keycode 3rd
04 tickcount when KEYLAST was rec d [long]
04 tickcount when key w a s last repeated [long]
02 threshold far key repeat [word]

20 Interrupt level 1 dispatch table [32 bytes]
20 Interrupt level 2 dispatch table 32 bytes]
02 count of entries in unit table ird]
04 VIA b a s e address [pointer]
04 SCC b a s e read address [pointer!
04 SCC b a s e write address [pointer]
04 IWM b a s e address [pointer]
system parameter scratch [20 bytes]
14 scratch [20 bytes]
system parameter memory [20 bytes]
01 validation field ($A7) [byte]
01 AppleTalk node number hint for port A
01 AppleTalk node number hint for port B
01 config bits: 4-7 A, 0-3 B
02 SCC port A configuration [word]
02 SCC port B configuration word
04 alarm time [long]
02 default application font number minus 1 [word]
01 kbd repeat thresh in 4/60ths [2 4-bit]
01 print stuff [byte]
01 volume control [byte]
01 double click/caret time in 4/60ths[2 4-bit]
01 miscellaneous [1 byte]
01 miscellaneous 1 byte
04 dock time (extrapolated) [long]
02 drive numte r of boot dnve [word]

02 I
used I

KbdVars
JKybdTask
KbdType
AlarmState
MemErr
DiskVars
JFigTrkSpd
JDiskPrime
JRdAddr
JRdData
JWrData

j | e t U p P o l l

JControl
JWakeUp
JFieSeek
JMakeSpdTbl
JAdrDisk
J S e t S p e e d
NiblTbl
SdVolume
Finder
SdEnable
SoundVars

oundPtr
oundBase
oundVBL

SoundActive
SoundLevel
JurPitch
SoundLast

SDHndr

$ortAUse
PortBUse
ScreenVars
JGNFFilter
KeylTrans
KeygTrans
Sys4pne
ApplZone

RAMBase
Bas'icGlob
DSAIertTab
ExtStsDT
SCCASts
SCCBSts
SerialVars
ABusVars
FinderName
DoubteTime
CaretTime
ScrDmpEnb
ScrDmpType
T a g p a f a
BufTgFNum

Bugf lFB^Jum
BufTgDate
DrvCWdr
PWMBuf2
ifacPgm

anve numDer ot Doot orive iwordj
journaling shell s ta te [word]

efNum seen by standard file [word]
id by standard file

Lo3 Bytes
MaskBC
MaskHandle
MaskPtr
MinStack
DefltStack
MMDe (Flags
GZRootHna
GZRootPtr
GZMoveHnd
DSDrawProc
EjectNotify
IA23slotify
endofvars
FiieVars
CkdDB
NxtDB
MaxDB
FlushOnly
RegRsrc
FLckUnlck
FrcSync
NewMount
DrMstrBlk
FCBSPtr
DefVCBPtr
VCBQHdr
FSQHdr
FSBusy
FSQHead
FSQTail
RgSvArea
E i t ode
Params
FSTemp8
FSTemp4
FSQueueHook
ExtFSHook
DskSwtchHook

fa
fsVarEnd

DSAIertRect
DispatchTab

E Q U

E Q U

$216
1121A
121E 1121F
220

l 222
1222
11226
1122A
1122E
1 2 3 2
1 2 3 6
1123A
1123E
1 2 4 2
1 2 4 6
I I 2 4 A
1 I24E
1 2 5 2
1 2 5 6
1I25A
1260
1 2 6 1
1 2 6 1
1262
1262
1266
I I 2 6 A
H 2 7 A
H 2 7 E
H 2 7 F
l 280
1282
1282 1128A
H 2 8 E
1290
1291
1292
H29A
H29E
H2A2
12A6

H2AA
H2AE
I2B2

112B6
H2BA
H2BE

fi
2D8

I12E0
112F0
112F4
12F8

' I2F9 2FA
II2FC

3 0 0
302

! 304
I 3 0 8
1312
I 3 1 6
3 1 6
131A • 131A .aiA 131A

I 31E
I 3 2 2
l 3 2 6
I 328
i 32C
l 3 3 0
l 3 3 4

I 33C
3 4 0
3 4 0
3 4 0
3 4 2
3 4 4
3 4 6
3 4 7
3 4 8
3 4 9

H34A
134C
134E
3 5 2
3 5 6

1360
1360
1362
1366
1I36A
113A2
H3A4
13D6 iaDE
H3E2
I3E6

13EA
13EE
3 F 2

! 3 F 6
l !3F6
3 F 8
4 0 0

04 Keyboard manager variables [4 bytes]
04 keyboard VBL task hook [pointer]
01 keyboard model number byte
01 Bif7=parity, Bit6=beeped, BitO=enable [byte]
02 last memory manager error [word]
Disk driver variables [62 bytes]

04
04
04
04
04

04
04
04
04
04
04
04
04
01 Global volumefsoun
01 private Finder flags
old-world name for Fine
Sound driver variables
04 4VE sound def

d) control teyte
byte]
er
32 bytes]
n table [pointer]

04 sound bitMap [pointer]
10 vertical retrace control element [16 bytes]
04 sound driver DCE [pointer]
01 sound is active? [bytel
01 current level in buffer [byte]
02 current pitch value [word]
address past last sound variable
08 reserved for application switcher (8 bytes)

J u — " '""alized) 04 resouroB driver handle (-1 until initialized)

01 Lits 0-3: port type- bit 7 : 0 = in u s e
01 port B use, s ame format a s PortAUse
08 Screen dnver variables [8 bytesl (MacsBua)
02 GetNextEvent filter proc [pointer]
04 keyboard translator procedure [pointer]
04 numeric keypad translator procedure pointer]
04 system heap zone [pointer]
04 application heap zone [pointer]
04 ROM base address [pointer]

•IAM base address fpointer]
04 Basic globals [pointer]
04 system error alerts [pointer]
10 SCC ext/sts secondary dispatch tbl. [16 bytes]
01 SCC read reg 0 last ext/sts rupt - A [byte]
01 SCC read reg 0 last ext/sts rupt - B [byte]
08 async driver variables [16 bytes]
08 local variables used by AppleTalk
16 T i n d e r name [STRING[lSf]
04 double dick ticks [long]
04 caret blink ticks [longf
01 screen dump enabled? [byte]
01 FF dumps screen, FE dumps front window [byte

! sector tag info for disk drivers [14
04 file number long]
02 flags [word]
02 logical block number [word]
02 time stamp Iwordj
OA queue header of drives in system [10 bytes]
04 PWM buffer 1 (or 2 if sound) [pointer]
04 reserved for MDS 2 [long]
old-world name for MacPgm

lf.sk Pong]
... , . . . — .Jiongl
Memory Manager Pointer Mask (longf
04 min stack size used in InitApplZone pong]
04 default size of stack [iongT
" ' ' - ~ ' /ord]

— / Z o n e [hi
04 root pointer for GrowZone [pointer]

02 default zone flags | [wordr
04 root handle for GrowZone [la.ndle]

04 movir landle for GrowZone [handle]
04 alternate syserror draw procedure [pointer]
04 eject notify procedure [pointer]
04 world swaps notify procedure [pointer]
end of final defined vars
file system vars [184 bytesl
02 used when searching the directory

02
01 flag used by UnMountVol.FlushVol,
01 flag used by OpenRF, FileOpen
01 flag used by SetFilLock.RstFilLock
01 when set, all fs calls are syne'ed
02 used by MountVol to flag new mounts
02 master directory block in a volume
04 p t r toFCBs
04 pointer to default VCB
OA VCB queue header
file system queue header (10 bytes)
02 non-zero when the file system is busy
04 ptr to 1st queued c m d : o when i sue empty
04 ptr to last queue element
38 reg save during async calls.
02 report errors during async routines here
32 50 bytes long. For VO parameter blocks.
08 used by rename
04 used by rename, ckfilmod
04 hook to capture all FS calls
04 command done hook
04 hook for disk-switch dialog
04 ptr to VCB of off-line or ex l f s volume
04 hook for external file systems
end of file system variables
02 (reserved)
08 rectangle for disk-switch alert [8 bytes]
A-Trap dispatch table [1024 bytes]

Low Memory in Numerical Order Page 1

G r a _
JHide jin Airsor
JShowCursor
JShieldCursor
JScrnAddr
JScmSize
JlnitCrsr
JSetCrsr

re
JUpdateProc
LGrallump
jrafVar GrafV
SgrnB
MTerr -.Temp
Raw Mo use
Mouse
CrsrPin
CrsrRect
TheCrsr
CrsrAddr
CrsrSave
CrsrVis
CrsrBusy
CrsrNew
CrsrCouple
CrsrState
CrsrQbscure
CrsrScale

(Jtou

SSSgf
wmxiat QDEiost JFetch
JKJQone

S i r
gfflfSSfefc" e
HoaderPBIock
LpanSnp
PrintErr

CoreEditVars ScrapVars
Scraplnto
saapHandle

ToolVars
TodGBase
RomFontO
ApFontlD
Gotstrike
FMQefaultSize
CurFMFamily
CurFMlnput
CurFMSize
BurFMFaoe

urFMNeedBits
vice

CurFMNumer
CurFMDenom
FOutRec

FQuthrror
FOutFontHandle

FOutltalic
FQutULQffset
FOutULShadow
FOutULfhick
FOutshadow
FOuExtra
FOutAscent
FQutDescent
FOutWidMax
FQutLeading
FOutUnusea
FOutNumer
FOutDenom
FMDotsPerlndi
FMStyleTab

doI Scratch
WindowList

a te
PaintWnite
WMgrPort
DesKPort
OldStructure

11900
! 8 0 0
I 802
! S 0 3
8 0 4

1908

.EQU

1 8 1 0
J 8 3 0
! 8 3 4
| 8 3 6

S3A
J 8 4 4
: 8 4 4
8 4 4

! 8 4 6
8 5 4
8 5 4
860

:I960
I 8 6 0
I 8 6 4
I 8 6 8
,96A

: 8 6 C
: 8 7 0
i s e c
880
880
! 880
I 8 8 4
I 886
! 8 8 7

I98E
8 9 0
8 9 4
8 9 8
8 9 8

, _ j a
| 9 9 E
H99F

I9A0
I9A1
8A2
8A3

II9A4
II9A5
! 8A6
! I9A7
S9A8
H9A9

04
04
04
04
04
04
04
04

04 Screen Base [pointer]
04 Low-level interrupt mouse location [long]
04 un-ierked m o u s e coordinates [long]
04 processed m o u s e coordinate [long]
08 cursor pinning rectangle [8 bytes]
08 Cursor hit rectangle [8 bytes]
44 Cursor data, m a s * & hots pot [68 bytes]
04 Address of data under cursor [long]
40 data under the cursor [64 bytes]
01 Cursor visible? [byte]
01 Cursor locked out? [byte]
01 Cursor changed? (byte]
01 cursor coupled to m o u s e ? fbyte]
02 Cursor nesting level [word]
01 Cursor obscure semaphore [byte]
01 cursor scaled? [byte]
0 2 " "
04 V-H mask for ANDing with mouse [long]
04 V-H offset for adding after ANDing [long]
02 Journaling state
04 jump entry for FMSwapFont Hong]
04 jump entry for FMFontMetrics pong]
02 Journalling driver's refnum [wordf
02 delta threshold for mouse scaling [word]
04 address of CrsrVBLTask [long] '
end of graphics globals
01 window manager initialized? [byte]
01 kdraw is i
04 fetch a byte routipe for drivers [pointer]
04 stash a Byte routine for driversTpointer]
04 lOuone entry location Tpointer]
loader variables [68 bytesj
02 refNum of application's resFile [word]
01 from launch or chain [byte]
01 (reserved)
04 current value of A5 (pointer]
04 current stack b a s e [pointerr
04 (reserved)
20 name of application [STRING[31]1
04 seg 0 handle [handle]
02 current jump table offset [word]
02 current page 2 configuration [word]
02 (reserved)
OA param block for ExitToShell [10 bytes]
address past last loader global
10 print code variables [T6 bytes]
Current print error. b e t t o iPrAbort to abort
bit 7 = 0, don't mn; tat 6 = O^pray out Atalk

0C core edit variables [12 bytes]
scrap manager van e s [32 bytes]
scrap length [long]
04 scraplength pong]
04 memory scrap [handle]
02 validation byte [word]
02 scrap state [word]
04 pointer to s ap name [pointer]
10 scrap file name [STRING[15J
end of scrap vars

olbox variables
b a s e address of toolbox globals
04 system font [handle]
02 resource ID of application font [word]
01 Do we have the strike? [byte]
01 default size [byte]
current font family
04 quickdraw FMInput Record [pointer]
02 current font size
01 current font face
01 boolean specifying whether it needs strike
02 current font device
04 current numerator of scale factor
04 current denominator of scale factor
Font Manager output record
guickdraw FontOutput Record [pointer]
02 error code
04 handle to font bits
01 holding factor
01 italic factor
01 underline offset
01 underline halo
01 underline thickness
01 shadow factor
01 extra horizontal width
01 height above baseline
01 height below baseline
01 maximum width of character
01 s p a c e between lines
01 (reserved)
04 point for numerators of sca le factor
04 point for denominators of scale factor
04 h.v dotsPerlnch of current device
18 style heuristic table supplied by device
08 scratch a rea [8 bytes]
04 Z-ordered linked list of windows [painter]
02 Enable update accumulation? fword]
02 e r a s e newly drawn windows? [word]
04 window manager 's grafport [pointer]

04 MW^sfur tu re ' r eg i 'on [Aaridlef^

§EContent
rayRan

SaveVisRgn
DragHook
TempRect
scratcha
OneOne
MinusOne

Pa IconBitmap
MenuList
MBarEnable
CurDeKind
MenuFlash
TheMenu
SavedHandle
MrMacHook
MBarHook
MenuHook

rag Pattern
"'attern

I8H
EQU
EQU
EQU §y
m
EQU
EQU
EQU
EQU

JragAction
. PState
Topfv Hndl

SysMap
CurMap
ResReadOnly
ResLoad
ResEnr
TaskLock
FScaleDisable
CurActivate
CurDeactive
DeskHook
Xe DoText
TERecal
Microsoft
ApplScratch
GhostWindow
CloseOrnHook
ResumeProc
RestProc

taveProc
aveE

ANumber
ACount
DABeeper
DAStrings
TEScrpCength

EScrp Handle
, p p P a d «
lysResName
ppParmHandle .

USErrCode
ResErrProc
TEWdBreak
DlgFont
LastTGLobal
[HeapStart]

EQU

m
EQU

04 saved content region [handle]
04 rounded gray desk region [handle!
04 temporarily saved visRegion [handle]
04 user hook during dragging [pointer]
scratch rectangle 8 DytesT
08 scratch 18 bytes)
04 constant $00010001 „
04 constant SFFFFFFFF]
04 (reserved)
0E bitmap used for plotting things
04 current menuBar list structure [handle]
02 menuBar enable for desk accessories[word]
02 window kind of deactivated window [word]
02 flash feedback count [word]
02 ID of hilited menu [word]
04 saved bits under a menu [handle]
old-world name for MBarHook
04 user hook before MenuHook [pointer]
04 user hook during menuSelect [pointer]
08 DragTheRgn pattern [8 bytes]
08 desR pattern [8 bytes[
04 mplicit parameter to DragControl [word]
08 mplicit actionProc for dragControl [pointer]
06 floating point state [6 bytesl
04 topmost m a p in list [handle]
04 system map [handle]
02 reference number of system map [word]
02 reference number of current map word
02 (reserved)
02 Auto-load feature [word]
02 Resource error code [word]
01 re-entering SystemTask [byte]
01 disable font scaling? [byte]
04 window slated for activate event [pointer]
04 window slated for deactivate event [pointer]
04 hook for painting the deskjpointer]
04 textEdit doText proc hook [pointer]
04 textEdit recalText proc hook [pointer]
old-world name for ApplScratch
0C application scratch a rea [12 Bytes]
04 window hidden from FrontWindow [pointer]
04 hook for closing desk ornaments
04 Resume procedure from InitDialogs [pointer]
old-world name for ResumeProc
04 address of Save failsafe procedure
04 Safe S P for restart or save
02 active alert ID [wordl
02 # times this alert called [word]
04 beep routine [pointer]
10 paramText substutution strings [4 handles]
02 textEdit Scrap Length [word]
0 2 (reserved)
04 textEdit Scrap [handle]
20 packages ' code [8 handles]
10 Name of system resource file [STRING[15]]
04 (reserved)
04 nandle to hold application parameters
02 last system error alert ID
04 Resource error procedure [pointer]
04 default word break routine [pointer]
02 default dialog font ID [word]

star! of the olcl system heap

Low Memory in Numerical Order Page 2

MACINTOSH USER EDUCATION

Putting Together a Macintosh Application /PUTTING/TOGETHER

Modification History: First Draft (ROM 2.45) Caroline Rose 6/9/83
Second Draft (ROM 4.4) Caroline Rose 7/14/83
Third Draft (ROM 7) Caroline Rose 1/13/84
Fourth Draft Caroline Rose 4/9/84
Fifth Draft Caroline Rose 7/10/84
Sixth Draft Caroline Rose 5/5/85

ABSTRACT

This manual discusses the fundamentals of preparing, compiling or
assembling, and linking a Macintosh application program on the Lisa
Workshop development system.

Summary of significant changes and additions since last draft:

- This manual now documents Lisa Workshop version 3.0 and the May
1985 Macintosh Software Supplement. Some of the information may
not apply to Workshop version 2.0.

- Changes have been made to the interface files and the files you
link with or include in your assembly-language source.

- The sections describing the Macintosh utility programs RMover and
Set File have been removed. These programs have been superseded
by other tools in the Macintosh Software Supplement.

2 Putting Together a Macintosh Application

TABLE OF CONTENTS

3 About This Manual
3 Conventions
4 Getting Started
6 The Source File
7 The Resource Compiler Input File
13 Defining Your Own Resource Types
14 The Exec File
19 Dividing Your Application Into Segments
20 Notes for Assembly-Language Programmers
23 Summary of Putting Together an Application

Copyright (c) 1985 Apple Computer, Inc. All rights reserved.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual discusses the fundamentals of preparing, compiling or
assembling, and linking a Macintosh application program on the Lisa
Workshop development system. It assumes the following:

- You know how to write a Macintosh application in Pascal or
assembly language. Details on this may be found in Inside
Macintosh.

- You're familiar with the Macintosh Finder, which is described in
Macintosh, the owner's guide.

You need to have a Lisa 2/5 or 2/10 with at least 1 megabyte of memory,
a Workshop development system (version 2.0 or greater), and the
Macintosh Software Supplement.

(note)
This manual applies to version 3.0 of the Workshop and
the May 1985 Software Supplement.

After explaining some conventions it uses, the manual begins by
presenting the first steps you should take once your Lisa has been set
up for Macintosh application development under the Workshop. It then
discusses each of the three files you'll create to develop your
application: the source file, the Resource Compiler input file, and an
exec file.

The next section discusses how to divide an application into segments.
This is followed by important information for programmers who want to
write all or part of an application in assembly language.

Finally, there's a summary of the steps to take to put together a
Macintosh application.

(note)
This manual presents a recommended scenario, not by any
means the only possible one. Details, such as what you
name your files, may vary.

Conventions

Sometimes this manual shows you what to do in a two-column table, the
first one labeled "Prompt" and the second "Response". The first column
shows what appears on the Lisa to "prompt" you; it might be a request
for a file name, or just the Workshop command line. This column will
not show all the output you'll get from a program, only the line that
prompts you. (There may have been a lot of output before that line.)
The second column shows what you type as a response. The following
notation is used:

5/5/85 Rose /PUTTING/TOGETHER.2

4 Putting Together a Macintosh Application

Notation Meaning
<ret> Press the RETURN key.
[] Explanatory comments are enclosed in [];

you don't type them.

A space preceding <ret> is not to be typed. It's there only for
readability.

[] in the "Prompt" column actually appear in the prompt; they enclose
defaults.

Except where indicated otherwise, you may type letters in any
combination of uppercase and lowercase, regardless of how they're shown
in this manual.

GETTING STARTED

Once your Lisa has been set up for Macintosh application development,
it's a good idea to orient yourself to the files installed on it. You
can use the List command in the File Manager to list all the file
names. Certain subsets of related files begin with the same few
letters followed by a slash; some typical naming conventions are as
follows:

Beginning
of file name Description
Intrfc/ Text files containing the Pascal interfaces
TIAsm/ Text files to include when using assembly language
Obj/ Object files
Work/ Your current working files
Back/ Backup copies of your working files
Example/ Examples provided by Macintosh Technical Support

(note)
This manual assumes that your files observe the above
naming conventions.

You'll write your application to a Macintosh system disk, which means a
Macintosh disk that contains the system files needed for running an
application. The necessary system files are on the Mac Build disk that
you received as part of the Macintosh Software Supplement. Use that
disk only to create other system disks. Here's how:

1. Insert the Mac Build disk into the Macintosh and open it.

2. Copy the System Folder to a new Macintosh disk; the exact method
you use depends on whether you have an external drive. See the
Macintosh owner's guide for more information.

(note)
One of the files in the System Folder, Imagewriter, is
needed only if you're going to print to an Imagewriter

5/5/85 Rose /PUTTING/TOGETHER.2

GETTING STARTED 5

printer; to save space, you might not want to copy it if
you don't need it.

If you also need or want any of the files on the MacStuff disks
included in the Macintosh Software Supplement, copy them as well.

As described in detail in the following sections, you'll create a
source file, Resource Compiler input file, and exec file for your
application, insert your Macintosh system disk into the Lisa, and run
the exec file. The exec file will compile the source file, link the
resulting object file with other required object files, run the
Resource Compiler to create the application's resource file, and run a
program called MacCom to write the application to the Macintosh disk.
When MacCom is done, it will eject the disk; to try out your
application, you'll insert the ejected disk into the Macintosh and just
open the application's icon.

5/5/85 Rose /PUTTING/TOGETHER.2

6 Putting Together a Macintosh Application

THE SOURCE FILE

Your working files will of course include the source file for your
application. Suppose, for example, that you have an application named
Samp. The source file would be Work/Samp.Text and would have the
structure shown below.

(note)
"Samp" is used as the application name in all examples in
this manual. You don't have to use the exact name of
your application; any abbreviation will do.

PROGRAM Samp;

{ Samp — A sample application written in Pascal }
{ by Macintosh User Education 5/1/85 }

[List the following in the order shown.]

USES {$U Obj/MemTypes } MemTypes,
{$U Obj/QuickDraw } QuickDraw,
{$U Obj/OSIntf } OSIntf,
{$U Obj/ToolIntf } Toollntf,
{$U Obj/MacPrint } MacPrint, [OPTIONAL]
{$U Obj/SANELib } SANELib, [OPTIONAL]
{$U Obj/Packlntf } Packlntf; [OPTIONAL]

[Your LABEL, CONST, TYPE, and VAR declarations will be here.]

[Your application's procedures and functions will be here.]

BEGIN

[The main program will be here.]

END.

Each line in the USES clause specifies first a file name and then a
unit name (which happen to be the same in all cases here). The file
contains the compiled Pascal interface for that unit; the corresponding
text file name begins with "Intrfc/" rather than "Obj/". The Pascal
interface includes the declarations of all the routines in the unit.
It also contains any data types, predefined constants, and, in the case
of QuickDraw, Pascal global variables.

5/5/85 Rose /PUTTING/TOGETHER.3

THE SOURCE FILE 7

File name Interface it contains
Basic Memory Manager data types
QuickDraw
Operating System
Toolbox, except QuickDraw
Printing Manager
Floating-Point Arithmetic and
Transcendental Functions Packages
Other packages

Intrfc/MemTypes.Text
Intrf c/QuickDraw.Text
Intrfc/OSIntf.Text
Intrfc/ToolIntf.Text
Intrfc/MacPrint.Text
Intrfc/SANELib.Text

Intrfc/Packlntf.Text

You only have to include the files for the units your application uses.
It doesn't do any harm to include them all, but it will take somewhat
longer for your program to compile. If you're using any units of your
own, just add their Pascal interface files at the end of the USES
clause.

You can divide the code of an application into several segments and
have only some of them in memory at a time. The section "Dividing Your
Application Into Segments" tells how to specify segments in your source
file. If you don't specify any, your program will consist of a single,
blank-named segment.

THE RESOURCE COMPILER INPUT FILE

You'll need to create a resource file for your application. This is
done with the Resource Compiler, and you'll have among your working
files an input file to the Resource Compiler. One convention for
naming this input file is to give it the name of your source file
followed by "R" (such as Work/SampR.Text).

The first entry in the input file specifies the name to be given to the
output file from the Resource Compiler, the resource file itself;
you'll enter "Work/" followed by the application name and ".Rsrc".
Another entry tells which file the application code segments are to be
read from. (The code segments are actually resources of the
application.) You'll enter the name of the Linker output file
specified in the exec file for building your application, as described
in the next section.

5/5/85 Rose /PUTTING/TOGETHER.3

8 Putting Together a Macintosh Application

If you don't want to include any resources other than the code
segments, you can have a simple input file like this:

* SampR — Resource input for sample application
* Written by Macintosh User Education 5/1/85

Work/Samp.Rsrc

Type SAMP - STR
,0

Samp Version 1.1 — May 1, 1985

Type CODE
Work/SampL,0

This tells the Resource Compiler to write the resulting resource file
to Work/Samp.Rsrc and to read the application code segments from
Work/SampL.Obj. It also specifies the file's signature and version
data, which the Finder needs.

It's a good idea to begin the input file with a comment that describes
its contents and shows its author, creation date, and other such
information. Any line beginning with an asterisk (*) is treated as a
comment and ignored. (You cannot have comments embedded within lines.)
The Resource Compiler also ignores the following:

- leading spaces (except before the text of a string resource)

- embedded spaces (except in file names, titles, or other text
strings)

- blank lines (except for those indicated as required)

The first line that isn't ignored specifies the name to be given to the
resulting resource file. Then, for each type of resource to be
defined, there are one or more "Type statements". A Type statement
consists of the word "Type" followed by the resource type (without
quotes) and, below that, an entry of following format for each
resource:

file name!resource name.resource ID (resource attributes)
type-specific data

The punctuation shown here in the first line is typed as part of the
format. Don't enter spaces where none are shown, such as after the
comma. You must always provide a resource ID. Specifications other
than the resource ID may or may not be required, depending on the
resource type:

- Either there will be some type-specific data defining the resource
or you'll give a file name indicating where the resource will be
read from. Even in the absence of a file name, you must include
the comma before the resource ID.

5/5/85 Rose /PUTTING/TOGETHER.3

THE RESOURCE COMPILER INPUT FILE 9

- You specify a resource name along with the file name for fonts and
drivers. The Menu Manager procedures AddResMenu and InsertResMenu
will put these resource names in menus. Enter the names in the
combination of uppercase and lowercase that you want to appear in
the menus.

- Resource attributes in parentheses are optional for all types.
They're given as a number equal to the value of the resource
attributes byte, and 0 is assumed if none is specified. For
example, for a resource that's purgeable but has no other
attributes set, the input will be "(32)".

If you want to enter a nonprinting or other unusual character in your
input file, either by itself or embedded within text, just type a back
slash (\) followed by the ASCII code of the character in hexadecimal.
For example, the Resource Compiler interprets \0D as a Return character
and \14 as the apple symbol.

The formats for the different types of resources are best explained by
example. Some examples are given below along with remarks that provide
further explanation. Here are some points to remember:

- Most examples list only one resource per Type statement, but you
can include as many resources as you like in a single statement.

- In every case, resource attributes in parentheses may be specified
after the resource ID.

- All numbers are base 10 except where hexadecimal is indicated.

- The Type statements may appear in any order in the input file.

Type WIND
,128
Status Report
40 80 120 300
Visible GoAway
0
0

Window template
Resource ID
Window title
BoundsRect (top left bottom right)
For FALSE, use Invisible or NoGoAway
ProcID (window definition ID)
RefCon (reference value)

Type MENU Menu, standard type
,128 Resource ID (becomes the menu ID)

* menu for desk accessories
\14 Menu title (apple symbol)

About Samp... Menu item
Blank line required at end of menu

,129 Resource ID
Edit Menu title

Cut/X Menu items, one per line, with meta-
Paste/Z characters, ! alone for check mark
(- You cannot specify a blank item; use (-
Word Wrap! for a disabled continuous line.

Blank line required at end of menu

5/5/85 Rose /PUTTING/TOGETHER.3

10 Putting Together a Macintosh Application

Type MENU
,200
201
Patterns

Type CNTL
,128
Help
55 20 75 90
Visible
0
1

0 0 0

Type ALRT
,128
120 100 190 250
300
F721

Type DLOG
,128

* modal dialog
100 100 190 250
Visible 1 NoGoAway 0
200

,129
* modeless dialog

100 100 190 250
Visible 0 GoAway 0
300
Find and Replace

Type DITL
,200
5
Btnltem Enabled
60 10 80 70
Start

ResCItem Enabled
60 30 80 100
128

StatText Disabled
10 93 26 130
Seed

Iconltem Disabled
10 24 42 56
128

Menu, nonstandard type
Resource ID [SEE NOTE 1 BELOW]
Resource ID of menu definition procedure
Menu title (may be followed by items)
Blank line required at end of menu
Control template
Resource ID
Control title
BoundsRect
For FALSE, use Invisible
ProcID (control definition ID)
RefCon (reference value)
Value minimum maximum

Alert template
Resource ID
BoundsRect
Resource ID of item list
Stages word in hexadecimal

Dialog template
Resource ID

BoundsRect
1 is procID, 0 is refCon
Resource ID of item list
Title (none in this case)

BoundsRect
0 procID, 0 refCon
Resource ID of item list
Title

Item list in dialog or alert
Resource ID
Number of items
Also: Chkltem, Radioltem
Display rectangle
Title
Blank line required between items
Control defined in control template
Display rectangle
Resource ID of control template

Also: EditText
Display rectangle
The text (may be blank if EditText)

Also: Picltem
Display rectangle
Resource ID of icon

5/5/85 Rose /PUTTING/TOGETHER.3

THE RESOURCE COMPILER INPUT FILE 11

Userltem Disabled
20 50 60 85

Type ICON
,128
0380 0000

• • •
1EC0 3180

Type ICN#
,128
2
0001 0000

• • •
0002 8000

Type CURS
,300
7FFC . . . 287F
0FC0 . . . 1FF8
0008 0008

Type PAT
,200
AADDAA66AADDAA66

Type PAT#
,136
2
5522552255225522
FFEEDDCCFFEEDDCC

Type STR
,128

This is your string

Type STR#
,129

First string
Second string
* note Return in next string
Third string\0Dcontinued

Type DRVR
Obj/Monkey!Monkey,17 (32)

Type FREF
,128
APPL 0 TgFil

Application-defined item
Display rectangle

Icon
Resource ID
The icon in hexadecimal (32 such lines
altogether)

Icon list
Resource ID
Number of icons
The icons in hexadecimal (32 such lines
altogether for each icon)

Cursor
Resource ID
The data: 64 hex digits on one line
The mask: 64 hex digits on one line
The hotSpot in hexadecimal (v h)

Pattern
Resource ID
The pattern in hexadecimal

Pattern list
Resource ID
Number of patterns
The patterns in hexadecimal, one per
line

String
Resource ID
The string on one line (leading spaces
not ignored)

String list
Resource ID
The strings

Blank line required after last string
Desk accessory or other device driver
File name!resource name,resource ID
[SEE NOTE 2 BELOW]

File reference
Resource ID
File type local ID of icon file name
(omit file name if none)

5/5/85 Rose /PUTTING/TOGETHER.3

12 Putting Together a Macintosh Application

Type BNDL Bundle
,128 Resource ID
SAMP 0 Bundle owner
2 Number of types in bundle
ICN# 1 Type and number of resources
0 128 Local ID 0 maps to resource ID 128
FREF 1 Type and number of resources
0 128 Local ID 0 maps to resource ID 128

Type FONT
Obj/Griff in!Griffin,40000
Obj/Griffinl0,400@10
0bj/Griffinl2,400@12

Font (or FWID for font widths)
File name{resource name,resource ID
File name,resource ID [SEE NOTE 3]
File name,resource ID [BELOW]

Type CODE
Obj/SampL,0

Application code segments
Linker output file name,resource ID
[SEE NOTE 4 BELOW]

Notes:

1. Notice that the input for a nonstandard menu has one extra line in
it: the resource ID of the menu definition procedure, just
following the resource ID of the menu. If that line is omitted
(that is, if the menu's resource ID is followed by a line
containing text rather than a number), the resource ID of the
standard menu definition procedure (0) is assumed.

2. The Resource Compiler adds a NUL character (ASCII code 0) at the
beginning of the name you specify for a 'DRVR' type of resource.
This inclusion of a nonprinting character avoids conflict with
file names that are the same as the names of desk accessories.

3. The resource ID for a font resource has a special format:

font number 0 size

The actual resource ID that the Resource Compiler assigns to the
font is

(128 * font number) + size

Three font resources are listed in the example above. Size 0 is
used to provide only the name of the font (Griffin in this case);
a file name must also be specified but is ignored. The two
remaining font resources define the Griffin font in two sizes, 10
and 12.

4. For a 'CODE' type of resource, ".Obj" is appended to the given
file name, and the resource ID you specify is ignored. The
Resource Compiler always creates two resources of this type, with
ID numbers 0 and 1, and will create additional ones numbered
sequentially from 2 if your program is divided into segments.

