Mactivation™
An Introduction to Connectionist Network Simulation.

User’s Manual

12

Column:

mﬁ.ﬁ-i.se study 1

Commands

Connection Matrix

® File Edit Display Parameters

r

Screen 1. After teaching 3 hetero-associations

Mactivation 3.3

Mactivation™

by Mike Kranzdorf

Oblio, Inc.

90 East First Street

P.O. Box 1379

Nederland, Colorado 80466-1379
USA

Phone: (303) 258-7994

Fax: (303) 258-7996

mikek@boulder.colorado.edu
{ncar | nbires}!'boulder!mikek
AppleLink: oblio

Mactivation © 1987 - 1991 by Mike Kranzdorf. All rights reserved.

LightspeedC and THINK C are Trademarks of Symantec, Inc.
Macintosh and Multifinder are Trademarks of Apple Computer, Inc.
MS Word is a Trademark of Microsoft, Inc.

Mactivation is a Trademark of Mike Kranzdorf.

2 Mactivation 3.3

Table of Contents

About Mactivation and its User’'s Manual............ccccooiiiiiiiiiiiiiii e 4
Y ESIYAY o] (0 IF= g T I I = 4
Neural Network INtrodUCTIONcooiiiiiii i 5
Biological neurons and NEtWOIKS.............oiiiiiiiiiiiiii e 5
SIMulated NEUIONS..........oeiee e e e e 8
Network architectures and interpretations.............ccoeeiveveeeeennenn. 9

Learning and MEMOIYc..cccuuiieeeeiieeeeeesre e e e e seree e e e e eenre e e e e eenseeeeeennnneees 11

ASSOCIATIVE MEMOIY ...cciiitiiiieeeiieee e et e e e aiee e e e ssrr e e e e s snr e e e e e snse e e e s anreeeeeaans 12

Vector and matrix NOTAtION.............ovviiiiiiiiiicccee e e 14

SUIMIMBIY ...ttt e e s e e e e e e e ne e e n e e sneesneenaneens 15

YTt 117 o) o S 17

OVEBIVIEW......eieeieeeie ettt ettt e e st e et e e ae e e ese e e snneeesnseeesnneeennseesnnseeennnneans 17

THE WINAOWS.......oeiieieeceee ettt et e e e e e e s ene e e e neeeenneeennneenns 17

MOGITIEN KEYS....ceieiee ettt 18

JLIL LS 1= 11 SRS 19

Bl et r e nnee s 19

DY o = Y25 20

The Attributes dialog DOX:..........cuviiiiiiiiiiiiiiiiiis 20

ParamETEIS. 22

The Configure dialog DOX:.........cooviiiiiiiiiiiieeeeeeeeeee e 22

The Activations dialog boX:.........ccoooviiiiiiiiiiiieeee, 23

The Learning dialog DOX:.........oueiiiiiiiiiiiiiieeeeeeeee 24

The Normalize dialog boX:.........ccceeevieiiiiiciiiiiieeeeeeeeei, 25

The Cycling dialog DOX:.......ccooiiiiiiiieeeeeeeeee e 26

(070 0 11010T= T LSS 27

IS 1 o PSPPI 27

2 <o | R 27

CYClC RECAIL......eeee e 27

(2100 (0] 0 0174 =] SR 28

The Clear commands...........cceeiverieeeeieieeiccreeeeeeeeee e 28

THE EQUALIONS........coi it e e e e e eee e e s e e eneeeeesneeeenneeans 29

Mactivation 3.3

About Mactivation and its User’'s Manual...

Mactivation™ is an interactive simulator for investigating the low level
concepts of associative memory in a parallel distributed processing (PDP)
architecture. A direct interface to units, connections, and network
parameters introduces the fundamental principles of all connectionist
networks. Functionally, Mactivation performs vector outer products and
matrix-vector multiplications. There is access to numerous parameters which
modify its behavior during operation. The two basic configurations allow a
single layer of units to perform auto-associative memory and two layers to
perform hetero-associatively. The delta rule is provided as an example of
error correcting operation. Many of the published models of single and double
layer networks can be simulated by adjusting the relevant parameters.

This user’s manual has several sections. Cell biology is provided for
those with an interest in the relationship between connectionist models and
real neural networks. This information is not necessary for an understanding
of most connectionist systems. It is related to connectionism in a way
similar to the relationship of understanding computer architecture and C
programming. (Some claim it is essential while others deny any usefulness at
all.) Simulated neurons and their networks are described in terms of
instantiation and interpretation. Associative memory is Mactivation’s forté, so
a brief explanation is provided. The role of learning (primarily Hebbian) is
included. Vector mathematics and notation common to the literature is
outlined. The program reference section describes the windows, menus, and
command actions. Mactivation’s governing equations are found at the end of
this section.

Mactivation 3.3 was written using LightspeedC™ v 2.13 with the 2.15
libraries. It has been recompiled with THINK C™ 4.0. This version appears to
run on all Macintosh computers and under all operating system versions. We
would appreciate feedback on all aspects of the program. Please send bug
reports and suggestions for both the program and the manual to the address on
page 4. Everything is subject to change without notice.

MS Word and TEXT:

This manual was written using MS Word, with a copy save as...ed a TEXT
document. The MS Word version is much prettier and includes figures. The
footnotes are all at the end of the document in the TEXT copy. Sorry about
that. MS Word keeps footnotes separate from the document body. Shift-
Command-Option-S opens the footnote window.

