MicroEMACS

Full Screen Text Editor
Reference Manual

Version 3.11
October 29, 1991

(C)Copyright 1988, 1989, 1990, 1991 by Daniel M. Lawrence
Reference Manual (C)opyright 1988, 1989, 1990, 1991

by Brian Straight and Daniel M. Lawrence
All Rights Reserved

(C)Copyright 1988, 1989, 1990, 1991 by Daniel M. Lawrence
MicroEMACS 3.11 can be copied and distributed freely for any
non-commercial purposes. Commercial users may use MicroEMACS
3.11 inhouse. Shareware distributors may redistribute

MicroEMACS 3.11 for media costs only. MicroEMACS 3.11 can only
be incorporated into commercial software or resold with the
permission of the current author.

Introduction

MicroEMACS is a tool for creating and changing documents, programs, and other text files. It is both
relatively easy for the novice to use, but also very powerful in the hands of an expert. MicroEMACS can be
extensively customized for the needs of the individual user.

MicroEMACS allows severa files to be edited at the same time. The screen can be split into different
windows and screens, and text may be moved freely from one window on any screen to the next. Depending on the
type of file being edited, MicroEMACS can change how it behaves to make editing ssmple. Editing standard text files,
program files and word processing documents are all possible at the same time.

There are extensive capabilities to make word processing and editing easier. These include commands for
string searching and replacing, paragraph reformatting and deleting, automatic word wrapping, word move and del etes,
easy case controlling, and automatic word counts.

For complex and repetitive editing tasks editing macroes can be written. These macroes alow the user a
great degree of flexibility in determining how MicroEMACS behaves. Also, any and all the commands can be used by
any keystroke by changing, or rebinding, what commands various keys invoke.

Specia features are also available to perform a diverse set of operations such as file encryption, automatic
backup file generation, entabbing and detabbing lines, executing operating system commands and filtering of text
through other programs (like SORT to alow sorting text).

History

EMACS was originally a text editor written by Richard Stallman at MIT in the early 1970s for Digital
Equipment computers. Various versions, rewrites and clones have made an appearance since.

This version of MicroEMACS is derived from code written by Dave G. Conroy in 1985. Later modifications
were performed by Steve Wilhite and George Jones. In December of 1985 Daniel Lawrence picked up the then current
source (version 2.0) and made extensive modifications and additionsto it over the course of the next six years. Updates
and support for the current version are still available. Commercial support and usage and resale licences are also
available. The current program author can be contacted by writing to:

USMAIL: Daniel Lawrence
617 New York St
Lafayette, IN 47901

UUCP: pur-ee!mdbs!dan
ARPA: mdbsldan@ee.ecn.purdue.edu

Support is provided through:

The Programmer’s Room

Opus 201/10

300/1200/2400 and 9600 (Hayes V series only)
(317) 742-5533 no parity 8 databits no stop bits

Credits

Many people have been involved in creating this software and we wish to credit some of them here. Dave
Conroy, of course, wrote the very first version of MicroEMACS, and it is a credit to his clean coding that so much
work was able to be done to expand it. John Gamble is responsible for writing the MAGIC mode search routines, and
for maintaining all the search code. Jeff Lomicka wrote the appendix on DEC VMS and has supplied a lot of code to
support VMS and the ATARI 1040ST versions. Curtis Smith wrote the original VMS code and help support the
Commodore AMIGA. Also Lance Jones has done a lot of work on the AMIGA code. Professor Suresh Konda at
Carnegie Méllon University has put a lot of effort into writing complex macros and finding all the bugs in the macro
language before anyone el se does.

A special thanks to Dana Hoggatt who has provided an amost daily sounnding board for ideas, algorithyms
and code. He is responcible for the encryption code directly and has prodded me into adding many features with
simple but poignant questions (Dan? How do we move the upper |eft corner of the screen? . . . which forced me to
write the text windowing system).

As to people sending source code and text translations over computer networks like USENET and ARPA
net, there are simply more than can be listed here. [The comments in the edit history in the history.c file mention each
and the piece they contributed]. All these people should be thanked for the hard work they have put into
MicroEMACS.

Daniel M. Lawrence

Basic Concepts MicroEMACS Reference Manual

Chapter 1

Basic Concepts

The current version of MicroEMACS is 3.11 (Third major re-write, eleventh public release), and for the rest
of this document, we shall simply refer to thisversion as“EMACS’. Any modifications for later versions will be in the
file README on the MicroEM ACS distribution disk.

1.1 Keys and the Keyboard

Many times throughout this manual we will be talking about commands and the keys on the keyboard
needed to use them. There are a number of “special” keyswhich can be used and are listed here:

<NL> NewLine which is also called RETURN, ENTER, or <NL>, this key is used to end
different commands.

A The control key can be used before any alphabetic character and some symbols. For
example, ~C means to hold down the <CONTROL> key and type the C key at the same
time.

X The CONTROL-X key is used at the beginning of many different commands.

META or M- This is a special EMACS key used to begin many commands.This key is pressed and

then released before typing the next character. On most systems, this is the <ESC> key,
but it can be changed. (consult appendix E to learn what key is used for META on your
computer).

Whenever a command is described, the manua will list the actual keystrokes needed to execute it in
boldface using the above conventions, and also the name of the command in italics.

1.2 Getting Started

In order to use EMACS, you must call it up from your system or computer’s command prompt. On UNIX
and M SDOS machines, just type “emacs’ from the command prompt and follow it with the <RETURN> or <ENTER>
key (wewill refer to this key as <NL> for “new-ling” for the remainder of this manual). On the Macintosh, the Amiga,
the ATARI ST, and under OS/2 and other icon based operating systems, double click on the uEMACS icon. Shortly
after this, a screen similar to the one below should appear.

1.3 Parts and Pieces

The screen is divided into a nhumber of areas or windows. On some systems the top window contains a
function list of unshifted and shifted function keys. We will discuss these keys later. Below them is an EMACS mode
line which, as we will see, informs you of the present mode of operation of the editor—for example “(WRAP)” if you
set EMACS to wrap at the end of each line. Under the mode line is the text window where text appears and is
manipulated. Since each window has its own mode line, below the text window is it's mode line. The last line of the
screen isthe command line where EMACS takes commands and reports on what it is doing.

f1 search-> f2 <-search | MicroEMACS: Text Editor
3 hunt-> f4 <-hunt |
f5 fkeys 6 help | Available function key Pages include:
f7 nxt wind 8 pg[11 WORD BOX
EMACS PASCAL C cOba Lisp
f9 save 10 exit | [usethef8 key to load Pages)

MicroEMACS 3.11 () Function Keys

MicroEMACS Reference Manual Basic Concepts

---- MicroEMACS 3.11 () -- Main

Figl: EMACS screen onan|BM-PC
1.4 Entering Text

Entering text in EMACS is simple. Type the following sentence fragment:
Fang Rock lighthouse, center of a series of mysterious and
Thetext isdisplayed at the top of the text window. Now type:
terrifying events at the turn of the century

Notice that some of your text has dissapeared off the |eft side of the screen. Don’t panic—your text is safel!!
You've just discovered that EMACS doesn’t “wrap” text to the next line like most word processors unless you hit
<NL>. But since EMACS is used for both word processing, and text editing, it has a bit of a dual personality. You can
change the way it works by setting various modes. In this case, you need to set WRAP mode, using the add-mode
command, by typing *XM. The command line at the base of the screen will prompt you for the mode you wish to add.
Type wrap followed by the <NL> key and any text you now enter will be wrapped. However, the command doesn’t
wrap text already entered. To get rid of the long line, press and hold down the <BACKSPACE> key until the line is
gone. Now type in the words you deleted, watch how EMACS goes down to the next line at the right time. (In some
versions of EMACS, WRAP is a default mode in which case you don’t have to worry about the instructions relating to
adding this mode.)

Now let’s type alonger insert. Hit <NL> a couple of times to tab down from the text you just entered. Now
type the following paragraphs. Press <NL> twice to indicate a paragraph break.

Fang Rock lighthouse, center of a series of mysterious and terrifying events at the turn of the
century, is built on a rocky island a few miles of the Channel coast. So small is the island that
wherever you stand its rocks are wet with sea spray.

The lighthouse tower is in the center of the idand. A steep flight of steps leads to the heavy door in
its base. Winding stairs lead up to the crew room.

1.5 Basic cursor movement

Now let's practice moving around in this text. To move the cursor back to the word “Winding,” enter M-B
previous-word. This command moves the cursor backwards by one word at a time. Note you have to press the key
combination every time the cursor steps back by one word. Continuously pressing META and toggling B produces an
error message. To move forward to the word “stairs’ enter M-F next-word, which moves the cursor forward by one
word at atime.

Notice that EMACS commands are usually mnemonic—F for forward, B for backward, for example.

To move the cursor up one line, enter ~P previous-line, down one line N next-line. Practice this movement
by moving the cursor to the word “terrifying” in the second line.

The cursor may aso be moved forward or backward in smaler increments. To move forward by one
character, enter "F forward-character , to move backward, ~B backward-character. EMACS aso allows you to
specify a number which is normally used to tell a command to execute many times. To repeat most commands, press
META and then the number before you enter the command. Thus, the command META 5 ~F (M-5"F) will move the
cursor forward by five characters. Try moving around in the text by using these commands. For extra practice, see how
close you can come to the word “small” in the first paragraph by giving an argument to the commands listed here.

Two other simple cursor commands that are useful to help us move around in the text are M-N next-
paragraph which moves the cursor to the second paragraph, and M -P previous-paragraph which moves it back to the
previous paragraph. The cursor may also be moved rapidly from one end of the line to the other. Move the cursor to
the word “few” in the second line. Press A beginning-of-line. Notice the cursor moves to the word “events’ at the
beginning of theline. Pressing *E end-of-line moves the cursor to the end of the line.

Finally, the cursor may be moved from any point in the file to the end or beginning of the file. Entering M->
end-of-file moves the cursor to the end of the buffer, M -< beginning-of-file to the first character of thefile.

Basic Concepts MicroEMACS Reference Manual

On the IBM-PC, the ATARI ST and many other machines, the cursor keys can also be used to move the
Cursor.

Practice moving the cursor in the text until you are comfortable with the commands we've explored in this
chapter.

1.6 Saving your text

When you' ve finished practicing cursor movement, save your file. Your file currently residesin a BUFFER.
The buffer is a temporary storage area for your text, and is lost when the computer is turned off. You can save the
buffer to afile by entering X" S save-file. Notice that EMACS informs you that your file has no name and will not let
you saveit.

To save your buffer to afile with adifferent name than it’s current one (which is empty), press * X W write-
filee. EMACS will prompt you for the filename you wish to write. Enter the name fang.txt and press return. On a
micro, the drive light will come on, and EMACS will inform you it is writing the file. When it finishes, it will inform
you of the number of linesit has written to the disk.

Congratulations!! Y ou've just saved your first EMACSfilel

MicroEMACS Reference Manual Basic Concepts

Chapter 1 Summary

In chapter 1, you learned how to enter text, how to use wrap mode, how to move the cursor, and to save a
buffer. The following is atable of the commands covered in this chapter and their corresponding key bindings:

Key Binding Keystroke Effect
abort-command "G aborts current command
add-mode XM allows addition of EMACS

mode such asWRAP
backward-character "B moves cursor left one character
beginning-of-file M-< moves cursor to beginning of file
beginning-of-line A moves cursor to beginning of line
end-of-file M-> moves cursor to end of file
end-of-line "E moves cursor to end of line
forward-character s moves cursor right one character
next-line N moves cursor to next line
next-paragraph M-N moves cursor to next paragraph
next-word M-F moves cursor forward one word
previous-line P moves cursor backward by one line
previous-paragraph M-P MOoVes cursor to previous paragraph
previous-word M-B moves cursor backward by one word
save-file AXNS saves current buffer to afile
write-file AXAW save current buffer under a new name

Basic Editing—Simple Insertions and Deletions MicroEMACS Reference Manual

Chapter 2

Basic Editing—Simple Insertions and Deletions

2.1 A Word About Windows, Buffers, Screens, and Modes

In the first chapter, you learned how to create and save afilein EMACS. Let’s do some more editing on this
file. Call up emacs by typing in the following command.

emacs fang.txt

On icon oriented systems, double click on the UEMACS icon, usually a file dialog box of some sort will
appear. Choose FANG.TXT from the appropriate folder.

Shortly after you invoke EMACS, the text should appear on the screen ready for you to edit. The text you
are looking at currently resides in a buffer. A buffer is atemporary area of computer memory which is the primary
unit internal to EMACS — this is the place where EMACS goes to work. The mode line at the bottom of the screen
lists the buffer name, FANG.TXT and the name of the file with which this buffer is associated, FANG.TXT

The computer talks to you through the use of its screen. This screen usually has an area of 24 lines each of
80 characters across. Y ou can use EMACS to subdivide the screen into several separate work areas, or windows, each
of which can be ‘looking into’ different files or sections of text. Using windows, you can work on several related texts
at one time, copying and moving blocks of text between windows with ease. To keep track of what you are editing,
each window is identified by a mode line on the last line of the window which lists the name of the buffer which it is
looking into, the file from which the text was read, and how the text is being edited.

An EMACS mode tells EMACS how to deal with user input. As we have aready seen, the mode ‘WRAP
controls how EMACS deals with long lines (lines with over 79 characters) while the user is typing them in. The
‘VIEW’ mode, allows you to read a file without modifying it. Modes are associated with buffers and not with files;
hence, a mode needs to be explicitly set or removed every time you edit a file. A new file read into a buffer with a
previously specified mode will be edited under this mode. If you use specific modes frequently, EMACS alows you to
set the modes which are used by all new buffers, called global modes.

2.2 Insertions

Y our previously-saved text should look like this:

Fang Rock lighthouse, center of a series of mysterious and terrifying events at the turn of the
century, is built on a rocky island a few miles of the Channel coast. So small is the island that
wherever you stand its rocks are wet with sea spray.

The lighthouse tower is in the center of the island. A steep flight of steps leads to the heavy door in
its base. Winding stairs lead up to the crew room.

Let’s assume you want to add a sentence in the second paragraph after the word “base.” Move the cursor
until itisonthe“W” of “Winding”. Now type the following:

This gives entry to the lower floor where the big steam generator throbs steadily away, providing
power for the electric lantern.

If the line fails to wrap and you end up with a‘$' sign in the right margin, just enter M-Q fill-paragraph to
reformat the paragraph. This new command attempts to fill out a paragraph. Long lines are divided up, and words are
shuffled around to make the paragraph look nicer.

Notice that all visible EMACS characters are self-inserting — all you had to do was type the characters to
insert and the existing text made space for it. With a few exceptions discussed later, all non-printing characters (such
as control or escape sequences) are commands. To insert spaces, simply use the space bar. Now move to the first line
of the file and type ~ O open-line (Oh, not zero). You've just learned how to insert ablank line in your text.

MicroEMACS Reference Manual Basic Editing—Simple Insertions and Deletions

2.3 Deletions

EMACS offers a number of deletion options. For example, move the cursor until it’s under the period at the
end of the insertion you just did. Press the backspace key. Notice the “n” on “lantern” disappeared. The backspace
implemented on EMACS is called a destructive backspace—it removes text immediately before the current cursor
position from the buffer. Now type "H delete-previous-character. Notice that the cursor moves back and obliterates
the “r"—either command will backspace the cursor.

Type in the two letters you erased to restore your text and move the cursor to the beginning of the buffer
M -> beginning-of-file. Move the cursor down one line to the beginning of the first paragraph.

To delete the forward character, type ~D delete-next-character. The “F” of “Fang” disappears. Continue to
type D until the whole word is erased EMACS a so permits the deletion of larger elements of text. Move the cursor to
the word “center” in the first line of text. Pressing M -<backspace> delete-previous-word kills the word immediately
before the cursor. M-"H has the same effect.

Notice that the commands are very similar to the control commands you used to delete individual letters. As
a general rule in EMACS, control sequences affect small areas of text, META sequences larger areas. The word
forward of the cursor position can therefore be deleted by typing M-D delete-next-word. Now let's take out the
remainder of the first line by typing 2K kill-to-end-of-line. You now have a blank line at the top of your screen.
Typing K again or *X*O delete-blank-lines deletes the blank line and flushes the second line to the top of the text.
Now exit EMACS by typing X" C exit-emacs. Notice EMACS reminds you that you have not saved your buffer.
Ignore the warning and exit. This way you can exit EMACS without saving any of the changes you just made.

Basic Editing—Simple Insertions and Deletions MicroEMACS Reference Manual

Chapter 2 Summary
In Chapter 2, you learned about the basic ‘building blocks' of an EMACS text file—buffers, windows, and
files.
Key hinding Keystroke Effect

delete-previous-character
"H deletes character immediately before
the current cursor position

delete-next-character "D deletes character immediately after
current cursor position

delete-previous-word M-"H deletes word immediately before
current cursor position

delete-next-word M-D deletes word immediately after
current cursor position

kill-to-end-of-line K deletes from current cursor
position to end of line

insert-space "C inserts a space to right of cursor
open-line ~O inserts blank line
delete-blank-lines AXNO removes blank line

exit-emacs AXNC exits emacs

MicroEMACS Reference Manual Using Regions

Chapter 3
Using Regions

3.1 Defining and Deleting a Region

At this point its time to familiarize ourselves with two more EMACS terms—the point and the mark. The
point is located directly behind the current cursor position. The mark (as we shall see shortly) is user defined. These
two elements together are called the current region and limit the region of text on which EMACS performs many of
its editing functions.

Let’s begin by entering some new text. Don’t forget to add wrap mode if its not set on this buffer. Start
EMACS and open afile called PUBLISH.TXT. Type in the following text:

One of the largest growth areas in personal computing is electronic publishing. There are packages
available for practically every machine from elegantly simple programs for the humble Commodore
64 to sophisticated professional packages for PC and Macintosh computers.

Electronic publishing is as revolutionary in its way as the Gutenburg press. Whereas the printing
press allowed the mass production and distribution of the written word, electronic publishing puts
the means of production in the hands of nearly every individual. From the class magazine to the
corporate report, electronic publishing is changing the way we produce and disseminate information.

Personal publishing greatly increases the utility of practically every computer. Thousands of people
who joined the computer revolution of this decade only to hide their machines unused in closets
have discovered a hew use for them as dedicated publishing workstations.

Now let’s do some editing. The last paragraph seems a little out of place. To see what the document looks
like without it we can cut it from the text by moving the cursor to the beginning of the paragraph. Enter M-<space>
set-mark. EMACS will respond with “[Mark set]”. Now move the cursor to the end of the paragraph. You have just
defined a region of text. To remove this text from the screen, type *W kill-region. The paragraph disappears from the
screen.

