
® 

AppleTalk Remote Access 
Developer's Toolkit 
R012SLL1.-\ 



Apple Computer, Inc. 
20525 Mariani Avenue, MIS 33-G 
Cupertino, CA 95014 
(408)996-1010 
TI.X 171-576 

To reorder products, please call: 
l-800-282-2732 (in the United States) 
l-800-637-0029 (in Canada) 
l-408-562-3910 (International) 



, 
•· AppleTalk Remote Access 

Application Programming 
Interface (API) 
External Ref ere nee 
Specifications 



Apple Computer, Inc. 
Copyright © 1991 by Apple Computer, Inc. 

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or 
transmitted, in any form or by any means, mechanical, electronic, photocopying, recording, or 
otherwise, without prior written permission of Apple Computer, Inc. Printed in the United States of 
America. 

"-· 



App/eTalk Remote Access AP! External Reference Specification 

® 

AppleTalk® Remote Access 
Application Programming Interface (API) 

External Reference Specifications 

The AppleTalk Remote Access API provides an application programming interface to the Remote 
Access Manager. It supports calls to load and unload the Remote Access Manager (RAM), create 
and terminate connections, retrieve the current RA..\1 status, and to determine if a specified 
network address is local or remote. Optionally, the AppleTalk Remote Access API can display a 
user interface showing the process of a connection. The parameters for the connect call can be a 
connection document, created with the Remote Access application, or all the parameters of the 
connection can be specified out right. These specifications also include how to tell if AppleTalk 
Remote Access is installed, and how to deal with the serial port when AppleTalk Remote Access is 
in answer mode. 

NOTE: A/,though every attempt has been made to verify the accuracy of the information 
presented, this document may contain errors and is subject to change. 

9/27/9 I · Final Draft 1 



AppleTalk Remote Access AP! External Reference Specification 

Gestalts 

When fully installed, Remote Access defines several new gestalt selectors. Below are the new defines and explanation of 
their use. 

To see if serial port arbitration is installed, call_ Gestalt using these defines. 

idefine gestaltArbitorAttr 
idefine gestaltSerialArbitrationExists 

'arb ' 
0 

For example: 
OSErr io; 
II check to see if serial port arb!.trating is installed ... 
long attribs; 
io = Gestalt(gestaltArbitorAttr, &attribs); 
if ( ( (io == noErr) && (attribs & (1 « gestaltSerialArbitrationExists))) 

II have serial port arbitration 

else 

II no serial port arbitration 

More information on serial port arbitration is discussed in a section below 

To see if Remote Access Connection Interface is available use these defines: 

#define gestaltRemoteAccessAttr 
#define gestaltRemoteAccessExists 

1strm1 

0 

To check if Remote Access support is available in the Alias Manager use these defines: 

#define gestaltAliasMgrAttr 
#define gestaltAliasMgrSupportsRemoteAppletall< 

'alis1 II as defined in GestaltEqu.h 

Serial Port Arbitration 

When installed Remote h:.cess provides serial port arbitration throught the Serial Port Arbitrator tool All serial drivers 
registered with the Communications Resource Manager are arbitrated by the Serial Port Arbitrator 

To check to see if the Serial Port Arbitrator is installed, check the gestalt Ser ialArbi trat ionExist s flag of the 
gestaltArbi tor Att r Gestalt selector (see "Gestalts" section forthese defines and an example of this call). 

9/27/91 · Final Draft 2 



AppleTa/k Remote Access API External Reference Specification 

If serial port arbitration is present, call OpenDriver when )DU want to use a serial port If the driver requested is not open, 
OpenDriver will return a result of no Err and the reference number of the driver. If the driver requested is open (in use), 
OpenDriverwill return the error port rnuse. When you are finished using the driver, call CloseDriver. OpenDriverand 
Close Driver calls should always re balanced, although the Serial Port Arbitrator will protect against multiple open/close 
calls. 

If serial port arbitration is not present, do not use OpenDriver to determine if the driver is open. It will return you a result 
of no Err and the reference number, albwing )DU access to a driver that another application is using. To determine if the 
serial driver requested is open by another application, you must walk the OCE (Device Control Entry) unit table (see 
Device Driver chapteroflnside Macintosh vol II). 

It is important to use the new methcxl if serial port arbitration is available. Remote Access, when set up for answering 
calls, is passively using a particular serial driver. If you use the new methcxl, the Serial Port Arbitrator will give up the 
µissive claim and allow your OpenDriver call to return no Err. L1 ter, when you call CloseDriver, Remote Access will again 
passively claim the port and setup the modem for answering. 

Below is a ccx:le example in C illustrating how to use serial port drivers under the new and old methcx:ls: 

Boolean HaveSerialPortArbitration() 

I* check to see if serial port arbitrating is installed, 
return true if so. 

*I 

OSErr io; 
long attribs; 
io = Gestalt(gestaltArbitorAttr, &attribs); 
return ( (io == noErr) && (attribs & (1 << gestaltSerialArbitrationExists) I ) ; 

II HaveSerialPortArbitration 

9/27/91 - Final Draft 3 



AppleTalk Remote Access AP/ External Reference Specification 

Boolean CanOpenDriver(unsigned char *driverName) 

/* walks the unit table looking for a match for driverName, 
if found, check to see if the driver is open. return 
false if so. 

*/ 

Boolean canOpen = false; 
Boolean match= false; 
short index= 0; 
short count; 
DCtlHandle dceHndl; 
unsigned char *namePtr; 

II number of entries in unit table 
count *(short*)UnitNtryCnt; 

while ( !match && index < count 

II get handle to this DCE .. 
dceHndl = (DCtlHandle) (*(Handle) ((*(Handle)UTableBase) + (index*4) )); 

if ( dceHndl ) 

II see if ram based (test bit 6). 
if ((*dceHndl)->dCtlFlags & 0x40) 

{ 

I I in ram, so we have a handle ... 
namePtr = (* (liandle) ( (*dceHndl)->dCtlDriver)) + 18; 

else 

I I in r orn, so we have a pointer... 
namePtr ((*dceHndl)->dCtlDriver) + 18; 

II compare name: case insensitive, diacritical sensitive .. 
if ( RelString((const Str255)driverName, (canst Str255)namePtr,false,true) == 0) 

match= true; 
II see if drvr is open (test bit 5)_ 
canOpen != ((*dceHndl)->dCtlFlags & 0x20); 
} 

++index; II look at next drvr in unit table 

return canOpen; 
) II CanOpenDriver 

9/27/91 - Final Draft 4 



AppleTalk Remote Access AP! External Reference Specification 

void UseSerialPort() 
{ 

/* illustrate the new way and old way of testing whether 
a serial driver is open or closed. 

*/ 

short refNum; 
OSErr io; 

if ( HaveSerialPortArbitration() 
( 

// have serial port arbitration, use new method ... 

io = OpenDriver("\p.aout",&refNum); 

if ( io == portinUse) 
{ 

// port is in use by another application/etc, we can't use it' 
) 

else 

// use the serial driver 

// close the driver when through .. 
io = CloseDriver(refNum); 

else 

// no serial port arbitration, use old method .. 

if ( CanOpenDriver ("\p.aout") ) 

io = OpenDriver("\p.aout",&refNum) 

// use the serial driver 

// close the driver when through_ 
io = CloseDriver(refNum); 

) II UseSerialPort 

9127/91 · Final Draft 5 



AppleTalk Remote Access AP/ External Reference Specification 

AppleTalk Remote Access API 

Common Parameters 
The TRemoteAccessP'aramBlock is a union of all of the available AppleTalk Remote Access API commands. The 
TRemoteAccessP'annHeader is a struct which consists of a DContro!ParamHeader followed by a DExtendedParam which 
is followed by a DRemoteAccessPannHeader. The extendedCode is used to specify the AppleTalk Remote Access API 
command wanted. The resultStrPtr field returns a Pascal string to indicate what error occurred. If you are not interested 
in the string, set this field to nil. If you do pass a pointer however, it must point to a buffer of at least 256 bytes in length. 
If the result of the call happens to re noErr, then the length byte of the string will re zero. Since this version ofRemote 
Access only deals with the user port, the parameter portGlobalsPtr should always re set to zero. The csCode field should 
normally set to RAM_ EXTENDED_ CAil and the extendedType is set to REMOTEACCESSNAME. These constants are 
defined in RemoteAccessinterface.h. 

#define DControlParamHeader \ 
QElem *qLink; 
short qType; 
short 
Ptr 
ProcPtr 
OSErr 
long 
short 
short 
s!lort 

ioTrap; 
ioCmd.Addr; 
ioCompletion; 
ioResult; 
userData; 
unused; 
ioRefNum; 
csCode; 

idefine DExtendedParam \ 
DControlParamHeader \ 
Ptr hReservedl; \ 
Ptr hReserved2; \ 
Ptr 
Ptr 

resultStrPtr; \ 
extendedType; 

II next queue entry\ 
II queue type\ 
II routine trap\ 
II routine address\ 
II completion routine\ 
II result code\ 
II for use by the user\ 
II unused field\ 
II driver reference number\ 
II ncrma:ly set to RAM EXTENDED CALL 
II for AppleTalk Remote Access API calls 

// set to zero if result string is unwanted 
II pointer to identifier string, normally set to 
II R2MOTEACCESSNAME for AppleTalk Remote Access API calls 

#define DRemoteAccessParmHeader \ 
DExtendedParam \ 
short 
Ptr 

extendedCode; 
portGlobalsPtr; 

II for use by extended call proc \ 
I I pointer to globals for this port (O=userport) \ 

struct TRemoteAccessParmHeader 

DRemoteAccessParmHeader 
); 

typedef struct TRemoteAccessParmHeader TRemoteAccessParmHeader; 

union TRemoteAccessParamBlock 

TRemoteAccessParmHeader 
TRemoteAccessParmHeader 

HOR; 
LOAD; 

II header pb 
II load pb 

9/27/91 - Final Draft 6 



AppleTalk Remote Access API External Reference Specificat ion 

TRemoteAccessParmHeader UNLOAD; II unload pb 
TRemoteAccessConnectParam CONNECT; II connect pb 
TRemoteAccessDisconnectParam DISCONNECT; II disconnect pb 
TRemoteAccessStatusParam STATUS; II get current status 
TRemoteAccessisRemoteParms ISREMOTE; II check network address location 
TRemoteAccessPasswordMunger MUNGEPW; II run password through munger 
TRemoteAccessGetCodeHooks CODEHOOKS; II get internal code hooks 

} ; 

typedef union TRemoteAccessParamBlock TRemoteAccessParamBlock; 
typedef TRemoteAccessParamBlock *TPRemoteAccessParamBlock; 

Load 
The load command is used ensure that the Remote Access Manager is loaded into memory and must be used before 
making a Connect call . It uses the standard TRemoteAccessParmHeader as the parameter block. The example ccxle 
below shows how it works. To use the MungePW command, it is not necessary to use the load command first 

linclud~ "RemoteAccessinterface.h• 
void LoadRemoteAccess() 

TRemoteAccessParmHeader loadPB; 

loadPB.LOAD.csCode = RAM_EXTENDED_CALL; 
loadPB.LOAD.resultStrPtr = nil; 
loadPB.LOAD.extendedType = REMOTEACCESSNAME; 
loadPB.LOAD.extendedCode = CmdRemoteAccess_Load; 
?BRemoteAccess(&loadPB, false); 
if (loadPB.LOAD.ioResult) 

ShowError(loadPB.LOAD.ioResult); 

II extended call 

II result string 
II to remote access 
II try to load 
II issue sync call 

Unload 
The unload command is used release the Remote Access Manager and free its memory. It uses the standard 
TRemoteAccessParmHeader as the parameter block and can be issued immediately after making a Connect call. This 
allows the Remote Access Manager to be unloaded as soon as an active connection is terminated with a disconnect, if no 
other clients have loaded Remote Access. Below is an example unload call. 