4 Mactivation 3.3

Neural Network Introduction *

Neural networks (also known as connectionist architectures and parallel
distributed processing (PDP) systems) are groups of simple, highly
interconnected processing units which acts as a whole to perform computable
functions. These assemblies exhibit properties of associative memory,
recognition, search, learning, and computation. At an abstract level, the units
may be simulated biological neurons, and the interconnections their axons and
dendrites. The amount and type of biological detail retained in a given model
depends on purposes of the model. Examples of biological features which may
be preserved by degrees are membrane ionics, bias voltages, interconnection
patterns, input/output dynamics, temporal input summation, and long term
potentiation. Often the abstracted features are extended beyond what is
known in neurobiology, with diverse goals such as ease of simulation,
suggestion of principles to seek out in biological preparations, and conceptual
computational modeling. Many researchers are not interested in the biological
implications, and construct networks purely as problem solving devices. Some
representative focuses of simulation work are modeling of brain structures
such as the visual cortex, natural language processing and understanding,
optimization problems, high density routing tables, and memory systems.

Biological neurons and networks?

Neural cells, or neurons come in many shapes, sizes, and configurations.
A representative neuron consists of a cell body or soma, a number of input
fibers or dendrites, and an output axon fiber which can bifurcate many times
[Figure 1]. All or any of the constituents may be referred to as a process.
Cells are connected to each other through synapses, which are electro-
chemical junctions usually occurring between axons and dendrites.

INote: this is a very brief and simple overview of the salient features of neural network modeling.

For more complete information, | suggest the PDP series from UCSD, namely:
Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1.
Foundations (1986), D.E Rumelhart, J.L. McClelland, & the PDP Research Group , MIT
Press/Bradford Books, Cambridge, Ma.

and
Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 2:
Psychological and Biological Models (1986), J.L. McClelland, D.E Rumelhart, & the PDP Research
Group , MIT Press/Bradford Books, Cambridge, Ma.

and
Explorations in Parallel Distributed Processing: A Handbook of Models, Programs, and
Exercises(1988), J.L. McClelland, D.E Rumelhart , MIT Press/Bradford Books, Cambridge, Ma.
This book comes with simulator software written in C.

2For a more thorough explanation of cell function, see for example:
Kuffler, S. W., Nicholls, J. G., and Martin, A. R. (1984) From Neuron To Brain, Sinauer

Associates, Sunderland, MA.

Mactivation 3.3 5

Information is carried in electrical signals which flow in only one direction.
Electrical activity, say from a dendrite attached to a sensory transducer,
flows down the dendrite and into the cell body. This may cause the cell to
generate a burst of electrical activity (at the axon hillock) which is
transmitted outward along its axon. The axon branches and becomes the input
to other processes. The details of these events are very complex and
interrelated (and are active areas of research).

hair cell
(sensory transducer)
. dendrites /
signal
flow \
\ synapse
axon hillock \
cell body
> axon
synapse

Figure 1. Representative biological neurons

Mactivation 3.3

The entire neuron is enclosed in a semipermeable membrane made up of
hydrocarbons, phosphates, and proteins. Electrical current passes through
these membranes in the form of various ions. (lons are elements which have
excess positive or negative charge.) At rest, the concentrations of these ions
inside the cell are different from those outside the cell membrane. There are
large negatively charged ions within the cell that can never escape through the
membrane which set up this condition. This produces chemical gradients
across the membrane down which the chemicals want to flow. The fact that
the chemicals are mostly ionic makes electrical gradients as well down which
current wants to flow. These may be in the same or opposite directions. For
each chemical, the ionic and chemical gradients balance out, influenced by the
other chemicals present which are doing the same thing. The result is a
resting potential of the cell which is lower than that of the surrounding fluid
(about -70 millivolts for mammalian neurons). There is a much higher

concentration of sodium (Na™%) outside the cell than inside, which contributes
to much of this potential.

Neurons are connected to each other through formations called synapses.
(The word synapse is used as a noun and a verb.) Most commonly, an axonal
branch from one neuron synapses on a dendrite of another neuron. There is
usually no physical contact between the two membranes. They are separated
by a distance of about 20 nanometers called the synaptic cleft. When the
current being carried in an axon arrives at a synapse, certain chemicals known
as neurotransmitters are released from the pre-synaptic membrane into the
gap between the two membranes. These transmitters move across the cleft
and attach to the opposing cell (or post-synaptic) membrane. There, the
neurotransmitter acts as a key to change the local permeability of the cell
membrane to a given ion. One neurotransmitter mediates the flow of sodium.
(The actual mechanisms of membrane transport are far more complicated and
incompletely understood.) Both the electrical and chemical gradients drive the
positively charged sodium ions into the cell, raising the electrical potential.
The effect of the neurotransmitters does not last long, so the result is a small
depolarizing potential which flows down the dendrite into the soma. If enough
of these small currents arrive at the soma from the many dendrites at about
the same time, the cell reaches its threshold potential. The entire membrane
suddenly becomes very permeable to sodium, and the internal potential quickly
reaches a level about 50 millivolts higher than the external fluid. A
potentialspike is produced at the axon hillock, and the resulting current or
action potential travels down the axon. Potassium (K%) then flows outward,
bringing the cell back to its resting potential. Active and passive pump
mechanisms restore the original gradients. Further dendritic signals are
ignored until after a refractory period, when the cell is ready to receive inputs
and fire again. Information appears to be carried predominantly through the
frequency at which a given cell fires. The firing frequency is a nonlinear
function of the total amount of input to the soma. Transmission down the axon

Mactivation 3.3 7

occurs through chemical means as well, and can be influenced by local
conditions.

