John’s WordPerfect

Scripting Guide

John Rethorst

Except for the beautiful bookplate above, found authorless on the net, All Contents Copyright ©
1995, 1996, 1997, 1998 by John C. Rethorst. All rights reserved. Permission is given to copy and
distribute this document, in whole only and including this copyright notice, only if no charge is
made.

To my Students

Foreword

A search for a good word processor is well worth the time. When starting a Ph.D. program - for
which I would be doing a ton of writing — I toured Word, FullWrite, WriteNow and MacWrite
Pro, and then tried WordPerfect, at that time in version 1. It had been panned in reviews, but I
wanted to see for myself. What I found was one of the friendliest and most competent programs I
had ever used.

The reviews had taken the Mac version to task for being too DOS-like, and un-Mac like in other
ways. “Too many hierarchical menus,” went one criticism. But most programs of any complexity
these days have more hierarchical menus than WP 1 did. “Mac users don’t like codes” said
someone else. Of course not, but Word now has them too — just because they can make some
complex tasks much easier. I thought WP was a great program in many ways, but what I liked
most were the macros.

When version 2 added a scripting language to the macro engine, I was hooked. Driven by a
typical Mac user’s quest for ultimate elegance, I found that I could add or fine-tune features with
astonishing power and flexibility. Also, scripting was just plain fun.

Then I taught an introductory computer course and wrote a lab manual for it that turned into my
first book, Welcome to the Macintosh — From Mystery to Mastery. Before I knew it, I had become
hooked on teaching and writing about computers, as well as on the beasts themselves. Putting
two and two together, I thought I would write a book on WordPerfect Mac. Version 3 was then in
development, a massive piece of engineering representing WP Corporation’s increasing commit-
ment to the Mac marketplace. If I got busy, I could write about the program just in time for its
release.

Although I knew the book would be fun, I didn’t know I'd like doing it so much that instead of
the 350 pages my publisher wanted, I gave them 550. The good people at Henry Holt were as
supportive as ever, but we knew the market wouldn’t want a book much larger than that. Also,
as Teach Yourself WordPerfect was to be a beginning to intermediate guide, I was lucky to be able
to include a few examples of WP macro and AppleScript code.

There was much more to write, and this is what turned up. A very special thanks for the collabo-
ration of the World’s Greatest Technical Editor, Dan Smellow, who also taught computers with
me at Cornell, and is a better programmer besides. Thanks also to Scott Lawton, Allan Greenier
and Gero Herrmann for their valuable advice on AppleScript.

This book assumes no prior knowledge of programming, but you should know how to use the
Librarian to copy and install macros (see Appendix E otherwise). This tutorial then makes you an
expert. Three chapters also discuss AppleScript with WP, and how AppleScript and WP macros
interact.

I haven’t duplicated the reference capabilities of the online help or the manual on the CD. This
book contains lessons, with concepts, explanations and over 1700 lines of sample code, rather
than an alphabetical list of commands and variables. The latter is a better ready reference for the
seasoned user. Conversely, an attempt to learn how to write macros using a reference would be
frustrating at best — just like learning a foreign language by a dictionary.

About this Book

Actual macro code is in Helvetica and indented.

Example syntax is in Helvetica and boxed.

Text examples are shadow-boxed.

Many of the examples here are excerpts from the macro sets listed in Appendix D. If you're

working with a chapter that discusses one of these sets, I recommend downloading that set to use
as a more complete reference than space allows here.

Writing, line drawing and book formatting done in WordPerfect, and printed to a reader by
eDoc.

Comments welcome, at jer2@cornell.edu.

Table of Contents

L:Starting Out 1
Recording amacro i 1
Editingamacro 3

2:ScriptingaMacro ... 5
The script, or text, of amacro ... oo oo 5
Using the macroeditor 6
Whatitallmeans i 7

3: Scripting with Variables 9
More sophistication 10

4: Read-Write Variables 13
Putting anumberinavariable ool 13
Alittlemistake 14
Anotherexample 14
Moreelegance 15

5:Flow Control 17
Writingarepeatloop 17
Planning the script 17
Adding some polish 18
Variations 18
Recording partofascript 19

6: Text Formatting 21
Recording the firstpart 21
Oops—Bugs 22
What's goingonhere 25

7: The Value of Example 27
Things to record or sCript i 27
Read-only variables 27
Commands with read-only variables L 28
Conditional statements 28
Adding an operator 29
Repeatloops 30

BrIMIIUS . .\t 31
Basic menus 31
Casesandlabels 32
Call L 33

9: Custom Menusand OnlineHelp 35
Custom menUs 35
Help with syntax 36
Incaseof error 38
Document management 38
Hey—thisisfun 39
The answers at the end of the chapter 39

10: Going Global 41
Making a glossary 41
The macro to assignentries i i 41
A menu for global variables o 42

11 WINdOWS ... 45
Tiling windows horizontally i 45

N W VIOW e e 47

Second WINAOW i 49

12: Substrings and Things 51
More complex data 51
CLEANUP . ..ttt 54

13: Elementary Magic 57
Simplified flowchartof the thing L 58
Getyourrabbitand hat 58
Tons o labels 60

14:Funwith Files 65
Getting ideasuuu 65
File types ... 65
Working with a standard dialog i 67
The reStiS €aSYttt 68

15: A Taste of AppleScript 71
Apple what? ... 71
The Very basiCso.uuiint it e e 71
More magic 73
Off We g0 .. 74
Doing adatabase 76
Using the datafile 77

16: Reference Manager, parttwo 79
The main macro: Enter Reference i 80
Setting a citation format 81
Adatatable 82
Formatting instructions via the datatable 83

17: Advanced AppleScript 87
How toread a dictionaryuuiuuuniiiiiiiiiiiiinnn 87
Starting at the beginning i 89
And then my problemsbegan i 90
Help! 90
Flow control in AppleScript 91
Textitem delimiters 94
Global variables 94
The Cancel business i 94
TIMeouts 96
The SCriPts . ..ot 9

18: Automating DataEntry 101
More complexity: menus callingmenus L 104
Using tables 105
Getting the databack 106
Document variables 107
Putting menu choices up front i 107

19: Going Around in Circles 109
Vary that variable 110
The GO TOMACIO ...\ttt ettt e e e e 111
The information highway 113
What if? 113
Task Keys ... 114

20:0dds MENds ... 115
Knowing the code i 115
HTML codes o 116
Catching eITorsSt 116
When we want an error i 118

Othererrorhandling 118

Doing our own error checking i i 120

Accessing variables 124
Let's et 1oOPyt 124
Loops at the ‘macro’ level i 125
Starting to put things together 126
21: Outhining 127
Outline Return 128
OutlineTab 129
A more advanced operating mode i 130
Dragging and dropping topics i 131
22: Outlining part tWo 133
Doing itinstyle 133
Theraw truth 135
23: Outlining part three 137
MOVING tOPICS . .ot 137
Marking and referencing topicsiiiiiiiiii 140
24: Mathin Macroso i 143
Calculating anincrement i 143
Listing variables on commentlines i 144
Nutsand bolts 144
25: Bloopers, and Elegance 147
What's wrong here? 147
Smile — it GetS WOISE 147
Who's on first? 149
Macros alaelegance 150
The one-minute MacCrottt 150
Bulletproofing 151
Theraw facts i 151
More fine POINS\t 152
Looking forward 153
Appendix A: Error MeSSagesuuuuuuueee i 155
Messages within the macro editor window 155
Dialogs indicating errorsinreference o 156
Appendix B: Read-Only Variables 159
Appendix C: Code Values 161
Appendix D: My WordPerfect Scripts ... 165
Appendix E: How to Install Macrosc..uuuiuuuuiiiiiiiiiinnnn 167

INdeX .o 171

[llustrations

Figure 1: The New Macro dialogbox i 2
Figure 2: The Edit Macrodialog i i, 3
Figure 3: The Edit Macro Window i i, 3
Figure 4: Analert 5
Figure 5: A macro script, after you'vesaved oL 6
Figure 6: Errors are underlined 7
Figure 7: The Script contains an error ittt inan.. 7
Figure 8: A script entirely typed into the macroeditor 9
Figure 9: A more elaborate script 11
Figure 10: An alternative design 11
Figure 11: A dialogbox 14
Figure 12: Flowcharting themacro o i 23
Figure 13: Amenu 31
Figure 14: Macro syntaxinthe On-lineHelp 36
Figure 15: The syntax for the Open command 37
Figure 16: Defining astring 52
Figure 17: The macro’s mainmenuot .. 57
Figure 18: Alternate main menu i 57
Figure 19: A confirm dialog 57
Figure 20: The macro’s organization i it .. 58
Figure 21: Note, Caution, Stop 61
Figure 22: Aneasy script 72
Figure 23: Saving an AppleScriptasanapplet 75
Figure 24: A calculated field in FileMaker 77
Figure 25: Sending an Apple Eventin FileMaker 78
Figure 26: How the citation is splitinto fields 83
Figure 27: A reference table for several macros L 84
Figure 28: ADictionary 88
Figure 29: The Help dialog i 92
Figure 30: The initial GREP dialog i i, 93
Figure 31: The Create Hyperlink dialog 102
Figure 32: Checking foraccuracy i 103
Figure 33: The first treatmentmenu i 104
Figure 34: And asubsequentmenul 105
Figure 35: Putting a patient’s chartinatable 106
Figure 36: Selecting the link codes i 106
Figure 37: The GO TOMENUt e 109
Figure 38: If the textisn't found i 109
Figure 39: Cutting up the contents of a global variable 112
Figure 40: Folders named automaticallyl 121
Figure 41: An outline in the Codes window 129
Figure 42: Looking for subtopics 138
Figure 43: An automaticfill 143
Figure 44: the Preferences dialog i 167

Figure 45:

Librariandialog 167

Figure 46: Changing resources in the Librarian 168

Figure 47: Selecting macrosoiiiiiiiiii i 168
Figure 48: Changing Type in Keyboard i ... 169
Figure 49: Installed macros shown in Keyboard 169

Figure 50: Assigning a keystroke 170

1: Starting Out

Welcome to WP macros! This feature is one of WordPerfect’s most powerful, and it’s also one
that takes a little while to learn. Macros aren’t hard, though, and with a little practice you can
significantly increase the power and flexibility of your work environment.

First of all, what’s a macro? It can be thought of in two ways: as a tape recording, and as a list of
instructions. The easiest way to use macros is like a tape recorder: start a recording and, instead
of talking or singing, do some things in WordPerfect: open a new document, say, and set font and
margins. Then stop the tape recorder. Now, any time you play that recording, WordPerfect will
repeat those exact steps — but very quickly. Another advantage becomes apparent with longer
sets of steps: since we humans tend to get bored by repetitive work, accuracy can suffer. With a
macro, if it’s right the first time, it’s right every time.

While the program’s “recording,” it’s actually writing a list of what you’re doing. A more sophis-
ticated use of macros involves editing such a list, also called a script, or even writing one from
scratch. A big advantage to that is being able to tell WordPerfect to do one thing if a certain
condition exists, and else do another thing. This way you can actually have the program do some
of your thinking for you, rather than just sequences of actions. When you finish this book, you'll
be able to write powerful and elegant commands that make your word processing easier, more
productive, and more fun!

You'll also be able to use Apple’s system-level scripting language, called AppleScript, to write
instructions that make WordPerfect and other programs work together, or expand WP’s capabili-
ties still further. You'll be astonished by how much you can do — and by how easy it is.

In this first chapter, we'll record a simple macro just to work with, and then learn how to edit it.

Future chapters will get very advanced, as we work our way through WordPerfect’s macro
environment. You'll be surprised how easy it is.

Recording a macro
As setup, open an existing file and select a few lines of text.
1. From the Tools menu, choose the Macro submenu and then the first item, the Record com-

mand. A dialog box like figure 1 appears. (Press the Command key to see the keyboard
equivalents shown.)

2 John’s WordPerfect Scripting Guide

New Macro

Macro: Location:

flutel i Library (WS8R}

sigg fhnas Library (838}

#iiternate Page Numbering Library (W3R}

fippiy Char Sigle Librarg (38}

faply Stgle Libraryg (W3R}
Name: untitled Macro | save In: Library (USA)

Keystroke
& Show Macro in Menu *S !> %A
Description: -
v o)

Figure 1: The New Macro dialog box

This dialog has the name “untitled Macro” selected. Type in “Copy to new file” and click New.

The dialog box disappears, and WordPerfect is now recording. It does not record the time
between each step, only the steps themselves. So there’s no hurry.

2. Choose Copy from the Edit menu.

3. Choose New from the File menu.

4. Choose Paste from the Edit menu.

5. Choose Select All from the Edit menu.
6. Choose Times from the Font menu.

7. Choose 24 point for a size.

8. Press the right arrow key.

9. From the Macro submenu of the Tools menu, choose the Stop Recording command (it's now
the first item).

10. Click the Save button in the resulting dialog box, to save this macro.

Now, close your new document (don’t bother to save it), and select some other text in your
original file. Then go to the Macro submenu of the Tools menu, scroll down the alphabetical list
to your new macro, and run it.

That’s fun, but also a timesaver and a real help for accuracy. It’s also only a hint of what you can
do. It’s as far as a lot of people want to go: record and play back. Let’s take the next step, though,
and edit the commands that WordPerfect recorded.

Starting Out

Editing a macro

1. From the Macro submenu, choose the third command, Edit. A dialog box like figure 2
appears:

Edit Macro

Macro:
Colon-Space
Comma-Space
Copy Outline Topic
Copy to New File
Copy to Next Window

Location:
Library (USA)
Library (USA)
Library (USA)
Library (USR)
Library (USR)
Keystrokes

+| [Assign... | %A

(< Show Macro In Menu ®S \ [ézmzzssw]

Description:

(one .

Figure 2: The Edit Macro dialog

Scroll to your first macro, “Copy to New File,” and click on it to select it (you can also type
the first few letters of the name to jump to it).

Click the Edit Content button, or press Return. You can also double-click on the name. A
new window opens, looking like figure 3:

=0

Macro:Copy to New File
[Save

][Save As...][Save Text...] [Read Text...][

Pause]A
Copy
New Document
Paste
Select All
Font Name ("Times")
Font Size (24)
Right ()

Figure 3: The Edit Macro Window

4. and which looks a little complicated at first. As you see, though, it’s just the list of commands
you did a moment ago.

4 John’s WordPerfect Scripting Guide

Note that the fifth line reads: Font Name (“Times”). Double-click on the word “Times” so that
only that word (not the surrounding quotes) is selected.

5. Type Helvetica so that the word fits in the surrounding quotes.

Note that the sixth line reads: Font Size (24)

6. Double-click on the number 24 so that only that number is selected.

7. Type 72 so that the number fits in the existing parentheses.

8. Click the small Save button near the top left of the macro editing window.

If you did not do these steps correctly, an error message will appear. OK that, then click the close
box at the top left of the macro window, don’t save changes, and start again at step one of this
section. If you did these steps correctly, no message will appear, but the Save button will gray
out. Click the close box at the top left of the macro editing window, and you're set. Select some

text in the document, and run your edited macro.

As info, the words “Font Name” form a command, and the word “Times” is the parameter or the
argument for that command.

Congratulations on what you've learned. In the next chapter we’ll learn how to enter commands
from scratch in the macro editing window, to do things it’s just not possible to record. We'll work
on a more advanced topic each chapter, until the 900 macro commands and variables within
WordPerfect give you a new dimension to the phrase “Power User.”

2: Scripting a Macro

Now that you've edited a macro, you're more advanced than most WordPerfect users. You have
substantial power at your fingertips already, and one next step might be to watch yourself work
with the program for a week, and take note of how many sets of steps could be more easily done
with a macro.

You may find that there are several tasks that could profitably be automated, and some of them
don’t seem accessible to recording. One of the most important is having a macro make a decision,
based on what'’s in your document.

For example, the Copy to New File macro we did last chapter works on text you already have
selected. Try running the macro without selecting any text first. Oops. But we can script a macro
that will look on its own to see if any text is selected. If text is selected, the macro will do one
thing; if not it will do something else. These are important words, if and else. They’re exactly the
words we'll use.

We'll also use a specific way to ask WordPerfect to look for selected text. The program’s macro
language gives us this way in the form of a flag, so to speak. WordPerfect puts up a flag if text is
selected, no flag if it isn’t.

So we can write the macro to look for that selection flag and, if it’s there, do one thing, or else, do
another thing. For starters, let’s just have the macro tell us whether any text is in fact selected. We

can have WordPerfect give us an alert saying that one condition or the other is true. While we’re
at it, we can have the program beep at us, so we’ll be sure to notice the alert.

The script, or text, of a macro

Let’s look at the exact wording, or the syntax, of our script. Here it is:

If (SelectionFlag)

Beep

Alert ("Yes, some text is selected.")
Else

Beep

Alert ("No, no text is selected.")
End If

and while it’s not exactly good English, it’s legible and, after a little exposure, logical. You see
that it starts with an If statement: what to do in the event it finds the selection flag to be on.

The next two lines are instructions to be followed should the If condition be true. Beep, and then
display what WordPerfect’s macro language terms an alert, and which will look like figure 4:

f Yes, some text is selected.

Figure 4: An alert

6 John’s WordPerfect Scripting Guide

and that’s the end of what the macro will do in case the If condition is met. The next section of the
macro, Else, describes what the macro will do otherwise. These are the only two choices, because
text is either selected or it isn’t — no middle ground.

The Else statements are similar to the If statements in our example, but could be entirely differ-
ent, according to our needs.

The macro ends with an End If statement, to let WordPerfect know that the If / Else situation is
over.

Using the macro editor
To enter this macro:

1. Choose Record from the Macro submenu of the Tools menu, just as though you were going
to have WordPerfect watch and record your steps. Give your macro a name, maybe “Selected
Text?” and click New.

2. From the Window menu, choose the macro window. It will be at the end of the list.

3. You now have a macro script window in front, and it’s blank. This window is called the
macro editor.

4. Without tabbing or otherwise indenting, type each line as you see it above, pressing Return at
the end of each line except the last one. WordPerfect will indent and bold the text properly
for each line, as soon as you move to the next line.

If anything you type appears underlined, after you’ve pressed Return for that line, you’ve made a
typing mistake. Check carefully for misspellings, lack of spaces or missing parentheses or quote
marks.

5. When you finish typing, click the Save button at the top left of the window. The last line of
the macro, “End If, ” should change to bold as have the other commands. Your macro script
should look like figure 5:

E[J=——— Macro:Selected Text?
H Savr [Save As...][Save Text...] [Read Text...][Pause] Rereing

If (SelectionFlag)

Beep

Alert ("Yes, some text is selected.")
Else

Beep

Alert ("No, no text is selected.”)
End If

Figure 5: A macro script, after you’ve saved

If you haven’t corrected any underlined text, though, a window like figure 6 appears:

Scripting a Macro 7

[J==————— Macro:ji
Save] [Save As...] [Save Text...]

— [l

If (SelectionFlag)

Beep

Alert (Yes, some text is selected.)
Else

Alert (No, no text is selected.)
End If

Figure 6: Errors are
underlined

showing that, in this example, I typed the parameters for the Alert command in parentheses, but
not in quotes. (There’s good reason for all this punctuation, as you’ll see.) If you don’t correct all
the underlined text, and instead just click the Save button, a dialog like figure 7 appears:

it contains errors and cannot be
parsed. Either correct the errors
before saving the file, save the file
as tedt, or edit without saving.

ﬁgure 7: The Script contains an error

0 This macro cannot be saved, because

which you can OK and then check your script again. After you fix everything and save it:

6. Close the macro editor by clicking in its close box. Back in your document, select a few lines
of text, and run the macro. Then try it with no text selected.

What it all means

This is just an initial glimpse of how a macro can interact with what you have on screen. You can
have macros do one thing if your text is in one font or another, bold or italic, if your document is
longer than a certain number of pages, or any number of other possibilities.

Another way of looking at this is that you're having the macro do some of the thinking for you.
In fact, it’s doing the low-level thinking, freeing you for the more interesting parts of your work.

Congratulations again! You've done what is in truth some fairly sophisticated programming.
Your macro branched according to a conditional statement, pretty high-powered stuff, and
clearly more than could be recorded.

In the next chapter we’ll look at ways for a macro to make a more sophisticated decision accord-
ing to what's on your screen. We'll get practical as soon as we possibly can, and you'll be devel-
oping tools you can use.

3: Scripting with Variables

In the last chapter we looked at how to use a flag in a macro, and how to have a macro make a
decision for us, based on conditions in the document. This chapter we’ll look at something
similar to a flag, but more versatile, called a read-only variable. This gives us a little more
information about the document, which we can use the same way in an If/Else statement. We can
also put the contents of the variable itself in an Alert.

Read-only variables

In the courses I've taught, the main thing students seem to want out of their papers is that they be

long enough. Five pages equals significant thought, four pages doesn’t. A student could use a
macro to test whether a paper is at least five pages long;:

End ()
If (PhysicalPage>4)

Alert ("Yay! You're finished.")
Else

Alert ("You gotta keep going.")
End If

which would all be typed into the macro editor — nothing except the first line could be recorded.
To enter this script: start a macro recording, with a title something like “Enough Pages?” Then:

1. From the Window menu, switch into the macro editor.

2. Type the script as shown above. After you press Return for each line, WordPerfect will bold

some words and indent some lines. If it underlines any words, you've made a typing mis-
take.

When done, your macro editor should look like figure 8:

Ell——— Macro:Enough Pages? EEE%I
[Save][Save As...][Save TextA..][Read Text“.]i Pangr [Resume]
End QO
If (PhysicalPage>4)
Alert ("Yay! You're finished.")

Else

Alert ("You gotta keep going.")
End If

ﬁgure 8: A script entirely typed into the macro editor

3. Close the macro editor, saving changes. Try this macro on documents that are either more or
less than five pages long.

10 John’s WordPerfect Scripting Guide

Let’s look at the grammar and vocabulary (or the syntax) again. The first line instructs WordPer-
fect to go to the end of the file, since it’s the length at the end that we want to measure. The
empty parentheses could contain the word “select,” in which case the macro would select all the
text as it goes to the end. As it’s written here, the insertion point will go to the end of the file
without selecting anything. It’s just vocabulary.

The second line has the If statement, and the word PhysicalPage, which means the page of the
file the insertion point is on. Vocabulary again, and much like SelectionFlag, but let’s notice a
difference.

The term SelectionFlag can be called a flag since it’s either up or down; the condition is either
true or false. PhysicalPage is not a flag, since it’s not a matter of yes or no; rather, one of quantity.
What both have in common is that they vary according to what’s going on with your file, so we
call them variables.

In both this example and in the one we used last chapter, the If statement tests the value of a

“u__r

variable. The test in this case uses the standard “greater than” symbol, or “>" and could just as

7

well have used the less than “<” symbol or the equals sign.

Or could it? If the test were “If (PhysicalPage=5)" and our hapless student had already written six
pages, what would the macro have told him or her? Right — to keep going! This is a big point to
consider with macros: if the syntax is right, the script does just what you tell it to. Often we over-
look an error in logic because we, as humans, are used to making assumptions, often false ones,
to our detriment. So another advantage to learning macros is that you’ll win more arguments.

More sophistication

While this macro is helpful to someone who needs to write at least five pages, it could be more
helpful by telling him or her how many more pages must be written. Let’s have the macro
calculate that for us. Edit your script so that it looks like figure 9 (again, WordPerfect will do the
bolding and indenting for you, and underline any mistakes). You can use copy and paste for the
If, Alert and End If lines, and change just a couple of numerals each time.

Scripting with Variables 11

|[ED=————= Macro:Enough Pages? E=E |
[Save] [Save As...] [Save Text...] Read Text..._]
End ()

If (PhysicalPage>4)

Alert ("Yay! You're finished.")
End If
If (PhysicalPage=4)

Alert ("You need 1 more page.”)
End If
If (PhysicalPage=3)

Alert ("You need 2 more pages.")
End If
If (PhysicalPage=2)

Alert ("You need 3 more pages.”)
End If
If (PhysicalPage=1)

Alert ("You need 4 more pages.")
End I

ﬁgure 9: A more elaborate script

Run this macro on a document or two. Note how the If statements work: if the first condition is
true, the macro displays the first alert, and so on. Another way to design this macro would tell
the user not how many pages are needed, but how many pages are already there. We can do that
by adding the variable to the Alert line, as in figure 10, which uses something new to us in
macros, the dollar sign. We call this an operator and, in scripts, it means join. The first and last

parts of the second alert are thus regular text, in quotation marks, joined to the read-only vari-
able.

|[ED=————= Macro:Enough Pages?
[Save][Save As...][Save Tex(...][Read Text.“][Pause]

End ()
If (PhysicalPage>4)
Alert ("Yay! You're finished.")
Else
Alert ("You have only "$PhysicalPage$" pages. Keep going.")
End If

ﬁgure 10: An alternative design

Note that in the regular text, the word “only” has a space after it, before the quote marks, and the
word “pages” has a space before it, after the quotes. This just puts spaces on either side of the
page number.

12 John’s WordPerfect Scripting Guide

This kind of design, providing the user more information, can be very helpful when the informa-
tion is otherwise less readily available. Using read-only variables and flags lets you script some
very complex decision patterns, and provide the user a lot of data as well.

Congratulations once more! You're learning a lot. In the next chapter we’ll look at another kind of
variable, one that you can put data into as well as get data from. It’s hard to describe at this point
the power and flexibility you’ll have with these tools.

4: Read-Write Variables

In the last two chapters, we looked at variables that the program sets, according to whether
you’ve selected text or written a certain number of pages, and all the macro can do is read the
value of those variables. So, we call these read-only variables. We use these a lot in macros, but
WordPerfect’s power is substantially enhanced by another kind of variable, one which a macro
can write the value of as well as read it. We call these read-write variables. Here’s an example.

Putting a number in a variable

Let’s expand on the flexibility of the “Enough Pages?” macro that we wrote last chapter. It was
fine for an assignment of five pages, but you know those professor — they change their assign-
ments all the time. So we need a macro that will first ask the user how many pages are required,
then take that value and use it for the If/Else test.

Since we're modifying our “Enough Pages?” macro, this is also a good place to try the Save As
button in the macro window. So:

1. From the Macro menu, choose Edit, then choose “Enough Pages?”
2. Click the Save As button, and give this new macro a different name.

3. Edit the script so that it reads just like this, but note that the first line is a long one: don’t
press Return until just after you type “have?)”; it's OK if the text wraps to another line as you

type:

Get Integer (Var01;1;100;"Number of pages";"How many pages do you need to have?")
End ()
If (PhysicalPage>Var01)
Alert ("Yay! You're finished.")
Else
Alert ("You gotta keep going.")
End If

4. Click the Save button, and close the macro editor.

Let’s see what the syntax means. The first line starts with the command Get Integer, which has
the macro ask the user for an integer. Within the parentheses, the first parameter, Var01, is just
that: variable no. 1 (read-write now, so it has no proper name — it will contain what we assign to
it, in this case whatever number the user types).

The next numbers, 1 and 100 separated by semicolons, are a check WordPerfect makes on the
range of the integer the user enters.

The next part of the entry has to be in quotes, and is the title of the dialog box that will ask for the
integer. The last entry, also in quotes, is the text of the dialog box. When you run the macro, that
will look like figure 11:

14 John’s WordPerfect Scripting Guide

Number of pages

How many pages do you need to

have?

Figure 11: A dialog box

The only other difference in this modified macro is the If statement, which tests the physical page
against Var01, which now contains the required number of pages.

5. Run this macro a few times on some appropriate test documents, and enjoy your new com-
puter abilities. Test it by entering a number outside the 1 to 100 range.

A little mistake

While we're generally doing very well, we let a small error creep in a minute ago. Did you see it?
Hint: it's not as bad as the error we discussed last chapter, which told the student with six pages
to keep going to reach five.

In this case, the macro test was accurate when it tested for five pages by saying If (PhysicalPage>
4), but when we put in Var01 and then tested for a value greater than that, we made the student
write one more page than necessary. To correct that, change the third line to:

If (PhysicalPage>=Var01)

so that the operator means either greater than or equal to. The standard symbol puts the ‘greater
than” part above the equals sign, but the Geneva font isn’t that fancy, so WordPerfect has us type
the operator as shown.

Another example

Let’s script a macro that you might find helpful as long as you use WordPerfect. As you know,
you can set measurements in the program in inches, points, or several other units. Clicking on
any unit of measurement in a dialog box will produce a menu of the others. Default is set in
Preferences.

I leave the default at inches, since that’s the unit I normally think in for margins, indents and so
on. But for leading, the distance between two lines of text, I'd rather use points, since type sizes
themselves are measured in points. We can open the line spacing dialog box and, every time,
open the hidden menu to change units — or how about a macro to set leading in points, while we
leave inches as the default for everything else?

Read-Write Variables 15

The tools we'll use are: one read-only variable: CurrentLeading, one read-write variable: Var01,
and three commands, Get Integer, Leading and Automatic Leading. I'll have more to say soon
about how we find these commands and variables (hint: they’re all in the online macro help).

A little conceptual mapping first. What we want to do is:

1. Get the leading, measured in points, that the user wants.
2. Put that value into a variable.

3. Tell the program to set the leading to that variable.

Remember that the Get Integer command has places for lower and upper limits as a check.
WordPerfect’s limits on leading in points are 1 to 32767, so let’s use those.

Start a macro recording, name it something like “Leading in Points” and, from the Window
menu, switch to the macro editor. Type this first line. It’s all one line, even if wrapped, so don’t
press return until after typing “to:”)”:

Get Integer (Var01;1;32767;"Set Leading in Points";"Set leading t0:")

which would, just as in the Number of Pages example above, ask the user for a value, and put
that value into Var01l. We’d then set the leading to that value with the line:

Leading (Var01)

and those two lines will do it! Save this script, and check out your new macro.

More elegance

Since we're getting to be real programmers now, let’s look at a couple of helpful additions. First,
let’s tell the user what the current leading is, by adding the read-only variable CurrentLeading to
the first line. Note the join operator ($) that we learned last chapter. Also, remember to put spaces
before the quote mark preceding the variable and after the quote mark following the variable, so
the dialog box will have spaces before and after the value:

Get Integer (Var01;1;32767;"Set Leading in Points";"Current leading is "
$CurrentLeading$" point(s). Set to:")

which tells the user the current leading. Note: this is all one line in the macro editor. Save and
close the script, and try the macro now (testing a macro as you write it isn’t a bad idea. When
building a complex script, this can save some time).

For a final touch, let’s remember that WordPerfect defaults to automatic leading. The value of
that depends on font and size so, when our text is set to automatic leading, the CurrentLeading
variable would say 0 points for 9 pt. Geneva, or 3 pts. for 36 pt. Geneva, and so on. Let’s use an
If / Else statement to let the user choose either automatic or another value. We could let a value of
0 equal automatic leading, and our macro would then look like:

Get Integer (Var01;0;32767;"Set Leading in Points";"Leading is now "
$CurrentLeading$" point(s). Enter 0 for automatic leading, or set to:")

16 John’s WordPerfect Scripting Guide

If (Var01=0)

Automatic Leading
Else

Leading (Var01)
End If

and, since the Get Integer dialog defaults to 0, the user would only have to run our macro and
click OK to get automatic leading.

And there you go. You're off to a great start to adding commands that you want to use, so your
word processing, graphics and page layout will be faster, easier and more accurate.

5: Flow Control

Last chapter we learned how to use a read-write variable to take a number the user gives us, and
issue a program command with that variable, or compare the value of the variable to another
variable. In one example last chapter, we compared the value of Var01 (read-write variable no. 1)
with the value of a read-only variable, PhysicalPage.

This time let’s compare the value of two read-write variables. You'll enjoy the structure of this,
and it’s a good first glimpse into the power you get by having variables work together. We’ll also

learn how to write a repeat loop — macro commands that repeat, or loop back to the beginning
and run again, a certain number of times.

Writing a repeat loop

For a simple example of a repeat loop, try this. Note that there’s a space after the period in the
second line:

Repeat
Type (I will not write macros in class.)
Until (PhysicalPage>1)

When you enter this in the macro editor, the line that repeats will indent automatically, and
commands and variables will be bolded.

Try this in a new, empty document. Note that the test in the third line is much the same as the
test in the “Enough Pages?” macro.

Planning the script

Now, for a more useful command to script, consider that WordPerfect lets you write some words,
and then count them. What if, though, you wanted to go the other way and select a given number
of words?

Before starting to code, let’s put together a rough plan of what we need to do. Basically, that is:

1. Getanumber from the user.

2. Start selecting words, counting as we go.

3. Stop when we’ve selected the number of words the user wants.

We'll do the first step with a Get Integer command, just like both examples last chapter. We'll set
the limits of the Get Integer command to check from 1 to 32,767 (which happens to be the largest
number a variable can hold).

To select words, we’ll use a navigational command, specifying selection. This is similar to the

“Enough Pages?” macro, where we went to the end of the document with the command End ()
which took us to the end without selecting anything. If the command were End (Select), every-

18 John’s WordPerfect Scripting Guide

thing from the insertion point to the end of the file would be selected. The navigational command
for what we want to do this time is Word Right (Select).

Now the fun part. We'll put the number of words the user wants to select in Var01. We have the
Word Right command, which we’ll put in a repeat loop. How do we tell the macro when to stop?
By adding a line to the repeat loop that counts the number of times it’s repeated. Then we test
whether it’s repeated the number of times the user wants. Here’s the script:

Get Integer (Var01;1;32767;"Select Words";"Enter number of words to select:")
Repeat

Word Right (Select)

Assign (Var02;Var02+1)
Until (Var01=Var02)

which gets the integer, starts the repeat loop, selects successive words starting at the insertion
point and going right and, using the Assign command, increments Var02 by 1 each time around,
so that Var02 will contain the number of words already selected. When that number equals the
number the user wanted, the macro stops. Voila.

Adding some polish

We can make this go much faster, a real benefit when selecting a large number of words, by
beginning the macro with the line:

Display (Off)

which turns off display while the macro runs, so it can select and count words without taking the
extra time to update the screen while doing so. End the macro with:

Display (On)

Try this. There’s quite a difference.

Variations

This is fine to select a quantity of words. What, you say that what you really need is to select a
given number of lines? No problem. Just open the script, Save As under another name, say “Select
Lines,” and replace Word Right (Select) with Down (Select). Quick and easy.

What happens if what you wanted to select were groups of lines, such as addresses? You might
have a list of 200 names and addresses, and want to select the first 60 — or the 60 immediately
following the insertion point. Let’s talk strategy here. We have to figure out how to tell the macro
what counts as an address. Words and lines were easy, since WordPerfect knows what those are.
We couldn’t just write something like “Address Down (Select),” though. How can we have the
macro detect an address?