On further consideration, however, perhaps the paragraph we cut wasn't so bad after all. The problem may
have been one of placement. If we could tack it on to the end of the first paragraph it might work quite well to support
and strengthen the argument. Move the cursor to the end of the first paragraph and enter Y yank . Your text should
now look like this:

One of the largest growth areas in personal computing is electronic publishing. There are packages
available for practically every machine from elegantly simple programs for the humble Commodore
64 to sophisticated professional packages for PC and Macintosh computers. Personal publishing
greatly increases the utility of practicaly every computer. Thousands of people who joined the
computer revolution of this decade only to hide their machines unused in closets have discovered a
new use for them as dedicated publishing workstations.

Electronic publishing is as revolutionary in its way as the Gutenburg press. Whereas the printing
press allowed the mass production and distribution of the written word, electronic publishing puts
the means of production in the hands of nearly every individual. From the class magazine to the
corporate report, electronic publishing is changing the way we produce and disseminate information.

3.2 Yanking aRegion
The text you cut initially didn't simply just disappear, it was cut into a buffer that retains the ‘killed’ text

appropriately called the kill buffer. Y “yanks’ the text back from this buffer into the current buffer. If you have a
long line (indicated, remember, by the“$" sign), simply hit M-Q to reformat the paragraph.

Using Regions MicroEMACS Reference Manual

There are other uses to which the kill buffer can be put. Using the method we' ve already learned, define the
last paragraph as aregion. Now type M-W copy-region. Nothing seems to have happened; the cursor stays blinking at
the point. But things have changed, even though you may not be able to see any alteration.

To see what has happened to the contents of the kill buffer, move the cursor down a couple of lines and
“yank” the contents of the kill buffer back with ~Y. Notice the last paragraph is now repeated. The region you defined
is “tacked on” to the end of your file because M-W copies a region to the kill buffer while leaving the original text in
your working buffer. Some caution is needed however, because the contents of the kill buffer are updated when you
delete any regions, lines or words. If you are moving large quantities of text, complete the operation before you do any
more deletions or you could find that the text you want to move has been replaced by the most recent deletion.
Remember—a buffer is a temporary area of computer memory that is lost when the machine is powered down or
switched off. In order to make your changes permanent, they must be saved to a file before you leave EMACS. Let's
delete the section of text we just added and save the file to disk.

Chapter 3 Summary

In Chapter 3, you learned how to achieve longer insertions and deletions. The EMACS terms point and
mar k were introduced and you learned how to manipulate text with the kill buffer.

Key Binding Keystroke Effect

set-mark M -<space> Marks the beginning of aregion

delete-region AW Deletes region between point and mark and
placesitin KILL buffer

copy-region M-W Copies text between point and mark into
KILL buffer

yank-text Y Inserts a copy of the KILL buffer into

current buffer at point

MicroEMACS Reference Manual Search and Replace

Chapter 4
Search and Replace

4.1 Forward Search

Load EMACS and bring in the file you just saved. Y our file should look like the one below.

One of the largest growth areas in personal computing is electronic publishing. There are packages
available for practically every machine from elegantly simple programs for the humble Commodore
64 to sophisticated professional packages for PC and Macintosh computers. Personal publishing
greatly increases the utility of practicaly every computer. Thousands of people who joined the
computer revolution of this decade only to hide their machines unused in closets have discovered a
new use for them as dedicated publishing workstations.

Electronic publishing is as revolutionary in its way as the Gutenburg press. Whereas the printing
press allowed the mass production and distribution of the written word, electronic publishing puts
the means of production in the hands of nearly every individual. From the class magazine to the
corporate report, electronic publishing is changing the way we produce and disseminate information.

Let's use EMACS to search for the word “revolutionary” in the second paragraph. Because EMACS
searches from the current cursor position toward the end of buffers, and we intend to search forward, move the cursor
to the beginning of the text. Enter ~ S search-forward. Note that the command line now reads

“Search [<META>;"

EMACS is prompting you to enter the search string — the text you want to find. Enter the word
revolutionary and hit the META key. The cursor moves to the end of the word “revolutionary.”

Notice that you must enter the <META> key to start the search. If you simply press <NL> the command line
responds with “<NL>". Although this may seem infuriating to users who are used to pressing the return key to
execute any command, EMACS' use of <META> to begin searches allows it to pinpoint text with great accuracy.
After every line wrap or carriage return, EMACS ‘sees’ anew line character (<NL>). If you need to search for aword
at the end of aline, you can specify thisword uniquely in EMACS.

In our sample text for example, the word “and” occurs a number of times, but only once at the end of aline.
To search for this particular occurrence of the word, move the cursor to the beginning of the buffer and type "S.
Notice that EMACS stores the last specified search string as the default string. If you press <M ETA> now, EMACS
will search for the default string, in this case, “revolutionary.”

To change this string so we can search for our specified “and” simply enter the word and followed by
<NL>. The command line now shows:

“search [and<NL>]<META>:"
Press <M ETA> and the cursor movesto “and” at the end of the second last line.

4.2 Exact Searches

If the mode EXACT is active in the current buffer, EMACS searches on a case sensitive basis. Thus, for
example you could search for Publishing as distinct from publishing.

4.3 Backward Search

Backward searching is very similar to forward searching except that it is implemented in the reverse
direction. To implement a reverse search, type "R search-reverse. Because EMACS makes no distinction between

10

Search and Replace MicroEMACS Reference Manual

forward and backward stored search strings, the last search item you entered appears as the default string. Try
searching back for any word that lies between the cursor and the beginning of the buffer. Notice that when the item is
found, the point moves to the beginning of the found string (i.e., the cursor appears under the first letter of the search
item).

Practice searching for other words in your text.

4.4 Searching and Replacing

Searching and replacing is a powerful and quick way of making changes to your text. Our sample text is
about electronic publishing, but the correct term is ‘desktop’ publishing. To make the necessary changes we need to
replace all occurrences of the word “electronic” with “desktop.” First, move the cursor to the top of the current buffer
with the M -< command. Then type M-R replace-string. The command line responds:

“Replace [[<META>:"

where the square brackets enclose the default string. Type the word electronic and hit <META>. The
command line responds:

“with[][<META>"

type desktop<META>. EMACS replaces all instances of the original word with your revision. Of course,
you will have to capitalize the first letter of “desktop” where it occurs at the beginning of a sentence.

You have just completed an unconditional replace. In this operation, EMACS replaces every instance of
the found string with the replacement string.

4.5 Query-Replace

You may also replace text on a case by case basis. The M-"R query-replace-string command causes
EMACS to pause at each instance of the found string.

For example, assume we want to replace some instances of the word “ desktop” with the word “ personal.” Go
back to the beginning of the current buffer and enter the M-"*R query-replace command. The procedure is very similar
to that which you followed in the unconditional search/replace option. When the search begins however, you will

notice that EMACS pauses at each instance of “publishing” and asks whether you wish to replace it with the
replacement string. Y ou have a number of options available for response:

Response Effect
Y(es) Makethe current replacement and skip to the next

occurrence of the search string
N(o) Do not make this replacement but continue
! Do therest of the replacements with no more queries

U(ndo) Undo just the last replacement and query for it
again (This can only go back ONE time)

"G Abort the replacement command (This action does not
undo previously-authorized replacements

. Same effect as "G, but cursor returns to the point at
which the replacement command was given

? Thislists help for the query replacement command

Practice searching and searching and replacing until you feel comfortable with the commands and their
effects.

11

MicroEMACS Reference Manual Search and Replace

Chapter 4 Summary

In this chapter, you learned how to search for specified strings of text in EMACS. The chapter also dealt
with searching for and replacing elements within a buffer.

Key Binding Keystroke Effect
search-forward S Searches from point to end of buffer.

Point is moved from current location to
the end of the found string

search-backward "R Searches from point to beginning of buffer.
Point is moved from current location to
beginning of found string

replace M-R Replace ALL occurrences of search string with
specified (null) string from point to the
end of the current buffer

query-replace M-"R As above, but pause at each found string
and query for action

12

Windows MicroEMACS Reference Manual

Chapter 5

Windows

5.1 Creating Windows

We have already met windows in an earlier chapter. In this chapter, we will explore one of EMACS' more
powerful features — text manipulation through multiple windowing. Windows offer you a powerful and easy way to
edit text. By manipulating a number of windows and buffers on the screen ssimultaneously, you can perform complete
edits and revisions on the computer screen while having your draft text or original data available for reference in
another window.

You will recall that windows are areas of buffer text that you can see on the screen. Because EMACS can
support several screen windows simultaneously you can use them to look into different places in the same buffer. You
can also use them to look at text in different buffers. In effect, you can edit several files at the same time.

Let'sinvoke EMACS and pull back our file on desktop publishing by typing
emacs publish.txt

When the text appears, type the * X2 split-current-window command. The window splits into two windows.
The window where the cursor resides is called the current window — in this case the bottom window. Notice that
each window has atext area and a mode line. The command line is however, common to all windows on the screen.

The two windows on your screen are virtually mirror images of each other because the new window is
opened into the same buffer as the one you are in when you issue the open-window command. All commands issued to
EMACS are executed on the current buffer in the current window.

To move the cursor to the upper window (i.e., to make that window the current window, type * XP previous-
window. Notice the cursor moves to the upper or previous window. Entering * XO next-window moves to the next
window. Practice moving between windows. Y ou will notice that you can also move into the Function Key menu by
entering these commands.

Now move to the upper window. Let’'s open a new file. On the EMACS disk is atutorial file. Let's call it
into the upper window by typing:

AXNF

and press return.

Enter the filename emacs.tut.

In a short time, the tutorial file will appear in the window. We now have two windows on the screen, each
looking into different buffers. We have just used the * X" F find-file command to find afile and bring it into our current
window.

Y ou can scroll any window up and down with the cursor keys, or with the commands we' ve learned so far.
However, because the area of visible text in each window is relatively small, you can scroll the current window aline
at atime.

Type * XN move-window-down

The current window scrolls down by one line — the top line of text scrolls out of view, and the bottom line
moves towards the top of the screen. You can imagine, if you like, the whole window slowly moving down to the end
of the buffer in increments of one line. The command *X”P move-window-up scrolls the window in the opposite
direction.

As we have seen, EMACS editing commands are executed in the current window, but the program does
support a useful feature that allows you to scroll the next window. M-"Z scroll-next-up scrolls the next window up,

13

MicroEMACS Reference Manual Windows

M-V scroll-next-down scrolls it downward. From the tutorial window, practice scrolling the window with the
desktop publishing text in it up and down.

When you’ re finished, exit EMACS without saving any changesin your files.

Experiment with splitting the windows on your screen. Open windows into different buffers and experiment
with any other files you may have. Try editing the text in each window, but don’t forget to save any changes you want
to keep — you till have to save each buffer separately.

5.2 Deleting Windows

Windows allow you to perform complex editing tasks with ease. However, they become an inconvenience
when your screen is cluttered with open windows you have finished using. The simplest solution is to delete unneeded
windows. The command " X0 del ete-window will delete the window you are currently working in and move you to the
next window.

If you have a number of windows open, you can delete all but the current window by entering X1 delete-
other-windows.

5.3 Resizing Windows

During complex editing tasks, you will probably find it convenient to have a number of windows on the
screen simultaneously. However this situation may present inconveniences because the more windows you have on the
screen the smaller they are; in some cases, a window may show only a couple of lines of text. To increase the
flexibility and utility of the window environment, EMACS alows you to resize the window you are working in
(called, as you will recall, the current window) to a convenient size for easier editing, and then shrink it when you no
longer need it to be so large.

Let's try an example. Load in any EMACS text file and split the current window into two. Now type
A XA (Shift-6), grow-window. Your current window should be the lower one on the screen. Notice that it increases in
size upwards by one line. If you are in the upper window, it increases in size in a downward direction. The command
AXNZ, shrink-window correspondingly decreases window size by oneline at atime.

EMACS aso allows you to resize a window more precisely by entering a numeric argument specifying the
size of the window in lines. To resize the window this way, press the META key and enter a numeric argument
(remember to keep it smaller than the number of lines on your screen display) then press *XW resize-window. The
current window will be enlarged or shrunk to the number of lines specified in the numeric argument. For example
entering:

M-8 XW

will resize the current window to 8 lines.
5.4 Repositioning within a Window

The cursor may be centered within a window by entering M-! or M-"L redraw-display. This command is

especialy useful in allowing you to quickly locate the cursor if you are moving frequently from window to window.
Y ou can also use this command to move the line containing the cursor to any position within the current window. This
is done by using a numeric argument before the command. Type M-<n> M-*L where <n> is the number of the line
within the window that you wish the current line to be displayed.

The AL clear-and-redraw command is useful for ‘cleaning up’ a ‘messy’ screen that can result of using
EMACS on a mainframe system and being interrupted by a system message.

14

Windows MicroEMACS Reference Manual

Chapter 5 summary

In Chapter 5 you learned how to manipulate windows and the editing flexibility they offer.

Key Binding Keystroke Effect
open-window nX2 Splits current window into two windows if

space available
close-windows X1 Closes all windows except current window
next-window AXOl[oh] Moves point into next (i.e. downward) window
previous-window * XP Moves point to previous (i.e. upward) window
move-window-down * XN Scrolls current window down one line
move-window-up X/ P Scrolls current window up oneline
redraw-display M ! or Window is moved so line with point

M AL (with cursor) is at center of window

grow-window M-X " Current window is enlarged by one

line and nearest window is shrunk by

oneline
shrink-window AXNZ Current window is shrunk by oneline

and nearest window is enlarged by one line
clear-and-redraw "L Screen is blanked and redrawn. Keeps

screen updates in sync with your commands
scroll-next-up M-"rZ Scrolls next window up by oneline
scroll-next-down M-V Scrolls next window down by oneline
delete-window AX0 Deletes current window
delete-other-windows A X 1 Deletes all but current window
resize-window AXAMW Resizes window to a given numeric argument

15

MicroEMACS Reference Manual Using aMouse

Chapter 6

Using a Mouse

On computers equipped with a mouse, the mouse can usualy be used to make editing easier. If your
computer has amouse, let’ stry using it. Start MicroEMACS by typing:

emacs publish.txt

This brings EMACS up and alows it to edit the file from the last chapter. If the function key window is
visible on the screen, press the F5 key to cause it to disappear. Now use the ~ X2 split-current-window command to
split the screen into two windows. Next use the X F find-file command to read in the fang.txt file. Now your screen
should have two windows looking into two different files.

Grab the mouse and move it around. On the screen an arrow, or block of color appears. This is called the
mouse cursor and can be positioned on any character on the screen. On some computers, positioning the mouse cursor
in the extreme upper right or left corner may bring down menus which alow you to access that computers utilities,
sometimes called Desk Accessories.

6.1 Moving around with the mouse

Using the mouse button (or the left button if the mouse has more than one), position the mouse over some
character in the current window. Click the mouse button once. The point will move to where the mouse cursor is. If
you place the mouse cursor past the end of aline, the point will move to the end of that line.

Move the mouse cursor into the other window and click on one of the characters there. MicroEMACS will
automatically make this window the current window (notice that the mode line changes) and position the point to the
mouse cursor. Thismakes it very easy to use the mouse to switch to a different window quickly.

6.2 Dragging around

Besides just using the mouse to move around on the screen, you can use the same button to move text. Move
the mouse cursor to a character in one of the windows, and click down... but don’t let the button up yet! The point will
move to where the mouse cursor is. Now move the mouse cursor up or down on the screen, and release the button. The
point will again move to where the mouse cursor is, but this time it will bring the text under it along for the ride. This
iscalled dragging, and is how you can make the text appear just where you want it to. If you try to drag text out of the
current window, EMACS will ignore your attempt and leave the point where you first clicked down.

Now, click down on a word in one of the windows, and drag it directly to the left. Release the button and
watch as the entire window slides, or scrollsto the left. The missing text has not been deleted, it is simply not visible,
off the left hand side of the screen. Notice the mode line has changed and now looks like:

==== MicroEMACS 3.11 [<12] () == fang.txt == File: fang.txt =========
The number insided the brackets [] shows that the screen is now scrolled 12 characters from the left margin.

Now grab the same text again, and drag it to the right, pulling the rest of the text back into the current
window. The [<] field will disappear, meaning that the window is no longer scrolled to the left. This feature is very
useful for looking at wide charts and tables. Remember, MicroEMACS will only scroll the text in the current window
sidewaysif you drag it straight to the side, otherwise it will drag the text vertically.

Now, place the mouse cursor over a character on the upper mode line, click down, move the mouse cursor
up or down afew lines and let go of the button. The mode line moves to where you dragged it, changing the size of
the windows above and below it. If you try to make a window with less than one line, EMACS will not let you.
Dragging the mode lines can make it very fast and easy for you to rearrange the windows as you would like.

If you have a number of different windows visible on the screen, positioning the mouse over the mode line
of one window and clicking the right mouse button will cause that window to be deleted.

16

Using aMouse MicroEMACS Reference Manual
6.3 Cut and Paste

If your mouse has two buttons, then you can use the right button to do some other things as well. Earlier, we
learned how to define a region by using the M-<space> set-mark command. Now, position the mouse over at the
beginning of aregion you would like to copy. Next click and hold down the right mouse button. Notice that the point
jumps to the mouse cursor and EMACS reports “[Mark Set]”. Holding the button down move the mouse to the end of
the text you wish to copy and release the mouse button. Emacs reports “[Region Copied]” to let you know it has
copied the region into the KILL buffer. This has done the same job asthe M-W copy-region command.

If you now click the right mouse button, without moving the mouse, the region you defined dissapear, being
cut from the current buffer. Thisworksjust like the *W kill-region command.

If you move the mouse away from where you cut the text, and click the right mouse button down and up
without moving the mouse, the text in the KILL buffer getsinserted, or pasted into the current buffer at the point.

6.4 Screens

MicroEMACS can use more than one screen at once. Each screen is a collection of windows along with a
mode line. These screens usually fill the terminal or computer screen on text based systems, but can also be held in
different windows on graphically based systems like MicroSoft Windows, OS/2, the Macintosh Finder and X-
Windows. Don’t be confused by the two different uses of the term “window”. Inside EMACS style editors, a window
lets you view part of a buffer. Under graphical operating systems, a window holds a “virtual terminal”, allowing you
to manipulate more than one job, editing session or program at once. Within MicroEMACS, these operating system
windows are called screens. All these screens are displayed on your current desktop.