The impact that the firing of one cell will have on one to which it is
connected is influenced by many factors. The amount of neurotransmitter
received by membrane receptors largely determines how much current is sent
to the soma. Mediating factors here include but are not limited to the amount
and type of transmitter released by the pre-synaptic membrane, the size and
shape of the pre- and post-synaptic membranes, the surrounding fluid’s exact
chemical makeup (which is influenced by metabolic mechanisms), and the
synapse’s recent history of activity. The amount of current which reaches the
soma depends on the transmission properties of the dendrite and the spatial
location of the synapse on the cell. In addition, there are inhibitory synapses
which effectively lower the post-synaptic potential, preventing the cell from
firing. There are also synapses among axons and dendrites themselves, on the
cell body itself, and synapses can occur on top of other synapses. Some of
these properties are evolutionary in nature. That is, the size of a synaptic
membrane’s active area appears to grow with use. In fact, a mechanism of
this nature is currently the most likely candidate for the neurological basis of
information storage and learning in the nervous system.

Simulated neurons

A schematic diagram of a representative unit is seen in Figure 2. Each
unit contains a number of input lines and one output line, which bifurcates.
Signals in biological neural networks are based on trains of equal valued
spikes at different frequencies. Most simulations use real numbers to
represent these signal frequencies at discrete time steps. Thus the activity
level of a unit is a real number, as are the inputs and outputs. Input lines are
attached to a unit through connections of (usually) variable strength, which
are also represented by real numbers. The contribution of one input to the unit
is the product of the activity on that line and the value of the connection
strength. The total input to the unit is the sum of all the individual products.
Connections may be positive or negative in sign. The former adds activity to
the total, while the latter subtracts from it. The output of the unit is some
function of the total input. Some commonly used activation functions are
shown in Figure 3. Each unit may have associated with it a bias, which is the
activity value of the unit at rest. This is similar to the resting potential of
biological neurons, though it is often viewed as an additional input to the
simulated neuron. It is worth repeating that this is a description of a
representative simulated neuron. Variations such as temporal summation,
delayed outputs, multiplicative (rather then additive) synapses, and internal
memory of recent activity often occur in specialized systems.

8 Mactivation 3.3

inputs

i synapses
1 s output
i 1

2

= <
i

4 S, Fa

. @igs)

Figure 2. Representative simulated neuron

Output Output Output
sigmoidal linear threshold step

Figure 3. Common activation functions

Network architectures and interpretations

The architecture or connectivity pattern of a network describes its
physical (virtual, if inside a computer simulation) layout. Spatial relations
between units may be specified along with the connections between them.
Usually, the spatial layout of a network is just a convenience for the designer,
since the topology can often be changed while preserving the connectivity
pattern. This is the specification of which unit’s outputs connect to which
other units as input. To facilitate this, the units in a network are often
partitioned in groups. These may be seen as functional subnetworks, layers in
a stratified structure, or just as divisions which represent the intentions of
the designer. The layers are usually distinguished by restricted connection
specifications, such as allowing no connections among the units in a group, but
full connectivity between groups. The direction of propagation of the signals
among units is usually restricted and is formalized as well. Biological neural
networks often appear to be partitionable into such interacting populations,
and are modeled as such.

Mactivation 3.3 9

Figure 4. a) single layer network b) two layers

The structure of a network generally reflects the intended
interpretations of its layers and units. The individual populations in a multi-
layered network might represent the notions of input mechanisms, processing
structures, memory systems, and output devices. Within populations,
individual units may or may not have simple or discrete interpretations. In
localist networks, units may correspond to such high level notions as words,
concepts, terms in an equation, or categories. For example, a population of
input units might represent line segment detectors, with connections to
another population of units which represent alphanumeric characters, with
connections to another population of units which represent words, with
connections to another population of units which represent categoriesl. The
term localist is used in reference to the idea that these qualities are localized
to specific units. Extracting meaning from a localist network is relatively
simple. The activity level of each unit represents the amount to which the
indicated concept is involved in the current state of the network. A list of all
the units’ meanings and their current activity levels can yield a complete
description of a network’s current “thought”. Different patterns of activity
across the units represent different “thoughts”.

On the other end of the spectrum are distributed or coarse coded
representations in which such localization of concepts to units is not possible.
Rather, units correspond to so-called microfeatures of the environment. A
localist unit is replaced by a group of units who’s activity levels as a group
represent the quality in question. No single unit can be said to represent any
describable entity. This makes the interpretation of activity patterns more

1For example, McClelland, J. L., and Rumelhart, D. E. (1981) An Interactive Activation Model of
Context Effects in Letter Perception: Part 1. An Account of Basic Findings. Psychological Revie®8:
375-407

10 Mactivation 3.3

difficult, but makes their interactions more subtle (and interesting). Many
concepts can be represented and thus interact in a single group of units. This
type of representation also has the advantage of better fault tolerance and
noise immunity, in that failure of any single unit should not greatly disrupt the
system as a whole. In contrast, failure of a localist unit which represents a
word means that the word can no longer be expressed. Similarly, while

localist representations define and limit the concepts available to a system,
more distributed representations allow flexible interpretations of what
concepts are in existence or are available.

Many issues in network and problem representation in general are
complex and poorly understood. Local and distributed schemes are regions on a
continuum of problem and variable “coarseness”. Most traditional artificial
intelligence research has focused on localist representation of symbols and
meaning, probably influenced by the localist nature of traditional computer
architectures. Connectionist systems appear to alleviate this constraint to
some degree, but much more work is required before any claims of superiority
can be made. A major problem with distributed representations is the
difficulty in assigning meaningful activity patterns to concepts and hence to
populations. Unless this is done carefully, systems which attempt to be
distributed in nature can become nothing more than jumbled and complex
versions of local instantiations.