Consider that nearly all lists of addresses have a name on the first line, street and number on the
second, and city /state/zip on the third, and maybe phone number on the fourth — or something
like that, with a single hard return for each line. Then, to separate one entry from the next, there
are two hard returns. That’s our key, right there. Two hard returns.

Flow Control 19

Rather than figure out how to look for two hard returns in succession, let's have WP do some of
the work for us. You know that you’d search for double hard returns in a regular document using
Find /Change. The last menu in that dialog box, Insert, lets you find tabs, hard returns, etc. or any
combination. Let’s record that part of our macro, to replace Down (Select).

Recording part of a script

This is much like what we did in chapter one, only in reverse. Then, we recorded a change in font
and size, and edited those values. This time, we'll put the insertion point at the appropriate place
in the script, switch out of the macro editor, call the Find command, set its menus, and click Find.
WordPerfect will record this as we go, and we can then go back into the macro editor and clean
up a little. Ready? Follow these steps:

1. In the macro editor, click to put your insertion point at the start of the line “Down (Select).”

2. Click in the document behind the macro editor, to bring the document to the front, or do the
equivalent using the Window menu.

3. Call the Find/Change command from the Edit menu. Set the Direction menu to Forward, the
Where menu to Document Only, the Action menu to Extend Selection and, from the Insert
menu, choose Hard Return twice, to put those codes in the Find box. Click Find. It doesn’t
matter if the command finds anything at this point. Close the Find dialog.

4. Switch back into the macro editor. You should see these lines, in the middle of the script you
wrote:

Find/Change Direction (Forward;No Wrap)

Find/Change Where ({Current Doc})

Find/Change Match (Partial Word;Case Insensitive;Alphabet Insensitive;CharRep
Insensitive;{Text Only})

Find/Change Action (Extend Selection)

Find String ("[Language:English (USA)][Font:Geneva][Size:12][Hard Return][Hard
Return]")

Find

Abort When Not Found

and we need to edit this a little.
5. Change the line that starts with Find String so that it reads:
Find String ("[Hard Return][Hard Return]")
so as to delete the specifications of language, font and size.
6. The line “Down (Select)” will still be in the script. Delete that as well, and delete any blank
lines that the recording may have added. The macro editor likes to put semicolons at the start

of blank lines, for reasons we’ll get to. For now, go ahead and delete those semicolons as well.

7. Save As with a new name, say “Select Groups” and check out your latest macro.

20 John’s WordPerfect Scripting Guide

And that’s it! You now have macros that select a given number of words, lines, and groups of
lines. This last one would be useful for paragraphs as well as addresses, if you put double hard
returns between paragraphs. More importantly, you're learning how to structure things. Repeat
loops and other, similar flow commands are used all over the place in macros. As well, you
know when to script and when to record. We'll be moving faster in future chapters, now that you
have this grasp of the basics.

6: Text Formatting

Doing a large amount of identical formatting is a great job for a macro. Consider a glossary or
dictionary (or catalog or handbook) where you want each word or phrase being defined in bold,
and the description in plain text, like this:

geek: person whose life has been taken over by computers, and who can'’t think
about anything else.

hacker: person who’s very productive with computers, and who can use them to
great advantage.

twelve-step program: means to achieve freedom from something addictive and
debilitating, such as computers.

One way to do this would be to select bold every time you started a new definition, type the
word or phrase, and then switch back to plain text for the description. Dullsville and slow.
Another way would be to use a table, put words in one column and definitions in the other, and
bold the left column with one command. That would leave a lot of white space if the definitions
were long, though. You could then do table to text, after replacing all colons with tabs, and then
replace tabs with colons again, but this is starting to get complicated. Can we just enter the whole
thing in plain text, and have a macro bold every word or phrase being defined? You bet.

We need to pursue a little strategy to tell the macro what to do. First, let’s say that we used
double hard returns to separate paragraphs (I know that paragraph spacing is a better way, but
fewer people use that. It would be just as easy to design a macro for it, though). For double hard
returns, we'll tell the macro to search forward until it finds the next pair of hard returns. We then
want to select everything between those hard returns and the next colon, and change that selec-
tion to bold.

Recording the first part

To start off, begin a macro recording, and open the Find dialog. Set the options to Direction/For-
ward — No Wrap, Where /Document Only; Match / Text Only; Affect/Case and Text Only;
Action/Posltion After. From the Insert Menu, choose Hard Return twice. Click Find. It doesn’t
matter if you find anything at this point. Switch to the macro editor; you should have this script:

Find/Change Direction (Forward;No Wrap)

Find/Change Where ({Current Doc})

Find/Change Match (Partial Word;Case Insensitive;Alphabet Insensitive;CharRep
Insensitive;{Text Only})

Find/Change Action (Position After)

Find String ("[Language:English (USA)][Font:Geneva][Size:12][Hard Return][Hard
Return]")

Find

Abort When Not Found

which gets us to the double hard returns, positioning the cursor after them.

22 John’s WordPerfect Scripting Guide

First, let’s edit the line that starts with “Find String” so it reads:
Find String ("[Hard Return][Hard Return]")
Now, add these lines to the script:

Find/Change Action (Extend Selection)
Find String (":")

Find

Abort When Not Found

Attribute (On;Bold)

Right ()

to extend the selection to the next colon, use the Attribute command to turn bold on for the
selection, and move the cursor one character to the right without selection, to deselect the text
that’s been bolded. Try this on some sample text like definitions above.

This works, but it’s rough. It ends with an error message when the macro can’t find either double
hard returns or a colon. To get it to repeat, you’d need to Set Repeat Count (Command-Shift-
Clear) to at least the number of times you wanted it to repeat, then call Repeat Count (Com-
mand-Clear), then run the macro. Let’s do better, by putting all this code in a repeat loop, and
deleting unnecessary lines.

First, delete both lines that read “Abort when not found” and the last line, “Right ().” That last
line deselects the bolded text, a nice feature for a macro that runs once, since if a macro or other
action leaves anything selected, the user could inadvertently press another key and erase the
selection. We don’t want this line in a repeating macro, though, since each line of code takes a
certain amount of time to run.

Then, add the line
Repeat
as the first line, and the line
Until (FindStatusFlag=0)

as the last line. FindStatusFlag is a flag just like SelectionFlag, which we learned in chapter two.
FindStatusFlag is on (or equals 1) if the most recent Find command found something. So this
macro runs until it runs out of things to find. Give this a try on your sample file. You would want
to run it at the start of the definitions.

Oops — Bugs

Or would you? If the macro didn’t start soon enough in the file to find double hard returns before
the first word being defined, you’d miss bolding the word in that first paragraph. No sweat, just
put the cursor at the top of the file, preceding the paragraph or two of introduction (for example,
at the start of this chapter) and run the macro from there. Oops. That's much worse. What
happened?

Text Formatting 23

The macro did just what you told it to do. It found the first set of double hard returns (which, in
this chapter, separate the two introductory paragraphs). It then found the first colon, which
comes after “geek,” and selected everything in between. Just what we thought we wanted.

At this point you, like all other Mac programmers, could say that you have something that works
well enough, as long as you keep its quirks in mind. This is called a “hack.” Or, you can fix it and
call it “elegant.” Up to you. Being WP users, let’s go for elegance.

Let’s see. We need to tell the macro to find double hard returns, signifying the start of a new
paragraph, and then to look at that paragraph, to see whether it has a colon in it. If so, we can
assume it’s a definition. If not, we’ll have the macro move on to the next paragraph. It's true that
there may be a colon in an introductory paragraph, but unless we use a special symbol between
word and definition, we don’t have anything else to tell the macro to look for. We’ll have the
macro end when it can’t find any more double hard returns.

This is best represented by a flowchart like figure 12. Flowcharting is a great way to conceptual-
ize, design and troubleshoot macros. As we go along, I'll emphasize this way of thinking about
the programming process, and you'll find it helpful to flowchart your way through variations on
what you see here, and on your own ideas.

Find double
hard returns?

Yes No

Find colon?

N \
© Yes

Turn bold on]

Figure 12: Flowcharting the macro

I'll also start adding comment lines to scripts. These lines start with a semicolon or have a
semicolon after the command. Anything following the semicolon is ignored by WordPerfect
when running the macro. They just serve to clarify the code to another user. Thus,

Assign (Var02;Var02+1) ; this increments the value of Var02 by 1

has a descriptive comment after the command. You can also start a line with a semicolon, fol-
lowed by equals signs, hyphens or whatever, as a separator — again, to make it easier to read.

Now to the script. It makes two decisions now, both based on what it can find. So we’re using
FindStatusFlag twice, and thus don’t want a repeat loop to continue until FindStatusFlag=0. It
may well equal 0 at several points in the macro, but we want the macro to keep going. So we’ll

24 John’s WordPerfect Scripting Guide

add a Go command, which sends macro execution to a Label. Big words? Here’s a quasi-macro
example:

If (Today=Saturday or Sunday)
Go (Party)

Else
Go (Work)

End If

Label (Party)
Dance a lot
Make merry
End Macro

Label (Work)
Work hard
Make money
End Macro

so the If /Else test in the first five lines sends macro execution to either of two parts, Party or
Work. The comment lines of equals signs just make the script easier to read.

In our actual script, below, we're using one label, “top.” WP goes right by it when starting, and
proceeds to search for double hard returns, as before. If it doesn’t find any (FindStatusFlag=0),
the macro ends, resetting the Find / Change options to the defaults. Otherwise, it positions the
cursor after the double returns, and selects that paragraph. Within the selection, it then searches
for a colon. If it finds one, it extends the selection — meaning that the selection now reaches from
after the double returns to the colon — and it makes that selection bold.

If it doesn’t find a colon, it moves the cursor left one character to deselect the paragraph with the
cursor at the start of it, so it will be able to see the double returns following that paragraph. Then,
with the Go command, execution goes back to the top of the script to start over.

Compare this script with the flowchart in figure 12 and see how they match up.

Label (top)

; ready to search for the next double hard returns

Find/Change Direction (Forward;No Wrap)

Find/Change Where ({Current Doc})

Find/Change Match (Partial Word;Case Insensitive;Alphabet Insensitive;CharRep

Insensitive;{Text Only})

Find/Change Action (Position After)

Find String ("[Hard Return][Hard Return]")

Find

If (FindStatusFlag=0) ; if there aren’t any more double returns
Find/Change Reset
End Macro

End If

; if we find a double hard return

éelect Paragraph

Text Formatting 25

Find/Change Direction (Within Selection;No Wrap)
Find/Change Action (Extend Selection)

Find String (":")

Find

If (FindStatusFlag=1)

J
; if we find a colon

:L\ttribute (On;Bold) ; bold all text between returns and colon
Else

Left () ; deselect text, putting the insertion point to the left
End If
Go (top)

Then put this script into your macro editor and try it out. Fun!

This complexity of design will seem difficult at first. Don’t worry. It gets much easier with prac-
tice, and you’ll find yourself designing macros like this to relax. Meanwhile, go through this
chapter again, remember how difficult:

If (SelectionFlag)
Beep
End If

seemed in chapter two, and realize how much you're learning!

What’s going on here

Let’s stop to note something important. Up to now, you’ve seen macro scripts, typed them in,
recorded and edited them, as though transcribing some mysterious foreign language (which it
was). If you've gone through the past six chapters and done the examples, though, I bet the
macro scripts in this chapter have looked different to you. I bet you've understood the largest part
of what you’ve seen this time, without having them explained.

Some commands, syntax and fine points won't be clear yet, of course. The thing to consider now
is how fast so much has become comprehensible. And since program commands and variables,
tied together with flow commands such as repeat loops, are mainly what’s going on in macros,
you can start to see, at this point, how you’ll be able to learn the entire language (this doesn’t
mean memorizing it — that’s what the online macro help is for) and write commands that are just
what you need to work better and have more fun.

7: The Value of Example

Here’s a trade secret: a vital part of learning macros is studying examples. Now that you've had
some theory in the past few chapters, take a look at these new examples. They shouldn’t be hard
to figure out.

Things to record or script

As you get better at scripting, you'll find it faster to write a script than record it, at least most of
the way. For example, you could record a macro to switch two letters you inadvertently typed
out of order, or you could enter these lines directly into the macro editor:

Left (Select)

Cut

Left ()

Type Var (Clipboard)
Right ()

thereby bypassing WP’s smart paste, which we don’t want here anyway. Assign this a one-
handed keystroke, and it’s a real wrist-saver!

BBEdit calls it “Twiddle” and will also switch whole words. So will this macro:

Word Left ()
Word Left (Select)
Cut

Word Right ()
Paste

Here’s one that you might want to assign the keystroke Option-Semicolon, since it looks much
nicer than the standard ellipsis you would otherwise get with that keystroke, and doesn’t inter-
fere with word wrap:

Type (.) ; space before the period
Hard Space

Type ()

Hard Space

Type (.)

Note that there’s a space before the period in the first line, and a space after the period in the last
line.

Read-only variables

These provide information about the current state of things in WordPerfect. LineCharacterCount,
for example, tells you how many characters there are in the line, to the left of the insertion point.
That’s sometimes a helpful figure to have (not to mention vital to complex macros), so you could
write a macro like:

Alert ("There are "$LineCharacterCount$" characters to the left of the insertion point.")

28 John’s WordPerfect Scripting Guide

BTW you can type these in, click Pause at the top of the macro window, bring a document
window to the front and run the macro.

ChapterNumber is another. If you've set chapters (in any of the box number dialogs), so that
figures and their cross-references can say “Chapter 12, Figure 16,” but you don’t have a figure
close by to remind you of the current chapter number, you could write an alert like:

Alert ("The current chapter number is "$ChapterNumber$".")

You can of course put more than one variable in an alert. ScreenSizeH and ScreenSizeV contain
the dimensions of your main monitor:

Alert ("Your main monitor measures "$ScreenSizeH$" points wide, and "
$ScreenSizeV$" points high.")

Commands with read-only variables

Want to add the Revert command that some programs have, to return to the last saved version of
a file? Try this one. CurrentDir is the current folder, and DocumentName is just that.

Assign (Var00;CurrentDir)
Assign (Var01;DocumentName)
Close

Open Document (Var00$Var01)

Note that the Close command closes the active file without saving any changes! Put the Save
command first in a script where you want to save changes.

I use something similar: I often have more than one version of a file on disk, and want to make
sure that the one I opened with Now Menus’ open recent menu is the one I think it is. So I run:

Alert ("Active file is "$CurrentDirfDocumentName)

although if you've opened a file in another folder (and then closed it, or sent it to the back) since
opening your active file, the path you see may be the one to the more recently opened file.

Here’s another variable. It’s nice to use WP’s Next Window command on the Window menu to
cycle through all open windows. I often have four or five windows open, though, and often want
to go from the top one to the one right behind it, and back again. So I run this macro (using a
convenient one-handed key assignment), with the variable NextWindow:

Select Window (NextWindow)

except that this returns an error if there’s only one window open.

Conditional statements
No problem; let’s add the variable NumberOfWindows, and get:

If (NumberOfWindows>1)

The Value of Example 29

Select Window (NextWindow)
End If

which is also an example of a conditional statement. An elaboration of that would be:

If (NumberOfWindows>1)

Select Window (NextWindow)
Else

Beep
End If

to let the user know when there isn’t a next window to be selected.

If you typically work with different font sizes, including small ones, and would like to save a step
when choosing screen magnification, try:

If (FontSize<10)
Magnification (150)
Else
Magnification (100)
End If

except that this doesn’t have many options. But we don’t need to limit ourselves to one If condi-
tion.

Adding an operator
We can use the ampersand as the and operator, toss in another Else condition, and get:

If (FontSize<10)
Magnification (150)
Else
If (FontSize>=10&FontSize<18) ; font size between 10 and 17
Magnification (100)
Else
If (FontSize>=18)
Magnification (75)
End If
End If
End If

so that the fourth line specifies that if the read-only variable FontSize contains a value (for the
font size at the insertion point) equal to or greater than 10 and a value less than 18, set magnifica-
tion to 100%. Edit this macro for the font sizes and magnifications you want, give it a convenient
keystroke, and get used to more legible working conditions.

This is also a good example of nested commands: when you type this in your macro editor,
commands following both If and Else are indented, with the multiple End If lines ending the
indents. This tells both the macro editor and you what, at any point, the If and Else consider-
ations are.

30 John’s WordPerfect Scripting Guide

Repeat loops

We looked last chapter at a repeat loop. Here’s another example of that, with the read-only
variable FrontWindow, containing the name of the active document, and the commands Cycle
Windows and Print. The Print command here contains the parameter Document, meaning print
one copy with the print options currently in effect.

As the Cycle Windows command repeats, the value of the FrontWindow variable will change.
Var(1 continues to contain the name of the original active document and, when those two are
equal again, the macro stops. So this handy macro prints all open documents:

Assign (Var01;FrontWindow)
Repeat

Cycle Windows

Print (Document)
Until (Var01=FrontWindow)

Here’s one that changes all soft returns in your file to hard returns:
Repeat
Find Next Code (Forward;Return-Soft)
Hard Return
Until (FindStatusFlag=0)
A slightly shorter way to write the last line is:
Until (!FindStatusFlag)

which uses an exclamation point, the not operator. It's the same thing to specify that the
FindStatusFlag equal the number zero, or not exist.

8: Menus

So far, we’ve written and implemented basic commands that are fairly linear: press a keystroke,
get an action. Let’s take a big jump up from this, and write a macro that gives the user a choice,
expressed on a menu.

Basic menus

To show or hide white space (margins, space for headers, footnotes etc.) more easily than going
to Environment in Preferences, try these two one-liners:

White Space (Show)
and
White Space (Hide)

or, rather than have two separate macros (or 20, for another purpose), we can give the user a
menu with all the options in one place:

Menu (Var01;"White Space";{"Show";"Hide"})
If (Var01=1)
White Space (Show)
Else
White Space (Hide)
End If

which looks like figure 13:

£ Wwhite Space
A. Show
B. Hide

Figure 13: A menu

and which does this:

1. The Menu command has a variable as its first parameter: a number representing the user’s
choice (e.g. 1 for Show; 2 for Hide) will go into Var01. The “A” and “B” to the left of the
choices are a WordPerfect extra — you can type that letter rather than use the mouse to click
on your choice.

2. “White Space” is the title of the menu.

3. The words within the curly brackets form a list; in this case, they’ll be the items on the menu.
A list of parameters so enclosed is also called a parameter set.

32 John’s WordPerfect Scripting Guide

4. The next line, with the If statement, uses the value of the variable assigned in the Menu
command. If the user selected the first item on the list, Var01 would have the value 1. If the
user had selected the second item, Var01 would have the value 2. But, since there are only
two choices on the menu, [used an if/else structure as the simplest way to do it.

Cases and labels

If we have more than two menu choices, we could add more if/ else statements or, more conve-
niently, tell WP that in case Var01 is 1, do this, and in case Var01 is 2, do that, and in case Var01 is
3, do the other thing.

For example, you can set the format orientation (in Environment in Preferences) to either Para-
graph or Single Paragraph, nice options for flexibility, but you have to go into Preferences to do
it. If you remember WP 1.x or 2.0.x, you know another formatting option, Character (my favorite
much of the time). The difference is: say you have your insertion point in the middle of a single-
spaced paragraph, and you choose double spacing from the Layout Bar. With Paragraph format-
ting, all lines in the current paragraph and all succeeding paragraphs (until a style takes effect)
become double-spaced. With Single Paragraph, only the paragraph containing the insertion point
is affected. With Character, only the text following the insertion point is affected. Ready availabil-
ity of all three significantly increases power in formatting.

This macro uses the Formatting command with the parameters Character, Paragraph and Single
Paragraph. It posts a menu to assign a value to a variable (Var01), which will be 1, 2 or 3 depend-
ing on the user’s choice from the menu list. The Case command then looks at Var01 and assigns a
label according to its value. Macro execution then goes to that label. (Remember, we learned
about labels last chapter, using the Go command to send macro execution to one label. This is just
a little slicker, having the macro branch to one label or another, depending on the value of a
variable.)

The list in curly brackets in the Case command are the labels corresponding to the values of
Var01. The Cancel label following the curly brackets is the default label, to which the macro will
go if the user clicks the close box in the menu (that is, doesn’t put anything in Var01). The End
Macro command following each label and its associated command keeps the macro from going
on to read and execute subsequent lines, thus resetting the formatting. This command isn’t
needed at the end of a script since a macro ends naturally when it runs out of code.

Menu (Var01;"Set Format to:"{"Character";"Paragraph";"Single Paragraph"})
Case (Var01;{1;Character;2;Paragraph;3;Single Paragraph};cancel)

Label (cancel)

End Macro

i_abel (Character)
Formatting (Character)
End Macro

i.abel (Paragraph)
Formatting (Paragraph)
End Macro

’Label (Single Paragraph)
Formatting (Single Paragraph)

Menus 33

For an added touch of elegance, let’s tell the user what the current setting is, using the read-only
variable FormatOrientation, which holds the value 0, 1 or 2 depending on the orientation. Add
these lines to the beginning of the macro, so that the last line here replaces the menu command:

If (FormatOrientation=0)
Assign (Var02;"Character")
End If
If (FormatOrientation=1)
Assign (Var02;"Paragraph")
End If
If (FormatOrientation=2)
Assign (Var02;"Single Paragraph")
End If
Menu (Var01;"Format now: "$Var02$". Set to:"{"Character";"Paragraph";"Single Para-

graph"})

Call

Use of menus invites sophistication in flow commands. The user’s choice sends macro execution
to one of several different labels, which is fine as long as all those labels do different things.
Sometimes, though, they contain some identical steps. Rather than repeat those in each label, it’s
easier to refer execution to another part of the script, run the commands there, and then return.
Here’s a quasi-macro example:

Menu (Var01; “First Day of Vacation”;{"Sleep All Day”;"Go Fishing”;"Play Golf’})
Case (Var01{1;sleep;2;fish;3;golf};cancel)

Label (cancel)

End Macro

Label (sleep)
Sleep
End Macro

Label (fish)

Get Up

Wash

Brush Teeth

Get Dressed

Eat Breakfast

Put Fishing Rod in Car

and so on, and you can see that the next label, “golf,” will include the same commands between
“Get Up” and “Eat Breakfast,” inclusive. In a real macro, that could be many lines of code,
repeated for a dozen menu choices. A shortcut is to use the Call command, which will send
execution to a specified label and continue until a Return command is encountered. Execution
then returns to the line immediately after the Call command. So part of our vacation macro
would look like:

34 John’s WordPerfect Scripting Guide

Label (fish)
Call (firstThing)
Put Fishing Rod in Car

;and so on
End Macro

Label (firstThing)
Get Up

Wash

Brush Teeth

Get Dressed

Eat Breakfast
Return

with the “firstThing” label somewhere out of the way, perhaps at the end of the script. Execution
now, assuming the user’s going fishing, goes to the label “fish” and then to the label “firstthing.”
Upon seeing “Return,” the macro goes back to the line right under the Call command, which is
“Put Fishing Rod in Car.” Note that the Return command is not anything like Hard Return,
which adds a new paragraph to the document.

9: Custom Menus and Online Help

The menus we looked at in the last chapter gave you additional program commands, or made
existing commands easier to reach. There’s not much of a limit on what you can do with menus,
though. How about your own menu, of commands, frequently-used documents, boilerplate text,
anything you’d like to have in one place for fast access? Let’s go.

Custom menus

First, make a list of what you want. This could be something like:

1. Append selection to clipboard

2. Openjournal

3. Select entire table

4. Type your address

5. Typeover toggle

a list I got by taking a tour through the online macro help’s index of commands, and seeing what
I might like to put on a menu. You can take that tour, or build this menu first to see how to
interpret the online help.

To make this menu, start with:

Menu (Var01;"My Work Menu"{"Append selection to clipboard";"Open Journal";"Select
table";"Type my address";"Typeover toggle"})

to give you a menu title and selections. Note that all parameters for the menu command are
enclosed in parentheses and separated by semicolons, and that the list of menu items is further
enclosed in curly brackets, forming a parameter set.

Next, put in a Case command. This will have the same variable (Var01) as its first parameter,
followed by numbers starting with 1, to reflect what the user put in Var01 with the menu and, for
each number, a label. The labels can be anything you want; they just have to match the labels
later in the macro.

Although this might seem largely a repeat of the list of options in the menu command above, one
important difference is that the menu command has its items in quotes; the case command
doesn’t. So for our example, this would read:

Case (Var01;{1;append;2;journal;3;select;4;address;5;typeover};cancel)

followed by the lines

Label (cancel)
End Macro

36 John’s WordPerfect Scripting Guide

in case the user calls the menu, and then decides to click in the close box (thereby not assigning
Var01 a value). We're halfway there. All we need to do now is fill in the commands for these
various labels.

Help with syntax

The online macro help will tell us how to do this. From the Balloon Help menu (not the Apple
menu’s Help), choose WP Macro Help... and from the Help Topics list, click Index. Zoom the
window if you like, and scroll down to and click on Append to Clipboard. You'll see figure 14:

S(J==—————— WP Macro Help =———— 1
[Contents][Previous][Notes...][Kegword];g] /[Search][Print...] |Bookmarks VI
Append to Clipboard
5]
k%4
Purpose
Appends selected text or graphics to whatever is already on the Clipboard. If no text or
graphics are selected, an error is returned.
Syntax
Append to Clipboard *
See Also
Copy]
Clipboard ﬁ
A4
|

Figure 14: Macro syntax in the On-line Help

where you can click on the icon of the hand pointing right to see what program equivalent, if any,
there is. You can also read the purpose of the command. The Syntax part is the most important
for us at the moment: the command in your macro script must read exactly like this, including
spaces.

So, the next lines in your macro would read:

Label (append)
Append to Clipboard
End Macro

with the End Macro command so that the macro doesn’t go off and execute all the other labels to
follow, as well. Note that the spelling of the label here exactly matches the spelling in the Case
command.

And you get the idea, for one-line commands. But the next one, Open Journal, depends on some
things: where your file is and what you’ve named it. No problem, just look up the syntax to see

that it’s like figure 15, where you can click on the dotted underlined character expression to see
what that means. This part of your script would then read:

Label (journal)

Custom Menus and Online Help 37

Open Document ("Your hard disk name:folder name (if any):2nd folder name (if any,
etc.):filename")
End Macro

and, of course, you could have any number of these in your menu, for documents you want to
access often, but perhaps not often enough that you can depend on their being in the Open Latest
menu.

You're on your own for the next label, to Select an entire Table.
The next label, to type your address, is simple enough. It’s:

Label (address)

Type (66 Green Dolphin St.)
Hard Return

Type (Anywhere, USA 12345)
End Macro

S WPMacrolep =————— 1=

[Search || Print... Bookmarks VI

[Contents][Previous][MNotes...][Keg word]

Open Document

el

Purpose
Opens a specified document if enough memory is available. If not, an error occurs.

|Gl

Syntax
Open Document {Name)

Parameters
Name {cha
Specifies t

ion)
tional pathname of a document to open.

For Example
Open Document {"Hard Drive:wP 3.0:Files:Filename")

See Also
Convert and Open
On Error
Open Dialog

R

Figure 15: The syntax for the Open command
and put tabs in there (the word Tab on its own line, just like Hard Return) if you want your
address over to the right side of the page. If you’d like, add the line:
Date Text
at the end.

And, you're on your own for the last label, Typeover. (Actually, in case you need some assis-
tance, the whole script is at the end of this chapter.)

38 John’s WordPerfect Scripting Guide

In case of error

This is all very nice, but remember the online macro help’s description of the Append to Clip-
board command? If no text is selected, this command returns an error whose descriptive alert
could be more detailed. Let’s trap that error, by an If statement that looks for lack of a selection
flag, and alerts the user. So we get:

Label (append)
If (SelectionFlag) ; if nothing is selected
Alert ("You must select something to append.")
End Macro
End If
Append to Clipboard ; the original command, if we get this far
End Macro

so users have more feedback about what they’re doing wrong.

The error you get by choosing Select Table when the insertion point isn’t in a table, is similar. You
can change that alert with an If statement testing the InTableFlag, i.e. does the flag not exist, or
equal zero? Try that.

Document management

Let’s spruce up the Open Journal label. As it is, it opens the file and that’s it. But it would be nicer
if it opened the file, went to the end, drew a line across the page, hit return, entered the date, and
hit return twice more. This would be a good part to record. With your Journal file open and the
insertion point in the script editor at the end of the line with the Open Document command,
make the journal file active (click in its window) and record these steps:

1. Go to the end of the file, using whatever keystroke you do that with.
2. Press Return.

3. Turn paragraph border on, top only, whatever line type you like.

4. DPress Return.

5. Insert Date Text.

6. Press Return twice.

which will give you this addition to your script:

End ()

Hard Return

Begin Border Options (Paragraph)

Border Sides (Top On;Left Off;Bottom Off;Right Off)
Border (On)

End Border Options

Hard Return

Date Text

Custom Menus and Online Help 39

Hard Return
Hard Return

in between the Open Document and End Macro commands for the Journal label. Try that out.

Hey - this is fun

You betcha. Assign your work menu a convenient keystroke, and then see what other gems the
online macro help can point you to. Look for commands you use often and would like to have
more immediate access to. If there are styles you call a lot, for example, and would like to access
by keystroke, you can use this syntax (from now on, instead of adding a picture of the help
window, I'll enclose example syntax in a box, like this):

Apply Style (“Style Name”)

or any number of text entries (although my Glossary macros are a more efficient way of doing
these — we'll look at that macro in the next chapter) or opening any number of files. Another good
candidate for a menu entry is any sequence you perform often, but not often enough to give it its
own macro, keystroke, and spot on the main macro menu. If you find yourself taking the active
document and changing the margins, spacing, font, and size, printing a copy, then changing the
formatting back for further possible screen editing, put all those in a macro sequence and add it
to your menu. Caution: pay attention to whether the parameter for the macro command, as
defined in the online help, includes quote marks. The Font Name command does, for example,
while Font Size does not.

The answers at the end of the chapter

If you ran into any difficulty building parts of this macro, here’s the whole thing. The dividers,
comment lines starting with semicolons, just make the code easier to read:

Menu (Var01;"My Work Menu";{"Append selection to clipboard";"Open Journal";"Select
table";"Type my address";"Typeover toggle"})

Case (Var01;{1;append;2;journal;3;select;4;address;5;typeover};cancel)

Label (cancel)

End Macro

Label (append)

If (Clipboard="") ; if there’s nothing on the clipboard
Alert ("Can't append to an empty clipboard.")
End Macro

End If

If (ISelectionFlag) ; if nothing is selected
Alert ("You must select something to append.")
End Macro

End If

Append to Clipboard ; the original command, if we get this far

End Macro

Label (journal)

40

John’s WordPerfect Scripting Guide

Open Document ("Disk:Folder:File") ; you need to edit this path

End ()

Hard Return

Begin Border Options (Paragraph)
Border Sides (Top On;Left Off;Bottom Off;Right Off)
Border (On)

End Border Options

Hard Return

Date Text

Hard Return

Hard Return

End Macro

Label (select)

If (InTableFlag)
Alert ("Your insertion point must be in a table.")
End Macro

End If

Select Table

End Macro

Label (address)

Type (66 Green Dolphin St.)
Hard Return

Type (Anywhere, USA 12345)
End Macro

’Label (typeover)
Typeover ; this is a toggle command

10: Going Global

Up to now, we've used read-write variables that we wrote a value to, and then could read that
value from, while the macro was running. When the macro ended, the values simply disap-
peared. We call these local variables, and they have many uses. At other times, though, we need
a variable that will hold its value after a macro ends — until you quit WP or write something else
to the variable. These are global variables. Like the local variables, there are 50 of them, denoted
GlobalVar00 — GlobalVar49. Let’s see what we can do with these.

Making a glossary

One use is to keep any piece of text until you need it. Put access to the contents of several global
variables on a menu, and you have a glossary feature. I wrote one of these, with a menu giving
you up to 26 glossary entries, each up to 255 characters (the maximum string length a WP vari-
able can hold).

Aside from the length limit, there’s quite an advantage to putting a glossary entry in a variable
rather than putting the actual text in the macro script, as we did last chapter, with an address on
a work menu. Simply, the entry is much easier to change if we put it in some reference document,
which a macro could find and read. You could of course change the text in the script itself, but as
you become more advanced with macros you'll find yourself writing them for associates as well
as yourself and, if your associate isnt learning macros too, asking him /her to edit a script is a
daunting task. So let’s do it better.

For a start, create a new document with a table of one column and 26 rows. Name this document
“Glossary File” and save it in the WordPerfect folder in the Preferences folder in your System
Folder (or leave the Preferences folder out of that path if you're using system 6). Put a few words
of text in the first cell of that table, and close the file.

Now we want to cook up a macro that will open this file (probably when you start WP), and put
the contents of that cell into a global variable. A second macro, which we’ll run when we want to
insert the glossary entry, will put the contents of that variable on a menu, and the user can just
click on it. The macro will then type the variable into the document at the insertion point.

The macro to assign entries

So the first macro starts by opening the glossary file you just made. How does the macro find it?
When you start WP, one of the things it does is ask your Mac for the location of its system folder,
and then puts that into a read-only variable called BootDir. So we can start the path with that,
and not worry about what you or anyone else has named their hard disk, or how many levels
deep the System Folder is, and so on. The first command is then:

Open Document (BootDir$"Preferences:WordPerfect:Glossary File")

with the join operator ($) hooking up the read-only variable with the character expression
containing the rest of the path to the file. As a character expression, it’s in quotes.

With the file open, our next step is to put the insertion point in the first table in the document
(here, the only table) and in column 1, row 1. That command is: Position to Cell, whose syntax is:

42 John’s WordPerfect Scripting Guide

Position to Cell (Table ID;Column;Row)

where the TableID parameter is the number of the table in the document. Note that the variable
has no spaces in its name, by convention.

And we get:
Position to Cell (1;1;1)
putting the insertion point in the first cell. From there we can :

1. select the contents of the cell

2. copy

3. assign a global variable to the contents of the clipboard

and, since people generally start using variables 1, 2, 3 etc. in their macros, let’s start using
globals from the other end, the better to stay out of another macro’s way. Since our globals are
going to stay around as long as WP is running, the other guy’s globals will too. So we'll start with
GlobalVar49. Make a new macro entitled “Assign Glossary Entries” (no need for a keystroke),
and put this script in it:

Select TableCell

Copy

Assign (GlobalVar49;Clipboard)
Close

We'll add to this later, but all we’ll need to add are repetitions for more glossary entries, to be
contained in more globals.