6.5 Resizing a Screen
Y ou can change the size of a screen. Move the mouse to the last position of the command line. Press the left
mouse button down. Holding it, move the mouse to the place you want the new lower right corner. Release the mouse.

The desktop redraws, with your newly resized screen. MicroEMACS will ignore size changes that can not be done,
like attempting to pull the lower left corner above the upper right corner of the current screen.

6.6 Moving a Screen

To change where on the desktop a screen is placed, move the mouse to the upper right corner of the screen,
press the left mouse button down, move the mouse and release it where you want the screen displayed. Again,
MicroEMACS will ignore placements that can not be done.

6.7 Creating a Screen

Creating a new screen is just like moving a screen, but using the right button. Move to the upper right of an
existing screen, press the right mouse button down, and move the mouse, releasing the button where the new screen
should appear. A new screen will have a single window, containing the contents of the current window in the copied
screen, and will have that window’ s colors. The new screen will have the copied screen’s size.
6.8 Switching to a Screen

Thisis simple. Any mouse command can be done in any screen by placing the mouse on avisible part of the
screen and clicking. The last screen the mouse is used on comes to front and is the current screen. Also, the A-C cycle-
screens command brings the rearmost screen to front.
6.9 Deleting a Screen

Place the mouse on the command line of the screen you want to delete. Click the right mouse button, the
screen will disapear. If you delete the only remaining screen on the desktop, MicroEMACS will exit.

17

MicroEMACS Reference Manual Using aMouse

Chapter 6 Summary
In Chapter 6, you learned how to use the mouse to move the point, switch windows, drag text, and resize
windows. Y ou also learned how to use the right mouse button in order to copy and delete regions and yank them back
at other places. And lastly, you learned how to control multiple screens with the mouse.

Action Mouse Directions

Move Cursor position mouse cursor over desired location
click down and up with left button

Drag Text position mouse cursor over desired text
click left button down
move to new screen location for text
rel ease mouse button

Resize Windows position mouse cursor over mode line to move
click left button down
move to new location for mode line
release mouse button

Delete Window position mouse cursor over mode line of window to delete
click right mouse button

Activate Screen Move mouse over existing screen
click left button down and up

Resize Screen position mouse cursor over last character on message line
click left button down
move to new lower right corner of screen
release mouse button

Copy Region position mouse at beginning of region
click right button down
move to end of region
release mouse button

Cut Region position mouse at beginning of region
click right button down
move to end of region
release mouse button
click right button down and up

Paste Region position mouse at place to paste
click right button down and up

Create Screen position mouse at upper left corner of existing screen
click right button down
move to position of new screen
release mouse button

Resize Screen position mouse at lower right corner of screen
click left button down
move to new lower |eft corner
rel ease mouse button

Move Screen position mouse at upper right corner of screen
click left button down
move to new screen position
release mouse button

Delete Screen position to command line of existing screen

click right button down
rel ease mouse button

18

Buffers MicroEMACS Reference Manual

Chapter 7

Buffers

We have aready learned a number of things about buffers. As you will recal, they are the magjor internal
entities in EMACS — the place where editing commands are executed. They are characterized by their names, their
modes, and by the file with which they are associated. Each buffer also “remembers’ its mark and point. This
convenient feature allows you to go to other buffers and return to the original location in the “ current” buffer.

Advanced users of EMACS frequently have a number of buffersin the computer’s memory simultaneously.
In the last chapter, for example, you opened at least two buffers — one into the text you were editing, and the other
into the EMACS on-line tutoria. If you deal with complex text files — say, sectioned chapters of a book, you may
have five or six buffersin the computer’s memory. Y ou could select different buffers by simply calling up the file with
AXAF find-file, and let EMACS open or reopen the buffer. However, EMACS offers fast and sophisticated buffering
techniques that you will find easy to master and much more convenient to use.

Let’s begin by opening three buffers. You can open any three you choose, for example call the following
files into memory: fang.txt, publish.txt, and emacs.tut in the order listed here. When you’ve finished this process,
you'll be looking at a screen showing the EMACS tutorial. Let’s assume that you want to move to the fang.txt buffer.
Enter:

AXX next-buffer

This command moves you to the next buffer. Because EMACS cycles through the buffer list, which is
alphabetized, you will now bein the fang.txt buffer. Using * XX again places you in the publish.txt buffer. If you are
on a machine that supports function keys, using *XX again places you in the Function Keys buffer. Using XX one
last time cycles you back to the beginning of the list.

If you have a large number of buffers to deal with, this cycling process may be slow and inconvenient. The
command *XB select-buffer allows you to specify the buffer you wish to be switched to. When the command is
entered, EMACS prompts, “Use buffer:”. Simply enter the buffer name (NOT the file name), and that buffer will then
become the current buffer. If you type in part of the file name and press the space bar, EMACS will attempt to
complete the name from the list of current buffers. If it succeeds, it will print the rest of the name and you can hit
<NL> to switch to that buffer. If EMACS beeps the bell, there is no such buffer, and you may continue editing the
name on the command line.

Multiple buffer manipulation and editing is a complex activity, and you will probably find it very
inconvenient to re-save each buffer as you modify it. The command "X~ B list-buffers creates a new window that
gives details about all the buffers currently known to EMACS. Buffers that have been modified are identified by the
“buffer changed” indicator (an asterisk in the second column). You can thus quickly and easily identify buffers that
need to be saved to files before you exit EMACS. The buffer window also provides other information — buffer
specific modes, buffer size, and buffer name are also listed. To close this window, simply type the close-windows
command, *X1.

To delete any buffer, type *XK delete-buffer. EMACS prompts you “Kill buffer:”. Enter the buffer name

you want to delete. As this is destructive command, EMACS will ask for confirmation if the buffer was changed and
not saved. Answer Y (es) or N(0). Asusua "G cancels the command.

19

MicroEMACS Reference Manual

Chapter 7 Summary

In Chapter 7 you learned how to manipulate buffers.

Key Binding Keystroke Effect

next-buffer AXAX Switch to the next buffer in the
buffer list

select-buffer "XB Switch to a particular buffer

list-buffers AXNB List al buffers

delete-buffer AXK Delete a particular buffer if it
is off-screen

Buffers

20

Modes MicroEMACS Reference Manual

Chapter 8
Modes

EMACS alows you to change the way it works in order to customized it to the style of editing you are
using. It does this by providing a number of different modes. These modes can effect either asingle buffer, or any new
buffer that is created. To add a mode to the current buffer, type *XM add-mode. EMACS will then prompt you for
the name of a mode to add. When you type in alegal mode name, and type a<NL>, EMACS will add the mode name
to thelist of current mode names in the mode line of the current buffer.

To remove an existing mode, typing the *X*M delete-mode will cause EMACS to prompt you for the name
of amode to delete from the current buffer. Thiswill remove that mode from the mode list on the current mode line.

Globa modes are the modes which are inherited by any new buffers which are created. For example, if you
wish to always do string searching with character case being significant, you would want global mode EXACT to be
set so that any new files read in inherent the EXACT mode. Global modes are set with the M-M add-global-mode
command, and unset with the M-"M delete-global-mode command. Also, the current global modes are displayed in
the first line of a”* X" B list-buffers command.

On machines which are capable of displaying colors, the mode commands can also set the background and
foreground character colors. Using add-mode or delete-mode with a lowercase color will set the background color in
the current window. An uppercase color will set the foreground color in the current window. Colors that EMACS
knows about are: white, cyan, magenta, yellow, blue, red, green, and black. If the computer you are running on does
not have eight colors, EMACS will attempt to make some intelligent guess at what color to use when you ask for one
which is not there.

8.1 ASAVE mode

Automatic Save mode tells EMACS to automatically write out the current buffer to its associated file on a
regular basis. Normally this will be every 256 characters typed into the file. The environment variable $ACOUNT
counts down to the next auto-save, and $ASAVE isthe value used to reset SACOUNT after a save occurs.

8.2 CMODE mode

CMODE is useful to C programmers. When CMODE is active, EMACS will try to assist the user in a
number of ways. This modeis set automatically with files that have a .c or .h extension.

The <NL> key will normally attempt to return the user to the next line at the same level of indentation as the
last non blank line, unless the current line ends with a open brace ({) in which case the new line will be further
indented by one tab position.

A close brace (}) will search for the corresponding open brace and line up with it.

A pound sign (#) with only leading white space will delete al the white space preceding itself. This will
always bring preprocessor directives flush to the left margin.

Whenever any close fence is typed, |1E)]>}, if the matching open fence is on screen in the current window,
the cursor will briefly flash to it, and then back. This makes balancing expressions, and matching blocks much easier.

8.3 CRYPT mode

When a buffer isin CRYPT mode, it is encrypted whenever it is written to a file, and decrypted when it is
read from the file. The encryption key can be specified on the command line with the —k switch, or with the M-E set-
encryption-key command. If you attempt to read or write a buffer in crypt mode and now key has not been set,
EMACS will execute set-encryption-key automatically, prompting you for the needed key. Whenever EMACS
prompts you for akey, it will not echo the key to your screen as you type it (IE make SURE you get it right when you
set it originaly).

The encryption algorithm used changes all characters into normal printing characters, thus the resulting file
is suitable for sending via electronic mail. All version of MicroEMACS should be able decrypt the resulting file

21

MicroEMACS Reference Manual Modes

regardless of what machine encrypted it. Also available with EMACS is the stand alone program, MicroCRY PT,
which can en/decrypt the files produced by CRY PT mode in EMACS.

8.4 EXACT mode

All string searches and replacements will take upper/lower case into account. Normally the case of a string
during a search or replace is not taken into account.

8.5 MAGIC mode

In the MAGIC mode certain characters gain special meanings when used in a search pattern. Collectively
they are know as regular expressions, and a limited number of them are supported in MicroEmacs. They grant greater
flexibility when using the search command. They have no affect on the incremental search command.

The symbols that have special meaning in MAGIC mode are”, $, ., &, 2, *, +, [(and], used with it), and \.

The characters ~ and $ fix the search pattern to the beginning and end of line, respectively. The ~ character
must appear at the beginning of the search string, and the $ must appear at the end, otherwise they loose their meaning
and are treated just like any other character. For example, in MAGIC mode, searching for the pattern “t$" would put
the cursor at the end of any line that ended with the letter ‘t’. Note that this is different than searching for “t<NL>",
that is, ‘t’ followed by a newline character. The character $ (and #, for that matter) matches a position, not a character,
so the cursor remains at the end of the line. But a newline is a character that must be matched like any other character,
which means that the cursor is placed just after it — on the beginning of the next line.

The character . has a very simple meaning — it matches any single character, except the newline. Thus a
search for “bad.er” could match “badger”, “ badder” (slang), or up to the‘r’ of “bad error”.

The character [indicates the beginning of a character class. It is similar to the ‘any’ character ., but you get
to choose which characters you want to match. The character class is ended with the character]. So, while a search for
“bae’” will match “bane’, “bade’, “bale’, “bate’, et cetera, you can limit it to matching “babe” and “bake” by
searching for “ba[bk]e’. Only one of the characters inside the [and] will match a character. If in fact you want to
match any character except those in the character class, you can put a ” as the first character. It must be the first
character of the class, or else it has no specia meaning. So, a search for [“aeiou] will match any character except a
vowel, but a search for [aeiou™] will match any vowel or a”.

If you have many charactersin order, that you want to put in the character class, you may use adash (-) asa
range character. So, [a-z] will match any letter (or any lower case letter if EXACT mode is on), and [0-9a-f] will match
any digit or any letter ‘a through ‘f’, which happen to be the characters for hexadecimal numbers. If the dash is at the
beginning or end of a character class, it istaken to be just a dash.

The ? character indicates that the preceding character is optional. The character may or may not appear in the
matched string. For example, a search for “bea?st” would match both “beast” and “best”. If there is no preceding
charcter for ?to modify, it istreated as a normal question mark character.

The * character is known as closure, and means that zero or more of the preceding character will match. If
there is no preceding character,

* has no special meaning and is treated as a normal asterisk. The closure symbol will also have no special
meaning if it is preceded by the beginning of line symbol #, since it represents a position, not a character.

The notion of zero or more charactersisimportant. If, for example, your cursor was on the line
Thislineis missing two vowels.
and a search was made for “a*”, the cursor would not move, because it is guaranteed to match no letter ‘a
which satisfies the search conditions. If you wanted to search for one or more of the letter ‘a’, you could search for
“aa*”, which would match the |etter a, then zero or more of them. A better way, however, isto use the + character.

The + character behaves in every respect like the * character, with the exception that its minimum match
range is one, not zero. Thus the pattern “a+” isidentical to “aa*”.

Under older versions of MicroEMACS, the closure symbols would not operate on newlines. The current
versions no longer have this restriction.

The\ is the escape character. With the exception of groups, which are explained below, the\ is used at those

times when you want to be in MAGIC mode, but also want a regular expression character to be just a character. It
turns off the special meaning of the character. So a search for “it\.” will search for a line with “it.”, and not “it"

22

Modes MicroEMACS Reference Manual

followed by any other character. Or, a search for “TEST*+” would match the word TEST followed by one or more
asterisks. The escape character will also et you put », —, or] inside a character class with no special side effects.

The character pair \(represent the start of a group in a search string. A group is ended by the character pair
\). All characters matched within the \(and \) are part of a numbered group, and may be referenced with the & GROUP
function, or with a\ followed by the group number in the replacement string of replace-string or the query-replace-
string commands. For example, a search for “INDEX\([0-9]+\)”, to be replaced by “getind(\1)" would change
indptr := INDEX42
to

indptr := getind(42)

There may be up to nine groups. Groups may be nested.

The character & (ampersand) is a replacement character, and represents al the characters which were
matched by the search string. When used in the M -R replace-string or the M-"R query-replace-string commands, the
& will be substituted for the search string.

8.6 OVER mode

OVER mode stands for overwrite mode. When in this mode, when characters are typed, instead of simply
inserting them into the file, EMACS will attempt to overwrite an existing character past the point. Thisis very useful
for adjusting tables and diagrams.

8.7 WRAP mode
Wrap mode is used when typing in continuous text. Whenever the cursor is past the currently set fill column
(72 by default) and the user types a space or a<NL>, the last word of the line is brought down to the beginning of the
next line. Using this, one just types a continuous stream of words and EMACS automatically inserts <NL>s at
appropriate places.
NOTE to programmers:

The EMACS variable $wraphook contains the name of the function which executes when EMACS

detects it is time to wrap. This is set to the function wrap-word by default, but can be changed to

activate different functions and macros at wrap time.
8.8 VIEW mode

VIEW mode disables all commands which can change the current buffer. EMACS will display an error
message and ring the bell every time you attempt to change a buffer in VIEW mode.

23

MicroEMACS Reference Manual Modes

Chapter 8 Summary
In Chapter 8 you learned about modes and their effects.

Key Binding Keystroke Effect

add-mode AXM Add amode to the current buffer
delete-mode AXAM Delete a mode from the current buffer
add-global-mode M-M Add aglobal modeto the

current buffer

delete-global-mode M-"M Delete a global mode from the
current buffer

24

Files MicroEMACS Reference Manual

Chapter 9

Files

A fileissimply a collection of related data. In EMACS we are dealing with text files— named collections of
text residing on a disk (or some other storage medium). Y ou will recall that the major entities EMACS deals with are
buffers. Disk-based versions of files are only active in EMACS when you are reading into or writing out of buffers. As
we have aready seen, buffers and physical files are linked by associated file names. For example, the buffer “ch7.txt”
which is associated with the physical disk file “ch7.txt.” You will notice that the file is usually specified by the drive
name or (in the case of ahard drive) a path. Thus you can specify full file namesin EMACS,

e.g. disk:\directories\filename.extension
If you do not specify adisk and directories, the default disk and the current directory is used.

IMPORTANT — If you do not explicitly save your buffer to afile, al your edits will be lost when you leave
EMACS (athough EMACS will prompt you when you are about to lose edits by exiting). In addition, EMACS does
not protect your disk-based files from overwriting when it savesfiles. Thuswhen you instruct EMACS to save afileto
disk, it will create afile if the specified file doesn't exist, or it will overwrite the previously saved version of the file
thus replacing it. Your old version is gone forever.

If you are at al unsure about your edits, or if (for any reason) you wish to keep previous versions of afile,
you can change the name of the associated file with the command XN change-file-name. When this file is saved to
disk, EMACS will create anew physical file under the new name. The earlier disk file will be preserved.

For example, let’sload the file fang.txt into EMACS. Now, type *XN. The EMACS command line prompts
“Name:”. Enter a new name for the file — say new.txt and press <NL>. The file will be saved under the new filename,
and your disk directory will show both fang.txt and new.txt.

An dternative method is to write the file directly to disk under a new filename. Let’s pull our “publish.txt”
file into EMACS. To write this file under another filename, type *X*W write-file. EMACS will prompt you “write
file”. Enter an alternate filename — desktop.txt. Your file will be saved as the physical file “ desktop.txt”.

Note that in the examples above, athough you have changed the names of the related files, the buffer names
remain the same. However, when you pull the physical file back into EMACS, you will find that the buffer name now
relates to the filename.

For example — You are working with a buffer “fang.txt” with the related file “fang.txt”. You change the
name of the file to “new.txt”. EMACS now shows you working with the buffer “fang.txt” and the related file
“new.txt”. Now pull thefile “new.txt” into EMACS. Notice that the buffer name has now changed to “new.txt”.

If for any reason a conflict of buffer names occurs,(if you have files of the same name on different drives for
example) EMACS will prompt you “use buffer:”. Enter an aternative buffer nameif you need to.

For alist of file related commands (including some we' ve already seen), see the summary page.

25

MicroEMACS Reference Manual Files

Chapter 9 Summary

In Chapter 9 you learned some of the more advanced concepts of file naming and manipulation. The
relationship between files and buffers was discussed in some detail.

Key Binding Keystroke Effect

save-file AXAS Saves contents of current buffer with
associated filename on default disk/
directory (if not specified)

write-file AXAMW Current buffer contents will be
saved under specified name

change-file-name

AXN The associated filename is changed
(or associated if not previously
specified) as specified
find-file AXNE Reads specified file into buffer and

switches you to that buffer, or switches
to buffer in which the file has previously
been read

read-file AXAR Reads file into buffer thus overwriting
buffer contents. If file has already
been read into another buffer, you will
be switched to it

view-file AXNV The same as read-file except the buffer

isautomatically put into VIEW mode thus
preventing any changes from being made

26

Screen Formatting MicroEMACS Reference Manual

Chapter 10

Screen Formatting

10.1 Wrapping Text

As we learned in the introduction, EMACS is not a word processor, but an editor. Some simple formatting
options are available however, although in most cases they will not affect the appearance of the finished text when it is
run through the formatter. We have already encountered WRAP mode which wraps lines longer than a certain length
(default is 75 characters). Y ou will recall that WRAP is enabled by entering XM and responding to the command line
prompt with wrap.