Along with the information contained in the definition of units, there is
information in the connections between them. The presence of a unit (or group
of units) defined as a concept means that the concept is available to the
system. Similarly, a connection between two units (groups) implies that the
two concepts may be related and thus influence each other. In the case of a
more distributed representation, the connectivity pattern within a population
can restrict and shape the activity patterns which are likely to occur. While
this is also applicable to localist systems, in the case of distributed
representations it deeply affects the way concepts are realized.

A network’s connectivity pattern generally defines potential connections
among units, but not the specific strengths. It is these strengths which
embody a given system’s knowledge under its framework. Connection
strengths may either be part of a system’s definition, or may be learned by the
system through experience. The former scheme is usually restricted to
localist networks, where the correlations among pre-defined conceptual units
are known. The larger and more interesting set of networks learn these
correlations.

Learning and memory

A widely held theory concerning the neurological basis of memory is that
of long term potentiation (LTP), or Hebbian learning.1 Though Donald Hebb did

1The more accurate term ‘long term enhancement' (LTE) has recently been suggested by McNaughton

Mactivation 3.3 11

not create the notion of synaptic modification as the basis of learning, he is
considered responsible for its current understanding. In his 1949 book, The
Organization of Behavior, he outlined cell assemblies that are the forerunners
of today’s neural networks1l. The concept of Hebbian learning specifically
refers to the statement “When an axon of cell A is near enough to excite a cell
B and repeatedly or persistently takes part in firing it, some growth process
or metabolic change takes place in one or both cells such that A’s efficiency,
as one of the cells firing B, is increased” 2. This was initially offered as an
explanation of how information arriving in a brain could be buffered during
processing. Connections which quickly adapted to an activity pattern could
keep that pattern resonating as long as necessary. Such cell assemblies form
the basis for learning in cognitive systems. Hebb suggested, with no
physiological evidence, that a change in the area of contact of synaptic knobs
was responsible. Sufficient evidence now exists such that this is the
predominant paradigm today3. It is supposed that this increase in synaptic
connection strength is related to the firing frequencies of the two cells
involved. In a simulated network, the product of two unit’s activity values
often determines the change in their connection strength. This is generally
what is referred to as Hebbian learning in connectionist systems. Variations
commonly arise when the values used in the product are not the cell activity
values themselves, but are functions of them. This is often done to include
error correcting procedures. Neighboring cells and even more global
interactions may also play a role in the formulation of the learning rule.

Associative memory#4

The notion of memory in traditional computer systems differs greatly
from its conception in human cognition. ‘Traditional computer systems’ refers
to serial Von Neuman architectures with separate processing and memory
systems. Information is stored in discrete locations within some storage
medium. Access to that information can only be made through its ‘address’, or
known physical location. When the content of the information is known but not
its location, a search must be performed. In this case, the content must be
known exactly, or else some pattern matching function must be used. In
contrast, human memories are accessed only by content, with no regard to
physical location. Stored information (events, names, faces) are recalled by

and Morris (1987). [See below]
1Hebb, D.O. (1949) The Organization of Behavior, John Wiley & Sons, New York
2Hebb, D.O. (1949), pp. 62
3McNaughton, B. L., and Morris, R. G. M. (1987) Hippocampal Synaptic Enhancement and
Information Storage Within a Distributed Memory System. Trends in Neurosciencd0:408-415
4For a more complete description of associative memory see
Hinton, G. E., and Anderson, J. A. (1981) Parallel Models of Associative Memory, Lawrence
Erlbaum Associates, Hillsdale, NJ.
and
Kohonen, T. (1983) Self Organization and Associative Memory, Springer Verlag

12 Mactivation 3.3

thinking about something related, or associated with that memory.
Additionally, the information used as the key need only be partially complete
or correct. Incorrectly spelled names or partial views of objects usually do
not impede the acts of recognition or recall. The inability of traditional
computer systems to perform such operations is undoubtedly a major obstacle
in artificial intelligence research. These most natural and prominent
cognitive operations are difficult for these systems to emulate.

Two types of associative memory, auto- and hetero-associative, are
often discussed. Auto-associative memory generally refers to the ability of a
system to recognize and correctly recall information from partial or corrupted
versions used as input. Hetero-associative memory systems ‘couple’ different
information. If two items are stored as a pair, the presentation of one recalls
the other. For example, talk of food often makes one hungry. Hetero-
associative memory can be seen as a subset of auto-associative memory. Two
events that are stored as a pair can be considered as a single event stored
auto-associatively. Recall of one item from the other is then the same as
recall of the entire memory from one of its parts. The distinction between
auto- and hetero-association is most often a notational or architectural
convenience.

Connectionist systems are well suited to perform associative memory
operations. With a simple learning rule, a group of completely interconnected
units (every unit connects to every unit) can perform auto-associative memory
(see Figures 4a and 5). A pattern of activity is set up in the population
(through dedicated input lines), and the synapses between the active cells are
increased in strength. When a subset of that pattern is presented to the group,
sufficient activity can spread through the strong connections to enable the
missing units to fire, reinstating the original pattern. The information needed
to recall a pattern is distributed throughout the connections in the system.
Missing or innacurate connection strength values do not greatly affect
performance, as they represent only a small amount the overall informational
content. Many of these distributed representations can be stored
simultaneously in the same set of connections. The fidelity of this kind of
storage can depend on pattern independence, network size and structure, and
learning specifications. Interference between stored patterns can be seen as a
hindrance or as a benefit, depending on the aims of a particular model. Bad
interference overwrites memories, while good interference allows
generalization.