linclude "RemoteAccessinterface.h• 
void UnloadRemoteAccess() 

TRemoteAccessParmHeader loadPB; 

II unload the code (will not actually go away till this connection is done) 
loadPB.UNLOAD.csCode = RAM_EXTENDED_CALL; II extended call 
loadPB.UNLOAD.resultStrPtr = nil; II result string 
loadPB.UNLOAD.extendedType = REMOTEACCESSNAME; II to remote access 
loadPB.UNLOAD.extendedCode = CmdRemoteAccess_Unload; II try to unload 
PBRemoteAccess(&loadPB, false); II issue sync call 
if (loadPB.UNLOAD.ioResult) 

ShowError(loadPB.UNLOAD.ioResult); 

9/27/91 · Final Draft 7 



AppleTalk Remote Access AP! External Reference Specification 

Connect 
This call is used to initiate an outgoing connection. When you are connected in this mode you will still retain access to 
your current network. Network numbers are re-mapped in a limited way in order to solve problems of network number 
conflicts between the two machines being directly connected, thus ensuring they will always be accessible to each other. 
Unfortunately, it is not possible to solve all of the other possible conflicts due to the limited number of network numbers 
available. In order to provide a method of ensuring access to all networks on the destination network a guaranteedAccess 
methcxi is available. When connected in this mode, you will lose access to all services beyond those on the same single 
network number that the calllng machine belongs to. In order to notify clients of the AppleTalk stack that a network will 
no longer be reachable we have created a new AppleTalk Transition Queue event (See Network Transition Events later 
in this document) When connecting the client passes in a TRA.ConnectlnfoTemplate, or the FSSpec of a document 
which contains the connect parameters. The connect parameter block contains the optionFlags field which specifies the 
connect options. The flags are shown below: 

II connect option flags 
#define kNSCaninteract Ox0J000001 
#define kNSShowStatus Ox00000002 
#define kNSConnectDocument Ox00000004 
#define kNSPassWordSet OxOOOOOOlO 

II User interaction (password prompt) is OK 
II show the status of the connect or disconnect call 
II connect using the specified document using FSSpec 
II use the specified password field when connecting 
II by document 

The k.NSCaninteract flag allows interaction with the user to get the password if necessary. The kNSShowStatus flag 
enables the connection status display. The display is mcxlal dialog which updates with new messages as the connection 
progresses. When the kNSConnectDocument flag is set. the AppleTalk Remote Access API will use the specified 
document for the connect parameters of the TRAConnectlnfoTemplate. The document is specified by the FSSpec 
record which contains vRefNum (volume reference number), parID (directory ID), and name (pointer to Pascal style 
string containing the document name). No other parameters need to be supplied. The kNSPass\Xbrc:ISet flag overrides 
the saved password when connecting by document or by PB and forces AppleTalk Remote Access API to use the 
pass\Xbrd field in cleartext. If the k.NSPass\XlordSet flag is clear and the passwordSaved flag is set, then the client must 
supply a munged password. 

In the case that a client is connecting by PB, the fields in the connectlnfo record need to be supplied. Within this record is 
a version which is used to check for compatibility (currently set to 1). The ltType parameter specifies the type of the link 
tool that will be used in this connection. 'rou specify the length and point to the address used in connecting by setting up 
addressinfoLength and addressinfoPtr. The ltSpecificTemplatePtr is expected to point to the template of the link tool 
specific parms. An example of link tool specific parms might be items such as the serial port reference that is used in the 
MNP Llnk Tool. A userName is passed in that indicates the name of the user logging in. A pass\Xbrd is specified if the 
user is not logging in as a guest If the user wants to be a guest, the guestl.ogin flag is set The connectReminderTimer 

. is used if the caller wants to be reminded that a connection is in progress. This field is set to the number of seconds 
between reminders, and can be set to zero if no reminders are wanted. If a connectReminderTimer is set you must set 
the connectOK\TuitTimer that indicates how long the reminder dalog will wait for OK to be hit before disconnecting. 

9127/91- Final Draft 8 



AppleTalk Remote Access AP/ External Reference Specification 

struct TRAConnectinfoTemplate 
( 

unsigned long version; 
unsigned long ltType; 
long addressinfoLength; 
Ptr addressinfoPtr; 
long ltSpecificTemplateLength; 
Ptr ltSpecificTemplatePtr; 
unsigned char passWord[PASSWORDBUFSIZE); 
unsigned char userName[USERNAMESIZE); 
unsigned long connectReminderTimer; 
unsigned long connectOKWaitTimer; 
Boolean guestLogin; 
Boolean passwordSaved; 
Boolean guaranteedAccess; 

II version of this format 
II Link Tool type 
II length of the address information 
II pointer to connect address info 
II length of the ltspecific information 
II pointer to link tool specific params 
II user password 
II user name 
II value for connection reminder in seconds 
II how long to wait for OK on reminder timer 
II try to log in as a guest 
II set if password is saved 
II flag to guarantee access to servers internet 

}; 

typedef struct TRAConnectinfoTe~plate TRAConnectinfoTemplate; 
typedef TRAConnectinfoTemplate YTPRAConnectinfoTemplate; 

struct TRemoteAccessConnectParam 

DRemoteAccessParmHeader 
TRAConnectinfoTemplate connectinfo; 
unsigned long optionFlags; 
fSSpec fileinfo; 

}; 

typedef struct TRemoteAccessConnectParam TRemoteAccessConnectParam; 

II The connection information template 
II bit mapped connect option flags 
II file info for connect document 

The following is an example connection prcx:edure: 

#include "RemoteAccessinterface.h" 
void DoConnect () 

TRemoteAccessConnectParam pb; 
Str255 PathName = "MyHardDisk:Remote Access:Connect Document"; 

LoadRemoteAccess(); 

pb.CONNECT.csCode = RAM_EXTENDED_CALL; 
pb.CONNECT.resultStrPtr = nil; 
pb,CONNECT.extendedType = REMOTEACCESSNAME; 
pb.CONNECT.extendedCode = CmdRemoteAccess_DoConnect; 
pb.CONNECT.portGlobalsPtr nil; 
pb.CONNECT.fileinfo.vRefNum = 0; 
pb.CONNECT.fileinfo.parID = 0; 
CopyPStr(&PathName,&pb.CONNECT.fileinfo.name); 

II Get the Remote Access Manager 
II loaded 
II extended call 
II don't want result strings 
II to Remote Access 
II connect command 
II use the user port 
II Use the full pathname 

II copy the string to fileinfo.name 

II Ask for password if needed, use connection document, & show connection status 
pb.CONNECT.optionFlags = kNSCaninteract I kNSConnectDocument I kNSShowStatus; 
PBRemoteAccess(&pb, false); II issue sync call 
if (pb.CONNECT.ioResult) 

ShowError(pb.CONNECT.ioResult); // Do Error reporting and recovery 

9127/91 - Final Draft 9 



AppleTalk Remote Access AP! External Reference Specification 

UnloadRemoteAccess(); II Unload when disconnected. 

Disconnect 
The disconnect command is used to terminate an existing session or cancel one that is being created. If you only want to 
disconnect a session that was connected with a specific parameter block you can do so by setting a pointer to the 
parameter block used to issue the connect in abortOnlyThisPB. If you want to disconnect a connection created by 
anyone, you set the abortOnlyThisPB field to zero. If you are disconnecting an outgoing call, you µis.s zero in 
portGlobalsPtr Disconnecting ports other than the userport, is not supported in this version. You should always set 
disconnectin to zero. The option kNSShowStatus will cause the AppleTalk Remote Access API to display the status 
dialog during the disconnect 

#define kNumWarnEntriesMax 5 
struct TRemoteAccessDisconnectParam 

II number of entries in warn array 

DRemoteAccessParmHeader 
unsigned long disconnectin; 
TPRemoteAccessParamBlock abortOnlyThisPB; 
unsigned long warnArr[kNumWarnEntriesMax]; 

unsigned long optionFlags; 
} ; 
typedef struct TRemoteAccessOisconnect?ara~ TRemoteAccessDiscor.nectParam; 

II Note: Set this parameter to 0 
II only abort a connection opened by this pb 
// set warn times here in seconds (zero all if 
II no warnings} 
// bit mapped connect option flags 

The following is an example of a simple disconnect procedure. It will disconnect any existing active connection. 

#include "RemoteAccessinterface.h" 
void DoDisconnect() 

TRemoteAccessDisconnectParam pb; 

II set up the Remote Access PB 
pb.DISCONNECT.csCode = RAM_EXTENDED_CALL; 
pb.DISCONNECT.resultStrPtr = nil; 
pb.DISCONNECT.extendedType = REMOTEACCESSNAME; 
pb.DISCONNECT.extendedCode = CmdRemoteAccess_Disconnect; 
pb.DISCONNECT.portGlobalsPtr = nil; 
pb.DISCONNECT.abortOnlyThisPB = nil; 
pb.DISCONNECT.optionFlags = 01 kNSShowStatus; 
PBRemoteAccess(&pb, false); 
if (pb.DISCONNECT.ioResult) 

ShowError(pb.DISCONNECT.ioResult); 

II extended call 
II don't want result strings 
II to Remote Access 

II disconnect command 
II user port 
II don't get tied to any specific pb 
II show status while disconnecting 
II issue sync call 

II Do Error reporting and recovery 

9127/91 - Final Draft 10 '---...--· 



Apple Talk Remote Access AP! External Reference Specification 

IsRemote 
The "IsRemote" command is used to determine if a network address is remote or local. If the network is remote, the call 
will optionally return the information necessary to make the connection to the remote network The parameter 
theAddress contains the network address to be checked. The format of theAddress is the same as for the struct 
AddrBlock as defined in AppleTalk.h: 

Bytes 3 & 2 (High Word): Network Number 
Byte 1: Ncx:le Number 
Byte O (Low Byte): Socket Number 

The optionFlags parameter is used for getting, or disposing, connection information. The following flags are defined: 

#define ctlir_getConnectinfo OxOl 
#define ctlir_disposeConnectinfo Ox02 

II will get connect info if address remote 
II will dispose info in connectinfoPtr properly 

If the ctlir _getConnectlnfo flag is set, and the network address is remote, the information necessary to create the 
remote connection is returned. If the ctlir _ disposeConnectlnfo flag is set, the connect information structure pointed to 
by connectlnfoPtr, is disposed of properly. 

The locationlsRemoteF!ag parameter is a flag that is returned true if the network address is remote. The 
connectinfol.ength parameter indicates the length of the connect information. The connectinfoPtr is a pointer to the 
connection information for connecting with the remote address. These values are returned when the network address is 
remote, and the ctlir _getConnectlnfo flag is set 

struct TRemoteAccessisRemoteParms 

DRemoteAccessParmHeader 
long theAddress; 
unsigned long optionFlags; 

Boolean locationisRemoteFlag; 
long connectinfoLength; 
TPRAConnectinfoTemplate connectinfoPtr; 

II address that is to be checked 
II Set to ctlir_getConnectinfo or 
II ctlir_disposeConnectinfo, if zero only checks 
II theAddress 
II returns true if address is remote 
II length of the following data 
II The connection information template pointer 

}; 

typedef struct TRemoteAccessisRemoteParms TRemoteAccessisRemoteParms; 

Status 
The status command is used to obtain information about Remote Ar.cess. The information you can obtain is how long a 
connection has been active, how much time remains in the connection, the name of the user that made an answering 
connection, the name of the computer you are connected to on a calling connection, and the last message that was 
posted. The statusBits parameter is used to determine if a connection is active, staning up, in the process of tearing 
down, if the connection is an answering or calling connection, if the computer is enabled to receive answer calls or if a 
disconnect is in progress. The following flags are defined: 

9/27191 - Final Draft 11 



AppleTalk Remote Access API External Reference Specification 

II bits passed back in statusBits 
#define CctlConnected 0x0000000l II 
#define CctlAnswerEnable 0x00000004 II 
#define CctlServerMode 0x00000008 II 
#define CctlConnectionAborting 0x000000l0 II 
#define CctlConnectinProg 0x00000020 II 

II 
#define CctlDisconnectinStarted 0x00008000 II 
#define CctlMultiNodeReady 0x80000000 II 

II 

set when connected 
set when we are set to answer calls 
set for answer mode, clear for call mode 
connection is being torn down 
set when connection in progress or fully 
connected 
somebody has started a disconnectin 
shows if we currently have a multinode 
address to enable answer mode. 