5/5/85 Rose /PUTTING/TOGETHER.3

THE RESOURCE COMPILER INPUT FILE 13

The Type statement for a resource of type 'WDEF', 'MDEF', 'CDEF',
'FKEY1, 'KEYC', 'PACK', or 'PICT' has the same format as for 'CODE':
Only a file name and a resource ID are specified. For the 'PICT' type,
the file contains the picture; for the other types, it contains the
compiled code of the resource, and the Resource Compiler appends ".Obj"
to the file name.

(note)
The 'MBAR' resource type is not recognized by the
Resource Compiler.

If your application is going to write to the resulting resource file as
well as read it, you should place the Type statement for the code
segments at the end of the input file. In general, any resources that
the application might change and write out to the resource file should
be listed first in the input file, and any resources that won't be
changed (like the code segments) should be listed last. The reason for
this is that the Resource Compiler stores resources in the reverse of
the order that they're listed, and it's more efficient for the Resource
Manager to do file compaction if the changed resources are at the end
of the resource file.

Defining Your Own Resource Types

You can use one of the three types GNRL, HEXA, and ANYB to define your
own types of resources in the Resource Compiler input file. GNRL
allows you to specify your resource data in the manner best suited to
your particular data format; you specify the data as you want it to
appear in the resource. A code (beginning with a period) tells the
Resource Compiler how to interpret what you enter on the next line or
lines (up to the next code or the end of the Type statement). The
following illustrates all the codes:

Type GNRL
,128
• P

A Pascal string
Another Pascal string

.S
A string

.1
0
1
.L
5438
.H
526FEEC942E78EA4
0F4C
.B
MyData 36 256

General type
Resource ID
Pascal strings (with length byte), one
per line

Strings without length byte, one per
line
Integers (decimal), one per line

Long integers (decimal), one per line

Bytes in hexadecimal, any number
total, any number per line

Bytes from a file
File name number of bytes offset
Blank line required at end of statement

You can use an equal sign (=) along with the GNRL type to define a

5/5/85 Rose /PUTTING/TOGETHER.3

14 Putting Together a Macintosh Application

resource of any desired format and with any four-character resource
type; for example, to define a resource of type 'MINE' consisting of
the integer 57 followed by the Pascal string 'Finance charges', you
could enter this:

Type MINE « GNRL
,400
.1
57
.P

Finance charges

The Resource Manager call GetResource('MINE',400) would return a handle
to this resource.

The types HEXA and ANYB simply offer alternatives to the .H and .B
options (respectively) of the GNRL type, as shown below.

Type HEXA Bytes in hexadecimal
,201 Resource ID
526FEEC942E78EA4 The bytes (any number total, any
0F4C number per line)

Blank line required at end
Type ANYB Bytes from a file

MyData,200 File name,resource ID
36 256 Number of bytes offset in file

You can also define a new resource type that inherits the properties of
a standard type. For example,

Type XDEF = WDEF

defines the new type 'XDEF', which the Resource Compiler treats exactly
like 'WDEF'. The next line would contain a file name and resource ID
just as for a 'WDEF' resource.

THE EXEC FILE

It's useful for each application to have an exec file that does
everything necessary to build the application, including compiling,
linking, creating the resource file, and writing to a Macintosh disk.
The name of the exec file might, for example, be the source file name
followed by "X" (for "eXec"). Work/SampX.Text, the exec file for the
Samp application, is shown below.

5/5/85 Rose /PUTTING/TOGETHER. 3

THE EXEC FILE 15

$EXEC
P{ascal}$M+
Work/Samp
{no list file}
{default output file}
L{ink}?
+X
{no more options}
Work/Samp
Obj/QuickDraw
Obj/OSTraps
Obj/ToolTraps
Obj/PrLink
Obj/SANELibAsm
Obj/PackTraps
Obj/Paslnit
Obj/PasLib
Obj/PasLibAsm
Obj/RTLib
{end of input files}
{listing to console}
Work/SampL
R{un}RMaker
Work/SampR
R{un}MacCom
F{inder info}Y{es}L{isa->Mac}Work/Samp.Rsrc
Samp
APPL
SAMP
{no bundle bit}
E{ject}Q{uit}
$ENDEXEC

[OPTIONAL]
[OPTIONAL j
[OPTIONAL]

The file begins with $EXEC and ends with $ENDEXEC. Everything in
between (except for comments in braces) is exactly what you would type
on your Lisa if you were not using an exec file. To show what the
various entries in this file accomplish, the table below indicates what
each of them is a response to, and shows your response as it is in the
exec file or as it would be if you were using the keyboard. The
numbers on the left are given for reference in the explanation that
follows the table.

Prompt
[1] Workshop command line

Input file - [.TEXT]
List file - [.TEXT]
Output file - [Work/Samp][.OBJ]

P [for Pascal]
Work/Samp <ret>
<ret> [for none]
<ret> [for Work/Samp.Obj]

5/5/85 Rose /PUTTING/TOGETHER.3

16 Putting Together a Macintosh Application

[2] Workshop command line
Input file [.OBJ] ?
Options ?
Options ?
Input file [.OBJ] ?
Input file [.OBJ] ?
Input file [.OBJ] ?

• • •

Input file [.OBJ] ?
Input file [.OBJ] ?
Listing file [-CONSOLE] / [.TEXT]
Output file ? [OBJ.]

[3] Workshop command line
Run what program?
Input file [sysResDef][.TEXT] -

[A] Workshop command line
Run what program?
MacCom command line
Always prompt for the Finder info
when writing to a Mac file?
(Y or N) [No]

MacCom command line
Lisa files to write to Mac disk?
Copy to what Mac file?
Type? [????]
Creator? [????]
Set the Bundle Bit? (Y or N) [No]
MacCom command line
MacCom command line

L [for Link]
? <ret> [for options]
+X <ret>
<ret> [no more options]
Work/Samp <ret>
Obj/QuickDraw <ret>
Obj/OSTraps <ret>
[other input files]
Obj/RTLib <ret>
<ret> [end of input files]
<ret> [for -CONSOLE]
Work/SampL <ret>
R [for Run]
RMaker <ret>
Work/SampR <ret>
R [for Run]
MacCom <ret>
F [for Finder info]

Y [for Yes]
L [for Lisa->Mac]
Work/Samp.Rsrc <ret>
Samp <ret>
APPL <ret>
SAMP <ret>
<ret> [for No]
E [for Eject]
Q [for Quit]

Here's what you accomplish at each of the steps:

1. You compile the Pascal source code (Work/Samp.Text), resulting in
an object file (Work/Samp.Obj).

2. You link the application's object file with other object files
(resulting in the output file Work/SampL.Obj).

3. You run the Resource Compiler to create the application's resource
file (Work/Samp.Rsrc, as specified in Work/SampR.Text, the input
file to the Resource Compiler). Included in the resources are the
application's code segments, which are read from the Linker output
file.

A. You use the MacCom program to write the resource file to the
Macintosh disk, giving the file the exact name you want your
application to have. You set its file type to 'APPL' and its
creator to the signature specified in the resource file. Since
there's no bundle in Samp's resource file, you don't set the
bundle bit. Finally, you ask MacCom to eject the disk.

The files linked with the application's object file in step 3 are
described below. Most of them contain a trap interface, which is a set
of small assembly-language routines that make it possible to call the

5/5/85 Rose /PUTTING/TOGETHER.3

THE EXEC FILE 17

corresponding unit or units £rom Pascal. The flies should be listed in
the order shown. Specify the optional files only if your application
uses the routines they apply to.

File name Description
Obj/MemTypes.Obj Basic Memory Manager data types
ObJ/QuickDraw.Obj Pascal Interface to QuickDraw, needed so

the Linker will know how many QuickDraw
globals there are

Obj/OSTraps.Obj Trap interface for the Operating System
Obj/ToolTraps.Obj Trap interface for the Toolbox (except

QuickDraw)
Obj/PrLink.Obj The Printing Manager (except low-level)
Obj/PrScreen.Obj The low-level Printing Manager routines;

can be specified Instead of PrLink
Obj/SANELibAsm.Obj The Floating-Point Arithmetic and

Transcendental Functions Packages
Obj/PackTraps.Obj Trap Interface for other packages
Obj/PasInit.Obj V
Obj/PasLib.Obj \ Predefined Pascal routines,
Obj/PasLibAsm.Obj / such as POINTER and 0RD4
Obj/RTLib.Obj /

Before running the Exec file, insert a Macintosh system disk into the
Lisa. Run the exec file as follows:

Prompt Response
Workshop command line R [f o r Run]
Run what program? <Work/SampX <ret>

When the disk is ejected, remove it and insert it into the Macintosh.
To try out your application, just open its icon.

(warning)
If you don't set your application's file type and
creator, either you won't be able to open its icon in the
usual way, or a different application may start up when
you do open it!

Notice that if you change the application's signature or the setting of
its bundle bit, step A of the above exec file will have to be edited
accordingly. Furthermore, if you create an icon for your application
(or modify it), you'll have to delete the invisible Desktop file,
otherwise the Finder won't know about the new icon. You can delete the
Desktop file by using the Delete command in MacCom on the Lisa, just
before copying the application to the disk with MacCom, or by holding
down the Option and Command keys when you start up the system disk on
the Macintosh.

(note)
Deleting the Desktop file can also affect the folder
structure on the disk.

5/5/85 Rose /PUTTING/TOGETHER.3

18 Putting Together a Macintosh Application

Before making major changes to your application, it's a good idea to
back it up. You can use the Backup command in the File Manager to back
up all files beginning with "Work/" to files beginning with "Back/"
(Work/=,Back/=). Also, you might want to periodically back up your
working files onto 3 1/2-inch disks.

There are several ways you could refine the exec file illustrated here;
exactly what you do will depend on your particular situation. Some
possibilities are listed below.

- You can set up the exec file to compile or link only if actually
necessary. For more information, see your Workshop documentation
or the sample general-purpose exec file (Example/Exec.Text)
provided in the Macintosh Software Supplement.

- To save disk space, you can add commands to the exec file to make
it delete the two intermediate files: the object file for the
application and the Linker output file.

- If you want to keep the intermediate files around but are working
on more than one application, you can save disk space by giving
the intermediate files the same name for all applications (say,
"Work/Temp").

- You can embed the exec file in your program's source file. To do
this, you must use "(*" and "*)" around the exec part of the file
and use the I invocation option. See your Workshop documentation
for details.

5/5/85 Rose /PUTTING/TOGETHER. 3

DIVIDING YOUR APPLICATION INTO SEGMENTS 19

DIVIDING YOUR APPLICATION INTO SEGMENTS

You can specify the beginning of a segment in your application's source
file as follows:

{$S segname}

where segname is the segment name, a sequence of up to eight
characters. Normally you should give the main segment a blank name.
For example, you might structure your program as follows:

PROGRAM Samp;

[The USES clause and your LABEL, CONST, and VAR declarations
will be here.]

{$S Segl}

[The procedures and functions in Segl will be here.]

{$S Seg2}

[The procedures and functions in Seg2 will be here.]

{$S }

BEGIN

[The main program will be here.]

END.

You can specify the same segment name more than once; the routines will
just be accumulated into that segment. To avoid problems when moving
routines around in the source file, some programmers follow the
practice of putting a segment name specification before every routine.

(warning)
Uppercase and lowercase letters are distinguished in
segment names. For example, "Segl" and "SEG1" are not
equivalent names.

If you don't specify a segment name before the first routine in your
file, the blank segment name will be assumed there.

5/1/85 Rose /PUTTING/TOGETHER.4

20 Putting Together a Macintosh Application

NOTES FOR ASSEMBLY-LANGUAGE PROGRAMMERS

You can write all or part of your Macintosh application in assembly
language. Suppose, for example, that you write most of it in Pascal
but have some utility routines written in assembly language. Your
working files will include a source file and object file for the
assembly-language routines (say, Work/SampA.Text and Work/SampA.Obj).
The source file will have the structure shown below.

; SampA — Assembly-language routines for Samp
; Written by Macintosh User Education 5/1/85

[List the following in the order shown.]

.INCLUDE TIAsm/SysEqu.Text

.INCLUDE TIAsm/SysTraps.Text

.INCLUDE TIAsm/SysErr.Text

.INCLUDE TIAsm/QuickEqu.Text

.INCLUDE TIAsm/QuickTraps.Text

.INCLUDE TIAsm/ToolTraps.Text

.INCLUDE TIAsm/ToolEqu.Text

.INCLUDE TIAsm/PrEqu.Text [OPTIONAL]

.INCLUDE TIAsm/SANEMacs.Text [OPTIONAL]

.INCLUDE TIAsm/PackMacs.Text [OPTIONAL]

.INCLUDE TIAsm/FSEqu.Text [OPTIONAL]

[Here there will be a .PROC or .FUNC directive for each routine,]
[followed by the routine itself. Two examples follow.]

; PROCEDURE MyRoutine (count: INTEGER);

.PROC MyRoutine

MyRoutine
[the code of MyRoutine]

; FUNCTION MyOtherRoutine : Longlnt;

.FUNC MyOtherRoutine

MyOtherRoutine
[the code of MyOtherRoutine]

.END

(note)
The .PROC or .FUNC directive clears the symbol table, so
symbols defined in one routine can't be referred to in
another (without an explicit reference using .REF). If
you want to share code between routines, you can instead
have a single .PROC directive for SampA followed by a
.DEF directive for each routine name.

5/1/85 Rose /PUTTING/TOGETHER.4

NOTES FOR ASSEMBLY-LANGUAGE PROGRAMMERS 21

Including unneeded files with .INCLUDE directives will do no harm
except make your program take longer to assemble. The files marked as
optional above are the least commonly needed; even some of the others
may not be required. Here's what the files contain:

File name
TIAsm/SysEqu.Text
TIAsm/SysTraps.Text
TIAsm/SysErr.Text
TIAsm/QuickEqu.Text
TIAsm/QuickTraps.Text
TIAsm/ToolTraps.Text
TIAsm/ToolEqu.Text
TIAsm/ PrEqu.Text
TIAsm/SANEMacs.Text

TIAsm/PackMacs.Text
TIAsm/FSEqu.Text

Description
System equates
System traps
System error equates
QuickDraw equates
QuickDraw traps
Toolbox traps, except QuickDraw
Toolbox equates, except QuickDraw
Equates for Printing Manager
Macros and equates for Floating-Point
Arithmetic and Transcendental Functions
Packages
Macros and equates for other packages
File system equates

If you've created any similar files for units of your own, just add
•INCLUDE directives for them after the last .INCLUDE directive shown
above.

To specify the beginning of a segment in assembly language, you can use
the directive

.SEG 'segname'

where segname is the segment name, a sequence of up to eight
characters.

For each assembly-language routine invoked from Pascal, the Pascal
source file for your application will include an external declaration.
For example:

PROCEDURE MyRoutine (count: INTEGER); EXTERNAL;
FUNCTION MyOtherRoutine : Longlnt; EXTERNAL;

If the routines form a unit that may be used by other applications, you
should instead prepare a Pascal interface file for the unit and include
it in the USES clause in the application's source file.

You'll assemble the Work/SampA.Text file as shown below.

Prompt
Workshop command line
Input file - [.TEXT]
Listing file (<CR> for none) - [.TEXT]
Output file - [Work/SampA] [.OBJ]

Response
A [for Assemble]
Work/SampA <ret>
<ret> [for none]
<ret> [for Work/SampA.Obj]

(note)
If you do want a listing file, you may want to put a
.NOLIST directive before your first .INCLUDE and a .LIST

5/1/85 Rose /PUTTING/TOGETHER.4

22 Putting Together a Macintosh Application

after your last one, so the contents of all the included
files won't appear in the listing.

You can assemble the code manually and then, after you've created or
changed the Pascal source file, use the exec file for the application
as illustrated earlier (adding the name of the assembly-language object
file to the list of Linker input files). You may also want to set up
an exec file that just assembles the assembly-language routines and
links the resulting object file with everything else, for when you've
changed only those routines and not the Pascal program. This exec file
would begin with the responses listed above and then continue with step
2 of the exec file illustrated earlier.

If the entire application is written in assembly language, the source
file will have the same structure as the one shown above, but at the
beginning of the main program you'll have a .MAIN directive:

.MAIN SampA

Even if you have nothing to link your program with, link it by itself;
the Linker will put it into a format that RMaker can accept.

5/1/85 Rose /PUTTING/TOGETHER.4

SUMMARY OF PUTTING TOGETHER AN APPLICATION 23

SUMMARY OF PUTTING TOGETHER AN APPLICATION

This summary assumes the file-naming conventions presented in the
"Getting Started" section. Page numbers indicate where details may be
found.

ONE TIME ONLY:

- Prepare a Macintosh system disk by copying the System Folder from
the Mac Build disk to a new Macintosh disk (page 4).

- On the Lisa, use the Editor (via the Edit command) to create the
exec file (page 14).

ONCE PER VERSION OF YOUR APPLICATION'S SOURCE/RESOURCES:

- On the Lisa, use the Editor to create or edit the application
source file (page 6) or the Resource Compiler input file for your
application's resources (page 7).

- Insert the Macintosh system disk into the Lisa.

- On the Lisa, run the exec file (page 17). It will eject the
Macintosh disk when done.

- To try out your application, remove the disk from the Lisa, insert
it into the Macintosh, and open the application's icon.

- When appropriate, back up your working files by using the Backup
command in the File Manager to copy Work/= to Back/=, or onto a
3 1/2-inch disk (with, for example, Backup Work/= to -lower-=).

(note)
If you create an icon for your application (or modify
it), you must delete the invisible desktop file (page
17).

5/5/85 Rose /PUTTING/TOGETHER. S

MACINTOSH USER EDUCATION

THE MACINTOSH HARDWARE /HARDWARE/HDWR

Modification History: First Draft Chris Espinosa & Nick Turner 2/4/85
Second Draft Brian Howard 2/13/85

2 Macintosh Hardware

TABLE OF CONTENTS

3 About This Chapter
n Overview of the Hardware
n The Video Interface
n The Sound Generator
n Diagram
n The SCC
n Diagram
n The Mouse
n Diagram
n The Keyboard and Keypad
n Keyboard Communication Protocol
n Keypad Communication Protocol
n The Disk Interface
n Controlling the Disk-State Control Lines
n Reading the Disk Registers
n Writing to the Disk Registers
n Explanations of the Disk Registers
n The Real-Time Clock
n Accessing the Clock Chip
n The One-Second Interrupt
n The VIA
n VIA Register A
n VIA Register B
n The VIA Peripheral Control Register
n The VIA Timers
n VIA Interrupts
n Other VIA Registers
n System Startup
n Summary

Copyright (c) 1985 Apple Computer, Inc. All rights reserved.
Distribution of this draft in limited quantities does not constitute
publication.

ABOUT THIS CHAPTER 3

ABOUT THIS CHAPTER

This chapter provides a basic description of the hardware of the
Macintosh 128K and 512K computers. It gives you information that
you'll need to connect other devices to the Macintosh and to write
device drivers or other low-level programs. It will help you figure
out which technical documents you'll need to design peripherals; in
some cases, you'll have to obtain detailed specifications from the
manufacturers of the various Interface chips.

This chapter is oriented toward assembly-language programmers. It
assumes you're familiar with the basic operation of microprocessor-
based devices. Knowledge of the Macintosh Operating System will also
be helpful.

(warning)
Only the Macintosh 128K and 512K are covered in this
chapter. In particular, note that the memory addresses
and screen size are different on the Macintosh XL (and
may be different in future versions of the Macintosh).
To maintain software compatibility across the Macintosh
line, and to allow for future changes to the hardware,
you're strongly advised to use the Toolbox and Operating
System routines wherever possible.

To learn how your program can determine which hardware environment it's
operating in, see the description of the Environs procedure in the
Operating System Utilities chapter.

OVERVIEW OF THE HARDWARE

The Macintosh computer contains a Motorola MC68000 microprocessor
clocked at 7.8336 megahertz, random access memory (RAM), read-only
memory (ROM), and several chips that enable it to communicate with
external devices. There are five I/O devices: the video display; the
sound generator; a Synertek SY6522 Versatile Interface Adapter (VIA)
for the mouse and keyboard; a Zilog Z8530 Serial Communications
Controller (SCC) for serial communication; and an Apple custom chip,
called the IWM ("Integrated Woz Machine") for disk control.

The Macintosh uses memory-mapped I/O, which means that each device in
the system is accessed by reading or writing to specific locations in
the address space of the computer. Each device contains logic that
recognizes when it's being accessed and responds in the appropriate
manner.

The MC68000 can directly access 16 megabytes (Mb) of address space. In
the Macintosh, this is divided into four equal sections. The first
four Mb are for RAM, the second four Mb are for ROM, the third are for
the SCC, and the last four are for the IWM and the VIA. Since each of
the devices within the blocks has far fewer than four Mb of

2/11/85 /HARDWARE/HDWR.2

4 Macintosh Hardware

Individually addressable locations or registers, the addresses within
each block "wrap around" and are repeated several times within the
block.

RAM is the "working memory" of the system. Its base address is address
0. The first 256 bytes of RAM (addresses 0 through $FF) are used by
the MC68000 as exception vectors; these are the addresses of the
routines that gain control whenever an exception such as an interrupt
or a trap occurs. (The summary at the end of this chapter includes a
list of all the exception vectors.) RAM also contains the system and
application heaps, the 6tack, and other information used by
applications. In addition, the following hardware devices share the
use of RAM with the MC68000:

- the video display, which reads the information for the display
from one of two screen buffers

- the sound generator, which reads its information from one of two
sound buffers

- the disk speed controller, which shares its data space with the
sound buffers

The MC68000 accesses to RAM are interleaved (alternated) with the video
display's accesses during the active portion of a screen scan line
(video scanning is described in the next section). The sound generator
and disk speed controller are given the first access after each scan
line. At all other times, the MC68000 has uninterrupted access to RAM,
increasing the average RAM access rate to about 6 megahertz (MHz).

ROM is the system's permanent read-only memory. Its base address,
$400000, is available as the constant romStart and is also stored in
the global variable ROMBase. ROM contains the routines for the Toolbox
and Operating System, and the various system traps. Since the ROM is
used exclusively by the MC68000, it's always accessed at the full
processor rate of 7.83 MHz.

The address space reserved for the device I/O contains blocks devoted
to each of the devices within the computer. This region begins at
address $800000 and continues to the highest address at $FFFFFF.

(note)
Since the VIA is involved in some way in almost every
operation of the Macintosh, the following sections
frequently refer to the VIA and VIA-related constants.
The VIA itself is described later, and all the constants
are listed in the summary at the end of this chapter.

2/11/85 /HARDWARE/HDWR.2

THE VIDEO INTERFACE 5

THE VIDEO INTERFACE

The video display is created by a moving electron beam that scans
across the screen, turning on and off as it scans in order to create
black and white pixels. Each pixel is a square, approximately 1/74
inch on a side.

To create a screen image, the electron beam starts at the top left
corner of the screen (see Figure 1). The beam scans horizontally
across the screen from left to right, creating the top line of
graphics. When it reaches the last pixel on the right end of the top
line it turns off, and continues past the last pixel to the physical
right edge of the screen. Then it flicks invisibly back to the left
edge and moves down one scan line. After tracing across the black
border, it begins displaying the data in the second scan line. The
time between the display of the rightmost pixel on one line and the
leftmost pixel on the next is called the horizontal blanking interval.
When the electron beam reaches the last pixel of the last (342nd) line
on the screen, it traces out to the right edge and then flicks up to
the top left corner, where it traces the left border and then begins
once again to display the top line. The tine between the last pixel on
the bottom line and the first one on the top line is called the
vertical blanking interval. At the beginning of the vertical blanking
interval, the VIA generates a vertical blanking interrupt.

2/11/85 /HARDWARE/HDWR.2

6 Macintosh Hardware

i v >

512 pixels wide

Figure 1. Video Scanning Pattern

The pixel clock rate (the frequency at which pixels are displayed) is
15.6672 MHz, or about .064 microseconds (usee) per pixel. For each
scan line, 512 pixels are drawn on the screen, requiring 32.68 usee.
The horizontal blanking interval takes the time of an additional 192
pixels, or 12.25 usee. Thus, each full scan line takes 44.93 usee,
which means the horizontal scan rate is 22.25 kilohertz.

A full screen display consists of 342 horizontal scan lines, occupying
15367.65 usee, or about 15.37 milliseconds (msec). The vertical
blanking interval takes the time of an additional 28 scan lines—
1258.17 usee, or about 1.26 msec. This means the full screen is
redisplayed once every 16625.8 usee. That's about 16.6 msec per frame,
which means the vertical scan rate (the full screen display frequency)
is 60.15 hertz.

The video generator uses 21,888 bytes of RAM to compose a bit-mapped
video image 512 pixels wide by 342 pixels tall. Each bit in this range
controls a single pixel in the image: A 0 bit is white, and a 1 bit is
black.

2/11/85 /HARDWARE/HDWR.2

THE VIDEO INTERFACE 7

There are two screen buffers (areas of memory from which the video
circuitry can read information to create a screen display): the main
buffer and the alternate buffer. The starting addresses of the screen
buffers depend on how much memory you have in your Macintosh. In a
Macintosh 128K, the main screen buffer starts at $1A700 and the
alternate buffer starts at $12700; for a 51ZK Macintosh, add $60000 to
these numbers.

(warning)
To be sure you don't use the wrong area of memory and to
maintain compatibility with future Macintosh systems, you
should get the video base address and bit map dimensions
from screenBits (see the QuickDraw chapter).

Each scan line of the screen displays the contents of 32 consecutive
words of memory, each word controlling 16 horizontally adjacent pixels.
In each word, the high-order bit (bit 15) controls the leftmost pixel
and the low-order bit (bit 0) controls the rightmost pixel. The first
word in each scan line follows the last word on the line above it. The
starting address of the screen is thu6 in the top left corner, and the
addresses progress from there to the right and down, to the last byte
in the extreme bottom right corner.

Normally, the video display doesn't flicker when you read from or write
to it, because the video memory accesses are interleaved with the
processor accesses. But if you're creating an animated image by
repeatedly drawing the graphics in quick succession, it may appear to
flicker if the electron beam displays it when your program hasn't
finished updating it, showing some of the new image and some of the old
in the same frame.

One way to prevent flickering when you're updating the screen
continuously is to use the vertical and horizontal blanking signals to
synchronize your updates to the scanning of video memory. Small
changes to your screen can be completed entirely during the interval
between frames (the first 1.26 msec following a vertical blanking
interrupt), when nothing is being displayed on the screen. When making
larger changes, the trick is to keep your changes happening always
ahead of the spot being displayed by the electron beam, as it scans
byte by byte through the video memory. Changes you make in the memory
already passed over by the scan spot won't appear until the next frame.
If you start changing your image when the vertical blanking interrupt
occurs, you have 1.26 msec of unrestricted access to the image. After
that, you can change progressively less and less of your image as it's
scanned onto the screen, starting from the top (the lowest video memory
address). Fra vertical blanking interrupt, you have only 1.26 msec in
which to change the first (lowest address) screen location, but you
have almost 16.6 msec to change the last (highest address) screen
location.

Another way to create smooth, flicker-free graphics, especially useful
with changes that may take more 16.6 msec, is to use the two screen
buffers as alternate displays. If you draw into the one that's
currently not being displayed, and then switch the buffers during the

2/11/85 /HARDWARE/HDWR.2

8 Macintosh Hardware

next vertical blanking, your graphics will change all at once,
producing a clean animation. (See the Vertical Retrace Manager chapter
to find out how to specify tasks to be performed during vertical
blanking.)

If you want to use the alternate screen buffer, you'll have to specify
this to the Segment Loader (see the Segment Loader chapter for
details). To switch to the alternate screen buffer, clear the
following bit of VIA data register A (vBase+vBufA):

vPage2 .EQU 6 ;t • alternate screen buffer

For example:

BCLR 0vPage2,vBase+vBufA

To switch back to the main buffer, set the same bit.

(warning)
Whenever you change a bit in a VIA data register, be sure
to leave the other bits in the register unchanged.

(warning)
The alternate screen buffer may not be supported in
future versions of the Macintosh.

THE SOUND GENERATOR

The Macintosh sound circuitry uses a series of values taken from an
area of RAM to create a changing waveform in the output signal. This
signal drives a small speaker inside the Macintosh and is connected to
the external sound jack on the back of the computer. If a plug is
inserted into the external sound jack, the internal speaker is
disabled. The external sound line can drive a load of 600 or more
ohms, such as the input of almost any audio amplifier, but not a
directly connected external speaker.

The sound generator may be turned on or off by writing 1 (off) or 0
(on) to the following bit of VIA data register B (vBase+vBufB):

vSndEnb .EQU 7 ;0 • sound enabled, 1 - disabled

For example:

BSET #vSndEnb,vBase+vBufB ;turn off sound

By storing a range of values in the sound buffer, you can create the
corresponding waveform in the sound channel. The sound generator uses
a form of pulse-width encoding to create sounds. The sound circuitry
reads one word in the sound buffer during each horizontal blanking
interval (including the "virtual" intervals during vertical blanking)
and uses the high-order byte of the word to generate a pulse of

2/11/85 /HARDWARE/HDWR.2

THE SOUND GENERATOR 9

electricity whose duration (width) is proportional to the value in the
byte. Another circuit converts this pulse into a voltage that's
attenuated (reduced) by a three-bit value from the VIA. This reduction
corresponds to the current setting of the volume level. To set the
volume directly, store a three-bit number in the low-order bits of VIA
data register A (vBase+vBufA). You can use the following constant to
Isolate the bits involved:

After attenuation, the sound signal is passed to the audio output line.

The sound circuitry scans the sound buffer at a fixed rate of 370 words
per video frame, repeating the full cycle 60.15 times per second. To
create sounds with frequencies other than multiples of the basic scan
rate, you must store phase-shifted patterns into the sound buffer
between each scan. You can use the vertical and horizontal blanking
signals (available in the VIA) to synchronize your sound buffer updates
to the buffer scan. You may find that it's much easier to use the
routines in the Sound Driver to do these functions.

(warning)
The low-order byte of each word in the sound buffer is
used to control the speed of the motor in the disk drive.
Don't store any information there, or you'll interfere
with the disk I/O.

There are two sound buffers, just as there are two screen buffers. The
address of the main sound buffer is stored in the global variable
SoundBase and is also available as the constant soundLow. The main
sound buffer is at $1FD00 in a 128K Macintosh, and the alternate buffer
is at $1A100; for a 512K Macintosh, add $60000 to these values. Each
sound buffer contains 370 words of data. As when you want to u6e the
alternate screen buffer, you'll have to specify to the Segment Loader
that you want the alternate buffer (see the Segment Loader chapter for
details). To select the alternate sound buffer for output, clear the
following bit of VIA data register A (vBase+vBufA):

vSound .EQU 7 ;sound volume bits

Here's an example of how to set the sound level:

MOVE.B vBase+vBufA,D0
ANDI.B #255-vSound,D0
ORI.B //3,D0

;get current value of register A
;clear the sound bits
;set medium sound level
;put the data back MOVE.B D0,vBase+vBufA

vSndPg2 .EQU 3 ;0 • alternate sound buffer

To return to the main buffer, set the same bit.

(warning)
Be sure to switch back to the main sound buffer before
doing a disk access, or the disk won't work properly.

2/11/85 /HARDWARE/HDWR.2

10 Macintosh Hardware

(warning)
The alternate sound buffer may not be supported in future
versions of the Macintosh.

There's another way to generate a simple, square-wave tone of any
frequency, using almost no processor intervention. To do this, first
load a constant value into all 370 sound buffer locations (use $00's
for minumum volume, $FF's for maximum volume). Next, load a value into
the VIA's timer 1 latches, and set the high-order two bits of the VIA's
auxiliary control register (vBase+vACR) for "square wave output" from
timer 1. The timer will then count down from the latched value at
1.2766 usec/count, over and over, inverting the vSndEnb bit of VIA
register B (vBase+vBufB) after each count down. This takes the
constant voltage being generated from the sound buffer and turns it on
and off, creating a square-wave sound whose period is

2 * 1.2766 usee * timer l's latched value

(note)
You may want to disable timer 1 interrupts during this
process (bit 6 in the VIA's interrupt enable register,
which is at vBase+vIER).

To stop the square-wave sound, reset the high-order two bits of the
auxiliary control register.

(note)
See the SY6522 technical specifications for details of
the VIA registers. See also "Sound Driver Hardware" in
the Sound Driver chapter.

Diagram

Figure 2 shows a block diagram for the sound port.

2/11/85 /HARDWARE/HDWR.2

THE SOUND GENERATOR 11

o >. 0>

• s

1 * E w
-=.1
T5 —

H
C
•>
© a_ O «>

Sound
output
connector

Internal speaker
(disconnected when

sound output
connecter is used)

_LpC)

©
. 3

Sound/disk-speed
buffer (in RAM)

High Low
(even) (odd)
byte byte

01 Sound Disk
11 Sound Disk
2 I Sound Disk
3 | Sound Disk

16E Sound Disk k
16F Sound Disk |«-
170 Sound Disk |«-
171 Sound Disk l<

Alternate buffer
OlSound Disk |«
1 Sound Disk !«•

i 1 1
16F Sound Disk i -
170 Sound Disk k
171 Sound Disk h-

6522 (VIA)

Alternate
butter

PAO
PA1
PA2

PA3

P87
(timer 1)

Sound
Amplifier

Vblume control
(eight levels)

Sound
reset . On-off switch

(square-wave
generator)

Digital-to-analog
convert or

B u f f e r \
/select/

Words from
selected buffer <

High
byte

Low
byte

Digital-to-analog
convert or

To motor speed control
lines for internal and
external disk drives

Figure 2. Diagram of Sound Fort

2/11/85 /HARDWARE/HDWR.2

12 Macintosh Hardware

THF. SCC

The two serial ports are controlled by a Zilog Z8530 Serial
Corounl atlons Controller (SCC). The port known as SCC port A is the
one with the modem Icon on the back of the Macintosh. SCC port B is
the one with the printer icon.