A menu for global variables

Our next macro will put the globals (the one we have now, and more later) on a menu. A case
command will follow, to send macro execution to the proper label. Make another macro, call it
“Glossary,” and assign it a keystroke you like. Start it off with this script:

Menu (Var01;"Glossary";{GlobalVar49})
Case (Var01;{1;49};cancel)

Label (cancel)

End Macro

Label (49)

Type Var (GlobalVar49)

and let’s look at a few points. First, we're using a local variable, Var01, for the menu and case
commands. Why not? We can use both local and global variables within one macro. We’ll have
no need for the contents of Var01 after this macro ends, so a local variable is a good place for it.

Going Global 43

Second, there’s an important command here: Type Var will put the contents of any variable into
the active document at the insertion point. Not a bad macro command for a word processor to
have.

Third, we’ve written menus with character expressions (i.e. regular text), as in:

Menu (Var01;"Menu Title"{"Menu Choice 1";"Menu Choice 2"})

where text has to be in quotes. The Glossary menu above uses GlobalVar49 as a menu choice, and
it's not in quotes. If it were, you'd see, literally, “GlobalVar49” on the menu — probably not much
help. But the contents of a variable can be used in place of a character expression, where the
variable replaces the expression and the quotes marking it as such. Think of the variable contain-
ing text the same way that quote marks contain text.

The point of doing the menu this way is greatly expanded WYSIWYG. This menu won’t say
something like “Glossary Entry 1” but will show the actual text written to the variable, or as
much of it as will fit on the menu.

Try these macros out: run the Assign macro first, then the Glossary macro. You see the potential,
with more entries. You also see the potential for error, if the user runs Glossary without running
Assign first. One way around that, for the users who need a glossary feature on a regular basis, is
to have their OnStartUp macro run the Assign macro. OnStartup runs whenever you start WP
(and OnOpenDocument runs whenever you open a document containing it or, if it’s in the
Library, whenever you open any document), so a line in OnStartup could be:

Run ("Assign Glossary Entries")
which is one way to run one macro from another.

But our user may not want to add that line to OnStartup. Well, in any case we can have the
Glossary macro check to see if Assign has been run — that’s to say, see whether it’s put anything
in GlobalVar49. Put these lines at the top of Glossary:

If (GlobalVar49="")
Run ("Assign Glossary Entries")
End If

and the structure of things is largely finished. All we need to do now is add the code for multiple
entries. As you might expect, this will be fairly repetitive, as is a lot of code. Copy and Paste are
good friends when writing a comprehensive script.

For the Assign macro, though, we need to tell the macro how to go from one glossary entry (that
is, one cell in the table) to the next. What command would we use? “Down ()”? Nope. It moves
the insertion point down a line, which may be in the same cell for a multi-line glossary entry.
Here's a good place to click the Pause button at the top of the script editor window, and go back
into the program to see what it does. Play with a table for a minute and you'll see that Tab is a
good keystroke to go from one table cell to the next. To get back to the macro editor, just bring its
window to the front. You can click the Continue button if you want. Clicking Pause in the first
place just keeps the macro from recording your actions when any other window is in front.

44 John’s WordPerfect Scripting Guide

As a nice touch for the user, you can add a prompt while assigning entries. This line, at the top of
the Assign macro, would be something like:

Prompt (75;125;"Glossary";"Reading glossary information . . .")

where the first and second parameters are the distance in pixels/points from the top left of the
screen to the top left of the prompt. The third parameter is the title, and the fourth is the text.

Put an End Prompt command at the end of the Assign macro, so as not to leave the prompt on
screen.

Conceptual point: in past chapters I've talked about recording part of a macro and scripting the
rest. Here, though, we’ve scripted part of things and then gone back to the program not to record
but just to see how things work. We then take that observation and write our script to fit.

11: Windows

No, not the Microsoft kind, thank you, but those things on our Mac screen. Let’s look at how
macros can make our use and handling of windows easier and more fun.

Tiling windows horizontally

The stock WP command to tile windows sets two open windows next to each other vertically,
and tiles larger numbers of windows to approximate squares on screen. Although this arrange-
ment is useful for an idea of what each window contains, [work better with windows tiled
horizontally so that each one shows whole lines of text. Sizing and moving windows by hand is a
drag, though (pun intended), so let’s write a macro to do it.

First off, what kind of information do we need? To calculate window sizes and positions so that
each of, say, four open windows takes up one-fourth of the screen (minus the menu bar), posi-
tioned succeeding fourths of the way down the screen, we’ll need to know the screen size. This is
provided by the two variables ScreenSizeH and ScreenSizeV. We'll also need the number of
open windows, for which the variable is NumberOfWindows. How did I learn about these
variables? I wandered around the online macro help, thinking as I looked at each command and
variable, “What can I do with this one?”

Off we go. ScreenSizeH we can use as is, since there’s nothing else taking up screen space hori-
zontally. This will give us windows at the width of the screen. We'll have a fix for that later, to
give us windows at standard width.

For the vertical dimension, we'll be sizing windows so that if two windows are open, each takes
up half the screen; if three, a third and so on. The vertical dimension will thus approximately be
ScreenSizeV/NumberofWindows — approximately, since we have to subtract the 20 points (or
pixels) taken up by the title bar, since WP doesn't include that in measuring window size.

The commands we’ll use with this data are Size Window and Move Window. These both take
the name of the window as their first argument, as you see in the online macro help. You could
manipulate specific windows this way: “Size Window (‘My First Novel’)” etc., or use the variable
FrontWindow to specify that you want to operate on the frontmost window.

So we start with this code:
Size Window (FrontWindow;ScreenSizeH;(ScreenSizeV-20)/NumberOfWindows-20)

and note that for the vertical dimension, we're dividing the height of the screen by the number of
windows minus 20 (for the size of the usable screen) and further subtracting 20 so the windows
will fit in the usable screen. Units of measurement in macros are always points unless otherwise
specified.

Once the front window is sized correctly, let’'s move it, with the Move Window command. Since
you're looking up the syntax of each command in the online help as we go along (aren’t you?),
you see that the arguments for this command are Window Name; Horizontal Position; Vertical
Position. So we get the line:

Move Window (FrontWindow;1;(ScreenSizeV-20)/NumberOfWindows*Var01+40)

46 John’s WordPerfect Scripting Guide

Hold it. What's “Var01+40” doing in there? Here’s where things get a little complicated conceptu-
ally. All windows are going to be the same size, but at different positions. What we need to do is
keep count of the number of windows as we move and size them, so that we put the first window
in the top position, the second window in the second and so on. Let’s write a counter:

Assign (Var01;Var01+1)

so that every time we repeat the procedure, Var01 will tell us which window we’re working with.
The addition of 40 corrects for the Menu and Title Bar, each 20 points high.

So that this procedure cycles through all open windows, and repeats the right number of times,
we'll specify a repeat loop, and add these lines:

Repeat
Cycle Windows
; Rest of script here
Until (Var01=NumberOfWindows)

and we're almost there. For simplification, we worked this up leaving the horizontal dimension
alone, so the script now sizes windows to the width of the screen. This would be better for some
monitor sizes than others. Generally, I like my windows at standard width. We could simply
specify that width (630 points), except that it’s a little wider than the screens on compact Macs.
So, at the start of the script, let’s get the screen size, compare it to 630 points, and go with the
smaller of the two, as in:

If (ScreenSizeH<630)

Assign (Var00;ScreenSizeH)
Else

Assign (Var00;630)
End If

and use Var00 instead of ScreenSizeH in the rest of the script. For a final touch, let’s turn display
off with the line Display (Off), since the macro will run much faster if it doesn’t redraw the
contents of each window as it goes along.

Here’s the whole thing:

Display (Off)
If (ScreenSizeH<630)
Assign (Var00;ScreenSizeH)
Else
Assign (Var00;630)
End If

Repeat
Cycle Windows
Size Window (FrontWindow;Var00;(ScreenSizeV-20)/NumberOfWindows-20)
Move Window (FrontWindow;1;(ScreenSizeV-20)/NumberOfWindows*Var01+40)
Assign (Var01;Var01+1)

Until (Var01=NumberOfWindows)

which will work for any number of windows, until the number that, depending on your monitor,
would require each window to be smaller vertically than WP’s minimum size (try making a

Windows 47

window as small vertically as you can, and you’ll see what that is). So if you run this macro with
16 windows open, they’re going to fall over each other. With a more reasonable number, they’ll
line up perfectly.

The current version of these (see Appendix D) is Button Bar-aware. With window sizing and
placement, working with the Button Bar is much like the Menu.

New view

If you've used spreadsheets, you know about split windows: open a second view of the same
document, which you can scroll independently and see whether what you're saying on page 25
jibes with what you said on page 11. WP will let you open a read-only second window of an open
document, and you can then size and move the two views so you can see them both. If they’re the
only two windows open, you can run the Tile Horizontally macro we just wrote. But what if you
have five windows open, but want a second view of the active document, so that these two views
take up the entire screen? Well, we can do that too.

This macro will have similarities to Tile Windows. The main difference is that it will open a file,
using the command Open Document. This command can specify a file to open, as in:

Open Document ("Some Disk:Some Folder:Some File")

with the path in quotes, and parts separated by colons. The command will find this file as long as
there is one by that name in that location. If not, the macro returns an error and quits.

In the present case, we don’t know what the document name or location will be, just that it’s the
active file. No problem: the read-only variable DocumentName tells us the file’s name. So we can
start with:

Open Document (DocumentName)

which we'll follow with commands to move and size windows — only two this time - to fill the
screen. We can handle the first window with:

Size Window (FrontWindow;Var01;ScreenSizeV/2-40)
Move Window (FrontWindow;1;ScreenSizeV/2+40)

so that the original window of the document fills the top half of the screen. The next step is
harder, though, since we don’t know how many windows the user has open. If he or she had
only one window open, and we just opened a second, we could just Cycle Windows and perform
moving and sizing on the new active window. What if the user has three other windows open,
though? The design we want will open a new view of the active doc and set both views to take
up half the screen, in front of all other windows. The Cycle Windows macro command (just like
the Next Window program command, on the Window menu) brings the back window to the
front, while what we want to work with is the two frontmost windows. So using the Cycle
Windows command once isn’t going to work.

Instead, let’s use:

48 John’s WordPerfect Scripting Guide

Assign (Var49;FrontWindow)
Repeat

Cycle Windows
Until (Var49=FrontWindow)

which sets Var49 to the name of the (new) front window, and then keeps sending the back win-
dow to the front, until the current front window has the same name as Var49. This won’t be the
new window, though: it will be the original front window.

At this point we can size and move the original window:

Size Window (FrontWindow;Var01;ScreenSizeV/2-20)
Move Window (FrontWindow;1;40)

so that the original, editable window is at the top, and we’re done! Try this, and then put a few
lines of code at the top of the script to set window width to standard or to screen size, whichever
is less.

Note that this macro won’t automate the “File is already open for writing — open as read-only?”
dialog. What we can fix, though. is the error message we’d otherwise get if the user clicks Cancel
in that dialog. We do that with a first line:

On Error (end)
and a last line:

Label (end)

so if the user clicks Cancel, the macro goes to the label specified if it returns an error — and just
ends without further dialogs. Here’s the whole script:

On Error (end)
If (ScreenSizeH<627)
Assign (Var01;ScreenSizeH)
Else
Assign (Var01;627)
End If
Open Document (DocumentName)
Size Window (FrontWindow;Var01;ScreenSizeV/2-40)
Move Window (FrontWindow;1;ScreenSizeV/2+40)
Assign (Var49;FrontWindow)
Repeat
Cycle Windows
Until (Var49=FrontWindow)
Size Window (FrontWindow;Var01;ScreenSizeV/2-20)
Move Window (FrontWindow;1;40)
Cycle Windows
Label (end)

Windows 49

Second window

To finish up, let’s look at the macro I probably use more than any other. Even though I may have
three or more windows open, I go from the top window to the second window and back more
often than I visit the others. I've assigned a one-handed keystroke to this macro for maximum
convenience.

This macro could be a one-liner:
Select Window (NextWindow)

and that would be it. If there were only one window open, though, and you called this macro, it
would return an error. So an elaboration is:

If (NumberOfWindows>1)
Select Window (NextWindow)
End If

and, if you wanted a beep when there’s only one window open, you could write:

If (NumberOfWindows>1)

Select Window (NextWindow)
Else

Beep
End If

But if you liked to work with two views of the same window, so the string in the variable
FrontWindow has the same value as the string in NextWindow, you haven’t gotten those two
windows to switch yet. Try this:

If (NumberOfWindows>1)

If (FrontWindow=NextWindow)
Assign (Var01;NextWindow)
Repeat

Cycle Windows
Until (Var01=FrontWindow)
Else
Select Window (NextWindow)
End if
Else

Beep
End If
Display (On)

12: Substrings and Things

There are various ways to get information from the user, aside from menus and bribery. We
looked at Get Integer recently; another is Get String. We’ll look at the difference between the two
in a minute. First, let’s code a simple macro to navigate within a table.

We'll use Get Integer to see what row the user wants to go to. Looking in the online help, we
remember that the syntax for this command is:

Get Integer (Variable;Lower Limit;Upper Limit;Title;Prompt)

Since the upper limit for table rows is 32,767, let’s use that, and start with the line:
Get Integer (Var01;1;32767;"Go to Row";"Enter row in table to go to:")
The second line, to go to whatever row in column one, is:
Position To Cell (TablelD;1;Var01)

Note that the read-only variable TablelD is used as a command parameter, telling WP to position
the insertion point within the current table.

Give that a try, with your insertion point in a table. This is basic, without provision for errors
such as the insertion point’s not being in a table, or the user’s entering a larger number than the
table has rows. We'll fix these. First, though, let’s add to the macro so that the user can choose
both column and row to navigate to.

More complex data

That’s not as easy as it might seem, since the WP Get macro commands only have a place for one
entry. We could put a second Get Integer command in the macro, to specify columns, but it
doesn’t seem very elegant to have one dialog box followed immediately by another, after which
something happens. We could instead ask the user to enter both column and row number in one
dialog box, with the two figures separated by a character such as a slash.

Of course, something like “12/24” isn’t an integer any more. All the computer could see it as, is
just a sequence of characters, which we call a string. Any time you use the Find / Change dialog,
you're searching for, and maybe replacing, strings. A string could be all numerals; you could
search for the string “123” just as easily as anything else. But, defined as a string, you couldn’t
add “123” to a number.

Let’s expand on these definitions:

String: any sequence of any length of letters and / or numerals. Examples: “123”; “one two three”;
“23-skiddoo.” The first example, “123,” may look like a number to you but, to the computer, it
may be a number or a string, depending on where it came from. Copied to the clipboard, it’s a
string. This is because the Mac just takes whatever you select and copy, and calls it a string
instead of figuring out whether it would make sense as a number.

52 John’s WordPerfect Scripting Guide

Number: something that looks like “123” but which, as an actual number, can be added to,
subtracted from, or used in other arithmetic operations. “23-Skiddoo” could not be a number in
any case; it just doesn’t make sense as a number. An integer, of course, is simply a whole number,
positive or negative, or zero.

In scripts, generally speaking, strings are enclosed in quote marks while numbers are not. That's
why, earlier on, we learned to format with lines like:

Font Name ("Palatino")
Font Size (12)

So if you had a font named “12” it would be in quotes in the Font Name command.
Let’s add two more concepts:

Substring: part of a string. The string “12” is part of the string “123” but not part of the number
123 — no string is any part of any number, since they’re apples and oranges. Also, the number 12
isn’t part of the number 123 — it’s just a smaller number. A smaller number is in a manner of
speaking part of a larger number, but 45 is then also part of 123.

Substring Position: “1” is a substring of “123” in position 1. “3” is in position 3. In the string
“Bebop,” “op” is a substring in position 4.

So what we’ll do with all this is take the user’s input: “12/24” and find the substring position of
the slash. It may be the second or third character in the string, and we need to know which. We’'ll
then get the substring going from the first character to the character before the slash and, finally,
the substring consisting of the first character after the slash, going to the last character. To find
that last character, we'll get the string length of the user’s input. These concepts are shown
graphically in figure 16. Note that strings are shown in quotes; numbers are not in quotes. That’s
how we want to think about them.

String:
Substring: “12/24” Substring:
“qo» I “pg”

N /
12/24
String Length=5 / \ Substring

Position=3

Figure 16: Defining a string

So let’s start with the Get String command. The syntax is:

Get String (Variable;Maximum Length;Title;Prompt)

Substrings and Things 53

with a maximum length parameter just as a check. The largest input we’d expect, with the
maximum of 32 columns and 32767 rows to a WP table, would be 8, consisting of 7 numerals plus
the slash. So start a new macro, call it “Go to Table Cell” and enter:

Get String (Var01;8;"Go to Column/Row";"Enter column and row you want to go to,
separated by a slash:")

and we'll get some data to work with in Var01.
On a side but important note: now that you're a WP macro programmer, you're an interface
designer too. If all the macros you write are for your own use, this is less important, but other
users might not know beforehand that your table navigation macro will ask for column-slash-
row. So the dialog box we wrote shows them that, by example in the title, and description in the
prompt. A little forethought here is much better than all the questions you’d get otherwise.
Now that we have this data in Var01, let’s find how long it is with the command:

String Length (Var02;Var01)
and get the position of the slash with the command:

SubString Position (Var03;"/";Var01)

which would give us, for our example “12/24”, a string length in Var02 of 5, and a substring
position for the slash, in Var03, of 3.

To get the column data, we use the Substring command which, as the trusty online help shows
us, has the syntax:

Substring (Variable;Start Position;Length;Character Expression)

where a character expression could be a word in quotes, or a variable not in quotes, to give us:
SubString (Var04;1;Var03-1;Var01)

so that the column data we want is going into Var04. It starts with the first character of Var01 and
extends to the position of the slash minus 1.

I know this is hard at first. You might want to go over the command syntax for String Length,
Substring Position and Substring again. Then, it should be easier to get the row number the user
wants with:

SubString (Var05;Var03+1;Var02;Var01)

and we're almost there. Almost, because the substring commands have operated on strings with
results that are themselves strings. But WP can’t count a number of columns or rows with a string.
So we add the commands:

String To Number (Var04;Var04)
String To Number (Var05;Var05)

54 John’s WordPerfect Scripting Guide

to convert (programmers say coerce) the strings to numbers. Here I'm replacing a string in a
variable with a number in that same variable. Had I wanted to keep the string for future use, I
would have typed:

String To Number (Var06;Var04)
to have both to work with: the number in Var06, leaving the string in Var04.
Now, all we need is the line:

Position To Cell (TablelD;Var04;Var05)

and we have a working macro! Try this out, with your insertion point in a table, and entering
column and row numbers that aren’t bigger than the table you're in.

Note: if you run a macro and get an error message saying: “Macro Terminated: Error reading
parameter for this command,” you may be mixing data types — strings and numbers.

Cleanup

Unfortunately, you can’t give that last sentence’s worth of advice to your users. To do so, you'd
have to write a “manual” and, as you know, Mac users don’t read manuals. So let’s trap the
errors the user might make. As a quiz, I'll give you the snippets of code, and you figure out
where to plug them in (although the whole script is at the end of the chapter).

To start with, put the label “end” as the last line in your script. We’ll send the user there if he or
she does something wrong.

To check that the insertion point is in a table, add:

If ('InTableFlag)
Alert ("Your insertion point must be in a table.")
Go (end)

End If

To check that the user doesn’t enter data that’s bigger than the table, use the read-only variables
TableMaxColumnNum and TableMaxRowNum for the lines:

If (Var04>TableMaxColumnNumI|Var05>TableMaxRowNum)
Alert ("This table isn’t that big.")
Go (end)

End If

with a new operator in the first line. The “|” symbol, which you get by typing shift-backslash, is

the logical or operator: this line says that if Var04 is greater than the MaxColumn variable or

Var05 is bigger than the MaxRow variable, post the alert. This logical operator is an inclusive use

of “or”; we might say “and/or.” If either Var04 or Var05 or both are bigger than the table, you'll

see the alert.

The user might also forget to enter the slash. To check for that, add the lines:

Substrings and Things 55

If (Var03=0)
Alert ("l can’t find a slash in your entry.")
Go (end)

End If

since Var03 contains the position of the slash in the string the user entered.

The next snippet isn’t an error check, but a convenience for the user. As written so far, the macro
moves the insertion point to the desired cell. In a big table, the user might still have to search for
it. Why not select the cell once we’re there, with the command Select Tablecell? But when testing
that, I found that if I ran the macro, ending up with a selected cell, and then ran the macro a
second time with different row and column specs, the selection didn’t move. So, earlier in the
macro, add the lines:

If (SelectionFlag)
Left ()
End If

simply to deselect anything that’s selected. You now have a nice macro to add to your collection.
Here’s the entire script:

If (InTableFlag)
Alert ("Your insertion point must be in a table.")
Go (end)
End If
If (SelectionFlag)
Left ()
Right ()
End If
Get String (Var01;8;"Go to Table Column/Row";"Enter column and row you want to go
to, separated by a slash:")
String Length (Var02;Var01)
SubString Position (Var03;"/";Var01)
If (Var03=0)
Alert ("l can’t find a slash in your entry.")
Go (end)
End If
SubString (Var04;1;vVar03-1;Var01)
SubString (Var05;Var03+1;Var02;Var01)
String To Number (Var04;Var04)
String To Number (Var05;Var05)
If (Var04>TableMaxColumnNumI|Var05>TableMaxRowNum)
Alert ("This table isn’t that big.")
Go (end)
End If
Position To Cell (TablelD;Var04;Var05)
Select TableCell
Label (end)

and some special congratulations for finishing this chapter, since you're now calculating
substrings and coercing strings to numbers — real programming — that is most impressive at
parties.

13: Elementary Magic

In chapter 11 we looked at three macros that make window management easier. The one we’ll
look at now completes my “John’s WP Window Manager” set (see Appendix D for instructions
on finding this on the Internet). I've saved the last macro for this chapter because it’s quite a bit
more complex than the others, and uses the substring commands we learned in chapter 12. It also
demonstrates a more sophisticated use of variables and a more intricate flow structure than
we’ve seen before. There are even a couple of neat tricks.

What this macro does is help the user manage the number of windows he or she has open.
Cycling through all open windows, it asks the user whether or not to save and close each win-
dow, close without saving, leave open, or close all windows (asking to save changes in each one).
When all windows have been considered, the macro ends.

Let’s look at the macro’s menus and dialog boxes. The main menu, in figure 17, is the first the
user sees if the active document has been modified since being saved:

E[JE You made changes in this one: =
A. Save and close

B. Leave open

C. Close without saving
D. Close all

Figure 17: The macro’s main menu

while if the front window has not been modified, the user sees figure 18:

E[C)E No changes here:

A. Close

B. Leave open

C. Close all

Figure 18: Alternate
main menu

If the user closes the window, saving if appropriate, or leaves it open, the macro goes to the next
open window and repeats. If the user opts to close all windows, the macro goes through each
window, posting figure 19 if the document has been modified.:

Nouvel”?

[Egncel] [No]

Figure 19: A confirm dialog

f Save changes to “Great American

By the way, you see underlined letters in buttons in my screen shots of dialog boxes because I use
a free control panel called “Keys!” which you can download from several Macintosh archives.

58 John’s WordPerfect Scripting Guide

Type the underlined letter to press the button, without using the Command key. Try it — it’s slick.
While you're there, check out my other macro sets as well. I'll look forward to seeing your ideas
there before too long.

Simplified flowchart of the thing

Back to the topic: figure 20 is an overview, in the form of a flowchart, of the macro:

More windows?

I No
s i
I Yes

A Seen this window /

before?

No
Document
modified?
Yes No
Alternate main
I menu
|
| |
Leave open Close without saving Save and close

Cycle windows

No Yes

Save as dialog

Figure 20: The macro’s organization

This is a fairly complex structure, necessary to give the user this many choices. This flowchart
leaves out the Close All option, which just repeats the Save and Close / Close without Saving
choice for each remaining window. As you'll see, writing complex scripts becomes easier if you
flowchart what you want to do, then write small pieces, and then put them together.

Get your rabbit and hat

Much of the code is straightforward enough; the tricks come in where we need to tell, as we're
cycling through windows, if we’ve seen a window before. Also, we'll use some sleight-of-hand to

Elementary Magic 59

tell what the user does in a dialog box. This will be a good introduction to the strategy of writing
more powerful macros. It's also a bunch of fun.

The only new variables we’ll use are NewDocumentFlag, which has a value of 1 if the active
document has never been saved, and DocumentModifyFlag, which has a value of 1 if the active
document has been changed since the last time it was saved. Of course, each flag has a value of 0
otherwise.

The critical variable, though, is a local variable — I'll use Var00 - that is going to keep track of
whether the next window to come along is new to the macro, or whether it’s already been
through the cycle, with the user opting to leave it open. If it’s the latter, this is where we want the
macro to stop. But we can’t keep track of the windows just by counting them, as we did with Tile
Windows. In that macro, there was a constant number of windows. Here, the user may be closing
some windows and cycling others. We need to find a way to recognize a window by name. So,
this line of code:

Assign (Var00;Var00$FrontWindow)

adds to Var00 the name of each open window the macro encounters. Say you have three win-
dows open, called “FirstDoc,” “SecondDoc” and “ThirdDoc,” and you opt to leave the first one
open, closing the other two. When the macro gets back around to FirstDoc and reads its name
from the FrontWindow variable, Var00 will then contain “FirstDocSecondDocThirdDoc.” The
Substring Position command checks to see whether FrontWindow, now containing “FirstDoc,” is
a substring of Var00. Since it is, the macro has seen all windows and it’s time for it to end. Simple,
no?

So let’s start with a label called “top” since, with a macro that cycles a lot, it needs a place to start
over for each window. We can then check to see if any windows are still open, going to the end of
the macro otherwise. We'll then check whether we’ve seen the current window before. If not,
we’ll add the name of the current window to Var00, and the first lines of code will look like:

Label (top)

If (NumberOfWindows=0) ; no more windows to consider
Go (end)

Else

; Have we seen this window before?
SubString Position (Var01;FrontWindow;Var00)

; If we find FrontWindow in the compilation of all windows
If ('Var01=0)

,Guo (end)
End If
End If

; If we get this far, add this window’s name to the compilation
Assign (Var00;Var00$FrontWindow)

and we’ve done the largest part of the thinking.

60 John’s WordPerfect Scripting Guide

Tons o0’ labels

At this point, the macro is looking at a window it hasn’t seen before, and we want to have the
script flow to one of various labels depending on whether the doc is new, whether it’s been
changed, and so on. The code for that is:

If (DocumentModifyFlag=1) ; doc has unsaved changes
Menu (Var01;"You made changes in this one:";{"Save and close";"Leave open";"
Close without saving";"Close all"})
Case (Var01;{1;Save and close;2;Leave open;3;Close without saving;4;Close
All};cancel)

Else ; doc has no unsaved changes
Menu (Var01;"No changes here:"{"Close";"Leave open";"Close All"})
Case (Var01;{1;Close without saving;2;Leave open;3;Close all};cancel)

End If

Label (cancel) ; user clicks in menu’s close box

Go (end)

Notice that I used Var01 both for the substring position of FrontWindow in Var00, and, later in
the code, for the menu/ case value. Why not? With local variables, you can use them for one
thing, then for another. Since there are 50 of them, I could as easily have used another one, but
wanted to demonstrate this way that once the value of a variable isn’t useful any more, there’s no
problem with using that variable for another value. The macro runs just as fast too, since assign-
ing a value to a variable isn’t a slower operation if the variable already has another value. Just
make sure you're not replacing a value you'll need later on. That’s why we don’t want to touch
Var00: its value is a reference we’ll need as long as the macro runs.

In practice, it’s best to use all 50 variables and then re-use those that you can, being careful not to
overwrite some data you'll be using later.

If the user chooses “Save and close” from the menu, the macro will branch to these lines:

Label (Save and close)
If (NewDocumentFlag=0) ; doc already exists on disk
Save
Close
Else
Call (NewDoc) ; go to label for docs not existing on disk
End If
Go (top) ; finished with this window, ready for the next one

If the user chooses the second menu option, “Leave open,” the case command will branch to this
label:

Label (Leave open)
If (NumberOfWindows=1)
Go (end)
End If
Assign (Var02;NumberOfWindows)
Repeat
Assign (Var02;Var02-1)
Cycle Windows
Until (Var02=1)
Go (top)

Elementary Magic 61

which first checks to see whether only one window is open. If so, the macro has done its job, and
execution goes to the end. Otherwise, it goes to the next window and sees what the user wants to
do with that one. But we can’t use the Cycle Windows command as is, because it cycles by
bringing the back window to the front, moving all other windows back a layer. Say we have
FirstDoc, SecondDoc and ThirdDoc open. We choose to leave FirstDoc open, so the macro cycles
windows and puts ThirdDoc in front. If we close ThirdDoc, we’re then looking at FirstDoc again,
and have to once more tell the macro to leave it open before we ever get to SecondDoc.

To circumvent that, I added code to assign the number of open windows to Var02, and then
repeat the Cycle Windows command and decrement Var02 each time, until Var02 equals 1, which
has the effect of taking the front window and moving it to the back. Shuffling the windows that
way means that when we reach a window we’ve seen before (and so is contained in Var00), the
macro is done.

If the user chooses to close the current window without saving, the label runs:

Label (Close without saving)
Close
Go (top)

since the macro command closes a window without saving. Thus, the earlier label to Save and
Close has the Save command before Close.

If the user wants to close all windows, the macro branches to:

Label (Close all)

If (NumberOfWindows=0)
Go (end)

End If

If (DocumentModifyFlag=1)
Confirm (Var03;Caution;YesNoCancel;"Save changes to “"$FrontWindow$""?")
Case (Var03;{1;Yes;0;No})

which first checks to see if any windows are still open. We started the macro with that check, but
you'll see in a minute why we need to make it again here. If there is a window open, we need to
know whether it has unsaved changes, so we look at DocumentModifyFlag. If it’s on, we use a
command new to us, Confirm, which posts the dialog in figure 19. The first parameter is a
variable for use in a case command. The second parameter designates the icon for the confirma-
tion dialog. Figure 21 shows the available icons:

2 A O

Figure 21: Note, Caution,
Stop

or Generic, for no icon. If you use the Stop icon, the command beeps as well. The third parameter,
“YesNoCancel” in this case, shows the buttons the dialog will have. The first button is the de-

62 John’s WordPerfect Scripting Guide

fault, with the heavy border and which you can click by pressing Return. “OK” is the other
possible button for this command, as in “OKCancel.” If you press Cancel, the macro ends or goes
to a label specified in an On Cancel handler. OK or Yes will put a value of 1 in the variable, and
No gives it a value of 0.

The subsequent Case command sets up labels for Var03. If the user wants to save changes, the
label is:

Label (Yes)
If (NewDocumentFlag=1) ; doc has never been saved
Call (NewDoc)
Go (Close All)
Else
Save
Close
Go (Close All)
End If

which checks NewDocumentFlag to see whether we need to use the Save As dialog. If so, it calls
the NewDoc label, as does the Save and Close option much earlier in the script. Otherwise, the
macro saves and closes the document and then goes back to Close All. That’s why I began Close
All with a check for any open windows: once the user has decided to close all of them, the macro
goes into a much smaller loop and bypasses the check at the top of the script.

If the user doesn’t want to save changes in the current window and clicks No, the macro branches
to this label:

Label (No)
Close
Go (Close All)

If the front window is a new document, execution branches to NewDoc, which runs:

Label (NewDoc)

Save As Dialog

If (NewDocumentFlag=1)
Go (end)

Else
Close

End If

Return

which posts the Save As dialog. But when I tested this, a problem arose. To write good code, you
have to allow for anything the user might choose to do. If the user names and locates this new
file, using the Save As dialog, and clicks the Save button to exit this dialog, everything’s fine. If
the user gets to the dialog and then presses Cancel, though, we have a problem since the next
command is Close. What if the user wanted to leave it open? If we allow for that, by leaving out
the Close command, the user then can’t choose Save and Close for a new document. How can we
get around this?

Consider that when we include the command for a dialog, the macro pauses until that dialog box
closes. When the Save As dialog closes, the front window is no longer a new document unless the
user clicked Cancel. So, the next line in the script again checks the NewDocumentFlag. If that flag

Elementary Magic 63

is on, the user must have canceled out of the dialog, and the best thing now is end the macro, and
let the user decide what to do.

If the user does name and save the doc, the macro then closes the file, and returns to either of the
two places in the script which call NewDoc.

Finish it off with a “Label (End),” and there you have it! Congratulations on mastering a much
more complex structure than anything we’ve looked at up to now, as well as a more sophisticated
use of variables. As well, the size of this chapter’s macro might have been a bit daunting. This just
means, of course, that you can now design much more powerful and flexible scripts. Give your-
self a pat on the back, and let’s charge ahead.

14: Fun with Files

So far we’ve looked at all sorts of neat stuff: variables, repeat loops, cases and labels. We’ll do
more of that, of course, but I want to start conceptualizing in addition to coding: how ideas for
macros get off the ground to start with, and how they take shape.

Getting ideas

For example, I was wandering around Usenet the other day, and someone on comp.sys.mac.apps
asked whether there were any utilities to do a global find and replace on all files in a folder. Nice
idea, I thought — how can I get WordPerfect to jump through that particular hoop? (The result is
in my File Manager set.)

I remembered something I saw in the online macro help called Get File which puts the name of
the first, second, third etc. file in a given folder into variables. I didn’t know if it would work, but
I didn’t know that it wouldn’t. So I went to the online help, looked up the syntax for the Get File
command, and found:

Purpose
Assigns the name and file type of the nth (1st, 12th, etc.) file in the current folder to
specified read/write variables. Use Set Directory to change the current folder.

Syntax
Get File (File Name Variable;File Type Variable;File Number)

Parameters
File Name Variable (variable name)
The name of any read/write variable.

File Type Variable (variable name)
The name of any read/write variable.

File Number (numeric expression)
The number of the file (in alphabetical order).

For Example
Get File (Var07;Var12;18)

so the example looks at the 18th file in a given folder, and assigns the file name to Var07 and the
file type to Varl2.

File types

What's a file type? The Mac Finder identifies every file (application, extension, document, prefs
file etc.) by two means: the file creator (WordPerfect, Illustrator, Finale or any application that can
create a file) and file type. Each program can create a file in its own proprietary type, and many
programs can create files of different types. WP, for example, can create files in WordPerfect
format and also in text format. Any document you create in WP has a creator of WPC2 (just four

66 John’s WordPerfect Scripting Guide

identifying letters or numbers). If you save that document in WP format, it has the file type of
WPD3 or WPD4, for program versions 3x or 3.5E. If you save it as plain text, it has the type TEXT.
If you save a WP graphic by itself, it will have type PICT.