The following struct is used when making a status call: 

struct TRemoteAccessStatusParam 

DRemoteAccessParmHeader 
unsigned long statusBits; II bits for current status 

II number of seconds we have been connected 
II number of seconds remaining in connection 
II (0xffffffff infinite) 
II returns user name, expects pointer to buffer 
II of USERNAMESIZE if non nil 
// returns name of where we connected to, 
II expects pointer to b~!fer of USERNAMESIZE if 
II non nil 

TPRemoteAccessParamBlock connectedByParamPtr; II a pointer to the parameter block 

unsigned long timeConnected; 
unsigned long t imeLe ft; 

unsigned char *userNamePtr; 

unsigned char *connectedToNamePt=; 

// "initiating" the connection if we are 
// connected 

TPRemoteAccessParamBlock stat~sConnectedByParamPtr; // a pointer to the parameter block 
// "initiating" the connection when status was 
// posted 

unsigned char *theLastStatusMsgPtr; // expects pointer to buffer of size 
// MAXSTATUSMSGSIZE 

unsigned char *statusUserNamePtr; 
long statuslttype; 
long statusmsgOptionFlags; 
long statusMsgNum; 
long statusMsgSeqNum; 

unsigned long userSignature; 
unsigned long userRefCon; 

II pointer to buffer of size USERNAMESIZE 
// link tool type 
II classification of message type 
// specific message number 
// pass in zero if always want status, otherwise 
// use last value, if status is new, new number 
II is returned 
// signature of port creator 
// refcon of port creator 

); 

typedef struct TRemoteAccessStatusParam TRemoteAccessStatusParam; 

An example status call that determines the state Remote Access is in. 

#include "RemoteAccesslnterface.h" 
void GetStatus () 
( 

TRemoteAccessStatusParam pb; 

9127/91 - Final Draft 12 



AppleTalk Remote Access AP! External Reference Specification 

Str255 CserName,connectedTo,lastMessage; 
long las~SeqNum,statusBits; 

pb.STATUS.csCode = RAM_EXTENDED_CALL; 
pb.STATUS.resultStrPtr = nil; 
pb.STATUS.portGlobalsPtr = nil; 
pb.STATUS.extendedType = REMOTEACCESSNAME; 
pb.STATUS.extendedCode = CmdRemoteAccess_Status; 
pb.STATUS.userNamePtr = &UserName; 
pb.STATUS.connectedToNamePtr = &connectedTo; 
pb,STATUS.theLastStatusMsgPtr = &lastMessage; 
pb,STATUS,statusUserNamePtr = nil; 
pb.STATUS.statusMsgSeqNum = 0; 
PBRemoteAccess(&pb, false); 
if (pb.STATUS,ioResult) 

ShowError(pb.STATUS.ioResult); 
else 

II extended call 
II put results here 
II do UserPort 
II to Netshare 
II status command 

II Do Error reporting and recovery 

II now decode the flag bits into words 
statusBits = pb.STATUS.statusBits; 
if (statusBits & CctlServerMode) 

printf("Answer connection\n"); 
if (statusBits & CctlConnected) 

printf("Calling connection\n"); 
if (statusBits & CctlConnectionAborting) 

printf("Cancel in progress\n"); 
if (statusBits & CctlAnswerEnable) 

printf("Waiting for incoming call\n"); 
if (statusBits & CctlConnectinProg) 

printf("Connection in progress\n"); 

MungePW 
The MungePW command is used to encrypt a password to be stored in a document. Normally, when connecting by 
document, it is not necessary to use this command, since the password in a document is stored in encrypted format It 
uses a struct TRemoteAccessPasswordMunger with the inputs username pointer and password pointer The reserved 
field should always be set to zero. The munged password is return in the data buffer pointed to by pass-WordPtc It is not 
necessary to call the Load command before using MungePW. The maximum username and password lengths are 
defined in the RemoteAccesslnterface.h header file. 

struct TRemoteAccessPasswordMunger 

DRemoteAccessParmHeader 
unsigned char *userNamePtr; 
unsigned char *passWordPtr; 
unsigned short reserved; 

II pointer to username string 
II user password 
II must set to zero 

); 

typedef struct TRemoteAccessPasswordMunger TRemoteAccessPasswordMunger; 

Below is an example routine that calls and gets the password in *pass\XbrdPtr munged. 

9127/91 · Final Draft 13 



AppleTalk Remote Access AP! External Reference Specification 

#include "RemoteAccessinterface.h" 
void MungePassword() 

TRemoteAccessPasswordMunger MungePB; 
Str255 UserName = "John Doe"; 
Str255 password= "thispass"; 

MungePB.MUNGEPW.csCode = RAM_EXTENDED CALL; 
MungePB.MUNGEPW.resultStrPtr = nil; 
MungePB.MUNGEPW.extendedType = REMOTEACCESSNAME; 

II extended call 
II result string 
II to remote access 

MungePB.MUNGEPW.extendedCode = CmdRemoteAccess_PassWordMunger; 
MungePB.MUNGEPW.userNamePtr = &UserName; 
MungePB.MUNGEPW.passWordPtr = &password; 
PBRemcteAccess(&MungePB, false); II issue sync call 

II and encrypted the eight bytes in 
// password 

if (MungePB.MUNGEPW.ioResult) 
ShowError(MungePB.MUNGEPW.ioResult); 

GetCodeHooks 
The GetO:x:leHooks command is used to return a pointer to the remapper procedure. This routine can then be called to 
do special remappings for applications are passing network addresses as part of their data. The call can be made with the 
clients network number and the node number and this routine will return the remapped equivalents. 

struct :RemoteAccessGetCodeHooks 

DRemoteAccessParmHeader 
RemmaperProcPtr remapperProc; // quick vector to remapper code 

) ; 
typedef struct TRemoteAccessGetCodeHooks TRemoteAccessGetCodeHooks; 

The routine returned by this call is defined as follows: 

pascal void DoRemapper(unsigned long whereNet, unsigned long incomingFlag, unsigned long 
sourceSwapFlag, unsigned short xtheNet, unsigned char *theNode) 

whereNet-> This value has the net where this packet just came from or is going to, it is needed 
to determine if any remapping should even take place. 

locomingFlag-> Set to true if data is incoming, false if data is outgoing. 

sourceSwapFlag-> Set to true if a source ·style swap is to be used. A source style swap means 
that we do remappings based on the address being a source address. If this flag is false, 
destination style swaps are done. 

ilieNe~> Pointer to unsigned short containing the net to be remapped. 

theNode-> Pointer to unsigned char containing the node to be remapped. 

9/27/91 - Final Draft 14 



AppleTalk Remote Access AP! External Reference Specification 

Network Transition Events 
Network transition events are generated by Remote Access to inform interested clients that network connectivity has 
changed. The type of change is indicated by the newConnectivity flag. If this flag is true, new connectivity is being added 
(i.e. a connection to a new internet has taken place). In this case, all network addresses will be returned as reachable. If 
the newConnectivity flag is false, certain networks are no longer reachable. Since Remote Access is connection based 
and internally functions much like a router it has knowledge of where a specific network exists. Remote Ac.cess can take 
advantage of that knowledge during a disconnect to inform AppleTalk clients that a network is no longer reachable. This 
information can be used by the AppleTalk client to age out connections immediately rather than waiting a potentially long 
period of time before discovering that the other end is no longer reachable. 

When Remote Access is disconnecting, it will generate a "Network Transition Event (theEvent=5)" through the 
AppleTalk transition queue. A client upon receiving such a message can ask Remote Access (through a network validate 
hook passed to the client) if a specific network is still reachable. If the network is still reachable, true will be returned. A 
client can then continue to check other networks he is interested in until he has learned the status of each of them. After 
a client is finished checking his networks he returns to Remote Access where the next AppleTalk transition queue client 
is called. 

Since the "Network Transition Event" is transitional, it is important to realize that the information that the network validate 
hook returns is only valid if a client has just been called as a result of a transition. In other words, a client can only validate 
networks when it has been called to handle a "Network Transition Event". It is also important to realize that the 
"Network Transition Event" can be called as the result of an interrupt, so a client should obey all of the normal conventions 
involved at being called at this time (i.e. don't ask for memory from the memory manager, etc.). 

The following information assumes you have already installed yourself into the AppleTalk transition queue. 

ATTransNetworkTransition 
The ATTransNetworkTransition event will be generated whenever a network transition occurs. You will be passed the 
following information using C calling conventions: 

ClientTransitionHandler(long theEvent, Ptr aqe, TNetworkTransition *thetrans); 

theEvent 
aqe 
thetrans 

<--- 
<--­ 
<--- 

will be set to ATTransNetworkTransition 
points to transition task struct 
points to the TNetworkTransition struct 

The TNetworkTransition struct passed to you is defined as: 

typedef struct TNetworkTransition 

uPtr private; 
ProcPtr netValidProc; 
Boolean newConnectivity; 
TNetworkTransition; 

// pointer used internally by 976 
// pointer to the network valid proc 
// true=new connectivity, false=loss of connectivity 

9/27/91 - Final Draft 15 



AppleTalk Remote Access AP/ External Reference Specification 

To check a network number for validity the client uses the net½lidProc to call Remote Access. This call is defined as 
follows: 

long netValidProc(TNetworkTransition *thetrans, unsigned long theAddress); 

thetrans ---> 

theAddress ---> 

pass in the TNetworkTransition struct given to you when your 
transition handler was called. 
this is the network address you want checked. The format of 
theAddress is the same as for the struct AddrBlock as defined in 
AppleTalk.h: 

Bytes 3 & 2 (High Word): Network Number 
Byte 1: Node Number 
Byte O (Low Byte): Socket Number 

Return codes 
TRUE 
FALSE 

network is still reachable 
network is no longer reachable 

Error Codes 

II------------------------------------------------------------------------------ 
11 MNP Error Codes - MNPinterface.h 

II------------------------------------------------------------------------------ 

#define MNP ERR BASE -6050 II base for MNP driver errors 

#define ERR MNP NEGOTIATION FAILURE (MNP ERR_BASE-1) II Connection parameter negotiation 
II failure 

#define ERR MNP CONNECT TIME OUT (MNP_ERR_BASE-2) II Connect request (acceptor mode) - - - - 
II timed out 

#define ERR MNP NOT CONNECTED (MNP_ERR BASE-3) II Not connected - - - 
Jfdefine ERR MNP ABORTED (MNP ERR BASE-4) II Request aborted by disconnect 

II request 
#define ERR MNP ATTENTION DISABLED (MNP ERR_BASE-5) II Link attention service is not 

II enabled 
#define ERR MNP CONNECT RETRY LIMIT (MNP _ERR_BASE-6) II Connect (initiator mode) request 

II retry limit reached. 
I/define ERR MNP COMMAND IN PROGRESS ( MNP ERR BASE- 7) II Command already in progress. 
I/define ERR MNP ALREADY CONNECTED (MNP _ERR_BASE-8) II Connection already established. - - 
lldefine ERR MNP INCOMPATIBLE PROT LVL (MNP _ERR_BASE-9) II Connection failed due to 

II incompatible protocol levels 
I/define ERR MNP HANDSHAKE FAILURE (MNP_ERR_BASE-10) II Connection handshake failed. 