Macintosh serial ports conform to the EIA standard RS422, which differs
from the more common RS232C standard. While RS232C modulates a signal
with respect to a common ground ("single-ended" transmission), RS422
modulates two signals against each other ("differential" transmission).
The RS232C receiver senses whether the received signal is sufficiently
negative with respect to ground to be a logic "1", whereas the RS422
receiver simply senses which line is more negative than the other.
This makes RS422 more immune to noise and Interference, and more
versatile over longer distances. If you ground the positive side of
each RS422 receiver and leave unconnected the positive side of each
transmitter, you've converted to EIA standard RS423, which can be used
to communicate with most RS232C devices over distances up to fifty feet
or so.

The serial inputs and outputs of the SCC are connected to the ports
through differential line drivers (26LS30) and receivers (26LS32). The
line drivers can be tri-stated between transmissions, to allow other
devices to transmit over those lines. A driver is activated by the
lowering the SCC's Ready To Send (RTS) output for that port. Port A
and port B are Identical except that port A (the modem port) has a
higher interrupt priority, making it more suitable for high-speed
communication.

Figure 3 shows the DB-9 pinout for the SCC output jacks.

1 Ground
2 +5 volts
3 Ground
1 Transmit data •
5 Transmit data -
6 +12 volts
7 Handshake/external clock
8 Receive data +
9 Receive data -

Figure 3. Pinout for SCC Output Jacks

2/11/85 /HARDWARE/HDWR. 2

THE SCC 13

(warning)
Do not draw more than 100 mill lamps at -1-12 volts, and 200
milliamps at +5 volts from all connectors combined.

Each port's input-only handshake line (pin 7) is connected to the SCC's
Clear To Send (CTS) input for that port, and is designed to accept an
external device's Data Terminal Ready (DTR) handshake signal. This
line is also connected to the SCC's external synchronous clock (TRxC)
input for that port, so that an external device can perform high-speed
synchronous data exchange. Note that you can't use the line for
receiving DTR if you're using it to receive a high-speed data clock.

The handshake line is sensed by the Macintosh using the positive
(noninverting) input of one of the standard RS422 receivers (26LS32
chip), with the negative input grounded. The positive input was chosen
because this configuration is more immune to noise when no active
device is connected to pin 7.

(note)
Because this is a differential receiver, any handshake or
clock signal driving it must be "bi-polar", alternating
between a positive voltage and a negative voltage, with
respect to the internally grounded negative input. If a
device tries to use ground (0 volts) as one of its
handshake logic levels, the Macintosh will receive that
level as an indeterminate state, with unpredicatbale
results.

The SCC itself (at its PCLK. pin) is clocked at 3.672 megahertz. The
internal synchronous clock (RTxC) pins for both ports are also
connected to this 3.672 MHz clock. This is the clock that, after
dividing by 16, is normally fed to the SCC's internal baud-rate
generator.

The SCC chip generates level-1 processor interrupts during I/O over the
serial lines. For more information about SCC interrupts, see the
Device Manager chapter.

The locations of the SCC control and data lines are given in the
following table as offsets from the constant sccWBase for writes, or
sccRBase for reads. These base addresses are also available in the
global variables SCCWr and SCCRd. The SCC is on the upper byte of the
data bus, so you must use only even-addressed byte reads (a byte read
of an odd SCC read address tries to reset the entire SCC). When
writing, however, you must use only odd-addressed byte writes (the
MC68000 puts your data on both bytes of. the bus, so it works
correctly). A word access to any SCC address will shift the phase of
the computer's high-frequency timing by 128 nanoseconds (system
software adjusts it correctly during the system startup process).

2/11/85 /HARDWARE/HDWR.2

14 Macintosh Hardware

Location Contents
Write data register A
Read data register A
Write data register B
Read data register B
Write control register A
Read control register A
Write control register B
Read control register B

sccWBase+aData
sccRBase+aData
sccWBase+bData
sccRBase+bData
sccWBaBe+aCtl
sccRBase+aCtl
sccWBase+bCtI
sccRBase+bCtl

(warning)
Don't access the SCC chip more often than once every 2.2
usee. The SCC requires that much time to let its
internal lines stabilize.

Refer to the technical specifications of the Zilog Z8530 for the
detailed bit maps and control methods (baud rates, protocols, and so
on) of the SCC.

Diagram

Figure 4 shows a circuit diagram for the serial ports.

2/11/85 /HARDWARE/HDWR.2

THE SCC 15

8530 (SCC)

TxDA

RTSA

TxDB

RTSg

RXDA

CT§A

^ A

RxDB

CTSQ
TFfcCB

W7F£5A

W/REQB

£TXCa

R T XC B

+ 5 V -
- 5 V -

2fil S30

Ip » °D*

Slew-rate
Vfcc controls

Mode

<FF1 Filter>
-CRFI Filter>

<RFI Filter>
-CRFI Fitter>

= Not
: connected

26LS32

1 1

OA IK
< j Q i

° p K

OR 1B:
< 3 n *B

<RF1 FilterV
<RFI Filter>

<RFI Fi l ter>

<RFI Filter>
-CRFI Filter^—i

<FFI Filter>

1

6522 (VIA)

PA7

L _ 3.672
^ MHZ

TXD+

f w m

\ ?9 f? |6/

RXD-
RXD+

HSK/CLK

TXD+
TXD- +5V

U » 1" I 2 i ')

\ H ?7 D

RXD-
RXD+

HSK/CLK

+12V

Note: —<RH Fi l teO-
m R2

FN + R2 - 40 to 60 ohms
C - 150 to 300 pF

Figure 4. Diagram of Serial Ports

2/11/85 /HARDWARE/HDWR.2

16 Macintosh Hardware

THE MOUSE

The D6-9 connector labeled with the mouse icon connects to the Apple
mouse (Apple II, Apple III, Lisa, and Macintosh mice are electrically
identical). The mouse generates four square-wave signals that describe
the amount and direction of the mouse's travel. Interrupt-driven
routines in the Macintosh ROM convert this information into the
corresponding motion of the pointer on the screen. By turning an
option called mouse scaling on or off in the Control Panel desk
accessory, the user can change the amount of screen pointer motion that
corresponds to a given mouse motion, depending on how fast the mouse is
moved; for more information about mouse scaling, see the discussion of
parameter RAM in the Operating System Utilities chapter.

(note)
The mouse is a relative-motion device; that is, it
doesn't report where it is, only how far and in which
direction it's moving. So if you want to connect
graphics tablets, touch screens, light pens, or other
absolute-position devices to the mouse port, you must
either convert their coordinates into motion information
or install your own device-handling routines.

The mouse operates by sending square-wave trains of information to the
Macintosh that change as the velocity and direction of motion change.
The rubber-coated steel ball in the mouse contacts two capstans, each
connected to an interrupter wheel: Motion along the mouse's X axis
rotates one of the wheels and motion along the Y axis rotates the other
wheel.

The Macintosh uses a scheme known as quadrature to detect which
direction the mouse is moving along each axis. There's a row of slots
on an interrupter wheel, and two beams of infrared light shine through
the slots, each one aimed at a phototransistor detector. The detectors
are offset just enough so that, as the wheel turns, they produce two
square-wave signals (called the interrupt signal and the quadrature
signal) 90 degrees out of phase. The quadrature signal precedes the
interrupt signal by 90 degrees when the wheel turns one way, and trails
it when the wheel turns the other way.

The interrupt signals, XI and Yl, are connected to the SCC's DCDA and
DCDB inputs, respectively, while the quadrature signals, X2 and Y2, go
to inputs of the VIA's data register B. When the Macintosh is
interrupted (from the SCC) by the rising edge of a mouse interrupt
signal, it checks the VIA for the state of the quadrature signal for
that axis: If it's low, the mouse is moving to the left (or down), and
if it'8 high, the mouse is moving to the right (or up). When the SCC
interrupts on the falling edge, a high quadrature level indicates
motion to the left (or down) and a low quadrature level indicates
motion to the right (or up):

2/11/85 /HARDWARE/HDWR.3

THE HOUSE 17

SCC
Mouse
interrupt
XI (or Yl)

Positive edge

Negative edge

VIA
Mouse
quadrature
X2 (or Y2)

Low
High

Low
High

Mouse
Motion
direction in
X (or Y) axis

Left (or down)
Right (or up)

Right (or up)
Left (or down)

Figure 5 shows the interrupt (Yl) and quadrature (Y2) signals when the
mouse is moved downwards. , , ,

— positive-edge interrupt
lamp detector negative-edge interrupt

flfVrLT

5 t o) _ n i r 1

L T L

^ D ^ _ n i r u ~ L

quadrature
levels

VIA

Y2

X2 X2

Data
reg.B

bit 5

bit 4

motion
interrupts

SCC

Y1

XI

XI

DCDB

DCDA

Figure 5. Mouse Mechanism

The switch on the mouse is a pushbutton that grounds pin 7 on the mouse
connector when pressed. The state of the button is checked by software
during each vertical blanking interrupt. The small delay between each
check is sufficient to debounce the button. You can look directly at
the mouse button's state by examining the following bit of VIA data
register B (vBase+vBufB):

vSW .EQU ;t> m mouse button is down

If the bit is clear, the mouse button is down. However, it's
recommended that you let the Operating System handle this for you
through the event mechanism.

Figure 6 shows the DB-9 pinout for the mouse jack at the back of the
Macintosh.

2/11/85 /HARDWARE/HDWR.3

18 Macintosh Hardware

1 Ground
2 +5 volts
3 Ground
4 Mouse X2 (VIA quadrature signal)
5 Mouse XI (SCC interrupt signal)
6 (not connected)
7 Mouse switch
8 Mouse Y2 (VIA quadrature signal)
9 Mouse VI (SCC interrupt signal)

Figure 6. Pinout for Mouse Jack

(warning)
Do not draw more than 200 milliamps at +5 volts from all
connectors combined.

Diagram

Figure 7 shows a circuit diagram for the mouse port.

2/11/85 /HARDWARE/HDWR.3

THE MOUSE 19

6522 (VIA)

R1 R2
Note: —CRFI Filter)— • ~ W ^ V r

R1 • R2 « 40 to 60 ohm«
C « 150 to 300 pF

Figure 7. Diagram of Mouse Port

THE KEYBOARD AND KEYPAD

The Macintosh keyboard and numeric keypad each contain an Intel 8021
microprocessor that scans the keys. The 8021 contains ROM and RAM, and
is programmed to conform to the interface protocol described below.

The keyboard plugs into the Macintosh through a four-wire RJ-11
telephone-style jack. If a numeric keypad is installed in the system,

2/11/85 /HARDWARE/HDWR.3

20 Macintosh Hardware

the keyboard plugs into it and it in turn plugs into the Macintosh.
Figure 8 shows the pinout for the keyboard jack on the Macintosh, on
the keyboard itself, and on the numeric keypad.

1 Ground
2 Clock
3 Data
4 +5 volts

Figure 8. Pinout for Keyboard Jack

(warning)
Do not draw more than 200 milllamps at +5 volts from all
connectors combined.

Keyboard Communication Protocol

The keyboard data line is bidirectional and is driven by whatever
device is sending data. The keyboard clock line is driven by the
keyboard only. All data transfers are synchronous with the keyboard
clock. Each transmission consists of eight bits, with the highest-
order bits first.

When sending data to the Macintosh, the keyboard clock transmits eight
330-usec cycles (160 usee low, 170 usee high) on the normally high
clock line. It places the data bit on the data line 40 usee before the
falling edge of the clock line and maintains it for 330 usee. The data
bit is clocked into the Macintosh's VIA shift register on the rising
edge of the keyboard clock cycle.

When the Macintosh sends data to the keyboard, the keyboard clock
transmits eight 400-usec cycles (180 usee low, 220 usee high) on the
clock line. On the falling edge of the keyboard clock cycle, the
Macintosh places the data bit on the data line and holds it there for
400 usee. The keyboard reads the data bit 80 usee after the rising
edge of the keyboard clock cycle.

Only the Macintosh can initiate communication over the keyboard lines.
On power-up of either the Macintosh or the keyboard, the Macintosh is
in charge, and the external device is passive. The Macintosh signals
that it'8 ready to begin communication by pulling the keyboard data
line low. Upon detecting this, the keyboard starts docking and the

2/11/85 /HARDWARE/HDWR.3

THE KEYBOARD AND KEYPAD 21

Macintosh sends a command. The last bit of the command leaves the
keyboard data line low; the Macintosh then indicates it's ready to
receive the keyboard's response by setting the data line high.

The first command the Macintosh sends out Is the Model Number command.
The keyboard's response to this command is to reset itself and send
back its model number to the Macintosh. If no response is received for
1/2 second, the Macintosh tries the Model Number command again. Once
the Macintosh has successfully received a model number from the
keyboard, normal operation can begin. The Macintosh sends the Inquiry
command; the keyboard sends back a Key Transition response if a key has
been pressed or released. If no key transition has occurred after 1/4
second, the keyboard sends back a Null response to let the Macintosh
know It's still there. The Macintosh then sends the Inquiry command
again. In normal operation, the Macintosh sends out an Inquiry command
every 1/4 second. If it receives no response within 1/2 second, it
assumes the keyboard is missing or needs resetting, so it begins again
with the Model Number command.

There are two other commands the Macintosh can send: the Instant
command, which gets an instant keyboard status without the 1/4-second
timeout, and the Test command, to perform a keyboard self-test. Here's
a list of the commands that can be sent from the Macintosh to the
keyboard:

Command name Value
Inquiry $10
Instant $14
Model Number $16

Test $36

Keyboard response
Key Transition code or Null ($7B)
Key Transition code or Null ($7B)
Bit 0:
Bits 1-3:
Bits 4-6:
Bit 7:

keyboard model number, 1-8
next device number, 1-8
1 if another device connected

ACK ($7D) or NAK ($77)

The Key Transition responses are sent out by the keyboard as a single
byte: Bit 7 high means a key-up transition, and bit 7 low means a key-
down. Bit 0 is always high. The Key Transition responses for key-down
transitions on the keyboard are shown (in hexadecimal) in Figure 9.
Note that these response codes are different from the key codes
returned by the keyboard driver software. The keyboard driver strips
off bit 7 of the response and shifts the result one bit to the right,
removing bit 0. For example, response code $33 becomes $19, and $2B
becomes $15.

2/11/85 /HARDWARE/HDWR. 3

22 Macintosh Hardware

N

65
1

25
2

27
3
29

4
2B

5
2F

0

2D
7

35
8

39
9

33 3°B I 37
C

31
l«cks»«c<

67
Tob
61

0
19

V
1B

E
ID

R
1F

T
23

Y
13

U
41

1

45
O
3F

P
47

[
43

] \
3D 55

Cops Lock
73

A
01

S
03

D
05

F
07

6
OB

H
09

J
4D

K
51

L
4B

•
1

53
1

4F
Return

49
Shift

71
I Z X C V B N M , . / Shift
1 OD OF 11 13 17 5B 5D 57 5F 59 71

Mm
75

9€
6F

sp»ce 1 Enter tatm!
63 1 69 1 751

U.S. keyboard

§

65
1

25
2

27
3

29
4

2B
5

2F
6 7

2D 35
8

39
9

33
0 I " 3BI 37

m
31

• —

67
—H

61
0

19
V

IB
E

1D
R

1F
T Y

23 21
U

41
1

45
O
3F

P

47
[

43
] |T>

3D 1
O

73
A

01
s

03
D

05
F

07
G 1 H

0B I 09
J

4D
K

51
L

4B
•
9

53
1

4F
N

49 55
$ \ | Z X C V I B N 1 M , 1 , / •

71 0DI OF 11 13 17 I5B 5D157 5F 159 15 71

75
1 space

6F 1 69 63 I 75
international keyboard (Great Britain key caps shown)

Clear
OF 1D

m
OD

[B
05

7
33

8
37

9
39 1B

4
2D

5
2F

6
31

6
11

1
27

2
29

3
2B

Enter

0
25 03 19

Keypad (U.S. key caps shown)

Figure 9. Key-Down Transitions

2/11/85 /HARDWARE/HDWR.3

THE KEYBOARD AND KEYPAD 23

Keypad Communication Protocol

When a numeric keypad is used, it must be inserted between the keyboard
and the Macintosh; that is, the keypad cable plugs into the jack on the
front of the Macintosh, and the keyboard cable plugs into a jack on the
numeric keypad. In this configuration, the timings and protocol for
the clock and data lines work a little differently: The keypad acts
like a keyboard when communicating with the Macintosh, and acts like a
Macintosh when communicating over the separate clock and data lines
going to the keyboard. All commands from the Macintosh are now
received by the keypad instead of the keyboard, and only the keypad can
communicate directly with the keyboard.

When the Macintosh sends out an Inquiry command, one of two things may
happen, depending on the state of the keypad. If no key transitions
have occurred on the keypad since the last Inquiry, the keypad sends an
Inquiry command to the keyboard and, later, retransmits the keyboard's
response back to the Macintosh. But if a key transition has occurred
on the keypad, the keypad responds to an Inquiry by sending back the
Keypad response ($79) to the Macintosh. In that case, the Macintosh
Immediately sends an Instant command, and this time the keypad sends
back its own Key Transition response. As with the keyboard, bit 7 high
means key-up and bit 7 low means key-down.

The Key Transition responses for key-down transitions on the keypad are
shown in Figure 9 above. Again, note that these response codes are
different from the key codes returned by the keyboard driver software.
The keyboard driver strips off bit 7 of the response and shifts the-
result one bit to the right, removing bit 0.

THE DISK INTERFACE

The Macintosh disk interface uses a design similar to that used on the
Apple II and Apple III computers, employing the Apple custom IWM chip.
Another custom chip called the Analog Signal Generator (ASG) reads the
disk speed buffer in RAM and generates voltages that control the disk
speed. Together with the VIA, the IWM and the ASG generate all the
signals necessary to read, write, format, and eject the 3 1/2-inch
disks used by the Macintosh.

The IWM controls four of the disk state-control lines (called CA0, CA1,
CA2, and LSTRB), chooses which drive (internal or external) to enable,
and processes the disk's read-data and write-data signals. The VIA
provides another disk state-control line called SEL.

A buffer in RAM (actually the loir-order bytes of words in the sound
buffer) is read by the ASG to generate a pulse-width modulated signal
that'8 used to control the speed of the disk motor. The Macintosh
Operating System uses this speed control to allow it to store more
sectors of information in the tracks closer to the edge of the disk by
running the disk motor at slower speeds.

2/11/85 /HARDWARE/HDWR.3

24 Macintosh Hardware

Figure 10 shows the DB-19 pinout for the external disk jack at the back
of the Macintosh.

(warning)
This connector was designed for a Macintosh 3 1/2-inch
disk drive, which represents a load of 500 milliamps at
+12 volt8, 500 milliamps at +5 volts, and 0 milliamps at
-12 volts. If any other device uses this connector, it
must not exceed these loads by more than 100 milliamps at
+12 volts, 200 milliamps at +5 volts, and 10 milliamps at
-?-12 volts, including loads from all other connectors
combined.

Controlling the Disk State-Control Lines

The IWM contains registers that can be used by the software to control
the state-control lines leading out to the disk. By reading or writing
certain memory locations, you can turn these state-control lines on or
off. Other locations set various IWM internal states. The locations
are given In the following table as offsets from the constant dBase,
the base address of the IWM; this base address is also available in a
global variable named IWM. The IWM is on the lower byte of the data
bus, so use odd-addressed byte accesses only.

1 Ground
2 Ground
3 Ground
4 Ground
5 -12 volts
6 • 5 volts
7 +12 volts
8 +12 volts
9 (not connected)

10 Motor speed control

11 CAO
12 CA1
13 CA2
14 LSTRB
15 Write request
16 SEL
17 External drive enable
18 Read data
19 Write data

Figure 10. Pinout for Disk Jack

2/11/85 /HARDWARE/HDWR.3

THE DISK INTERFACE 25

Location to Location to
IWM line turn line on turn line off

Disk state-control lines:
CA0 dBase+ph0H dBase+ph0L
CA1 dBase+phlH dBase+phlL
CA2 dBase+ph2H dBase+ph2L
LSTRB dBase+ph3H dBase+ph3L

Disk enable line:
ENABLE dBase-Hoot or On dBase+motorOf f

IWM internal states:
dBase+extDrive dBase+intDrive
dBase+q6H dBaee+q6L
dBa8e+q7H dBase+q7L

SELECT
Q6
07

To turn one of the lines on or off, do any kind of memory byte access
(read or write) to the respective location.

The CA0, CA1, and CA2 lines are used along with the SEL line from the
VIA to select from among the registers and data signals in the disk
drive. The LSTRB line is used when writing control Information to the
disk registers (as described below), and the ENABLE line enables the
selected disk drive. SELECT is an IWM internal line that chooses which
disk drive can be enabled: On selects the external drive, and off
selects the internal drive. The Q6 and Q7 lines are used to set up the
internal state of the IWM for reading disk register information, as
well as for reading or writing actual disk-storage data.

You can read information from several registers in the disk drive to
find out whether the disk is locked, whether a disk is in the drive,
whether the head is at track 0, how many heads the drive has, and
whether there's a drive connected at all. In turn, you can write to
some of these registers to step the head, turn the motor on or off, and
eject the disk.

Reading from the Disk Registers

Before you can read from any of the disk registers, you must set up the
state of the IWM so that it can pass the data through to the MC68000'8
memory space where you'll be able to read it. To do that, you must
first turn off Q7 by reading or writing dBase+q7L. Then turn on Q6 by
accessing dBase+q6H. After that, the IWM will be able to pass data
from the disk's RD/SENSE line through to you.

Once you've set up the IWM for disk register access, you must next
select which register you want to read. To read one of the disk
registers, first enable the drive you want to use (by accessing
dBase+intDrive or dBase+extDrive and then dBase+motorOn) and make sure
LSTRB is low. Then set CA0, CA1, CA2, and SEL to address the register
you want. Once this is done, you can read the disk register data bit
in the high-order bit of dBase+q7L. After you've read the data, you

2/11/85 /HARDWARE/HDWR.3

26 Macintosh Hardware

may read another disk register by again setting the proper values in
CA0, CAl, CA2, and SEL, and then reading dBase+q7L.

(warning)
When you're finished reading data from the disk
registers, it's important to leave the IWM in a state
that the Disk Driver will recognize. To be sure it's in
a valid logic state, always turn Q6 back off (by
accessing dBase+q6L) after you've finished reading the
disk registers.

The following table shows how you must set the disk state-control lines
to read from the various disk registers and data signals:

State-control lines Register
CA2 CAl CA0 SEL addressed Information in register
0 ~V "1T ~TT DIRTN Head step direction
0 0 0 1 CSTIN Disk in place
0 0 1 0 STEP Disk head stepping
0 0 1 1 WRTPRT Disk locked
0 1 0 0 MOTORON Disk motor running
0 1 0 1 TKO Head at track 0
0 1 1 1 TACH Tachometer
1 0 0 0 RDDATA0 Read data, lower head
1 0 0 1 RDDATA1 Read data, upper head
1 1 0 0 SIDES Single- or double-sided drive
1 1 1 1 DRV IN Drive installed

Writing to the Disk Registers

To write to a disk register, first be sure that LSTRB is off, then turn
on CA0 and CAl. Next, set SEL to 0. Set CA0 and CAl to the proper
values from the table below, then set CA2 to the value you want to
write to the disk register. Hold LSTRB high for at least one usee but
not more than one msec (unless you're ejecting a disk) and bring it low
again. Be sure that you don't change CA0-CA2 or SEL while LSTRB is
high, and that CA0 and CAl are set high before changing SEL.

The following table shows how you must set the disk state-control lines
to write to the various disk registers:

Control lines
CAl
T

0
1
1

CA0
0~
1
0
1

SEL
T
0
0
0

Register
addressed
DIRTN
STEP
MOTORON
EJECT

Register function
Set stepping direction
Step disk head one track
Turn on/off disk motor
Eject the disk

2/11/85 /HARDWARE/HDWR.3

THE DISK INTERFACE 27

Explanations of the Disk Registers

The information written to or read from the various disk registers can
be interpreted as follows:

- The DIRTN signal sets the direction of subsequent head stepping:
0 causes steps to go toward the inside track (track 79), 1 causes
them to go toward the outside track (track 0).

- CSTIN is 0 only when a disk is in the drive.

- Setting STEP to 0 steps the head one full track in the direction
last set by DIRTN. When the step i6 complete (about 12 msec), the
disk drive sets STEP back to 1, and then you can step again.

- WRTPRT is 0 whenever the disk is locked. Do not write to a disk
unless WRTPRT is 1.

- MOTORON controls the state of the disk motor: 0 turns on the
motor, and 1 turns it off. The motor will run only if the drive
is enabled and a disk is in place; otherwise, writing to this line
will have no effect.

- TKO goes to 0 only if the head is at track 0. This is valid
beginning 12 msec after the step that puts it at track 0.

- Writing 1 to EJECT ejects the disk from the drive. To eject a
disk, you must hold LSTRB high for at least 1/2 second.

- The current disk speed is available as a pulse train on TACH. The
TACH line produces 60 pulses for each rotation of the drive motor.
The disk motor speed is controlled by the AS6 as it reads the disk
speed RAM buffer.

- RDDATA0 and RDDATA1 carry the instantaneous data from the disk
head.

- SIDES is always 0 on single-sided drives and 1 on double-sided
drives.

- DRVIN is always 0 if the selected disk drive is physically
connected to the Macintosh, otherwise it floats to 1.

THE REAL-TIME CLOCK

The Macintosh real-time clock is a custom chip whose interface lines
are available through the VIA. The clock contains a four-byte counter
that's incremented once each second, as well as a line that can be used
by the VIA to generate an interrupt once each second. It also contains
20 bytes of RAM that are powered by a battery when the Macintosh is
turned off. These RAM bytes, called parameter RAM, contain important

2/11/85 /HARDWARE/HDWR.4

28 Macintosh Hardware

data that needs to be preserved even when the system power is not
available. The Operating System maintains a copy of parameter RAM that
you can access in low memory. To find out how to use the values in
parameter RAM, see the Operating System Utilities chapter.

Accessing The Clock Chip

The clock is accessed through the following bits of VIA data register B
(vBase+vBufB):

rTCData .EQU 0 ;real-time clock serial data line
rTCClk .EQU 1 {real-time clock data-clock line
rTCEnb .EQU 2 ;real-time clock serial enable

These three bits constitute a simple serial interface. The rTCData bit
is a bidirectional serial data line used to send command and data byte6
back and forth. The rTCClk bit is a data-clock line, always driven by
the processor (you set it high or low yourself) that regulates the
transmission of the data and command bits. The rTCEnb bit is the
serial enable line, which signals the real-time clock that the
processor is about to send it serial commands and data.

To access the clock chip, you must first enable its serial function.
To do this, set the serial enable line (rTCEnb) to 0. Keep the Berial
enable line low during the entire transaction; if you set it to 1,
you'll abort the transfer.

(warning)
Be sure you don't alter any of bits 3-7 of VIA data
register B during clock serial access.

A command can be either a write request or a read request. After the
eight bits of a write request, the clock will expect the next eight
bits across the serial data line to be your data for storage into one
of the internal registers of the clock. After receiving the eight bits
of a read request, the clock will respond by putting eight bits of its
data on the serial data line. Commands and data are transferred
serially in eight-bit groups over the serial data line, with the high-
order bit first and the low-order bit last.

To send a command to the clock, first set the rTCData bit of VIA data
direction register B (vBase+vDirB) so that the real-time clock's serial
data line will be used for output to the clock. Next, set the rTCClk
bit of vBase+vBufB to 0, then set the rTCData bit to the value of the
first (high-order) bit of your data byte. Then raise (set to 1) the
data-clock bit (rTCClk). Then lower the data-clock, set the serial
data line to the next bit, and raise the data-clock line again. After
the.last bit of your command has been sent in this way, you can either
continue by sending your data byte in the same way (if your command was
a write request) or switch to receiving a data byte from the clock (if
your command was a read request).

2/11/85 /HARDWARE/HDWR.4

THE REAL-TIME CLOCK 29

To receive a byte of data from the clock, you must first send a command
that's a read request. After you've clocked out the last bit of the
command, clear the rTCData bit of the data direction register so that
the real-time clock's serial data line can be used for input from the
clock; then lower the data-clock bit (rTCClk) and read the first (high-
order) bit of the clock's data byte on the serial data line. Then
raise the data-clock, lower it again, and read the next bit of data.
Continue this until all eight bits are read, then raise the serial
enable line (rTCEnb), disabling the data transfer.

The following table lists the commands you can send to the clock. A 1
in the high-order bit makes your command a read request; a 0 in the
high-order bit makes your command a write request. (In this table, "z"
is the bit that determines read or write status, and bits marked "a"
are bits whose values depend on what parameter RAM byte you want to
address.)

Note that the last two bits of a command byte must always be 01.

If the high-order bit (bit 7) of the write-protect register is set,
this prevents writing into any other register on the clock chip
(including parameter RAM). Clearing the bit allows you to change any
values in any registers on the chip. Don't try to read from this
register; it's a write-only register.

The two highest-order bits (bits 7 and 6) of the test register are used
as device control bits during testing, and should always be set to 0
during normal operation. Setting them to anything else will interfere
with normal clock counting. Like the write-protect register, this is a
write-only register; don't try to read from it.

All clock data must be sent a6 full eight-bit bytes, even if only one
or two bits are of interest. The rest of the bits may not matter, but
you must send them to the clock or the write will be aborted when you
raise the serial enable line.

It's important to use the proper sequence if you're writing to the
clock's seconds registers. If you write to a given seconds register,
there's a chance that the clock may increment the data in the next
higher-order register during the write, causing unpredictable results.
To avoid this possibility, always write to the registers in low-to-high
order. Similarly, the clock data may increment during a read of all
four time bytes, which could cause invalid data to be read. To avoid
this, always read the time twice (or until you get the same value

Command byte
Z0000001
Z0000101
Z0001001
Z0001101
00110001
00110101
z010aa01
zlaaaa01

Register addressed by the command
Seconds register 0 (lowest-order byte)
Seconds register 1
Seconds register 2
Seconds register 3 (highest-order byte)
Test register (write only)
Write-protect register (write only)
RAM address 100aa ($10—$13)
RAM address 0aaaa ($00-$0F)

2/11/85 /HARDWARE/HDWR.4

30 Macintosh Hardware

twice).

(warning)
When you've finished reading from the clock registers,
always end by doing a final write such as setting the
write-protect bit. Failure to do this may leave the
clock in a state that will run down the battery more
quickly than necessary.

The One-Second Interrupt

The clock also generates a VIA interrupt once each second (if this
interrupt is enabled). The enable status for this interrupt can be
read from or written to bit 0 of the VIA's interrupt enable register
(vBase+vIER). When reading the enable register, a 1 bit Indicates the
Interrupt is enabled, and 0 means it's disabled. Writing $01 to the
enable register disables the clock's one-second Interrupt (without
affecting any other interrupts), while writing $81 enables it again.
See the Device Manager chapter for more Information about writing your
own interrupt handlers.

(warning)
Be sure when you write to bit 0 of the VIA's interrupt
enable register that you don't change any of the other
bits.

THE VIA

The Synertek SY6522 Versatile Interface Adapter (VIA) controls the
keyboard, internal real-time clock, parts of the disk, sound, and mouse
interfaces, and various internal Macintosh signals. Its base address
is available as the constant vBase and is also stored in a global
variable named VIA. The VIA is on the upper byte of the data bus, so
use even-addre6sed byte accesses only.

There are two parallel data registers within the VIA, called A and B,
each with a data direction register. There are also several event
timers, a clocked shift register, and an interrupt flag register with
an interrupt enable register.

Normally you won't have to touch the direction registers, since the
Operating System sets them up for you at system startup. A 1 bit in a
data direction register means the corresponding bit of the respective
data register will be used for output, while a 0 bit means it will be
used for input.

(note)
For more information on the registers and control
structure of the VIA, consult the technical
specifications for the SY6522 chip.

2/11/85 /HARDWARE/HDWR.4

THE VIA 31

VIA Register A

VIA data register A is at vBase+vBufA. The corresponding data
direction register Is at vBase+vDirA.

Blt(s) Name Description
7 vSCCWReq SCC wait/request
6 vPage2 Alternate screen buffer
5 vHeadSel Disk SEL line
4 vOverlay ROM low-memory overlay
3 vSndPg2 Alternate sound buffer
0-2 vSound (mask) Sound volume

The vSCCWReq bit can signal that the SCC has received a character (used
to maintain serial communications during disk accesses, when the CPU's
interrupts from the SCC are disabled). The vPage2 bit controls which
screen buffer is being displayed, and the vHeadSel bit is the SEL
control line used by the disk interface. The vOverlay bit (used only
during system startup) can be used to place another image of ROM at the
bottom of memory, where RAM usually is (RAM moves to $600000). The
sound buffer is selected by the vSndPg2 bit. Finally, the vSound bits
control the sound volume.

VIA Register B

VIA data register B is at vBase+vBufB. The corresponding data
direction register is at vBase+vDirB.

Bit Name Description
7 vSndEnb Sound enable/disable
6 vH4 Horizontal blanking
5 vY2 Mouse Y2
4 vX2 Mouse X2
3 vSW Mouse switch
2 rTCEnb Real-time clock serial enable
1 rTCClk Real-time clock data-clock line
0 rTCData Real-time clock serial data

The vSndEnb bit turns the sound generator on or off, and the vH4 bit is
set when the video beam is in its horizontal blanking period. The vY2
and vX2 bits read the quadrature signals from the Y (vertical) and X
(horizontal) directions, respectively, of the mouse's motion lines.
The vSW bit reads the mouse switch. The rTCEnb, rTCClk, and rTCData
bits control and read the real-time clock.