Systems with two layers of units can perform hetero-associative
memory. Patterns are presented to each group, and the connections adjust to
enable the mapping from one pattern to the other. A previously learned pattern
is presented to one of the groups, and activity flows to the other layer,
recreating the second pattern there. Flow of activity may or may not be
restricted to one direction. When more than two groups are involved,
architectures range from hierarchical trees to multiple interacting groups.

Mactivation 3.3 13

The storage and recall of sequences of events is another form of association.
It can be viewed as associating the first item with the second, the second
with the third, and so on. Presentation of any of the items will evoke the
sequence from that point.

The mechanism which distinguishes learning from recall in biological
memory, if one exists, is not known. Almost all simulations have distinct
operations for them, and their use is under a system level control (usually the
programmer).

Vector and matrix notation

A convenient and standard way to represent groups of units is as vectors.
Each unit in a group is numbered, or indexed, and its activity value is stored in
a vector at that index. The number of units in a layer determines the length of
the vector, say n. A set of activity values in this vector can be viewed as a
point in n dimensional space, just as the three component vector [X, vy, z] is
viewed as a point in three dimensional space. The connection strengths
between two layers of size n can be represented in a matrix of size n2. Each
matrix element represents the connection strength between two units. Let all
of the units in layer 1 connect through synapses to all of the units in layer 2.
View the top row of the matrix as the synapses which connect unit one in layer
2 to each of the units in layer 1. Each row X represents the synapses from
each unit in layer 1 to the single unit x in layer 2. Similarly, a column can be
viewed to represent the connections from a single unit in layer 1 to each unit
in layer 2. A cell in the matrix, say [(row) 3,(column) 5] holds the value of the
connection between unit 3 in layer 1 and unit 5 in layer 2.

To learn patterns of activity, each cell in the matrix can be incremented
by the product of the activities of the two units it connects. This formulation
is the same as the outer product of the two vectors (with layer 1 horizontal
and layer 2 vertical) which forms a matrix (figures 5 and 6). Recalling stored
patterns is the action of propagating activity from layer 1 to layer 2, through
the connections. The layer 1 vector is oriented vertically to the right of the
matrix, and a matrix-vector multiplication is performed. The sum of the
products of a matrix row X and the layer 1 vector is the total input to unit X in
layer 2 (see figure 7). If there is only one layer of units, the matrix stores the
connections between those units. For example, [(row) 3,(column) 5] now holds
the value of the connection between unit 3 and unit 5 in a single layer. Some
architectures require that there only be one connection between any two units,
and thus functions in both directions (so [3,5] = [5,3]). With the simple
activity product rule above, this is a natural consequence anyway (since
multiplication is commutative). Multiple patterns can be stored in the same
matrix simply by superimposing the individual matrices formed by the above
method. The associated patterns will interfere with each other if there is too
much overlap or just too many patterns. The need to determine these
conditions was a major force in the writing of Mactivation.

14 Mactivation 3.3

[1010]

1010
000O
1010
0000O

Layer 1 vector =

Opr OoO*r
Opr Oo*r

Figure 5. Auto-associative outer product connection matrix

[1010]

1010
1010
000O
000O

Layer 2 vector =

OCORrRLHR

OCOoORrRLHR

Figure 6. Hetero-associative outer product connection matrix

1010
1010
000O
000O

(normalizes to Layer 2 Vector)

OPr Oo*r
©OCODNN

Figure 7. Hetero-associative recall

Summary

The basic neural unit receives many inputs which are connected to the
unit through synapses. The synapses modulate the amount of signal
transmitted. The unit performs some kind of integration of these inputs,
forming a total input signal for a given time slice. (This is continuous in
biological neurons.) The unit’s activation function determines the output of
the unit based on the total input. Units are connected to each other to form
networks with the output of units becoming the input to others. There must
be some direct connections from the network to the outside world for input
and observation. When learning, the synaptic connection strengths are
modified according to learning rules and the pattern of activity in the
network. These learning rules often have a local component based on what the
synapse is connecting, and a more global component based on the network

Mactivation 3.3 15

connectivity pattern. The mathematical outer product of two activity
vectors is a matrix which represents the change in connection strengths for
learning those patterns. Matrices are superimposed to store multiple sets of

patterns. Activity in one layer is propagated to another by a matrix-vector
multiplication.

16 Mactivation 3.3

Mactivation

Overview

There are two neural network architectures available in Mactivation. A
single layer of fully interconnected units with modifiable synapses performs
auto-associative memory. Patterns are presented and learned, and can be
recalled with a partial or incorrect presentation of the same pattern.
Alternately, two layers of units with full connections from one layer to the
other provides hetero-associative memory. A different pattern can be
presented to each layer, and the mapping between the patterns is learned.
Partial or complete presentation of the source pattern can later recall the
target pattern. In addition to learn and recall commands, a cycling option
allows output vectors to be transferred to the input vector in a continuous
recall and update mechanism.

The Windows

Upon startup, the windows and menus appear as in Screen 1 (though the
memory window and all activities would be empty). Mactivation is constantly
under development, so details may vary. For example, windows may be in
different places (or not there) and the vectors may be of different size and
shapef.

The Layer 1 and Layer 2 windows each contain one vector of units.
Each is a one dimensional horizontal vector of activity values, but is usually
arranged in a two dimensional grid. This allows familiar two dimensional
patterns like characters and digits to be entered. Clicking the mouse in a unit
in either of the vectors toggles the amount of input to that unit¥. This input
value is then put through the activation function for that layer£. If the Caps
Lock key is down, the activation function is bypassed. If the resulting activity
value is positive, the unit appears grey. If the value is negative, the unit is
black. If desired, these color assignments may be reversed¥. A value of zero
appears white. The size of the resulting filled region within the unit reflects
the ratio of the current value and the maximum possible (absolute) value for
that unit. Only the Layer 1 window is visible when in auto-associative modef,
as there is only one interconnected population of units in this architecture.