9/27/91-FinalDraft 16 



AppleTa/k Remote Access APJ External Reference Specification 

II------------------------------------------------------------------------------ 
11 Netshare Error Codes - RemoteAccessinterface.h 

II------------------------------------------------------------------------------ 
#define ERR BASE -5800 

#define ERR NOTCONNECTED (ERR_BASE-0) 
#define ERR CONNECTIONABORTED (ERR_BASE-1) 
#define ERR_ALREADYCONNECTED (ERR_BASE-2) 
#define ERR_COMMANDALREADYINPROGRESS (ERR_BASE-3) 
#define ERR BADVERSION (ERR_BASE-4) 
#define ERR INSHUTDOWN (ERR_BASE-5) 
#define ERR_CONNECTIONABORTING (ERR_BASE-6) 
#define ERR ALREADYENABLED (ERR_BASE-7) 
#define ERR ZONEBUFBADSIZE (ERR_BASE-8) 
#define ERR CONNECTTIMEDOUT (ERR BASE-9) 
#define ERR CONNECTUSERTIMEDOUT (ERR_BASE-10) 
#define ERR BADPARAMETER (ERR_BASE-11) 
#define ERR NOMULTINODE (ERR BASE-12) 
#define ERR ATALKNOTACTIVE (ERR_BASE-13) 
#define ERR NOCALLBACKSUPPORT (ERR_BASE-14) 
#define ERR NOTOPENEDBYTHISPB (ERR_BASE-15) 
#define ERR NOGLOBALS (ERR_BASE-16) 
#define ERR_NOSMARTBUFFER (ERR_BASE-17) 
#define ERR BADATALKVERS (ERR_BASE-18) 
#define ERR VLDB CONNECT 0 
#define ERR VLDB CALLBACK (ERR_BASE-19) 
#define ERR VLDB BADVERSION (ERR_BASE-20) 
#define ERR VLDB BADUSER (ERR_BASE-21) 
#define ERR VLD8 BADPASSWORD (ERR_BASE-22) 
#define ERR VLDB BADLINK (ERR_BASE-23) 
#define ERR VLDB NOCALLBACKALLOWED (ERR_BASE-24) 
#define ERR VLDB ALLCBSERVERSBUSY (ERR_BASE-25) 
#define ERR VLDB GUESTNOTALLOWED (ERR_BASE-26) 
#define ERR VLDB SERVERISIMPOSTER (ERR_BASE-27) 
#define ERR VLDB LOGINNOTENABLED (ERR_BASE-28) 
#define ERR REMOTEPORTALREADYEXISTS (ERR_BASE-29) 
#define ERR OPENNOTALLOWED (ERR_BASE-30) 
#define ERR NOUSERSANDGROUPS (ERR_BASE-31) 
#define ERR PORTSHUTDOWN (ERR_BASE-32) 
#define ERR_PORTDOESNOTEXIST (ERR_BASE-33) 
#define ERR PWNEEDEDFORENABLE (ERR_BASE-34) 
#define ERR DAMAGED (ERR_BASE-35) 
#define ERR NETCONFIGCHANGED (ERR_BASE-36) 

II------------------------------------------------------------------------------ 
11 Connection Control Language Error Codes - CCL.h 

II------------------------------------------------------------------------------ 
#define cclErr BaseCode 
#define cclErr AbortMatchRead 
abort match read 

-6000 
cclErr BaseCode II internal error used to 

9/27/91 -Final Draft 17 



App/eTa/k Remote Access AP! External Reference Specification 

li'define cclErr (cclErr_BaseCode - 6) II CCL error base 
#define cclErr_CloseError (cclErr BaseCode - 7) II There is at least one 

script open 
i/define cclErr_ScriptCancelled (cclErr BaseCode - 8) II Script Canceled 
i/define cclErr TooManyLines (cclErr_BaseCode - 9) II Script contains too many 

II lines 
#define cclErr_ScriptTooBig (cclErr_BaseCode - 10) II Script contains too many 

II characters 
#define cclErr Notinitialized (cclErr_BaseCode - 11) II CCL has not been 

I I initialized 
#define cclErr CancelinProgress (cclErr_BaseCode - 12) II Cancel in progress. 
#define cclErr PlayinProgress (cclErr_BaseCode - 13) II Play command already in 

II progress. 
#define cclErr ExitOK (cclErr_BaseCode - 14) II Exit with no error. 
i/define cclErr BadLabel (cclErr_BaseCode - 15) II Label out of range. 
i/define cclErr BadCommand (cclErr BaseCode - 16) II Bad command. 
#define cclErr EndOfScriptErr (cccErr BaseCode - 17) II End of script reached, 

II expecting Exit. 
#define cclErr MatchStrlndxErr (cclErr BaseCode - 18) II Match string index is out 

II of bounds. 
#define cclErr ModemErr (cclErr BaseCode - 19) II Modem error, modem not 

II responding. 
ildefine cclErr NoDialTone (cclErr BaseCode - 20) II No dial tone. 
#define cclErr NoCarrierErr (cclErr BaseCode - 21) II No carrier. 
#define cclErr LineBusyErr (cclErr_BaseCode - 22) II Line busy. 
#define cclErr NoAnswerErr (cclErr BaseCode - 23) II No answer. 
#define cclErr_NoOriginateLabe: (cclErr BaseCode - 2~) II No @ORIGINATE 
#define cclErr NoAnswerLabel (cclErr_BaseCode - 25) II No @AKSWER 
#define cclErr No~angUpLabel (cclErr BaseCode - 26) II No @HANGUP 

II------------------------------------------------------------------------------ 
11 Link Tool Manager Error Codes - LTMinterface.h 

II------------------------------------------------------------------------------ 
#define ERR LTM BASE 
i/define ERR LTM LISTENER ID IN USE 

#define ERR LTM NO LISTENER 

-5900 

(ERR LTM_BASE-1) 

(ERR LTM BASE-2) 

#define ERR LTM RESOURCE NOT REGISTERED (ERR_LTM_BASE-3) 

i/define ERR LTM PORT NOT CLAIMED 

i/define ERR LTM COMMAND NOT ALLOWED 

ildefine ERR LTM BAD VERSION 

#define ERR LTM ARBITRATION TIMEOUT 

i/define ERR LTM KODE NOT FOUND 

(ERR LTM_BASE-4) 

(ERR LTM_BASE-5) 

(ERR LTM_BASE-6) 

(ERR LTM_BASE-7) 

(ERR_LTM_BASE-8) 

// base of errors for LTM 
II Specified Listener identifier is 
II in use 
II Listener of specified type is not 
II available 
II Listener of specified type is not 
II available 
II claim request failed because to 
II port is busy 
II LTM command not allowed on 
II specified port 
// connect failed due to 
II incompatible LTM versions 
II Connection failed due to a time 
II out during the listener 
II arbitration 
II kode resource not found in 
II specified file 

9127/91 - Final Draft 18 



AppleTalk Remote Access AP/ External Reference Specification 

#define ERR LTM PORT DISPOSED - - - 

#define ERR LTM RESOURCE CLAIMED 

(ERR_LTM_BASE-9) 
II request to fail. 

(ERR_LTM_BASE-10) II call failed because resource is 
II already claimed 

#define ERR LTM_PORT_RESOURCES_CLAIMED (ERR_LTM_BASE-11) II call failed because the port's 

#define ERR LTM RESOURCE NOT CLAIM~~ 
II resources are already claimed 

(ERR_LTM_BASE-12) II call failed because the resource 
II was unclaimed 

#define ERR_LTM_PORT_RESOURCES_NOT_CLAIMED (ERR_LTM_BASE-13) II The LTM port's resources are 
II NOT claimed. 

(ERR LTM_BASE-14) II LTM listen port unclaimed #define ERR LTM PORT UNCLAIMED - - - 
#define ERR LTM CONNECTION REFUSED 

#define ERR LTM CLAIM ABORTED 

#define ERR LTM END OF PORT LIST 

#define ERR LTM NOT CONNECTED 
#define ERR LTM_CONNECTION_ABORTED 
#define ERR LTM BAD LENGTH 

#define ERR LTM BAD PARAMETER - - - 
#define ERR LTM COMMAND IN PROGRESS - - - 
#define ERR LTM CONNECTED 
#define 
#define 
#define 
#define 

ERR LTM CONNECT CANCELED - - - 
ERR LTM CONNECT TIMEDOUT - - - 
ERR LTM NO DEFAULTS - - - 
ERR LTM GOOD BYE 

(ERR_LTM_BASE-15) 

II A Dispose Port call caused the 

II LTM listener refused connect 
II request 

(ERR LTM_BASE-16) II LTM claim call aborted due to 
II LTM_ARB_CLAIM_CANCEL call 

(ERR LTM_BASE-17) II End of open port list reached in 
II current port status session 

(ERR LTM_BASE-18) II Not connected. 
(ERR LTM_BASE-19) II Connection request aborted 
(ERR_LTM_BASE-20) II Length of write request exceeds 

II maximum. 
(ERR_LTM_BASE-21) II Bad parameter. 
(ERR_LTM_BASE-22) II Command already in progress. 
(ERR LTM BASE-23) II Connection established. 
(ERR_LTM_BASE-24) 
(ERR_LTM_BASE-25) 
(ERR_LTM_BASE-26) 
(ERR_LTM_BASE-27) 

II Connection request canceled. 
II Connection time out. 
II Could not get default info ... 
II The driver is going away in a 
II rude fashion 

9/27/91 · Final Draft 19 



--· 



, 
•. AppleTalk Remote Access 

Protocol (ARAP) 
External Ref ere nee 
Specifications 



Apple Computer, Inc. 
Copyright © 1991 by Apple Computer, Inc. 

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or 
transmitted, in any form or by any means, mechanical, electronic, photocopying, recording, or 
otherwise, without prior written permission of Apple Computer, Inc. Printed in the United States of 
America. 



AppkTalk Remote Access Protocol External Reference Specification 

® 

AppleTalk® Remote Access Protocol (ARAP) 
External Reference Specifications 

These are the specifications for the underlying protocols currently being used in the AppleTalk 
Remote Access product version 1.0. 

NOTE: A/,though every attempt has been made to verify the accuracy of the information 
presented, this document may contain errors and is subject to change. 

9/27/91 - Final Draft 1 



Apple Talk Remote Access Protocol External Reference Specification 

ARAPPOINTTOPOINTLINK 

The AppleTalk Remote Access Protocol (ARAP) runs on top of a Point to Point Link (PPL). This document describes the 
characteristics of the PPL, the link arbitration protocol, and the Mcx:lem Link Tool . The Modem Link Tool provides a PPL 
for ARAP over telephone lines. Many of the details of the PPL are dependent on the particular implementation. 

Point to Point link Characteristics 

In order to work with ARAP, each PPL must support the following basic set of characteristics: 

• A connection for ARAP to send and receive "packets". ARAP expects a packet (i.e. block) type interface to the 
PPL In other words, the data contained in one write request to the link, must be delivered to ARAP as the result 
of one read request. The framing of the packets is implementation dependent, but must relay the packet size 
information. 

• A packet size of at least 604 bytes. 

• Best effort, point to point data delivery. ARAP depends on the PPL to detect data errors in the packets, and to 
discard packets that contain errors. All data delivered to ARAP must be valid data sent by the other side of the 
link. 