You can aso set your own wrap margin with the command *XF set-fill-column. Notice EMACS responds
“[Fill column is 1].” Now try typing some text. You'll notice some very strange things happening — your text wraps
at every word!! This effect occurs because the set wrap margin command must be preceded by a humeric argument or
EMACS sets it to the first column. Thus any text you type that extends past the first column will wrap at the most
convenient line break.

To reset the wrap column to 72 characters, press the <META> key and enter 72. EMACS will respond
“Arg: 72". Now press *XF. EMACS will respond “[Fill column is 72]”. Your text will again wrap at the margin
you' ve been using up to this point.

10.2 Reformatting Paragraphs

After an intensive editing session, you may find that you have paragraphs containing lines of differing
lengths. Although this disparity will not affect the formatted text, aesthetic and technical concerns may make it
desirable to have consistent paragraph blocks on the screen. If you are in WRAP mode, you can reformat a paragraph
with the command M-Q fill-paragraph. This command ‘fills' the current paragraph reformatting it so al the lines are
filled and wrap logically.

10.3 Changing Case

There may be occasions when you find it necessary to change the case of the text you've entered. EMACS
allows you to change the case of even large amounts of text with ease. Let's try and convert a few of the office
traditionalists to the joy of word processing. Typein the following text:

Throw away your typewriter and learn to use a word processor. Word processing is relatively easy
to learn and will increase your productivity enormously. Enter the Computer Age and find out just
how much fun it can be!!

Let's giveit alittle more impact by capitalizing the first four words. The first step is to define the region of
text just as you would if you were doing an extensive deletion. Set the mark at the beginning of the paragraph with
M-<space> set-mark and move the cursor to the space beyond “typewriter.” Now enter *X"U case-region-upper.
Y our text should now look like this:

THROW AWAY YOUR TYPEWRITER and learn to use a word processor. Word processing is
relatively easy to learn and will increase your productivity enormously. Enter the Computer Age and
find out just how much fun it can be!!

If you want to change the text back to lower case, type *X"L case-region-lower. You can also capitalize
individual words. To capitalize the word “fun”, position the cursor in front of the word and type M-U case-word-
upper. The word is now capitalized. To change it ck to lower case, move the cursor back to the beginning of the word
and type M-L case-word-lower.

You may also capitalize individual letters in EMACS. The command M-C case-word-capitalize capitalizes
the first letter after the point. This command would normally be issued with the cursor positioned in front of the first

27

MicroEMACS Reference Manual Screen Formatting

letter of the word you wish to capitalize. If you issue it in the middle of a word, you can end up with some strAnge
looking text.

10.4 Tabs

Unless your formatter is instructed to take screen text literally (as MicroSCRIBE does in the ‘verbatin’
environment for example), tabsin EMACS generally affect screen formatting only.

When EMACS isfirst started, it sets the default tab to every eighth column. Aslong as you stay with default,
every time you press the tab key atab character, | isinserted. This character, like other control characters, isinvisible
— but it makes a subtle and significant difference to your file and editing.

For example, in default mode, press the tab key and then type the word Test. “Test” appears at the eighth
column. Move your cursor to the beginning of the word and delete the backward character. The word doesn't move
back just one character, but flushes to the left margin. The reason for this behavior is easily explained. In tab default,
EMACS insertsa ‘rea’ tab character when you press the tab key. This character is inserted at the default position, but
NO SPACES are inserted between the tab character and the margin (or previous tab character). As you will recal,
EMACS only recognizes characters (such as spaces or letters) and thus when the tab character is removed, the text
beyond the tab is flushed back to the margin or previous tab mark.

This situation changes if you ater the default configuration. The default value may be changed by entering a
numeric argument before pressing the tab key. As we saw earlier, pressing the META key and entering a number
allows you to specify how EMACS performs a given action. In this case, let’s specify an argument of 10 and hit the
tab key.

Now hit the tab key again and type Test. Notice the word now appears at the tenth column. Now move to the
beginning of the word and delete the backward character. “ Test” moves back by one character.

EMACS behaves differently in these circumstances because the 2| handle-tab function deals with tabbing in
two distinct ways. In default conditions, or if the humeric argument of zero is used, handle-tab inserts a true tab
character. If, however, a non-zero numeric argument is specified, handle-tab inserts the correct number of spaces
needed to position the cursor at the next specified tab position. It does NOT insert the single tab character and hence
any editing functions should take account of the number of spaces between tabbed columns.

The distance which a true tab character moves the cursor can be modified by changing the value of the
$hardtab environment variable. Initially set to 8, this will determine how far each tab stop is placed from the previous
one. (Usethe "X A set command to set the value of an environment variable).

Many times you would like to take text which has been created using the tab character and change it to use
just spaces. The command * X~ D detab-region changes any tabs in the currently selected region into the right number
of spaces so the text does not change. This is very useful for times when the file must be printed or transferred to a
machine which does not understand tabs.

Also, the inverse command, * X~ E entab-region changes multiple spaces to tabs where possible. Thisis a
good way to shrink the size of large documents, especially with data tables. Both of these commands can take a
numeric argument which will be interpreted as the number of lines to en/detab.

Another function, related to those above is provided for by the *X"T trim-region when invoked will delete
any trailing white space in the selected region. A preceding numeric argument will do this for that number of lines.

28

Screen Formatting

MicroEMACS Reference Manual

Chapter 10 Summary

In Chapter 10 introduced some of the formatting features of EMACS. Text-wrap, paragraph reformatting,
and tabs were discussed in some detail. The commands in the following table were covered in the chapter.

Key Binding
add-mode/WRAP

delete-mode/WRAP

set-fill-column

fill-paragraph

case-word-upper

case-word-lower

case-word-capitalize

case-region-upper
case-region-lower

handle-tab

entab-region

detab-region

trim-region

29

Keystroke
AXM[WRAP|

AXAM[WRAP]
AXF

M-Q

AXMU
AXAL

al

AXME

AXAD

I\X/\T

Effect
Add wrap mode to current buffer

Remove wrap mode from current buffer

Set fill column to given numeric
argument

Logically reformats the current
paragraph

Text from point to end of the
current word is changed to uppercase

Text from point to end of the
current word is changed to lowercase

First word (or letter) after the
point is capitalized

The current region is uppercased
The current region is lowercased

Tab interval is set to the given
numeric argument

Changes multiple spaces to tabs
characters where possible

Changes tab charactersto the
appropriate number of spaces

Trims white space from the end
of thelinesin the current region

MicroEMACS Reference Manual Access to the Outside World

Chapter 11

Access to the Outside World

EMACS has the ahility to interface to other programs and the environment of the computer outside of itself.
It does this through a series of commands that allow it to talk to the computer’s command processor or shell. Just
what this is varies between different computers. Under MSDOS or PCDOS this is the command.com command
processor. Under UNIX it isthe csh shell. On the Atari ST is can be the Mark Williams M SH or the Beckmeyer shell.
In each case, it is the part of the computer’s operating system that is responsible for determining what programs are
executed, and when.

The ~ X! shell-command command prompts the user for a command line to send out to the shell to execute.
This can be very useful for doing file listings and changing the current directory or folder. EMACS gives control to the
shell, which executed the command, and then types [END] and waits for the user to type a character before redrawing
the screen and resuming editing. If the shell-command command is used from within the macro language, there is no
pause.

X @ pipe-command command allows EMACS to execute a shell command, and if the particular computer
allows it, send the results into a buffer which is automatically displayed on the screen. The resulting buffer, called
“command” can be manipulated just like any other editing buffer. Text can be copied out of it or rearranged as needed.
This buffer is originally created in VIEW mode, so remember to *X*Mview<NL > in order to changeit.

Many computers provide tools which will allow you to filter text, making some modificationsto it along the
way. A very common tool is the SORT program which accepts afile, sorts it, and prints the result out. The EMACS
command, * X# filter-buffer sends the current buffer through such afilter. Therefore, if you wished to sort the current
buffer on a system which supplied a sort filter, you would type * X#sort<NL>. You can also create your own filters
by writing programs and utilities which read text from the keyboard and display the results. EMACS will use any of
these which would normally be available from the current shell.

If you would like to execute another program directly, without the overhead of an intervening shell, you can
use the * X$ execute-program command. It will prompt you for an external program and its arguments and attempt to
execute it. Like when EMACS looks for command files, EMACS will look first in the HOME directory, then down
the execute PATH, and finally in the current directory for the named program. On some systems, it will automatically
tack the proper extension on the file name to indicate it is a program. On some systems that don’t support this function,
AX$ will be equivalent to A X! shell-command.

Sometimes, you would like to get back to the shell and execute other commands, without losing the current
contents of EMACS. The "XC i-shell command shells out of EMACS, leaving EMACS in the computer and
executing another command shell. Most systems would allow you to return to EMACS with the “exit” command.

On some systems, mainly advanced versions of UNIX, you can direct EMACSto “ go into the background”

with the XD suspend-emacs command. This places EMACS in the background returning you to the original
command shell. EMACS can then be returned to at any time with the “ fg” foreground command.

30

Access to the Outside World MicroEMACS Reference Manual

Chapter 11 Summary

In Chapter 11 introduced different ways to access the computers shell or command processor from within
EMACS. The commands in the following table were covered in the chapter.

Key Binding Keystroke Effect

execute-program X% Execute an external program
directly

filter-command AXH# Send the current buffer through
ashell filter

i-shell AXC Escape to anew shell

pipe-command "X@ Send the results of an external
shell command to a buffer

shell-command AX1 Execute one shell command

suspend-emacs XD Place EMACS in the background

(some UNIX systems only)

31

MicroEMACS Reference Manual Keyboard Macros

Chapter 12
Keyboard Macros

In many applications, you may need to repeat a series of characters or commands frequently. For example, a
paper may require the frequent repetition of a complex formula or along name. Y ou may also have a series of EMACS
commands that you invoke frequently. Keyboard macros offer a convenient method of recording and repeating these
commands.

Imagine, for example, you are writing a scholarly paper on Asplenium platyneuron, the spleenwort fern.
Even the dedicated botanist would probably find it a task bordering on the agonizing to type Asplenium platyneuron
frequently throughout the paper. An alternative method is ‘record’ the name in a keyboard macro. Try it yourself.

The command ~X(begin-macro starts recording the all the keystrokes and commands you input. After
you've typed it, enter Asplenium platyneuron. To stop recording, type *X) end-macro. EMACS has stored all the
keystrokes between the two commands. To repeat the name you've stored, just enter *XE execute-macro, and the
name “Asplenium platyneuron” appears. You can repeat this action as often as you want, and of course as with any
EMACS command, you may precede it with anumerical argument to repeat it many times.

Because EMACS records keystrokes, you may freely intermix commands and text. Unfortunately, you can
only store one macro at atime. Thus, if you begin to record another macro, the previously defined macro is lost. Be
careful to ensure that you've finished with one macro before defining another. If you have a series of commands that
you would liketo ‘record’ for future use, use the procedure facilities detailed in chapter 13.

32

Keyboard Macros MicroEMACS Reference Manual

Chapter 12 Summary

Chapter 12 covered keyboard macros. You learned how to record keystrokes and how to repeat the stored
sequence.

Key Binding Keystroke Effect

start-macro AX(Starts recording all keyboard input
end-macro AX) Stops recording keystrokes for macro
execute-macro "XE Entire sequence of recorded

keystrokesis replayed

33

MicroEMACS Reference Manual MicroEMACS Procedures

Chapter 13
MicroEMACS Procedures

Procedures, or macros, are programs that are used to customize the editor and to perform complicated
editing tasks. They may be stored in files or buffers and may be executed using an appropriate command, or bound to a
particular keystroke. Portions of the standard start-up file are implemented via procedures, as well as the built in help
system. The M-"E run command causes named procedures to be executed. The execute-file command allows you to
execute a procedure stored in adisk file, and the execute-buffer command allows you to execute a procedure stored in a
buffer. Procedures are stored for easy execution by executing files that contain the store-procedure command.

In a command file, the store-procedure command takes a string argument which is the name of a procedure
to store. These procedures than can be executed with the M-"E run command. Also, giving the name of a stored
procedure within another procedure will executed that named procedure as if it had been called up with the run
command.

Some fairly length examples of MicroEMACS procedures can be seen by examining the standard files that
come with EMACS. The emacs.rc file (called .emacsrc) under UNIX) is the MicroEMACS command file which is
executed when EMACS is normally run. It contains a number of different stored procedures along with the lines to
setup and display the Function key window and to call up other procedures and command files using function keys.

There are many different aspects to the language within MicroEMACS. Editor commands are the various
commands that manipulate text, buffers, windows, et cetera, within the editor. Directives are commands which control
what lines get executed within a macro. Also there are various types of variables. Environmental variables both control
and report on different aspects of the editor. User variables hold string values which may be changed and inspected.
Buffer variables allow text to be placed into variables. Interactive variable alow the program to prompt the user for
information. Functions can be used to manipulate all these variables.

13.1 Constants

All constants and variable contents in EMACS are stored as strings of characters. Numbers are stored digit
by digit as characters. This allows EMACS to be “typeless’, not having different variables types be legal in different
contexts. This has the disadvantage of forcing the user to be more careful about the context of the statements variables
are placed in, but in turn gives them more flexibility in where they can place variables. Needless to say, this aso
allows EMACS s expression evaluator to be both concise and quick.

Wherever statements need to have arguments, it is legal to place constants. A constant is a double quote
character, followed by a string of characters, and terminated by another double quote character. To represent various
special characters within a constant, the tilde (~) character is used. The character following the tilde is interpreted
according to the following table:

uence Result
~N EMACS newline character (breaks lines)
~r M carriage return
~| " linefeed
~~ ~ tilde
~b "H backspace
~f AL formfeed
~t M tab
~" " quote

Any character not in the table which follows a tilde will be passed unmodified. This action is similar to the
A Q quote-character command available from the keyboard.

EMACS may use different characters for line terminators on different computers. The ~n combination will
always get the proper line terminating sequence for the current system.

MicroEMACS Procedures MicroEMACS Reference Manual

The double quotes around constants are not needed if the constant contains no internal white space and it
also does not happen to meet the rules for any other EMACS commands, directives, variables, or functions. This is
reasonable useful for numeric constants.

13.2 Variables

Variables in MicroEMACS procedures can be used to return values within expressions, as repeat counts to
editing commands, or as text to be inserted into buffers and messages. The value of these variablesis set using the set
AXA command. For example, to set the current fill column to 64 characters, the following macro line would be used:

set $fillcol 64

or to have the contents of % name inserted at the point in the current buffer, the command to use would be:

insert-string %name

13.2.1 Environmental Variables

“What good is aquote if you can’t changeit?’

These variables are used to change different aspects of the way the editor works. Also they will return the
current settings if used as part of an expression. All environmental variable names begin with a dollar sign ($) and are
in lower case.

$acount The countdown of inserted characters until the next save-file.

$asave The number of inserted characters between automatic file-savesin ASAVE mode.

$bufhook The function named in this variable is run when a buffer is entered. It can be used to
implement modes which are specific to aparicular file or file type.

$cbflags Current buffer attribute flags (See appendix G for details).

$cbufname Name of the current buffer.

$cfname File name of the current buffer.

$cmdhook Name of function to run before accepting a command. Thisis by default set to nop.

$cmode Integer containing the mode of the current buffer. (See Appendix F for values).

$curchar Ascii value of the character currently at the point.

$curcol Current column of point in current buffer.

$curline Current line of point in current buffer.

$curwidth Number of columns used currently.

$curwind Current window number.

$cwline Current display linein current window.

$debug Flag to trigger macro debugging.

$deskcolor Color to use for current desktop, default to BLACK.

$diagflag If set to TRUE, diagonal dragging of text and mode linesis enabled. If FALSE, text and
modelines can only be dragged horizontally or vertically at onetime.

$discmd Controls the echoing of command prompts. Default is TRUE.

$disinp Controls the echoing of input at the command prompts. Default is TRUE.

35

MicroEMACS Reference Manual MicroEMACS Procedures

$disphigh

$exbhook

$fcol
$fillcol
$flicker
$fmtlead

$gflags
$gmode
$hardtab

$hjump

$hscroll

$kill

$language

$lastkey
$lastmesy

$line

$lterm

$lwidth
$match
$modeflag
$msflag

$numwind
$oldcrypt
$orgrow
Sorgcol
$pagelen

If set to TRUE, high-bit characters (single byte characters that are greater than 127 in
value) will be displayed in a pseudo-control format. The characters “~!” will lead off the
sequence, followed by the character stripped of its high bit. Default is FALSE.

This variable holds the name of a function or macro which is run whenever you are
switching out of a buffer.

The current line position being displayed in the first column of the current window.
Current fill column.
Flicker Flag set to TRUE if IBM CGA set to FALSE for most others.

lists all formatter command leadin characters. Lines beginning with these characters will
be considered the beginning of paragraphs.

Globa flags controlling some EMACS internal functions (See appendix G for details).
Globa mode flags. (See Appendix F for values).

Number of spaces between hard tab stops. Normally 8, this can be used to change
indentation only within the editor.

The number in here tells EMACS how many columns to scroll the screen horizontally
when a horizontal scroll isrequired.

This flag determines if EMACS will scroll the entire current window horizontally, or just
the current line. The default value, TRUE, results in the entire current window being
shifted left and right when the cursor goes off the edge of the screen.

This contains the first 127 characters currently in the kill buffer and can be used to set the
contents of thekill buffer.

[READ ONLY]Contains the name of the language which the current EMACS's message
will display. (Currently EMACS is available in English, French, Spanish, Latin,
Portuguese, Dutch, German, and Pig Latin).

[READ ONLY]Last keyboard character typed.

[READ ONLY]Contains the text of the last message which emacs wrote on the
command line.

The current line in the current buffer can be retrieved and set with this environment
variable.

Character(s) to write as a line terminator when writing a file to disk. Default is null,
which causesa‘\n’ character to be written. Not all operating systems support this.

[READ ONL Y]Returns the number of charactersin the current line.
[READ ONLY]Last string matched in a search.
Determines if mode lines are currently displayed.

If TRUE, the mouse (if present) is active. If FALSE, no mouse cursor is displayed, and
No mouse actions are taken.