What these identifiers do is tell the Finder which application to use to open the document you
double-clicked on, and tell applications whether they can read it. The drawing program Canvas,
for example, knows it can read documents of type PICT, no matter who the creator, since that’s a
standard graphics format. Canvas can’t read documents of type WPD3, though, so it won’t show
you WP documents in its open dialog box. You can check the file creator and type of a file by
going to WP’s open dialog and, from the File menu in the dialog box, choosing Info.

Putting the file type into a variable with the Get File command would be useful if, for example,
you wanted to do something with all the TEXT files in a folder, but not the WPD3 files. For my
Global Find / Change idea, though, I wanted to work with every file. So I knew I would be
putting a variable in the Get File command line to pick up the file type, but I could just ignore it
in the rest of the macro.

Back to business. Note that the online help says to use the Set Directory command to change the
current folder (a directory is a folder). I thought it would be best to designate one folder in which
to perform a global replace, for safety’s sake as well as convenience’s. But you can’t write a macro
for everyone’s machine that sets a directory, as the online help describes:

Set Directory (“Hard Disk:Docs:Work Docs”)

unless everyone’s disk had the same name! But there’s a way around this. WP macros have two
read-only variables, BootDir and WPDir, that contain the name of and path to the System Folder
(BootDir), and the folder you designated in the program preferences as the WordPerfect folder
(WPDir). So I knew I could put a folder called, say, “Global Find /Change” in the WordPerfect
folder, write a line like:

Set Directory (WPDir$"Global Find/Change")
and have a folder in which to put all the files I wanted to work with.
I could then have a line like:
Get File (Var01;Var49;1)
which would put the name of the first file in the folder into Var01, and the type into Var49. I used
the last available variable, Var49, for the file type as a reminder to myself that this didn’t contain

information I wanted to use.

So far so good. Now the macro can open the file named in Var01, and we can work with it. That
code is, simply:

Open Document (Var01)
Home ()

and we have the file open, ready to find and change. I added the command to go Home in case
the version 3.5 user has set the Environment preference to remember cursor location, and the

Fun with Files 67

cursor is in the middle of the document. We’ll want to find and change from the top, just to have
a place to start.

Working with a standard dialog

Now things are going to get a little tricky. I knew I could post a Get Text dialog and ask the user
for text to find and to change to, but I wanted to use the standard Find /Change dialog if possible.
Not only would people be more used to it, but there are all sorts of options — attributes, case and
some codes — that would be more work to duplicate in a custom dialog. But we don’t have macro
variables that contain the contents of Find /Change. Is this going to work?

I started off with this code:

Set Directory (WPDir$"Global Find/Change")
Find/Change Dialog

and found that wouldn’t do at all. I ran the macro, and nothing happened. Why? Well, back to
the program to find out. I had no documents open at that point so, when I tried to open the
Find / Change dialog, I found the program command (on the Edit menu) grayed out. Aha.

So I thought I'd open a dummy new document first, with:

Set Directory (WPDir$"Global Find/Change")
New Document
Find/Change Dialog

and at that point could open the first file in the folder and change all instances of the user-
specified text, repeating this for the other files in the folder. This would go:

Get File (Var01;Var49;1)
Open Document (Var01)
Home ()

Change All

Save

Close

which might work. The script calls the Find / Change dialog, and opening any dialog pauses a
macro until the dialog closes. If I typed find and change text in the dialog, then closed the dialog,
would the macro then open the first document and Change All according to what I had put in the
dialog? I couldn’t stand the suspense.

Alas. I set up a folder with a test file, ran the script, entered find and change text, clicked the close
box to exit the dialog, and — nothing happened. I wondered how I could get the dialog box to
work. Going back to the program to test, I found that if I entered find and change text, tried to
find something, and then closed the dialog, that same text “stuck” in the box when I opened it
again, as long as no text in the document was selected when I opened the dialog again.

If, however, I entered text in the dialog but then clicked in the close box without clicking Find,
that text didn’t stick. Aha. What if I ran the macro, entered find and change text, and clicked Find
(or Change All, the other active button when nothing has been found), and then clicked in the
close box, dismissing the dialog and allowing the macro to continue? It opened the first file and
found and changed as I had hoped. Eureka!

68 John’s WordPerfect Scripting Guide

I've recounted this for you so that you won’t think that people write macros in steps such as:
1. “Ahem.I think I'll write a macro.”

2. Sterling code is entered into the macro editor, with Vivaldi in the background.

3. Everything works.

Would it were so, but the actual process is more a flailing about, trying this and that, wondering
what will work. Sometimes you find the solution quickly; sometimes you don’t; sometimes you
conclude that it can’t be done. Of the last alternative, sometimes you're right, and sometimes
you’ve missed a strategy that will occur to you a week or a month from now.

The rest is easy
Once a workable strategy is implemented, however, the rest is cleanup, and we have:

Set Directory (WPDir$"Batch Folder")

Assign (Var02;1)

Get File (Var01;Var49;Var02)

Open Document (Var01)

Prompt (ScreenSizeH/2-240;ScreenSizeV/5;"Global Find/Change";"Enter find and
change strings, set options on menus, and click Change All, to process the active win-
dow. Then click the Close Box, and all other files in the batch folder will be processed.
Press 3. to cancel."); get the Command symbol (in the Chicago font) from Insert Sym-
bols

Find/Change Dialog

Save

Close

Display (Off)
Label (start)
Assign (Var02;Var02+1)
Set Directory (WPDir$"Batch Folder")
Get File (Var01;Var49;Var02)
If (Var01=Var03)
Go (alert)
End If
Prompt (ScreenSizeH/2-240;ScreenSizeV/5;"Global Find/Change";'Finding and Chang-
ing in ““$Var01$'.” Press Escape or . to cancel.')
Open Document (Var01)
Change All
Save
Close

; and so forth

and we have a macro.

The rest of the code for this macro is error checking, and we can judge what we’ll need there by
testing the script. I found that it doesn’t matter how many files there are in the folder; the Get File
commands for nonexistent files don’t return an error. But, if we have a line for, say,

Fun with Files 69

Open Document (Var35)
when there are only 30 files in the folder, the macro chokes. Hmm. Let’s get around that with:

If (Var35!="")
Open Document (Var35)
Home ()
Change All
Save
Close
End If

so if Var35 isn’t empty, the macro opens a document with that name. Otherwise, nothing. And
that about does it. “About” since, remember, we opened a new document to allow access to the
Find / Change dialog in the first place. So, after all the files in the folder have been processed, we
still have that empty window. Let’s take care of that with:

Select Window ("untitled™")

If (IDocumentModifyFlag)
Close

End If

so that if the user has put something in that window, the macro won’t just throw it away. The
asterisk after “untitled” is a wildcard so, if the user has opened three new documents previously
in the work session, and the doc the macro opens is thus “untitled 4,” this takes care of it.

15: A Taste of AppleScript

Here’s a quick look at how WP macros and AppleScript interface, and complement each other.
Even if you decide to concentrate on one or the other, it’s useful to know how the power of two
works here. Besides, only your first scripting language is difficult to learn. Other languages have
varying syntax, but the concepts are much the same.

WP macros and AppleScript have different strengths, though. The macros run faster, since
they’re entirely within WP, and are recordable, while AppleScript has the great advantage of
being able to control multiple programs at once. Let’s take a look at a set of macros and scripts I
wrote (John’s WP Citations) to make WordPerfect (3.1 and later) and FileMaker Pro (2.1v3 and
later) work together to provide an academic citation environment much like EndNote and
ProCite do — except my set gives you all the power and elegance of FileMaker, works within WP
much as EndNote does within (cough) Word, and is free. For that matter, FileMaker costs about
half what either of the dedicated reference managers does and is five times the database. Up-
grade to FileMaker Pro version 3, with full relational capability, and you have ten times the
database.

Apple what?

AppleScript (AS) is Apple Computer’s scripting language, and includes as software the
AppleScript extension, the Script Editor application, and several scripting additions, collectively
called osax (open scripting architecture extensions), with a plural, determined after hot debate in
the community, of osaxen. These additions are the most fun, since large numbers of very creative
third-party efforts are written every day and posted here and there on the net. We'll use two
osaxen, “Display Dialog” and “Beep”; both probably came with your copy of AppleScript;
otherwise, both are available on the net as well.

The AppleScript extension and Script Editor come with the Mac OS and with several books on
the language, and are available for download at Apple’s ftp sites. Script Editor is an app that
looks much like WP’s macro editor. Put osaxen in a folder called “Scripting Additions” and put
that in your Extensions folder in the System folder.

The very basics

As setup, have a WP window open with a few paragraphs of plain text. Then go to the Finder
and double-click on Script Editor. A window will open with some stuff at the top, and an area for
text editing. Enter code as shown in figure 22 (again, don’t bold or indent):

72 John’s WordPerfect Scripting Guide

[(B——————= untitled ="ii0"———IU]
<7 Description:

Record Stop Run Check Syntax
tell application "WordPerfect"” it
activate
set style of paragraph 1 in window 1 to bold
end tell

<
appleSeript » [G[] = [

Figure 22: An easy script

Click the Check Syntax button at the right, and Script Editor will parse the text just like the WP
macro editor does when you save a macro script, indenting some lines and changing some words
to bold. It may also ask you where WordPerfect is on your disk, and will save this information
with the script. Parsed, the text looks like:

tell application "WordPerfect"

activate

set style of paragraph 1 in window 1 to bold
end tell

Now click the Run button. Say hey. Just as easy as WP macros, but some different commands
(choosing a paragraph by number, for example), and you can script several programs at once.
Not all Mac programs, just the best ones. It will also be easy to learn, since you already know
WP’s language. To see how similar WP macro and AppleScript syntax are, compare the following
examples. Each one does the same thing.

; WP macro

Get Text (Var01;" Password";"Enter password to beep Macintosh:")
If (Var01="Biff")
Beep
Alert ("Right on!")
Else
Alert ("Sorry.")
End If

A Taste of AppleScript 73

--AppleScript

display dialog "Enter password to beep Macintosh:" default answer ""
if result = {text returned:"Biff", button returned:"OK"} then

beep

display dialog "Right on!" buttons {"OK"} with icon caution default button 1
else

display dialog "Sorry." buttons {"OK"} with icon caution default button 1
end if

Note that a comment line starts with a semicolon in the WP macro language, and with two
hyphens in AppleScript.

See how easy AppleScript is going to be?

More magic
Let’s plan some amazing strategy here. What we’re going to do is:

1. With a keystroke, have WP tell AS to tell FileMaker (FM) to go to a database layout suitable
for choosing a reference.

2. With a second keystroke, have FM give the relevant data to AS, which will then give it to WP,
which will put it in our text, in the format we want. Caution: even as a WP Mac user, you
may be startled by the degree of elegance this will have.

First off: how do WP macros and AS scripts talk to each other? Easily. To run an AS script from a
WP macro, include this line:

Execute Apple Script ("Name of script")

and, if that script is on a mounted volume, WP will find it and run it. To run a WP macro from an
AS script, include this line:

Do Script ("Name of WP Macro")

and presto, the two languages are talking to each other. AS gives information to WP in the form
of script variables, which are global variables in the WP language but which are parameters in
the AS command to perform a WP macro. Thus, if you have a line in your AS script like:

Do Script {"Name of WP Macro", "apple", "banana", "coconut"}
that macro will run, and ScriptVar01 will contain “apple”; ScriptVar02 will contain “banana” and

so on. There are 50 script variables, 01 through 50 (unlike globals or locals, which are numbered
00 through 49).

74 John’s WordPerfect Scripting Guide

Off we go
As a first step, make a WP macro called “Citation” with this one line:
Execute Apple Script ("Get Reference")

and we're ready to write an AppleScript. Save and close the Citation macro, switch to Script
Editor, open a new window, and enter this:

tell application "FileMaker Pro"
activate -- command to bring the app to the front
do script "All Records"

end tell

where “All Records,” or some name like that, will be a database script that goes to a list layout
suitable for choosing a record. Note that the first and last lines of this script form a tell statement
—a common design in AS. Later we’ll look at a script with two tell statements: one for FM and
one for WP.

There are various ways to save an AppleScript. The first is as a compiled script, which can then
be run by Script Editor or by a WP macro. Another format in which to save a script is as an
applet, which has an application icon in the Finder, and which you can run by double-clicking.
This is the most convenient for the user and, in fact, FileMaker will require us to save a script this
way. So save this script as an application, using the pop-up menu at the bottom of the Save
dialog, as in figure 23. Call it “Get Reference.”

Note that when you choose Application from the pop-up, two check boxes will appear below it.
Stay Open should not be checked, and Never Show Startup Screen should be checked.

A second script

Let’s write another AppleScript to handle the data that will be coming back from FileMaker, or
another database, into WP. Call this one “Put Reference.” Note that there are a few syntax
differences from WP’s language to notice. One is in the line starting “Do Script.” AppleScript
won’t wrap lines automatically; you need to use the symbol “~” which you get by typing Option-
Backslash on the Dvorak keyboard or Option-L on a Qwerty, to tell AppleScript that the next line
is not a new command, but a continuation of the present line. For the script, though, you'll need
to type a hard return following the symbol.

Another difference is that a variable can be named by any word that doesn’t have a specific
meaning in AppleScript. Thus, “theRecord” can be a variable just 'cause we said so.

tell application "FileMaker Pro"
activate
--"theRecord", "trans1" etc. and "Mark" are variables
set theRecord to the current record of database 1
set trans1 to cell "Transfer Field 1" of theRecord
set trans2 to cell "Transfer Field 2" of theRecord
set trans3 to cell "Transfer Field 3" of theRecord
set trans4 to cell "Transfer Field 4" of theRecord
set trans5 to cell "Transfer Field 5" of theRecord
set trans6 to cell "Transfer Field 6" of theRecord

A Taste of AppleScript 75

set trans7 to cell "Transfer Field 7" of theRecord
set trans8 to cell "Transfer Field 8" of theRecord
set trans9 to cell "Transfer Field 9" of theRecord
set trans10 to cell "Transfer Field 10" of theRecord
set trans11 to cell "Transfer Field 11" of theRecord
set trans12 to cell "Transfer Field 12" of theRecord
set mark to cell "Mark" of theRecord

end tell

--action moves to WordPerfect

tell application "WordPerfect"
activate
Do Script {"Enter Reference", trans1, trans2, trans3, trans4, trans5, trans6, trans7, -

trans8, trans9, trans10, trans11, trans12, mark}
end tell

The set command assigns a value to a variable. In this case, the variable “theRecord” is getting
the contents of the current record in FileMaker, and “trans1” is getting the value of the database
cell (intersection of field and record) of Transfer Field 1, for the current record.

The interesting part of this script is how it passes the data in those variables to WordPerfect. This
is in the “Do Script” command, where “Enter Reference” is the name of a WP macro that we’ll
look at in the next chapter. The variables follow as parameters. WP will pick these up as Script
Variables, numbered 1 through however many there are in the Do Script command, up to 50. The
contents of FileMaker’s cell Transfer Field 1 is thus going to land in WP as ScriptVar01. Spiffy,
yes?

Save this script as an applet called “Put Reference,” in a location where you won’t have to move
it. I put it in the WordPerfect folder in the Preferences folder.

— Storyville

— Backtrack
= Blue Note

[Z] RAM Disk
= Storyville

Save script as:
|Get Reference| | r[ﬁ

Kind: [& Application v |

[stay Open
[Never Show Startup Screen

I

Figure 23: Saving an AppleScript as an applet

Now let’s look at what you need to do with your AppleScriptable database.

76

John’s WordPerfect Scripting Guide

Doing a database

I won’t go into the details of a FileMaker script here, since you may already know its scripting
language or be using a different database program. Any one will do, as long as it can calculate 12
fields worth of data and pass them to AppleScript. Typically, you might have several fields of

raw bibliographic data; mine are:

Author Last Name
Author First Name
Second Author Last Name
Second Author First Name
Third Author

Translator

Paper Title

Series

Editor

Book | Journal Title
Journal Volume

Journal Number

City

Publisher

Month

Year

Orig. Date

Page Numbers

Call Number

Notes

from which I calculate 12 fields. These 12 will allow for variations in individual reference types —
journal or book, for example, as well as the difference between first and subsequent citations of
one reference. The calculation for one of these looks like figure 24.

A 13th field, called “Mark,” which contains a flag showing whether that reference has been used
previously for the current paper. The FileMaker script puts an X in that field after sending that
record’s data to AS. If that X is there, WP will see it and modify the next reference accordingly.

A Taste of AppleScript

77

Options for Field “Transfer Field 5”

Fields

Operators Functions

Author Last Name
Author First Name
Second Author Last Nam
Second Author First Nam)
Third Author
Translator
Paper Title
Editor

4

(&) (E)E)E)
() (2=)Ce)
) EE)
o] () (o 0]

Abs (number)

Atan (number)

Average (repeating fiel
Cos (number)

Count (repeating field)
Date (month, day, year)
DateToText (date)

Day (date)

MoaA v o#o

w o
2
=%

o
=4

Transfer Field 5 =

Name & ". ", ". "))

Author Last Name & ", " & Author First Name & If (Third Author = it
"t " & Second Author Last Name & ", " & Second Author First
Name & ", and" & Third Author, If (Second Author Last Name = "",
",and " & Second Author Last Name &" " & Second Author First

Calculation result is

[J Repeating field with a magimum ofj ;

Cancel

A

Figure 24: A calculated field in FileMaker

Using the datafile

What AppleScript has done so far is activate FileMaker or another database, and switched to a

layout convenient for choosing a reference. When the user does that, just by clicking anywhere in

that record, he or she can then call a FileMaker script that will call the applet “Put Reference.”

This will take the transfer fields of that record and pass that data back to Applescript. To create

such a FileMaker script, choose the “Send Apple Event” option in FileMaker’s ScriptMaker

command. You get a dialog box like figure 25, with the small popup menu near the top default-

ing to “do script.” Change that to “open application.” The Specify Application button at the

bottom will click automatically. Navigate to wherever you placed “Put Reference” and specify it.

The line in the FileMaker script will then be:

Send Apple Event ["aevt", "oapp", "Put Reference"]

78 John’s WordPerfect Scripting Guide

Specify Apple Event

Target application: “Put Reference ”

Send the | open applicationwr| event with:

[©

&l

;Dptions
|:| Bring target application to foreground

E “Wait for event completion before continuing
i D Copy event result to the clipboard

[Specifg prlication...] [l:ancel]

Figure 25: Sending an Apple Event in FileMaker

and we're done with AppleScript and FileMaker! Next chapter we’ll study an elegant WP macro
that takes these script variables and puts them into the user’s choice of in-text citation, footnotes,
or endnotes, or any of those plus a bibliography. The user will also be able to set-and-forget the
format of each of the 12 fields to bold, italic or underline.

16: Reference Manager, part two

In the last chapter we looked at the AppleScript and FileMaker Pro (or equivalent database) parts
of this citation engine. We told WP to tell AppleScript to activate FileMaker and run a script that
set up the database for the user to choose a reference. FileMaker then passed the data of that
reference back to AppleScript, which in turn gave it to WordPerfect.

So we're now back in the land of WP macros, and have 13 script variables worth of data. Script
variables receive information from an AppleScript and then, in the WP macro environment,
behave just like regular global variables: as we saw in chapter 10, they retain their value as long
as WP is running, or until assigned another value.

As presently set up, the script variables contain this data:

ScriptVar01: author’s or authors’ last name(s), date
ScriptVar(2: page numbers

ScriptVar(03: blank

ScriptVar(04: blank

ScriptVar05: all authors’ full names

ScriptVar(6: paper title, if any, and editor, if any
ScriptVar(07: book or journal title and series, if any
ScriptVar(8: journal volume and number, if any
ScriptVar(9: city of publication, if any
ScriptVar10: publisher, if any

ScriptVar11l: month and year

ScriptVar12: blank

ScriptVarl3: mark for previous reference

plus ScriptVar50 as a general global variable.

The bibliographic information, by being spread out among 12 variables, allows flexibility of
reference content (some citations will have e.g. paper titles but not city of publication) and the
option of different data in the first and the subsequent reference. Thus, in the in-text/bibliogra-
phy format, an in-text citation might be:

Discussions of anthropological relativism make plain how easy it is to impute
variable ends by failing to allow for the possibility that common goals are

articulated differently in different circumstances [Kitcher 1992].

and the bibliography entry would be:

Kitcher, Philip. “The Naturalists Return.” Philosophical Review, (101,1), January

1992, p. 53-114.

done by using ScriptVar01 for the in-text citation, and ScriptVar02 plus 05 through 12 for the
bibliography entry. Footnotes and endnotes work with the same idea but, since the first footnote

80 John’s WordPerfect Scripting Guide

reference is the complete one, the first footnote would draw from ScriptVar02 and 05-12, with
subsequent references built from ScriptVar01 plus something like “op.cit.”

The main macro: Enter Reference

This macro, called by the AppleScript “Put Reference,” is where most of the action is. In it,
footnotes or endnotes are generated using the macro commands New Footnote or New Endnote,
along with Close Subdocument to close the note window when the information has been en-
tered. Enter Reference simply calls either new note command and then checks to see whether
there’s anything in ScriptVar13. If not (so the present reference is the first one in this paper), it
types script variables 05-12 and closes the note window. If there is something in ScriptVar13, it
types script variables 01-04. Something like:

New Footnote

If (ScriptVar13=0)
Type Var (ScriptVar05)
Type Var (ScriptVar06)
Type Var (ScriptVar07)
Type Var (ScriptVar08)
Type Var (ScriptVar09)
Type Var (ScriptVar10)
Type Var (Scriptvari1)
Type Var (ScriptVar12)

Else
Type Var (ScriptVar01)
Type Var (ScriptVar02)
Type Var (ScriptVar03)
Type Var (ScriptvVar04)

End If

Close Subdocument

Two things to note: if a variable is empty, the Type Var command doesn’t add anything, not even
a space; and what we have so far doesn’t give us formatting, e.g. book title in italics. We'll fix
that, of course.

If, instead of a footnote or endnote, the user chooses the in-text/bibliography, the commands
we’ll use are actually those for a Table of Authorities, a legal reference format. This is excellent as
well for the structure of standard academic citations, as shown in the examples in the boxes
above.

These commands are Mark Full Form and Mark Short Form. As we’ll use them, the macro will
choose Full Form if ScriptVar13=0, indicating that this is a new reference. Otherwise, the macro
uses Short Form. The identifiers for both forms are script variables 01-04. That data is all the Short
Form gets; the Full Form command, though, opens a subdocument like the one for footnote entry,
and puts script variables 05-12 there. When printed, that text doesn’t appear at the bottom of the
page or end of the file, as do footnotes or endnotes, but wherever you define a bibliography,
using the same steps as to define a table of contents or an index.

The syntax for these commands is:

Reference Manager, part two 81

Mark Full Form (Section;Short Form)
Mark Short Form (Short Form)

where the Section is one of 16 (defaults to 1) and where “Short Form” is any identifying string, as
is done with cross-referencing. For legal use in a Table of Authorities, a Short Form might be
“Brown v. Board of Education,” which reference would then appear everywhere that case was
cited in the legal brief. The full reference would appear wherever defined and generated in the
brief, just like an index. So the part of the Enter Reference macro with the code to enter this type
of citation is:

If (ScriptVar13=0)
Mark Full Form (1;ScriptVar01$ScriptVar02$ScriptVar03$ScriptVar04)
; code to enter ScriptVar05-12 here
Close Subdocument
Else
Mark Short Form (ScriptVar01$ScriptVar02$ScriptVar03$ScriptVar04)
End If
Right ()
End Macro

which finishes up the basics of this reference manager. Congrats if you’ve made it this far, since
this is pretty complex design. Rest assured, the remainder: formatting the references, and how to
tell whether the user wants a footnote, endnote, or in-text citation plus bibliography, is much
easier.

Setting a citation format

The best way to work with a user preference is to put it in a global variable, and have the Enter
Reference macro refer to it whenever the user wants to add a citation. Thus, in general terms:

If (GlobalVar01=1)
Go (Footnote)

End If

If (GlobalVar01=2)
Go (Endnote)

End If

; In-text/bib code following, to run if GlobalVarO1 hasn’t sent execution
; elsewhere

If (ScriptVar13=0) ; no X in the Mark field
; Mark Full Form etc.

End Macro

End If

Label (Footnote)
; New Footnote etc.
End Macro

Label (Endnote)
; New Endnote etc.

82 John’s WordPerfect Scripting Guide

End Macro

and you could have some code in OnStartUp that posts a menu asking the user what he or she
wants in the way of reference formats for the current session of WP — a pain, since the user
probably wants to type a memo for the current session of WP. But if we let the user call the menu
macro manually, it’s just a little less elegant than I like to be. How can we get a value into a global
variable automatically, when WP starts? If we can do this, the user’s choice of formats will be
remembered across work sessions, like the program preferences.

A data table

I set up a document called “Data” in the WP folder in System /Preferences, with a table in it,
containing 12 rows. A macro could put a number in a given cell to represent a formatting option.
For example, the number in column 2, row 1 could indicate the author-date or footnote or end-
note choice. Take a look at this macro, called “Set Citation Format”:

Menu (Var00;"Set Citation Format to:"{"Author-Date & Bibliography";"Endnote";"Foot-
note";"Endnote & Bibliography";"Footnote & Bibliography"})

Case (Var00;{1;Author-Date;2;Endnote;3;Footnote;4;EndnoteBib;5;FootnoteBib};cancel)
Label (cancel)

End Macro

Label (Author-Date)

Open Document (BootDir$"Preferences:WordPerfect:Data")
Position To Cell (1;2;1)

Select Word

Type (0)

Save

Close

Go (end)

Label (Endnote)

Open Document (BootDir$"Preferences:WordPerfect:Data")
Position To Cell (1;2;1)

Select Word

Type (1)

Save

Close

Go (end)

; and so on

which posts a menu asking users what kind of citation they want. If a user chooses Endnote, the
macro opens the Data document — remember, the read-only variable BootDir is what your Mac
has told WP is the System folder. Then we have the table navigation command Position to Cell,
where the first parameter is the number of the table in the document, and the second and third
parameters are the column and row in that table.

There may or may not already be a number in the cell we’ve chosen to use: 1;2;1 where the
parameters identify the first table in the document (actually, the only table in this document),
second column, first row. It doesn’t matter, since the Select Word command will select that digit
or empty space, and the selection will be replaced with whatever is typed. In this case, with the

Reference Manager, part two 83

choice of Endnote, the macro types a “1” and saves and closes the document. The user’s prefer-
ence is now on disk, ready for us to access with another macro.

That macro is “Get Citation Format,” which might well be called by OnStartUp, to open the Data
document and read the value of column 2, row 1, into a global which will be a reference for note
entry in the present session. This code might look like:

Position To Cell (1;2;1)
Select Word

Copy

Assign (Var13;Clipboard)

and later we can assign Var13 to a global variable, to keep the data available for use.

Formatting instructions via the data table

While we're putting in and taking out the user’s choice of citation type from a data table, let’s
define the formatting for each of the 12 transfer fields, to get figure 26. Why not just have the
FileMaker field for, say, book title, be in italics and leave it at that? Two reasons: first, we want to
have more flexibility in formatting than would be encouraged by putting that formatting in
database fields. Your next editor might want book titles underlined, for example.

field 5 field 6 field 7

I I

Kitcher, Philip. “The Naturalists Return.” Philosophical Review,
(101,1), January 1992, p. 53-114.

| | |

field 8 field 11 field 2

Figure 26: How the citation is split into fields

The second reason is that it would be more engineering to transfer formatting from FileMaker
through AppleScript into WordPerfect variables. WP variables, for example, don’t include style
information — just text. So let’s have the citation engine transfer text, and then format it while
writing it to a reference. So each of the 12 fields needs a code to tell WP to write that field in the
reference as plain text, or italics, bold, etc.

That’s a simple code, so it can be a one-digit numeral. With a 12 row data table, I put the code for
each field in succeeding rows in the first column. Our sample reference was then formatted with

the data table shown in figure 27. The upper table contains the data; the lower tells which macro

each cell serves:

84

John’s WordPerfect Scripting Guide

6/16/97

o|lo|o|o|C| O

olo|o|O| N

Citations

Set
citation
format

#Add Date to Bkp

Citations

Citations

Citations

Citations

Citations

Citations

Citations

Citations

Citations

Citations

Citations

Figure 27: A reference table for several macros

where the zeros in most rows in column one tell WP to leave those fields as plain text. Row seven
has the numeral 1, telling the macro we’re about to write to make the contents of field seven
italics. Row eight has the numeral 2, setting the contents of that field to bold. The numeral in
column two, row one, sets citation type: author-date / footnotes / endnotes etc., as we saw earlier.

The macro that reads all these numerals is, again, Get Citation Format. It reads the data table with

code segments like:

Position To Cell (1;1;1)

Select Word

Copy

Assign (Var01;Clipboard)

Twelve segments like this fill up variables 01 to 12 with the formatting data, and variable 13 with
citation type. A line later in the macro:

Reference Manager, part two 85

Assign (ScriptVar50;
Var01$Var02$Var03$Var04$Var05$Var06$Var07$Var08$Var09$Var10$
Var11$Var12$Var13)

(this is all one line in the macro editor) writes all these local variables to ScriptVar50, which we're
going to use just like a global variable — since it in fact is one, in addition to its special use with
AppleScript.

So I've used script variables 1 through 13 to move data for an individual reference. If the user
enters a reference, then runs another AppleScript/ WP macro that overwrites the first 13 script
variables, fine. The next time the user enters a reference, those script variables are again used for
the citation data, and so on. The variable we don’t want to overwrite is the one containing this
formatting data. Since WP picks up data from AppleScript and writes them to script variables in
numerical order, ScriptVar50 will be the last to be used for anything else.

To finish the tour, let’s go back to the Enter Reference macro. This starts by picking apart
ScriptVar50:

SubString (Var01;1;1;ScriptVar50)
SubString (Var02;2;1;ScriptVar50)

and so on, up to Varl3. Var01-12 dictate the formatting for the 12 fields, and Var13 tells the macro
which type of citation to write, as we saw above. If the user chose footnotes, the macro goes to
this label:

Label (footnote)

New Footnote

If (ScriptVar13=0)
Call (5-12)

Else
Call (1-4)

End If

Close Subdocument

End Macro

which checks ScriptVar13 to see if this is a new reference. If so, it goes to a label I called “5-12”
since it uses those script variables. This looks like:

Label (5-12)

Assign (Var49;Var05)
Call (format)

Type Var (ScriptVar05)
Assign (Var49;Var06)
Call (format)

; and so on

which puts the contents of (local) Var05 into Var49 and goes to a format subroutine, which looks
like:

Label (format)

If (Var49="1")
Attribute (On;ltalics)
Attribute (Off;Bold)
Attribute (Off;Underline)

86 John’s WordPerfect Scripting Guide

End If

If (Var49="2")
Attribute (Off;ltalics)
Attribute (On;Bold)
Attribute (Off;Underline)

End If

; and so on

so that if Var05 (formatting for field 5) contains the numeral 1, that goes to Var49 (the single
variable for the subroutine), which then sets the italic attribute. The subroutine has enough of
these segments so that italic, bold, underline or any combination is available.

If someone wants to use an attribute like shadow for an academic reference, they can do that
themselves. :-)

After execution returns from the format subroutine, the macro types the contents of the script
variable, and goes on to the next script variable.

And that's it! Since these macros are getting larger and more complicated as we go along, I've
discussed them in pieces. It's important, though, that you look at the whole set of scripts, which
you can download from the Info-Mac or Corel internet sites (see Appendix D for locations).

With AppleScripts as well as WP macros, it’s very helpful to print out the code and draw arrows
or make flowcharts, to and from the various labels, so you can make yourself a picture of how the
whole thing works.

17: Advanced AppleScript

AppleScript has a fair amount of power, but much of it is invisible to the user who has only
WordPerfect and AppleScript installed. Many more goodies are in the osaxen you can find,
mostly shareware or freeware floating around the web.

Let’s look at a particularly powerful osax, and design an engine around it that will use both
AppleScripts and macros, and the one will call the other, possibly a couple of times. We’ll make a
search feature that dramatically enhances your ability to find information in your documents, by
searching for regular expressions.

A regular expression, also called GREP, for Global Regular Expression Parser (a typically convo-
luted term reflecting the concept’s UNIX origins) is a pattern in text. While WordPerfect lets you
look for text itself, and formatting codes, it doesn’t have this tool that technical writers especially
find invaluable. For example, GREP will let you find the occurrence of any seven-digit telephone
number followed by a word that begins with a vowel. You can look for any two capital letters
followed by any single digit, followed by any two lower-case letters. Search for any word on a
list, or one whose first two letters are within the first half of the alphabet, and last two letters are
within the second half. Wildcard searches are exceptionally flexible.

The osax is “Regular Expressions,” part of the excellent collection of free osaxen called “Script
Tools,” written by Mark Alldritt and Late Night Software. This is downloadable from http:/ /
www.scriptweb.com/scriptweb/, ftp:/ /mirror.apple.com/mirrors/gaea.scriptweb.com /
applescript/, or a number of other sites, including Info-Mac Mark also wrote Script Debugger, a
much more advanced script editor than what ships with AppleScript.

When you find an osax that looks interesting, the first step is to look at that file’s AppleScript
dictionary, also called the AETE, for Apple Event Terminology. You can access the dictionary of
any osax, or any application, by dragging its icon over the Script Editor, or you can open the
dictionary from Script Editor’s file menu.

How to read a dictionary

The dictionary for Regular Expressions appears in part as shown in figure 28, after you click on
the subheads in the column on the left. Those subheads show the AppleScript commands, in
regular type, and objects, in italics. Commands are just the things you can do, and objects are
things you can do them with. We'll only use the first two commands, and the first two objects of
the class (or type, as it were) “Match Reply.”