• Optionally, the PPL can provide reliable link A reliable link guarantees that packets are delivered in the same 
order they are sent, and are free of duplicates If the link is reliable, ARAP provides some enhancements which 
can greatly reduce the amount of redundant traffic sent across the link. 

Link Arbitration Protocol 

It is expected that the PPL used by AMP may be shared other services. For example, a phone line and modem may be 
set up to receive ARAP connections as well as electronic mail connections. For this reason, when ARAP is establishing a 
connection, the side originating the connection arbitrates for the use of the link with the answering side of the 
connection. The arbitration dialog is as follows: 

Connection 
Originator 

Connection Request 
Connection 
Acceptor 

9/27/91 - Final Draft 2 



Apple Talk Remote Access Protocol External Reference Specification 

After the PPL is established, the originating ( or calling) side of the connection sends a Connection Request (CR) packet 
to the accepting (or answering) side of the connection. The acceptor directs the CR to the appropriate service based 
upon the ID string contained in the CR The answer side of the connection can accept or refuse the connect attempt, and 
indicates the result by sending the Connection Request Result packet to the Originator. The format of the CR and CRR 
packets is shown below. 

Link Arbitration Packet 

pktType 

result 

version 

idlength - 
• idStr • • • • • 

The pktType field indicates the type of the packet. The value 1 indicates the packet is a Connect Request, a 2 indicates 
the packet is a Connect Request Result. The result field is zero in the CR, and indicates the result of the connection 
request in the CRR packet. A zero value for the result in the CRR packet indicates that the Connection Request was 
successful and ARAP can use the link. A non-zero value indicates the CR failed. Possible error codes include the 
following: 

-5902 Service requested is not available 
-5906 Incompatible arbitration packet version 
-5915 Connection refused by acceptor 

The version field indicates the version of the arbitration packet format. The version is a four byte version defined by 
Apple two have the following parts (packed into a long in order): 1) First part of the version number in BCD. 2) Second 
and third parts. 3) Release type (development=0x20, alpha=0x40, beta=Ox60, release=0x80). 4) Stage of prerelease 
version. If the acceptor does not support the callers version, a -5906 result is returned. The idStr is a Pascal style string 
which indicates the service the caller wants to connect to. The ARAP idStr value is "Remote Ar.cess". The idlength is the 
length of the idStr, including the length byte. 

9/27/91 · Final Draft 3 



Apple Talk Remote Access Protocol External Reference Specification 

The Modem Link Tool 

The Modem Link Tool (MLT) provides a reliable PPL over asynchronous serial connections. The MIT has two major 
components. The first component, the CCL, establishes the physical connection (e.g. connects the modems). After the 
physical connection is established, the second component, the reliable protocol, provides a reliable PPL The reliable 
protocol used is the V.42 Alternative Procedure, with V.42bis data compression. The protocol is described in ANNEX A of 
the V.42 specification. On top of the reliable protocol, the MIT uses a simple packet format to ensure packet delivery for 
ARAP. The MIT packet format used on top of the reliable protocol is a follows: 

Modem Link Tool Packet 

f datalengtt- 1 data • • • • • • 

The dataLength field is the length of the data in the packet, and does not included the length bytes. The maxlmum 
dataLength supported by the MIT is 618 bytes. 

9/27191 - Final Draft 4 



Apple Talk Remote Access Protocol External Reference Specification 

APPLETALK REMOTE ACCESS PROTOCOL 

The AppleTalk Remote Access Protocol (ARAP) provides efficient AppleTalk: services on a per client basis over slow links. 
It defines the login and authentication sequence as well as the Appletalk data format There are two broad types of ARAP 
information: 1) Internal messages (authentication packets, tickle packets, etc.) that define information related to 
establishing and maintaining the link. 2) AppleTalk packets which contain the higher level (DDP and above) data that is to 
be sent. This document describes version 1 of ARAP. 

If the point to point link that we are operating on can ensure reliable, in order, delivery of data we can provide some 
optional enchancements to the AppleTalk packet delivery mechanism These enhancements are very desirable since they 
can greatly reduce the amount of redundant traffic sent across the link. 

Internal Messages 

In order to operate over a wide range of point to point links we must not require that the underlying link provides reliable 
packet delivery for proper operation of this protocol. Therefore, for internal messages we have defined a very simple 
protocol to deliver the inforrnation sent in a reliable fashion. This protocol is not tailored to any specific link and is limited 
to sending one message at a time. This is sufficient for our needs since we send a very low volume of internal messages 
relative to the amount of AppleTalk information. It is assumed that the underlying link provides the framing of the packet 
and has a way to relay the size of the data sent. We also assume that the underlying link can support packets of at least 
604 bytes in size. NOTE: All numbers passed in internal message packets are stored big endian. 

DataGroup Flag: 
This flag always precedes a datagroup and is used to describe the information that follows. It is a one byte value and is 
broken down into the following fields: 

Bit 7: Reserued - 
This bit must be set to zero. 

Bit 6: Packet Data - 
This bit is set if the data in this packet is data. It is clear if it is an out of band message. 

Bit 5: Tokenized - 
This bit is set if the data after this flag is a token. If it is a token, the sequence number of the token is in the word that 
follows (always a word, not a compactnum). If this bit is not set, it is assumed that raw data follows. The raw data is 
preceded by a compacted length value unless it is the last group of data in the packet The last group of raw data in a 
packet is a special case in which the length can re derived from the amount of data remaining in the packet 

Bit 4:Last Group - 
This bit is set if the data that follows is the last group of data in the packet This flag must be present in the last datagroup. 
If raw data is being described and this flag is set, the size of the data is calculated as specified above. 

9/27/91 - Final Draft 5 



Apple Talk Remote Access Protocol External Reference Specification 

Bit 3: Range - 
This bit indicates whether or not the sequence number that follows describes a range or not If the bit is set, the 
sequence number is describing part of a sequenced packet, not the entire packet The bytes that are wanted from that 
packet are described by the two compact numbers that follow the sequence number word. 

Bit 2: Want Sequenced - 
This bit indicates whether or not the group of data described by this flag should be sequenced and cached by the receiver. 
If the bit is set, the receiver must cache and sequence the data described in this datagroup. The data described can be 
either raw data or data described by a sequence. If it is data described by a sequence it must be decoded before the entry 
is made into the cache. If the bit is clear, no entry is made for this datagroup in the receivers cache. 

Bit 1: Want Packet Sequenced - 
This bit only applies to the first flag in the packet. If it is set, the entire packet should first be decoded and then entered 
into the receivers cache. It is important that the packet be scanned and any entries requested within the packet be 
created before the packet itself is sequenced 

Bits 0: Reserved 
Must be zero. 

Simple Reliable Protocol (SRP) 

All packets sent are preceded by a flag byte that indicates whether this packet is an internal message or an AppleTalk 
packet. If you are sending an internal message set bit 6 of the flag byte to zero. All internal message packets are then 
followed by a one byte packet sequence number and a two byte command. The sequence number is used to ensure the 
ordering of packets that have been sent. The command defines the type of data that this packet represents. The ack 
command (cmd=O) has a special meaning. It does not define any data but is sent to acknowledge the arrival of a 
message from the other end of the link. 

DataGroup flag = $10 
seqnum 

- cmd = msg_ ack - 

9/27/91 - Final Draft 6 



AppkTalk Remote Access Protocol External Reference Specification 

Initializing SRP 

Both sides of the connection must start off by initializing their outgoing and incoming (expected) sequence numbers to 
zero. This allows both sides to start off in sync with each other. 

Writing data 

In order to write a packet using SRP, you set bit 6 of the flag byte to zero, the command byte to the command wanted, 
and the sequence number to the current outgoing sequence number. The rest of the packet is made up of the data that 
is represented by the command we are sending. 

After the packet is sent, we must receive an ack that matches the sequence number we sent to indicate successful 
delivery of the packet If after a period of n seconds (where n=6 for 1200 bps, n=3 for 2400 bps, n=2 for 4800+ bps) 
no ack has been received, we send the packet again. This process will take place until the ack is received or a period of 60 
seconds elapses in which case the connection is tom down with a timeout error. 

Once the ack is received successfully we increment our current outgoing sequence number by one for the next write. 
Since this is a one byte value we wrap back to zero after we add 1 to a sequence number of 255. 

Reading data 

In order to read data we must first determine if an incoming packet is an internal message. We do this by checking the bit 
6 of the flag byte to see if it is zero. If it is, we have an internal message packet. 

The incoming sequence number is then checked to see if it equals the expected incoming sequence number. Ifit is not 
the sequence number expected, an ack should be sent back if the sequence number is one less than expected. The ack 
should be returned with the received sequence number. This could happen if we receive a duplicate of a message we 
have already accepted. If the packet matches the expected sequence number an ack is sent, the expected sequence 
number is bumped, and the data is delivered. 

AMP Connection Establishment 

After the low level link has been established we begin the process of establishing the ARAP link. In this discussion the 
client represents the originator, and the server represents the answering or accepting side of the connection. Before 
reading or writing any data both sides initialize the SRP. The sequence of events in connection establishment is critical 

· and must be followed exactly. 

9/27/91 - Final Draft 7 



AppkTalk Remote Access Protocol External Reference Specification 

Server- 
Writes a message ( cmd = msg_srvrversion) that has the lowest and highest versions that the server can accept The 
version is a four byte version defined by Apple to have the following parts (packed into a long in order): 1) First part of 
the version number in BCD. 2) Second and third parts. 3) Release type (development=Ox20, alpha=0x40, beta=Ox60, 
release=0x80). 4) Stage of prerelease version. 

DataGroup flag = $10 
seqnum 

cmd = msg_srvrversion 

lowVersion 

high Version 

Client- 
Reads message and confirms that it is msg_srvrversion. If it is not a msg_srvrversion, a reply is sent 
(cmd= msg_ rmtversion) with a result ccxle of ERR_ VLD8 _ BADVERSION, and the session is tom down. If it is 
msg_srvrversion, we attempt to find a suitable version by taking the minimum of the high Version from the server and the 
highest version we support This gives us the maximum version acceptable to both sides. We then check to see if this 
version is less than our minimum version supported or less than the lowVersion from the server. If it is, we do not have an 
acceptable version match with the server and must send a reply (crrd = msg_ rmtversion) with an result ccxle of 
ERR_ VIDS _ BADVERSION, and tear down the session. If the version is acceptable we set version= acceptableversion 
and send it (crrxi=msg_ rmtversion) to the server with an result code of zero. 

DataGroup flag = $10 
seonurn - cmd = msg_rmtVersion - 

- - 
- version - 
-· - 

- result - 

9127/91 - Final Draft 8 -- 



App/eTalk Remote Access Protocol External Reference Specification 

Serter- 
Reads message and confirms that it is rnsg_ rmtversion and that the result is zero. If it is not, the session is tom down. If 
it is, we check the version sent to us to make sure that it falls within our acceptable range of versions. If it does not we 
tear the session down. If it does, we know which version of the protocol to use and continue by creating an 
authentication challenge packet This packet contains a authType field which represents the type of authentication being 
done. Currently the only authtype used is two way DES (authtype= kAuth _ Two'WclyDES). In the two way DES packet, 
two 32 bit random numbers are generated and put into randomleurnberl and randombumberz The packet is then sent 
( cmd = rnsg_a uth _challenge). 