2/11/85 /HARDWARE/HDWR.4

32 Macintosh Hardware

The VIA Peripheral Control Register

The VIA's peripheral control register, at vBase+vPCR, allows you to set
some very low-level parameters (such as positive-edge or negative-edge
triggering) dealing with the keyboard data and clock lnterupts, the one-
second real-time clock interrupt line, and the vertical blanking
interrupt.

Bit(s)
5-7
A
1-3
0

Description
Keyboard data interrupt control
Keyboard clock interrupt control
One-second interrupt control
Vertical blanking interrupt control

The VIA Timers

The timers controlled by the VIA are called timer 1 and timer 2. Timer
1 is used to time various events having to do with the Macintosh sound
generator. Timer 2 is used by the Disk Driver to time disk I/O events.
If either timer isn't being used by the Operating System, you're free
to use it for your own purposes. When a timer counts down to 0, an
interrupt will be generated if the proper interrupt enable has been
set. See the Device Manager chapter for information about writing your
own interrupt handlers.

To start one of the timers, store the appropriate values in the highl-
and low-order bytes of the timer counter (or the timer 1 latches, for
multiple use of the value). The counters and latches are at the
following locations:

Location
vBase+vTIC
vBase+vTlCH
vBase+vTIL
vBase+vTlLH

Contents
Timer 1 counter (low-order byte)
Timer 1 counter (high-order byte)
Timer 1 latch (low-order byte)
Timer 1 latch (high-order byte)

vBase+vT2C
vBase+vT2CH

Timer 2 counter (low-order byte)
Timer 2 counter (high-order byte)

(note)
When setting a timer, it's not enough to simply store a
full word to the high-order address, because the high-
and low-order bytes of the counters are not adjacent.
You must explicitly do two stores, one for the high-order
byte and one for the low-order byte.

2/11/85 /HARDWARE/HDWR.4

THE VIA 33

VIA Interrupts

The VIA (through its IRQ line) can cause a level-0 processor interrupt
whenever one of the following occurs: Timer 1 or timer 2 times out;
the keyboard is clocking a bit in through its serial port; the shift
register for the keyboard serial interface has finished shifting in or
out; the vertical blanking interval is beginning; or the one-second
clock has ticked. For more information on how to use these interrupts,
see the Device Manager chapter.

The interrupt flag register at vBase+vIFR contains flag bits that are
set whenever the interrupt corresponding to that bit has occurred. The
Operating System uses these flags to determine which device has caused
an interrupt. Bit 7 of the interrupt flag register is not really a
flag: It remains set (and the IRQ line to the processor is held low)
as long as any enabled VIA interrupt is occurring.

Bit Interrupting device
7 IRQ (all enabled VIA interrupts)
6 Timer 1
5 Timer 2
4 Keyboard clock
3 Keyboard data bit
2 Keyboard data ready
1 Vertical blanking interrupt
0 One-second interrupt

The interrupt enable register, at vBase+vIER, lets you enable or
disable any of these interrupts. If an interrupt is disabled, its bit
in the Interrupt flag register will continue to be set whenever that
interrupt occurs, but it won't affect the IRQ flag, nor will it
interrupt the processor.

The bits in the interrupt enable register are arranged just like those
in the interrupt flag register, except for bit 7. When you write to
the interrupt enable register, bit 7 is "enable/disable": If bit 7 is
a 1, each 1 in bits 0-6 enables the corresponding Interrupt; if bit 7
is a 0, each 1 in bits 0-6 disables that interrupt. In either case,
0's in bits 0-6 do not change the status of those interrupts. Bit 7 is
always read as a 1.

Other VIA Registers

The shift register, at vBase+vSR, contains the eight bits of data that
have been shifted in or that will be shifted out over the keyboard data
line..

The auxiliary control register, at vBase+vACR, is described in the
SY6522 documentation. It controls various parameters having to do with
the timers and the shift register.

2/11/85 /HARDWARE/HDWR.4

34 Macintosh Hardware

SYSTEM STARTUP

When power is first supplied to the Macintosh, a carefully orchestrated
sequence of events takes place.

First, the processor is held in a wait state while a series of circuits
gets the system ready for operation. The VIA and 1WM are initialized,
and the mapping of ROM and RAM are altered temporarily by setting the
overlay bit in VIA data register A. This places the ROM starting at
the normal ROM location $400000, and a duplicate image of the same ROM
starting at address 0 (where RAM normally is), while RAM is placed
starting at $600000. Under this mapping, the Macintosh software
executes out of the normal ROM locations above $400000, but the MC68000
can obtain some critical low-memory vectors from the ROM image it finds
at address 0.

Next, a memory test and several other system tests take place. After
the system is fully tested and initialized, the software clears the
VIA's overlay bit, mapping the system RAM back where it belongs,
starting at address 0. Then the disk startup process begins.

First the internal disk is checked: If there's a disk inserted, the
system attempts to read it. If no disk is in the internal drive 'and
there's an external drive with an inserted disk, the system will try to
read that one. Otherwise, the question-mark disk icon is displayed
until a disk is Inserted. If the disk startup falls for some reason,
the "sad Macintosh" icon is displayed and the Macintosh goes into an
endless loop until it's turned off again.

Once a readable disk has been inserted, the first two sectors
(containing the system startup blocks) are read in and the normal disk
load begins.

2/11/85 /HARDWARE/HDWR.4

SUMMARY 35

SUMMARY

(warning)
This information applies only to the Macintosh 128K and
512K, not to the Macintosh XL.

Constants

; VIA base addresses

vBase .EQU $EFE1FE ;maln base for VIA chip (in variable VIA)
aVBufB .EQU vBase ;register B base
aVBufA .EQU $EFFFFE ;register A base
aVBufM .EQU aVBufB ;register containing mouse signals
aVIFR .EQU $EFFBFE ;interrupt flag register
aVIER .EQU $EFFDFE {interrupt enable register

; Offsets from vBase

vBufB .EQU 512*0 {register B (zero offset)
vDirB .EQU 512*2 {register B direction register
vDirA .EQU 512*3 {register A direction register
vTIC .EQU 512*4 {timer 1 counter (low-order byte)
vTlCH .EQU 512*5 {timer 1 counter (high-order byte)
vTIL .EQU 512*6 {timer 1 latch (low-order byte)
vTlLH .EQU 512*7 {timer 1 latch (high-order byte)
vT2C .EQU 512*8 {timer 2 counter (low-order byte)
vT2CH .EQU 512*9 {timer 2 counter (high-order byte)
vSR .EQU 512*10 {shift register (keyboard)
vACR .EQU 512*11 {auxiliary control register
vPCR .EQU 512*12 {peripheral control register
vIFR .EQU 512*13 {Interrupt flag register
vIER .EQU 512*14 {interrupt enable register
vBufA .EQU 512*15 {register A

{ VIA register A constants

vAOut .EQU $7F {direction register A: 1 bits - outputs
vAInit .EQU $7B {initial value for vBufA (medium volume)
vSound .EQU 7 {sound volume bits

{ VIA register A bit numbers

vSndPg2 .EQU 3 {0 • alternate sound buffer
vOverlay .EQU 4 {1 • ROM overlay (system startup only)
vHeadSel .EQU 5 {disk SEL control line
vPage2 .EQU 6 ;0 • alternate screen buffer
vSCCWReq .EQU 7 ;SCC wait/request line

2/11/85 /HARDWARE/HDWR.S

36 Macintosh Hardware

; VIA register B constants

vBOut .EQU $87 ;direction register B: 1 bits « outputs
vBInit .EQU $07 ;initial value for vBufB

; VIA register B bit numbers

rTCData .EQU 0 ;real-time clock serial data line
rTCClk .EQU 1 ;real-time clock data-clock line
rTCEnb .EQU 2 ;real-time clock serial enable
vSW .EQU 3 ;0 = mouse button is down
vX2 .EQU 4 ;mouse X quadrature level
vY2 .EQU 5 ;mouse T quadrature level
vH4 .EQU 6 ;1 • horizontal blanking
vSndEnb .EQU 7 ;0 • sound enabled, 1 • disabled

; SCC base addresses

sccRBase .EQU $9FFFF8 ;SCC base read address (in variable SCCRd)
sccWBase .EQU $BFFFF9 ;SCC base write address (in variable SCCWr)

; Offsets from SCC base addresses

aData
aCtl
bData
bCtl

.EQU

.EQU

.EQU

.EQU

6
2
4
0

;channel A data in or out
;channel A control
;channel B data in or out
;channel B control

; Bit numbers for control register RR0

rxBF
txBE

.EQU

.EQU
0
2

; IWM base address

dBase .EQU $DFEIFF

; Offsets from dBase

;1 • SCC receive buffer full
;1 • SCC send buffer empty

;IWM base address (in variable IUM)

ph0L .EQU 512*0
ph0H .EQU 512*1
phlL .EQU 512*2
phlH .EQU 512*3
ph2L .EQU 512*4
ph2H .EQU 512*5
ph3L .EQU 512*6
ph3H .EQU 512*7
mtrOff .EQU 512*8
mtrOn .EQU 512*9
intDrive .EQU 512*10
extDrive .EQU 512*11
q6L .EQU 512*12
q6H .EQU 512*13
q7L .EQU 512*14

;CA0 off (0)
;CA0 on (1)
;CA1 off (0)
;CA1 on (1)
;CA2 off (0)
;CA2 on (1)
;LSTRB off (low)
;LSTRB on (high)
;di8k enable off
;disk enable on
;select Internal drive
;select external drive
;Q6 off
;Q6 on
;Q7 off

2/11/85 /HARDWARE/HDWR.S

SUMMARY 37

q7H .EQU 512*15 ;Q7 on

; Screen and sound addresses for 512K Macintosh (will also work for
; 128K, since addresses wrap)

screenLow .EQU $7A700
soundLow .EQU $7FD00
pwmBuffer .EQU $7FD01
ovlyRAM .EQU $600000
ovlyScreen .EQU $67A700
romStart .EQU $400000

;top left corner of main screen buffer
;main sound buffer (in variable SoundBase)
;main disk speed buffer
;RAM start address when overlay is set
;screen start with overlay set
;ROM start address (in variable ROMBase)

Variables

ROMBase Base address of ROM
SoundBase Address of main sound buffer
SCCRd SCC read base address
SCCWr SCC write base address
IWM IWM base address
VIA VIA base address

Exception Vectors

Location Purpose
$00 Reset: initial stack pointer (not a vector)
$04 Reset: initial vector
$08 Bus error
$0C Address error
$10 Illegal instruction
$14 Divide by zero
$18 CHK instruction
$1C TRAPV instruction
$20 Privilege violation
$24 Trace interrupt
$28 Line 1010 emulator
$2C Line 1111 emulator
$30-$3B Unassigned (reserved)
$3C Uninitialized interrupt
$40-$5F Unassigned (reserved)
$60 Spurious interrupt
$64 VIA Interrupt
$68 SCC interrupt
$6C VIA+SCC vector (temporary)
$70 Interrupt switch
$74 Interrupt switch + VIA
$78 Interrupt switch + SCC
$7C Interrupt switch + VIA + SCC
$80-$BF TRAP Instructions
$C0-$FF Unassigned (reserved)

2/11/85 /HARDWARE/HDWR.S

o

o

o

MACINTOSH USER EDUCATION

The Printing Manager /PRINTING/PRINT

Modification History: First Draft S. Chernicoff & B. Hacker 6/11/84
Second Draft Mark Metzler 3/27/85

2 Printing Manager

TABLE OF CONTENTS

3 About This Chapter
3 About the Printing Manager
4 Print Records and Dialogs
7 The Printer Information Subrecord
9 The Job Subrecord
10 Additional Device Information
11 Methods of Printing
11 Background Processing
12 Using the Printing Manager
12 The Printing Loop
12 Printing a Specified Range of Pages
13 Using QuickDraw For Printing
13 Printing From the Finder
15 Printing Manager Routines
15 Initialization and Termination
16 Print Records and Dialogs
17 Printing
18 Error Handling
19 The Printer Driver
20 Low-Level Driver Access Routines
21 Printer Control
22 Bit Map Printing
23 Text Streaming
25 Summary of the Printing Manager

Copyright (c) 1985 Apple Computer, Inc. All rights reserved.
Distribution of this draft in limited quantities does not constitute
publication.

ABOUT THIS CHAPTER 3

ABOUT THIS CHAPTER

The Printing Manager is a set of RAM-based routines and data types that
allow you to use standard QuickDraw routines to print text or graphics
on a printer. The Printing Manager calls the Printer Driver, a device
driver in RAM. It also Includes low-level calls to the Printer Driver
so that you can implement alternate, low-level printing routines.

You should already be familiar with the following:

- the Resource Manager

- QuickDraw

- dialogs, as described in the Dialog Manager chapter

- the Device Manager, if you're interested in writing your own
Printer Driver

ABOUT THE PRINTING MANAGER

The Printing Manager isn't in the Macintosh ROM; to access the Printing
Manager routines, you must link with an object file or files provided
as part of your development system.

The Macintosh user prints a document by selecting the Print command
from the application's File menu; a dialog then requests information
such as the print quality and number of copies. The Page Setup command
in the File menu lets the user specify formatting Information, such as
the page size, that rarely needs to be changed and is saved with the
document. The Printing Manager provides your application with two
standard dialogs for obtaining Page Setup and Print information. The
user can also print directly from the Finder by selecting one or more
documents and choosing Print from the Finder's File menu; the Print
dialog is then applied to all of the documents selected.

The Printing Manager is designed so that your application doesn't have
to be concerned with what kind of printer is connected to the
Macintosh; you call the same printing routines, regardless of the
printer. This printer independence Is possible because the actual
printing code (which is different for different printers) is contained
in a separate printer resource file on the user's disk. The printer
resource file contains a device driver, called the Printer Driver, that
communicates between the Printing Manager and the printer.

The user installs a new printer with the Choose Printer desk accessory,
which gives the Printing Manager a new printer resource file. This
process is transparent to your application, and your application should
not make any assumptions about the printer type.

3/27/85 Hacker-Metzler /PRINTING/PRINT.I.1

A Printing Manager

Figure 1 shows the flow of control for printing on the Macintosh.

Figure 1. Printing Overview

You define the image to be printed by using a printing grafPort, a
QuickDraw grafPort with additional fields that customize it for
printing:

TYPE TPPrPort - "TPrPort;
TPrPort - RECORD

gPort: GrafPort; {grafPort to draw in}
{more fields for internal use}

END;

The Printing Manager gives you a printing grafPort when you open a
document for printing. You then print text and graphics by drawing
into this port with QuickDraw, just as if you were drawing on the
screen. The Printing Manager installs its own versions of QuickDraw's
low-level drawing routines in the printing grafPort, causing your
higher-level QuickDraw calls to drive the printer instead of drawing on
the screen.

(warning)
You should not try to do your own customization of
QuickDraw routines in the printing grafPort unless you're
sure of what you're doing.

3/27/85 Hacker-Metzler /PRINTING/PRINT.I.1

PRINT RECORDS AND DIALOGS 5

PRINT RECORDS AND DIALOGS

To format and print a document, your application must know the
following:

- the dimensions of the printable area of the page

- if the application must calculate the margins, the size of the
physical sheet of paper and the printer's vertical and horizontal
resolution

- which printing method is being used (draft or spool, explained
below)

This information is contained in a data structure called a print
record. The Printing Manager fills in the entire print record for you.
Information that the user can specify is set through two standard
dialogs.

The style dialog should be presented when the user selects the
application's Page Setup command from the File menu. It lets the user
specify any options that affect the page dimensions, that is, the
information you need for formatting the document to match the printer.
Figure 2 shows the standard style dialog for the Imagewriter printer.

Paper: (i) US Letter O R4 Letter [OK]
O US Legal O International Fanfold

Orientation: ©Tall QTall Rdjusted QUIide [Cancel

Figure 2. The Style Dialog

The job dialog should be presented when the user chooses to start
printing with the Print command. It requests information about how to
print the document this time, such as the the print quality (for
printers that offer a choice of resolutions), the type of paper feed
(such as fanfold or cut-sheet), the range of pages to print, and the
number of copies. Figure 3 shows the standard job dialog for the
Imagewriter.

Quality: O High <•) Standard 0 Draft 1 OK)
Page Range: ® Rll O From: j | To: | |

1 OK)

Copies: i> i
[Cancel] Paper Feed: <•) Continuous Q Cut Sheet [Cancel]

Figure 3. The Job Dialog

3/27/85 Hacker-Metzler /PRINTING/PRINT.I.1

6 Printing Manager

(note)
The dialogs shown in Figures 2 and 3 are examples only;
the actual content of these dialogs is customized for
each printer.

Print records are referred to by handles. Their structure is as
follows:

TYPE THPrint - ~TPPrint;
TPPrint • "TPrint;
TPrint - RECORD

iPrVer8ion:
prlnfo:
rPaper:
prStl:
prlnfoPT:
prXInfo:
prJob:
printX:

END;

(warning)
Your application should not change the data in the print
record—be sure to use the standard dialogs for setting
thiB information. The only fields you'll need to set
directly are some containing optional information in the
job subrecord (explained below). Attempting to set other
values directly in the print record can produce
unexpected results.

IPrVersion identifies the version of the Printing Manager that
initialized this print record. If you try to use a print record that's
invalid for the current version of the Printing Manager or for the
currently Installed printer, the Printing Manager will correct the
record by filling it with default values.

The other fields of the print record are discussed in separate sections
below.

(note)
Whenever you save a document, you should write an
appropriate print record in the document's resource file.
This lets the document "remember" Its own printing
parameters for use the next time it's printed.

The Printer Information Subrecord

The printer information subrecord (field prlnfo of the print record)
gives you the information needed for page composition. It's defined as
follows:

INTEGER; {Printing Manager version}
TPrlnfo; {printer information subrecord}
Rect; {paper rectangle}
TPrStl; {additional device information}
TPrlnfo; {used internally}
TPrXInfo; {additional device information}
TPrJob; {job subrecord}
ARRAY[1..19] OF INTEGER {not used}

3/27/85 Hacker-Metzler /PRINTING/PRINT.1.2

PRINT RECORDS AND DIALOGS 7

TYPE TPrlnfo RECORD
iDev:
iVRes:
lHRes:
rPage: Rect

END;

INTEGER; {uBed internally}
INTEGER; {vertical resolution of printer}
INTEGER; {horizontal resolution of printer}

{page rectangle}

RPage is the page rectangle, representing the boundaries of the
printable page: The printing grafPort's boundary rectangle, portRect,
and clipRgn are set to this rectangle. Its top left corner always has
coordinates (0,0); the coordinates of the bottom right corner give the
maximum page height and width attainable on the given printer, in dots.
Typically these are slightly less than the physical dimensions of the
paper, because of the printer's mechanical limitations. RPage is set
as a result of the style dialog.

The rPage rectangle is inside the paper rectangle, specified by the
rPaper field of the print record. RPaper gives the physical paper
size, defined In the same coordinate system as rPage (see Figure 4).
Thus the top left coordinates of the paper rectangle are typically
negative and its bottom right coordinates are greater than those of the
page rectangle.

Figure 4. Page and Paper Rectangles

IVRes and iHRes give the printer's vertical and horizontal resolution
in dots per inch. Thus, if you divide the width of rPage by IHRes, you
get the width of the page rectangle in Inches.

3/27/85 Hacker-Hetzler /PRINTING/PRINT.I.2

6 Printing Manager

The Job Subrecord

The job subrecord (field prJob of the print record) contains
information about a particular printing job. Its contents are set as a
result of the job dialog.

The job subrecord is defined as follows:

TYPE TPrJob RECORD
iFstPage:
iLstPage:
iCopies:
bJDocLoop:
fFromUBr:
pldleProc:
pFileName:
iFileVol:
bFileVers:
bJobX:

END;

INTEGER; {first page to print}
INTEGER; {last page to print}
INTEGER; {number of copies}
SignedByte; {printing method}
BOOLEAN; {used internally}
ProcPtr; {background procedure}
StringPtr; {spool file name}
INTEGER; {spool file volume reference number}
SignedByte; {spool file version number}
SignedByte {used internally}

BJDocLoop designates the printing method that the Printing Manager will
use. It will be one of the following predefined constants:

CONST bDraftLoop » 0; {draft printing}
bSpoolLoop - 1; {spool printing}

Draft printing means that the document will be printed immediately.
Spool printing means that printing may be deferred: The Printing
Manager writes out a representation of the document's printed image to
a disk file (or possibly to memory); this information is then converted
into a bit image and printed. For details about the printing methods,
see the "Methods of Printing" section below. The Printing Manager sets
the bJDocLoop field; your application should not change it.

IFstPage and iLstPage designate the first and last pages to be printed.
These page numbers are relative to the first page counted by the
Printing Manager. The Printing Manager knows nothing about any page
numbering placed by an application within a document.

ICopies is the number of copies to print. The Printing Manager
automatically handles multiple copies for spool printing or for
printing on the LaserWriter. Your application only needs this number
for draft printing on the Imagewriter.

PldleProc is a pointer to the background procedure (explained below)
for this printing operation. In a newly initialized print record this
field is set to NIL, designating the default background procedure,
which just polls the keyboard and cancels further printing if the user
types Command-period. You can install a background procedure of your
own by storing a pointer to your procedure directly into the pldleProc
field.

3/27/85 Hacker-Metzler /PRINTING/PRINT.1.2

PRINT RECORDS AND DIALOGS 9

For spool printing, your application may optionally provide a spool
file name, volume reference number, and version number (described in
the File Manager chapter):

- PFileName is the name of the spool file. This field is
initialized to NIL, and generally not changed by the application.
NIL denotes the default file name (normally 'Print File') stored
in the printer resource file.

- IFileVol is the volume reference number of the spool file. This
field is initialized to 0, representing the default volume. You
can use the File Manager function SetVol to change the default
volume, or you can override the default setting by storing
directly into this field.

- BFileVers is the version number of the spool file, initialized to
0.

Additional Device Information

The prStl and prXInfo fields of the print record provide device
information that your application may need to refer to.

The prStl field of the print record is defined as follows:

TYPE TPrStl » RECORD
wDev: INTEGER; {high byte specifies device}
{more fields for internal use}

END;

The high-order byte of the wDev field indicates which printer is
currently selected:

bDevCItoh - 1; {Imagewriter printer}
bDevLaser - 3; {LaserWriter printer}

A value of 0 indicates the Macintosh screen; other values are reserved
for future use. The low-order byte of wDev is used internally.

The prXInfo field of the print record is defined as follows:

3/27/85 Hacker-Metzler /PRINTING/PRINT.I.2

10 Printing Manager

TYPE TPrXInfo RECORD
iRowBytes: INTEGER;
iBandV: INTEGER;
iBandH: INTEGER;
iDevBytes: INTEGER;
{more fields for internal use}

END;

{used internally}
{used internally}
{used internally}
{size of buffer}

IDevBytes is the number of bytes of memory required as a buffer for
spool printing. (You need this information only if you choose to
allocate your own buffer.)

METHODS OF PRINTING

There are two basic methods of printing documents: draft and spool.
The Printing Manager determines which method to use; the two methods
are implemented in different ways for different printers.

In draft printing, your QuickDraw calls are converted directly into
command codes the printer understands, which are then immediately -used
to drive the printer:

- On the Imagewriter, draft printing is used for printing quick, low-
quality drafts of text documents that are printed straight down
the page from top to bottom and left to right.

- On the LaserWriter, draft printing is used to obtain high-quality
output. (This typically requires 15K bytes of memory for your
data and printing code.)

Spool printing is a two-stage process. First, the Printing Manager
writes out ("spools") a representation of your document's printed image
to a disk file or to memory. This information is then converted into a
bit image and printed. On the Imagewriter, spool printing is used for
standard or high-quality printing.

Spooling and printing are two separate stages because of memory
considerations: Spooling a document takes only about 3K bytes of
memory, but may require large portions of your application's code and
data in memory; printing the spooled document typically requires from
20K to 40K for the printing code, buffers, and fonts, but most of your
application's code and data are no longer needed. Normally you'll make
your printing code a separate program segment, so you can swap the rest
of your code and data out of memory during printing and swap it back in
after you're finished (see the Segment Loader chapter).

(note)
This chapter frequently refers to spool files, although
there may be cases when the document is spooled to
memory. This difference will be transparent to the
application.

3/27/85 Hacker-Metzler /PRINTING/PRINT.1.2

METHODS OF PRINTING 11

(note)
The Internal format of spool files is private to the
Printing Manager and may vary from one printer to
another. This means that spool files destined for one
printer can't be printed on another. In spool files for
the Imagewriter, each page is stored as a QuickDraw
picture. It'8 envisioned that most other printers will
use this same approach, but there may be exceptions.
Spool files can be identified by their file type ('PFIL')
and creator ('PSYS'). File type and creator are
discussed in the Finder Interface chapter.

BACKGROUND PROCESSING

As mentioned above, the job subrecord includes a pointer, pldleProc, to
an optional background procedure to be run whenever the Printing
Manager has directed output to the printer and is waiting for the
printer to finish. The background procedure takes no parameters and
returns no result; the Printing Manager simply runs it at every
opportunity.

If you don't designate a background procedure, the Printing Manager
uses a default procedure for canceling printing: The default procedure
just polls the keyboard and sets a Printing Manager error code if the
user types Command-period. If you use this option, you should display
a dialog box during printing to inform the user that the Command-period .
option is available.

(note)
If you designate a background procedure, you must set
pldleProc after presenting the dialogs, validating the
print record, and initializing the printing grafPort:
The routines that perform these operations reset
pldleProc to NIL.

(warning)
If you write your own background procedure, you must be
careful to avoid a number of subtle concurrency problems
that can arise. For instance, if the background
procedure uses QuickDraw, it must be sure to restore the
printing grafPort as the current port before returning.
It's particularly important not to attempt any printing
from within the background procedure: The Printing
Manager is not reentrant! If you use a background
procedure that runs your application concurrently with
printing, it should disable all menu items having to do
with printing, such as Page Setup and Print.

3/22/85 Hacker-Metzler /PRINTING/PRINT.U

12 Printing Manager

USING THE PRINTING MANAGER

To use the Printing Manager, you must first initialize QuickDraw, the
Font Manager, the Window Manager, the Menu Manager, TextEdit, and the
Dialog Manager* The first Printing Manager routine to call is PrOpen;
the last routine to call is PrClose.

Before you can print a document, you need a valid print record. You
can either use an existing print record (for instance, one saved with a
document), or initialize one by calling PrintDefault or PrValidate. If
you use an existing print record, be Bure to call PrValidate to make
sure it'6 valid for the current version of the Printing Manager and for
the currently installed printer. To create a new print record, you
must first create a handle to it with the Memory Manager function
NewHandle, as follows:

prRecHdl :- THPrint(NewHandle(SIZEOF(TPrint)))

Print record information is obtained via the style and job dialogs:

- Call PrStlDialog when the user chooses the Page Setup commmand, to
get the page dimensions. From the rPage field of the printer
information subrecord, you can then determine where page breaks
will be in the document. You can show rulers and margins
correctly by using the information in the IVRes, iHRes, and rPaper
fields.

- Call PrJobDialog when the user chooses the Print commmand, to get
the specific information about that printing job, such as the page
range and number of copies.

You can apply the results of one job dialog to several documents (when
printing from the Finder, for example) by calling PrJobMerge.

After getting the job information, you should immediately print the
document.

The Printing Loop

To print a document, you call the following procedures:

1. PrOpenDoc, which returns a printing grafPort that's set up for
draft or spool printing (depending on the bJDocLoop field of the
job subrecord)

2. PrOpenPage, which starts each new page (reinitializing the
grafPort)

3. QuickDraw routines, for drawing the page in the printing grafPort
created by PrOpenDoc

3/22/85 Hacker-Metzler /PRINTING/PRINT.U

USING THE PRINTING MANAGER 13

4. PrClosePage, which terminates the page

5. PrCloseDoc, at the end of the entire document, to close the
printing grafPort

Each page is either printed immediately (draft printing) or written to
the disk or to memory (spool printing). You should test to see whether
spooling was done, and if so, print the spooled document: First, swap
as much of your program out of memory as you can (see the Segment
Loader chapter), and then call PrPicFile.

It's a good idea to call PrError after each Printing Manager call, to
check for any errors. To cancel a printing operation in progress, use
PrSetError. If an error occurs and you cancel printing (or if the user
aborts printing), be sure to exit normally from the printing loop so
that all files are closed properly; that is, be sure that every
PrOpenPage is matched by a PrClosePage and PrOpenDoc is matched by
PrCloseDoc.

To sum up, your application's printing loop will typically use the
following basic format for printing:

myPrPort :•= PrOpenDoc(prRecHdl,NIL,NIL); {open printing grafPort}
FOR pg :• 1 TO myPgCount DO {page loop: ALL pages of document}
IF PrError « noErr
THEN
BEGIN
PrOpenPage(myPrPort,NIL); {start new page}
IF PrError - noErr
THEN MyDrawingProc(pg); {draw page with QuickDraw}

PrClosePage(myPrPort); {end current page}
END;

PrCloseDoc(myPrPort); {close printing grafPort}
IF prRecHdl .prJob.bJDocLoop • bSpoolLoop AND PrError m noErr
THEN
BEGIN
MySwapOutProc; {swap out code and data}
PrPicFile(prRecHdl,NIL,NIL,NIL,myStRec); {print spooled document}
END;

IF PrError <> noErr THEN MyPrErrAlertProc {report any errors}

Note an important assumption in this example: The MyDrawingProc
procedure must be able to determine the page boundaries without
stepping through each page of the document.

Although 8pool printing may not be supported on all printers, you mist
be sure to include PrPicFile in your printing code, as shown above.
The application should make no assumptions about the printing method.

(note)
The maximum number of pages in a spool file is defined by
the following constant:

CONST IPFMaxPgs - 128;

3/22/85 Hacker-Metzler /PRINTING/PRINT.U

14 Printing Manager

If you need to print more than 128 pages at one time,
just repeat the printing loop (without calling
PrValidate, PrStlDialog, or PrJobDialog).

Printing a Specified Range of Pages

The above example loops through every page of the document, regardless
of which pages the user has selected; the Printing Manager draws each
page but actually prints only the pages from iFstPage to iLstPage.

If you know the page boundaries in the document, it*6 much faster to
loop through only the specified pages. You can do this by saving the
values of iFstPage and ILstPage and then changing these fields in the
print record: For example, to print pages 20 to 25, you would set
iFstPage to 1 and iLstPage to 6 (or greater) and then begin printing at
your page 20. You could Implement this for all cases as follows:

myFirst :» prRecHdl .prJob.IFstPage;
myLast :- prRecHdl .prJob.iLstPage;
prRecHdl .prJob.iFstPage :• 1;
prRecHdl .prJob.ILstPage :• 999;
FOR pg :- myFirst TO myLast DO

{save requested page numbers}

{print "all" pages in loop}

{page loop: requested pages only}
{print as in first example}

Remember that IFstPage and iLstPage are relative to the first page
counted by the Printing Manager. The Printing Manager counts one page
each time PrOpenPage is called; the count begins at 1.

Using QuickDraw For Printing

When drawing to the printing grafPort, you should note the following:

- With each new page, you get a completely reinitialized grafPort,
so you'll need to reset font information and other grafPort
characteristics as desired.

- Don't make calls that don't do anything on the printer. For
example, erase operations are quite time-consuming and normally
aren't needed on the printer.

- Don't use clipping to select text to be printed. There are a
number of subtle differences between how text appears on the
screen and how it appears on the printer; you can't count on
knowing the exact dimensions of the rectangle occupied by the
text.

- Don't use fixed-width fonts to align columns. Since spacing gets
adjusted on the printer, you should explicitly move the pen to
where you want it.

3/22/85 Hacker-Metzler /PRINTING/PRINT.U

USING THE PRINTING MANAGER 15

Printing From the Flndef

The Macintosh user can choose to print from the Finder as well as from
an application. Your application should support both alternatives.

To print a document from the Finder, the user selects the document's
icon and chooses the Print command from the File menu. Note that the
user can select more than one document, or even a document and an
application, which means that the application must verify that it can
print the document before proceeding. When the Print command is
chosen, the Finder starts up the application, and passes information to
it indicating that the document is to be printed rather than opened
(see the Segment Loader chapter). Your application should then do the
following, preferably without going through its entire startup
sequence:

1. Validate the print record—you may choose to call PrJobDialog, or
just PrValidate. (If the user selected more than one document,
you can use PrJobMerge to apply one job dialog to all of the
documents.)

2. Print the document(s).

PRINTING MANAGER ROUTINES

This section describes the high-level Printing Manager routines; low-
level routines are described below in the section "The Printer Driver".

Assembly-language note: There are no trap macros for these
routines. To print from assembly language, call these Pascal
routines from your program.

Initialization and Termination

PROCEDURE PrOpen; [Not in ROM]

PrOpen prepares the Printing Manager for use. It opens the Printer
Driver and the printer resource file. If either of these is missing,
or if the printer resource file isn't properly formed, PrOpen will do
nothing, and PrError will return a Resource Manager result code.

3/22/85 Hacker-Metzler /PRINTING/PRINT.U

16 Printing Manager

PROCEDURE PrClose; [Not in ROM]

PrClose releases the memory used by the Printing Manager. It closes
the printer resource file, allowing the file's resource map to be
removed from memory. It doesn't close the Printer Driver.