The number of windows displayed.

Use the old method of encryption (which had abug init). Default is FALSE.
Desktop row position of current screen.

Desktop column position of current screen.

Number of screen lines used currently.

36

MicroEMACS Procedures

Ppalette

$paralead
$pending
$popflag

$progname

$ram

$readhook

$region

$replace
$rval

$scrname
$search
$searchpnt

$softtab

$ssave

$sscroll

$status

$sterm

$target

$time

$tpause

37

MicroEMACS Reference Manual

string used to control the palette register settings on graphics versions. The usually form
consists of groups of three octal digits setting the red, green, and blue levels.

Lists all paragraph start characters.
[READ ONLY]Flag to determineif there are user keystrokes waiting to be processed.
Use pop-up windows. Default is TRUE.

[READ ONLY]Always contains the string “MicroEMACS’ for standard MicroEMACS.
Could be something else if EMACS isincorporated as part of someone else's program.

The amount of remaining memory if MicroEMACS was compiled with RAMSIZE set.
A debugging tool.

This variable holds the name of a function to execute whenever a file is read into
EMACS. Normally, using the standard emacs.rc file, this is bound to a function which
places EMACS into CMODE if the extension of thefileread is.c or .h.

Contains the string of the current region. It will truncate at the stringsize limit, 255.
Current default replace string.

This contains the return value from the last subprocess which was invoked from
EMACS.

The current screen name.
Current default search string.

Set the placement of the of the cursor on a successful search match. $searchpnt = 0 (the
default), causes the cursor to be placed at the end of the matched text on forward
searches, and at the beginning of the text on reverse searches. $searchpnt = 1 causes the
cursor to be placed at the the beginning of the matched text regardless of the search
direction, while $searchpnt = 2 causes the cursor to be placed at the end.

Integer seed of the random number generator.

Number of spaces inserted by EMACS when the handle-tab command (which is
normally bound to the TAB key) isinvoked.

Current screen resolution (CGA, MONO, EGA or VGA on the IBM-PC driver. LOW,
MEDIUM, HIGH or DENSE on the Atari ST1040, NORMAL on most others).

If TRUE, when EMACS is asked to save the current file, it writes all files out to a
temporary file, deletes the original, and then renames the temporary to the old file name.
The default value of thisis TRUE.

Changes EMACS, when set to TRUE, to smoothly scroll windows (one line at a time)
when cursoring off the ends of the current window.

[READ ONLY]Status of the success of the last command (TRUE or FALSE). This is
usually used with !force to check on the success of a search, or afile operation.

This is the character used to terminate search string inputs. The default for thisis the last
key bound to meta-prefix.

Current target for line moves (setting this fool’s EMACS into believing the last
command was a line move).

[READ ONLY]Contains a string corresponding to the current date and time. Usually this
isin aform similar to “Mon May 09 10:10:58 1988". Not all operating systems will
support this.

Controls the length of the pause to display a matched fence when the current buffer isin
CMODE and a close fence has been typed.

MicroEMACS Reference Manual MicroEMACS Procedures

$version [READ ONLY]Contains the current MicroEMACS version number.

$wchars When set, MicroEMACS uses the characters listed in it to determine if it isin aword or
not. If it is not set (the default), the characters it uses are the upper and lower case letters,
and the underscore.

$wline Number of display linesin current window.

$wraphook This variable contains the name of an EMACS function which is executed when a buffer

isin WRAP mode and it is time to wrap. By default thisis bound to wrap-word.

$writehook This variable contains the name of an EMACS function or macro which is invoked
whenever EMACS attempts to write afile out to disk. This is executed before the file is
written, allowing you to process afile on the way out.

$xpos The column the mouse was at the last mouse button press.

$yankflag Controls the placement of the cursor after ayank command or an insert. When $yankflag
is FALSE (the default), the cursor is placed at the end of the yanked or inserted text.
When it is TRUE, the cursor remains at the start of the text.

$ypos The line which the mouse was on during the last mouse button press.
13.2.2 User variables

User variables allow you to store strings and manipulate them. These strings can be pieces of text, numbers
(in text form), or the logical values TRUE and FAL SE. These variables can be combined, tested, inserted into buffers,
and otherwise used to control the way your macros execute. At the moment, up to 512 user variables may bein usein
one editing session. All users variable names must begin with a percent sign (%) and may contain any printing
characters. Only the first 10 characters are significant (IE differences beyond the tenth character are ignored). Most
operators will truncate strings to alength of 128 characters.

13.2.3 Buffer Variables

Buffer variables are special in that they can only be queried and cannot be set. What buffer variables areisa
way to take text from a buffer and place it in avariable. For example, if | have a buffer by the name of RIGEL 2, and it
contains the text:

Richmond

Lafayette

<*>Bloomington (where <*> isthe current point)
Indianapolis

Gary

=* MicroEMACS 3.11 (WRAP) ==rigel2 == File: /datalrigel 2.txt =====

and within acommand | reference #rigel2, like:
insert-string #rigel 2

MicroEMACS would start at the current point in the RIGEL2 buffer and grab all the text up to the end of
that line and pass that back. Then it would advance the point to the beginning of the next line. Thus, after our last
command executes, the string “Bloomington” gets inserted into the current buffer, and the buffer RIGEL2 now looks
likethis:

Richmond

Lafayette

Bloomington

<*>|ndianapolis (where <*> isthe current point)

Gary

=* MicroEMACS 3.11 (WRAP) == rigel2 == File: /data/rigel2.txt =====

as you have probably noticed, a buffer variable consists of the buffer name, preceded by a pound sign (#).

38

MicroEMACS Procedures MicroEMACS Reference Manual

13.2.4 Interactivevariables

Interactive variables are actually a method to prompt the user for a string. This is done by using an at sign
(@) followed either with a quoted string, or a variable containing a string. The string is the placed on the bottom line,
and the editor waits for the user to type in a string. Then the string typed in by the usersis returned as the value of the
interactive variable. For example:

set %quest "What file?"
find-file @%oquest

will ask the user for afile name, and then attempt to find it. Note also that complex expressions can be built
up with these operators, such as:

set %default "filel"
@&cat &cat "Fileto decode[" %default "]: "

which prompts the user with the string:
File to decode]filel]:

13.3 Functions

Functions can be used to act on variables in various ways. Functions can have one, two, or three arguments.
These arguments will always be placed after the function on the current command line. For example, if we wanted to
increase the current fill column by two, using emacs's set (*XA) command, we would write:

set $fillcol & add $fillcol 2
\ \ \ \ \ second operand
\ \ \ \ first operand
\ \ \ function to execute
\ \ variable to set

\ set ("XA) command

Function names always begin with the ampersand (&) character, and are only significant to the first three
characters after the ampersand. Functions will normal expect one of three types of arguments, and will automatically
convert types when needed. Different argument typesinclude:

<num> an astii string of digits which is interpreted as a numeric value. Any string which does
not start with adigit or aminussign (-) will be considered zero.

<str> An arbitrary string of characters. At the moment, strings are limited to 128 charactersin
length.

<log> A logical value consisting of the string “TRUE” or “FALSE”. Numeric strings will also

evaluate to “FALSE” if they are equal to zero, and “TRUE" if they are non-zero.
Arbitrary text strings will have the value of “FALSE”.

A list of the currently available functions follows. Functions are always used in lower case, the uppercase
lettersin the function table are the short form of the function (IE &div for & divide).

Numeric Functions: (returns <num>)

&ADD <num> <num> Add two numbers

&SUB <num> <num> Subtract the second number from the first

&TIMes <num> <num> Multiply two numbers

&DIVide <num> <num> Divide the first number by the second
giving an integer result

&MOD <num> <num> Return the reminder of dividing the
first number by the second

& NEGate <neg> Multiply the arg by -1

&LENgth <str> Returns length of string

& SINdex <strl> <str2> Finds the position of <str2> within

<str1>. Returns zero if not found.

39

MicroEMACS Reference Manual

& ASCii

&RND
&ABS
&BANd
&BOR
&BXOr
&BNOt

<str>

<num>
<num>
<num> <num>
<num> <num>
<num> <num>
<num>

String manipulation functions:

&CAT
&LEFt

&RIGht
&MID
& UPPer
&LOWer
&CHR

>C

>K
&ENV
&BIND
&XLATE
&FINd

&TRIM

<str> <str>
<str> <num>

<str> <num>

MicroEMACS Procedures

Return the ascii code of the first

character in <str>

Returns arandom integer between 1 and <num>
Returns the absolute value of <num>

Bitwise AND function

Bitwise OR function

Bitwise XOR function

Bitwise NOT function

(returns <str>)

Concatenate the two strings to form one
return the <num> leftmost characters
from <str>

return the <num> rightmost characters
from <str>

<str> <numi1> <num2>

<str>
<str>
<num>

<str>

<str>

Starting from <num1> position in <str>,
return <num2> characters.

Uppercase <str>

L owercase <str>

return a string with the character
represented by ascii code <num>

returns a string of characters

containing a EMACS command input from
the user

return a string containing asingle
keystroke from the user

If the operating system is capable, this
returns the environment string associated
with <str>

return the function name bound to the
keystroke <str>

<strl> <str2> <str3>

<str>

<str>

Logica Testing functions:

&NOT
&AND

&OR

&EQUal

&LESs

& GREater
&SEQual
&SLEss

& SGRester
&EXIst

&ISNum

Specia Functions:

&GROup

<log>
<logl> <log2>

<logl> <log2>
<num> <num>
<numl> <numz2>
<numl> <numz2>
<strl> <str2>
<str1> <str2>
<strl> <str2>
<str>

<num>

<num>

Find the named file <str> along the

path and return its full file specification
or an empty string if none exists

Trim the trailing whitespace from a string

(returns <log>)

Return the opposite logical value
Returns TRUE if BOTH logical arguments
are TRUE

Returns TRUE if either argument
isTRUE

If <num> and <num> are numerically
equal, return TRUE

If <numl1> islessthan <num2>, return
TRUE.

If <num1> is greater than, or equal to
<num2>, return TRUE.

If the two strings are the same, return
TRUE.

If <str1> isless aphabetically than
<str2>, return TRUE.

If <str1> is aphabetically greater than
or equal to <str2>, return TRUE.

Does the named file <str> exist?

Is the given argument a legitimate number?

Return group <num> as set by aMAGIC
mode search.

40

MicroEMACS Procedures MicroEMACS Reference Manual
& SUPper <strl> <str2> Trangdlate the first char in <str1> to
thefirst char in <str2> when uppercasing.

& SLOwer <str1> <str2> Trand ate the first char in <str1> to
thefirst char in <str2> when lowercasing.

&INDirect <str> Evauate <str> asavariable.

This last function deserves more explanation. The & IND function evaluates its argument, takes the resulting
string, and then uses it as a variable name. For example, given the following code sequence:

; set up reference table

set Y%one "elephant”
set %two "giraffe"
set Ythree "donkey"

set %index "two"
insert-string & ind %index

the string “ giraffe” would have been inserted at the point in the current buffer. Thisindirection can be safely
nested up to about 10 levels.

13.4 Directives
Directives are commands which only operate within an executing procedure, |E they do not make sense as a
single command. As such, they cannot be called up singly or bound to keystroke. Used within command files, they
control what lines are executed and in what order.
Directives always start with the exclamation mark (!) character and must be the first non-wite space placed
on aline. Directives executed interactively (viathe execute-command-line command) will be ignored.
13.4.1 'ENDM Directive
Thisdirective is used to terminate a procedure or macro being stored. For example, if afile is being executed
contains the text:
; Read in afilein view mode, and make the window red
store-procedure get-red-viewed-file
find-file @"Fileto view: "
add-mode "view"
add-mode "red"
lendm
print "[Consult procedure has been loaded]"
only the lines between the store-macro command and the 'ENDM directive are stored in procedure get-red-

viewd-file. Both named procedures and numbered macroes (via the store-macro command) should be terminated with
this directive.

13.4.2 'FORCE Directive
When MicroEMACS executes a procedure, if any command fails, the procedure is terminated at that point.

If alineis preceded by a!FORCE directive, execution continues whether the command succeeds or not. For example:

; Merge the top two windows

save-window ;remember what window we are at
1 next-window ;9o to the top window
delete-window ;merge it with the second window

41

MicroEMACS Reference Manual MicroEMACS Procedures

Iforce restore-window ;Thiswill continue regardless

add-mode "red"

Often this is used together with the $status environment variable to test if a command succeeded. For
example:

set %seekstring " String to Find: "
Iforce search-forward %oseekstring
lif &seq $status TRUE

print "Y our string is Found"
lelse

print "No such STRING!"
lendif

13.4.3 !IF, 'EL SE, and !ENDIF Directives

This directive alows statements only to be executed if a condition specified in the directive is met. Every
line following the !l F directive, until the first '"EL SE or 'ENDIF directive, is only executed if the expression following
the !l F directive evaluates to a TRUE vaue. For example, the following commands creates the portion of a text file
automatically. (yes believe me, thiswill be easier to understand then that last explanation....)

lif & sequal %ocurplace "timespace vortex"
insert-string "First, rematerialize~n"

lendif
lif & sequal Yoplanet "earth” ;If we have landed on earth...
lif & sequal %time "late 20th century” ;and we are then
write-message "Contact U.N.I.T."
lelse
insert-string "Investigate the situation....~n"
insert-string " (SAY ’stay here Sara’)~n"
lendif
lelse
set Y%oconditions @" Atmosphere conditions outside? "
lif & sequal %econditions "safe"
insert-string & cat "Go outside......" "~n"
insert-string "lock the door~n"
lelse
insert-string " Dematerialize..try somewhen else"
newline
lendif
lendif

13.4.4 'GOTO Directive

Flow can be controlled within a MicroEMACS procedure using the !GOTO directive. It takes as an
argument alabel. A label consists of aline starting with an asterisk (*) and then an aphanumeric label. Only labelsin
the currently executing procedure can be jumped to, and trying to jump to a non-existing label terminates execution of
aprocedure. For example:

;Create ablock of DATA statementsfor aBASIC program

insert-string "1000 DATA "
set %linenum 1000

*nxtin
update-screen ;make sure we see the changes
set Yodata @"Next number: "
lif & equal %data 0
Igoto finish
lendif

lif &greater $curcol 60
2 delete-previous-character

42

MicroEMACS Procedures MicroEMACS Reference Manual

newline

set %linenum & add %linenum 10

insert-string & cat %linenum " DATA "
lendif

insert-string & cat %data ", "
Igoto nxtin

*finish

2 delete-previous-character
newline

13.4.5 'WHILE and 'ENDWHILE Directives

This directive allows you to set up repetitive tasks easily and efficiently. If a group of statements need to be
executed while a certain condition is true, enclose them with awhile loop. For example,

while &less $curcol 70
insert-string & cat & cat "[" #stuff "]"
lendwhile

places items from buffer “item” in the current line until the cursor is at or past column 70. While loops may
be nested and can contain and be the targets of |GOTOs with no ill effects. Using a while loop to enclose a repeated
task will run much faster than the corresponding construct using !l Fs.

13.4.6 'BREAK Directive

This lets you abort out of the most executing currently inner while loop, regardiess of the condition. It is
often used to abort processing for error conditions. For example:

; Read in files and substitute "begining" with "beginning"

set Y%filename #list
!while & not & seq %filename "<end>"
Iforce find-file %filename
lif & seq $status FALSE
write-message "[File read error]"
Ibreak
lendif
beginning-of-file
replace-string "begining
save-file
set %filename #list
lendwhile

beginning”

Thiswhile loop will processfiles until the list is exhausted or thereis an error while reading afile.
13.4.7 'RETURN Directive
The 'RETURN Directive causes the current procedure to exit, either returning to the caler (if any) or to

interactive mode. For example:

; Check the monitor type and set %emtyp

lif & sres"CGA™
set Yomtyp 1
Ireturn

lelse
set Yomtyp 2

MicroEMACS Reference Manual MicroEMACS Procedures

lendif

insert-string "Y ou are on aMONOCHROME machine! ~n"

Debugging MicroEMACS Procedures MicroEMACS Reference Manual

Chapter 14
Debugging MicroEMACS Procedures

When developing new procedures, it is very convenient to be able to trace their execution to discover errors.
The $debug environment variable enables procedure debugging. While this variable is TRUE, emacs will stop at each
line it intends to execute and allow you to view it, and issue a number of different commands to help determine how
the procedure is executing.

For example, we will step through the procedure which toggles the function key window off. The first thing
to do, is to set $debug, using the XA set command. Type *XA and emacs will prompt you on the command line with
“Variable to set: “. Type in “$debug” and press the enter key. Emacs will then ask “Value: “. Type in “TRUE” (in
capital letters) and press the enter key.

While macro debugging is enabled (as it is now) emacs will report each time a variable is assigned a value,
by displaying the variable and its value on the command line. Right now,

((($debug <- TRUE)))

appears on the command line to tell you that $debug now has been assigned the value of TRUE. Press the
space bar to continue.

Now, lets try to debug a macro. Press function key 5 which normally toggles the function key window. The
first thing that appearsis:

«<[Macro 01]:!if %rcfkeys»>

At this point, emacs is waiting for a command. It is prepared to see if the user variable %rcfkeysis TRUE,
and execute some lines if they are. Suppose we want to see the value of this variable, type the letter “€”’ to evaluate an
expression. Emacs will prompt with “EXP: “. Type “%rcfkeys’ followed by the enter key. Emacs should then respond
with “TRUE” to indicate that the function key window is currently on screen.

Press the space bar to allow the !if directive to execute. Emacs will decide that it is TRUE, and then display
the next command to execute.

«<[Macro 01]:!goto rcfoff»>

Notice emacs tells us what procedure we are currently executing (in this case, the macro bound to execute-
macro-1). Press the space bar again to execute the !goto directive.

«<[Macro 01]:save-window»>

Emacs is saving the position of the current window so that it can attempt to return to it after it has brought up
the function key window.

[...THISCHAPTER ISNOT FINISHED...]

45

MicroEMACS Reference Manual Key Bindings, What they are and why

Chapter 15
Key Bindings, What they are and why

One of the features which makes MicroEMACS very adaptable is its ability to use different keystrokes to
execute different commands. The process of changing the particular command a key invokes is called rebinding. This
allows us to make the editor ook like other popular editors and programs.