The Connection Matrix window contains a matrix of the synapses
arranged as described in the vector-matrix notation section. Clicking in a
matrix cell toggles between the two activity input values. The value is
bounded by limits which are set in the Parameters -> Learn dialog box.

1 Parameters -> Configure (read: this parameter is in the dialog box reached from the Configure item
in the Parameters menu)

¥ Display -> Attributes
£ parameters -> Activations
¥ Display -> Attributes

Mactivation 3.3 17

Positive, negative, and zero connection strengths appear as described above,
using the ratio of each connection strength to the limiting values for the
overall matrix.

The fields in the Observe window reflect the position of the mouse if it
is in a unit or connection cell. ‘Layer 1’, ‘Layer 2’, ‘Matrix’, or ‘Memory’
appears in the top of the window. If the Observe window is active, values may
be entered into any of the fields. This can used for getting values other than
those set for toggling into the vectors, bypassing the activation function, and
changing connection strengths. The best way to use this feature is to make the
observe window active. The value field will be selected for keyboard input.
Moving the mouse over the desired bit (layer unit or synapse) and typing the
new value and a return will change that bit’s value accordingly. The bit can
also be specified by entering values into the row and column fields. (The tab
key advances selection to the next field.) A return enters the information.

The file name window, with the same name as the current simulation
system, displays previously learned vectors, in the order of learning. This
window is often referred to as the Memory window. In hetero-associative
mode, the Layer 2 vectors appear below the Layer 1 vectors. The Layer display
threshold characteristics apply.

Modifier Keys

Option-clicking in either Layer vector or in any of the Memory vectors
copies the pattern in that set of units into the Layer 1 vector. Option-
shift-clicking copies the pattern into the Layer 2 vector.

The Caps Lock key disables the effect of the activation function when
clicking a value into a vector. Similarly, connection strength bounds are
ignored when clicking into the matrix.

18 Mactivation 3.3

The Menus

The Apple and Edit menus are excluded from this section since they are
trivial in Mactivation. The Edit menu is unsupported, and is provided only for
the use of desk accessories. The edit items become active when necessary.

File
MEUH Display Parameters Commands
Mew 3#EM
Open... 30
Close
Save 3#ES
Save As...
Revert
Ouit #0

The New command does a Reset Everythingl and names the current
simulation “Untitled”. Parameter settings are not changed.

The Open command presents the standard open file dialog box, showing
folders and Mactivation documents (file type ‘MtVvn’).

The Close command doesn’t do anything; a system must always be open.
The menu item is provided for consistency and for desk accessories.

The Save command saves all parameter settings, vector and matrix
values, and learned vectors in the file with the current system name. If the
current system is Untitled, then Save As is invoked.

The Save As command presents the standard save as file dialog box.

The Revert command attempts to open the file in the current working
directory with the same name as the current system.

Any state setting, learning, or changes to parameter values is considered
a system modification and invokes a “Save changes to file xxx” box when
quitting and other relevent actions are taken.

1 commands -> Reset Everything

Mactivation 3.3 19

Display
" % File EditMFﬂrameters Commands
ey i
ey S
Cnneaiians
Eyiitipd
Hingyrpa

:
:
:
:
:

Attributes...

The first five items in the Display menu refer to the simulation
windows. Windows currently visible on the Desktop are dimmed in the menu.
When a window is completely obscured by other windows, its title becomes
active in this menu list. Selecting its title makes the window visible again.

The Attributes dialog box:

@) Positive values are gray and negatives are black
{_» Positive values are black and negatives are gray

Mouse clicks toggle between ([fili[| and |1.00

layer bok size: 15
matrix box size: |7 (pixels)

memory boX size: |5

The top two selections toggle the display ‘colors’ for positive and
negative values in the layers, matrix and memory windows.

The mouse click values are the numbers sent to a bit that is clicked
on. If in a layer unit, the number is put through the layer’s activation
functionf. If in the matrix, values are bounded by the connection strength
limiting valuesW. When the Caps Lock key is depressed, neither of these

£ parameters -> Activations
W parameters -> Learn

20 Mactivation 3.3

actions occur. Unit states can easily be set to zero and one with this feature,
regardless of the activation function. Mactivation does its best to toggle
correctly when the bit’s pre-click value is neither of these, but you may have
to click a couple times to get what you want.

The box size specifications let you adjust the simulation size to your
liking.

Mactivation 3.3 21

Parameters

% File Edit Dlsplagtummands

Configure...
Actirations...
Learn...
NMormalize...
Cycling...
The Configure dialog box:
) one layer of units Display as:
@ two layers of units
4 rows
Number of units per layer : |} 4 columns

ok]

One layer or two layers of units configures the system for auto-
associative or hetero-associative operation, respectively. Auto-associative
means that the system is usually used to reconstruct a learned vector from
partial or incorrect input. The Layer 1 vector is crossed with itself (outer
product) to generate the connection matrix increment values. Hetero-
associative allows a Layer 1 vector to map to a different Layer 2 vector. The
Layer 2 window is only available when in hetero-associative mode.

[Changing modes after learning is allowed, and makes for interesting
results. For example, teaching the hetero-associative system an overlapping
sequence of patterns (i.e. a -> b, b -> ¢, ¢ -> d) and then switching to auto-
associative mode enables the single layer to recall the sequence when
cycling®. Note that the memory window displays its current understanding of
the mode, so only the layer 1 patterns are shown.]