(note)
To close the Printer Driver, call the low-level routine
PrDrvrClose, described in the section "The Printer
Driver".

Print Records and Dialogs

PROCEDURE PrintDefault (hPrint: THPrint); [Not in ROM]

PrintDefault fillB the fields of the specified print record with
default values that are stored in the printer resource file. HPrint is
a handle to the record, which may be a new print record that you've
just allocated with NewHandle or an existing one (from a document, for
example).

FUNCTION PrValidate (hPrint: THPrint) : BOOLEAN; [Not in ROM]

PrValidate checks the contents of the specified print record for
compatibility with the current version of the Printing Manager and with
the currently installed printer. If the record is valid, the function
returns FALSE (no change); if invalid, the record is adjusted to the
default values stored in the printer resource file, and the function
returns TRUE.

PrValidate also makes sure all the information in the print record is
internally self-consistent and updates the print record as necessary.
These changes do not affect the function's Boolean result.

(warning)
You should never call PrValidate (or PrStlDialog or
PrJobDialog, which call it) between pages of a document.

FUNCTION PrStlDialog (hPrint: THPrint) : BOOLEAN; [Not in ROM]

PrStlDialog conducts a style dialog with the user to determine the page
dimensions and other information need for page setup. The initial
settings displayed in the dialog box are taken from the most recent
print record. If the user confirms the dialog, the results of the
dialog are saved in the specified print record, PrValidate is called,
and the function returns TRUE. Otherwise, the print record is left
unchanged and the function returns FALSE.

3/22/85 Hacker-Metzler /PRINTING/PRINT.U

PRINTING MANAGER ROUTINES 17

(note)
If the print record was taken from a document, you should
update its contents in the document's resource file if
PrStlDialog returns TRUE. This makes the results of the
style dialog "stick" to the document.

FUNCTION PrJobDialog (hPrint: THPrint) : BOOLEAN; [Not in ROM]

PrJobDialog conducts a job dialog with the user to determine the print
quality, range of pages to print, and so on. The initial settings
displayed in the dialog box are taken from the printer resource file,
where they were remembered from the previous job (with the exception of
the page range, set to all, and the copies, set to 1).

If the user confirms the dialog, both the print record and the printer
resource file are updated, PrValidate is called, and the function
returns TRUE. Otherwise, the print record and printer resource file
are left unchanged and the function returns FALSE.

(note)
Since the job dialog is associated with the Print
command, you should proceed with the requested printing
operation if PrJobDialog returns TRUE.

PROCEDURE PrJobMerge (hPrintSrc,hPrintDst: THPrint); [Not in ROM]

PrJobMerge first calls PrValidate for each of the given print records.
It then copies all of the information set as a result of a job dialog
from hPrintSrc to hPrintDst. Finally, it makes sure that all the
fields of hPrintDst are internally self-consistent.

PrJobMerge allows you to conduct a job dialog just once and then copy
the job information to several print records, which means that you can
print several documents with one dialog. This is useful when printing
from the Finder.

Printing

FUNCTION PrOpenDoc (hPrint: THPrint; pPrPort: TPPrPort; pIOBuf: Ptr)
: TPPrPort; [Not in ROM]

PrOpenDoc initializes a printing grafPort for use in printing a
document, makes it the current port, and returns a pointer to It.

HPrint is a handle to the print record for this printing operation; you
should already have validated this print record.

Depending on the setting of the bJDocLoop field in the job subrecord,
the printing grafPort will be set up for draft or spool printing. For

3/22/85 Hacker-Metzler /PRINTING/PRINT.U

18 Printing Manager

spool printing, the spool file's name, volume reference number, and
version number are taken from the job subrecord.

PPrPort and pIOBuf are normally NIL. PPrPort is a pointer to the
printing grafPort; if it's NIL, PrOpenDoc allocates a new printing
grafPort in the heap. Similarly, pIOBuf points to an area of memory to
be used as an input/output buffer; if it's NIL, PrOpenDoc uses the
volume buffer for the spool file's volume. If you allocate your own
buffer, it must be 522 bytes long.

(note)
These parameters are provided because the printing
grafPort and input/output buffer are both nonrelocatable
objects; to avoid fragmenting the heap, you may want to
allocate them yourself.

You must balance every call to PrOpenDoc with a call to PrCloseDoc.

PROCEDURE PrOpenPage (pPrPort: TPPrPort; pPageFrame: TPRect); [Not in
ROM]

PrOpenPage begins a new page. The page is printed only if it falls
within the page range given in the Job subrecord.

For spool printing, the pPageFrame parameter is used for scaling. It
points to a rectangle to be used as the QuickDraw picture frame for
this page:

TYPE TPRect - "Rect;

When you print the spooled document, this rectangle will be scaled
(with the QuickDraw procedure DrawPicture) to coincide with the rPage
rectangle in the printer information subrecord. Unless you want the
printout to be scaled, you should set pPageFrame to NIL—this uses the
rPage rectangle as the picture frame, so that the page will be printed
with no scaling.

(warning)
Don't call the QuickDraw function OpenPicture while a
page is open (after a call to PrOpenPage and before the
following PrClosePage). You can, however, call
DrawPicture at any time.

(warning)
The printing grafPort is completely reinitialized by
PrOpenPage. Therefore, you must set grafPort features
such as the font and font size for every page that you
draw.

You must balance every call to PrOpenPage with a call to PrClosePage.

3/22/85 Hacker—Metzler /PRINTING/PRINT.U

PRINTING MANAGER ROUTINES 19

PROCEDURE PrClosePage (pPrPort: TPPrPort); [Not in ROM]

PrClosePage finishes the printing of the current page. It lets the
Printing Manager know that you're finished with this page, so that it
can do whatever is required for the current printer and printing
method.

PROCEDURE PrCloseDoc (pPrPort: TPPrPort); [Not in ROM]

PrCloseDoc closes the printing grafPort. For draft printing,
PrCloseDoc ends the printing job. For spool printing, PrCloseDoc ends
the spooling process: The spooled document must now be printed.
Before printing it, call PrError to find out whether spooling
succeeded; if it did, you should swap out as much code as possible and
then call PrPicFile.

PROCEDURE PrPicFile (hPrint: THPrint; pPrPort: TPPrPort; pIOBuf: Ptr;
pDevBuf: Ptr; VAR prStatus: TPrStatus); [Not in ROM]

PrPicFile prints a spooled document. If spool printing is being used,
your application should normally call PrPicFile after PrCloseDoc.

HPrint is a handle to the print record for this printing job. The
spool file's name, volume reference number, and version number are
taken from the job subrecord of this print record. After printing is
successfully completed, the Printing Manager deletes the spool file
from the disk.

You'll normally pass NIL for pPrPort, pIOBuf, and pDevBuf. PPrPort is
a pointer to the printing grafPort for this operation; if it's NIL,
PrPicFile allocates a new printing grafPort in the heap. Similarly,
pIOBuf points to an area of memory to be used as an input/output buffer
for reading the spool file; if it's NIL, PrPicFile uses the volume
buffer for the spool file's volume. PDevBuf points to a device-
dependent buffer; if NIL, PrPicFile allocates a buffer in the heap.

(note)
If you provide your own storage for pDevBuf, it has to be
big enough to hold the number of bytes indicated by the
IDevBytes field of the PrXInfo subrecord.

(warning)
Be sure not to pass, in pPrPort, a pointer to the same
printing grafPort you received from PrOpenDoc. If that
port was allocated by PrOpenDoc Itself (that is, if the
pPrPort parameter to PrOpenDoc was NIL), then PrCloseDoc
will have disposed of the port, making your pointer to it
invalid. Of course, if you earlier provided your own
storage to PrOpenDoc, there's no reason you can't use the
same storage again for PrPicFile.

3/22/85 Hacker-Metzler /PRINTING/PRINT.U

20 Printing Manager

The prStatus parameter Is a printer status record that PrPicFile will
use to report on its progress:

TYPE TPrStatus RECORD
ITotPages:
iCurPage:
iTotCopies:
iCurCopy:
iTotBands:
iCurBand:
fPgDirty:
fImaging:
hPrint:
pPrPort:
hPic:

END;

INTEGER; {number of pages in spool file}
INTEGER; {page being printed}
INTEGER; {number of copies requested}
INTEGER; {copy being printed}
INTEGER; {used internally}
INTEGER; {used internally}
BOOLEAN; {TRUE if started printing page}
BOOLEAN; {used internally}
THPrint; {print record}
TPPrPort; {printing grafPort}
PicHandle {used internally}

The fPgDirty field is TRUE if anything has already been printed on the
current page, FALSE if not.

Your background procedure (if any) can use this record to monitor the
state of the printing operation.

Error Handling

FUNCTION PrError : INTEGER; [Not in ROM]

PrError returns the result code left by the last Printing Manager
routine. Some possible result codes are:

CONST noErr « 0;
iPrSavPFil - -1;
controlErr - -17;
abortErr • -27;
memFullErr " -108;
iPrAbort • 128;

{no error}
{problem saving print file}
{unlmplemented control instruction}
{I/O error}
{not enough room in heap zone}
{application or user requested abort}

ControlErr and abortErr are returned by the Device Manager, and
memFullErr by the Memory Manager. Other Operating System or Toolbox
result codes may also be returned; a list of all result codes is given
in Appendix A.

Assembly-language note: The current result code is contained in
the global variable PrintErr.

3/22/85 Hacker-Metzler /PRINTING/PRINT.U

PRINTING MANAGER ROUTINES 21

PROCEDURE PrSetError (iErr: INTEGER); [Not in ROM]

PrSetError stores the specified value into the global variable where
the Printing Manager keeps its result code. This procedure is used for
canceling a printing operation in progress. To do this, call:

IF PrError <> noErr THEN PrSetError(iPrAbort)

Assembly-language note: You can achieve the same effect as
PrSetError by storing directly into the global variable
PrintErr. You shouldn't, however, store into this variable if
it already contains a nonzero value.

THE PRINTER DRIVER

The Printing Manager provides a high-level interface that interprets
QuickDraw commands for printing; it also provides a low-level interface
that lets you directly access the Printer Driver.

The Printer Driver is the device driver that communicates with a
printer via the printer port or the modem port. You only need to read
this section if you're interested in low-level printing or writing your
own device driver. For more information, see the Device Manager
chapter.

The printer resource file for each type of printer includes a device
driver for that printer. When the user chooses a printer, the
printer's device driver becomes the active Printer Driver.

You can communicate with the Printer Driver via the following low-level
routines:

- PrDrvrOpen opens the Printer Driver; it remains open until you
call PrDrvrClose.

- PrCtlCall enables you to perform low-level printing operations
such as bit map printing and direct streaming of text to the
printer.

- PrDrvrVers tells you the version number of the Printer Driver.

- PrDrvrDCE gets a handle to the driver's device control entry,

(note)
Advanced programmers: You can also communicate with the
Printer Driver through the standard Device Manager calls

3/27/85 Hacker-Metzler /PRINTING/PRINT.D

22 Printing Manager

OpenDriver, CloseDriver, and Control. The driver name
and driver reference number are available as predefined
constants:

CONST sPrDrvr • '.Print*; {Printer Driver resource name}
IPrDrvrRef • -3; {Printer Driver reference number}

Note also that when you make direct Device Manager calls,
the driver I/O queue entries should be Initialized to all
zeroes.

Low-Level Driver Access Routines

The routines in this section are used for communicating directly with
the Printer Driver.

Assembly-language note: See the Device Manager chapter for
Information about how to make the Device Manager calls
corresponding to these routines.

PROCEDURE PrDrvrOpen; {Not in ROM]

PrDrvrOpen opens the Printer Driver, reading it into memory*if
necessary.

PROCEDURE PrDrvrClose;

PrDrvrClose closes the Printer Driver, releasing the memory it
occupies. (Notice that PrClose doesn't close the Printer Driver.)

PROCEDURE PrCtlCall (IWhichCtl: INTEGER; lParaml,lParam2,lParam3:
LONGINT); [Not in ROM]

PrCtlCall calls the Printer Driver's control routine. The IWhichCtl
parameter identifies the operation to perform. The following values
are predefined:

CONST IPrBitsCtI • A; {bit map printing}
IPrlOCtl - 5; {text streaming}
IPrDevCtl - 7; {printer control}

These operations are described in detail in the following sections of
this chapter. The meanings of the lParaml, lParam2, and lParam3
parameters depend on the operation.

3/27/85 Hacker-Metzler /PRINTING/PRINT.D

THE PRINTER DRIVER 23

(note)
Advanced programmers: If you're making a direct Device
Manager Control call, iWhichCtl will be the csCode
parameter, and lParaml, lParam2, and lParam3 will be
csParam, csParanrt-4, and csParam+8.

FUNCTION PrDrvrDCE : Handle; [Not in ROM]

PrDrvrDCE.returns a handle to the Printer Driver's device control
entry.

FUNCTION PrDrvrVers : INTEGER; [Not in ROM]

PrDrvrVers returns the version number of the Printer Driver in the
system resource file.

The version number of the Printing Manager is available as the
predefined constant iPrRelease. You may want to compare the result- of
PrDrvrVers with iPrRelease to see if the Printer Driver in the resource
file is the most recent version.

Printer Control

The iPrDevCtl parameter to PrCtlCall is used for several printer
control operations. The high-order word of the lParaml parameter
specifies the operation to perform:

CONST lPrDocOpen
lPrPageOpen
lPrLineFeed
lPrLFStd
lPrPageClose
lPrDocClose

$00010000; {reset printer}
$00040000; {initialize for new page}
$00030000; {carriage return only}
$0003FFFF; {standard 1/6-inch line feed}
$00020000; {end page}
$00050000; {end printing operation}

The low-order word of lParaml may specify additional information.
lParam2 and lParam3 parameters should always be 0.

The

The lPrDocOpen, lPrPageOpen, lPrPageClose, and lPrDocClose control
operations are meant to be used in a printing loop in the same way as
the high-level Printing Manager calls PrOpenDoc, PrOpenPage,
PrClosePage, and PrCloseDoc.

Before starting to print, use

PrCtlCall(iPrDevCtl,lPrDocOpen,0,0)

to reset the printer to its standard initial state. This call should
be made only once per document. You can also specify the number of
copies to make in the low-order byte of this parameter; for example, a
value of $00010002 specifies two copies.

3/27/85 Hacker-Metzler /PRINTING/PRINT.D

24 Printing Manager

The lPrLineFeed and lPrLFStd parameters allow you to achieve the effect
of carriage returns and line feeds in a printer-independent way:

- LPrLineFeed specifies a carriage return only (with a line feed of
0).

- LPrLFStd causes a carriage return and advances the paper by 1/6
inch (the standard "CR LF" sequence).

You can also specify the exact number of dots the paper advances in the
low-order word of the lParaml parameter. For example, a value of
$00030008 for lParaml causes a carriage return and advances the paper 8
dots.

You should use these methods Instead of sending carriage returns and
line feeds directly to the printer.

The call

PrCtlCall(iPrDevCtl,lPrPageClose,0,0)

does whatever is appropriate for the given printer at the end of each
page, such a6 sending a form feed character and advancing past the
paper fold. You should use this call instead of just sending a form
feed yourself.

Bit Map Printing

To send all or part of a QuickDraw bit map directly to the printer, use

PrCtlCall(iPrBitsCtl,pBitMap,pPortRect,lControl)

The pBitMap parameter is a pointer to a QuickDraw bit map; pPortRect is
a pointer to the rectangle to be printed, in the coordinates of the
printing grafPort.

LControl should be one of the following predefined constants:

CONST IScreenBits • 0; {default for printer}
lPaintBits • 1; {square dots (72 by 72)}

The Imagewriter, in standard resolution, normally prints rectangular
dots that are taller than they are wide (80 dots per inch horizontally
by 72 vertically). Since the Macintosh 128K and 512K screen has square
pixels (approximately 72 per inch both horizontally and vertically),
lPaintBits gives a truer reproduction of the screen, although printing
is somewhat slower.

On the LaserWriter, IControl should always be set to lPaintBits.

Putting all this together, you can print the entire screen at the
default setting with

3/27/85 Hacker-Metzler /PRINTING/PRINT.D

THE PRINTER DRIVER 25

PrCtlCall(iPrBitsCtl,0RD(@6creenBits),
ORD(@screenBit8.bounds),IScreenBitB)

To print the contents of a single window In square dots, use

PrCtlCall(IPrBltsCtl,ORD(@theWindow~.portBlts),
ORD(0theWlndow~.portRect),lPalntBlts)

Text Streaming

Text streaming Is useful for fast printing of text when speed Is more
Important than fancy formatting or visual fidelity. It gives you full
access to the printer's native text facilities (such as control or
escape sequences for boldface, italic, underlining, or condensed or
extended type), but makes no use of QuickDraw.

You can send a stream of characters (including control and escape
sequences) directly to the printer with

PrCtlCall(iPrlOCtl,pBuf,lBufCount,0)

The pBuf parameter is a pointer to the beginning of the text. The low-
order word of lBufCount is the number of bytes to transfer; the high-
order word must be 0.

(warning)
Relying on specific printer capabilities and control
sequences will make your application printer-dependent.
You can use IPrDevCtl to perform form feeds and line
feeds In a printer-independent way.

(note)
Advanced programmers who need more information about
sending commands directly to the LaserWriter should see
the Inside LaserWriter manual.

3/27/85 Hacker-Metzler /PRINTING/PRINT.S

26 Printing Manager

SUMMARY OF THE PRINTING MANAGER

Constants

CONST { Printing methods }

bDraftLoop
bSpoolLoop 1;

{draft printing}
{spool printing}

{ Printer specification in prStl field of print record }

bDevCItoh » 1;
bDevLaser • 3;

{Imagewriter printer}
{LaserWriter printer}

{ Maximum number of pages in a spool file }

iPFMaxPgs - 128;

{ Result codes }

noErr * 0;
iPrSavPFil - -1;
controlErr • -17;
abortErr ~ -27;
memFullErr • -108;
iPrAbort * 128;

{no error}
{problem saving spool file}
{unimplemented control instruction}
{I/O abort error}
{not enough room in heap zone}
{application or user requested abort}

{ PrCtlCall parameters }

iPrDevCtl
lPrDocOpen
lPrPageOpen
lPrLineFeed
lPrLFStd
lPrPageClose
lPrDocClose
iPrBitsCtl
IScreenBits
lPaintBits
iPrlOCtl

7;
$00010000
$00040000
$00030000
$0003FFFF
$00020000
$00050000
4;
0;
l;
5;

{printer control}
{reset printer}
{initialize for new page}
{carriage return only}
{standard 1/6-inch line feed}
{end page}
{end printing operation}

{bit map printing}
{default for printer}
{square dots (72 by 72)}

{text streaming}

{ Printer Driver information }

sPrDrvr - '.Print';
iPrDrvrRef - -3;

{Printer Driver resource name}
{Printer Driver reference number}

3/27/85 Hacker-Metzler /PRINTING/PRINT.S

SUMMARY OF THE PRINTING MANAGER 27

Data Types

TYPE TPPrPort
TPrPort

"TPrPort;
RECORD
gPort: GrafPort; {grafPort to draw in}
{more fields for internal use}

END;

THPrint
TPPrint
TPrint

"TPPrint;
"TPrint;
RECORD
iPrVersion:
prlnfo:
rPaper:
prStl:
prlnfoPT:
prXInfo:
prJob:
printX:

END;

INTEGER; {Printing Manager version}
TPrlnfo; {printer information subrecord}
Rect; {paper rectangle}
TPrStl; {additional device information}
TPrlnfo; {used internally}
TPrXInfo; {additional device information}
TPrJob; {job subrecord}
ARRAY[1..19] OF INTEGER {not used}

TPrlnfo - RECORD
iDev: INTEGER;
iVRes: INTEGER;
iHRes: INTEGER;
rPage: Rect

END;

{used internally}
{vertical resolution of printer}
{horizontal resolution of printer}
{page rectangle}

TPrJob RECORD
iFstPage:
iLstPage:
iCopies:
bJDocLoop:
fFromUsr:
pldleProc:
pFileName:
iFileVol:
bFileVers:
bJobX:

END;

INTEGER; {first page to print}
INTEGER; {last page to print}
INTEGER; {number of copies}
SignedByte; {printing method}
BOOLEAN; {used internally}
ProcPtr; {background procedure}
StringPtr; {spool file name}
INTEGER; {spool file volume reference number}
SignedByte; {spool file version number}
SignedByte {used internally}

TPrStl - RECORD
wDev: INTEGER; {high byte specifies device}
{more fields for internal use}

END;

3/27/85 Hacker-Metzler /PRINTING/PRINT.S

28 Printing Manager

TPrXInfo - RECORD
iRowBytes:
IBandV:
iBandH:
iDevBytes:

INTEGER;
INTEGER;
INTEGER;
INTEGER;

{more fields for internal use}
END;

{used internally}
{used internally}
{used internally}
{size of buffer}

TPRect - ~Rect;

TPrStatus « RECORD
iTotPages:
iCurPage:
iTotCopies:
1CurCopy:
iTotBands:
iCurBand:
fPgDirty:
fImaging:
hPrint:
pPrPort:
hPic:

END;

INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
BOOLEAN;
BOOLEAN;
THPrint;
TPPrPort;
PicHandle

number of pages in spool file}
page being printed}
number of copies requested}
copy being printed}
used internally}
used internally}
TRUE if started printing page}
used internally}
print record}
printing grafPort}
used internally}

Routines [Not in ROM]

Initialization and Termination

PROCEDURE PrOpen;
PROCEDURE PrClose;

Print Records and Dialogs

PROCEDURE PrintDefault (hPrint: THPrint);
FUNCTION PrValidate (hPrint: THPrint) : BOOLEAN;
FUNCTION PrStlDialog (hPrint: THPrint) : BOOLEAN;
FUNCTION PrJobDialog (hPrint: THPrint) : BOOLEAN;
PROCEDURE PrJobMerge (hPrintSrc.hPrintDst: THPrint);

Printing

FUNCTION PrOpenDoc (hPrint: THPrint; pPrPort: TPPrPort; pIOBuf: Ptr) :
TPPrPort;

PROCEDURE PrOpenPage (pPrPort: TPPrPort; pPageFrame: TPRect);
PROCEDURE PrClosePage (pPrPort: TPPrPort);
PROCEDURE PrCloseDoc (pPrPort: TPPrPort);
PROCEDURE PrPicFile (hPrint: THPrint; pPrPort: TPPrPort; pIOBuf: Ptr;

pDevBuf: Ptr; VAR prStatus: TPrStatus);

3/27/85 Hacker-Metzler /PRINTING/PRINT.S

SUMMARY OF THE PRINTING MANAGER 29

Error Handling

FUNCTION PrError : INTEGER:
PROCEDURE PrSetError (iErr: INTEGER);

Low-Level Driver Access

PROCEDURE PrDrvrOpen;
PROCEDURE PrDrvrClose;
PROCEDURE PrCtlCall (iWhichCtl: INTEGER; lParaml,lParam2,lParam3:

LONGINT);
FUNCTION PrDrvrDCE : Handle;
FUNCTION PrDrvrVers : INTEGER;

Assembly-Language Information

Constants

; Printing methods

bDraftLoop .EQU 0 ;draft printing
bSpoolLoop .EQU 1 ;spool printing

; Result codes

noErr .EQU 0 ;no error
iPrSavPFil .EQU -1 ;problem saving spool file
controlErr .EQU -17 ;unimplemented control instruction
abortErr .EQU -27 ;I/0 abort error
memFullErr .EQU -108 ;not enough room in heap zone
iPrAbort .EQU 128 application or user requested abort

; Printer Driver Control call parameters

iPrDevCtl .EQU 7 printer control
iPrDocOpen • EQU 1 reset printer
iPrPageOpen .EQU 4 Initialize for new page
iPrLineFeed .EQU 3 carriage return/paper advance
lPrPageClose -EQU 2 end page
iPrDocClose .EQU 5 end printing operation
iPrBitsCtl .EQU 4 bit map printing
IScreenBits .EQU 0 default for printer
lPaintBits .EQU 1 square dots (72 by 72)
iPrlOCtl .EQU 5 text streaming

; Printer Driver information

iPrDrvrRef .EQU -3 ;Printer Driver reference number

3/27/85 Hacker-Metzler /PRINTING/PRINT.S

30 Printing Manager

Printing GrafPort Data Structure

gPort GrafPort to draw In (portRec bytes)
iPrPortSize Size in bytes of printing grafPort

Print Record Data Structure

lPrVersion
prlnfo
rPaper
prStl
prXInfo
prJob
iPrintSize

Printing Manager version (word)
Printer information subrecord (14 bytes)
Paper rectangle (8 bytes)
Additional device Information (8 bytes)
Additional device Information (16 bytes)
Job subrecord (iPrJobSlze bytes)
Size in bytes of print record

Structure of Printer Information Subrecord

iVRes Vertical resolution of printer (word)
iHRes Horizontal resolution of printer (word)
rPage Page rectangle (8 bytes)

Structure of Job Subrecord

IFstPage
iLstPage
iCopies
bJDocLoop
pldleProc
pFileName
iFileVol
bFlleVers
IprJobSize

First page to print (word)
Last page to print (word)
Number of copies (word)
Printing method (byte)
Address of background procedure
Pointer to spool file name (preceded by length byte)
Spool file volume reference number (word)
Spool file version number (byte)
Size in bytes of job subrecord

Structure of PrXInfo Subrecord

iDevBytes Size of buffer (word)

3/27/85 Hacker-Metzler /PRINTING/PRINT.S

SUMMARY OF THE PRINTING MANAGER 31

Structure of Printer Status Record

iTotPages
iCurPage
iTotCopies
iCurCopy
fPgDirty
hPrint
pPrPort
iPrStatSize

Number of pages in spool file (word)
Page being printed (word)
Number of copies requested (word)
Copy being printed (word)
Nonzero if started printing page (byte)
Handle to print record
Pointer to printing grafPort
Size in bytes of printer status record

Variables

PrintErr Result code from last Printing Manager routine (word)

3/27/85 Hacker-Metzler /PRINTING/PRINT.S

o

o

o

Examples of Printing Manager Usage
David C&sseres, 4/17/85

The Printing Manager allows considerable flexibility in the way an application calls its procedures. It's easier to
demonstrate some good ways of using the Printing Manager than to explain all of its assumptions.

Note
The code examples shown below are for illustrative purposes only. They are
not intended to be copied verbatim into an application, and have not been tested.

The following code shows the basic form of the print loop in a typical application:

pMyPort := PrOpenDoc(prRecHdl, NIL, NIL);
FOR pg := 1 TO pageTotal DO
IF PrError = 0 THEN BEGIN

PrOpenPage(pMyPort, NIL);
IF PrError = 0 THEN MyDrawingProc(pg);
PrClosePage;

END;
PrCloseDoc(pMyPort) ;
IF prRecHdlAA.prJob.bJDocLoop = bSpoolLoop
THEN IF PrError = 0 THEN BEGIN

MySwapOutProc;
PrPicFile(PrRecHdl, NIL, NIL, NIL, myStsRec);
MySwapInProc;

END;
IF PrError <> 0 THEN MyPrErrAlertProc;

(get printing grafPort)
(PAGE LOOP: all pages of document)

(start the page)
(draw the page)
(end the page)

(END OF PAGE LOOP)
(close printing grafPort)
(IF SPOOL PRINTING...)

(swap out code & data)
(print spooled document)
(swap stuff back in)

(END OF SPOOL PRINTING)
(report any printing error)

PrOpenDoc is called above with NIL values for the pPrPort and pIOBuf parameters; the Printing Manager will
allocate space for the printing port and I/O buffer. PrOpenPage is called with NIL for the pPageFrame parameter,
so the Printing Manager will use the page rectangle for the frame (and the page image will not be scaled).
PrPicFile is called with NIL for its pPrPort, pIOBuf, and pDevBuf parameters, so the Printing Manager will
allocate the corresponding memory areas.

Note that the above code ignores the question of number of copies. The Printing Manager will automatically print the
requested number of copies (except in the case of draft printing on the ImageWriter, alas).

Also, the above code always goes through every page of the document, regardless of what pages the user has requested;
the Printing Manager prints only the requested pages. A somewhat more efficient method is to use the following page
loop, where every page is "counted" but only the requested pages are actually drawn:

pMyPort := PrOpenDoc(prRecHdl, NIL, NIL);
FOR pg := 1 TO pageTotal DO
IF PrError = 0 THEN BEGIN

PrOpenPage(pMyPort, NIL);
IF PrError = 0
THEN IF pg >= prRecHdl.prJob.iFstPage

THEN IF pg <= prRecHdlAA.prJob.ILstPage
THEN MyDrawingProc(pg);

PrClosePage ;
END;
(Spool printing and error reporting as in first example)

(get printing grafPort)
(PAGE LOOP: all pages of document)

(start the page)

(draw the page if in range)
(end the page)

(END OF PAGE LOOP)

Page 1

You can avoid looping through all pages by taking the responsibility for selecting the requested pages, as follows:

pMyPort := PrOpenDoc(prRecHdl, NIL, NIL) ;
myFirst := prRecHdlAA.prJob.iFstPage;
myLast := prRecHdlAA.prJob.ILstPage;
prRecHdlAA . pr Job. IFstPage := 1;
prRecHdlAA.prJob.lLotPage := 999;
FOR pg := myFirst TO myLast DO
IF PrError = 0 THEN BEGIN

PrOpenPage(pMyPort, NIL);
IF PrError = 0 THEN MyDrawingProc(pg) ;
PrClosePage;

END;
(Spool printing and error reporting as in first example)

(get printing grafPort)
(save requested page numbers)

(print "all" pages)

(PAGE LOOP: requested pages only)

(start the page)
(draw the page)
(end the page)

(END OF PAGE LOOP)

Note an important assumption in the last two examples: the MyDrawingProc procedure must be able to determine
page boundaries without stepping through all pages of the document!

Finally, note that in spool printing it's possible to print a document by breaking it into two or more print jobs, each
containing only some of the document's pages. The following example shows how to print each page of a multi-page
document as a one-page printing job:

(IF SPOOL PRINTING...)

(save requested page numbers)

(print "all" pages)

(PAGE LOOP: requested pages only)

(get printing grafPort)
(print current page of doc.)

(start the page)
(draw the page)
(end the page)

(close printing grafPort)

(swap out code & data)

IF prRecHdlAA . prJob . bJDocLoop=bSpoolLoop
THEN BEGIN

myFirst := prRecHdlAA.prJob.IFstPage;
myLast := prRecHdlAA.prJob.ILstPage;
prRecHdlAA .prJob . IFstPage := 1;
prRecHdlAA . prJob . ILstPage := 999;
FOR pg := myFirst TO myLast DO
IF PrError = 0 THEN BEGIN

pMyPort := PrOpenDoc(prRecHdl, NIL, NIL)
IF PrError = 0 THEN BEGIN

PrOpenPage(pMyPort, NIL);
IF PrError = 0 THEN MyDrawingProc(pg)
PrClosePage;

END;
PrCloseDoc(pMyPort);
IF PrError = 0 THEN BEGIN

MySwapOutProc ;
PrPicFile(PrRecHdl, NIL,- NIL, NIL, myStsRec); (print spooled page)
MySwapInProc; (swap stuff back in)

END;
END; (END OF PAGE LOOP)

END (END OF SPOOL PRINTING)
ELSE BEGIN

(DO DRAFT PRINTING)
END;
IF PrError <> 0 THEN MyPrErrAlertProc; (report any printing error)

Of course, the job doesn't have to be broken at every page boundary; you could print five pages at a time, or whatever
you like. Spool-printing a document as more than one job has some advantages: It gets around the limitation of 128
pages in the spool file, and it requires less disk space.

However, note that the time required to print the document may increase drastically because of the overhead of each job.
There may also be other disadvatages on future printers (or future versions of existing ones). It's a good idea to print
your document as a single print job if possible.

In printing a document that is broken into more than one print job, it is important not to call PrValidate,
PrStlDialog, or PrJobDialog between pages of the document.

Page 2

Some Words of Wisdom About Using QuickDraw
While Printing

Don't Make Calls that Don't
Do Anything

Every QuickDraw call costs you in time,
memory, disk space, or all three. Look over
your code for erase operations that don't erase
anything, clip region changes that don't actually
make any difference, and so on. With respect to
erasing, remember that the page rectangle is
automatically cleared for you at the beginning of
each page; there's no garbage on it that needs to
be erased

Don't Count on Knowing the
Rectangle Occupied by Text

Note that although QuickDraw gives you a
bounding box for all other graphic objects, it
doesn't give you one for text You might think
you could calculate the bounding box from
TextWidth and the ascent and descent numbers of
the font, but it ain't that simple. For one thing,
TextWidth doesn't allow for the "overhang" on
the right end of a string of italic text, and you
can't calculate it readily. The ascent and descent
don't allow for shadow, etc.

The real problem, though, is font scaling
and substitution. Typically, the printer's
resolution is different from the screen's, and the
font must either be bit-scaled or substituted.
With bit-scaling there are roundoff errors, and
with substitution there's the fact that character
widths within a font family do not scale exactly
according to point size (if they did, it would look
terrible on most printers).

So the rectangle you might calculate for a
string cannot be scaled directly to the printer
resolution; there will usually be errors that are
difficult to calculate.

Just to make things more confusing, the
printer software will generally try to be accurate
about the left and right ends of your string, by
adjusting the width of blanks to make up for the
scaling error.

^What does it all mean? It means that when
you're printing text, what you see is not
exactly what you get. The following
suggestions will help you avoid trouble:

Don't Use Clipping to
"Select" Text to be Printed

Some applications store a lot of information
as a long text string, then use clipping to select
just a short substring for printing. Sounds cute,
but these applications either wind up only being
able to use one or two fonts in specific sizes, or

contain a lot of code to calculate the clipping
rectangle so it works—with existing printers.