DataGroup flag_ = $10 
se_gnum 

cmd = 
ms_S2_uth_ challen_g_e 

authType 

randomNumberl 

randomNumber2 

Client- 
Reads message and confirms that it is msg_auth _ challenge and that authType equals kAuth _ Two~ayDES. If not, result 
is set to ERR_ VLD8 _BADVERSION and a reply is sent (cmd=rnsg_auth_request). The session is then tom down. If 
the message is ok, we form an authentication request packet If we are logging in as a guest, we set the guest flag and 
set the usemame to "<Guest>". If we are logging in as an authenticated user, we set the userName to our user. The 
field userName is an array of 34 characters. If the string you are returning in userName is less than 34 characters the 
remaining space needs to re padded. If we are authenticating ourselves to the server we must use the randomleurnberl 
& randomleumberz sent by the server produce a resulting number; The technique used is to copy the password 
(excluding the len byte) into a space of8 bytes. Any unused bytes are set to zero. A key is then generated from the 
password. This key is then used to encode the 64 bits of random number information passed to us by the server The 
resulting number is put into our outgoing packet in resultblumberl and resultblumberz. We then generate our own 
random number to challenge the server (we want to re sure it really knows our password) and store it in 
randomlcumberl and randomxumberz. Finally the result is set to zero and the packet is sent 

9/27/91 - Final Draft 9 



Apple Talk Remote Access Protocol External Reference Specification 

(cmd= msg_auth _request). 

DataGroup flag = $10 
seqnum 

cmd = 
msg_ auth _request 

result 

randomNumber! 

randomNumber2 

resultNumberl 

resultNumber2 

guest 

user Name [ 34 I 

Server- 
Reads message and confirms that it is msg_ auth _request and that the result is zero. If it is not, the session is torn down. 
If it is, we confirm that the userName and resultblumber returned to us is valid. If they are trying to log in as a guest and 
we don't support guest the error is ERR_ VLD8 _ GUE.5TNOTAUOWED. If it is a bad user we set the error to 
ERR VlD8 BADUSER. If the resultr-umber does not match we set the error to ERR VLD8 BAD PASSWORD. If we - - - - ·got an error we send it back (cmd= msg_auth _response) in result If everything is ok and we are not doing guest login, 
we generate a resultlsumber the same way the client did above to authenticate to it that we really know the password. At 
this stage it is possible that this user should be called back. If this is the case we set a result code of 
ERR_ VLD8 _ CAUBACK to indicate that we will be doing callback. If the user was authenticated and no callback was 
wanted, we set the result code to zero. We then send the message back to the client (cmd=msg_auth_ response). If 
we are doing callback, we disconnect, initialize SRP, and attempt to connect to the client through callback. 

9127191- Final Draft 10 



Apple Talk Remote Access Protocol External Reference Specification 

DataGroup flag = $10 
se_g_num 
cmd = 

msg_ auth _response 

result 

resultnumberl 

resultnumber2 

Client- 
Reads message and confirms that it is msg_auth _response. If the result is not ERR_ VLD8 _ CAIIBACK or zero, we tear 
down the connection. If we are not doing guest login we check the resultNumbers to make sure they are expected. If 
not, the connection is tom down. If the result is zero we continue . If the result is ERR_ VLD8 _ CAIIBACK, we 
disconnect, initialize SRP and wait to answer. 

Server- 
The server puts together a packet that has information about itself and how the client should appear. Rea!Net and 
Rea!Node are set to the address of the server itself This information is used in clients that use remapping to ensure that 
they will be able to communicate with the server under all conditions. AppearAsNet and AppearAsNode defines the ddp 
network address that the client should use when creating AppleTalk packets. Since the AppearAsNode field is defined as 
an unsigned short, the high byte of this field will always be zeroed. SB _SendBufSize and SB_ RcvBufSize define the 
amount of space allocated to SmartBuffering for sending and receiving respectively. If SmartBuffering is not used you 
should set both of these to zero. SmartBuffering can only be used if the underlying link is known to provide reliable 
delivery of packets. MaxConnectTimer defines the maximum amount of time in seconds that this client is allowed to stay 
connected. This value will be -1 if the time is unlimited. ServersZone defines the zone that the client will appear in. 
ServersName should be set to the name of this server. This string appears to the user as the name of the computer that 
they are connected to. The fields serverZone and serversName are arrays of 34 characters. If the string you are returning 
in serverZone and serversName are less than 34 characters the remaining space needs to be padded. After these fields 
are filled in, the packet is sent (cmd= msg_startinfofromserver). 

9127/91 · Final Draft 11 



Apple Talk Remote Access Protocol External Reference Specification 

DataGroup flag = $10 
seqnum 

and= 
msg_startinfofromserver 

SB SendBufSize 

SB RcvBufSize 

RealNet 

Real.Node 

m:JXConnectTirner 

AppearAsNet 

AppearAsNode 

...__.- 

'-,__...- 

serversZone [34] ._ .• 
serversName [34] 

Client- 
Reads message and confirms that it is msgstartinfofrornserver. If not, the connection is torn down. In order to 
determine the proper size of the buffers for SmartBuffering, the minimum of the servers buffer sizes and our own is 
obtained. If SmartBuffering is not being used we set our SB _SendBufSize and SB_ RcvBufSize to zero. SmartBuffering 
can only be used if the underlying link is known to provide reliable delivery of packets. N, a courtesy to the server we 
indicate our real address (this will be different than the appearss address if we are using remapping) in Rea!Net and 
Rea!Node. The packet is then sent (cmd=msg_startinfofromremote). 

9/27191 - Final Draft 12 

·"-....-- 



Apple Talk Remote Access Protocol External Reference Specification 

DataGroup flag = $10 
seqnum 
and= 

msg_startinfofromremote 

SB SendBufSize 

SB RcvBufSize 

Rea!Net 

Rea!Node 

Server- 
Reads message and confirms that it is msg_startinfofromremote. If not the connection is tom down. In order to 
determine the proper size of the buffers for SmanBuffering, the minimum of the clients buffer sizes and our own is 
obtained. Next, we begin sending the list of allowable zones to the client (cmd=msg_zonelistinfo). This list of pascal 
strings must be sorted in ascending order. Since this list may be larger than what can fit into one packet we break it into 
multiple packets. Only the last packet should set the lastflag to true. Care must be taken to ensure that only complete 
zone names are fit into a packet (we do not allow part of a zone name in one packet and the other in the next). After all 
zones are sent the connection is established and we can now accept and send AppleTalk packets. 

DataGroup flag = $10 
seqnum 
and= - - msg_ zonelistinfo 

lastflag 

• • • 
ZoneLlst • • • 

Client- 
Reads message and confirms that it is msg_zonelistinfo. If not, connection is tom down. Packets are read until the 
lastflag is true. The connection is established and we can now send and receive AppleTalk packets. 

9127/91 - Final Draft 13 



Apple Talk Remote Access Protocol External Reference Specification 
'----·· 

Session maintenance packets- 

The following messages can be sent any time after the connection has been established. 

Tickle- 
This message (cmd= msg_ tickle) infonn.s the other side that the connection is still intact It contains within it the 
network number of the sender (so the client can adapt to a change from net zero on nonextended nets). It also contains 
the time left in this session in seconds ( only set by the server). A value of-1 indicates that there is unlimited time 
remaining in the connection. A tickle packet should be sent every 20 seconds and if no valid packets (data or internal 
message) are received within 60 seconds, the connection is tom down. The reception of any valid packet will cause us to 
reset our teardown timer. If neither theNet or time left has changed, and a valid packet has been received in the last 20 
seconds, then no tickle packet needs to be sent 

DataGroup flag = $10 
seqnum 
cmd = ---- - msg_tickle 

~ cheNec - 

- - - timeleft - - - 

Time Left- 
This message (cmd=msg_ timeleft) is sent by the server to inform the client that it only has the number of seconds in 
timeleft remaining. This message should generally be dealt with by informing the clients user that his connection will be 
tom down in time left seconds. 

DataGroup flag = $10 
seqnum 

- and= - msg timeleft 

1-- - - timeleft - ,__ - 

9/27/9 I - Final Draft 14 



Apple Talk Remote Access Protocol External Reference Specification 

Timer Cancelled- 
This message ( cmd = msg_ timercancelled) indicates that a time left message is being cancelled and the connection is no 
longer being shut down. The time left indicates the new time left in the connection (generally· 1 to indicate unlimited). 

DataGroup flag= $10 

seqnum 

cmd = - - =s, timercanceUed 

- - - timeleft - - - 

AppleTalk Packets 

Once the connection has been established we can start to send AppleTalk packets across the link. The format of the 
packets depends on whether they are being encapsulated in SmanBuffering or not If SmanBuffering is not being used, 
the flag byte that precedes the Appletalk data has the bits sflag_PktData and sflag_ LastGroup set This indicates that the 
packet represents Apple talk data and that the Appletalk data is the last group of data in this packet 

To provide a consistent state (and to improve SmanBuffering) we set certain fields to a known value before transmitting 
a packet All packets are sent using the long ddp fonn. Both the lap source and lap destination bytes are set to zero. If a 
checksum has been set in the packet, the lap source and lap destination bytes are set to 1. This indicates to the receiver 
that it must recalculate the checksum. The length byte of ddp is also set to zero. This must be recalculated by the 
receiver before delivering a packet or forwarding it onto the net 

Client responsibilities 
When the client needs to send an NBP lookup it should set the nbp function to nbpBrRq, even if there is no router. This 
allows the server to distinguish whether or not this packet represents a NBP lookup or an NBP confirm. Confums will 
always have their nbp function set to nbplkllp. 

Server responsibilities 
The server is responsible for properly forwarding packets sent by the client If an NBP packet arrives with a function code 
set to nbpBrRq, it treats the lookup as if it had originated from its own stack as described in Inside ~pleTalk. This means 
it must determine whether to forward this lookup to a router if there is one or to send it on its own net If it is on an 
extended net, it must also check to see if this lookup is for zone'*'. If it is, it must expand it to its zone if it has one before 
sending onto the net 

9/27/91 - Final Draft 15 



Apple Talk Remote Access Protocol External Reference Specification 

The server is also responsible for keeping packets originated by the client from being returned to the client This 
includes both packets that have a source address equal to the client's address in the DDP header as well as :NBP packets 
that have a source equal to the client For example, if the client sends a packet and the server forwards this packet to a 
router, the router may generate a lookup request It is then the reponsibility of the server to keep the lookup request 
from returning to the client 

The server is also responsible for eliminating broadcast R1MP information from being forwarded to the client This 
information is not needed by the client since the client is simply just another ncde on the servers net 

9/2 7/91 - Final Draft 16 



Apple Talk Remote Access Protocol 

Error codes: 

ERR VLD8 CALLBACK -5819 - - 
ERR VLD8 BADVERSION -5820 - - 
ERR VLD8 BADUSER -5821 - - 
ERR VLD8 BADPASSWORD -5822 - - 
ERR VLD8 BADUNK -5823 - - 
ERR VLD8 NOCALLBACKALLOWED -5824 - - 
ERR VLD8 AilCBSERVERSBUSY -5825 - - 
ERR VLD8 GUESTNOTALLOWED -5826 - - 
ERR VLD8 SERVERISIMPOSTER -5827 - - 
ERR VLD8 LOGINNOTENABLED -5828 - - 

Message numbers. 
msg_ack 0 
msg_ srvrversion 1 
msg_ rmtversion 2 
msg_auth _ challenge 3 
msg_auth _request 4 
msg_auth_response 5 
msg_startinfofromserver 6 
msg_ startinfofromremote 7 
msg_ zonelistinfo 8 
msg_tickle 9 
msg_ timeleft 10 
msg_ timercancelled 11 

Flag bit masks: 
sflag_FLxup 0x80 
sflag_PktData 0x40 
sflag_ Tokenized 0x20 
sflag_ LastGroup 0xlO 
sflag_ Range 0x08 
sflag_ W.rntSeqd 0x04 
sflag_~ntPktSeqd 0x02 
sflag_ Reserved 0xOl 

Authentication types: 
kAuth _ Two~yDF.5 1 

External Reference Specification 

9127/91 - Final Draft 17 



Apple Talk Remote Access Protocol External Reference Specification 

SMARTBUFFERING 

SmartBuffering is an algorithm that is used to reduce repetitive traffic such as packets that are sent on a network It can 
be tailored to recognize entire or partial packets of infonnation. It works by caching a specified amount of infonnation and 
checking future packets against that infonnation for matches. If matches are found, a token representing that data is put 
into the data stream instead of the actual data. Smartbuffering provides the ability to mix both tokens and raw data in the 
data stream. 