Each command in MicroEMACS has a name which is used for binding purposes. For example, the
command to move the cursor down one page is called next-line and is normally bound to the *N key. If you decided
that you also wanted to use the *D key to move the cursor down one line, you would use the M-K bind-to-key
command. EMACS would respond with “: bind-to-key “ on the command line and allow you to type in a command
name. Then type in the name of the command you want to change, in this case next-line, followed by the <NL> key.
EMACS will then wait for you to type in the keys you want to activate the named function. Type a single *D. From
now on, typing D will cause EMACS to move down one line, rather than its original function of deleting characters.

To find out the name of a command, consult the list of valid EMACS commands in Appendix B. Also, you
can use the ~X? describe-key command to look up the name of a command. Type ~X? and then the key to use that
command, and EMACS will show you the name of the command.

After you have experimented with changing your key bindings, you may decide that you want to change
some bindings permanently. To have EMACS rebind keys to your pleasure each time you start EMACS, you can add
statements to the end of your startup file (emacs.rc or .emacsr ¢ depending on the system). For example,

bind-to-key next-line"\D

Notice, that control D character in the startup file is represented visibly as an uparrow key followed by a
capital D. To know how to represent any keys you want to bind, use the describe-key command on the key, and use the
sequence that is displayed.

bind-to-key split-current-window FN1
This example would make function key 1 activate the command that splits the current window in two.

EMACS will let you define alarge number of keys, but will report “Binding table FULL!” when it runs out
of space to bind keys. Normally EMACS will allow up to 512 key bindings (including approx. 300 originally bound

keys).

If you want to get a current listing of all the commands and the keys bound to them, use the describe-
bindings command. Notice, that this command is not bound to any keys!

46

MicroEMACS Command Line Switches and Startup Files MicroEMACS Reference Manual

Appendix A
MicroEMACS Command Line Switches and Startup Files

When EMACS first executes, it aways searches for a file, called .emacsrc under most UNIX systems or
emacs.rc on most other systems which it will execute as EMACS macros before it reads in the named source files.
This file normally contains EMACS macroes to bind the function keys to useful functions and load various useful
macros. The contents of thisfile will probably vary from system to system and can be modified by the user as desired.

When searching for this file, EMACS looks for it in this order. First, it attempts to find a definition for
“HOME" in the environment. It will look in that directory first. Then it searches all the directories listed in the
“PATH” environment variable. Then it looks through alist of predefined standard directories which vary from system
to system. Finaly, failing all of these, it looks in the current directory. This is also the same method EMACS uses to
look up any filesto execute, and to find it's help file EMACS.HLP.

On computers that call up EMACS via a command line process, such as MSDOS and UNIX, there are
different things that can be added to the command line to control the way EMACS operates. These can be switches,
which are adash ('-') followed by aletter, and possible other parameters, or a startup file specifier, which isan at sign
‘@' followed by afile name.

@<file> This causes the named file to be executed instead of the standard emacs.rc file before
emacs reads in any other files. More than one of these can be placed on the command
line, and they will be executed in the order that they appear.

-C The following source files on the command line can be changed (as opposed to being in
VIEW mode). Thisis mainly used to cancel the effects of the —v switch used previously
in the same command line.

-E This flag causes emacs to automatically run the startup file “error.cmd” instead of
emacs.rc. This is used by various C compilers for error processing (for example, Mark
Williams C).

—G<num> Upon entering EMACS, position the cursor at the <num> line of thefirst file.

—I<var> <value> Initialize an EMACS variable with <value>. This can be useful to force EMACS to start

in a particular mode. (For example, invoke EMACS with “emacs —i$sres VGA foo.bar”
to edit filefoo.bar in VGA 50 line mode on an IBM-PC).

—K<key> This key tells emacs to place the source filesin CRY PT mode and read it in using <key>
as the encryption key. If no key is listed immediately after the K switch, EMACS will
prompt for akey, and not echo it asit istyped.

-R This places EMACS in “restricted mode” where any commands allowing the user to read
or write any files other than the ones listed on the command line are disabled. Also al
commands allowing the user access to the operating system are disabled. This makes
EMACS very useful as a “safe” environment for use within other applications and
especially used as aremote editor for aBBS or electronic bulletin board system.

—S<string> After EMACSis started, it automatically searchesfor <string> in the first sourcefile.

-V This tells EMACS that all the following sources files on the command line should be in
VIEW mode to prevent any changes being made to them.

47

MicroEMACS Reference Manual Command Completion

Appendix B

Command Completion

Some versions of MicroEMACS will allow you to abbrieviate buffer names, command names and file names
as you enter them. To use this, type in the first few characters of the name you wish, and then hit either the space bar,
the META key or the TAB key. MicroEMACS will then attempt to look at the list of al the availible names and if
there is only one which will fit, it will choose that name. If there are several names that quailify, as many characters as
are common to ALL of them will be entered. If there are no possible matches, the bell will ring to indicate
MicroEMACS can not complete the command.

For example, if you have several filesin your current directory with the following names:

progl.c
progl.obj
progl.exe
progl.doc
program.one
project.one
test.c

tes

and you enter the "X F find-file command, if you type ‘p’ and then hit the space bar, EMACS will respond
by typing the ‘r’ that is common to all the above file names begining with ‘p’. If you then type ‘ogr’ and hit the tab
key, EMACS will respond with ‘am.one’ and automatically hit the enter key for you.

If you were to instead type an ‘@ and hit the space bar, EMACS will beep, informing you that there is no
possible match.

If you type a‘te’ and hit the space bar, EMACS will then type the following ‘s’, but it will not automatically
enter it because it is possible you mean to get to the test.c file.

Buffer name, and command name completion is available in al versions of MicroEMACS. File name
completion is available on UNIX BSDA4.3, the Atari ST, the AMIGA and under MSDOS.

48

MicroEMACS Commands

MicroEMACS Reference Manual

Appendix C
MicroEMACS Commands

Below is acomplete list of the commands in EMACS, the keys normally used to do the command, and what
the command does. Remember, on some computers there may also be additional ways of using a command (cursor
keys and special function keys for example).

Command
abort-command
add-mode
add-global-mode
append-file
apropos

backward-character
begin-macro

beginning-of-file

beginning-of-line
bind-to-key

buffer-position

case-region-lower
case-region-upper
case-word-capitalize
case-word-lower
case-word-upper

change-file-name

change-screen-size

change-screen-width

clear-and-redraw
clear-message-line

copy-region

49

"G

"MXM
M-M
AXNA
M-A

"B
AX(
M-<

A
M-K
/\X:

AXAL
XA
M-C
M-L
M-U
XN

(none)

(none)

AL
(none)

M-W

Binding Meaning

This allows the user to abort out of any
command that is waiting for input

Add a mode to the current buffer

Add aglobal mode for al new buffers
Write a buffer to the end of afile

List out commands whose name contains
the string specified

Move one character to the left
Begin recording a keyboard macro

Move to the beginning of thefilein
the current buffer

Move to the beginning of the current line
Bind akey to afunction

List the position of the cursor in the
current window on the command line

Make a marked region all lower case
Make amarked region all upper case
Capitalize the following word

Lower case the following word
Upper case the following word

Change the name of thefilein the
current buffer

Change the number of lines of the screen
currently being used

Change the number of columns of the
screen currently being used

Clear the physical screen and redraw it
Clear the command line

Copy the currently marked region into
thekill buffer

MicroEMACS Reference Manual

count-words M-"C
ctix-prefix X
cycle-screens A-C
delete-blank-lines AX"NO
delete-buffer AXK
delete-mode XM
delete-global-mode M-"M
del ete-next-character D
delete-next-word M-D
delete-other-windows X1

delete-previous-characterH

delete-previous-word M-"H
delete-screen A-D
delete-window X0
describe-bindings (none)
describe-functions (none)
describe-variables (none)
describe-key AX?
detab-region AXAD
display XG
dump-variables none
end-macro X)
end-of-file M->
end-of-line "E
end-of-word (none)
entab-region AXAE

exchange-point-and-mark ~X~X

MicroEMACS Commands
Count how many words, lines and
characters are in the current marked region
Change the key used asthe X prefix
Bring the rearmost screen to front
Delete all blank lines around the cursor

Delete a buffer which is not being
currently displayed in awindow

Turn off amode in the current buffer
Turn off aglobal mode

Delete the character following the cursor
Delete the word following the cursor

M ake the current window cover the entire
screen

Delete the character to the left of the
cursor

Delete the word to the | eft of the cursor
Delete ascreen

Remove the current window from the screen
Make alist of all legal commands

Make alist of all legal functions

Make alist of al environment
and user variables

Describe what command is bound to a
keystroke sequence

Change all tabsin aregion to the
equivalent spaces

Prompts the user for avariable and
displaysits current value

Places into a buffer the current values
of all environment and user variables

stop recording a keyboard macro
Move cursor to the end of the current buffer
Move to the end of the current line

Move the point just past the end of
the current word

Change multiple spacesto tabs where
possible

Move cursor to the last marked spot,
make the original position be marked

50

MicroEMACS Commands

execute-buffer

execute-command-line

execute-file
execute-macro

execute-macro-<n>

execute-named-command
execute-procedure

execute-program

exit-emacs

fill-paragraph
filter-buffer

find-file

find-screen

forward-character
goto-line

goto-mark
goto-matching-fence
grow-window
handle-tab

hunt-forward

hunt-backward

help

i-shell
incremental-search
indent-region

insert-file

insert-space
insert-string

kill-paragraph

51

(none)

(none)

(none)
"XE

(none)

AXNC

M-Q
AX#

/\X/\F
A-F

A-R

M-?
AXC
AXS
M-(

AXA

"C
(none)

M- W

Execute a buffer as amacro

Execute aline typed on the command
line as a macro command

Execute afile asamacro

Execute the keyboard macro (play back

the recorded keystrokes)

Execute numbered macro <N> where <N> is
an integer from 1to 40

Execute a command by name

Execute a procedure by name

Execute a program directly (not through
an intervening shell)

Exit EMACS. If there are unwritten,
changed buffers EMACS will ask to confirm

Fill the current paragraph

Filter the current buffer through an
external filter

Find afile to edit in the current window

Bring the named screen to front,
creating it if needed

Move cursor one character to the right
Goto anumbered line

Goto a numbered mark

Goto the matching fence

Make the current window larger

Insert atab or set tab stops

Hunt for the next match of the last
search string

Hunt for the last match of the last
search string

Read EMACS.HLP into a buffer and display
Shell up to anew command processor
Search for a string, incrementally

Indent the current region one tab

insert afile at the cursor in the
current file

Insert a space to the right of the cursor
Insert astring at the cursor

Delete the current paragraph

MicroEMACS Reference Manual

it

MicroEMACS Reference Manual

kill-region

kill-to-end-of-line

label-function-key

list-buffers
list-screens
macro-to-key
meta-prefix
mouse-move-down
mouse-move-up
Mmouse-resi ze-screen
mouse-region-down
mouse-region-up
move-window-down
move-window-up
name-buffer
narrow-to-region
newline

newline-and-indent

next-buffer

next-line
next-page
next-paragraph
next-window

next-word

nop
open-line
overwrite-string

pipe-command

pop-buffer

previous-line

"W

K

(none)

AX"B
A-B
M-"K
<ESC>
MSa
MSb
MS1
MSe
MSf
AXAN
AXNP
M-"N
AX<
M
"

AXX

N
N
M-N
X0
M-F

(none)
O
(none)

X@

(none)

P

Delete the current marked region, moving
it to the kill buffer

Delete the rest of the current line

Set the text on afunction key label
(HP150 only)

List all existing buffers
List all existing screens
Bind akey to amacro

Key used to precede all META commands

Move dl the lines in the current window down
Move all the lines in the current window up
Change the name of the current buffer

hides all text not in the current region

Insert a<NL> at the cursor

Insert a<NL> at the cursor and indent
the new line the same as the preceding line

Bring the next buffer in thelist into
the current window

Move the cursor down oneline
Move the cursor down one page
Move cursor to the next paragraph
Move cursor to the next window

Move cursor to the beginning of the
next word

Does nothing
Open aline at the cursor
Overwrite astring at the cursor

Execute an external command and place
its output in a buffer

Display abuffer temporarily, paging

Move cursor up one line

MicroEMACS Commands

52

MicroEMACS Commands

previous-page
previous-paragraph
previous-window

previous-word

print

query-replace-string

quick-exit
guote-character
read-file
redraw-display

remove-mark

resi ze-window

restore-window

replace-string

Z
M-P
~XP
M-B

(none)

M-"R

"Q
AXAR
M-AL

(none)

AXW

(none)

M-R

reverse-incremental-search*XR

run
save-file
save-window
scroll-next-up
scroll-next-down
search-forward
search-reverse

sel ect-buffer

Set
set-encryption-key
set-fill-column
set-mark

shell-command

show-files

53

M-"E
AXNS
(none)

M-"Z
M-V
S
"R
"XB

AXA
M-E
AXF

X1

(none)

MicroEMACS Reference Manual

Move cursor up one page
Move back one paragraph
Move the cursor to the last window

Move the cursor to the beginning of the
word to the left of the cursor

Display a string on the command line
(asynonim to write-message)

Replace al of one string with another
string, interactively querying the user

Exit EMACS, writing out all changed buffers
Insert the next character literally
Read afileinto the current buffer

Redraw the display, centering the
current line

Remove a numbered mark

Change the number of linesin the
current window

Move cursor to the last saved window
Replace all occurrences of one string
with another string from the cursor

to the end of the buffer

Search backwards, incrementally
Execute a named procedure

Save the current buffer if it is changed
Remember current window (to restore later)
Scroll the next window up

Scroll the next window down

Search for astring

Search backwards for a string

Select abuffer to display in the
current window

Set avariableto avalue

Set the encryption key of the current buffer
Set the current fill column

Set the mark

Causes an external shell to execute
acommand

Pop up alist of filesfrom the

MicroEMACS Reference Manual

shrink-window
source
split-current-window

store-macro

store-procedure

transpose-characters

trim-region
unbind-key
undent-region
universal-argument

unmark-buffer

update-screen
view-file
widen-from-region

wrap-word

write-file

write-message

yank

AXNZ
(none)
X2

(none)

(none)

T

/\X/\T
M-AK
M-)
"y

(none)
AXNV
/\X >

(none)

AXANW

(none)

Y

MicroEMACS Commands

specified directory

Make the current window smaller
Execute afile asamacro

Split the current window in two

Store the following macro linesto a
numbered macro

Store the following macro linesto a
named procedure

Transpose the character at the cursor
with the character to the left

Trim any trailing white space from aregion
Unbind a key from afunction

Remove aleading indent from aregion
Execute the following command 4 times

Unmark the current buffer (soitis
no longer changed)

Force a screen update during macro execution
Find afile,and put it in view mode
restores hidden text (see narrow-to-region)

Wrap the current word, thisisan
internal function

Write the current buffer under a new
file name

Display astring on the command line

yank the kill buffer into the current
buffer at the cursor

MicroEMACS Bindings MicroEMACS Reference Manual

Appendix D
MicroEMACS Bindings
Below is a complete list of the key bindings used in MicroEMACS. This can be used as a wall chart
reference for MicroEMACS commands.

Default Key Bindingsfor MicroEmacs 3.11

"A Moveto start of line ESCA Apropos (list some commands)
"B Move backward by characters ESCB Backup by words

AC Insert space ESCC Initial capitalize word

"D Forward delete ESCD Deleteforward word

AE Goto end of line ESCE Reset Encryption Key

"F Moveforward by characters ESCF Advance by words

NG Abort out of things ESCG Gotoaline

"H Backward delete
A Insert tab/Set tab stops
AJ Insert <NL>, then indent

AK Kill forward ESCK BindKey to function

AL Refresh the screen ESCL Lower caseword

"M Insert <NL> ESCM Add global mode

AN Moveforward by lines ESCN Goto End paragraph

O Openupablank line

AP Move backward by lines ESCP Goto Begining of paragraph
"Q Insert literal ESC Q Fill current paragraph

"R Search backwards ESCR Search and replace

NS Search forward ESCS Suspend (BSD only)

AT Transpose characters

AU Repeat command four times ESCU Upper case word

AV Moveforward by pages ESCV Move backward by pages
AW Kill region ESCW Copy region to kill buffer
Y Yank back from killbuffer ESC X Execute named command
~Z Move backward by pages ESCZ Saveadl buffersand exit
ESCAC Count wordsin region ESC~ Unmark current buffer
ESC~E Execute named procedure

ESC”F Goto matching fence ESC! Reposition window
ESC™H Delete backward word ESC< Moveto start of buffer
ESC K Unbind Key from function ESC> Moveto end of buffer
ESCAL Reposition window ESC. Set mark

ESC™M Delete global mode ESC space Set mark

ESC”N Rename current buffer ESCrubout Delete backward word
ESC”R Search & replace w/query rubout Backward delete

ESCAS Source command file
ESC ™V Scroll next window down
ESC W Delete Paragraph

ESC X Execute command line
ESC~Z Scroll next window up

AX < Narrow-to-region AX ? Describe akey
AX > Widen-from-region AX) Run 1 command in a shell
AX = Show the cursor position AX @ Pipeshell command to buffer
AX N Enlarge display window "X # Filter buffer thru shell filter
"X 0 Delete current window AX'$ Execute an externa program
X1 Delete other windows AX(Begin macro
AX 2 Split current window X)) End macro

AX' A Setvariablevalue
AX "B Display buffer list AX' B Switch awindow to a buffer
AXANMC Exit MicroEMACS AX C Start anew command processor

55

MicroEMACS Reference Manual

MicroEMACS Bindings

AX D Suspend MicroEMACS (BSD4.2 only)
"X E Execute macro
"X F Setfill column

"X K Delete buffer

AX'M Addamode
"X N Rename current filename
AX O Moveto the next window
AX P Moveto the previous window
"X R Incremental reverse search
AX'S Incrementa forward search
(Incremental search

not always available)

"X W resize Window
AX X Usenext buffer
AX Z Enlarge display window

Lines going past right margin "wrap" to anew line
Read-Only mode where no modifications are allowed
Change behavior of some commands to work better with C
Exact case matching on search strings

Overwrite typed characters instead of inserting them
Current buffer will be encrypted on write, decrypted on read
Use regular expression matching in searches

AX/D Detabline
AXNE Entabline
AXAF Findfile
AX AN Insert file
AX AL Lower caseregion
AX "M Delete Mode
AX AN Move window down
"X MO Deleteblank lines
AX AP Movewindow up
X MR Get afilefrom disk
X NS Savecurrent file
AX AT Trimline
AX AU Upper caseregion
AX AN Viewfile
AX MWV Writeafileto disk
AXAX Swap"." and mark
AXNZ Shrink window

Usable Modes

WRAP

VIEW

CMODE

EXACT

OVER

CRYPT

MAGIC

ASAVE

Save the file every 256 inserted characters

WHITE/CY AN/MAGENTA/Y ELLOW/BLUE/RED/GREEN/BLACK

Sets foreground color

white/cyan/magentalyellow/blue/red/green/black Sets background color

56

Numeric Arguments MicroEMACS Reference Manual

Appendix E

Numeric Arguments

57

MicroEMACS Reference Manual

Numeric Arguments to Commands

Appendix F

Numeric Arguments to Commands

In genera, preceding a MicroEMACS command with a numeric argument n causes the command to be
executed n times. However, there are a great many commands for which this has no effect, simply because it would
make no sense for the command to be executed more than once. There are also commands that take advantage of the
numeric arguments to alter their behavior subtly or unsubtly. The following is alist of these commands. Commands
that are not affected at all by numeric arguments are listed afterwards.

backward-character

change-screen-size

change-screen-width

clear-and-redraw
delete-next-character

delete-next-word

delete-previous-character
delete-previous-word

detab-region

end-of-word

entab-region

exchange-point-and-mark

exit-emacs

forward-character

goto-line

goto-mark
grow-window

handle-tab

hunt-backward

A negative argument invokes forward-character.