88 John’s WordPerfect Scripting Guide

= Regular Expressions Dictionary
e e romn [L-ate Night Software Suite:
match regular.. [Eapﬂr:gﬁf @ IFFJ—IM Mmﬂ' A!fdﬂ?ﬂ' tﬁ' Lafe M:g’ﬁf
substitute req... .-S'I?ﬁ Lfi

matich reply "
Al Riolits Keserved

m EE

compile reqular expression string -- f8qelss synres8iam
Result: String —- ool iad Requisr spinession pot tary

match regular expression: commpare a string to a regular expression
match reqular expression string —- Semeiisd FEFTEN ENOFESSTOE ST 18N
to string -- cangigsis fax?
Result. match reply -- commssisan resulis

substitute regular expression: substitute test in one string roatching elernents of a
regular expression
substitute regular expression string -- cowmiied Fagulsr axaressian
T
of string -- o&iasls sTing
with string -- fameisle siring
Result: String -- sers?rlolss taxd

Class match reply: result of regular expression comparizon
Propertes:
matched boaolean [ra] —- W&S ISsrs & METOHT
match string string [to] -- &#lirs msloiimg string
match offset small integer [wo] -- @fFsad arf aniive melchad stying
ke G [e]
Figure 28: A Dictionary

EEE]

The commands start with compile regular expression, detailed on the first line. The underlined
bold text says what it is, and the following underlined plain text says what it does. The bold text
on the next line is the exact syntax of the command, followed in plain text with the kind of
parameter the command takes. The next line shows the result: what happens when you run this
command.

So we'll use the first command to compile a regular expression from the user’s input, and the
second command to match the regular expression to the candidate text — whatever the user’s
searching in. After running those commands, we’'ll work with the Match Reply properties of
matched, which is a boolean (true or false), and match string, which is the text found (if matched
is true) that matches the pattern we gave it.

For example, GREP uses a plus sign to stand for one or more of the preceding character. Input a
pattern of “bus+” and our program will look at the candidate text for anything matching that
pattern. If it finds anything, matched will then be true, and match string will be the text it found:
in this case, “bus” or “buss” or “bu” and any number of “s” characters. The match string will be
the longest one matching the pattern.

Since this osax returns the first match it finds, it would be of limited value to have it look at all
the text in a document. Having it look within a selection is a useful alternative.

Advanced AppleScript 89

Starting at the beginning

Let’s start with a dialog asking the user for a pattern to match. In the most straightforward way,
that would go:

display dialog "Enter Pattern" default answer "" buttons {"Cancel","Match"} default button
2

and what the user enters then lands in a reserved (i.e. read-only) AppleScript variable called,
appropriately enough, result, and we could work with that. But the contents of result are re-
placed as soon as the script does something else that has a result. We can give our result some
longevity by putting its value into another variable we’d name, as in:

set dialogResult to the result
but AppleScript lets us combine these two lines into:

set dialogResult to display dialog "Enter Pattern:" default answer " buttons {"Cancel","
Match"}

and you can use parentheses to make the two parts of the line clearer, as in:
set dialogResult to (display dialog . . .)

So dialogResult is a variable containing the user's input. That input consists of a button choice
and some text, so we can define the variable pattern as the text entered when the button Match is
clicked (if the user clicks Cancel, the script just stops. We'll change that in a bit). Finally, theText
is a variable containing text we’ll be searching in.

All this looks like:

set pattern to text returned of dialogResult

set theText to contents of selection of window 1 of application "WordPerfect"
set searchPattern to (compile regular expression pattern)

set matchResult to (match regular expression searchPattern to theText)

Where matchResult will have the properties shown in the dictionary for class Match Reply. Of
those, matched and match string are what we want to work with. We could do something like:

if matched of matchResult then
set matchString to match string of matchResult

else
display dialog "I found nothing matching “' & pattern & =
"." buttons "OK" default button 1

end if

to give us the string of text matching the pattern, in the variable matchString. And that’s the heart
of the matter.

90 John’s WordPerfect Scripting Guide

And then my problems began. ..

What we have now will look in selected text in the active WP document, match a pattern to a
string in that text, and give us that string. What shall we do with that? We could put matchString
in a dialog, but that’s not much help. Better to select the match. According to the dictionary
(below what’s shown in figure 28), we could get the match offset — the number of characters from
the start of the file to the match, but I couldn’t get that to work very well in WP. It would get
close but, depending on formatting and other factors, wouldn’t accurately select the match string.

This turns out to have a simple solution, though: as long as we have the string in a variable, we
can then have a WP macro find it. I wrote a macro called GREP that’s basically just a Find com-
mand. Remember that an AppleScript can call a WP macro and send along parameters which WP
gets in the form of script variables. So we’d have an AppleScript:

if matched of matchResult then
set matchString to match string of matchResult
tell application "WordPerfect"
activate
Do Script {"GREP", matchString}
end tell
end if

calling this macro. It just does a find, with matchString, now in ScriptVar01, as the find string:

Find/Change Direction (Within Selection;Wrap Around)

Find/Change Where ({Current Doc})

Find/Change Match (Partial Word;Case Sensitive;Alphabet Insensitive;CharRep Insensi-
tive;{Text Only})

Find/Change Action (Select Match)

Find String (ScriptVar01)

Find

and we’'ve done what we set out to do: get a pattern from the user, match it to candidate text and,
if a match was found, select the string within the text. The rest is just cleanup: user support, error
handling, and polish. Let’s start with user support.

Help!

The symbols that describe a pattern, using what's called metacharacters, become automatic with
enough use but, until the user reaches that point, he or she would find an on-line help reference
very useful. That’s easy enough to do, with another display dialog like:

display dialog "Help" & return & " " & return & return & -
" Anychar

\\ Precedes literal

| Logical OR

+ One or more of preceding
* Zero or more of preceding
? Zero or one of preceding

[1 Encloses any match

Advanced AppleScript 91

["] Excludes enclosure
() Sets operator precedence" buttons "OK" default button 1

and I've shown two ways to put multiple carriage returns in a dialog. The first is just to say
“return” within the display dialog line, and the second is to physically include those returns in
the text.

Another point to note is that a backslash represents a literal character in GREP syntax and in
AppleScript syntax: to get a backslash into the dialog, you have to type two of them into the
script.

Flow control in AppleScript

Now that we have the body of the script and a help dialog, how do we fit them together? There’s
a little difference here between flow structure in AppleScript and in WP macros. In WP, we might
give the user a choice on a menu; if the user chose “Help,” we could have the line

Call (Help)

Label (Help)
; alert with help
Return

and execution would return to the line below the Call command. The other way to direct execu-
tion is to use a handler. You learned the error or cancel handler on page 62, as in:

On Error (errorRoutine)

and AppleScript lets us name handlers anything we want, and uses them like WP’s cases and
labels. So we could go from the initial dialog to the help window with:

set dialogResult to display dialog -
"Enter pattern: " default answer pattern -
buttons {"Help", " Cancel ", "Match"} default button 3
set userChoice to button returned of dialogResult

and, if userChoice is “Help” then we send execution there with:

if userChoice is "Help" then

help()
end if

Where “help()” is a label for a subroutine. The parentheses are required; here they are empty but
could just as easily be filled with a parameter to use in the subroutine if needed. None needed
here; the display dialog command just produces figure 29:

92 John’s WordPerfect Scripting Guide

Help

. Any char

% Precedes literal
| Logical DR

+ One or more of preceding
* Zero or more of preceding
? Zero or one of preceding

[1 Encloses any match

[*] Excludes enclosure
() Sets operator precedence

Figure 29: The Help dialog

OK, that gets us to the help routine. How do we get back, assuming that after the user peruses the
help screen, he or she will want to go back to the initial dialog?

We can think of the entire script as being within a handler called Run. A script can then be seen
as having the structure:

on run<{}
-- code here
end run

Explicitly declaring a run handler is most useful when a script is designed as a droplet (drag and
drop an icon over it to get something to happen) as well as an applet (double-click it). In that
case, the script’s structure would include:

on open {}
-- code to execute with drag and drop
end open

on run {}
-- code to execute if double-clicked
end run

and, since we aren’t building a droplet in this case, the Run handler can be assumed. We can also
call the body of the script “top level commands” since they aren’t contained in a specific handler.
So, to get from the Help handler back to Run (or the top level), we just add a line to say so:

if userChoice is "Help" then

help()
end if

on help()

-- text of dialog
run
end help

Advanced AppleScript 93

so, if users click the Help button, they get the help screen. As soon as they click OK, they go back
to the top of the run handler — in this case, the start of the top level of the script — the initial
dialog. With the Help button in it, there’s only a couple more things to do to make that dialog
look spiffy, as in figure 30:

el John's WordPerfect GREP
‘”‘I,T&‘ﬂ
Enter pattern:

| |
(o) (cancer)

Figure 30: The initial GREP dialog

the first of which is to get that icon. That's part of the system file, as you see when perusing a
copy of the system with ResEdit. There are a few interesting icons, and all you need is a number,
as in:

display dialog "Hello" buttons "OK" default button 1 with icon -16396
For more ordinary uses, icon 0 is stop, icon 1 is note, and icon 2 is caution.

The only other design point for this or any dialog is to space things out so they look good. Spaces
as well as returns work here; note, though, that a dialog can’t have more than 255 characters
overall.

We now have a pretty good working script, to find patterns within a selection, and to offer a help
screen for the user's convenience. What now? Let's get fancy. It would be nice if the script were
able to remember search patterns from one use to the next. We can do this with another feature of
AppleScript, called a script property.

Script properties

Think of a script property as a persistent variable — one that the script saves with itself on disk, so
it remembers the property’s value from when you last ran the script. They’re easy to set up, and
you name them and use them just like variables. Somewhere towards the top of your script,
before the action begins, add this line. It declares a property:

property pattern : ""

so that when you save the script in its editor, the property “pattern” is a null string. When you
run the script, and pattern is given a value, that value is saved with the script — it persists, and
will be there the next time you run it. Then, instead of telling display dialog that the default entry

"

is "" (i.e. always blank), you can tell it:

set dialogResult to display dialog -
" John’s WordPerfect GREP" & return & return & =

94 John’s WordPerfect Scripting Guide

"Enter pattern: " default answer pattern -
buttons {"Help", " Cancel ", "Match"} default button 3 with icon -16396

and the default entry will be blank the first time the script is run. But since pattern is a property,
the next time the script is run, the text entry area in the initial dialog will be what was searched
for last time. Users appreciate this.

Text item delimiters

As an aside, a script property provides another way to pass data to WP. Instead of specifying
each parameter, you can specify the delimiter separating items on the clipboard, say, or in a
selection. Then tell WP to do a script taking the items of the list as parameters. Thus, a later
version of Citations just has AppleScript tell FileMaker to put fields of a record — each separated
by the diamond symbol “{” — onto the clipboard. WP then gets the delimited data, as in:

property text item delimiters : ASCII character 215

tell application "FileMaker"

activate

do script "Citation"

set theClip to the clipboard as string
end tell

tell application " WordPerfect"

activate

Do Script {"Citation"} & text items of theClip
end tell

Up to 50 text items can be handled this way, and the delimiter can be whatever’s convenient: a
hard return, for example. The clipboard access is provided by Jon’s Commands, a free osax that
everyone ought to have. Now — back to our project

Global variables

You set these up like script properties, but they hold a value only while the script runs. Like WP
but, again, you can name any number of them with any name that isn’t reserved by AppleScript,
like “result” or “copy”. Local variables (those not declared as global) hold their value only within
the handler in which the value is declared. So our program will have:

global theText

right at the top, along with the property declaration.

The Cancel business

We have a Cancel button in the initial dialog, but anything that returns “Cancel” just ends the
script. What if you want to do something else? Add spaces to the string in the button, and make a
handler for it.

Advanced AppleScript 95

set dialogResult to display dialog -

" John’s WordPerfect GREP" & return & return & =

"Enter pattern: " default answer pattern -

buttons {"Help", " Cancel ", "Match"} default button 3 with icon -16396
set userChoice to button returned of dialogResult

where I put spaces on both sides of “Cancel” so the button would look even in the dialog. Then
we do:

else if (userChoice is " Cancel ") then
tell application "WordPerfect" to Do Script "GREP"

so WP will run its macro (no need to tell the application to activate first). If WP gets this Do Script
command without a parameter (i.e. ScriptVar01 is not given a value, then I have the WP macro
just redraw the screen and quit. That looks like:

Display (Off)

If (ScriptVar01)
Go (end)

End If

and I turn display on (redraw WP’s screen) at the end, since AppleScript sometimes leaves WP a
little messy. If there is a value in ScriptVar01, and I use that to find a match, I afterwards assign
that variable a value of 0, because ScriptVar01 is a global in WP. So if I left the match string in, the
command would find that again the next time the user clicks Cancel. Not too smooth.

Error handling

As always, this is a big part of a good script. AppleScript does this with a try statement, which
ends with an error handler. As in:

try

-- some code that might work
on error

-- what happens if it doesn’t work
end try

What you often want to happen when something doesn’t work is just post a dialog and tell the
user.

So we start things off by looking for some text the user has selected to search in. AppleScript
syntax is “contents of selection”, since just saying “selection” returns its properties, e.g. number
of words in it. Let’s put those contents in a variable named theText. If there ain’t no contents,
though, we get an error. So tell the user what's wrong, and we have:

try
set theText to contents of selection of window 1 of application "WordPerfect"
on error
tell application "WordPerfect"
activate
display dialog "Please open a WordPerfect " & -
"document and select text in it before running WP GREP." buttons =
"OK" default button 1 with icon 2

96 John’s WordPerfect Scripting Guide

end tell
return
end try

and the return command in the next to last line returns execution to the handler that called this
subroutine. Since we're in an implied run handler, it just ends the script.

Rather than a static error dialog, though, we can get a number and message, specific to that error,
to the user, if the app or osax returns one to the script. That syntax looks like the next try state-
ment in the script:

try

set searchPattern to compile regular expression pattern

set matchResult to match regular expression searchPattern to theText
on error errormsg number errornum

activate me

display dialog "Error " & errornum & -

": " & errormsg buttons "OK" default button 1 with icon 2

set patternto ™"

return
end try

where the parameters to the on error handler declare the variables for the error message and
number. The dialog picks those up, and we’re in business.

Timeouts

An AppleScript command times out in a minute unless you have something to say about it. I
wanted to give the user, especially one new to GREP, more time, so I added timeout statements
to a couple of handlers. Plus this and that, and the AppleScript and WP macro ended up as in the
next section.

The scripts

Applescript:

--0sax: Regular Expressions from Script Tools 1.3.6 by Mark Alldritt

property pattern :
global theText

with timeout of 3600 seconds

try
set theText to contents of selection of window 1 of application " WordPerfect"
on error
tell application " WordPerfect"
activate
display dialog "Please open a WordPerfect " & -
"document and select text in it before running WP GREP." buttons -
"OK" default button 1 with icon 2
end tell

return

Advanced AppleScript 97

end try
if theText = "" then
tell application " WordPerfect"
activate
display dialog "Please select text first." buttons "OK" default button 1 with

icon 2
end tell
return
else
tell application " WordPerfect"
activate
set dialogResult to display dialog -
" John’s WordPerfect GREP" & return & return & =
"Enter pattern: " default answer pattern -
buttons {"Help", " Cancel ", "Match"} default button 3 with icon -16396
set userChoice to button returned of dialogResult
set pattern to text returned of dialogResult
end tell
end if
end timeout

if userChoice is "Help" then
help()
else if (userChoice is " Cancel ") then
tell application " WordPerfect" to Do Script "GREP"
else if (pattern is "") then
tell application " WordPerfect"
activate
display dialog "No pattern entered." buttons "OK" default button 1 with icon 2
end tell
run
else if userChoice is "Match" then
OK(pattern)
end if

on help()
with timeout of 3600 seconds
tell application " WordPerfect"
activate
display dialog "Help" & return & " " & return & return & -
" Anychar
\\ Precedes literal
| Logical OR

+ One or more of preceding
Zero or more of preceding
? Zero or one of preceding

[1 Encloses any match
[*] Excludes enclosure
() Sets operator precedence" buttons {"About", "OK"} default button 2
end tell
end timeout
if button returned of result is "About" then
credit()
else

98 John’s WordPerfect Scripting Guide

run
end if
end help

on credit()
with timeout of 3600 seconds
tell application " WordPerfect"
activate
display dialog -
" John’s WordPerfect GREP

This software is free for non-commercial distribution and use." & -
"Comments and suggestions welcome at jcr2@cornell.edu

by John Rethorst
©1997, 1998.
All rights reserved." buttons "OK" default button 1
end tell
end timeout

help()
end credit

on OK(pattern)
try
set searchPattern to compile regular expression pattern
set matchResult to match regular expression searchPattern to theText
on error errormsg number errornum
activate me
display dialog "Error " & errornum & —
":" & return & return & errormsg buttons "OK" default button 1 with icon 2
set pattern to "
return
end try

try
if matched of matchResult then
set matchString to match string of matchResult
tell application " WordPerfect"
activate
Do Script {"GREP", matchString}
end tell
else
tell application " WordPerfect"
activate
display dialog "I found nothing matching:" & return & return & pattern -
buttons "OK" default button 1 with icon 2
Do Script "GREP"
end tell
end if
on error errormsg number errornum
activate me
display dialog "Error: " & errornum & return & return & errormsg buttons -
"OK" default button 1 with icon 2
end try

Advanced AppleScript 99

end OK
GREP macro:

Display (Off)

If (!ScriptVar01)
Go (end)

End If

Find/Change Direction (Within Selection;No Wrap)

Find/Change Where ({Current Doc})

Find/Change Match (Partial Word;Case Sensitive;Alphabet Insensitive;CharRep Insensi-
tive;{Text Only})

Find String (ScriptVar01)

Find

Find/Change Reset

Assign (ScriptVar01;0)

Label (end)

Display (On)

The practice you get from dissecting other people’s work is just as important in AppleScript as in
WP — maybe more so, since by making the language easy to use, Apple engineers made the
syntax a little vague. Things that dictionaries say should work don’t quite, and looking at solu-
tions in practice is time well spent.

18: Automating Data Entry

We'll be looking at ever more exotic and powerful macro commands and structures as we go
along, but I'd like to include not only more commands, but more applications for those com-
mands: case studies, real-world solutions that might be what you're looking for or, more impor-
tantly, that can give you the inspiration and the means to create, on your own, what you're
looking for.

I received interesting email from Dr. T., a dermatologist at Johns Hopkins University Hospital.
He described the time-consuming method a physician uses to enter symptom description,
diagnosis and treatment plans on a patient’s chart, writing the information longhand. Additional-
ly, gathering quantitative data is an expensive part of research, manually transcribing and
tabulating each field from each chart onto worksheets for statistical analysis. A medical software
supplier had offered a solution in the form of a FileMaker template — for $3000. Was there a better
way?

Certainly. Let’s design one.

What the physician wants to do is go to a Mac in the examination room and open a template for
the patient’s condition. She would then click on buttons that opened short dialogs for text and
number entry — for the patient’s name and age — and buttons that post menus where options,
such as gender, localization of the dermatological affliction, and treatment, are limited in num-
ber. By clicking on buttons, making menu choices and, where necessary, entering text, the
physician can complete a computer-generated chart for the patient quickly and accurately. By
virtue of its structure, because it’s on disk, and because terminology is standardized, researchers
can later pick data out of several hundred charts at a time.

The “buttons’ I'll use will be WP 3.5’s hyperlinks, where a word can be linked to a bookmark, to a
URL on the Web, or to a macro. Our links will run macros. If you're using WP 3.0x or 3.1, you can
approximate this effect using buttons on the Button Bar that link to the same macros.

As a dermatologist, Dr. T. treats many patients for acne. As the attending physician, he would
examine a patient, then turn to a Mac running WordPerfect and, from the Template submenu on
the File menu, choose a template we might simply call “Acne.” A new, untitled document then
opens with the contents of that template.

The first paragraph would read like the following. The underlined words are links, so they
appear in blue on screen:

Name is a age year old race gender who consults for the presence of lesions
localized primarily on the localization which have been present for approximate-

ly time, and treated in the past with treatment.

Define a link by selecting the word or words, and choose Create Hyperlink from the BookMark
menu. Link to a macro in the resulting dialog box, shown in figure 31.

102 John’s WordPerfect Scripting Guide

Create Hyperlink

Current Document
Other Document...
Internet Address

Name:

Bookmarks:

‘ =l

Figure 31: The Create Hyperlink dialog

Oops, we haven’t written the macros yet. OK, let’s do that.

“Name” will of course need a dialog to enter text, so we’d have something like:
Get Text (Var01;"Patient Name";"Enter patient’s name:")

followed by some code to replace the link with the name:

Word Left (Select)
Type Var (Var01)

How did I know that “Word Left (Select)” would select the linked word and link codes, so that
typing the variable would replace them? I didn’t, so I fiddled around and tested things.

Entry for age could be done with Get Text as well, since the number is, in this case, essentially
text. Get Integer is a another choice, though, since the command lets you check against limits,
with the syntax:

Get Integer (Variable;Lower Limit;Upper Limit;Title;Prompt)

so that if the user enters an age greater than, say, 125, the macro will post an alert advising that
the number is too high. For this use, though, I'd be more inclined to put the command’s lower
limit at 0 and the upper limit at 32767 (the highest number a variable can hold) and check for
accuracy with code that will ask about a high number, but allow it:

Label (age)
Get Integer (Var02;0;32767;"Age";"Enter Patient’s Age:")
If (Var02>125)
Confirm (Var03;Caution;YesNoCancel;Var02$" seems high. Are you sure?")
If ('Var03)
Go (age)
End If
End If

to get figure 32, if the age entered were 126:

Automating Data Entry 103

I 126 seems high. Are you sure?

(Coneet) [0) (o)

Figure 32: Checking for accuracy

and I've tossed a couple of shortcuts in there. Remember when we learned the Confirm com-
mand, we followed it with a Case command, leading to different labels. We could have that here,
with:

Case (Var03;{1;Yes;0;No})
but why bother? If the user clicks Yes, we want macro execution to proceed to the next step. If
Cancel, we want the macro to stop, which the Confirm command does anyway (unless preceded
by an On Cancel handler). Only if the user clicks No, thus giving Var03 a value of 0, do we want
to repeat the Age entry. So we can use a simple If statement, looking for that value of 0. That
could be:

If (Var03=0)

but the exclamation point — the not operator — is shorthand for the same thing. You can use this
syntax with any variable, so that:

If ('DocumentModifyFlag)
is true if the document does not have unsaved changes.
Another, small but elegant, touch: the prompt “Enter Patient’s Age,” is entered in straight quotes
- required in the macro editor — but the apostrophe within the prompt is curly, entered with
Option-Right Bracket on the Dvorak keyboard, or Shift-Option-Right Bracket on Qwerty. Dialogs
look better with curly apostrophes or quotes, as does anything else.
For quotes which are part of the command syntax (a delimiter) the macro editor lets you enter
either single or double quote marks, so that use of the other within the piece of text doesn’t
confuse things. So:

Alert ('Say "Sneeze.")
uses single quotes to define the parameter or argument — the alphanumeric expression for the
entire alert, with double quotes within the text. Useful if, for some reason, you want straight

quotes to be part of the dialog.

For further complexity you can use the ordinary character delimiter, a backslash (\). This tells
WordPerfect that the character following it is a regular character, as in:

Type (This is a very good (or a very bad\) thing.)

so the closing parenthesis in the text is not taken to be the end of the command parameter.

104 John’s WordPerfect Scripting Guide

Back to business. The largest part of data entry in the chart won’t be typed names and numbers
but menu choices, for all data where options are limited. The next links, race and gender, thus go
to menus, as does localization:

Menu (Var06;"Localization";{"Face";"Face and Back";"Back";"Chest"})
Word Left (Select)

Case (Var06;{1;face;2;faceBack;3;back;4;chest};cancel)
Label (cancel)

End Macro

Label (face)

Type (face)

End Macro

Label (faceBack)

Type (face and back)

End Macro

Label (back)

Type (back)

End Macro

Label (chest)

Type (chest)

to put this data into the chart.

The Type command is limited to 255 characters. If the text you want to enter has more than that,
just use the Type command again.

More complexity: menus calling menus

For much of the medical data, a simple menu would either not offer enough choices, or be too
long and unwieldy. The command length in the macro editor is 512 bytes, so a menu with
numerous choices might run out of room, as well as being a nuisance to work with. So we can
have a macro with menus going to labels which run other macros, using the Run command:

Run ("Retin A")

The “Treatment” menu could then appear as in figure 33:

£00= Past Treatment
A. Tetracycline
B. Minocycline
C. RetinAf...

Figure 33: The first
treatment menu

where option C will produce the menu shown in figure 34:

Automating Data Entry 105

E[J== Retin A =
A. 0.025% cream
B. 0.05% cream
C. 0.1% cream
D. 0.01% gel

E. 0.025% gel

Figure 34: And a
subsequent menu

and each choice in figure 34 would type “Retin A” plus the data shown. Note that in figure 33,
“Retin A” has an ellipsis after it. This is a Mac standard interface guideline to tell the user that she
has more decisions to make. With enough menus branching to menus, any degree of complexity
in data entry can be achieved.

What we have at this point is an entry system that replaces the links in the sample paragraph
with data of the appropriate type. While the resulting text paragraph would be optimal for some
uses, I'd now like to look at the advantages of a table over paragraphs of text — especially for later
data collection.

Using tables

Tables are wonderful things. They’re great for flexibility in formatting and page layout, even in
places where you’d never think of using a table. If you set the borders not to print, your readers
won’t ever know that you've used a table, thinking instead that you did the formatting in some
more laborious way.

Another advantage to tables is specific to macros: your macro can locate a particular piece of data
in a table much more easily than anywhere else. We saw this earlier with reference formatting
data, but it will be more valuable, even critical in the later step of quantitative data collection
such as we’ll look at now, where a macro will open 500 charts automatically, get e.g. the age and
treatment for each patient, and list this data in another file, ready for statistical analysis and
graphing.

To work within a table, we’ll use the Position to Cell command, as in:

Position to Cell (TablelD;Column;Row)

where TablelD is a read-only variable containing the number of that table in the current
document. To specify the current table, use the variable by name in the command, such as:

Position To Cell (TablelD;2;3)
to go to the second column, third row in the table containing the insertion point.

What we would want to do is then put the links in the left column and drop the data in the right
column, as in figure 35:

106 John’s WordPerfect Scripting Guide

Name

Age
Gender

Figure 35: Putting a patient’s chart in a table

and here I ran into a problem. With the current program version, I was unable to create a link in a
table cell: everything following in the table became part of the link. Not to worry —I found that I
could create the link elsewhere, cut and paste it into the table cell, and everything’s fine.

Selecting the linked word to cut and paste required using the codes window, though. Simply
double-clicking on the linked word selected the text but not the link codes. So I opened the codes
window and used Shift-Right Arrow or Shift-Left Arrow (you can also Shift-Click), to get figure
36:

Hyperlink: None)Patient (Hyper link ||<>

Figure 36: Selecting the link
codes

at which point I chose Cut.

In order to work in the table, the “Name” macro would lose the line “Word Left (Select)” and get
a Position to Cell line specifying “TablelD;2; 1” and we're set. A general caution when using
Position to Cell: make sure there isn’t text selected or (with the present program version) the
command won’'t work.

Another advantage of dropping the data in a table cell arises with data such as past treatment,
where a patient might have been treated with both Tetracycline and Retin A. Rather than having
exhaustive menu choices for multiple treatments, the physician could click the Treatment link
once and enter the first drug, then click a second time. The table cells expand to contain all the
data.

Getting the data back

The subsequent macros, to retrieve data from many charts and list it for analysis, would use a
method similar to the one I discussed in chapter 14, to globally find and change text in all files in
a folder. This time, the macro would open each file in turn, position to cell whatever, copy, cycle
windows to your data collection document, find the next cell in a table there, and paste. Finding
the next cell is easy: increment a variable and use that for the table row, as:

Automating Data Entry 107

Assign (GlobalVar01;GlobalVar01+1)
Position To Cell (TablelD;2;GlobalVar01)

using a global so you could run the macro several times in one session and not lose count of
where you were in your data collection table.

Document variables

Another step in convenience here is, instead of using a global variable, using a document vari-
able. These are just like other variables, but are document-specific, and are saved with the
document. There are ten of them, DocVar0 through DocVar9. You could then keep track of what
cells in the data collection table had been filled, automatically, across multiple sessions of WP.

As a caution, when I write to a document variable, I make some other minor change in the
document as well — adding a space at the end, say — since, depending on the program version,
changing only a document variable might not trip the document modify flag, and the variable’s
new value then won't be saved.

I use the same caution when editing a macro installed in a document.

Putting menu choices up front

At this point we have what Humphrey Bogart might have called the beginning of a beautiful data
entry system. Let’s add one modification which will serve two purposes: make it much easier for
a non-macro-literate associate to revise the system for another medical condition, and solve the
problem that might arise if a menu gets too lengthy. Remember, the maximum command length
in WP macros is 512 bytes, and a menu can easily get longer than that.

This modification is putting values in local variables first, followed by menus and commands that
address those variables. For example, a menu like:

Menu (Var49;"Choose a Snack"{"Apple";"Banana";"Coconut"})
could be done as well with:

Assign (Var00;"Choose a Snack")
Assign (Var01;"Apple")

Assign (Var02;"Banana")

Assign (Var03;"Coconut")
Assign (Var04;"")

i\llenu (Var49;Var01;{Var02;Var03;Var04;Var05})

so that the menu command itself won't get too long. I added an empty variable, Var05, to show
that you don’t need to fill up all the variables: run this macro, and you’ll see that only three
choices appear on the menu. The meta-template macros could use all 50 local variables, and your
associate could drop text into as many of them as necessary. She wouldn’t need to dig into the
script, since variable assignment will be right at the top. If you remember how daunting macro
code might have looked to you when you started, you know how appreciative your associate will
be.

108 John’s WordPerfect Scripting Guide

And there we go! I think this chapter might be especially useful, as you can write these menus
and text entry commands for a wide range of data entry purposes, use edits to check accuracy,
achieve a consistency of terminology that’s most helpful, and make data manipulation an order

of magnitude easier. My thanks to Dr. T. for this great idea.

19: Going Around in Circles

Macro systems we’ve looked at up to now have been fairly linear in the respect that they let the
user make a choice from, say, a menu, and get an action. They then go to sleep until the user calls
them again. The macros haven’t done much to keep track of things while you weren’t running
them.

Time for that to change. Let’s look at a macro set that gives the user better control over multiple
open documents. You may have four or five files open, comparing different drafts, opposing
arguments or whatever. You might like a sort of bookmark feature to go back and forth to
specific places among these files, but bookmarks themselves take longer to set and, in this case,
outlast their usefulness. A bigger drawback, though, is that they’re document-specific (either the
program bookmarks in version 3.5, or my bookmark macros for 3.0 and 3.1).

This alternative, “John’s WP Previous Positions,” can be set in a second, and works across all
open documents. The menu looks like figure 37:

= Go to Previous Position
. John's WP Outlining 6.1.1 (4) If the read/write indicator on your Status Bari

. John's WP Outlining 6.1.1 (6) toggle or startup macro). Indent mode will also

. John's WP Find Manager 1.0.1 (1) Forward, Backward or Within Selection - is sh
John's WP Find Manager 1.0.1 (2) manually. They are presented in a menu so you
John's WP Equation Manager (1) set chapter numbers) to the right of the equati
John's WP Equation Manager (3) macros change the box type to User Box. The Edi
. John's WP QuickCorrect 1.2.1 (1) There’s no need to select the mistyped word f

. John's WP QuickCorrect 1.2.1 (1) Instead, just run this macro when you see you
John's WP Prev. Pos 2.0b3 (2) If the recorded text can’t be found on the origi
John's WP Prev. Pos 2.0b3 (3) If you opt for this, note that when you click an

CrTIOMMOoOO®D

. Replace Position
Clear all positions

X

Figure 37: The Go To menu

where each option has the document name; then, in parenthesis, the page number, and then
several words from the position. The menu is as wide as your screen, so enough of the text can be
displayed to be recognizable.

When you click on an option, or type the letter to its left, the macro brings that document to the
front, goes to the specified page, and searches for the text, selecting it. If editing has moved the
text so it doesn’t appear on the specified page, the macro posts the dialog shown in figure 38:

Previous Position “I1t is important
s here that there has been no overt
portrayal” not found on page 4 of

“MacKinnon.” Look elsewhere in
document?

([No] | xes]|
Figure 38: If the text isn’t found

110 John’s WordPerfect Scripting Guide

If you click Yes, the macro searches the whole document. If it can’t find the document because
you closed it, the macro tells you.

As part of the basic design, the macros remember the ten most recently assigned positions. When
all ten memories are filled and you assign another position, the oldest one is replaced. We'll see
how to do that, with a “carousel’ design you can use for any number of things.

Vary that variable

This set consists of two macros: “Assign Previous Position” and “Go to Previous Position.” With
the Assign macro, we start off with a global variable, which we increment by 1, every time the
macro runs:

Assign (GlobalVar12;GlobalVari2+1)
If (GlobalVar12>10)

Assign (GlobalVar12;1)
End If

so that GlobalVar12 will always have a value between 1 and 10. That value determines which of
the 10 menu options is replaced by the most recently assigned position. We call this sort of thing
a counter, and you can find a lot of uses for it.

With that variable in place, we can then set up a case command:

Case (GlobalVar12;{1;one;2;two;3;three;4;four;5;five;6;six;7;seven;8;eight;9;nine;10;
ten})

so that execution goes to labels designated by the spelled-out numbers, based on the numeric
value of GlobalVar12. Why did I spell out the numbers for labels? Just to keep things straight.
You can use names of cars for labels if you want — just so the case command and the labels match.

A label looks like:

Label (one)

Call (select)

Assign (GlobalVar13;DocumentName$" ("$LogicalPage$") "$Clipboard)
Go (end)

so global variable 13 will make up one of the choices on the menu.

At a later point we'll be picking apart these globals to get the document name, page, and text that
was on the clipboard, and we'll need a way to distinguish those three pieces of data. The paren-
theses wouldn’t do very well by themselves, since someone might easily have parentheses in
their document name, so I put two spaces on either side of the parentheses.

Note that execution branches right off to a Select label which, as you might expect, selects text to
designate the position. We'll get to that in a minute. Since we go to Select with a Call command,
execution will return to the line just below the Call command. That next line assigns three things
to the next global variable: the document name, the logical page, and the contents of the clip-
board (or as much as will fit in the 255 character variable limit).

Going Around in Circles 111

Ten globals — GlobalVar13 through GlobalVar22 — make up the menu posted by the Go To macro.

All that's left is the Select label, which reads:

Label (select)
Display (Off)

End of Line (Select)
Copy

Left ()

Display (On)
Return

which I designed to select and copy, quickly and unobtrusively, enough text so that I could find
the position later on. I started with selecting five words to the right of the insertion point, but that
was slow. Also, if in the process of counting those five words, the macro crossed a hard return,
tab or other formatting code, that code was left out of the global (which contains only text). When
I then went to find the text with the Go To macro, it didn’t work since the Find command does
recognize returns and tabs. Ouch.