Think of it this way: with text, clipping is a
way to protect what is already imaged from being
overwritten—not a way to select what gets
printed.

Don't Use Monospaced Fonts
to Make Columns Line Up

If you've been reading carefully, you'll see
why this is good advice. Counting on a constant
character width to make things line up is strictly
from typewriters; in a world where word spacing
gets adjusted, you should move the pen explicitly
in order to line things up.

Think of it this way: in an environment
geared to proportional fonts and scaling from one
resolution to another, the space character is a
word separator, not a positioning device.

If You Format Text Into a
Box, Leave Some Extra Space

Or, when in doubt (and you should be),
fudge.

Finally...
If you've violated some of the above and it

works fine on the ImageWriter, and maybe even
the LaserWriter, be nervous. You may be in
trouble on the next release.

—David C&sseres

c

o

o

The March 1985 ImageWriter: Programmers' Notes
David Cdsseres
April 19th, 1985

These notes are interim documentation for the ImageWriter code released in March
1985. This code (the ImageWriter resource file) supersedes the May 1984 version and
all "ImageWriter 15" pre-releases made in 1984.

Compatibility
This ImageWriter code is compatible with the standard Macintosh Supplement code,
and with any application that worked with the previous ImageWriter code.

Summary of Features
This ImageWriter has the following new features, relative to the 1984 ImageWriter:

1. Support for the 15" ImageWriter printer, with a new paper-size button for
14x11" "Computer Paper."

2. An option (in the Page Setup dialog) to eliminate the "unprintable" area at the
top of each page. This means that images can be printed continuously across
page boundaries.

3. A resource-based mechanism to allow the application to specify the number of
paper-size buttons in the Page Setup dialog, the dimensions associated with
each button, and the title of each button.

4. New smarts in writing out a print file, to prevent "no-op" QuickDraw opera -
tions from going into the file. Eliminating these no-ops can give a drastic
reduction in the size of the print file. This in turn gives improved performance
in high-resolution printing.1

5. A new way of reading and imaging the spooled print file, giving further per -
formance gains in high-resolution printing and sharply reduced memory usage
during printing.

6. Improved performance in skipping white space.
7. A "50% reduction" option (in the Print dialog) that allows 4 times as much data

to be imaged on the page. The application sees a page that is twice as big
(linearly) as the actual paper, and the resulting image is "zoomed" at print time
to fit the paper.

8. In high-resolution spooled printing, bitmaps are normally "thinned" to prevent
loss of detail. This is now done without thinning other objects that are over -
lapped by the bitmap.2 A pair of QuickDraw comments is now defined to turn
the thinning on and off.

9. In high resolution, text strings are printed using SpaceExtra to make both
ends of the string fall at the correct locations. Formerly only the left end was

'Some applications do a lot of erasures that erase nothing, some do a lot of changes to the clip region that
don't affect the object being drawn, and some draw a lot of objects outside the clip region. The print code
can't catch all no-ops, so don't adopt a cavalier attitude about them.
2If the transfer mode is anything except srcCopy or NotSrcCopy, the print code has to allocate a local copy
of your bitmap in order to do this, so watch out for out-of-memory failures with large bitmaps!

Page 1

correctly located; the right end could be off because of font scaling and
substitution.

10. The new ImageWriter is compatible with the Chooser.

Support for 15" ImageWriter
The Page Setup dialog now has a button called "Computer Paper," meaning 14x11"
paper. The two models of the ImageWriter printer are completely interchangeable ex -
cept for the carriage width. When the Computer Paper button is selected, the code will
treat the printer as a 15" model; for any of the other standard sizes, the printer is treated
as a standard model (10" paper width capacity).
If a non-standard paper width is provided (as explained below), the printer is treated as
a standard model for paper width < 9", and as a 15" printer for paper width > 9".

The "No Breaks Between Pages" Option
When paper is loaded in the ImageWriter in the standard way, the top edge of the page
is just above the place where the movable pinch-rollers contact the platen. The print -
head is then about V2" below the top edge. If the paper were rolled backward to print in
the top V2", the top edge of the paper would escape from the pinch-rollers and would
then jam when it was rolled forward. That is why the top V2" of the paper is normally
treated as a "forbidden" area for imaging.
To allow images to be printed across perforations on fanfold paper, without a break in
the image, we now have a "No Breaks Between Pages" button. When this is selected,
the top V2" is included in the imaging rectangle (rPage). To avoid the fanfold paper-
handling problem at the top of the first page, the paper is rolled forward until the print -
head is at the top edge ("wasting" one sheet of paper). However, this is only done if
there is actually something to be printed in the top V2" of the first page.
With cut-sheet paper, the user is expected to load paper with the top edge lined up to the
printhead and the pinch-rollers pulled back.
When this feature is invoked, the height of rPage is forced to be a multiple of 8 dots
while the height of rPaper is not. Therefore, some non-standard paper sizes don't
actually allow an image to print across the paper boundary without any gap. If the
height of rPaper is not a multiple of 8, then a thin strip at the bottom of the paper will be
outside rPage and will be a "break" in any image that goes across the boundary. The
height of this strip will not exceed 8 dots. Note that the vertical dot resolution is 72, so
8 dots = 8/t2" = V9".
If the absolute difference between the heights of rPage and rPaper is strictly less than 8,
then you know that "No Breaks Between Pages" has been selected.
When printing with the "no breaks" option, you will sometimes see a minor glitch near
the top of the paper. This is not a bug in the print code, but a characteristic of the
paper-feed mechanism. It is caused by the paper buckling slightly as the perforation is
rolled toward the pinch-rollers.

"No Breaks Between Pages" and Page-at-a-Time Printing
For applications that print a multi-page document one page at a time, there is a potential
problem with "no breaks" printing: each page appears to the print code as a new docu -
ment, and therefore a page of paper would be ejected before each page. We have
solved this with the concept of a "run." A page will only be ejected at the beginning of
a run. The "beginning of a run" condition is set whenever the application calls

Page 2

PrValidate, Pr JobMerge, PrStlDialog, or Pr JobDialog. It is reset
during printing.
Therefore, an application that does page-at-a-time printing should always call one of
these procedures before calling PrOpenDoc for the first page, and should never call
any of them between pages.
Note that conceptually, a "run" is a sequence of pages, where the user is expected to
tear off the paper before the beginning of the run but not during it

Altering Paper-Size Information in the Page Setup Dialog
To meet the need for application-defined paper sizes, we have provided a way for an
application to condition the Page Setup dialog.
The number of buttons displayed, their titles, and the paper dimensions associated with
them are all defined in a special type of resource, with resource type PREC and resource
ID 4. If the application's resource file contains such a resource, it is used to set up
the dialog; otherwise, the print code uses its own default information to set up the
dialog.
The following RMaker source code defines a PREC 4 resource that encodes the default
configuration of the Page Setup dialog:

Type PREC - GNRL
•Paper sire information — localizabla, customizable.

, 4
.1

•Number of paper-size buttons used (max is 6) :
5
•Dimensions of 6 paper sices in 120ths (decimal!):
• 1st number is vertical, 2nd is horizontal.
•First button: 8.5 x 11" 'US letter' paper
1320
1 0 2 0
•Second button: 8.25 x 11.66" 'A4 letter' paper
1400
990
•Third button: 8.5 x 14" 'OS legal' paper
1 6 8 0
1 0 2 0
•Fourth button: 8.25 x 12" 'international fanfold' paper
1440
990
•Fifth button: 14 x 11" 'computer' paper
1320
1 6 8 0
•Sixth button - not visible
0
0

• P
•Titles for six buttons.
US Letter
A4 Letter
US Legal
International Fanfold
Computer Paper
•>

•The blank line just above this one is necessary!

Page 3

To set up the dialog your own way, just modify the default version as desired and copy
it into your resource definition file. For example, the following RMaker source code
defines a PREC 4 that sets up a dialog with only four buttons: "Letter", "Computer",
"Legal", and "Envelope":

Type PREC - CNRL
•Paper size information — localizabla, customizable.

, 4
.1

•Number of paper-size buttons used (max is 6) :
4
•Dimensions of 6 paper sizes in 120ths (decimal!):
* 1st number is vertical, 2nd is horizontal.
•First button: 8.5 x 11" 'letter1 paper
1320
1020
•Second button: 14 x 11" 'computer' paper
1320
1 6 8 0
•Third button: 8.5 x 14" 'legal' paper
1 6 8 0
1 0 2 0
•Fourth button: 4.125 x 8.5" 'envelope'
495
1 0 2 0
•Fifth button - not visible
0
0
•Sixth button - not visible
0
0

.P
•Titles for six buttons.
Letter
Computer Paper
Legal
Envelope
9

•The blank line just above this one is necessary!

Note that conceptually, a "run" is a sequence of pages, where the user is expected to
tear off the paper before the beginning of the run but not during it.
No modification of your application code is required. The PrStlDialog function
will load the PREC 4 resource, use it to set up the dialog, and then purge it before
returning.
Note that you can also change the data in your PREC 4 at run time ~ possibly using
your own dialog to define a special paper size. Remember, though, that
PrStlDialog purges the resource every time it runs.
Please note the following points about the PREC 4 resource:

1. The type PREC is reserved for use by the Macintosh print code. Do not use
this type in any way that is not described here, and do not use it
with any resource ID other than 4.

2. Exactly 6 buttons must be defined in your PREC 4, even if less than 6 are used.
To save space, use 1-character titles for unused buttons.

3. All numbers in the PREC 4 definition are decimal.

Page 4

4. The title strings must be followed by a blank line.
If you manipulate the PREC 4 data at run time, you need to know the data structure:

• The first thing in the data is the number of buttons to be displayed, a word-size
integer. If this value is n, the first n buttons defined will be displayed (in fixed
locations in the dialog box). If n is greater than 6, the result is unspecified and
you won't like it

• The dimensions come next, as an array of six pairs of word-size integers. Each
pair is the dimensions associated with the corresponding paper size button. The
first integer in each pair is the height of the paper in HO^s of an inch, the
second is the width.

• The remainder of the data contains six strings, which are the titles of the corres -
ponding buttons. You can't handle these strings as Pascal strings, because they
are byte-aligned and close-packed. Instead, you must treat the six strings as a
byte array. The first byte is the length of the first string; if this is L then the
next L bytes are the characters of the string. The next byte is the length of the
second string, and so forth.

Bitmap Thinning in High Resolution Spooled Printing
When objects are printed in high resolution spooled printing, they are first scaled up by
a factor of 2 by QuickDraw, then printed at twice the normal resolution; thus they come
out the right size. In the case of bitmaps this would mean expanding each bit in the
original to a cluster of 4 bits in the printed image. Unfortunately the spacing of printed
dots in high resolution is smaller than the dots themselves, and this would cause a loss
of detail in the printed bitmap: for example, a gray pattern would come out black.
To prevent the loss of detail, the ImageWriter code thins out the bitmap by clearing 3 of
the bits in each cluster of 4. For most bitmaps this is preferable, although it makes the
bitmap look gray compared to other objects (text, rectangles, etc.). However, there are
cases where a bitmap looks better without thinning. The main example is a bitmap
created by rotating text, as in MacDraw.
The ImageWriter code gives the application control over bitmap thinning, via a pair of
QuickDraw comment codes. The call

PicComaent (1000, 0, NIL) ;

turns bitmap thinning OFF, while the call
PicComment (1001, 0, NIL);

turns bitmap thinning ON. Thinning is ON by default!
In addition, the ImageWriter code recognizes the picTxtBeg and picTxtEnd com -
ments used by MacDraw. These are comment codes 150 and 151, respectively.
PicTxtBeg turns thinning off, and picTxtEnd turns it on. Use these comments if
you know what you're doing; the laser printer makes assumptions about the data sent
with them.
Note that all other QuickDraw comments are thrown away by the ImageWriter code.

Page 5

c

o

c

Optimizing Code For The LaserWriter

Below is some information that will help you optimize your code for the LaserWriter.

How to determine which printer is currently selected.
The printers are designated as:

Imagewriter = 1
DaisyWriter = 2
LaserWriter = 3

If you are using the Printing Manager, look at the high byte of the wDev word in the
PrStl subrecord of the Print record. The value will be a positive 1, 2, or 3 depending on
the printer type that is currently selected. Call PrValidate to insure you have the current
Print Record. If you are using the Printer Driver look at byte $947 in low memory. It will
contain the negative of one of the three constants above. The values are valid only
while the driver is open. Once it is closed, the low byte value will default to -1, which is
the Imagewriter.

Using QuickDraw with the LaserWriter
• For all objects except BitMaps, SrcCopy is the only supported transfer mode. The

other 15 are not.
• For BitMaps, the only transfer mode NOT supported is SrcXOR. All the others are.
• The grafverb "invert" is not supported.
• Do not change the origin within PrOpenPage and PrClosePage.
• Regions are not supported, try to simulate them with polygons.
• Clip regions should be limited to rectangles.
• Rotated or Scaled bit images will not print correctly
• There is a small error in character widths between screen and printer fonts, so don't

rely on them being exactly the same. Only the end points will be accurate.
• If you are using PicComments to left, right or center justify the text, only those points

will be accurate.

Memory Considerations
When you print on the LaserWriter, you will only be able to print in Draft mode except
that the quality will be high as opposed to low quality on the Imagewriter. This means
that you will not be spooling and therefore your data and printing code will have to be
resident in memory at the same time. In terms of memory requirements, you will need
around 15 to 20K just for the Printer Driver, AppleTalk, etc. every time you print.

Printable Paper Area
There is a 0.45 inch border that surrounds the printable area of the paper. Note that
this is different from the print area that was available when using the Imagewriter. The
value of the printable rectangle is stored in the Print Record in the variable
prlnfoPT.rPage.

Optimizing Code For The LaserWriter Page 1

Speed Considerations
• Try to avoid using any of the QuickDraw Erase calls (ie. EraseRect, EraseOval, etc.).

It takes a lot of time to handle the erase function because every bit (90,000
bits/sq.in.) has to be cleared. Erasing is generally unnecessary because the paper
does not need to be erased the way the screen does.

• Printing patterns takes a long time, since the pattern bitmap has to be built. The
patterns of Black, White, and all the Grays have been optimized for the LaserWriter.
If you use a different pattern, it will work but just take a little longer to print. Also,
patterns do not rotate or scale on the printer.

• Try to aviod changing fonts frequently. Font characters are stored as general
mathematical functions and it takes 0.5 seconds to build the bit image of a character
the first time it is used. For the fastest possible printing, use the fonts that have their
bit image built in to the ROM (Courier 10, Times 12, Helvetica 12) and the fonts
whose bit image is built whenever the printer is idle (Times and Helevtica 10,14
and Times and Helvetica Bold 10,12,14). See Appendix D (the Advanced Users
Suppliment) for more details.

• Using TextBox. It makes a call to EraseRect for every line of text it draws. The
Eraserects slow the printer down. You might want to use a different method of
displaying the text or write your own special version of TexBox. Speed improvement
can be in the order of 5 to 1 if you make alot of TextBox calls.

• ClipRects. Because of the way Rect intersection are determined, if your clipRect falls
outside of the rPage Rect, you will slow down the printer substantially. By making
sure your clipRect is entirely within the rPage Rect, you can get a speed
improvement of approximately 4 to 1.

• Do not spool a page - print a page as some applications do when printing on the
Imagewriter. You will slow down considerably. See spool a page, print a page
below.

LaserWriter Fonts Numbers

Times = 20
Helvetica = 21
Courier = 22
Symbol = 23

Clipping Within TextStrinas
When clipping strings, make sure that the clipping region/rect is greater than the
bounding box of the text. The reason is that a clipped character will need to be rebuilt
and this takes time. So beware especially of ascenders and decenders. Also, because
of the difference between screen fonts and printer fonts, chances are you will not clip to
the correct characters. So be sure to only clip outside of the string bounds.

Spacing between Text Strings
If you are erasing before drawing the text, and your eraseRect height is made up of the
ascent plus the descent plus the leading, it is possible to erase the decenders of

Optimizing Code For The LaserWriter Page 2

characters like 'g' and 'y'. To get rid of this problem, your line spacing can consist of the
above height plus one pixel. This will ensure that you don't zap the decenders, but
your line spacing will be to wide. So the only solution is to leave line spacing alone
and just make sure that an eraseRect is not used.

When to validate the Print Record
You validate the Print Record by calling PrValidate(...); You should call it when the
application starts up and whenever you interface with the Print Record (like when you
get the printable page size). The dialogs PrStlDialog(...) and PrJobDialog(...) will call
PrValidate(...) when they are called.

Spool-A-Page. Print-A-Page
Many applications when printing on the Imagewriter, because of disk space limitations,
spooled a page and then print a page. As noted above in Memory Considerations,
there is not any spooling when printing to the LaserWriter. Inorderto optimize for the
LaserWriter though, you will probably want to have two sets of printing loops. One
where you spool a page and then print it (for the Imagewriter) and the other where you
would just print without spooling (for the LaserWriter). Since you can tell which printer
is currently selected (see above), you will be able to correctly switch between the two
methods. Laser printing will probably be accomplished through spooling on the 128K
Macintosh, so be sure to still call PrPicFile if bDocLoop is equal to spooling. Note that
the majority of applications will not have to know what printer they are currently printing
on.

Zero Width QuickDraw Objects that are Filled
QuickDraw objects that enclose zero pixels and are not framed but filled, will not print
on the Imagewriter nor show up on the screen, but they are real and will be printed on
the LaserWriter.

pPaaeFrame inPrOpenPaae
This parameter was originally intended to be for scaling the QuickDraw picture of the
given page which was contained in the spooled file. When printing to the ImageWriter,
this parameter works fine. When printing on the LaserWriter, this parameter is ignored
and does not have any effect on the print output.

Canceling. Pausing the Printing Process
If you install a procedure for handling the users requests to cancel printing, with the
option of pausing the printing process, beware of timeout problems when printing to
the LaserWriter. Communication between the Macintosh and the LaserWriter have to
be maintained, so if you have a pause option and do not let communication continue a
no-response error will be generated and the Printing Manager will abort the print
process. This will probably not make your user very happy. The solution is to check if
you are printing to the LaserWriter, if so disable the pause option. If printing to the
Imagewriter, enable this option.

Optimizing Code For The LaserWriter Page 3

Choose Printer Desk Accessory
With the Choose Printer Desk Accessory, the user can change the printer while in the
application. If for some reason you do not want the user to change printers, you can
disable the Chooser. By setting bit 7 of low memory byte $946 to 0 (false), the Chooser
will not allow the user to change printers. Settinng the bit bit to 1 (default state) will
enable it. If you do disable the Chooser, be sure to enable it before
terminating the program. Otherwise, the Chooser will be disabled for all apps or
until a reboot occurs.

Calling SetOriain
When printing to the LaserWriter, you will not be able to change the origin for drawing
purposes if you are within the PrOpenPage and PrClosePage calls. A general
workaround for this problem is to use offsetRect. You can change the origin within the
PrOpenDoc and PrCloseDoc calls which facilitates printing multiple page documents.

QuickDraw Comments for Text Rotation/Justification and Polygons
Using the QuickDraw comment facility - PicComment - an application can take
advantage of certain features that a printer might have which are not directly available
in QuickDraw, such as curves and rotated text. The comment types are given below:

Comment Type QDKind
TextBegin 150
TextEnd 151
TextCenter 154

Size Data
6 TTxtPicRec
0 Nil
8 TTxtCenter

Description
Begin text function
End the text function
Offset to center of rotation

PolyBegin
PolyEnd
Polylgnore
PolyVerb

160
161
163
164

0
0
0
1

Nil Begin Special Ploygon
Nil End Special Polygon
Nil Ignore Following Poly data
PolyVerb Close,Fill,Frame

The structure of the data records used in the comments are:
TTxtPicRec = PACKED RECORD

tJus: Byte;
tFlip:Byte;
tRot:lnteger;
tRes:lnteger;

END;

{0,1,2,3,4: None, left,center,right,full justification}
{0,1,2: None, horizontal,vertical coordinate flip}
{0..360: clockwise rotation in degrees}
{Reserved for printing}

TTxtCenter = PACKED RECORD
ylnt: Integer; {Integer part of y offset to center of rotation}
yFract:lnteger; {Fractional part of y offset to center of rotation}
xlnt:lnteger; {Integer part of x offset to center of rotation}
xFract:lnteger; {Fractional part of x offset to center of rotation}

END;

Optimizing Code For The LaserWriter Page 4

TPolyVerb = PACKED RECORD
f7:Boolean;
f6:Boolean;
f5:Boolean;
f4:Boolean;
f3:Boolean;
fPloyClose:Boolean;
fPolyFill: Boolean;
fPloyFrame:Boolean;

END;

{not used}
{not used}
{not used}
{not used}
{not used}
{close the polygon}
{fill the polygon}
{frame the polygon}

These comments are usefull if you want to take advantage of the printer widths or if you
want the text to be forced into the screen widths of the text. You can justify or flip text by
enclosing your drawstring calls with PicComments of TextBegin and TextEnd. For
example:

PicComment(150,6, PtrToTxtPicRec); {begin & set jus. type}
DrawStringfThis text is justified');

PicComment(151,0,Nil) {end the comment}

Where PtrToTxtPicRec is a pointer to the record structure which has previously been
setup properly (be sure to zero the record out before assigning values into it).

If you want to rotate text, the following will do the trick:
PicComment(150, 6, PtrToTxtPicRec); {begin & set rot. degs}
PicComment(154,8, PtrToTxCenter); {set the center of rot.}

DrawString('This text has been rotated');
PicComment(151,0, Nil); {end the coment}

The center of rotation is the offset (passed through the TextCenter comment) from the
begining position of the first string following the TextCenter comment. The print driver
expects the string locations to be in the unrotated coordinate system. The driver rotates
the entire port to draw the text. It therefore can draw several strings with one rotation
and center comment call. Note that the driver can draw rectangles and polygons within
the bounds of the rotation comments, but it draws them unrotated. To do this it has to
unrotate from drawing text and re-rotate to draw the next string of text. Inorder to work
correctly, the driver must receive a new TextCenter comment before each new rotation
following an un-rotation.

With the polygon comment, polygons can be smoothed using cubic spline
approximations. The way it works, is after a PolyBegin comment, a PloyVerb comment
follows indicating if the polygon is open or closed, framed, filled or both. Following
these two comments, the driver expects to see LineTo's specifying the unsmothed
polygon from of the curve desired. At the end of the specification, issue a PolyEnd
commment call. Note: Unlike Quickdraw ploygons, comment ploygons do not require
an initial MoveTo call within the scope of the polygon comment. Instead, the initial pen
location from which the first line of the polygonis drawn is the same as the pen location
at the time the poly comment is received. This means the pen location must be set
before the polygon comment is called. The pen size used for framing is the current pen
size prior to the PolyBegin comment. When a Ploylgnore comment is received, the

Optimizing Code For The LaserWriter Page 5

driver ignores all further LineTo's until a PloyEnd comment is received. To fill the
polygon, issue a PolyVerb comment specifying the verb FILL and call FillRgn with the
fill verb and the appropriate pattern set.

Printing Error Messages
The error below are for the Printing Manager only. If the Printing Manager gets an error
that does not belong it, but to the OS, it will put the OS error in low memory (retrivable
with a call to PrError) and terminate printing if necessary.

Note: If you get an error in the middle of the printing loop (OpenDoc -- CloseDoc), do
not jump out of the loop. Just fall through and let the Printing Manager terminate
properly. Example: If you get an error on PrDocOpen be sure that PrDocClose is
called. If you get an error on PrPageOpen, be sure to call PrPageClose and
PrDocClose.

Error Values Constant Description
0 noErr No error
128 iPrAbort Abort the printing process
-1 iPrSavePFil Problem saving print file
-17 Un-implemented control instruction
-27 ilOAbort Trouble with IO
-108 imemFullErr Not enough heap space

The following errors are only relevent when printing to the LaserWriter
-4101 Printer not found or closed
-4100 Connection just closed
-4099 Write request too big
-4098 Request already active
-4097 Bad connection refNum
-4096 No free CCbs (Connect Control Blocks) available

Of special interest is error number -4101. This error will occur whenever someone has
installed the LaserWriter and tried to print, but has not selected the LaserWriter. This
will happen to a lot of users, so you might want to key on this error and put up an Alert
saying to Choose the printer and make sure it is properly connected to the AppleTalk
network.

Optimizing Code For The LaserWriter Page 6

Future Macintosh Architectures
The Macintosh Division has many enhancements planned for the Macintosh family of
computers. Please read this questionnaire to help ensure that your software will
continue to run on all Apple Macintoshes.

If your program is written in a high level language like Lisa Pascal, or if you adhere to
the guidelines outlined in Inside Macintosh, you do not have to be concerned about
most of the questions listed here. Assembly developers should read each question
carefully. Below the question is a short discussion of why the question is important, or
an alternative. If you answer a question "Yes," it means your software may encounter
difficulty running on some future Macintosh compatible machine from Apple.

1. Do you depend on any 68000 instructions that will only execute properly in the
supervisor mode? (This includes changing the interrupt level.)

The current strategy is that future machines will attempt to do the correct thing by routing the exception
vector to cause the correct equivalent action to occur. This will take more time and your application's
performance will be penalized. An example might be MOVE to SR when MOVE to CCR would suffice.
You may check the processor version of the machine by checking location DskWrl 1 ($12F); $00 = 68000,
$01 = 68010, $02 = 68020. As a rule, your application should only execute instructions which are legal in
the user mode.

2. Do you use the TRAP #0-15 instruction vectors?

These vectors do not work the same on all 68000 compatible processors. Apple recommends that your
application not use them.

3. Do you alter any low memory locations, including those between $00 and $FF,
other than those explicitly referenced as alterable in Inside Macintosh?

Be aware that 68000 compatible processors use the space between 0 and $FF differently.
Undocumented locations may be used by Apple in a different way in future system software. Unused
undocumented locations are not available for use by the application.

4. Does your program make any assumptions about:
a. the size of a file control block

The current FCB size is 30 bytes. To implement a more sophisticated file system, Apple must increase the
FCB size. Unfortunately, your application cannot determine the new size programmatically. You can only
rely on the first 30 bytes remaining the same; in other words, you can only index into an FCB that you are
given a pointer to. But you cannot transverse the FCB table because the length of each entry is
indeterminate.

b. the layout of information in the file directory or allocation block map

To implement a more sophisticated file system, the layout of information in the file directory or allocation
block map must change. There is no problem if you access this information through calls to the file system
rather than reading blocks via the device driver.

Future Macintosh Architectures June 6, 1985 Page 1

c. custom code in the boot blocks

It is highly recommended that code that is required to execute at boot time be done through INIT
resources in the system file rather than by putting custom code in the boot blocks. Future system software
may move the code currently executed in the boot blocks. INIT resources also allow multiple applications
to install routines at boot time. Note that INIT resources must have IDs from 0 to 31 to be executed; if you
install the INIT resource at runtime, be sure to check that the ID you use has not already been taken.

5. Do you allocate any new objects in the system heap? How big are they? Does
your application work in concert with other parts of the system which may require more
system heap?

System heap size for both the 128K and 512K machines will change in the future. Your application should
not rely on being able to allocate substantial blocks in the system heap.

6. Do you depend on the system or application heaps starting at a particular address?
Does your application require code located within the first 32K (short addressing)
memory space?

Application should not rely on either the system or application heap starting at a particular location or
having a particular size, because future architectures may require more low memory globals and more stack
space.

7. Do you look through any of the system's linked lists or queues directly? What, and
why?

The size of the system queues may increase with new releases of system software. Avoid coding
programs that depend on constant sized queues or constant sized queue elements.

8. Do you address any hardware directly?
VIA
SCC
IWM

One proposal for future architectures is to have a memory management unit that prevents an application
from accidentally interfering with the operation of the hardware. Because such a memory management
unit can not distinguish between accidental and intentional hardware accesses, all hardware accesses
would be prevented. An application that needs to alter some attribute of the hardware must do so by
making the appropriate system call. If you must access the VIA, SCC or IWM directly, be sure to get the
base address from the appropriate low memory global: VIA ($1D4), SCCRd ($1D8), SCCWr ($1 DC), or
IWM ($1EO), since the hardware addresses may change in future architectures.

9. Do you assume the location or size of the display?

For future machines to increase the size of the display or increase the amount of memory, the location and
size would have to be moved. The location and size is available in the global bitmap screenBits.

Future Macintosh Architectures June 6, 1985 Page 2

10. Do you work with the Macintosh XL? If not, do you know why?

Future machines will fiave different underlying hardware architectures, just as the Macintosh and the
Macintosh XL do. Your software should run on all current machines if you want it to run on all future ones
as well.

11. Do you change the lock or purge state of a handle directly, without using the trap
call? Do you change the fields of a system record, such as a Text Edit record or a
grafPort, instead of using the appropriate call to set it for you?

An application that uses the trap calls helps Apple improve the system software by allowing the definition
of the system fields to be completely contained in the system software provided, as well as allowing the
system software to check the validity of the parameters passed to the routine.

12. Do you check explicitly for the 128K, 512K and 1M sizes of the existing machines,
or do you allow for any memory configuration? Do you use any of the bits in pointers
or handles to have special meaning for your application?

The Macintosh architecture is not limited to the current 512K and 1M configurations. The memory
manager supports a 16M address range. The 24 lower bits of a handle or pointer on a Macintosh
compatible architecture may all be valid, as a memory address. The top 8 bits are all reserved for use by
Apple. Additionally, the application switcher allows applications to be configured with arbitrary memory
sizes.

13. Is your application incompatible with some other vendor's hardware, such as hard
disk drives, or software, such as desk accessories?

The reason for the incompatibility might also prevent the application from working with future Apple
machines. Please let us know what we can do to avoid this sort of incompatibility.

14. Do you rely on resources supplied by Apple, like the standard definitions for
windows, menus and controls, being in RAM? Do you detach them from the resource
map?

Future systems may have ROM-based resources. This means that these resources can never really be
thrown away from the System file, or from memory. For instance, your application should not rely on
gaining more memory space by releasing system resources.

15. Does your application have timing sensitive code that must run at a particular clock
rate to be successful?

To improve the performance of future machines, the processor will run at a faster clock rate. Code that is
timing dependent should use system timing facilities, such as TickCount, or if a finer grain of precision is
required, VIA timer 2, to ensure valid operation.

Future Macintosh Architectures June 6, 1985 Page 3

16. Do you have writable data blocks in your code?

Currently, applications cannot be protected from code which accidentally changes the value of the
memory containing the application. A future memory management unit could protect the application by
preventing any accidental writes in the code space. This also would prevent the application from either
intermixing code and data or having self-modifying code. Data should be stored in a memory block, stack
space, or low memory reserved for or allocated by the application. It is also OK to write directly to screen
memory, although the application should not violate the user interface guidelines by doing so. Code must
either be either static or "compiled" into an allocated memory block. If you execute code in a separate
block, be sure that the high byte of the address is cleared.

17. Do you read the keyboard through key codes rather than ASCII codes?

There is no guaranteed mapping between key codes and ASCII codes. Key codes should never be used
to determine which key has been pressed. ASCII codes should always be used to interpret the marking on
a key. Use the keyboard or keypad mapping procedure to translate key codes into ASCII codes, so that
the user can customize the keyboard through the appropriate mapping resource.

18. Do you rely on the current packing of trap addresses in the trap table?

To expand the number of available traps, the Toolbox and Operating Sytem traps are to be separated into
two tables, allowing for 512 Toolbox traps and 256 Operating System traps. Each table entry will be an
absolute address.

19: Do you store information in the 32 bytes above A5 between the application globals
and the jump table?

This space is reserved for Apple-supplied libraries linked with the application.

20: Do you depend on registers being saved across a ROM call other than those
documented?

Future implementations of existing routines may have different register usage— but, of course, the
implementations will adhere to the stated Toolbox and OS conventions.

21: Do you depend on unusual behavior of any ROM routines? As examples:

a) Do you call RectlnRgn at all?
b) Do you depend on PinRect to pin inconsistently?
c) Do you use a cursor with a hotspot that lies outside of the cursor?
d) Do you use HLock, HPurge, HUnlock or HNoPurge intentionally on addresses other
than handles?

Future versions of system software will correct oversights in earlier versions. Do not depend on
idiosyncracies of current system software.

Future Macintosh Architectures June 6,1985 Page 4

22: Do you use Command-Shift 5 through 9 or Command-Shift 0 to mean something
special?

Apple may add future function key capabilities with these key combinations by adding additional FKEY
resources.

23: Do you use MaxApplZone regardless of the available RAM size? Or, do you
attempt to increase the application's heap zone size to its maximum by allocating, then
deallocating a large memory block at the beginning of your program?

One proposal for an enhancement to the system software is to use part of the memory unused by the
current application as a disk cache. If the application only increases the heap by the amount of memory
required to efficiently run the application, then the system software is free to use the remainder for other
purposes.

24: Is all of the text in your application contained in editable resources, rather than
embedded in the code? Do you only allow ASCII codes within the range of 32 - 127?
Do you reference units of measurement, time, currency, or sort order without using the
Apple supplied routines?

For your software to be compatible with the international market place, it must use the routines provided by
the International Package, and allow 8 bit character codes.

25: Does your application use system references? Does it call the Resource Manager
calls AddReference or RmveReference?

All support for resource system references have been removed because no one has found a use for
them, and because the existing implementation does not work very well. The system reference bit in the
resource attribute byte may have a different meaning in future system software.

26: Does your application make assumptions about the size or number of disk
volumes? Does it allow files to be on disk volumes other than the internal and external
drives?