The Number of units per layer refers to the state vector(s) for the
system, given in “units” or “neurons” or “bits” or whatever term you prefer.

Display as: refers to how the vector appears in the Layer 1, Layer 2,

Commands -> Cyclic Recall

22 Mactivation 3.3

and Memory windows. Using a rectangle in this manner rather than a one
dimensional vector makes things a lot easier to look at and use. However,
seeing a one-dimensional vector makes understanding the matrix
multiplication easier for a while. Remember that what is displayed is a one-
dimensional vector regardless of its shape. The number of rows times the
number of columns must equal the vector size (for obvious reasons). Bit
positions increase to the right and down, respectively.

The Activations dialog box:

Extent: |EHILL H_offset: |0.00
Layer: ® 1 5.001
2
) i O Slope: 1.00 Y_offset: |0.00
{_) Sigmoid
Output
: Output = g Ef‘f‘f?" - Yoffaet
ExtentI E-[E-:-pe [Ihput + Xoffzet]]
Input
(@ Linear
Positive woffset moves a function to the Teft
Cutput
+ Positive Yoffset moves a function down
ExtentI ‘ o
: Input

Concel

Layer 1 and Layer 2 each have a different activation function for their
units. Two prototypes are provided, a sigmoidal and a bounded linear
function. Complete descriptions of these formulae are found in the equations
section of the manual. “Slope” is in quotes since it is not actually a slope per
se, but does change the speed of the function. A good way to get the feel of
this function is to vary these parameters and the mouse click toggle amounts¥.
Click the mouse to input different integer amounts of activity to units. The
integer amount is immediately put through the function and displayed in the
Observe window value field.

When the linear function is chosen, slope does indeed refer to its slope.
A step function can be approximated with a large value for the slope.

Changes in activation functions take effect immediately. The current

Mactivation 3.3 23

activity values in the affected vector are put through the new activation
function and the display is updated.

The save button stores the current settings and leaves the dialog box up.
This is for setting one layer’s parameters and then the other layer’s. If you
switch layers without doing a save, any changes made are discarded. Cancel
does not undo changes which have been saved. OK saves the current settings
and dismisses the dialog box.

The Learn dialog box:

Learning rate (1]): |[QII
Man connection strength: 5.00

Min connection strength: -5.0

[]JUse delta rule

[<] Units are self exciting

The Learn commandf performs an outer product of the appropriate
vectors and adds the result to the connection matrix. (A discussion of learning
is found in the Learning and memory section of the Neural Network
Introduction.) The Learning rate (1)1 modulates the amount of each
synaptic strength change in one learning cycle. The change in strength of a
synapse is the product of h and the product of the two units’ activity values.
The equations are found at the end of the Mactivation reference section.

Max and Min connection strengths are limits for the matrix values.
Connection strengths will not be increased (or decreased) beyond these values
during learning. Values input through the observe window are not affected by
these limits.

The Delta rule, also known as the Widrow-Hoff procedure, is an error
correcting variation of Hebbian learning. First, the layer 1 vector is

f Commands -> Learn Current

1 This is the symbol "eta" in Symbol 12 font. If you don't have the Symbol font, this may look like a
square box. Eta looks like an "n" with a downward extended right edge in case you want to look for it
in some other font (it's option-h in Math).

24 Mactivation 3.3

multiplied by the matrix. The resulting vector is what the system ‘knows’
about the input. (This is the same as the recall procedure.) The result is
subtracted from the target vector (layer 1 for auto-association, layer 2 for
hetero-association), giving an error vector. The outer product of the layer 1
and error vectors is then used to update the connection weights. The equations
are found at the end of the Mactivation reference section.

Some auto-associative models, such as the Hopfield netl: do not allow a
unit’s output to connect back to the unit itself. Units that do connect to
themselves are known as self-exciting. If the toggle is off, the diagonal of
the matrix will always be zero since there will be no connection from unit n to
unit n. Changing the setting only affects later presentations, not vectors that
have already been learned. Hetero-associative operation fully connects Layer 1
to Layer 2, so this item is disabled.

The Normalize dialog box:

(<] Normalize after recall:

3 before activation function T with total input
(@ after activation function (@ with total output

If a vector is normalized after being recalled, it means that each unit’s
value in a recalled vector will be divided by the sum total activity of a vector.
In Mactivation, this division can be performed before or after the output unit’s
activation function is applied. The divisor can be the sum of either the input
vector or the output vector itself. The most common definition of
normalization divides the output activity after the activation function by the
total of itself. This produces a standard normalized vector, the sum of which
is equal to one. The other configurations are provided for experimentation, and
to be able to simulate a model specified by McNaughton and Morris2. In this
model, the division is performed before the activation function, with the total
of the input vector.

If total input is selected, the total of post-activation activity is taken.
If total output is used, the total of pre-activation activity is taken.

1Hopfield, J.J. (1982) Neural Networks and Physical Systems With Emergent Collective
Computational Abilities. Proc. Natl. Acad. Sci. USA79: 2554-2558

2McNaughton and Morris (1987)

Mactivation 3.3 25

The Cycling dialog box:

v add recall to input

(@ replace input with recall

Delay |[J]| seconds between cycles Cancel

This dialog controls the operation of the Cyclic Recall command®.
When in hetero-associative mode, and cyclic recall turned on, output from
layer 2 is sent back to layer 1 after a recall, and the process repeats. The
layer 2 vector can either be added to layer 1 or can replace it. The
activation function for layer 1 is then applied. When in auto-associative mode,
the recalls are performed as usual, so the add and replace buttons have no
meaning and are disabled.