With no arguments, the number of rows defaults to the largest. Otherwise, set the screen
sizeton.

With no arguments, the number of columns defaults to the largest. Otherwise, set the
screen width to n.

With an argument, centers the window around the current cursor position.
A negative argument invokes del ete-previous-character.

With an argument of 0, will not delete the whitespace trailing the deleted word. A
negative argument will cause nothing to happen.

A negative argument invokes del ete-next-character.

An negative or zero argument will cause nothing to happen.

Without an argument, detab-region changes hard tabs to spaces in the lines between the
mark and the cursor. With an argument n, the commands detab n lines — forward if n is
positive, backwards if not.

A negative argument invokes next-word.

Without an argument, entab-region changes spaces to hard tabs in the lines between the
mark and the cursor. With an argument n, the commands entab n lines — forward if n is
positive, backwardsiif not.

Swap the current cursor position and mark number n. Without an argument, n defaults
to 0.

Providing a numeric argument n causes two things to happen. First, no checking for
modified buffers will occur. Second, MicroEMACS exits with a status of n.

A negative argument invokes backward-character.

An argument n will be taken as the line number to go to. Without an argument, you will
be asked for aline number. In either case, the line number must be 1 or greater.

Go to mark number n. Without an argument, n defaultsto O.
A negative argument invokes shrink-window. An argument of O causes no action.

Without an argument, handle-tab deals with the tab character, whether it should be a
single “hard” tab, or expanded as spaces. With an argument n, $softtab is set to n.

The command will hunt n times. The command will report failure if it cannot find its

pattern the nth time, even if has found an occurrence of the pattern before number n. A
negative argument invokes hunt-forward.

58

Numeric Arguments to Commands

hunt-forward

kill-to-end-of-line

list-buffers
move-window-down
move-window-up

next-buffer

next-line

next-page

next-paragraph

next-window

next-word
previous-line

previous-page
previous-paragraph

previous-window

previous-word

query-replace-string

quick-exit

redraw-display

remove-mark

replace-string

resize-window

59

MicroEMACS Reference Manual

The command will hunt n times. The command will report failure if it cannot find its
pattern the nth time, even if has found an occurrence of the pattern before number n. A
negative argument invokes hunt-backward.

With no argument n, the command deletes all characters to the end of the line. If it is
already at the end of the line, it will delete the newline. With a positive n as an
argument, the command will delete n complete lines, newline character and all, starting
from the cursor. With n equal to zero, the command deletes all text from the cursor to
the beginning of the line, but will not delete past the newline character. A negativen is

illegal.

With anumeric argument, INVISIBLE buffers are also listed.

With a negative argument, invokes move-window-up.

With a negative argument, invokes move-window-down.

With an argument n, the nth buffer after the current one is selected, and read in if
necessary. Any buffers in between the current buffer and the target buffer that have not
yet beenread in are read.

A negative argument invokes previous-line.

Without an argument, the window is scrolled forward by a full page. With an argument
n, the window is scrolled forwards by n lines. Negative arguments invoke previous-

page.

A negative argument invokes previous-paragraph.

With a positive argument n, the nth window from the top becomes the working window.
With a negative argument, the nth window from the bottom becomes the working
window.

A negative argument invokes next-word.

A negative argument invokes next-line.

Without an argument, the window is scrolled backward by a full page. With an argument
n, the window is scrolled backwards by n lines. Negative arguments invoke next-page.

A negative argument invokes next-paragraph.

With a positive argument n, the nth window from the bottom becomes the working
window. With a negative argument, the nth window from the top becomes the working
window.

A negative argument invokes next-word.

With a numeric argument, n occurrences of the search string may be replaced, depending
upon the user’s response. The count is based on the number of occurrences found, not
the number of positive responses from the user.

Saves al modifed buffers, and exits with a status of n.

With no argument, or when n is 0, the window is adjusted so that the cursor is in the
center. When n is positive, the window is adjusted so that the cursor is on the nth line of
the screen. When n is negative, the window is adjusted so that the cursor is on the last
line of the window, regardless of the magnitude of n.

Remove mark number n. Without an argument, n defaultsto O.

Will replace n occurrences of the search string with the replacement string. Otherwise,
with no argument, all occurrences from the cursor position to the end of file are replaced.

Requires an argument which must be positive.

MicroEMACS Reference Manual

scroll-next-down
scroll-next-up

search-forward

search-reverse

sel ect-buffer

set

isidentical to

set-fill-column
set-mark
shrink-window

split-current-window

store-macro

store-procedure

trim-region

Numeric Arguments to Commands

Behavior is same as with next-page.

Behavior is same as with previous-page.

The command will search n times. The command will report failure if it cannot find its
pattern the nth time, even if has found an occurrence of the pattern before number n. A
negative argument invokes search-reverse.

The command will search n times. The command will report failure if it cannot find its
pattern the nth time, even if has found an occurrence of the pattern before number n. A
negative argument invokes search-forward.

Without an argument, the buffer is simply displayed in the window. With an argument,
the buffer is not only displayed, but also given the attribute INVISIBLE.

If using the set command interactively, preceding the command with a numeric argument
then makes it unecessary for the command to ask for the variable’ s value (it will still ask
for the variable’'s name). If used in acommand line, then the command

set <variable name> <number>

<number> set <variable name>
With an argument, the fill columnisset to n. The default argument is 1.
Set mark number n. Without an argument, n defaultsto O.
A negative argument invokes shrink-window. An argument of O causes no action.
With n = 1, the new upper window becomes the current window. Any other numeric
argument makes the new lower window the current window. With no argument, the
current window becomes the new upper or lower window depending upon whether the
cursor was in the upper or lower half of the old window.

Since macroes are numbered, a numeric argument must be provided. These numbered
macroes are being phased out in preference for named macros.

If the command is provided a numeric argument, it will assume that store-macro is
actually being called.

Without an argument, trim-region removes spaces and tabs from the end of the lines
between the mark and the cursor. With an argument n, the commands trim n lines —
forward if n is positive, backwards if not.

F.1 Commands unaffected by numeric arguments.

abort-command
add-global-mode
add-mode
append-file
apropos
back-from-tag-word
begin-macro
beginning-of-file
beginning-of-line
bind-to-key
buffer-position
case-region-lower
case-region-upper
change-file-name
clear-message-line
copy-region
count-words
cycle-screens

delete-blank-lines filter-buffer
delete-buffer find-file
delete-global-mode find-screen
delete-mode goto-matching-fence
delete-other-windows help

delete-screen i-shell

delete-window
describe-bindings
describe-functions
describe-key
describe-variables
display

end-macro
end-of-file
end-of-line
execute-command-line
execute-program

fill-paragraph

incremental-search
insert-file
kill-region
macro-to-key
mouse-move-down
mouse-move-up
mouse-region-down
mouse-region-up
mouse-resi ze-screen
name-buffer
narrow-to-region
nop

60

Numeric Arguments to Commands

pi pe-command

pop-buffer

print

re-tag-word

read-file

restore-window
reverse-incremental-search
savefile

61

save-window
set-encryption-key
shell-command
suspend-emacs
tag-word
transpose-characters
unbind-key

MicroEMACS Reference Manual

unmark-buffer
update-screen
view-file
widen-from-region
wrap-word
write-file
write-message

MicroEMACS Reference Manual

Supported machines

Appendix G

Supported machines

The following table lists al the hardware/compilers for which | currently support MicroEMACS. Thisis not
exclusive of al machines which MicroEMACS will run on, but | have either run it myself, or had afirst hand report of

it running.
Hardware oS Compiler Comments
VAX 780 UNIX V5 native
UNIX V7 native
BSD 4.2 native job control supported
VMS native SMG & ANSI support
SUN SUNOS3& 4 native
gce
NCR Tower UNIX V5 native
IBM-RT PC BSD 4.3 native
AlX native
HP9000 UNIX V5 native
Fortune 32:16 UNIX V7 native
IBM-PC MSDOS LATTICE3 Large CODE/Large DATA
20& 32 AZTEC 3.4e Large CODE/Large DATA
TURBOC 20 LARGE memory model
MSC 6.0
*MWC 86
SCO XENIX native
HP150 MSDOS Lattice 2.15 Function key labels
Turbo C 2.0 for the touch screen
HP110 MSDOS Lattice 2.15
Aztec 3.4e
Turbo C 2.0
*Data General 10
MSDOS Lattice 2.1 Texas Instruments Professional
MSDOS Lattice 2.15
Amiga Intuition Lattice 3.03
Aztec 3.6
ST520 TOS Mark Williams C Spawns under MSH
Lattice 3.1 (no shell commands)
Fujitsu FMR MSDOS MSC 6.0
series
NEC 9800 MSDOS Turbo 2.0 Function key support
series MSC 6.0
HP3000 series MPE native

Systems to be supported (1E some code is already written:)
Macintosh System 7 Lightspeed C

62

Supported machines MicroEMACS Reference Manual

*meansthat | do not own or have accessto the listed compiler and/or
machine and must rely upon others to help support it.

63

MicroEMACS Reference Manual

CsLf)

CsRt)
End)

CsDn)

PgDn)
Ins)
Del)

Appendix H

Function Keys

Function Keys

All environments now support a set of machine independant bindings for function keys. Below is alist of
these bindings (not all of these are supported on al systems).

function

Function keysin MicroEmacs

Function
SFN1
S-FN2
S-FN3
S-FN4
S-FN5
S-FN6
S-FN7
S-FN8
S-FN9
S-FNO

~unction
FN/M1
FNA2
FNA3
FN™4
FNAS
FN"6
FNA7
FN/8
FN/9
FN”O

Alt-function

Machine Dependent Notes MicroEMACS Reference Manual

Appendix |
Machine Dependent Notes
This appendix lists some notes specific to individual implementations of MicroEMACS. Every attempt has
been made to allow EMACS to be identical on all machines, but we have also tried to take advantage of function keys,
cursor keys, mice, and special screen modes where possible.
1.1 IBM-PC/XT/AT and its clones
The IBM-PC family of computers is supported with a variety of different display adapters. EMACS will

attempt to discover what adapter is connected and use the proper driver for it. Below isalist of the currently supported
video adapters:

Adapter $sres Origina mode used
Monochrome Graphics Adapter MONO MONO
Color Graphics Adapter CGA CGA
CGA40 CGA40
Enhanced Graphics Adapter EGA CGA
Video Graphics Adapter VGA CGA
VGA12

If adriver for a Microsoft compatable mouse is installed on the system, EMACS will use the mouse in text
mode and allow the user all the standard mouse functions. The mouse cursor will appear to be a block of color in the
color opposite of it’s background.

EMACS also takes advantage of various function keys and the keys on the keypad on an IBM-PC. The
function keys are initially not bound to any particular functions (except by the emacs.rc startup file), but the keypad
keys do default to the following:

Keypad key Function

Home beginning-of-file
CSRSUP previous-line

Pg Up previous-page
CSRSLEFT backward-character
CSRSRIGHT forward-character
End end-of-file
CSRSDOWN next-line

Pg Dn Next-page

All these special keys are indicated in EMACS macroes by use of the FN prefix. Below is alist of many of
the keys and the codes used to specify them. Also the codes may be gotten by using the describe-key ("X ?) command
on the suspect key.

Compiling under TURBO C

To compile MicroEMACS under TURBO C, set the TURBO integrated environment with the following

options:
Memory model LARGE
Floating point NONE
Default char type UNSIGNED
Data alignment BYTE
Merge duplicate strings ON
Standard stack frame off
Test stack overflow off
Optimize for SIZE
Use register optimization ON

65

MicroEMACS Reference Manual
Register optimization
Jump optimization

Initialize segments
Stack warnings

Names: Code names
Segment name

OFF
OFF

ON
ON

Machine Dependent Notes

66

Machine Dependent Notes MicroEMACS Reference Manual

1.2 HP 150

This machine from Hewlett Packard is very unusua for an MSDOS machine. It has a touch screen and is
very function key oriented. An additional command, label-function-key allows you to place labels on the on screen
function key labels. A numeric argument indicates which function key to label (one through eight) and then the
program prompts for a 16 character label, which will be used as two lines of eight characters. To label function key
three with “save file” from a macro, you would use:

3 label-function-key "save file"

Notice the 4 spaces after “save’. Thisforces“file” to begin on the second line of the label.

67

MicroEMACS Reference Manual Machine Dependent Notes

1.3 Atari 520/1040ST
The ATARI ST family of computers have a dual personality. They may use either a monochrome or a color
screen. EMACS supports two screen resolutions on each monitor.
NOTE
When you set MicroEMACS up on your system, please remember to install it on the desktop as a
GEM application. If you have EMACS set as a TOS application, the mouse will not function
properly, and EMACS will aert you to this problem by beeping the bell.

Monitor $sres size #color $palette format

Color LOW 40x25 16 000111222333444555666777
MEDIUM
80x25 4 000111222333
Mono HIGH 80x25 2 000
DENSE 80x50 2 000

The $palette environment variable can be used to change what color is associated with each color name.
With a color monitor, each group of three digits indicates an octal number specifying the RED, GREEN and BLUE
levels of that color. Each color digit can vary from O to 7. For example, the initial setting of $palette in LOW
resolution is:

000700070770007707077777

which broken upis:

000 700 070 770 007 707 O77 777

which means;

000 Black
700 Red

070 Green
770 Y ellow
007 Blue
707 Magenta
077 Cyan
777 White

Also the mouse buttons are bound to mouse functions as described in the chapter about mice. The cursor
keys and the function keys are bound similarly to IBM-PC.

Files generated by EMACS on the ATARI ST have a single return character at the end of each line, unlike
the desktop files which want to have two returns. This makes it display files strangely from GEM’s [SHOW] option,
but makes the files port to other computers much nicer. When compiling MicroEMACS, the ADDCR symbol in
estruct.h will cause emacs to generate line ending sequences compatible with GEM.

Currently, when operating under the Mark Williams MSH program, EMACS can shell out and perform
external commands. This capability will be added later for the Beckmeyer shell and under GEMDOS.

68

Machine Dependent Notes MicroEMACS Reference Manual

1.4 Amiga 1000
The Commodore AMIGA 1000 version of MicroEMACS does fully support the mouse, window resizing
and the close gadget. It runs in medium resolution, using the colors defined for the workbench.
Note about Compiling MicroEMACS
If you are compiling the sources on the AMIGA to produce an executable image, and you

are using the Lattice compiler, be sure to give the CLI command ‘ STACK 40000’ before compiling
to make sure the compiler has sufficient stack space to successfully complete compilation.

69

MicroEMACS Reference Manual Machine Dependent Notes

1.5 UNIX V5, V7, and BSD4.[23]

MicroEMACS under UNIX utilizes the TERMCAP library to provide machine independent screen
functions. Make sure that termcap is available and properly set on your account before attempting to use
MicroEMACS.

Under systems which support job control, you can use the *XD suspend-emacs command to place EMACS
into the background. This carries a much smaller overhead than bringing up a new shell under EMACS. EMACS will
properly redraw the screen when you bring it back to the foreground.

If the symbol VT100 has been set to 1 in the estruct.h options file, EMACS will recognize the key sequence
<ESC>[asthelead in sequence for the FN function key prefix.

With the addition of some very machine/operating system specific code, EMACS can prevent two or more
people from modifying the same file at the same time. The upper level of a set of functions to provide file locking exist
in the source file LOCK.C. It requires two machine specific functions written and linked into EMACS for it to
operate properly.

char *dolock(fname)

char *fname;

dolock() locks afile, preventing others from modifying it. If

it succeeds, it returns NULL, otherwise it returns a pointer to

astring in the form "LOCK ERROR: explanation"”.

char *undolock(fname)

char *fname;

undolock() unlocks afile, allowing othersto modifying it. If

it succeeds, it returns NULL, otherwise it returns a pointer to
astring in the form "LOCK ERROR: explanation”.

70

Machine Dependent Notes MicroEMACS Reference Manual

1.6 DEC VMS operating system

TERMINALS

Depending upon the options set in ESTRUCT.H, MicroEMACS uses either the capabilities of VMS SMG,
working with any terminal that is defined in SMGTERMS.TXT or TERMTABLE.TXT (see your SMG manual for
more information), or the ANSI escape sequences. Full keyboard support, with function keys and everything, is
provided for VT100 and VT200 series compatible terminals. Mouse support is provided under the ANSI version only
at this time. Mouse support is provided for the VSII workstation’s VT220 terminal emulator, and other terminal
emulators that use the same escape segquences for mouse control. (There is some partial support for the BBN BitGraph
mouse sequences in the sources, but thisis not yet complete). Terminals may have up to 100 lines and 160 columns.

The maximum terminal size is 256 columns and 72 row. If you run MicroEMACS on a terminal that is
larger than this, MicroEMACS will reduce it to these limits while you are editing.

Flow control

Some terminals will require the use of XON/XOFF flow control when used with MicroEMACS. When
XON/XOFF flow contral is used, you will not be able to use functions bound to S or *Q, and should use bind-to-key
to put these functions on other keys. MicroEMACS does not change the flow control characteristics of your terminal
line whileit is running. If your terminal requires flow control, you should:

$ SET TERM/HOSTSYNC/TTSYNC

before entering MicroEMACS. If you are on aVSII emulated workstation terminal, are using the SSU multi-
session protocol (VT330 and VT340 with SSU enabled), or are certain that your terminal does not require XON/XOFF
flow control, you should

$ SET TERM /HOSTSYNC/NOTTSYNC

Thiswill allow you to use S and *Q for MicroEMACS commands. Note that if you are using a VSlI with
VWS V3.2 or later, you must leave the /[HOSTSY NC enabled in order for the cross/session cut and paste capability to
work properly.