Smartbuffering is a state driven algorithm. It requires that both the sending and the receiving side always be in sync. 
Therefore, the medium used to transmit its data must provide a reliable point to point link It also requires that the 
sender and receiver use the same size buffers in order to remain synced up when new entries items begin overflowing 
into earlier ones. Because of this it is necessary to exchange buffer sizes before any data is processed. The buffer size 
that is used is the smaller of the two buffers to ensure that both sides end up with the same size buffers since the side 
with the larger buffer can always temporarily reduce the amount of buffer it provides. 

The choice of what data to cache and how to recognize it when matching subsequent packets is entirely that of the 
sender. Smartbuffering describes the format of the packets used to transmit the data and how the actual data is stored. It 
does not explicitly describe how matches are found on the sending side or how any indexes into the send side data are 
stored. Determining what to match and how to match the data is implementation independent and can be tailored for the 
needs at hand. 

Implementation Details 

At the heart of Smartbuffering lies the techniques used to ensure that the sender and receiver always remain in sync. 

The first step in ensuring this is to provide a method in which both sides can determine the proper size buffer to use. In 
order to do this they exchange their preferred buffer sizes. After getting the other's buffer size each chooses an actual 
buffer size that is the smaller of the two. Thus, if the sender had 10000 bytes of storage and the receiver had 8000 bytes 
of storage the resulting size would be the smaller of the two which is 800) bytes. This ensures that every operation done 
to the sender's buffer will result in exactly the same buffer state on the receiving side after the same operation is carried 
out 

The second step to ensuring that both sides remain in sync is for them to provide a consistent way of adding to and 
removing items from the data cache. The algorithm used in Smartbuffering uses a ring buffer. The method of storing 
data in this buffer must be exactly the same on both sides. Each packet inserted into the buffer has the following format: 

9/27/91 · Final Draft 18 



AppkTalk Remote Access Protocol. External Reference Specification 

typedef struct TPacketData 
{ 

long right; /* link for receive, cksumhead for send*/ 
long left; /* link for receive*/ 
unsigned short seqnum; /* sequence number of this entry*/ 
unsigned shortdatalen; /* length of data that follows*/ 
unsigned char databuf[]; /* data that follows is tacked on here*/ 

) TPacketData, *TPPacketData; 

Any block of data ackled to the ring buffer must always fit without wrapping. In other words, if there is not enough room 
at the high end of the buffer to store the full block of data, the buffer must be wrapped back to the low end. This is done 
to simplify the mapping of data structures onto the data within the buffer (at the expense of slightly under utilizing the 
available space). It would be very cumbersome to deal with the data if part of it was in one place and the other part 
somewhere else. If there is not enough room to insert an entry, items are removed until enough space exists. It is 
important to remember that both the sender and the receiver must use exactly the same approach to manage their 
buffers because they must always stay in sync. 

In our implementation, when used for sending, the right field is used to link together the checksum records that describe 
this block of data. It is not a requirement that this field be used in this way, it is only a requirement that the fields specified 
in the header exist. 

The size of the entire record which includes the actual data must always be an even number of bytes. This is to ensure 
that subsequent entries will always have their headers aligned on even boundaries. Therefore, if the actual size of the 
record happens to be an odd number, one byte is added to the amount of space used in the cache. 

In order to describe the data in this buffer in a tokenized format, a sequence number is stored with the data. This 
sequence number will be duplicated on the receive side when it stores this data. It is crucial that the sender and receiver 
use the same technique to generate sequence numbers to ensure that both sides stay in sync. In order to do this, both 
sides always start at a sequence number of zero before any data is stored. For each new item inserted into the data buffer, 
a new sequence number is generated by adding one to the previous one. 

When adding data to the buffer, the following technique must be followed by both sides in order for them to stay in sync. 
The packet is scanned and all operations are executed in order. After all of the partial data packets are added, the entire 
packet may be added if the appropriate bit has been set in the first clatagroup flag byte. Adding the entire packet last 
ensures that the receiver will be able to reconstruct the packet based only on previous information. If the packet was 
added first, it would be possible to have entries in the data that referenced the packet itself. If this were allowed to 
happen, the receiver would have no my of reconstructing the packet since the packet itself would be required! 

Each packet always contains at least one datagroup. It may contain more than one datagroup if required. Each datagroup 
is made up of a flag followed by data whose meaning can be discovered by decoding the flag. A datagroup is a subunit of 
the packet that can be used to mix different types of data. For example, it might be desirable to describe a packet by 
using both matched data using sequence numbers as well as new data that is sent in its raw format 

9/27/91 · Final Draft 19 



Apple Talk Remote Access Protocol External Reference Specification 

'---- 

In order to minimize the amount of data required to describe the information that follows the datagroup flag we have 
defined a compact representation of an unsigned short number This compact representation is known as a compactnum 
and has the following characteristics: 1) If the high bit of the first byte (first is described as reading left to right within the 
packet) is set, then we mask off the high order bit to obtain the number This means that if the value wanted is less than 
128 it can be described in 1 byte. If the bit is not set, then the number is a two byte number, and the ow order value of 
the number is obtained from the next byte. This numbering scheme limits the maximum value of a compactnum to 
32767. 

Redundant traffic reduction 

If the link that we are running over ensures reliable packet delivery and the two ends of the connection have negotiated 
for SmartBuffering, we can take steps to reduce much of the redundant traffic between the two points. SmartBuffering 
interprets AppleTalk packets based on protocol type, and then creates checksums that define the parts of packets that are 
most likely tD be repetitive. 

The receive side of our implementation uses the standard SmartBuffering techniques. It simply obeys the requests of 
the send side to reprcxluce the data. Therefore, we will not discuss any details of the receive side. 

The effectiveness of SmartBuffering depends on a number of factors. One of the most important factors is how often 
recognizable packet components match. A good example of highly repetitive data is NBP. Typically the same ( or very 
similar) packets are sent a number of times. Therefore NBP data achieves very good compression since it is so repetitive 
(typically better than 5 to 1). Another factor in the effectiveness of SmartBuffering is how large the actual history buffers 
are. Obviously, the larger the buffers the more likely we are to find a match with some information that was previously 
sent In our current implementation we use a send an receive history buffer size of 11200. 

' 

When a packet is ready to be sent, specific checks are made depending on the type of packet 

First, all packets are checked to see if the entire packet matches (the only exception to this are echo packets which we 
always want represented in their full form). If we get a full packet match, then the token that describes that match is sent 
to the receive side. No more interpretation is done, since the partial interpretations of that packet would already have 
been done and are probably still in the data cache. 

If an entire match of the packet cannot be made we take special action depending on the type of data within the packet 

DDPHeader- 
ARAP always creates long headers when sending· packets. Therefore, we only need to interpret long headers. The first 
time we see a header, a checksum entry is created that describes the data that includes all of the lap and ddp part of the 
header: If a subsequent packet has a header that matches one that has already been checksummed we substitute the raw 
data with that of a datagroup token range. Since a range takes between 2 and 4 more bytes to describe than a complete 

9/27191 - Final Draft 20 



Apple Talk Remote Access Protocol External Reference Specification 

token we instruct the receiver to enter the data described by this range into its cache. This allows us to provide a full 
match on the header if we get another packet with the same header. Once we have told the receiver to buffer the full 
header, we can describe it without using a range thus saving the extra bytes that would have been needed. Since ddp 
headers are quite similar (most transactions end up going to the same places) we have typically seen the entire header of 
any packet reduced down to 3 bytes. This honing down technique is used in most of the other header interpretations. 

NBPdata · 
NBP packets tend to be very similar. The most likely items to change are the function and nbpid fields. Fortunately they 
are situated next to each other. Since it is very likely that the data that fol.lows will prcx:iuce a match in a later packet we 
cache it using the honing down technique described in the DDP Header. This produces a high likelihood of a match and 
allows us to describe it in a small number of bytes. We have seen between 5 and 20 to 1 compression of the nbp traffic. 

Af'Pdata- 
The entire ATP header is skipped and only the data is searched for a match. Since the ATP Header is only 8 bytes we 
would see minirral return for special casing that part of the packet, The data however could produce substantial reduction 
if retransmissions with different headers were occurring. 

ADSPdata- 
Since the ADSP header is quite likely to change from one packet to the next, it is ignored. Again, the data beyond the 
header is matched since a retransmission could produce a large savings even if the header had changed. 

Cuber data- 
For types of packets that we do not special case we simply take all of the data following the DDP header and attempt to 
match it As new data types become known, it is possible that they will be added to our list of special cases. 

In the future it is also posslble that we rmy take advantage of the sflag_Fixup bit to special case even more details of the 
packet This mechanism has not been completely defined by SmartBuffering at this time. 

After the special casing of the packet is done we create an entry for the entire packet This gives us the potentlal of 
finding entire packet matches in the future. It is possible through this mechanism to achieve 200 to 1 compression on 
packets that are exact duplicates of some other packet that preceded it 

9/27/91 - Final Draft 21 



Apple Talk Remote Acces.s Protocol External Reference Specification 

AppleTalk Remote Access Smartbuffering Example: 

~ will show what happens to an NBP Lookup packet as it is retransmitted and it's id changes. NOTE: AppleTalk 
Remote Access expects the LAP source and destination to be zeroed. It also expects the length byte to be zeroed on 
transmission (this is filled in by the other side after being received). We will assume that no packets have yet been 
transmitted. 

First Lookup Packet: 

LAP/DDP Header 
NBP Fune & ID 
NBP Tuple 

-> 00 00 02 00 00 00 00 11 11 22 22 11 22 02 FE 02 
-> 21 74 
-> 22 22 22 FE 00 01 = 09 AFPServer 01 * 

Since this is the first packet being sent we do not already have an entry for it or any of it's parts in our transmit cache. 
Therefore, we will create an entry for the entire packet (sequence number 0) and set the datagroup flag to indicate that 
the receiver should also create an entry. We also create an entry in our checksum table to the interesting parts of the 
packet In this particular case they are the LAP;DDP Header ( combined), the NBP Tuple, and of course the entire packet 
These checksum entries will give us the possibility to match all or part of a subsequent packet The resulting packet to be 
sent is simply a flag followed by the raw data in this case: 

DataGroup Flag 
LAP/DDP Header 
NBP Fune & ID 
NBP Tuple 

-> 52 (PktData, LastGroup, WantPktSeqd) 
-> 00 00 02 00 00 00 00 11 11 22 22 11 22 02 FE 02 
-> 21 74 
-> 22 22 22 FE 00 01 = 09 AFPServer 01 * 

~ now have one packet sequenced and 3 checksums that describe it Now, if the kokup packet moved on to a new ID, 
we would be presented with the following packet (before Smartbuffering): 

Second Lookup Packet: 

LAP/DDP Header 
NBP Fune & ID 
NBP Tuple 

-> 00 00 02 00 00 00 00 11 11 22 22 11 22 02 FE 02 
-> 21 75 (Note the ID change from 74) 
-> 22 22 22 FE 00 01 = 09 AFPServer 01 * 