But End of Line (Select) turned out to be fine. Fast, and is less likely to bump into a problematic
code. If the insertion point is one word away from the right end of the line, the global only gets
that one word but, including the document name and page number, there’s still something to
work with. The documentation recommends that the user have the insertion point further to the
left in the line when calling the Assign macro.

(A more recent version of these macros, what's now available for download, uses a more ad-
vanced means to select text while handling codes. We'll learn this in chapter 21.)

The Return command, as you remember, takes execution back to the line following the Call
command. The Call/Return structure is worth its weight in gold, in terms of the amount of code
you'd need otherwise.

The Go To macro

Now that we have ten global variables full of data, let’s look at the other half of the engine: the
macro that finds positions based on what’s in the globals. This part is a little more complicated.
Starting out is easy, though. What else — build a menu!

Menu (Var00;"Go to Previous Position";{GlobalVar13;GlobalVari4;GlobalVari5;
GlobalVar16;GlobalVar17;GlobalVar18;GlobalVari19;GlobalVar20;GlobalVar21;
GlobalVar22})

Case (Var00;{1;0ne;2;two;3;three;4;four;5;five;6;six;7;seven;8;eight;9;nine;10;ten};can-
cel)

Label (cancel)

Go (end)

giving us labels according to the user’s choice. Let’s go to label one:
Label (one)

SubString Position (Var01;" (";GlobalVar13)
SubString Position (Var02;") ";GlobalVar13)

112 John’s WordPerfect Scripting Guide

SubString (Var03;1;Var01-1;GlobalVar13)

SubString (Var04;Var01+3;Var02-(Var01+3);GlobalVar13)
String Length (Var05;GlobalVar13)

SubString (Var06;Var02+3;Var05-(Var02+2);GlobalVar13)
Go (go to)

which is, indeed, more complicated. We can see, though, that it’s just a mess of Substring, String
Length and Substring Position commands to pick apart a global variable — GlobalVar13 through
22, as appropriate. What do we pick out?

Var01l: anumber indicating the position of the first of the two spaces before a left parenthesis
(note figure 39 for a chart. For clarity, the spaces are replaced by boxes).

Var02: anumber indicating the position of a right parenthesis followed by two spaces.
Var03: a string representing the part of the global starting at position 1 (the first character), and
going the length of Var01 minus 1 — to the last character of the document name. The

document name is thus going into Var03.

Let’s make sure we understand this. Figure 39 shows a chart of the surgery we’re going to do on
GlobalVar13:

Var01 (position) Var02 (position)

Document Name OC¥#) ODxt that was selected
L 1 L | |

Var03 Var04 Var06

Var05 (length)

Figure 39: Cutting up the contents of a global
variable

In the example above, with a file called “Document Name,” the first special space is in position
14. The name of the document we're going to look for is thus contained in the substring going
from position 1 for a length of 13, or Var01-1, in GlobalVar13.

Var04: starting with the position of the first special space plus 3 and going from there a length of
Var02 minus the quantity Var01 plus 3, to give the page number. This allows for a
varying number of digits in the page number. Note that Var04 is a string at this point,
since it has been produced by the Substring command. We’ll coerce it to a number when
necessary.

Var05: the length of the global.

Going Around in Circles 113

Var06: starts with Var02 plus 3, to give the first character of the text we’ll search for, and going
the length of the whole global (Var05) minus the position of the right parenthesis plus 2,
to subtract the document name and page number.

Well, I told you this would be complicated. Count this stuff out, since you're going to miss the
largest part of the value of this chapter if you don’t see how the global variable is cut into local
variables.

Why do any of this? Why not just use more globals? Nice idea, but there are only 50 of them, and
they last for the whole current session of WP. And other macro mavens don’t want you tromping
all over their globals.

The information highway

OK, we now have all this information: Var03, Var04 and Var06, and can simply look for it among
open documents. This is just cleanup. As you saw above, each label cuts up the global and then
goes to a label called Go To. This consists of:

Label (go to)

On Error (error)

Select Window (Var03)

String To Number (Var04;Var04)
Go To (Var04;Current;No Change)

to select the document name contained in Var03, and go to the page number contained in Var04 —
once we’ve coerced that string to a number, since WP can’t count to the number of a page with a
string.

We then want to search for the text in Var06, so we do this:

Select Page

Find/Change Direction (Within Selection;No Wrap)

Find/Change Where ({All})

Find/Change Match (Partial Word;Case Insensitive;Alphabet Insensitive;CharRep
Insensitive;{Text Only})

Find/Change Action (Select Match)

Find String (Var06)

Find

selecting the page first, so as to limit the range of our search.

What if?

If that search doesn’t find anything, there could be two reasons: the text has moved to another
page, or has been deleted. Another error will occur if the document can’t be found among those
open. This is a good place for you to download the finished macro from either address given in
Appendix D, and look through the code. As you become more advanced at programming, you’'ll
find yourself more interested in working samples than in explanation.

114 John’s WordPerfect Scripting Guide

Task keys

I originally envisaged the Assign macro as being called by OnStartUp, running automatically
every time you clicked the mouse within the document window. That works fine except that the
macro is paused whenever you're not clicking the mouse and, with the present program version,
screen redraw is not as good when a macro is paused. Also, running another macro containing an
End Macro command will terminate that macro and any other that’s paused.

You can try it like this, though, with a couple of quick additions.
First, add these lines to the top of the Assign script:

Label (top)
Pause Until (#Click#)

and add this line to the end of the script:
Go (top)

The Pause Until command is new to us. It pauses macro execution until it sees a character or task
key typed. A task key can be anything listed in Preferences/Keyboard / Commands. Enclose the
command in pound signs — WP’s task key delimiter — in the script to designate it as a task key.

Another example of the usefulness of task keys is a macro I wrote to change the font to Symbol
for a few characters:

Assign (Var00;FontName)
Font Name ("Symbol")
Pause Until (#Enter#)
Font Name (Var00)

so that the macro changes the font to Symbol and pauses until the user presses Enter, at which
point the font is set back to whatever it was originally.

20: Odds 'n Ends

As you probably know, you can dig around in a document pretty effectively by opening the
codes window. As a user, you can also leave that window alone. As a programmer, though, you
can do amazing things with the codes.

Knowing the code

Say you have a document with three different fonts. You want to change one of the fonts from
Palatino to Times, and leave everything else alone. The font definition unfortunately isn’t in a
style sheet, so that won’t help. This macro will:

Codes (Show)

Find Next Code (Forward;Font Change) ; the code name is spelled exactly as you see it
in the Find Code dialog

If (FontName="Palatino")
Font Name ("Times")
Delete Right ; this deletes the Palatino font code as long as the codes window is
open

End If

Codes (Hide)

Note that the two-word “Font Name” is a command, while “FontName” all together is a read-
only variable. All WP read-only (r/o) variables are named with one word.

You can put this script in a Repeat/Until ({FindStatusFlag) loop to fix an entire file, since
FindStatusFlag reflects a code search as well as a text search. Turn display off for a big speed
enhancement, since the codes window needs to be open for the Delete Right command to affect a
code rather than a character.

Run the macro at the top of your file, as finding codes doesn’t have a wrap-around option. You
can send execution to the top of your file with Home () or Goto Top of Document. The latter puts
the insertion point before any codes.

If you want to get elegant and test first whether the codes window is open, and restore that state
when the macro ends, you could start the script like this:

If (ShowCodesFlag) ; if the codes window is open
Assign (Var01;1)
End If
Codes (Show) ; does nothing if codes window is already showing

and end the macro with:

If ('Var01)
Codes (Hide)
End If

Important design concept here: the macro looks for a generic font change code, and then tests for
the specific font name. In this way, you can search for all sorts of stuff in a file, by first looking for
the fype of thing, and then testing for a more exact match.

116 John’s WordPerfect Scripting Guide

Fonts should of course be put in style sheets in the first place, but what if you wanted to replace
one style itself with another? Style sheets won't help there, but my friend and macro genius Dave
Moulton did just this with a script written to find the code Style On, followed by a test with the
variable CurrentStyle and then the command Apply Style, in his macro “Manipulate Styles,”
found on Corel’s ftp site.

But I won't analyze the whole thing here, because a habit you’ll want to form to become truly
adept at macros is to look at the script of any macro you find whose design or operation interests
you. Some scripts seem daunting at first, but you'll see that they’re made up of parts — labels,
loops and such — and the operation of each part isn’t hard to understand. Flowchart a script as
you read it, and the overall structure will become easy to see.

HTML codes

WP 3.5 added HTML editing. HTML styles are separate from WP’s regular style sheets, a fine
idea except when you want to take someone’s file full of regular styles and translate them into
HTML. This sample code assumes that your source file has styles “Heading1,” “Heading?2,” and
“Heading3,” which you want to set to HTML headings 1, 2 and 3:

Goto Top of Document ; before any codes
Repeat
Find Next Code (Forward;Style On)
If (CurrentStyle="Heading1")
HTML Heading (1)
End If
If (CurrentStyle="Heading2")
HTML Heading (2)
End If
If (CurrentStyle="Heading3")
HTML Heading (3)
End If
Until (IFindStatusFlag)

So the paradigm with codes is, again, find the generic code and then test for the specific style,
font or whatever.

Catching errors

Given how easy it is to include quote marks where you shouldn’t, etc., it’s nice that WP has error-
checking for macro scripts. You've probably already seen the first level of error correction: when
you save a script, WP parses it, looking for bad syntax, misspelled commands, and the like. It
underlines what errors it finds, and requires you to fix them before it will save the script. You can
save anything as text, of course. Or, if you're finishing up for the day and can’t figure out what's
wrong with one command, you can “comment it out” — put a semicolon in front of it, to turn the
command into a comment line, save the script, and leave it. It'll be there for you tomorrow.

If your script parses OK but still doesn’t run right, WP has three debugging commands to help
you sort it out:

Odds 'n Ends 117

Step puts up a window showing the macro command that will run next, after you press any key.
You can thus step through your script one line at a time, until you find the one that’s going
kablooey. The syntax is:

Step (On)

and you can change the On to Off and leave the command in the script, if you're going back and
forth as you debug. Or turn step on only for the troublesome part of your code.

Speed slows down macro execution, by adding a delay between the execution of each line of
code. The delay is expressed in 60ths of a second, so:

Speed (60)

will put a one-second delay between each command.

Wait does the same thing but only at the point where it occurs in the script. So:
Wait (180)

puts a single three-second delay into execution, while Step and Speed set the pace of things for
the rest of the macro, or until another Step or Speed command is encountered. You could thus
step through one troublesome part of your script. Wait is also useful when you put up a prompt,
one of the ways of talking with your user.

Take a look in the online macro help, and you’'ll see that parameters for Prompt include the
vertical and horizontal coordinates in points/ pixels for the message, then the title, then the
message itself. So an example might be:

Prompt (75;125;"Sample Prompt";"Are you awake right now? How do you know?")
Wait (180)
End Prompt

If a Prompt command isn’t followed at some point by an End Prompt command, the prompt
stays on screen until the user clicks in the close box (or a macro posts a different prompt). Com-
pare that to an Alert, where, a modal dialog appears at the center of the main monitor and has an
OK button. Menus give the user any number of choices, and Confirm posts multiple buttons on
the order of OK/Cancel or Yes/No/Cancel. Only a prompt lets you specify its location, and only
a prompt can display while the macro (or you) is doing other things.

My favorite place for a prompt is at the horizontal center of the screen, and about a third of the
way down from the top. This is the Macintosh user interface’s dialog position, more or less:

Prompt (ScreenSizeH/2-240;ScreenSizeV/3;Var01;Var02)

Pause can be used for debugging, or for the user’s convenience. It’s not the same as Pause Until.
That command pauses the macro until a specific keystroke occurs, and then resumes execution.
Pause simply stops the macro until the user chooses the Continue command from the macro
menu. This can be useful in a number of situations, training for one. Imagine that your macro
shows some steps in formatting, and then types some plain text for the user to practice on. The
macro then pauses for the user to repeat those steps, after which he or she chooses Continue.

118 John’s WordPerfect Scripting Guide

When we want an error

On occasion we plan for an error to occur at some point. I call the following script from my
OnOpenDocument macro. If I've launched WP and have an empty Untitled document on-screen,
and I open an existing document, this macro closes the Untitled doc automatically. It makes an
exception and does nothing if the front window is either of the two that my OnStartUp macro
calls. Glossary File assigns glossary entries as we learned in chapter 10; Data sets Citation format,
as we saw in chapter 16. You type the or operator with shift-backslash.

On Error (cascade)
If (FrontWindow="Glossary File"IFrontWindow="Data")
Go (end)
End If
While (Var01=Var02) ; or even While (1) - see below
Select Window ("untitled™")
If (IDocumentModifyFlag)
Close
End If
End While
Label (cascade)
Cascade Windows
Label (end)
End Macro

I wanted this to work for multiple untitled and unmodified windows, so I put in a While loop,
specifying while Var01=Var02 (see below for more discussion of the While command). Var01 is
always going to equal Var02 here, since neither is ever assigned a value. So the while loop will
repeat forever or until the macro doesn’t find any more windows with Untitled as the first part of
their name. Then it returns an error. That’s why the first line in the script is an error handler,
sending execution to the Cascade label. This gets execution out of the while loop, with a guaran-
tee that there are no more new and untitled windows.

On other occasions, you might want an ostensible error to occur at a specific point. The command
Return Error does just that. Return Cancel is the equivalent of the user’s pressing Command-
Period at that point in script execution: if there’s an On Cancel handler before that point, execu-
tion branches to the label it specifies. Otherwise, the macro quits.

Other error handling

Often enough, we're not looking for an error, but want to send execution in the right direction if
one occurs. That direction can change depending on where we are in the script. The sample
below is the “Save plus Editors” component of my Note Editor macros, version 3, an example of
letting the macro do the thinking. What it's designed for is saving a footnote editor or an endnote
editor (or both, if both are open) and saving the editor’s paper — but not other open documents.

When the macro starts, it doesn’t know if there’s an endnote editor or a footnote editor open. So it
tests for one by trying to select a window with, for example, “footnotes” as part of its name. If
there is no such window open, WP returns an error. If there were no On Error handler earlier in
the script, you’d just get an alert informing you of the error, and the macro would quit. But with
an error handler, execution will go to a specified label if an error occurs. Thus, in quasi-macro
terms:

Odds 'n Ends 119

On Error (Buy Plane Ticket)

Ask boss to double your salary

; more code

End Macro

Label (Buy Plane Ticket)

; code here will execute if boss threw you out the window

and here’s some actual code:

If (NewDocumentFlag) ; untitied doc has never been saved
If (IDocumentModifyFlag) ; because there's nothing in it
End Macro ; nothing to do
Else ; if anything is in the doc
Save ; posts the dialog
End Macro ; that's it for us
End If
End If
Assign (Var01;FrontWindow) ; we need to remember which window is in front when the
macro starts
SubString Position (Var02;">~Footnotes";FrontWindow) ; if we get anything here, the
front window is a footnote editor
SubString Position (Var03;">~Endnotes";FrontWindow) ; or here, an endnote editor
Call (prompt) ; last subroutine in the script checks for unsaved changes in front window,
posts prompt, saves, ends prompt

If (Var02IVar03) ; if we have any kind of editor in front
Assign (Var04;DocVar7) ; get name of paper from a doc variable in the editor
Else
Assign (Var04;Var01) ; if an editor isn't the front window, then the paper is. So this
if/else statement puts the paper name in Var04 in any case
End If
String Length (Var05;Var04) ; how long is paper name?
If (Var05>18) ; if longer than 18 characters
SubString (Var06;1;18;Var04) ; get first 18
Assign (Var07;"<"$Var06$"...>~") ; add carets, ellipsis and tilde per our naming
convention
Else
Assign (Var07;"<"$Var04$">~") ; just add carets and tilde if paper name is short
enough
End If

If (Var02) ; if footnote editor is in front
On Error (paper) ; go deal with the paper if you can't find an endnote editor
Else ; if anything but a footnote editor is in front
On Error (footnotes) ; go looking for that footnote editor when you're finished here
End If
Select Window (Var07$"Endnotes") ; if there's an endnote editor, get it. If not - returns
an error - go to 'paper' or 'footnote' labels
Call (prompt) ; save the window
If (Var02) ; if a footnote editor was in front when the macro started (it won't be now if we
found an endnote editor to save)
Go (paper) ; that footnote editor was then saved as the first step - saving the active
window, so we don't need to select it and save it again, as the next subroutine would
do

120

John’s WordPerfect Scripting Guide

End If

Label (footnotes) ; from the error handlers for Var02, if the footnote editor wasn't in front
On Error (paper) ; we need another error handler in case the next command, to select a
window, returns an error - because there wasn't a footnote editor open

Select Window (Var07$"Footnotes") ; get footnote window

Call (prompt) ; save it

Label (paper) ; error handlers get us here if there's no footnote editor open when we look

for 1) an endnote editor, or 2) a footnote editor

Select Window (Var04) ; get the paper - or the original front window

If (Var02IVar03) ; if the original front window was an editor, the paper hasn't been saved
Call (prompt) ; save it

End If

Label (prompt)

If (DocumentModifyFlag)
Prompt (ScreenSizeH/2-240;ScreenSizeV/4;"Saving";"Saving changes to "
$FrontWindow$"") ; | like this. Both Lotus 123 and More have a saving prompt
Save
End Prompt

End If

Return ; we got to this subroutine with the Call command

Doing our own error checking

Sometimes we wish a command would return an error when it doesn’t do what we want, but the
command is instead just ignored. Set Directory is one of those. I have an automated backup
system on my Mac, using a Zip drive named “Backtrack” and the MacTools backup program. I
have WordPerfect change the folder names on the Zip drive at every startup, appending the date
(in “6/1/97” format) to any folder it finds named “Backup.” So the Zip disk’s window looks like
figure 40:

Odds 'n Ends

121

S[J=—— Backtrack ———=UF
23 items 60.5 MBindisk 33.7 MB available
Name Size Kind
P [0 Backup-6/27/97 — folder |4
[P O Backup-6/26/97 — folder Q

P O Backup-6/20/97 — folder

[P O Backup-6/19/97 — folder

P O Backup-6/18/97 — folder

[> OO Backup-6/17/97 — folder

P [Backup-6/16/97 — folder

[> O Backup-6/15/97 — folder

P [Backup-6/14/97 — folder

[> O Backup-6/13/97 — folder

P [Backup-6/12/97 — folder

[> O Backup-6/11/97 — folder

P [Backup-6/10/97 — folder

[P O Backup-6/9/97 — folder

[P O Backup-6/8/97 — folder

[P OO Backup-6/7/97 — folder

[P O Backup-6/6/97 — folder

[P OO Backup-6/5/97 — folder

[P O Backup-6/4/97 — folder

[P OO Backup-6/3/97 — folder

[P O Backup-6/2/97 — folder

[P OO Backup-6/1797 — folder

[> 3 On Location Indexes — folder §
<

Qo] Qo]

Figure 40: Folders named automatically

so that no backups will be overwritten, and a particular iteration of any work in progress will be

a little easier to find.

The basics are easy enough. I open the trusty Data file in the System:Preferences:WordPerfect

folder and get the text date (which I'll update before closing the file). That code looks like:

Prompt (ScreenSizeH/2-240;ScreenSizeV/4;"Backup Folder Date";"Checking backup

folder date . . .")

Display (Off)

On Error (end)

Open Document (BootDir$"Preferences:WordPerfect:Data")
Position To Cell (1;3;1)

Select TableCell

Copy

Date Format ("[Month#][Date Sep][Day#][Date Sep][Leading Zero][Yr]")
Date Text

Save

Date Format ("[Month(Abbr)] [Day#], [Year]")

Close

That leaves a table cell containing the date on the clipboard. Depending on where we use the

clipboard, the code for the table cell may simply disappear, or may cause an unexpected result,
such as becoming a hard return in some pastes. Look at the clipboard to see what I mean. Best to

get rid of the final character — the cell code — with:

String Length (Var01;Clipboard)

122 John’s WordPerfect Scripting Guide

SubString (Var02;1;Var01-1;Clipboard)
giving us just the date in Var02.

Now comes the tricky part. We can assume that the Zip disk has a folder entitled just “Backup”
and do this:

Rename Folder ("Backtrack:Backup";"Backtrack:Backup-"$Var02)

but that will return an error if this macro is run since the last time the backup program has run,
so there’s no folder without a date. Not a large problem, but the error is presented as an alert,
which the user has to OK. How can we check whether this dated folder exists?

I used the Set Directory command to go to that folder, if there is one, with:
Set Directory ("Backtrack:Backup-"$Var02)

except that this command doesn’t tell us anything if there is no such folder. So let’s check wheth-
er that command did what we wanted, with:

If (CurrentDir="Backtrack:Backup-"$Var023$":")
Go (end)

and here I had to work around a quirk with command syntax — a problem only because I wasn't
expecting it. As you know, path descriptions on the Macintosh are composed of disk, folder and
file names separated by colons. For the Set Directory command, the final colon in the path is
assumed, but for the CurrentDir variable it's not! I had no idea what I was doing wrong until,
error checking, I inserted a line putting CurrentDir in an alert, noted the final colon, and revised
the line above to have that final colon.

At that point I could do things if the dated folder wasn’t found, like see if there’s a non-dated
folder extant. I found that adding the final colon to the Set Directory parameter worked, so I
decided to standardize:

Else
Set Directory ("Backtrack:Backup:")
If (CurrentDir="Backtrack:Backup:")
If there’s such a non-dated folder, add the date:
Rename Folder ("Backtrack:CP Backup Files";"Backtrack:CP Backup Files-"$Var02)

Otherwise, are we not finding a folder because the disk isn’t in the drive? Let’s set the directory
and then check it, for just the volume name:

Set Directory ("Backtrack:")
If (CurrentDir!="Backtrack:")

; tell user to put the disk in the drive
End If

and that takes care of the options. Here’s the whole script:

Label (top)

Odds 'n Ends 123

Set Directory ("Backtrack:")

If (CurrentDir!='"Backtrack:')
Prompt (ScreenSizeH/2-240;ScreenSizeV/4;"Backup Folder Date";"Missing backup
volume! Check Zip drive, insert disk “Backtrack,” and press Enter. Or, press
Command-Period to end Backup Folder Date macro.") ; since prompts show in the

Chicago or Charcoal fonts, you can use “88” instead of “Command.”
Pause Until (#Enter#)
Go (top)
End If
Display (Off)
Prompt (ScreenSizeH/2-240;ScreenSizeV/4;"Backup Folder Date";"Checking backup
folder date . . .")

On Error (error)
Select Window ("Data")
Go (start)
Label (error)
Open Document (BootDir$"Preferences:WordPerfect:Data")
Assign (Var49;1)
Label (start)
On Error (end)
Position To Cell (1;3;1)
Select TableCell
Copy
String Length (Var01;Clipboard)
SubString (Var02;1;Var01-1;Clipboard)
Date Format ("[Month#][Date Sep][Day#][Date Sep][Leading Zero][Yr]")
Date Text
Save
Select TableCell
Copy
Date Format ("[Month] [Day#], [Year]")
If (Var49)
Close
End If
String Length (Var03;Clipboard)
SubString (Var04;1;Var03-1;Clipboard)
If (Var02=Var04)
Go (end)
End If

Set Directory ("Backtrack:Backup-"$Var02)
If (CurrentDir="Backtrack:Backup-"$Var023$":")
Go (end)
Else
Set Directory ("Backtrack:Backup:")
If (CurrentDir="Backtrack:Backup:")
Rename Folder ("Backtrack:Backup";"Backtrack:Backup-"$Var02)
End If
End If
Label (end)
End Prompt
Set Directory ("Bebop:Education:") ; ready to go to work
Display (On)

124 John’s WordPerfect Scripting Guide

and BTW, that Zip disk goes off-site at the end of the month, to be replaced by another, rotating,
“Backtrack.” A good way to avoid losing all those neat macros you're starting to write.

Accessing variables

Often enough, while coding a macro we need to see what's in a given variable — either a read-
only or read-write. So WP lets you assign keystrokes to variables, just like assigning keyboard
equivalents to commands and menus. Go to Keyboard in Preferences and, from the pop-up menu
at the top left, choose Variables. You get a list of every variable in the program. The keystroke
will type the value of the variable at the insertion point, and you can check its value at your
convenience. Among the read-write variables, this works best for global, document and script
variables, since local variables lose their value when the macro containing them ends. I usually
put local variables in an alert to check their value. Note that alerts don’t display numbers, so if
Var01 has a number in it, an easy way to coerce it to a string is by:

Alert (' '$Var01)

Let’s get loopy

What's this with the While loop on page 118? It's much like Repeat/Until, but can be more
efficient in some situations. In the macro above, I could have had line six as “Repeat” and line 13
as “Until (IVar01=Var02)” — same difference. Since neither Var01 nor Var02 have been assigned
anything, the While command will always be true, and the Until command would never become
true — so the macro keeps looping until there’s an error. Since Repeat/Until and While differ in
the nature of the test, one or the other may be better suited to a particular purpose.

A third kind of loop WP offers is For. This is a little more sophisticated, with the increment that’s
going to affect the test included in the command line. The four parameters are: variable, initial
value, test, and increment. So:

For (Var01;0;Var01<Var49;Var01+1)
; some code here
End For

will assign Var01 a value of 0, and test whether Var01 is less than Var49. If it is (the result is true),
Var01 is then assigned the fourth parameter (in this case, Var01 is incremented by 1), the code
between the For and End For commands is run, and execution returns to the For line. Here’s an
example of the three types:

Assign (Var49;25)

i\llenu (Var00;"For/Repeat/While"{"For";"Repeat";"While"})
Case (Var00;{1;for;2;repeat;3;while};cancel)

Label (for)

For (Var01;0;Var01<Var49;Var01+1)
Type (Biff)

End For

End Macro

Odds 'n Ends 125

Label (while)
While (Var01<Var49)

Type (Biff)

Assign (Var01;Var01+1)
End While

Label (repeat)
Repeat
Type (Biff)
Assign (Var01;Var01+1)
Until (Var01=Var49)
End Macro

The choice can result in a line or so less code, here and there. More importantly, one structure
may, in a given situation, allow you to build a script that is clearer conceptually to you. That’s
what counts.

Another type of loop is offered by For Each. Here, instead of incrementing a variable, the several
values of the variable are included in the command line, and the sequence loops for each value.
Thus:

For Each (Var01;{'Alpha';'Beta';'Charlie'})
Type Var (Var01)
Hard Return

End For

which can often be a space-saving convenience.

Loops at the ‘macro’ level

We can take this loop/test idea up a level, and have one macro execute another if a certain test is
met, using either the Run command, to execute that other macro right away, or Chain, to run the
other macro when the first macro is finished. If you use the Run command, execution returns to
the first macro when the second is done — unless execution encounters an End Macro command.
This is a primary use of this command, since macros end anyway when they run out of code.

Why not put all your code in one macro? There’s more than one good reason! Consider: size. My
Character Styles is a set of 28 macros, totalling over 3000 lines of code. Even if it added up to less
than 32K, the limit for a macro, it would be crazy to try and edit all that code in one script. This is
partly since WP’s macro editor doesn’t have Find / Change or other features that overall use
wouldn'’t justify, but mainly because a manageable size is vital to good organization. Within a
single macro, there’s lots of places to put this or that little tidbit of code: initialize a variable, set a
font, whatever. All those little hiding places make them harder to find when you decide to
change them. With a set of separate, modular and interacting macros each with a more specific
purpose, editing is easier. You can also save generalized versions of these single-purpose macros
in libraries, which make easy building blocks for future projects.

126 John’s WordPerfect Scripting Guide

Starting to put things together

At this point we’ve covered a great deal, but macros may seem more mystifying than ever. Even
if the examples made sense right away, you still might be wondering, “How will I ever learn
what all those variables are?” and “When will I start to grasp the big picture?”

When you think of it, questions like these are what everyone has when learning a language:
Swedish or Thai as well as macros. There just seems to be too much to digest. But don’t worry.
Learning is a funny endeavor: it rarely takes a linear pace. Everything seems overwhelming for a
while, and then — presto — parts start to fall into place.

Let’s help this along with some learning strategy. Like any language, the WP macro language has
two basic parts: grammar and vocabulary. Grammar, or the If/Else, Repeat/Until kinds of
structure we’ve learned, is best approached by example and practice. Vocabulary, though, can be
learned either this way or by browsing WP’s online macro help (not the standard help file, but
“WP Macro Help,” the fourth choice on the balloon help menu). Otherwise, a printable list,
separated into commands and variables, is included in the program’s ReadMe files.

Overall, the most effective way to learn code is by studying examples. Now that you know how
to troubleshoot and write tight loops, we’ll spend the next few chapters dissecting some sophisti-
cated and elegant code. Those adjectives will, in short order now, describe the macros you write.

21: Outlining

A structured outline was a great way to write before the advent of the personal computer, and is
orders of magnitude better with a computer. You can now create an outline and then move parts
of it around for more effective organization, hide subtopics for an overview, add speaker’s notes,
and do about twenty other things. Then, convert the outline to text and you're done, or modify
the format for presentation.

WordPerfect’s outlining feature will let you do most of this, but I saw a few things I wanted to
add. Indentation, for example, is an aid to easy comprehension of an outline. As the program
ships, outlining goes like this:

LThis is the first topic. There’s no automatic space between the topic’s label (the
Roman numeral one in this case) and the beginning of the text.

A.This is the first subtopic. With Outlining mode on, I pressed a Return
and then Tab, and the Roman numeral IT changed to a capital letter A.

1.This topic at the third level was generated by pressing Tab

twice. Note that at any level, whole topics are not indented — the second and
succeeding lines return to the left margin.

B.This topic should be at the second level, so I only pressed Tab once.
The writer has to keep track of which level he or she is on.

While outlining formats often have indented topics, like:

L By contrast, this topic’s label is separated from its text by one tab stop.
The entire topic is indented. Considering each topic as an idea, this
formatting makes the writer’s thinking easier to follow.

A. This first-level subtopic is likewise fully indented. It’s true that
there is a trade-off between visual clarity and the number of
words that will fit on a page.

1. And so on for each level in the outline.

2. When I pressed Return at the end of the previous topic,
the outline generated a new topic at the same level. The
user doesn’t have to count Tabs.

So I wrote a set of macros to produce the second kind of outlining in WordPerfect. The macros
also let you move whole topics around with a keystroke and click, cross-reference topics, clone
and gather topics, generate a table of contents, collapse and fold topics, and several other things —
in fact, as many as the best dedicated outlining programs.

Let’s look at this set and see, for starters, how the macros produce the basic difference in format-
ting that you see above.

128 John’s WordPerfect Scripting Guide

Outline Return

Part of the design strategy would be to turn the program’s Outline Mode on when creating topic
labels, but leave it off otherwise since WP’s QuickCorrect doesn’t work with Outlining Mode on
(since outlining label punctuation would cause untoward effects). QuickCorrect is a lifesaver for
me and I wanted to keep it (and in fact added to it in outlining, to capitalize the first word of each
topic).

So the Outline Hard Return command involves typing one keystroke that turned outlining on,
added a carriage return (thereby adding a topic label), indented, and turned outlining off.
Straightforward stuff, and the code then starts out as:

Outline Mode (On)
Hard Return
Indent

Outline Mode (Off)

which does basically what we want. This code puts every topic at the left margin, though, so that
every label starts out as (in default formatting) a Roman numeral. Dedicated outlining programs

do it differently: they maintain the level the user is working at. That will be harder to do but, hey,
we're pros at this.

We'll use the LineCharacterCount variable, which tells us how many characters are on the
current line to the left of the insertion point. We'll search backwards for the preceding outline
label code, called Paragraph Number, and see how many characters it is from the left margin.
When we search for and find a code, the insertion point lands just to the right of the code. So one
character in LineCharacterCount will be the Paragraph Number code. Any other characters
would be Tabs, so we’ll just insert Tabs to match LineCharacterCount minus one, and we get:

Outline Mode (On)
Hard Return
Left () ; to go to left of the label we just created
Find Next Code (Backward;Paragraph Number)
Assign (Var01;LineCharacterCount-1)
Find Next Code (Forward;Paragraph Number) ; to get back to the label we just created
For (Var02;0;Var02<Var01;Var02+1)
Tab
End For
End If
Indent
Outline Mode (Off)

To test this script, run it and type a few words for the first topic; then run it again. So far so good,
but we’re operating at the left margin. So run this test:

1. create a new topic
2. type afew words
3. put your insertion point to the left of the label

4. press Tab, to move the label to the right and change it to a capital letter

Outlining 129

5. put your insertion point to the right of the text you typed
6. run the macro again

You'll get a new topic, indented one level like the topic above it. Now all we need is an Outline
Tab command (and a similar Back Tab command).

Outline Tab

As you can see by working with the stock outlining protocol, if Outline Mode is on, pressing Tab
when just to the right of a label tabs the label. This works fine with stock outlining, since a Return
leaves the insertion point right next to the label. We’ve added an Indent to our Outline Return,
though, so the standard setup won’t work for us.

What we can do is find the preceding Paragraph Number code. That find puts the insertion point
to the immediate right of the code, at which point a Tab will do what we want it to, as long as
Outline Mode is on. I've added an End of Line () command at the start of this segment, just so
that Outline Tab will do what it should no matter where in the line the insertion point may
happen to be. For example, the user might have typed several lines past this one, and then
decided that this line should be indented one level further. He or she clicks to the left of the label,
hits Outline Tab, and presto — the line before this one gets indented further. What else could
happen, given that we're looking backwards for a Paragraph Number code? Sometimes, to write
good code you have to stay one step ahead of the user.

After the Tab, I've added a Right () command, to move the insertion point from the Paragraph
Number code past the Indent that our Outline Return command put there. If the user hasn’t
typed anything in that topic, the insertion point is just where it should be. So, for an Outline Tab
command, we have:

End of Line ()

Find Next Code (Backward;Paragraph Number)
Outline Mode (On)

Tab

Right ()

Outline Mode (Off)

Now let’s do a Back Tab command, and our basic outlining engine will be done! Back Tab is of
course useful when the user decides he or she wants a particular label less indented — and this
will be a common choice, given that our Return command maintains the level of indentation.

To get a clearer picture of what we need to do, let’s see what an outline looks like in the Codes
window, as in figure 41:

(TE5,) (3#: auto] (®IndentlHere ‘s &2 topic. < (Y]
(T8, (T8, [auto) ®Tndent Band<> another <

Figure 41: An outline in the Codes
window

130 John’s WordPerfect Scripting Guide

where we see the first topic tabbed one level (one Tab at the left of the line), and the second topic
tabbed one level further. Our user wants to move the second topic left by one level. For scripting
purposes, we don’t know where the insertion point is, except that we can assume it’s in the topic
the user wants to move. So we need to start with an End of Line () so that this will work any-
where in the line, and then search backwards for the Paragraph Number code (shown as “q #:au-
to” in the Codes window).