Apple's announced hard disk drive for the Macintosh as well as an enhanced 3 1/2" disk drive will allow
more and larger drives to be available to the user.

27: Does the copy protection software used by your application depend on changing
the 3 1/2" disk speed by altering the disk speed buffer in RAM?

The enhanced 3 1/2" drive has an internal motor speed control that does not use the disk speed buffer.

28: Does your application depend on availability of a second screen or sound buffer?

The current buffers are 32K apart; future machines may have screen bitmaps that are larger than 32K.
Thus, the second screen or sound buffer may be located at a different place that could not be determined
at runtime by the application. Moreover, the machine may not support a second screen at all.

Future Macintosh Architectures June 6, 1985 Page 5

29: Does your application print by bypassing the Print Manager and writing to the
serial driver directly?

Driving the printer directly poses many problems including incompatibility with the AppleTalk network and
future versions of the Imagewriter. If necessary, use the .Printer driver directly, but Apple recommends
using the Print Manager for all printing.

30: Does your application work if set as the startup application from the Finder?

Failure to work as the startup application usually points to an initialization problem. Be sure to initialize all
managers that your application uses, including those that desk accessories may use.

Future Macintosh Architectures June 6, 1985 Page 6

Finders and Foreign Drives

Foreign disk drives, such as hard disks not manufactured by Apple, can send an icon
and a descriptive string to the Finder. The icon is used on the desktop to represent the
drive. The string is displayed in the "Get Info" box for any object belonging to that disk.
When the Finder notices a "non-sony" drive in the VCB queue, it will issue 1 or 2 control
calls to the disk driver to get the icon and string.

Finder 1.1 g issues one control call to the driver with CSCode = 20 and the driver returns
the icon ID in CSParam. This method has problems because the icon ID was tied to a
particular system file. So, if the Finder switched-launch to a floppy, the foreign disk's
icon reverts to the sony's.

Finder 4.1 now issues a "newer" control call and, if that fails, issues the old control call
#20. The new call has CSCode = 21 and the driver should return a pointer in
CSParam. The pointer points to a type ICN# followed by a 1..31 byte Pascal string
containing the descriptor. This implies that the icon and the string must be part of the
disk driver's code because only the existance of the driver indicates that the disk is
attached.

This has implications about the translation of the driver for overseas markets, but the
descriptor will usually be a trademarked name which isn't translated. However, the
driver install program could be made responsible for inserting the translated name into
the driver.

Drivers should respond to both control calls if compatibility with both Finders is desired.
However, if you ship the disk out with the new Finder, responding to just control #21
would be OK.

Finder 4.1 also permits the user to drag any online disk to the trash can. The Finder will
clean up the disk state, issue an Eject call followed by an Unmount call to the disk and
then, an event loop later, reclaim all the memory . This means any program/accessory
used to mount volumes should reconcile its private data, menus, etc. to the current state
of the VCB queue. This Finder also notices if a volume disappears and will clean up
safely. But, because of a quirk in timing, a mount manager cannot unmount one volume
then mount another immediately; it must wait for the Finder to loop around and clean up
the first disk before it notices the second. (It should have cleaned up old ones before it
notices new ones, but it doesn't.) This should enable all hard disks to have a desk
accessory mount manager which is a nicer user interface anyway.

Future Issues: The unused bits in the GetVollnfo flags will probably be defined for
shared/networked/etc. drives so don't use them.

Finders and Foreign Drives Page 1 of 1 May 1985

Life After Font/DA Mover - How To Make Sure Your Desk
Accessory Still Works

If you want your desk accessory to work properly after being moved by the Font/DA
Mover, there are some eccentricities that you need to be aware of. When the Font/DA
Mover (released version 1.2) moves a desk accessory, it will renumber your desk
accessory. What this implies is that it will also renumber all of your desk accessory's
owned resources. Before reading further, please read the "Resource IDs of Owned
Resources" section of The Resource Manager in Inside Macintosh.

Now that you know all about owned resources and how their IDs are calculated, it
becomes obvious that the renumbering done by the Font/DA Mover can be a problem.
For example: If your desk accessory has an owned DLOG resource, and tries to call
GetNewDialog with the ID you assigned to it originally, the Resource Manager may not
find it. More than likely the ID has been changed because the desk accessory was
moved, and the ID of the desk accessory has been changed. The solution is that every
time your desk accessory references an owned resource, it must figure out at
execution time the real ID of the resource according to the current driver resource ID.
You have no way of knowing ahead of time whether the ID has been changed.

An additional problem is that of ID references embedded in other resources, such as the
reference to a DITL within a DLOG or ALRT resource. When the desk accessory ID gets
changed, the ID of the DITL changes, but the ID of the DITL referenced in the DLOG
doesn't The Font/DA Mover does go back and fix some instances it suspects might be a
problem, as in the above case. The list of cases where the Font/DA Mover fixes the
references for you are listed below.

However, if you have resources that contain references to resources other than those
listed below, such as references to a CDEF you've defined, your desk accessory will
have to compute the new ID from its current driver ID, then fix any references itself. For
example, if the Font/DA Mover didn't fix the DLOG reference to the DITL(which it actually
does), your desk accessory, before calling GetNewDialog, would do the following:
compute the ID of the DLOG resource; call GetResource to get the DLOG; compute the
ID of the DITL; and check to see if the ID referenced in the DLOG is the same as the
actual ID of the DITL. If they are different, the desk accessory fixes the DLOG, and
updates the resource file. It can then call GetNewDialog without problems.

Unfortunately, there is one common case that was (erroneously) not implemented in the
release version of the Font/DA Mover. At the beginning of a MENU resource is the ID of
the resource itself. This ID is used by the Desk Manager to determine if you should get
an accMenu call if this menu is selected. The problem is that the Font/DA Mover fixes
the resource ID in the Map, but not in the resource data itself. So, if you use GetMenu to
get an owned MENU resource, you need to patch the first word pointed to by the handle
returned with the actual resource ID of the MENU.

As a rule of thumb, before you ship a desk accessory try moving it around to several
disks that have different numbers of desk accessories on them. If one of the copies
doesn't work, then there is something wrong with the way you are handling your owned

Life After Font/DA Mover page 1 of 2 May 1985

resources.

The resource back-patches currently implemented in the Font/DA Mover are*:
1. DLOG/ALRT reference to DITL
2. DITL references to ICON, PICT, CTRL
3. MENU reference to MDEF

* Anything not on this list has to be fixed by the desk accessory.

By the Way... Before the Font/DA Mover, desk pccessories could have an ID in the
range 12 to 31. Now, and in the future, desk accessories can only have IDs in the range
12 to 26. The Font/DA Mover will only assign numbers in this range. Numbers 27 thru
31 are reserved for dynamic allocation of IDs at runtime for disk drivers, mail servers,
etc.

Also, The Font/DA Mover will not allow you to delete all of the desk accessories or fonts
from the system file; you must leave at least one of each. The reason for this is a bug in
AddResMenu.

Life After Font/DA Mover page 2 of 2 May 1985

SANELib V1.2

What is SANFUh?
The Pascal compiler in Workshop 3.9 fully supports die Standard Apple Numeric Environment (SANE), which

includes IEEE-standard (754) floating point arithmetic and extended-precision expression evaluation. It includes four
floating point types (single, double, comp and extended) and uses the SANE floating point engines FP68K and Elems68K
for all floating point operations native to Pascal. (FP68K and Elems68K are packages 4 and 5 on Macintosh, and are
built into SANELib on die Lisa.) Other features of SANE are provided in the SANE unit. SANELib provides
compile-time and run-time support for floating point arithmetic and includes the SANE unit.

SANELib is available for both Macintosh and Lisa development. Its major pieces are:

Macintosh version: the SANE unit, Run-time floating point support
Lisa version: the SANE unit, Run-time floating point support, Fp68K, Elems68K

SANELib files for Macintosh development: Corresponding Lisa files:
Intrfc/SANELib.TEXT Lisa/SANELib.TEXT { SANE interface, human readable }
obj/SANELib.OBJ Lisa/SANELib.OBJ {SANE interface for compiling }
obj/SANELibAsm.OBJ Lisa/SANELibAsm.OBJ { Assembled code for linking }.

When to link with SANELib
You must link with SANELib if your program uses floating point arithmetic, floating point I/O, or the SANE unit.

For Macintosh development, link with obj/ SANELibAsm, obj/PasLib, obj/PasLibAsm, obj/PasInit, and obj/RTLib.
For Lisa development, link with Lisa/SANELibAsm and IOSPasLib.

SANELib is compatible with the Pascal compiler included in the Workshop 3.9 Update. The files listed above
supersede: previous versions of SANELib (obj/sanelib, obj/sanelibasm, mac/sanelib, lisa/sanelib, sanelib) and files for
2.0 and 3.0 Workshops (obj/sane, obj/elems, obj/saneasm, obj/elemsasm, obj/fpunit, obj/realpasunit, obj/fpsub,
obj/mathunit, mathlib, and IOSFPLJB), although some Workshop software still depends on IOSFPLIB.

Description and use of the SANE unit
The SANE unit interface is in Intrfc/SANELib.TEXT (Macintosh) and in Lisa/SANELib.TEXT (Lisa). To use this

unit, include the appropriate USES declaration in your program:

{$U Obj/S ANELib} SANE; for Macintosh development, or {$U Lisa/S ANELib} SANE; for Lisa development.

Link with the appropriate SANELibAsm file as described above.

What has changed since the 0.9 release (which was included in the Feh 85 Supplements?
FP68K and Elems68K: Known bugs have been fixed. New versions for Lisa are included in SANELib for the Lisa.

New versions for Macintosh are in the May 85 Macintosh system file (included on the 5/85 Mac Build Disk). Bugs fixed:
FClassC now works, decimal to binary conversions of gigantic values now produce INF instead of NaN, and Pack5 no
longer locks itself down. The NaN signaling bit has had its sense reversed, to accommodate possible future hardware.

Further information
Workshop 3.9 Update information in the May 1985 Software Supplement.
Compiler Latest "Post-3.0" Pascal Compiler Enhancements. (February 8,1985).

The Apple Numerics Manual (included in the Promotional ["phone book"] Edition of Inside Macintosh and also
included in Apple II Assembly Language SANE, product #A2W-0015) contains a complete description of SANE. The
Macintosh Pascal manuals document the integration of SANE into Pascal.

Note: Appendix A of the memo, Latest "Post-3.0" Lisa Pascal Compiler Enhancements, sent to developers in the
Feb 85 Software Supplement, contains an outdated SANE Unit Interface ~ see the file intrfc/SANELib.text instead.

Apple Numerics Group May 21, 1985

o

o

o

SUPPLEMENTARY DOCUMENTATION TO THE APPLE NUMERICS MANUAL
SANE Numeric Scanner and Formatter

The numeric scanners Str2Dec and CStr2Dec and the numeric formatter Dec2Str are designed for developers to use
with the SANE floating point engines. Whereas FP68K provides binary-decimal conversions between the SANE
data formats and the Decimal record type, these routines provide conversions between Decimal records and ASCII
strings. Thus the application developer has a solution to the problems of scanning input strings to produce
SANE-type values and of formatting SANE-type values for output

This document gives specifications, programming advice, and examples. It assumes familiarity with the Apple
Numerics Manual [ANM], in particular the Conversions section.

Str2Dec and CStr2Dec - the Numeric Scanners

Str2Dec has the Pascal interface:

procedure Str2Dec(S : DecStr; var Index : integer; var d : Decimal; var ValidPrefix : boolean);

The scanners are for use either with fixed strings or with strings being received character by character. S is the
string to be scanned, the result is returned in d. Index on input gives the starting index into the string, and on
output is one greater than the index of the last character in the numeric substring just parsed. The longest possible
numeric substring is parsed; if no numeric substring is recognized, then index remains unchanged. ValidPrefix
returns true if the entire input string, beginning at Index, is a valid numeric string or a valid prefix of a numeric
string.

CStr2Dec has the Pascal interface;

procedure CStr2Dec (S : CStrPtr; var Index: integer; var d : Decimal; var ValidPrefix : boolean);

where CStrPtr = Miar;. The only difference is in the first parameter. Str2Dec expects the string length in the
zero-th byte of the string and the initial character of the string in the first byte. CStr2Dec expects a C string (the
zero-th byte is the initial character of the string, there is no length byte). In either interface, scanning ends on the
first character which does not meet the number syntax in the Conversions section of (ANM), or with the end of the
string (determined by the length byte in Str2Dec, the null character in CStr2Dec).

Although there are two numeric scanners, not every programming environment will offer both to the user. You
must examine the SANE library in your programming environment to determine which scannner(s) are available.

Conversion of floating point substrings embedded in larger strings
Parse to the beginning of numeric data ([+ I -] digit), in Index pass the current scan location, and the scanner will
return the value scanned and a new value of Index for continued parsing.

Recognition of integers
You may need to determine if the value scanned can be stored in the 32-bit (16-bit) integer format. (The scanner
itself does not determine this.) You can either:
1. Scan the source looking for integer syntax. Handle integers yourself and send to the scanner both integer
overflows and strings with floating point syntax (., E, e). Call SANE to convert the resulting decimal to extended.
2. Send all substrings beginning with [+1 -] digit to the scanner. Rescan from Index(in) to Index(out) searching for
floating point syntax (.,E,e). If not found, call SANE to convert decimal to 32-bit (16-bit) integer. If the decimal
holds an integer value, it will be returned. If -2147483648 (-32768) is returned, then the decimal holds either a
floating point value or the true integer -2147483648 (-32768). Call SANE to convert the decimal to extended.

Apple Numerics Group page 1 May 12, 1985

Conversion of strings received character-bv-character
The scanner can be used to process not only static strings but also strings received character-by-character:

ScanString :=
repeat

get next character;
append character to ScanString;
Index := 1;
Str2Dec (ScanString, Index, d, ValidPrefix);

until ValidPrefix = false;
call SANE to convert Decimal d to extended;

When this algorithm calls the Pascal string scanner it has a 255 limit for input characters, though when it calls the
C string scanner there is no predefined limit to the string length.

Examples can be found in the conversions section of [ANM].

Dec2Str - the Numeric Formatter

Dec2Str has the Pascal interface:

procedure Dec2Str(f : DecForm; d : Decimal; var s : DecStr);

Specifications
If f.style is 0 the output string is formatted in float style, with f.digits specifying the number of significant digits:

[-1]m[.nnn]e±dddd

minus(-) or space according as d.sgn is 1 or 0
m single digit, 0 only if value represented is 0
point(.) present if f.digits > 1
nnn digit string, present if f.digits > 1
e plus (+) or minus (-) according as exponent > or < 0
dddd one to four exponent digits

If f.style is 1 the output string is formatted in fixed style, with f.digits specifying the number of digits to follow the
decimal point:

[-]mmm[.nnn]

minus (-) present if d.sgn = 1
mmm digits string, at least one digit but otherwise no superfluous leading zeros
point (.) present if f.digits > 0
nnn digit string of length f.digits, present if f.digits > 0

Note that if d.sgn = 0 then a space is prepended to float style output but not to fixed.

A negative f.digits will be treated as zero for fixed formatting, but will give unspecified results in float format.

Dec2Str will never return fewer significant digits than are contained in d.sig. However, if f calls for more
significant digits than in d.sig then Dec2Str will pad zeros as needed.

If more than 80 characters are required to honor f.digits then Dec2Str returns the string

NaNs are formatted NAN(ddd) where ddd is a three decimal digit code telling the origin of the NaN; infinitites are
formatted INF. A sign or space is prepended according to the style convention.

Apple Numerics Group page 2 May 12, 1985

Alignment and field width
With style float, numbers formatted using the same f.digits will have aligning decimal points and 'e's. To assure
also that numbers have the same width, pad out the exponent-digits field with spaces to a width of 4 (extended
values may require four exponent digits). For example, if f.digits = 12, then pad 12 + 8 - length(s) spaces on the
right of the result string s. The "8" accounts for the sign, point, e, exponent sign, and four exponent digits. Note
that this scheme gives the correct field width for NaNs and infinities too.

With style fixed, numbers formatted using the same f.digits will have aligning decimal points if the result string s
is prepended with spaces up to a fixed width, which must be no narrower than the widest s.

Examples
style dicrits s an

0
exp
-2

sip
' 123 1

result string s
FloatDecimal 3

s an
0

exp
-2

sip
' 123 1 ' 1.23e+0'

FloatDecimal 3 1 -4 '123' '-1.23e-2'
FloatDecimal 1 0 200 '123' ' 1.23e+202•
FloatDecimal 5 1 1000 '123' ' -1.2300e+10021

FloatDecimal 1 0 -30 . 4 . • 4e-30'
FloatDecimal 1 1 0 '0' '-0e+0'
FloatDecimal 30 0 0 '1' ' 1.00000000000000000000000000000e+0
FloatDecimal 76 0 0 '1' 1 1

FloatDecimal 76 1 0 •1' • •? 1

FloatDecimal 5 0 -98 'N0024' ' NAN(036)'
FloatDecimal 2 1 103 'N00151 '-NAN(021)'
FloatDecimal 2 0 0 'I' ' INF'
FloatDecimal 2 1 -217 'I' '—INF'
FixedDecimal 3 0 -3 '12345' •12.345'
FixedDecimal 3 1 -3 '12345' '-12.345'
FixedDecimal 5 0 -3 '12345' •12.34500'
FixedDecimal 3 1 -5 •1234567' 1'-12.34567'
FixedDecimal 0 0 0 '12345' '12345'
FixedDecimal 0 1 3 '12345' '-12345000'
FixedDecimal -2 0 2 '12345' '1234500'
FixedDecimal -2 1 1 •12345' '-123450'
FixedDecimal 3 0 63 '0' '0.000'
FixedDecimal -3 1 0 '0' '-0 '
FixedDecimal 5 0 74 '1' ' ?'
FixedDecimal 4 1 74 •1' ' ? *
F ixedDec ima1 5 0 -98 •N0024' 'NAN(036)'
FixedDecimal 2 1 103 •N0015' '-NAN(021)*
FixedDecimal 2 0 0 •I* 'INF'
FixedDecimal 2 1 -217 'I' '-INF'

Apple Numerics Group page 3 May 12, 1985

SUPPLEMENTARY DOCUMENTATION TO THE APPLE NUMERICS MANUAL
SANE Numeric Scanner and Formatter

68000 Implementation Details

68000 scanners and formatter - details

Workshop Pascal SANE libraries, Obj/SANELibAsm (Mac) and Lisa/SANELibAsm (Lisa), include the formatter
and both scanners, with interfaces as described above.

The May 1985 Macintosh Software Supplement contains the scanners and formatter for use by assembly language
programmers with the Macintosh 68000 Development System. Str2Dec and CStr2Dec are in the file Str2Dec.Rel.
and Dec2Str is in Dec2Str.Rel. To use the scanners, put four long words on the stack:

address of s
address of Index
address Of d
address of ValidPrefix - TOS

Then JSR to Str2Dec if your string has a length byte, CStr2Dec if it does not The stack is clear on exit. To use
the formatter from assembly language, put three long words on the stack:

I previous stack contents |
I address of f |
I address of d |
I address of s I - TOS

Then JSR to Dec2Str. The stack is clear on exit

The Workshop C SANE library includes the formatter and the scanner CStr2Dec, with interfaces:

void dec2str (f, d, s)
decform *f;
decimal *d;
char *s;

void str2dec (s, ix, d, vp)
char *s;
short *ix, *vp;
decimal *d;

Apple Numerics Group page 4 May 12, 1985

DIALOG CREATOR Instructions
26 APRIL 1985
By Michael Bayer

Introduction

Dialog Creator is a Macintosh software development tool supplied by the Macintosh
developer support group of Apple Canada. It is a utility for creating resource file fragments which
describe dialog and dialog item list resources. These fragments are meant for inclusion in a resource
source file for RMaker. The Dialog Creator lets you draw the dialogs that you plan on employing in
your application and then print and save the text file fragments.

TTie real advantage in using Dialog Creator is that the dialogs can be easily and quickly
created and modified at any time during the development process. This enables a software designer,
perhaps a person with little or no programming ability, to design all of the user dialogs in a
program without having to know a great deal about resources. (Just as people who use MacDraw
needn't know about quickdraw). The designer can then give the programmer screen dumps
showing the Dialog boxes he has drawn and copies of the associated RMaker files. If changes have
to be made during the development cycle, it is a simple process to re-edit the RMaker text files
using the Dialog Creator.

A Dialog Creator data file is simply a file of type TEXT which can be opened by an
Macintosh editor. It contains part of a resource definition file which can be used with either the
Lisa Workshop RMaker or the Macintosh RMaker. Users of Lisa Workshop 3.0 can use MacCom
to transfer these and other TEXT files to the Lisa and convert them to Workshop text files.

Starting Dialog Creator

The Dialog Creator will run under any Macintosh environment .It can be started from the
Finder by double clicking its icon, selecting it and choosing Open from the file menu as well as by
asking the Finder to Qpem or Print a Dialog Creator data file (which is identified by its distinctive
icon).

II
EXAMPLE Dialog Creator

screen.

The user then creates a dialog window and dialog items using the commands provided and
manipulates them by typing data (such as their titles), selecting, dragging and re-sizing. In fact,
working with the dialog creator is much like using MacDraw or the Finder.

Once the dialog creator is running, the user will see this menu bar at the top of the
r 6 File I!(HI Display Arrange Types

Summary of Operations

The user first creates a dialog window by selecting New Wimdow from the Me menu.
This will create the required dialog window and display a window containing data about the new
dialog. Once a dialog window has been created, the user may create dialog items for it using the
New Item command which replaces the New Window command in the File menu. These two
commands are identical in their operation, except that only one dialog window can be edited at a
time.

The user can manipulate these objects (dialog window and dialog items) by:
Clicking: Clicking on an object selects it. A selected item is displayed in inverse and a

selected window has a thick grey border around its frame. Using the Types menu, a user can
change the type of selected objects (e.g. from edittext to stattext or from an alert box to a document
box). Selected objects can also be deleted, duplicated and centered using the Remove and
Duplicate commands in the Edit menu and the Centre command in the Arramge menu.

Dragging: Objects can be dragged by clicking on them and dragging their outlines to a new
position.

Re-Sizing: The user can change an object's size by dragging its lower right hand corner
into a new position. Selected objects display a small grey box which defines the area to be dragged.

Shift-Clicking: Shift-clicking dialog items serves to "group" items. A group of items can
be duplicated, removed and centered as can a selected item, however the items within a group can
be aligned with one another using the Align command on the Anramge menu.

Double-Clicking: Double-clicking an object serves to display that object's data wimdow.
The data window contains information such as the object's rectangle and its title. This data can be
edited and entered directly from the keyboard.

The Windows

There are four types of window associated with dialog creator. These windows each provide
access to information about the dialog box which is being edited. Perhaps the most important
window is the Dialog Wimdow itself. This is the window which is being "drawn" by the user.
Everything that the user sees in the Dialog Window will be seen in the final product: the dialog
window in a running application.

Another window is the RMaker Window which displays the RMaker fragment file. This
window describes the current state of whatever dialog is under construction at any given time. The
RMaker Wimdow is provided so that the entire item list can be examined at once. This is useful
for comparing the resource data of various items in the list.

DIALOG CREATOR Instructions Page 2

I D H RMaker File
Btnltem Enabled
141 132 179 241
OK

Btnltem Enabled
141 254 179 366
CANCEL

Chkltem Enabled
114 8 132 133
I Like Examples

m

The two other windows are data windows: the Item Bala window and the Window
Data window. These two windows display the resource data for a particular item or the dialog
window respectively. They are used to enter specific numerical or character data, pertaining to a
given object, which it is not possible or convenient to "draw".

The Menus

There are six menus on the dialog creator menu bar. They are: (3, File, Edit, Display,
Amramge and Types. The C3 menu is standard, but it should be noted that the About Dialog
Creator menu item brings up some useful reminders. The others could all do with some
explaining.

DIALOG CREATOR Instructions Page 3

The File Menu

R * M E M i)isp!<uj Arrange Types
H I ! New Window... ' K i l l :

Open... " •• f • ' • ' • A ' y '/,r •.<. v yx> 4 f- f'.U ^

C lose ' • I | | * ! l : E |

P S ® ! $ i n H i

l i l l 8<u>e WSImmmm •• • vX-fri:
V\" 5 '• - .
" W?,r

P r i n t s

Quit §§Q g i l l
: i : illf!

.

_ _ _

New Window - This command is used to created a new Dialog window. The type that the
window appears as is determined by the window type which is selected under the Types menu.
(More on this later) The default type is the alert window type and the default rectangle is: 100,100,
250,400 [top, left, bottom, right]. If the default rectangle is not desired, the user may opt to drag
out, or draw, the outline for the window on the desk top. Following this, New Window will
created a new dialog window in the position indicated. It draws the dialog window and displays the
appropriate data window.

New Item - This command replaces New Window as soon as a dialog window has been
created. It is the same as the above command except that it creates a new item which it adds to the
end of the dialog item list Once the dialog window has been established, the user employs this
command to create all the items he requires for the dialog item list.

r * B E B j E d i t Display Arrange Types

•

New Item...

r i n c n

Open - This command allows the user to read a resource file fragment, a text file in the
format that Dialog Creator saves its RMaker files, into memory for further editing.

Close - This command closes the current Rmaker fragment and its associated dialog
window so that another dialog can be edited. Naturally, the user will be reminded to save any
changes before they are lost.

Save & Save as - These two commands are standard.
Print - This command is used to print the current version of the RMaker fragment file which

is in memory.
Quit - Once again, this is a standard function and the user will be reminded to save before

data is lost.

DIALOG CREATOR Instructions Page 4

The Edit Menu

r * File [(.Display Rrrange Types

Undo - The Undo command has a somewhat special function in the Dialog Creator. Rather than
undoing the last thing that was done to a particular object, it restores the state of a selected object to the
state that object held when it was first selected. In other words, if one were to select an item and then
make several changes to it, selecting Undo would have the effect of undoing ALL of the changes that
were made to that item. The item would be left looking as it did when it was first selected.

Cut, Copy, Paste & Clear - These commands are the standard text editing commands. They
are used to manipulate the text data in the Data windows.

Duplicate - The Duplicate command is used to duplicate items in the item list. The user selects
one or more items which are showing in the dialog window (by clicking or shift-clicking on them) and
selects Duplicate. This has the effect of creating a duplicate set of the selected items. These new items
become the selected items and are added to the end of the item list.

Remove - This command is very similar to the Duplicate command; however, instead of
creating a new set of item(s), Remove deletes the selected item(s) from the item list.

Show RMaker File - This command displays the RMaker window. When the RMaker
window is showing, this command is replaced by-

Hide RMaker File - This command is the reverse of the above; it hides the RMaker window.
Open Window - This command displays the Window Data window and is used to select the

dialog window as an object for editing.
Open Item - This command is similar to the one above, however there are some important

differences. If no item is selected when this command is chosen, the first item in the item list is used. If
an Item Data window is being displayed when the command is chosen, the item following the
currently selected item in the item list is selected.

DIALOG CREATOR Instructions Page 5

The Display Menu

The Arrange Menu

RLIGN OPTIONS

Uertical:
O Top Sides
O Bottom Sides
O Centres

Horizontal:

(5) Left Sides
O Right Sides
O Centres

CANCEL

Align - The Align command is used to align all of the objects in a particular group of
selected items. To use this function, the user must select a group of items from the Dialog window
by shift-clicking them and noting which item was selected last; this item becomes the align key
item. Selecting Align will then bring up the dialog box shown below.

CENTRE OPTIONS

<•) Horizontal O Uertical

(S) In Macintosh Screen
O In Lisa(HL) Screen
Q B e t m e e n l | and |

The user then decides what aspect of the items should be aligned. Pressing the "Align"
button will result in the all of the grouped items being aligned with respect to the align key item (the
last item in the group to be selected).

Centre - This command is similar to Align, however any object or group of objects can be
centered. Selecting Centre from the menu bar after a the dialog window was selected, will cause
the dialog box shown below to appear.

CENTRE
\

/
s

CANCEL
\

\)

Here, the user decides whether the window is to be centered vertically or horizontally and the
bounds in which the window is to be centered. There is a similar dialog for users who are centering
items.

Note that the option to Centre "In Lisa (XL) Screen" predates the Macintosh XL screen
modification described in Macintosh Technical Note #16.

Grid Mode - This is a command which toggles grid mode on and off. When grid mode is
active, all actions are aligned to a grid with 5 pixel spacing.

DIALOG CREATOR Instructions Page 6

T h e T y p e s M e n u s
6 File Edit Display Arrange

VW?' :<•••" . 'XX ::iXXiH-HXXXXXXXXX' RRR RRR'RR'R:RRiRRMR: RiRRR:R
m • ' ' • - • \ xxx.x-

' * * * ' ' * *: : ^ v • /̂s"̂
' ••• . • - ' ;•

•• :. - . • . "•" : X
x V : • x , x x, •;x,-. x ; •. •;•••:, . , •.,• ̂ V ̂x: vXXv.:

? , • , s :: J ' ' - > ^ " "1V . M : mm i V ;?'M / ' SSS5 » Sag m . <: ftfe

Types j

i i f l l l l l l i l l i i l
V< ' s ' ""* a % v% v, ^ . V* . S%"» <• A ̂

. , -, % J' y * x " "
* ^ j

n
i a i i i i l s •

Alert BOH

Document

NoGrow

Round BOH

Plain

Shadow

The Window Types Menu - This menu is used to select window type. If the dialog
window is selected when this menu is used, the window's type is changed appropriately. If the
user has drawn an outline for the window, selecting a type from this menu will create a new dialog
window of the appropriate type. If nothing has been selected, the type indicated on the menu will
be used as a default for the next New command.

The Item Types Menu - This menu is used to select item type. It functions in a manner
identical to the Window Types menu.

* File 1:<Iit Display Arrange |
i l M f c i M ©

• • - ;

ISI
• .. x-x '• :.. • •. ' : •* ' :• ::•>»<>»

. .

.
'

' :
(S>

L

-fry1^11 M " 'j'*;/, c?
\ ; A'4 C-

' • •
•< v-'

< •" ' %

• • X; . ' : ; •!• •'

• . • / . : . . . :. •. : .. -x . .• .• ::

• * - •- .
' >?' ; - x .

' •
. .•'•. y.-.-.-•r.-.-. .•••••. . •••••

• ' • " • • • • •• •: • . : -• . - . • . X • . ' V s.; • , _

v ' v.. • . V
"" •- ^ '&>.$<•' - - •

• : •• M :• •
I ̂ f ^ -

• • ' ..X-:;X;Xx::X;..X_- X-. 1 "V. :• ^ , x " • . x
• X

• . ' ^ ^
x-x;x :: :x;';: ::;:y.-x''x''' : : . . / y - x x . .

. § t i t t i l i Wm8 • m m tm: m* M -./ ^ ^

^ Check BOK

(S) Radio Button

Edit Tent

Static Te»t

Icon

j E D I T l
ITEXTl
STflT
TEXT m

ffgfl Picture

Mm
?pmm

W>Mmm

•: *• ' W

L Picrure •

User Ctrl

j User Item
| 8 E

DIALOG CREATOR Instructions Page 7

Short Cuts
Text data longer than that allowed by the edit fields in the data window can be entered

without difficulty. This can become necessary if the user must enter a very large static text item.
This is done by calling up the Notepad desk accessory, typing the text, copying it and pasting it
into the appropriate data field. Should it ever be necessary to select the entire extended field, to
copy, delete, or replace, one may use the TAB key. WARNING: do not use the notebook to enter
"bad" characters like tabs, carriage returns etc. since RMaker will not accept these.

Two features are included to allow the user to place objects in specific locations by eye. One
feature is grid mode, this restricts all objects to a 5x5 pixel grid so that it is easy to position objects
correctly. The second feature is an aid for situations where dragging and re-sizing are appropriate.
If the data window for an object is visible while that object is being dragged or re-sized, the data
in the window changes to reflect the continually changing position and size.

Dialog Creator is useful for more than just creating dialogs. It is a useful tool in the
application design process. Dialog Creator can aid in preparing program specifications if the
application designer makes screen dumps (using Command-Shift-4) as well as printed copies of the
dialog fragment files. These documents can then be given to programmers to provide a better idea
of what the application should look like.

Comments?

Please send all comments to:

Michael Bayer
Apple Canada,
Software Developer Relations,
875 Don Mills Road, Don Mills,
Ontario, Canada.
M3C1V9

DIALOG CREATOR Instructions Page 8

Fed it

A File And Disk Editor

C

C

c Copyright © 1985
by John Mitchell

Fedit

An Overview Of Fedit

Fedit is a file and disk edit utility program for the Macintosh patterned after the ZAP type programs available
on many other systems. It is intended to be a powerful and easy to use utility for use by average to highly
technical users. It is not intended for the uninitiated user. The program allows the user low level, direct
access to disk volumes for both reading and updating. It is believed that Fedit also works with all the hard
disks available for the Macintosh at this time although only the Apple, Corvus, Davong, Hyperdrive and
Tecmar drives have been tested.

Some words of caution are in order. Careless use of this program can seriously damage a file or disk. If you
need to change data on a disk, and you can do so with a more secure program, then you should not use
this program. Fedit has no protection to stop you overwriting critical areas of the disk such as the Volume
Allocation Table and the disk directory, and you cannot undo changes once they have been written to
disk.

I would suggest that you follow these two tactics when using the program:

Make sure that you have backup copies of the disk you are working on. This may
seem like an elementary precaution, but it is surprising how often it is omitted. It
really does seem that there is no substitute for experience when learning this
lesson.