This time, the transmitter checks to see if it already has the entire packet in it's cache and discovers that it does not 
(remember the ID byte changed). It then checks to see if the LAP;DDP Header matches. It discovers that it does have 
a match for that part of the packet in sequence number 0, bytes 0 through OxOf. It outputs the appropriate datagroup flag 
indicating that a token is being sent for that part of the packet It also creates a new entry into the cache for this part of 
the packet (so it will not have to be described as a range in the future) and sets the 'w.lntSeqd bit in the clatagroup flag 
(this will be sequence number 1). When it gets to the NBP Fune & ID bytes, it simply outputs a clatagroup flag that 
indicates they are raw data. It does not try to checksum or sequence them since they change quite often and it woukl not 
save any space to tokenize two bytes. Next, it tries to match the NBP tuple and finds that it has a match for that part of the 
packet in sequence number 0, bytes Ox12 through Ox24. It also creates a sequence for this portion of the packet and 
emits the clatagroup flag that describes the range found and also indicates to the receiver that it should sequence this part 

9/27/91 - Final Draft 22 



AppleTalk Remote Access Protocol External Reference Specification 

of the packet (sequence number 2). Finally, the entire packet is entered as sequence number 3. The following data 
results: 

DataGroup Flag -> 6E (PktData, Tokenized, Range, WantSeqd, WantPktSeqd) 
Sequence Number -> 00 00 
Range -> 80 8f (compact numbers for 00 Of) 
DataGroup Flag -> 40 (PktData) 
Raw Data Len -> 82 (compact number for 02) 
NBP Fune & ID -> 21 75 (the 2 bytes of raw data) 
DataGroup Flag -> 7C (PktData, Tokenized, LastGroup, Range, WantSeqd) 
Sequence Number -> 00 00 
Range -> 92 A4 (compact numbers for 12 24) 

As you can see, the resulting packet is 14 bytes long, and the original packet was 37 bytes long, fora savings of23 bytes. 
If yet another NBP Lookup is sent and the NBP ID byte changes once again we get the following packet to process: 

Third Lookup Packet: 

LAP/DDP Header 
NBP Fune & ID 
NBP Tuple 

-> 00 00 02 00 00 00 00 11 11 22 22 11 22 02 FE 02 
-> 21 76 (Note the ID change from 75) 
-> 22 22 22 FE 00 01 = 09 AFPServer 01 * 

The transmitter will once again go through the process of attempting to match the packet. It will not find the entire 
packet match since the NBP ID changed again. It will find a match for the LAP;DDP Header, but this time it will find the 
match in sequence number 1 (the sequence it created for this portion of the packet in the above transmission). The 
advantage this time is that this sequence exactly describes the part of the packet it is looking for, and will be able to 
describe it without the range bytes. We then output a raw data description for the NBP Function and ID bytes. Then we 
come to the NBP tuple which is matched with sequence number 2. Again, this is a direct match so we don't need the 
range bytes. Finally, the entire packet is sequenced (number 4). The resulting data is: 

DataGroup Flag -> 62 (PktData, Tokenized, WantPktSeqd) 
Sequence Number -> 00 01 
DataGroup Flag -> 40 (PktData) 
Raw Data Len -> 82 (compact number for 02) 
NBP Fune & ID -> 21 76 (the 2 bytes of raw data) 
DataGroup Flag -> 70 (PktData, Tokenized, LastGroup) 
Sequence Number -> 00 02 

This time we were able to describe the packet in only 10 bytes. Finally, lets assume that the transmitter needs to resend 
the above packet with no change. ~ get the following packet to be processed: 

9/27/91 - Final Draft 23 



Apple Talk Remote Acce.s:s Protocol External Reference Specification 

Fourth Lookup Packet: 

LAP/DDP Header 
NBP Fune & ID 
NBP Tuple 

-> 00 00 02 00 00 00 00 11 11 22 22 11 22 02 FE 02 
-> 21 76 (Note same as above) 
-> 22 22 22 FE 00 01 = 09 AFPServer 01 * 

This time the transmitter will check to see if it can match the entire packet and discover that it does have a match in 
sequence number 4. Therefore, it can describe the packet as beirg made up of only one sequence, and the following 
data results: 

DataGroup Flag 
Sequence Number 

-> 70 (PktData, Tokenized, LastGroup) 
-> 00 04 

As you can see we were able to describe the original 37 byte packet in only 3 bytes. Typically with NBP traffic, we would 
reach this stage after only 2 packets because the f\'BP ID does not normally change with each packet sent 

9/27/91- Final Draft 24 



APPLE COMPUTER, INC. SOFTWARE IlCENSE 

PLEASE READ THIS IlCENSE CAREFUUY BEFORE USING TIIE 
SOFTWARE. BY USING TIIE SOFTWARE, YOU ARE AGREEING 
TO BE BOUND BY TIIE TERMS OF TIIIS IlCENSE. IF YOU DO 
NOT AGREE TO TIIE TERMS OF THIS IlCENSE, PROMPTI..Y 
RETURN THE UNUSED SOFTWARE TO THE PIACE WHERE YOU 
OBTAINED IT AND YOUR MONEY Will BE REFUNDED. 

1. License. The application, demonstration, system and other software 
accompanying this License, whether on disk, in read only memory, or on 
any other media (the "Apple Software") and related documentation are 
licensed to you by Apple. You own the disk on which the Apple Software· 
is recorded but Apple and/or Apple's Licensor(s) retain title to the Apple 
Software and related documentation. This License allows you to use the 
Apple Software on a single Apple computer and make one copy of the 
Apple Software in machine-readable form for backup purposes only. You 
must reproduce on such copy the Apple copyright notice and any other 
proprietary legends that were on the original copy of the Apple Software. 
You may also transfer all your license rights in the Apple Software, the 
backup copy of the Apple Software, the related documentation and a copy 
of this License to another party, provided the other party reads and agrees 
to accept the terms and conditions of this License. 

2. Restrictions. The Apple Software contains copyrighted material, 
trade secrets and other proprietary material and in order to protect them 
you may not decompile, reverse engineer, disassemble or otherwise 
reduce the Apple Software to a human-perceivable form. You may not 
modify, network, rent, lease, loan, distribute or create derivative works 
based upon the Apple Software in whole or in pan. You may not 
electronically transmit the Apple Software from one computer to another 
or over a network. 

3. Support. You acknowledge and agree that Apple may not offer 
any technical support in the use of the Software. 

4. Termination. This License is effective until terminated. You may 
terminate this License at any time by destroying the Apple Software and 
related documentation and all copies thereof. This License will terminate 
immediately without notice from Apple if you fail to comply with any 
provision of this License. Upon termination you must destroy the Apple 
Software and related documentation and all copies thereof. 

5. Export Law Assurances. You agree and certify that neither the 
Apple Software nor any other technical data received from Apple, nor the 
direct product thereof, will be exported outside the United States except as 
authorized and as permitted by the laws and regulations of the United 
States. 

6. Government End Users. If you are acquiring the Apple Software 
on behalf of any unit or agency of the United States Government, the 
following provisions apply. The Government agrees: 

(i) if the Apple Software is supplied to the Department of Defense 
(DoD), the Apple Software is classified as "Commercial Computer 
Software" and the Government is acquiring only "restricted rights" in the 
Apple Software and its documentation as that term is defined in Clause 
252.227-7013(c)(l) of the DFARS; and 

(ii) if the Apple Software is supplied to any unit or agency of the 
United States Government other than DoD, the Government's rights in the 
Apple Software and its documentation will be as defined in Clause 52.227- 
19(c)(2) of the FAR or, in the case of NASA, in Clause 18-52.227-86(d) of 
the NASA Supplement to the FAR. 

\ 
7, Limited Warranty on Media. Apple warrants the disks on which the 
Apple Software is recorded to be free from defects in materials and 
workmanship under normal use for a period of ninety (90) days from the 
date of purchase as evidenced by a copy of the receipt. Apple's entire 
liability and your exclusive remedy will be replacement of the disk not 

meeting Apple's limited warranty and which is returned to Apple or an 
Apple authorized representative with a copy of the receipt. Apple will 
have no responsibility to replace a disk damaged by accident, abuse or 
misapplication. ANY IMPLIED WARRANTIES ON THE DISKS, INCLUDING 
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 
A PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO NINETY (90) 
DAYS FROM THE DATE OF DELIVERY. THIS WARRANTY GIVES YOU 
SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HAVE OTHER RIGHTS 
WHICH VARY FROM STATE TO STATE. 

8. Disclaimer of Warranty on Apple Software. You expressly 
acknowledge and agree that use of the Apple Software is at your sole risk. 
The Apple Software and related documentation are provided "AS IS" and 
without warranty of any kind and Apple and Apple's Licensor(s) (for the 
purposes of provisions 8 and 9, Apple and Apple's Licensor(s) shall be 
collectively referred to as "Apple') EXPRESSLY DISCLAIM ALL 
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, 
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 
A PARTICULAR PURPOSE. APPLE DOES NOT WARRANT THAT THE 
FUNCTIONS CONTAINED IN THE APPLE SOffiX'ARE WILL MEET YOUR 
REQUIREMENTS, OR THAT THE OPERATION OF THE APPLE SOFTWARE 
WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTS IN THE 
APPLE SOFTWARE WILL BE CORRECTED. FURTHERMORE, APPLE 
DOES NOT WARRANT OR MAKE ANY REPRESENTATIONS REGARDING 
THE USE OR THE RES UL TS OF THE USE OF THE APPLE sorrw ARE OR 
RELATED DOCUMENTATION IN TERMS OF THEIR CORRECTNESS, 
ACCURACY, RELIABILITY, OR OTHERWISE. NO ORAL OR \11RITTEN 
INFORMATION OR ADVICE GIVEN BY APPLE OR AN APPLE 
AUTHORIZED REPRESENTATIVE SHALL CREATE A WARRANTY OR IN 
ANY WAY INCREASE THE SCOPE OF THIS WARRANTY. SHOULD THE 
APPLE SOffiX'ARE PROVE DEFECTIVE, YOU (AND NOT APPLE OR AN 
APPLE AUTHORIZED REPRESENTATIVE) ASSUME THE ENTIRE COST OF 
ALL NECESSARY SERVICING, REPAIR OR CORRECTION. SOME STATES 
DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE 
ABOVE EXCLUSION MAY NOT APPLY TO YOU. 

9, Limitation of Liability. UNDER NO CIRCUMSTANCES INCLUDING 
NEGLIGENCE, SHALL APPLE BE LIABLE FOR ANY INCIDENTAL, 
SPECIAL OR CONSEQUENTIAL DAiVIAGES THAT RESULT FROM THE USE 
OR INABILITY TO USE THE APPLE SOffiX'ARE OR RELATED 
DOCUMENTATION, EVEN IF APPLE OR AN APPLE AUTHORIZED 
REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH 
DAiVIAGES. SOME STATES DO NOT ALLOW THE LIMITATION OR 
EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL 
DAMAGES SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT 
APPLY TO YOU. 
In no event shall Apple's total liability to you for all damages, losses, and 
causes of action (whether in contract. tort (including negligence) or 
otherwise) exceed the amount paid by you for the Apple Software. 

10. Controlling Law and Severability. This License shall be governed 
by and construed in accordance with the laws of the United States and the 
State of California, as applied to agreements entered into and to be 
performed entirely within California between California residents. If for 
any reason a court of competent jurisdiction finds any provision of this 
License, or portion thereof, to be unenforceable, that provision of the 
License shall be enforced to the maximum extent permissible so as to effect 
the intent of the parties, and the remainder of this License shall continue in 
full force and effect. 

11. Complete Agreement. This License constitutes the entire 
agreement between the parties with respect to the use of the Apple 
Software and related documentation, and supersedes all prior or 
contemporaneous understandings or agreements, written or oral, 
regarding such suhject matter. No amendment to or modification of this 
License will be binding unless in writing and signed by a duly authorized 
representative of Apple. 

7/15/91 
001-0158-A 