The delay time between cycles, in seconds, is also set here. Zero is an
acceptable value, but causes a very tight loop. The cursor changes to signify
when a recall operation is being performed. TickCounts are used for this test,
SO accuracy is to approximately the sixtieth of a second.

Commands -> Cyclic Recall

26 Mactivation 3.3

Commands

% File Edit Display Farameters

Learn Current 3L
Recall Current 3£R
Cyclic Hecall K

Randomizer...

Clear Layers #E
Reset Everything

Learn

The Learn command performs an outer product of the appropriate
vectors and adds the result to the connection matrix. A discussion of learning
is found in the Learning and memory section of the Neural Network
Introduction. The learning equations follow this reference section. If auto-
associative mode is currently being used, an outer product is formed by
crossing the Layer 1 vector with itself, and the matrix is updated according to
the current system parameters, which are explained in the dialog box
descriptions. If in hetero-associative mode, this command crosses the two
vectors with Layer 1 horizontal and Layer 2 vertical. The Learn Current
command also adds a copy of the learned vector(s) to the Memory window
display.

Recall

The Recall command multiplies the Layer 1 vector by the connection
matrix. In auto-associative mode, the new Layer 1 activities are displayed. In
hetero-associative mode, Layer 2 is updated. The appropriate activation
function is first applied. One would generally click a partial or distorted input
(or option-click a memory pattern) into Layer 1 and then choose this command.
Normalization and thresholding occur as specified in the system parameters.

Cyclic Recall

Cyclic Recall is a toggled command and has a check mark to its left
when in operation. At the specified interval, recall operations are performed.
In hetero-associative mode, the resulting Layer 2 vector can replace or be
added to Layer 1. This decision is based on the setting of the corresponding
control in the Parameters -> Cycling... dialog box. The Layer 1 activation
function is then applied, and the result is displayed.

Mactivation 3.3 27

Randomizer...

With a probability of :
dadd a random number between

-1.000 | and 1.00000

to every value in [the Layer 1 units
[] the Layer 2 units
[] the connection matrix

Random values, or noise, may be added independently to the layers of
units and the connection matrix. The probability value determines how many
units in the given structure will be affected. A probability of 0.5 says that
about half of the the units will have noise added to them. Higher probabilities
allow more units to be influenced.

For each unit selected, a random number which lies between the two
specified values is generated and added to the unit’s activity (or connection
strength). Values are bounded by the maximum value allowed for a unit’s
activity or matrix connection strenght. The associated algorithm is found in
the equation section of the manual.

The Clear commands

Clear Vectors inputs zeros to all of the units in the two layers. The
activation function is then applied, leaving the unit at its ‘resting state’.

Reset Everything performs a Clear Vectors, fills the matrix with
zeros, and empties the memory window.

28 Mactivation 3.3

The equations

[Layerl] = Vector of Layer 1 activation values
[Layer2] = Vector of Layer 2 activation values
[Temp] = A spare vector

[W] = Connection matrix

Wij = Connection weight from unit j to unit i

n = number of units

Dx = Change in value of x

A = The vector outer product operator

= = Matrix - vector multiplication operator

T = The vector transpose operator
Remanining variables have the same names as in their dialog boxes.

Activation functions:

sigmoidal:

Output = Extent - Yoffset
-("slope" * (Input+Xoffset))

linear:
Output = "slope" * (Input + Xoffset) - Yoffset

if Output < -Yoffset, then Output = -Yoffset
if Output > (-Yoffset + Extent), then Output = (-Yoffset + Extent)

Auto-associative recall:

Input to uniti = g (Wij * Output(unitj))
n

Output(unit i) = Activation function (Input to unit i)

In vector notation:

[Temp] = [W] = [Layer 1]
[Layer 1] = Activation function ([Temp])

Hetero-associative recall:

[Layer 2] = Activation function ([W] = [Layer 1])

Mactivation 3.3

29

30

Learning without the delta rule, auto-associative:

For all Wij:
DWij = h * Output(unit j, layer 1) * Output(unit i, layer 1)
Wij = Wij + DWij
In vector notation:

[DW] = h * [layer1] A [layer1]T
[w] = [wW] + [DW]

Learning without the delta rule, hetero-associative:

[DW] = h * [layer2] A [layer1]T
[w] = [wW] + [DW]

Learning with the delta rule, auto-associative:

[Temp] = [W] = [Layer 1]
[Temp] = Activation function ([Temp])
[Temp] = [Layer 1] - [Temp]

[Temp] now contains an error vector

[DW] = h * [Temp] A [Layer 1]T
[W] = [w] + [DW]

Learning with the delta rule, hetero-associative:

[Temp] = [W] = [Layer 1]
[Temp] = Activation function ([Temp])
[Temp] = [Layer 2] - [Temp]

[Temp] now contains an error vector

[DW] = h * [Temp] A [Layer 11T
[W] = [wW] + [DW]

The Randomizer:

The call srand(time()) is made at application startup to seed the rand() function.
The LightspeedC rand() function generates a value between -32767 and +32767

For each unit in a selected layer/matrix:
Generate a random number with rand();

if it’s less than the specified probability times 32767, then generate noise for that
unit.

Mactivation 3.3

Mactivation 3.3

To generate the noise value:

Generate and take the absolute value of a rand() number;

Multiply it by the extent of the specified range of acceptable values (max -
min);

Divide by 32767;

Add the final value to the unit.
Limit the resulting value by that allowed for the unit.

31