Then go left a character, since the Find Code command puts the insertion point to the right of the
code it finds. Then, delete a character to get rid of one Tab. Then, go right two characters, past the
Paragraph Number and the Indent, to the beginning of the text entry area. And we have:

End of Line ()

Find Next Code (Backward;Paragraph Number)
Left ()

Delete

Right ()

Right ()

A more advanced operating mode

What we have so far is a basic outliner with three commands, which the user could assign
specialized keystrokes to, and that would be that. What I wanted, though, was an outliner that
would use the Return, Tab and Shift-Tab keystrokes for both outlining and regular text entry,
making the user’s life much easier.

To do this sort of thing, we set up a global variable as a flag, and tell our outline macros to look at
it. If the variable contains a value, do the Outline Return or Outline Tab code; otherwise, do a
regular Return or Tab. Let’s use GlobalVar23, and add to the macros as follows.

If (GlobalVar23) ; if there’s something in GlobalVar23
Outline Mode (On) ; this is the program’s outline mode
Hard Return
Left () ; to go to the left of the label we just created
Find Next Code (Backward;Paragraph Number)
Assign (Var01;LineCharacterCount-1)

Find Next Code (Forward;Paragraph Number) ; to get back to the label we just
created
For (Var02;0;Var02<Var01;Var02+1)
Tab
End For
Indent
Outline Mode (Off)

Else ; if there’s not anything in GlobalVar23
Hard Return ; the standard keyboard command

End If

and assign this macro the Return key itself. We can do the same for Outline Tab and Outline Back
Tab (i.e. Shift-Tab).

We now have an outline mode that needs to be turned on and off. This short macro will do that,
by changing the value of GlobalVar23.

Outlining 131

Menu (Var01;"Outline Mode";{"On";"Off"})
Case (Var01;{1;0n;2;0ff};Cancel)

Label (Cancel)

End Macro

Label (On)

Assign (GlobalVar23;1)

End Macro

Label (Off)

Assign (GlobalVar23;0)

For an added touch, you could add a third menu choice, to go to the Outlining Dialog. The
command for that dialog is, simply, “Outlining Dialog.” The commands for other dialogs are
similarly straightforward. They’re listed, of course, in the online macro help.

Otherwise, you could tighten up that code by changing it to:

Menu (Var01;"Outline Mode"{"On";"Off"})
Assign (GlobalVar23;2-Var01)

And there we are! The start of a complete outlining facility. There’s one drawback to our design:
if you use the Return and Tab keys to navigate dialog boxes (e.g. the Return key to click the
heavily-bordered button), you'll want to use the Enter key instead. This is because all macros
pause when dialogs are open, so Outline Return, although it delivers a regular hard return
handily in a document window when Outline Mode is off, won’t have any effect when a dialog is
open. The Enter key is fine, or you can assign any other keystroke to the Hard Return command
in Keyboard in Preferences. Same with Tab and Back Tab.

Dragging and dropping topics

Note that if you want to drag topics around to reorganize, turn on Drag and Drop in Environ-
ment Preferences, then triple-click to select an entire topic (paragraph), dragging further to select
any subtopics. Then release the mouse, click again and drag the insertion point to the left margin
of the topic you want your dragged topic to land above. Presto. But we'll have a fancier way of
doing this, which will automatically move all subtopics as well.

22: Outlining part two

Last chapter we built a basic outliner. This chapter we’ll make it fancy. In doing so, we’ll learn
how to script style sheets, how to maintain structure when tabbing a topic, and also how to use
another kind of Find command — available only in macros — that spells power with a capital P.
My kinda fun.

Doing it in style

Style sheets are a powerful feature in word processing, and controlling styles with macros
reminds me of someone’s ad about the power of two. What we’ll look at here is assigning level-
specific styles in outlines (so that level one looks different from level two, etc.) and also working
with styles that effectively make text invisible, but you can use the concepts we explore to do any
number of other things. You'll end up with what will seem like a home theater’s remote control
for your documents: press one button, and a bunch of things happen. Cool, and supportive of
accuracy and speed.

I set up the outlining macro set with eight styles — one per level — called “zs1” through “zs8”: the
letter z just to put the styles out of the way at the bottom of the style menu (if the user wants to
keep them on the menu in the first place), the letter s for style, and the number for the level. I also
defined a style called “zc” — ¢ for collapsed — that would be applied to text that the user wanted to
hide, to present only the main topics in the outline. Macro commands will apply the zs styles or
remove them (to get an outline in plain text) or apply the zc style to collapse whatever range of
levels the user selects, so that only the main two or three levels are left visible — a good way to get
the big picture.

The first thing we want to do when applying styles to paragraphs is make sure what amount of
text we're treating. This is a setting of format orientation, discussed on page 32. The Character
option proved difficult from the user-interface point of view, so it’s been deleted from the Prefer-
ences menu. We'll find a use for it, though.

For most of style scripting, all we want to do is work with the whole paragraph containing the
insertion point. This is the Single Paragraph orientation. We could just set it to that, but this
would ignore, and possibly change, the user’s setting, and that’s bad programming. What we
should do is record the user’s setting, change it to what we need, do what we want, and then
restore the user’s preference.

The read-only variable is FormatOrientation, with values of 0 for Character, 1 for Paragraph and
2 for Single Paragraph. So our macros will start out with:

Assign (Var01;FormatOrientation)
Formatting (Single Paragraph)

and end with:

Case (Var01;{0;character;1;paragraph;2;single paragraph})
Label (character)

Formatting (Character)

Go (end)

Label (paragraph)

Formatting (Paragraph)

134 John’s WordPerfect Scripting Guide

Go (end)

Label (single paragraph)
Formatting (Single Paragraph)
Label (end)

Note that the last code snippet includes a Case command which isn’t preceded by a Menu
command — something new to us. This is, however, fairly common use. A lot of what macros do
is make choices depending on the case of things — whether the user has set that case with a menu,
or otherwise. So these snippets put the current setting in Var01, and restore that setting at the
end. In between, the Single Paragraph orientation lets us set styles for the current paragraph only,
without selecting anything.

Now that we're able to apply styles to a single paragraph, how do we tell WP to assign e.g. style
zsl to level 1 and so on? Just two lines:

Find Next Code (Forward;Paragraph Number)
Apply Style ("zs"$LineCharacterCount)

so the macro searches for the next outline label, landing just to the right of it. The
LineCharacterCount variable will then equal the level of that topic, and that topic receives the
style it should. Go to top of document first and repeat until FindStatusFlag=0, and you've
changed an outline from plain to styled text.

When styled text is in effect, adding a styled topic with Outline Return is even easier: the return
in outline mode leaves the insertion point immediately to the right of the paragraph number, all
ready for the Apply Style line of code.

Keeping tabs on things

An important feature of dedicated outliners is that they maintain structure of subtopics when
you tab or back tab a topic. The macro can tell what counts as a subtopic with, again, this vital
variable LineCharacterCount. We start by assigning it to a local variable and then testing
LineCharacterCount at each subsequent paragraph number code. If the read-only variable is
larger than the local, the macro inserts a tab before the paragraph number code. Otherwise, the
macro realizes it's come to the end of the subtopics to be tabbed. And we have:

Assign (Var01;LineCharacterCount)
Repeat
Find Next Code (Forward;Paragraph Number)
If (FindStatusFlag)
If (LineCharacterCount>Var01)
Tab
Assign (Var02;Var02+1)
End If
Right ()
Else
Assign (Var02;Var02-1)
End If
If ('FindStatusFlag)
If (Var02>=1)
Assign (Var02;Var02+1)
End If

QOutlining part two 135

End If
Until (IFindStatusFlag)

and what's Var02 doing? It's keeping track of how many topics have been tabbed, so that the
macro can count back that quantity of paragraph numbers as its last action — to return the inser-
tion point to the topic it was in when the user pressed the Tab key.

The finished code contains more than this, largely lines to change the level-specific style of topics
now at a new level, check whether a topic is being tabbed to the right of level 8, and such things.

The raw truth

Now, let’s step into advanced programming. As you know, WP documents are composed of
letters and of codes that do things with those letters. We can say that both letters and codes are
objects or, since we're dealing with basic parts of a document, we can call them raw objects, and
the raw object type of letters and codes differ. While it’s often useful to do a find for a given
character or string (using Find / Change) or for a given code (using Find Code), we sometimes
want to read whatever is to the left or right of the insertion point and, based on what we find,
make a choice.

What I wanted to do was give the user a way to bypass the tab command’s automatic tabbing of
subtopics. The user might have, for example:

Some topic.

A. Some subtopic.

With the insertion point at the end of the level 1 topic, the user then hits return, and gets another
level 1 topic (II). What he or she wants, though, is another topic at level 2. If the user just presses
tab, topic I becomes subtopic A — but everything subordinate to that subtopic gets indented a
further level.

I could have added a separate command to tab only the current topic without affecting subtopics,
but I wanted to simplify things, so that just pressing Tab will do what the user most likely wants
it to. In this case, with no text in the topic yet, the user would want to position only the current
topic.

So, let’s set up a command sequence which does this: if there’s text to the right of the insertion
point, the Tab command tabs subtopics. If there isn’t text to the right, it tabs only the current
topic.

We start this with a Raw Read command to see what's to the right of the insertion point. Raw
Read can read for anything, or for a character, or a function (code), for a WPChar (found in
imports from DOS documents) or for a ScriptChar (a character in another script). Since what we
want to determine is whether what's to the immediate right of the insertion point is a character or
something else, we’ll read for anything, going right, and our line of code is:

Raw Read (anything;Right)

136 John’s WordPerfect Scripting Guide

which will find whatever’s the next thing to the right of the insertion point, and put it in the
RawObject variable. It will also put a code representing the type of object in the RawObjectType
variable. Codes for possible types are:

Character = 1 (any character)

Function = 2 (most codes)

WPChar = 3 (codes which may import with WP DOS files)
ScriptChar = 4 (characters in a script other than the current one)

and, working with Mac documents in the Roman script, anything in a document is type 1 or 2.
So,

If (RawObjectType=2)

there’s a code, not text, to the immediate right, so we just tab the topic (and apply a style, if that
option is in effect, and so on). This would be the case for a new topic in an existing outline, as in
the example above. There’s no text to the right of that topic, but there is a hard return to the right.
If we had found text to the right, we’d tab all subtopics.

The user then has the further option of tabbing only the current topic, even if it contains text, by
clicking to put the insertion point to the right of the text. If the user wants to tab subtopics, he or
she can hit Outline Tab when the insertion point is anywhere else. Spiffy!

23: Outlining part three

Let’s look at a few more in’s and out’s of the macros in my outlining set — less so that you can
write your own outliner than to explore some fine points of getting WordPerfect to jump through
the hoops you want it to.

A great advantage of a computer-based outline over hard copy is that you can move topics
around to reflect reorganization and clarification of thought. WP has drag and drop, which you
can use in an outlined document as well as anywhere else, but moving a topic (which the pro-
gram sees as a paragraph) doesn’t take its subtopics with it. In dedicated outlining programs,
moving a topic (i.e. an idea) does take its subtopics (the details of the idea) with it. So let’s get WP
to do that too.

Moving topics

As you remember from last chapter, the LineCharacterCount variable is critical to much of
outlining design. It tells us how far the insertion point is from the left margin, which in turn will
tell us if the topic below the current one is a subtopic. The basic strategy to gather up all subtop-
ics of the current one is: search forward for paragraph number codes, checking each one to see
whether it’s farther right (has a larger value in LineCharacterCount) than the number code
contained in the topic we started with. If so, we increment a counter and continue. When we find
a topic that is not farther right than where we started, we know that we’ve included all subtopics.
We then count back the number of paragraph codes that we counted up, selecting as we go, and
cut the selection to the clipboard.

Then, when the user clicks the mouse to tell us where he or she wants that topic to go to, we’ll
search for the beginning of the topic, and paste the clipboard just above it.

To elucidate the details, I'll comment the code, as follows:

On Error (end) ; any problems will take us to the end label which, since it’s at the end of
the script, will simply abort the macro
If (SelectionFlag) ; if the user has already selected topics to move, our task is much
simpler
Cut ; cut the selection and go to the paste part of the script
Else
Find Next Code (Backward;Paragraph Number) ; are we in an outline topic? If not:
If (FindStatusFlag=0)
Alert ("Topic not found.")
Go (end)
End If
Display (Off) ; just to speed things up. This can make quite a difference.
Prompt (ScreenSizeH/2-240;ScreenSizeV-50;"Move Topic";"Preparing to move
topic and its subtopics") ; let the user know what’s going on, with a command that
can take a moment to complete if there are several subtopics. The calculation of
prompt location puts the prompt at the horizontal center of the screen, and near the
bottom of the screen — most probably out of the user’s way.
Assign (Var01;LineCharacterCount) ; what level is the current topic?
Repeat
Find next Code (Forward;Paragraph Number) ; find the next topic
If (FindStatusFlag=0) ; if the current topic is the last one in the outline
Find Next Code (Forward;Return-Hard) ; find the end of the topic

138 John’s WordPerfect Scripting Guide

If (FindStatusFlag=0) ; if no hard return, we must be in the last paragraph of
the document
End () ; go to the end of the document
Assign (Var03;Var03+1) ; we’re counting paragraphs
Hard Return ; add a hard return if there isn’t one, to avoid problems
when pasting.
Go (Select) ; nothing more to count, so execution branches to the code
that selects the number of paragraphs we’ve counted
End If
Assign (Var03;Var03+1) ; add this topic to the number we’ve counted
Go (Select) ; we’re done counting, so start selecting
End If
Assign (Var03;Var03+1) ; add this paragraph to the counter
Assign (Var02;LineCharacterCount) ; get level of indent
Until (Var02<=Var01) ; compare level of indent of the current topic with that of the
topic we started with

and let’s take a break from the code to make sure we’re following all the nested If statements.
Figure 42 shows a flowchart:

_>| Increment paragraph number

yes

find next
topic?

no

Find hard
return?

yes no

I Go to end of file I

Select
continue

Figure 42: Looking for
subtopics

showing how, just before the select label, we have 1) an insertion point that’s as far down in the
file as we want (includes all subtopics) and 2) in Var03, a count of how many subtopics that is.

We can now start counting back - decrementing Var03 as we go, until we’re back at the topic we
started in. I did this with the Find /Change command, looking for Hard Return codes. It’s some-
what ungainly, but Find / Change lets you extend the selection as you go, unlike the otherwise

Outlining part three 139

slicker “Find Next Code (Backward; Return-Hard).” (Raw Read would work, if you start a
selection first — something like:

Left (Select)
Repeat
Repeat
Raw Read (function;Left)
Until (RawObject=[Return-Hard Code])
Assign (Var04;Var04+1) ; counting backwards
Until (Var04=Var03+1) ; until the one counter matches the other

which I didn’t use because I only subsequently found out that Raw Read will extend an existing
selection. I'm changing to this method in the next version). Anyway, what I used was:

Left ()
Beginning of Line ()
Label (Select)
Repeat
Beginning of Line (Select)
Find/Change Direction (Backward;No Wrap)
Find/Change Where ({Current Doc})
Find/Change Match (Partial Word;Case Insensitive;Alphabet Insensitive;CharRep
Insensitive;{Text Only})
Find/Change Action (Extend Selection)
Find String ("[Hard Return]")
Find
Assign (Var04;Var04+1) ; counting backwards
Until (Var04=Var03+1) ; until the one counter matches the other

or until it almost matches the other. They should match but, when I wrote this, I wasn’t getting
the right result. I got that right result by adding 1 to Var03. This highly advanced programming
concept, known as the “fudge factor,” is extremely valuable when fixing code. It’s also much
easier than trying to figure out why the script wouldn’t count right in the first place.

Right (Select) ; delete the last hard return from the selection

Cut
End If
Prompt (ScreenSizeH/2-240;ScreenSizeV-50;"Move Topic";"Click in topic below where
you want the moved topic(s) to appear.") ; no need to end the previous prompt first. This
one just replaces it.
Display (On)
Pause Until (#Click#) ; pauses macro execution until a mouse click. The pound signs
delineate a task key, which we learned in Chapter 18. This can be anything listed in the
Commands menu in the Preferences/Keyboards dialog. Click, or Hard Return or Enter
are common choices for this. Click is the necessary choice here, to locate where the
selected and cut topics should be pasted.
Find Next Code (Backward;Return-Hard) ; for maximum convenience, | let the user click
anywhere in the topic above which he or she wants to paste the moved material. So this
gets us from the click point to the end of the preceding paragraph/topic.
If (FindStatusFlag=0) ; if there is not a preceding paragraph, we're in the first paragraph
of the file

Home () ; go to the top of the file

Hard Return ; make some space to paste it
End If
Paste

140 John’s WordPerfect Scripting Guide

End Prompt
Find/Change Reset ; restore the user’s preferences
Label (end)

and there we go. Not too hard in basic terms, but a good example of how you have to make
allowances for where the user might be in the document. Code that works in the middle of the
document is quirky in the first or last paragraph.

A note about using the RawObject variable. You can test for any code listed in the Find Code
dialog, spelled exactly as in that dialog, followed by the word “Code” and enclosed in brackets.
But, if you did something like:

Raw Read (function;Left)
Assign (Var01;RawObiject)

you’d get a number representing that code, in Var01. You could test for that number, but it's
easier to test by name:

If (Var01=[Style On Code])
Alert ('Biff")
End If

Appendix C has a list of the raw object code numbers. You could write the above snippet as:

If (Var01=-9471)
Alert ('Biff')
End If

which, in some cases, works better than the code name. In some instances, a code value repre-
sents either of a pair of codes: Italics On and Italics Off, for example. Your script will then read
until it finds the first of those.

Marking and referencing topics

Cross-referencing is a wonderful thing, but you have to take multiple steps to do it. Not unrea-
sonable — the program doesn’t know whether you're referencing a graphic, paragraph, page, text
box, footnote or a few other things, so you provide that information in the List dialog.

When we know ahead of time what we want to mark or reference, though, we can write a macro
to do most of the work. This illustrates a nice use of the macro feature: to automate a command
you use often and which otherwise involves wading through a large dialog and making the same
choices each time.

So, when in an outline, we can nearly automate the process of referencing another topic in the
outline, and it's well worth it. “See topic X.A.2” is a helpful addition to things, especially when
the references update on command. Let’s see how to make cross-referencing within an outline as
easy as possible. With a little editing, this could be useful for other kinds of cross-referencing you
do. My Equation Macro in “John’s WP Tips and Macros” shares this design to reference equa-
tions.

Outlining part three 141

There are two commands: one to mark and one to reference. Marking is a simple task. Here’s the
code:

End of Line () ; to make sure the user doesn’t mark the topic preceding the current one,
which will happen if the insertion point is to the left of the label.
Find Next Code (Backward;Paragraph Number) ; are we in a topic?
If (FindStatusFlag)
Get Text (Var01;"Mark Outline Topic";"Enter an ID to mark this topic for
cross-reference elsewhere:")
If (Var01!="") ; has the user put anything in the Get Text dialog? Clicking OK or
pressing Return with nothing in the text entry field will leave Var01 empty. This lets
the user just press Return to cancel the dialog, if he or she has decided not to mark
the topic after all. Users appreciate this kind of thing.
Mark Target (Var01) ; the program command
End If
Else
Alert ("l can’t find an outline label to mark.")
End If

which lets the user put a mark ID at the topic he or she wants to reference. The reference macro,
in turn, is:

Get Text (Var01;"Reference Outline Topic";"Enter the ID used to mark the topic for
cross-reference:")
If (Var01!="") ; if we get anything in Var0O1
Create Reference (Var01;Paragraph)
End If

which is not much more than the program command, with parameters for the ID and the type of
reference. Of course, this command produces what looks like a question mark in your text, until
you generate in the List dialog.

24: Math in Macros

At the risk of repeating myself: tables are great things. Not only for ease of otherwise complex
formatting, in places where you’d never think of using a table (set borders to no print, and
columns and white space in page layout become much easier to handle with precision), but also
since tables work so well with macros: there are plenty of macro table commands to work with,
so a macro can deal with text or numbers in a table more easily than with data floating loose, so
to speak, in your file.

Calculating an increment

Experts that we are, we can go further than that, and turn WP into a spreadsheet. Let’s look at a
macro that performs a common task when using tables for numerical data: incrementing the
value in a column or row of cells. To make this function more useful, we'll design it to calculate
the increment for cells the user has selected, rather than necessarily an entire column or row. It
works as shown in figure 43: first, the user enters two values in adjacent cells, thereby setting the
increment. Then, the user selects the cells that the increment should fill, and runs the macro. The
selected cells are filled with the increment. Decimal precision in macros is good to four digits.

You could do all this manually with table formulas, but it would take a lot longer and wouldn’t
be nearly as much fun to watch. So let’s do it better. As a bonus, we’ll add code so that if what's
in the first cell is text, not a number, the macro will repeat that text throughout the selection. Let's
complete the spreadsheet analogy by letting the user put a formula in the first cell and select cells.
Our macro will paste that formula with relative addressing throughout the selection!

3761
5.149

3.761
3.149
6.5937
7.925
9313
10,701
12.089
12477
14865
16.253

Figure 43: An automatic fill

144 John’s WordPerfect Scripting Guide

Listing variables on comment lines

This script starts with a list, on comment lines, of variables used. With this many variables, it’s a
good idea to start your code with a list, not only so that others can figure out what you did, but
so you can figure it out the next time you want to modify the code.

; Local variables:

; Var01 = current column number

; Var02 = current row number

; Var03 = ending table column number

; Var04 = ending table row number

; Var05 = string length of clipboard

; Var06 = string length of clipboard minus final return (table cell) code
; Var07 = position of decimal point in numeric string
; Var08 = number of digits

; VarQ9 = precision of numeric value of first cell

; Var10 = working precision of increment

; Var11 = numeric value of current cell

; Var12 = numeric value of next cell

; Var13 = numeric value of increment

; Var14 = string, at decimal precision of increment

; Var20 = column/row flag

; Var21 = starting column number

; Var22 = starting row number

; Var25 = flag for text or empty cell

As you see, a lot of the script will concern itself with data in the existing document, rather than
just issuing commands. The latter type of macro is most often less powerful and certainly less
sophisticated than the script which looks at the document first, and then acts on it.

Nuts and bolts

Note how this script makes more extensive use of the Call command, to divide the script into a
main routine and subroutines. The more complex your macros get, the more helpful this will be.
The code is compact, with nested If/ Else conditions. Note also the use of text as flags, again in the
service of clarity. See how many more indications you can find that my Tech Editor rewrote this
one.

The code itself, with comments:

; Check for valid selection and mark beginning and ending cells
If (!SelectionFlagl!InTableFlag)
Alert ("Please select the table cells you want to fill.")
Go (end)
End If
Assign (Var01;TableColumnNum) ; the column in which the selection starts
Assign (Var02;TableRowNum) ; the row in which the selection starts
Down () ; deselect all cells, leaving the insertion point in the last cell selected. Just like
pressing the down arrow key in the program.
Assign (Var03;TableColumnNum) ; ending column of selection
Assign (Var04;TableRowNum) ; ending row
Assign (Var21;Var01) ; store the position of the first cell again. We want to return to
Assign (Var22;Var02) ; that cell at times but will be manipulating var01 or 02

Math in Macros 145

If (Var01=Var03)
If (Var02=Var04)
Alert ("You have selected only one cell.")
Go (end)
Else
Assign (Var20;"column") ; set flag
End If
Else
If (Var02=Var04) ; same as for row above
Assign (Var20;"row")
Else
Alert ("Your selection should be limited to cells in one column or in one row.")
Go (end)
End If
End If

; Check the first two cells to find the working precision and the increment, and to see if
either contains text or is empty.
Position To Cell (TablelD;Var01;Var02) ; return to the first cell
Call (getPrecision) ; get the precision of this cell. If the cell does not contain a number
this won't mean much but the procedure will complete without an error.
Assign (Var10;Var09) ; store the precision to compare it with the precision of the next
cell
String To Number (Var11;CellValue) ; store the number in this cell to calculate the
increment
Call (textCheck) ; check if the cell contains text or is empty
Call (increment) ; increment either the row or column variable
Position To Cell (TablelD;Var01;Var02) ; go to the next cell
Call (getPrecision)
If (Var10<Var09)
Assign (Var10;Var09) ; store the working precision
End If
String To Number (Var12;CellValue) ; store the number in the second cell
Assign (Var13;Var12-Var11) ; this is the increment
Call (textCheck) ; check if the second cell contains text or is empty ;
If (Var25="text") ; if either cell contains text or is empty
Assign (Var01;Var21) ; reset position, counters and clipboard to the first cell
Assign (Var02;Var22)
Position To Cell (TablelD;Var01;Var02)

Select TableCell

Copy

Down () ; can't position to another cell while this cell is still selected, so deselect it
now

End If

; Fill the table cells. At this point, if the first two cells contain numbers we are in the
second cell, if not our position and counters are set to the first cell
While (Var01<Var03|Var02<Var04) ; if we aren't in the last cell of the selection yet
Call (increment)
Position To Cell (TablelD;Var01;Var02) ; go to the next cell
Select TableCell
If (Var25="text")
Paste
Else
Clear
Assign (Var12;Var12+Vari13)

146 John’s WordPerfect Scripting Guide

Number To String (Var14;Vari0;Var12)
Type Var (Vari4)
End If
End While
Go (end)

Label (getPrecision)
Assign (Var09;0)
SubString Position (Var07;".";CellValue) ; is there a decimal point in the numeric
string?
If (Var07)
String Length (Var08;CellValue) ; how many digits?
Assign (Var09;Var08-Var07) ; how many digits to the right of the decimal point?
If (Var09>4)
Assign (Var09;4);macros are accurate only to decimal precision of 4
End If
End If
Return

Label (textCheck) ; if the cell contains text or is empty, set var25 as a flag
Select TableCell ; we'll compare the numerals in the cell to the total contents of the cell
Copy ; which we'll do with the clipboard and the cellvalue variables
Down ()
String Length (Var05;Clipboard)
Assign (Var05;Var05-1)
SubString (Var06;1;Var05;Clipboard) ; strip the final return character from the clip-
board value
If (Var06!=CellValuelVar06="") ; if cell contains text or is empty
Assign (Var25;"text") ; set flag
End If
Return

Label (increment)
If (Var20="column")

Assign (Var02;Var02+1)
Else

Assign (Var01;Var01+1)
End If
Return

Label (end)

Position To Cell (TablelD;Var21;Var22) ; return to the first cell
Calculate Table

End Macro

That's it! Complex overall, maybe, but not difficult when broken down into its basic parts.

I've spent much of this chapter basically commenting code, since looking at samples of code is by
far the best way — really, the only way — to learn advanced scripting. Anytime you see a macro
whose operation or interface interests you, dissect the code as we’ve done here. You'll steadily
gain in your expertise.

In the last chapter, we'll look at some final touches in elegance and bulletproofing — at which
point you'll truly be able to say that you've mastered WordPerfect macros.

25: Bloopers, and Elegance

After the long and complex code discussed in the last few chapters, I'd like to finish this book
with some shorter snippets of code that exemplify ways that your scripting can go wrong, and
ways it can go right. The first category is largely populated by bugs. Let’s look at a couple.

What’s wrong here?

A lot of mistakes occur when you script some action and then, later, add code for another feature.
The second feature torpedoes the first. In the code below, part of the Tab command for my
outlining macros, I wrote the part below the separator first. It checks to see if the next object to
the right of the insertion point is a hard return code. I wrote it; it worked; everything’s fine. Then,
a week later, I was going through all the outlining commands to add checks so things would
work as they should. In this case, I decided to check whether the user was in fact in an outline.
This code, above the separator, puts the insertion point at the beginning of the current line, and
then searches for the next automatic paragraph number (outline label).

At that point, the original code didn’t work any more. Not hard to see why, in retrospect. If I
send the insertion point looking for the next paragraph number, the object following won’t be a
hard return code, since my outliner puts an indent immediately after every paragraph number.
Hmm. Oops. Duh.

Display (Off)
Beginning of Line ()
Find Next Code (Forward;Paragraph Number)
If ('FindStatusFlag)
Alert ("l can’t find a topic to tab.")
End Macro
End If

Raw Read (anything;Right)
If (RawObject=[Return-Hard Code])
Find Next Code (Backward;Paragraph Number)
If (FindStatusFlag)
If (\Var04)
Assign (Var04;1)
End If
End If
End If

Smile - it gets worse

Here’s an example from my Notes Editor set. This is the part that saves the front window; then, if
that document is a footnote or endnote editor, looks for the original paper and saves that too.

If the front window is not an editor but there’s an editor open for that paper, the macro again
saves both files — the macro essentially handles a paper and a note editor as though it were one
document, for the user’s convenience. So, while the macro saves editors and other documents
with related names, it doesn’t touch other open files.

148 John’s WordPerfect Scripting Guide

To do this, I look for the substrings “Footnotes” and “Endnotes” in the name of the front win-
dow. If I find either, I then take the rest of the name of the front window and look for an open
document with that string, now assigned to Var04, as part of its name. If I don’t find either, I

know that a paper (or any document, with or without an open note editor), is the active docu-
ment. This sequence gets the name of the paper, wherever it is. Comments follow in the code:

Assign (Var01;FrontWindow)
SubString Position (Var02;">~Footnotes";FrontWindow)
SubString Position (Var03;">~Endnotes";FrontWindow)
If (DocumentModifyFlag)
Save
End If
If (Var02)
SubString (Var04;2;Var02-2;FrontWindow) ; if there’s a Var02, then we get a
Var04, which will be the paper name, or most of it
End If
If (Var03)
SubString (Var04;2;Var03-2;FrontWindow) ; or, if there’s a Var03, then we get a
Var04
End If
If (Var04)
Select Window (Var04)
If (DocumentModifyFlag)
Save
End If
End If
On Error (endnote) ; this starts a sequential set of error handlers
If ('Var02)
Select Window ("<"$Var04$">~Footnotes") ; if there’s not a Var02, then work with
Var04
If (DocumentModifyFlag)
Save
End If
End If
Label (endnote)
On Error (end)
If ('Var03)
Select Window ("<"$Var04$">~Endnotes") ; if there’s not a Var03, then work with
Var04
If (DocumentModifyFlag)
Save
End If
End If

Thus, if there’s a Var02 or Var03, assign a Var04. Then, if there’s neither a Var02 nor a Var03, so
no Var04, find a window with Var04 as part of its name. Hey, John. Wanna go back to QuicKeys?

This is what can ensue when you stare at the computer for too long at a time. Remember that
scripts do exactly what you tell them to do, and what that is can make less sense than you
thought. It doesn’t mean you're a newbie — Apple Computer’s corporate headquarters isn’t on
Infinite Loop Drive in Cupertino, CA for nothing. It happens. Step through your macro, make a
flowchart, or comment out (put semicolons in front of lines) the part of the script that isn’t
working, and reactivate that code in small parts at a time. In general, looking at the big picture
will get you out of the trouble that looking at too many details got you into.

Bloopers, and Elegance 149

Another good idea is to keep things simple. The example above picks out an endnote editor and a
footnote editor for the active document, ignoring other editors as well as other open documents.
But who's going to be working with more than one endnote editor at once? Open something to
copy a citation, sure, but to save working editor(s) and the paper, the following does fine:

On Error (otherEditor)

Select Window ("*Endnotes")

If (DocumentModifyFlag)
Save

End If

Label (otherEditor)

On Error (paper)

Select Window ("*Footnotes")

If (DocumentModifyFlag)
Save

End If

Label (paper)
On Error (end)
If (DocVar7)
Select Window (DocVar7)
End If

Label (end)

If (DocumentModifyFlag)
Save

End If

and in fact, who needs to save editors and paper only, without touching other open documents?
So how about:

Assign (Var00;FrontWindow)
If (NumberOfWindows>0)
Repeat
Cycle Windows
If (DocumentModifyFlag)
Save
End If
Until (FrontWindow=Var00)
End If

rather than the macro equivalent of bloatware. Thoreau said to simplify code whenever possible.

Who’s on first?

Another way out of trouble is testing your script at various places. Does that variable still contain
what you think it does? Temporarily adding a line like:

Alert (Var01)

will show you that — as long as Var01 contains a string. The Alert command can’t take a number.
It can, though, take a number joined to a string— that is, coerced to a string, like:

150 John’s WordPerfect Scripting Guide

Alert (""$Var01)

to help hunt down insects.

Macros a la elegance

Now then. Let me redeem myself, and write some code that runs. In fact, I'd like to finish this
book with a return to what most advanced users do with the macro feature most of the time:
build something short and sweet that especially fits their working style and needs.

Of course, you can do that already, so I'd like to pay attention here to some fine points of making
a script 1) bulletproof, and 2) elegant. These are nice things for a macro to be.

Here’s a script I cooked up to access QuickCorrect, a terrific feature, more effectively. In the stock
program, you go into a dialog box and take several steps, including retyping the misspelling you
want to add to QuickCorrect’s word list. This was just enough extra effort that I'd often skip it,
and then be stuck making the same typing mistakes over and over. Was there any hope? Yes — a
macro!

The one-minute macro

First, the basics. What I wanted to set up was a command that would take and use the misspell-
ing as it originally occurred, right there in the document. A small dialog would then ask the user
for a replacement. Armed with those two pieces of data, the macro then adds the word/replace-
ment pair to QuickCorrect’s word list and makes the correction in the document.

In the online macro help, I saw that the macro token (or command) for QuickCorrect’s add-a-
correction feature was:

Add Replacement (Word;Replacement)

where both the parameters are character expressions: strings in quotes or variables containing
strings. Why not select and copy the misspelling in the document, giving us the first parameter?
We could ask the user to type a replacement in a small dialog, and we could utilize that not only
as the second parameter for QuickCorrect, but also type it into the document, with the Type Var
command, to replace the selected misspelling while we're at it. So we can start with:

Select Word

Copy

Get Text (Var01;"Add QuickCorrect Entry";"Enter replacement:")
Add Replacement (Clipboard;Var01)

Type Var (Var01)

which takes care of the basics.

Bloopers, and Elegance 151

Bulletproofing

Often, a script runs fine in the context the programmer envisioned. Users’ behavior is hard to
predict, though. Our code so far, for example, uses the Select Word command in a blithe assump-
tion that there will in fact be a word to select. What if there isn’t, or what if the command selects
the wrong word — which the macro will most certainly do if the insertion point isn’t where we
thought it would be?