When writing modified data to a disk, always check your changes twice. Then
check them again. If you are unsure that what you are about to do is correct,
then don't do it. It isn't only marriage that presents an opportunity to do
something in haste and repent at leisure.

This version of Fedit is being distributed by Apple Computer Inc., as part of the Macintosh Software
Supplement. Unlike most of the programs in the supplement it is not a tool that is intended to be used free
of charge. The program is being distributed as shareware. This means that you receive the program
without any cost, and only pay for it if you like it and wish to encourage future versions. The cost of the
program is $30, which should be sent to:

John Mitchell
939 E. El Camino Real, Suite 122
Sunnyvale, California 94087

This will entitle you to the latest version of the program plus future versions at nominal cost.

Fedit Documentation Page 2

An overview of the disk structure

The diagram below shows the basic structure of a single sided Macintosh diskette. The Macintosh disk
drives are unusual because they access different portions of the disk at different motor speeds (this is the
cause of the varying pitch of the disk drive motor while accessing diskettes).

Each diskette is formatted into 80 tracks, and each track is divided into a number of sectors. The sector
count in any given track varies according to the position of the track on the disk. Since the outer tracks are
longer, they can contain a larger number of sectors. Because the speed of the disk surface passing under
the disk head must be kept within fairly close tolerances, it is necessary to vary the rotation speed of the
disk according to which track is being accessed. The speed is lower for the outside tracks getting
progressively higher as the disk head moves towards the center of the disk.

8 sectors

9 sectors

10 sectors

11 sectors

12 sectors

To simplify matters a bit, the diskette is divided into 5 bands. Each band is 16 tracks wide and has a varying
number of sectors in each track as shown in the diagram. By convention, track 1 is at the outside of the
diskette and track 80 is closest to the center.

Fedit Documentation Page 3

Each sector on the disk contains 512 bytes of data plus 12 bytes of tag Information. The tag data Is
described In detail later.

From the above we can draw the following table:

Band Sectors Sectors/Track Total Bytes

1 0-191 12 98304

' |||
:||
|||

192-367 a n
a — «

11 : • . •
. . . . ;

ip;
90112

3 368-527 10 81920

l i p • • : § m m
j r 1

528*671 , • • : • 9 73728

5 672-799 8 65536

Thus a total of 409,600 bytes can be stored on one single-skied diskette.

The discerning reader of Apple documentation will have noted that in some ot Apple's discussions of
Sony diskettes they have chosen 1K to equal 1000 bytes, not 1024 bytes as with most of their literature.
For example, all references to space used and space free on a volume are in these terms.

Not all the 409K bytes on a diskette can be used for data. Specific portions of the disk have been put
aside for the data structures that enable data to be stored and retrieved from the disk. These are:

Bootstrap loader 2 sectors 1K bytes
Volume Access Table 2 sectors 1K bytes
Disk directory 12 sectors 6K bytes

After the spaces for these areas has been deducted, 401K bytes is left for data storage. For some reason,
Apple has chosen to make the last 2 sectors on the disk (sectors 798 and 799) unavailable for normal
storage, and they are not included in the Volume Access Tabie. When the 1K bytes of space in these two
sectors is deducted, this leaves 400K bytes of data storage as actually available to store your data.

As an aside, it is interesting to note that the first 64 bytes of sector 798 (the first sector of the dead space)
correspond to the Volume Information Table held in the first 64 bytes of sector 2. It is not clear why this is
so, as the data in the higher sector is not updated by the File Manager when the disk changes, and
therefore the duplicate sector is unlikely to be useful in a reconstruction process.

The volume map overleaf shows the various areas of a single sided diskette, and where they are normally
located. Some areas (volume bootstrap and the volume information) have fixed locations, but other areas
{for example, the disk directory) are capable of being moved to other places of the disk.

Fedit Documentation Page 4

Volume Map
Single Sided Sony Diskette

Sector 0

Sector 1

Sector 2

Sector 3

Sector 4
to

Sector 15

Sector 16
to

Sector 797

Sector 798

Sector 799

Volume bootstrap
m.

Volume Information

Allocation Block Map

7 Disk Directory 7

••

° % s y'' S ''

Wi Sl l iSS < ' f ; '£ k\ .-;•>%**' r;'<r$fes '
: 4 ' •"lllli-t ' .<• i ' ̂ ' llWZi
x ^ / / ' , s / ^ 5 », v 5 ' 1 s-~ .•_. y ^ ; • .

Z ^ 7 File contents /
• f

i mm WBm -
1Lf&< I I l l f e f I ! 1 &-* >"? ;

> ' / s ' ^ s . ' • • . . . • § ^ • - % s

Dead Space

'

Fedit Documentation Page 5

Tag Data

Each data sector when on disk consists of two portions, the data itself plus 12 bytes of tag data. The
declared purpose of the tag data is to assist in the reconstruction of damaged disks. The tag data consists
of the following areas:

0000 The number of the file to which this sector is allocated (4 bytes).

0004 Fork Indicator used to indicate whether this sector belongs to a data or resource
fork (1 byte).

0005 Version number of file that last wrote this sector (1 byte).

0006 Relative sector number of this sector within its fork (2 bytes).

0008 Timestamp set when this sector is written to disk - in seconds since midnight,
January 1,1904 (4 bytes).

Most non-Apple produced hard disks do not support tags. In these cases the tag data fields are ignored
on both input and output.

The Bootstrap Loader

The first two sectors on the diskette are reserved for a bootstrap loader. These sectors are read into
memory whenever an attempt is made to boot the Macintosh from that disk. The first part of the first sector
is data defining some of the standard system names and sizes and the rest is code to get the system
running. The system attempts to execute the code immediately after loading it. The code performs the
following tasks:

Adjust system heap size for 128K, 256K, 512K and larger systems.

Initialize the application package dispatcher for Pack 0 to Pack 7.

Initialize the Event queue.

Initialize the keyboard repeat parameters from parameter memory.

Initialize the File System, its queues, and the file control blocks.

Mount all volumes found in drives.

Look for a startup screen and display it if found.

Initialize Resource Mgr, system heap, DSAT tables and Font Manager.

Look for debugger and load if found on startup disk.

Load the RAM based portion of the Operating System.

Fedit Documentation Page 6

Initialize the application heap.

Load all resources of type 'INIP in the System file.

Set up the clipboard.

Launch the starting application (usually the Finder).

Some of this is pretty esoteric stuff, but as it is not currently documented elsewhere, it was worth doing
here.

The layout of the data areas at the start of sector zero are as follows (addresses are in hexadecimal):

0000 $4C4B - 'LK' in ASCII, for Larry Kenyon - the principal architect of the file
system.

0002 A branch to the code starting point (4 bytes).

0006 The version number of the bootblocks (2 bytes) - see below.

0008 Page flags (2 bytes).

000A Name of the system file (16 bytes).

001A Name of program to run when exiting application (16 bytes).

002A Name of the debugger program to use (16 bytes).

003A Name of disassembler to use if debugger is loaded. This is pretty much historical
only (16 bytes).

004A Name of the file containing the startup screen (16 bytes).

005A Name of the first application to run after the bootstrap is completed
(16 bytes).

006A Name of the clipboard file (16 bytes).

007A Number of file control blocks to allocate. This defines the maximum number of
files that can be open (2 bytes)

007C Max number of elements for the event queue (2 bytes).

007E System heap size for 128K system (4 bytes).

0082 System heap size for 256K system (4 bytes).

0086 System heap size for 512K and larger systems (4 bytes).

Fedit Documentation Page 7

When a disk Is initialized, no boot blocks are written Into sectors 0 and 1. In order to get this task
accomplished, it is necessary to copy another disk onto the new disk (perhaps by dragging the Icon for the
old disk onto the new disk), copy a file called "System" from another disk of the same type or to use a
program designed to write boot blocks such as the Disk Utility program available from Apple or Fedit.

The current boot block version number (May 1985) is $0012 indicating version 1.2. This is the version that
is written to the disk by the latest version of the Apple Disk Utility program (the one dated May 7,1984).

Incidentally, there is a feature in the Disk Utility program that may be of use to developers using 512K
systems who wish to test that their programs will work correctly when executed on a 128K system. If the
command and option keys are held down while the Write Boot Blocks option is selected, a special version of
the boot blocks is written to the disk. The effect of these blocks is to cause a 512K system to be initialized
as if it contained only 128K of memory. If you are looking at the boot blocks using Fedit, you can recognize
this special bootstrap because it has a version number of $0014.

The Volume Information Table

The volume information table Is contained in the first 64 bytes of sector 2 on every properly initialized
volume. It is written to the disk when the volume is initialized with a duplicate in the next to last sector of the
volume. However, the File manager only updates the volume information table in sector 2, so the duplicate
appears to be of academic interest only.

The layout of this table is as follows:

0000 $D2D7 - the ASCII equivalent is "RW" with the high bit set on, in good Apple 2
tradition. This stands for Randy Wiggington. These two bytes serve as a
signature to identify this block.

0002 The date and time of volume initialization in the standard format; the number of
seconds since Midnight on January 1,1904 (4 bytes).

0006 The documentation describes this field as the date and time of the last backup.
Actually, it seems to be the date and time that the volume was last changed or
updated (4 bytes).

000A The volume attributes (2 bytes). If bit 14 is set, this volume is copy protected. Bit
6 always appears to be set.

000C The number of file entries in the disk directory (2 bytes).

000E The starting sector number for the disk directory. Normally equal to 4 on a
standard diskette (2 bytes).

0010 Number of sectors that the file directory occupies (2 bytes).

0012 Total number of allocation blocks on the volume (2 bytes). Allocation blocks are
described below.

0014 Size of each allocation block in bytes (4 bytes).

Fedit Documentation Page 8

0018 Allocation clip size in bytes (4 bytes). See below.

001C Sector number of first sector in the volume data area (2 bytes).

001E

0024

0022

The next unused file number (4 bytes). See below.

The number of unused allocation blocks on the volume (2 bytes).

The length of the volume name (1 byte).

0025 The volume name in ASCII characters (27 bytes).

In talking about the volume information, it is necessary to describe in more detail how sectors are allocated
to files on a volume.

The data space where the file contents are stored is divided into a number of allocation blocks. Each
allocation block is a multiple number of 512 byte sectors. On a standard floppy disk the allocation block size
is 1024 bytes or 2 sectors. For reasons described below the allocation size on hard disks is usually
considerably larger (8 to 20 sectors are typical sizes).

An allocation block is the minimum amount of disk space that can be allocated to a file. All space is allocated
and deallocated to files in terms of allocation blocks exclusively. The volume clipsize specifies the amount
of space (in bytes) for file allocation. The clipsize must be a multiple of the allocation blocksize. When a file
is first written, the File Manager allocates an amount of space equal to the clipsize to that file. If the size of
the file becomes so large that this space is insufficient then another space of clipsize bytes is allotted to the
file. When the file is eventually closed, the File Manager will deallocate any allocation blocks not used at the
end of the file.

An example might help. The usual size for the clipsize is 8K bytes (16 sectors), and for the allocation
blocksize 1K bytes (2 sectors). When an application program opens an output file, the file will be allocated
16 sectors on the disk. Assume that the application then writes 700 bytes to the file and closes it. The
allocation blocks that contain data (in this case only the first) will remain allocated to the file, but the File
Manager will deallocate the space for the remaining 7 allocation blocks that were unused. The file entry for
that file will show a physical end of file at byte 1024 (the first byte after the end of the allocation block), and a
logical end of file after the 700 bytes that were written by the application.

Unfortunately for us humans (or at least non-computers), a number of fields are expressed in terms of
allocation blocks rather than absolute sector numbers, so it may occasionally be necessary to understand
how to translate one to another (although Fedit will convert the fields in the volume and file headers for
you). The relationship is:

STNR = (BKNR - 2) * ABSZ DIV 512 + FSTN

where STNR is an absolute sector number,
BKNR is an allocation block number,
ABSZ is the size of each allocation block in bytes,
FSTN is the number of the first sector in the data space.

These last two quantities are taken from the volume information table.

Fedit Documentation Page 9

Whenever a file is created on a volume, that file is given a file number. The principal use for the file number
appears to be in file and volume reconstruction. You may recall from earlier in this discussion that the tag
data on each sector contains the file number of the file to which it belongs. File numbers are never reused,
and since 32 bits have been allocated to them, it is unlikely to ever wraparound.

The Volume Allocation Block Map

The Volume Allocation Block Map starts at byte 64 on sector 2 of the volume (immediately after the Volume
Information Table) and continues for as many sectors as are required. There is one entry in the block map
for each allocation block on the volume.

Each entry is 12 bits in size. It indicates whether the allocation block is used or unused. If the block is in
use, the value is a pointer to the next allocation block in the file. A value of 1 indicates that this is the last
allocation block in the file, and a zero value indicates that the block is unused. Because of the special
values attached to zero and one, the first allocation block on a volume is number 2.

As an example, if you assume that a file is resident in allocation blocks 5, 9 and 12 of a volume, and that
there are no other files present. The first few entries in the volume allocation block map would look like this:

0 0 0 9 0 0 0 12 0 0 1 0 0 00

The file entry in the disk directory has a field pointing to the first entry in the block map for the file. In the
above case, it would have a value of 5.

Apple's documentation states categorically that "the volume allocation block map always occupies two
sectors--the Disk Initialization Package varies the allocation block size as necessary to achieve this
constraint. This does not seem to be true; the block map can be of greater length. For example, a 5
MegaByte Profile disk initialized under MacWorks has a four sector map using an allocation block size of 4K
bytes (8 sectors). This will give an average wastage of 2K bytes per file. If the block map had been
constrained to 2 sectors, an allocation block size of 10K bytes would have been required with an average
wastage of 5K bytes per file.

The File Directory

The file directory on standard volumes is located immediately after the last sector of the Volume Allocation
Block Map at sector 4. There is a pointer in the Volume Information Table to the start of the directory.

The directory contains one entry for each file on the volume. Each entry consists of a 50 byte fixed length
portion plus a string for the filename. There are a variable number of entries in a sector, but no entry ever
crosses a sector boundary. If a file entry will not fit in a sector it is placed into the next sector. If all sectors are
full, then a "directory full" error is returned by the File Manager.

On a standard disk there 12 sectors allocated to the file directory, and depending on filename length, each
sector will contain 6 to 9 file entries. This suggests a maximum of 72 to 108 files on a diskette volume. In
the unlikely event of you getting a directory full condition, it is possible that you may be able to overcome it
by reducing the size of the filenames for entries already present on disk. Hard disks have more space
allocated for the file directory and can accomodate many more files.

Fedit Documentation Page 10

There are two possible divisions in a file, called the data fork and the resource fork. These can be thought
of as two completely separate files that share a common filename. Either or both of the forks may be
present for any file. When an application program opens, reads or writes a file it will usually be dealing with
the data fork. A program can also open the resource fork, but will use a slightly different command to do so.
Both forks cannot be open at the same time.

From the File Manager point of view, the main difference between the two forks is their organization. The
format of the resource fork is closely defined by the Resource Manager, and the types of data are usually
well defined also - things such as menus, fonts, icons and dialogs - all of which are designed to be accessed
through the Resource Manager. On the other hand, the data fork has no defined structure and is only
accessible through the File manager.

The format of each file directory entry is as follows:

0000 Flag byte. Bit 7 is always set to indicate a valid directory entry. Bit 6 is set if the file
is copy protected (I byte).

0001 Version number of the file. This field appears to be unused at present (1 byte).

0002 The file type of the file. This is a four character field with values such as "APPL"
for an application, 'TEXT' for text file (4 bytes).

0006 The creator of the file. This is also a four character field. The values in this field
are purely arbitrary and are used for matching applications to files belonging to
that application (4 bytes).

000A Flags field. This field is described in detail below (2 bytes).

000C The location of this file on the desktop. Used only by the Finder (4 bytes).

0010 The folder within which this file resides. Used only by the Finder (2 bytes).

0012 The file number of this file. Each file on the disk is given a file number which is
unique to that file. This number is present in the tag field of all sectors belonging
to the file (4 bytes).

0016 The number of the first allocation block in the data fork of this file. If this field is
zero, this file has no data fork (2 bytes).

0018 The logical end of file for the data fork. This is a count of the number of valid bytes
between the start of the fork and it's logical end of file (4 bytes).

001C The physical end of file for the data fork. This is a count of the number of bytes on
disk allocated to this fork of the file. It is always a multiple of 512 (4 bytes).

0020 The number of the first allocation block in the resource fork of this
file. If this field is zero, this file has no resource fork (2 bytes).

0022 The logical end of file for the resource fork. This is a count of the number of valid
bytes between the start of the fork and it's logical end of file (4 bytes).

Fedit Documentation Page 11

0026 The physical end of file for the resource fork. This is a count of the number of
bytes on disk allocated to this fork of the file. It is always a multiple of 512
(4 bytes).

002A The timestamp when this file was created. This is held in seconds since Midnight,
1 January, 1904 (4 bytes).

002E The timestamp when this file was last modified. This is held in seconds since
Midnight, 1 January, 1904 (4 bytes).

0032 Length of file name (1 byte).

0033 Characters of file name (1 to 63 bytes, variable length).

The file entry is required to start on a word boundary, so there may be one additional byte after the file
name, and before the start of the next file entry.

The File Flags

This is a two byte area, but at present only the first byte is used. The meanings of each bit (starting from the
left) is as follows:

7 Locked. This bit is set if the file is locked.

6 Invisible. This bit is set if the file is not to be displayed by the Finder.

5 Bundle. This bit is set if the file has one or more icon lists, file references or
version data. If a file has this bit set, the Finder will copy this information into the
"desktop" file that it maintains on each disk. The most common reason for setting
this bit is to get the Finder to recognize non-standard icons.

4 System. This bit is set if the file is a system file.

3 Bozo. This is a protection scheme so simple, only a bozo would be deterred by it.

2 Busy. Set if the file is currently busy.

1 Changed. The file has been changed, and needs to be updated on disk.

0 Inited. The file has been initialized.

It appears that the last three items are only of value when a copy of this file entry is in memory. On a diskette,
Busy and Changed always appear reset, and Inited always appears to be set.

Fedit Documentation Page 12

Using The Fedit Program

This concludes the description of the disk data structures. The rest of this guide describes the Fedit
program and how the various commands are used.

Fedit is not a difficult program to understand, but it is very easy to misuse it and accidentally change data on
the disk in a way that you did not anticipate. Now would be a good time to re-read the warnings on the first
page of this guide.

Fedit is essentially a disk editor. The principal difference between Fedit and more conventional edit
programs it that Fedit edits data as it exists on disk without regard to its logical structure, and conventional
editors nearly always make some assumptions about the data structure.

With Fedit there is no concept of inserting and deleting data. As it operates on disk sectors of fixed size,
you can only replace data in each sector. You can never increase or decrease the amount of data in a
sector, it is always fixed at 512 bytes (plus 12 tag bytes).

File And Volume Modes

Fedit operates in two modes - file mode and volume mode. In file mode you can open a file and read each
disk sector that is allocated to the file. You can also examine the file entry in the disk directory and make
changes to some portions of that entry. In volume mode, you can read all the sectors in a volume without
regard to which file (if any) each sector belongs. This mode is most useful for examining and changing the
system areas of a disk such as the boot blocks, the volume information table and the disk directory.

Lisa Diskettes

If a diskette initialized by the Lisa Workshop or the Lisa Office System is placed in a Macintosh, it normally
cannot be read. The Macintosh will give you the option of either ejecting the diskette or initializing it.

If a Lisa diskette is placed in the Macintosh while Fedit is running, Fedit will report that the diskette was not
initialized on a Macintosh and will give you the option of ejecting the disk or mounting it. If you choose to
mount the diskette, then Fedit can edit it as normal, but only in the volume mode.

ASCII versus Hexadecimal display

You may choose to display sector data either as ASCII characters only or as hexadecimal characters with the
ASCII translation beside them. Which display you use is primarily a matter of personal preference. The
ASCII mode is useful because a full sector can be displayed, and it is easy to scan though a large number of
sectors quickly. The hexadecimal display is often more useful for detail work on a sector.

Fedit Documentation Page 13

Running The Program

As with all other Macintosh programs, Fedit is run by double clicking on the Fedit icon (unless you are using
the FastFinder program from Tardis Software). This loads the entire program into memory including all
system resources that may be required by Fedit. After this load has been completed, you may remove the
disk containing Fedit from the system. This is useful if you have a single drive system, as you will not have to
perform any disk swapping in the middle of the program.

When the program is first run, you are presented with four menus across the top of the screen. These are
described in detail below. Normally, the first action you will take will either be to open a file or a volume from
the "FILE" menu. When you do this, you will be presented with the first 512 byte sector of the volume of file
that you have selected. This will either be in ASCII or hexadecimal format depending on the default chosen
in the "Configure" item of the file menu.

ASCII Mode Display

The ASCII format shows an entire 512 byte sector as a series of ASCII characters in 8 rows each of 64
characters. Characters that are not valid for printing are displayed as periods. A blinking cursor is displayed
beneath the current character, marking the insertion point. In order to change the position of the character
cursor, you should move the mouse cursor on top of a new character and press the mouse button.

Beneath the character display is a line showing the hexadecimal value of the character at the insertion point,
the offset of the insertion point from the start of the sector, and the offset of the current sector from the start
of the file or volume currently being displayed.

Hexadecimal Mode Display

In this mode, the data in a sector is displayed in hexadecimal characters with the ASCII representation
beside them. The current insertion point is shown by one inverted hex character. Because this mode
requires more space, the entire sector cannot be displayed on one page. A vertical scroll bar on the right
side of the window allows a user to switch between the first and second portions of the sector. At the start
of the sector is displayed the sector tags and the offset of the sector from the start of the file or volume, both
in hexadecimal.

As with ASCII mode, the current character may be changed by moving the mouse pointer to the required
character, and clicking the mouse.

Fedit Documentation Page 14

The File Menu

This menu contains items applicable to file and volume opening and closing, the use of the printer, and
some housekeeping items.

Open Volume

This command requests that a volume be opened for input and updating. This is most useful if you wish to
examine the system areas of a disk such as the boot blocks, volume allocation tables or disk directory.

When a Lisa disk or a disk with errors has been mounted, these can also be examined using the Open
Volume command. In these cases Fedit will not be able to determine the volume name, and the disks will be
referenced using names such as "(Internal Drive)" and "(External Drive)".

For hard disks that are partitioned, each partition is a separate volume.

Open File

This command is used when you wish to open a file on a volume. This calls the standard Macintosh file
selection dialog which passes the name of the requested file to Fedit.

One point to be aware of is that the the normal system action will occur if a Lisa or other non-standard disk
(or a disk with directory errors) is inserted while this dialog is active. This action consists of asking you
whether you wish to initialize or eject the disk. Within the rest of Fedit, the normal action is to describe the
error condition found, and give you the choice of mounting or ejecting the disk. By mounting the disk, you
are able to read it using the Open Volume command.

Close

This command closes the volume or file that is currently open.

Write Boot Blocks

This command writes boot data in sectors zero and one of the volume. Version 1.2 of the boot data (see
previous discussion) is always written. The data is taken from a resource in the Fedit code file, and if you
wish to change the boot data written you should modify this resource. It is BOOT resource number 128.

Edit Boot Blocks

This command allows you to edit the fields in the boot blocks that define the names of the various system
and startup files and the sizes of various system options.

Fedit Documentation Page 15

Print Sector

This command copies the current disk sector to the system printer. The format of the sector is similar to the
hexadecimal display. Also printed is data related to the position of the file on the disk.

Configure

This command also allows you to reconfigure the default mode for displaying data (either ASCII or
hexadecimal) and to choose the type of cursor to be used in each display mode. Six standard cursors are
provided, but if your favorite cursor is not among them, you can modify or substitute the supplied cursors
using one of the several resource editors that are available.

Quit

This command allows you to exit the program.

The Edit Menu

This menu contains items relating to the selection of sectors for editing, the type of edit to use, discarding
changes and writing changed data back to disk.

Read Next Sector

This command reads the next higher logical sector for the file or volume currently open. This is the same
action that is taken if the mouse is clicked in the down arrow or down page regions of the horizontal scroll bar
at the bottom of the display window.

Read Last Sector

This command reads the next lower logical sector for the file or volume currently open. This is the same
action that is taken if the mouse is clicked in the up arrow or up page regions of the horizontal scroll bar at
the bottom of the display window. No action is taken if you attempt to use this command while the first
sector of the file or volume is displayed.

Read Sector

This command allows you to enter the number of the sector that you wish to display. The number is a
decimal value between zero and the last sector number of the file or volume currently open. This action is
very similar to the action taken by moving the thumb of the horizontal scroll bar at the bottom of the display
window.

Fedit Documentation Page 16

Write Sector

After a sector has been modified, you can write the sector back to the disk by selecting this command. After
confirming that you really do wish to update the disk, the sector will be written back to the position it was
read from on the disk.
The above action will be modified if the "Extended Write" option in the Options menu has been selected. In
this case, you will be given an opportunity to select an alternative disk and/or position to write the sector.
The default selection will always be the original position of the sector on the volume currently open. The
sector number is always relative to the start of the disk volume, even when a file is open.

ASCII Modify

This command allows you to modify the data in the sector. It is only possible to select it when the sector is
displayed in the ASCII mode. When this command is active, a warning message is displayed in the menu
bar. The command is deselected whenever a new sector is read from disk.

Pressing any key will cause the character at the current insertion point to be overwritten and the insertion
point to be moved forward one character. If the insertion point is at the last character of the sector, it wraps
around to the first character.

Any changes that you make to the sector are not written to disk until the Write Sector command is selected.

Hex Modify

This command allows you to modify the data in the sector. It may be selected from the Hexadecimal or ASCII
display modes. When this command is active, a warning message is displayed in the menu bar. The
command is automatically deselected whenever a new sector is read from the disk.

If in Hex display mode, pressing any valid hexadecimal key (0-9, A-F) will cause the character at the current
insertion point to be overwritten and the insertion point to be moved forward one character. If the insertion
point is at the last character of the sector, it wraps around to the beginning of the sector.

In ASCII display mode, two hexadecimal characters are required to overwrite one ASCII character.

Any changes that you make to the sector are not written to disk until the Write Sector command is selected.

Undo Changes

Using this command, you can undo any changes you have made to the current sector using the Hex or
ASCII modify commands. You will be asked to verify that you wish to revert to the original data.

Fedit Documentation Page 17

Options Menu

This menu contains various items that modify the normal progression for reading a file or volume, such as
selecting a different fork or searching for a particular string.

Data Fork

This command is only valid when displaying a file. It allows you to select sectors from the data fork for
display. If the data fork is empty, an appropriate error message is displayed.

Resource Fork

This command is only valid when displaying a file. It allows you to select sectors from the resource fork for
display. If the resource fork is empty, an appropriate error message is displayed.

Hex Search

This command allows you to search the file or volume currently open for a specific hexadecimal string. Up to
32 hex characters (between 0-9 and A-F) may be specified. Spaces may also be included to make the string
more readable, but these are ignored during the search.

ASCII Search

Using this command you may search for a specific ASCII string of up to 32 characters. Upper and lower case
are considered separate characters unless the "Ignore Case" box is checked.

Tag Search

This command allows you to search though the tag bytes of each block looking for specific patterns. You
should refer to the layout of the tags described earlier for more details of what this command can do for you.

Repeat Search

This command repeats the last search specified, starting one character beyond the current character in the
sector.

Set End of File

Using this command you can set the current end of file position to the start of the file (effectively creating an
empty file), to be equal to the end of the physical file, or to any position in between.

Fedit Documentation Page 18

Reverse Forks

This is a command that switches the pointers in the disk directory for the data and resource forks. It is as if
the entire data fork of the currently open file is replaced by the resource fork, and vice versa.

Extended Write

The extended write command modifies the action of the Write Sector command. When active, the sector
command will not write directly to disk at the point where the sector was read, but instead will present you
with a dialog box allowing you to select the volume and position to re-write the disk. You must be very
careful when using this command as there are no checks to prevent overwriting any portion of any disk
volume on the system. This command can be very useful for reading portions of a disk that have been
destroyed and writing them to another disk.

The Display Menu

This menu allows you to modify the method of displaying data, or to display special areas of the disk.

Display sector in Hex/ASCII

Using this command you can switch between the hexadecimal and ASCII display modes.

Display Sector Info

This command gives access to extra information about the current sector. It displays the absolute sector
number of the current sector, together with the position of the sector on the diskette in terms of track and
sector numbers (but only if the sector is on a diskette in a Sony drive).

The information in the data tags for the sector is also displayed, interpreted and verified. Any errors found
are flagged.

The file name, fork and position in the fork of the file are displayed. This can be very useful when reading a
volume, as you can tie the data in the sector directly back to the file to which it belongs.

Volume Header Information

This command intreprets the various fields in the volume header in the first 64 bytes of sector 2 of the disk.
The various fields are identified and the values are displayed in hexadecimal and decimal where appropriate.
Timestamps in the header are also interpreted.

Volume Sector Map

This command displays a graphical interpretation of the status of each sector in the currently selected
volume (if it is a diskette) and shows which sectors on the disk are allocated to a file and which are available.

Fedit Documentation Page 19

Volume Directory

The volume directory command shows selected information from the disk directory of the current volume.
Information is presented on a sector by sector basis so that you can easily correlate information between
this display and a direct view of the disk directory sectors. From this display you may select a file (by clicking
the mouse on the filename), open a file (by double clicking the mouse on the filename, or selecting the
Open button), or modify the directory attributes (by selecting the SetAttrs button).

You may move forward or backward in the disk directory sectors by selecting the appropriate button, or
return to the standard display mode by clicking on the End button.

File Header Information

This command is only available when displaying a file. It interprets all the fields in the disk directory heading
(as opposed to the disk directory listing that only interprets some of the fields). The various fields are
identified and the values are displayed in hexadecimal and decimal where appropriate. Timestamps in the
header are also interpreted.

File Sector Map

This command is only available when displaying a file. It displays the physical location of each sector in the
current file and (if the file is on a diskette) then displays a graphical interpretation of the same data.

File Finder Attributes

This command is only available when displaying a file. It allows you to update the various fields of the Finder
attributes in the disk directory.

Special Menu

This menu contains items for use in special circumstances. One of the most difficult procedures in disk
handling is recovering from disk problems. As discussed previously, the tags on each sector are used for
data recovery, but most hard disk manufacturers do not support tags. The items in this menu can help make
recovery possible on these types of disk as well as the Sony diskettes. Unfortunately, due to space
restrictions none of the items in this menu will run in a 128K system. If you are running Fedit under Switcher
you will also want to play with the partition size until you have the number of buffers that you require.

When Fedit is initialized, the program will allocate a number of buffers for use in storing data in memory. This
will vary between 1 and 400 buffers depending on how much memory is available after making an allowance
for desk accessories that you may wish to use. Using the items in this menu you may read data from any
sector on disk into any buffer and then write the data out into another area of the disk or into a new file.

A second method of file recovery is also available. This method allows you to select sectors and tell Fedit to
add them to the end of a file. This method can be more convenient that using buffer copies, but cannot
always be used, for example if there are problems with the disk directory or the volume allocation tables. In
these cases you will have to copy the file into one or more buffers before writing them to a different disk.

Fedit Documentation Page 20

Both the above methods have advantages and disadvantages. They are somewhat crude methods of
recovering data, but without tags there appears to be no better methodology available. The real answer is
for all disk manufacturers to support the Apple tag storage areas on each sector.

For users who have tags available, the routines in this menu can still be used. Alternate methods for file
recovery and recovering from disk directory or volume allocation table errors will be provided soon.

Next Display Buffer

This routine allows you to select the next buffer to be displayed on the screen.

Previous Display Buffer

This routine allows you to select the previous buffer to be displayed on the screen.

Specify Display Buffer

Using this routine you may select a buffer to be displayed on the screen. The currently displayed buffer is
used for all single sector disk operations.

Multiple Sector Read

This command allows you to read a number of sectors from the currently open file or volume into memory.
Each sector read from disk will be stored in a separate buffer starting with the buffer selected in this menu.
Any sector in memory can be edited before writing it back to disk.

Multiple Sector Write

This command allows to to write data from memory buffers onto the current volume. The data is written
directly to disk and not as part of any file that may be open. The volume allocation table is not updated to
reflect any changes that may occur. This command can be useful if you need to write into the system areas
of a disk.

Write Sectors to File

This command is a good tool for trashing disks. Be careful using it. It permits you to write data from the
buffers onto a selected file on disk. No validity checks whatsoever are made on the data, so you are quite
able to create some very strange files. All that is guaranteed is that the resultant disk file will conform to the
requirements of the Macintosh file manager. The command is unique in Fedit because it will permit you to
write to only part of a sector, thus allowing great flexibility in what data you change. By moving the end of file
point you can write to any place in a file.

Fedit Documentation Page 21

Link to Data Fork

This command is designed for file recovery. When invoked, the allocation block to which this sector
belongs is linked in the Volume Allocation Table at the end of the Data Fork of the currently selected output
file. You should note that the complete allocation block is linked in, not just the displayed sector. On a
standard diskette this will be two sectors, but the number of sectors will vary on a hard disk typically between
eight and twenty sectors.

Link to Resource Fork

This command is exactly the same as the previous command, except the allocation block is linked into the
resource fork of the currently selected file.

Create File

This command allows you to create a file on a volume. The created file is automatically selected for output
from the Write Data command or Link commands. The file is created with the type and creator fields set to
question marks, but these items can be changed using the Display File Attributes command.

Select Output File

This command allows you to select a file for output from the Write Sectors to File command or for data to be
linked in using the Link to Data Fork or Link to Resource Fork commands

Fedit Documentation Page 22