KEYBOARD

The VMS version understands the LK 201 functions of VT200 series, vt300 series, and compatible terminals
and terminal emulators, and allows you to bind to them as function keys. In addition, the VT100 numeric keypad, in
application mode, is available as function keys. MicroEMACS will only put the keypad into application mode for you
if the KEYPAD option is set in ESTRUCT.H. In this situation, MicroEmacs will detect your kepad' s state, and restore
it to that state upon exiting. If MicroEMACS has not been compiled with this option, you may still put the keypad into
application mode by issuing the command “SET TERM /APPLICATION" before entering MicroEMACS.

VT200 keys
Note that F1 through F5 are local function keys on DEC terminals.

F6 =FN6 FIND = FNS

FN7 =FN7 INSERT = FNC

F8 =FN8 REMOVE = FND
Fo =FN9 SELECT =FN@
F10 =FNO PREV = FNZ

F11 =SFN1 NEXT = FNV

F12 =SFN2 Arrow Up = FNP
F13 =SFN3 Arrow Down = FNN
Fl14 =SFN4 Arrow Right = FNF
HELP (F15) = S FN5 Arrow Left = FNB
DO (F16) =SFN6

F17 =SFN7

F18 =SFN8

F19 =SFN9

F20 =S-FNO

VT100 and VT200 numeric keypad in application mode

71

MicroEMACS Reference Manual Machine Dependent Notes

PF1=FN~1 PF2 = FNA2 PF3 = FNA3 PF4 =FNM
7 =A-7 8 =A-8 9 =A-9 - = A--
4 =A-4 5 =A5 6 =A6 : =A-,
1 =A-1 2 =A-2 3 =A3 ENTER = A-E
0 =A-0 =A-

WARNING

The VMS version contains code for interpreting function keys that are sent as Ansi
seguences that begin with the ESC character. Because of this, MicroEMACS cannot process an
incoming ESC until it knows what character follows it. This can cause problems with terminating
search and replace strings. If you use ESC as the meta-prefix character (which is the default) you
must type one additional keystroke following ESC before emacs will recognize that you have edited
the search command prompt, and are continuing. (The additional character is processed normally be
MicroEMACS, it isNOT discarded.)

MicroEMACS must wait long enough for the network delay that might be involved
between seeing the ESC and seeing the characters that follow it. If holding down one of the arrow
keys causes characters to drop into your file, then you may want to alter the delay yourself. The
logical variable MICROEMACS$SHORTWAIT may be set to vary that delay. The default delay is
400ms (4 tenths of a second). The equivalent value in MICROEMACS$SHORTWAIT is 4000000.

Special case for BBN BItGraph

If you are using the BBN BitGraph, execute the following commands before entering MicroEMACS, and
you will get mouse support:

$ esc[0,8] =27

$ microemacsbmouse_enable == esc+":5;6;L"+esc+":0;63;;;;:::::9;16;C"
$ microemacs$mouse _disable == esc+":5;1;L" +esc+":0;0c"

$ exit

Do NOT do thisfor any other terminals.
Search List for EMACS.RC

VMS MicroEMACS will first search logical name MICROEMACSSLIB:, then SYS$LOGIN:, then the
current directory, and finally “ sys$sysdevice:[vmstools]” when looking for startup files or help files.

Please use MICROEMACSS$LIB:, and alow the secondary search of [vmstools] to become archaic. If
desired, MICROEMACSS$LIB may be defined to be a VMS search list that first searches a user directory, and then a
system directory.

Generaly, you should create a private directory where you keep all your .CMD files, and in your
LOGIN.COM $DEFINE alogical name to point to this area.

In addition to whatever commands you have in your EMACS.RC file, one command you should certainly
include is “set $ssave FALSE”. The “safe save” mechanism, which writes a buffer to a temporary file, deletes the old
version of afile, and then moves the temporary file to its permanent name, works wonderfully on most systems, but
makes no sense on VM S, which maintains older versions of afile.

Using MicroEM ACS as a subprocess

MicroEmacs can now be kept in a subprocess. Y ou can arrange to start emacs only once in ajob, and to re-
attach to it each time you want to use it. Thisis optional. To use this feature, install MicroEMACS in the following
way:

1. MicroEMACS contains two images. ME.EXE isasmall program for
starting and stopping the Emacs subprocess. The source for ME.
isin ME.C, and should not be linked into MESHR.EXE. MESHR.EXE
isthe actual MicroEMACS image. The name "MESHR" is required for
MAIL/NOTES support, see next section for details.

2. Make sure that the SY SSSHARE search list includes MESHR.EXE. If you
don’t have the privilages to move MESHR.EXE into SY S$SHARE, you
can $ DEFINE the MESHR logical name to be the full name and location of
the MESHR.EXE program. For example, you could store al of these

72

Machine Dependent Notes MicroEMACS Reference Manual

programsin the MICROEMACSSLIB: search list, and say:
$ DEFINE MESHR microemacs$lib:meshr.exe
3. Put ME.EXE in MICROEMACSSL B and the following line in your LOGIN.COM:
$ me :== $microemacs$lib:me
4. Put alinein your EMACS.RC that will
bind-to-key suspend-emacs*C ; use your usual exit-emacs key

Now, use the “$ ME” command to invoke microemacs. Subsegeuent invacations in the same job will re-use
the existing subprocess. You can use the full capabilty of the microemacs command line in the first and in all
subsequent invocations of ME.

WARNING:

MicroEMACS will ALWAY S read in new copies of any files you specify on the command line, even if you
are aready editing it. If you edit a file a second time with the same MicroEMACS, you will get a NEW buffer with
ANOTHER copy of the file. The old buffer is still there also. It is easy, in this situation, to accidently edit in a
WRONG BUFFER, and if you write out an obsolete buffer, you will loose earlier edits!

Thisis considered a bug and may be fixed in alater version of MicroEMACS. To avoid this situation, do not
specify afile on the command line if MicroEMACS already has that file in a buffer. Use the “find-file” MicroEMACS
command instead.

Using MICROEMACSwith MAIL and NOTES:

With VMS V5 and later versions, the MAIL interface to Microemacs is much simplified. With VMS V5, the
MESHR.EXE image does NOT have to be installed as a known image to be used as a calable editor from MAIL.
Therefore, to use MicroEMACS as your VMS MAIL editor, simply add the following linesto your LOGIN.COM:

$ DEFINE MAIL$EDIT CALLABLE_ME
$MAIL :== MAIL/EDIT

and make sure that the SYS$SHARE search list includes MESHR.EXE. If you don’'t have privs or
permission to move MESHR.EXE into SY S$SHARE, you can $ DEFINE the MESHR logical name to be the full
name and location of the MESHR.EXE program. For example, you could store all of these programs in the
MICROEMACSS$LIB: search list, and say:

$ DEFINE MESHR microemacs$lib:meshr.exe

Note that thisisthe same location asisrequired for using kept MicroEMACS.

To abort sending a message, exit MicroEMACS without writing out the mail message file.

To use MicroEMACS asyour VAX NOTES editor, issue the following command to VAX NOTES:

NOTES> SET PROFILE/EDIT=(ME,CALL)

Note, if you are still in the dark ages of VM S V4, you will have to either install MESHR as a known image,
or following the original “Second way” instructions given in the existing appendix F.6 of the older MicroEMACS
manual (previousto version 3.10).

Second way, as described in older versions

In the event that you cannot get your system manager to INSTALL MicroEMACS as known image, you can
use the following technique:

1. In MICROEMACSS$LIB:MEMAIL.COM, put the following command file:
$! Useon VAX/VMS as MAILSEDIT for using MicroEMACS as mail editor.

$if "'PL'" NES."_NL:" thenif ""’P1'" .NES. "" then copy 'P1' 'P2
$ define/user sys$input sys$output

73

MicroEMACS Reference Manual

$me’P2
$ exit

This file may have come with your MicroEMACS kit.
2. Inyour LOGIN.COM, put the following lines:

$ me :== $MICROEMACSS$LIB:MESHR.EXE ! Assumes meshr.exe is there
$ define mail$edit microemacs$lib:me_edit.com

3. InNOTES, give the command

NOTES> SET PROFILE/EDIT=(@MicroEMACSS$lib:me_edit.com,SPAWN)
Building MicroEMACSfor VMS

The configuration options are set in file estruct.h:

- Under the category of "Machineg/OS definitions’, set VMSto "1" and all
othersto"0".

- Under "Compiler definitions', set all selectionsto "0". Selecting
VMS impliesthat you are using VAXC.

- Under "Special keyboard definitions", be sure "V T100" is set to "0".
Thisoption is not required for the VM S version, it isfor other

systems using ANSI terminal support. VM S in combination with SMG or
ANSI already handles the specia characteristics of Ansi keyboards.

- Under "Terminal Output definitions', set either ANSI or SMG to "1"
and all othersto "0". As stated previously, only ANSI supports the
mouse at thistime.

- Under "Configuration options’, you may select as you wish, with the
following notes:

- COLOR support does not exist for VM, even when using
color workstations.

- MOUSE support should be enabled if you have any VSII
workstations. Only supported under the ANSI driver.

- KEYPAD support recognises whether your keypad is already
in application mode or not, and puts your keypad
in its correct state on exit.

- XNONOFF automatically allows you to use control-S or
control-Q in MicroEMACS, by disabling the TTSYNC
characteristic. This option should not be set if
MicroEMACS might be used on DecStations or VT100s.
It also should not be used with slow terminals or
terminal emulators connected to fast terminal lines.

-RMSIO support should absolutely be used. This option
allows the writing and reading of filesin VMS's
variable-length format, as opposed to STREAM-LF,
and cuts down on file writing and reading time by
approximately two thirds.

- OPTMEM support may be used on VMS versions 5.0 and higher.
It substitutes the C library’s memory allocation
callsfor the native VAX calls, and gives a speed
improvement.

Machine Dependent Notes

If you have MMS, you can use the supplied DESCRIP.MMS to build MicroEMACS. Otherwise, the
command file MEMAKE.COM has been provided. These files assume that you are using SMG as your terminal driver.
If you are using ANSI, then you must replace SMG with ANSI in the command and opt files. If you do not have MM S
or are missing MEMAKE.COM, simply compile each module with “CC", and link with the command:

$ LINK MESHR/OPTION/SHARE

74

Machine Dependent Notes MicroEMACS Reference Manual

Note that the executable filename must end in “SHR” in order for MicroEMACS to be used as a callable
editor from MAIL or NOTES. (Method 1 above.)

If you edit any of the Emacs sources, note that any global or external data must be declared as “noshare” in
order for the VMS callable editor support to work properly. This applies to all global data used in the VMS version,
but not to routines or to “static “data. The “noshare” declaration is #define’ d away on non-VMS systems. If you fail to
do this, VM Swill not allow you to INSTALL MicroEMACS as a sharable library.

75

MicroEMACS Reference Manual Mode Flags

Appendix J
Mode Flags
The two environment variables, $cmode and $gmode, contain a number the corresponds to the modes set for

the current buffer and the editor as a whole. These are encoded as the sum of the following numbers for each of the
possible modes:

WRAP 1 Word wrap

CMODE 2 C indentation and fence match

SPEL L 4 Interactive spell checking (Not Implemented Y et)
EXACT 8 Exact matching for searches

VIEW 16 Read-only buffer

OVER 32 Overwrite mode

MAGIC 64 Regular expressionsin search

CRYPT 128 Encryption mode active

ASAVE 256 Auto-save mode

So, if you wished to set the current buffer to have CMODE, EXACT, and MAGIC on, and all the others off,
you would add up the values for those three, CMODE 2 + EXACT 8 + MAGIC 64 = 74, and use a statement like:

set $cmode 74
or, use the binary or operator to combine the different modes:
set $cmode & bor & bor 2 8 64

Internal Flags

Some of the ways EMACS controls its internal functions can be modified by the value in the $gflags
environment variable. Each bit in this variable will be used to control a different function.

GFFLAG 1 If thisbit is set to zero, EMACS will not
automatically switch to the buffer of the
first file after executing the startup macros.
GFSDRAW 2 If this bit is set to one, supress redraw events.

Current buffer flags

The $cbflags environment variable allows the user to modify some of the characteristics of the current
buffer. The various characteristics are encoded as the sum of the following numbers:

BFINVS 1 Internal invisible buffer
BFCHG 2 Changed since last write
BFTRUNC 4 buffer was truncated when read
BFNAROW 8 buffer has been narrowed

Only the invisible and changed flags can be modified by setting the $cbflags variable. The truncated file and
narrowed flags are read only.

76

Index

77

IBREAK Directive 43
IENDM Directive 41
IFORCE Directive 41
IGOTO Directive 42
IF
IELSE
and 'ENDIF Directives 42
IRETURN Directive 43
IWHILE and 'ENDWHILE Directives
43
$cbflags 76
$debug 45
$gflags 76
.emacsrc 34, 47
<NL> 10

A
A Word About Windows
Buffers
Screens

and Modes 5
add-global-mode 21
add-mode 2, 21
Amiga 1000 69
ASAVE mode 21
Atari 520/1040ST 68

B

Backward Search 10
backward-character 2
Basic cursor movement 2
BBS 47

begin-macro 32
beginning-of-file 2, 6
beginning-of-line 2
bind-to-key 46

buffer 3, 5, 19

Buffer Variables 38

C
case-region-lower 27
case-word-capitalize 27
case-word-lower 27
case-word-upper 27
change-file-name 25
Changing Case 27
clear-and-redraw 14
CMODE mode 21
color 21
color pallette 37
command line 13
command processor 30
command.com 30
Commands unaffected by numeric
arguments. 60
Constants 34
control key 1
control-x 1

MicroEMACS Reference Manual

Index

copy-region 8
Creating a Screen 17
Creating Windows 13
CRYPT mode 21, 47
cshell 30

cursor keys 3

cut 17

Cut and Paste 17
cycle-screens 17

D

debugging 45

DEC VMS operating system 71
default string 10

Defining and Deleting a Region 8
delete-blank-lines 6
delete-buffer 19
delete-global-mode 21
delete-mode 21
delete-next-character 6
delete-next-word 6
delete-previous-character 6
delete-previous-word 6
Deleting a Screen 17
Deleting Windows 14
Deletions 6
describe-bindings 46
describe-key 46

desk accessories 16
desktop 17

detab-region 28

Directives 41

dragging 16

Dragging around 16

E

emacs.rc 34, 47
encryption 21
end-macro 32
end-of-file 2
end-of-line 2
entab-region 28
Entering Text 2
Environmental Variables 35
error parsing 47
EXACT mode 22
Exact Searches 10
execute-buffer 34
execute-file 34
execute-macro 32
execute-program 30
exit-emacs 6

F

file locking 70

fill column 23
fill-paragraph 5, 27
filter 30

MicroEMACS Reference Manual

filter-buffer 30

find-file 13, 19

Forward Search 10
forward-character 2
function key window 34
Functions 39

G
Getting Started 1
grow-window 14

H

handle-tab 28

Help File 47

HOME environment variable 47
horizontal scrolling 16

HP 150 67

|

i-shell 30

IBM-PC/XT/AT and its clones 65
Insertions 5

Interactive variables 39

K

Keys and the Keyboard 1
kill buffer 8

kill-region 8
kill-to-end-of-line 6

L
label-function-key 67
list-buffers 19, 21

M

MAGIC mode 22

mark 8

metakey 1

modeline 1, 5

modes 2, 21

mouse 16, 36

mouse cursor 16
move-window-down 13
move-window-up 13
Moving a Screen 17
Moving around with the mouse 16

N

newline 1

next-buffer 19
next-line 2
next-paragraph 2
next-word 2

numeric arguments 58

(0]

open-line5
open-window 13
OVER mode 23

P

Parts and Pieces 1

paste 17

PATH environment variable 47
pipe-command 30

point 8

Index

previous-line 2
previous-paragraph 2
previous-window 13
previous-word 2

Q
Query-Replace 11
query-replace-string 11, 23

R

rebinding 46
redraw-display 14
Reformatting Paragraphs 27
region 17

regular expressions 22
replace-string 11, 23
Repositioning within a Window 14
resize-window 14

Resizing a Screen 17
Resizing Windows 14
restricted mode 47

run 34

S

savefile 3

Saving your text 3
screen 5, 17

screen resolution 37
Screens 17
scroll-next-down 13
scroll-next-up 13
search-forward 10
search-reverse 10
Searching and Replacing 11
select-buffer 19

Set 28
set-encryption-key 21
set-fill-column 27
set-mark 8

shell 30

shell-command 30
shrink-window 14
special keys 1
split-current-window 13
startup files 47
store-procedure 34
suspend-emacs 30, 70
switches 47

Switching to a Screen 17

T
tab handling 28
Tabs 28, 36, 37
termcap 70
text window 1
trim-region 28

U
UNIX V5
V7
and BSD4.[23] 70
User variables 38

\"

Variables 35
vertical scrolling 16

78

Index

79

VIEW mode 23

w

window 5

windows 1, 13
Creating 13
Deleting 14
Resizing 14

WRAP mode 23

MicroEMACS Reference Manual

wrap-word 23
Wrapping Text 27
write-file 3
writefile 25

Y
yank 8
Yanking aRegion 8

Contents

Chapter 1 Basic Concepts

Chapter 2 Basic Editing—Simple Insertions and Deletions
Chapter 3 Using Regions

Chapter 4 Search and Replace

Chapter 5 Windows

Chapter 6 Using aMouse

Chapter 7 Buffers

Chapter 8 Modes

Chapter 9 Files

Chapter 10 Screen Formatting

Chapter 11 Accessto the Outside World

Chapter 12 Keyboard Macros

Chapter 13 MicroEMACS Procedures

Chapter 14 Debugging MicroEMACS Procedures
Chapter 15 Key Bindings, What they are and why

Appendix A MicroEMACS Command Line Switches and Startup Files

Appendix B Command Completion

Appendix C MicroEMACS Commands
Appendix D MicroEMACS Bindings
Appendix E Numeric Arguments

Appendix F Numeric Arguments to Commands
Appendix G Supported machines

Appendix H Function Keys

Appendix | Machine Dependent Notes
Appendix J Mode Flags

Index

10
13
16
19
21
25
27
30
32

45
46
47
48
49
55
57
58
62

65
76
7