This is less of a problem if the user is going to run the macro at the leading edge of the document
but, if the user has gone back into an existing paragraph to add some text, there will be text to the
right of the insertion point as well as to the left. If the insertion point is pushing existing text
along as it goes, and the user has added a space after the misspelling (either inadvertently, or to
see whether there’s already a QuickCorrect entry for it), the Select Word command will act on the
wrong word. If the insertion point is not adjacent to or within a word (defined as some characters
with a space or punctuation on both sides), the Select Word command is even less helpful.

The first problem is easy enough to fix. We’ll start the macro with the line: Left () to get the
insertion point back to the word we want, if we’re a space to the right of it. If there’s no space,
this will move the insertion point into the word, which is fine.

The raw facts

The second potential problem is that the Select Word command might not find anything to select.
We can address this with a simple check, using a command similar to Raw Read, which we
learned in Chapter 22. That command reads to the left or right of the insertion point, moving the
insertion point as it does so. The command we’ll use this time, Raw Look, does much the same
but does not move the insertion point. Both commands put the type of object they find into the
RawObjectType variable, also in Chapter 22. Both also put the contents of what they find in the
RawObject variable, which we’ll use this time.

Our strategy would be to see what character is to the immediate left of the insertion point. If it's a
space (remember, we’ve already moved left a space), we aren’t close enough to a word for Select
Word to work. The code is:

Raw Look (char;Left) ; what’s the next character to the left?
If (RawObiject="'") ; if a space
Go (alert) ; tell the user and quit
Else
Select Word ; we have a word to work with
End If

As an alternative, we could use something like:

Repeat
Raw Read (char;Left)
Until (RawObject!="")

to get to the word (or character) to the left, if there is such a thing and no matter how far. But
macros that perform action at a distance can be disconcerting to the user. They're very cool,
though.

152 John’s WordPerfect Scripting Guide

Anyway, at this point we can use the Copy command, as in the first sample script above.

More fine points

But let’s not use Copy right here. That command replaces anything that’s already on the clip-
board, and the user might have something on the clipboard that’s worth keeping, other things
being equal. Let’s use the Copy command at the last moment possible.

That is going to be a step later than in the basic script shown above. In the meantime, the macro
presents a dialog asking for the replacement. At this point, the user could decide not to do
anything — the word is correct after all, or it's not a mistyping the user makes often enough to
want to add to QuickCorrect, or whatever.

In this case, why grab the clipboard? Let’s post the replacement dialog first, and then, if the user
actually puts something in that dialog, we can go ahead and copy the text selection.

If the user doesn’t put anything in the text entry field of the dialog, he or she would then want to
cancel it, by reaching for the mouse and clicking the Cancel button. Let’s add another nice touch
here: that the user can cancel the dialog by pressing Return — with no text entered. It’s just that
much faster and easier, which is what we’re up to in the first place. This we do with:

Get Text (Var01;"Add QuickCorrect Entry";"Enter replacement:")
If (IVar01) ; the dialog was closed and Var01 stayed empty

Go (cancel)
End If

Copy

so the macro branches to a Cancel label if no text was entered, and copies the selection to the
clipboard otherwise.

A Cancel label gives us another option too. Without it, if the user clicks the Cancel button in the
dialog, the macro ends, leaving a word selected. No real problem, but I try to write macros that
do not leave selections behind them. This is simply because if the user isn’t watching things, his
or her next action might be to type something, thereby replacing the selection. If what was
originally selected turns out to be something the user wants to keep, and that word then dis-
appears in the middle of some fast-paced word processing, let’s hope the user is lucky enough to
find it later when proofreading. Better yet, let’s give this a simple fix with a Cancel label at the
end of the macro with only two lines:

Label (cancel)
Right ()

deselecting the word, and putting the insertion point to its immediate right, just where the user is
going to want it.

And let’s start the whole macro with an On Cancel handler:

On Cancel (cancel)

Bloopers, and Elegance 153

which will direct execution to the Cancel label if the user clicks the Cancel button or presses
Return with an empty dialog. So no matter what the user does, the macro won’t leave selected
text.

Is all this “good design” worth it? I sure think so. Consider that it takes a minute or two to polish
your script, and your users will appreciate those extra steps — especially if it means they won't
lose work.

And we end up with this:

On Cancel (cancel)
Left ()
Raw Look (char;Left)
If (RawObject="")
Go (alert)
Else
Select Word
End If
Get Text (Var01;"Add QuickCorrect Entry";"Enter replacement:")
If ('Var01)
Go (cancel)
End If
Copy
Add Replacement (Clipboard;Var01)
Type Var (Var01)
End Macro
Label (alert)
Alert ("Your insertion point must be within a word, or only one space to the right of a
word.")
End Macro
Label (cancel)
Right ()

Looking forward . . .

Not in the sense of raw look, but continuing to learn WP macros — I've said it before and, if this
weren’t the last chapter I'd say it again: analyzing scripts is by far the best way to make progress.
Any time you see a macro whose operation or interface interests you, dig into the code, and
maybe flowchart the structure, until you see why the author did it that way. You'll steadily gain
in your expertise.

This concludes my tour of WordPerfect’s macro language. You're now a master of the most
advanced feature of the best word processing program on the best computer there is, to make
your writing and editing efforts far more creative and productive than they’d otherwise be.
Thanks for joining me, and have fun!

Appendix A: Error Messages

Messages within the macro editor window

These appear as a single line at the bottom of the script window, and refer to underlined code in
your script. If you attempt to save, you'll get an error dialog like figure 7 on page 7.

Error: Command Parameters Are Too
Long

Parameter length in the macro editor is 512 bytes
(about 255 characters). This should be a problem only
with a text parameter, or a long list of variables.Try
putting text in variables before the problematic com-
mand, then using the variables in the command itself.
Or, join variables first.

Error: Expected a Number, Variable,
or Numeric Expression

A string is one type of data; a number is another. You
may have one type in a variable or parameter where
the macro editor cannot make sense of it.

Error: Expected a String, Variable, or
Alphanumeric Expression

A string is one type of data; a number is another. You
may have one type in a variable or parameter where
the macro editor cannot make sense of it.

Error: Not a Legal Expression

Check spelling and punctuation of your syntax in the
online help. Be especially careful with parentheses,
curly brackets, and spaces.

Error: Parameter Is Too Long

Command length in the macro editor is 512 bytes
(about 255 characters). Only the excess length is
underlined.Try using one or more variables to contain
the text in the problematic parameter or, if there are
too many variables, join a few first.

Error: This Type Not Allowed Here

Bad syntax, of almost any type not addressed more
specifically in another error message.Check your
spelling against the online help; pay particular atten-
tion to spaces and punctuation.

Error: Too Many Parameters

Check the command syntax against the on-line help.
This is a common error when using similar commands:
for example, Get Text doesn't take a maximum length
parameter, while Get String does.

Error: Unexpected Characters After')'

A common mistake when reading a text file into the
macro editor. There is a space or something else,
possibly invisible, following the close parenthesis.
Generally, the close parenthesis comes at the end of a
command line.

Error: Unexpected End Of Line

You may have pressed Return at the wrong place. In
any case, something is missing from the underlined
command line. This could easily be a closing paren-
thesis

Error: Unrecognized Command

Check the spelling of the underlined command against
the on-line macro help.

Error: Unrecognized Parameter Name

Check the spelling of the underlined parameter
against the on-line macro help.

156

John’s WordPerfect Scripting Guide

Error: Unrecognized Read/Write
Variable Name

Check the syntax and spelling of the underlined
variable against the on-line macro help.

Error: Unrecognized Variable Name

Check the syntax and spelling of the underlined
variable against the on-line macro help.

Dialogs indicating errors in reference

The following messages appear as alerts when you attempt to run a macro with correct syntax,

but incorrect flow structure or data types.

Macro Terminated: Could not chain or
run the macro specified.

You have misspelled the name of another macro, or
that macro isn'’t installed.

Macro Terminated: Could not find
corresponding ELSE, END IF, END
WHILE or END FOR.

Flow structure incomplete. With automatic indentation
in the editor, this is usually easy to find.

Macro Terminated: END FOR en-
countered without corresponding FOR
or FOR EACH.

Flow structure incomplete. With automatic indentation
in the editor, this is usually easy to find.

Macro Terminated: END WHILE
encountered without corresponding
WHILE.

Flow structure incomplete. With automatic indentation
in the editor, this is usually easy to find.

Macro Terminated: Error evaluating
an expression for this command.

Mixed data types. You may be treating a variable
containing a string as though it contained a number,
for example.

Macro Terminated: Error in UNTIL
expression.

Invalid syntax or flow structure. Check syntax in the
online help.

Macro Terminated: Error in WHILE
expression.

Invalid syntax or flow structure. Check syntax in the
online help.

Macro Terminated: Error performing
operation while evaluating an expres-
sion.

Mixed data types. You may have asked the macro to
add a string to a number, for example.

Macro Terminated: Error reading
parameter for this command.

A command parsed right but still won’t run. Turn Step
on to identify the offending line, and check its syntax.
Check values and data types of variables.

Macro Terminated: Error returned by
nested macro or macro subroutine.

The subroutine or nested script you called has either
encountered an error during its own execution, or has
returned data that the parent macro can’t work with.

Macro Terminated: Expected a
number, but got something else.

Mixed data types. Make sure whether you’re dealing
with a string or number.

Macro Terminated: Expected a
numeric string but got something else.

Mixed data types. Note: a numeric string is tricky. It's
legally a string, but consists only of numerals, and
perhaps a decimal point.

Macro Terminated: Expected Alpha-
numeric string but got something else.

Mixed data types. Make sure whether you’re dealing
with a string or number.

Appendix A: Error Messages

157

Macro Terminated: FOR encountered
but END FOR could not be found.

Invalid syntax or flow structure. Check syntax in the
online help. Automatic indentation in the editor may
make the problem easier to find.

Macro Terminated: No expression
found to assign in FOR EACH.

Check syntax in on-line help.

Macro Terminated: Out of Memory.

Quit WP and increase RAM allocation in the Finder.

Macro Terminated: Specified LABEL
could not be found.

A label in the flow structure is misspelled or nonexis-
tent.

Macro Terminated: Specified window
could not be found

The macro is looking for a window that isn’t open.
This is a good place for an error handler.

Macro Terminated: This command not
valid here.

You may have a Copy command when there’s no text
selected, for example.

Macro Terminated: This is not a valid
macro command.

Check spelling of syntax n the on-line help.

Appendix B: Read-Only Variables

Alignment

AOCEFlag
AutoHyphenation
BackBlue

BackGreen

BackRed

BackWindow

BoldFlag
BookMarkBarFlag
BootDir

BottomMargin
ButtonBarFlag
ButtonBarPosition
CellValue
ChapterNumber
Clipboard

ColorQDFlag
ColumnMode
ColumnNumber
CurrentAscent
CurrentDescent
CurrentDir
CurrentLeading
CurrentStyle
CursorDocV

CursorH

CursorPageV
DecimalPointChar
DoclLanguagelD
DocRegionlID
DocScriptIlD
DocumentModifyFlag
DocumentName
DoubleUnderlineFlag
EndnoteBarFlag
EndnoteNumber
ExtraLargeFontFlag
FillBackgroundColorBlue
FillBackgroundColorGreen
FillBackgroundColorRed
FillForegroundColorBlue
FillForegroundColorGreen
FillForegroundColorRed
FillPattern

FindDirection
FindStatusFlag
FineFontFlag
FontBarFlag

FontName

FontScriptID

FontSize

FooterBarFlag
FootnoteBarFlag
FootnoteNumber

ForeBlue

ForeGreen

ForeRed
FormatOrientation
FrontWindow
GraphicBoxNumber
GridSizeHorizontal
GridSizeVertical
HeaderBarFlag
HiliteBlue

HiliteGreen

HiliteRed
HTMLBarFlag
InDrawFlag
InTableFlag
InTextBoxFlag
ItalicsFlag
KeyScriptID
LargeFontFlag
LayoutBarFlag
LeftCellMargin
LeftColumnMargin
LeftMargin
LineCharacterCount
LineNumberingFlag
LineSize
LineSpacing
ListBarFlag
LogicalLine
LogicalPage
MailerBarFlag
MathBarFlag
Measurement
MergeBarFlag
MovieCount
MultipleScriptFlag
NewDocumentFlag
NextWindow
NumberOfColumns
NumberOfObjects
NumberOfWindows
ObjectID

ObjectType
OutlineFlag
PageHeight
PageNumberPosition
PageNumberType
PageWidth
PCFormatFlag
PenBackgroundColorBlue
PenBackgroundColorGreen
PenBackgroundColorRed
PenForegroundColorBlue
PenForegroundColorGreen

PenForegroundColorRed
PenPattern
PhysicalLine
PhysicalPage
PICityState

PIFax

PIName
PIOrganization
PIPhone

PIPosition

PIStreet

PlainFlag

Random

RawObiject
RawObijectType
ReadOnlyDocumentFlag
RedlineFlag
ReplacementWord
RightCellMargin
RightColumnMargin
RightMargin
RoundedRectSizeHorizontal
RoundedRectSizeVertical
RulerBarFlag
RulerFlag
SaveAsFormat
ScaleFactor
ScreenSizeH
ScreenSizeV
ScriptVarCount
SelectionFlag
ShadowFlag
ShowCodesFlag
ShowScriptFlag
ShowWhiteSpaceFlag
SmallCapsFlag
SmallFontFlag
SmartQuotesFlag
SnapToRulerFlag
SpacingBelowColumns
SpacingBetweenColumns
SpeechBarFlag
StatusBarFlag
StrikeoutFlag
StylesBarFlag
SubscriptFlag
SuperscriptFlag
SystemLanguage
TabAlignChar
TableBarFlag
TableBoxNumber
TableColumnNum
TablelD
TableMaxColumnNum

160

John’s WordPerfect Scripting Guide

TableMaxRowNum
TableRowNum
TextBlue
TextBoxNumber
TextGreen
TextRed
ThousandsSep
TOABarFlag
TopMargin
UnderlineFlag
UserBoxNumber
VeryLargeFontFlag
WidowOrphanFlag
WordToReplace
WPDir
WPLibraryName

Appendix C: Code Values

Align Center
Align Justify
Align Justify All
Align Left
Align Right
Alignment Character
Back Tab
Block Protect Off
Block Protect On
Bold Off
Bold On
Book Mark
Border-Character Off
Border-Character On
Border-Column Off
Border-Column On
Border-Page Off
Border-Page On
Border-Paragraph Off
Border-Paragraph On
Box Number
Center Line
Center Page Top to Bottom
Chapter Number
Chapter Number Options
Chapter Number Set
Color Print-Text
Column Break-Hard
Column Definition
Columns-Vertical Space Between . ..
Date/Time Code
Double Underline Off
Double Underline On
End of Generated Text
Endnote
Endnote Number
Endnote Numbering Options
Endnote Options
Equation Box
Extra Large Font Off
Extra Large Font On
Figure Box
Figure Box Numbering Options
Figure Box Options
Fine Font Off
Fine Font On
Flush Right
Font Change
Font Size
Footer A
Footer B
Footnote
Footnote Number
Footnote Numbering Options

Footnote Options
Frame-Equation Off
Frame-Equation On
Frame-Figure Box Off
Frame-Figure Box On
Frame-Text Box Off
Frame-Text Box On
Header A
Header B
Horizontal Line Code
HTML - Heading 1
HTML - Heading 2
HTML - Heading 3
HTML - Heading 4
HTML - Heading 5
HTML - Heading 6
HTML Beginning of Tag
HTML End of Tag
HTML Escape
HTML Image Box
HTML-Address
HTML — Blink
HTML — Cited work
HTML — Emphasis

HTML — Keyboard

HTML — Preformatted
HTML — Sample
HTML — Script (Java)
HTML — Source code
HTML — Strong
HTML — Typewriter
HTML — Variable
Hyper Link
Hyphen-Automatic
Hyphen-Required

Hyphen-Soft
Hyphenation Off
Hyphenation On
Hyphenation Zone
Hyphenation-Suppress
Indent-First Line
Indent-Left
Indent-Left/Right
Index Generated Here
Italics Off
Italics On
Keep Together Next 'N' Lines
Kerning
Language
Large Font Off
Large Font On
Leading
Line Height
Line Numbering Font/Size

162

John’s WordPerfect Scripting Guide

Line Numbering Options
List Generated Here
Margin Set-Left/Right
Margin Set-Top/Bottom
Mark Index
Mark List
Mark Reference-Define Target
Mark Reference-Refer to Target
Mark Table of Authorities
Mark Table of Contents
Merge-ChaintoMacro
Merge-DataFile
Merge-Data File Message
Merge-Date
Merge-Define Names
Merge-End of Field
Merge-End of Record
Merge-Field Name
Merge-Field Number
Merge-Field Number Message
Merge-Field Prompt
Merge-Form File
Merge-Form File Message
Merge-From Keyboard
Merge-Keyboard Response
Merge-Macro File Message
Merge-Next Record
Merge-Notification Message
Merge-Quit......................
Merge-To Printer
Merge-Transfer

Misspelled word - Begin
Misspelled word - End
Outline Off
Outline On
Overstrike
Page Break-Hard
Page Break-Soft
Page Break-Soft/Hard Return
Page Number
Page Number Position
Page Numbering Font/Size
Page Numbering Odd/Even
Page Numbering Options
Paragraph Number
Paragraph Numbering Options
Published Edition
Redlining Off
Redlining On
Relative Font Size Definition
Return-Dormant
Return-Hard
Return-Soft
Shadow Off
Shadow On
Small Caps Off

SmallCapsOn -15598
SmallFontOff -15600
SmallFontOn................... -15600
Space-Non-Breaking -24576
Space-Required -24385
Spacing Between Lines -12286
Spacing Between Paragraphs -12279
Strikeout Off -15607
StrikeoutOn -15607
Style Off -9470
StyleOn L -9471
Subscribed Edition -7933
Subscript Off -15606
SubscriptOn -15606
Subtitle-Face -8189
Subtitle-Font -8191
Subtitle-Position -8188
Subtitle-Size -8190
Subtitle-Startof Range -23296
Subtitle-Text -8192
Super/Subscript Options -11766
Superscript Off -15605
SuperscriptOn -15605
Suppress Page Format -12281
Tab ... -16128
TabAlign -16122
TabSet........................ -12284
Table Definition -7679

Table of Authority Generated Here . .. -10494

Table of Contents Generated Here -10494
Table-Cell -9194
Table-Cell Alignment -7667
Table-Cell Attributes -7668
Table-Cell Border Bottom -7675
Table-Cell Border Color Bottom -7671
Table-Cell Border Color Left -7672
Table-Cell Border Color Right -7670
Table-Cell Border Color Top......... -7673
Table-Cell Border Left -7676
Table-Cell Border Right -7674
Table-Cell Border Top -7677
Table-Cell Fill Color and Pattern -7669
Table-CellLocked -7666

Table-Decimal Align -12282

Table-EndofCell -9194
Table-Endof Row -9192
Table-Endof Table -9190
Table-doinCells -7678
Table-Math Formula -7424
Table-Math Grand Total -7421
Table-Math Number Format -7420
Table-Math Sub-total -7423
Table-Math Total -7422
Table-Row -9192
Table-Row Height -7665
TextBox -9726

Appendix C: Code Values

163

Text Box Numbering Options
TextBox Options
Underline Off
UnderlineOn
Underline Options
Very Large FontOff
Very Large FontOn
Watermark A
Watermark B
Widow/Orphan Off
Widow/OrphanOn

Appendix D: My WordPerfect Scripts

Everything’s free, at: ftp:/ / ftp.corel.com/ / pub/WordPerfect/ WPMac/Macros/ and http:/ /
hyperarchive.lcs.mit.edu/HyperArchive/ Abstracts/ text/ wp /HyperArchive html.

e Auto Character Styles 1.0.2 provide character-level styles which automatically update, like the
program’s paragraph styles.

* Bookmark 1.1 macros provide five bookmarks per document, with a menu showing the page
number and text selected when the bookmark was set. For program versions 3.0 and 3.1.

* Character Styles 1.1.2 provide character-level formatting styles which complement the pro-
gram’s paragraph styles. “Incredibly useful” — Umich Mac Archive

¢ Citations 2.1 make WP and any database into a seamless reference manager like EndNote or
ProCite, working within WP as Endnote works within Word.

* Custom Prefs let you switch among any number of customized program preferences settings.

* Document Notes add a message to any WP file. Can be set to appear automatically when you
open that file. Easily edited, deleted and searched, and set to disappear automatically.

* Equation Manager automatically numbers and formats equations in documents, supports
cross-referencing and lists of equations by number and name.

* File Manager 2.2.3 includes batch macro processing: global find / change for all files in a folder;
a menu of frequently (not necessarily recently) opened files; worksets of files that can be
opened all at once; save and/or print all open documents; and macros to change a set of file or
folder names according to the date or day of the week.

¢ Find Manager 1.0.2 includes QuickFind — a faster find dialog, Find in All Open, and Find
Recent, which lets you choose from the five most recent find strings you’ve found.

* Glossary 1.3 offers up to 26 glossary entries. A menu most of the width of your screen shows
you as much of each entry as will fit. Click on the entry or type its identifying letter to place
the entry in your document. Or, you can assign keystrokes to individual entries.

e GREP 1.1.2 adds powerful, regular expression search capability - find patterns of text.

¢ Note Editor 4.0 shows all footnotes or endnotes in one window, automates the cross referenc-
ing of notes, and greatly facilitates formatting and printing.

¢ Outlining Module, now shipping with program version 3.5e (no longer available as macros).
Widely regarded as the best outliner available on the Macintosh.

* Previous Positions 2.0 let you remember up to ten places among all open documents, and go
to any one with a keystroke

* QuickCorrect 1.2.1: a much faster way to add QuickCorrect entries, correcting the initial
mistyping at the same time, and toggle QuickCorrect on and off quickly.

e Table Manager 1.1: automatically fills selected cells with an increment defined by the first two

cells of the selection, shades alternate columns or rows of a table, selects parts of a table,

navigates numerically to a table cell, and creates a text box with a table in it.

Thousand Clipboards offers that many (or more) clips for text.

Tip ’o the Day 1.1 chooses at random from 98 user-definable tips, optionally at startup.

Tips & Macros 1.6, 50 pages on almost everything to do with WP.

UltraClip 1.0.7 gives you up to 50 clipboards for text. Clips are named automatically (or you

can name them yourself) and saved to disk. Paste by choosing a clip from a menu.

* Window Manager 2.0.1 offers control over all open windows, tiles open windows horizontally
(so you can read entire lines of text), toggles first and second windows, and opens a new
independently scrollable view of the active document. You can also close, save or print all
open documents with one command.

Appendix E: How to Install Macros

1. Open the file containing the macros you want to install. It must be the front window.

2. From the Edit menu, choose Preferences. You'll see figure 44:

EC0=———— Preferences
== 3
-1
Envvironmment Date/Time Folders
q
i e
kEeyboard “word Services Librarian
Show Ei..ars Files
i)
ABC 55 @
QuickCorrect Mailer HTHIL

Figure 44: the Preferences dialog

3. Click on Librarian. With a front window is titled “Outline Macros and Styles.” You'll see
figure 45:

Librarian

Resource:|Styles M|

| outline Macros and ... v|

>> Lapyg o> Comment Box H

[Library (USA)

Comment Box

Contrast z Outline Styled Te...
Endnote

ot
zf
HBaename zsl1

Endnote # in Docum
Figure Box Caption

Description:

Figure 45: Librarian dialog

4. Click and hold on the Resource menu at the top left, which is now set to Styles. That menu
will then look like figure 46:

168 John’s WordPerfect Scripting Guide

Librarian

Resource] /styles 7

- Macros _
Library (U cparacter Maps [outline Macros and ... ¥|
Comment| Keyboards >> Eppy > Comment Box)
Contrast | Button Bars Z Outline Styled Te...
Document #Hoemape zbc
Endnote

erectan) |2
Endnote # in Docum.. _ zf
Figure Box Caption [{] Bename | zs1

Description:

Figure 46: Changing resources in the Librarian

5. Drag until the next word on the menu, Macros, is selected, and release the mouse.

6. Click on the list in the box at the right, underneath the title of the front window (in this case,
“QOutline Macros and ...”).

7. Click on the Select All button in the middle of the dialog. The whole list on the right should
become selected, looking like figure 47:

Librarian

Resource:[Macros]

[Library (USA) | [outline Macros and ... v|

test ﬁ << Copy << Collapse Outline Top...

test2 Collapse Outline Top.
Abracadabra Comment Box

Add Endnote in Edit
Add Footnote in Edit..

Remove

Copy Outline Topic
Expand Outline Top...

Add Label IS HBename Fold Outline Topic

Description:

Figure 47: Selecting macros

8. Click on the Copy button in the middle of the dialog.
9. After WordPerfect’s globe cursor stops spinning, click Done.

All of the macros in the front window are now installed in your library, where they’re available
for use without your having to open these dialogs again.

Appendix E: How to Install Macros 169

10. Click in the Close Box of the Preferences window if you don’t want to assign any keystrokes
to macros. If you do, here’s how:

11. From the Preferences window, click Keyboard. Then click and hold on the Type menu at the
top left. You'll see figure 48:

=—————— Keyboard
Characters

Type: v Commandsp,
Macros

Keystrokes

<Date>
<Defin
<End o
<End o
<Field:nn>
<Keyboard>
<Next Record>
<Printer>
<0Quit>

About

Align Center
Align Dialog

Keyboard: [Standard Keyboard |

Figure 48: Changing Type in Keyboard

Menus
Styles
Dariables

] [ssign...]

Rempup

&

[create Listing... |

[Copy Keyboard... |

[Reset Keyboard...]

12. Drag until the word Macros is selected, and release the mouse button.

13. Using the scroll bar on the list on the left, scroll down until you see the macro you want to
run with a keystroke. In this example, the macro is Comment Box, and we want to assign it
the keystroke Option-Return. The dialog will now look like figure 49:

Keyboard

Type:
Keystrokes

Charting = _
Check Box) |Hssngn...
Circular Text

empue

Citation

Citation Cross-Reference 5
Clipboard

Collapse Outline Topic

Collapse Outline Topics to Level [create Listing... |

Colon-Space

Combine Files
Comma-Space
Comment Boxr

[Copy Keyboard...]

[Reset Keyboard...]

Keyboard: [Standard Keyboard |

Figure 49: Installed macros shown in Keyboard

14. Click the Assign button at the top right. You’ll see figure 50:

170 John’s WordPerfect Scripting Guide

Assign Keystroke

Press the keystroke combination you wish to
assign to the Macro “Comment Box”.

keystroke: [

Assigned:

ﬁgure 50: Assigning a keystroke

15. Hold down the Option key on your keyboard, and press Return. A graphic representation of
that keystroke will appear in the selected box, to confirm your choice. Click Assign.

16. Repeat steps #13-15 for any other macros you want to assign keystrokes.
17. Click Done in the Keyboard dialog.
18. Click in the Close Box to close the Preferences window.

And that’s it!

Index

Abort whennotfound 22
Alert 5,10,117,124
Alphanumeric expression 103
And operator oo 29
Append to Clipboard 36, 38
AppleEvent oo 77
Apple Event Terminology 87
AppleScript 71,79
AppleScript dictionary 87
Applet ... 74
Apply Stylel 39, 116
Argument 4,45,103
ASSIgN ... 18,23
Attribute 22
Automatic Leading 15
Bookmark 101
BootDir 41, 66, 82
Brackets 31-32, 35
Branch 7, 60,110
Bugs 147
ButtonBar 101
Call 33,110, 144
Call/Return structure 111
Cancel 32,62,103
Cancelhandler 118, 152
Cancellabel 152
Carousel design 110
Case ... 32,35,60,134
Chaincooviiiii i 125
ChapterNumber 28
Character expression 36,41, 43, 53
CloseboX ... 32
Closecommand 28
Close Subdocument 80
Codeswindow 115
Coerce ... 54,112, 124
Command length 104, 107, 155
Commands for dialogs 131
Commentline 23,39, 73,116
Commentout 116, 148
Compiled script 74
Conditional statement 7
Confirm 61,103, 117
Continuebutton 43
Continue command 117
Copy w o 10
Countercciiiiiin... 46,110
Create Hyperlink 101
Creatoroiiiii i 65

Curly brackets 31-32, 35
CurrentDir 28,122
CurrentLeading 15
CurrentStyle 116
Cut ... 27
Cycle Windows 30, 47
Datatype 54, 156
DateText 37
Debugging commands 116
Defaultlabel 32
Delete Right 115
Delimiter 94,103, 114
Dialog boxes inmacros 62
Dictionary 87
Display 46, 115
Do Script ... 73
Document parameter 30
Document variable 107
DocumentModifyFlag 59
DocumentName 28,47
DocVar 107
Downl 18
Dvorak keyboard 74,103
Each il 125
Edit Content button 3
Editor i 6
Ellipsisl 105
Else ... 5
Endl 17
EndIf 6, 10
EndMacro 32,36,125
EndofLine 111
End Prompt 44,117
Endnote 80
Erroro 38
Error checking 68, 120
Errorhandler 95,118
Errorhandling 94
Error message 4,22,48, 54
Exclamation point 103
Execute Apple Script 73
Execution 33,110
Extend Selection 19
Filecreator 65
Filetype 65
FileMaker Pro 71,79
Find Code dialog 140
Find NextCode 134

Find/Change 19

172 John’s WordPerfect Scripting Guide
FindStatusFlag 22-23, 30, 115 List ... i 31-32
Flag ... 5 Local variable 41,73
Flow commands 20, 33 Logic ... 10
Flowstructure 57 Loop 17-18, 22-23, 30, 62, 124
Flowchart 23 Loop/testc.ooviiiiiiiiiin., 125
FontName 4,39, 115 Macroeditor 6
FontSize 4,39 Mark FullForm 80
FontName 115 Mark Short Form 80
Footnotel 80 Maximum string length, in variables ... 41
For o i 124 Measurement in macros 45
ForEach 125 Memoryciiiiiiiiii 157
FormatOrientation 33,133 Menu 31, 35
Formatting 32 Modal dialog 117
FrontWindow 30, 45 Move Window 45
Fudge factor 139 Nested commands 29
FullForm 80 New Endnote 80
GetFile 65 New Footnote 80
GetInteger 13, 51, 102 NewDocumentFlag 59
GetStringl 51-52 Next Window 28
Global variable 41, 73,94, 130 Not operator 30, 103
GlobalVar 41 Number 51, 53, 113, 155
GO o 24,32 NumberOfWindows 28, 45
Goto Top of Document 115 Numericstring 156
Greaterthan 10 Objects .+ .vvvvi i 87
GREP ... 87 On Cancel handler 62,103, 118, 152
Handler 62,91, 103, 118, 152 On Error handler 118, 137
HardReturn 34,37 OnOpenDocument 43,118
help ..o 36 OnStartUpovviiiii .. 43, 83
Help 15, 25, 35, 38-39, 45, 65 Open Document 47
Help Topics ...t 36 Open scripting architecture 71
Homel 115 Operator .. 11, 14-15,29-30, 41, 54, 103, 118
Horizontal Position 45 Oroperator 54,118
HTMLo 116 Ordinary character delimiter 103
Hyperlink 101 OSaXxX 71, 87
Icon ... 61 OutlineMode 128
I 5,10 Outlining Dialog 131
If/Else statement 6,9 Paragraph Number 128
Indent, in macroeditor 17 Parameter 4,13, 30, 124, 155
InTableFlag 38 Parameterset 31,35
Integer il 52 Parse il 116
Interface 53,105 Paste ... 10, 27
Join operator 11, 15, 41 Path ... 122
Jon'sCommands 94 Pause 117
Keyboard 124 Pausebutton 43
Label 24,32,110 PauseUntil 114, 117
Leadingcccoviiiiinn... 14-15 PhysicalPagec....o... 10
Left ... 27 Points i 14
Lessthancouiuiia ... 10 PositiontoCell 41, 82
Librarieso, 125 Poundsigns 114
Linespacing 14 Preferences 14
LineCharacterCount 27,128, 137 Print 30

Index 173
Prompt o 44,117 String Length 52,112
QuickCorrect ..., 150 String To Number 53
Quotemarks 39, 43, 52,103 StyleOn ... 116
Raw LOOKvviiii i 151 Stylesheets 133
Raw objecto, 135 Subdocument 80
Raw objecttypeooiii.. 135 Subroutine 96, 144
Raw objects ..., 135 Substring 52,112
RawRead 135, 139, 151 Substring Position 52,59, 112
RawObjectccoiunan. 140, 151 Syntaxl 5, 10, 36, 65
RawObjectTypecccooiiuin. 151 Tab 37
Read-only variable 9,15,115 Table of Authorities 80-81
Read-write variable 13 TableID 42,51, 105
Record command 1 TableMaxColumnNum 54
Regular expressions 87 TableMaxRowNum 54
Repeat 17-18, 22-23, 30, 46, 115 Tables o ol 105
Repeat Count 22 Taskkey 114
Repeatloop 17-18, 22-23 Tell statement 74
Reserved variable 89 Test .. 124
Return 33,111 Text item delimiter 94
ReturnCancel 118 Token 150
Return Error 118 Toolsmenucooiaan. 1
Revert o il 28 Trap ... 38, 54
Right il 22,27 Try o 96
Routine, 144 Try statement 95
Run ..., 104, 125 Type ..o 65, 104
Save ... 28 TypeVar 27,43, 80
Save Asbutton oL 13 Typeover 37
Savebutton 2,4 Typing mistake 6,9
ScreenSizeH 28, 45 Units of measurement 14, 45
ScreenSizeV 28, 45 UNIX o 87
Script ... 1 Until ... 115
Script Editor application 71 URL ... o 101
Script property i 93 Variable 9-10, 13, 41
Script Tools 87 Vertical Position 45
Script variable 73,79, 85 Wait ... 117
ScriptChar 135 Web ..o 101
Scripting additions 71 Whileo 118, 124
Select TableCell 42,55 White spaceol 31
SelectWord 82, 150 Wildcard searches 87
Selectionflag 38 Window menu 6
Semicolon, in macro scripts 19, 23 Window Name 45
Setcommand, 75 Word Left 27,102
Set Directory 65-66, 120, 122 WordRight 18
Set Repeat Count 22 WPCharcoiiiiiiiii., 135
ShortForm, 80 WPDIr .. 66
Size Window 45

Speedl 117

Statemento oo 7

Step ..o 117

Stop Recording 2

Stringl 51,53, 113, 155

